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Prefaces

This monograph is an outcome of the summer school organized on behalf
of CISM in June 2008, for the advanced course titled “Instabilities of Flows
with and without Heat Transfer and Chemical Reactions”. The course was
conducted over five days of a working week in the beautiful and peaceful
surrounding of Udine with an ashram-like atmosphere and the course was
held quite intensively, with active participation of the lecturers and all the
participants, including one of the rectors of the institute.

The scope of the course was vast and the lectures turned out to be
reflections of the expertise of the lecturers. The material covered in the
course ranged from classical hydrodynamic instability (although taught
from asymptotic theory perspective) to newer areas of interests and finally
to the complex field of flow instability involving heat transfer and chemical
reactions. While significant progresses have been made over the last cen-
tury and half in understanding the field of instability, the motivation still
remains that is given by the aphorism: the flow that occurs in nature must
not only follow the equations of fluid dynamics, but also be stable (Landau
& Lifshitz, 1959).

Currently there are more than one monographs and textbooks available
that deals with the basic subject of instability and a question arises natu-
rally, if there is a need for another monograph. Before proposing the course,
I discussed this aspect with Prof. Schneider who actually encouraged us to
propose what we ended up doing: To teach a course on the subject of our
expertise that will have minimal overlap with available materials, at the
same time to remain relevant to the needs of the participants. The enthu-
siasm of the participants in the summer school convinced us that the goal
was met by and large. That also encourages us to go ahead and put those
materials in one place in this monograph those happen to be the research
interests of the contributing authors. In presenting this monograph, as the
editor, I realise that if a scholar has nothing new to say, then he should keep
quiet. I fully realise that some of the materials presented in the manuscript
is alternative ways for the quest for truth and if they provoke the readers
to think differently, then the purpose for the monograph will be more than
met. The monograph essentially is in two parts, as contributed by the two
authors. The first part is a synthesis of classical material mixed with emerg-
ing areas of research, but dealt with in a completely different manner than
that is found in other books and monographs. The second part is also a
mixture of classical physical ideas as applied to a very complex engineering
problem, addressed by computational means.

Instability and transition have a track of torturous development, im-



mediately following the successful explanation of inviscid mechanisms by
Kelvin, Helmholtz and Rayleigh- who assumed that viscous action can only
be stabilizing. The subject of instability suffered from this misconception
for quite a long time. Notable researchers who were victims of indifference
by proposing alternate ideas were many, including Heisenberg. His fate was
followed by the researchers belonging to the German school led by Prandtl.
When this was eventually circumvented in 1940’s with viscous instability
theory accepted as an established area of research, it was found to be mod-
erately good enough for many more decades to come. But then a thing
moderately good is not so good as it ought to be (Tom Paine).

The overbearing successes of linear instability theory impeded develop-
ment in other important areas of (i) receptivity and (ii) many other mech-
anisms of transition, e.g. bypass transition and spatio-temporal growth of
disturbances seen in flows where linear theories apply. In chapter 2, we have
dealt with a unified description of instability and receptivity- which has not
been dealt systematically before. This should be considered a first for this
monograph.

Technological advances in aerospace industry were achieved by the linear
instability theory, whose sole criterion of existence of Tollmien-Schlichting
waves as disturbances have dominated the post-world war II research in this
area. Any routes of transition other than that by T'S waves were christened
as bypass transition by Morkovin in late 1950. It meant many things to
many researchers and the resultant lack of focus seems to pervade the field
even today. We have tried to state the case of one mechanism of bypass
transition systematically in chapter 3 from the first principle. In developing
this area, we have also revived the energy-based stability and receptivity
concept, from a completely new interpretation of mechanical energy, and
not relying on kinetic energy alone. The classical energy-based stability
theory based on only kinetic energy is known to be deficient! This has been
rectified in recent times and the appearance of a new energy based theory
is given in chapter 3 and 4.

The other canonical flow geometry considered in the first part consists
of bluff-body flow instability dealt in chapter 5. This introduces the flow
past a cylinder that actually suffers linear temporal instability moderated by
nonlinear stabilization. This flow is different from that is discussed primarily
in chapters 2 to 4, where the linear instability is via spatial growth. Also,
for such flows nonlinearity leads to further destabilization, whereas for the
flow past a cylinder, the nonlinearity stabilizes the linear instability and
takes the flow to another equilibrium flow. In chapter 6, the effects of heat
transfer via the restrictive condition of Boussinesq approximation for the
canonical flow past flat plates is studied. This problem has been solved



by the robust compound matrix method (CMM), revealing newer insight.
Advancing CMM as a method for solving stiff differential equations arising
in instability problem is also a significant new addition to the subject, as
given in this monograph.

In a complete departure to the first six chapters, the last four chapters
show the practical method of studying flows involving combustion. Such
flows and their instability at the present time are solved numerically and
this approach is followed in these chapters. Nonetheless, the author pays
particular attention to subtle issues of wave propagation in reacting flows
and their special simulation techniques. The author particularly emphasizes
on studying multiphase flows in combustion chambers by newer innovative
numerical techniques. Not content with just simulating such flows numer-
ically by LES, the author also investigates numerical instabilities in such
simulation by often neglected round-off error. This is a significant addi-
tion to the subject area to deal with complex flows numerically and should
help practising scientists and engineers involved in research on the topic of
combustion and its instability.

TK Sengupta wants to acknowledge the help provided by V.K. Suman,
Neelu Singh, Y. Bhumkar, S. Bhaumik and Kamal K. Mishra for help with
preparation of the manuscript.

Tapan K. Sengupta
Department of Aerospace Engineering
Indian Institute of Technology Kanpur

The theory of instability of fluid flows is one of the oldest branches of fluid
mechanics. Results that are considered as fundamental even at present days
were already obtained in the 19th century, and the names of eminent sci-
entists like Helmholtz, Kelvin, Rayleigh and Reynolds are associated with
those early results. Remarkably, instabilities of fluid flows have not lost their
appeal to the fluid mechanics community up to this day. Those colleagues
who are fond of great challenges might consider the subject so fascinat-
ing because it is so difficult, but there are other reasons that may be of
relevance, e.g. the importance of flow instabilities in many applications,
including many branches of engineering. After all, steady-state solutions of
the equations of motion, whether they might have been obtained analyti-
cally as so-called exact solutions, or numerically by means of CFD, will be
observed in the real world only if they are stable.



Those, among others, were the reasons why the Scientific Council of
CISM unanimously accepted Professor Sengupta’s proposal for an Advanced
Course entitled “Instabilities of Flows with and without Heat Transfer and
Chemical Reactions”. For the favourable decision of the Scientific Council
it was also essential that Professor Sengupta himself, an authority in the
field, was available for organizing the course, which included the important
task of proposing eminent, internationally recognized scientist as lecturers.

The course organized, and directed, by Professor Sengupta was a great
success, not only in terms of the number of participants, but also from a
scientific point of view. I myself had the privilege of representing CISM at
the course. I attended presentations of all lecturers, and it was a pleasure to
see the participants—of various levels of professional experience—follow the
lectures with great interest, themselves also making useful contributions in
the discussions. I should like to add that, like the participants, I also learned
a lot from the lectures that were both instructive and stimulating.

The Rectors Committee, which comprises the rectors, the former rectors,
the secretary general and the vice secretary general of CISM, has always
been in favour of publishing the lecture notes of each course in the Springer
book series ”CISM Courses and Lectures”, with the course organizer(s)
acting as editor(s). Thus the lecturers, including the organizer, are usually
asked to submit manuscripts that are suitable for publication in the series,
accounting for the results of the discussions during the course, if appropriate.
However, not always agree all lecturers to have their course notes published.
The present case is a particular one. Despite great efforts by Professor
Sengupta as the editor, only two, out of a total of five, lecturers - including
the editor himself - were willing, and able, to submit manuscripts in due
time. The result, however, is nothing less than an excellent contribution to
the CISM book series. Professor Sengupta’s article has, in fact, developed
into a monograph on the subject of his lectures, and Dr. Poinsot has also
nicely refined the interesting material he had presented during the course.
Hence I should like to express my sincere gratitude to both authors for
their valuable contributions. I have no doubts that the present book will
be accepted most favourably by the scientific community - colleagues and
students alike.

Wilhelm Schneider
Vienna University of Technology
Former Rector of CISM
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Chapter 1

GENERAL INTRODUCTION
ON INSTABILITY AND
TRANSITION

Prof. Tapan K. Sengupta
HPCL, Aerospace Engineering
LLT. Kanpur

1.1 Introduction

This monograph is an idiosyncratic look at the topics of research interests
of the contributing authors ranging from (i) classical linear hydrodynamic
instability in chapter 1; on (ii) receptivity (chapter 2); (iii) other topics of
current interest on bypass transition (chapter 3) and spatio-temporal insta-
bility (chapter 4); (iv) bifurcation and nonlinear stabilization in a bluff-body
flow (chapter 5) and (vi) qualitative changes in flow instability due to re-
stricted heat transfer (chapter 6). These topics are admixtures of linear
and nonlinear aspects of flow instabilities studied via analytical and com-
putational routes. Even though in chapters 2 to 5, theoretical results are
supplemented by computational results obtained by specifically developed
high accuracy direct numerical simulation (DNS) techniques, in chapters 7
to 11 attention is focused on computational results obtained for combustors
and combustion processes in engineering- a very specialized topic of current
interest. This requires understanding complex, reacting, multiphase flows
and their computations by large eddy simulation (LES). For this purpose,
special attention is devoted in understanding waves in reacting flows and
the role of computing errors in LES. However, over-riding all these special
aspects, one needs to understand the concepts of basic fluid mechanics and
fundamental principles of receptivity and instability.

Thus, the summer school at CISM in June 2008 and the present mono-
graph grew out of a desire of the contributing authors to add those areas
essential to the understanding of core materials, emphasizing those areas
which have not been covered earlier. This is with a hope that this would



2 Introduction to Instability

form a timely addition to the subject across a large range of studies in flow
instabilities and its dependence on heat transfer and chemical reactions.

Fluid dynamics continues to be the crucible of studies for continuum
mechanics. The subject as a whole straddles fields involving many areas of
engineering applications and to basic principles of instability of dynamical
systems. It was not before 1687 (the year of publication of The Principia by
Isaac Newton), the equations of motion was first written down for mechan-
ical systems. The first proper mathematical modeling of what is now called
the inviscid flow was first published by Euler in 1752. Understanding of
fluid flow by empirical models during and before this period was so unsatis-
factory that Robins (1746) noted that all the theories of resistance hitherto
established are extremely defective, and that it is only by experiments analo-
gous to those here recited that this important subject can ever be completed.
It was in 1840 that the equation of fluid motion in the presence of friction
—~the Navier-Stokes equation - was published. The sanctity and correctness
of this equation is now well-accepted in the continuum regime of fluid flow.
Apart from the fact that correct governing equations are needed, one has
also to ensure that correct boundary and initial conditions are used in the
solution process. In this context, investigations on the validity of no-slip
boundary condition have been revisited many a times. One must note that
this boundary condition is a modeling approximation and has never been
proven rigorously. Batchelor (1988) has therefore noted for Newtonian fluid
flow that the absence of slip at a rigid wall is now amply confirmed by direct
observation and by the correctness of its many consequences under normal
conditions. There are now some exceptions to this boundary condition for
low density and in micro- to nano-scale flows, that has been interestingly at-
tributed to electrokinetic effects or flow instabilities by Tropea et al. (2007).
Despite this, by and large we will not question the correctness of no-slip con-
dition for continuum flows. Issues of flow instabilities and their resolution
has occurred side by side with the development of the subject of fluid me-
chanics itself. We therefore begin with some general observations on fluid
mechanics and its relation to studies of flow instabilities.

After Navier- Stokes equation has been written down in the first half of
nineteenth century, few exact solutions were obtained for few fluid flows.
In one such case, Stokes compared theoretical prediction with available ex-
perimental data for pipe flow and found no agreement whatsoever. Now we
know that the theoretical solution of Stokes corresponded to undisturbed
laminar flow, while the experimental data given to him corresponded to a
turbulent flow. This problem was seized upon by Osborne Reynolds, who
explained the reason for such mismatches by his famous pipe flow exper-
iments (Reynolds, 1883). It was shown that the basic flow obtained as a
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legitimate solution of the governing Navier- Stokes equation is unable to
maintain its stability with respect to omnipresent small disturbances in the
flow. Mere mathematical existence of a solution does not always guarantee
its physical realization and observation. Existence of a mathematical solu-
tion shows a possibility of a solution (that we will refer as the equilibrium
solution), as it embodies satisfaction of conservation laws satisfying force,
moment and energy balance . However, additionally one needs to study
the stability of each and every such solutions to ascertain their observabil-
ity. Reynolds demonstrated experimentally the equilibrium parabolic profile
disintegrating into sinuous motion of water in the pipe that eventually led
to random or turbulent flow.

In view of the above, very aptly the following is noted in Landau &
Lifshitz (1959) that the flow that occurs in nature must not only follow the
equations of fluid dynamics, but also be stable. This observation is central
to many physical phenomena- where observability of solution is of funda-
mental importance. If solutions are not observable, then the corresponding
equilibrium flows are not stable. Here, implication of flow instability is in
the context of continuous deviation of the instantaneous solution from the
equilibrium solution caused by growth of infinitesimally small perturbations
present in the surroundings of the system. It is this sensitive dependence
on, often unquantifiable, disturbance environment that makes the subject of
instability very challenging. At the same time, smallness of the background
disturbances allows one to study the problem of growth of these from a
small perturbation approach. This greatly helps, if the governing nonlinear
equations can be solved for the equilibrium solution with ease and then its
stability can be studied by linearizing the governing equation for the per-
turbation field. In the present monograph this is amply demonstrated in
chapters 1-4 in studying linear instability.

To understand better the issues affecting flow instability, certain features
of the dye-experiments performed by Reynolds (1883) is worth recounting-
which is perhaps the first recorded thorough experimental observations on
the phenomenon of flow instability. Reynolds in his experiments, took
pipes of different diameters fitted with a trumpet shaped mouth-piece or
bell-mouth. The mouth-piece accelerates the flow locally, creating a favor-
able pressure gradient that has the propensity of attenuating background
disturbances, as we will explain in chapter 2. It is also for the reason
to reduce disturbances, experiments were performed by Reynolds during
mid-night to avoid noise from daytime vehicular traffic. Reynolds also ob-
served that the rapid diffusion of dye with surrounding fluid depends on the
non-dimensional parameter, Va/v with V as the center-line velocity in the
pipe whose diameter is a¢ and v is the kinematic viscosity. This ubiquitous
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non-dimensional parameter is now called the Reynolds number (Re) to un-
derscore the singular importance of this now-famous pipe flow experiment.
Reynolds found that the flow can be kept orderly or laminar up to Re =
12,830. He noted that this value is very sensitive to the disturbances in the
flow before it enters the tube. Thus, he noted quite prophetically that this
at once suggested the idea that the condition might be one of instability for
disturbance of a certain magnitude and stable for smaller disturbances. The
relationship of instability with disturbance amplitude is a typical attribute
of non-linear instability. It is now well established that pipe and plane
Couette flows are linearly stable for all Reynolds numbers, when the usual
linear stability analysis is performed. This therefore suggests that either
non-linear and/ or different unknown linear mechanism(s) of instabilities
are at play for these flows.

Later, the critical Re was further raised for pipe flows, establishing that
there is perhaps no upper limit above which transition to turbulence can
not be prevented. This example also suggests the importance of receptivity
of flow to different types of input disturbances to the system. If there
is no input to a fluid dynamical system of a particular kind that triggers
instability, then the response will demonstrate the flow to be orderly, even
if the fluid dynamical system is unstable to that kind of input. Thus, if the
basic flow is receptive to a particular disturbance, then the equilibrium flow
will not be observable in the presence of such disturbances.

Reynolds’ experiment pointed out the instability as the main reason for
the non-observability of basic flow, but it still did not clarify the steps fol-
lowing which one gets to the turbulent flow stage. Like every other subject,
instability and transition also has gone through uneven progress from this
pioneering experiment to its present state. We note that like many other
fields, the associated scientific ideas, laws, and their discovery as narrated in
textbooks on flow instabilities are mere distillation of complex multi-faceted,
subtle and convoluted historical narrative. The initial impetus in any field
itself could be due to missed starts, dead ends etc. and afterward it is in-
variably followed by mistakes, sophistries those are at times no more than
self-fulfilling prophesies (aptly called the Pygmalion or Rosenthal effects in
social sciences) and deceptions- that makes the whole journey a maze with
errors appearing understandable, as an after-thought.

There have been significant contributions initially made by Helmholtz,
Kelvin and Rayleigh (1880, 1887) using inviscid analysis. In their quest to
justify their inviscid analysis, an assumption was made that viscous action
due to its dissipative nature can be only stabilizing. Such was the impact
of this observation that when Heisenberg (1924) submitted his dissertation
solving perturbation equations including viscous terms for boundary layer
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(under the guidance of Sommerfeld), the examination committee could find
nothing wrong in the analysis, but found it difficult to accept that viscous
action can add to instability. Of course, it makes perfect sense now, when
one realizes that viscous action can cause a phase delay that can lead to
positive feedback and hence destabilize the flow. Similar fate awaited the
researchers from the Gottingen-school led by Prandtl (1935) in develop-
ing viscous linear stability theory that explained many aspects of the early
stages of transition process involving formation and growth of waves, at-
tributed to Tollmien and Schlichting. This theory is based on the key equa-
tion developed independently by Orr (1907) and Sommerfeld (1908) and is
named after them. It took the pioneering experimental effort of Dryden and
his associates in establishing viscous linear stability theory by detecting the
so-called Tollmien-Schlichting waves through the famous vibrating ribbon
experiments of Schubauer & Skramstad (1947).

Linear stability theory results match quite well with controlled labora-
tory experiment for thermal and centrifugal instabilities. But, instabilities
dictated by shear force do not match so well, e.g. linear stability theory
applied to plane Poiseuille flow gives a critical Reynolds number of 5772,
while experimentally such flows have been observed to become turbulent
even at Re = 1000- as shown in Davies and White (1928). Couette and
pipe flows are also found to be linearly stable for all Reynolds numbers,
the former was found to suffer transition in a computational exercise at
Re = 350 (Lundbladh & Johansson, 1991) and the latter found to be un-
stable in experiments for Re > 1950. Interestingly, according to Trefethen
et al. (1993) the other example for which linear analysis fails include to a
lesser degree, Blasius boundary layer flow. This is the flow which many cite
as the success story of linear stability theory.

Flow instability of attached boundary layers has been predicted with
some success and the corresponding empirical transition prediction method-
ologies have matured to such an extent that they are now routinely used
in aircraft industry. A flat plate placed in a stream with moderately low
ambient disturbance level (turbulence intensity below 0.5%), flow transition
takes place at a distance x from the leading edge given by,

Uso
Rey = =% —35%10° to 10°
12

The onset of instability is predicted at Re.. = 519 (based on displace-
ment thickness as the length scale). It is important to realize that instability
and transition are not synonymous. Actual process of transition begins with
the onset of instability but the completion may depend upon multiple fac-
tors those form the basis for adjunct topics like secondary, tertiary and
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nonlinear instabilities. Hence it is difficult to predict Rey,. as compared to
Re.,. In many external flows, the latter processes takes place over such a
short streamwise distances, that the above mentioned empirical prediction
methodologies neglect the distinction between the two.

It is also important to note that the linear stability theory studies a
particular class of problems where the disturbances decay as one moves
away in the wall-normal direction from one of the boundaries. Thus, the
developed theory is mainly for disturbances that originate at the wall. The
problem of destabilizing a shear layer by disturbances outside the shear layer
has not received sufficient attention or adequately tackled in the past. This
is also one of the major focus of this monograph, as we discuss it in chapter
2.

Despite many attempts made over more than a century, the exact route
to turbulence is still far from clear. This prompted Morkovin (1991) to
state: “One hundred eight years after O. Reynolds demonstrated turbulence
i a circular pipe, we still do not understand the nature of the irregular
fluctuations at the wall nor the formation of larger coherent eddies convected
downstream further from the wall. Neither can we describe the mechanisms
of the instabilities that lead to the onset of turbulence in any given pipe
nor the Reynolds number (between about 2000 and 100 000) at which it will
take place. It is sobering to recall that Reynolds demonstrated this peculiar
non-laminar behaviour of fluids before other physicists started on the road to
relativity theory, quantum theory, nuclear energy, quarks etc”. While some
additional researches have clarified some key concepts, the situation about
flow transition in a pipe remains the same.

The search for complete understanding on the origin and nature of tur-
bulence continues- with the hope that the numerical solution of full Navier-
Stokes equation without any modeling, as in DNS, may provide insight to
it. Multitude of published DNS results in the literature suffers from a major
drawback though, with most of them not requiring any explicit forcing of
the flow via definitive and realistic input disturbance field. Most of these de-
pend upon computational noises and /or "random noise”. We wish to point
out that unlike in mathematical closed-form solutions, numerical solution
is always visited upon by numerical noise of the method and the hardware.
Thus, the implicit assumption in DNS that these numerical noise sources
will produce a turbulent flow and that is the same as the physical turbulent
flow is a statement of hope and yet to be established rigorously. In fact, the
contrary seems to be the case, as is shown in chapter 3 via DNS of bypass
transition where a physical process is traced following explicit excitation.
In contrast in chapters 7 to 11, computed LES solutions did not require any
explicit specification or modeling of input disturbance or noise.
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In studying stability of flows, it is convenient to pose the problem either
as a temporal or as a spatial instability problem. While it is numerically
expedient to take a temporal approach, many practical flows are known
to follow spatial route. For example in lab experiments for external wall-
bounded flows, it is noted that the disturbances grow in space as they travel
downstream. This was established unambiguously through the experiments
of Schubauer & Skramstad (1947) for flat plate boundary layer and is an
excellent example of spatial instability problems. However, there are many
flows where the instability grows both in space and time. These type of
problems to identify whether the flow suffers temporal and/ or spatial in-
stability arise in linear stability analysis. Flow instability studied following
descriptions of two independent routes, is an artificial way of treating gen-
eral instability problems.

1.2 What is Instability?

To analyze a physical problem analytically, we must obtain the gov-
erning equations that model the phenomenon adequately. Additionally, if
the auxiliary equations pertaining to initial and boundary conditions are
prescribed those are also well-posed, then conceptually getting the solution
of the problem is straightforward. Mathematicians are justifiably always
concerned with the existence and uniqueness of the solution. Yet not every
solution of the equation of motion, even if it is exact, is observable in na-
ture. This is at the core of many physical phenomena where observability
of solution is of fundamental importance. If the solutions are not observ-
able, then the corresponding basic flow is not stable. Here, the implication
of stability is in the context of the solution with respect to infinitesimally
small perturbations.

In studying the stability of problem with respect to ambient dis-
turbances, it is hardly ever possible that one can incorporate all the con-
tributing factors in a given physical scenario for posing a physical problem.
Occasionally these neglected causes can be incorporated by process noise
and results are made to correlate with the physical situation. This is possi-
ble when the causes are statistically independent and then it follows upon
using Central Limit Theorem.

1.3 Temporal and Spatial Instability

Instability of an autonomous system is strictly for time-dependent
systems that would display growth of disturbances in time. This may also
mean that either we are studying the stability of a flow at a fixed spa-
tial location or the full system displays identical variation in time for each
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and every spatial locations. In reality, many fluid flows display a growth
in space, or in time, or a complex spatio-temporal growth of disturbances.
For disturbances that originate from a fixed location in space the distur-
bance grows, as it convects downstream. Thus, the disturbance is termed
unstable, if it grows unbounded as it moves downstream. This is called the
convective instability. This type of instability is seen in wall bounded shear
layers, exemplified by the classic vibrating ribbon experiment of Schubauer
& Skramstad (1947). This experiment was performed in a very quiet facility
to create Tollmien- Schlichting (TS) waves by vibrating a ribbon inside a
flat plate boundary layer. This experiment was the first one to show the
existence of viscous unstable waves those were predicted earlier theoretically
by Heisenberg (1924), Tollmien (1931) and Schlichting (1933), but were not
supported experimentally immediately. Hence, the existence of TS waves
were doubted before these experimental results were known. Additionally,
this experiment was also the first one that displayed the receptivity of wall-
bounded shear layer to vibratory disturbances within the shear layer, while
showing the inadequacy of acoustic excitation in creating T'S waves.

For convectively unstable flows, disturbances are swept away from their
actual origin. However, in many cases it can so happen that the distur-
bance can grow first in time at a fixed location, before they are convected
downstream. Such growth of disturbances both in space and time are seen
in many free shear layers and bluff-body flows. If we subject the equilib-
rium solution of such an unstable fluid dynamical system to a localized
impulse, then the response field spreads both upstream and downstream of
the location with respect to the local flow, where it originated while growing
in amplitude. Such instabilities are termed as absolute instabilities. Here,
an additional distinction needs to be made between convective and abso-
lute instabilities. On application of an impulse, both the situation display
disturbances in upstream and downstream directions. However, in con-
vectively unstable system the growth of the disturbance is predominantly
in one direction, while for absolutely unstable system the growth will be
omni-directional. These ideas will be further clarified by understanding
some basic concepts related to wave motion.

1.4 Elements of Wave Mechanics

In the previous section, we have distinguished between systems that grow
either with time or with space. In reality, many flows display a complex
space-time dependence for the disturbance evolution. In contrast to laminar
flows, transitional and turbulent flows display broad-band spectra in wave
number and circular frequencies. Thus, it facilitates to discuss such flow
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dynamics in spectral plane. Below, we provide a very brief introduction to
wave mechanics, as applied to a model spatio-temporal dynamical system.
Of special interest, is the utility of the concept of dispersion relation that
relates the wave number with the circular frequencies. As we note that such
dispersion relations are consequences of the governing differential equations
and/ or the associated auxiliary conditions.

A wave may be viewed as a unit of the response of the system to ap-
plied input or disturbances. These responses could be in terms of physical
deflections, pressure, velocity, vorticity, temperature etc., those physical
properties relevant to the dynamics, showing up in general, as function of
space and time. Any arbitrary function of space and time can be written in
terms of Fourier-Laplace transform as given by,

Flat) = /B / Fw, k)eita=0 duud, (1.4.1)

for a system whose property f(z,t) varies with time and single space di-
mension x. In this definition, w and k are the complex circular frequency
and wave number, respectively. A special point is stated here to interpret
the meaning of Eqn. (1.4.1). The integrals in this equation are performed
along special contours in the complex w— and k—plane and are called the
Bromwich contours- whose definition and usages can be further seen in Van
der Pol & Bremmer (1959) and Papoulis (1962). The Bromwich contours
are chosen in the strip of their convergence, where they are defined. This is
discussed in section 2.6.1.2 for an elaborate explanation and many applica-
tions for boundary layer instability are shown in section 2.6. Choice of the
contour in the w—plane depends on the physical principle of causality. In
the same way, the k-plane contour has to be chosen in such a way that the
poles and singularities of the response should be positioned to account for
the correct directionality of the associated response field. The transforms
related to time dependence are thus sought in terms of unilateral Laplace-
Fourier transform and the transforms associated with space dependence are
defined via bi-lateral Laplace transform. Equation (1.4.1) is the inverse
transform to obtain the function in the physical space based on the value
of the direct transform F(w, k), obtained in the spectral plane. The direct
transform can be obtained in turn from the following,

F(w, k) = [ h /O h [, t)e k=t gudt (1.4.2)

In writing the above transform, it is implied that the input to the system
is applied at t = 0, and thus, the time integral starts at that time, essentially
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following the causality principle. However no such restriction needs to be
applied for space dependence of the function.

The definition integrals of Eqns. (1.4.1) and (1.4.2), tell us that any
arbitrary space-time dependent functions can be thought of as an ensemble
of large numbers of waves with different combinations of wave numbers and
circular frequencies. This assembly could be a result of countably infinite
numbers of waves or it could represent a continuous spectrum. There is a
definitive relationship between the wave numbers and the circular frequen-
cies, as identified before, as the dispersion relation.

Let us explain the implication of dispersion relation through a simple
example of one-dimensional wave propagation whose governing equation is
given by,

af of

a7 teg. =0 (1.4.3)

In this equation ¢ is the phase speed of the wave. We know that the
exact solution of Eqn. (1.4.3) shows the initial solution to travel to the
right at the phase speed (c¢). If we use the representation given by Eqn.
(1.4.1), in Eqn. (1.4.3) we then get,

/ / i(ke — w)Fe ko=t gudk = 0 (1.4.4)
Br

Since the integral is true along the Bromwich contours and is equal to
zero, hence a non-trivial and unique solution would require the following
relation to hold,

w = kc

This is the desired relationship between the circular frequency and the
wave number and is the dispersion relation. For a general problem governed
by other forms of equation, the dispersion relation will be of the kind,

w=w(k) (1.4.5)

Thus, the dispersion relation for Eqn. (1.4.3), is the statement of gov-
erning equation in the spectral plane and tells us that the scale of space
variation and the scale of time variation are not independent and they are
related. For many other problems, the dispersion relation will be conse-
quence of boundary conditions, as is often derived for water waves develop-
ing for an equilibrium solution given by the Laplace’s equation. Equation
(1.4.5) implies that each frequency component will travel in space with the
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corresponding phase speed. Any system that has relationship showing that
the phase corresponding to each wave number travels by the same speed
is called a non-dispersive system. In contrast, a dispersive system is one
for which different frequency components travel with different speed, such
that any compact disturbance at ¢ = 0 will be found dispersed at a later
time. One can generalize the above for a system that displays broad-band
dynamics.

Once again for such a general system, the governing differential equa-
tion(s) and the boundary condition(s) will determine the dispersion relation.
Once we have this relation, it is possible to talk about the general proper-
ties of the response field (Lighthill(1978)). Let us consider two neighboring
wave numbers, k1 and ko of the response field. For the physical problem,
response field depends continuously on the forcing and auxiliary conditions.
Hence the corresponding circular frequencies, wy and ws, as obtained from
the dispersion relation will also be two closely spaced neighboring points in
the frequency plane. We denote the corresponding response components by,

f1 = acos(kiz — wit) (1.4.6a)

f2 = CLCOS(]CQZL' — UJQt) (146b)

We consider here only the real part of the response field. A more gener-
alized response based on the expression (1.4.1) will have also an imaginary
component signifying the phase shift of the output with respect to applied
input. In the above equations, both the components have been assumed to
have same amplitude, the difference being negligible- as we are consider-
ing two components that are separated by an infinitesimal amount in the
spectral plane. The total contribution coming from these two components
is then given by,

f = f1 +f2 = [2@ COS %{(kl 7]62)1’7 (wl 7W2)t}] COS %{(kl +k2)l’* (w1 +WQ)t}
(1.4.7)

Total effect of these two components shows up as a combination of two
factors- one on a slow scale given by the first quantity inside the square
bracket and the second quantity that varies on the original scale given by
the second cosine function. As the two components are infinitesimally apart
in the spectral plane, the slowly varying part can be viewed as the amplitude
of the total effect. As energy of a wave system is proportional to the square
of the amplitude of the wave, one can view the energy of the system to
vary following the phase variation of the amplitude. Therefore the speed
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of propagation of energy is given by the rate at which the phase of the
amplitude changes and is given by,

_ (w2 —w1)
Vo= (k2 — k1)

This is the group velocity of the simple system considered here, where the
spatial variation is along a single direction and the group velocity direction is
given along this direction. For the one-dimensional system in the limit, when
the wave numbers of the two components are only dk apart in k—space, then
one can consider an equivalent response field centered around this cluster
and a general expression for the group velocity is given by,

dw
dk

The group velocity for multi-dimensional problem is a vector, decided
by the variation of circular frequency with the wave number vector. It
is only the real part of Eqn. (1.4.8) that is termed the group velocity - as
discussed in Whitham (1978). Thus, this is the velocity at which the energy
of a group of waves travel, centered about the middle of the wave number
group. It is noted that the one-dimensional wave given by Eqn. (1.4.3), is
non-dispersive with V, = c.

Regarding the classification of instabilities into convective and absolute
instability, one can now see the difference clearer in terms of the group
velocity. For absolute instability the group velocity is found to be zero, so
that the disturbances do not get swept away, as in convective instability
and continue to grow in the place of their origin. However, in many flow
systems, these two aspects can remain simultaneously.

V, = (1.4.8)

1.5 Some Instability Mechanisms

Here two simple cases of instabilities are considered to emphasize the
concepts described above. We begin by distinguishing the difference between
static and dynamic instability by considering the stability of atmosphere as
an example.

When a parcel of air in the atmosphere is moved rapidly from an equilib-
rium condition and its tendency to come back to its undisturbed position is
noted, then we term the atmosphere as statically stable. The movement of
the packet is considered as impulsive, to preclude any heat transfer from the
parcel to the ambience. This tendency of static stability- when exists, is due
to the buoyancy force caused by the density differential due to temperature
variation with height and such body force acts upon the displaced air-parcel.
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In static stability studies, we do not look for detailed timed-dependent mo-
tion of the parcel following the displacement (as the associated accelerations
are considered negligible).

1.5.1 Dynamic Stability of Still Atmosphere

For the dynamic stability study, we consider once again a parcel of air to be
at equilibrium, at a height z and is displaced to a height (z+¢) to follow its
detailed time history of motion. We note that the motion is caused again
by the buoyancy force, caused by the temperature variation of the ambient
air given by T'= T'(z). Here, the vertical displacement of the air-parcel is £
and the dynamics follows the force balance equation,

PE=g(p—p)aie (1.5.1)

where § is the instantaneous acceleration experienced by the parcel of air.
Density of the displaced parcel is considered to be given by p’, while the
ambient fluid has the density p, so that the right hand side of the above
equation represents the buoyancy force. Equilibrium thermodynamics tells
us that for a simple compressible substance with only one mode of work,
any state property can be represented by any two other properties and let
us consider them to be the pressure (p) and the entropy (s). Thus, using a
Taylor series we can relate the density of the ambient air at the two heights
as

p(z+€) p(z)+<§§) ‘[p(z+§)p(z)]+(g§> [s(z+E&)—s(2)]+... (1.5.2)

Once again, we will assume that the displacement process of the air-
parcel is isentropic (there are no viscous or heat losses associated with the
rapid movement of the parcel) and thus for the air-parcel,

0
et =r@+ (0) ber9-pa]  153)
In Eqns. (1.5.2) and (1.5.3), mechanical equilibrium ensures same 0p
/

and p(z) = p/(z). Thus, the density differential causing the buoyancy is
given by,

(0= )ere = (g”)u +€)—s(2)) = (Z”)jg (15.4)

We can also relate the density of the air-parcel at the two heights as,
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op\ dp

p’(2+€)=p(2)+(ap> Pe=ple) + L dp

2dz

3

where ¢ is the speed of sound. Equation (1.5.1) can also be written in terms
of the specific volume (v = %), using Eqn. (1.5.4) as

F_ 9 N _|g(ov) ds v€dp
E= Lo 1ere = L}(@s)pdzg}/{l—i_CQdZ]

From the mechanical equilibrium dp — —pg, above can be further sim-

1 d
plified to :

. a’U g£
=[0G, ad/ -2
. . . . . [ ov -
We can further simplify by using the thermodynamic relations: ((%) =
P
(%Z) (g;) and % = (g}) % + <g;> %, noting that (g%)
p P P T p
(32) (3;2) = % From the Maxwell’s relation, (g;)T =— (g; , wWe
P P

p
obtain 2% = P 4z +pg(3”) :

All these simplifications lead to,

NS Cpdl' g (0v 173
=) g7 e 1) - ]

If we consider air as a perfect gas (p = pRT), then <8”> =v/T and
P

orT

the above further simplifies to

=%+ )5

If we further consider the speed of sound (¢) to be very large, then the
above equation can be further approximated to
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£+ N*=0 (1.5.5)

where N? = ¢ (8”)p 7+ We can consider the following possibilities:

Case-1: If N 7 > 0 then the dynamics of the displacement will be purely
oscillatory, implying neutral stability of the static atmosphere.

Case-2: If N? < 0, then the vertical displacement will vary as,

£(t) = AelNIt - Be~INIt

where the first component clearly indicates instability. N is called the
Brunt-vdisdld or buoyancy frequency. As given above, following Thomp-
son (1972), we can obtain this frequency with air treated as an ideal gas

by,

dT g
N?2=Z|—+ 2=
[dz " Cp]
g

v on = —0.01 K/meter and hence for stability of dry atmo-

(1.5.6)

For dry air,

sphere the temperature distribution has to be so that L > —0.01 K/meter.

Thus ‘fTT = 0.01 represents the border line of 1nstab1hty and the numerical

value on the right hand side within the square bracket is termed as the dry
ds

adiabatic lapse rate, because this ensures 97 = 0.

1.5.2 Kelvin - Helmholtz Instability

This arises when two layers of fluids (may not be of same species or den-
sity) are in relative motion. Thus, this is an interfacial instability and the
resultant flow features due to imposed disturbance will be much more com-
plicated due to relative motion. Physical relevance of this problem was
seized upon by Helmholtz (1868) who observed that the interface as a sur-
face of separation tears the flow asunder. Sometime later Kelvin (1871)
posed this problem as one of instability and solved it. We follow this latter
approach here. The basic equilibrium flow is assumed to be inviscid and
incompressible - as two parallel streams having distinct density and velocity
- flowing one over the another, as depicted in figure below.

Before any perturbation is applied, the interface is located at z = 0 and
subsequent displacement of this interface is expressed parametrically as,

zs =1z, y,t) = en(z,y,1) (1.5.7)

where ¢ is a small parameter, defined to perform a linearized perturbation
analysis. One can view the interface itself as a shear layer of vanishing thick-
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Interface

Fluid-2

Fluid-1

Figure 1.1 Kelvin-Helmholtz instability at the interface of two
flowing fluids.

ness. For the considered inviscid irrotational flows, the velocity potentials
in the two domains are given by,

¢j(x,y, 2,t) = Ujz + edj(x,y, 2,t) (1.5.8)

The governing equations in either of the flow-domains are given by,

V2, =0 (1.5.9)

And the potential must satisfy the following far-stream boundary con-
ditions given by,

¢js are bounded as z— oo (1.5.10)

The other set of boundary condition is applied at the interface, which is
the no-fluid through the interface condition i.e.
Oh _06; _ _000¢; 01n0%; (1.5.11)
ot 0z Or dr Oy Oy

In addition, in the absence of surface tension, pressure must be con-
tinuous across the interface. Upon linearization, the interface boundary
condition (1.5.11) simplifies to,

In on 99,

where g?)j and ¢, are as related in Eqn. (1.5.8). Defining the pressure on
the either flow-domain by unsteady Bernoulli’s equation, one can write

b 1 -
pj=Cj— pj{;; +5(Ve)* + gﬁ} (1.5.13)
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Simplifying and retaining up to 0(e) terms, we get the following condi-
tions

1 1
0(1) condition : Cy — 501U12 =(Cy — §p2U22 (1.5.14a)

0 0 0 d
0(e) condition:pl{;tl—kUlaqsl —|-g17} P2 {;S;—FUZ;Q +97I}

(1.5.14b)
One can consider a very general interface displacement given in terms of
bilateral Laplace transform as,

n(z,y,t) // a, 3,1) ¢ t8Y) dod s (1.5.15)

Correspondingly, the perturbation velocity potential is expressed as,

(z,y, 2, 1) // , B, z,1)e T dad3 (1.5.16)

Writing k% = o + 32 and using Eqn. (1.5.16) in (1.5.9), one gets the
solution that satisfies the far-stream boundary conditions (1.5.10) as,
Zj = fi(o, B,t)e * for j=1 and 2 (1.5.17)
Using Eqn. (1.5.15) in the interface boundary condition (1.5.12) one
gets,
F+ioalhF —kfy = F+iaUsF + kfs =0 (1.5.18)

where the dots denote differentiation with respect to time. If we denote the
density ratio p = pa/p1, then the linearized pressure continuity condition
(1.5.14b) gives,

%_ 002 01 . Ogo B B
o P TUig, PV, t(-p)gn=0 (1.5.19)

Using (1.5.15) and (1.5.16) in the above equation, one gets

fl — pfg + iOéUlfl — iOépUQfQ + (1 — p)gF =0 (1520)

Eliminating f; and fs from Eqn. (1.5.20) using Eqn. (1.5.18), one gets
after simplification,

(1 + p)F + 2ia(Uy + pUs)F — {?(U% 4 pU2) — (1 — p)gk}F =0 (1.5.21)
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This ordinary differential equation for the time variation of the interface
displacement F' can be understood better in terms of its Fourier transform
defined by,

F(.,t)= /F(.,w)emdw (1.5.22)

One obtains the following dispersion relation by substitution of (1.5.22)
in (1.5.21) as,

—w(1+ p) — 2aw(Uy + pUs) + (1 — p)gk — o*(UZ + pU3) =0 (1.5.23)

This provides the characteristic exponents in (1.5.22) as,

Uy + pUs) __ /gh(1 = ?) — a?p(Us — U>)?
(1+p) 1+p)

(1.5.24)

w12 = —

Based on this dispersion relation, the following sub-cases can be consid-
ered:

CASE 1: When the interface is disturbed in the spanwise direction only
i.e. @ =0 and then

(1-p)

w12 = F 9/6(1 ) (1.5.25)

Thus, the streaming velocities U; and Us do not affect the response of
the system. If in addition, p > 1, i.e. a heavier liquid is over a lighter liquid,
then the buoyancy force causes temporal instability (if 8 is considered real)
- as is the case for Rayleigh-Taylor instability (see Chandrasekhar (1960)).
CASE 2: For a general interface perturbation if gk(1 — p?) — a2p(U; —
U;)? < 0, then the interface displacement will grow in time. This condition
can be alternately stated as a condition for instability as: (U; — Ug)? >

gk [ 1=p°
a2 P :

Thus, for a given shear at the interface given by, (U; — Us) and for a
given oblique disturbance propagation direction at the interface indicated
by the wave number vector k, instability would occur for all wave numbers

k*, given by
2
* E” g pio_ p2
k* > (04> (U1-U2)2 (P; P?)
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Note that the wave number vector makes an angle v with the z-axis,

such that cosy = % and the above condition can be conveniently written

as,

* g P1 P2
K> ——o————— | — — = 1.5.26
(U1 — Uz)?*cos?y (Pz Pl) ( )
The lowest value of wave number (k* = k) would occur for two-
dimensional disturbances i.e. when cosy = 1 and this is given by,
* 9 pL P2
krin="—"—5——— 1.5.27
e (Uy = Ug)? <P2 Pl) ( )

CASE 3: Consider the case of shear only of same fluid in both the domain
i.e. p=1. The characteristic exponents then simplify to,

% T 20 - T) (1.5.28)

Presence of the imaginary part with negative sign implies temporal insta-
bility for all wave lengths. Also, to be noted that since the group velocity
and phase speed in y-direction is identically zero, therefore the Kelvin-
Helmholtz instability for pure shear always will lead to two-dimensional
instability.

Wl = —«
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2.1 Introduction

The basic aim of the material in this chapter is to acquaint readers
with the state-of-art in the study of receptivity and relate the same with
instability and transition of fluid flow. This subject area remains the pacing
item in understanding many natural phenomena, as well as, in the analysis
and design of many engineering systems. For example, this is pursued in
civil aviation to design newer lifting surfaces with drag reduced by passive
means. In this context, keeping the flow laminar (stable) over a wing, to
as large an extent possible is the primary goal. With reduced drag, the
aircraft speed and range can be increased for the same power consumed or
have a less powerful engine for the same endurance and range of the flight

envelope.
It is well known that for a zero pressure gradient flat plate boundary
layer, the skin friction for laminar flow is given by, Cy = % that at

a Reynolds number of 107 works out as 0.00043 (See Schlichting (1979))
and the same profile drag increases to 0.0035 for the equivalent turbulent
flow (Van Driest (1951)). This is the rationale for trying to keep a flow
laminar so that one can obtain an order of magnitude drag reduction in the
relevant portion of the aerodynamic surface. Such drag reductions are also
realizable for airfoil- the quintessential lifting surface element of all aircraft
wings. According to Viken (1983), flow past an airfoil at moderate Reynolds
number, that is fully turbulent without any separation, displays a profile
drag coefficient of nearly 0.0085 and that can be reduced to 0.0010 if the
flow over the airfoil is maintained fully laminar. Even a modest viscous drag
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reduction via transition delay can provide large benefits, if large numbers
of aircrafts are involved- as is the case for civil air transport industry.

Thus, transition delay for the flow over aircraft wings takes on added
importance when it is realized that by resorting to transition delay tech-
niques on wings alone, about 10 to 12% drag reduction is feasible on a
modern transport aircraft. It is also now well established that transition
to turbulence relates to the understanding of vorticity distribution in the
shear layer and their reorganization, in response to forcing by environmen-
tal disturbances. While the flows, either in its spatio-temporal orderly form
(in laminar flows) or in its chaotic form, are governed by the same gen-
eralized Navier- Stokes equation (Goldstein (1938)). The late stages of
transition processes or the fully turbulent flows are not amenable to easy
understanding due to the intractable nonlinearity of the Navier-Stokes equa-
tion (Morkovin (1991)). However, the onset of the transition process (also
known as the receptivity stage - see Morkovin (1958, 1978, 1990)) is bedev-
iled by our inability to catalogue and quantify the background omnipresent
disturbances. At this point in time, significant understanding of the re-
ceptivity and the linear stage of transition have been made- that allows
attempts made to design aircrafts with reduced drag via transition delay.
In Fig. 2.1, we reproduce the system portrait given in Morkovin (1991)
for the route to wall bounded turbulent flows. As of today, the primary
approaches in transition delay relates to suppressing disturbance growth
during the receptivity and primary instability stages. Late stages of transi-
tion and turbulent states of flows can be controlled by active means. This
aspect is still an active area of research and is currently not used in any
operational transport aircrafts. Flow control is gaining in importance in
recent times.

Primarily laminar boundary layers are sustained by either small amount
of suction (Pfenninger (1947)) or by favourable pressure gradients. Stabiliz-
ing by suction though very efficient [critical Reynolds number increases by
90 times to Re., = 46,000 for asymptotic suction, as compared to the no-
suction case for Blasius boundary layer for which Re.,. = 520 - see Hughes &
Reid (1965) and White (1991)] - is not practiced due to operational difficul-
ties. For example, one must have the provision of porous surface together
with the necessary suction system- complexity and maintenance of such
system makes this technology unattractive, at present.

In contrast, stabilization of boundary layer by contouring the airfoil sur-
face to achieve favourable pressure gradient as a passive way is found to
be practical and attractive. The resultant section is known as the Natural
Laminar Flow (NLF) airfoil and this is an area which has been under re-
newed investigation over the last three decades. Early efforts of designing
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airfoils to delay transition are as given in Jacobs (1939), Tani (1952), Abbott
& Doenhoff (1959). Typical examples of such airfoils designed are given by
the six digit NACA series airfoils. These aerofoils were successful at low
Reynolds numbers- as evidenced by their continued usage in gliders. This
is due to the fact that the early NLF airfoils exhibited low drag only for a
narrow range of C}’s (designed considering cruise condition only). However,
such a section does not perform optimally in other sector of flight envelope.
This highlights that a practical NLF airfoil must only have low cruise drag,
but also must provide high lift characteristics- very essential during land-
ing, take off and climb. Unfortunately, to maximize desired performance in
terms of low drag degrades high lift performance and vice versa.

The above discussion pertaining to drag reduction of external flow over
an aircraft wing is equally relevant to the power requirements for flow of
water or oil in a pipeline. If the flow can be retained laminar and flow
instability prevented and/or delayed, then there is a direct benefit in terms
of energy efficiency. This is a justified motivation to discuss about flow
instability, without the understanding of which it is not possible to design
any system whose performance is dictated by fluid flow. Here we provide a
general introduction to topics of receptivity and flow instability relevant to
many engineering systems.
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It is not straightforward to perform pure theoretical stability analyses
for any given flow. To do this, one needs additional simplifying assumptions
to make the problem tractable- with the major one described next.

2.2 Parallel Flow Approximation and Inviscid Instability Theo-
rems

The above discussion on rudiments of instability indicates the need to
obtain the equilibrium flow, followed by the study of its stability or instabil-
ity. It so happens that obtaining the equilibrium flow itself could be arduous
and that is compounded by lacking general procedure to study its instability,
without making many simplifying assumptions. For example, the instabil-
ity studies has been facilitated by considering only those flows for which
the shear layer grows very slowly, so that the streamlines within the shear
layer can be approximated to be parallel to each other- the so-called paral-
lel flow approximation. It should be noted that boundary layer flows under
mild pressure gradient remains unseparated and can be approximated as
quasi-parallel flow for the purpose of studying its instability, even when the
equilibrium flow has been obtained without such restrictions. A major part
of linear (and weakly nonlinear) instability theories have been developed for
quasi-parallel flows, starting with the pioneering work of Helmholtz (1868),
Kelvin (1871) and Rayleigh (1880).

To study the stability of a two-dimensional parallel flow that only sup-
ports two-dimensional disturbance field, one considers the total flow field to
be given by,

u(z,y,t) =U(y) + eu'(z, y,t) (2.2.1)
v(z,y,t)= e (x,y,t) (2.2.2)
p(x,y,t) = P(z,y) + ep'(x,y,1) (2.2.3)

Note the space-time dependence for the perturbation field is without any
restrictions, at this stage. In the absence of body force for constant density
flows, the governing equations for the disturbance field in small perturbation
analysis is obtained from the linearized perturbation equations given by,

ou o

— +— = 2.2.4
Ox - dy 0 ( )
ou’ ou  ,dU 1. 0p
LU Y e = (2R 2.2.
8t+U8x+U dy p(am) (2:25)
o' ov’ 1 .0p
2 i = (== 2.2.
ot U oz p( dy ) (2:26)
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For the purpose of linear analysis, we represent the perturbation quan-
tities by their Fourier- Laplace transform via

u'(x,y,t) = /ﬂ(y;a,w)ei(azf‘”wdadw (2.2.7)
V' (@, y,t) = /E(y;a,w)ei((m_“t)dadw (2.2.8)
/ ¢ .
Pz.y.1) = /ﬁ(y;a,w)ez(a“’_“’t)dadw (2.2.9)
p

In these representations, o and w are the wave number and circular
frequency, respectively. One can use (2.2.7) to (2.2.9) in (2.2.4)-(2.2.6)
and eliminate @ and p from the three equations to get a single differential
equation for v as,

) - ——T = (2.2.10)

This is the celebrated Rayleigh’s stability equation. To study this in-
viscid stability of a fluid dynamical system, one has to solve Equ. (2.2.10)
subject to the homogenous boundary conditions for v. In general for a
fluid dynamical system admitting spatio-temporal growth of small pertur-
bations, both « and w are complex. However, for the ease of analysis we
study temporal growth i.e. we consider « as real and w as complex. If we
write ¢ = w/a, then the complex phase speed (= ¢, + ic;) will determine
the stability obtained as an eigenvalue of the equation given by,

2 2
(U—c)(d—U—QQE U

The criterion for instability then becomes: There exists a solution with
¢; < 0 for some positive c.

2.2.1 Inviscid Instability Mechanism

Let o* be complex conjugate of 7, then v v* = [7]?.
Multiplying Eqn. (2.2.11) by v* and integrating over the possible limit
(say, —oo to +00) we get,

+o00 427 U
=k 2 P _
/ 0] [d—yQ—a v — U_Cv]dy—O (2.2.12)

— 00



T. K. Sengupta 27

Above equation is non-singular as we are looking for solutions with ¢; #
0, such that the quantity in the denominator of the third term does not
vanish. Simplifying Eqn. (2.2.12) one gets,

dﬁ? 21=512 N|E|2 * —
JUgEvatiliy+ [ GG —ord =0 (2213

In Eqn. (2.2.13) the first term is real and positive and the imaginary
part of this equation is

U// 9

This integral of (2.2.14) will vanish if and only if the integrand changes
sign in the interval of integration. That is possible only when U” changes
sign. Thus, there must be a location where U” = 0 for some y = ys within
the limits of integration. This point is known as the inflection point and
this leads to,

Rayleigh’s Inflection Point Theorem: A mnecessary condition
for instability is that the basic velocity profile should have an
inflection point.

In this theorem, the inflection point refers to the existence of a point
within a shear layer (at y = y, where the local velocity is given by Ug)
and where the second derivative of the equilibrium flow profile vanishes i.e.
i;g = U"” = 0, where y is the wall-normal co-ordinate inside the shear
layer. A stronger version of the Rayleigh’s theorem was given later by
Fjortoft (1950).

Fjortoft’s Theorem: A necessary condition for instability is
that U"”(U — Usy) is less than zero somewhere in the flow field.

Thus, if the velocity profile is a monotonically growing function of its
argument with a single inflection point then the above necessary condition
for instability can be written for this velocity profile as U (U — Us) < 0 for
the range of integration, with equality only at y = y,. Both the Rayleigh’s
and Fj¢rtoft’s theorem are necessary condition and they do not provide a
sufficient condition for instability.

Above inviscid mechanism of instability is often encountered in free shear
layers and jets. A fundamental difference between flows having an inflec-
tion point (such as in free shear layer, jets and wakes and the cross flow
component of some three-dimensional boundary layers) and flows without
inflection points (as in wall bounded flows in channel or in boundary layers)
exists. Flows with inflection points are susceptible to temporal instabilities
for very low Reynolds numbers. One can find detailed accounts of invis-
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cid instability theories in Drazin & Reid (1981) and Betchov & Criminale
(1967).

2.3 Viscous Instability of Parallel Flows

In the beginning when flow stability was being investigated, it was
thought the action of viscous forces is to dissipate energy and thus its
effect is essentially stabilizing. This prompted early stability studies us-
ing Rayleigh’s equation. However, Heisenberg and various researchers from
Prandtl’s school established (under the parallel flow assumption), that the
action of viscosity can be destabilizing. This provides one mechanism for the
instability of zero and favourable pressure gradient boundary layers those
are otherwise stable with respect to the inviscid mechanism of section 2.2.1.
In this section, the stability of viscous flows (those are essentially parallel
or those could be well-approximated as parallel flow), is discussed. Thus,
one considers mean flow profiles given by

U=U (y)i (2.3.1)

The flow is in the z-direction and the velocity magnitude solely depends
on the distance from the datum y = 0.

Tollmien (1931) calculated a critical Reynolds number (the lowest Reynolds
number at which the flow first becomes unstable), details of which can be
found in Schlichting (1979). The value obtained for the critical Reynolds
number by Tollmien was (Reg)erit = % = 60,000 - a value much lower
than the wind tunnel results that varied between Reg, = 3.5 x 10° (in noisy
tunnels) and 10° (comparatively cleaner tunnels of that period). We have
indicated Reynolds numbers by different subscripts for the purpose that ex-
plain the discrepancy. The reason for it is that instability and transition are
not synonymous. While a flow can become unstable early enough, it would
take a while for these unstable disturbances to grow up to sufficiently large
amplitude to complete the process of transition. Schlichting later calculated
the amplitude ratio A/Aq of the most amplified frequency as a function of
Reynolds number for a flat plate boundary layer, where Aq is the ampli-
tude of disturbance at the onset of instability. He found out that the ratio
A/Aq varied between e and e at the observed Res,.. These wave solutions
are now called the TS waves, irrespective of whether they are amplified or
attenuated. It is now generally accepted that flow parameters such as pres-
sure gradient, suction and heat transfer qualitatively affect transition in the
same way that was predicted by viscous stability theory developed. In this
theory this is cast as an eigenvalue problem.
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2.3.1 Eigenvalue Formulation for Instability of Parallel
Flows

In this theory, equilibrium flow is obtained using thin shear layer (TSL)
approximation of the governing Navier- Stokes equation. However, to inves-
tigate the stability of the fluid dynamical system the disturbance equations
are obtained from the full time dependent Navier- Stokes equations, with
the equilibrium condition defined by the steady laminar flow. We obtain
these in Cartesian coordinate system given by,

ou ou ou ou  Op 1
a"'u%—"vaiy‘Fw&—_ax‘FRev U (232)

v ov v v dp 1

8t 874‘ (97—'— a__afy'i‘Ri (233)
ow ow ow ow op 1 _,
o %+v6fy+ FM *%+EV w (2.3.4)
and
ou Ov Ow
7oy ta: " (2.3.5)

Here the equilibrium flow is considered to be in the (z — z) - plane with
y indicating the wall-normal direction. Above equations are written in non-
dimensional form with the shear layer edge velocity, U, (or an appropriate
velocity for other flows), as the velocity scale and L as the length scale so
that Re = % is the Reynolds number.

