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Series Editors’ Foreword

The series Advances in Industrial Control aims to report and encourage technol-
ogy transfer in control engineering. The rapid development of control technology
has an impact on all areas of the control discipline. New theory, new controllers,
actuators, sensors, new industrial processes, computer methods, new applications,
new philosophies. . . , new challenges. Much of this development work resides in in-
dustrial reports, feasibility study papers and the reports of advanced collaborative
projects. The series offers an opportunity for researchers to present an extended ex-
position of such new work in all aspects of industrial control for wider and rapid
dissemination.

The broader objectives of process control engineering include:

(i) controlling processes and technology safely, thereby protecting process opera-
tors and workers and the natural environment

(ii) minimizing the energy resources required to operate the process (in a wider
environmental context, this also reduces the need to generate and deliver more
energy to the process); and

(iii) operating the process or technology to optimize the material resource consump-
tion (one aspect of this optimization is the simple reduction in the quantity of
material used, but another is to use the same quantity of material to produce
more consistent and better quality end products).

An interesting feature of these objectives is that they transcend application domains,
applying as well to the new emerging technologies being devised to ensure fu-
ture sustainability as to the traditional technological processes of industrial control.
Thus, the real strength of industrial control engineering science lies in the univer-
sality of its techniques across application and industrial domains.

This Advances in Industrial Control monograph, Control and Monitoring of
Chemical Batch Reactors, by Fabrizio Caccavale, Mario Iamarino, Francesco Pierri
and Vincenzo Tufano exemplifies this universality extremely well. The domain of
application, the chemical batch reactor, is part of chemical and process engineering;
the process objectives are safe process operation, minimal energy consumption, and
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x Series Editors’ Foreword

enhanced quality and consistency of operation. The roadmap of this study of a ma-
ture technology is in four stages:

(i) process modelling
(ii) model parameter identification

(iii) control design, simulation and verification; and
(iv) analysis for a fault-handling system.

The monograph reports the stages in a very systematic manner and uses the phenol–
formaldehyde reaction as a thematic case study throughout. Thus, chemical, process
and control engineers can follow the general control framework and then see the au-
thors’ ideas in action using the case study process. In reporting the control design
(Chap. 5), the widely used industrial structure of a cascade two-loop structure is
employed, but the controllers exploit the model information from earlier chapters to
give a nonlinear control scheme that incorporates adaptation. Next, the monograph
reports the development of a fault detection and isolation (FDI) system (Chap. 6).
The inclusion of the considerations for a FDI system is rarer in this kind of study,
but here it is a demonstration of the value of the full four-part control system devel-
opment roadmap.

This monograph will appeal to a wide readership. Industrial chemical and pro-
cess engineers wishing to understand the application of modern control system ideas
and the potential of nonlinear control more comprehensively will find much to study.
The research community of control academics and postgraduate students will appre-
ciate the interaction between the science of control engineering and the demanding
control problems of batch reactors. They should find the application of the tech-
niques to the case study a source of inspiration for future research. The monograph
is a valuable addition to the Advances in Industrial Control series.

Readers from the fields of process, chemical and control engineering may find
these monographs from the Advances in Industrial Control series of complementary
interest: Fault-tolerant Control Systems by Hassan Noura, Didier Theilliol, Jean-
Christophe Ponsart and Abbas Chamseddine (ISBN 978-1-84882-652-6, 2009);
Predictive Functional Control by Jacques Richalet and Donal O’Donovan (ISBN
978-1-84882-492-8, 2009); and Process Control by Jie Bao and Peter L. Lee (ISBN
978-1-84628-892-0, 2007).

From the Editors’ sister series, Advanced Textbooks in Control and Signal Pro-
cessing, the volume Analysis and Control of Nonlinear Process Systems by Katalin
M. Hangos, Jósef Bokor and Gábor Szederkényi (ISBN 978-1-85233-600-4, 2003)
is also focussed on process control and the design of nonlinear controllers.

M.J. Grimble
M.A. Johnson

Industrial Control Centre
Glasgow
Scotland, UK



Preface

Batch chemical processes are widely used in the production of fine chemicals, phar-
maceutical products, polymers, and many other materials. Moreover, the flexibility
of batch processes has become an attractive feature because of the actual turbulence
of markets, characterized by a rapidly changing demand.

Batch processes are often nonisothermal and characterized by nonlinear dynam-
ics, whose effects are further emphasized by intrinsically unsteady operating con-
ditions. Hence, methodological and technological problems related to batch chemi-
cal reactors are often very challenging and require contributions from different dis-
ciplines (chemistry, chemical engineering, control engineering, measurement, and
sensing).

A number of issues need to be resolved when dealing with batch reactors in
industrial applications, ranging from design and planning of the plant to schedul-
ing, optimization, and performance achievement of batch operations. Performance
is usually specified in terms of productivity of the plant, safety of operations, and
quality of final products. In order to meet such requirements, several problems need
to be addressed:

• modeling the reactor and the process
• identification of the parameters in the mathematical models
• control of the state variables characterizing the process; and
• early diagnosis of failures and faults accommodation.

This book is aimed at tackling the above problems from a joint academic and
industrial perspective. Namely, advanced solutions (i.e., based on recent research
results) to the four fundamental problems of modeling, identification, control, and
fault diagnosis are developed in detail in seven chapters.

In each chapter, a general overview of foundational concepts is given, together
with a review of classical and recent literature related to the various topics covered.
In detail, the first chapter provides a comprehensive introduction to the main topics
of the book, whereas the last chapter presents some suggestions for future research
activity in this field.

xi



xii Preface

The second chapter presents an introduction to modeling techniques of batch
chemical reactors, with a particular emphasis on chemical kinetics. The third chapter
provides a general introduction to the problem of identification of mathematical
models; the general methodologies are reviewed and developed in a form suitable
for identifying kinetic models of chemical reactions taking place in batch reactors.
In the fourth chapter, the mathematical modeling is extended to consider the thermal
stability of batch reactors, thus providing a bridge towards the problems discussed
in the following two chapters.

In the fifth chapter, a general overview of temperature control for batch reactors
is presented; the focus is on model-based control approaches, with a special empha-
sis on adaptive control techniques. Finally, the sixth chapter provides the reader with
an overview of the fundamental problems of fault diagnosis for dynamical systems,
with a special emphasis on model-based techniques (i.e., based on the so-called an-
alytical redundancy approach) for nonlinear systems; then, a model-based approach
to fault diagnosis for chemical batch reactors is derived in detail, where both sensors
and actuators failures are taken into account.

In order to provide a unitary treatment of the different topics and to give a firm
link to the underlying practical applications, a common case study is developed
through the course of the book. Namely, a batch process of industrial interest, i.e.,
the phenol-formaldehyde reaction for the production of phenolic resins, is adopted
to test the modeling, identification, control, and diagnosis approaches developed
in the book. In this way, a roadmap for the development of control and diagnosis
systems is provided, ranging from the early phases of the process setting to the
design of an effective control and diagnosis system.

In conclusion, the aim of the book is twofold:

• to bring to the attention of process engineers industrially feasible model-based
solutions to control and diagnosis problems for chemical batch reactors, where
such solutions in industrial contexts are often considered not feasible; and

• to disseminate recent results on nonlinear model-based control and diagnosis
among researchers in the field of chemical engineering and process control, so
as to stimulate further advances in the industrial applications of such approaches.

Hence, the book is directed to both industrial practitioners and academic re-
searchers, although it is also suitable for adoption in advanced post-graduate level
courses focused on process control, control applications, and nonlinear control.

Fabrizio Caccavale, Mario Iamarino
Francesco Pierri, Vincenzo Tufano

Potenza
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Chapter 1
Introduction

1.1 Overview of the Main Topics

A new chemical process may involve the production of innovative chemicals, the
exploitation of a new raw material, or the revamping of an established process. Ir-
respective of those details, the process development is usually initiated with the
assessment of a new chemical route from raw materials to products, a task which
requires a sound chemical skill for the understanding of the reaction mechanism,
and is concluded with the assessment of the operating protocols of the industrial
plant, a task which requires a sound engineering skill for obtaining a satisfactory
performance of the plant, in terms of safety of operations, quality of products, and
productivity.

Control and monitoring of the chemical reactor play a central role in this pro-
cedure, especially when batch operations are considered because of the intrinsic
unsteady behavior and the nonlinear dynamics of the batch reactor. In order to meet
such requirements, the following fundamental problems must be solved:

• Modeling. Mathematical modeling of an industrial plant provides the required
quantitative description of the process. Mathematical models of batch reactors
may include mass and energy conservation, chemical kinetics, heat exchange,
and nonideal fluid dynamics; they can be used for simulation, sensitivity analysis,
identification, control, and diagnosis. The development of reliable mathematical
models of industrial processes and plants is often a complex and time-consuming
task, which may conflict with the objective of achieving a short time-to-market
strategy, so that the development of simple models, readily accessible to process
engineers and sufficiently accurate, is a major challenge.

• Identification. In most cases, the mathematical models of interest in industry
contain a few parameters whose values, essentially unknown a priori, must be
computed on the basis of the available experimental data. In the case considered
here, chemical kinetics is the main field in which this problem is of concern. Iden-
tification provides methods for obtaining the best estimates of those parameters
and for choosing (i.e., identifying) the best mathematical model among different
alternatives.
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• Control. Usually, the temperature inside the reactor has to be carefully con-
trolled, in order to follow a desired profile (determined, e.g., on the basis of
product/quality optimization techniques). Nevertheless, this goal is difficult to
achieve, since batch reactors are often subject to large disturbances (caused by,
e.g., incorrect reactor loading, fouling of internal heat exchange systems, non-
ideal mixing), modeling uncertainties, incomplete real-time measurements (since
chemical composition measurements are usually not available in real time), and
process/equipments constraints. Since the ability of influencing its behavior de-
creases as the reaction proceeds, effective and industrially viable temperature
control strategies have to be devised. To this aim, the use of a mathematical
model of the reactor is expected to provide a significant improvement of the per-
formance, with respect to those achieved by classical linear (e.g., PID regulators)
control techniques. This motivates the focus on model-based control approaches
in this book, as well as a critical comparison with more traditional linear ap-
proaches.

• Fault diagnosis and accommodation. Industrial plants require an high level
of equipment and operational safety; such issues become critical especially in
chemical industry. Hence, both equipment failures (e.g., faults affecting sensors,
valves, and other devices acting on the plant) and process unexpected behaviors
(e.g., temperature runaway) need to be detected in their early stages, so that cor-
rective actions can be planned in a timely and effective way. Devising reliable
and industrially viable fault diagnosis approaches is thus a major challenge. In-
tegration of a mathematical model into the diagnosis algorithms is expected to
provide major benefits in terms of both timing of the warnings and accuracy of
fault identification. Hence, in this book, the focus is on model-based fault diag-
nosis approaches.

In the following, the reader is introduced to the book contents by illustrating in
more detail the way in which the above issues are discussed throughout the book.

1.2 The Batch Reactor

The chemical batch reactor is the main object of this book and of Chap. 2, in which
different aspects are considered. The chapter is opened by a classification of the
ideal chemical reactors, which are simplified models of real reactors very useful
as a first approach to this very complex matter. The Batch Reactor (BR) is singled
out among the other ideal reactors on the basis of the mode of operation (i.e., dis-
continuous vs. continuous) and of the quality of mixing (i.e., perfect mixing vs.
no mixing). In more general terms, a discontinuous or batch reactor corresponds to
a closed thermodynamic system, whereas continuous reactors (Continuous Stirred
Tank Reactor, CSTR, and Pug Flow Reactor, PFR) correspond to open systems.
In industry, discontinuous operations are well suited for the production of valu-
able products through rather slow reactions and allow to drive reaction patterns by
controlling the whole temperature–time history, whereas continuous operations in
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(approximatively) steady-state conditions are typical of large productions of more
simple chemistry.

Chemical kinetics plays a major role in modeling the ideal chemical batch re-
actor; hence, a basic introduction to chemical kinetics is given in the chapter. Sim-
plified kinetic models are often adopted to obtain analytical solutions for the time
evolution of concentrations of reactants and products, while more complex kinetics
can be considered if numerical solutions are allowed for.

Since complex systems may involve up to several hundreds (and even thousands)
of chemical species and reactions, simple reaction pathways cannot always be rec-
ognized. In these cases, the true reaction mechanism remains an ideal matter of prin-
ciple, which can be only approximated by reduced reaction networks. Also in sim-
pler cases, reduced networks are more suitable for most practical purposes. More-
over, the relevant kinetic parameters are mostly unknown or, at best, very uncertain,
so that they must be evaluated by exploiting adequate experimental campaigns. With
the aim of presenting an example of the problems related to chemical kinetics, a case
study is introduced and discussed in detail in the next subsection.

The mathematical model of the batch reactor consists of the equations of conser-
vation for mass and energy. An independent mass balance can be written for each
chemical component of the reacting mixture, whereas, when the potential energy
stored in chemical bonds is transformed into sensible heat, very large thermal ef-
fects may be produced.

The equation of energy conservation allows one to introduce elements of realism
in the modeling of the batch reactor, in particular the heat exchange apparatus. This
opens the way to the arguments of thermal stability and control discussed in the sec-
ond part of the book but also introduces the task of measuring and manipulating the
reactor status. Hence, in the chapter a short account is given of the main measurable
variables and of the main strategies for controlling the reactor temperature.

1.2.1 The Case Study

In Chaps. 2 to 6, a case study is developed in order to apply and test the methods
developed along the whole book. To this purpose, the reaction between phenol and
formaldehyde for the production of a prepolymer of phenolic resins has been chosen
for several reasons. In fact, this reactive system is widely used in different forms for
the production of different polymers; moreover, it is characterized by a noticeable
production of heat and by a complex kinetic behavior. Such features represent strong
challenges for controlling and monitoring tasks.

Two different classes of chemical reactions are singled out, namely the reactions
of addition of formaldehyde to the aromatic ring, which introduce a methylol group
as a substituent, and the reactions of condensation, which produce components with
higher molecular weight. In the presence of an alkaline catalyst, the reactions of
addition are strongly oriented in the -orto and -para positions of the aromatic ring,
whereas the reactions of condensation occur both between two substituted positions
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and between a substituent and a free position, thus producing a large number of
isomers.

Under suitable simplifying assumptions, a kinetic mechanism based on 13 com-
ponents and 89 second-order reactions is developed. The relevant kinetic parameters
(preexponential factors, activation energies, and heats of reaction) are computed on
the basis of literature information. In the subsequent chapters, this kinetic model is
used to test the techniques for identification, thermal stability analysis, control, and
diagnosis of faults presented.

1.3 Identification of Mathematical Models

Chapter 3 provides an introduction to the identification of mathematical models for
reactive systems and an extensive review of the methods for estimating the relevant
adjustable parameters. The chapter is initiated with a comparison between Bayesian
approach and Poppers’ falsificationism. The aim is to establish a few fundamen-
tal ideas on the reliability of scientific knowledge, which is based on the compari-
son between alternative models and the experimental results, and is limited by the
nonexhaustive nature of the available theories and by the unavoidable experimental
errors.

This comparison is performed on the basis of an optimality criterion, which al-
lows one to adapt the model to the data by changing the values of the adjustable
parameters. Thus, the optimality criteria and the objective functions of maximum
likelihood and of weighted least squares are derived from the concept of condi-
tioned probability. Then, optimization techniques are discussed in the cases of both
linear and nonlinear explicit models and of nonlinear implicit models, which are
very often encountered in chemical kinetics. Finally, a short account of the methods
of statistical analysis of the results is given.

The chapter ends with a case study. Four different reduced kinetic models are
derived from the detailed kinetic model of the phenol–formaldehyde reaction pre-
sented in the previous chapter, by lumping the components and the reactions. The
best estimates of the relevant kinetic parameters (preexponential factors, activation
energies, and heats of reaction) are computed by comparing those models with a
wide set of simulated isothermal experimental data, obtained via the detailed model.
Finally, the reduced models are validated and compared by using a different set of
simulated nonisothermal data.

1.4 Thermal Stability

Chapter 4 represents a bridge between Chaps. 2 and 3, which are mainly devoted to
the assessment of the basic ideas of modeling and identification, and Chaps. 5 and 6,
in which innovative approaches to model-based control and fault diagnosis for batch
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reactors are developed. In fact, this chapter discusses the thermal and chemical sta-
bility of batch reactors, thus introducing the reader to the need for adequate methods
of control and fault diagnosis.

Exothermic reactions not adequately mitigated by the heat exchange system can
produce very high values of the final temperature; the analysis of chemical kinet-
ics allows us to conclude that temperature increases occur with a self-accelerating
behavior, i.e., with increasing values of the relevant time derivatives. Moreover, in
systems showing a more complex reaction chemistry, the increase of temperature
can activate side reactions, characterized by larger values of activation energy, thus
leading to a faster and, eventually, larger heat release.

In real systems, the increase of temperature is accompanied by a corresponding
increase of pressure, which may lead to an explosion (i.e., to an uncontrolled in-
crease of pressure). Nevertheless, the analysis of temperature patterns with simple
kinetics is enough to study the problem for adiabatic reactors and for constant wall
temperature (isoperibolic) reactors, whereas the more complex case of controlled
wall temperature requires the adoption of more advanced methods.

Thus, the equations describing the thermal stability of batch reactors are written,
and the relevant dimensionless groups are singled out. These equations have been
used in different forms to discuss different stability criteria proposed in the literature
for adiabatic and isoperibolic reactors. The Semenov criterion is valid for zero-order
kinetics, i.e., under the simplifying assumption that the explosion occurs with a neg-
ligible consumption of reactants. Other classical approaches remove this simplify-
ing assumption and are based on some geometric features of the temperature–time
or temperature–concentration curves, such as the existence of points of inflection
and/or of maximum, or on the parametric sensitivity of these curves.