To perform a linearized stability analysis of the fluid dynamical system,
we express all flow quantities ¢, into a steady mean (Q) and an unsteady
disturbance term (eq’) that is considered one order of magnitude smaller
than the mean quantities, so that

q(z,y,2,t) = Q(z,y,2) + €¢' (2,9, 2,t) (2.3.6)

The smallness of the perturbation quantities are indicated by the small
parameter €. Furthermore, the mean velocity field is assumed parallel/
quasi-parallel so that,

U=U(y);V=0,W=W(y) (2.3.7)

If the splitting of variables, as indicated by Eqn. (2.3.6) are substituted
in Eqns. (2.3.2) -(2.3.5) and the O(e)- terms are collated one gets the
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following disturbance equations,

ou’ ou’ ou’ dU op 1
— |/|/ —_— /7 = —— - 2 4 2. .
ot +U8m+ 0z v dy 8x+Revu (2.3.8)

o' o' o op 1 _,

ow'’ ow'’ ow'  ,dW o’ 1 5,
=2 2.3.1
5 +Uax+WaZ+v i 8z+Revw (2.3.10)

and

ou o ow

ox + dy + 0z

Next, one performs the normal mode analysis, i.e. the flow instabilities

are governed by discrete eigenmodes those do not interact with each other

and are studied separately. Equations (2.3.8) to (2.3.11) are variable coef-

ficient linear partial differential equations; but, they do not admit analytic

solutions. However, with the help of normal mode analysis, this can be

further simplified. As the coefficients of these equations are functions of the

wall normal co-ordinate, it is natural to expand the disturbance quantities
in the following manner,

=0 (2.3.11)

{u', 0", w' 0"y = {f (), 9(v), (), m(y)} eapli(ax + Bz —wt)} (2.3.12)
Here the disturbance amplitudes f, ¢, h and 7 are the complex ampli-
tude functions and w is the dimensionless circular frequency, (= w*L/U,).

When Eqn. (2.3.12) is substituted in Eqns. (2.3.8) - (2.3.11), the following
ordinary differential equations result,

i{aU + W —w}f 4+ U'¢p = —iar + é{f” — (@2 +6)f}  (2.3.13)

i{aU+ W —w}p = —7" + é{ﬁ’ —(a®+ BH¢} (2.3.14)

i{aU + W —wth+ W' = —ifm + é{h” —(@®+p%h}  (2.3.15)

and

i{af+ph}+¢' =0 (2.3.16)
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In these equations, primes indicate differentiation with respect to y. One
can rewrite these equations as a set of six first order equations and thus one
would require six boundary conditions to solve them simultaneously. For
the stability analysis, above equations are solved subject to homogeneous
boundary conditions that are compatible with the governing equations. For
example at the wall, one uses the no-slip boundary conditions,

f(0) = ¢(0) = h(0) =0 (2.3.17)

At the free stream (i.e. as y — o00) one requires the disturbance velocity
components to decay to zero i.e.

f(), o), h(y) =0 as y— oo (2.3.18)

Non-trivial solutions of Eqns. (2.3.13) - (2.3.16) subject to homoge-
nous boundary conditions (2.3.17) and (2.3.18) will exist only for particular
combinations of the parameters «, 3, w, and Re. This then produces the
dispersion or eigenvalue relation as

g(a, B,w, Re) =0 (2.3.19)

It is also possible to reduce Eqns. (2.3.13) - (2.3.16) to a single ordinary
differential equation for the unknown ¢. One can combine the first and
the third equation in that set to form an equation for {af + Sh}. This
variable can be replaced by using the fourth equation (2.3.16), and after
differentiation with respect to y and eliminating «’ by using the second
equation one gets the following equation for ¢,

¢iv —2{042 +62}¢//+{a2+ﬂ2}2¢:
iRe{{aU + BW —w}[¢" — {a® + B*}¢] — {aU" + pW"}¢}  (2.3.20)

This is the well-known Orr-Sommerfeld equation (OSE) that forms the
major tool for the investigation of flow instability. If one considers two-
dimensional disturbance field in a two-dimensional mean flow then the above
equation transforms to the simpler form,

" —202¢" + a*¢p = iRe{{aU — w}[¢" — a*¢] — aU" ¢} (2.3.21)

Thus, the Orr-Sommerfeld equation is a fourth order ODE and has same
form whether the mean flow is three- or two-dimensional. Same observation
can be made with respect to the disturbance field as well for special cases.



32 Instability & Transition

This fact can be exploited to relate more general cases to Eqn. (2.3.21).
It is illustrated for 2D mean flow with 3D disturbance field below. Setting
W =0 and using the following transformations in (2.3.20),

?+32=a%; wa=da and Re a= Rea (2.3.22)

One gets the following governing equation,

¢ —2a2¢" + atp =i Re{{a U — &}[¢" — a’¢] —aU"” ¢}  (2.3.23)

In essence, Eqns. (2.3.20) and (2.3.23) are identical - expressed for dif-
ferent parameters, where the parameters are related via Eqn. (2.3.22). The
mean flow U is real and unchanged and if o and ( are real, then a three-
dimensional stability problem at a Reynolds number Re has been reduced
to a two-dimensional problem at the lower Reynolds number Re. This is
known as the Squire’s theorem, and formally stated as:

In a two-dimensional boundary layer with real wave numbers,
instability appears first for two-dimensional disturbances.

We must, however, note that the utility of the Squire’s theorem is lost if
the mean flow is three dimensional or if o and [ are complex, as in spatial
stability problems.

2.3.2 Temporal and Spatial Amplification of Disturbances

If o, 8 and w are all real, then from Eqn. (2.3.12) one can see that the
disturbances propagate through the shear layer with constant amplitude at
all times. However, if a and 3 are real and w is complex, then according to
Eqn. (2.3.12) the disturbances will grow or decay with time. In contrast,
if w is real and «, (3 are complex then the disturbance amplitude will not
change with time, but they will change with x and z. The former case,
where the disturbance amplitude change with time, is a subject dealt with
in temporal amplification theory and the latter is the subject of spatial am-
plification theory. If all the three quantities «, # and w are complex, then
the disturbances grow in both space and time and is the subject matter of
spatio-temporal theory.

2.3.2.1 Temporal Amplification Theory

With w = w, + iw; and («, 3) real, the disturbance can be written as,

q'(@,y,2,t) = {d(y)e=r} elorthzmet (2.3.24)
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The magnitude of the wave number vector is @ = {a2 + 42}2 and the
angle between the wave number vector and the z-axis is given by ¥ =
tan~'{B/a}. The phase speed of the disturbance field is given by c,, =
wy/a. If A represents the magnitude of the disturbance at a particular
height y, then it follows from Eqn. (2.3.24),

1 dA
- — =uw; 2.3.2
Ao =¥ (2.3.25)
Thus, w; is the amplification rate in the temporal theory. If
w; < 0= (2.3.26a)
then the disturbances are damped.
If, on the other hand
w; =0= (2.3.26b)
then the disturbances are neutral.
Finally, if
w; > 0= (2.3.26¢)

then the disturbances amplify with time.

2.3.2.2 Spatial Amplification Theory

In this theory, w is treated as real and the wave number components are
complex:

a=qa,+ia; and (=0, +10;. (2.3.27)

Thus, one can write the disturbance field as,

q(x,y,2,t) = {G(y)e~(@rthiz) giloratfrz=wt) (2.3.28)

If one defines,

ay = {2+ 1Y% and ¢ =tan"! §,/a, (2.3.29)

Then the phase speed of the disturbance field is given by, ¢, = w/a,.
Additionally, if one defines &; = {a? + $?}1/2 and ¢ = tan™' (;/a;), then
one can define two new directions, Z along &, and T along @; and rewrite
(2.3.28) as,

q'(x,y,2,1) = 4(y) e ™7 O (2.3.30)

Thus, one can similarly write a spatial amplification rate in the particular
direction given by v as,
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1 dA
A= % (2.3.31)

The amplification rates are different in different directions and of course,
different «; are themselves function of 1. For three- dimensional waves the
spatial theory comes with lot more complications as compared to temporal
theory. In addition to the wave orientation angle ¢, the amplification di-
rection 1) must also be specified before any calculation can be made. Once
again, if

@ > 0= (2.3.32a)

then this corresponds to a damped solution.
On the other hand, if
a; =0= (2.3.32b)

then this corresponds to neutral stability.
Finally, if
a; < 0= (2.3.32¢)

then we have situation of instability.

2.3.2.3 Relationship Between Temporal and Spatial Theories

Consider the general dispersion relation
w=w(a, [, Re,...) (2.3.33)

From this, we can obtain the group velocity components for the three-
dimensional disturbance field in the x- and z- directions, respectively as

> ow Ow
=(—, — 2.3.34
In temporal theory, one uses w = w, and in spatial theory one uses @ = .
and 0 = . in Eqn. (2.3.34). The imaginary part of the group velocity is
usually neglected. For parallel flows, one can form a spatial amplification
rate by following the wave with the group velocity i.e.

d - d
Bl v 2.3.35
dt 7 dz ( )
where T is chosen in the direction of 17;7. Consequently,
&= ———V, (2.3.36)

Vo l?
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and the direction of @; is obtained from

) = tan~* [Bwr/aﬁ}

" 5o TBa (2.3.37)

For two-dimensional flows, such a relation was used by Schlichting (1939)
without any proof and was later provided in Gaster (1962). But, this can be
shown for general disturbance field by noting that w is an analytic complex
function of o and 3. Therefore, one can use the Cauchy- Riemann equation
valid for complex analytic functions and here, these are given by,

% Oow;  Ow, Ow;

and

Ow,  Ow;  Ow, 78%—
95, 95, o8 B (2.3.39)

For three- dimensional disturbances, the left hand side of the first equa-
tions of (2.3.38) and (2.3.39) are the group velocity components as defined
by (2.3.34). Also note that ggf can be approximated by noting that w;
decreases from its temporal value to zero in the spatial theory as «; goes
from zero to its value as obtained in the spatial theory. If the amplification
rates are small, as they are in a linear theory, then the above variations are

linear and thus, g‘”’% ~ Wi
Qg Qg
Therefore,

Vole = —— (2.3.40)

For three- dimensional disturbances, if 1 is specified arbitrarily and the
r-axis is rotated to lie in the ¢ direction, then Eqn. (2.3.36) will apply
with a; replaced by &; and V,, by the component of group velocity in the v
direction.

2.4 Properties of Orr-Sommerfeld Equation and Boundary Con-
ditions
For the stability analysis of fluid dynamical system whose equilibrium
solution is given by a parallel or quasi-parallel flow, one has to solve the
Orr-Sommerfeld equation depending on whether the mean flow is two- or
three-dimensional. For the two-dimensional problem equivalent boundary
conditions are given by,

At y=0: f, ¢=0 (2.4.1a)
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And as y—oo: f, ¢ —0 (2.4.1b)

To solve Eqn. (2.3.21), above boundary conditions have to be trans-
formed in terms of ¢ for two-dimensional disturbance field as,

¢ = —iaf (2.4.2)

Thus, one has to satisfy homogeneous boundary conditions for ¢ and
¢' at both the boundaries for wall-bounded shear flows. The consequence
of far stream boundary conditions as given by (2.4.1b) is understood by
using the mean flow information at y — co: U(y) =1 and U”(y) =0 in
(2.3.21). Omne gets the following constant coefficient ODE at y — oo:

¢ —20%¢" + atp = i Re{(a — w) (¢ — a?¢)} (2.4.3)
Solution of the above can be obtained in the form, ¢ ~ e*Y, so that
one gets the characteristic roots as, \j o = Fa and 34 = F(Q, where

Q = [0 +ia Re(1—c)]'/2. For boundary layer instability problems, Re — oo
and then |Q| >> |a|. This is the source of stiffness that makes obtaining the
numerical solution of (2.3.21) a daunting task. This causes the fundamental
solutions of the Orr-Sommerfeld equation to vary by different orders of
magnitude near and far away from the wall. This type of behaviour makes
the governing equation a stiff differential equation that suffers from the
growth of parasitic error, while numerically solving it.

In general, Orr-Sommerfeld equation is a fourth order ODE and thus,
will have four fundamental solutions whose asymptotic variation for y — oo,
is given by the characteristic exponents of (2.4.3) i.e.

¢ = a1¢1 + aspa + azds + asdy (2.4.4)

Where, at the free stream (y — 00) : ¢1 ~ e~Y; ¢y ~ e®Y; 3 ~ e~ ?Y and
g ~ eQu.

To satisfy the boundary condition given in (2.4.1b), one must have: as =
a4 = 0. Then the general solution is of the form,

¢ = a1¢1 + azps (2.4.5)

This is an admissible solution of Equns. (2.4.21) and/ or (2.4.23) that
satisfies one set of boundary conditions, (2.4.1b) automatically. The two
remaining constants in the solution (2.4.5) can be fixed by satisfying the
boundary conditions given by (2.4.1a) as,

a101(y =0, a;w, Re)+azps(y =0, a;w, Re) =0 (2.4.6)
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a19)(y =0, a;w, Re)+azds(y =0, a;w, Re) =0 (2.4.7)

We will get a non-trivial solution for these, if and only if the determi-
nant of the associated matrix of the linear algebraic system given by above
equations is zero i.e.,

(195 — P1d3)y=0 =0 (2.4.8)

This is the characteristic equation for the eigenvalues posed by the Orr-
Sommerfeld equation that also can be viewed as the dispersion relation of
the problem. So the task at hand is to obtain a combination of o and w
for a given Re, such that the solution of OSE satisfies (2.4.8). The stiffness
of OSE causes the numerical solution to lose the linear independence of
different solution components corresponding to the different fundamental
solutions. This is the source of parasitic error growth of any stiff differential
equation. To remove this problem in a straight forward manner, one can
use the Compound Matrix Method (CMM).

As discussed in Drazin & Reid (1981), there are three principal methods
for solving linear stability problems and they are: (a) Matrix method based
on finite difference or spectral discretizations; (b) Shooting techniques along
with orthogonalization of the fundamental solutions and (c) Shooting with
CMM. As discussed in Allen & Bridges (2002), eigenvalue problems in infi-
nite domain matrix methods based on finite difference and spectral method
produce spurious eigenvalues due to problems in satisfying boundary condi-
tions correctly, to preserve linearity in the parameters and due to fracturing
of the continuous spectra. Shooting methods based on orthogonalization are
cumbersome to program and require comparatively large computer mem-
ory while producing non-analytic solutions. Considering these, CMM is the
best available method for hydrodynamic stability problems. This method
has been reformulated by Allen & Bridges (2002a) using exterior algebra to
make the method coordinate free. CMM has been in use for stability calcu-
lations for over last two decades- as reported in Drazin & Reid (1981), Ng &
Reid (1980, 1985), Sengupta (1992), Sengupta & Venkatasubbaiah (2006).
Advantages of CMM as compared to other methods have been described in
these references above. Otherwise there are other methods based on ODE
solver in physical plane (See Scott & Watts (1977)) or spectral colloca-
tion method that involves Chebyshev discretization of the Orr-Sommerfeld
equation as given in Schmid & Henningson (2000).
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2.4.1 Compound Matrix Method

Compound matrix method (CMM) has been in use for stability calculations
for over last two decades, as the original method was reported in Ng & Reid
(1980, 1985). Advantages of CMM as compared to other methods of solving
stiff differential equations have been described above. Additionally, its main
strength lies in its simplicity of application and interpretation of the results.
CMM not only yields satisfactory results for the evaluation of eigenvalues
and eigenfunctions of the Orr- Sommerfeld equation, but it also brings in
to fore the analytic structure of the solution. For these reasons CMM is
recommended here to readers. Moreover, because of the specific structure
it is possible to solve both the stability and the receptivity problems without
a great deal of effort in coding. Some essential modifications for appropriate
choice of equation in CMM are reported in Sengupta (1992).

In this method, instead of working with ¢ one works with a new set
of variables that are combinations of the fundamental solutions ¢; and ¢3.
These new variables all vary with y at the identical rate, removing the
stiffness problem. For the Orr-Sommerfeld equation the new variables are
(for details about these new variables see Drazin & Reid (1981), Sengupta
(1992)).

Y1 = 105 — P ds3
Yo = G195 — P13
ys = 105 — ¢ ¢3
Ys = P19 — ¢ b3
45 = 08— 16
_ I 1 1
Yo = G103 — @1 P3

(2.4.9)

Tt is easy to verify with the help of solution of Eqn. (2.4.3) in the free-
stream that y; to yg have identical growth rate, as one integrates from the
free-stream to the wall. From the definition given above in (2.4.9), one gets
the following,

Y1 = 0195 + 165 — 9165 — ¢ b3 = y2 (2.4.10a)

Yo = (105 — ¢1'd3) + (9165 — ¢ 5) = ys + ya
yh = 0105 + (¢104" — ¢ dh) — d3ol’” (2.4.10b)
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From Eqn. (2.3.21),

1 = {202 +ia Re{U — c}}¢) — {a* +ia® Re{U — ¢} +ia Re v} ¢y
or¢i’ = bi¢f — bagh _

Similarly a relation for ¢%’ can be obtained and one can simplify to
obtain, ¢1¢t — ¢V¢3 = byya. Thus,

Y5 = biya +ys (2.4.10¢)

V= G105+ 9105 — 610§ — 615 = s
vh = 105 + 08 — 01k — o'}
= {6105 — "0} + ¢1{b1¢s — bacba} — P5{brd] — badr}  (2.4.10d)

= Y6 + brya + b2y (2.4.10e)

Vo = GG + Y0 — 08 — 6 = by (24100
Equations (2.4.10a) to (2.4.10f) are six first order ODEs for the six un-
known variables y; to yg. Note that the order of system is increased from
four to six in CMM, while the governing equation is transformed from a
boundary value problem to an initial value problem. To solve these six
equations, we therefore need to generate initial conditions for the unknowns.
As we know the property of the fundamental solutions in the free stream,
we can use that information to generate the initial conditions for y; to ys.
Asat y — 00 : @1 ~e ¥ and ¢35 ~ e @Y, therefore we can estimate the
free stream values of the unknown as,

y1 ~{-Q +a}te (et (2.4.11a)

ya ~{Q* — a’fem(orQ (2.4.11D)
Y3 ~ {—Q% + a’}e ety (2.4.11c)
ya ~{—aQ® + a’Q} e~ >+ (2.4.11d)
ys ~ {aQ® — a®Q} e~ (*TV (2.4.11¢)

o ~ {—a’Q% +a’Q* et (2.4.11f)
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Note that in (2.4.11), all the variables have the same exponential rate
of growth or attenuation- a special feature of CMM where the problem of
stiffness is removed by the specific choice of new variables. In integrating
(2.4.10), one can start off with the values given by (2.4.11), with variables
normalized with respect to one of them. Let us normalize every variable
with respect to y1, so that the initial conditions for solving Eqns. (2.4.10)
are then,

y1 =10 (2.4.12a)
v = —{a+Q} (2.4.12b)
ys = o’ +aQ + Q° (2.4.12¢)
Ys = aQ (2.4.12d)
ys = —aQ{a + Q} (2.4.12e)
yo = a*Q? (2.4.12f)

One solves Eqns. (2.4.10), starting off from the free stream to the wall,
with the initial condition provided in (2.4.12). After marching up to the
wall, observe that the satisfaction of characteristic equation (2.4.8) is equiv-
alent to locating («, w) combinations for a given Re is exactly equivalent to
enforcing

y=0at y=0 (2.4.13)

Having recast the problem in CMM in terms of the new variables, one
can calculate the eigenvalues very quickly. That leaves one with the task of
finding out the corresponding eigenvector(s). This also can be done readily
by noting that the eigenvector ¢ is a linear combination of ¢; and ¢3 such
that,

¢ = a1¢1 + azps (2.4.14a)
¢ = a19) + azdy (2.4.14b)

¢ = alqb’{ + U,3¢g (2.4.14¢)
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¢" = a1 + azdly' (2.4.14d)

One can eliminate a; and a3 from Eqns. (2.4.14) using Eqns. (2.4.10)
in many ways. This leads us to the following differential equations for ¢,

y19" — Y20’ +yadp =0 (2.4.15a)
y19" = y3¢' +ys6 =0 (2.4.15h)
Y20 — y30” + yed' =0 (2.4.15¢)
Ya9" —ys¢" + yed’ =0 (2.4.15d)

In principle, having obtained y; to yg for all y’s, it is possible to obtain
¢ by solving any one of the four equations listed above. It is noted that
the retained fundamental solutions automatically satisfies the far stream
boundary conditions and thus one can solve any one of the equations in
(2.4.15) starting from the wall and marching towards free stream. The ho-
mogeneous boundary conditions given by Eqn. (2.4.1a) can not be used as
the initial condition to march out from the wall to free-stream, as the dif-
ferential equations in (2.4.15) are homogeneous. For stability problems, one
should provide a non-trivial normalized boundary conditions as discussed in
Sengupta & Venkatasubbaiah (2006), instead of (2.4.1a). While for recep-
tivity problems, the wall boundary conditions are inhomogeneous and raises
no problems at all. This is the benefit of CMM where a difficult boundary
value problem is replaced by two relatively easier initial value problems.

Presence of four alternatives in (2.4.15) raises the question of which
equation is more accurate and consistent for the solution process. Thus, it
is important to know which equations from the set given in (2.4.15) are to
be solved. This was shown in Sengupta (1992) that the eigenvectors cannot
be obtained by all the four equations, for high Reynolds numbers and/ or
high Wave numbers. It was shown clearly in Sengupta (1992) that the third
equation (2.4.15¢), produced divergent results for high wave numbers due
to the following reason.

All the four equations (2.4.15a) to (2.4.15d), reduce to constant coeffi-
cient ODEs at the free stream, for which one can use the values provided
in Eqn. (2.4.12) for the compound matrix variables. It is easy to see that
Eqn. (2.4.15¢) has three characteristic roots at the free stream given by —a,
—(@ and % The first two roots correspond to the fundamental solutions
¢1 and ¢3, but the third root is not only extraneous, but is also unstable!
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Thus, for the solution of (2.3.21) subject to boundary conditions (2.4.1a)
and (2.4.1b), this spurious mode will not satisfy the free stream boundary
condition. For moderate to high Reynolds numbers (as will be case for all
post-critical, but pre-transitional flows), |Q| >> |a| and the third charac-
teristic root can be simplified to % ~ . Thus, this third mode is a close
approximation to ¢o that does not satisfy the boundary condition (2.4.1b).
It is possible to miss out this problem- as was the case in Gaster (1987) and
Davey (1982), where results were reported using the third equation. The
problem associated with the above growing mode was not observed because
the leading eigenvalue of such problems is usually very small and if the
far stream boundary is not taken far enough outside the shear layer, this
problem remains masked. However, when one wants to solve a receptivity
problem, one needs to solve Orr-Sommerfeld equation for a large range of
a’s and there this problem becomes very apparent. This was the case in-
vestigated in Sengupta et al. (1994) for the receptivity of Blasius boundary
layer.

Above investigation for the behaviour of the solution at the free stream
can be extended to other equations of (2.4.15) to check their usefulness in
obtaining the eigen function. At the free stream the characteristic roots
for Eqn. (2.4.15a) are {—«a, —Q}. Equation (2.4.15b) being a third order
equation has three roots given by [—a, —Q, {a+ Q}]. Thus, this equation is
also violently unstable, even for low wave numbers and Reynolds numbers.
Equation (2.4.15¢) has the asymptotic behaviour for large y’s as dictated by
the characteristic roots given by [—a, —Q, QTQQ] Finally, the characteristic
roots for Eqn. (2.4.15d) are given by {—«a, —Q,0} i.e. one mode is neutral
for large values of y. One sees that the first and the fourth equations are
compatible with the required formulation and boundary condition, while the
second and third equations are unstable (when the shear layer is excited at
the wall) and need to be avoided. While Drazin & Reid (1981) mentioned
that it is certainly not obvious which one is best for numerical purposes”,
this simple analysis tells us about the correct choice of the equation as either
(2.4.15a) or (2.4.15d). In obtaining eigenfunctions of the stability problem
defined via Orr-Sommerfeld equation, it is noted that Eqn. (2.4.15a) is not
suitable because y; at the wall is zero. It was suggested by Ng & Reid (1981)
that this difficulty can be overcome, by integrating (2.3.21) itself a few steps
from the wall before switching over to Eqn. (2.3.15a). At the wall, it is
observed that while ¢ and ¢’ are zero, ¢’ is indeterminate. The value of ¢”
therefore can be arbitrarily set equal to any value and then either (2.4.15a)
or (2.4.15d) can be solved, avoiding the above suggestion of Ng & Reid
(1981). This procedure has been followed in Sengupta & Venkatasubbaiah
(2006). While solving receptivity problems, the boundary conditions are the
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prescribed non-zero values and the problem of starting solution for stability
analyses does not arise. However, another problem may bedevil the CMM
for obtaining eigenfunctions of (2.3.21) for high Reynolds numbers. This is
due to the dynamic ranges of the compound matrix variables inside the shear
layer. For example, in Eqn. (2.4.15a) one would require accurate calculation
of the ratio of y—? and y—‘l‘ These ratios exhibit very large variations near the
wall, where y; is close to zero. This causes the eigensolution to be highly
oscillatory. For Eqn. (2.4.15d) the ratios % and Z—i are of order one and non-
oscillatory. Thus, the eigenfunction obtained by solving equation (2.4.15d)
are quite regular, as seen from the results in Sengupta et al. (1994) for
a receptivity problem. The problems of solving Orr-Sommerfeld equation
analytically for very large values of o can be handled in a satisfactory way
by looking for asymptotic solution, that will be dealt later.

2.5 Instability Analysis from Solution of Orr-Sommerfeld Equa-
tion

The Orr- Sommerfeld equation can be solved either as a temporal or as
a spatial instability problem. For disturbance field created as a consequence
of a localized excitation inside boundary layers, the temporal growth of the
disturbance field is not realistic. It has been observed phenomenologically
that for attached flows, instability is usually of a convective type and obtain-
ing solution by spatial analysis is the appropriate one. In chapter 4, we will
note that even for such a problem there can be spatio-temporally growing
wave-fronts that dominate in attached boundary layers that are noted to be
spatially stable. Such a problem is not evident for flows those are spatially
unstable. The monograph by Betchov & Criminale (1967) specifically talks
about temporal growth of disturbances in shear layers and the readers are
referred there for detailed expositions.

Let us therefore discuss about spatial instability of parallel flows, mainly
the flow past a flat plate at zero angle of attack- a problem that enjoys a
canonical status for instability analyses. For the spatial instability prob-
lem associated with two-dimensional disturbance field of two-dimensional
primary flows, the disturbance quantities will have the appearance of Eqn.
(2.3.28) with = 0. Thus for a fixed Re, one would be looking for complex
« when the shear layer is excited by a fixed frequency source of circular
frequency, wg. If we define Re in terms of the displacement thickness 0* as
the length scale, then Re = Uev‘s* and the results obtained will be plotted as
contours of constant amplification rates «; in (Re — wp)— plane, as shown
in Fig. 2.2.

The solid line in the figure corresponds to «; = 0 and represents the
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condition of neutral stability and hence this is called the neutral curve. The
area inside the neutral curve corresponds to «; < 0 and hence represents
flow instability for these parameter combinations. Similarly the area outside
the neutral curve corresponds to stable disturbances in the shear layer. It is
noted that the foremost position of the neutral curve occurs for Re = 519.23
and corresponds to the fact that the flow is stable below this value of Re
for all circular frequencies. Hence this value of the Reynolds number is
called the critical Reynolds number. There is also similarly an upper bound
corresponding to the circular frequency above which the disturbance field
is going to be stable. It is customary to call the lower part of the neutral
curve as the branch I, while the upper part of the neutral curve is called the
branch II. This picture corresponds to the stability portrait of the system,
as obtained using a linear theory, making a parallel flow approximation.
Note that the circular frequency of Fig. 2.2 is non-dimensional, based
on the length scale, 5* and velocity scale, U,. Thus,
o 27 f

wo=277fi:(

U.6*
Z/Ug) » = F Re (2.5.1)
In this equation, F' is the non-dimensional physical frequency of exci-
tation. Thus, a constant physical frequency line in the (Re — wg)-plane is
a straight line passing through the origin and different constant frequency
lines have slopes that corresponds to different values of F'. Let us consider
a physical frequency of excitation f;, as shown in Fig. 2.2. If the point of
origin of the disturbance (say, at the point A) is outside the neutral curve,
then the created disturbances will be decaying to begin with, and one must
follow the corresponding constant- frequency F-line, ABC. Once the distur-
bance crosses a location corresponding to B at the branch I of the neutral
curve, from that point onwards the disturbance will amplify as it propa-
gates downstream, until the line hits the branch II of the neutral curve at
C. Beyond that point, once again the disturbance will be damped. Now, let
us say that the exciter is located at the same physical location but the fre-
quency of excitation is increased to fs, marked by the point P in the figure.
Then, once again the disturbance will be damped in its early evolution till
it reaches the point Q. In between Q and R the disturbance will amplify and
beyond that it will again be damped. It is noted that the flow, within the
parallel flow approximation, readjusts itself to the local condition in fixing
the growth or decay rate.
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fincreasing

Figure 2.2 Contour plots of asymptotic growth rate in Reynolds
number- circular frequency plane

There are additional aspects those need recounting here for viscous flow
instability problems, other than the zero pressure gradient flow given by
Blasius equation. If the neutral curve of Fig. 2.2 is extended to higher
Reynolds numbers then the branch I and branch II tends towards each
other i.e. the meutral curve closes on itself. In contrast, if the mean flow
profile possesses an inflection point, the upper and the lower branches of the
neutral curve remains distinct even when Re — oo. This is the case for wall-
bounded flows with adverse pressure gradient, mixing layers, jets and wakes.
Also, for such flows the critical Reynolds number, (Re,,) is significantly
lower than that for the zero pressure gradient flat plate boundary layer.
This is relevant for flows past complex shapes, e.g. the flow over airfoils or
wings.

Along with the constant-c; contours, the constant-a,. contours can be
plotted in the (Re — wp)-plane, as shown in Fig. 2.3. The neutral curve is
included in this figure to provide a reference. From this figure, it is noted
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that the maximum wave number for instability of Blasius profile is given by
Qmaz0™ ~ 0.35 that corresponds to the smallest unstable waves such a shear
layer supports whose wavelength is given by A\, = ﬁ ~ 180*. Thus,
the TS waves are significantly longer than the boundary layer thickness,

justifying the quasi-parallel flow approximation for stability analysis.

T P
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Figure 2.3 Contour plots of disturbance wave number in
Reynolds number- circular frequency plane

Early corroboration of the linear viscous stability theory came from ex-
periments where background disturbances were minimized to an extremely
low value and simultaneously two-dimensional controlled disturbances were
introduced in the flow. This was first performed and reported in the classic
work of Schubauer & Skramstad (1947). These experiments were performed
in the NBS wind tunnel with specially fitted damping screens that reduced
the turbulence intensity of the oncoming flow by increasing the solidity ratio
or number of such screens. In the experiments without explicit excitation,
they could progressively shift the location of transition by reducing tur-
bulence intensity all the way down to 0.08 percent. Further reduction in
turbulence intensity had no effect on the position of the natural transition.
The following figure taken from Schubauer & Skramstad (1947) reveals the
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natural transition as observed when no extraneous excitation was imposed
on the flow, for a flow speed of 53 ft/sec. Shown sequences in Fig. 2.4 are
a set of film records made by photographing the oscillograph screen with a
moving film camera.
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Figure 2.4 Hot-wire oscillogram traces showing natural
transition from laminar to turbulent flow on a flat plate (From
Schubauer & Skramstad, 1947)

For the first few frames the signal has been amplified in the figure for
the ease of viewing, as indicated by the relative magnification on the right
margin of the figure. While one can see sinusoidal oscillations at and up to
9 ft from the leading edge of the flat plate, it is also clear that the so-called
natural disturbances are not purely monochromatic i.e., the disturbances
with the oncoming flow have many harmonic components. To detect TS
waves and circumvent noticing multi-harmonic disturbances, they next in-
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troduced perfectly controlled two-dimensional disturbances by electromag-
netically vibrating a phosphor-bronze ribbon (of 0.002 inches thickness and
that was 0.1 inches wide) inside the shear layer, at a height of 0.006 inches
from the plate. The positioning of this vibrator did not alter the mean flow,
while it created pure sinusoidal oscillations starting from a little distance
downstream from the ribbon. In this experiment, the neutral curve was
charted out and compared with Schlichting’s theoretical neutral curve. The
agreement was remarkable and this led to complete justification of viscous
stability theory of the Géttingen-school. Historically, it was Heisenberg who
actually led this type of analysis under the guidance of Sommerfeld.

The natural background disturbance must be viewed as an irregular pat-
tern of two- and three-dimensional wave packets with non-uniform spectral
content. Also, the study of isolated spectral component is only a valid
concept as long as non-linearity can be ignored and superposition principle
valid. Furthermore, the stability analysis identifies a complex « for a given
non-dimensional frequency wg and Reynolds number, under the assumption
of parallel flow. However, for low speed incompressible flow the shear layer
thickness increases downstream even when the edge velocity is kept con-
stant. Such growth is spectacular near the leading edge and the growth rate
of the shear layer thickness is moderate to negligible, at larger distances from
the leading edge of the flat plate. Hence the parallel flow analysis is more
relevant for larger Reynolds numbers. For such flows, changes in boundary
layer properties being very small, the stability analysis works locally and
the TS wave generated at a given location, in its movement downstream,
will adjust itself to the local property dictated by the dispersion relation.
This local adjustment- as an assumption- is synonymous to what is known
as quasi-parallel assumption.

2.5.1 Local and Total Amplification of Disturbances

The Reynolds number at observed transition location (defined as a location
where the intermittency factor is about 0.1 i.e. the flow is 10 % of time tur-
bulent and rest of the time it is laminar) for zero pressure gradient flat plate
boundary layer is of the order of 3.5 x 10°. This corresponds to Rej = 950.
The distance between the point of instability and the point of transition
depends on the degree of amplification and the kind of disturbance present
with the oncoming flow. This calls for a study of local and total amplifi-
cation of disturbances. The following description is as developed in Arnal
(1984) for two-dimensional incompressible flows.

Consider the application of spatial theory for a wall-bounded external
flow. On the top panel of Fig. 2.5, we once again show the neutral curve
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in the (Re — wp)-plane. If we focus our attention on a particular frequency
f1, then we will follow that ray emanating from the origin. According to
this figure, this disturbance will decay up to = = x( from the leading edge.
This, thereafter, will grow till x = x; i.e. up to the location where the ray

intersects the branch II.
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Figure 2.5 Sketch of local and total amplification of the
disturbance field
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The amplification rate suffered by the disturbances within the neutral
curve is shown in the middle panel of Fig. 2.5. Note the sign of the plotted
rate, with negative values plotted along the positive ordinate direction. For
two-dimensional disturbances in two-dimensional mean flow, the amplifica-
tion rate can be expressed as,

1 dA

If the level of disturbance amplitude at x = xq is indicated by A, then
the amplitude at any location downstream of x is given by,

A(z) = Age™ oo @i(@)da (2.5.3)

In the lower panel of Fig. 2.5, the exponent n is shown as a function of
x where
xr
n = —/ a;(z)dx (2.5.4)
o
This factor n(z) is calculated for a particular frequency and the exercise

can be repeated for a range of frequencies and a composite plot can be
made, as shown in Fig. 2.6.
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Figure 2.6 Total amplification rates for different frequencies for
the Blasius flow [Arnal, 1984].
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The total amplification suffered by individual frequencies is shown by the
solid lines in Fig. 2.6. The envelope to these curves, shown by the dotted
line, represents the maximum amplification suffered by different frequencies,
since their entry into the unstable zone. The envelope is generally designated
by,

x

N = [Lni]mam = Maxf[/ —ay(z)dx] (2.5.5)
AO z—0

Note that z is different for different frequencies as it starts from the

branch I where that particular frequency enters the unstable region. Sec-

ondly, the lower frequencies dwell inside the neutral loop for longer distances
and these components tend to amplify the most.

2.5.2 Effect of Mean Flow Pressure Gradient

So far, we have been talking about the stability of zero pressure gradient
flows. It is possible to extend the studies to include flows with pressure
gradient using quasi-parallel flow assumption. To study the effects in a
systematic manner, one can also use the equilibrium solution provided by
the self-similar velocity profiles of the Falkner-Skan family. These similar-
ity profiles are for wedge flows, whose external velocity distribution is of
the form, U, = k ™. This family of similarity flow is characterized by
the Hartree parameter 3, = #”}rl and the shape factor, H = %. Some
typical non-dimensional flow profiles of this family are plotted against non-
dimensional wall-normal co-ordinate in Fig. 2.7. The wall-normal distance
is normalized by the boundary layer thickness of the shear layer.
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Figure 2.7 Typical mean velocity profiles of some thin shear
layers [Arnal,1984].

The flow profiles with H > 2.591, correspond to velocity distributions
with inflection point and these are the decelerated flows or flows with ad-
verse pressure gradient. On the contrary, the flow profiles with H < 2.591,
correspond to (’j—p < 0 (the accelerated flows). The figure with £, = 0 and
H = 2.59, corresponds to the Blasius profile. The profile with 3, = 1 and
H = 2.22 corresponds to the stagnation point flow. The other two profiles
in Fig. 2.7 are for flows with adverse pressure gradient and the crosses
on the profile indicate the locations of the inflexion point. The profile for
Brn = —0.1988 (H = 4.032) corresponds to the case of incipient separation.
In Fig. 2.8, the neutral curves for the above four velocity profiles of Fig.
2.7 are compared. The deciding trend is that as H increases, Re., decreases.
And for flows with g—g > 0, the critical Reynolds numbers are significantly
lower.
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Figure 2.8 Neutral curves of some shear layer velocity profiles
shown in Fig.2.7

The fact that such profiles are prone to instability earlier is the reason for
calling these as adverse pressure gradient flows. Along with this, the growth
rate of unstable waves becomes larger, as the shape factor increases. Also,
for decelerated flows, the neutral curve does not close- as seen for H = 2.80
(Bn = —0.10) case. For the separated profiles, there is no branch IT of the
neutral curve at all. The stagnation region on a body in the presence of
fluid flow is a site of high stability, as can be seen for the Hiemenz flow
(stagnation point flow profile with f;, = 1) that is far more stable than the
Blasius flow in Fig. 2.8.

The envelope curve (that represents the envelope of the maximum ampli-
fication suffered by all the frequencies considered present in the background
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disturbance), shown by the dotted line in Fig. 2.6 was drawn for a partic-
ular pressure gradient. This process can be repeated for different pressure
gradient parameters. In Fig. 2.9, the envelope curves have been shown for
few representative adverse pressure gradient parameters starting from the
Blasius profile (H = 2.59) to the incipient separated flow (H = 4.032). As
the shape factor, H for the flow increases, Re.. also decreases (indicated
by the starting point of these curves). The slope of these envelope curves
(#fe\[w)7 also increases with H. One can use the local stability property of
the flow by solving OSE and characterize the effects of pressure gradient in
the same way that we did for Blasius profiles. It is apparent that the shape
factor of the shear layer, H is a very important parameter that indicates
flow separation and enhanced or reduced instability.
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Figure 2.9 Envelope curves for total amplification for
Falkner-Skan similarity profiles [Arnal, 1984].

In Fig. 2.10, Reynolds number based on momentum thickness at tran-
sition onset is shown plotted against the shape factor, as reported in Arnal
(1984).
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Figure 2.10 Momentum thickness Reynolds number and shape
factor at transition onset [Arnal, 1984].

The shape factor turns out to be an important parameter in deciding flow
instabilities and transition. Thus, by plotting H variation in the streamwise
direction it is possible to indicate the transition location in a given flow. It is
adequate to define the transition onset location as the place where the shape
factor variation exhibits a sudden negative slope. The following results in
Fig. 2.11 (also from Arnal (1984))- show that flow transition in an adverse
pressure gradient shear layer always precedes before theoretical location of
laminar separation, indicated by a vertical bars in the frames.

In the set of frames in Fig. 2.11, (A) represents a zero pressure gradient
shear layer for which the flow is not predicted to separate theoretically. The
sudden decrease of H is the harbinger of flow transition. From figures (B)
through to (F), the pressure gradient is progressively made more adverse
and consequently the theoretical location of laminar separation point moves
forward and H variation becomes sharper with a larger fall in value at the
location of transition. For severe adverse pressure gradient, the point of
separation is almost coincident with the point of transition. This is often
made use of for severe adverse pressure gradient flow calculations. However,
this is not always the case for predicting transition location. For example,
at low Reynolds number, flow often separates first and then transition occur
subsequently. The separated flow being very unstable, following transition
is very quick - one has practically a free shear layer with a point of inflex-
ion. As turbulent flows are capable of withstanding much higher adverse
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Figure 2.11 Effects of positive pressure gradient on separation
and transition. Discrete symbols are experimental data points
and continuous lines are laminar calculations. Vertical bar in
laminar calculation indicate the location of point of laminar
separation [Arnal, 1984].

pressure gradients, such separated turbulent flows can reattach to the wall.
It results in mean wall streamline forming a separation bubble. Beyond the
reattachment point the flow is turbulent and such flows are observed for
uniform flow past circular cylinders in Reynolds number range of 3 x 10° to
3 x 10, on the leeward side. The flow after turbulent reattachment, sepa-
rates again and remains fully separated. Separation bubbles are also seen
in flow past aerofoil downstream of the suction peak at moderate Reynolds
numbers and at non-zero angles of attack. There is an intense interaction
of the viscous flow in the shear layer with the outer inviscid flow in such
cases and boundary layer approximation fails.

The importance of shape factor, H can also be gauged for its ability to
correlate it with instability and transition by looking at Fig. 2.12 where
the values of Regs-iy are plotted versus H (from Obremski, Morkovin &
Landahl (1969) and White (1991)) that shows a regular variation of the
data for different varieties of flows.
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with shape factor for different indicated flow types (From

Obremski et al., 1969).

This importance of H has been further utilized in predicting transition
by Wazzan et al. (1981), by noting that similar correlation exist for the
parameters such as pressure gradient, suction/ blowing, heating/ cooling
etc., if it is plotted in terms of transition shape factor. In Fig. 2.13, this
correlation is shown by the upper curve that is premised on linear instability
studies with N = 9. The lower curve gives Re..;; as computed from Fig.
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2.12 by converting Res+ to Re,. To use Fig. 2.13, computed H(x) by any
laminar boundary layer code is used to predict transition, when the local
H(z) intersects upper curve, which is also given by the following empirical
fit:

logio(Rey i) = —40.4557 + 64.8066 H — 26.7538 H? + 3.3819H>  (2.5.6)

This correlation is valid only in the range for 2.1 < H < 2.8. This
method is promising, as it is premised on e? method (but with significantly
lesser effort), as described in the next sub-section.
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Figure 2.13 Correlation of critical and transitional Reynolds
number versus boundary-layer shape factor. (From White,
1991).
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2.5.3 Transition Prediction Based on Stability Calculation

Following the path-breaking experiments of Schubauer & Skramstad (1947),
there have been sustained efforts to link the stability theory in predicting
transition. Michel (1952) reported first that his compiled data showed the
transition to be indicated when the total amplification of TS waves cor-
responded to A/Ag ~ 10%, where Ay is the disturbance amplitude at the
onset of instability. This motivated Smith & Gamberoni (1956) and van
Ingen (1956) to use temporal theory results to show that at transition the
total amplification is given by,

A exp[/ "o ¢; dt] (2.5.7)
Ao Z

cr

Note that the integration ranges from the critical point (z.,) to the point
of transition (z4.). As the right hand side roughly became equal to e (as
noted by Smith & Gamberoni (1956)) on transition, this method has also
acquired the name, ¢ method. Van Ingen (1956) reported the value of the
exponent between 7 and 8. The disparity in the value of the exponent arises
due to different levels and spectrum of background disturbances. Currently,
it is known as the eV method where the exponent has been given a general
value depending on other factors affecting the transition process. Later on
Jaffe et al. (1970) performed the spatial stability calculations and reported
the exponent as equal to 10.

Experiments on transition for 2D attached boundary layer have revealed
that the onset process is dominated by TS wave creation and its evolution,
when the free stream turbulence level is low. Generally speaking, the esti-
mated quantities like frequency of most dominant disturbances, eigenvalues
and eigenvectors matched quite well with experiments. It is also noted from
experiments that the later stages of transition process is dominated by non-
linear events. However, this phase spans a very small streamwise stretch
and therefore one can observe that the linear stability analysis more or less
determines the extent of transitional flow. This is the reason for the success
of all linear stability based transition prediction methods. However, it must
be emphasized that nonlinear, nonparallel and multi-modal interaction pro-
cesses are equally important in some cases.

Despite the reasons cited for the success of linear stability theory in
predicting transition, it is important to underscore its limitation as well.
This should help one to look for hitherto unknown mechanism(s) that may
play a bigger role in transition prediction than it might have been suspected.
For example, the envelope method does not require any information about
the frequency content of the background disturbances and always predicts



60 Instability & Transition

transition based on lower frequency events. What if a particular disturbance
environment precludes such components of disturbances? Will the non-
linear process create those frequencies first and then they would amplify?
In such a case, the transitional region will be prolonged as compared to
other cases and transition prediction based on normal mode analysis will
be in question. This possibility is not explored in the present form of the
instability theory. Also, it is stated that the above method works only
when the free stream turbulence levels are low. It is legitimate to ask, what
happens when the turbulence intensities are higher? Would one see different
transition scenarios? Would one see transition without even creating TS
waves? This is the point of view for bypass transition research, discussed
in Chapter 3. First, let us discuss about incorporating semi-empirically
the role of low-level free-stream turbulence on transition along with the eV
method.

2.5.4 Effects of Free Stream Turbulence

It has been stated above that the success of the e method depends strongly
on the fact that this method was based on experimental results obtained in
low turbulence intensity tunnels. Here the turbulence intensity is defined
as,

[(u/2+v§+w/2)]1/2

U

Quantities indicated by primes are the fluctuating components and thus,
the numerator indicates the r.m.s. fluctuation level of the disturbance and
is calculated taking a long time history. The effect of Tu is very strong
on transition. For example, in the experiments by Schubauer & Skramstad
(1947), the Reynolds number at transition location dropped by 50% when
Tu was increased to 0.35% from its highest value at 0.04% as shown in Fig.
2.14 (a reproduction of Figure 2.2 of Schubauer & Skramstad (1947)).

Tu = (2.5.8)
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Figure 2.14 Effect of free stream turbulence on transition for flat
plate boundary layers. (Taken from Schubauer & Skramstad
(1947))

As seen here, the transition Reynolds number decreases rapidly for Tu
greater than 0.10%, and this variation cannot be directly explained by e¥
method. Mack (1977) has suggested the following empirical correlation,
linking Tu with the exponent N of the e” method,

N = —8.43 — 2.4 Ln(Tu) (2.5.9)

The above correlation is applicable in the range of: 0.0007 < Tu <
0.00298. This correlation is based on the experimental results of Dryden
(1959). Arnal (1986) reports its successful application for flows with adverse
pressure gradient.

At the upper end of the range of application for Tu = 0.00298, one notes
N = 0, implying that the transition would occur right at the location of
Reg,. In applying this correlation, the following has to be kept in mind:

e For Tu < 0.10 % , the transition location is insensitive to Tu. Such
low levels of disturbances are typical of acoustic noise that controls
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transition rather than the vortical disturbances. This distinction is
not made in literature between the two and everything is included in
the catch-all terminology of free stream turbulence (FST).

e For higher values of Tu, (greater than 2 to 3 %), transition often oc-
curs without the appearance of T'S waves at Reynolds numbers below
Re.,, for wall-bounded flows. Thus, the linear process of instability is
bypassed and such transition processes are called Bypass Transition,
as discussed in the next chapter.

If the excitation source is not inside the shear layer, then also a bypass
transition can be caused by flows with low levels of FST embedding con-
vected vortices in it- as is discussed in section 2.9. Important distinction
must be made between periodic and aperiodic convecting vortices in the free
stream. Following Fig. 2.15 taken from Spangler & Wells (1968), clearly
distinguishes some of the causes that trigger transition due to FST. In this
figure, the generic causes shown are due to i) grid-generated turbulence, ii)
acoustic noises and other vortical/ acoustic sources that create iii) standing
and iv) traveling waves. As compared to "low noise” transition Reynolds
number of 2.8 x 10% obtained in Schubauer & Skramstad (1947) the facil-
ity used by Wells (1967) produced transition to occur at Reynolds number
equal to 4.9 x 10°. The facility used for the experiment excluded traveling
acoustic noise, but there were standing acoustic waves in the test section.
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Figure 2.15 Correlation of transition Reynolds number with FST
data from Spangler & wells (1968)

Results referred to Spangler & Wells (1968) in Fig. 2.15, used acoustics
signals of fixed frequency to trigger transition and these clearly demonstrate
that transition is sensitively dependent on frequency of excitation when Tu
ranges from very small to significantly large values. Although the high fre-
quency data in this figure (for 82 Hz) shows no variation at all in the plotted
range- a value that is outside the neutral curve in the stable region. The
grid data shows itself as a strong transition promoter; Res, value dropping
sharply with a very small variation in Tu. Spangler and Wells report that
the spectral distribution of disturbances show different amplitudes at dif-
ferent frequencies. To this, one must also add that there can be significant
interferences between acoustic and vortical excitation- as seen for the Tu
dependence of transition for the 76 Hz data, with gradual decrease of Rey,
with Tu.
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2.6 Receptivity Analysis of Shear Layer

In Fig. 2.15, one notes the transitional Reynolds number plotted ver-
sus the disturbance amplitude for a flat plate boundary layer, excited by
different means. It is evident that each case differs significantly from the
others. The entrainment of different disturbance sources inside the shear
layer to produce instability is at the core of receptivity studies- that relates
the cause and its effect(s). For example, from Fig. 2.15 it is apparent
that the grid generated disturbances are very effective in triggering transi-
tion while free stream acoustic excitation is not so. Thus, one would state
that shear layers are more receptive to vortical disturbances than acoustic
disturbances. It is recognized that there are the following sources that can
trigger transition in laminar flows: (a) perturbations in the form of vor-
tical field; (b) acoustic or isentropic weak pressure field and (b) entropic
field or temperature fluctuations. Note that the surface vibration or sur-
face inhomogeneity also creates locally a vortical perturbation those are a
potent trigger for transition in shear layers. It is the aim of receptivity
studies to show the process of creation of instability in a shear layer by
any one or a combination of these sources. What is essentially lacking so
far is a proper mathematical framework that can deal with the problem of
the processes for the initiation of instability. There have been some efforts
on studying various aspects of receptivity, as given in Morkovin (1969),
Tam (1971), Reshotko (1976), Nishioka & Morkovin (1986), Goldstein &
Hultgren (1989), Choudhari & Streett (1990), Crouch (1992, 1993), Collis
& Lele (1996), Leib, Wundrow & Goldstein (1999), Lin, Stuckert & Her-
bert (1995), Saric, White & Reed (1999), Buter & Reed (1993), Choudhari
(1996), Sengupta et al. (1997, 1999, 1999a, 2002)- among many others.

The experimental results of Schubauer & Skramstad (1947) were a demon-
stration of receptivity of a flat plate shear layer to induced vibration inside
the shear layer. They could produce TS waves, in a reproducible fash-
ion, only when they vibrated a metallic ribbon at a fixed frequency very
close to the wall with the help of an electromagnet. It is instructive to
recall the following from Schubauer & Skramstad (1947): In the search for
schemes to excite oscillations in the boundary layer, a number of devices
were tried before completely satisfactory results were obtained. Methods us-
g sound, both pure notes and random noise, were none too satisfactory
because of resonance effects and the complexity of the wave pattern in the
tunnel. It is generally considered that the major problem with acoustic
excitation from free stream is the problem of matching of scales between
the acoustic excitation field and the TS waves. The wavelength and prop-
agation speed of acoustic wave is almost two orders of magnitude larger
than the unstable TS waves. Also it is to be noted that the experiments
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of Schubauer & Skramstad (1947) was attempting to verify the theoretical
developments for two-dimensional instability while the acoustic excitations
are always three-dimensional! There is absolutely no scope of creating 2D
acoustic excitations! Since the instability of shear layer is associated with
spatial theory, Squires theorem also does not help, in looking for 2D distur-
bance field that is more unstable than the 3D one. Schubauer & Skramstad
(1947) carefully devised the means of creating mainly a 2D excitation field
by vibrating a ribbon inside the shear layer that produced instability waves
with properties predicted theoretically by Schlichting (1935).

However, one aspect of the theoretical developments of instability theory
is quite easily overlooked that it requires neither the knowledge of excitation
fields nor the location where it is applied. In eigenvalue analyses, the exci-
tation field information is obscured through the application of homogeneous
conditions at the boundaries. It is even worse, if the excitation is applied
in the interior of the shear layer- there are no theories of instability at all!
The instability theory developed in the previous sections relates to exciting
the flow field by the boundary condition at the wall only- as explained next.

This is evident from the formulation: see for example, the retention of
two modes in Eqn. (2.4.5) that only considers excitations at the boundary
y = 0, those decay with height. It is therefore clear that the characteristic
determinant of (2.4.8) will extract only those modes that are triggered by
wall excitation and those decay with height. Thus in an experiment, TS
waves are naturally going to be produced by excitation of the shear layer
at the wall- as was demonstrated in Schubauer & Skramstad’s experiment.
When the frequency of the ribbon in the experiment is fixed, TS waves are
predicted as a consequence of satisfying the dispersion relation of (2.4.8) via
the spatial theory.

It is therefore also not directly apparent, why TS waves will be created
when the flow is excited at the free stream- until and unless the coupling
mechanism between free stream and wall excitation is established. It is not
enlightening to read in literature about creation of TS waves in shear layer
by free stream excitation and to explain it all by theories that are developed
exclusively for wall excitation. The exception to this is the work reported
in Sengupta et al. (2002), where the coupling mechanism was explained for
the excitation by a train of convecting vortices moving at a constant speed
at a fixed height. It was pointed out that there is only a narrow convection
speed range for which convected vortices can have very strong receptivity.
This is discussed in details later.

Furthermore, in the absence of any other mechanisms, most of the efforts
so far have gone in looking for T'S waves as the harbinger of transition for any
kind of excitation. This situation is needed to be rectified, as suggested by
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Morkovin in various papers including in Morkovin (1991) and a schematic is
already shown here in Fig. 2.1. This relates to explaining bypass transition
that causes transition without the appearance of TS waves. On bypass
transition, one can look for additional discussions in Breuer & Kuraishi
(1993), Landahl (1975), Landahl (1980), Jacobs & Durbin (2001), Sengupta
et al. (2002, 2003), Lim et al. (2004) and Sengupta et al. (2006). Having
stated the inadequacies of the eigenvalue approach, in the following we
describe the receptivity approach starting with the linear theory.

2.6.1 Receptivity Mechanism by Linearized Approach:
Connection to Stability Theory

Few articles on receptivity present a qualitative view of particular transition
routes created by not so well-defined excitation field (see e.g. Saric et al.
(1999)). Such approaches do not demonstrate complete theoretical and
Jor experimental evidence connecting the cause (excitation field) and its
effect(s) (response field). Here, a model based on linearized Navier- Stokes
equation is presented to show the receptivity route for excitation applied at
the wall. This requires a dynamical system approach to explain the response
of the system with the help of Laplace-Fourier transform.

2.6.1.1 A Brief Review of Laplace-Fourier Transform

Fourier and Laplace transforms are linear transforms and are very often
used for analyzing problems in various branches of science and engineering.
Since receptivity is studied with respect to onset of instability, it is quite
natural that these transform techniques will be the tool of choice for such
studies. Fourier transform provides an approach wherein the differential
equation of a time dependent system is solved in the transformed plane as,

Y(w) = Hw) X (w) (2.6.1)

where X (w) and Y (w) are the transform or spectrum of the input and output
of the system, while H (w) is called the transfer function of the system. If one
focuses on an input of a particular frequency at w = wy, then one can obtain
the corresponding transfer function H (wp) and the output of the system can
be obtained using (2.6.1). Such a study for all possible frequencies will give
us, what is known as the Frequency Response of the system. In contrast,
one can obtain the response of the system if the input to the system is
instead a Dirac delta function in the physical plane, then the system will be
excited simultaneously at all frequencies and the corresponding output (also
in the physical plane) will be called the Impulse Response. Thus, the study



T. K. Sengupta 67

of a linear system is as simple as finding out the transfer function for the
system and knowing the input spectrum. While the output in the transform
plane is obtained by a simple multiplication, we will shortly see that the
output can be obtained in the physical plane by performing a convolution
integral between the impulse response and input spectrum. Use of Fourier
transform, as opposed to Fourier series allows system analysis for aperiodic
system. Almost all physical systems are causal i.e. these are the systems
whose output does not anticipate input. For a linear and fixed system
characterized by an impulse response h(t) the causality requires,

h(t)=0 for t<O. (2.6.2)

Thus, it becomes apparent the output and the impulse response are
one-sided in the time domain and this property can be exploited in such
studies. Solving linear system problems by Fourier transform is a conve-
nient method. Unfortunately, there are many instances of input/ output
functions for which the Fourier transform does not exist. This necessitates
developing a general transform procedure that would apply to a wider class
of functions than the Fourier transform does. This is the subject area of
one-sided Laplace transform that is being discussed here as well. The idea
used here is to multiply the function by an exponentially convergent factor
and then using Fourier transform technique on this altered function. For
causal functions that are zero for ¢ < 0, an appropriate factor turns out to
be €=t where o > 0. This is how Laplace transform is constructed and
is discussed. However, there is another reason for which we use another
variant of Laplace transform, namely the bi-lateral Laplace transform.