Finally, the application of some of those criteria to the phenol–formaldehyde
reaction gives some interesting insights on the thermal behavior of the system and
also highlights the operation limits arising from an imposed maximum allowable
temperature in the reactor.

1.5 Control of Batch Reactors

Chapter 5 is focused on the temperature control of chemical batch reactors, with
special emphasis on model-based control approaches.

Control of the temperature allows one to determine the behavior of the chemi-
cal reaction and thus the final product of the batch. Of course, temperature control
is of the utmost importance to ensure safety of the plant and the human operators,
especially in the presence of highly exothermic reactions, where the amount of heat
released can become very large, and, if the heat generated exceeds the cooling capa-
bility, temperature runaway may occur. In industrial practice the temperature can be
controlled via the heat exchange between the reactor and a heating/cooling fluid, cir-
culating in a jacket surrounding the vessel, or in a coil inside the vessel. The control
approaches developed in the chapter can be adopted for different cooling/heating
systems.
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The chapter provides an overview of the most commonly adopted feedback con-
trol strategies, ranging from conventional linear PID controllers to more sophis-
ticated nonlinear approaches. Since batch industrial processes can exhibit highly
nonlinear behavior and operate within a wide range of conditions, linear controllers
must be tuned very conservatively, in order to provide a stable behavior over the
entire range of operation, thus leading to a degradation of performance. Hence, in
the last two decades, nonlinear model-based control strategies began to be preferred
for complex processes, thanks to the development of accurate experimental identifi-
cation methods for nonlinear models and to significant improvements of computing
hardware and software.

Therefore, the chapter is mainly focused on the design of model-based control
approaches. Namely, a controller–observer control strategy is considered, where an
observer is designed to estimate the heat released by the reaction, together with a
cascade temperature control scheme. The performance of this control strategy are
further improved by introducing an adaptive estimation of the heat transfer coeffi-
cient. Finally, the application of the proposed methods to the phenol–formaldehyde
reaction studied in the previous chapters is presented.

1.6 Fault Diagnosis for Chemical Batch Reactors

Chapter 6 is focused on fault diagnosis methods for chemical batch processes. Con-
sistent with the approach followed in Chap. 5, the focus of the chapter is on model-
based techniques and, in particular, on techniques based on the use of state ob-
servers.

Several kinds of failures may compromise safety and productivity of industrial
processes. Indeed, faults may affect the efficiency of the process (e.g., lower prod-
uct quality) or, in the worst scenarios, could lead to fatal accidents (e.g., temperature
runaway) with injuries to personnel, environmental pollution, and equipments dam-
age. In the chemical process fault diagnosis area, the term fault is generally defined
as a departure from an acceptable range of an observed variable or a parameter. Fault
diagnosis (FD) consists of three main tasks: fault detection, i.e., the detection of the
occurrence of a fault, fault isolation, i.e., the determination of the type and/or the lo-
cation of the fault, and fault identification, i.e., the determination of the fault profile.
After a fault has been detected, controller reconfiguration for the self-correction of
the fault effects (fault accommodation) can be achieved in some cases.

In the chapter, first the basic principles of model-based FD are reviewed, together
with a wide literature review. Then, the problem of model-based FD for chemical
batch reactors is presented in detail, where both process/actuator faults (e.g., failures
of the heating/cooling systems) and sensor faults (i.e., failures of the temperature
sensors) are considered. In detail, a bank of two observers is designed to achieve
sensors fault detection and isolation, whereas a suitable voting scheme is adopted to
output an estimate of the healthy measured signals. As for process/actuator faults, a
bank of observers is designed to detect, isolate, and estimate faults belonging to a
finite set of fault types.
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A case study, referred to the phenol–formaldehyde reaction model developed in
the previous chapters, closes the chapter.

1.7 Applications to Non-ideal Reactors

This last chapter sketches the extension of the methods developed in the previous
chapters to real chemical batch reactors, characterized by nonideal fluid dynamics
and by the presence of multiphase systems.

First, different typologies of nonideal batch reactors are considered. In particular
gas–liquid reactors are discussed, which may be used for different industrial appli-
cations (e.g., reactions of oxidation) and are often encountered in the case of gassy
reactions (i.e., liquid-phase reactions which do not produce significant thermal ef-
fects but in which the production of gaseous products may lead to explosions).

The effects deriving from both nonideal mixing and the presence of multiphase
systems are considered, in order to develop an adequate mathematical modeling.
Computational fluid dynamics models and zone models are briefly discussed and
compared to simpler approaches, based on physical models made out of a few ideal
reactors conveniently connected.

The nonideal behavior also depends on reactor dimensions; thus scale-up meth-
ods are sketched, in order to face the problems deriving from the industrial scale of
those reactors.

On the basis of these arguments, the chapter and the book concludes with a few
suggestions for developing future research work in this field, for applying the meth-
ods presented in this book to real reactors, and for improving the proposed control
and diagnosis strategies.

1.8 Suggested Reading Paths

The aim and the hope of the authors is to provide, through this book, a unitary
perspective of the main problems and challenges related to modeling, control, and
diagnosis of chemical batch reactors. A special emphasis is put on the interaction
between the development of effective and reliable mathematical models of the plant
and on the subsequent design of the control and diagnosis systems. Hence, the rec-
ommendation for the reader is to read this monograph as a whole.

However, depending on the main interests and background of the reader, two
main reading paths can be identified. The first, suggested to readers mainly inter-
ested in modeling and performance evaluation issues, is composed by Chaps. 2, 3,
and 4. Readers mainly interested in control and diagnosis methods are invited to
read Chaps. 2, 3, 5, and 6.



Chapter 2
The Chemical Batch Reactor

List of Principal Symbols
A reactant A
B reactant B
c mass heat capacity [J kg−1 K−1]
C concentration [mol m−3]
DPh aggregate dimers
Ea activation energy [J mol−1]
�ER internal energy change of reaction [J mol−1]
F formaldehyde
FV volumetric flow rate [m3 s−1]
FM molar flow rate [mol s−1]
�HR molar enthalpy change of reaction [J mol−1]
I reaction intermediate
k0 preexponential factor [(mol m−3)1−n s−1]
kc rate constant [(mol m−3)1−n s−1]
Keq equilibrium constant
m mass [kg]
MPh mono- and di-methylolphenols
n order of reaction
N number of moles [mol]
NC number of species
NR number of reactions
P reaction product
Ph phenol
PPh polyphenols
R reaction rate [mol m−3 s−1]
R universal gas constant [J mol−1 K−1]
R• radical species
S heat transfer area [m2]
S selectivity
t time [s]
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tb batch time [s]
tP residence time [s]
T temperature [K]
TMPh trimethylolphenol
U overall heat transfer coefficient [J m−2 K−1 s−1]
V volume [m3]
X degree of conversion

Greek Symbols
ρ density [kg m−3]
υ stoichiometric coefficient

Subscripts and Superscripts
a ambient conditions
A reactant A
ad adiabatic conditions
B reactant B
in inlet
j jacket
max maximum
min minimum
out outlet
r reactor
0 initial value
° reference value

2.1 Ideal Chemical Reactors

Chemical reactions occur almost everywhere in the environment; however, a chem-
ical reactor is defined as a device properly designed to let reactions occur under
controlled conditions toward specified products. To a visual observation, chemical
reactors may strongly differ in dimensions and structure; nevertheless, in order to
derive a mathematical model for their quantitative description, essentially two major
features are to be considered: the mode of operation and the quality of mixing.

Therefore, the analysis of the main object of this book, namely, the batch chem-
ical reactor, can start by considering the different ideal chemical reactors. In fact,
ideal reactors are strongly simplified models of real chemical reactors [10], which
however capture the two major features mentioned above. These models can be clas-
sified according to the mode of operation (i.e., discontinuous vs. continuous) and to
the quality of mixing (i.e., perfect mixing vs. no mixing). The three resulting ideal
reactors are sketched in Fig. 2.1.

The discontinuous stirred reactor (Batch Reactor, BR, Fig. 2.1(a)) corresponds to
a closed thermodynamic system, whereas the two continuous reactors (Continuous
Stirred Tank Reactor, CSTR, Fig. 2.1(b), and Plug Flow Reactor, PFR, Fig. 2.1(c))
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Fig. 2.1 Ideal reactors: BR (a), CSTR (b), and PFR (c)

are open systems. In industry, discontinuous operations are well suited for the pro-
duction of valuable products through rather complex reactions and allow one to drive
the reaction pattern by controlling the temperature, whereas continuous operations
in (approximately) steady-state conditions are typical of large productions, usually
based on a more simple chemistry.

The two extreme hypotheses on mixing produce lumped models for the fluid
dynamic behavior, whereas real reactors show complex mixing patterns and thus
gradients of composition and temperature. It is worthwhile to stress that the fluid
dynamic behavior of real reactors strongly depends on their physical dimensions.
Moreover, in ideal reactors the chemical reactions are supposed to occur in a single
phase (gaseous or liquid), whereas real reactors are often multiphase systems. Two
simple examples are the gas–liquid reactors, used to oxidize a reactant dissolved in a
liquid solvent and the fermenters, where reactions take place within a solid biomass
dispersed in a liquid phase. Real batch reactors are briefly discussed in Chap. 7, in
the context of suggestions for future research work.

Those simplified models are often used together with simplified overall reaction
rate expressions, in order to obtain analytical solutions for concentrations of reac-
tants and products. However, it is possible to include more complex reaction kinetics
if numerical solutions are allowed for. At the same time, it is possible to assume that
the temperature is controlled by means of a properly designed device; thus, not only
adiabatic but isothermal or nonisothermal operations as well can be assumed and
analyzed.

The main ideas of chemical kinetics are reviewed in the next section; for the sake
of completeness, a brief account is given here of the performance of continuous
reactors as compared to BR, which is the object of the present book.

Whereas the operation of batch reactors is intrinsically unsteady, the continu-
ous reactors, as any open system, allow for at least one reacting steady-state. Thus,
the control problem consists in approaching the design steady-state with a proper
startup procedure and in maintaining it, irrespective of the unavoidable changes in
the operating conditions (typically, flow rate and composition of the feed streams)
and/or of the possible failures of the control devices. When the reaction scheme is
complex enough, the continuous reactors behave as a nonlinear dynamic system and
show a complex dynamic behavior. In particular, the steady-state operation can be
hindered by limit cycles, which can result in a marked decrease of the reactor perfor-
mance. The analysis of the above problem is outside the purpose of the present text;
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nevertheless, a few interesting observations can be made on the simple steady-state
operation.

Apparently, the PFR differs more strongly from the BR, since it is a continuous
reactor with no mixing. Nevertheless, when the PFR is described in the Eulerian
mode, it appears as made of infinitesimal reaction volumes, dV , behaving as dif-
ferential batch reactors, since they remain in the reactor for a residence (or perma-
nence) time tP = Vr/FV (where Vr is the reactor volume, and FV is the volumetric
flow rate passing through the reactor) and do not experience relative mixing. Thus,
this reactor can be described by the same equations of the batch reactor, when tP is
considered in lieu of the time variable t . It is worth remarking that, for any fixed
reactor volume, tP can be changed by changing FV, e.g., in order to optimize the
reactor performance.

For the perfectly mixed continuous reactor, the CSTR, the ratio Vr/FV only rep-
resents the mean residence time, tP,av; however, it is still possible to compare the
performance of the CSTR with the performance of the BR by letting the mean res-
idence time tP,av = t . Interestingly, when the reaction rate shows a positive depen-
dence on reactants concentration, the BR is more effective than the CSTR. This is
because the batch reactor experiences all the system compositions between initial
and final values, whereas the CSTR operates at the final composition, where the
reaction rate is smaller (under the above hypotheses). Finally, one can compare the
two continuous reactors under steady-state conditions. The CSTR allows a more
stable operation because of back-mixing, which however reduces the chemical per-
formance, whereas the PFR is suitable for large heat transfer but suffers from larger
friction losses.

2.2 The Rate of Chemical Reactions

Chemical reactions change the molecular structure of matter, thus resulting in the
destruction of some chemical species (reactants) and in the formation of different
ones (products). The relevant quantities of reactants and products involved in the re-
action are strictly determined by stoichiometry, which states a law of proportionality
deriving from the mass conservation of the single elements. Often, the stoichiomet-
ric coefficients are imposed to be constant during the reaction; however, this is not
true in most real systems. When variable stoichiometric coefficients are observed,
the system cannot be described by a single reaction.

With reference to a simple reaction with constant stoichiometric coefficients, and
unless otherwise specified, the reaction rate R [moles time−1 volume−1] measures
the specific velocity of destruction of those reactants (and of formation of those
products) that appear with unitary stoichiometric coefficients. The reaction rates
of each other component are proportional to R according to their stoichiometric
coefficients.

In general, the rate of a chemical reaction can be expressed as a function of
chemical composition and temperature. This function usually takes the form of a
power law with respect to reactant concentrations and of an exponential function in
the inverse absolute temperature. As an example, the rate R of conversion of A and
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B in the reaction

A + B → products (2.1)

can be expressed as

R = kc(Tr)C
nA
A C

nB
B = k0 exp

(
− Ea

RTr

)
C
nA
A C

nB
B , (2.2)

where CA and CB are the molar concentrations of reactants, nA and nB are the orders
of reaction (n= nA +nB being the overall reaction order), kc(Tr) is the rate constant,
k0 is the preexponential factor, Ea is the activation energy, R is the universal gas
constant, and Tr is the absolute reaction temperature. Since, on varying temperature
from 0 to ∞, the S-shaped function exp(−Ea/RTr), known as Arrhenius law or
Arrhenius term, ranges from 0 to 1, the preexponential factor k0 represents the limit
of kc as Tr → ∞.

Function (2.2) can be considered as an empirical model used to best fit the ex-
perimental concentration-time data. In practice, laws different from (2.2) are also
encountered, especially when dependence on the concentration is considered; how-
ever, a simple theory based on the kinetic theory of gases can only explain the sim-
plest of these empirical rate laws. The general idea of this theory is that reaction
occurs as a consequence of a collision between adequately energized molecules of
reactants. The frequency of collision of two molecules can explain simple reaction
orders, namely the schemes

A + B → products (RA ∝ CACB), (2.3)

A + A → products
(
RA ∝ C2

A

)
, (2.4)

A + third body → products (RA ∝ CA), (2.5)

where third body stands for any molecule with constant concentration. Any collision
involving more than two molecules is very unlikely and must be neglected.

On the other hand, the effective collision concept can explain the Arrhenius term
on the basis of the fraction of molecules having sufficient kinetic energy to destroy
one or more chemical bonds of the reactant. More accurately, the formation of an
activated complex (i.e., of an unstable reaction intermediate that rapidly degrades to
products) can be assumed. Theoretical expressions are available to compute the rate
of reaction from thermodynamic properties of the activated complex; nevertheless,
these expression are of no practical use because the detailed structure of the activated
complexes is unknown in most cases. Thus, in general the kinetic parameters (rate
constants, activation energies, orders of reaction) must be considered as unknown
parameters, whose values must be adjusted on the basis of the experimental data.

Chemical reactions occurring because of a single kinetic act, i.e., because of a
single collision between two molecules, are defined as elementary reactions. More
complex laws of dependence on concentrations can be explained by complex reac-
tion mechanisms, i.e., by the idea that most reactions occur as a sequence of many
elementary reactions, linked in series or in parallel. As an example, the following
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simple reaction mechanism, made out of two reaction steps in series, can explain a
fractionary reaction order. Let us consider the reaction

A + B → P, (2.6)

for which a first-order behavior with respect to each reactant can be foreseen on the
basis of the collision theory. Nevertheless, suppose that this reaction is not caused
by a single collision, but with the following mechanism: first, reactant A is in equi-
librium with a reaction intermediate I since both direct and inverse reactions are
very fast:

A −−⇀↽−− 2 I, (2.7)

then, I reacts with B producing P,

I + B → P. (2.8)

By applying the result (2.3) to reaction (2.8) and introducing the equilibrium con-
stant, Keq, for the reaction (2.7), defined as

Keq = C2
I

CA
, (2.9)

one obtains

R = kcCICB = kc(KeqCA)
1/2CB. (2.10)

The apparent rate constant in (2.10), which is obtained by multiplying a true rate
constant kc and the square root of an equilibrium constant, Keq, can show a law
of dependence on temperature different from the simple Arrhenius law. In some
cases, even a negative temperature dependence can be observed. Moreover, if both
mechanisms (2.6) and (2.7)–(2.8) are active in parallel, the observed reaction rate is
the sum of the single rates, and an effective reaction order variable from 1/2 to 1
can be observed with respect to reactant A. Variable and fractionary reaction orders
can be also encountered in heterogeneous catalytic reactions as a consequence of
the adsorption on a solid surface [6].

Very fast reactions, such as combustion reactions, are very often characterized by
chain mechanisms activated by very reactive species, such as radicals. First, radicals,
R•

1, are formed by an opening reaction involving the reactant A,

A −→ 2 R•
1; (2.11)

then, the chain is propagated by a loop of reactions that continuously produces the
final product P and regenerates the radicals:

R•
1 + B −→ P + R•

2, (2.12)

R•
2 + A −→ P + R•

1. (2.13)
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Moreover, branching reaction mechanisms can take place when at least one re-
action leads to multiplication of radicals, such as

R•
1 + A −→ P + R•

2 + R•
3. (2.14)

In this case, the fast increase of concentration of radicalic species can result in the
loss of control of the reaction (runaway) and in the explosion of the system. This
radicalic runaway may be strongly enhanced by linked thermal effects that are dis-
cussed in more details in Chap. 4.

Kinetic mechanisms involving multiple reactions are by far more frequently en-
countered than single reactions. In the simplest cases, this leads to reaction schemes
in series (at least one component acts as a reactant in one reaction and as a product
in another, as in (2.7)–(2.8)), or in parallel (at least one component acts as a reactant
or as a product in more than one reaction), or to a combination series-parallel. More
complex systems can have up to hundreds or even thousands of intermediates and
possible reactions, as in the case of biological processes [12], or of free-radical re-
actions (combustion [16], polymerization [4]), and simple reaction pathways cannot
always be recognized. In these cases, the true reaction mechanism mostly remains
an ideal matter of principle that can be only approximated by reduced kinetic mod-
els. Moreover, the values of the relevant kinetic parameters are mostly unknown or,
at best, very uncertain.

The model reduction procedure must be adapted to the use of the simplified mod-
els and to the availability of experimental data needed to evaluate the unknown pa-
rameters, as discussed in Chap. 3. In general, more complex models are used for the
design of the reactor and for the simulation of the entire process, whereas more sim-
plified models are best fit for feedback control. In the following chapters it is shown
that fairly accurate results are obtained when a strongly simplified kinetic model is
used for control and fault diagnosis purposes.

2.3 The Ideal Batch Reactor

A more quantitative analysis of the batch reactor is obtained by means of mathemat-
ical modeling. The mathematical model of the ideal batch reactor consists of mass
and energy balances, which provide a set of ordinary differential equations that, in
most cases, have to be solved numerically. Analytical integration is, however, still
possible in isothermal systems and with reference to simple reaction schemes and
rate expressions, so that some general assessments of the reactor behavior can be
formulated when basic kinetic schemes are considered. This is the case of the dis-
cussion in the coming Sect. 2.3.1, whereas nonisothermal operations and energy
balances are addressed in Sect. 2.3.2.
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2.3.1 Conservation of Mass

An independent mass balance can be written for each chemical species (or compo-
nent of the reacting system) in the reactor. Let Ni = VrCi denote the molar quantity
of the ith species, where Vr is the volume of the reactor. Assuming a single reaction
with rate R, the rate of change of the molar quantity, Ṅi = dNi/dt [moles time−1],
must be equal to the rate of reaction taken with the proper algebraic sign, i.e.,

Ṅi = υiRV r, (2.15)

where υi is the stoichiometric coefficient of the ith component, taken negative if
this component is a reactant and positive if it is a product. Since the reaction rate is
a function of concentrations, it is useful to explicate the accumulation term as

Ṅi = VrĊi +CiV̇r, (2.16)

which, under the assumption of constant volume of reaction, gives

Ċi = υiR. (2.17)

It appears that, in the case of constant volume BR, the reaction rate is strictly linked
to the time derivatives of concentrations. This result, which cannot be generalized to
different reactors, may be however useful to visualize the concept of reaction rate.

When multiple reactions occur simultaneously, the right-hand side of (2.17) is
replaced by a sum of reaction terms

Ċi =
NR∑
j=1

υi,jRj , (2.18)

where NR is the total number of reactions and υi,j is the stoichiometric coefficient
of component i in reaction j , again taken negative if component i is a reactant in
reaction j , positive if it is a product, and null if it is not involved. Hence, if NC
species are involved in the reaction, a set of NC equations in the form (2.18) can be
written, eventually in compact matrix form.

Table 2.1 reports some of the most classical basic reaction schemes encountered
in chemical engineering, together with the explicit expressions of the isothermal
concentration profiles as functions of time. The effect of the reaction order can be
evaluated by considering the first three cases in Table 2.1; by applying the corre-
sponding rate laws, the curves shown in Fig. 2.2 are obtained. To allow an easier
comparison, the values of the rate constants have been chosen so as to obtain the
same CA at an arbitrary batch time tb.

The zero-order kinetics is characterized by a linear concentration profile, which is
however unrealistic at very large reaction times, since it produces a negative reactant
concentration; this result confirms that a zero-order reaction derives from a complex
reaction mechanism that cannot be active at very low reactant concentrations. On
increasing the reaction order, the reaction is faster at the highest concentration values
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Table 2.1 Simple reaction schemes

No. Kinetic scheme Integrated BR model equation

1 zero order A
kc0−→ P CA = CA0 − kc0t

2 first order A
kc1−→ P CA = CA0 exp(−kc1t)

3 second order A
kc2−→ P CA = CA0

1 + kc2t

4 equilibrium A
kcB−−⇀↽−−
kcA

B CA = CA0
1+Keq

[1 − exp(−(kcA + kcB)t)]

5 parallel A
kcP1−−→ P1 CA = CA0 exp(−(kcP1 + kcP2)t)

A
kcP2−−→ P2 CP1 = CA0

kcP1
kcP1+kcP2

[1 − exp(−(kcP1 + kcP2)t)]
6 series A

kcI−→ I
kcP−→ P CA = CA0 exp(−kcIt)

CI = CA0
kcI

kcP−kcI
[exp(−kcIt)− exp(−kcPt)]

7 multiple series A → ·· · → P

8 series-parallel A
kcI−→ I

kcP−→ P CA = CA0 exp(−(kcI + kcS)t)

A
kcS−→ P CI = CA0

kcI
kcP−kcS−kcI

[exp(−(kcI + kcS)t)− exp(−kcPt)]

Fig. 2.2 Time histories of
CA in a batch reactor for zero
(continuous line), first (dotted
line) and second (dashed line)
order reaction rates and
CA0 = 1 mol m−3

and slower at the lowest. Nevertheless, the effect of the reaction order is rather
small, so that, in many cases, the simpler first-order behavior is considered to be an
adequate approximation. Thus, unit reaction orders for each reactant are assumed in
the following when dealing with more complex reaction schemes.

In the equilibrium limited case (fourth row in Table 2.1, Fig. 2.3), it is possible to
simulate the constant CB/CA ratio imposed by thermodynamics by introducing the
inverse reaction B → A. In this case, the reaction is not complete, and an asymptotic
behavior is observed for both reactant and product.

In the parallel reaction scheme (fifth row in Table 2.1), competition is observed
between the two reactions when only one of the products is required and the other
one is a secondary undesired or a low value product. In this case, the degree of
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Fig. 2.3 Time histories of
CA (continuous line) and CB
(dotted line) in a batch reactor
for the equilibrium limited
reaction. Initial conditions
are: CA0 = 1 mol m−3 and
CB0 = 0 mol m−3

conversion of the reactant, defined as

X = NA0 −NA

NA0
= CA0 −CA

CA0
, (2.19)

where the expression in terms of concentrations holds for constant-volume reactors,
is unable to describe the product distribution, so that the selectivity concept must be
introduced. As an example, the selectivity to P1 is defined, for unit stoichiometric
coefficients, as

SP1 = CP1

CA0 −CA
. (2.20)

Finally, when chemical kinetics contrasts with equilibrium, the parallel scheme
is not trivial, since one of the products can be favored in the early stages of the batch
cycle by faster kinetics and hindered in the later stages by unfavorable equilibrium.
Such a case is shown in Fig. 2.4 for parallel reactions of A to P1 via an equilibrium
limited reaction and to P2 via an irreversible reaction.

In the reaction scheme in series (sixth row in Table 2.1), the required product
is often the intermediate I, and its concentration has a maximum at time t∗, which
can be taken as the optimal batch time, tb. When the system follows a first-order
kinetics not affected by chemical equilibrium (Fig. 2.5), it can be easily shown that
t∗ depends on the values of the rate constants through the following expression:

t∗ = ln (kcP/kcI)

kcP − kcI
. (2.21)

It is worth remarking that, in real cases, the simple criterion tb = t∗, based on the
system’s selectivity to the desired product, must be modified to account for the cost
of operation (including separation between products and unreacted reactants) and
the gross added value related to the transformation of reactants into products.

It is also interesting to note that the concentration–time curve of the final product
P has a typical shape with zero derivative at t = 0 and an asymptotic trend at very
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Fig. 2.4 Time histories of
CA (continuous line), CP1
(dotted line), and CP2
(dashed line) in a batch
reactor for parallel reactions
of A producing P1, via an
equilibrium limited reaction,
and P2, via an irreversible
reaction. Initial conditions
are: CA0 = 1 mol m−3,
CP10 = CP20 = 0 mol m−3

Fig. 2.5 Time histories of
CA (continuous line), CI
(dotted line), and CP (dashed
line) in a batch reactor for
irreversible series reactions.
Initial conditions are:
CA0 = 1 mol m−3,
CI0 = CP0 = 0 mol m−3

large times. These features are also encountered in more complex series schemes,
i.e., when more than one intermediate is observed (seventh row in Table 2.1), and/or
when kinetics is hindered by unfavorable equilibrium. In general, it appears that the
time t∗ must be considered only as a first approximation of the optimal batch time,
which is computed as before on the basis of a cost analysis.

Finally, the eighth reaction mechanism in Table 2.1 includes both series and par-
allel reactions to the same product P. This scheme is more complete and somewhat
more realistic, but it is not so much different from the series scheme, because the
side parallel reaction to P only produces small changes in the shape of the concen-
tration profiles. As an example, the initial zero derivative for CP can be canceled.

It is also interesting to quantitatively compare the performance of a BR with
those obtained by a CSTR, for which the reaction term RV r acts as a selective stream
entering or leaving the reactor; hence, the mass balance for a CSTR reads

FMA,in = FV,inCA,in = FMA,out +RVr = FV,outCA,out + RV r, (2.22)
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Fig. 2.6 Time histories of
CA for a first-order reaction
in a BR (continuous line) and
in a CSTR (dotted line).
Initial condition is
CA0 = 1 mol m−3

where FMA,in and FMA,out are, respectively, the inlet and outlet molar flow rates.
In the case of first-order reactions, the exit concentration of reactant A is given

by

CA,out = CA,in

1 + tP,avkc
. (2.23)

The relevant results in Fig. 2.6 can be interpreted in the light of the considerations
reported at the end of Sect. 2.1.

2.3.2 Conservation of Energy

The conservation of energy (heat balance) introduces an important element of real-
ism into the model, i.e., the coupling of the reactor with the heating/cooling device.
When the potential energy stored in chemical bonds is transformed by an exothermal
chemical reaction into sensible heat, considerable thermal effects may be produced
that can be quantitatively described by a proper form of the equation of energy con-
servation. In a batch reactor, the accumulation of internal energy is given by the
difference between the heat produced by reaction and the heat exchanged with the
surroundings:

Stored Energy = Generated Heat − Exchanged Heat. (2.24)

A few simplified assumptions make this equation of practical utility. The left-hand
side in (2.24), i.e., the rate of change of internal energy [energy time−1], is sim-
ply related to the total mass m of reaction solution, to the overall constant volume
specific heat capacity cvr [energy mass−1 temperature−1], and to the rate of change
of reactor temperature Ṫr. The heat generated by chemical reaction is given by the
product of the specific molar energy change due to reaction, �ER, and the amount
of moles converted in the reactor per unit time, RV r.
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Fig. 2.7 Batch reactor with
external heat exchange jacket
(left) and coil (right)

The values of �ER can be computed from the standard internal energy change
�Eo

R, which refers to reactants and products in their standard states (not mixed, at
1 atm and 25°C) but also depends on temperature and, for nonideal solutions, on the
heat of mixing of the components. Since a detailed description of these second-order
thermal effects is beyond the purposes of a standard modeling approach, this quan-
tity can be approximated by the standard molar enthalpy change (usually named
standard heat of reaction), �H o

R, which can be easily computed from available ta-
bles of standard enthalpy of formation of the individual compounds. Since �H o

R
is positive for endothermic reactions, a minus sign is usually introduced in the en-
ergy balance. Consistent with this simplified assumption, in liquid-phase systems
the (very small) difference between the constant-pressure and constant-volume heat
capacities can be neglected; hence, the heat capacity is hereafter denoted by cr,
without any further specification.

The second term on the right-hand side of (2.24) depends on the modes of heat
exchange between the reactor and a heat exchange medium or the surroundings. In
general, in order to accomplish the different stages of a batch operation (initial reac-
tor heating, reaction development, and final cooling), the reactor must be provided
with a properly designed device for heat exchange. A jacket or a coil, as depicted
in Fig. 2.7, are suitable for heating (e.g., by using hot water or steam) and cooling
(e.g., by using cold water) only for relatively small heat loads, since the exchange
area is limited by the external reactor surface.

For larger heat loads, i.e., when �ER and/or R and/or Vr increase, a larger heat
exchange surface must be provided. A heat exchanger made out of several tubes lo-
cated inside the reactor allows one to obtain a larger surface-to-volume ratio; how-
ever, its dimensions are limited by the reactor volume and by effectiveness of mixing
of the reaction media. Thus, for large heat loads, an external shell and tube heat ex-
changer must be designed, whose dimensions do not depend on the reactor dimen-
sions. The reaction solution circulates from the reactor to the exchanger and then
back to the reactor in a closed loop; this circulating flow also produces a positive
effect on the mixing of the reactor contents.

According to Newton’s law of heat exchange, the heat exchanged by the reactor
depends on the overall coefficient of heat exchange, U , on the heat exchange surface



22 2 The Chemical Batch Reactor

Fig. 2.8 Reactive positions
on the phenolic ring

S, and on the temperature difference between the reactor and the coolant, Tr − Tj.
In conclusion, a general form of the heat balance is given by

mcrṪr = (−�H o
R

)
RV r −US(Tr − Tj). (2.25)

For nonjacketed reactors, a further term −UaS(Tr − Ta) can be eventually added to
the energy balance to account for heat losses toward reactor surroundings. Here, Ua

is the overall coefficient of heat exchange with the external environment, and Ta is
the external environment temperature.

When (2.25) is integrated from the initial condition t = 0 and CA = CA0 to t →
∞ and CA → 0 in the case of adiabatic reactor (US = 0), the adiabatic temperature
rise �Tad = Tad − T0 is obtained, which represents a useful measure of practical
utility of the system reactivity in terms of the maximum temperature obtainable
when chemical energy is entirely transformed into sensible heat.

2.4 Introducing the Case Study

In this section, the phenol–formaldehyde reaction is introduced as a case study. This
reaction has been chosen because of its kinetic complexity and its high exothermic-
ity, which poses a strong challenge for modeling and control practice. The kinetic
model presented here is adopted to simulate a realistic batch chemical process; the
identification, control, and diagnosis approaches developed in the next chapters are
validated by resorting to this model.

Phenol (C6H5OH) and formaldehyde (CH2O) can react in different ways de-
pending on the catalyst used and the initial formaldehyde-to-phenol molar ratio. In
the production of resol-type phenolic resins, in the presence of an alkaline cata-
lyst, the reactions occurring in the system can be classified into two main types,
namely, reactions of addition of methylol groups to the aromatic ring and reactions
of condensation of aromatic rings to form higher molecular weight components and,
finally, polymers [14].

In the alkaline solution, phenol is essentially present as phenate ion, so that the
first steps of the reaction may be depicted as electrophilic additions of formaldehyde
to the aromatic ring. Those attacks are essentially favored in the -ortho (o) and -para
(p) positions, as sketched in Fig. 2.8, because relatively stable low activation energy
intermediates can be formed; on the contrary, the attacks in the -meta positions are
much slower and are not considered here.
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Fig. 2.9 Reactions of addition to the phenolic ring (1-MPh = o-methylolphenol, 3-MPh =
p-methylolphenol, 1,5-MPh = 1,5-methylolphenol, 1,3-MPh = 1,3-methylolphenol, TMPh =
1,3,5-methylolphenol)

These reactions largely prevail in the early stages of the reaction, when both
phenol and formaldehyde are present in large concentrations. This stage is char-
acterized by the 7 reactions sketched in Fig. 2.9 and is faster than the following
condensation stage; therefore, a mixture of phenol (Ph), formaldehyde (F), two
mono-methylolphenols (o-methylolphenol = 1-MPh, p-methylolphenol = 3-MPh),
two di-methylolphenols (1,5-methylolphenol = 1,5-MPh, 1,3-methylolphenol =
1,3-MPh), and 1,3,5-methylolphenol = trimethylolphenol = TMPh is initially
formed.

The condensation reactions become important in a later stage when the concen-
tration of the substituted phenols has increased. These reactions can occur in two
different modes, as in the two examples sketched in Fig. 2.10; namely, the sub-
stituted methylol groups can react either with a nonsubstituted (free) position of a
different aromatic ring (a) or with a second methylol group (b).

In the first case, the reaction produces a methylene-diphenol (MDPh), i.e.,
molecules in which two phenolic rings are linked by a methylene group. In the
second case, the reaction produces an aromatic ether, i.e., a molecule in which two
aromatic rings are linked by a dimethyl-ether group. However, these compounds
are relatively unstable and rapidly decay (producing a formaldehyde molecule) to
the corresponding methylene-diphenols (MDPh). Thus, the first reaction step is the
rate limiting step, whereas the second one determines the final product and the total
stoichiometry of the reaction.

In these reactions, a large number of two-ring isomers are formed, depending on
the position of attack. In a later stage of reaction, these diphenols can undergo both
addition reactions of one more methylol group on a free position of the aromatic
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Fig. 2.10 Examples of condensation reactions: a condensation of methylolphenol with phenol;
b condensation of two methylolphenols

ring and reactions of condensation to three- and four-ring molecules and finally to
larger molecular weight polymers. Nevertheless, the attention is focused here on
the production of TMPh, a product that has a commercial value as a prepolymer
for resol-type resins; thus, the condensation reactions of higher molecular weight
molecules are usually limited by quenching the system at a suitable reaction time.
On the basis of the above analysis, a quantitative kinetic model is derived, as dis-
cussed in the next two sections.