All fluid dynamical systems are continuous system with infinite degrees
of freedom and the governing equations depend continuously upon both
space and time. While for any system, the time-dependent signal cannot
move back in time, the space dependent signal can propagate in all directions
with respect to the location of the source. This therefore requires that we
develop a theory based on bilateral Laplace transform - a topic described
in great details in Papoulis (1962) and Van der Pol & Bremmer (1959).

2.6.1.2 Fourier and Laplace Transform

If F(w) is the Fourier transform of a time varying function f(¢), then

+oo
F(w) = / f(t) e ™tat (2.6.3)

— 00
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The above integral exists in the sense of having a Cauchy principal value
for every value of w. Conversely if we have the Fourier transform, then we
can construct the function in the time-domain from,

1 [T :
fi) = o [m F(w) e™'dw (2.6.4)

Note that in Eqns. (2.6.3) and (2.6.4), w is real. As mentioned above,
we will also use bi-lateral Laplace transform Frr(«) to describe the space
dependence of the function by,

“+o0o
Fri(a) = / fz) e dx (2.6.5)
— 00

Thus, Fyr(a) and f(x) form the transform-original pair for a space-
dependent function. Here, « is a complex quantity i.e. a = a, + iq; and
represents a complex wave number. Note that o being complex, Fy(«) is
only defined in a limited region of the complex « plane, as shown in the
sketch of Fig. 2.16.

#1

Figure 2.16 The strip of convergence for the Fourier-Laplace
integral in the wave number plane
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In the sketch above, a horizontal hatched strip is defined by 72 < a; < 1.
Any contour chosen within this strip of convergence is called the Bromuwich
contour. On the right hand side integral of Equ. (2.6.5), if we restrict the
lower limit to x = 0, then we would retrieve the unilateral Laplace transform
given by,

Fr(a) = /000 f(z) e "dy (2.6.6)

The right hand side can also be rewritten as

Fi(a) = /0 f(z) e e~ "y (2.6.7)

This shows that Fy(«) is the Fourier transform of the function f(z) e®*,
if a; is held constant. Applying Fourier inversion formula (2.6.4), we obtain

1 +oco+ia;

= — Fr(a) e *da, (2.6.8)
27

—oo+ia;

fl@) e

Here, the integration contour is traced along a «; = const. line i.e. the
integration contour is along a horizontal line, a;; = . This is the Bromwich
contour for one-sided Laplace transform, if the corresponding inverse Fourier
transform in (2.6.8) exists. The integral in (2.6.7) will then converge for all
other contours for which «; < 7 defining the region of convergence for the
transform where it is analytic. We can extrapolate this to define the strip
of convergence for bi-lateral Laplace transform.

The bi-lateral Laplace transform of (2.6.5) can be rewritten as,

00 0
Fri(a) = / f(z) e " dx —|—/ f(x) e da (2.6.9)
0 —0o0

The first integral in (2.6.9) is the unilateral Laplace transform of f(x)U ()
where U(x) is the unit step function or the Heaviside function. Therefore,
it converges in a region a; > 7, as shown in Fig. 2.17.
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plane inside the cross-hatched region

Similarly, the second integral of (2.6.10) is analytic for a; > 2, as shown
in Fig. 2.17. Therefore, Fy;(a) is analytic in the region shown by cross-
hatches in the above figure, recovering the definition shown in Fig. 2.16.

2.6.1.2(a) The Inversion Formula for Laplace Transform

Once we identify the strip of convergence, we can write down the inversion
formula by integrating along a Bromwich contour (here taken as a «; =
const. line for convenience) in the complex a-plane by,

1

flx)=— Fri(a, +ia;)e’ ™ e da, (2.6.10)
27T Br
or
. 1 . -
f(x)e®® = p Fri(a, +ic)e’ ™ da,. (2.6.11)
T

This is the equivalent inverse Fourier transform of the right hand side.
This integral can be evaluated by contour integration (see Papoulis (1962)
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and Van der Pol & Bremmer (1959) for more details). For an application in
fluid flow instability study, see Sengupta (1991) and Sengupta et al. (1994).
Suppose that the only singularities of Fr;(a) are simple poles and if

Fri(a) =0 for |a] — o0 (2.6.12)

Then one can invoke Jordan’s lemma and Cauchy’s theorem (see Whit-
taker & Watson (1946)) for the line integral in (2.6.11) that can be converted
to the contour integral, as shown in Figure 2.18, with only a single pole in-
dicated at the point P;. Let us also say that the disturbance corresponding
to this pole has a positive group velocity i.e. the associated disturbance
propagates in downstream direction.

AR AT

Er

Figure 2.18 Bromwich contour and its closure for the integral in
Eqgn. (2.6.13)

We construct a closed contour C', which is the Bromwich contour plus the
semi-circular part as indicated in the figure, with a small indented contour
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around the pole connected by a pair of vertical lines to this semi-circular arc.
These vertical lines constitute a cut that links the small circular contour (Ch)
to the semi-circle. The arrows show the direction along which the contour
integral is taken for estimating the inverse transform corresponding to the
downstream propagating signal. Because there are no other singularities,
Frr() is analytic along and within C!,, as indicated by hatching. Therefore,

1

flx) = —/ Frr(a)e™™® da for x>0 (2.6.13)
27(' Cu
Where, C,, = C!,+C. For an analytic function f(z) in a domain bounded
by a closed contour C, Cauchy’s theorem states that,
Jo f(z)dz=0
Thus, we can apply this theorem to the integrand of (2.6.13) in the
contour C!, i.e.

ﬁf% Frr(a)e'®® do =0

Hence
1 iax 1 [re%
— Fri(@)e™™ da=—— Fr(a)e™ da (2.6.14)
2 Cl/" 2T C

Note that while €, is in anti-clockwise direction and hence positive,
the integral on the right hand of (2.6.14) is in clockwise direction. If we
perform this integral also in anti-clockwise direction, then the negative sign
can be removed. The integral on the right hand side can be evaluated by
the calculus of residues i.e.

/ Fri(a)e’™® da =21 i * Residue (o= ap,) (2.6.15)
-

where the residue has to be calculated at the pole located at Py. If the
pole is of order m, then

_ 1 a7
(m—1)! dam—1!

If we would have joined the Bromwich contour by a semi-circle in the
lower part of the o plane as indicated by the contour Cy, then

Residue (ap,) = [Frr(a)e’] (2.6.16)

1

flx) = %/c Fri(a)e®da for <0 (2.6.17)

However, one need not perform contour integrals to obtain f(z). For
example, if we perform the integral of (2.6.10) directly along the Bromwich
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contour, then we will be simultaneously getting both the downstream and
upstream propagating solutions together. We advocate this procedure, be-
cause this also allows us the freedom from finding out the detailed infor-
mation about all possible singularities (not only the simple poles) of the
transform and their order. Only thing that has to be ensured is finding
the correct strip of convergence for the Bromwich contour. This procedure
has been followed in Sengupta (1991) in calculating the impulse response of
Blasius boundary layer; in Gaster & Sengupta (1993) for solving the signal
problem for the spatial growth and in Sengupta et al. (1994) for solving
the full spatio-temporal problem when a zero pressure gradient shear layer
is excited harmonically.

It is interesting to note that the response of a system to a harmonic
input is itself harmonic at the same frequency under the twin conditions of
linearity and time invariance of the system properties for stable systems.
For instability and receptivity problems, there is no general proof of the
same due to the nonlinear nature of the dispersion relation, despite the fact
that one is studying linearized Navier- Stokes equation. Thus it can at
best be an assumption that is adopted in many analyses of this problem,
except in Sengupta et al. (1994, 2006, 2006a) where the full time-dependent
problem is solved as a transient problem by considering Bromwich contours
in a— and w- planes simultaneously.

There is another reason for our preference in calculating system response
by integrating (2.6.10) directly and not use contour integral (2.6.13) and
(2.6.17). This is due to the restrictive condition (2.6.12) needed to hold
for Jordan’s Lemma to be used. We will show here, that the condition of
Jordan’s Lemma does not hold for the Orr-Sommerfeld equation - a result
that has not been used in stability studies of fluid dynamics.

2.6.1.3 A Short Tutorial on Fourier Integral and Transforms
Given a function of the real variable ¢, consider the integral
+oo )
F(w) = / ft)e ™tat (2.6.18)

The Fourier transform F'(w) is in general complex that can be expressed
as,

F(w) = R(w) + il (w) (2.6.19)

or

= A(w)e™ (2.6.20)
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where A(w) is the amplitude or Fourier spectrum of f(t), A%(w) its en-
ergy spectrum and ¢ its phase angle. The inversion formula,

+oo
ft) 1/ F(w)e™tdw (2.6.21)

:ﬂ_oo

is valid at all continuous points. At the discontinuities, one should take
the average of its right and left limits i.e.

1

F(O) = ST + 1 (7)) (2.6.22)

If f(t) is absolutely integrable i.e fj:; |f(t)|dt < oo, then F(w) exists.
Let us now talk about some special forms of Fourier integrals. If f(¢) =
fi(t) +ifa(t), then

+oo
R(w) = /_ [f1 cos(wt) + fosin(wt)]dt (2.6.23a)
+oo
(W) = — / (1 sin(wt) — fo cos(wt)]dt (2.6.23D)
And
+oo
fi(t) = %/_ [R cos(wt) — I sin(wt)]dw (2.6.24a)
Fat) = % / T Rsin(wt) + T eos(w)]dw (2.6.24D)

Thus, if f(t) is real i.e. fo(t) = 0, then R(w) = fj;o[fl cos(wt)|dt and
hence it is an even function. In the same way I(w) is an odd function. Fur-
thermore, if f(¢) is real and even, then f(t) cosw(t) is even and f(t) sinw(t)
is odd. Hence for such combinations,

R(w) = 2/ f(t)coswtdt and I(w)=0 (2.6.25)
0
In contrast, if f(t) is real and odd, then
Rw)=0 and I(w)= —2/ f(t) sin wtdt (2.6.26)
0

For a causal function,

f&)=0 for t<0 (2.6.27)
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Also from (2.6.18), it is easy to see that

+o0 ) +oo )
F(-w) = / f(t)e™tdt = / f(—=t)e “'dt (2.6.28)
—o0 —o0

Thus, the Fourier transform of f(—t) is given by R(w) — il (w). If we
split f(¢) into an even and odd function as given by

1 1

fe) = SIF @) + F(=0)] folt) = F(t) = F(=2)] (2.6.29)

It is clear that R(w) is the Fourier transform of f.(¢t) and il(w) is the
Fourier transform of fy(t). For a causal function, due to (2.6.27), one can
see that f(t) = 2f.(t) = 2fo(¢t) for t > 0. Therefore, a real causal function
can be determined either in terms of R(w) or in terms of I(w) from

f(t) = z/ R(w)cos wt dw (2.6.30a)
T Jo
or
2 [~ .
:——/ I(w)sin wt dw (2.6.30b)
T Jo

In addition to the above simplifications for estimating the Fourier trans-
forms and their inverses, following properties are often used as further aids.
They are also known as theorems, as described in Papoulis (1962). For
notational ease, let us use the following to indicate the connection between
original and its transform: f(t) < F(w).

Linearity:

If f1(t) & Fi(w) and fa(t) & Fa(w) then fi(t)+ f2(t) < Fi(w)+F2(w)
(2.6.31)
This theorem directly transfers to Laplace transform without any further
qualification.
Symmetry:

If f(t) < F(w) ,then F(t) < 27 f(—w) (2.6.32)

Time Scaling: For any real a,

‘%'F(g) (2.6.33)

This property also applies directly to Laplace transform, for o > 0.

flat) <
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Time Shifting: For any real time ¢,
f(t—tg) & F(w)e ™t (2.6.34)

It is also the same for Laplace transform.
Frequency Shifting: For any real frequency wy,

el f(t) & F(w — wo) (2.6.35)

This theorem also applies directly to Laplace transform.
Time Differentiation: The Fourier transform of n'” order derivative
can be found in terms of the Fourier transform of the original function by,

i) & (iw)"F(w) (2.6.36)

For Laplace transform, a more general expression is obtained using all
the initial conditions as given below, (iw)"F(w)— (iw)" 1 f(07) = ceoevrrree —
Fr07)

Frequency Differentiation: In a similar fashion, one can relate the n'”
derivative in the spectral plane with the following function in the physical
plane via,

d"F(w)
—it)" f(t) &
(it (1) &

Moment Theorem: For the n*” moment of a function, m,, = fjooj t" f(t)dt,

one has the following pair

(2.6.37)

d"F(0)

2.6.
o (2.6.38)

(—i)"my, <

Next, we describe the important property of the convolution. Consider
two functions fi(z) and fo(x) from which we can construct the following,

“+o0
f(z) = / £1(0) ol — y)dy (2.6.39)

The function f(z) is called the convolution of fi(z) and fo(x). It is
denoted symbolically as,
f(z) = fi(z) * fo(x) (2.6.40)

Let us now state the following convolution theorems.
Time convolution theorem: If fi(t) < Fi(w) and f2(t) < Fa(w)
then,

[ m@a -y & B@pw) (2.6.41)
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Frequency convolution theorem: Similarly, one can state the follow-
ing frequency convolution theorem,

+oo

— 00

2.6.1.4 Some Useful Fourier Transforms

Some useful transforms are summarized here those will be of use in formu-
lating and solving receptivity problems.

(a) Dirac Delta function: For the delta function treated as a distri-
bution f(t) = d(t), allows it’s Fourier transform to be obtained by,

F(w) = /+OO S(tye @it =1 (2.6.43)

— 00

Thus, application of delta function is equivalent to exciting all the circu-
lar frequencies with equal emphasis. This is the basis of finding the natural
frequency of any oscillator via impulse response. When the oscillator is
subjected to an impulse, all frequencies are equally excited and the system
dynamics picks out the natural frequency of vibration, leaving others to de-
cay in due course of time. It is noted that this result also applies to Laplace
transform and we are going to use it often by replacing time by space and
circular frequency by wave numbers.

Now using the time shift theorem (as given by Eqn. (2.6.34)), it is
immediately evident using Eqn. (2.6.43) that,

S(t —tg) & e Wi (2.6.44)

Also using the symmetry property of Eqns. (2.6.32) and (2.6.35), one
gets
1< 276(w) (2.6.45)

Similarly using the symmetry property of Eqns. (2.6.32) and (2.6.44),
we get A
™" & 2m§(w — wo) (2.6.46)

Since coswot = 3{e™°! 4 e~*o!}  therefore

2
cos wot < (g)[a(w — wo) + d(w + wo)] (2.6.47)
In the same way, from sinwgt = 5-{e™®" — e~“0’} one obtains the

following transform pair,
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sinwpt < im[d(w + wo) — 0(w — wo)] (2.6.48)

(b) The sign function (sgn t): is equal to +1 when ¢ > 0 and is equal
to -1 when ¢ is negative. Its Fourier transform is then given by,

2
t) & — 2.6.49
sgn (1) w ( )
Proof of (2.6.49): For F(w) = %, the original is given by,
f(t) = i j;o %ei“’tdu) = %fj;o sir;iwtdw

This integral on the right hand side has the property to be equal to +1
when ¢ > 0 and is equal to -1 when ¢ < 0. Hence f(t) is sgn (¢).

(c) Unit Step function or Heaviside function U(¢) : This function is
equal to zero for all negative values of the argument and for positive values
of the argument it is equal to +1, taking a discontinuous jump at ¢ = 0.
Hence this function can be written as,

1 1
U(t) = 3 + 3591 (t) (2.6.50)

Hence, using the results of (2.6.45) and (2.6.49) we get the following

pair,

1
Furthermore, using the frequency shift theorem of Eqn. (2.6.35),
) 1
ZUJ()t _
e (t) & mo(w — wo) + o —w0) (2.6.52)

Above result is of central importance for the study of harmonic excitation
of a shear layer with the excitation having a finite start-up time. Usage of
the above, allows one to distinguish between the transient and asymptotic
part of the receptivity solution of a shear layer to a harmonic excitation
starting at a finite time. This was used in Sengupta et al. (1994) to study
the receptivity of zero pressure gradient shear layer to harmonic excitation.

It is now easy to show that a harmonic excitation starting at t = 0 is
given by,

s 5 5 w
U(t) coswot < 5[ (w—wp) + d(w +wo)] + o

(2.6.53)

(d) Derivatives of Delta function: In this class of functions one
can include the doublet, quadrupole etc. those are often used as singularity
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functions used in fluid mechanics and acoustics. It is worthwhile to point out
that the potential flow results for source, sink, doublet etc can be obtained
using the same procedure detailed here using Laplace’s equation as the
governing differential equation.

It has been shown in Papoulis (1962),

C6(t — to)plt)dt = (~1)

/+°° d" 2 d"o(to)
dtm

Therefore,

+o0 dns i . dm o Cn
Fw) = [ e = (17 e ey = ()
Thus,
27‘? & (iw)" (2.6.54)

(e) Gaussian function (e‘t2/2) : This function belongs to the class of
Hermitian functions and has the important self-reciprocity property with
its transform. The E;ourier transform of it is given by,

_ [0 —t7/2 —iwt

Flw)= [TZ et /2etqt

_ foo e~ 3 (£ +2iwt) gy
—o0

_w? oo _ (t+iw)?
e”T [[Te Tz dt

_w? oo _ (tHiw)? iw
:\/ﬁe 3 f_ooe 5 d((t"t\‘/i))

Since fjo(f e 24y = /7
Therefore

t2 w2
e T & V2me T (2.6.55)
This is the important property of the Gaussian function, namely that its
transform has the identical functional form as the original. This is called the
property of self-reciprocity. All its derivatives also share the same property.
The derivatives of the Gaussian function produce the well known Hermite
functions,

h(t) = (—1)"et2/2di(e—t2) & H,(w)

Therefore, v/27h,, (t) = i" H,(t)
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2.6.2 Receptivity to Wall Excitation and Impulse Response

This is based on the work reported in Sengupta (1991), Gaster & Sengupta
(1993) and Sengupta et al. (1994). Consider the behaviour of small am-
plitude disturbances in a given parallel mean flow, in response to a time
harmonic localized disturbance source (with frequency wp). In the simplest
form of a model for response, the perturbation stream function is defined
by (as in Sengupta (1991) and Gaster & Sengupta (1993))

1 .
Ul t) = o | oy, aswp)e” > da (2.6.56)
™ JBr

Two-dimensional disturbance field arising in a 2D mean flow described
by the velocity profile U(y) is considered first. The disturbance source is
located at the origin of a Cartesian system and the circular frequency of the
exciter is given by wgy. In writing the disturbance stream function above,
one assumes the system to respond at the frequency of the excitation only-
this is known as the signal problem (as considered in Sengupta (1991) and
Gaster & Sengupta (1993)). Also note that this represents disturbance field
that can move both in the downstream, as well as in the upstream direction.
Hence the above is a bi-lateral Laplace transform and the Bromwich contour
is to be located in the strip of convergence for the transform amplitude ¢,
as described in Papoulis (1962). Substituting (2.6.56) in linearized Navier-
Stokes equation and making the parallel flow assumption provides the Orr-
Sommerfeld equation - as given in Eqn. (2.4.3). The only difference in
this receptivity approach from the stability approach is that the boundary
conditions are not homogeneous, unlike that was given in Eqn. (2.4.1a).

For the case of receptivity to localized wall excitation, a delta function
is used at the point of excitation; this gives rise to what is known as the
impulse response of the shear layer. The boundary conditions applied at
the wall are given by,

aty=0: wu=0 and (x,0,t) = d(zx) e "0t (2.6.57)

And far from the wall (y — o0) :
u,v — 0 (2.6.58)

The decaying boundary condition (2.6.58) at the free stream excludes
two fundamental modes of the OSE. With the other two retained modes
one defines,

¢ = a1¢1 + az¢s (2.6.59)
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Constants a; and ag are fixed by the boundary conditions given by
(2.6.57) as follows
a1¢o + azdy = 0 (2.6.60a)

a1¢10 + asPzo = 27 (2.6.60b)

Additional subscript 0 indicates the quantities to be evaluated at the
wall. Equations (2.6.60) are solved for a; and as that simplifies (2.6.56) to,

Cbl (y? a)ﬂ%o — ¢/10¢3 (y7 Oé) ei(aw—wot)da
Br ¢1o¢'30 - 925/10¢30

The denominator in this expression is evaluated at the wall and is the
characteristic determinant of the eigenvalue problem shown in Eqn. (2.4.8).
This connects the receptivity problem with the corresponding instability
problem. It is also apparent that the eigenvalues (those are the zeros of the
characteristic determinant in the denominator of (2.6.61)) constitute the
poles for the receptivity problem.

The choice of Bromwich contour is made based on the qualitative knowl-
edge of the eigen-spectra of the problem. For example, if one were to calcu-
late the impulse response of Blasius boundary layer, then one has to position
this contour in such a way that all the downstream propagating modes (the
group velocity of these are positive) lie above this contour and the upstream
propagating modes lie below this contour in the wave number plane. De-
tailed discussion of this is given in Sengupta et al. (1994). The response
due to all the discrete modes, the essential singularities and the continuous
spectra are built inside ¢ evaluated along the Bromwich contour itself. A
possible Bromwich contour can be taken parallel and below the real axis,
so that the downstream propagating modes stay above this contour. There
is the added advantage for this choice of contour in applying DFFT along
this contour- otherwise any other contour would be alright in the strip of
its convergence.

A typical impulse response is shown in Fig. 2.19 for Blasius boundary
layer, for wg = 0.1 and Res~ = 1000, with disturbance stream function
shown at the inner and the outer maxima of the least stable mode.

Y(z,y,t) =

(2.6.61)
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v \

Figure 2.19 Disturbance stream function plotted versus
streamwise distance for (1) the inner maximum at y/§*0.277 and
(2) for the outer maximum at y/6*1.79

About 306* from the exciter in the downstream direction the computed
disturbance profile matches with the eigen-solution corresponding to the
complex wave number value (0.2798261, -0.00728702), with that obtained
by the stability analysis for the TS mode. It is interesting to note that there
is a local component of the receptivity solution that decays rapidly in either
direction. This is called the near-field response or the local solution. Thus,
the receptivity solution in this figure consists of the asymptotic solution
(away from the exciter) and a local solution.

The description of the local solution and other details of selecting the
Bromwich contours are given in Sengupta et al. (1994) and Sengupta & Rao
(2006). The near-field response created due to wall excitation is shown in
these references as due to the essential singularity of the bilateral Laplace
transform of the disturbance stream function. While the experiments of
Schubauer & Skramstad (1947) verified the instability theory, the instabil-
ity theory is incapable of explaining all the aspects of the experiments or



T. K. Sengupta 83

the solution obtained by the receptivity analysis e.g. the near-field and
the transient solution discussed in Sengupta et al. (2006a). In this con-
text receptivity analysis is unique and assumes special importance. In the
following, the near-field of the receptivity solution is explained.

2.6.2.1 Near-Field Response Created by Localized Excitation

The near-field response created due to wall excitation is shown here as due to
the essential singularity of the bilateral Laplace transform of the disturbance
stream function. So far we have seen that the occurrence of transition
from laminar to turbulent boundary layer over plane surface proceed as
growth of spatially growing instability waves -as was theoretically shown by
Heisenberg (1924), Tollmien (1931) and Schlichting (1935) and later verified
experimentally by Schubauer & Skramstad (1947).

In Case (1960) and Gaster (1965), some theoretical aspects of the recep-
tivity of a fluid dynamic system from initial- boundary value point of view
was addressed. The first set of receptivity calculations were provided in
Sengupta (1991) and Gaster & Sengupta (1993) under some restrictive con-
ditions on time variation. Sengupta et al. (1994) removed this constraint
and produced the first time-dependent solution of the receptivity to wall
excitation problem. In Ashpis & Reshotko (1990), a "revised” formulation
(with respect to Gaster’s (1965) work) was given following Briggs’ method
developed to study plasma dynamics instability. The authors stated that
the discrete spectrum and branch points constitute the time asymptotic so-
lution. It was also conjectured that the near-field contribution comes from
the branch cuts introduced from three fixed branch points of the governing
Orr- Sommerfeld equation. Interestingly, they identified the branch-cuts as
the continuous spectral lines responsible for the local solution. This has not
been proven since and the one-to-one correspondence between the so-called
continuous spectra and the near-field established. On the other hand, the
formal integral of the bilateral Laplace transform in space and Fourier in-
tegral in time, along carefully chosen Bromwich contours can automatically
provide both the near- and far-field results, an example is shown in Fig.
2.19.

Here an explanation is provided on the structure of the near-field solu-
tion with the help of some fundamental theorems. These theorems provide
the basis for interpreting both the near- and far-field solutions. These are
due to Abel and Tauber and their utility was highlighted by Van der Pol
& Bremmer (1959) in connection with the properties of bilateral Laplace
transform. In exploring relationships between the original in the physical
plane and the image or transform in the spectral plane these two important
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theorems are used here. In particular if one is interested in the behaviour
of the original in the neighborhood of the exciter (i.e. near z = 0), then
one needs to investigate the image at o« — oo. This is the Tauber’s theo-
rem. Similarly, if one is interested in the solution far away from the exciter
r — 00, then one needs to consider only the neighborhood of the origin in
the a-plane. This is the Abel’s theorem and this simply points to the
relevance of those poles only that are very close to the origin in the a—
plane. In traditional stability analysis, not only the Abel’s theorem is im-
plicitly used, but also the attention is focused only on the right-half of the
a— plane.

Following the above, let us explore the relation between the original and
the image of bilateral Laplace transforms in relation to the evolution of small
disturbances in boundary layers. In particular, one would be interested in
the behaviour of the original in the neighbourhood of the exciter (z = 0)
as determined by the image ¢(y, ) for a — oo according to the Tauber’s
theorem.

In this sense we will determine the contribution of o — oo for the
original-image pair of Eqn. (2.6.56). It is also relevant to discuss about
the role of Jordan’s Lemma (as discussed in Arfken (1985)) that shows the
contour integral along the semi-circular arc- with its radius approaching in-
finity in Figure 2.18- approaches zero under some special condition satisfied
by the integrand. Let us recall that the integral along C, as shown in Fig.
2.18, is given by

Ic = / P(Q)e"““da (2.6.62)

would vanish, if and only if the degree of the denominator of (2.6.61) is at
least two orders higher than the degree of the numerator i.e.,

k

B)] < 1o (2.6.63)

for &« — 0o0. One of the main reasons for the present discussion here is to
show that the image ¢(«) for this limit, as governed by Orr-Sommerfeld
equation, does not satisfy the condition given in (2.6.63). To show this, it is
possible to expand ¢(«) as a function of 1 (= 1) by a singular perturbation
analysis for & — oo and it can be shown that such a series expansion starts
with a 0(e1) term i.e. the condition given in Eqn. (2.6.63) is not supported-
so that the Jordan’s lemma is inapplicable here.

Thus, the next objective here is to estimate the contribution coming
from the contour integral in (2.6.62) from the semi-circular arc in the a-
plane, when the radius of the arc goes to infinity. Along this arc one can
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represent, ,

a=p e =pp (2.6.64)
where p is the radius of the arc. To determine ¢ for large o, examine the
asymptotic form of the Orr-Sommerfeld equation as an expansion in the
small parameter ¢; = % for p — oo. Equation (2.3.21) then takes the form

€10 — [262 3% + iRee3 (BU — eywo)]¢”
+ [B* + iRefe3U" + iRef2e1 (BU — e1wp)|é = 0 (2.6.65)

Note that the image ¢ can also be expanded in a perturbation series and
the analysis here is for the leading order term of such an expansion. The
higher order terms of ¢ would produce trivial contribution to the contour
integral because of the satisfaction of the condition for Jordan’s Lemma, as
given above in (2.6.63).

Let us now discuss the case of wall excitation where a localized delta func-
tion excites the flow. To simplify analysis, consider the following boundary
conditions applied at the wall that is located at the origin of the co-ordinate
system:

y=0: wu=0 and (z,0,t) = d(x)e o (2.6.66)
And far from the wall (y — o0):
u,v—0 (2.6.67)

The boundary conditions (2.6.66) and (2.6.67) of the impulse response
problem, can also be expressed as ¢(0,«) =1 and ¢'(0,«a) =0 at y = 0 and
as y — oo: ¢(y, @), ¢'(y,a) — 0.

From Eqn. (2.6.65), it is apparent that this is a singular perturbation
problem (as the highest derivative term is multiplied by the small param-
eter) and then one can use matched asymptotic expansion to obtain ¢ by
describing the solution in terms of outer and inner solutions.

2.6.2.1a Outer Solution

By definition, in the outer region ¢ and all its derivatives are 0(1) and Eqn.
(2.6.65) simplifies to
$o =0 (2.6.68)

This solution is true up to any order and it automatically satisfies the
outer boundary conditions. However, this does not satisfy the wall boundary
condition and one must have a boundary layer or the inner layer of say, the
thickness, 6. The thickness d, can be obtained by the distinguished limits in
the inner layer by following the method given in Bender & Orszag (1987).
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2.6.2.1b Inner Solution

In the inner layer, we define a new independent variable Y = y/§ and work
with the dependent variable ¢ = ¢;(Y"). Then Eqn. (2.6.65) takes the form,

(561" = [26°(5)? + iRe(BU — elwo><§i;>l
¢} + [B* + iReBeiU" + iReBe1(BU — e1wo)]di = 0 (2.6.69)

Here the derivatives of ¢; are now with respect to Y. One can look at
various distinguished limits by choosing terms pairwise in Eqn. (2.6.69).

(i) For the distinguished limit ¢ << ¢;: Equation (2.6.69) reduces to

¢1 =1

This is a non-trivial solution satisfying the wall boundary conditions.
But, it does not allow matching the inner and outer solutions and has to be
discarded.

(ii) For the distinguished limit 6 >> ¢;, one gets ¢;(Y) = 0. However,
this is not a valid solution as it fails to satisfy the wall boundary condition.

(iii) For the distinguished limit 6 = ¢;: Equation (2.6.69) takes the form

O —20%¢7 + 3¢ = 0

The solution of which is, ¢;(Y) = A €Y + BY €Y +C e #Y 4 DY e 8Y

Note that 3 is a complex constant and for 3, > 0, the inner solution
that satisfies Eqn. (2.6.66) is given by,

6i(Y)=(1+38Y) eV (2.6.70)
Similarly one can obtain the inner solution for 3, < 0 as,

(V) = (1 —pY) e (2.6.71)

3
7 and

It is easy to show that the other two distinguished limits, 6% = €
62 = €} produce only the trivial solution.

Thus, the only possible distinguished limit is § = €7, implying that the
inner layer of the Orr-Sommerfeld equation is of thickness, 6 = ﬁ In terms
of the physical variables, the asymptotic value of ¢ is then:

For a,. > 0

p=14+ay)e (2.6.72)

And for o, <0
o= (1-ay) e (2.6.73)

To evaluate the contribution to ¥ coming from the semicircular contour,
we must consider three segments of the contour- as shown in Fig. 2.20-



T. K. Sengupta 87

since ¢ is discontinuous across «;- axis. The imaginary axis demarcates
the spectral plane in terms of required sub-dominance of the fundamental
solutions as given in Eqn. (2.4.4) and a consequence of which is observed
from Equns. (2.6.70) and (2.6.71).

Figure 2.20 The contour used in the evaluation of the integral in
Eqgn. (2.6.74)

For the purpose of evaluating the contour integral, we choose the Bromwich
contour along the real wave number axis, without any loss of analyticity of
¢. Thus,

V(z,y,t) = %/qﬁ(y,a)ei(‘”_wot)da (2.6.74)
Where
On Ci: ¢y,a) =(1+ay)e (2.6.75)
On Cy: o¢ly,a)=(1—ay)e” (2.6.76)
At P: oy ip) = %(eipy +e7iPY) (2.6.77)

The last contribution is required as ¢ is discontinuous across P. To calcu-
late the contribution coming from the neighbourhood of point P, we consider
a sector of the contour around P terminating at P, and P» in Fig. 2.20,
defined by the small angle €. One fixes the value of § at P, and P> in the
following manner. The value of 8 corresponding to P, is,
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b1 = €279 =i + ¢ for the small value of e.
And the value of g corresponding to Ps is

(o = €(5=¢) = — ¢ for the small value of e.
The contribution coming from C} is obtained from

1 — 1w o 1Bpz
I =—c t/ (14 pBy)e?pdp
27T 0

e—iwot

_ [eipﬁlz(1+pﬂ12+%’) e Lo+ )
2 iz z

]

The contribution I, coming from the contour Cs, in the limit of € — 0
is

e—pa:—iwot

I, = o cos py

And finally the contribution I3, coming from the contour Cj is

e~twot . (1 —iy/z 1 —iy/z
I = [eﬂpz( Py - y/%) —eipﬂgi( +pﬂzyi y/ )}
27 1z 1z
where z = x + 1y and z = x — iy, is its complex conjugate.
Collecting various contributions, one obtains the perturbation stream
function from the semicircular contour of radius p as,

ie'r

i je" 7 i
U@y, p,t) = [e7 cos py + — (1+py+;y)— . (1+py—§y)
iepz+iz zy ] ,L‘efpzfié Zy . efiwot
- (I+—=+4ipy+y) + ———0 - = —ipy+y)
z z z 2
(2.6.78)

To check for the correctness of this result, let us investigate the solution
at y = 0, where the wall excitation is applied to the shear layer. Here
¥(x,0, p,t) simplifies to

g~ wot 2sin px sin x

+2e77(225)) (2.6.79)

U(x,0,p,t) = {em" —

In the limit of p — oo, the first and the third terms above, do not
contribute. But the second term turns out as equal to what is known as
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Dirichlet function, which is an approximation of Delta function, 6(z). Vari-
ous approximate representations of Dirac delta function are provided in Van
der Pol & Bremmer (1959) on pp 61-62. This clearly shows that we recover
the applied boundary condition at y = 0. Therefore, the delta function is
totally supported by the point at infinity in the wave number space (which
is nothing but the circular arc of Fig. 2.20 i.e. the essential singularity of
the kernel of the contour integral).

This result has the following consequence for the completeness of basis
function constructed from the eigenvectors obtained by stability analysis of
external flows. It has been clearly shown by Mack (1976) that internal flows,
like the channel flow, has denumerable infinite number of eigen modes and
any arbitrary applied disturbance can be expressed in terms of this complete
basis set. However, for external flows, as we have seen for the Blasius flow
in Table 2.1 that there are only a few discrete eigenmodes and it is not
possible to express any arbitrary functions in terms of these only, in the
absence of any other singularities for this flow.

Table 2.1: Spatial modes and their group velocity for the
impulse response analysis for Re = 1000 and wy = 0.10 (From
Sengupta et al. (1994))

Mode Number o o Vg (Group Velocity)
1 0.2798261 | -0.00728702 0.4202
2 0.1380375 | 0.10991244 0.4174
3 0.1220209 | 0.17393307 0.8534

The theoretical analysis here in the present section clearly indicates that
the localized delta function excitation in the physical space is supported
by the essential singularity (o — o0) in the image plane. This is made
possible because ¢(y, &) does not satisfy the condition required for the sat-
isfaction of Jordan’s lemma. As any arbitrary function can be shown as
a convolution of delta functions with the function depicting the input to
the dynamical system. The present analysis indicates that any arbitrary
disturbances can be expressed in terms of a few discrete eigenvalues and the
essential singularity. In any flow, in addition to these singularities there can
be contributions from continuous spectra and branch points - if these are
present.
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For the purpose of highlighting the above theoretical analysis explain-
ing the origin for the creation of the near-field of the response created by
wall excitation, some numerical results are presented next, those have been
obtained by solving (2.3.21), subject to the boundary conditions given by
Eqns. (2.6.66) - (2.6.67). Cases have been considered where a harmonic
source is excited with wy = 0.1 placed at three different locations with the
local Reynolds numbers based on displacement thickness are 400, 1000 and
4000, respectively. As in calculating the impulse response case shown in
Figure 2.19, here also the Bromwich contour is located below and parallel
to the real wave number axis, along a; = —0.02. Once again, the compound
matrix method has been utilized to obtain the solution and shown in Fig.
2.21 below.

0.4

———Re =400
,,,,,,,,, Re = 1000
- Re = 4000
0.3}
. o
aty = 120577148 B
02}
o1}
»
0
0.1}
0.2}
L L = .
20 0 20 40 w o Hl

xi &

Figure 2.21 The solution of the signal problem at the indicated
Reynolds numbers, for the same circular frequency. Note that
the local solution components in all the cases are the same.
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Presented solution once again, demonstrates the far-field to correspond
to the T'S mode obtained by linear stability analysis. For Re = 1000 and
wp = 0.1, the calculated impulse response displays TS wave with «, =
0.279826 and a; = —0.007287. The results are shown at a height of y =
1.2056*- the location of the outer maximum of the eigenvector. Considering
the stability properties of the Blasius profile, one expects the flow to be
stable for Re = 400 and 4000 - with the latter case showing higher damping
than the former, as clearly seen in Fig. 2.21.

Despite the differences in the values of the wave length and the growth/
decay rate of the three cases, one can notice the remarkable similarity of the
near-field solution. While the upstream part of all the three solutions are
exactly identical, the minor differences on the downstream side of the near-
field are due to the different wave lengths and growth (decay) rates of the
asymptotic solutions. This is very consistent with the observed properties of
o, as obtained for &« — oo behaviour. Specifically one can note that the near-
field solution obtained in Eqns. (2.6.78) and (2.6.79) are Reynolds number
independent, as is also seen in the calculated cases shown in Fig. 2.21.
One also notes that the local solution originates in the inner layer whose
governing differential equation is given by (obtained from the appropriate
distinguished limit of (2.6.69)),

¢ —23%¢" + B¢ =0 (2.6.80)

From this equation, it is possible to discuss further about the general
properties of the near-field solution. Noticing that the kinematic equation
2 = —w, when substituted in the governing vorticity transport equation
one obtains, b

2 L4
eV = 7o V W (2.6.81)

It is easy to see that Eqn. (2.6.80) is nothing but the right hand side of
Eqn. (2.6.81), implying that the near-field of the solution is given by the
corresponding Stokes problem (in the limit of Re — 0),

Vi =0 (2.6.82)

Thus, in the near-field of the exciter, the flow behaves like a highly
viscous flow and it is for the same reason the near-field does not penetrate
far upstream and downstream. For the cases shown in Fig. 2.21 the zone
affected in the near-field is roughly about 206*.

The above results also bring forth a very important aspect of real fluid
flows. Despite the mathematical requirement of Jordan’s Lemma (that we
must have |¢(a)| — 0 for o — 00), in real flows there always exists a cut-
off wave number due to the fact that smaller waves have larger strain-rates.
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Hence unlimited range of wave numbers are not sustainable for an excitation
problem driven by a finite source of energy. At the cut-off wave number,
the kinetic energy of the wave would be converted to heat - an idea that has
been traditionally employed to fix the cut-off wave number in Kolmogorov’s
theory of energy cascade in homogeneous turbulence. Present analysis also
shows that the motion in the very small scale of any flow, is governed by
Stokes equation given by (2.6.82). It is also interesting to note that the
local or the near-field solution cannot be canceled by wave superposition
principle.

So far, we have discussed the case of very localized-in-space excitation
cases. However, in an actual flow the exciter will be of finite width, as it
was in the vibrating ribbon experiments of Schubauer & Skramstad (1947).
This is the topic of discussion in the following.

2.6.3 Vibrating Ribbon at The Wall

If one wants to model the vibrating ribbon experiments of Schubauer &
Skramstad (1947) by embedding the disturbance source on the surface of
the plate, then the following is implied. Let the disturbance source be
located at & = x, instead of the origin. Then instead of (2.6.56) one should
rewrite the disturbance stream function as,

1 o
U(x, z0,y,t) = — o(y, o wo)ez[o‘(“_%)_“’”t]da (2.6.83)

27 Br

It is seen that the governing equation for the bi-lateral Laplace ampli-
tude is, once again, given by the Orr-Sommerfeld equation. To model this
flow, we have to consider the width of the vibrating ribbon and not treat
it as a simple line source. Finite width of the ribbon will excite a stream
of contiguous wave numbers. Such closely spaced wave numbers will cre-
ate groups of waves or a wave packet and in the response one would see
modulated waves, as discussed and shown in Sengupta et al. (2006a).

Thus, for the finite-width ribbon located between x = 1 and x = xo,
the disturbance stream function can be written as,

o[ :
Ve, y,1) = o / {| oly,aswo)elotmmimwlda}de,  (2.6.84)
T Br

Here it is implied that all the points between z; and x5 are excited by
the same amplitude. It need not necessarily be the case and a more general
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excitation would have the solution of the form written as,

1 T2 .
P(x,y,t) = / [ W(o;21,22)¢(y, a; wp)e! @@ =20) =0l ga]dy,

27 1 Br
(2.6.85)

Where W = W (xq;x1,22) is the prescribed weight function that fixes
the type of excitation applied at the wall. This requires performing an
weighted integral of the impulse response given by (2.6.83) with the pre-
scribed weight function. Some typical weight-functions are shown in Fig.
2.22 corresponding to different types of commonly used excitations.

These model excitations are commonly used in receptivity analysis us-
ing linear and nonlinear models. For example, the combined blowing and
suction excitation case shown in Fig. 2.22 has been used in quite a few
direct simulation attempts because of the fact that this does not excite high
wave numbers in the spectral plane to cause numerical instability that is
a common problem faced in DNS at high wave numbers. Also, such an
excitation does not cause numerical mass conservation problem at any time
instant, as the amount of blowing is analytically counter-balanced by the
amount of suction. Such an exercise for exciting TS waves was undertaken
in Fasel & Konzelmann (1990). Sometimes the Gaussian excitation, shown
in Fig. 2.22, is also preferred due to the advantage of band-limited nature
of the excitation field in the spectral plane as well; as a consequence of
the self reciprocity property of Hermite functions. The excitation shown
in Fig. 2.22(a) is preferred for receptivity calculations based on linearized
Navier-Stokes equation- as it excites a large band of wave numbers with
equal emphasis.
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Figure 2.22 Typical time-harmonic excitations used on the

surface for receptivity studies: (a) Strip excitation; (b) Gaussian
amplitude distribution and (c) Simultaneous blowing and suction

excitation.

Solutions for different excitations, at different x- locations, have simply

to be added or convolved in the linear analysis, as demonstrated in Sengupta
& Sinha (1995) and Sengupta et al. (2006a) for the type of strip excitation
shown in Fig. 2.22(a) applied on a flat plate.

To calculate the actual receptivity of a boundary layer in a correct time-

accurate fashion, one should not start with the ansatz of the signal prob-
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lem, as given by Eqn. (2.6.56) and instead one should define the disturbance
stream function by,

P(z,y,t) = (271r)2/ ; Oy, a,w)e =D da dw (2.6.86)

For this case, the Bromwich contours have to be traced simultaneously in
both the a— and the w— plane. The choice of Bromwich contour in the w—
plane is not difficult, because in choosing it, one has to satisfy the causality
requirement. However, the choice of Bromwich contour in the wave number
plane remains as difficult as before for the signal problem.

Once again, when the ansatz of Eqn. (2.6.86) is used in the linearized
Navier-Stokes equation and the equilibrium solution is treated as parallel,
one obtains OSE as the governing equation. The boundary conditions ap-
plicable at the wall should now additionally incorporate the information of
the finite start-up time of excitation as given below by,

u=0 and (x,0,t) = U(t)s(x)e 0! (2.6.87)

At the free stream the disturbance quantity should decay to zero as be-
fore. Note that the presence of the Heaviside function U(t) in Eqn. (2.6.87)
ensures that the excitation begins at t = 0, once again at the frequency wy.
These boundary conditions in the physical plane translates in the spectral
planes as,

¢ (a,0,w) =0 (2.6.88a)

and

d(a,0,w) = BCy (2.6.88Db)

Where BC,, = [i(wg — w)]~! is the correct boundary condition for the
full time-dependent problem. To satisfy the far-stream (y — oo) conditions,
the solution of OSE would be cast once again in the form,

P, y,w) = c1¢1 +c393 (2.6.89)

where ¢, and ¢3 are the inviscid and the viscous fundamental decaying
modes, as before. The constants ¢y and c3 are fixed from the wall conditions
given in (2.6.88a) and (2.6.88b). This gives,

1 P1(a, y, w)Pho — PloPs(e, Y, w) (az—uwt)
Jyb) = BCpei @@= 4o 4
Vi@ t) <27r>2/ S ‘ o
(2.6.90)

This is the problem that was solved for Re = 1000 and wy = 0.1 in
Sengupta et al. (1994), for which the results for the corresponding signal
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problem was provided before in Sengupta (1991) and Gaster & Sengupta
(1993). In Fig. 2.23, the full time-dependent solution is compared with
the solution obtained for the corresponding signal problem, termed as the
time-asymptotic solution in the figure.

—— Full simulation 0.500FT
~—Time.asymptotic solution .L- R J—
| 0.600F =
3000 &l yA" s 0 1t04 L |
0.300f— ﬂ
= ' il
i
o _ m
] 0300
0.00]
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1000}
20000 o 0] L 1 " B g 0:500kac ] - L s | 1 kX s
300.0 150.0 0.0 1500 000 300.0 w00 1000 oo 100.0 w000 3000

Figure 2.23 Comparison of solutions obtained by full receptivity
analysis (solid line) and signal problem analysis (dotted line)- at
the indicated heights.

Presented time accurate solution can be termed appropriately as the cor-
rect receptivity solution, as compared to its idealization in the signal prob-
lem. Later on, the results of this solution process is considered to look at the
cases of "spatially stable systems”, those actually admit spatio-temporally
growing wave-fronts-as given in Sengupta et al. (2006, 2006a). What is ap-
parent for all spatially unstable cases is that there are no differences between
the signal problem and the actual time-dependent problem-as two solutions
shown in Fig. 2.23 match up to a certain distance-with the streamwise
distance over which the match is seen stretches with time.

One of the reasons that the transition process is somewhat intractable
is due to the fact that the receptivity process is inadequately understood
for cases other than the wall excitation case, as discussed above. This in-
tractability is specifically the case for shear layers excited by sources outside
the viscous layer in the free stream, for many reasons. Firstly, unlike the
wall excitation case where the applied disturbance is uniquely located at the
wall, for free stream excitation the response would be different depending
upon the height of the exciter in the free stream - a parameter that can
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continuously change with space and time, depending upon the dynamics
of such disturbances interacting with other disturbance sources. Secondly,
the type of excitation that is present in the free stream also matters signif-
icantly. For example, acoustic, entropic and vortical disturbances will have
significantly different receptivity. In the following, attention is focused upon
the cases of vortical excitation only.

2.6.4 Receptivity to Free Stream Excitation

The main aspect of instability by free stream disturbances has not been
investigated as successfully as has been the case of wall excitation. The
reason has been explained earlier while discussing the observations from the
experiments of Schubauer & Skramstad (1947). They could not success-
fully detect TS waves when they irradiated the test section with acoustic
waves. Of course, transition was detected without tracing the over-riding
presence of a monochromatic disturbances like the TS wave. The reasons
are many-folds: firstly, an acoustic wave is three-dimensional and even when
it creates TS waves, they would be due to streamwise and cross flow insta-
bility. Moreover, it would create many interacting T'S waves simultaneously
without showing monochromatic wave- as obtained in normal mode analy-
sis. Secondly, the receptivity of laminar boundary layer to this type of free
stream disturbances show indirect and very weak coupling. Some experi-
mental efforts have been made starting with the interesting work of Taylor
(1936), who tried to estimate the dependence of critical Reynolds number
upon free stream turbulence, treating the latter as a vortical disturbance
only. Monin & Yaglom (1971), in discussing Taylor’s work, conjectured
that the convected vortices embedded in the free stream cause small ad-
verse pressure gradient that gives rise to unsteady separation at multiple
scales. Such unsteady separations cause very rapid and catastrophic transi-
tion. The assumption implicit in this scenario is that the effect is connected
with the generation of fluctuations of longitudinal pressure gradient by these
disturbances, leading to the random formation of individual spots of unsta-
ble S-shaped velocity profile (Monin & Yaglom, 1971). Thus, the effects of
free stream disturbances are viewed as causing the buffeting of the shear
layer by these ever-present disturbance sources- not as such as that is due
to instabilities.

In contrast to this earlier view-point, Morkovin (1969) proposed that the
response to free stream excitation occurs in two stages. In the first stage
(popularized by Morkovin (1969) as the receptivity stage) the external per-
turbations are internalized as unsteady fluctuations giving rise to T'S waves
accompanying the equilibrium state. In the second stage, these internalized
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excitations have the direct receptivity in causing transition- as described in
previous sub-sections.

The problem of excitation of shear layer by disturbance sources convect-
ing outside the shear layer has been experimentally investigated by Kendall
(1987, 1990) and Dietz (1999). Kendall (1990) through his experiments
on jet-induced free stream turbulence, has provided direct evidence of TS
waves and wave packets forming in a nominally flat plate boundary layer.

Dietz (1999) successfully created a single frequency gust by using a vi-
brating ribbon in the free stream and provided quantitative data on TS
wave amplitudes generated by the interaction of the gust with a surface
roughness element. It is interesting to note that the prevalent notion that
convected vorticity field traveling with the free stream speed will not show
any receptivity, was also shown in Sengupta et al. (2002). However, for free
stream acoustic excitation, the receptivity problem is furthermore compli-
cated due to the problem of scale conversion i.e. the sound wave and the
TS waves are of different wave lengths and also the phase/ group velocity
of the two are also different by orders of magnitude. Additionally, it was
noted in the numerical calculations by Murdock (1980) and by theoretical
analysis in Goldstein (1983) and Goldstein et al. (1983), that the response
field amplitude in the shear layer is an order of magnitude lower than the
forcing disturbance amplitude in the free stream. However, the experimen-
tal results of Leehey & Shapiro (1979) had clearly demonstrated earlier that
this coupling is of order one. At the same time, the experiments of Aizin &
Polyakov (1979) demonstrated experimentally that an introduction of a thin
surface roughness element increases the receptivity linearly with forcing am-
plitude and roughness height. Most of the theoretical developments using
asymptotic analysis were based on this observation - see e.g. the triple deck
theory in Goldstein (1985) and Ruban (1985). In Saric et al. (1999), the
authors noted that the receptivity has many different paths through which to
introduce disturbance into the boundary layer. They include the interaction
of freestream turbulence and acoustic disturbances with model vibrations,
leading-edge curvature, discontinuities in surface curvature, or surface in-
homogeneities... The incoming freestream disturbance (sound or turbulence)
at wave number oy, interacts with a body in such way (roughness, curvature,
etc.) so as to broaden its spectrum to include the response wave number ars.
In discussing the receptivity to freestream excitation, Goldstein & Hultgren
(1989) noted that the scale adjustment mechanism can be attributed to (i)
rapid streamwise variations in the mean boundary-layer flow (which invali-
dates the parallel-flow assumption of the Orr-Sommerfeld equation) and (i)
sudden changes in surface boundary conditions. As a result, there is some
region near the leading edge of the plate where the correct asymptotic ap-
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proximation to the Navier-Stokes equations is the unsteady boundary-region
equations, which are just the Navier-Stokes equations with the streamwise
derivatives neglected in the viscous and pressure gradient terms. The for-
mer is used in leading-edge receptivity problems and the latter comes into
view via the appearance of triple-deck structure of the flow at downstream
location, in the large Reynolds number limit.

In particular, the receptivity to vortical disturbances was investigated
theoretically by Rogler & Reshotko (1975) who modeled the free stream
disturbance as a convected array of harmonic vortices. Highly damped
near-wall disturbances were calculated from this model. Kerschen (1991)
used asymptotic method to calculate vortical receptivity and showed that
to vary with the convection speed of vortices. Other Orr-Sommerfeld based
models in the literature also could not reveal the physical picture seen in
the experiments of Kendall (1987) and Dietz (1999), except in Sengupta et
al. (2002) - that is discussed in details here.

Kendall (1987) performed experiments in which a circular cylinder was
rotated in a circular trajectory above a flat plate shear layer to create a
convecting periodic disturbance source. The speed of convection of these
vortices was controlled and it was demonstrated that the underlying shear
layer was strongly receptive to imposed disturbances in a narrow range of
convecting speed around ¢ = 0.3U,. In the receptive range, the response
field consisted of wave packets composed of many TS waves. In this exper-
iment the disturbance (cause) always stayed outside the shear layer.

Subsequently, Liu & Rodi (1991) repeated Kendall’s experiment, but
now the periodic disturbance was directed toward the shear layer with large
wall-normal velocity component. This latter experiment was supposed to
mimic the physical events in the flow inside a turbomachinery. The exper-
iments by Kendall (1987) and Liu & Rodi (1991) show such strong recep-
tivity, while contemporary theoretical calculations by various mathematical
models showed lower receptivity. This discrepancy was explained in Sen-
gupta et al. (2002) as due to the constraint imposed in the theoretical
models on the speed of vortical disturbances in the free stream. It has been
seen that in turbomachinery or in flows over helicopter rotor blades, the flow
in subsequent stages or blades is strongly influenced by vortices that travel
over it at speeds much lower than the free stream speed. For example, the
experimental data and their correlation in Schlichting (1979) reveals that
the vortices in the far wake of a single bluff body convect at 14 % of the
free stream speed. This convection speed is expected to be different in the
near wake and when large ensembles of unconstrained vortices are present
in the wake. In the experiments of Kendall (1987), this was dramatically
shown that maximum receptivity of shear layer occurred when the convec-
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tion speed of the freestream vortices were around 30 % of the free stream
speed. In a 3D DNS (where there was no need to prescribe any convection
speed of vortices) by Wu et al. (1999), such strong receptivity has been
clearly observed. Sengupta et al. (2002) further showed this connection by
producing results simultaneously by solving Orr-Sommerfeld equation and
two dimensional direct simulation of receptivity. This is discussed further
in section 2.7.

2.6.5 General Excitation and Upstream Propagating Mode

Consider the following flow field over a flat plate that is excited simultane-
ously at the wall y = 0 and at the free stream (y = Y') as shown in Fig.2.24,
where Y is significantly larger than the boundary layer thickness. At the
wall, a time-periodic blowing-suction device is placed at © = x( defined in
a coordinate system fixed at the leading edge of the plate. The circular
frequency of excitation of the wall device is wy such that the transverse
velocity oscillation at the wall is set up as,

u=0 v=uv,0(x— xo)e_i‘”ot (2.6.91)
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Figure 2.24 General excitation on flat plate boundary
layer-simultaneous time-periodic excitation at the wall and a
convecting vortex at constant speed in the freestream.

The line vortex of strength I' convects in the free stream with a constant
speed ¢, and at a constant height Y over the flat plate. Let the instantaneous
location of this irrotational vortex be given by & from the leading edge.



T. K. Sengupta 101

The corresponding stream function at any field point (z,y), created by this
localized line vortex at Y is given by,

r (-2 +(y+Y)?

Yoo = g In (x—2)2+ (y—Y)?

(2.6.92)

where I" is the strength of the potential line-vortex located instantaneously
at T = x,, — ct, with x,, as the initial location of the vortex. The denomi-
nator accounts for the image system below the wall created by the reflection
of the vortex in the freestream. If one defines the full time-dependent per-
turbation stream function by,

1 .
Y(x,y,t) = W/ . Dy, a,w)e D da duw (2.6.93)

then one can write down the Laplace-Fourier transform of it, in terms of all
the four fundamental solutions as

d(a,y,w) = Cr¢1 + Copa + C3p3 + Cagy (2.6.94)

Note that one has to retain all the four modes for this general excitation
case. To satisfy the first condition of (2.6.91), one must have the following
satisfied,

C1¢1g + Cadhyy + Cadlyy + Cadlyy =0 (2.6.95)

with a prime indicating a derivative with respect to y. Subscript '0’ refers
to the condition at the wall. For the wall-normal velocity boundary condi-
tion of (2.6.91), one can write it using the ”time-Shift” theorem of Fourier-
Laplace transform as,

1

@n)? //BT vpeld@E=e) =t 5, — wo) dov dw
(2.6.96)

—iwot __

Vo (x — xg)e

Therefore,
Ve
Ci¢10 + Caoo + C3p30 + Capao = € 10 5w — wo) (2.6.97)

In the same way, one can convert the implied freestream condition of

(2.6.92) as

and

Ci10100 + Copaoe + C30300 + Cupane = D(a,w) (2.6.99)
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Specific type of free stream condition can be represented by finding the
appropriate functions, B(«,w) and D(«,w) defining the tangential and nor-
mal velocity components. The additional subscript ’(oo)’ refers to the con-
ditions being evaluated at the free stream (y = Y). Now one can solve
for the constants C; to Cy by simultaneously solving (2.6.94) and (2.6.96)
- (2.6.98). All these can also be written as the following linear algebraic
equation,

[@{Ci} ={fi} (2.6.100)
where, {fi} =10 32 e §(w —wy) Bla,w) D(o,w)|" is the forcing
as applied through the boundary conditions. Thus, one can obtain the
Fourier- Laplace transform with the constants C; obtained from,

{Ci} = [@]H{fi} (2.6.101)

where,

10 o P50 Do

P — ?10 ®20 ®30 P40
| LaeeY qedY  —Qe—QY  (QeQY
e—ocY eocY €_QY €QY

Where, Q% = o? + iaRe(1 — ¢) and (¢i00, ¢}..)’s are obtained from
the properties of OSE given in section 2.4. The constants obtained from
(2.6.100) can be used in (2.6.86) to obtain the perturbation stream function
for this excitation. However, it is also possible to obtain the eigenvalues by
calculating them from the characteristic determinant of the corresponding
stability problem obtained from,

Det [®] =0 (2.6.102)

This locates the poles of the transfer function obtained from (2.6.93)
and (2.6.100). One feature emerges from Eqn. (2.6.101) is that for large
Y i.e. when the convecting vortices are far away from the plate, then two
sets of terms in the third and fourth rows are sub-dominant in [®]. This
equation also additionally holds the promise that one can find eigenvalues in
the left-half of the complex wave number plane. It is noted that researchers
have not been successful in establishing the existence of such modes; see for
example the figures in Ashpis & Reshotko (1990) and Schmid & Henningson
(2000) where the authors plot the so-called integration contours in the a—
plane, indicating unknown eigenvalues on the left-half of plane with question
marks. However, this has been shown in Sengupta & Nair (1997) for Blasius
boundary layer. This is discussed next.
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Let us show a way of locating eigenvalues on the left-half of a— plane
from instability analysis point of view. Let us explain the way eigenvalues
are located for which Real (o) < 0 and Real(Q) > 0 and Q% = o? +
i Re(1—2) =p+ig. Now as Y — 00, ¢o(= ™) and ¢3(= e~“) are
the modes that decay with height in the free-stream. Applied boundary
conditions in the free stream are supported then by ¢ and ¢4.

Therefore, Det[®] = 0 implies the following determinant to be equal to
Z€ro.

Po b P30 Do

Detfd) = | _ 0, G o0 O,
e~V 0 0 eV

This implies that the following provides the dispersion relation,

—[a+ Q] e(Q_a)Y[¢/20¢30 - ¢20¢éo] =0 (2.6.103)

Thus, the characteristic determinant obtained from Eqn. (2.6.102) for
the eigenvalues in the left-half plane are obtained by the decaying modes ¢-
and ¢3 only- as noted from (2.6.103). Thus, for the general case of excita-
tion while one needs to retain all the four components of the fundamental
solutions of OSE, it is only the decaying modes that determines the dis-
persion relation. It therefore establishes that the general case of excitation
supports modes both in the left-half and the right-half planes simultane-
ously. The modes on the left-half plane indicate solution components whose
phase 'move’ upstream. However, whether such modes would actually travel
upstream or not would be dictated by the group velocity of that mode. This
possibility was investigated in Sengupta & Nair (1997) to detect upstream
propagating modes for Blasius profile. Indirect evidence of upstream prop-
agating modes have been reported in Wu et al. (1999), where the authors
talked about upstream-facing turbulent spots from Navier-Stokes simulation
of flow past a plate in the presence of convecting vortices outside the shear
layer, affecting the flow that enters the computational domain through the
inflow.

However for Blasius boundary layer, these upstream propagating waves
are strongly decaying and thus do not give rise to linear instability (see
Sengupta & Nair, 1997). In anticipation of possibilities, one notes that
for mean flows with adverse pressure gradient upstream propagating modes
can become unstable. These upstream propagating modes were discovered
serendipitously, as recounted below.
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We have noted so far that when Blasius boundary layer is excited by
two-dimensional moderate frequency sources one notices TS wave. However
at very low frequencies of excitation, TS waves are not seen and instead
the whole boundary layer executes a heaving motion; which is now known
as the Klebanoff mode of motion. Such mode of motion was also seen
experimentally by Gaster et al. (1994) when a diaphragm was vibrated at a
frequency of 2 Hz on a flat plate with a two-dimensional Blasius boundary
layer forming over it. TS waves were not seen as a consequence of this
excitation. The mean flow was described adequately by Blasius profile.
This prompted Gaster et al. (1994) to comment that a proper mathematical
account of these disturbances was not known till then. This was provided
subsequently in Sengupta et al. (1997). To understand the physical nature
of Klebanoff mode, first of all we would investigate as to what happens to
the disturbance field when the frequency of wall excitation decreases for the
Blasius profile, following the results of Sengupta & Nair (1997).

It is worthwhile mentioning that similar experiments were performed
earlier by Taylor (1939) and Klebanoff (1971). Klebanoft called this the
breathing mode of motion. Apart from the fact that TS waves are not seen
experimentally, corresponding two-dimensional linear instability studies also
do not reveal the presence of any eigen-solutions (TS waves) that decay with
height up to the edge of the shear layer. As observed experimentally, the
disturbance field is three-dimensional, but it propagates predominantly in
the streamwise direction.
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2.25 Variation of «, and «; with w, for Blasius boundary layer at

Re = 1000 Note the downstream propagating modes (solid lines)

and the upstream propagating mode (dotted line). Downstream
propagating modes disappear with w, decreasing.

To show the relative roles of various two-dimensional modes at all fre-
quencies, the real and imaginary part of the wave numbers (o, ;) are
plotted in Fig. 2.25 as a function of non-dimensional circular frequency for
Re = 1000. The three downstream propagating modes that are present at
this Reynolds number for moderate frequencies are marked by numerals and
are tracked in Fig. 2.25 for their variation with circular frequency. All these
two-dimensional modes disappear abruptly one by one, as the frequency is
decreased- as noted in Fig. 2.25. Values of circular frequencies at which
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these three modes exhibit the above disappearance are listed in Table 2.2.
Also shown in the second column are values of wy for a Reynolds number
of 1196 that corresponds to the experiments of Gaster et al. (1994).

Table 2.2: Values of wy for which 2D modes of Blasius boundary
layer disappear

Mode Number | For Re = 1000 | For Re = 1196
1 0.0026 0.0022
2 0.0663 0.0563
3 0.0276 0.0227

If a fluid dynamical system is excited below the lowest of the three values
of wp in the above table, then the compound matrix method (Drazin & Reid,
1981, Sengupta et al., 1994 and Allen & Bridges, 2002) detects an eigenvalue
that is shown in Fig. 2.25 by a dotted line with its corresponding location
on the left-half of the a— plane. It is to be emphasized that finding the
eigenvalues on the left-half of the a— plane is possible by compound matrix
method due to its unique features and it has not been reported by any other
formulations and methods - say the collocation method given in Schmid &
Henningson (2000) or the method based on orthonormalization given in
Scott & Watts (1977). From Table 2.2 for Re = 1000, this threshold value
is given by wg = 0.0026 and for Re = 1196, this value is slightly lower
at wg = 0.0022 and any excitation below this critical circular frequency
shows the presence of only a single upstream propagating mode noted by
the dotted line in Fig. 2.25.

There are certain interesting features of this new mode for which both
the values of a,. and «; are negative. For TS waves, «, is always posi-
tive i.e. they are found in the right-half of the wave number plane. This
new upstream propagating mode is in the left-half plane and one would be
interested to find out the direction of propagation of such waves- by find-
ing numerically the group velocity of such disturbances from V, = g(‘;r.
One can readily testify that for the T'S mode the group velocity is positive,
showing the TS mode to propagate downstream. For this new mode, the
corresponding variation of phase speed and group velocity with w, are cal-
culated numerically and shown in Fig. 2.26. This testify that the new mode
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travels upstream (as indicated by the negative value of the group velocity
shown for this mode by the dotted line).
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Figure 2.26 Variation of phase speed (top) and group velocity

(bottom) of the modes shown in Fig. 2.25, with w, for the
Blasius boundary layer at Re = 1000

For the TS mode, a negative value of «; implies the corresponding wave
to be unstable. However for this new mode, the disturbance travels up-
stream and a high negative value of «; imply that this is a highly damped
mode. One also notices that upon increasing the frequency above the criti-
cal value, starting with the upstream propagating mode- it is followed when
the circular frequency is increased, even at higher w,., when the downstream
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propagating modes are restored in the stability analysis. Thus, for a given
Reynolds numbers at moderate frequencies, both types of modes are likely
to be present. The upstream propagating modes also has the interesting
property that their amplitude increases with y i.e. this mode will be able to
support any excitation at the free-stream. Henceforth, we will distinguish
between these two classes of modes as the wall-mode and the freestream-
mode. The freestream-mode can support disturbances due to freestream
turbulence or convected vortices in the freestream. There are also other
interesting variations of properties of the upstream propagating modes with
Reynolds number and these are demonstrated in Fig. 2.27, where o, o, cpp,
and V; are plotted as a function of w, for different Reynolds numbers. The
chosen w, varies over a large range and so does the Reynolds numbers.
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Figure 2.27 Variation of wave properties of upstream
propagating mode with w, for the Reynolds numbers: (1) Re =
400; (2) Re = 1000 and (3) Re = 4000
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For the wide range of w, and Re in Fig. 2.27, all the properties seem
to be a weak function of Reynolds number except for the value of «;. The
imaginary part of the wave number determines two aspects of the distur-
bance field in the boundary layer: (a) the extent of the upstream region over
which disturbances can be found and (b) the disturbance flow structure in
the wall normal direction within the boundary layer. As the magnitude of
«; reduces with increasing Reynolds number for a fixed w,., the region of up-
stream effect will increase with the excitation source convecting downstream
in the freestream. As propagating downstream in a growing boundary layer
is equivalent to increasing Reynolds number, for sufficiently high Reynolds
numbers this will create disturbances that will affect the boundary layer
over a larger portion of the flow field with dominant high frequency compo-
nent. This result establishes the fact that the upstream propagating mode
is always damped for the Blasius boundary layer and would not be responsi-
ble for linear instability. There is another aspect that has to be pointed out
from Fig. 2.27 that when circular frequency is reduced, the modes disap-
pear when the phase speed of eigen-solution reaches the free stream speed
(c=Us).

2.6.6 Low frequency freestream excitation and the Klebanoff
mode

Low frequency excitation of a zero pressure gradient shear layer behaves
qualitatively differently, as has been discussed before with respect to the
experimental results of Taylor (1939) and Gaster et al. (1994). In these
experiments, the flow field was created by a shallow oscillating bump inside
a zero pressure gradient boundary layer, with the oscillation frequency be-
ing very low. For example, in Gaster et al.(1994) the oscillation frequency
was only 2 Hz and inside the shear layer no waves were seen, instead the
whole boundary layer executed a heaving motion. Such low frequency fluc-
tuations were also noticed by Klebanoff (1971) earlier, which he called as
the breathing mode and now it is known as Klebanoff mode.

There are two noticeable features of the experiments reported by Gaster
et al. (1994). Firstly, the mean flow field is adequately represented by the
Blasius profile and for the parameter ranges, two- dimensional instability
studies did not reveal the presence of any eigen-solutions that decayed with
height, as one approached the edge of the shear layer. Secondly, the dis-
turbance field was three-dimensional, but this propagated predominantly
in the streamwise direction. It is easy to see that if the disturbance field
has very large wavelengths, then the experimental results will only indi-
cate a heaving motion for relatively low to moderate length test-sections
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of tunnels (as was the case for these two experimental results in Taylor
(1939) and Gaster et al. (1994)). In Gaster et al. (1994), the measurement
stations were located at 70 and 105 boundary layer thicknesses aft of the
shallow bump. The most interesting aspect of the Klebanoff mode of mo-
tion is that although the mean flow is two-dimensional the flow does not
support a two-dimensional disturbance field. This led Gaster et al. (1994)
to comment that a proper mathematical account of these disturbances has
not yet appeared. Subsequently Sengupta et al. (1997) provided a rational
explanation of the same phenomenon and it is the subject of the present
discussion.

In this reference, as the flow field was shown not to support any two-
dimensional disturbances, three-dimensional disturbances were sought in
the analysis. The wall-normal component of the disturbance field is there-
fore represented as,

1 )
v'(z,y,2,t) = e // o(a,y, Bywo) eilaztBz=wolt) 4o 43 (2.6.104)
4 Br

with o and [ as the streamwise and spanwise wave numbers, respectively.
One is discussing once again the associated signal problem only with the
excitation frequency as wg. However, in any experiments conducted in a
closed tunnel, the spanwise wave number will have a lower cut-off Gy, de-
termined by the spanwise extent of the tunnel i.e. Sy = 27/\,, where the
spanwise wavelength (\,) is twice the tunnel width. For such cases, one can
rewrite the disturbance field as,

1 & :
'(z,y,2,t) = o Z/ (e, y, Bo,wo) gilawtnBoz—wot) gy (2.6.105)
n=1"Br

The summation is over all the spanwise modes. One can use the above
ansatz in three-dimensional Navier-Stokes equation and linearize the resul-
tant equations after making a parallel flow approximation to get the fol-
lowing Orr-Sommerfeld equation for the Fourier- Laplace transform ¢ of v’
as,

¢ —2(a® +n235)¢" + (a® +n*53)% b
= iRe{(aU + nBoW — wo)[¢” — (a® +n?B3)%¢ — [aU"” + nBoW"]8]}
(2.6.106)

In Eqn. (2.6.106), U(y) and W(y) are the parallel mean flow and Re is
the Reynolds number based on the displacement thickness of the boundary
layer and primes indicate derivatives with respect to y.
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To explain some features of the experiments in Gaster et al. (1994),
some details of the experimental conditions are recounted first. A flat plate
was mounted in the test-section of a low disturbance wind tunnel which is
3.5m long and 0.91m by 0.91m in cross section. Three-dimensional velocity
field was created by a circular bump of 20mm diameter which was located
400mm from the leading edge of the plate. At the location of the bump,
the undisturbed boundary layer had a thickness of 6* = 0.99mm. Based on
this thickness and free stream speed of 18.10 m/s the Reynolds number is
found to be 1196. The circular bump was oscillated at a frequency of 2Hz,
which makes the non-dimensional circular frequency wy = 6.248 x 10~%.
The span of the tunnel test-section was 920 times 6*(approx.) and thus
the maximum spanwise wavelength of disturbances that can be supported
is twice this dimension. This is the rationale for fixing the lower limit of
spanwise wave number 3y and the corresponding value is 3.41777 x 1073, It
has been noted in Gaster et al. (1994), that most of the disturbance energy
is carried by only the first ten modes and this corresponds to nfy = 0.7854.

For the above experimental conditions, it is apparent from Figs. 2.24 and
2.25 that the two-dimensional modes disappear as the value of wq is lower
than the critical value (wp = 6.248 x 10~%) given in the last column of Table
2.2 for Re = 1196. This was taken as a cue to investigate if there are three-
dimensional modes present for such low frequency excitation in Sengupta et
al. (1997). The spatial eigenvalues were located by the grid-search method
of Mack (1976). Once the eigenvalues were located, the streamwise and
spanwise components of the group velocity were obtained numerically using
the following,

> ow  Ow
g = (a ) 85)
T T

Numerical evaluation of the components of the group velocity required
three eigenvalue evaluations. The wave number («,.), damping rate («a;),
phase speed (¢) and the x— and z— components of group velocity are shown
in Figs. 2.28 and 2.29 for the first five modes, for different spanwise wave
number. It is clearly evident that all the excited modes are damped. Far
away from the exciter, only the effects of the least-damped mode (as indi-
cated by the fourth and fifth modes in Fig. 2.28) will be felt. Also the least
damped modes have wavelengths those are of the order of few thousand
times the displacement thickness, 0*. To detect such large wavelength dis-
turbances, the test section of the tunnel in the experiments has to be long
enough to accommodate at least a few wavelengths. In the experiments
of Gaster et al. (1994), measurements were made only up to 5006* down-
stream of the exciter and hence it appeared that the whole boundary layer
was heaving. From Fig. 2.29, it is also clearly evident that the direction

(2.6.107)



112 Instability & Transition

of propagation of the fourth and fifth modes was predominantly in the x—
direction only, since the z— component of the group velocity is negligibly
small as compared to the x— component.
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Figure 2.28 Variation of (a) a, and (b) «; of the first five modes
with spanwise wave number (3,) for the Klebanoff mode
problem. Mode 1: solid line; Mode 2: sparse dotted line; Mode
3: short-chain line; Mode 4: dense dotted lines and Mode 5:
long-chain line.
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In a more general case, if the input represent wide-band disturbances,
then the low frequency components will cause the shear layer to heave up
and down as the Klebanoff mode of motion. In many experiments involv-
ing FST, researchers have reported such heaving motion. This has led re-
searchers to identify response to FST with Klebanoff mode erroneously.

2.7 Direct Simulation of Receptivity to Freestream Excitation:

In general, transition problems are governed by full Navier- Stokes equa-
tion and could be solved as receptivity problems by direct simulation, with
well defined excitation field. However, unlike stability problems, receptivity
problems have to be posed as initial-boundary value problems. Depend-
ing upon the nature of the equilibrium flow, various assumptions are made,
including linearization to arrive at different receptivity models. For exam-
ple, in applying asymptotic theory, Goldstein (1983) and Goldstein et al.
(1983) have shown that the Navier-Stokes equation can be approximated
by unsteady boundary-layer equation at the leading edge of a flat plate to
study receptivity to acoustic waves. Murdock (1980) numerically solved the
incompressible Navier-Stokes equation for flow over a flat plate in a domain
excluding the leading edge. The inflow boundary condition was obtained
from the solution of unsteady boundary layer equation. Similarly, Lin et
al. (1995) have modeled the distributed receptivity to freestream vortical
disturbances by solving Parabolized Stability Equation (PSE) for the Bla-
sius boundary layer over a flat plate with small surface waviness. Lin et
al. (1992) numerically solved the full Navier-Stokes equations to study the
role of discontinuity in curvature near the leading edge of a flat plate and
found that the TS wave amplitudes were roughly halved when the curva-
ture discontinuity was removed. Buter & Reed (1993) have studied the
receptivity to freestream vorticity by boundary layer forming over a flat
plate with an elliptic leading edge, by numerically solving Navier-Stokes
equation in stream function - vorticity formulation to track the formation
of TS waves. In all the cases considered, the first clear appearance of TS
waves occurred at a location aft of the location where the pressure gradient
is maximum. The receptivity increases with the magnitude of the pres-
sure gradient maximum. Smoothing the discontinuity in curvature at the
juncture of the elliptical leading edge and the flat plate shifted the pres-
sure gradient maximum forward and increased its magnitude, resulting in
a stronger TS response. This affirmed the importance of pressure gradi-
ent and showed that the continuous changes in surface curvature provide a
receptivity source- as the case might be for flow past airfoils.

In section 2.6.5, we have seen how a general excitation field can give
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rise to both downstream and upstream propagating disturbances, with the
dispersion relation given by Eqn. (2.6.103). Sengupta et al. (1999) have
demonstrated that there is a direct way of exciting TS modes by freestream
excitation while solving OSE- despite the contrary observations in the liter-
ature. This is explained next, where a train of periodic vortices is allowed to
convect over a zero pressure gradient shear layer. The physical arrangement
of the problem is shown in Fig. 2.30. For this problem, results were also
obtained by solving the Navier- Stokes equation, and the computational
domain is also marked in the figure. An infinite array of vortices is seen to
convect over a flat plate in the free stream. The presence of the wall gives
rise to the image vortex system, as indicated also in the figure. The vortices
of individual strength I' are at a spacing of a and are convecting at a con-
stant height of b/2 over the plate; the height is significantly higher than the
shear layer thickness and thus the vortices are always in the inviscid part
of the flow.
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Figure 2.30 Physical arrangement for the flat plate receptivity
problem excited by a periodic array of convecting vortices in the
free stream.
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If these vortices are considered as potential vortices, then the induced
perturbation velocity in the inviscid part of the flow is given by,

r x 2 b b b
Uoo = 5 [sin? % cos h% —sin hg(y—§) sin hg(y—&— 5)] sin h% (2.7.1)

r . hﬂ'b . 2mx . 27y
sin h— sin —— sin h—=

4aD a a
where, T = = — ¢t with ¢ as the convection speed of the vortices and

(2.7.2)

Voo =

L oTT o 2my T b, . . m bio , 1 . o2mx . 2my
D = [sin . cosh . blnha(y 2)blnha(y—|— 2)] + 7 5 — sin h .
If all the lengths are non-dimensionalized by the displacement thickness
and the velocity by U, then the periodic vortices impose a time scale on
the flow given by wy = 2mwc¢/a The periodicity of the vortices excites the
shear layer at circular frequencies wq, 2wg, 3wg......... etc. Thus, the distur-

bance stream function can be expressed as,
1 oo
V(a,yt) = 5= | dlay,mun) gilo=nwot) 4o, (2.7.3)
n=1 T

It has already been explained that the eigenvalues near a = 0 gives rise
to asymptotic solution, while the local solution is contributed by the point
at infinity in the spectral plane (o — o) (Sengupta & Rao, 2006). Also,
for small values of I and large values of b, the receptivity problem can be
solved by linearizing the Navier -Stokes equation.

The imposed Cartesian velocity components u,, and v, are plotted in
Fig. 2.31 for the indicated parameters, over a single vortex pair spacing
given by a = 10076* The input disturbances are shown for a single period
with Y = 180" and these are calculated at y = 166*.

It is to be noted that the values of 1., and v, obtained by an inviscid
analysis are used here to calculate the impressed pressure over the shear
layer. If I' is considered to be small, then the impressed pressure gradi-
ent is going to be negligibly small and not cause flow separation. In the
absence of separation, boundary layer assumption holds and the impressed
pressure remains the same across the shear layer and is the reason that the
analysis results using inviscid pressure distribution provide vital clue to the
receptivity route.

In Fig. 2.32, the bilateral Laplace transform, ¢, and its normal deriva-
tive, ¢’ have been shown that correspond to the imposed velocity boundary
conditions of Fig.2.31. Tt is clearly evident that ¢ is much larger than ¢/
and this information is used here to compare different types of free stream
excitations in the next subsection.
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Figure 2.31 Imposed velocity perturbation by a periodically
passing train of vortices in the free stream convecting with U.
Shown are the velocity components at y = 166* when the array is

convecting at Y = 18" with vortices at a gap of a = 10076*
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Figure 2.32 The bilateral Laplace transform of imposed velocity
disturbance components shown in Fig. 2.30

2.7.1 Coupling Between Wall- and Freestream-Modes

The solution of Orr- Sommerfeld equation has four fundamental modes as
expressed below,

(b =Cio1 + C(2(232 + C3¢3 + Cypy (2.7.4)

These four fundamental modes have already been defined in section 2.6,
whose asymptotic values in the freestream are given by: @10 ~ €~ Y; ¢ooe ~
eY; h3oe ~ €7 QY Pyoe ~ 9V, where |Q| = [a? +iaRe(1 — ¢)]*/2. The first
and third modes decay, while the second and fourth modes increase with
y, whenever real part of a and \/@ are positive. The decaying modes are
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required for pure wall excitation and we have formally defined these as the
wall- mode and notify as,

®; = Cr¢1 + C3¢3 (2.7.5)

Similarly the freestream-mode is defined as,

q)II = 02¢2 + 04¢4 (276)

®;; grows with y to match with the applied disturbance at the free
stream. Now for a receptivity problem, where the shear layer is excited at
the free stream one can fix the values of Cy and C4 by matching u., and
Uso OT @ and ¢ . The far field boundary for the problem is considered far
out enough so that ¢1,, and ¢3., are negligibly small and the disturbance
solution is solely due to the freestream- mode. Thus, fixing of the free stream
boundary condition leaves satisfying the homogeneous boundary conditions
at the wall. However, there are two qualitatively different ways the coupling
will be achieved if the convected vortices move at free stream speed or at a
speed different from the free stream speed.
Pure Convection Problem:

When the convected vortices move at the free stream speed, notice that
the fundamental solutions coalesces i.e. @100 = @300 and Pooe = Puoe. Thus,
to satisfy the free stream boundary conditions we fix Cy and Cy from,

Drro0 = Poo = Coe™ + Ve (2.7.7a)

and

Do = b = aChe™ 4+ Cy(1 4 aY)e®Y (2.7.7b)

This occurs, as ¢ = ¢ = 0 as ¥ — oo. The solution of these
provides Cy = [(14+aY)po — Y@, Je™Y and Cy = [¢), — agsle™ Y. Now
to satisfy the homogenous boundary conditions at the wall, one must have

oly=0)=0= P9+ Prs0. Thus, we call the wall boundary condition for
the wall-mode as ¢pc that is given by,

dpc =P =—Cr0=—¢ " {po (1 +aY) — Y. oo
+ {dl — adoc}Pao] (2.7.8)
where the fundamental solutions in this case have been written with an

overbar. Similarly, one can write down an expression for @, providing two
equations to solve for the other two unknowns, C'y and C5 from
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Cié10 + Cadpz0 = —(Cadao + Cadao)

C1¢/ 10+ C3¢' 39 = —(Cad/ 99 + Cud 49)

Solution of these two equations provides: C; = (r1¢'yq — r2¢10)/D
and C3 = (ragso — 11¢'39)/D) where D = (¢'19¢30 — ¢10¢30); ™1 =
€= [Bao {6 Y —(1+0Y Yoo - bito (oo — 1 )] and 73 = 2 [ {61 Y —
(I4+aY)poo } + ¢ 4o(@poo — P )]- The non-zero Cy and C'3 obtained in terms
of Cs and Cy provides the coupling for this case.

Bypass problem:

If the convected vortices do not move at the free-stream speed, then the
modes do not coalesce as in the previous case and one can simply calcu-
late the wall boundary condition for the wall-mode and call it as ¢pp to
distinguish it from the previous case. Thus,

1 —aY [ 1/ —pY ([ 1/
¢pp = P10 = m[e (9o = Pdoc)b20 — €77 (Do — adoc)Pa0] (2.7.9)
where p = Real(1/Q?). Thus, Equs. (2.7.8) and (2.7.9) represent the
equivalent wall-mode amplitudes calculated at the wall for pure freestream
excitation problems, in pure convection and bypass mode, when real part
of a and p are positive. For transition problems, usually |p| >> |a|. Also,

note for the case of freestream vortical disturbances, ¢o, > ¢._, as shown
in Fig. 2.31 and then
D20[Poo (1 + aY) = YL | + dao[d, — e
prc _ _(p— a){sf)zo[éf’ 1+« )/ Dol + Pa0[9o — @ ]} (2.7.10)
¢BP (¢ — PPoo) P20
This can be further simplified to
e, $20 Do
— ={=}1l4+aY Y= 2.7.11
¢BP ®20 [ (boo} ( )

Hence, it is apparent that for the same level of excitation at the free
stream, the above ratio indicates that the pure convection of vortices will
be a far weaker mechanism for creating disturbances inside the shear layer
as compared to the case when ¢ = <0 # 1.

The above analysis is for spatial stability problem associated with freestream
excitation, where a time scale is imposed. Next, we consider the same case
with explicit time scales imposed on the flow - the case of train of convective
vortices, posed as the receptivity problem.
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2.7.2 Receptivity to Train of Convected Vortices in Freestream

The above distinction between the cases of pure convection at the free
stream speed and the bypass route where the train of vortices traveling at
speeds lower than the freestream speed can also be demonstrated by solv-
ing the Orr-Sommerfeld and the Navier- Stokes equations, as was shown in
Sengupta et al. (2002). For the shown results, the spacing between suc-
cessive vortices was taken as ¢ = 1007§* with ¥ = 200" and Re = 1000.
The Orr-Sommerfeld equation has been solved for the boundary conditions
displayed in Fig. 2.32 by Chebyshev collocation method with the weighting
coefficients developed using the Generalized Differential Quadrature (GDQ)
method of Shu & Chew (1998).

For the pure convection case i.e. when ¢ = U, the excited modes are
those for which the following dispersion relation must be satisfied: «,, =
nwp. The cause for the severely damped solution (not shown) can be ascribed
to the stability property of the basic profile. This has been shown in Fig.
2.33. In this figure, the neutral curve is re-plotted along with ¢ = const. loci
in the (Re —wp)-plane. The very existence of the ¢ = Uy line (in the figure
shown as the non-dimensional value of ¢ = 1), far removed from the neutral
curve in the stable zone, implies that such a convecting mode would decay
very rapidly. Similarly the upstream propagating modes corresponding to
wp = 0.02 are also highly damped. Figure 2.33 also indicates the possibility
by which wavy or oscillatory disturbances can be generated. Of particular
significance are the properties of the upstream and downstream modes with
¢ < Uoco. The real phase speed ¢ indicates the speed at which a freestream
disturbance convects, and for a vortex train that does not disperse; this
would be the speed of the individual vortices. Figure 2.33 clearly indicates
that instability can be very effectively triggered if the convection speed of
the vortices lies within the narrow range of 0.26U, to 0.32U, that in this
case correspond to n = 13 to 16.
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Figure 2.33 Stability diagram for a flat plate boundary layer
showing the neutral curve superposed over ¢ = const.
disturbance propagation contours shown by thin lines. Note that
the line ¢ = 1 corresponds to the case of pure convection of
vortices.

Convecting free-stream disturbances within this speed range are likely to
trigger strong sustained instability, because of the high amplification rate
that such modes would experience. Also for ¢ > 0.4U,, the convecting
disturbances would create damped wave packets.

For convected vortical disturbance field in the freestream, the growth
process is also qualitatively different as compared to the growth of distur-
bances that are created at the wall or inside the shear layer- as reported
in Schubauer & Skramstad (1947). For monochromatic wall excitation, the
real frequency of the disturbance field is held fixed and the phase speed
adjusts itself continually to the local stability property of the shear layer.
Contrarily, for the disturbance field generated by convecting vortices, it is
the phase speed or group velocity that is an invariant of the input distur-



122 Instability & Transition

bance field; while the corresponding real frequency will continuously vary,
satisfying the dispersion relation: ac = nwy. In other words, for freestream
excitation, the disturbance will follow a path of constant phase speed, while
for localized wall excitation, this path will be along a straight line in the
(Re — wp) plane with a slope that denotes the physical frequency. Hence,
if the convection speed of the vortex train is chosen to be between 0.26U
to 0.32U, then the created disturbance field inside the shear layer will
experience a very high sustained growth, as the ¢ = constant lines remain
closer to a; maximum region over a longer streamwise stretch, as shown in
Fig. 2.33. Moreover, the figure also indicates that the rate of growth will
be much higher than that for disturbances that are excited from inside the
shear layer at a constant physical frequency. There is a clear experimental
evidence of the presented analysis here with the results reported in Kendall
(1987). In that experiment, Kendall (1987) made a circular cylinder to ro-
tate in a circular trajectory above a flat plate. During the motion of the
cylinder in its trajectory, the equivalent ejected disturbances over the flat
plate were much more complicated, because the strength, location and mi-
gration speed of the vortices are, however, not controlled as compared to
the model problem discussed above. Despite these differences, figure 3 of
Kendall (1987) clearly showed that a rotation speed that corresponded to
¢ = 0.3Us showed maximum receptivity as compared to ¢ = 0.23U,, and
¢ = 0.5Us. The hot-wire oscillograms corresponding to the circumferential
speed ¢ = 0.3U, of the rotor indicated the presence of very large amplitude
wave packets.

One notes here that the freestream convecting vortical excitation is not
monochromatic. This is the fundamental difference between free stream
excitation by convecting vortices and the vibrating ribbon excitation at a
fixed frequency given in Schubauer & Skramstad (1947). If nonlinearity
is important and one solves the full Navier- Stokes equation for the dis-
turbance quantities, then the wave packets can grow as they propagate
downstream, while the growing disturbance within the packet can saturate
in amplitude. Therefore, the solution of the Navier- Stokes equation will
provide vital information about the role of nonlinearity for this problem,
apart from including the effects of growth of the shear layer.

A direct simulation of the flow field was also attempted in Sengupta et
al. (2002), where the following stream function- vorticity formulation of
Navier- Stokes equation was used,

Py 0
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where uy, vy, and wp are the undisturbed base flow quantities for the flat-
plate boundary layer flow as given by the Blasius similarity solution. Re;
is the Reynolds number based on the free stream velocity, the displacement
thickness at the inflow and v, the kinematic viscosity.

To resolve the flow gradient near the wall, the above equations were
solved in a stretched co-ordinate system (in the wall-normal direction) via
the transformations

r=¢

y = Ymax0T]
Nmaz0 + Ymazx (nmaz - 77)

(2.7.14)

where Y4, 1s the height of the domain in the physical plane and 7,4,
is the corresponding height in the computational plane; o is a control pa-
rameter that clusters the grid points close to the wall.

At the inflow boundary and on top of the computational domain, ana-
lytic solution for the disturbance velocity was used in accordance with Eqn.
(2.7.1) and (2.7.2). On the flat plate, the no-slip condition simultaneously
provides a Dirichlet boundary condition for the stream function and the
wall vorticity at every instant of time.

In order to eliminate the reflection of waves from the outflow boundary,
the buffer domain technique developed by Liu & Liu (1994) was used in
these simulations. The buffer domain, as indicated in Fig. 2.30, is a nar-
row strip of the computational domain adjacent to the outflow boundary.
A continuous buffer function b(§) was introduced (in Eqns. (2.7.15) and
(2.7.16)); which has a value of one in the main computational domain that
decreased monotonically in the buffer domain to zero at the outflow bound-
ary. To treat growing or unstable modes, a second buffer function bg ()
was used (in Eqn. (2.7.16)) to gradually reduce the Reynolds number in
the buffer domain to a value below the critical Reynolds number. The used
buffer functions b(§) and bg.(§) are as given in Liu & Liu (1994).

The transformed equations that were actually solved are given by,

b@_ﬁ’_azll aw

ger gt yi gy = (2.7.15)
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At the outflow of the domain, the traditional extrapolation based on
% = g%“; = 0 was applied for stream function and vorticity transport
equations. Equations (2.7.15) and (2.7.16) have been solved in Sengupta
et al. (2002) first for the case of ¢ = Us, in a domain for which Reynolds
number varies from 165 to 1900. The results are shown in Fig. 2.34 at

different indicated times.
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Figure 2.34 Streamwise disturbance velocity component plotted
at a height y = 0.36* for the pure convection case (¢ = Uy) at the
indicated times, when solution is obtained by solving the
Navier-Stokes equation for the problem shown in Fig.2.30
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The abscissa is actually the Reynolds number based on local displace-
ment thickness. In this case, only the local solution is predominant at early
times. This component also disperses and decays, as can be seen from the
solution at t = 100. The observed single peak at ¢ = 0 that is due to the lo-
cal solution disperses into multiple peaks- as can be noted for all subsequent
times. This dispersion of solution is due to the presence of upstream prop-
agating modes and the presence of multiple harmonics for the downstream
propagating modes. The adjective upstream here is to be understood with
respect to the local condition of the disturbance field. More details about
this dispersion mechanism and tracking of the upstream propagating modes
were first discussed in Sengupta et al. (1999) and will be discussed again in
the next subsection.

Next the case for ¢ = 0.3U, was investigated by solving the Navier-
Stokes equation with the same formulation. As per the previous discussion
based on stability properties of Blasius profile depicted in Fig. 2.33 and the
experimental observation of Kendall (1987), one would expect to see a rapid
growth of disturbances. The domain is the same that was considered for the
previous case in Fig. 2.34 and the other domain and excitation field data
are also the same. The results for this case are as shown in Figs. 2.35(a)
and 2.35(b) for the locations at y = 0.36* and 1.50*, respectively. Here, it is
apparent that with time the shear layer displays supporting growing distur-
bances as it convects downstream. At early times up to t = 400, once again
one notices the splitting of the full solution into upstream and downstream
propagating components. While these results are for two-dimensional flows,
similar computations have been performed in Wu et al. (1999) in a 3D box
where freestream vortices were directed towards the base by the imposition
of a constant downward velocity at the inflow. The resultant trajectory of
the vortex-induced disturbance is intuitively expected to lie in the south-
east direction if the mean flow is from west to east. However, induced
disturbances in Wu et al. (1999), moved down and in upstream direction
instead, clearly indicating that the free stream excitation causes a distur-
bance field that propagates upstream, as predicted here by the displayed
two-dimensional calculations. The existence of common features among the
results from three-dimensional DNS, two-dimensional simulation and the
solution of linearized Navier- Stokes equation points to the common mech-
anism that is seen in all the cases.
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2.7.3 Further Explanation of Freestream Periodic
Excitation:

For the physical problem described in Fig. 2.30 and its solution in Figs.
2.34 and 2.35 for ¢ = Uy, and ¢ = 0.3U, respectively, brings out some
interesting features of the response field due to periodic freestream exci-
tations. We have already noted that for such excitations one would get
both downstream and upstream propagating disturbances, whose proper-
ties are as shown in Figs. 2.25 to 2.27. However, the upstream propagating
mode will dominate for the case of ¢ = U, as the downstream propagating
mode corresponding to ¢ = Uoo are highly attenuated- as seen from Fig.
2.34. The upstream propagating part will be less attenuated, as shown in
Fig. 2.27 for the variation of a; with increasing Reynolds number. The
downstream mode is always excited for any freestream excitation that is
introduced via the coupling mechanism described in section 2.7.1. Thus,
the response consists predominantly of upstream propagating modes as it
convects downstream.
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Figure 2.35 Streamwise velocity component plotted for the case
(¢ =0.3Uc0) at the indicated times obtained by solving the
Navier-Stokes equation for the problem shown in Fig. 2.29 for
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The upstream propagating mode properties are indicated by the dotted
line in Fig. 2.25 and this component of the solution can be seen in the
solution shown in Figs. 2.34 and 2.35. Here, we demonstrate these aspects
further with respect to the case shown in Fig. 2.34, for which the freestream
vortices travel with the freestream speed, ¢ = Uoo, for the pure convection
problem. In Fig. 2.30, the gap between successive vortices has been taken
as a = 1007 and that corresponds to a time scale given by wy = % = 0.02.
Thus, the given excitation creates a multi-periodic response field with nwy
(for n =1,2,3,....) as the frequencies in Eqn. (2.7.3).

For the fundamental frequency wy of the problem in Fig. 2.34, one
notices the propagation speed of disturbance energy to be given by Vo =
—0.5U (from Figs. 2.27 and 2.36), while for the next few harmonics the
group velocity increases with circular frequency. In Fig. 2.36, we show the
variation of group velocity with circular frequency varying in the range of
0 < w < 0.2 for different Reynolds numbers.
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Figure 2.36 Variation of group velocity with circular frequency
for the indicated Reynolds number for the upstream propagating
mode.

This figure shows the value to increase in magnitude from 0.5U, to
0.8U for the first and second harmonic, respectively. For higher harmon-
ics, this further increases almost linearly. The initial solution created by the
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freestream vortices inside the shear layer appear as wave-packets. At early
times, the packets retain their coherence due to small dispersion of vari-
ous harmonics. However, the freestream vortices convect at a speed given
by ¢ = Uy and the vanishingly small downstream propagating disturbance
field inside the shear layer convects with c¢. The upstream component would
travel with respect to the downstream component with the group velocity
Vyo = —0.5Us. We note that the higher harmonics would be less damped
as compared to the fundamental mode depending furthermore upon the
Reynolds number - as shown in Figs. 2.25 and 2.27. The higher harmon-
ics would dominate at later times, due to the reason that they have lower
damping and as the packets move downstream the Reynolds number also
increases for which the damping rate decays even further. This would there-
fore create a dispersion of the disturbance field. Effects of such dispersion
would be equivalent to creating newer length scales. This is a completely
new mechanism for the creation of different length scales (specifically the
smaller length scales) that has been overlooked before for transitional and
turbulent flows.

To understand the creation of new length scales by the dispersive effect,
it is explained clearly with an additional figure and a table. In Fig. 2.37,
the disturbance stream function is shown at two heights (y = 0.36* and
1.00*) at four distinct time instants- as indicated in the figure for the case
of c = Uy.

x10° el 10° y=1.00
0.5 .
=1260 1=1260
0 “"J“.‘r“v—"'v‘\uﬂf\—v'\vlqui\u\ﬂur"lvf\»—-—/\vz\: f{V : oA AN A ﬂvf\
0.5 1
=730 =730 /\
[ = ‘"l‘.'““—""‘,'”l\.-" "‘_"d_’\ufn'vf\ﬂ Uf oA~ —
u u
0.5 1
=410 N =40
ol N Tl P _/‘f‘llur\ 0 _/‘m-—f/\;\._.___/ \ur\ .
v v
0.5 o F1 1 A N
i A -
/\ J k =100 \_,_/ k J k =100
ol of kA a
200 400 600 800 X 200 400 600 800 X

Figure 2.37 The disturbance stream function at the two
indicated heights as functions of streamwise distance for the
indicated times- for the pure convection case
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Comparison of the disturbance fields at these two heights clearly demon-
strate a strong coherence of the data, while the disturbance increases with
height- once again attesting to the properties explained before for the freestre-
am mode. The dispersion of the solution field can be explained by looking
at this figure and the Table 2.3.

Table 2.3: Position of response field with respect to freestream
vortices and their time of entry in the computational domain

Vortex Number —

Time | 1 2 3 4 5 6

t=0 -960 -645 -330 -15 300 615

t =100 -860 -545 -230 85 400 715
(35) (350) | (665)

t =410 -550 -235 80 395 710 1025
(270) (505) | (820)

t1 = 165%

t =720 -230 85 400 715 1030 1345

(280) (450) (665) | (980)
t1 = 810% | t1 = 490%

t = 1260 300 615 930 1245 1560 1875

(230) (390) (550) (695) (945) | (1260)
t1 = 1120%

In the table, the initial condition (f = 0) identifies the packets at a
non-dimensional distance of 1007 -with packets identified by their location
outside the computational domain and those entering the domain at later
times indicated by asterisks. Due to higher damping rate of both upstream
and downstream modes, solution at very early times consists of only the
local solution- as discussed with respect to the results in Fig. 2.19. We note
six disturbance packets at ¢ = 0, exactly at the same streamwise locations
exactly below the freestream vortices. Subsequently at t = 100, two clusters
would have been noted at x = 400 and at x = 715, if the disturbance field
would have moved with ¢ = U,,. One notes two smaller peaks at these two
locations at ¢ = 100. However, the major peaks are at the locations indi-
cated by the quantities within parentheses in Table 2.3. These are exactly
at those locations, if one calculated the disturbance clusters to move with
the group velocity Vo = 0.5U with respect to the corresponding source
i.e. the free stream vortices. This is verified for the clusters’ location at
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t = 100 and 410, from the Table 2.3 and Fig. 2.37. At later times, the
higher harmonics moves further upstream due to their higher propagation
speeds and lower damping rates showing visible dispersion. This is evident
from the results shown in the figure and the table at ¢ = 730 and 1260.
Thus, one notes that pure convection of vortices in the free stream causes
dispersed disturbance field inside the shear layer that grows with height
and those are not Tollmien-Schlichting waves. Moreover, the damped dis-
turbances are multi-periodic. It has been shown in Sengupta et al. (2006,
2006a) that such damped modes can also interfere to form spatio-temporal
growing wave-fronts. While such a mechanism has been found in these ref-
erences for two-dimensional disturbance fields, other authors have talked
about spatio-temporal algebraically growing modes for three-dimensional
flows only. This has been termed as bypass transition by some authors; see
e.g. Breuer & Kuraishi (1993), Morkovin (1969, 1991) and other references
in Sengupta et al. (2006, 2006a). We will come back to the discussion of
spatio-temporal growing wave-fronts in chapter 4, where we will contrast the
two mechanisms of disturbance growth. There can still remain a large num-
ber of other mechanisms that qualify as bypass transition. Some of these
mechanisms of bypass transition are discussed in the next chapter- with spe-
cial emphasis on vortex-induced instability caused by aperiodic freestream
excitation.



Chapter 3

BYPASS TRANSITION

Prof. Tapan K. Sengupta
HPCL, Aerospace Engineering
LLT. Kanpur

3.1 Introduction

In this chapter we focus mainly upon the problem of vortex- induced in-
stability that creates large perturbations without the appearance of Tollmien-
Schlichting waves. Interaction of a shear layer with a finite-core vortex lead-
ing to unsteady separation in a boundary layer was noted by Doligalski et
al. (1994) as one of the most important unsolved problems of fluid dynam-
ics. Such unsteady separation is present in (i) Flow past surface-mounted
obstacles; (ii) Dynamic stall and blade vortex interaction (BVI); (iii) Im-
pulsive motion of bluff bodies; (iv) Near-wall turbulence and (v) Bypass
transition triggered by aperiodic convecting vortices. In this chapter, we
will focus on the last topic only, as an example of a physical mechanism
during bypass transition. The same mechanism is also present in the other
examples mentioned above. Unsteady flow separation has been discussed
also in Degani et al. (1998) and other references contained therein. Brinck-
man & Walker (2001) have studied near-wall eddy formation in turbulent
boundary layers. In this last work, a late stage of transition whose origin is
completely different from one created by linear instability, was studied in a
quasi two-dimensional framework. Smith et al. (1991) and Robinson (1991)
have also discussed the formation of hairpin vortices in near-wall turbulence
sites. In another set of studies, Peridier et al. (1991, 1991a) considered the
scenario where a vortex placed above a plane wall caused the vortex to mi-
grate and at the same time a thin unsteady boundary layer formed over the
wall. Thus, the problem considered in this chapter has many variations- but
we will only consider the case where primary instability is triggered by a
convecting vortex over a wall-bounded shear layer, as described in Sengupta
et al. (2003), Sengupta & Dipankar (2005) and Lim et al. (2004).
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3.2 Transition via Growing Waves and Bypass Transition:

In the previous chapter, we have noted that a train of periodic convecting
vortices in the freestream produce Tollmien-Schlichting waves whose dynam-
ics is different than those produced by wall excitation or that was observed in
the vibrating ribbon experiment of Schubauer & Skramstad (1947). There
are few reasons for the qualitative differences between freestream and wall
excitations. In the previous chapter, we have identified wall and freestream-
mode as the two different types of ensuing motion seen for these two types
of excitation. Firstly, in vibrating ribbon experiment monochromatic TS
waves are created by constant frequency excitation at or very near the wall.
For freestream excitation, the response field is multi-periodic in time, as ex-
pressed in Eqn. (2.7.3) and shown in the numerical results in Figs. 2.34, 2.35
and 2.37. The excitation is essentially broad-band. Secondly, the freestream
excitation can create both downstream and upstream propagating distur-
bance fields. Finally, in contrast to the vibrating ribbon case, in freestream
excitation one can create disturbance wave-packet that remains within the
unstable range over a longer stretch, and also suffer much higher growth
rates (as can be reasoned easily from Fig. 2.33).

In contrast, for the case of periodic train of vortices convecting in the
freestream at a constant speed, one follows the ¢ = constant line in Fig.
2.33. As a consequence the growth rate for wave in vibrating ribbon ex-
periment initially grows monotonically up to a maximum and thereafter
it falls off to zero again. Before and after this phase, disturbances actu-
ally decay while propagating- according to the linear stability analysis. For
freestream excitation case, disturbances are wave-packets that experience
explosive growth if the excitation field has convection speed in the range
0.26U to 0.32U, as shown clearly in Fig. 2.33.

The most important difference between wall excitation and free stream
excitation is the direction of propagation of the disturbance field with re-
spect to the local mean flow. For low amplitude wall excitation, disturbances
propagate downstream only for unseparated flows. In contrast, when the
shear layer is excited by train of vortices in the freestream, then a part of
the disturbance field travels upstream- in addition to the downstream prop-
agating wall mode. While these observations are for two-dimensional flow
field, it is noted that very low-frequency wall disturbances create only three-
dimensional disturbances -the Klebanoff mode. Thus, when a shear layer is
excited by periodic freestream sources, the resultant flow field is a mixture
of two- and three-dimensional disturbances and their mutual interaction as
they travel upstream and downstream with respect to the excitation source.
These elements were noted in the Direct Numerical Simulation (DNS) re-
sults of Wu et al (1999) and Jacobs & Durbin (2001). In the former, the
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periodic freestream excitation is by a periodic wake and in the latter by
synthetic free stream turbulence characterized by superposition of spanwise
and temporal Fourier modes, times vertical Orr-Sommerfeld modes -the
so-called continuous spectrum. In both the cases, the transition precur-
sors of long backward jets are noted in the outer part of the shear layer
that propagate downstream to form turbulent spots and very long elon-
gated streaks of velocity fluctuations. The latter are the three-dimensional
Klebanoff modes, while the former are associated with the upstream prop-
agating modes of the two-dimensional component of the disturbance field.
While the DNS produces results for the imposed disturbance field, still it
does not provide a clear picture of the physical mechanisms involved. But,
the shear layer properties of different modes and the simulations in Sengupta
et al. (1999) and Sengupta et al. (2002) provide vital clues to freestream
excitation problems by periodic vortices that also validate the observations
of the control-experiments of Kendall (1987).

Rapid transition caused by periodic train of vortices follow a maximum
growth path when the convection speed is within 0.26U., and 0.33U, , if
Re,, is restricted to a maximum of 1900 at the outflow. The instability
is still by TS wave generated packets, if the applied perturbation is small.
This route of instability is not the bypass transition. However, when the free
stream turbulence intensity exceeds 1%, it has been observed experimen-
tally that transition occurs rapidly, bypassing the TS route. It is noted in
Jacobs & Durbin (2001) that inertial-time-scale processes apparently come
into play, but their origin and nature are not at present known. These large
amplitude perturbations are noted to cause bypass transition and Jacobs
& Durbin (2001) have stated that bypass transition is stochastic by na-
ture, and so lies within the province of statistical fluid dynamics. Progress
has been limited in understanding bypass transition due to lack of definitive
controlled experimental observation and data in identifying physical mecha-
nism(s) in the spirit of the experiment of Schubauer and Skramstad (1947).
Design of control-experiments to identify unit-processes have been advo-
cated by Smith (1993) for transitional and turbulent flows, who notes that
one must excite the fluid dynamic system with non-negligible input, while
reducing the background disturbances to minimum, such that the causality
of inputs can be unambiguously established, the same way in the classical
experiments of Schubauer & Skramstad (1947).

Such an experiment was performed and reported in Chattopadhyay (2001),
Sengupta et al. (2001) and later in Lim et al. (2004). In this experiment,
the focus was to excite a sub-critical violent instability of the shear layer by
a steadily convecting single vortex. Thus, no specific time scale was enforced
for the disturbance field. In the experiment, violent breakdown during by-
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pass transition was shown to be initiated by a two-dimensional mechanism
and the resultant broadband energy spectrum of the corresponding turbu-
lent flow is excited at the receptivity stage itself by the primary instability.
The experiment was conducted in a water tunnel using dye visualization
technique where the bypass transition was triggered by controlled motion
of a captive vortex in the streamwise direction, at a speed different from
the free stream speed. This is discussed in the next section.

3.3 Visualization Study of Vortex-Induced Instability as Bypass
Transition

In this experiment, stability of a laminar boundary layer is examined
when the sub-critical flow (with respect to critical Reynolds number at
which growing TS wave first makes its appearance) is affected by convect-
ing a single vortex outside the shear layer. Experiments on vortex-induced
instability are challenging, as it is difficult to control and quantify strength
and propagation speed of vortical disturbances. This experiment was de-
signed to achieve complete control over these parameters, by rotating a
cylinder at high rotation rate to create a stable captive vortex of constant
strength and by constraining it to translate at a fixed height with constant
convection speed. It is to be emphasized that shed vortices in the wake
of the rotating cylinder, if there are any at all, have strengths an order
of magnitude lower than that of the captive vortex created due to rota-
tion by Robins-Magnus effect. The role of captive translating vortex with a
finite-core size is to destabilize the shear layer by creating a longitudinal dis-
turbance pressure gradient. This was also the scenario proposed in Monin &
Yaglom (1971), where the process was thought to arise due to constant buf-
feting by convected vortices associated with free stream turbulence. In the
book, the authors were attempting to explain a similar scenario proposed
by Taylor (1936).

Present experiment was conducted in the re-circulating water channel
in National University of Singapore. Fig. 3.1 shows a schematic of the
experimental set-up. The test section measured 400mm x 400mm in cross
section and 1800mm long, made of transparent plexiglass. The flow before
entering the test-section passes through a honeycomb, three fine screens and
a 4:1 contraction section. The flow velocity in the test section is controlled
by a variable-speed A.C. motor driving a centrifugal pump on the return
leg of the flow circuit.

The boundary layer under investigation was allowed to form over 1100mm
long flat plate held vertically on its edge, on the base of the test section.
The plate had a rounded leading edge and an adjustable trailing edge flap
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that was used to create a stable boundary layer in the absence of excitation.
The single captive vortex is created by rotating a circular cylinder of diam-
eter d (= 15mm), whose axis was parallel and along the spanwise direction
of the plate. The cylinder was attached to a stepper motor whose rotation
rate was controlled and varied from 2.5 to 6 revolutions per second in either
clockwise or anticlockwise direction on demand. The distance between the
flat plate and the rotating cylinder was kept in most of the cases equal to
90mm, but was also varied between 60 and 120mm for some other cases.
For the purpose of visualization, dye was released from six dye-ports located
88mm downstream from the leading edge of the plate.

Fig. 3.1 shows the schematic of the experimental setup. In Fig. 3.1(a),
the side view showing a rotating cylinder translating over a flat plate is
shown. In Fig. 3.1(b), the same setup is viewed from the top of the tunnel.
H is the adjustable distance of the cylinder from the plate; Uy is the
oncoming flow speed; ¢ indicates the translational speed of the cylinder
and (Q is the angular velocity of the cylinder. The distance of cylinder from
the leading edge of the plate is indicated by x. This arrangement creates a
captive vortex (at the center of the cylinder) that can be made to travel at
pre-determined speed. Reynolds number of the rotating cylinder was 2975
based on the diameter and the free stream speed of U,,. The displacement
thickness (6*), at the location of dye port was calculated as 3.27mm and
thus, the distance between the cylinder and plate is equivalent to 27.52 §*.
Therefore, the disturbance source was by design kept significantly outside
the shear layer to mimic the unit process of free stream turbulence effects.
The cylinder was constrained to travel at the fixed height (H) over the
flat plate and the translational speed ¢, was also controlled. All of these
parameters were used to control the events in a reproducible fashion.
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Figure 3.1 Schematic of the experimental setup. (a) Side view
showing a rotating cylinder translating over a flat plate. (b)
Same setup as viewed from the top of the tunnel. H= adjustable
distance of the cylinder from the plate, U,, = flow speed, c=
translational speed of the cylinder, and ()= angular velocity of
the cylinder. x= distance of cylinder from the leading edge of
the plate. This arrangement creates a captive vortex (at the
center of the cylinder) that can be made to travel at
predetermined speed.

Eight significant cases were reported in Lim et al. (2004) (as given in
Table 3.1). The first two cases correspond to the condition when the cylinder
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rotates in the counter-clockwise direction and translates slower than the free
stream speed. However, the translation speed of the cylinder in Case 2 is
almost double than that of Case 1. For Case 3 the cylinder was not rotated
and this was a case where the shear layer on the flat plate would have been
perturbed by the shed vortices that are significantly weaker and periodic.
This case also demonstrated the importance of controlled over uncontrolled
disturbances in the freestream. The shed vortices behind a non-rotating
cylinder travel at unknown non-uniform speed and whose heights also keep
changing, and that cannot be controlled. For Cases 4 and 5, the cylinder
rotates in the opposite direction to that of Cases 1 and 2.