2.4.1 Components

Only a few studies have tackled the problem of deriving a detailed kinetic model
of the phenol–formaldehyde reactive system, mainly because of its complexity. In
recent years, a generalized procedure has been reported in [11, 14] that allows one to
build a detailed model for the synthesis of resol-type phenolic resins. This procedure
is based on a group contribution method and virtually allows one to estimate the
kinetic parameters of every possible reaction taking place in the system.

In order to develop an exhaustive kinetic model, some basic assumptions have
been made. First, the two mono-methylolphenols and the two di-methylolphenols
have been indicated as MPhi (MPhi , i = 1, . . . ,4). Moreover, since the TMPh is the
desired product, some simplifications have been introduced for describing the com-
ponents containing more than one phenolic ring. In detail, all the diphenols having
the same number of methylol groups have been considered as one single compo-
nent, regardless of the position of these methylol groups. This allows one to consider
in the model only 5 different aggregate methylene diphenols DPhi (i = 0, . . . ,4),
where i is the number of methylol groups. In the same way, triphenols have been
taken into account as just one aggregate poliphenol (PPh), whereas compounds with
more than three phenolic rings have not been considered here, since the system is
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usually quenched before their formation becomes detectable. Therefore, the result-
ing reactive scheme involves 13 chemical compounds:

• reactants: phenol (Ph) and formaldehyde (F)
• intermediates: four mono- and di-methylolphenols (MPhi , i = 1, . . . ,4)
• desired product: trimethylolphenol (TMPh)
• undesired products: five aggregate dimers (DPhi , i = 0, . . . ,4) and
• undesired product: aggregate component PPh, including all the poliphenols with

three phenolic rings.

2.4.2 Reactions

A second-order kinetics has been assumed [8, 14] for all reactions included in the
reaction mechanism, which is composed by the following 89 reactions:

• 7 addition reactions of formaldehyde to phenol, sketched in Fig. 2.9
• 77 condensation reactions involving two monophenolic molecules as reactants

(Ph or MPhi , i = 1, . . . ,4)
• 4 addition reactions of formaldehyde to aggregate dimers; and
• 1 condensation reaction of dimers with monomers.

In order to estimate the kinetic parameters for the addition and condensation re-
actions, the procedure proposed in [11, 14] has been used, where the rate constant
kc of each reaction at a fixed temperature of 80°C is computed by referring it to the
rate constant ko

c at 80°C of a reference reaction, experimentally obtained. The ratio
kc/k

o
c , assumed to be temperature independent, can be computed by applying suit-

able correction coefficients, which take into account the different reactivity of the
-ortho and -para positions of the phenol ring, the different reactivity due to the pres-
ence or absence of methylol groups and a frequency factor. In detail, the values in
[11] for the resin RT84, obtained in the presence of an alkaline catalyst and with an
initial molar ratio phenol/formaldehyde of 1 : 1.8, have been adopted. Once the rate
constants at 80°C and the activation energies are known, it is possible to compute
the preexponential factors k0 of each reaction using the Arrhenius law (2.2).

For the molar enthalpy change of reaction, the values �H o
R = −20.3 kJ mol−1

and �H o
R = −98.7 kJ mol−1 have been used for addition and condensation reac-

tions, respectively [9].
In the following, all the reactions included in the model are reported together with

the values of the relevant kinetic parameters. Addition reactions, from 1 to 7, are
reported in Table 2.2, whereas condensation reactions to the single dimers (DPhi )
are reported in Tables 2.3, 2.4, 2.5, 2.6, and 2.7; for all condensation reactions, an
activation energy of 90 kJ mol−1 has been assumed.

It should be observed that in Table 2.3 the three nonsubstituted two-ring isomers
are indicated as 1,6-MDPh, 1,8-MDPh, and 3,8-MDPh, where the numbers indicate
the position of the two hydroxyl groups with respect to the methylene bridge, re-
spectively, in the o–o, o–p, and p–p positions. Those numbers are preserved in the
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Table 2.2 Addition reactions producing monomers

No. Reaction k0 [m3 mol−1 s−1] Ea [kJ mol−1]

1 Ph + F → 1-MPh 1.13 · 105 89.1

2 Ph + F → 3-MPh 2.26 · 105 91.7

3 o-MPh + F → 1,5-MPh 4.34 · 105 98.5

4 o-MPh + F → 1,3-MPh 2.09 · 105 88.2

5 p-MPh + F → 1,3-MPh 1.11 · 107 99.0

6 1,5-MPh + F → 1,3,5-MPh 1.68 · 102 91.5

7 1,3-MPh + F → 1,3,5-MPh 6.99 · 105 92.2

Table 2.3 Condensation
reactions producing the
dimers DPh0

No. Reaction k0 [m3 mol−1 s−1]

8 Ph + 1-MPh → 1,6-MDPh 3.65 · 103

9 Ph + 1-MPh → 1,8-MDPh 3.01 · 103

10 Ph + 3-MPh → 1,8-MDPh 2.31 · 103

11 Ph + 3-MPh → 3,8-MDPh 1.91 · 103

12 1-MPh + 1-MPh → 1,6-MDPh + F 1.45 · 103

13 1-MPh + 3-MPh → 1,8-MDPh + F 9.17 · 102

14 3-MPh + 3-MPh → 3,8-MDPh + F 5.82 · 102

following tables and determine the numbers used to indicate the positions occupied
by the methylol groups.

The four addition reactions of formaldehyde to a diphenol are reported in Ta-
ble 2.8; in this case the activation energy is assumed at the value Ea = 90 kJ mol−1

as well.
Finally, the reaction no. 89 has been included with the aim of considering, for the

sake of completeness, the reactions that produce higher molecular weight molecules.
In fact, as discussed before, these reactions are almost negligible in the system under
study, in the sense that the system behavior is almost insensitive to such reactions at
the reaction times of interest. Thus, the approximate kinetic law

4∑
i=1

MPhi +
4∑

i=0

DPhi → trimers, (2.26)

has been assumed, with a second-order kinetics, k0 = 9.69 · 103 m3 mol−1 s−1,
which corresponds to the average value of the other condensation reactions con-
sidered, and Ea = 90 kJ mol−1.
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Table 2.4 Condensation reactions producing the dimers DPh1

No. Reaction k0 [m3 mol−1 s−1]

15 Ph + 1,5-MPh → 2-M-1,6-MDPh 2.75 · 104

16 Ph + 1,5-MPh → 2-M-1,8-MDPh 2.28 · 104

17 Ph + 1,3-MPh → 4-M-1,6-MDPh 1.59 · 103

18 Ph + 1,3-MPh → 4-M-1,8-MDPh 1.32 · 103

19 Ph + 1,3-MPh → 7-M-1,8-MDPh 2.04 · 103

20 Ph + 1,3-MPh → 2-M-3,8-MDPh 1.68 · 103

21 1-MPh + 1-MPh → 2-M-1,6-MDPh 2.89 · 103

22 1-MPh + 1-MPh → 7-M-1,8-MDPh 1.83 · 104

23 1-MPh + 3-MPh → 2-M-1,8-MDPh 3.62 · 102

24 1-MPh + 3-MPh → 2-M-3,8-MDPh 5.81 · 103

25 1-MPh + 3-MPh → 4-M-1,6-MDPh 1.23 · 104

26 3-MPh + 3-MPh → 4-M-1,8-MDPh 1.56 · 104

27 1-MPh + 1,5-MPh → 2-M-1,6-MDPh + F 1.09 · 104

28 1-MPh + 1,3-MPh → 4-M-1,6-MDPh + F 6.32 · 102

29 1-MPh + 1,3-MPh → 7-M-1,8-MDPh + F 8.08 · 102

30 3-MPh + 1,5-MPh → 2-M-1,8-MDPh + F 6.93 · 104

31 3-MPh + 1,3-MPh → 4-M-1,8-MDPh + F 4.01 · 102

32 3-MPh + 1,3-MPh → 2-M-3,8-MDPh + F 5.12 · 102

2.5 A General Model for a Network of Nonchain Reactions

The kinetic model developed in Sect. 2.4 for the phenol–formaldehyde reaction be-
longs to a wider class of kinetic networks made up of irreversible nonchain reac-
tions. In this section, a general form of the mathematical model for this class of
reactive systems is presented; moreover, it is shown that the temperature attainable
in the reactor is bounded and the lower and upper bounds are computed.

To this goal, let us consider a cooled batch reactor in which the following network
of irreversible reactions takes place:

A1 −→ υ1,2A2
A1 −→ υ1,3A3 A2 −→ υ2,3A3
...

...

A1 −→ υ1,NC+1ANC+1 A2 −→ υ2,NC+1ANC+1 . . . ANC −→ υNC,NC+1 ANC+1

where Ai denotes the ith component, υi,j ≥ 0 is the stoichiometric coefficient of Aj

in the reaction Ai → Aj , and ANC+1 is the final product. The above mechanism rep-
resents a general scheme of irreversible nonchain reactions involving NC reactants
and can be reduced to a simpler series and/or parallel reaction scheme by assuming
υi,j = 0 for the reactions to be eliminated.
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Table 2.5 Condensation reactions producing the dimers DPh2

No. Reaction k0 [m3 mol−1 s−1]

33 Ph + TMPh → 2,4-M-1,6-MDPh 7.38 · 103

34 Ph + TMPh → 2,4-M-1,8-MDPh 6.10 · 103

35 Ph + TMPh → 7,9-M-1,8-MDPh 8.57 · 103

36 Ph + TMPh → 2,4-M-3,8-MDPh 7.08 · 103

37 1-MPh + 1,5-MPh → 2,7-M-1,6-MDPh 4.32 · 103

38 1-MPh + 1,5-MPh → 7,9-M-1,8-MDPh 2.39

39 1-MPh + 1,5-MPh → 2,7-M-1,8-MDPh 6.92 · 104

40 1-MPh + 1,3-MPh → 2,4-M-1,6-MDPh 7.86 · 103

41 1-MPh + 1,3-MPh → 2,9-M-1,6-MDPh 2.50 · 102

42 1-MPh + 1,3-MPh → 4,7-M-1,8-MDPh 4.00 · 103

43 1-MPh + 1,3-MPh → 2,7-M-1,8-MDPh 3.19 · 102

44 1-MPh + 1,3-MPh → 2,7-M-3,8-MDPh 5.12 · 103

45 3-MPh + 1,5-MPh → 2,4-M-3,8-MDPh 1.52

46 3-MPh + 1,5-MPh → 2,9-M-1,6-MDPh 9.29 · 104

47 3-MPh + 1,3-MPh → 4,9-M-1,6-MDPh 5.37 · 103

48 3-MPh + 1,3-MPh → 2,4-M-1,8-MDPh 4.98 · 103

49 3-MPh + 1,3-MPh → 4,7-M-1,8-MDPh 6.87 · 103

50 1-MPh + TMPh → 2,4-M-1,6-MDPh + F 2.93 · 103

51 1-MPh + TMPh → 7,9-M-1,8-MDPh + F 3.40 · 103

52 3-MPh + TMPh → 2,4-M-1,8-MDPh + F 1.86 · 103

53 3-MPh + TMPh → 2,4-M-3,8-MDPh + F 2.15 · 103

54 1,5-MPh + 1,5-MPh → 2,7-M-1,6-MDPh + F 8.26 · 104

55 1,3-MPh + 1,5-MPh → 2,9-M-1,6-MDPh + F 4.78 · 103

56 1,3-MPh + 1,5-MPh → 2,7-M-1,8-MDPh + F 6.10 · 103

57 1,3-MPh + 1,3-MPh → 4,9-M-1,6-MDPh + F 2.76 · 102

58 1,3-MPh + 1,3-MPh → 4,7-M-1,8-MDPh + F 7.06 · 102

59 1,3-MPh + 1,3-MPh → 2,7-M-3,8-MDPh + F 4.51 · 102

Assuming first-order kinetics and perfect mixing of the reactor contents, the mass
balances are

Ċ1 = −kc1(Tr)C1,

Ċ2 = υ1,2kc1,2(Tr)C1 − kc2(Tr)C2,

Ċ3 = υ1,3kc1,3(Tr)C1 + υ2,3kc2,3(Tr)C2 − kc3(T )C3,

...

ĊNC = υ1,NCkc1,NC(Tr)C1 + · · ·
+υNC−1,NCkcNC−1,NC(Tr)CNC−1 − kcNC(Tr)CNC ,

(2.27)
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Table 2.6 Condensation reactions producing the dimers DPh3

No. Reaction k0 [m3 mol−1 s−1]

60 1-MPh + TMPh → 2,4,7-M-1,6-MDPh 1.16 · 103

61 1-MPh + TMPh → 2,4,7-M-1,8-MDPh 1.85 · 104

62 1-MPh + TMPh → 2,7,9-M-1,8-MDPh 1.34 · 103

63 1-MPh + TMPh → 2,4,7-M-3,8-MDPh 2.15 · 104

64 3-MPh + TMPh → 2,4,9-M-1,6-MDPh + F 2.49 · 103

65 3-MPh + TMPh → 4,7,9-M-1,8-MDPh + F 2.89 · 103

66 1,5-MPh + 1,5-MPh → 2,7,9-M-1,8-MDPh 3.61 · 10

67 1,5-MPh + 1,3-MPh → 2,4,7-M-1,6-MDPh 5.93 · 104

68 1,5-MPh + 1,3-MPh → 4,7,9-M-1,8-MDPh 1.05

69 1,5-MPh + 1,3-MPh → 2,4,7-M-3,8-MDPh 1.34

70 1,3-MPh + 1,3-MPh → 2,4,9-M-1,6-MDPh 6.87 · 103

71 1,3-MPh + 1,3-MPh → 2,4,7-M-1,8-MDPh 8.78 · 103

72 1,5-MPh + TMPh → 2,4,7-M-1,6-MDPh + F 2.21 · 104

73 1,5-MPh + TMPh → 2,7,9-M-1,8-MDPh + F 2.68 · 103

74 1,3-MPh + TMPh → 2,4,9-M-1,6-MDPh + F 1.28 · 103

75 1,3-MPh + TMPh → 2,4,7-M-1,8-MDPh + F 1.64 · 103

76 1,3-MPh + TMPh → 4,7,9-M-1,8-MDPh + F 1.49 · 103

77 1,3-MPh + TMPh → 2,4,7-M-3,8-MDPh + F 1.90 · 103

Table 2.7 Condensation reactions producing the dimers DPh4

No. Reaction k0 [m3 mol−1 s−1]

78 1,5-MPh + TMPh → 2,4,7,9-M-1,8-MDPh 4.48

79 1,5-MPh + TMPh → 2,4,7,9-M-3,8-MDPh 5.62

80 1,3-MPh + TMPh → 2,4,7,9-M-1,6-MDPh 1.59 · 104

81 1,3-MPh + TMPh → 2,4,7,9-M-1,8-MDPh 1.85 · 104

82 TMPh + TMPh → 2,4,7,9-M-1,6-MDPh + F 5.93 · 103

83 TMPh + TMPh → 2,4,7,9-M-1,8-MDPh + F 1.38 · 104

84 TMPh + TMPh → 2,4,7,9-M-3,8-MDPh + F 7.98 · 103

where Ci (i = 1, . . . ,NC) is the concentration of the chemical species Ai , Tr is
the reactor temperature, kci,j (j = 2, . . . ,NC) is the rate constant of the reaction
Ai → Aj , following the Arrhenius law

kci,j (Tr)= k0i,j exp

(
−Eai,j

RTr

)
, (2.28)

Eai,j is the activation energy of each reaction, and k0i,j is the corresponding preex-
ponential factor. Moreover, the lumped rate constant kci of the reactions of disap-
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Table 2.8 Addition reactions
of formaldehyde to a dimer No. Reaction k0 [m3 mol−1 s−1]

85 DPh0 + F → DPh1 1.40 · 105

86 DPh1 + F → DPh2 2.41 · 105

87 DPh2 + F → DPh3 2.20 · 105

88 DPh3 + F → DPh4 2.52 · 105

pearance of species i is defined as

kci (Tr)=
NC+1∑
j=i+1

kci,j (Tr). (2.29)

In order to write the heat balance, it is assumed that all reactions are exother-
mic, that the temperature control is achieved by means of a heat exchange jacket
surrounding the reactor, and that heat losses to the environment can be neglected.
Energy balances can be written both for the fluid in the reactor and for the fluid in
the jacket. In the first case, by including in (2.25) the proper expression for the total
heat of reaction, this equation reads

Ṫr =
∑NC

i=1

∑NC+1
j=i+1(−�HRi,j )kci,j (Tr)Ci

ρrcr
− US(Tr − Tj)

ρrcrVr
, (2.30)

where �HRi,j denotes molar enthalpy change of each reaction.
In the second case, for the sake of simplicity, the jacket is modeled as a contin-

uous well-mixed vessel, so that the general framework of the mass balance for a
CSTR (2.23) can be adequately rearranged to give

Ṫj = FV(Tin − Tj)

Vj
+ US(Tr − Tj)

ρjcjVj
, (2.31)

where the subscript j denotes variables referred to the jacket, FV and Tin are the
volume flow rate and the temperature of the fluid entering the jacket, respectively.

All the stages of the reaction cycle (i.e., initial reactor heating, reaction devel-
opment, and final quenching) can be described by (2.30) and (2.31). Indeed, the
second term on the right-hand side of (2.30) usually turns out to be negative during
the heating phase (when Tin > Tj > Tr) and positive during temperature control and
final cooling (Tin < Tj < Tr).