Table 3.1
¢/Uso | Qrps) | H/6* | Us/(Uss — ) |

Case 1 | 0.386 +5 27.52 2.360
Case 2 | 0.772 +5 27.52 6.364
Case 3 | 0.386 0 27.52 0

Case 4 | 0.386 -5 27.52 2.360
Case 5 | 0.237 -5 27.52 2.324
Case 6 | 0.386 +5 18.35 2.360
Case 7 | 0.386 +5 24.45 2.360
Case 8 | 0.386 +5 36.70 2.360

In Cases 6 to 8, rotation and translation velocities of the cylinder are the
same, but the cylinder is located at different distances above the boundary
layer. The last column of the table shows the ratio of surface speed (Us =
Qd/2) to the relative free stream speed, (Us — ¢). Except for Case 3 where
the cylinder is not rotating, the values given in the last column for all other
cases are greater than 2. This parameter value is known to cause limited
or no Karman vortex shedding, as noted experimentally in Tokumaru &
Dimotakis (1993) and Diaz et al. (1983).
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Figure 3.2 Case 1, ¢c=0.386, H/j*= 27.52, ) = +5. Note: is x is
measured from the leading edge of the plate and d is the
diameter of the cylinder.

In Fig. 3.2, flow visualization sequences for the Case 1 are shown that
indicate vortex-induced instability as localized increase in mixing, diffusion
and irregularity of the dye filaments. The dye filaments were initially paral-
lel, implying two-dimensionality of the primary flow. As the vortex moved
in the flow direction from right to left, each dye filament splits into two, with
one part lifting off with little or no spanwise spreading at the early stages
and the other part staying in its course. The direct consequence of this is in
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the incipient formation of disturbance packets those keep lengthening due
to higher front speed. The disturbance starts off ahead of the cylinder, and
as time progresses it grows while convecting faster than the cylinder and
hence affecting a larger part of the flow with time. The violent breakdown
of dye filaments indicates strong unsteadiness due to an instability caused
by the translating vortex (¢ = 0.386Ux).

In contrast, when the translation speed of the cylinder was increased to
(¢ = 0.772U) (Case 2), there was no violent breakdown of the flow, as
shown in Fig. 3.3. This indicates that the boundary layer is insensitive to
the vortex convecting at higher speeds. For the range of translation speed
investigated, it was found that slower the translation speed of the vortex,
greater was the effect on boundary layer stability, when other parameters
were kept the same.

() =/d=2B.31 (d) wid=41.46

Figure 3.3 Case 2, ¢=0.772, H/§*= 27.52, Q = +5.

To explain the above aspect of results, note that a rotating and translat-
ing cylinder of diameter d induces a disturbance stream function (¥) in the
inviscid irrotational part of the flow field that is given in Robertson (1969)
by,

P+ y—-—H)? 4+ y+H)? 4r 12+ (y—H)?
3.3.1)
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with & = = — z,; where z,(= x9 — ct) is the current location of the
convecting vortex with xg as the location of it at ¢ = 0 and I is the circula-
tion of the vortex. This expression takes into account of the image system
due to the presence of the wall. Equation (3.3.1) is an expression that is
the cause for the fluid dynamical system to be destabilized inside the shear
layer in a receptivity scenario. The imposed disturbance, as given in (3.3.1)
consists of two parts: (i) the displacement effect of the finite-core vortex
given by the first term with ¢,d and H as the defining parameters and (ii)
the circulatory effect of Biot-Savart interaction given by the last term, that
depends upon ¢, H and I'. In Fig. 3.4, these effects are shown separately for
the parameters given by H = 6d, that is also equal to 27.52§*- as mentioned
earlier.

In Fig. 3.4(a), the disturbance stream function induced by a positive
spanwise vortex is shown which establishes that the circulation effect pre-
dominates over displacement effect for the large value of H chosen. The dis-
turbance stream function is evaluated when the vortex is located at x, = 5.
In Fig. 3.4(b), the imposed pressure gradient is shown as a function of
for two values of non-dimensional ¢, for the same case. It is seen that the
imposed pressure gradient does not vary appreciably with ¢ and the ad-
verse pressure gradient for both the cases occur at the same downstream
location, while there is a stabilizing favourable pressure gradient upstream
of the freestream vortex, whose location is indicated by the vertical dotted
line. Thus, the adverse pressure gradient is mostly determined by the circu-
lation effect and the induced adverse pressure gradient that can destabilize
the flow remains constant for same I', when ¢ is varied. This might seem
counter-intuitive, as one notices that the Cases 1 and 2 indicate different re-
ceptivity. The difference is understood, when one looks at Fig. 3.4(c), where
the induced pressure gradient is plotted as a function of time at « = 5. For
this figure the vortex is moved from xz, = 1 at ¢t = 0 to ¢t = 30. For the
three values of non-dimensional ¢ considered in this figure, for the station-
ary vortex case (¢ = 0) the induced pressure gradient remains the same at
all time. However, for ¢ # 0 cases, higher the value of ¢, the shear layer
experiences larger adverse pressure gradient- but, for a shorter duration and
subsequently it becomes favourable in comparison to cases with smaller c.
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Figure 3.4 (a) Disturbance stream function as a function of x
caused by circulatory and displacement effects at y = 1.92, when
the freestream vortex is at 2. =5; H =6 and ¢ = 0.1545; (b)
Pressure gradient at the same height for the case of (a); (c)
Pressure gradient as a function of time at x = 5 and same height
when the vortex is started from z. = 1 and (d) variation of
Falkner-Skan parameter m with x for the indicated time instants.



144 Bypass Transition

In comparison, for the case of ¢ = 0.1545 the adverse pressure gradient
experienced is larger as compared to ¢ = 0 case and that is also experi-
enced over longer time duration. In Fig. 3.4(d), the Falkner-Skan pressure
gradient parameter, m = U% dd(,i“ is shown as a function of = for the two
indicated time instants, for ¢ = 0.1545. Apart from the initial time instant
t = 0, another large time is considered for plotting m in this figure. The
latter time is when the Navier-Stokes solution indicates unsteady separa-
tion at xpp = 6.4 at t = 23 (as shown in Sengupta et al. (2003)). The
horizontal dotted line in the figure is drawn at m = —0.19884, for which
the similarity flow suffers steady separation. This figure clearly shows that
the considered cases represent truly unsteady flow that can sustain much
larger adverse pressure gradient for a long time before it shows unsteady
separation, as compared to steady flows.

In Fig. 3.5, visualization sequences are shown for the Case 3. In this case
of non-rotating translating cylinder, no violent instability was seen to occur
for two reasons. Firstly the imposed disturbance field, as given by Eqn.
(3.3.1) has no captive vortex (i.e.I' = 0) as the cylinder does not rotate
while translating. Secondly, if there are shed vortices present, they will
be very weak and Benard- Karman vortex street is seen to affect the flow
weakly far downstream of the translating cylinder - only at earlier times.

() wd=29.57 () =/d=38.37

Figure 3.5 Case 3, ¢c=0.386, H/)*= 27.52, Q=0
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Fig. 3.6 shows results for the Case 5, when the cylinder rotates in oppo-
site direction with same rotation rate and translates with a speed ¢ = 0.237.
In this case, very weak transition was noted at later times, as opposed to
the counter-rotating vortex cases.
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Figure 3.6 Case 5, c= 0.237, H/§*= 27.52, Q = —5

For the Cases 4 and 5, the main distinguishing features are: 1) The
disturbances trail behind the freestream vortex and 2) The disturbance
growth is far lower than that for the Cases 1 and 2. The first reason can be
sought in terms of the input adverse pressure gradient on the shear layer. In
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the case of clockwise rotation, the adverse pressure gradient trailed behind
the cylinder, while in the case of counter-clockwise rotation the adverse
pressure gradient is created ahead of the cylinder. This is explained in Fig.
3.7 that show sketches of streamline patterns in the inviscid part of the flow
that would be created by a rotating and translating cylinder for both the
clockwise and the counter-clockwise rotation cases.
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Figure 3.7 Sketches showing ideal streamline patterns created by
a rotating and translating cylinder for both clockwise and
counter-clockwise rotation. In the real situation, they are

slightly more complicated.

Streamline curvature in each case is an indicator of the imposed pres-
sure gradient. For the counter-clockwise rotating cases, streamline diver-
gence ahead of the cylinder is more pronounced than that is behind the
cylinder for the clockwise rotating cylinder cases. This explains as to why
the counter-rotating vortex will create a stronger effect than the clockwise
rotating vortex. This is consistent with the computational and experimen-
tal results reported in Sengupta et al. (2001), Sengupta et al. (2003) and
Chattopadhyay (2001). In closing this section, we note that the displayed
evidence is for an instability of wall-bounded shear layer at a streamwise
location where theoretical investigation reveals that there would not be in-
stability leading to the formation of TS waves. For this reason, in Lim
et al. (2004) this is referred to as subcritical instability. There is a very
good reason for the receptivity experiment to have been conducted for a
sub-critical condition. For super-critical conditions, the instability can be
triggered by residual background disturbances, that is difficult to measure
and categorize. Also, at higher Reynolds numbers, the transfer function of
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the dynamical system is very receptive to trace magnitude of disturbances.
In contrast, for sub-critical condition the transfer function is not receptive
to small amplitude disturbances and one needs definitive stronger input to
destabilize the shear layer. Thus, at sub-critical conditions one has more
control in studying the receptivity problem with the help of carefully de-
signed experiments.

3.4 Computations of Vortex-Induced Instability as A Precursor
to Bypass Transition

For the subcritical instability of the zero pressure gradient boundary
layer shown in the experimental results of the previous section, the mean
flow was given by the Blasius boundary layer that was destabilized by a
convecting captive vortex. In Chattopadhyay (2001), Sengupta et al. (2001,
2003) the early stages of the bypass transition was computed by solving the
full Navier-Stokes equation in two-dimensions.

The two-dimensional Navier-Stokes equation is solved in stream function-
vorticity formulation, as reported variously in Sengupta et al. (2001, 2003),
Sengupta & Dipankar (2005). Brinckman & Walker (2001) also simulated
the burst sequence of turbulent boundary layer excited by streamwise vor-
tices (in z- direction) using the same formulation for which a stream func-
tion was defined in the (y — z) -plane only. To resolve various small scale
events inside the shear layer, the vorticity transport equation (VTE) and
the stream function equation (SFE) are solved in the transformed (§ —n)—
plane given by,

ow ow Ow 1[0 (hyOw 0 [ hy 0w
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Where hy and hsy are the scale factors of transformation defined by
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The above equations are solved in a domain: —1 < x <25 and 0 <y <
1.92, with all lengths non-dimensionalized by the core size of the convecting
vortex that is in this case identified with the diameter of the convecting
cylinder. A uniform grid spacing of Az = 0.04, is used in the streamwise
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direction and a stretched grid is used in the wall-normal direction with the
wall resolution given by, Ay = 0.000780. This grid has been used along
with the high accuracy compact schemes of Sengupta et al. (2003a, 2006b)
for resolving the nonlinear convection terms. From the visual experimental
observation, one cannot obtain the strength of captive convecting vortex and
in the computation this has been treated as a parameter. For the shown
results in Fig. 3.8, a value of I' = 9.1 has been taken.

Figure 3.8 Stream function (top three panels) and vorticity
contours plotted at the indicated times. Same contour values are
plotted for each quantity. Arrowheads at the top of each frame
indicate the instantaneous streamwise location of the freestream
vortex.
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The Reynolds number based on displacement thickness of the undis-
turbed flow at the outflow of the computational domain is 472. Thus, the
flow is fully sub-critical in the computational domain (with respect to linear
stability theory criticality).

At the inflow and at the top of the computational domain one calcu-
lates the flow variables, as induced by the freestream vortex via Biot-Savart
interaction rule. At the outflow, fully developed condition is applied for
the wall-normal component of the velocity (% = 0) and using the same
in SFE, one can obtain the vorticity boundary condition at the outflow
from Equation (3.4.2). At the top frame of Fig. 3.8, one sees incipient un-
steady separation on the wall. In subsequent frames, one notices secondary
and tertiary events induced by the primary instability. In these computed
cases, one does not notice TS waves and the vortices formed on the wall are
essentially due to unsteady separation that is initiated by the freestream
convecting vortex. These ensemble of events have been noted as the vortex-
induced instability or bypass transition in Sengupta et al. (2001, 2003),
Sengupta & Dey (2004) and in Sengupta & Dipankar (2005).

3.5 The Instability Mechanism in Vortex-Induced Instability

The mechanism at play during vortex-induced instability has been ex-
plained in Sengupta et al. (2001, 2003) and the present discussion is based
on these sources. The experimental and computational results clearly reveal
the existence of a receptivity mechanism inside the shear layer that induces
instability as a consequence of single vortex migrating in the freestream at
a uniform speed convecting at a constant height. To understand the insta-
bility in flows, one must understand the growth of disturbance mechanical
energy. It was Landahl & Mollo-Christensen (1992), who emphasized the
fact that in understanding transition and turbulence, one must consider
the growth of total mechanical energy and not just simply the disturbance
kinetic energy. This prompted Sengupta et al. (2001, 2003) to develop
an equation for the total mechanical energy from the Navier-Stokes equa-
tion without making any assumption on the nature of the equilibrium and
disturbance flow field. Such restrictions are imposed in all linear viscous
instability mechanism studied in Chapter 2. For incompressible flows this
disturbance equation energy equation is obtained by taking the divergence
of the rotational form of the Navier-Stokes equation and is given by,

VE=Ged—Ve(yxad) (3.5.1)

Where F = % + V;V, is the total mechanical energy. The solid dots in

these equations represent vector dot product. The instability is related to
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the rotationality of the flow and Sengupta et al. (2003) have shown that
the instability associated with the growth of disturbance energy is driven
by the right hand side of Equation (3.5.2). This is based on the observation
in Sommerfeld (1949) that a negative right hand side indicates a source of
energy while a positive quantity represents a sink. If one divides F into a
mean and a disturbance part via , E = E,,, + ¢E,4 and substitute it in Eqn.
(3.5.1), one gets the equation for the disturbance energy given by,

VQEd = ZCUm.fDd'i‘ﬁd.fDd_vm.v x&d—Vdov xﬁm—‘?dovx@'d (352)

This equation can be used to describe the onset of instability, when a
suitable mean flow is defined. We note that this equation is very generic
for all incompressible flows (steady or unsteady flows), as it is based on full
Navier-Stokes equation without making any assumptions. In Sengupta et al.
(2006a) this equation has been used to explain the classical linear instability
theory for parallel flows showing exactly identical TS waves obtained from
Orr-Sommerfeld equation. In section 4.3, this is fully explained with the
development of the actual equations and results. For the computational
data, a mean flow was taken at t = 20 as representative undisturbed flow
and the right hand side of (3.5.2) was calculated and plotted as shown in
Fig. 3.9- at some representative times.

In the figure, regions with darker shades of blue indicate the presence
of disturbance energy sources. At early times, one notes two sites from
where instability originates. They are at the leading edge of the plate and
a location more than 5D from the leading edge of the plate. It is seen that
the leading-edge instability is weaker of the two and the disturbance energy
sources remain outside the shear layer that originate from the leading edge.
The other site grows stronger with time and little before ¢ = 80, it becomes
strong enough to create an eruption from the wall - somewhat reminiscent
of burst sequence in fully developed turbulent flows that causes a connection
between the two sites via the eruption and spike formation from the wall.
In stream function and vorticity contour plots of Fig. 3.8 the spikes are
also evident, in the form of secondary and tertiary bubble formations. It
is therefore, necessary to include the leading edge in such computing exer-
cises; otherwise one would compute unimpeded spike stage from a location
downstream of the leading edge, as reported earlier in Peridier et al. (1991)
and Obabko & Cassel (2002). We must also point out another aspect of this
present energy-based instability theory developed around Eqns. (3.5.1) and
(3.5.2). This is to be noted that the corresponding homogeneous equation
would indicate intrinsic instabilities, if there are any. However, this being
a simple Laplacian operator, there are no intrinsic instability identified for
it so far and the noted instability is driven by interaction of velocity and
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Figure 3.9 Contours of the right hand side of the disturbance
energy equation (3.5). The negative contours are shown by
darker blue colour in the figure, those indicating the energy

source for disturbance quantities.

vorticity field acting as source terms on the right hand side of (3.5.1) and
(3.5.2). The major issue is about how the energy is initially exchanged from
the mean to the disturbance field and this is clearly brought out by the first
term on the right hand side of (3.5.2) that indicates the interaction between
mean and disturbance vorticity field.

It is noted that during later stages of bypass transition caused by con-
vecting vortex in the freestream, large coherent vortices are formed inside
the shear layer. Such coherent structures have been characterized by Proper
orthogonal Decomposition (POD) - a method that was originally developed
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by Kosambi (1943) and later used in fluid dynamics by Sirovich (1987) and
Holmes et al. (1996). For the present bypass transition problem, POD
analysis results have been shown in Sengupta et al. (2003) and Sengupta
& Dey (2004). In these references, the method of snapshot due to Sirovich
(1987) and a local analysis method are used. For the method of snapshot,
21 frames have been used in a time-span of 10 to perform POD. In Fig. 3.10,
the eigenvalue and leading eigen-modes are shown for the vorticity data.
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Figure 3.10 Sum of a specific number of eigenvalues divided by

their total sum, indicating disturbance enstrophy content. The

dotted line indicates 99% level. (b) The first two eigenvectors of
disturbance vorticity during the indicated time ranges

The eigenvalues in Fig. 3.10 represent the fraction of the total enstrophy
contained by a specific number of leading eigenmodes and these are shown
on the right of the figure. The fractional enstrophy content is given by the
sum of the leading eigenvalues divided by their total sum. One notices that
the largest eigenvalue is well separated from other eigenvalues. Also, up
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till around ¢ = 50, five eigenmodes capture 99% of the total disturbance
enstrophy. This number increases to 14 during ¢ = 80 to 90. Thus, POD
analysis provides a very good basis for reduced order modeling (ROM) of
fluid dynamical systems during bypass transition - as have been discussed
in Sengupta & Dey (2004).

The proto-typical vortex-induced instability described in this chapter so
far, also makes its appearance in other flows. In the following, we describe
a special flow that depends on this mechanism to trigger instability that
otherwise have remained unexplained before.

3.6 Instability on The Attachment-Line of Swept Wings

The leading edge of a swept-back wing in contact with the fuselage is
noted to experience abrupt flow transition due to the convection of continu-
ous turbulent puffs along the attachment-line plane whenever the Reynolds
number based on momentum thickness Rey is greater than 100 or Reg« >
245, a fact noted in Poll (1979) and Arnal (1986); whereas various investiga-
tions based on linear and weakly nonlinear theories have shown the lowest
critical Reynolds number as Res« = 535, indicating the actual transition
to be a sub-critical phenomenon. This is pointed out in Sengupta & Di-
pankar (2005), who put forward the viewpoint that flow rapidly turning to
turbulent stage right at the leading edge is due to vortex-induced insta-
bility described in the previous sections of this chapter. Otherwise, it is
well known that the attachment-line boundary layer is very stable and the
critical Reynolds number is orders of magnitude larger as compared to zero
pressure gradient boundary layer. There were two major issues that remain
unanswered and were pointed out in Theofilis et al. (2003). The first is
related to the sub-critical instability and second issue is that of relating the
instability at the attachment-line to the events downstream in the chord-
wise direction. The first issue was tackled in Sengupta et al. (2004) and in
Sengupta & Dipankar (2005) and the second issue follows from the first as
self-explanatory, if the flow becomes turbulent at the leading edge itself- as
it is stated in these references.

It has been demonstrated that attachment-line boundary layer supports
instability waves, the kind predicted in linear theory (shown by very careful
experiments in Pfenninger & Bacon 1969; Poll 1979; Arnal, Coustols & Jul-
lien 1984; Hall, Malik & Poll 1984; Poll, Danks & Yardley 1996). However,
they do not cause transition occurring at the attachment-line, as no linear
or nonlinear theories have explained transition at the attachment-line. In
the literature, this premature transition is referred to as the Leading Edge
Contamination (LEC) problem. In Sengupta et al. (2004) and in Sengupta
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& Dipankar (2005), LEC was posed as a vortex-induced instability problem,
where the freestream convecting vortex in the attachment-line plane is cre-
ated at the wing-body junction, as has been suggested in Arnal (1986) that
the leading edge is contaminated by large turbulent structures coming from
the wall at which the wing is fized. According to Arnal, the flow undergoes
transition right at the leading edge via bypass mechanism. Gaster (1965a)
specifically noted that vortices associated with junction flow are fed into
the attachment-line boundary layer. The mean flow field and co-ordinate
systems for flow past a swept-back wing is schematically shown in Fig. 3.11.
On the attachment-line plane itself, the flow is essentially two-dimensional
as noted by Prandtl (1946) and Crabtree et al (1963).

extemal streamline

Wall Sireamline

Leading Edge
(a)

(b)

Figure 3.11 Flow profiles and schematic of co-ordinate systems
for flow past a swept-back wing. (a) Notation and co-ordinate
system; (b) Streamwise and cross-flow mean velocity profiles and
(c) Attachment-line flow
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In all early experiments including the one by Poll (1979), existence of
attachment-line vortical structures is well established. It is thus natural to
investigate the sub-critical instability by looking at the role of convecting
vortical structures in explaining LEC from the solution of two-dimensional
Navier-Stokes equation in the attachment-line plane itself, similar to the
vortex-induced instability problem studied in Lim et al. (2004) and Sen-
gupta et al. (2003) for zero pressure gradient flow.

Navier-Stokes equations have been solved in Sengupta & Dipankar (2005)
using a (501X101) grid with 501 points in the streamwise direction dis-
tributed uniformly. In Fig. 3.12, computational results are shown for the
case of a counter-clockwise circulating vortex convecting at a speed of 0.2U,
at a height of 306* of the attachment-line boundary layer. This height is
more than that was considered for the Blasius boundary layer in Sengupta
et al. (2003) and thus, establishes enhanced receptivity of attachment-line
boundary layer as compared to zero-pressure gradient boundary layer.

In the figure, the first frame corresponds to an early time when the
convecting vortex is to the left and out of the computational domain and
its influence is seen as an upwelling of the shear layer near the inflow of
the domain. By t = 748, the convecting vortex appears over the com-
putational domain and very intense sequence of instabilities are seen over
the attachment-line. At ¢t = 2001, the convecting vortex is located around
x = 460 and the leading coherent structures are out of the domain. As
explained before, the shear layer aft of the convecting vortex is always sta-
bilized due to the impressed favourable pressure gradient- to the extent
that the shear layer thins down and this is clearly evident in the frames at
t = 1500 and 2001. It has been shown in Sengupta & Dipankar (2005) that
for a particular case with I'/v = 211.063 and the non-dimensional core size
of the vortex (with respect to 6* of the shear layer at inflow) as 6, the first
bubble occurs at a location where the Reynolds number based on displace-
ment thickness was Reg- = 190 If the appearance of first bubble is taken as
an indication of flow criticality, then this is a case of sub-critical instability.
Once the first bubble forms on the wall, a succession of other follows due to
local strong adverse pressure gradient being created ahead of the primary
bubble. Also, this cascading phenomenon occurs at a very high speed and
the flow contaminates very rapidly. As attachment-line shear layer is more
stable with respect to linear mechanism, it is of more interest to investigate
this bypass mechanism for LEC.
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Figure 3.12 Vorticity contours for the case of LEC by a
counter-clockwise rotating vortex
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It is interesting to note that the instability is only feasible when the
speed of the train of convecting vortex is far below the freestream speed- as
was explained in the last chapter via Eqn. (2.7.8) to (2.7.11), following the
work reported in Sengupta et al. (2002). However, when we consider aperi-
odic vortex convecting in the freestream, then the mechanism of instability
is completely different, as there are no imposed time scales. In section 3.3,
we have seen the visual signature of such events that we preferred to call the
bypass transition. In this mode also, lower speed of convection has higher
receptivity, as was explained with the help of Eqn. (3.3.1) and the associated
discussion with the help of results shown in Fig. 3.4. For this same reason,
present computations for LEC show strong bypass transition as compared
to that shown in Obrist & Schmid (2003), where their computations dis-
played lower (exponential) growth rates for the introduced bubble moving at
freestream speed. In Sengupta & Dipankar (2005), this bypass mechanism
was explained with respect to the disturbance energy equation (3.5.2). Fur-
thermore, it is worth quoting the following from this reference in explaining
the bypass mechanism: The disturbance energy equation arises by taking
the divergence of the Navier-Stokes equation in the rotational form, repre-
senting the irrotational component of the disturbance field. The rotational
field of the Navier-Stokes equation as governed by the wvorticity transport
equation yields the Orr-Sommerfeld equation obtained by linearization and
making parallel flow approximation. Although Morkovin (1991) suggested
that unsteadiness during bypass transition is due to the shear noise term in
the Poisson equation for the static pressure. What is more important for us
to realize is that the Poisson equation for disturbance energy actually shows
the coupling between the rotational part of the flow field (through velocity
and vorticity terms) with the irrotational part (given by the Laplacian on
the left hand side). Furthermore, this mechanism is equally valid for both
two- and three-dimensional flow fields. Thus, significant unsteadiness with
large spectral bandwidth disturbances can be created without the vortex
stretching mechanism to explain the excited small-scales in transitional and
turbulent flows.

The effects of a clockwise convecting vortex in the freestream is studied
for this case too in Sengupta et al. (2004) and Sengupta & Dipankar (2005).
A typical set of results are shown in the vorticity contour plots shown next
in Fig. 3.13. As noted in Lim et al. (2004) and Sengupta et al. (2003),
role of a negative vortex is to create an adverse pressure gradient behind it
and hence instability onset is noted upstream of the convecting vortex. It
has been noted and explained in Sengupta et al. (2001) and also here that
there prevails a favourable pressure gradient region ahead of the clockwise
convecting vortex. Thus, the cascade of secondary and higher instabilities
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seen for the counter-clockwise vortex ahead of it is completely absent here.
First and foremost, absence of adverse pressure gradient does not promote
disturbance growth at all. Even if there is some disturbance present, the
induced favourable pressure gradient attenuates it strongly. This feature of
the flow is clearly visible in Fig. 3.13 that shows the existence of virtually
a single coherent vortex.

Figure 3.13 Vorticity contours for the case of a convecting
negative vortex with strength given by |I'|/v = 126.638 and other
parameters same as in the previous case. Detalils of this is
available from Sengupta & Dipankar (2005) and Sengupta et al.
(2004)
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We have already commented about the DNS of attachment-line insta-
bility study performed in Obrist & Schmid (2003) and explained the rea-
son for their failure to explain LEC due to the wrong choice of convection
speed of the vortex. In the following, we also make some general remarks
about various such other efforts towards DNS. When full Navier-Stokes
equation is solved to reproduce experimentally observed LEC effects, there
also appears to be no consensus among reported results. Spalart (1988)’s
three-dimensional DNS could not reproduce even the nonlinear equilibrium
solution reported in Hall & Malik (1986), but it did produce the correct ex-
perimental transitional Reynolds number in Poll (1979)! Spalart (1988) used
white noise to trigger instability for spatial DNS, where spanwise periodicity
and a buffer domain in the chordwise direction were used additionally. Two-
dimensional DNS results, however, produced conflicting results, with The-
ofilis (1998) predicting the wrong frequency of disturbance as compared to
the experimental value of Poll et al. (1996). Joslin (1995) in reporting DNS
results from a formulation that does not make spanwise periodicity assump-
tion, showed the existence of the sub-critical two-dimensional equilibrium
solution of Hall & Malik (1986). Subsequently, Joslin (1996) postulated that
interactions of multiple three-dimensional modes lead to observed compu-
tational bypass transition. Thus, it appears that these simulations suffered
due to multiple reasons, primary ones being: (i) inappropriate modeling of
the problem through boundary conditions see e.g. the failure of Spalart
(1988) to capture even the mean flow; (ii) inappropriate excitation field- as
seems to be the case in all these simulations except Obrist & Schmid (2003)
and (iii) inappropriate convection speed of the freestream vortex- as was
the case in Obrist & Schmid (2003). Finally, it is also required that the
adopted numerical methods must be dispersion relation preserving (DRP)-
which most of these methods are not for the chosen numerical methods and
the computational parameters, barring the spectral methods.
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4.1 Introduction

Significant advances have been made in the understanding the process
of instability and transition where unstable TS waves are created by a vis-
cous instability mechanism for external flows, as is explained in Chapter
2. Classical approaches to instability studies identify an equilibrium state,
whose stability is studied by eigenvalue analysis by linearizing the govern-
ing equations. Results obtained by this approach match with controlled
laboratory experiments for thermal and centrifugal instabilities. But, insta-
bilities dictated by shear force do not match so well, e.g. (i) Couette and
pipe flows are found to be linearly stable for all Reynolds numbers, while
the former is found to suffer transition in a computational exercise at Re =
350 (see Lundbladh & Johansson, 1991) and the latter found to be unstable
experimentally at Re > 1950 (see Reynolds, 1883), with the exact value
dependent upon facilities and background noise level; (ii) plane Poiseuille
flow has Re.. = 5772, while in the laboratory experiment transition was
shown to occur even at Re = 1000 by Davies & White (1928). Interestingly,
according to Trefethen et al. (1993) the other example for which “eigenvalue
analysis fails include to a lesser degree, Blasius boundary layer flow”. This
is the flow which many cite as the success story of linear stability theory.

One of the features of traditional eigenvalue analysis is that the distur-
bance field is assumed to grow either in space or in time. This distinction is
only for ease of analysis and there are no general proofs or guidelines avail-
able that would tell an investigator which growth rate to investigate. Huerre
& Monkewitz (1985) have applied the so-called combined spatio-temporal
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theory (developed originally to study plasma instabilities- as given in Bers,
(1975)) to a family of mixing layers with the goal of determining a general
criterion whereby a flows can be analyzed by either the spatial or temporal
theory by inspecting the dispersion relation in the complex wave number-
frequency plane. We point out that this does not treat the growth as a
spatio-temporal one, but simply tells one which of the two theories may be
appropriate for its study. In contrast, the spatio-temporal approach based
on Bromwich contour integral method of Chapter 2, enables one to truly
perform an analysis without any presumption whether to go for spatial or
temporal approach. In fact, there must be many cases of instability where
both spatial and temporal growths are present simultaneously.

In addition to the above examples, it is also noted that three-dimensional
disturbances e.g. surface roughness or localized disturbances can lead di-
rectly to turbulence without any observed TS wave growth. Breuer & Ku-
raishi (1993) mentions that these kinds of transitions are collectively known
as “bypass mechanisms”. Instead of classifying these as bypass transition
(that we discussed in chapter 3), one can describe such instabilities, in terms
of transient energy growth of kinetic energy. This kinetic energy approach
is distinctly different from the developed theory in Sengupta et al. (2001,
2003) of disturbance mechanical energy growth described in Section 3.5.
It is to be noted that such transient kinetic energy growth scenario was
sought to be explained in the literature only for three-dimensional distur-
bance field, as the corresponding analysis for two-dimensional flows showed
meager growth rate- see Trefethen et al. (1993) for a detailed discussion.

It was Landahl (1975) who showed that subject to certain general con-
straints, three-dimensional disturbances grow algebraically in a mean shear
via an inviscid mechanism. This instability is not related to Orr-Sommerfeld
equation and is related to the tilting of vorticity by mean shear. However,
in later works by Henningson (1988) and Bruer & Haritonidis (1990), it
was revealed that the algebraic instability is due to a coupling between the
Orr-Sommerfeld and Squire Equations. The latter equation is nothing but
the linearized vorticity transport equation for vertical component of vor-
ticity. The above coupling creates an inclined shear layer that intensifies
with time. Furthermore, Breuer & Landahl (1990) investigated the corre-
sponding nonlinear growth and found a secondary instability that leads to
direct breakdown to turbulence. However, in a subsequent Direct Numerical
Simulation, Henningson, Lundbladh & Johansson (1993) reported a bypass
transition occurring through a different breakdown mechanism.

The focus of this mechanism of algebraic growth of transient energy is
two-fold, as explained in Breuer & Kuraishi (1993). Firstly, the transient
energy growth can occur for linearly stable systems by two to three orders
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of magnitude at which nonlinear effects might push the disturbance into
turbulence directly. This has been termed the sub-critical route of bypass
transition in Breuer & Kuraishi (1993). Secondly, such transient energy
growth in a super critical flow can boost relatively slow TS waves with the
former providing the initial algebraic growth that will be followed by the
exponential growth of the linear mechanism of TS waves. However, none
of these mechanisms have been experimentally verified in a controlled and
unambiguous manner till to date.

There is an alternate view-point that treats the transient growth as that
is due to non-normal modes. It has been shown in Schmid & Henning-
son (2001) that the regular and adjoint solutions of OSE are orthogonal,
however Orr-Sommerfeld eigenfunctions are not orthogonal to each other.
This leads to the sensitivity of the eigenvalues to perturbations to the un-
derlying stability operator that has been shown for channel flow. It has
been pointed out that the non-normality of the Orr-Sommerfeld operator
not only has consequences for the sensitivity of the spectrum, but it also
influences the dynamics of disturbances governed by the linearized Navier-
Stokes equations. The resultant transient growth has also been noted in
Schmid (2000). Note the Fig. 4.6 of Schmid & Henningson (2001) records
transient growth for Blasius boundary layer at Re = 1000 to be thousand-
folds for three-dimensional disturbance fields. However, for two-dimensional
disturbance fields, corresponding maximum transient growth rates are very
small. This aspect has been clearly stated in Trefethen et al. (1993) as
the essential feature of this non modal amplification is that it applies to
three-dimensional (3D) perturbation of the laminar flow field ... When only
2D perturbations are considered, some amplification can still occur, but it
18 far weaker. Apart from these, there are other asymptotic stability stud-
ies involving algebraic or transient growth of three-dimensional disturbance
fields, as in Zuccher et al. (2006).

4.2 Transient Energy Growth

Above discussion clearly reveals that even linearized Navier-Stokes equa-
tion supports transient energy growth outside the context of classical eigen-
values, albeit that is true only for three-dimensional disturbance field. In
the following, we recount a totally different route of spatio-temporal growth
via the linearized receptivity analysis as was originally reported in Sengupta
et al. (1994) for a full time dependent problem of Blasius boundary layer.
Same approach of using Bromwich contour integral method has been re-
ported in Sengupta et al. (2006, 2006a) and in Sengupta & Rao (2006).
In these papers, a curious property of shear layer has been reported. It is
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shown that one needs to perform a full time dependent receptivity analysis,
rather than the spatial stability analysis, which is the practice for wall-
bounded unseparated flows. It is shown that for spatially stable systems
multiple stable modes can interact to give rise to spatio-temporally growing
wave-packets and this is explained in this chapter. In essence, this raises
the question on validity of normal mode analysis that is the mainstay of all
eigenvalue analysis. In the presence of multi-mode interactions, it is natu-
ral to adopt the receptivity analysis using the Bromwich contour integral
method described in Sengupta et al. (1994) and Sengupta & Rao (2006).
The most important aspect of this work is that one does not require to
impose any restrictions on the dimensionality of the problem in explaining
large spatio-temporal growth. Sengupta et al. (2006, 2006a) explained the
transient energy growth from the mechanical energy perspective that was
developed in explaining bypass transition. Not only that, the equivalence of
viscous instability theory (when T'S waves are generated) with energy-based
approach was shown in these papers.

Instead of studying stability using mass and momentum conservation,
alternate approaches based on energy consideration had been initiated early,
leading to the well known Reynolds-Orr equation, as described originally in
Orr (1907). This has been further explained in Lin (1955), Stuart (1963)
and Schmid & Henningson (2001). This equation deals with the evolution
of the disturbances in terms of the kinetic energy. If one writes the Navier-
Stokes equation in the indicial notation and take a dot product of it with
the velocity vector, one gets the following equation,
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If one defines the kinetic energy of the full domain as E, = 1/2 [ wu;u;dV,
then the above can be integrated over the whole domain to give rise to the
Reynolds-Orr equation as,
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However, this equation is derived subject to the assumption that the
disturbance field is localized and/ or spatially periodic. This assump-
tion removes any contribution coming from the nonlinear convection terms.
Lin (1955) and Stuart (1963) point out that various estimates of critical
Reynolds number obtained by this approach are erroneously too low due
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to the above mentioned assumption that leads to the elimination of nonlin-
ear terms appearing in the divergence form of the equations of motion. In
contrast, the disturbance mechanical energy concept of Equs. (3.5.1) and
(3.5.2) retain the nonlinear term contributions, those are central to any in-
stability studies. This energy-based receptivity analysis is all-inclusive as it
is based on full Navier-Stokes equation without any assumption.

4.3 Energy-Based Receptivity Analysis

Explanation of this mechanism is presented here from the solution ob-
tained by Bromwich contour integral method of Sengupta et al. (1994) and
Sengupta & Rao (2006) for two-dimensional disturbances in two-dimensional
mean flows, with the disturbance stream function given in Eqn. (2.6.86),

Y(x,y,t) = ﬁ/ . q[)(y,a,w)ei(w_“t)da dw (4.3.1)

The Blasius boundary layer problem was solved in all these references
for a parallel mean flow at Re = 1000 excited at the wall. In terms of the
wall modes ¢ and ¢3, the disturbance stream function can also be written
down as,

1 ¢1(aay7w) {30*(%0(253(04;%‘#) i(x—wt)
T,y,t) = BCY, """ Y dadw
Vo) (27T)2/ Br 10930 — P30P10
(4.3.2)

Where BC,, was defined in Eqn. (2.6.88b) for the harmonic excitation at
the wall shown in Fig. 4.1 (at y =0): u = 0 ¢(x,0,t) = U(t)d(z)e~ot. U
(t) is the Heaviside function that represents the finite start-up of the exciter
placed at the origin of the co-ordinate system.

Edge of shear layer
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Equivalent parallel Flowr

Blasius Profile
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. X
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Figure 4.1 Harmonic excitation of a parallel boundary layer
corresponding to the location of the exciter
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The governing equation for the Fourier-Laplace transform is given by
the following Orr-Sommerfeld equation,

6" — 2029 + a6 = iRe{(alU — w)[¢" — 0%¢] —aU"9}  (4.3.3)

To understand the spatio-temporal growth of waves, few cases were con-
sidered in Sengupta et al. (2006), marked as A, B, C and D in Fig. 4.2, with
respect to the neutral curve shown in the (Re — wy)-plane for the leading
eigenmode.
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Re

Figure 4.2 Neutral curve for the Blasius boundary layer
identifying stable and unstable regions. The marked points are
further investigated.

The Bromwich contour for point A was chosen in the « -plane on a line
extending from -20 to 420 that is below and parallel to the au..q axis at a
distance of 0.009 and in the w-plane it extended from -1 to +1, above and
parallel to the w,qq; axis at a distance of 0.02. For the other points, the
Bromwich contour in the a- plane is located at a distance of 0.001 below the
Qreqr axis. The choice of the Bromwich contour in the a- plane was such that
all the downstream propagating eigenvalues lie above it. Orr-Sommerfeld
equation was solved along these contours with 8192 equidistant points in
the a- plane and 512 points in the w-plane. Orr-Sommerfeld equation was
solved taking equidistant 2400 points across the shear layer in the range
0 <y < 6.97. Spatial stability analysis produced waves for the four points
of Fig. 4.2 with the properties shown in Table 4.1.
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Table 4.1: Wave properties of the selected points in Figure 4.2

Mode Q. a; Vg Vs Ve

Al 0.279826 | 0.007287 | 0.4202 | 0.42 | 0.42
A2 0.138037 | 0.109912 | 0.4174
A3 0.122020 | 0.173933 | 0.8534
B1 0.394003 | 0.010493 | 0.4267 | 0.352 | 0.352
B2 0.272870 | 0.167558 | 0.2912
B3 0.189425 | 0.322635 | 0.1159
C1 0.246666 | 0.013668 | 0.5026 | 0.50 | 0.50
D1 0.160767 | 0.001520 | 0.3908 | 0.33 | 0.33
D2 0.062141 | 0.069659 | 0.2762

For the point A, receptivity analysis produced streamwise perturbation
velocity (u) that is shown in the bottom frame of Figure 4.3 at ¢t = 801.1.
In this figure, top two frames show solutions for the case of point B at the
indicated times. Results obtained for point A are indistinguishable from the
growing asymptotic solution obtained by treating this as a signal problem.
Comparison of results by this two approaches were made in Sengupta et al.
(1994), as shown in Figure 2.23.

0.002 Bin =0.15  i=450.10]
R .

-0.002

0.002 Bitdo=0.15 {t=801.1

=]
-0.002 1

0.01 EETE) 1=801.1
=0
-0.01

0 100 200 300 400 500
x

Figure 4.3 Streamwise disturbance velocity component plotted
as function of x at indicated times for Re = 1000 at y = 0.278
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Both the type of receptivity analyses (signal problem and full time de-
pendent problem) provide the local solution in the neighbourhood of the
exciter, but a forerunner- preceding the asymptotic solution is present only
for the full time analysis. For spatially unstable system one cannot see a
clear demarcation line between the asymptotic solution from the forerunner-
with one merging smoothly into the other.

For the point A, the receptivity solution is dominated by the leading
eigenmode, without any effects coming from the second and the third modes
of Table 4.1. In contrast, for the point B the asymptotic solution is due to
the first mode of Table 4.1 (in terms of wavelength and decay rate) and
the growing wave-front corresponds to the second mode, in terms of the
wavelength. Effects of the third mode are not seen to contribute to the
overall solution for the point B. It is noted that the leading edge of the
asymptotic solution continues to decay at the same rate predicted by spatial
stability analysis, while the forerunner continues to grow spatio-temporally,
although the spatial theory identifies this as a damped mode.

The necessary condition for the creation of a forerunner is found by
looking at the receptivity solutions for points C and D, with the former
having a single stable mode and latter with two damped modes. Results are
shown in Fig. 4.4 for the streamwise perturbation velocity, at the indicated
large time.
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s =801.1

0 100 Elll]x3llll 400 00

Figure 4.4 Streamwise velocity plotted as a function of x at
indicated times for Re = 300 and 1000 for the indicated circular
frequencies. Results are shown for non-dimensional height y =
0.278, over the plate.
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The essential difference between these and the cases shown in Fig. 4.3
is that the latter have three modes, while C possesses a single mode and
D possesses two modes. The frontrunner in Fig. 4.3 is due to interactions
of multiple stable modes. In the absence of multiple modes- as for the
point C- no such forerunner is seen in Fig. 4.4. Again for the point D, there
are only two stable modes that create spatio-temporally growing wave front.
Thus, for fluid dynamic systems presence of a minimum of two stable modes
is necessary to produce a spatio-temporally growing wave front, when the
least stable mode is spatially damped.

There is an alternate possibility for the results shown in Table 4.1 and
Figs. 4.3 and 4.4. The spatio-temporal front for the case B has wavelength
of B2 in Table 4.1. However, a superposition of all the spatio-temporal
fronts (in terms of wave length and propagation speed) show identical prop-
erties including that is shown for the spatially unstable point A in Fig.
4.3. This raises the possibility that the forerunner is a wave-packet cen-
tered around one of the unstable wave number corresponding to the fixed
Reynolds number of Re = 1000 for all the three points A, B and D. How-
ever, this possibility needs to be further probed by looking at multi-modal
solutions at other Reynolds numbers in fixing the propagation properties
of the wave-packet defining the forerunner. There is a band of circular fre-
quencies those are unstable for all Re > Re... In Figs. 4.8 and 4.9, we
have shown results for cases those are excited by band-limited excitation
around a mean unstable frequencies that also helps in understanding the
complex interactions of multiple modes for evolving wave fields. Also, we
will append additional discussions at the end of this chapter to discuss the
origin of spatio-temporal fronts.

There is now enough evidence to suggest that the growth of the forerun-
ner is due to competing groups associated with multiple modes, reinforcing
each other at the front. Such forerunners have been shown to exist in elec-
trodynamics problems in Brillouin (1960). The propagation speed of signal
has been variously described as the group velocity by Rayleigh, signal ve-
locity by Sommerfeld and also the velocity of energy transfer by Brillouin.
Furthermore, Brillouin (1960) has noted that the three definitions are iden-
tical for non-dissipative systems. The forerunner is very weak and difficult
to trace for electromagnetic waves in stable systems, and it can attain high
amplitudes only when the group velocity attains a minimum. In dissipa-
tive systems, these velocities can differ considerably and in fluid dynamical
systems, both stable and unstable modes exist side by side. Group velocity
(V) for the presented problem here is also given in Table 4.1, obtained from
an eigenvalue analysis. From Figs. 4.3 and 4.4, one can directly estimate
the signal speed (V;) by tracking the crests and these information is also
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given in Table 4.1. An estimate of energy propagation speed (V.) can also
be obtained from the equation for the disturbance energy given in Eqn.
(3.5.2). If one represents (Eg), in terms of its Fourier-Laplace transform
as: Eg(r,y,t) = ﬁffgr Fy(y, a,w)e®*=“Ydq dw, then the governing

equation for Ey is given by,

El —a%Ey = ¢"U +24"U" + ¢'(U" — a*U) — 202¢U" (4.3.4)

Equation (4.3.4) was solved in Sengupta et al. (2006) as a function of
«a and w and the solution was reconstructed as a function of z and t by
performing Bromwich integrals successively. Results for £, are shown as a
function of x for the points A and B in Fig. 4.5.
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Figure 4.5 Disturbance energy F, plotted as a function of x at
indicated times for Re = 1000 at y = 0.278

Here, the plot shows the variation of E; to be smoother than u. Once
again, for the point A there is no detached forerunner from the asymptotic
solution, while the point B displays the same detached forerunner as before.
The rate at which E; propagates can be estimated roughly from the figures.
This is shown in Table 4.1 as V.. We note that the system dynamics is de-
termined by the least stable mode (A1) for the spatially unstable case, with
all the three definitions of propagation speed producing identical results. In
contrast, for stable systems with multiple modes, the forerunner has iden-
tical V. and Vi which lies between the group velocity values of the leading
two modes. Again, for the stable systems with a single mode, all the three
definitions produce the same value. Thus, for all systems the signal speed
and energy propagation speed are the same. This also shows the importance
of the energy based receptivity theory developed in Chapter 3.
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The appearance and propagation of a forerunner is not a transient phe-
nomenon, and this was also further demonstrated by performing direct sim-
ulation of the 2D Navier-Stokes equation following the formulation and nu-
merical method given in Sengupta et al. (2004a) for wall-excitation by
simultaneous blowing and suction strip. The use of this type of excitation
field for instability study was originally reported in Fasel & Konzelmann
(1990). Results from the solution of Navier-Stokes equation are shown in
Fig. 4.6 at ¢t = 150 and 300 respectively, that clearly identify the fore-
runner. This verification additionally shows that the receptivity solutions
obtained earlier by linearized analysis remains valid, when the shear layer
is not considered parallel and growth of it is also included.

0 x 50 00

Figure 4.6 Direct numerical simulation of 2D Navier-Stokes
equation for simultaneous blowing-suction excitation at the wall
for Re = 1000 and wy = 0.14

Further properties of spatio-temporally growing wave-front were studied
in Sengupta et al. (2006a). It was investigated by exciting the Blasius
boundary layer at a frequency that corresponds to the point on branch II
of the neutral curve at wg = 0.1307 for Re = 1000. Computed streamwise
perturbation velocity at different time instants are shown in Fig. 4.7.

Here, the asymptotic solution is a neutrally stable solution in Fig. 4.7-
as one would expect. However, one also notices a constantly growing wave-
front ahead of the asymptotic solution. For this case also, there are three
modes with the leading mode neutrally stable and the other two modes are
highly stable, given by: «; = (0.3498239,0.0); co = (0.2149177,0.1454643)
and ag = (0.1604025, 0.2593028).

To emphasize the role of mode interactions, another case was considered
in Sengupta et al. (2006a) where the Blasius boundary layer was excited by
a wide-band excitation given by, 0.08 < wg < 0.12. If the response field for
an excitation at wg is given by,
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Figure 4.7 Streamwise disturbance velocity component plotted
as a function of x at indicated times for Re = 1000 for wy = 0.1307
Results are shown for the non-dimensional height of y = 0.278

. _ 1 ¢)1(a7va)¢éo - d)llod)-?(avva)
vy tien) = o / e 1(P100h0 — P30Ph0) (@ — wo)

6i(ax7wt)da dw

(4.3.5)




T. K. Sengupta 173

Then the solution for the banded excitation case is obtained from the con-
volution of the above given by,

w2

V(x,y,t, wi,ws) :/ U(x,y,t, wo) dwo (4.3.6)
w1
Where w; and ws defines the bandwidth of the excitation. The chosen
bandwidth was such that the fundamental mode remained unstable for all
the frequencies. Thus, for the banded excitation each unstable mode will
interact with other to create wave-packets. Presented results in Sengupta
et al. (2006a) for the banded excitation case is reproduced in Fig. 4.8 for
the indicated time instants.

From the figure one notices that up to some early times (¢ = 110), ef-
fects of the banded excitation is not perceptible, as the evanescent waves
are dominated by the local solution. However at later times, this is not the
case (seen at t = 185.4) as one can see the presence of multiple frequencies
behind the leading wave-front. There appears to be significant cancellations
among different unstable waves at the back of the wave-front. As a result of
such cancellations, one notices attenuated multiple packets traveling down-
stream, except the leading wave-front that continues to grow. This is an
example of multiple unstable waves annihilating each other (including the
local solution), while leaving the growing wave-front.
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Figure 4.8 Streamwise disturbance velocity plotted as a function
of x at indicated times for banded excitation centered around
wp = 0.1, Aw = £0.02 for Re = 1000 and y = 0.278

The feature of signal cancellation for unstable wave systems can be bet-
ter understood, if one looks at some representative harmonic components
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of the response field. In Fig. 4.9(a), the streamwise disturbance velocity
component of various circular frequencies as a function of space is shown
for t = 411.5.
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Figure 4.9 (a) Streamwise disturbance velocity plotted as a
function of x at t = 411.5 for different wy with Re = 1000 and
results shown at y = 0.278. (b) Enlarged view of (a) for selected
frequencies.

Here, only seven distinct circular frequency solutions are shown for ease
of explanation. Significant phase shifts among these solutions for z < 120
are responsible for mutual cancellations within the signal. The zoomed part



176 Spatio-Temporal Instability

shown in Fig. 4.9(b) show more phase shift among the displayed compo-
nents at the left of the frame, resulting in cancellation of these components
in antiphase. In contrast, there is lesser phase shift among the signal compo-
nents seen in the left of the frame in Fig. 4.9(a). This will lead to reinforcing
of the components in this part of the domain.

Further understanding of the role played by different stable modes, when
significant transient growth is present, was studied in Sengupta & Rao
(2006). Two specific cases of wy = 0.05 and 0.15 considered in Table 4.1,
are compared. The complex wave numbers are re-listed again in Table 4.2.

Table 4.2: The wave properties of the indicated circular
frequency disturbances.

wo Ay 6%

0.05 (D) | 1)0.0621413 | 0.0696594
2)0.1607670 | 0.0015206
0.15 (B) | 3)0.1894256 | 0.3226357
4)0.27228701 | 0.1675585
5)0.3940036 | 0.0104936

For these excitation parameters, existing spatial modes are all damped:
One set corresponding to the lower frequency (identified as 1 and 2 in Table
4.2) are below the neutral curve and the other set (B) corresponding to
the higher frequency (identified as 3, 4 and 5 in the table) are above the
neutral curve. In Fig. 4.10, the computed disturbance velocity in streamwise
direction, obtained by Bromwich contour integral method is shown for the
case of B (wg = 0.15).
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Figure 4.10 Streamwise disturbance velocity plotted as a
function of x at different times for Re = 1000, wy = 0.15 with
results shown for y = 0.278.

The solutions at the indicated time instants show: (i) the near-field
given by the local solution and the far field consisting of (ii) a decaying
wave and (iii) a spatio-temporally growing wave-front. The Fourier-Laplace
transform of the solution at ¢ = 801.1 is shown in Fig. 4.11 with vertical
lines indicating the location of the three modes. This result indicate that
the displayed decaying wave corresponds to Mode 5 and the growing wave-
front is centered around Mode 4 of Table 4.2. Effects of Mode 3 is not visible
due to its extremely large damping rate.
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0.4
.
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Figure 4.11 Fourier transform (FFT) of streamwise velocity data
of Fig. 7.10, shown as a function of wave-number for the point B.

In Fig. 4.12, the computed disturbance velocity in streamwise direction,
obtained by Bromwich contour integral method is shown for the case of the
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point D (wg = 0.05). The results at the indicated time instants show similar
structures of near- and far-field of the disturbance- as was the case for point
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Figure 4.12 Streamwise disturbance velocity plotted as a
function of x at different times for (wy = 0.05), Re = 1000 and
results shown for y = 0.278

In Fig. 4.13, the Fourier-Laplace transform of the solution at ¢ = 788.5
is shown. In this case, the asymptotic decaying signal corresponds to Mode
2, while the effect of Mode 1 is not visible here, due to its high decay rate.
The growing wave-front corresponds to the packet to the right of Mode 2.
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Figure 4.13 Fourier transform (FFT) of data shown in Fig. 4.11,
shown as function of wave number for the point D.
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In summarizing the discussion on the spatio-temporal growth shown here
to occur for viscous flows, we note that this is in sharp contrast to what
has been written either about algebraic growth by Landahl (1975) and Zuc-
cher et al. (2006) or the non-normal modes discussed in Trefethen et al.
(1993) and Schmid (2000)- for more than one reasons. All these works are
premised on the basis of inadequacy of Orr-Sommerfeld equation and are
valid for three-dimensional disturbance field only. In Sengupta et al. (2006,
2006a) and Sengupta & Rao (2006), the spatio-temporal growth is due to
the mutual interaction of multiple modes and is equally valid for both two-
and three-dimensional flows. The only commonality of these two approaches
lie in noting fact that such growth is obtained for systems exhibiting spatial
stability. Also, we note the spatio-temporal growth recorded here are not
transient in nature, while most of the other work report about transient
energy growth.

There is also the distinction between the two approaches in the way
the mechanism occurs. As stated in Breuer & Kuraishi (1993), firstly, the
transient energy growth can occur for sub-critical systems by two to three
orders of magnitude at which nonlinear effects might push the disturbance
into turbulence. Secondly, in super critical flows transient growth can boost
existing TS waves with the initial algebraic growth followed by the expo-
nential growth of TS waves. Neither of these two mechanisms for transient
growth has been demonstrated experimentally yet. In contrast, the spatio-
temporal growth shown in Sengupta et al. (2006, 2006a) and Sengupta &
Rao (2006) are similar to what is seen in ocean surface due to localized
disturbances in the sea-bed. Although the governing equations and flow
topology of the equilibrium flow may not bear exact resemblance.
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5.1 Landau’s Equation and Its Application for Flow Past a Cylin-
der

The linear theory of stability of a steady basic flow generally gives a
spectrum of independent modes with velocity perturbation of the form,

(K1) = 3 A0 5(K) + AL F(X) (5.1.1)
=1

where the quantities with asterisks denote complex conjugate. In the linear
stability theory, we generally focus upon one mode at a time- the so-called
normal mode analysis. If the complex amplitude of any one of the mode
that grows with time is given by,

Aj(t) = Const.e®" (5.1.2)

then it is easy to see that the evolution equation for the amplitude of this
mode is given by,

dA;

dt

In the linear theory, the natural choice of f; in (5.1.1) is the set of

eigenfunctions. If one relaxes the linearity approximation and use Galerkin
method, then the complex amplitude equation can be written as,

= SjAj (513)

dA,;
d7tj = SjAj + NJ(A]C) (514)
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where N;(Ag) provides the nonlinear action of all other modes on the j**
mode- including the self-interaction. In extending the linear theory, Landau
suggested that

N (Ar) = A;| A (5.1.5)

If there is only a single dominant mode, then the nonlinear action will
be restricted to self-interaction only. In such a case, the above equation can
be written down as

dA .

where s = 0, +iw and [ = [, +il;. Substitution of these and some algebraic
manipulation gives for the real part of the equation as,

dlA]?

dt

20, |A> — 1| A* (5.1.7)

where A = |Ale? and the imaginary part of the Landau equation is given
by

db li, 9
o =34 (5.1.8)

For different systems, we have different signs of the real and imaginary
part of Landau coefficient [. Here, we will keep our attention focused to flow
past a circular cylinder, that works as a prototypical model for bluff-body
flow instability. This instability begins as a linear temporal instability and
its first appearance with respect to the Reynolds number is referred to as
Hopf bifurcation. Thus, the Reynolds number at which the first bifurcation
occurs is given by Re... Thus, above Re, : the value of o, > 0 signifies
linear instability. One of the most important aspect of this linear instability
is the subsequent non-linear saturation that can be adequately explained by
the Landau’s equation, if only [, is positive. We will focus upon this type
of flow only in the next.