It can be easily recognized that the rate constants are nonnegative and strictly
increasing functions of the reactor temperature Tr. Since the reaction is assumed to
be exothermic and Tin is bounded, i.e., Tin,min ≤ Tin ≤ Tin,max, the temperature in
the reactor is lower bounded by the value

Tr,min = min{Tr,0, Tj,min},
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where Tr,0 is the initial reactor temperature, and Tj,min is the minimum attainable
jacket temperature, which coincides with the minimum attainable value, Tin,min,
of Tin. Moreover, extending the concept of adiabatic reaction temperature intro-
duced in Sect. 2.3.2, an upper bound for Tr can be computed by considering the
ideal heating/reaction scheme composed by the following two steps:

• the reacting mixture is first heated up to the maximum temperature value, Tin,max,
of the fluid entering the jacket; and

• then the complete reactants conversion takes place adiabatically.

The numerical value of the upper bound is given by

Tr,max = Tin,max +C10
(−�HR1,NC+1)

ρrcpr
,

where C10 is the initial concentration of A1. As a consequence, the rate constants
are also bounded as follows:

0 < kci,j ≤ kci,j (Tr)≤ kci,j ∀ Tr, i = 1, . . . ,NC, j = i + 1, . . . ,NC + 1, (2.32)

where k ci,j = kci,j (Tr,min) and kci,j = kci,j (Tr,max).
In view of inequalities (2.32), also the lumped rate constants kci can be bounded

as follows:

0 < k ci ≤ kci (Tr)≤ kci ∀Tr, i = 1, . . . ,NC, (2.33)

where k ci = ∑NC+1
j=i+1 k ci,j and kci = ∑NC+1

j=i+1 kci,j .

These results will be used in Chap. 5 when dealing with model-based control of
nonchain reactions in a cooled batch reactor.

2.6 Measuring the Reactor Status

The modeling approach to the batch reactor presented in the previous sections of this
chapter must be strengthened and extended by considering the relationship between
the user and the reactor. This relationship may be divided into two different parts,
namely the methods for measuring the reactor status and the actions to be taken in
order to change it.

Measuring the variables which define the reactor status is important both in the
laboratory and in the industrial practice. In the first case, measuring gives the exper-
imental information necessary to tune the mathematical models, i.e., to determine
the values of the adjustable parameters, a task to whom the entire Chap. 3 is devoted.
In industry, measuring and regulating the operative conditions is very important in
order to ensure an adequate quality of the final product and safe operation of the
batch cycle. These two ways of using measurements pose different problems to the
user, because they require different properties of the measurement device. Thus, be-
fore considering in some detail the main measurable variables, a short review of the
measuring qualities is deemed to be useful.
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2.6.1 Measurements Quality

In a few simpler cases, the use of very basic measuring instruments involves the
direct comparison of the physical quantity to be measured with predisposed samples
and scales, as happens, for example, when measuring a length with a ruler. On the
contrary, almost all the measurements of industrial interest are obtained by means
of a more complex measuring instrument, which is a device that translates some
physical effect depending on the measurable quantity in a signal usable at the user
interface.

In general, the relationship between input and output of a measuring instrument
is a complex function that must be determined by calibration, i.e., by recording the
output corresponding to different known values of the input, so that a calibration
curve can be obtained. In most cases, the functionality represented by the calibra-
tion curve is a mere interpolation of experimental points rather than a predetermined
theoretical law. The slope of the calibration curve defines the sensitivity of the mea-
suring instrument; in general, the higher the sensitivity, the more accurate is the
measurement.

The quality of measurements is determined by a compromise between costs and
process reliability and can be described in terms of accuracy, precision or repeata-
bility, resolution, response time, and stability. The first two properties are strictly
related to the concept of measurement error, which can never be completely elim-
inated. The accuracy of a measuring instrument is the ability to provide outputs
which are, on average, close to the true value of the underlying variable. The pre-
cision (or repeatability) of a measuring instrument is the ability to replicate the
measured values under the same conditions and corresponds to the standard devia-
tion of the errors. The resolution is the ability of a measuring system to detect small
changes in the measured variable; the smaller the changes detected by the instru-
ment, the higher its resolution. The response time of an instrument can be defined
as the time needed to let the instrument output settle around the measured value for
an input step change. Finally, stability (or ruggedness) is the ability of a sensor to
maintain its performance under the expected operative conditions.

2.6.2 Online Measurements

In order to ensure an adequate quality of products and a safe operation, the moni-
toring of a batch reactor should include, at least, online measurements of temper-
ature, pressure, and of some composition-related variables. In this context, online
measurements may be defined as measurements obtained via instruments strictly
connected to the reactor and characterize by response times markedly smaller than
the characteristic times of the chemical reaction. In general, this is the case of tem-
perature and pressure, which can be easily measured online by means of reliable,
relatively cheap, and poorly intrusive sensors. This allows the introduction of sen-
sor redundancy, a common practice to increase reliability. On the other hand, online
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Table 2.9 Comparison of RTD and thermocouple characteristics

RTD Thermocouple

Temperature Range [°C] −200 to 850 −200 to 1800

Accuracy [°C] 10−4–10−2 0.1–2

Response Time [s] 0.5–5 0.01–1

Stability High Moderate

Sensitivity High Low

Cost Moderate Low

measurements of chemical composition is a more challenging task, especially in
liquid systems, so that indirect measurements through composition related overall
properties (e.g., pH) often represent the only viable alternative.

Temperature is by far the more frequently measured state variable and is con-
sidered in some detail hereafter. Basic temperature measurement in a batch reactor
must regard, at least, the reacting mixture and the heat exchange fluid. To this goal,
the devices most widely used are thermocouples and resistance temperature detec-
tors (RTD).

Thermocouples are based on the thermoelectric Seebeck effect, which generates
a voltage at the junction between two metallic conductors, which depends on tem-
perature [13]. Thus, in the measuring circuit, two junctions are created, namely, a
sensitive (or hot) junction at the point where temperature has to be measured and a
nonsensitive (cold) junction, kept at a constant known temperature, where the volt-
age established between the conductors can be easily measured [19]. Different ty-
pologies of thermocouples exist for application in a wide range of conditions; they
essentially differ by the materials, the most common being J (iron/constantan), K
(chromel/alumel), T (copper/constantan), and E (chromel/constantan).

RTD sensors consist of a platinum (with copper and nickel being cheaper alter-
natives) wire wrapped in a coil and traversed by a constant current, typically in the
range 0.8–1.0 mA. Since the electric resistance of these materials changes almost
linearly with temperature at a rate of about 0.3%°C−1, the voltage drop across the
sensor is easily converted into a temperature value. Accuracy of RTDs is on aver-
age higher than that of thermocouples, and platinum-based resistive detectors can
be as accurate as 10−4°C [19]. On the other hand, their response time is somewhat
larger, because of the time needed by the measuring coil to reach thermal equilib-
rium with the surroundings. A good alternative to RTDs are thermistors, based on
the resistance sensitivity of semiconductors with respect to temperature.

Comparison of RTD and thermocouple average performance is reported in Ta-
ble 2.9. Here, the response time is defined as the time needed by the device to reach
the final temperature within 0.5% of its value for a temperature step change.

Besides the electrical devices described above, mechanical systems for tempera-
ture measurement are not uncommon in chemical reactors. As an example, systems
consisting in a bulb connected to a temperature-sensitive volume or pressure ele-
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ment can occasionally offer some interesting advantages, e.g., independence from
external electrical power and simpler maintenance [2].

The optimal location of temperature sensors is not a trivial task, because, in in-
dustrial scale chemical reactors, temperature gradients can be generated by non-
perfect mixing and by the heat exchange device. In systems that are very sensitive
to temperature (as in the case of the phenol–formaldehyde reaction introduced in
Sect. 2.4), the temperature should be measured in the hottest point (hot spot), a
strategy which proves to be too conservative when safety is not an issue, since the
reaction rate in the remaining parts of the reactor could prove to be rather slow.
Moreover, it should be considered that the hot spots may move within the reactor
according to the different stages of operation.

A similar problem affects the heat exchange jacket and may be reduced by using
a coil, in which a plug flow can be assumed for the heat exchange fluid. When the
reaction temperature is controlled by an external heat exchanger or condenser [17],
the recirculation of the fluids introduces a transport delay that may strongly affect
the control action.

It is also interesting to briefly consider online measurements of variables differ-
ent from temperature [5]. Since pressure is defined as the normal force per unit area
exerted by a fluid on a surface, the relevant measurements are usually based on the
effects deriving from deformation of a proper device. The most common pressure
sensors are piezoresistive sensors or strain gages, which exploit the change in elec-
tric resistance of a stressed material, and the capacitive sensors, which exploit the
deformation of an element of a capacitor. Both these sensors can guarantee an ac-
curacy better than 0.1 percent of the full scale, even if strain gages are temperature
sensitive.

Pressure is more directly connected to the concept of explosion; nevertheless, it is
less directly connected to the reactor status, since, for liquid-phase reactors, pressure
nonlinearly depends on temperature (trough the vapor pressure relationship) and
concentration (through the activity coefficients in liquid phase). Moreover, since
pressure measurements are usually less accurate than temperature measurements,
they are to be considered in particular for gassy reactions, i.e., when the runaway
produces small temperature effects but large amounts of incondensable products in
gaseous phase.

Online measurements of composition would be very appreciated, because com-
position is the most important variable. Unfortunately, direct measurements of the
amount of a single component can be obtained only in a few cases, and typically for
gaseous system, an example being the measurement of oxygen based on its param-
agnetism. In fact, liquid phase systems are usually made out of components of simi-
lar chemical structure, and these must be separated before measuring their quantity.

Thus, online measurements of composition are usually limited to some overall
property. A typical example is pH, defined as the absolute value of the logarithm of
the molar concentration (or, more exactly, activity) of hydrogen ion; pH can be mea-
sured by exploiting the electric potential established between two proper electrodes
immersed in the sample fluid, usually a glass membrane electrode and a reference
electrode [15]. Notwithstanding the temperature dependence and the alkaline er-
ror (at high pH, a marked sensitivity to the effect of Na+ and of other monovalent



2.7 Manipulating the Reactor Status 35

cations), accuracies of 0.01–0.1 pH units can be achieved. Alternatively, electric
conductivity and optical density may give some online information about composi-
tion [1].

Finally, one can easily obtain the properties of the stirring system (rotational
speed and torque) and compute the stirring power from their product, but these vari-
ables are only indirectly linked to the reactor status through the system density.

2.6.3 Offline Measurements

An offline measurement apparatus is usually not directly mounted on the reactor,
but is fed with samples withdrawn from it manually or automatically. This is the
typical case of chromatography, a widely used measurement device for gas and liq-
uid composition. Both gas and liquid chromatographies are based on the separation
of the sample by means of selective adsorption on a solid substrate posed in a fixed
bed column, and on the detection of the change of a suitable property of the (gas or
liquid) carrier, usually thermal conductivity.

It appears that each component is characterized by a retention time (which also
depends on the substrate and on the column length and temperature) and by a re-
lationship between its amount and the thermal conductivity of the modified carrier.
Therefore, not only a calibration curve is required for any component, but also the
operating conditions must be optimized in order to obtain a sharp separation among
the different components.

In conclusion, a complete analysis of a complex mixture can require very long
times (from a few minutes up to many hours); thus, such a measuring apparatus is
not suited for online measurements to be used in reactor control. On the contrary,
in the laboratory, chromatography is very often the preferred method of analysis
of complex mixtures, since these more accurate data can be used to identify the
reaction mechanism and the relevant kinetic parameters.

This brief overview of offline measurements can be concluded by considering
the measurements of the heat released by chemical reactions, which can be obtained
via calorimetric measurements [7, 18]. The most diffused industrial calorimeters
are the so-called reaction calorimeters, basically consisting in jacketed vessels in
which the reaction takes place and the heat released is measured by monitoring
the temperature of the fluid in the jacket. A class of alternative instruments are the
scanning calorimeters (differential or adiabatic), in which the analysis is performed
by linearly increasing the sample temperature with respect to time, in order to test
the reactivity of potentially unstable chemical systems in a proper temperature range
by measuring the released heat.

2.7 Manipulating the Reactor Status

Chemical reactions proceed at very different reaction rates, so that typical values
of characteristic reaction time in industrial batch reactors range from few hours to
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several days. The largest values are encountered in chemical systems like polymer-
ization reactions, the smallest in some biological reactions such as fermentation of
sugars to alcohols. Thus, a challenging problem of automatic control is met in the
first case, whereas, in the second case, the reaction is often controlled manually, and
the problem is restricted to selecting the best action to be executed in a given state
of the process.

In both cases, it is of interest to single out the variables that can be manipulated;
it is possible to distinguish the actions scheduled in the design of the process, the ac-
tions aimed at controlling the reactor in the presence of failures, and the emergency
actions to be operated in the case of runaway.

In general, it does not make much sense to modify the speed of the mechanical
stirrer, since its design value is fixed to optimize the mixing of the reactor contents
and the value of the heat transfer coefficient. On the contrary, it is possible to modify
the reaction rate and consequently the temperature by adding to the reacting mix-
ture a proper amount of fresh solvent, and/or of a reactant, a catalyst, or a reaction
inhibitor.

In many cases, these operations are scheduled as standard operating procedures;
nevertheless, the addition of fresh solvent and/or of a reaction inhibitor can be also
used as an emergency protection measure against explosions. This suppression sys-
tem should be preferred to the alternative method consisting in a bursting disc, which
must be provided with a discharge line to an emergency tank, since the discharge
into the environment of the reactor contents must be avoided. In fact, the design
of the discharge line in the presence of unsteady two-phase flashing flow is not
straightforward, whereas the only drawback of a suppressing system is the need for
allowing a larger gaseous head in the reactor.

In this book, automatic control of reactor temperature is the most interesting
target; to this purpose, the manipulated variable is usually one (or a combination of)
the following [3]:

• the flow rate of the heat exchange fluid
• the inlet temperature of the heat exchange fluid; and
• the heat exchange surface.

The first strategy appears to be very effective; in fact, as shown by (2.30)
and (2.31), the direct (linear) effect of increasing the flow rate is augmented by the
increase of the jacket-side heat exchange coefficient. This control action can be re-
alized without a noticeable time delay by a simple control valve, the only drawback
for its quantitative assessment being the nonlinear relationship between the overall
heat exchange coefficient and the flow rate of the heat exchange fluid.

The inlet temperature of the heat exchange fluid has a more easily predictable ef-
fect on the system dynamics (in fact, the small change of the heat transfer coefficient
with temperature is usually negligible) and is therefore preferred in model-based
control approaches. The implementation of this strategy requires the availability of
two compatible heat exchange fluids (usually water for cooling and steam for heat-
ing) and of a mixing device for conditioning the heat exchange fluid at the required
flow rate and temperature, which introduces a time delay in the system.
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Finally, the choice of the heat exchange surface area as adjustable parameter is
a recent concept developed after the diffusion of cooling systems partitioned into
separated compartments. By controlling the corresponding opening/closing valves,
heat exchange compartments can be excluded or joined, whereas inlet temperature
and flow rates are kept constant. In this way, the exchange surface can be adjusted
according to the degree of filling of the reactor and to the heat exchange flux required
for temperature control. Other advantages are the fast response of the cooling system
to the control action and the absence of a pronounced cold/hot region at the reactor
wall since the coolant inlets are manifold. Drawbacks of this configuration are the
higher pressure drops and the more complex flow patterns of the heat exchange fluid,
which affect the modeling approach.

2.8 Conclusions

The modeling of chemical batch reactors has been chosen as the starting point for
the roadmap developed in this book. The simplified mathematical models presented
in the first sections of the chapter allow us to focus the attention on different aspects
of chemical kinetics, whereas the causes of nonideal behavior of chemical batch
reactors are faced in the last chapter.

The rather complex issue of chemical kinetics has been discussed in a quantita-
tive way, in order to stress out two main ideas, namely, the necessity of resorting
to simplified kinetic models and the need of adequate methods of data analysis to
estimate the kinetic parameters. These results introduce Chap. 3, in which basic con-
cepts and up-to-date methods of identification of kinetic parameters are presented.

To this purpose, a brief overview of the measurable variables in a batch reactor
has been included; the difference between online measurements, suitable for control
purposes, and offline measurements, which can be exploited to obtain experimental
data to be used for the identification, has been stressed.

In the second part of the chapter, the mathematical model of the BR has been
augmented by considering its behavior in the presence of significant thermal effects
and of a proper heat exchange apparatus. In particular, modeling these aspects brings
the reader to understand the need for considering the thermal stability of batch reac-
tors (Chap. 4) and the need for adequate systems of automatic temperature control
(Chap. 5).
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Chapter 3
Identification of Kinetic Parameters

List of Principal Symbols
A reactant phenol
C concentration [mol m−3]
Co confirmation of a theory
d experimental data
D matrix of experimental data
e experimental error
Ea activation energy [J mol−1]
Ex experimental results
f function in an implicit mathematical model
fp probability density function
G positive definite matrix
H Hessian matrix
�HR molar enthalpy change of reaction [J mol−1]
I reaction intermediate
I identity matrix
k0 preexponential factor [(mol m−3)1−n s−1]
kc rate constant [(mol m−3)1−n s−1]
n reaction order
NC number of dependent or state variables or of components
ND number of data in the sample
NL number of lumped chemical reactions
NM number of measured variables
NP number of adjustable parameters
NU number of input variables or constants
NZ number of isothermal runs
p probability
P desired product, trimethylolphenol
q̇ specific thermal power [J m−3 s−1]
R reaction rate [mol m−3 s−1]
R universal gas constant [J mol−1 K−1]
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ŝ2
D corrected sample variance
T temperature [K]
Th theory
U objective function
u vector of input variables
V covariance
x vector of state variables
y vector of measured state variables (outputs)
Y matrix of computed values to be compared with the experimental data
yq̇ computed value of the specific thermal power [J m−3 s−1]
w weights
W undesired product

Greek Symbols
α constant in (3.66)
γ coefficient in (3.31)
Γ matrix of coefficients in (3.32)
ε error generated by the model
ζ generic random variable
θ adjustable parameter
θ vector of adjustable parameters
κ step length
λ damping factor
ν corrective factor for the Levenberg–Marquardt method
σ 2 universe variance
σC root mean squared errors for the concentrations
σq̇ root mean squared errors for the specific thermal power
ϕ partial sensitivity
φ function in an explicit mathematical model
Φ function in a linear model
ψ known term in (3.31)
Ψ matrix of known terms in (3.33)

Subscripts and Superscripts
av mean value
m measured value
max maximum
min minimum
r reactor
s step index in the nonlinear optimization procedurê best estimate or optimal value
o reference value
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3.1 Bayesian Approach and Popper’s Falsificationism

In science and engineering an improvement of knowledge is derived from the com-
parison between theories and experiments. While theories give the general frame-
work for human understanding, experiments represent absolutely necessary tests for
establishing the required correspondence between theories and real world. In most
cases, the properties of the world are tentatively described by one or more alter-
native theories that generally contain one or more parameters not exactly known,
so that they may be considered to be adjustable. Thus, the expected results are the
identification of the best available theory and the evaluation of the best estimates of
the relevant adjustable parameters.