We also note from Eqn. (5.1.7) that an equilibrium amplitude is achieved
after the nonlinear saturation and this is given by,

|Aeg = /20, /1, (5.1.9)

Similarly, one can also obtain the equilibrium Strouhal number after
the nonlinear saturation from Eqn. (5.1.8). In the following, we discuss
specifically about the flow past a circular cylinder.



T. K. Sengupta 183

5.2 Instability of Flow Past a Cylinder

Vortex shedding behind a circular cylinder is explained theoretically as
a Hopf bifurcation which is a consequence of linear temporal instability of
the flow. In this point of view, the above temporal instability is moderated
by nonlinearity of the system, that is quite adequately explained by Landau
equation, as given in Landau (1944) and Drazin & Reid (1981). Earlier
numerical investigations by Zebib (1987), Jackson (1987) and Morzynski &
Thiele (1993) have identified the onset of vortex shedding to be at a critical
Reynolds number (Re.,) between 45 and 46.

However, different values of critical Reynolds number Re..,. for flow past a
circular cylinder reported by various investigators show lack of unanimity in
defining an universal number. For example, Batchelor (1988) conjectured
it to be between 30 and 40; Landau & Lifshitz (1959) quoted it as 34.
Experimentally, different investigations obtained different Re.,: Kovasznay
(1949) obtained it as 40; Strykowski & Sreenivasan (1990) found it to be
between 45 and 46; Roshko (1954) reported a value of 50; Kiya et al. (1982)
have reported it to be 52; Tordella & Cancelli (1991) have reported it as 53
and Homann (1936) has reported it to be 65.2, a maximum value so far.

Theoretically, flow criticality is related to the onset of global linear insta-
bility, performed numerically by Jackson (1987), Zebib (1987), Morzynski
& Thiele (1993), who all have reported : 45 < Re., < 46. For steady flows,
we will identify this critical Reynolds number as Re.., , for the ease of future
discussion. Similarly, we will identify the critical Reynolds number value
indicated in Homann’s experiment as Re.,,. Hopf bifurcation describes the
passage of a dynamical system from a steady state to a periodic state as
a typical bifurcation parameter is varied, that in this case is the Reynolds
number (Golubitsky & Schaefer (1984)). The results of the numerical in-
vestigations mentioned above, relate to study of the flow system unimpeded
by noise or perturbations- barring numerical errors.

For flow instability problems, dispersion error is a major source of nu-
merical error that can significantly alter the flow dynamics. Even spurious
dispersion can lead to wrong spatio-temporal dynamics. This source of er-
ror has been overlooked so far, except in Sengupta, Ganeriwal & De (2003)
and Sengupta, Sircar & Dipankar (2006). The importance of preserving
physical dispersion of a system in a numerical sense is appreciated, while
investigating flow control problems. Vortex shedding for the flow past a
cylinder was controlled in Strykowski & Sreenivasan (1990) for Re < 120
and for this nominal two dimensional flow, only computational results are
given in Strykowski & Sreenivasan (1990) and Dipankar, Sengupta & Talla
(2007). In Strykowski & Sreenivasan (1990) an accurate Galerkin method
was used for an approximate geometry while the exact problem was solved
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Figure 5.1 Schematic showing the time history of lift and drags
coefficients for flow past a circular cylinder at Re = 100.

in Dipankar, Sengupta & Talla (2007) by a very accurate dispersion rela-
tion preservation (DRP) method, the same being used here. This has clearly
demonstrated the need to use DRP methods in studying instability prob-
lems. Flow past a circular cylinder is a typical example that also displays
nonlinear saturation of such instabilities.

5.3 Nonlinear Instability and Amplitude Equation

Terminology used here is as given in Fig. 5.1, showing the variation of
computed lift coefficient Cj, with time for an impulsive start of the flow
past a cylinder. It is noted that the amplitude of the lift variation always
attains the same value (not shown here) and the corresponding time period
is given by T' = 27 /w,, irrespective of the method used for the computation,
provided the same grid is used for these calculations.

Below Re..1, the real part o, is negative i.e. the small disturbances
damp, while above Re,1 the flow becomes temporally unstable in the linear
sense that would amplify the velocity and vorticity field, that can be traced
from the lift variation itself. Presence of the nonlinear term does not allow
uninhibited growth of such disturbances. Passage of o, from negative to
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positive value across Re.r1 heralds a qualitative change of the equilibrium
flow and this transition is referred to as the Hopf bifurcation.

Landau did not address the issue of phase angle (see Landau (1944)), it
was later derived by treating the landau coefficient [, as a complex quantity-
as given in the last section. Despite the nonlinearity of Eqn. (5.1.7), it is
readily integrable to provide

A2
|A]? = L (5.3.1)
(Ao/A)2 + 11— (Byzle=2e
where Ay is the value of A at t=0 and A, as defined before. Approach of
A to A. with t — oo indicates the independence of A. on Ag, as also noted
by the independence of computational methods.

While lots of attention have been paid on the real part of Landau’s
equation, the imaginary part has not been analyzed in great detail. As A
approaches its asymptotic value A., the circular frequency (%) also reaches
its asymptotic value, w.. Thus, the Strouhal number is found to be ampli-
tude dependent and is given by,

l;
We =W —0p— (5.3.2)
Ly

Instead of using this equation, in the literature, there are few models
proposed by which the frequency or Strouhal number of the shedding is
fixed. Koch (1985) proposed a resonance model that fixes it for a partic-
ular location in the wake by a local linear stability analysis. Upstream of
this location, flow is absolutely unstable and downstream, the flow displays
convective instability. Nishioka & Sato (1973) proposed that the frequency
selection is based on maximum spatial growth rate in the wake. The vortex
shedding phenomenon starts via a linear instability and the limit cycle-like
oscillations result from nonlinear super critical stability of the flow, describ-
able by Eqn. (5.3.1).

The discussion following Eqn. (5.1.8) imply a single Hopf bifurcation
when Reynolds number increases beyond Re.,. It is interesting to note that
Landau (1944) talked about further instabilities following the nonlinear sat-
uration of the primary instability mode. This is akin to Floquet analysis of
the resulting time periodic system (Bender & Orszag (1978)). The possibil-
ity of multiple bifurcation was also mentioned in Drazin & Reid (1981) who
stated that in more complete models of hydrodynamic stability we shall see
that there may be further bifurcations from the solution |A| =0, e.g. where
the next least stable mode of the basic flow becomes unstable, and from the
solution |A| = A.. To the knowledge of the present authors, no theoretical
analysis exist that showed multiple bifurcation before for this flow. Here,
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this is shown using the numerical simulation results following the method
of Dipankar, Sengupta & Talla (2007).

5.4 Numerical Simulation of Flow Past a Circular Cylinder

In the numerical simulation, two dimensional Navier-Stokes equation in
stream function- vorticity formulation is solved. While solving the vorticity
transport equation, the non- linear convection terms are discretized using
high accuracy DRP method of Sengupta, Ganeriwal & De (2003) and Sen-
gupta, Sircar & Dipankar (2006) that provides near-spectral accuracy in the
azimuthal periodic direction. A similar accuracy is attained at all interior
points in the radial direction, except at the boundary points. Because of
these, a (150 x 400) grid has been used in all the calculations reported here
with 150 points in the azimuthal direction. The loads have been calculated
by solving the Poisson equation for total pressure. Lift, drag and out of
plane moment have been obtained from these results. From the detailed
time variation of the drag history, as shown in Fig. 5.1, we estimated the
non- dimensional time t., at which asymptotic value of Cy is reached and
plotted its variation with Reynolds number in Fig. 5.2.

It is readily evident that this time ¢., reduces rapidly as the Reynolds
number increases beyond Re..5. Also as one approaches Re..; from above,
te increases in almost an unbounded manner. We emphasize that the peri-
odic variation of lift was obtained without any artificial excitation, as has
been done in many previous investigations. This figure qualitatively dis-
plays the fact that the instability and its supercritical saturation changes
when the Reynolds number transits through Re..o.

To understand better the qualitative and quantitative changes as the flow
transits through Re.-1 and Re..s, in Fig. 5.3, we have plotted the computed
asymptotic amplitude A, for different Reynolds numbers, shown by discrete
symbols. In Drazin & Reid (1981), o, is approximated to k(Re — Re.r1)
and thus Eqn. (5.1.9) becomes,

A, ~ {2k(Re — Reerr) /1, Y12 (5.4.1)
Here, A, varies qualitatively as, €!/2, where ¢ = Re — Re.,. We have
drawn three continuous lines (to represent different segments of Fig. 5.3)
that can be parametrically represented as

Ae = [kie + koe? + kze® + kqet]t/? (5.4.2)

The solution as given by Eqn. (5.4.1), contains only the first term of
Eqn. (5.4.2). Also note that in describing this variation, the Re., used
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Figure 5.2 Non dimensional time at amplitude saturation vs
Reynolds number.

in € corresponds to three different values indicated in the last column of
Table-5.1 and marked in Fig. 5.3.

Table 5.1: Coefficients used in the saturation amplitude equation

(Eq.(5.4.2))
Rey No. range | ki x 10* | ko x 10% | ks x 10% | k4 x 107 Re,,
51.934 to 80 7.69 92.6 —674 136 51.934
80 to 133 24.4 —51.0 105 —7.2 63.868
133 to 250 25.7 —9.58 7.6 —0.21 84.6154

In turn, these three critical Reynolds number values along with the k;s
(shown in Eqn. (5.4.2)) have been obtained by using direct simulation data
in Eqn. (5.4.2) for different Reynolds numbers, in the appropriate range. It
is noted that the k;s have values in the same range for these three Reynolds
number intervals, except k1. In the second interval, ki increases roughly
by a factor of 18 and is compatible with Fig. 5.3. As the previous linear
stability results from Jackson (1987), Zebib (1987) and Morzynski & Thiele
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Figure 5.3 Variation of Saturation amplitude of lift coefficient
with Reynolds number.

(1993) indicate a smooth variation of o, across Re.1 as well as Regpa, it
is therefore correct to state that the discontinuous changes observed in the
amplitude curve are due to rapid changes associated with decreasing value of
the Landau coefficient. Thus, the qualitative change across critical Reynolds
numbers may be attributed due to change in the non-linear property of the
fluid dynamical system. It is also noted that ks, k3 and k4 are orders of
magnitude different from k; and are unimportant near respective Re., and
only helps in explaining smooth transition from one interval of Reynolds
number to the other.

It is noted that k4 is comparatively dominant in the first interval, while
ks reduces by nearly two decimal places from the first to third interval. As
these extra terms are needed near the overlap region of the intervals, their
presence indicate an interaction of the higher order modes of the system,
before transiting to the next interval. Fig. 5.3 indicates that the first Hopf
bifurcation occurs at Re.,;1 = 51.934. Difference between this value and the
other values given by Jackson (1987), Zebib (1987) and Morzynski & Thiele
(1993) is essentially due to different error sources of different methods ac-
cumulating to trigger vortex shedding in the wake. An accurate method
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that is less affected by the dispersion and numerical dissipation will indi-
cate a higher Re..1, without significant difference. However, if the error
in computation or disturbance in an experiment can be damped, as in the
experiments of Homann (1936), then the first criticality can be completely
bypassed. The high viscosity of the working fluid in the experiment works
like a source of dissipation in the wake (as shown in Strykowski & Sreeni-
vasan (1990) experimentally and in Dipankar, Sengupta & Talla (2007)
computationally) by a small control cylinder.

It is also possible that one can re-interpret the Landau equation and
write its amplitude variation by,

d
£|A\2 =20, A —IL|A[* (5.4.3)
Where,

Ly

I =
ko ks 2 | ka 3
1+k16+k1€ +k1€

s

(5.4.4)

In Eqn. (5.4.4), the Landau coefficient I/, is truly a constant independent
of Re; its dependence on Reynolds number comes from the factor in the
denominator through . Once again, one would need different values of k;s
for different Reynolds number ranges- as given in Table 5.1.

In Fig. 5.3, computed A, is also compared with the correlation proposed
by Norberg (2003)- based on his experimental results. For his experimental
facility, Re..1 = 47 and in the range 47 < Re < 190 asymptotic amplitude
variation (r.m.s.) with Re is given by, Ac = (55 + %)1/2. Whereas, in
the range 165 < Re < 230 this is simply replaced by, A, = 0.43. The
main trends appear to be similar with discontinuities indicated in the range
165 < Re < 190 in Norberg’s correlation, due to change from parallel to
oblique shedding in the wake (see Williamson (1989)).

Some investigators have studied the effects of noise on pitchfork and Hopf
bifurcation and reported finding changed critical parameters. For example,
Juel, Darbyshire & Mullin (1997) reported only 0.2% change in the param-
eter value towards sub-criticality when measured with respect to Landau
model. This is indeed a very small change as compared to experimental
value of critical parameter that is more than 50% for the flow past a cylin-
der. The estimates in Juel, Darbyshire & Mullin (1997) are with respect
to white noise, that is hardly typical of experimental facilities. Interest-
ingly, Wiesenfeld & McNamara (1986) have reported that near the onset of
dynamic instability, any time-periodic system can act to amplify small pe-
riodic perturbations, whose details depend solely on the type of bifurcation
involved. In a tunnel, presence of such periodic perturbations can not be
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Figure 5.4 Variation of Strouhal number with Reynolds number.

ruled out and that can explain a whole range of Re., reported experimen-
tally. Based on this discussion, one can conjecture that the appearance of
Re.,1 and Re..o are due to the presence of such small periodic perturbations.
In Homann’s experiment the viscous dissipation of the working fluid could
delay vortex shedding, while in Strykowski & Sreenivasan (1990), presence
of small control cylinder acted as a source of dissipation that helped in sup-
pression of shedding to higher Reynolds number. Present investigation was
restricted up to Re ~ 250, as beyond which flow can not be represented by
two dimensional simulation (see Henderson (1997)). Thus, the existence of
any other critical Reynolds number beyond Re,,3 is of lesser interest.

In Fig. 5.4, the computed Strouhal number is shown plotted against
Reynolds number by discrete symbol and solid line. In the same figure, the
dotted curve shows the correlation proposed by Norberg (2003) based on
experimental data from his facility. The empirical correlations are given

by, St = 0.2663 — L22 for 47 < Re < 190 and St = —0.089 + 222 +

7.8 x 107* x Re for 165 < Re < 260. Thus, it is very apparent that in the
experimental facility of Norberg (2003), the Strouhal number variation is
discontinuous or non-unique in the range 165 < Re < 190. This is due to the
difference between parallel and oblique shedding in the wake, that has also
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Figure 5.5 Circular frequency of linear instability and its
nonlinear supercritical saturation plotted as a function of
Reynolds number.

been addressed in Hamache & Gharib (1991) and Williamson (1989). Our
calculated Strouhal number displays a distinct slope discontinuity around
Re ~ 60, and is consistent with Eq. (4.3.2) that shows the nonlinear effect of
the Strouhal number through its dependence on amplitude. It is interesting
to note that Tordella & Cancelli (1991) have reported a Strouhal number
discontinuity at around Re ~ 90, that was also reported by Tritton (1970).

The nonlinear effects on vortex shedding is also demonstrated in Fig.
5.5, where the present computed Strouhal number is compared with linear
global stability results of Morzynski & Thiele (1993). Having obtained w,
by direct simulation, one can estimate the imaginary part of the Landau
coefficient by using Eq. (5.3.2) employing the linear stability results of
Morzynski & Thiele (1993). These results for the variation of 7; with Re
is shown in Fig. 5.6, in the limited range of Reynolds numbers, for which
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Figure 5.6 Variation of Imaginary part of Landau coefficient with
Reynolds number.

linear stability results are available. In following this, we are assuming that
the global linear stability analysis would produce identical numbers for o,
and w for different methods, domains and grids. However, the qualitative
trends for the variation of [; with Re will essentially be same. In this figure,
Re.1 is marked for reference, at which [; should be infinitely large. It is
also noted that for most of the Reynolds number range, l; # 0, implying
the phase to be always dependent upon the amplitude, as indicated by Eqn.
(5.3.2).

Landau’s amplitude and phase evolution equations, as obtained by treat-
ing Landau’s constant as a complex quantity, have been used for the analysis
of the direct simulation. These equations are re-interpreted here and modi-
fications proposed in the light of multiple bifurcations. Also, the amplitude
and the phase variation with Reynolds numbers obtained by numerical simu-
lation are compared with the correlations proposed by Norberg (2003) based
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on his experimental data. Results of linear stability theory by Morzynski
& Thiele (1993) are used in obtaining the variation of imaginary part of
Landau coefficient. A discontinuity found experimentally at low Reynolds
number in the St - Re curve by some investigators can also be explained as
the amplitude-dependent behaviour of the phase; while, the discontinuity
reported at higher Reynolds number, are due to change of mode of shedding
from parallel to oblique mode.
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6.1 Introduction

The spatial stability properties of a mixed convection boundary layer
developing over a heated horizontal plate is studied here under linear and
quasi-parallel flow assumption. The main aim of the present work is to
find out if there is a critical buoyancy parameter that would indicate the
importance of heat transfer in destabilizing mixed convection boundary lay-
ers, when the buoyancy effect is given by Boussinesq approximation. The
undisturbed flow used here is that given by the similarity solution of Schnei-
der (1979), that imply the wall temperature to vary as the inverse square
root of the distance from the leading edge of the plate. The stability of this
flow has been investigated by using the compound matrix method (CMM)-
that allows finding all the modes in the chosen range in the complex wave
number plane for spatial stability analysis. Presented neutral curves for
mixed convection boundary layer show the existence of two types of distur-
bances present simultaneously, for large buoyancy parameter. One notices
very unstable high frequency mode when the buoyancy parameter exceeds
the above mentioned critical value. This unstable thermal mode is in addi-
tion to the hydrodynamic mode of isothermal flow given by corresponding
similarity profile.

Mixed convection flows are important as they are found in many practical
situations- in nature and man-made devices. For problems of the contin-
uum they are as relevant for atmospheric dynamics at planetary scale to
that for electronic devices at micro-scale. Mixed convection differs from
isothermal flow due to the induced buoyancy effects via heat transfer. It
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has been noted by Brewster & Gebhart (1991) that in natural convection
and in mixed regime, the instability is due to growth of small disturbances.
For natural convection this is a narrow-band phenomenon while for forced
convection boundary layers the unstable frequency-band is wider. Buoyancy
forces- even when they are small- can not be neglected when the convec-
tion velocities are small or the temperature difference between the surface
and the ambient is large. A comprehensive review of the heat transfer as-
pect of mixed convection can be found in Gebhart et al. (1988). For some
flows the induced body forces are either parallel or anti-parallel to the mean
convection direction- as in the case of mixed convection flow past vertical
plates.

However, the flow and heat transfer properties are more complicated
when mixed convection flows are considered past inclined or horizontal
plates. This is due to the fact that the buoyancy forces induce a longitu-
dinal pressure gradient that will directly alter flow and heat transfer rates.
This is readily evident by looking at Equns. (6.2.2) and (6.2.3) describing
the mean flow. Additionally, such imposed pressure gradient also alters the
instability pattern. For example, Eckert & Soehngen (1951) (as reported in
Brewster & Gebhart (1991)) have shown using visualization that transition
to turbulence for natural convection problem follows the instability of small
disturbances. For natural convection past inclined flat plates, Sparrow &
Husar (1969) have reported generation of an array of longitudinal vortices.
Lloyd & Sparrow (1970), Zuercher et al. (1998) have experimentally inves-
tigated instability of flow past inclined plate and reported presence of two
modes depending on the inclination angle of the plate. When the inclination
angle with respect to the vertical is less than 14° then the authors reported
wave-like instability. Such wavelike instability has also been studied in Chen
& Moutsoglu (1979). For inclination angles greater than 17°- for the natural
convection problem- it is noted experimentally that the disturbance field is
dominated by vortices and is often termed as vortex instability. This vortex
mode of instability is present for both the horizontal and inclined plates.
This has been variously studied in Haaland & Sparrow (1973), Wu & Cheng
(1976), Shaukatullah & Gebhart (1978), Gilpin et al. (1978), Moutsoglu et
al. (1981) and Wang (1982) among many other such studies. In an alter-
nate view-point Hall & Morris (1992) classify instability of forced-convection
boundary layers over horizontal heated plates in terms of the two prototyp-
ical instabilities: Rayleigh-Benard type that is usually described for closed
convection system heated from below and Tollmien -Schlichting type that is
typical of isothermal open flows- as in wall bounded shear layers triggered
by viscous instability. Hall & Morris (1992) in their theoretical analysis
report the simultaneous presence of both the modes that coalesce in the



T. K. Sengupta 197

small wave number limit.

As the instability in mixed convection flows start off as growing small
disturbances, linear stability is often used to analyze such flows. The anal-
ysis has been traditionally performed using temporal theory, as in Mucoglu
& Chen (1978) for mixed convection flow along an isothermal vertical flat
plate. The effect of buoyancy was studied by the temporal theory of a flow
perturbed by small buoyancy induced body force. The primary mean flow
was obtained by local non-similarity method and they reported for assist-
ing flows the buoyancy force to stabilize the flow. One should, however,
note the critique of various non-similar flow descriptions used in instability
studies given in Brewster & Gebhart (1991). For an inclined plate the ear-
liest instability study was by Chen & Moutsoglu (1979) and for horizontal
isothermal plate by Chen & Mucoglu (1979). The results of these studies
indicated that the flow along vertical and inclined plates are more stable
when the buoyancy force aids external convection and stability decreased as
the inclination angle approached towards the horizontal. It was also noted
for horizontal plates the flow to become more unstable when the buoyancy
force is directed away from the surface.

However, the experimental studies relate to spatial growth of distur-
bances as the flow system is always excited by fixed frequency sources.
Hence a spatial theory is preferred to study the stability of non-isothermal
flows. Despite the distinction between temporal and spatial methods, the
neutral curve, however, is identical. Iyer & Kelly (1974) reported results us-
ing linear spatial theory under parallel flow approximation for free-convection
flow past heated, inclined plates. Tumin (2003) also reports the spatial
stability of natural convection flow on inclined plates providing the eigen
spectrum.

Here, we will investigate the stability property of mixed convection flow
past a heated horizontal plate, to provide the threshold buoyancy param-
eter that alters the instability property qualitatively. Such a problem is
of importance for many engineering applications and in geophysical fluid
dynamics. We also note that Steinriick (1994) has shown, for mixed con-
vection over a horizontal plate that is cooled to exhibit non-uniqueness and
numerical instabilities for the corresponding boundary layer equation, that
would not affect the analysis when the plate is heated.

When Boussinesq approximation is adopted in full conservation equa-
tions, it is noted that the effect of buoyancy force appears in terms of
Gr/Re?, where Gr is the Grashof number and Re is the Reynolds num-
ber defined in terms of appropriate length, velocity and temperature scales.
However, Leal et al. (1973) and Sparrow & Minkowycz (1962) have shown
that the equivalent buoyancy parameter with the boundary layer assump-
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tion changes to K = Gr/Re5/ 2. Experimental investigations by Wang
(1982) and Gilpin et al. (1978) have also demonstrated that the onset
of instability always occurs at the same value of K- underlying the impor-
tance of it as the relevant buoyancy parameter. We note that the similarity
profile derived by Schneider (1979) is given in terms of the same buoyancy
parameter. In defining the mean flow past a horizontal flat plate we use the
same in the present study. It will be one of the main aim here to identify
a critical value of K beyond which the transport property changes quali-
tatively for a mixed convection flow past horizontal plate. It is noted by
Chen, Sparrow & Mucoglu (1977) that with respect to heat transfer results,
significant buoyancy effects are encountered for K, > 0.05 and K, < —0.03
for aiding and opposing flow past horizontal plate, where K, = Gr,/ Rei/ 2
In studying the stability properties of flow over a heated horizontal plate,
present work is kept within this limit given by Chen et al. (1977).

As compared to the canonical problem of instability of flow past a plate
for isothermal flow, the study becomes involved and complicated when heat
transfer effects are introduced. It is known that the viscous action can be
destabilizing for isothermal flows, giving rise to Tollmien-Schlichting waves.
For flow past a heated horizontal flat plate, buoyancy force is an additional
source of destabilization and both these destabilizing effects can enhance in-
stabilities. Such effects have not been studied in great details due to numeri-
cal problems. Addition of heat transfer effects necessitates incorporating the
energy equation - that requires solving sixth order stability equation, instead
of fourth order equations for isothermal flows. In reporting results Chen &
Mucoglu (1979) have used Runge-Kutta integration scheme along with the
Kaplan filtering technique to avoid numerical difficulties. Tumin (2003) has
used both Chebyshev collocation and Runge-Kutta integration schemes to
solve the ninth order stability equation. In the collocation method 70 modes
were taken and Runge-Kutta method required Gram-Schmidt orthonormal-
ization procedure to maintain linear independence of the components of
fundamental solutions.

One of the major obstacle in the study of instability is that the funda-
mental solutions of the composite system displays variation of variables at
totally dissimilar rates, when the independent variable changes. This is the
well known problem of stiffness and is variously avoided by different tech-
niques for solution. The main three approaches in solving hydrodynamic
stability problems are based on (see Drazin & Reid (1981) and Schmid &
Henningson (2001) for description): (i) matrix method using spectral or fi-
nite difference discretization; (ii) shooting methods using orthogonalization
or orthonormalization and (iii) shooting method using Compound Matrix
Method (CMM). The Chebyshev collocation method belongs to the first
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category, while the Runge-Kutta method with orthonormalization or Ka-
plan filter belongs to the second category. Bridges & Morris (1984) have
noted that the matriz method leads to the appearance of “spurious” eigen-
values. For plane Poiseuille flow, Bridges & Morris (1984) reported both
stable and unstable spurious eigenvalues with large distinguishable magni-
tude. According to Allen & Bridges (2003), such spurious eigenvalues are
created due to fracturing of the continuous spectrum for problems in infi-
nite domain. Moresco & Healey (2000) have used a QR algorithm based on
Chebyshev polynomials for the spatio-temporal study of mixed convection
boundary layers developing over a vertical plate. It has also been noted by
Allen & Bridges (2003) that orthogonalization/ orthonormalization proce-
dure causes numerical solution to be non-analytic and on infinite domains
there is the added problem that asymptotically correct boundary conditions
may not preserve analyticity. Kaplan filter-based method also suffers from
this source of error. In contrast, CMM does not suffer from any of these
problems. Basic ideas behind CMM are given in Allen & Bridges (2002), Ng
& Reid (1985) and Drazin & Reid (1981). CMM has been re-developed us-
ing exterior algebra in a co-ordinate free context in Allen & Bridges (2002).
CMM has been used in Sengupta et al. (1994) for receptivity analysis and
reporting the eigen-spectrum of Blasius boundary layer. Some improve-
ments to CMM have been suggested in Sengupta (1992) to obtain eigen
functions correctly. Allen & Bridges (2003) solved the stability problem
of Ekman boundary layer interacting with a compliant surface by solving
a sixth order system. Ng & Reid (1985) had developed CMM for general
fourth and sixth order systems. For the mixed convection problem over a
heated horizontal flat plate investigated here, CMM is used.

The governing equations are given in the next section. The mean flow,
whose stability will be studied, is given in the section 6.3. The stability
equations and related numerical methods for CMM is given in section 6.4.
The results and discussion follow in section 6.5. The chapter closes with
some comments and outlook in section 6.6.

6.2 The Governing Equations

We consider the laminar two-dimensional motion of fluid past a hot
semi-infinite plate, with the free stream velocity and temperature denoted
by, Us and T,. We will focus our attention on the top of the plate, for
which the temperature is T,,- that is greater than T.., while assuming the
leading edge of the plate as the stagnation point. Governing equations
are written in dimensional form (indicated by the quantities with asterisk),
along with the Boussinesq approximation to represent the buoyancy effect,
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for the velocity and temperature fields by (Gebhart et al. (1988)),

VVE=0 (6.2.1)
DV* N 1, -
D = 9T = Toe) = VP + VIV (6.2.2)
DT 2 v q
=aV*™=T" + — 2.

where % represents the substantive derivative and ¢, and ¢ are the vis-
cous dissipation and the heat generation term in the energy equation. g; =
[0,g,0]T is the gravity vector; a and v are the thermal diffusivity and kine-
matic viscosity respectively; [ represents the volumetric thermal expansion
coefficient. In our analysis we will neglect the viscous dissipation and the
heat source term.

If we introduce a length scale (L), velocity scale (U ), temperature scale
(AT =T, — Ts) and pressure scale (pUZ2), then the above equations can
be represented in non-dimensional form by,

V.V = (6.2.4)
DV Gr 1 oo
DT 1,
—_— .2.
Dt RePr (6.2:6)

where T'= (T — T ) /AT and Gr = 9‘3%7;”3; Re = Y=L and Pr=v/a. In
the momentum conservation equation, the quantity Gr/Re? is also known as
the Richardson number or Archimedes number. The Grashof number weighs
in the relative importance of buoyancy and viscous force terms and in the
mixed convection regime the Richardson number/ Archimedes number is of
order one.

6.3 Mean Flow Equations

The mean flow equations are obtained by invoking boundary layer ap-
proximation to the above conservation equations. For the two-dimensional
steady incompressible flow with constant properties and Boussinesq ap-
proximation, the non-dimensional equations are written in a Cartesian co-
ordinate system, fixed at the leading edge of the semi-infinite horizontal flat
plate as,

ou Ov
- = 3.1
8x+8y 0 (6.3 )
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ou  Ou 10p 0%u

10p
0=gB8(T —Tx) — —— 6.3.3
9B(T ~T) = L (633)
2
or or_ oT (6.3.4)

“or TVoy T %o

Following the notations and non-dimensionalization schemes of Schnei-
der (1979), these equations are written as,

oU oV

3% Ty =0 (6.3.5)
ou ou oP  0°U
oP
0=K0— = (6.3.7)
2
vy 108 (6.3.8)

0X oY  ProYy?
where X = /L; Y = yvVRe/L; U = u/Us; V = VRev/Us; 0 = (T — Tsy);
and P = p/(psoU2). Furthermore, in the above equation, K = Ar/v/Re,
which is identical to that defined in the previous section.

These equations are solved subject to boundary conditions at the wall
Y=0and X >0): U=V =0 and 0 = 6,(X); and at the free-stream
(Y —o00): U=1and § =P =0.

In the above set of equations, (6.3.5) is automatically satisfied if we
introduce a stream function (¢). As P indicates an excess pressure over
the free-stream value, then (6.3.7) can be integrated to P = — [0° K6dY .
When these are introduced in the x-momentum and the energy equation,
one gets

Yyvxy —xyy — K/Y OxdY = Yyyy (6.3.9)

1
Yylx —¢Yxby = ﬁayy (6.3.10)

It is shown in Schneider (1979), that the above formulation admits sim-
ilarity solution, if #,, o« X ~'/2 and for which a similarity transformations
is introduced for the independent variable: n = Y X ~'/2 and for the depen-
dent variables via: 1 = X/2g(n) and § = 0,,0. These transformation yield
the following system of equations,
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2¢"" + gg" + Kn© =0 (6.3.11)

2
PTGH +90' +40=0 (6.3.12)

In these equations a prime indicates a derivative with respect to the
independent variable, . These equations have to be solved subject to the
boundary conditions at n =0: g=¢ =0and © =1 and asn — co: ¢’ =1
and © = 0. The energy equation can be furthermore integrated analytically
once to obtain,

/
2 — 3.1
P@+g@ 0 (6.3.13)

Note that the solutions depend on Reynolds number, that is implicitly
included in the Y or n co-ordinate itself. The numerical results of these
were presented in Schneider (1979) and an interesting feature of it was seen
that the wall slope for © is equal to zero for all values of K-, implying the
solution to be given for adiabatic wall condition.

6.4 Stability Equations and Numerical Method

Here the stability equations for two dimensional plane flows have been
derived, by starting from the non-dimensional Eqns. (6.2.4) -(6.2.6) given

by,

%Jr% —0 (6.4.1)
ZL+U?;+U?;:_25+};(§?;+2?;) (6.4.2)
88% +ug—§ + U% = ﬁ (g?; + g;q;) (6.4.4)

For the stability analysis, all the physical variables would be split into the
mean part, derived in section 6.3, and a disturbance component indicated
by a caret in the following,
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u(z,y,t) = U(z,y) + ez, y,t)
v(z,y,t) = V(x,y) + ei(x,y,t)
p,y,t) = P(x,y) + ep(z,y,1)

T(x,y,t) =T+ €T (x,y,t)

The quantities with the over-bar are related to the mean flow solutions
of the previous section, via the appropriate transformations. The stability
equations are obtained by making the additional parallel flow assumption,
U=1U(y), V=0and T = T(y) so that a normal mode spatial instability
analysis is possible by looking for a solution of the linearized equations of
the following form:

[@,,5.T] = [f (), 6(y), w(y), h(y)]e' e~ (6.4.5)

After substituting (6.4.5) into (6.4.1) to (6.4.4), one can obtain the sys-
tem of equation governing the disturbance amplitude functions as,

ikf+¢' =0 (6.4.6)

i(kU —w)f +U'¢p = —ikm + é(f” —k2f) (6.4.7)
. 7 G 1 /!

(kT — w)¢ = R—Zh — 7 (67— K9) (6.4.8)

i(kU —w)h+T'¢p = 1 (h” k2h) (6.4.9)

In these equations, prime once again denote differentiation with respect
to y. One can eliminate 7 and f from these equations to obtain,

Gr

i(kU —w)(k*¢p— ¢ +ikU" ¢ = —th— o™ —2k2¢" +k*¢) (6.4.10)

Re (
1
RePr

These are the well-known Orr-Sommerfeld equations for mixed convec-
tion flows, that show the disturbance normal velocity and the temperature
fields to be coupled, constituting a sixth order differential system. Equa-
tions (6.4.10) and (6.4.11) are to be solved subject to the six boundary
conditions:

i(kU —w)h +T'¢p = (" — k2h) (6.4.11)

at y=0:¢,¢' =0 and h = constant (6.4.12)
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as y—oo: ¢, ¢, h—0 (6.4.13)

The indicated boundary conditions imply the forcing of the system by
thermal input on the wall, while the disturbances decay in the far stream, as
y — 00. Equations (6.4.10)-(6.4.11), together with the boundary conditions
(6.4.12)-(6.4.13) reveal an interesting phenomenon that the temperature
field given by (6.4.11), decouples from the velocity field in the free stream
(y — 00), as T’ =~ 0 there. The characteristic modes at free stream are
given by: A5 = FS, where S = [k? + iRePr(k — w)]*/2. However, the
disturbance momentum equation is not decoupled, as (6.4.10) at the free-
stream simplifies (as U = 1 and all mean flow derivatives are zero) to

ik~ w)(K6 — ") = 2K — = (

¢ — 2k2¢" + ko) (6.4.14)

This equation for the disturbance amplitude of normal component of
velocity represents a forced dynamics with the thermal field acting as the
forcing. The homogeneous part of the solution is governed by the following
characteristics, A\; 2 = Fk and A3 4 = FQ where Q? = k* +iRe(k —w). Out
of these six characteristic values, we will discard those modes that grow
with y. Let us identify the admissible fundamental solution components by,

br=e p3=e"Y  and ¢5=e" (6.4.15)

when the real part of k,Q and S are all positive. For this combination of
fundamental solutions, the particular solution is of the type ¢, = Che %Y in

the free stream where, C,, = %/ [5’4 —2k%2S? + k*+iRe(k —w)(k?—S?)].

We will represent the governing stability equations as a set of six first
order ordinary differential equations by introducing the vector:

u(y7 ) = [ul (y7 ')a ’ng(y, ')7 ’ng(y, ')7 u4(y, ')7 u5(y7 ')7 u6(y7 )]T

Where, u1 = ¢, us = ¢, ug = ¢, uy = ¢, us = h and ug = h’. The
governing system of equations given by (6.4.10) and (6.4.11) can be written
as,

{u}} = [A{u;} (6.4.16)

Thus, u is defined by u € C® and where the matrix A is written as,
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0O 1 0 0 0 O
0O 0 1 0 0 O
0O 0 0 1 0 O
A= —a 0 b 0 ¢ 0
0O 0 0 0 0 1
e 0 0 0 d O

with, a = k* + iRekU"” + iRek?(kU — w); b = 2k + iRe(kU — w); ¢ =
k*Gr/Re; d = k? + iRePr(kU — w) and e = RePrT’.

The problem is to integrate (6.4.16) on C° that are defined on an interval
y € [0,00] with three boundary conditions at y = 0 -as defined by (6.4.12)
and three asymptotic boundary conditions applied at y = Y., for some
Yo > 0- as defined by (6.4.13). The integration of (6.4.16) subject to
boundary conditions (6.4.12) and (6.4.13) is not straightforward - due to
the stiffness problem discussed in the introduction. For the purpose of
removing the stiffness of the problem and integrate the ODEs we will employ
the CMM- as described next.

6.4.1 Compound Matrix Method For The 6!* Order System

The general methods for 4" and 6" order system are as given in Ng &
Reid (1985) and the specific formulation presented here is for the 6t or-
der system for mixed convection flow. Allen & Bridges (2002) have listed
other references where the compound matrices have been used to integrate
stiff linear system without requiring any orthogonalization process. To our
knowledge, CMM has not been used for the study of stability of mixed con-
vection flow before- Allen & Bridges (2003) have used it for the 6" order
system defining a problem of hydrodynamic stability and the present study
is similar in mathematical scope.

While the general method can be found in Ng & Reid (1985) and Allen
& Bridges (2002, 2003), only the essential details are given here for the
mixed convection instability problem. In this method an induced system
is constructed, determined by the set of asymptotic boundary conditions
at y = Y, that in turn is governed by the analytic nature of solution at
y — oo. This procedure converts the original boundary value problem
into an initial value problem, while removing the stiffness of the differential
system. For the sixth order system, this is equivalent to projecting the
solution on a subspace of CY, with the help of three decaying boundary
conditions for y — Y., following the notations of Allen & Bridges (2003)-
into A3(C®). Similarly, the boundary conditions at y = 0 defines a second
three dimensional subspace of C5. The problem is thus reduced to linking
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these two three-dimensional subspaces satisfying (6.4.16). Any subspace
spanned by three linearly independent vectors {¢1, @3, d5} (as defined in
(6.4.15)), is represented notationally as a point ¢1Ad3zA¢s, in the vector
space A3(C%), where A is the wedge product (Allen & Bridges (2003)).

Let us introduce the following basis e; = [¢1, @3, ¢5]; €2 = [P, &%, PL];

es = 01,64, 0] ¢4 = [61, 6, ) e5 = (017, 657, 08 and e = |61, o, o]
in C% then all the elements of e;Ae;Aey, form the basis for A3(CS) with
the dimension 3% = 20. The solution matrix [¢1¢3¢5], thus has twenty

(3% 3) minors- that are also called the second compound (Ng & Reid (1985))
denoted by,
_ T
Yiji = [eiejex] (6.4.17)

where ¢t =1,2,3,4; j=¢+1,..5and k = 5 + 1...6.

If we let y = [y123, Y124, Y125, ----Yas6] , then by direct calculation it can
be shown that y satisfy the following set of linear coupled first order equation
given by

y'=B(y)y (6.4.18)
where the B matrix elements are given in Ng & Reid (1985) and Allen
& Bridges (2003) for sixth order systems. By listing down the compound
matrix variables in a lexicographic fashion i.e. y1 = y123; Y2 = Y124 ------ Yoo =
Y456, one can obtain the induced system equations as

Y1 =12 (
Yo = by1 +cys +ys (
Ys = Y1+ Yo (
yy = dys +yr (
Y5 = Y6 + Y11 (
Y6 = Y7 + Ys + Y12 (6.4.24
yr = dys + Yo + Y13 (
Ys = bys + Yo + Y14 (
Yo = byr + dys + cy10 + Y15 (
Y10 = Y16 (
Y11 = —ay1 + cyiz (
Y12 = Y13 + Y14 (
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Y13 = ey + dyi2 + s (6.4.31)

Y4 = ays +byi2 + Y15 + yi7 (6.4.32)

Y15 = ey2 + ays + byiz + dyia + cyic + yis (6.4.33)
Y16 = €ys + Yuo (6.4.34)

Y17 = ays + Yis (6.4.35)

Yis = eys + ayr + dyi7 + cyo (6.4.36)

Y19 = €Yo + Y20 (6.4.37)

Yso = €Ys — ayio + by1o (6.4.38)

where the primes indicate differentiation with respect to y, the wall-normal
coordinate. Introduction of the second compounds as the unknown of the
problem, helps remove the stiffness of the problem, thereby allowing any
standard integration procedure to integrate (6.4.19)-(6.4.38). However, we
have also mentioned before that the usage of asymptotic boundary condi-
tions at y — oo allows us to convert the boundary value problem to an
initial value problem- that is discussed next.

6.4.2 Initial Conditions for The Induced System

The property of the fundamental solutions, allows us to truncate the domain

of investigation up to Y, and this is used to convert the BVP into an IVP-

as shown here. Using (6.4.15) into the definition of the second compounds,

as given by (6.4.17), and scaling the expressions by e~ (F+Q@+5)Y (for the
case of real(k,Q,S) > 0) one gets,

Y1oo = S2(k — Q) + Q*(S — k) + K*(Q - 5) ( )

Yooo = =% (k = Q) = Q*(S — k) = k*(Q - 5) ( )

Ysoo = Sk — Q)+ QY (S — k) +K1(Q —5) ( )

Yaoo = —8°(k = Q) = Q*(S — k) —k>(Q = 5) ( )

Ysoo = S3(K? — Q%) + Q*(S* — k) + k3(Q* — S?) (6.4.43)

Yooo = —5'(K* = Q%) — QU(S* — k*) — kY (Q* — 5?) ( )

Yroo = S°(k? — Q%) + Q°(S* — k) + k°(Q* - 5?) ( )

Ysoo = S (K — Q%) + QU(S® — k%) + k(@ — 5°) ( )

Yooo = —S°(k* = Q%) = Q°(S° — k) = k°(Q* - 57) ( )
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Yi0oe = S°(K' = QM) + Q°(S* — k") + £°(Q" — 57 (6.4.48)

Yoo = S (kQ* —K*Q) + Q°(SK? — S%k) + k*(QS? — 5Q%)  (6.4.49)
Y120o = SH(QF —kQ?) + Q" (kS® — SK?) + k' (SQ* — QS%)  (6.4.50)
Yizoe = S°(kQ? — QK?) + Q°(Sk* — S%k) + k*(QS* — Q*S)  (6.4.51)
Yoo = SU(KQ* — K°Q) + Q*(SK® — S%k) + k*(-5Q° + QS®)  (6.4.52)
Yiseo = S (K°Q — kQ?) + Q°(S°k — k*S) + K°(SQ* — QS®)  (6.4.53)
Y1600 = S°(KQ" — K'Q) + Q5(5k‘4 —kSY) +k°(QS" — 5Q4) (6.4.54)
Y7o = SHQ?K* — K2Q%) + Q1 (K*S° — S?K°) + K (S?Q° — S?Q?) (6.4.55)
Yisoo = S°(K2Q% — K°Q%) + Q°(S*k® — k*5%) + k°(5°Q* — 52Q3)(6456)
Yiooo = S°(Q%k* — k2Q4) + Q5(S4k2 k1SY) + E°(S2QY — S'Q%) (6.4.57)
Y200e = S°(Q'K* — Q%K) + Q°(S°k* — k2S%) + k> (5°Q° — S3Q4) (6.4.58)
While evaluating @@ and S one can always choose the mode with posi-
tive real part, it is not necessarily so while obtaining the response field by
integrating (6.4.18) along the Bromwich contour when real(k) < 0. In such
instances, one can develop similar initial conditions. It is now easy to see
from above as to how CMM avoids the stiffness of the original problem.
While the individual components of the fundamental solutions, as given
by (6.4.15) decays with height differently due to the disparate value of the
characteristic exponents, the second compounds y, all have the same decay
rate given by the exponent —(|k| + @ + S)- thereby removing the stiffness.
It is for this reason (6.4.19)-(6.4.38) can be simply integrated as IVP from

y = Yoo to the wall (y = 0) by any ordinary integrator. We have used four
stage Runge- Kutta method for this purpose.

6.4.3 Dispersion Relation

To solve the stability problem one is required to solve (6.4.19)- (6.4.38)
starting from y = Y., using the initial condition given in (6.4.39)- (6.4.58).
The dispersion relation can be obtained by satisfying the wall boundary
condition as given by (6.4.12) in terms of disturbance velocity components
and temperature field. In terms of the fundamental solution components,
these conditions at the wall can be written as,

arpr + azps + asds =0 (6.4.59)
a1} + azdh +asgt =0 (6.4.60)
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h = ho(constant) (6.4.61)

The condition given by (6.4.61) can be rewritten, using (6.4.10) and the
fundamental solution components, as

a1 (¢7" +ad1 —beY) +az(¢y +ads—bey)+as (¢ +agds —bel ) = chy (6.4.62)

Thus, the dispersion relation can be obtained from the characteristic
determinant of the linear system formed by (6.4.59), (6.4.60) and (6.4.62).
After simplification and using the definition of second compounds, the dis-
persion relation is obtained as,

D,+iD;=ys—byy =0 at y=0 (6.4.63)

This completes the definition of the stability problem for the mixed con-
vection flow over the horizontal plate. For a given K and Re, one would
be required to solve (6.4.19)-(6.4.38), starting with the initial conditions
(6.4.39)-(6.4.58) and satisfy (6.4.63) for particular combinations of the eigen-
values obtained as the complex k and w. We will use the procedure adopted
in Sengupta et al. (1994) to obtain the eigen-spectrum for the mixed con-
vection case, when the problem is in spatial analysis framework. In the
process, it is possible to scan for all the eigenvalues in a limited part of the
complex k- plane, without any problem of spurious eigenvalues.

6.4.4 Eigen-function for The Mixed Convection Problem

Having obtained the eigenvalues, it is possible to obtain the eigenfunctions
using CMM. The eigenfunction can be written in terms of the decaying
fundamental modes as,

¢ = a1¢1 + azps + asds (6.4.64)

For the sixth-order system, one can form the auxiliary system of equa-
tions by eliminating a1, a3 and as from the definition of the second com-
pounds and

¢ = ar¢ + a3 + as¢s ( )
" = a19] + as¢ly + asgy ( )
9" = a19)" + az¢y’ + as¢s’ (6.4.67)
¢ = a107 + azl’ + asPy’ ( )
@' = a19] + azds + asd3 ( )
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For example, using (6.4.64)-(6.4.66) and using the definition of the sec-
ond compounds, one obtains the following auxiliary equation,

y1¢/// _ y2¢// 4 y5¢’ —y11¢ =10 (6.4.70)

If instead one uses (6.4.64), (6.4.65) and (6.4.67), following auxiliary
equation is obtained,

67 — Y30 + ysd — yrad = 0 (6.4.71)

There are many other possible auxiliary equations that can be used in
principle to obtain the eigen functions. In the context of fourth order sys-
tems, multiplicity of such equations was considered a source of confusion
(see Drazin & Reid (1981))- that was resolved later in Sengupta (1992) by
looking at the eigenfunction equations for their correct asymptotic behavior
when y — Y,,. As the problem allows only three decaying modes for the
present case, it is necessary to ensure that the chosen eigenfunction equa-
tion also display same asymptotic decay. For example, (6.4.70) displays the
correct decay rates of —|k|, —|@Q| and —|S|, while (6.4.71) has the asymp-
totic variation given by the characteristic exponents as —|k|, —|@|, —|S| and
(Ik] +1Q| + |S]). Thus, (6.4.71) has a spurious violently growing mode and
cannot be used. As (6.4.70) already displays the correct solution behavior,
we will not look for any other auxiliary equations.

6.5 Results and Discussion

We first obtain the mean flow by solving the coupled ODEs (6.3.11) and
(6.3.13) by standard four-stage Runge-Kutta method. These equations have
been solved by taking maximum similarity co-ordinate, 7,4, = 12 equally
divided into 4000 sub-intervals. For different Re and K, mean flow has been
obtained here. Fixing K, instead of G, is motivated by our discussion in the
introduction where we have noted that for instability of mixed-convection
boundary layers, K is more relevant than Gr. As we have investigated the
mixed convection problem in air, we have fixed the value of Pr = 0.7 for
all cases. Obtained mean-field results for the non-dimensional velocity and
temperature are shown in Fig. 6.1.
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Figure 6.1 Mean flow profile obtained by solving (6.3.11) and
(6.3.13) for K = 1.0 x 107°

6.5.1 Eigen-spectrum For Mixed Convection Problem

Mean flow is obtained using the similarity co-ordinate 7, while the stability
equations are solved using the independent variable, y = y*/0*, where y* is
the dimensional height over the plate and §* is the displacement thickness
of the boundary layer. In terms of 7, the displacement thickness is given

by,
0" =4/ /0 [1—4¢'(n)dn = Cm (6.5.1)

Thus, the two ordinates are related by y = n/C,, and C,, depends upon
the choice of K. For K = 0 (the Blasius profile) this is obtained as 1.72089,
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while for K = 0.1 this reduces to 1.13831. As all our investigations are
related to events on top of the plate, K is non-negative and these two values
provide the outer limits. For mixed convection cases under investigation we
actually consider K to be very small -of the order of 1076 to 107%, that
is also of the order of the values used in the experimental investigation of
Wang (1982). For example, for K = 1 x 10~° the value of C,, is marginally
lower at 1.720703649 and that makes Y., = 6.97389.

To obtain the eigen-spectrum for the spatial stability analysis, we solved
the stability equations (6.4.19)-(6.4.38) from the free-stream to the wall, for
fixed Re, K and w = wy and any guess value of complex k. Due to the
use of Runge-Kutta method, the stability equations are solved with 2000
sub-intervals between Y, and the wall. For incorrect guess of k, (D, +iD;)
will not be equal to zero. To obtain approximate values of k quickly, we
scan the complex-k plane for points where D, and D, are simultaneously
zero. Instead of trying to obtain the correct & by Newton-Raphson type
procedure, we scan the complex- k& plane for points where D, and D; are
simultaneously zero. This was also the procedure adopted in Sengupta et
al. (1994) to obtain the eigen-spectrum for Blasius profile. This procedure
is fast and pose no difficulties that is associated with matrix or orthog-
onalization method- allowing correct identification of all the eigen-values
simultaneously without requiring any initial guess-values.

For the spatial analysis, we have scanned the region of the complex k-
plane: —1 < Koy < 1 and —1 < Koy < 1 using 500 and 4000 points in
the respective directions. For each combination of (kreqr, Kimag), the value
of D, and D; have been evaluated numerically from the solution of (6.4.19)-
(6.4.38). The zero-contour lines of D, and D; are plotted- as shown in Fig.
6.2(a) for K = 1.0 x 107, Re = 1000 and wp = 0.1.
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BF, = BF, = (0.0,0.0)
- BE,= (0.1,0.0)

i BF,= (-0.1,-1000)
BFi= (0.099,0.00109)
BF, = (-0.099,-700)

BF BF

BP,
BP, EF, K

real
BF

Figure 6.2 Zero-contour lines of D, and D; shown plotted in a
limited region of the complex wave number plane for the case of
Re = 1000, K = 1.0 x 107° and wy = 0.1. The eigenvalues are
marked as indicated in Table 6.2. (b) Complex k- plane showing
all the branch point with coordinates as indicated in the box.
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This case is discussed below with respect to Table 6.2. The following
procedure is same that was used for the study of the eigen spectrum for
Blasius profile in Sengupta et al. (1994). In this reference, a fourth order
system helped identify the three modes- with one unstable and two stable
ones. The present investigation, using the formulation of the sixth order sys-
tem reproduced the same three eigenvalues with identical wave properties-
as given in Table 6.1.

Table-6.1
(Re = 1000; K = 0; wo = 0.1)

Mode | krea Kimag Phase speed | Group velocity
1 0.2798275 | -0.007287224 | 0.3573629 0.4199082
2 0.1379587 0.109795 0.7248540 0.3223873
3 0.1221865 0.164828 0.8184210 0.7826533
4 0.2885657 0.287718 0.3465415 0.1160599

We identify these modes, therefore as the hydrodynamic mode. The
fourth eigen mode in Table-6.1 is an additional one that can be attributed
to the disturbance energy equation, (6.4.11). However, it has to be noted
that for K # 0, such distinction is not desirable as all the modes are coupled
together. In the present study, we use the phase speed and group velocity
as the relevant wave property. Specifically, the sign of group velocity de-
termines the directionality of the propagation of the disturbance energy (as
defined in Brillouin (1960)). Accordingly, all the four modes of Table 6.1,
are downstream propagating, with the first mode being only unstable. The
match between the present sixth order system results with that obtained
earlier for Blasius profile in Sengupta et al. (1994) provides the validation
for the developed methodology for solving stability equations for the sixth
order system.

Next, the eigen-spectrum is obtained for the mixed convection case with
K =1x107° and Re = 1000. For a choice of wy = 0.1, located eigen-values
and their wave properties are given in Table 6.2. Here, only three modes
are present, with the first mode being unstable, that can be identified with
the first hydrodynamic mode of Table 6.1.
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Table-6.2
(Re =1000; K = 1.0 x 107%; wp = 0.1)

Mode | kyeq Eimag Phase speed | Group velocity
1 0.2814215 | -0.01035186 | 0.3553388 0.4025252
2 0.1397349 | 0.1118859 | 0.7156407 0.3076161
3 0.3095879 | 0.2579895 | 0.3230100 0.1498453

While the wave length, phase speed and group velocity is similar for
the first modes in Tables 6.1 and 6.2, the spatial growth rate has increased
significantly due to added instability via buoyancy effect. The second mode
of these two tables are also similarly related, while the third mode of Table
6.1 has disappeared for the case of mixed convection. Disappearance of
modes have been identified in Sengupta et al. (1997) as related to waves
attaining phase speed equal to the free stream speed. The third mode
of Table 6.2 can be related to the thermal mode (fourth) of Table 6.1.
We note that the thermal mode propagate at lower speeds compared to
hydrodynamic modes.

In Table 6.3, eigen-spectrum for a case is tabulated for K = 1 x 1072,
Re = 1000 and wy = 0.65. This case, at a high circular frequency, is com-
puted because such parameter combinations correspond to unstable thermal
modes occurring for very small wavelength disturbances- as shown and ex-
plained later. It is for this reason, here the eigen-spectrum is searched over
a larger range of —2.5 < kcq < 2.5, while the £jy,q4 search space is kept
the same. We have used the same number of points in both these directions.

Table-6.3
(Re =1000; K = 1.0 x 107°; wy = 0.65)

Mode | kreq Kimag Phase speed | Group velocity
1 2.1746912 | -0.2976624 | 0.2988930 0.3206651
2 1.6960187 0.4214139 | 0.3832504 0.2275976
3 0.9495165 0.2522278 | 0.6845588 0.9405797
4 0.9101455 0.4832617 | 0.7141714 4.6808463
5 -2.4431025 | -0.2160011 | -0.2660551 1.4281580

The tabulated values display five detected eigenmodes with the first
eigenmode, a violently unstable thermal mode that moves down-stream.
The growth rate is few hundred times higher than the growth rate of most
unstable hydrodynamic mode. The second and the third mode in this table
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are similar to the damped hydrodynamic modes with smaller wavelength
and higher phase speeds. The third mode sends the associated disturbance
energy at almost the speed of free-stream. The fourth mode is also a damped
mode, but for which the disturbance energy travels at more than four times
the free stream speed. Because of its high damping rate and group velocity,
this mode will not contribute significantly to the dynamics. The fifth mode
is interesting, as this mode is located on the left half of complex k- plane.
Such modes have been reported earlier for pure fluid dynamical system in
Sengupta et al (1997) and very recently by Tumin (2003) for natural con-
vection past inclined plate. However, as k,., for this mode is negative,
for corresponding disturbances grow with height- instead of the decaying
modes that are considered here. We note that the same eigenvalue formula-
tion can be used for both decaying and growing modes with y- as has been
established in Sengupta & Nair (1997).