When the significance and the reliability of the correspondence between theories
and experiments are considered, two main alternatives are available. The Standard
View, based on the ideas of logical empiricism, assumes that the experiments can
confirm a scientific theory, i.e., that they can increase its probability (here intended
as logical confidence in its truth, i.e., in its correspondence with the real world).
On the contrary, Falsificationism, first proposed by Karl Popper [17], claims that
experiments cannot demonstrate the truth of a theory but can only falsify the theory,
i.e., demonstrate that a theory is unfit to describe an experimental result.

In its simpler form, the idea of falsification can be derived from the laws of
Logic; in fact, if Th stands for theory and Ex for experimental result, the modus
tollens gives (

(Th → Ex)∩ ¬Ex
) → ¬Th, (3.1)

which reads: if an experimental result foreseen by a theory is not observed, the the-
ory can be considered to be false. Moreover, since logical implication is not sym-
metric with respect to negation, the observation of the experimental result does not
determine the truth of the theory; in formulae,

¬((
(Th → Ex)∩ Ex

) → Th
)
. (3.2)

When only two alternatives are possible (Th or ¬Th), it is possible to demon-
strate a theory Th from the falsity of a consequence of ¬Th, as in the ex absurdo
demonstrations used in mathematics. Unfortunately, things are not so simple in the
physical world, where ex absurdo demonstrations are not acceptable since the alter-
natives to Th may be infinite (and actually not all known); therefore, we can never
rely on a theory to be a definitive description of reality.

Moreover, in the physical world, the observed experimental results are biased by
the presence of experimental errors, so that the concept of truth must be intended
in a less strong sense. Finally, a theory Th is not a simple statement but rather a
complex set of hypotheses (in some case not all explicitly stated, but situated in the
background of our knowledge). If the theory disagrees with experiments, which of
the hypotheses is falsified by the experiment?

The above considerations show that the absolute evaluation of a theory is a very
ambiguous task; however, in most cases, experimental data analysis is performed in
order to compare two or more alternative theories, so that only a relative evaluation
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of quality is required. In fact, when the performance of two alternative theories is
compared, it is possible to obtain a classification of quality at the actual level of
experimental information, so that one of the theories can be preferred, and another
discarded. In this relative sense, it is not very meaningful if the chosen theory is
confirmed by experiments or if the rejected theory is falsified. Also considering that
Popper was never able to present a quantitative version of falsificationism, we can
proceed following the standard view, i.e., the method of comparison based on the
Bayesian approach.

The concept of conditioned probability was originally developed by Thomas
Bayes [3] in terms of frequencies of occurrence of events, but it can be adapted
to the logical probability, i.e., to probability intended as logical confidence. Thus, in
the well-know definition

p(Th | Ex)= p(Th ∩ Ex)

p(Ex)
, (3.3)

the a posteriori probability p(Th | Ex) represents the confidence in the theory Th on
the basis of the observed experimental result Ex. Equation (3.3) can be written in a
more useful form by exchanging Th and Ex,

p(Ex | Th)= p(Ex ∩ Th)

p(Th)
, (3.4)

and by recognizing that p(Th ∩ Ex)= p(Ex ∩ Th). In this way, the Bayes theorem
can be obtained in the form

p(Th | Ex)

p(Th)
= Co(Th,Ex)= p(Ex | Th)

p(Ex)
. (3.5)

The left hand side of (3.5) is the ratio between the confidence in the theory ob-
tained a posteriori, i.e., after the analysis of the experimental data, and the relevant
confidence a priori; this ratio may be assumed to be a measure of the confirmation
Co(Th,Ex) that the theory receives from the data. The right-hand side of (3.5) is the
ratio between the a posteriori probability of the experimental results, p(Ex | Th),
the so-called likelihood of the data, and the relevant a priori probability, p(Ex).

While it is difficult to give a quantitative absolute value to p(Ex), and thus to
Co(Th,Ex), it appears that, if the comparison between two theories is pursued, the
knowledge of p(Ex) is no more necessary, since the ratio of confirmations is ex-
pressed as a simpler ratio of likelihoods,

Co(Th1,Ex)

Co(Th2,Ex)
= p(Ex | Th1)

p(Ex | Th2)
. (3.6)

In order to apply (3.6) to real problems such as the identification of a kinetic model,
not only the concept of likelihood must be defined more quantitatively, but also the
concepts of experiments and of theory must be adapted as discussed in the next
section.
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3.2 Experimental Data and Mathematical Models

All experimental measurements are affected by errors. In general, experimental er-
rors are made out of systematic errors and random errors. Systematic errors show
a dependence on the operating conditions and may be caused, e.g., by calibration
errors of sensors. Since these errors are absent in a well-performed experimental
campaign and can be corrected by an improved experimental practice, they are not
considered any more in this context.

On the other hand, random errors do not show any regular dependence on exper-
imental conditions, since they are generated by many small and uncontrolled causes
acting at the same time, and can be reduced but not completely eliminated. Thus,
random errors are observed when the same measurement is repeatedly performed.
In the simplest case, the universe of random errors is described by a continuous ran-
dom variable e following a normal distribution with zero mean, i.e., for a univariate
variable, the probability density function is given by

fp(e)= exp(− 0.5e2

σ 2 )√
2πσ

. (3.7)

This function contains the second moment or variance, σ 2, which measures the
dispersion of the data around the mean. Repeated measurements give a sample of
ND elements of this universe; the methods of inverse inference allow one to evaluate
the properties of the universe from the properties of the sample [10].

First, the experimental errors ej (j = 1, . . . ,ND) can be evaluated assuming the
data average dav as the true value (i.e., by setting ej = dj − dav, so that the mean
of errors, eav = 0, is assumed to be equal to the expected universe mean); then, the
corrected sample variance ŝ2

D can be used as an estimate of the universe variance σ 2:

σ 2 � ŝ2
D = 1

ND − 1

ND∑
j=1

e2
j . (3.8)

Here, the term ND −1 represents the residual degrees of freedom of the sample after
the estimation of the expected universe mean, through the computation dav.

When NM different variables are measured, a different variance σ 2
m (m =

1, . . . ,NM), is expected for each measured variable, since the experimental methods
of measure and the relevant accuracies may be significantly different. In most cases
it is reasonable to assume the same accuracy in each experiment, i.e., σ 2

m,j = σ 2
m ∀j ;

for the sake of simplicity, this simplified hypothesis is assumed in the following.
It is also necessary to establish whether the measurements are independent or

not. This question arises in the case of multivariate random variables, i.e., when
more than one variable is measured in each experiment, and, less frequently, for
the measurements of the same variable in different experiments. For a given cou-
ple of random variables, ζ1 and ζ2, the independency of data is measured by the
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covariance, which extends the concept of variance,

cov(ζ1, ζ2)= 1

ND

ND∑
j=1

(ζ1,j − ζ1,av)(ζ2,j − ζ2,av), (3.9)

where the subscript av, as before, denotes the mean value.
Theories are not used directly, as in the discussion presented in Sect. 3.1, but

allow building a mathematical model that describes an experiment in the unambigu-
ous language of mathematics, in terms of variables, constants, and parameters. As
an example, when considering the identification of kinetic parameters of chemi-
cal reactions from isothermal experiments performed in batch reactors, the relevant
equations of mass conservation (presented in Sect. 2.3.1) give a set of ordinary dif-
ferential equations in the general form

ẋ(t)= f
(
t,x(t),u(t), θ

)
, (3.10)

where the dot indicates the time derivative, x is the (NC × 1) vector of state vari-
ables (which contains the concentrations of the different components included in
the kinetic scheme), and f is an (NC × 1) vector function. Moreover, in (3.10), u is
an (NU × 1) vector of inputs, determining the experimental conditions, and θ is an
(NP × 1) vector of parameters.

The time variable t , the initial time t0, the values of the input u(t) for t ∈ [t0, t[,
and the initial state x0 = x(t0) are assumed to be known without noticeable exper-
imental errors. On the other hand, the parameters are to be considered constants,
whose value are unknown (or, at least, not exactly known) a priori. The parameters
can be changed in a suitable range in order to analyze the model sensitivity, i.e., its
capability to describe different scenarios, or can be adjusted, in order to improve
the correspondence between the experimental data and the computed variables; in
chemical kinetics, this is usually the case of rate constants and of activation energies.

Equation (3.10) can be integrated in a few simple cases, thus producing the ex-
plicit form

x(t)= φ(t, t0,x0,u[t0,t[, θ), (3.11)

where u[t0,t[ denotes the set of values taken by the input in the time interval [t0, t[.
Equation (3.11) allows computing the vector x at any time instant from the (NC ×1)
vector function φ; in more complex cases, discussed in some detail in Sect. 3.6, the
vector x must be computed via numerical integration of the implicit model (3.10).
Usually, in chemical kinetics, the explicit models (3.11) are nonlinear functions of
the parameters; nevertheless, linear-in-the-parameter models are briefly considered
in Sect. 3.4 because of their general relevance.

In conclusion, for any assigned value of θ , mathematical models produce a set of
computed results x(θ), which must be compared to the corresponding experimental
values. In general, only the concentrations of NM components are measured at ND
experimental times tj , yielding the (NM × ND) matrix D = {dm,j } of the experi-
mental data. Thus, a subset of x, the (NM × 1) vector of outputs y, must be used
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in the comparison. The computed values corresponding to D are grouped in the
(NM ×ND) matrix Y = Y (θ)= {ym,j }, where θ is the current estimate of the vector
of parameters.

This comparison never shows a perfect correspondence between models and ex-
periments because of modeling and measurement errors. In fact, even if the presence
of systematic experimental errors can be excluded, systematic errors generated by
the inadequacy of the model must be added to random experimental errors; for each
measured variable (m = 1, . . . ,NM) and each experimental time (j = 1, . . . ,ND),
the errors generated by the model are defined as

εm,j = dm,j − ym,j . (3.12)

On the other hand, since the model must be considered as a flexible tool that
can be adapted to the experimental data by changing the values of the adjustable
parameters, the method consists in computing the optimal values of the parameters,

θ̂ , on the basis of a suitable optimality criterion and submitting to a statistical anal-
ysis the residual errors ε̂m,j , i.e., the differences between the measured data and the
corresponding optimal computed values, ε̂m,j = dm,j − ym,j (̂θ)= dm,j − ŷm,j .

If the model perfectly describes the experiments, the sample of residual errors
does not contain systematic errors; thus, it must be compatible with the statisti-
cal distribution of the random experimental errors. All the systematic discrepancies
eventually observed are attributed to the mathematical model, thus allowing a com-
parison between alternative models, since systematic errors can be decreased if a
better model becomes available.

The optimality criterion used to compute the best form of the available model is
based on the concept of likelihood, defined in Sect. 3.1 as the confidence p(Ex | Th)
in obtaining the experimental result Ex if the theory Th is true. In the light of the
above discussion, the likelihood can be intended as the probability of obtaining the
residual errors, which depend on the experimental data and the model, through y.
Since for any component and any time instant the following is true:

p( ε̂m,j )= p(dm,j ∩ Th)= p
(
σ 2
m, θ̂

)
, (3.13)

the likelihood of any residual error depends on the distribution function of the ex-
perimental errors and on the optimal values of the parameters. In order to find an ex-
plicit expression for this probability, some additional assumptions must be adopted,
as discussed in the next section.

3.3 Maximum Likelihood and Least Squares Criteria

A few additional simplifying assumptions must be introduced, in order to obtain a
workable expression for an objective function based on the concept of likelihood.
First, it is assumed that the comparison between the experimental data and the op-
timized computed data produces random residual errors ε̂m,j following a normal



46 3 Identification of Kinetic Parameters

distribution with zero mean. Then, it is assumed that the experimental data are inde-
pendent, i.e., all the covariances are zero, and the measurements of any component
in any experiment have the same accuracy, i.e., σ 2

m,j = σ 2
m.

Under these assumptions, the probability density function of observing the
generic residual error can be expressed as

fp( ε̂m,j )=
exp(− ε̂ 2

m,j

2σ 2
m
)

√
2πσm

, (3.14)

where a similar expression is assumed to be valid for the errors εm,j , i.e., for those
errors obtained before the optimization procedure.

The objective function to be maximized is the total probability of these errors.
Since the experimental data are assumed to be independent, the total probability can
be obtained by multiplying the single probabilities. Thus, the maximum likelihood
optimality criterion is obtained by exploiting the probability density function (3.14),
i.e.,

max
θ ,σm

{
NM∏
m=1

ND∏
j=1

exp(− ε̂ 2
m,j

2σ 2
m
)

√
2πσm

}
. (3.15)

This criterion can be recast in a more explicit form by considering that the max-
imum of (3.15) corresponds to the maximum of its logarithm; thus, the product of
the probability densities (3.14) produces a sum of logarithms, i.e., the logarithmic
maximum likelihood objective function to be maximized,

ULML =
NM∑
m=1

ND∑
j=1

(
−ε2

m,j

2σ 2
m

− ln(σ 2
m)

2
− ln(2π)

2

)
. (3.16)

By eliminating the constant terms it is possible to define the simplified logarithmic
maximum likelihood function

U∗
LML =

NM∑
m=1

ND∑
j=1

ε2
m,j

σ 2
m

+ND

NM∑
m=1

ln
(
σ 2
m

)
, (3.17)

which has to be minimized to attain the maximum of ULML.
Noticeably, when the variances σ 2

m cannot be assigned a priori from the repetition
of the experiments, expression (3.17) allows their computation. In fact, equating to
zero the partial derivatives of the optimized value of U∗

LML with respect to σ 2
m

∂Û∗
LML

∂σ 2
m

= −
ND∑
j=1

ε̂ 2
m,j

(σ 2
m)

2
+ ND

σ 2
m

= 0, m= 1, . . . ,NM, (3.18)
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yields, for any measured component,

σ 2
m = 1

ND

ND∑
j=1

ε̂ 2
m,j . (3.19)

In conclusion, by substitution into (3.17), the maximum likelihood criterion can be
expressed in the form

min
θ

{
NM∑
m=1

ln

(
ND∑
j=1

ε̂ 2
m,j

)}
, (3.20)

so that the modified objective function

UML =
NM∑
m=1

ln

(
ND∑
j=1

ε2
m,j

)
(3.21)

is usually named maximum likelihood objective function.
Instead, when the values of σ 2

m can be assigned on the basis of repeated experi-
mental measurements, the second term of the objective function in (3.17) becomes
constant with respect to the parameters θ ; therefore the function ULML can be rear-
ranged in the weighted least squares objective function

UWLS =
NM∑
m=1

ND∑
j=1

ε2
m,j

σ 2
m

=
NM∑
m=1

wm

ND∑
j=1

ε2
m,j , (3.22)

where the weights, chosen as wm = 1/σ 2
m, are also useful in order to express in a

dimensionless form the single terms of the sum in (3.22), which can have different
physical dimensions. In this way the following weighted least squares criterion can
be formulated:

min
θ

{
NM∑
m=1

wm

ND∑
j=1

ε̂ 2
m,j

}
. (3.23)

Sometimes, arbitrary values are assigned to the weights, in order to force the model
to fit the experimental data; nevertheless, this practice has not a scientific value and
can be accepted only when empirical models are used with practical purposes.

Finally, when all the measured variables are characterized by the same variance,
i.e., σ 2

m = σ 2 ∀m = 1, . . . ,NM, then the weighted least squares objective function
can be rearranged in the simpler least squares objective function

ULS =
NM∑
m=1

ND∑
j=1

ε2
m,j , (3.24)
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in which all the (equal) weights wm can be neglected. On the basis of the objective
function (3.24), the least squares criterion can be formulated as

min
θ

{
NM∑
m=1

ND∑
j=1

ε̂ 2
m,j

}
, (3.25)

which is widely used, in particular for univariate problems (NM = 1).
For models in which the dependent variables are linear functions of the parame-

ters, the solution to the above-mentioned optimization problems can be obtained in
closed form when the least squares objective functions (3.22) and (3.24) are consid-
ered. However, in chemical kinetics, linear problems are encountered only in very
simple cases, so that optimization techniques for nonlinear models must be consid-
ered.

The main methods for both linear and nonlinear optimization are presented in
the following, with reference to the objective functions ULS and UWLS, since they
allow for a more straightforward analysis. Hence, in the following, U = ULS or
U = UWLS; nevertheless, the analysis of nonlinear models, which is discussed in
Sect. 3.5, can be extended with a little computational effort to the more rigorous
maximum likelihood objective function (3.21).

3.4 Optimization for Models Linear in the Parameters

The general structure of models linear in the parameters is easily derived from (3.11)
by considering the vector y of measured variables and by posing, for m= 1, . . . ,NM
and p = 1, . . . ,NP,

∂φm

∂θp
= ∂ym

∂θp
= ϕm,p. (3.26)

The following expression can be obtained:

y(θ)= φ(t, t0,x0,u[t,t0[, θ)= Φ(t, t0,x0,u[t,t0[)θ , (3.27)

where

Φ =

⎡
⎢⎢⎢⎣

ϕ1,1 ϕ1,2 · · · ϕ1,NP

ϕ2,1 ϕ2,2 · · · ϕ2,NP
...

...
...

...

ϕNM,1 ϕNM,2 · · · ϕNM,NP

⎤
⎥⎥⎥⎦

is a matrix whose elements ϕm,p are defined in (3.26) and are called partial sen-
sitivities or sensitivity coefficients [1]. Partial sensitivities measure the influence of
the parameter θp on the variable ym; in the case of linear-in-the-parameter models,
these sensitivities are independent of y and of θ . In Sect. 3.6, the concept of partial
sensitivities is extended to models nonlinear in the parameters.
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The optimal value of the parameter vector, θ̂ , is given by the solution of the
following system of equations:

∂U

∂θp
= 0, p = 1, . . . ,NP, (3.28)

sometimes referred to as normal equations. When using the weighted least squares
criterion, these equations can be set in an explicit form by using both (3.22), which
gives

∂U

∂θp
= −2

NM∑
m=1

wm

ND∑
j=1

(
εm,j

∂ym

∂θp

∣∣∣∣
j

)
= −2

NM∑
m=1

wm

ND∑
j=1

[
(dm,j − ym,j )

∂ym

∂θp

∣∣∣∣
j

]
,

and model (3.27), which allows to compute ym,j and the partial sensitivities at each
experimental time instant tj

∂ym

∂θp

∣∣∣∣
j

= ∂

∂θp

(
NP∑
q=1

ϕm,q,j θq

)
= ϕm,p,j . (3.29)

In conclusion, the following expression is obtained:

∂U

∂θp
= −2

NM∑
m=1

wm

ND∑
j=1

(dm,j − ym,j )ϕm,p,j , p = 1, . . . ,NP, (3.30)

i.e., a system of NP linear equations in the unknowns θ , which can be written in
vector notation as

Γ θ = ψ, (3.31)

where Γ is the (NP ×NP) matrix of coefficients whose generic element is given by

γp,q =
NM∑
m=1

wm

ND∑
j=1

ϕm,p,jϕm,q,j , (3.32)

and ψ is the (NP × 1) vector of known terms, whose generic element is given by

ψp =
NM∑
m=1

wm

ND∑
j=1

dm,jϕm,p,j . (3.33)

The solution of (3.31) can be obtained by multiplying both sides by the inverse
of Γ , namely

θ̂ = Γ −1ψ . (3.34)

Of course, similar but simpler expressions are obtained when using the objective
function (3.24) and, in particular, for univariate problems. It is worth noticing that
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the above expression coincides with that obtained by resorting to the so-called pseu-
doinverse of the matrix obtained by stacking the matrices Φ computed at each ex-
perimental time instant [14].

3.5 Optimization for Models Nonlinear in the Parameters

For mathematical models that are nonlinear in the parameters and/or when the max-
imum likelihood objective function is used, the best estimates of the adjustable pa-
rameters must be obtained via iterative methods. These methods, initialized by a ten-
tative first estimate of the parameter vector, θ0, are based on a strategy for modifying
the current estimate and include a convenient but arbitrary termination criterion to
stop the algorithm. Thus, the results must be considered only approximate; more-
over, if several local minima of the objective function are present, the attainment of
the absolute minimum is not guaranteed since these methods usually provide a sub-
optimal solution, i.e., they converge to a local minimum depending on θ0. A good
solution to this problem is, when possible, to make use of a preliminary estima-
tion procedure to produce a good initial estimate of the parameter values. If this is
not possible, it can be useful to compare the results obtained using different initial
estimates of the parameter vector.

According to [1], numerical optimization methods can be classified into:

• zero-order methods, based only on the values taken by the objective function at
each step

• first-order methods, based on the values taken by the objective function and its
gradient at each step; and

• second-order methods, based on the values taken by the objective function, its
gradient, and its Hessian matrix at each step.

The zero-order methods are widely used when the model contains only one ad-
justable parameter, but, generally, they become ineffective in converging to the solu-
tion when the number of adjustable parameters is significantly larger than one. This
is because these methods make use of heuristic strategies to move from the current
estimate θ s to the updated value θ s+1. On the contrary, the higher-order methods
are characterized by the computation of a search direction and by the choice of a
step length to take along this direction. In fact, the more effective zero-order meth-
ods also use the gradient concept, because a pseudo-optimal search direction may
be determined on the basis of several values of the function evaluated around the
current point [19]. In the following, the most popular first- and second-order opti-
mization algorithms are briefly described.

3.5.1 Steepest Descent Algorithm

The steepest descent method, proposed by Cauchy in 1847 [8], is also known as
gradient method. It is one of the oldest and simplest first-order algorithms for mini-
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mization of a real function defined in a vector space and represents the starting point
for most of the more sophisticated optimization procedures.

The basic idea is that the gradient vector of the objective function, ∇U(θ) =
[∂U/∂θ1 · · · ∂U/∂θNP ], represents the direction of faster increase of the function.
Hence, the estimate at step s + 1 can be computed via the recursive law

θ s+1 = θ s − κ∇U(θ s), (3.35)

since, if the step size κ > 0 is small enough, then U(θ s+1)≤U(θ s).
Unfortunately, the gradient ∇U(θ s) represents the best direction only in the

neighborhood of θ s ; therefore, even though the convergence of the algorithm toward
a local minimum can be proven [2], it may require a very large number of iterations;
in particular, it converges very slowly in the neighborhood of the minimum where
∇U is small.

The optimal choice of the step size κ for any different optimization problem
is not a trivial task; moreover, if the curvature of the objective function strongly
changes along distinct directions, a faster convergence can be obtained by adopting
a different value for the step size at each iteration. On the other hand, finding the
optimal value of κ at each step can be very time-consuming; thus, for the sake of
simplicity, in the following the step size is considered as a constant.

3.5.2 Newton–Raphson Algorithm

This method, first introduced by Isaac Newton and better formulated in the actual
form by Joseph Raphson, is the simplest second-order algorithm. The basic idea is
to use a quadratic approximation to the objective function around the initial param-
eter estimate and, then, to adjust the parameters in order to minimize the quadratic
approximation until their values converge.

The function U = U(θ) can be approximated by the second-order Taylor series
expansion at the point θ0, i.e.,

U �U0 + ∇U(θ0)(θ − θ0)+ 1

2
(θ − θ0)

TH (θ0)(θ − θ0), (3.36)

where H (θ) is the Hessian matrix, whose generic element hp,q is given by

hp,q = ∂2U

∂θp∂θq
. (3.37)

By setting the derivative of the function (3.36) equal to zero yields

∂U

∂θ
= ∇U(θ0)+ H (θ0)(θ − θ0)= 0, (3.38)

so that the following value of the parameter vector can be found:

θ = θ0 − H−1(θ0)∇U(θ0). (3.39)
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For nonquadratic objective functions, (3.39) can be used to obtain an iterative
estimation law with fixed step size, κ > 0,

θ s+1 = θ s − κH−1(θ s)∇U(θ s). (3.40)

The direction given by −H (θ s)
−1∇U(θ s) is a descent direction only when the

Hessian matrix is positive definite. For this reason, the Newton–Raphson algorithm
is less robust than the steepest descent method; hence, it does not guarantee the
convergence toward a local minimum. On the other hand, when the Hessian matrix is
positive definite, and in particular in a neighborhood of the minimum, the algorithm
converges much faster than the first-order methods.

In some cases, the major disadvantage of second-order methods may be the pro-
gramming effort required to derive explicit expressions for the Hessian elements,
whose number increases as the square of the number of parameters. In Sect. 3.6, a
simplified form of the Hessian matrix is derived by considering the particular form
of the least-squares objective functions.

3.5.3 Levenberg–Marquardt Algorithm

If the Hessian matrix is badly conditioned, the computation of its inverse becomes
numerically unstable and the recursive procedure (3.40) may be brought to diver-
gence. To overcome this problem, several algorithms have been developed, in which
the Hessian matrix is replaced by a suitable positive definite matrix G(θ). The most
important of these algorithms was firstly proposed by Kenneth Levenberg in 1944
[13] and then rediscovered and improved by Donald Marquardt in 1963 [15]. This
method is more robust than the Newton–Raphson algorithm in terms of capability of
finding a solution, even if the initial parameter estimate is far from the best estimate;
on the other hand, it tends to be a bit slower when the starting point is very close to
the minimum.

In detail, the iterative law is given by

θ s+1 = θ s − κG−1(θ s)∇U(θ s) (3.41)

with a fixed step size κ > 0 and

G(θ s)= H (θ s)+ λI , (3.42)

where I is the identity matrix having the same dimensions of H , and λ is a nonneg-
ative damping factor.

The damping factor is of the utmost importance; in fact, several more or less
heuristic arguments have been put forward for its best choice. Marquardt recom-
mended to choose a sufficiently large initial value λ0 [15]; indeed, by setting λ= λ0,
the matrix G(θ s) is diagonal dominant, so that G(θ s)∇U(θ s)� λ∇U(θ s), and the
Levenberg–Marquardt algorithm coincides with the steepest descent method. Sub-
sequently, the damping factor can be reduced step by step by a factor ν > 1 in such
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a way to tend to λ = 0 in the neighborhood of the minimum where the algorithm
proceeds as the Newton–Raphson algorithm.

The Levenberg–Marquardt algorithm can be summarized in the following steps:

1. Choose a reasonable value of initial point θ0, an initial value of the damping
factor λ0 and a factor ν > 1.

2. Set s = 0, θ s = θ0, λ= λ0.
3. Compute U(θ s).
4. Compute an update θ s+1 of the parameter vector via (3.41).
5. Compute U(θ s+1) and compare it with U(θ s); then:

(i) If U(θ s+1) ≤ U(θ s), the algorithm proceeds in the right direction; if the
termination criterion is not yet fulfilled, then set s = s + 1, θ s = θ s+1, and
λ= λ/ν.

(ii) If U(θ s+1) ≥ U(θ s), the algorithm proceeds in the wrong direction; thus
preserve the current values of θ and U , set λ= νλ, and return to step 4.

6. Repeat steps from 3 to 5 until a suitably chosen termination check is verified.

3.6 Implicit Models

Systems encountered in chemical kinetics can be very often represented by implicit
models in the form (3.10), for which the explicit solution can be obtained only in a
few simple cases. Since for these models, the variables y, to be compared with the
experimental data, are not available, it is also impossible to directly compute both
the gradient and the Hessian matrix of the objective function.

Let us first consider the gradient vector of the weighted least square objective
function (3.22), whose generic component has the form

∂U

∂θp
= −2

NM∑
m=1

wm

ND∑
j=1

εm,j
∂ym

∂θp

∣∣∣∣
j

= −2
NM∑
m=1

wm

ND∑
j=1

εm,jϕm,p,j , (3.43)

where the partial sensitivities ϕm,p,j can be defined as in (3.26) for models linear
in the parameters. However, it must be remarked that, for models nonlinear in the
parameters, the partial sensitivities are functions of both x and θ .

In order to compute the partial sensitivities for implicit models of the form (3.10)
the following procedure must be used [1, 5]. First, it must be observed that all the
components of (3.10) must be considered, i.e., not only those related to the measured
variables ym, since in nonlinear models each measured component ym can depend
on the complete set of dependent variables.

By differentiating both sides of the hth component of (3.10) with respect to θp ,
the following equality is obtained:

∂ẋh

∂θp
= ∂fh

∂θp
+

NC∑
i=1

∂fh

∂xi

∂xi

∂θp
. (3.44)
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Interchanging the order of differentiation and introducing the sensitivities yields

ϕ̇h,p = d

dt

(
∂xh

∂θp

)
= ∂fh

∂θp
+

NC∑
i=1

∂fh

∂xi
ϕi,p, (3.45)

where ∂fh/∂θp and ∂fh/∂xi can be easily obtained by simple differentiation of the
model equations. The differential equations (3.45) are called sensitivity equations
[1]; in order to obtain the sensitivity coefficients, they must be integrated, together
with the model equations (3.10). In the case under study, these equations must be
integrated with the initial conditions ϕh,p(t0) = 0 ∀h,p, since the initial values of
concentration do not depend on the parameters.

This procedure allows computing the gradient ∇U as detailed in (3.43). Nev-
ertheless, in the case of implicit models, it is impossible to directly compute the
Hessian matrix in the form defined in (3.37), since its generic term hp,q , which is
easily obtained by differentiating (3.43),

∂2U

∂θp∂θq
= 2

NM∑
m=1

wm

ND∑
j=1

∂ym

∂θp

∣∣∣∣
j

∂ym

∂θq

∣∣∣∣
j

− 2
NM∑
m=1

wm

ND∑
j=1

εm,j
∂2ym

∂θp∂θq

∣∣∣∣
j

, (3.46)

contains the second derivatives of ym.
In the case under study, the particular form of the adopted objective functions

allows one to overcome this difficulty by introducing a simplified form of the Hes-
sian matrix. In fact, by assuming that the errors εm,j are small, the second term on
the right-hand side of (3.46) can be neglected, and the Hessian matrix can be ap-
proximated by the first-order term, which only contains the first derivatives. This
assumption can be always done in a neighborhood of the minimum, where these
errors tend to the residuals. In conclusion, the form

∂2U

∂θp∂θq
= 2

NM∑
m=1

wm

ND∑
j=1

ϕm,p,jϕm,q,j (3.47)

can be used in the optimization procedure. The simplified form (3.47) can be used
in the case of explicit models as well, whenever the computation of the second
derivatives is considered too onerous; in particular, it works well together with the
Levenberg–Marquardt algorithm, which uses the Hessian matrix only in a neighbor-
hood of the optimum.

3.7 Statistical Analysis of the Results

Once the best estimates of the adjustable parameters have been computed, an anal-
ysis of the results allows one to evaluate the quality of the correspondence between
experimental data and mathematical model and to identify the best model among
the available alternatives. This analysis consists of different steps, mainly based on
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the principles of statistics, and, for the sake of simplicity, is briefly discussed here-
after with reference to simple linear-in-the-parameter models. The results may be
extended with some caution to models nonlinear in the parameters, by considering
the linearization of the original model around the optimal point.

First, the hypothesis that the residuals ε̂m,j represent a sample of the universe
of the experimental errors can be tested via different methods in order to single out
the presence of systematic errors deriving from the inadequacy of the mathematical
model. In particular, it is possible to test whether, for any measured component m,
the mean of the residuals ε̂m,j (for j = 1, . . . ,ND) is significantly different from
zero (which is the expected value) and whether, for any measured component, the
corrected residual variance ŝ2

R,m is significantly different from the universe vari-

ance σ 2
m, which can be computed by resorting to repeated measurements, as shown

by (3.8).
Interestingly, any detected nonrandom behavior of the residuals may provide use-

ful suggestions to improve the adopted model. In the case of chemical kinetics, by
plotting the residuals against the reaction time, it is possible to single out the need
for including a new reaction and/or a new intermediate component in the kinetic
scheme.

Since the best estimate θ̂ must be considered as a random variable, a third step of
this analysis allows one to evaluate the accuracy of the estimate. In fact, when the
estimation of the kinetic parameters is characterized by a large variance σ 2

θ,p , the rel-
evant reaction is not supported by the experimental data, and thus, the experimental
campaign must be extended, and/or the model must be changed.

For example, let us consider the simple scalar linear model

y = ϕθ, (3.48)

which leads to the relationship

θ̂ = ŷj

ϕj
= dj

ϕj
− ε̂j

ϕj
(3.49)

between the best estimate and each residual. If all the residuals are extracted from
the same universe, i.e., if they all have the same variance σ 2, (3.49) yields

σ 2
θ = 2

σ 2

∑ND
j=1 ϕ

2
j

= 2
σ 2

∂2U/∂θ2
, (3.50)

which can be generalized for a multivariable model in the form

V = 2σ 2H−1, (3.51)

where V is the matrix of the covariances between the parameters.
Finally, a quantitative comparison between alternative models must be consid-

ered. On the basis of the previously discussed results in Sects. 3.1 to 3.3, this com-
parison should be based on the ratio of likelihoods (3.6), each of them computed as
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a product of probabilities. In practice, the likelihood is assumed to be inversely pro-
portional to the corrected variance of the residuals that, for simple scalar problems,
is given by

ŝ2
R = 1

ND −NP

ND∑
j=1

ε̂ 2
j = ÛLS

ND −NP
. (3.52)

This relationship can be extended to multivariate problems, even if, in this case,
it is questionable how to subdivide the degrees of freedom ND − NP among the
different components. It should be also underlined that ŝ2

R → ∞ as ND −NP → 0;
this clearly shows that using a too large number of parameters, or even resorting to
a collocation polynomial, is not a proper scientific procedure.

3.8 Case Study: Identification of Reduced Kinetic Models

In this section, the phenol–formaldehyde reactive system is considered as an ex-
ample of identification of reduced kinetic models. The kinetic model containing
13 components and 89 reactions, developed in Sect. 2.4 to study the production of
1,3,5-methylolphenol, is too detailed and complex for control and monitoring pur-
poses. Thus, in this section this model is referred to as detailed model, while four
reduced kinetic models, based on lumped components and reactions, are developed.