6.5.2 Neutral Curves For Mixed Convection Problem

One of the aim of any instability study is to relate it with the critical values
of parameter that marks the onset of the instability. In the present context,
one would therefore like to obtain the critical Reynolds number (Re.,) and
the corresponding circular frequency (w.-). Additionally, one would also
look for the critical buoyancy parameter (K,.), at which the instability
properties change qualitatively, as well as quantitatively. In the previous
subsection, we have noted that for K = 0, an additional mode is triggered
due to the coupling between the energy and momentum equations through
convection process for incompressible flows even when the density change
due to buoyancy effect is completely ignored. When the heat transfer causes
the density to change, as accounted for via Boussinesq approximation, one
would be interested in finding K., that alters the instability of the system
dramatically. At a given K, We have noted that there can be more than
one unstable modes for a chosen Re, as shown in Table 6.3. This implies
that the corresponding neutral curves are multi-lobed. To inspect this and
obtaining critical parameters, we obtain neutral curves for different cases
of interest. Having obtained the eigen-spectrum for different cases using
CMM for the sixth order system, it is straight forward to obtain the spatial
eigenvalues for any combinations of Re and wy utilizing Newton-Raphson
search procedure.
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Figure 6.3 Spatial amplification contours shown in (Re — wy)
plane for K = 0. For the neutral curve k;;,., = 0 as indicated by
the outer contour.
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Figure 6.4 Spatial amplification contours shown in (Re — wy)

plane for (a) K = 1.0 x 107°, (b) K = 3.0 x 107%, and (c¢) K =

4.0 x 1075, For the neutral curve kimag = 0 as indicated by the
outer contour.

First, we obtained the neutral curve for the case of K = 0, as shown in
Fig. 6.3. From the figure, it is noted that the critical Reynolds number is
given by Re.,. = 519.018 and the corresponding critical circular frequency is
wer = 0.12- values that are exactly the same for the Blasius profile. We also
report such data in Table 6.4 for all the different values of K considered in
the present study. Maximum growth rate for spatially growing waves are in
the range of kjpqg =~ —0.0074 for the case of Fig. 6.3.
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Figure 6.5 Spatial amplification contours shown in (Re — wy)
plane for K = 5.0 x 107%. For the neutral curve Eimag = 0 as
indicated by the outer contour.

In Fig. 6.4, the neutral curve is shown for the cases of K = 1 x 1076,
3 x 107% and 4 x 107%. Here, one notices a slight lowering of the value of
Re., to 513.6 and a marginal increase of w,, to 0.121 for K = 1 x 1076,
However, while these critical values are seen to change only marginally, it
is the maximum growth rate exponent, given by kinqg that almost doubles
to —0.0135589. All the other relevant wave parameters are given in Table
6.4 for this case.
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The case of K =5 x 1079 is considered next, for which the neutral curve
is shown in Fig. 6.5. One can notice a qualitative change in instability prop-
erty for this value of buoyancy parameter. The thumb-like neutral curve of
the previous cases are replaced by a two-lobed neutral curve. The lower
lobe is similar to that shown in Fig. 6.3 and 6.4, with Re,, reducing further
to 493.5 and w,, increasing to 0.127. Thus, one notices that increasing the
buoyancy parameter always lead to a decrease in critical Reynolds number
for the hydrodynamic mode. It is the second lobe of the neutral curve that
is of greater interest in the context of the present problem. There are few as-
pects about this case. First, it shows instability onset at very low Reynolds
number- producing a second Re., that is found to occur at 230.4999. Sec-
ondly, the corresponding circular frequency is 2.17499, about twenty times
to that obtained for the hydrodynamic mode. Thirdly, the growth rate of
this high frequency mode is eighty times more in the exponents to that for
Blasius profile for isothermal flow.
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Figure 6.6 Spatial amplification contours shown in (Re — wy)
plane for K = 1.0 x 107°. For the neutral curve Kimag = 0 as
indicated by the outer contour.
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Figure 6.7 Spatial amplification contours shown in (Re — wy)
plane for K = 1.5 x 107°. For the neutral curve Kimag = 0 as
indicated by the outer contour.

In Figs. 6.6 to 6.9, neutral curves are shown for other cases of Table 6.4,
all of which show two-lobed neutral curves. We have noted that the simi-
larity solution shown in Fig. 6.1 indicates an adiabatic wall condition. It
was shown by Mack (1969) that supersonic flow past an adiabatic flat plate
also displays two-mode neutral curves for Mach number greater than 3.7
and when the Mach number increases further to 4.8 then these two modes
merge. These results of supersonic flows are also given in White (1991). It
seems that the appearance and subsequent merger of two unstable modes
in supersonic flows are related to the basic heat transfer effects studied here
for adiabatic flows. From Figs. 6.6 to 6.9, it is seen that both the Re,
progressively reduces as K increases. The frequency for the upper critical
Reynolds number increase slightly with K while the frequency correspond-
ing to lower critical Reynolds number remains virtually at the same high
value.
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Figure 6.8 Spatial amplification contours shown in (Re — wy)
plane for K = 2.0 x 107°. For the neutral curve Eimag = 0 as
indicated by the outer contour.
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Figure 6.9 Spatial amplification contours shown in (Re — wy)
plane for K = 3.0 x 107°. For the neutral curve kimag = 0 as
indicated by the outer contour.
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All the properties of the neutral curve and the maximum growth rate is
noted in Table 6.4- where the two Re., has been separately identified for the
two lobes. The two lobes are connected at Re,, = 5298.5 for K = 5 x 1076.
Thus, one can state that this K is the critical parameter when the instability
changes heat transfer properties violently.

Table-6.4
Case | K Rel. [ReZ. we w2, Re,, [k k2
1 0.0 519.01 |- 0.120 |- —  [-0.007464 -
1.0 X 107°| 513.6 |- 0.121 |- - |-0.01355 -

5.0 X 107%| 493.5 |230.49 | 0.127 | 2.174 | 5298.5 [-0.01745 | -0.568297
1.0 X 107° | 470.9 |174.40 |0.128 | 2.160 | 2524.4 |-0.01810 |-0.495517
1.5 X 1077 | 449.7 |148.80|0.131|2.182| 1658.2 | -0.01831 |-0.457491
2.0 X 1077 | 433.5 | 133.34]0.136 | 2.211 | 1240.1 [-0.01844 | -0.43237
3.0 X 107" | 401.1 | 112.00|0.144 | 2.104 | 838.2 |-0.01858 |-0.399403

N O U W N

In Table 6.4, there are two critical Reynolds number and circular fre-
quencies listed corresponding to the lower and upper lobes of the neutral
curves, respectively. Listed k™! corresponds to the maximum growth rate
exponent of the lower lobe (hydrodynamic mode) and k2 corresponds to
the maximum growth rate exponent of the upper lobe (thermal mode). All
these data are obtained from Figs. 6.3 to 6.9. It is noted that both the crit-
ical Reynolds numbers decrease with K. The spatial growth rate exponent
for the hydrodynamic mode increases with K. However, the other spatial
growth rate exponent has a typical behavior that shows this mode to ap-
pear suddenly with a large growth rate, that keeps becoming smaller with
increase of K. Interestingly exactly a similar behavior was noted by Mack
(1969) for adiabatic supersonic flow past a flat plate (as shown in Figure
1.19 of White (1991))- where it was seen that a second mode appeared at
a Mach number of 3.7 with rapid increase of temporal growth rate. This
growth rate peaked to a maximum and then decreased smoothly with fur-
ther increase of Mach number. From Table 6.4 it is found that K plays
an identical role for mixed convection problem. The critical value of K is
somewhere in between 4 x 1076 and 5 x 1076.

6.5.3 Eigenfunctions of The Mixed Convection Problem

Some representative eigenfunctions have been shown next in Figs. 6.10 and
6.14, that have been obtained by solving (6.4.70) from the wall to the free
stream, with a prescribed function value (¢, = 1) at the wall.
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Figure 6.10 Eigenfunction calculated solving equation (6.4.70)
for K = 1.0 x 10~%, Re=1000, and wy = 0.1.

Once again, the use of CMM allows a straight forward integration of
the equation without any special treatment. For this equation, the second
compounds are the variable coefficients and they were obtained earlier with
2000 interior sub-intervals. Hence the usage of Runge-Kutta method yields
solutions at 1000 points located at equal intervals between Y., and zero. It is
noted that the eigenfunction is obtained in terms of the three modes that de-
cay with height- whose asymptotic variation is given by (6.4.15). Depending
on the eigenvalue, one can associate a physical variable with this eigenfunc-
tion. For example, Fig. 6.10 corresponds to a case for which the hydrody-
namic mode is predominant and the choice of parameters (K = 1 x 107¢;
Re = 1000 and wy = 0.1), the eigenfunction represents an unstable mode
with the highest growth rate. It is also seen that the depicted eigenfunctions
(¢ and ¢') represent the normal and streamwise components of disturbance
velocity.
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Figure 6.11 Eigenfunction calculated solving equation (6.4.70)
for K = 5.0 x 107%, Re=1000 and (a) wy = 0.1, and wp = 0.7.
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Figure 6.12 Eigenfunction calculated solving equation (6.4.70) for
K = 1.0x107°, and (a) Re=1800, wy = 0.09, (b) Re=450, w, = 1.0.

In Fig. 6.11, two sets of eigenfunctions are shown for the case with
K =5x 1075 and Re = 1000. In Fig. 6.11(a) the case corresponds to
wop = 0.1 for which the hydrodynamic mode attains its maximum growth
and thus the eigenfunctions once again represent the disturbance velocity
components. In Fig. 6.11(b) the case corresponds to wy = 0.7 and the
eigenvalue for this case indicates the thermal mode to be at its maximum
growth rate. Hence the plotted function corresponds to the disturbance
temperature field.
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Figure 6.13 Eigenfunction calculated solving equation (6.4.70) for
K = 1.5 x107°, and (a) Re=1200, wy = 0.1, (b) Re=400, wy = 1.0
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()

Figure 6.14 Eigenfunction calculated solving equation (6.4.70) for
K = 3.0 x 107, and (a) Re=700, wy = 0.15, (b) Re=280, wy = 1.0

In Figs. 6.12 to 6.14, similar eigenfunctions are shown for the identical
parameter combinations for which the hydrodynamic and thermal modes

are most unstable and thus represents disturbance velocity and temperature
fields.
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6.6 Conclusions and Outlook

Results of an analysis has been presented here for spatial stability prop-
erties of a mixed convection boundary layer developing over a heated hor-
izontal flat plate. A similarity solution (as given by (6.3.11) and (6.3.13))
for the mean flow is used following Schneider (1979). Such boundary layers
are characterized by the buoyancy parameter (K = Gr/Re®/?) and is solved
only for adiabatic wall conditions.

Under the parallel flow approximation, the spatial stability problem has
been formulated using the compound matrix method (CMM)- based on
previous work of Ng & Reid (1985), Sengupta (1992) and Allen & Bridges
(2003) for hydrodynamic stability problems. One of the advantages of CMM
is that it allows solving stability problems using traditional ODE solver- as
the stiffness of the equation is removed at the formulation stage itself. This
also allows obtaining the eigen-spectrum without any spurious eigenvalues.
Such an analysis for mixed convection boundary layer revealed that there
are two types of eigen solutions, that have been termed as hydrodynamic
and thermal modes due to physical reasons. Some representative results
for eigen-spectrum are shown in Fig. 6.2 and Tables 6.1 to 6.3 for different
values of the buoyancy parameter, K. The properties in Table-6.1 for the
first three eigen modes match identically with the results published earlier in
Sengupta et al. (1994) for the stability of Blasius profile obtained by solving
a fourth order system. This provides a validation of methodologies devel-
oped here for the mixed convection problem. One of the most important
findings of the present work is that for K > 5 x 107°, the stability property
is seen to change drastically with the appearance of a very unstable thermal
mode.

The sudden appearance of a new mode in the present study is similar to
what has been reported by Mack (1969) (also reported in White (1991)) for
adiabatic supersonic flow past a flat plate when Mach number is increased.
Present results show a similar behavior with increase in K for low speed flow,
indicating the centrality of heat transfer as the main reason for such sudden
appearance of new modes.The neutral curves and spatial growth rates for
different values of K have also been calculated and shown in Figs. 6.3 to 6.9.
For the reason mentioned above, the qualitative nature of the neutral curve
also changed for K > 5 x 1079, with the appearance of two-lobed neutral
curves. The lower lobe is similar to what one obtains for isothermal flows
and hence termed as the hydrodynamic mode. The upper lobe appears due
to the heat transfer and represents high-frequency high growth rate unstable
modes. Hence, this mode is termed here as the thermal mode. The growth
rate of the thermal mode is seen to be few hundred times more than the
most unstable hydrodynamic mode. Various critical parameters associated
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with the neutral curves of mixed convection flows are cataloged in Table
6.4. This clearly shows that the critical Reynolds number decreases from
498.3 to 230.49 when K increases from 4 x 1076 to 5 x 107% due to sudden
appearance of the thermal mode. The last two columns of Table 6.4 also
show relative importance of these two modes in deciding flow transition.
Some representative eigenfunctions have been shown in Figs. 6.10 and 6.14
obtained using CMM for the first time. Depending on the values of different
parameters, one can associate the eigenfunctions with the velocity and the
temperature fields or a combination of the two. Existence of a critical
K above which flow transition changes qualitatively and explosively, is a
finding of important consequences. This implies that beyond this critical
K, heat transfer changes the dynamics of the flow completely. This would be
of prime importance, whenever convective heat transfer process is involved
in fluid flow - as in atmospheric boundary layer due to man made heat
addition, the instability property of the geophysical fluid dynamical system
would change dramatically above a critical value of K. It would also be
interesting to investigate spatial stability properties of heat convecting flows
past vertical and inclined plates. The existence of a violent thermal mode
shows the need to re-evaluate transition prediction methodologies for flow
problems involving heat transfer.
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Introduction

The following chapters present an overview of combustion and of CFD
(Computational Fluid Dynamics) for combustion. The objective is not to
repeat classical textbooks on these topics [379; 306; 288; 334; 340] but to
focus on the place of instabilities in reacting flows and in CFD for reacting
flows. These instabilities are found at many levels:

Instabilities exist in individual flame fronts and lead to the forma-
tion of cells and of various unstable modes depending on molecular
transport of chemical species and heat [379; 266].

Like any shear flow, reacting flows are submitted to hydrodynamic
modes [273; 297] and to vortex formation.

Acoustics play a major role in reacting flows: by coupling with heat
release, they are the source of a major problem in many combustion
devices: combustion instabilities [379; 340] which can induce high
vibration levels and, in extreme cases, destroy combustion hardware
in a few seconds.

Instabilities are present in the physical problem studied but they are
also present in the numerical methods used to simulate these mech-
anisms. Most high-fidelity numerical schemes required for Computa-
tional Fluid Dynamics exhibit low dissipation and therefore multiple
non-physical instabilities (wiggles) arise which can require significant
efforts to be kept under control [374; 362; 340].

Finally, CFD for reacting flows are performed today on massively
parallel machines: these architectures coupled with centered schemes
for turbulent flows lead to an additional type of instability linked to the
growth of rounding errors and to a new type of instability where the



234 Combustion & CFD

solution depends on unexpected parameters such as the commutativity
errors of addition, the initial condition or the number of processors.

All these phenomena are ’'instabilities’ even though they correspond to
very different physical mechanisms. In many cases, they can couple: for
example, in LES of combustion instabilities, the first issue is to be able to
control the non physical waves due to the high-order spatial scheme as well
as the rounding errors due to massively parallel computing. These instabil-
ities are discussed in the following chapters, starting with a fast description
of the context of combustion and of CFD for combustion (Chapter 7), a
discussion of waves in reacting flows (Chapter 8), examples of LES in real
combustors (Chapter 9), a discussion of two-phase flow combustion (Chap-
ter 10) and a presentation of rounding errors in LES (Chapter 11). Details
on the equations which are solved in LES for reacting flows are given in
Chapter 10.

7.2 Combustion and Energy Production

Combustion is the unknown heart of most present problems discussed
everyday on global change and pollution issues. More than eighty percent of
the energy produced on earth is obtained by burning some fossil fuel. This
combustion can be produced by burning wood and producing a few Watts
or by running 20 meter long industrial turbines producing 200 MWatts.
The processes used for combustion can be simplified and non optimized
like for wood combustion or highly technological like the combustion in
reciprocating engines. This makes combustion the first contributor to our
life style, our energy consumption and to the production of pollutants such
as NO, and of green house gas such as COy. This also implies that the
most important actions which can improve global weather change problems
for example are actions related to reacting flows since they are the major
source of the problem and the first place to act. Considering that there
is no real substitute for combustion at the moment in many applications
(aircrafts, cars, energy production), it also means that the optimization of
combustion processes is the most effective method to control global change.

7.3 Combustion and Optimization

The optimization of combustion is an ongoing work since 1900 but re-
cent progresses in this field have been tremendous. In the last twenty years,
combustion devices have been optimized in terms of efficiency and pollutant
emissions to reach norms which were impossible to imagine before. This has
been done by the introduction of electronic monitoring and control (espe-
cially for car engines) but also by a better understanding of the combustion
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phenomenon and an optimization of the parameters of combustion cham-
bers. These parameters are not only the combustion chamber shape: the
fuel injection strategy is a key point to control combustion. Most of the
recent progress in the field of Diesel engines is due to the high pressure
(2000 atm) injectors used to atomize the fuel before combustion. In the
field of gas turbine technology, kerosene is now injected in multiple points,
atomized by complex swirler devices. Optimizing a combustion chamber
is therefore an extremely difficult process and this complexity is obvious
when one considers the results of these optimization processes in combus-
tor designs: while the shapes of most civil aircrafts today look the same,
all combustion chambers are different showing that the optimum is by no
means simple to define.

What makes combustors optimization even more difficult is the multiple
non linearities and instabilities found in reacting flows:

e Clearly, minimizing pollutant is easy to obtain by simply injecting
less fuel in a chamber. The problem however is that below a cer-
tain equivalence ratio (i.e. below a certain amount of kg of fuel per
kg of air), combustion simply stops [379; 306; 340]. The existence
of this flammability limit makes optimization delicate because bring-
ing the combustor close to extinction is dangerous (for aircrafts and
helicopters for example, that is definitely something which must be
avoided for obvious reasons).

e Optimization of combustion devices must be sought for a whole range
of operating conditions. Many chambers can be optimized at one
regime (for example, idle conditions in a car) but then this will not
be efficient for another regime (for example, in full power conditions).
Moreover, a chamber can be optimized for a regime (a gas turbine for
example) but that is impossible to ignite or too sensitive to sudden
flame quenching.

e The most critical problem encountered since the end of the 20th cen-
tury in the field of gas turbines is instabilities [263; 322; 313; 340].
Most chambers which were optimized to minimize NOx emissions and
maximize efficiency since 1990 have been subject to combustion insta-
bility problems In Europe, the LOW NOx projects initiated by the
European Commission are now being continued through combustion
instability studies because the gains in NOx and efficiency are often
wasted by the impact of combustion instabilities. Next Section will
focus on this issue.
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Figure 7.1. Snapshots of flame position (isosurface of temperature) during
one oscillation cycle at 120 Hz in an industrial gas turbine [285].

7.4 Combustion and Instabilities

Reacting flows are compressible flows. They exhibit hydrodynamic in-
stabilities (absolute and convective type [297]) but since acoustics are an
intrinsic feature of combustion chambers, reacting flows are also submit-
ted to acoustic / combustion instabilities which can be extremely strong
[379; 270; 340]. These waves are often coupled to hydrodynamic modes.

The fact that flames can couple with acoustics has been known for a long
time [344], even though it is still not fully understood. Since acoustic waves
can propagate in any direction in subsonic flows (which is the case in most
combustors), they can create a feedback from any point of the flow to any
other point, thereby creating multiple paths for absolute instabilities. More
importantly, combustion instabilities are difficult to predict and are usually
discovered at a late stage during the development of engine programmes
so that they represent a significant industrial risk. These instabilities take
various forms:
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e In steady combustors like gas turbines, instabilities can lead to oscil-
lations of all flow parameters, reaching levels which are incompatible
with the normal operation of the chamber. High levels of structural os-
cillations are found, very high levels of RMS pressure can be observed
due to this problem. In a given chamber, while normal turbulent com-
bustion usually leads to 10 to 100 Pa RMS pressure levels, it is not
uncommon to see chambers where the RMS pressure reaches 20000 Pa
(180 dB) when a combustion instability begins. At these levels, the
acoustic velocity associated with the RMS pressure can reach 1 to 20
m/s so that the perturbations induced by the acoustic field are abso-
lutely not negligible. In such cases, the engine structure can fail, the
fuel injector can burn, the flame might totally quench or flashback.
Flashback is a phenomenon encountered when the acoustic velocity
is larger than the mean flow leading to flow reversal in the combus-
tor inlet: in other words, the flow leaves the combustor through the
inlet instead of entering it; the flame does the same and ends up up-
stream of the combustion chamber, in a zone which was not designed
to sustain high temperatures. Combustion instabilities have been the
source of multiple failures in rocket engines, as early as the Saturn or
the Ariane 4 project, in aircraft engines (main chamber of post com-
bustion chamber), in industrial gas turbines, in industrial furnaces,
etc. Fig. 7.1 shows an example of simulation of 'mild’ oscillation in a
gas turbine [285] where the flame position (visualized by an isosurface
of temperature colored by axial velocity) pulsates strongly at four in-
stants of a cycle occurring at 120 Hz). For such a mild oscillation, a
limit cycle is obtained and the chamber can operate for a long time
without problem except for a high noise level.

e In piston engines or in pulse combustors (such as the one used in
German V 1 rocket during the second world war) where an external
periodic motion or timing is imposed, time averages cannot be used
any more and averaging based on realizations must be used. For
such flows, instabilities take other forms. The most famous one is
cycle-to-cycle variations. Fig. 7.2 shows a simulation of combustion
[349] in a four-valve four-stroke engine where all phases are explicitly
computed (intake, compression, combustion, exhaust). These cycles
are all produced in the same engine and Fig. 7.2 displays the reaction
rate at exactly the same crank angle. However, none of these cycles is
similar. In some extreme cases, certain cycles can actually not ignite
or not burn at all. Such mechanisms, called cycle-to-cycle variations,
are still not understood and are the source of major problems: one
"bad’ cycle every 100 cycles is enough to increase NOx (nitrogen oxide)
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Figure 7.2. Snapshots of reaction rate in a simulation of piston engine at
four successive cycles for the same crank angle. None of them is the same.

and CHx (unburnt hydrocarbons) emissions by a factor of 100 or to
decrease the power of a Formula One engine by 1 percent. The source
of these differences from one cycle to another one is obviously some
type of instability. It can be an intrinsic bifurcation of the flow within
the chamber or a coupling with the acoustic waves in the intake and
exhaust pipes of the engine.

Predicting and controlling combustion instabilities is a major challenge
for combustion research. Today, the most promising path is to understand
these phenomena using Large Eddy Simulation methods: those are able to
predict these combustion oscillations [340; 321; 360] something which was
impossible 10 years ago with classical Reynolds Averaged Navier -Stokes
methods. The following sections describe turbulent combustion and the
various methods used to study combustion numerically.

7.5 Turbulent Combustion

Instabilities are not the only difficulty to study combustion. Almost
all combustion devices have high Reynolds number flows where the flow is
turbulent. Flames and turbulence exhibit numerous modes of interactions.



T. Poinsot 239

Experimentalists have known for a long time that changing the turbulence
level before starting combustion in a vessel may change the time needed for
total combustion and, accordingly the turbulent flame speed. In his book
[307], Laffitte presented combustion times measured in a stirred vessel in
1918 [377; 378] showing that the combustion rate is maximum (the com-
bustion time is minimum) when the reactants are mixed in stoichiometric
proportions and increases when the flow becomes turbulent (Fig. 7.3). At
that time, Laffitte noted that “ the turbulent flame speed was always larger
than two times the laminar flame speed.” The factor of two observed by
Wheeler is not generic of all turbulent flames and more precise measure-
ments lead to multiple empirical and approximate relations [251; 291].
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Figure 7.3. The combustion time (the time needed to reach the maximum
pressure in a closed vessel) for a methane/air flame with and without tur-
bulence, plotted as a function of the proportion of C'Hy in the reactant
mixture, corresponding to the equivalence ratio ¢ (stoichiometric propor-
tions correspond to about 10 % of methane). Time units correspond to
1072 seconds ([377; 307]).

7.6 DNS, LES and RANS for Combustion

Turbulent combustion is encountered in most practical combustion sys-
tems such as rockets, internal combustion or aircraft engines, industrial
burners and furnaces, while laminar combustion applications are almost lim-
ited to candles, lighters and some domestic furnaces. Studying and modeling
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turbulent combustion processes is therefore an important issue to develop
and improve practical systems ( to increase efficiency and reduce fuel con-
sumption and pollutant formation). As combustion processes are difficult
to handle using analytical techniques, numerical combustion for turbulent
flames is a fast growing area.

The three main numerical approaches used in turbulence combustion
modeling are Reynolds averaged Navier Stokes (RANS) where all turbulent
scales are modeled, direct numerical simulations (DNS) where all scales are
resolved and large eddy simulations (LES) where larger scales are explicitly
computed whereas the effects of smaller ones are modeled:

e Reynolds Averaged Navier Stokes (or RANS) computations have his-
torically been the first possible approach because the computation
of the instantaneous flow field in a turbulent flame was impossible.
Therefore, RANS techniques were developed to solve for the mean
values of all quantities. The balance equations for Reynolds or Favre
( mass-weighted) averaged quantities are obtained by averaging the
instantaneous balance equations. The averaged equations require clo-
sure rules: a turbulence model to deal with the flow dynamics in
combination with a turbulent combustion model to describe chemical
species conversion and heat release. Solving these equations provides
averaged quantities corresponding to averages over time for stationary
mean flows or averages over different realizations (or cycles) for peri-
odic flows like those found in piston engines ( phase averaging). For
a stabilized flame, the temperature predicted with RANS at a given
point is a constant corresponding to the mean temperature at this
point (Fig. 7.4).

e The second level corresponds to large-eddy simulations (LES). The
turbulent large scales are explicitly calculated whereas the effects of
smaller ones are modeled using subgrid closure rules. The balance
equations for large-eddy simulations are obtained by filtering the in-
stantaneous balance equations. LES determine the instantaneous po-
sition of a “large scale” resolved flame front but a subgrid model is
still required to take into account the effects of small turbulent scales
on combustion. LES would capture the low-frequency variations of
temperature (Fig. 7.4).

e The third level of combustion simulations is direct numerical simula-
tions (DNS) where the full instantaneous Navier-Stokes equations are
solved without any model for turbulent motions: all turbulence scales
are explicitly determined and their effects on combustion are captured.
DNS would predict all time variations of temperature (Fig. 7.4) ex-
actly like a high-resolution sensor would measure them in an experi-
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Figure 7.4. Time evolutions of local temperature computed with DNS,
RANS or LES in a turbulent flame brush.

ment. Developed in the last twenty years, thanks to the development
of high performance computers, DNS have changed the analysis of
turbulent combustion but are still limited to simple academic flows (
simple geometries and somewhat lower Reynolds numbers).

In terms of computational requirements, CFD for non-reacting and re-
acting flows follow similar trends: DNS is the most demanding method and
is limited to fairly low Reynolds numbers and simplified geometries. LES
works with coarser grids (only larger scales have to be resolved) and may be
used to deal with higher Reynolds numbers but require subgrid-scale mod-
els. The computation quality and the results accuracy are directly linked to
the subgrid models. In current engineering practice, RANS is extensively
used because it is less demanding in terms of resources but its validity is
limited by the closure models describing turbulence and combustion.

The advantage of RANS is its applicability to any configuration and op-
erating conditions: a standard RANS mesh can contain 10 points and the
domain of calculation may be as large as needed. For example Fig. 7.6a
shows an isosurface of mean high temperature (1100 K) in a turbulent pre-
mixed flame stabilized by swirl obtained with RANS. The configuration
corresponds to a 1:1 burner of a large-scale industrial gas turbine [358].
On the isosurface, the average temperature is 1100 K but RANS does not
explicitly solve for possible turbulent fluctuations around this mean value.

Large-eddy simulations are an intermediate tool between DNS and RANS.
LES methods have been used extensively in many non reacting flows and
have provided reliable predictions in a variety of applications (see for ex-
ample [295], [325] or [252]). The treatment of reacting flows with similar
concepts is less well established. While some advances have been made
[303; 286; 300; 283; 287; 323; 373; 254; 261; 337; 358]), research is still
required on this topic. It is in particular necessary to construct methods
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Figure 7.5. DNS of a premixed flame interacting with three-dimensional
isotropic turbulence [261]. An isosurface of temperature is visualized. The
reaction rate is presented in two planes which are normal to the mean flame
front. The vorticity field, corresponding to turbulent motions, is also dis-

played in the bottom plane.

(a) RANS result

(b) LES result

Figure 7.6. Isosurface of temperature (1100 K) during turbulent combus-

tion in a swirled combustor (see geometry in [357]). (a):
field), (b): LES (instantaneous field).

RANS (mean
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for the calculation of the “large scale” flame front and to develop subgrid-
scale models. Fig. 7.6b gives an example of instantaneous LES field [357]
in the same geometry as the RANS result (Fig. 7.6a). Obviously, the in-
stantaneous flame surface obtained with LES contains much more turbulent
scales than the averaged field given by the RANS code.

-y

(a) RANS result (b) LES result

Figure 7.7. Axial velocity fields during turbulent combustion in a swirled
combustor (see geometry in [357]). (a): RANS (mean field), (b): LES
(instantaneous field). The zones within the black line are backflow regions
(A. Giauque, private communication).

The velocity fields obtained by RANS or LES also illustrate the basic
differences between the two approaches (Fig. 7.7). While the field of axial
velocity obtained with RANS is very smooth (Fig. 7.7a), the LES field
exhibits much more small structures: in terms of physics, the LES captures
more turbulent activity; in terms of numerical resolution, the grid required
for RANS can be very coarse because gradients are small. On the other
hand, for LES, the grid must be fine and the numerical method non-
dissipative in order to capture the small motions evidenced in Fig. 7.7b.
Considering also that RANS codes compute only one state (the converged
flow) while LES codes must resolve the flow in time, the cost of a typical LES
computation is often 100 to 1000 times higher than a RANS computation.
However, despite its cost, LES is well adapted for many combustion studies:

e Large structures in turbulent flows depend on the system geometry

whereas small structures are generally assumed to have more universal
features. Accordingly, models are probably more suited to describe
these small structures.

e Most reacting flows exhibit large scale coherent structures [267]. Such

structures are also observed when combustion instabilities occur. These
instabilities are due to a coupling between heat release, hydrodynamic
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flow field and acoustic waves [340]. They have to be avoided because
they induce noise, variations of the system characteristics, large heat
transfers and may lead to the system destruction. LES is a powerful
tool to predict the occurrence of such instabilities and to numerically
test passive or active control systems.

The knowledge of large-scale turbulent motions may be used to infer
the effects of the unresolved smaller ones: for example, during the Kol-
mogorov cascade, the energy flows from large (resolved) structures to
(unresolved) smaller scales. In fact, subgrid scale models are generally
based on similarity assumptions between large and small scales.
Large-eddy simulations also allow a better description of the turbu-
lence/combustion interactions. As large structures are explicitly com-
puted in LES, instantaneous fresh and burnt gases zones, where tur-
bulence characteristics are quite different, are clearly identified, at
least at the resolved level (see, for example, Fig. 7.7b). This is a sig-
nificant advantage of LES compared to RANS in which models have
to take into account (at a given spatial location) the probability of
being in fresh or in burnt gases.
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8.1 Physical Waves In Reacting Flows

A reacting flow can feature multiple waves:

e Hydrodynamic instabilities can be generated in the sheared regions
found in all combustors. A specific aspect of many reacting flows is
that the baseline flow is swirled [369; 260]. Strongly swirling flows
(Fig. 8.1) induce flow reversal and large recirculation zones which,
like acoustic waves, favour absolute instabilities. One of these is the
PVC (precessing vortex core: Fig. 8.2) which appears in many swirling
flows of large intensities and create an oscillation of the flow around
the burner axis.

e Acoustic waves are found in all burners. Combustion chambers are
necessarily closed domains, surrounded by walls, and therefore prone
to develop acoustic eigenmodes [270]. These modes can be longitu-
dinal modes for which the combustor acts like a music instrument
(organ for example) resonating with some excitation mechanism. In
musical instruments, excitation is produced by vortices induced in the
flow; in combustion chambers, unsteady combustion is the excitation
source. Modes can also be transverse and lead to higher frequency
instabilities. These modes are quite destructive for example in rocket
engines or in post combustion chamber of fighter engines.

e Flames are also excellent generators of instabilities. Textbooks [379;
380; 266] describe how the strong density gradients or the differential
diffusion of species can lead to flame front instabilities.

e Some instabilities are more 'global’ and involve not only the flow but
also the structure or the ducts feeding the combustor. For example,
the POGO effect in rockets appears when the reacting flow resonates
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Figure 8.1. Flow topologies in a swirled combustor: (a) low swirl, (b)
medium swirl, (¢) high swirl. The gray zones correspond to zones of the
flow where the velocity is from right to left. For large values of swirl, a
recirculation zone occupies most of the chamber and the flow follows the
walls.
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Figure 8.2. Precessing vortex core (PVC): the swirl axis oscillates around
the geometrical axis.

with the structure itself and with the feeding lines of the combustor.
These instabilities are not studied here.

Many of these instabilities are linked: hydrodynamic instabilities can
create vortices in combustion chambers; these vortices contain fuel and ox-
idizer and can burn after a certain delay, providing the source of excitation
for the acoustic mode. this acoustic mode then can trigger new vortices
[297].

Like in classical acoustics in cold flows [304], wave equations can also be
derived for reacting flows but they are much more complex [270; 340]. Af-
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Reacting flows V.c?Vyp' — 8751; = —vpVu: Vu — (y— 1)%

Table 8.1. Comparison of wave equations for non-reacting and reacting
flows: ¢ is the sound speed, wr is the heat release due to combustion and p
the average pressure

ter rather long derivations and some simplifications (for example, low Mach
number), a wave equation in a reacting flow can be derived and its compari-
son with the non reacting case is quite interesting. Table 8.1 compares these
wave equations in non-reacting and reacting flows. For the non-reacting
case, the Vi : Vi term is retained and is responsible for turbulent flow
noise. The main complexity brought by combustion is the variable sound
speed ¢y which must be kept in the V operator and the additional source
term found on the RHS terms for the pressure equation with combustion.
This source term is responsible for combustion noise and instabilities. The
linearized form of Table 8.1 is sufficient to capture the growth of unstable
modes but non-linear extensions are required to describe non-linear effects
seen in many limit-cycles.

Two methods can be used to study combustion instabilities:

e LES: the first one is to use brute force and directly solve the Navier

Stokes equations with combustion, typically with LES [364; 358; 355].

e Helmholtz solvers: the second one is to solve the wave equation of

Table 8.1, providing a model for the unsteady reaction rate wp and
solving the corresponding equations either in the time domain or in
the frequency domain [270; 305; 368; 258; 360; 331].

These two methods are similar to what is found in the study of hydrody-
namic instability where LES is replaced most often by DNS and Helmholtz
solvers by Orr Sommerfeld solvers. Both methods have already been used
and shown to be efficient: more examples will be provided in Chapter 9.
They were also compared in a few cases [350; 321]. LES is much more
expensive and cannot work if all boundary conditions are not known pre-
cisely. This means that impedances of all inlets and outlets for example are
required. Helmholtz formulations also need impedances but since they run
faster and can provide all modes (and not only the most excited), they are
easier to use when impedances are not known precisely.

A useful quantity to study combustion instabilities is the acoustic energy
defined by [340]:



248 Waves in Reacting Flows

1 5 1 p/2
e1= Spoils + -+
" 2p0cd

. (8.1)

where index 0 refers to mean values and index 1 to perturbations. The
conservation equation for e is [340]:

9er +V-fi=r with r = Lil)p’w% and f1 =7p'i (8.2)
ot VP

where the RHS source term r is a correlation between unsteady pressure
p’ and unsteady heat release wk. This term is due to combustion and can
act as a source or a sink term for the acoustic energy. When r; is positive, if
the pressure oscillations p’ are in phase with the unsteady heat release wkh,
r1 acts as a source term for the acoustic energy and the instability is locally
amplified. On the other hand, if unsteady heat release is maximum when
pressure is minimum, the instability decreases. This qualitative criterion
for combustion instability is called the Rayleigh criterion [344]. Although
this seems a rather natural statement, many experiments do not actually
support this result in a straightforward manner. The index 7; changes with
time and with location: some regions of a given combustor usually exciter
the oscillation by burning in phase with pressure (positive 1) while other
regions damp the instability by burning out of phase with pressure [341;
353]. The overall effect of flame/acoustics coupling can only be predicted
by integrating Eq. (8.2) over space and time to evaluate the instability
growth rate.

8.2 Numerical Waves in High-Fidelity Simulations of Reacting
Flows

Predicting combustion instabilities requires an accurate computation of
all waves mentioned in the previous section. This requires LES formulations.
Unfortunately, LES (like DNS and unlike RANS) can propagate other waves:
these waves are purely numerical, often called Q waves [374; 362] and they
are a significant difficulty for most high-fidelity simulations like LES or DNS.
Q waves are produced by sharp gradients, approximate initial conditions,
boundary conditions, etc. They interact with the physical waves, making
LES difficult and sensitive to unexpected behaviors. This is an unavoidable
price to pay for these simulations. Knowing how these numerical waves
interact with physics is a necessary exercise but one which is not often
discussed because studying wiggles in simulations is not a very exciting
topic.
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The main reason why numerical waves have not been discussed much in
the CFD community is that most RANS codes use excessive artificial vis-
cosity and large turbulent viscosity levels (due to turbulence models) which
kills all numerical waves. They also kill all acoustic waves and all hydro-
dynamic modes and cannot be used for the present needs of combustion
research. Methods which can compute accurately waves in reacting flows
must use centered schemes and LES (or DNS) formulations in order to avoid
damping all waves (physical and numerical). A convenient way to illustrate
this point is to compare the various viscosities playing a role in a CFD code:

e The first viscosity is the laminar viscosity v. This is the only true
flow characteristic and it defines the true Reynolds number of the
flow: Reyeqi = UL/v where U and L are a reference velocity and
length of the flow respectively.

e In most CFD codes, a turbulent viscosity v, is added. Even though
models providing estimates for v; justify these formulations through
multiple theories, their first interest in terms of numerical method is
that they simply allow the computation to be done by adding viscosity
thereby decreasing the Reynolds number really seen by the code.

e Many CFD codes' also add an artificial viscosity v,. This viscosity
can be explicit or it can be hidden, for example in the case of upwind
schemes. An important dissipation is also introduced by large time
steps and implicit schemes which are commonly used in RANS.

The first consequence of the introduction of two additional viscosities v
and v, to the true viscosity v is that the Reynolds number really seen by
the code is :

Recodge = UL/ (v + 14 + 1) (8.3)

which is much smaller than Re,..q;. In RANS formulations, the turbulent
viscosity introduced by models such as the k-e model can reach 1000 times
the physical viscosity. To make the code robust and fast, upwinding and
large time steps lead to very high levels of artificial viscosity v,. As a
result, in a RANS calculation of a turbulent flow, the result is steady: in
other words, it is laminar. Of course, it is a laminar flow where the local
viscosity is tuned to match the mean characteristics of the mean turbulent
flow. But the turbulent character of the flow is completely lost. At the
other end of the methods spectrum, DNS methods strive to use v, = v; =0
so that Recoge = Rereqr: the price to pay is that all scales must now be
resolved spatially (requiring small mesh sizes) and temporally (requiring

{Certain numerical methods introduce dissipation terms which are not second order and
are more difficult to compare to other viscosities: the well known Jameson approach
for example uses a second and a fourth-order dissipation. They are not discussed here.
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small time steps). LES formulations have to use non zero values for v, and
v but these must be kept to very small values. If v, and 14 in a LES are
not small, the result will be wrong. The flow featured by LES can actually
become laminar.

Method || Physical | Numerical | Turbulent Capacity to
viscosity | viscosity viscosity propagate waves
DNS 1 0 0 excellent
LES 1 1 to 10 5 to 50 good
RANS 1 10 to 500 | 100 to 1000 none

Table 8.2. Orders of magnitude of physical, numerical and turbulent vis-
cosity in DNS, LES and RANS codes. All values are scaled by the laminar
viscosity.

Table 8.2 shows typical levels of physical viscosity, turbulent viscosity vy
and artificial viscosity v, reached in a combustion chamber for a standard
regime. All viscosities are scaled by the physical viscosity. Note that vis-
cosity affects all scales and not only the small scales. For example, acoustic
waves are very strongly dissipated in a RANS code because the turbulent
viscosity acts on them too. This is a collateral effect of turbulence mod-
els formulated using turbulent viscosities but it implies that such methods
cannot be used for the present objectives.

A less pleasant implication of Table 8.2 is that, as soon as high-fidelity
methods such as DNS or LES are developed, they have to avoid large values
of turbulent and artificial viscosities. This requires small mesh sizes, high-
order schemes, small time steps [268; 362; 340]. But even after all these
improvements, these methods will remain sensitive to numerical waves [363].
In DNS or LES, numerical waves are intrinsic elements of the simulation and
must be controlled by something other than viscosity. This usually means
significant improvements of initial and boundary conditions and a careful
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9.1 Introduction

The examples presented in this chapter [308; 320] are illustrations of
the concepts presented in the previous chapters. They correspond to recent
numerical analysis of burners which are typical of most modern high-power
combustion chambers, especially of gas turbines: the flame is stabilized by
strongly swirled flows, the Reynolds numbers are large, the flow field sensi-
tivity to boundary conditions is high, intense acoustic/combustion coupling
can lead to self-sustained oscillations. Flames are stabilized by swirl. Swirl
also creates specific flow patterns (a Central Toroidal Recirculation Zone
called CTRZ) and instabilities (the Precessing Vortex Core called PVC).

The first example is a small-scale laboratory combustor using an aero-
engine gas turbine burner (power: 30 kW) while the second one corresponds
to a laboratory-scale staged burner in which self-excited instabilities can be
easily triggered by changing the outlet acoustic boundary conditions. In
staged combustors, fuel and air are premixed but they are introduced into
the chamber at different locations and different equivalence ratios so that
partially premixed flames are found inside the burner. All combustors are
operated at atmospheric pressure.

The flame/turbulence interaction model is the thickened flame model
[269] and boundary conditions are specified using the NSCBC method [339;
329]. The turbulence model is the Smagorinski model or the Wale model
[330].
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Figure 9.1. Configuration for Case 1 (left). Location of cuts for velocity
profiles (right).

9.2 Case 1: Small Scale Gas Turbine Burner

The first example presents typical cold flow fields with swirl (§ 9.2), as
well as reacting flow fields (§ 9.2), and compare them with experimental
data.

Configuration and Boundary Conditions

The burner of Case 1 uses a swirled injector (Fig. 9.1) where swirl is pro-
duced by tangential injection downstream of a plenum. A central hub
contributes to flame stabilization. In the experiment methane is injected
through holes located in the swirler but mixing is fast so that perfect premix-
ing is assumed for computations. Experiments include LDV (Laser Doppler
Velocimetry) measurements for the cold flow as well as a study of various
combustion regimes. The dimensions of the combustion chamber are 86 mm
X 86 mm x 110 mm.

For LES, the critical question of boundary conditions is avoided in Case
1 by extending the computational domain upstream and downstream of the
chamber: the swirlers and the plenum are fully meshed and computed and
even a part of the outside atmosphere (not shown on Fig. 9.1 for clarity)
is meshed to avoid having to specify a boundary condition at the chamber
outlet. This procedure is applicable only for certain configurations: a real
gas turbine combustion chamber is surrounded by more complex passages
for air or by moving parts (the blades of the turbine for example) for which
specifying boundary conditions remains much more difficult.
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Nonreacting Flow
Average Fields

LES and experimental LDV profiles (measured at DLR Stuttgart) are com-
pared at various sections of the combustion chamber (Fig. 9.1) for average
axial (Fig. 9.2), azimuthal (Fig. 9.4), RMS axial (Fig. 9.3) and RMS az-
imuthal velocities (Fig. 9.5). All mean and RMS velocity profiles are cor-
rectly predicted [308]. Considering that this computation has no boundary
condition which can be tuned to fit the velocity profiles, these results demon-
strate the predictive capacity of LES in such swirling flows (RANS models
are usually not well suited to swirling flows). A large central toroidal recir-
culation zone (evidenced through negative values of the mean axial velocity)
develops on the chamber axis. This CTRZ begins at x=2 mm downstream
of the hub and is still observed at x=35mm.

Structure of Unsteady Swirling Nonreacting Flows

The RMS fluctuations in both LES and experimental results (Fig. 9.3 and
9.5) are very intense around the axis, close to the injector nozzle (of the
order of 20 m/s at * = 1.5 mm). These oscillations are typical of most
swirled burners. They may be due to:

e a very intense turbulent field,

e an acoustic mode of the chamber or

e a hydrodynamic instability.

First, it is unlikely that random turbulent fluctuations can reach such
high values: on the burner axis, Fig. 9.2 and 9.4 show that the mean axial
velocity is of the order of 5 m/s and that velocity gradients are not very
large. Such a mean flow field cannot explain how the RMS velocity observed
on Fig. 9.3 on the axis could be 4 times larger than the mean velocity. Fur-
thermore, spectral analysis of velocity signals in this region reveals that a
540 Hz peak dominates the signal confirming that the source of fluctua-
tions is either acoustic or hydrodynamic type. An useful second step is to
compute all acoustic eigenmodes of the rig using a Helmholtz solver. Using
the exact geometry of the burner the acoustic eigenmodes of the combustor
obtained with such an Helmholtz solver are given in Table 9.1 and none of
them matches the 540 Hz frequency. The first mode (172 Hz) is observed
neither in LES nor in experiments: this mode is stable. The second mode
(363 Hz) is indeed identified in experiments (around 320 Hz) and in LES
(around 360 Hz) but only in the plenum and the exhaust pipe. No acoustic
mode is identified around 500 Hz. This analysis shows that acoustics are
not responsible for the large RMS fluctuations on the burner axis. Finally,
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Figure 9.2. Average axial velocity profiles.
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Figure 9.3. RMS axial velocity profiles. Circles: LDV} solid line: LES.




T. Poinsot

255

— LES
40 40 o 40 40 o 40 o Lbv
20 o 20 - 20 o 20 - 20 o
T a T T H a3
E E E E 3 E
£ e £ e £ 0 £ e
s s s s s g
a & & a S & g
20 PR 20 20
40 o -40 o 40 o 40 | 40 -
T 1 T 1 T 1 T 1 T 1
-30 30 0 30
UtImis] Utmss] Utfms] Ut Utimsg]
i mn ) ) [z ] e

Figure 9.4. Average tangential

LES.

velocity profiles. Circles: LDV} solid line:

Distance from axis [mm]

40

— LES
10 PERE mf\E o Lov
20 204 20
5 T 5 5
B £ £ i £
E £ E o o E o o
2 o, 2 2 $ 2 o8
5 H 3 o &
20 20 20
0 0] a- F a0 9
f————1 1 1 1 1
0 5 10 15 20 0 5 1015 20 0 5 10 15 20 0 5 1015 2 0 5 10 15 20

Ut [mis}

Ll e L e
v 5 [ o Tz oo

Figure 9.5. RMS tangential velocity profiles.

LES.

)

Circles: LDV; solid line:



256 LES of Combustors

the existence of a large-scale hydrodynamic structure can be investigated in
the LES by plotting an isosurface of low pressure (Fig. 9.6): this diagnos-
tic evidences a large spiral structure rotating around the burner axis at a
frequency of 540 Hz. Experimental wall pressure measurements performed
inside the chamber also reveal a dominant frequency around 510 Hz. This
large hydrodynamic structure called PVC (Precessing Vortex Core) is the
actual source of the axis fluctuations observed in Fig. 9.3 and 9.5.

’ Mode no. H Mode name ‘ Cold flow (Hz) ‘ Reacting flow (Hz) ‘
(1) Quarter wave 172 265
(2) Three quarter wave 363 588
(3) Five quarter wave 1409 1440

Table 9.1. Longitudinal modes of Case 1 predicted by a Helmholtz solver.

Coexistence of Acoustic Modes and Precessing Vortex Core

The previous section shows that two modes control the cold flow structure
in Case 1:
e a low amplitude acoustic mode (360 Hz) everywhere in the device and
e a strong hydrodynamic mode (540 Hz) due to the PVC at the burner
exit (0 <z <5 cm).

Figure 9.6. Visualization of the PVC mode in Case 1 using an isosurface
of low pressure (left) and a field of pressure (gray scale) and velocity vectors
in the central plane (right) [308].
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Figure 9.7. Pressure fluctuations amplitude with LES (
code (o) for the non-reacting flow in Case 1[308].

) and acoustic

These two modes actually coexist but do not interact. Their respective
traces can be found in an analysis of RMS pressure fluctuations because both
acoustic and hydrodynamic fluctuations induce pressure perturbations: P’
profiles along the burner axis', computed both with LES and the Helmholtz
solver, are presented in Fig. 9.7. The two codes give similar results in the
plenum and in the exhaust, indicating the acoustic nature of the pressure
fluctuations in these regions. However, in the swirler and in the first half
of the chamber where the PVC is found, the pressure fluctuations given
by LES are much larger than the acoustic predictions, because they also
contain the effects of the PVC.

The PVC acts acoustically like a rotating solid placed in the flow and
partially blocking the swirler exhaust. Such a moving solid acts like an
acoustic dipole [336], [304] which radiate weakly: the PVC modifies the
pressure field in the chamber but does not affect the pressure field upstream
and downstream: this explains why the acoustic mode at 360 Hz is visible
and unaffected in the plenum and the exhaust.

iSince the acoustic mode structure is longitudinal, P’ can be plotted along the burner
axis x.
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Figure 9.8. Instantaneous 1250 K isosurface (LES data).

Stable Reacting Flow

This section presents results for a stable reacting regime corresponding to
an equivalence ratio of 0.75, an air flow rate of 12 g/s, and a thermal power
of 27 kW. A snapshot of an instantaneous temperature isosurface (Fig. 9.8)
reveals a very compact flame located close to the burner nozzle exit. No
comparison is possible with experiments here because temperatures were
not measured. The velocity fields, however, were investigated in detail us-
ing LDV and are presented in Figs. 9.9 (mean axial velocity), 9.10 (RMS
axial velocity), 9.11 (mean tangential velocity) and 9.12 (RMS tangential
velocity). The overall agreement between mean LES results and experimen-
tal data is good.

Although this regime is considered as a ‘stable’ case some acoustic ac-
tivity exists in the burner: two acoustic modes are found experimentally
around 300 Hz and 570 Hz and the overall sound level inside the combus-
tor reaches 500 Pa in the LES (more than 140 dB). To identify the nature
of these modes, the Helmholtz solver was used with the average tempera-
ture field given by LES to identify acoustic eigenmodes with combustion.
Table 9.1 confirms that the two frequencies observed in experiments are
the two first acoustic modes of the combustor. In LES, a single frequency
is observed at 520 Hz, which is close to the second acoustic mode of Ta-
ble 9.1. To check that the 520 Hz mode found by LES is indeed acoustic, the
field of unsteady pressure given by LES is compared to the modal structure



T. Poinsot

—LES
40 4 40 o o 40 4 40 o 40 4 o O LDV
20 20| 20 o] | 0 4
T = a8 T a3
E E E E E
g o 5o 5o g o g oo
a N =] e, [=] =] =]
20 20 20 20 20
0 a0 0 40 wd Ve
‘ H ‘ e ‘ T ‘ H ‘ e
@ o % s @ o % & @ o % s @ o % & @ o % s
Unimel Urims] Ui e Vs

Figure 9.9. Mean axial velocity in the central plane. Circles: LDV; solid

line: LES.

x=1.5 mm

Distance from axis [mm]

Distance from axis [mm]

Distance from axis [mm]

Distance from axis [mm]

Distance from axis [mm]

U [mis]

0 5 10 15 20
Ux [mig]

0 5 10 15 20
Ux [ms]

0 5 10 15 20

UX [mis]

Figure 9.10. RMS axial velocity in the central plane. Circles: LDV; solid

line: LES.




260 LES of Combustors

Figure 9.11. Mean tangential velocity in the central plane. Circles:
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Figure 9.13. Pressure fluctuations amplitude predicted by LES (——)
and Helmholtz solver (o) for the reacting flow in Case 1.

predicted by the Helmholtz solver for the 588 Hz mode (Fig. 9.13). Even
though the LES signal contains all modes, its shape is clearly close to the
structure of the second acoustic mode predicted by the Helmholtz solver.
Another major effect of combustion revealed by LES is to damp the PVC
observed in the cold flow. The agreement of Fig. 9.13 confirms that the
unsteady activity for this reacting regime is controlled everywhere by the
acoustic field even though no strong combustion instability is observed.
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9.3 Case 2: Self-Excited Staged Burner
Configuration

Fig. 9.14 displays the geometry of Case 2. Swirled premixed (propane and
air) gases are introduced tangentially into a long cylindrical duct feeding
the combustion chamber to create the swirl required for stabilization.

Figure 9.14. Case 2 configuration: a staged swirled combustor.

A specification of the present set-up is that the injection duct is split into
two parts to allow staged combustion: the equivalence ratio of the first part
(called ¢1) can differ from the second part (called ¢3). Staged combustion
is used in certain burners to control emissions and instabilities. The air
flow rates in each section are equal to half the total air flow rate ;. and
the equivalence ratio modulation is obtained by splitting the propane flow
rates in different proportions for each section. The global equivalence ratio
of the burner ¢, is ¢, = sip /o where s is the stoichiometric ratio and
mo is the oxygen flow rate (o = You * Mgir). The parameter o used
to characterize staging measures the fraction of fuel injected into the first
injection section: o = m}; /mp. The equivalence ratios ¢y, ¢ and « are
linked by ¢1 = 2a¢, and ¢2 = 2(1 — a)@,. One specific regime exhibiting
large oscillations when the outlet section is acoustically closed is studied
here (Table 9.2).

Total flow rate || Mean equivalence | « o1 o)
(kg/s) ratio
| 22107 0.8 | 03]05]1.16 |

Table 9.2. Flow parameters for combustion cases.
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Figure 9.15. Mean axial velocity, white line: u, = 0, black line: T = 1500
K for stable combustion.
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Figure 9.16. Mean fuel mass fraction field, black lines: iso-reaction rate
for stable combustion.

Stable Flow

When the outlet is non-reflecting, the flame is stable. The mean axial
velocity and fuel mass fraction fields are displayed in Fig. 9.15 and 9.16
[320]: the central recirculation zone (marked by a white line in Fig. 9.15) is
filled by burnt gases which provide flame stabilization. Fuel staging is also
apparent in Fig. 9.16.

Controlling Oscillations Through Boundary Conditions

The level of reflection of the outlet boundary can be controlled by changing
the relaxation coefficient o of the wave correction [359] which determines the
amplitude of the incoming wave entering the computational domain. For
small values of o, the pressure p remains around its target value p; while
letting acoustic wave go out at the same time: the outlet is non reflecting.
When large values of o are specified, the outlet pressure remains strictly
equal to p; and the outlet becomes totally reflecting. The combustion cham-
ber reacts strongly to changes in outlet impedance: for non-reflecting outlet,
the flow is stable as seen in § 9.3 and it becomes unstable when the outlet



264 LES of Combustors

Growth Overshoot Limit cycle Decay
0.6
05
04
03
0.2
0.l
00 : . r y . . . . r , \
0.13 0.14 0.15 0.6 0.7 0.18
Time [s]

Figure 9.17. Evolution of the acoustic energy vs time for Case 2.

becomes reflecting. To analyze this instability, the following scenario is
utilized [320]:
e Starting from a stable flame and a reduced level of fluctuations, the
outlet impedance is changed to become reflecting at time ¢ = 0.127s.
This is obtained by increasing the o coefficient for the outlet section
(Fig. 9.17).
e At time t = 0.173s, the outlet impedance is switched again to a non-
reflecting condition and the instability disappears.
During these phases, the total acoustic energy is extracted from LES. Fig. 9.17
shows that it first grows, becomes maximum and then decreases slightly to
reach a limit cycle at a frequency of 360 Hz mode which is one of the acoustic
modes of the combustor [320]. After ¢ = 0.173 s, when the outlet becomes
non reflecting again, it decays rapidly.

At the limit cycle, the combustor is submitted to a very strong oscilla-
tion where the flame periodically contracts on the exit of the burner before
expanding through most of the combustion chamber and shrinking again
(Fig. 9.18). Snapshots corresponding to a full cycle are displayed in Fig. 9.18
at instants indicated on Fig. 9.19. The vortex criterion of [298] is used to
visualize the vortex rings formed at the burner exit. These vortices form
a well-defined ring only after their birth (instants 1 to 3) and they degen-
erate after instant 4 into small scale turbulence. They are created when
the inlet acceleration at the burner exit is maximum (just before instant
1). Fig. 9.19 also confirms the intensity of the oscillation: the total reaction
rate oscillates between 0.5 and 1.7 times its mean value; the inlet velocity
also changes between 0.5 and 1.6 times its mean value: these fluctuating
velocities are much larger than typical turbulent velocities and influence the
combustion process more than small-scale turbulent motions.

fiSee animation on http://www.cerfacs.fr/cfd/movies/ECPMod_insta3D.mov.
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Figure 9.18. Limit cycle for Case 2. Isosurface: Q vortex criterion; black
lines: iso-reaction rate.
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Figure 9.19. Chamber pressure ( ), burner inlet velocity (o) and total

heat release (—a —) fluctuations normalized by mean values during one
period of the limit cycle.
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Fig. 9.20 shows that the integral of the Rayleigh source term r; defined
by Eq. (8.2) is actually not dominant. It is indeed positive and driving the
instability most of the time even though it may take negative values for
limited times. But the acoustic losses term f; given by Eq. (8.2) is also
large and provides almost all the damping of the acoustic energy at the
limit cycle. This result shows that the amplitude of the limit cycle is con-
trolled mainly by acoustic losses, as expected from the direct observation
that changes in acoustic boundary conditions at the outlet could control
the oscillation amplitude. This last simple example shows how LES can be
used together with budgets of acoustic energy to understand combustion
instabilities in combustors. It also demonstrates the importance of acous-
tics in combustion oscillations and points out an important implication for
experimental studies: if acoustic impedances upstream and downstream of
the burner are important, it is difficult to take a given burner out of a real
gas turbine for example to test it in a laboratory environment where it will
be installed in a different set-up. Since acoustic boundary conditions will
differ, what will be learned in the laboratory may not be relevant for the
full combustor in its real environment.

Growth Overshoot Limit cycle Decay

T r . T T r -
0.13 0.14 015 0.16 0.7 0.18
Time [s]

Figure 9.20. RHS terms in the acoustic energy equation for Case 2:
Rayleigh criterion (solid); acoustic flux (dotted).
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The previous chapters have discussed examples of instabilities in com-
bustors where the fuel was gaseous. However, in most practical devices,
fuel is liquid (gasoline or kerosene) and the problem becomes much more
difficult. In this chapter, the specificities of two-phase flow combustion will
be discussed and the construction of a numerical tool to perform LES of
liquid fuel combustion will be discussed. This chapter will also present the
equations solved for gaseous and liquid combustion in more details than the
previous ones.

The introduction of a dispersed liquid fuel raises two kinds of problems:

e Liquid fuel sprays are not yet fully understood [310]. The atomiza-
tion process of a liquid fuel jet [376; 332; 345; 293; 309], the turbulent
dispersion of the resulting droplets [256; 253; 262; 333; 319], their in-
teraction with walls [259; 365], their evaporation and combustion [290]
are phenomena occurring in LES at the subgrid scale and therefore
require accurate modeling.

e The numerical implementation of two-phase flow in LES remains a
challenge. The equations for both gaseous and dispersed phases must
be solved together at each time step in a strongly coupled manner.
This differs again from classical RANS where both phases can be
solved in a weakly coupled procedure, bringing first the gas flow to
convergence, then calculating the associated dispersed phase and it-
erating until convergence of both phases.

Attempts to extend RANS formulation to LES of two-phase combustion
may be found in [318; 354; 317; 255; 292]. They are all based on a Euler-
Lagrange (EL) description of the dispersed phase in which the flow is solved
using an Eulerian method and the particles are tracked with a Lagrangian
approach. An alternative is the Euler-Euler (EE) description, also called
two-fluid approach, in which both the gas and the dispersed phases are
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solved using Eulerian formulation.

In RANS codes, the weak numerical coupling of the phases makes the
EL method well suited for gas turbine computations, but RANS with the
EE approach may also be found for example in simulations of fluidized
beds [277; 335] or chemical reactors [284; 272; 289], two examples of two-
phase flows with a high load of particles. The experience gained in the
development of RANS has led to the conclusions that both approaches are
useful and they are both found today in most commercial codes. Moreover,
coupling strategies between EE and EL methods within the same application
are considered for certain cases. In the framework of LES of gas turbines,
it is interesting to compare again EL with EE formulations.

Following the individual trajectory of millions of droplets created by
standard injectors implies computer resources that are still far beyond the
capacities of computers available today and even in the coming years. To
overcome this problem the stochastic Lagrangian approach is usually intro-
duced, where each particle is only a "numerical” particle, representing in
fact a statistically homogeneous group of real particles. This reduces the
number of particles to compute but implies modeling for these parcels of
particles [324]. Moreover in order to reach the accuracy required by LES,
the stochastic Lagrangian approach must still involve an important number
of particles that make it CPU time-consuming. Another difficult point is
that the topology of the flow in dense zones (like near the injectors) dif-
fers from a cloud of droplets and a Lagrangian description is not adapted
there. Finally the computer implementation of the EL approach is not
well-suited to parallel computers: since two different solvers must be cou-
pled, the complexity of the implementation on a parallel computer increases
drastically compared to a single-phase code. Two methods may be used for
LES: (1) task parallelization in which certain processors compute the gas
flow and others compute the droplets flow and (2) domain partitioning in
which droplets are computed together with the gas flow on geometrical sub-
domains mapped on parallel processors. Droplets must then be exchanged
between processors when leaving a sub-domain to enter an adjacent domain.
For LES, it is easy to show that only domain partitioning is efficient on large
grids because task parallelization would require the communication of very
large three-dimensional data sets at each iteration between all processors.
However, codes based on domain partitioning are difficult to optimize on
massively parallel architectures when droplets are clustered in one part of
the domain (typically, near the fuel injectors). Moreover, the distribution of
droplets may change during the computation: for a gas turbine re-ignition
sequence, for example, the chamber is filled with droplets when the ignition
begins, thus ensuring an almost uniform droplet distribution; these droplets
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then evaporate rapidly during the computation, leaving droplets only in
the near injector regions. To preserve a high parallel efficiency on thou-
sands of processors, dynamic load-balancing strategies are required that
re-decompose the domain during the computation itself [292].

The EE approach has the important advantage to be straightforward to
implement in a numerical tool, and immediately efficient as it allows the
use of the same parallel algorithm than for the gas phase [301]. However
it requires an initial modeling effort much larger than in the EL method
[280] and faces difficulties in handling droplet clouds with extended size
distributions. Moreover the resulting set of equations is numerically difficult
to handle and requires special care [346].

Throughout this chapter, two-phase flows are treated like mono-disperse
sprays, an assumption which is not mandatory in EE methods but which
makes their implementation easier. Results also suggest that in many flows,
this assumption is reasonable. Considering the lack of information on size
distribution at an atomizer outlet in a real gas turbine, this assumption
might be a reasonable compromise in terms of complexity and efficiency:
tracking multi-disperse sprays with precision makes sense only if the spray
characteristics at the injection point are well known. In most cases, droplets
are not yet formed close to the atomizer outlet anyway and even the La-
grange description faces difficulties there.

In the context of LES, a new modeling issue appears for two-phase flow
simulations, either in the EL or EE formulation, and is linked to the subgrid
scale model for the turbulent droplet dispersion. This problem has already
been addressed in [278; 279] but is still an open question. However in the
case of reacting flows, turbulent droplet dispersion occurs in a very limited
zone between the atomizer and the flame and it is greatly influenced by the
flame dynamics, therefore limiting the impact of the subgrid scale model.

The EE methodology in LES used throughout this work is taken from
previous work [280; 328; 347; 346] where the validity and limitations have
been discussed extensively, and it is not the purpose here to discuss further
theoretical aspects. Despite the known limitations of such methodology, it
is interesting to evaluate the potential and accuracy of the existing models
when applied to realistic geometries and flows. This is the objective of the
present discussion in the case of aeronautical gas turbines.

The framework and the basic equations for the EE description are first
recalled in Section 10.1. The LES filtering procedure for these equations is
described in Section 10.1 along with the closure assumptions and models for
subgrid terms, including turbulent combustion. The application is a sector
of a gas turbine burner for which both the steady flow and an ignition
sequence using a spark discharge are computed in Sections 10.2 and 10.2
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respectively.

10.1 Equations
Carrier Phase

The set of instantaneous conservation equations in a multi-species reacting
gas can be written:

%+V~F:SC+ S, (10.1)

where w is the vector of the gaseous conservative variables

w = (pu, pv, pw, pE, pi)"

with respectively p, u, v, w, E, p; the density, the three Cartesian
components of the velocity vector u = (u,v,w)”, the total energy per unit
mass defined by £ = 1/2u - u + E; where E; is the internal energy, and
pr = pY), where Y}, is the mass fraction of species k. It is usual to decompose
the flux tensor F' into an inviscid and a viscous component: F' = F (w)I +
F(w, Vw)"". The three spatial components of the inviscid flux tensor F'(w)”
are:

pu? + P puv puw
puv pv? + P pLrw
puw POW pw? + P (10.2)
(pE+ P)u (pE+ P)v (pE+ P)w
PrU PRV prw

where the hydrostatic pressure P is given by the equation of state for a
perfect gas: P = pr T, with the gas constant r = % = Zszl %’ZR and
R = 8.3143 J/(mol.K) the universal gas constant. The internal energy
E; is linked to the temperature through the heat capacity of the mixture
calculated as C, = S0, Vi Cp 1.

The components of the viscous flux tensor F(w, Vw)v take the form:

—Txx —Txy —Txz

~Tay ~Tyy “Tyz

—Txz —Tyz —Tzz (103)
—u-Ty+q —u-Ty+g —Uu-T;+q:

J:v,k Jy,k Jz,k

It is composed of the stress tensor 7 = 2u(S — 1/3 0;;Tr(S)) (momentum
equations), the energy flux u-7+¢ (energy equation) and the diffusive flux Jj
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(species equations). In the stress tensor expression, S = 1/2(V-u+(V-u)?)
is the deformation matrix and p is the dynamic viscosity following a classical
power law. The diffusive flux of species k includes a correction velocity V¢
that guarantees mass conservation, so that J, = —p (Dk Wev X, — YkVC)

with V¢ = Zk 1 Dk £V Xy, Xj being the molar fraction of speaes k. The
mixture diffusion coefﬁment for species k is computed as Dy = Tck where
the Schmidt number Sc¢y, is a constant. Finally the heat flux vector g follows
a Fourier’s law and includes an additional term due to heat transport by
species diffusion: ¢ = —\ VT—I—ZQ[:l Jihs i, where X = pC)p, / Pr is the heat
conduction coefficient of the mixture, with the Prandtl number Pr fixed at
a constant value.

The chemical part of the source term S. on the right hand side of
Eq. (8.2) adds a term to the energy equation (wr) and to the species equa-
tions (wg). Chemistry is described by M reactions involving the N reactants
M,, as follows:

N N
dovigMe =Y vibMy,  j=1,M (10.4)

The production/consumption rate wy, for species k is the sum of the reaction
rates wy; produced by all M reactions:

Wk = Zd)k-j = Wi Z Vi Qj (10.5)

where v, = V,;’j - u,’cj and Q; is the rate of progress of reaction j and is

written: . H (ka) K., H <ka> (10.6)

The forward reaction rate follows the Arrhenius law: Ky ; = Ay j exp (— Bag )

RT
where A¢; and E, ; are the pre-exponential factor and the activation en-
ergy. The reverse reaction rate is deduced from the equilibrium relation
K, ; = Ky ;/K.q where K., is the equilibrium constant.

The heat release is calculated from the species production/consumption
rates as:

N
= RS, (10.7)

where Ah%k is the formation enthalpy of species k.
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The second part of the source term 5; is associated to the liquid phase
through the drag force and the evaporation. It adds a vector I to the right
hand side of the momentum equations, a heat transfer term IT on the energy
equation and a mass transfer term I" on the fuel equation (see Section 10.1).

Dispersed Phase

Eulerian equations for the dispersed phase may be derived by several means.
A popular and simple way consists in volume filtering of the separate,
local, instantaneous phase equations accounting for the inter-facial jump
conditions [274]. Such an averaging approach may be restrictive, because
particle sizes and particle distances have to be smaller than the smallest
length scale of the turbulence. Besides, it does not account for the Ran-
dom Uncorrelated Motion (RUM), which measures the deviation of particle
velocities compared to the local mean velocity of the dispersed phase [280)]
(see section 10.1). In the present study, a statistical approach analogous
to kinetic theory [265] is used to construct a probability density function
(pdf) fp(cp, Cp, Hp, X, t) which gives the local instantaneous probable num-
ber of droplets with the given translation velocity u, = c,, the given mass
my = p and the given temperature 7, = (,. The resulting model leads to
conservation equations having the same form as for the gas phase, with the
particle number density 7;, the volume fraction ¢;, the correlated velocity
@ (see section 10.1) and the sensible enthalpy 71&1 (supposed uniform in
the droplet, so that in particular the interface temperature 7, is equal to
the liquid temperature 7}). For a mono-disperse spray, neglecting droplets
interaction terms, the conservation equations read:

0 0

— —muyi =0 10.8

8tnl + a.’ﬂj nlul,] ( )
0 0
— iy 4+ —pigily ;= —T 10.9
8th041 + oz, pLoquy ( )

a0 . o L. . . o . v
aplalul_’i + %jplalul’iul_j = Fd,i — ul)iF — Tl‘jplaléRl’ij (1010)

gﬂldlhs,l + iplélibs,lﬁl,j =—(®+ Fh&p(ﬁ)) (10.11)
t 6l‘j

In these equations, the momentum and heat phase exchange source terms
are split in two parts : I = —Fy; + @;I" that includes both the drag force
and a momentum transfer due to the mass transfer, and Il = ® +Fhs7p(ji‘l),
where h, F(Tl) is the fuel vapor enthalpy taken at the interface temperature
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Ty, that includes conduction and heat transfer linked to the mass transfer.
The tensor 5]:217” corresponds to the random uncorrelated motion (RUM)
and is explained in section 10.1.

Note that without source terms (i.e. without evaporation, drag and
RUM) the momentum equation Eq. 8.2 is similar to the Burger’s equation,
known to create shock-like velocity gradients and therefore difficult to han-
dle numerically. The absence of an isotropic pressure-like force can also lead
to very high droplet number density gradients. Without the use of shock-
capturing numerical schemes it is necessary to add stabilization terms to
this equation. This is explained in section 10.1.

The resulting set of equations Egs. 8.2 to 8.2 is equivalent to the La-
grangian description of the dispersed phase (without collision terms and for
mono-disperse sprays) and leads to the same solutions, as shown in [348].

Phase Exchange Source Terms

Mass transfer between the gas and the liquid phases is linked to evapora-
tion, which follows the classical Spalding model [366]. Assuming that the
dispersed phase is composed of spherical droplets of pure fuel (denoted with
the subscript F), the evaporation rate may be written as :

T = 7 dSh(pDp)in(1 + Byy) (10.12)

where d is the droplet diameter, D is the fuel vapor diffusivity and Sh is the
Sherwood number that takes into account convective and turbulent effects.
A commonly used expression for this number is Sh = 2.0 + 0.55R€;/ s c},/ 3
where Re, = d|lu—1;|/v is the particle Reynolds number and Scp is the fuel
vapor Schmidt number. In this definition v is the carrier phase kinematic
viscosity. In Eq. (8.2), one important parameter is the Spalding number
By = (Ype —Yr)/(1 — Yp,) where Yp o is the fuel mass fraction at the
droplet surface, calculated from the fuel vapor partial pressure at the inter-
face pr ¢ which is evaluated from the Clausius-Clapeyron relation:

WrpLy, (1 1
remneen (M2 (L1 o

The reference pressure and temperature p.. and 7T,. correspond to the sat-
uration conditions, and L, is the latent heat of vaporisation.
The drag force is expressed as:

Fy =22 (0 — i) (10.14)
Tp
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introducing the particle relaxation time 7,:

4pyd?

== 10.15
™ 3prCyRey ( )

itself based on the drag coefficient Cy, which is 0.44 for Rey greater than
1000 otherwise defined by Cyq = I%:d (14 0.15 Re387).

Finally, the conductive flux ® through the interface is calculated as ® =
mngdA N u(f’l —T). In this expression, A is the carrier phase conductivity
and Nu is the Nusselt number usually expressed similarly to the Sherwood

number: Nu = 2.0 + 0.55R6;/2PT1/3.

The Random Uncorrelated Motion (RUM)

The averaging operation for the liquid droplet velocity described in the

previous section introduces a particle velocity deviation from the mean (or

correlated) velocity, noted as u;’ = u, — 1, and named the random uncor-

related velocity [280]. By definition, the statistical average (based on the

particle probability density function) of this uncorrelated velocity is zero:
1"

< u, >= 0. A conservation equation can be written for the associated

kinetic energy 66, =< upy ;> )2
0 o 0 o 10 < 27y .«
— P16l + —picyiy 00 = — ———prdS) i — ——00
atplal I+ axjplalul,j I anjplal 1,iij o 1
9 8’[:/”1 v
— O Ry ;i —— — 1660 10.16
pLeg l,ij axj l ( )

where unclosed terms Mél,ij and 5§l (called here RUM terms) appear. How-
ever the modeling of these terms as proposed for example in [302; 348] is
not yet satisfactory and it is still an open and difficult question. In [348]
it has been shown that in a configuration representative of industrial flows,
the RUM is not essential to capture the mean fields (velocity and mass flux)
of the liquid phase, but only influences the particle turbulent agitation. It
has been therefore omitted in the applications presented later here.

LES Approach

The two sets of conservative equations defined by Eq. (8.2) and Egs. (8.2)-
(8.2) describe turbulent reacting two-phase flows that require a high grid
resolution in order to solve from the smallest to the largest scales. In LES
only the largest scales are computed while the smallest scales are modeled.
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A spatially localized time independent filter of given size, A, is applied to
a single realization of the flow.

The filtered quantity f is resolved in the numerical simulation whereas
f' = f — f is the subgrid scale part due to the unresolved flow motion. For
variable density p, a mass-weighted Favre filtering is introduced so that:

of = pf (10.17)

The balance equations for gas phase LES are obtained by filtering the in-
stantaneous balance equation (8.2):

S 4V.F = 5.+5 (10.18)

where the filtered flux tensor F can be divided in three parts: the inviscid
part FI, the viscous part 7 and the subgrid scale turbulent part 7.
The three spatial components of the inviscid and viscous flux tensor use
expressions similar to Eqs. 8.2 and 8.2, based on filtered quantities. The
subgrid-scale turbulent flux F' =7 is a new term introduced by the LES
approach and is modeled through the turbulent viscosity concept:

—t —_~

oo pETu—dd) = 275m(S - %@jTT@)) (10.19)

The turbulent viscosity v; is determined using the WALE model  [330],
similar to the Smagorinski model, but with an improved behavior near Solid
boundaries. Similarly, a subgrid-scale diffusive flux Vector for species Jk =

(qu —1Y},) and a subgrid-scale heat flux vector g* = p(uE UFE) appear
and are modeled following the same expressions as in section 10.1, using
filtered quantities and introducing a turbulent diffusivity D = v;/Sc}, and
a thermal diffusivity \; = p:C,/Prt. The turbulent Schmidt and Prandtl
numbers are fixed to 1 and 0.9 respectively.

In turbulent reacting cases the Dynamically Thickened Flame model
[311; 321; 355; 361] is used, where a thickening factor F' is introduced to
thicken the flame front and the efficiency function £ developed by Colin et
al. [269] is used to account for subgrid scale wrinkling.

For the dispersed phase, filtered conservative variables and equations are
built with the same methodology as for the carrier phase and similarly a
particle subgrid stress tensor ?f’ij appears :

ﬁ,ij = —iy (g uny — il ) (10.20)

where the Favre filtered quantities fl are defined as i, f} =1 fl. By analogy
to compressible single phase flows [327; 375], Riber et al. [347] propose
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a viscosity model for the SGS tensor 7;;;. The trace-free SGS tensor is
modeled using a viscosity assumption (compressible Smagorinski model),
while the subgrid energy is parametrized by a Yoshizawa model [383] :

JA Oii A
?Zij = Cs)12A2T_Ll|Sl|(Slyij - ?]Sl,kk) — CV712A2n1|Sl|26ij (1021)

where S‘l is the filtered particle strain rate tensor, of norm |,§'l |2 = 25’1_“ Sl,ij*
The model constants have been evaluated in a priori tests [328] leading to
the values Cg; = 0.02, Cy,; = 0.012. The final set of equations for the
gaseous and the dispersed phases is summarized in Table 10.1.

. = 0Fi;+Ts N
Gas velocity apu‘ + apg;lu] = gf + Ta]m T Fyi+ 1,0
j i
. ¥,
Mass fractions aka + 6052’], k— aJk+J’° + wl + 0 p T,
fork=1,N
8pE opu B 9(Fij+r)ui  9G;+aj
Gas total energy + o, = o7, oz,
(non chemical) +® + (= Fy; + ;1) + wk,
Number density o au, ”” =0
Liquid volume fraction 6”“” + % =T
J
- . o7
quuld VGlOClty 6ng;uz,1 + 3/71&(137:1 ity Fd i ul T+ Tz 971,45
Enthalpy apl%lths’l + aplaéiljlhs’l =—(®+ FhS,F(TZ))

Table 10.1. Set of (6+N) conservation equations, where N is the number
of chemical species.

Numerical Approach

The solver used for this study is the same as in Chapter 9: a parallel fully
compressible code for turbulent reacting two-phase flows, on both struc-
tured and unstructured grids. The fully explicit finite volume solver uses
a cell-vertex discretization with a Lax-Wendroff centered numerical scheme
[296] or a third order in space and time scheme named TTGC [268]. Char-
acteristic boundary conditions NSCBC [339; 329] are used for the gas phase.
Boundary conditions are easier for the dispersed phase, except for solid walls
where particles may bounce off. In the present study it is simply supposed
that the particles stick to the wall, with either a slip or zero velocity.

As pointed out in section 10.1, high velocity and number density gradi-
ents may appear, and are difficult to handle with centered schemes. However
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the simulations presented in this exercise run smoothly, thanks to at least
four reasons:

(1) In the different cases, RUM is not so strong anyway because the small
droplets tend to align with the gas flow and the light load avoids particle-
particle and particle-wall interactions, that are the main sources of RUM.
(2) In the combustion chamber application, evaporation reduces the numer-
ical stiffness of the problem as it decreases even more the droplet size and
the load.

(3) The simulations are all run in the LES framework, i.e. calculating fil-
tered (and by definition smoothened) quantities and introducing sub-grid
scale turbulent viscosities.

(4) As is usual with centered schemes, artificial viscosity is used. This is
done with great care to preserve accuracy, applying it very locally (using
specific sensors) and with the minimum level of viscosity [346].

10.2 Reacting Flow in An Aircraft Combustion Chamber

Configuration

The last test case is a 3D sector of 22.5-degrees of an annular combustor
at atmospheric pressure. The kerosene Liquid Spray (LS) is located at the
center of the main Swirled Inlet (SI). Small holes (H), located around the in-
let aim at lifting the flame and protect the injector from high temperatures.
The perforations localized on the upper and lower walls are divided in two
parts. The primary jets (PJ) bring cold air to the flame in the first part of
the combustor where combustion takes place. The dilution jets (DJ) inject
air further downstream to reduce and homogenize the outlet temperature
to protect the turbine. The Spark Plug (SP) is located under the upper
wall between two (PJ). The geometry (Fig. 10.2) also includes cooling films
that protect walls from the flame.

The inlet and outlet boundary conditions use characteristic treatments
with relaxation coefficients to reduce acoustic reflexion [359; 329]. The SI
imposed velocity field mimics the swirler influence. Figure 10.1 displays
profiles of the three components of the air velocity as prescribed along the
axis of the spray (AB on Fig. 10.2) in reduced units: u* = u/Uj as a
function of r* = r/Ry where Uy is the bulk velocity and Ry is the radius
of the SI. The other inlets are simple jets. The injected spray is mono-
disperse, composed of droplets of diameter of 15 um. The volume fraction,
a; ~ 1073, is imposed for a disk of radius r* = 0.4. This corresponds to a
lean global stoichiometric ratio of 0.28. At injection, the liquid velocity is
equal to the gaseous velocity as the droplet Stokes number, based on the
droplet relaxation time, is lower than one. The droplet inlet temperature
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Air flow
Total mass flow rate (g/s) 119
Temperature (K) 525
Pressure (bar) 1

Liquid fuel
Mass flow rate (g/s) 2.38
Temperature (K) 300
Droplet size (um) 15

Table 10.2. Flow conditions for the gas turbine configuration.

equals 288 K and the air is at 525 K. No-slip conditions are used on the
upper and lower walls while a symmetry condition is used on the sector
sides. All conditions are summarized in Table 10.2.

The unstructured mesh is composed of 400,000 nodes and 2,300,000
tetrahedra, which is typical and reasonable for LES of such configuration.
The explicit time step is At ~ 0.22 ps. The mesh is refined close to the
inlets and in the combustion zone (Fig. 10.3), leading to a flame thickening
factor of the order of 10. A one-step chemical scheme fitted to JP10/air
flames is used for chemistry (JP10 is a substitute for kerosene and has the
same thermochemical properties). It has been checked that in the simula-
tion the flame mostly burns mixtures with an equivalence ratio in the range
between 0.5 and 1, where the chemical scheme is valid.

Steady Spray Flame

First a steady turbulent two-phase flame is calculated. The 15 pm droplet
motion follows the carrier phase dynamics so that the Centered Recircula-
tion Zones (CRZ) are similar for gas and liquid, as illustrated on Fig. 10.4,
showing the instantaneous backflow lines of both phases, plotted in the
vertical central cutting plane. Maintained by this CRZ, the droplets accu-
mulate and the droplet number density, presented with the liquid volume
fraction field on Fig. 10.4, rises above its initial value: a zone where the
droplet number density n; is larger than 2n;,,; (where ny;y; is its value
at injection) is formed downstream of the injector at a distance approx-
imately half of the nozzle diameter (lines with circles on Fig 10.4). The
increased residence time of these droplets, whose diameter field is presented
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Figure 10.1. Normal, radial and tangential injection velocity profiles for
the burner configuration: r* = r/Ry and u* = u/Uy where Ry and U are
respectively the SI radius and the bulk velocity.

Figure 10.2. Chamber geometry

on Fig. 10.5, increases the local equivalence ratio distribution. The heat
transfer linked to the phase change leads to the reduction of the gaseous
temperature, as shown by the isoline 7' = 450 K on Fig. 10.6, and an in-
crease of the dispersed phase temperature. Thus, the CRZ, by trapping
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Figure 10.3. Mesh view on central plane

evaporating droplets, stabilizes the vaporised fuel and the flame. The flame
front visualized on Fig. 10.6 by the heat release field is influenced by both
flow dynamics and evaporation rate. The main phenomena controlling lame
stabilization are :

1. the air velocity must be low enough to match the turbulent flame
velocity : the dynamics of the carrier phase (and in particular the
CRZ) stabilizes the flame front on a stable pocket of hot gases

2. zones where the local mixture fraction is within flammability limits
must exist : combustion occurs between the fuel vapour radially dis-
persed by the swirl and the ambient air, where the equivalence ratio
is low enough

3. the heat release must be high enough to maintain evaporation and
reaction : the sum of heat flux II and heat release wr, plotted on
Fig. 10.6, allows to identify the zone (——) where the heat transfer
due to evaporation compensates the local heat release : IT + wp = 0.

In the present case, the flame front is stabilized by the CRZ (1) but the
heat release magnitude is reduced in the evaporation zone because of both
effects (2) and (3). To determine the flame regime (premixed and/or dif-
fusion), the Takeno index 7 = VYp.VYp and an indexed reaction rate

Wh = QFW are used [382]. The flame structure is then divided
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Figure 10.4. Instantaneous
field of volume fraction in the
central cutting plane of the
chamber, with zero-velocity lines
and n; = 2n;,; isoline.
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Figure 10.5. Instantaneous
field of droplet diameter in the
central cutting plane of the
chamber, with equivalence ratio
isolines for the values 1 and 10.

into two parts : wi = 4+wp in the premixed regime and wy = —wp in the
diffusion regime (Fig. 10.7). In the primary zone, the partially premixed
regime dominates because of the unsteady inhomogeneous fuel vapour. In
the dilution zone, the unburned fuel reacts with dilution jets through a dif-
fusion flame, as confirmed by the coincidence between the flame and the
stoichiometric line. In the review on vortex breakdown, Lucca-Negro
& O’Doherty [316] classifies the hydrodynamic instabilities appearing in
swirled flows. For high swirl numbers, the axial vortex breaks down at the
stagnation point S and a spiral is created around a central recirculation
zone CRZ (Fig. 10.8left): this vortex breakdown is the so-called Precess-
ing Vortex Core (PVC) and occurs in a large number of combustors [357].
LES captures the vortex breakdown in the combustor and its frequency is
evaluated with the backflow line on a transverse plane (Fig. 10.8right) at
six successive times marked with a number from 1 to 6 and separated by
0.5 ms. The turnover time is estimated at 7py ¢ =~ 3.5 ms, corresponding
to a frequency of fpyco ~ 290 Hz. Moreover, the three rotating motions of
the SI, the whole PVC structure and the spiral winding turn in the same
direction, as illustrated by the rotating arrows on Fig. 10.8left.
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Figure 10.7. Flame structure vi-
sualized by the indexed reaction
rate. Black zones correspond to
premixed flames and white zones
to diffusion flames.

Figure 10.6. Flame front visu-
alized by iso-contours of reaction
rate superimposed to the temper-
ature field (gray scale).

The PVC defined on Fig. 10.9a controls the motions of both the Va-
porised Fuel (VF) zone and the flame front. Fig. 10.9b displays the tem-
perature field, the maximum fuel mass fraction (white lines) and the flame
front (black isolines of reaction rate wg). In the cutting plane, defined on
Fig. 10.9a, the CRZ stabilizes hot gases and enhances evaporation leading
to a cold annular zone where the maximum fuel mass fraction precesses.
The flame motion follows the PVC and the reaction rate is driven by the
fuel vapour concentration.

Ignition Sequence

Ignition sequences can also be simulated with the same LES tool. The
numerical method used to mimic an ignition by spark plug in the combustion
chamber is the addition of the source term wsperr in Eq. (10.16). This
source term, defined by Eq. (10.16), is a Gaussian function located at (zo,
Yo, 20) near the upper wall between both primary jets and deposited at
time t = tg = 0. The spark duration, typical of industrial spark plugs, is
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Figure 10.8. Left: Precessing vortex core. Right: Backflow line : trans-
verse cut in plane P1 (Fig 10.2).

Y
LY

Figure 10.9. PVC influence on evaporation and combustion (left). Fields
of temperature and isolines of fuel vapor (white lines) and reaction rate
(black lines) (right).

o = 0.04 ms. The total deposited energy is Egpqrr = 150 J.

_ Bspark 3 [(5F0) (550 ) (25 ) H (550)]
(27) 00,3

(10.22)

Wspark =

The temporal evolution of the total (i.e. spatially integrated) power de-
posited by the spark is presented on Fig. 10.10, along with the total heat re-
lease wr and the spatially averaged temperature. After a heating phase due
to the source term on the energy equation (up to approximately 0.08 ms),
the temperature is sufficient to initiate the reaction between fuel vapour
and air, leading to a sudden increase of the heat release of the exothermic



284 Two-Phase Flow Combustion

reaction. When the spark is stopped (at ~ 0.18 ms), the total heat release
decreases, and finally stabilizes at a level corresponding to a propagating
flame, while the mean temperature continues to increase: the ignition is
successful.
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Figure 10.10. Total (spatially integrated) source term wgpqri, total heat
release wr, and spatially averaged temperature.

The transition from the ignition of the first flame kernel (t = 0.2 ms) to
a complete stabilization takes more time (more than 3 ms) and is illustrated
on the longitudinal central cutting plane identified in Fig. 10.11 with the
fuel mass fraction field and the reaction rate isolines. The first image is
presented at t = 0.2 ms; successive images are separated by At = 0.2 ms.
At the beginning of the computation, the 15 um droplets evaporate in the
ambient air at T" = 525 K creating a turbulent cloud of vaporised fuel in
the whole primary zone. This fuel vapour is trapped by the CRZ and is
transported from the evaporation zone to the spark plug area. At ¢ = 0, the
spark ignition leads to the creation of a hot kernel. The propagation of the
flame front created by this pocket of hot gases is highly controlled by the
fuel-vapour distribution between t = 0 and ¢t = 1 ms. After ¢t = 0.2 ms, this
flame loses its spherical shape due to convective effects. The downstream
side of the flame front is blown away and extinguishes by lack of fuel while
the bottom side is progressing towards the center line where the fuel vapour
concentration is high. When entering the CRZ (t = 1 ms), the front is
strongly wrinkled by the large turbulent scales of the flow. However, in the
upstream region of the CRZ, the low velocities enable to stabilize the edge of
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the reacting zone close to the fuel injection (¢ = 1 to 1.4 ms). In this region,
the flame and the back-flow maintain a high temperature ambient leading
to a strong evaporation rate and creating a stable fuel vapour concentrated
spot (t = 1.6 to 2.4 ms). Due to the swirled jet, this fuel vapour is radially
dispersed into the air flow and produce a flammable mixture. Burning
this mixture, the flame is able to spread in the radial direction and finally
occupies a large section of the primary zone (¢t = 2.4 ms). This last topology
corresponds to the steady spray flame described in the previous section.

This ignition sequence shows the important role of the liquid phase,
responsible for the great differences with the ignition of a purely gaseous
flame. The controlling mechanism is evaporation, that delays the start
of the chemical reaction and, together with the droplet turbulent disper-
sion, modifies the fuel vapor distribution and consequently the flame front
propagation. Such a mechanism is difficult to visualize experimentally and,
despite the use of simplified models, the simulation provides here a good
and new qualitative description of the phenomena.

Spark location
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Figure 10.11. Flame front propagation on fuel mass fraction field (white:
0 — black: 0.35)
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THE GROWTH OF
ROUNDING ERRORS IN LES

Dr. Thierry Poinsot
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11.1 Introduction

Previous chapters have shown the power of Large Eddy Simulation (LES)
to predict non-reacting [352; 318] as well as reacting turbulent flows [340;
338; 276; 275; 355] The main strength of LES compared to classical
Reynolds Averaged (RANS) methods is that, like Direct Numerical Sim-
ulation (DNS) [342; 326; 372], LES explicitly captures large scale unsteady
motions due to turbulence instead of modeling them. LES also captures
the multiple instability modes found in reacting flows. An often ignored
aspect of this feature is that like DNS, LES is also submitted to a well-
known feature of turbulent flows: the exponential separation of trajectories
[371] implies that the flow solution exhibited by LES is very sensitive to
any “small perturbations”. These small perturbations which can induce
instabilities can have different sources:

e Rounding errors are the first source of random noise in any finite
precision computation: they constitute an unavoidable forcing for the
Navier-Stokes equations and may lead to LES variability. The study
of error growth in finite precision computations is an important topic
in applied mathematics [367; 264] but has found few applications in
multidimensional fluid mechanics because of the complexity of the
codes used in CFD.

e Initial conditions are a second source of LES results variability: these
conditions are often unknown and any small change in initial condi-
tions may trigger significant changes in the LES solution. Boundary
conditions, in particular the unsteady velocity profiles imposed at in-
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lets and outlets, can have the same effect as initial conditions but are
not studied here.

Due to its large computational resource requirements, modern LES
heavily relies on parallel computing. However, in codes using do-
main decomposition, it is also an additional “noise” source in the
Navier-Stokes equations especially at partition interfaces. Even in
explicit codes, where the algorithm is independent of the number of
processors, the different summation orders with which a nodal value
is reconstructed at partition interfaces, may induce non-associativity
errors. For example, in explicit codes on unstructured meshes us-
ing cell vertex methods [356], the residual at one node is obtained
by adding the weighted residuals of the surrounding cells. Additions
of only two summands are perfectly associative. Moreover, it must
be noted that not all additions of more than two summands gener-
ate non-associativity errors. However, in some cases, summation may
yield distinct results for floating-point accumulation: the rounding er-
rors in (a+b)+c and in a+(b+c) may be different, in particular if there
are large differences in orders of magnitude between the terms [294].
After thousands of iterations, the LES result may be affected. Since
these rounding errors are induced by non deterministic message arrival
at partition interfaces, it is believed that such behaviour may occur
for any unstructured parallel CFD code, regardless of the numerical
schemes used. As a consequence, the simulation output might change
when run on a different number of processors. The case of implicit
codes [318; 282] or in space (such as compact schemes) [312; 250; 363]
is not considered here: for such schemes, the methods used to solve
the linear system appearing at each iteration [351; 281] depend on
the number of processors. Therefore, rounding errors are not the only
reason why solutions obtained with different numbers of processors
differ.

Even on a single processor computation, internal parameters of the
partitioning algorithm may couple with rounding errors to force the
LES solution. For example, a different reordering of nodes using the
Cuthill-McKee (CM) or the reverse Cuthill-McKee (RCM) algorithm
[271; 314] may produce the same effect as a simple perturbation and
can be the source of solution divergence.

Of course, LES/DNS solutions are known to have a meaning only in
a statistical manner [343] so that observing that the solution of a given
LES/DNS at a given instant changes when the rounding errors or the ini-
tial conditions change is not really surprising. It is however a real difficulty
in the practical use of LES/DNS because it means that running the same
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simulation on two different machines or one machine with a different num-
ber of processors or slightly different initial conditions can lead to totally
different instantaneous results. For steady flows in the mean, statistics do
not depend on these changes and mean profiles must be identical. How-
ever, when the objective of the LES is the study of unsteady phenomena
such as ignition or quenching in a combustor [364], knowing that results de-
pend on these parameters is certainly a sobering thought for the LES/DNS
community and a drawback in terms of industrial exploitation.

This chapter tries to address these issues and answer a simple ques-
tion which is of interest for all practitioners of LES: how does the solution
produced by LES depend on the number of processors used to run the sim-
ulation? On the initial condition? On internal details of the algorithm?

The next section gives an example of the effects of the number of pro-
cessors in a simple case: a rectangular turbulent channel computed with a
fully explicit LES code [329] This example shows that even in an explicit
code, running a simulation twice on a different number of processors can
lead to totally different instantaneous solutions. The following section then
gives a systematic description of the effects of rounding errors in two flows:
a turbulent channel and a laminar Poiseuille flow. For all the cases, differ-
ence between two instantaneous solutions obtained by changing either the
number of processors, the initial condition or the graph ordering is quan-
tified in terms of norms between the two solutions. The effects of time
step and machine precision (simple, double and quadruple) are also investi-
gated in this section. All simulations have been performed on an IBM JS21
supercomputer.

11.2 Effects of The Number of Processors on LES

This first example is the LES of a rectangular fully developed turbu-
lent channel of dimensions: 75x25x50 mm (Fig. 11.1). An homogeneous
force is applied to a periodic channel flow to provide momentum; random
disturbances are added to trigger transition to turbulence. There are no
boundary conditions except for the walls in y direction. The Reynolds
number is Re, = du,/v = 1500, where § is half the channel height and
u, the friction velocity at the wall: u, = (Twan/p)'/? with T,eu being the
wall stress. The mesh contains 30% hexahedral elements, it is not refined
at walls. The first grid point is at a reduced distance y* = yu, /v ~ 100
of the wall. The subgrid model is the Smagorinski model and a law-of-the-
wall is used at the walls [355] The CFL number A\ controlling the time
step At is A = max((u + ¢)At/A) where u is the local convective velocity,
¢ the speed of sound and A the mesh size. For all simulations discussed
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Figure 11.1. Schematic of a periodic channel. The upper and lower bound-
aries consist of walls, all other boundaries are pairwise periodic.
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Figure 11.2. Instantaneous field of axial velocity in the central plane of
the channel at t+ = 7.68. Left) run TC1 (4 processors), right) run TC2 (8
Processors).

below, the initial condition corresponds to a snapshot of the flow at a given
instant, long after turbulence was initialized so that it is fully established.
The computation is performed with an explicit code where domain decom-
position is such that the method is perfectly equivalent on any number of
processors. The Recursive Inertial Bisection (RIB) [381; 370] algorithm has
been used to partition the grid and the Cuthill-McKee algorithm is con-
sidered as the default graph reordering strategy. The scheme used here is
the Lax-Wendroff scheme [296] Additional tests were performed using a
third-order Taylor-Galerkin scheme in space and time [268] but led to the
same conclusions.

Figs. 11.2-11.4 show fields of axial velocity in the central plane of the
channel at three instants after the initialization of the run. Two simulations
performed on respectively 4 (TC1) and 8 processors (TC2) with identical
initial conditions and meshes are compared. The characteristics of all pre-
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Figure 11.3. Instantaneous field of axial velocity in the central plane of
the channel at t4 = 18.43. Left) run TC1 (4 processors), right) run TC2 (8
Processors).
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Figure 11.4. Instantaneous field of axial velocity in the central plane of
the channel at t4+ = 26.11. Left) run TC1 (4 processors), right) run TC2 (8
Processors).

sented simulations are displayed in Table 11.1 and 11.2. The instants corre-
spond to (in wall units) ¢+ = 7.68, t+ = 18.43 and tT = 26.11 respectively
where tT = u,t/5. Obviously, the two flow fields observed at tT = 7.68
are identical. However, at t+ = 18.43, differences start to become visible.
Finally, at tT = 26.11, the instantaneous flow fields obtained in TC1 and
TC2 are totally different. Even though the instantaneous flow fields are
different, statistics remain the same: mean and root mean square axial ve-
locity profiles averaged over ¢t ~ 60 are identical for both simulations, as
can be seen in Figs. 11.5.

This very simple example illustrates the main question of the present
work: are the results of Figs. 11.2-11.4 reasonable? If it is not a simple
programming error (the next section will show that it is not so), can other
parameters produce similar effects?
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Figure 11.5. Comparison of the mean (left) root mean square (right) ve-
locity profiles for TC1 (4 processors) and TC2 (8 processors) simulations
over half channel height.

11.3 Sensitivity of LES in Laminar and Turbulent Flows

To understand how LES can produce diverging instantaneous results
such as those shown in the previous section, simple tests were performed to
investigate the effects of various aspects of the methodology:

e laminar/turbulent baseline flow,

e number of processors,

e initial condition,

e graph ordering,

e time step,

e machine precision.

For these tests, the objective is to quantify the differences between two
LES solutions produced by a couple of simulations in Table 11.1 and 11.2.
Let uy and us be the scalar fields of two given instantaneous solutions at the
same instant after initialization. A proper method to compare the latter is
to use the following norms:

Nipar = max(ug(x) — uz(x)) and

Noean = (— / (u1 (%) — uz(x))2dQ)? for z € Q (11.1)
Va Ja

where ) and Vi, respectively denote the computational domain and its
volume. Both norms (in m/s) will be applied to the axial velocity field
so that Ny,e. provides the maximum local velocity difference in the field
between two solutions while Ny, cqn vields a volumetrically averaged differ-
ence between the two solutions. The growth of Ny, and Ny,eqn versus the
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Table 11.1. Summary of turbulent LES runs (fully developed turbulent
channel).

Run Nbr Init. Precision | Graph | CFL
Id proc | cond. ordering A
TC1 4 Fixed Double CM 0.7
TC2 8 Fixed Double CM 0.7
TC3 1 Fixed Double CM 0.7
TC4 1 Modif. Double CM 0.7
TC5 1 Fixed Double RCM 0.7
TC6 4 Fixed Double CM 0.35
TCT7 8 Fixed Double CM 0.35
TCS8 4 Fixed Simple CM 0.7
TC9 8 Fixed Simple CM 0.7
TC10 | 28 Fixed Quadr. CM 0.7
TC11 32 Fixed Quadr. CM 0.7

number of iterations will be used as a direct indicator for the divergence of
the solutions.

A Fully Deterministic LES?

First, it is useful to indicate that performing any of the LES of Table 11.1
twice on the same machine with the same number of processors, the same
initial conditions and the same partition algorithm leads to exactly the same
solution, Ny,ez and Ny,eqan being zero to machine accuracy. In that sense,
the LES remains fully deterministic. However, this is true only if the order
of operations at interfaces is not determined by the order of message arrival
so that summations are always carried out in the same order. Otherwise,
the randomness induced by the non deterministic order of message arrival
is enough to induce diverging solutions.

Influence of Turbulence

The first test is to compare a turbulent channel flow studied in the previous
section and a laminar flow. A three dimensional Poiseuille flow in a pipe ge-
ometry was used as test case. The flow is laminar and the Reynolds number
based on the bulk velocity and diameter is approximately 500. The bound-
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Table 11.2. Summary of laminar runs (Poiseuille flow).

Run | Nbr | Init. | Precision | Graph | CFL
Id | proc | cond. ordering A
LP1 4 Fixed | Double CM 0.7
LP2 8 Fixed | Double CM 0.7

ary conditions are set periodic at the inlet/outlet and no slip at the duct
walls, a constant axial pressure gradient is imposed in the entire domain.
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Figure 11.6. Effects of turbulence. Differences between solutions mea-
sured by N,,q. (open symbols) and N,y,cqn (closed symbols) versus iteration.
Squares: differences between TC1 and TC2 (turbulent channel). Circles:
differences between LP1 and LP2 (laminar Poiseuille flow).

Figure 11.6 shows the evolutions of N,,q; and Nyeqn versus iteration
for runs TC1/TC2 and LP1/LP2. Note that the first point of the graph
is the evaluation of the difference after one iteration. The only parame-
ter tested here is a change of the number of processors. As expected from
the snapshots of Figs. 11.2-11.4, the turbulent channel simulations are very
sensitive to a change in the number of processors and the solutions of TC1
and TC2 diverge rapidly leading to a maximum difference of 20 m/s and
a mean difference of 3-4 m/s after 90,000 iterations. On the other hand,
the difference between LP1 and LP2 hardly increases and levels off when
reaching values of the order or 10~!2. This is expected since there is obvi-
ously only one stable solution for the Poiseuille flow for infinite times and
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laminar flows do not induce exponential divergence of trajectories. How-
ever, this simple test case confirms that the turbulent character of the flow
is the source of the divergence of solutions. This phenomenon must not be
confused with the growth of a hydrodynamic mode, which is induced by
the bifurcation in phase space of an equilibrium state of a given physical
system. Obviously, such an equilibrium state does not exist for a fully de-
veloped turbulent channel flow. In this case, the separation of trajectories
is caused by vorticity, which leads to an increase in the number of degrees
of freedom in phase space [257] and thus high sensitivity to initial condi-
tions. Moreover, the stagnation of absolute and mean differences between
TC1/TC2 simply implies that after 90,000 iterations solutions have become
fully uncorrelated and should not be misinterpreted as the saturation of an
exponentially growing mode.

The basic mechanism leading to Figs. 11.2-11.4 is that the turbulent flow
acts as an amplifier for rounding errors generated by the fact that the mesh
is decomposed differently in TC1 and TC2. The source of this difference is
the new graph reordering obtained for both decompositions. This implies a
different ordering when adding the contributions to a cell residual for nodes
inside the sub-domains but mainly at partition interfaces. This random
noise roughly starts at machine accuracy (Fig. 11.6) at a few points in the
flow and grows continuously if the flow is turbulent.

The growth rate « of the differences between solutions in simulations
TC1 and TC2 cannot be estimated in a simple manner. A simplified de-
scription for the determination of growth rates of trajectory separation is
found in Jimenez [299], it is briefly summarized in the following. For two-
dimensional vortical flows, assuming a description of vortices as points with
associated circulations and neglecting viscosity, a set of linearized ordinary
differential equations can be derived to evaluate the difference between two
neighbouring flow field trajectories differing by an arbitrary infinitesimal
perturbation 6U in the axial velocity. This system admits exponential so-
lutions, the growth rates of which are determined by the real part of the
eigenvalues. The evolution of inviscid/conservative systems conserves vol-
ume in phase space. As the real part of the eigenvalues describes the sepa-
ration of trajectories in time, it represents a measure of the evolution of the
volume in phase space. Thus, if the sum of the real parts vanishes, then at
least one of them has to be positive. At this stage, the number of degrees
of freedom of the system imposes topological constraints on the trajectories
and can prevent their separation, but a few degrees of freedom suffice for
such systems to exhibit chaotic behavior, as was demonstrated by the fa-
mous Lorenz attractor [315]. This argument illustrates that the separation
of trajectories is a property related to the nature of vorticity and mainly
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driven by the number of degrees of freedom in phase space. Therefore, a
simple estimate of the growth rate from flow parameters does a priori not
seem possible. Although the simplifications in the described analysis are
severe, one can suppose that independent of the spatial distribution and
amplitude (within the limit of the linearity assumption) of perturbations
applied to a given turbulent flow field, the separation of trajectories for
various simulations yields similar exponential growth rates, which is con-
firmed in the following. Moreover, it is a pure physical phenomenon and
though induced by rounding errors, the growth rate should not depend on
numerical parameters such as machine precision or time step.

Influence of Initial Conditions

The previous section has shown that turbulence combined with a different
domain decomposition (i.e. a different number of processors for the follow-
ing) is sufficient to lead to totally different instantaneous flow realizations.
It is expected that a perturbation in initial conditions will have the same
effect as domain decomposition. This is verified in runs TC3 and TC4 which
are run on one processor only, thereby eliminating issues linked to parallel
implementation. The only difference between TC3 and TC4 is that in TC4,
the initial solution is identical to TC3 except at one random point where a
10716 perturbation is applied to the streamwise velocity component. Simu-
lations with different locations of the perturbation were run to ensure that
their position did not affect results.

Figure 11.7 shows that the growth rate of the difference between TC3
and TC4 is exactly the same as the one observed between TC1 and TC2
(also displayed in Fig. 11.7): two solutions starting from a very slightly
perturbed initial condition diverge as fast as two solutions starting from the
same solution but running on different numbers of processors. Note that the
difference between runs TC1 and TC2 comes from random rounding errors
introduced at each time step while TC3 and TC4 differ only through the
initial condition: no perturbation is added during the simulation. Still, the
differences between TC3 and TC4 increase as fast as those between TC1
and TC2: this confirms that a turbulent flow amplifies any difference in the
same manner, whether it is due to rounding errors or to a perturbation of
the initial conditions.

Effects of Graph Ordering

It has already been indicated that performing the same simulation twice
(with the same number of processors and same initial conditions) leads to
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Figure 11.7. Effects of initial conditions. Differences between solutions
measured by N,q. (open symbols) and Ny,eqn (closed symbols) versus it-
eration. Squares: differences between TC1 and TC2 (different numbers of
processors). Circles: differences between TC3 and TC4 (different initial
conditions).

exactly the same result. However, this is only true as long as exactly the
same code is used. It is not verified any more as soon as a modification
affecting rounding errors is done in the code. At this point, so many factors
affecting rounding errors can be cited that a general discussion is pointless.
This chapter will focus on fully explicit codes and on one example only: the
order used to add residuals at nodes in a cell vertex scheme. This order
is controlled by the developer. For simulation TC5, the ordering of this
addition was changed (reverse Cuthill-McKee algorithm): the residual at a
given mesh node was assembled by adding the contributions to a cell residual
in a different order. This change does not affect the flow data: in TC5 the
node residual in a regular tetrahedral mesh is obtained by 1/4(R; + (R2 +
(R34 Ry)) where the R;’s are the residuals of the cells surrounding the node
and by 1/4(Ry + (Rs + (R2 + Ry)) in TC3. It has an effect, however, on
rounding errors and the cumulated effects of this non-associativity error are
what this test tries to isolate. TC5 and TC3 are performed with the same
initial condition and run on one processor only. The only difference is the
graph reordering strategy.

As shown by Fig. 11.8, the differences between TC5 and TC3 are again
similar to those observed between TC1 and TC2 (obtained by changing the
number of processors). This confirms that rounding errors (and not the
parallel character of the code) are the source of the solution divergence. It
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Figure 11.8. Effects of addition order. Differences between solutions mea-
sured by Ny,q. (open symbols) and N,y,eqn (closed symbols) versus iteration.
Squares: differences between TC1 and TC2. Circles: differences between
TC3 and TC5.

also shows that any modification of the code which can introduce a small
modification of the results (within machine accuracy), can then lead to
such a divergence, suggesting that repeating an LES simulation with the
same code after a few modifications will probably never yield the same
instantaneous flow fields, potentially leading to discussions on the validity
of the modified code.

Effects of Time Step

It is interesting to verify that numerical aspects do not influence the growth
rate of the solutions difference and that the growth rate is only determined
by the physical and geometrical parameters of the configuration. On that
account, simulations TC6 and TC7 are performed with a time step reduced
by a factor 2 compared to simulations TC1 and TC2. TC6 and TC7 are
carried out on respectively 4 and 8 processors. The norms between TC6
and TC7 are displayed in Fig. 11.9 and compared to the norms between
TC1 and TC2. From the explanations given above, similar growth rates are
expected when comparing the growth rates over physical time. The growth
rates observed in Fig. 11.9 are indeed very similar. The slight difference is
probably due to the variation of the numerical dispersion and dissipation
properties of the scheme with the time step [296].
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Figure 11.9. Effects of time step. Differences between solutions measured
by Npnaz (open symbols) and Nyyeqn (closed symbols) versus physical time.
Squares: differences between TC1 and TC2 (time step At). Circles: differ-
ences between TC6 and TC7 (time step At/2).

Effects of Machine Precision

A last test to verify that the divergence between solutions is not due to a
programming error but depends primarily on rounding errors is to perform
the same computation with simple/quadruple precision instead of double
precision. Simulations TC1 and TC2 were repeated using single precision
in runs TC8 and TC9 (Table 11.1) and quadruple precision in TC10 and
TC11. To compensate for the increase in computational time for quadru-
ple precision simulations, roughly a factor ten compared to double precision,
TC10 and TC11 were carried out on respectively 28 and 32 processors in or-
der to yield a reasonable restitution time. Results are displayed in Fig. 11.10
and compared to the difference between TC1 and TC2.

Figure 11.10 shows that the solution differences for TC8/TC9 and TC10/TC11
roughly start from the respective machine accuracies (differences of 1076 for
single precision after one iteration, differences of 10739 for quadruple pre-
cision after one iteration) and increase exponentially with the same growth
rate before reaching the same difference levels for all three cases. This
shows that higher precision computations cannot prevent the exponential
divergence of trajectories but only delay it.
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Figure 11.10. Effects of machine accuracy. Differences between solutions
measured by N,q. (open symbols) and Ny,eqn (closed symbols) versus it-
eration. Squares: differences between TC1 and TC2 (double precision).
Circles: differences between TC8 and TC9 (single precision). Triangles:
differences between TC10 and TC11 (quadruple precision)

11.4 Conclusions

This chapter focused on the sensitivity of instantaneous LES fields to
multiple parameters such as number of processors, initial condition, time
step, changes in addition ordering of cell residuals for cell vertex methods.
The baseline simulation used for the tests was a fully developed turbulent
channel. The conclusions are the following:

e Any turbulent flow computed by LES exhibits significant sensitivity
to these parameters, leading to instantaneous solutions which can be
totally different. Laminar flows are almost insensitive to these param-
eters.

e The divergence of solutions is due to two combined facts: (1) the ex-
ponential separation of trajectories in turbulent flows and (2) the non-
deterministic rounding errors induced by different domain decompo-
sitions or different ordering of operations. More generally any change
in the code lines affecting rounding errors will have the same effects.

e Small changes in initial condition (of the order of machine accuracy
at one point of the flow only) produce similar divergence of solutions.

e Working with higher precision machines does not suppress the diver-
gence of solutions but delays it.

These results confirm the expected nature of LES [343] in which solutions

are meaningful only in a statistical sense and instantaneous values can not
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be used for analysis. However, on a more practical level, they point out
various difficulties to develop LES codes:

e Repeating the results of a given LES after modifying the code and
verifying that instantaneous solutions have not changed is not always
possible. Since any programming error will also lead to a change
in instantaneous solutions, identifying errors introduced by new lines
will require a detailed analysis based on average fields (and not on
instantaneous fields) and a significant loss of time.

e Verifying an LES code on a parallel machine is a difficult task: run-
ning the code on different numbers of processors will lead to different
solutions and make comparisons impossible.

e Porting a LES code from one machine to another will also produce
different solutions for turbulent runs, making comparison and valida-
tions of new architectures difficult.

More generally, these results demonstrate that the concept of “quality”
in LES will require much more detailed studies and tools than what has been
used up to now in Reynolds Averaged simulations. Instabilities appearing in
a given LES on a given computer can have sources which were not expected
at first sight (like the number of processors). Mastering these instabilities
(or at least understanding them) will be an important task to get the full
power of LES techniques.
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