First, the detailed model is used to simulate the behavior of the real system, and
a set of simulated isothermal experimental data is generated including the total heat
released by reaction. Then, these data are used to estimate the kinetic parameters
of the reduced models and the heats of reaction of the lumped reactions. Finally,
the reduced kinetic models are tested in a validation procedure which simulates the
operation of a batch reactor and allows one to identify the best reduced model.

3.8.1 Reduced Models

Many techniques aiming at reducing the complexity of kinetic models [16, 21]
and at identifying the parameters of the relevant reduced models have been pro-
posed [5, 6]. Among the most successful approaches, elimination of reactions and
species [4, 9, 20, 22] (assisted by the use of genetic algorithms, sensitivity analy-
sis, quasi steady-state approximation, or computational singular perturbations) have
been widely applied to describe complex reaction mechanisms by means of simpli-
fied mathematical models. Moreover, lumping procedures have also shown major
advantages in the modeling of reactive systems [18].

According to the approach described in [11], two alternative reduced kinetic
models are proposed here to describe the phenol–formaldehyde reaction network
introduced in Sect. 2.4. This approach includes, first, the selection of a general class
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of simplified models and, among this class, the selection of a number of different
candidate models to be compared. Three main classes of model structure can be
considered [7, 11]: black-box model, parameter white-box model, and hybrid grey-
box model. A hybrid approach is pursued here, because the reduced structure of the
model is derived on the basis of the available knowledge of the system.

Two different reduced kinetic models have been considered, both involving four
lumped chemical species and three and four lumped reactions, respectively. These
models describe the time evolution of the following components:

• Phenol, here denoted as reactant A. Since the second reactant, formaldehyde, is
fed to the reactor in large excess, its concentration can be assumed as a constant
during the reaction; thus, it does not explicitly appear in the rate expressions and
has not been considered in the reduced kinetic models.

• the sum of the substituted monomers, i.e., of the two mono- and the two di-
methylolphenols, denoted as reaction intermediate I and given by

I =
4∑

i=1

MPhi . (3.53)

• 1,3,5-methylolphenol, here denoted as desired product P.
• The sum of all di-phenols and poli-phenols, here denoted as undesired product W

and given by

W =
4∑

i=0

DPhi + PPh. (3.54)

The first reduced kinetic model is a series of three consecutive reactions

A
kc,1−−→ I

kc,2−−→ P
kc,3−−→ W, (3.55)

whereas the second one includes an additional parallel reaction

A
kc,1−−→ I

kc,2−−→ P
kc,3−−→ W,

A + I
kc,4−−→ W.

(3.56)

For each kinetic scheme, the relevant mathematical model is given by the mass
balances written for the four species involved. In detail, for the scheme (3.55), the
mass balance yields

ẏ1 = −R1,

ẏ2 =R1 −R2,

ẏ3 =R2 −R3,

(3.57)

where y1, y2, and y3 are the computed concentrations of reactant A, intermediate I,
and product P, respectively, and Rl (l = 1,2,3) are the reaction rates. It has not
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Table 3.1 Reaction rate expressions for the reduced kinetic models

Kinetic model (3.57) Kinetic model (3.58)

First order Second order First order Second order

R1 = kc1y1 kc1y
2
1 kc1y1 kc1y

2
1

R2 = kc2y2 kc2y
2
2 kc2y2 kc2y

2
2

R3 = kc3y3 kc3y
2
3 kc3y3 kc3y

2
3

R4 = – – kc4y2 kc4y1y2

been necessary to introduce the mass balance on the final product W because its
concentration linearly depends on the concentrations of A, I, and P and can be more
easily obtained through the conservation of the total mass. According to (3.57), the
mass balances for the scheme (3.56) are given by

ẏ1 = −R1 −R4,

ẏ2 =R1 −R2 −R4,

ẏ3 =R2 −R3.

(3.58)

For both models, first-order and second-order kinetics have been considered, as
reported in Table 3.1. Moreover, the Arrhenius law

kcl (Tr)= k0l exp

(
− Eal

RTr

)
, l = 1, . . . ,NL, (3.59)

has been introduced to describe the temperature dependence of the rate constants in
terms of preexponential factors and activation energies, where NL = 3 for the first
kinetic model, and NL = 4 for the second kinetic model.

The computed specific thermal power, i.e., the heat released per unit volume and
unit time by the chemical reactions (3.55) and (3.56), is given by

yq̇ = −
NL∑
l=1

�HRlRl. (3.60)

It is worth noticing that, in the presence of lumped compounds and lumped reac-
tions, the molar heats of reaction �HRl are not known and may vary significantly
with temperature.

3.8.2 Generation of Data for Identification

The detailed kinetic model has been used to simulate the behavior of the reactive
system in MATLAB/SIMULINK© by performing NZ = 9 isothermal runs at dif-
ferent temperatures Tz, equally spaced by 5°C from T1 = 60°C to T9 = 100°C. For
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each run, the specific thermal power q̇ and the concentrations of the 13 measured
components C, defined in Sect. 2.4.1, have been stored at 71 different times tj
(j = 1, . . . ,71) up to 15 hours. Smaller time intervals have been adopted for the
first two hours, since the reaction is faster in the initial phases. Finally, in order
to simulate measurement errors, Gaussian white noise has been added to the com-
puted values; this noise has zero mean and standard deviations of 10 mol m−3 and
0.1 kJ m−3 s−1 for concentrations and heat, respectively.

Then, the concentration data have been lumped into the three components A, I,
and P defined in Sect. 3.8.1. In conclusion, 9 × 71 = 639 simulated measurements
of q̇ and 3 × 9 × 71 = 1917 measurements of concentrations have been obtained.
It is worth remarking that the above-described simulated measurements are easily
available in a real context. In fact, as discussed in Sect. 2.6, the concentrations can
be measured by drawing a sample of reacting mixture and analyzing it offline, while
the heat released by the reactions can be obtained via calorimetric methods.

3.8.3 Estimating the Kinetic Parameters

The identification problem described above is somewhat different and more com-
plex as compared to the implicit isothermal problem described in Sect. 3.6, where
NP rate constants are estimated from data measured at constant temperature. In fact,
in this case, for each reduced model, the unknown parameters are (l = 1, . . . ,NL):

• the preexponential factors, k0l
• the activation energies Eal ; and
• the molar enthalpy changes �HRl .

In order to solve the identification problem, the method for implicit nonlinear
models discussed in the previous sections must be conveniently modified. In partic-
ular, the estimation problem has been divided into two subproblems by estimating,
in different procedures, first the kinetic parameters and then the molar heats of re-
action.

The more usual procedure for estimating k0l and Eal from experimental data
taken at different temperatures consists in considering NZ distinct isothermal prob-
lems and estimating the relevant values of the rate constants; then, from these data
and the relationship (3.59) it is possible to estimate k0l and Eal . Nevertheless, since
the law describing the temperature dependence of the rate constants is known, it is
possible to estimate directly k0l and Eal . To deal with 9 different isothermal runs, it
is only necessary to repeat the integration 9 times for each computational step of the
objective function; in other words, the dimension NZ of the data can be eliminated
by posing in series the 9 sets of data.

The major drawback of this procedure consists in the covariance between k0l
and Eal , which can be explained by a simple geometrical argument. In the linear re-
lationship between ln(kcl) and Eal , shown by (3.59), k0l represents the intercept at
1/Tr = 0, i.e., the limit for Tr → ∞ of kcl , which is usually very far from the (usu-
ally small) experimental range of temperature; thus, any small uncertainty in Eal ,
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Table 3.2 Kinetic parameters for the reduced modelsa

Kinetic model (3.57) Kinetic model (3.58)

First order Second order First order Second order

k01 (2.44 ± 1.56)107 (2.40 ± 0.76)105 (0.20 ± 1.85)107 (3.19 ± 0.35)105

Ea1 77.88 ± 2.96 87.31 ± 0.67 70.51 ± 2.96 88.13 ± 0.35

k02 (1.21 ± 0.60)104 (4.32 ± 1.11)103 (3.80 ± 1.76)104 (4.73 ± 1.88)103

Ea2 58.27 ± 0.83 77.94 ± 0.96 61.55 ± 1.82 78.41 ± 1.07

k03 (1.23 ± 0.77)102 (1.69 ± 0.54)10 (1.50 ± 0.28)103 (2.32 ± 1.29)102

Ea3 43.78 ± 2.25 59.79 ± 2.18 51.56 ± 3.58 68.02 ± 3.31

k04 – – (4.57 ± 0.51)104 (2.88 ± 0.42)10

Ea4 – – 249.58 ± 5.81 71.01 ± 4.10

aThe activation energies Eal are expressed in [kJ mol−1], the preexponential factors k0l are in [s−1]
for models characterized by first-order kinetics and in [m3 mol−1 s−1] for models characterized by
second-order kinetics

due to experimental errors, produces a very large uncertainty in k0l . As a conse-
quence, it may be very difficult to identify the best pair (k0l , Eal) among several al-
most equivalent alternatives. This drawback can be eliminated (or at least reduced),
as recommended in [6], by substituting k0l with a new parameter ko

cl ,

ko
cl = k0l exp

(
− Eal

RT o
r

)
, (3.61)

where T o
r is a suitable reference temperature; thus, (3.59) becomes

kcl = ko
cl exp

[
Eal

R

(
1

T o
r

− 1

T

)]
. (3.62)

Since T o
r is located inside the experimental range, ko

cl results to be almost indepen-
dent of Eal .

The best parameter values have been computed by minimizing a least squares
objective function, based on the concentration of the three measured species A, I,
and P, namely

UC =
3∑

m=1

9∑
z=1

71∑
j=1

(Cm,z,j − ym,z,j )
2, (3.63)

and by resorting to the Levenberg–Marquardt algorithm reviewed in Sect. 3.5.3.
The following values for the algorithm parameters have been adopted: κ = 10−1,
λ0 = 103, and ν = 10. Since a reliable first estimate has not been available a priori,
the iterative routine has been executed for 256 different initial values of the param-
eter vector. The optimal values obtained for the kinetic parameters k0l and Eal are
reported in Table 3.2.
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In general, the activation energies are estimated with a fair accuracy, whereas
the estimates of the preexponential factors suffer from the problem discussed above
because the experimental temperature range is rather limited. Nevertheless, it must
be underlined that this problem does not affect very much the estimates of the rate
constants inside the examined experimental range of temperature.

Moreover, the parameters of the kinetic models (3.58) are estimated more accu-
rately, with the exception of Ea3, whereas no significant difference can be observed
between the two models (3.58). However, it must be remarked that the accuracy
of the estimates does not affect the quality of the model fitting to the experimental
data; to this purpose, a validation of the different reduced models is presented in
Sect. 3.8.5.

3.8.4 Estimating the Heats of Reaction

Once the kinetic parameters have been estimated, (3.60) becomes linear in the un-
known parameters �HRl . Therefore, the errors between the total heat of reaction,
computed via the detailed model, and the total heat, computed via each reduced
model, can be minimized by resorting to the least squares solution of a linear re-
gression problem, discussed in Sect. 3.4. The molar heats of reaction, included in
the vector of parameters

θ = [�HR1 . . . �HRNL]T, (3.64)

can be identified by considering the following objective function:

Uq̇ =
9∑

z=1

71∑
j=1

(q̇z,j − yq̇z,j )
2, (3.65)

where q̇z,j and yq̇z,j are the experimental and computed thermal powers at temper-
ature Tz and time tj , respectively.

Unfortunately, the molar enthalpy changes, which are almost independent of tem-
perature for true reactions, are biased by the effect of lumping; hence, it is neces-
sary to identify a distinct value for each temperature and each reaction. Thus, the
best values of �HRl for each temperature Tz have been identified by considering
9 different vectors of parameters, i.e., θz = [�HR1(Tz) . . .�HRNL(Tz)]T. Then, the
effect of temperature has been described by an empirical polynomial law, i.e., for
each reaction

�HRl(Tr)= α0,l + α1,lTr + α2,lT
2
r + α3,lT

3
r , (3.66)

and the coefficients αi,l in (3.66) have been determined by interpolating the values
of �HRl(Tz) obtained. Figure 3.1 shows an example of these results.
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Fig. 3.1 Interpolating the
molar enthalpy changes for
model (3.57) with first-order
kinetics

Fig. 3.2 Temperature profile

3.8.5 Validation of the Reduced Models

The quality of the reduced kinetic models, as compared to the detailed model, has
been evaluated in simulation by comparing their ability in tracking a few assigned
temperature profiles. For the sake of simplicity, only the results obtained for the
temperature profile shown in Fig. 3.2 are presented. The test profile considered con-
sists of three steps: heating of reactants up to a set-point temperature, reaction phase
at constant temperature, and cooling down to ambient conditions.

The models are compared in Table 3.3, in terms of the root mean squared errors
for the concentrations

σC =

√√√√√ 1

3ND

3∑
m=1

ND∑
j=1

(Cm,j − ym,j )2 (3.67)

and for the specific thermal power

σq̇ =

√√√√√ 1

ND

ND∑
j=1

(q̇j − yq̇ j )
2. (3.68)
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Table 3.3 Root mean squared error of concentration and specific thermal power

Kinetic model (3.57) Kinetic model (3.58)

First order Second order First order Second order

σC [mol m−3] 0.560 0.180 0.502 0.170

σq̇ [kJ m−3 s−1] 0.648 3.157 0.750 0.131

Table 3.4 Percent phenol conversion X, asymptotic values of concentration computed with the
detailed and the reduced kinetic models for phenol, CA,∞, and trimethylolphenol, CP,∞, and rele-
vant percent errors relative to the detailed model used as reference (indicated by the superscript o)

Kinetic model (3.57) Kinetic model (3.58)

Detailed First order Second order First order Second order

X, percent 82.22 89.93 81.10 87.28 81.94

CA,∞ [kmol] 746.61 422.97 793.90 543.30 758.64

�CA/Co
A,∞, percent −43.35 6.33 −27.23 1.61

CP,∞ [kmol] 1146.93 1001.35 1191.17 1027.17 1151.29

�CP/Co
P,∞, percent −12.69 3.86 −10.44 0.38

In Table 3.4, the comparison is performed in terms of phenol conversion and of the
asymptotic values of phenol (CA,∞) and trimethylolphenol (CP,∞) concentrations.
Thus, whereas the data in Table 3.3 account for the accuracy in reconstructing the
concentrations and the specific thermal power, the data in Table 3.4 are related to the
accuracy in predicting the final values of concentration, which are of more practical
interest.

Moreover, the results are graphically shown in Figs. 3.3–3.6. In detail, Fig. 3.3
shows the results obtained with the kinetic model (3.57) with first-order kinetics.
The fitting of concentrations (left) is rather poor; in particular, the asymptotic val-
ues at the largest reaction times are not correctly estimated. This reduced model
underestimates the final product concentration and overestimates the final conver-
sion of phenol by more than 7 percent, which corresponds to an error of more than
43 percent on the phenol concentration and of about 13 percent on product con-
centration (Table 3.4). A better fitting is obtained for the specific thermal power
(Fig. 3.3, right).

When a second-order kinetics is introduced in this kinetic model, the fitting of
concentrations is markedly improved, as shown in Fig. 3.4 (left) and in Table 3.4.
The error in the final concentrations is strongly reduced to about 6 and 4 percent, re-
spectively; nevertheless, a very poor fitting of the specific thermal power is obtained
(Fig. 3.4, right). This result may be explained by observing that the lumping proce-
dure of the reaction network strongly biases the physical meaning of the estimated
heats of reaction, whose fitting is obtained in the terms of an empirical function.

A parallel reaction is introduced in the kinetic model (3.58). When the results
obtained with first-order kinetics, shown in Fig. 3.5, are compared with the corre-
sponding first-order kinetic model with reactions in series (Fig. 3.3), a slight im-
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Fig. 3.3 Concentrations and specific thermal power computed via model (3.57) with first-order
kinetics

Fig. 3.4 Concentrations and specific thermal power computed via model (3.57) with second-order
kinetics

provement of the fitting of concentrations, as well as a poorer fitting of the specific
thermal power, can be noticed.

On the contrary, the introduction of a second-order kinetics in this model pro-
duces the best results for all the measured variables, as shown in Fig. 3.6; in par-
ticular, the errors on concentrations of phenol and product are reduced to about 1.6
and 0.4 percent, respectively, while the errors on the specific thermal power are very
small.

In synthesis, the analysis of the results suggests the following remarks:

• the best match, in terms of both concentration and specific thermal power, is
obtained via model (3.58) with second-order kinetics

• both second-order models are characterized by good performance in terms of
accuracy of concentration estimation

• despite its good performance in terms of concentration estimation, model (3.57)
with second-order kinetics performs badly in terms of specific thermal power
accuracy; and
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Fig. 3.5 Concentrations and specific thermal power computed via model (3.58) with first-order
kinetics

Fig. 3.6 Concentrations and specific thermal power computed via model (3.58) with second-order
kinetics

• the first-order models present similar and rather poor results: model (3.58)
achieves a better accuracy for the concentrations estimates, while model (3.57)
achieves a better accuracy for the specific thermal power.

3.9 Conclusions

The methods discussed in this chapter represent a rigorous approach to the identifi-
cation of mathematical models and the estimation of the relevant adjustable param-
eters. In particular, these methods may allow one to obtain significant results in the
kinetic analysis of chemical reacting systems, as can be argued from the example re-
ported in Sect. 3.8 and several examples in the literature [12]. Nevertheless, at least
in some cases, a practicing engineer might consider these methods to be more fitted
for a study performed with a scientific purpose rather than for the use in industry,
where the need of obtaining acceptable results in times consistent with the develop-
ment of the industrial process may suggest a more straightforward procedure.
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The personal experience of the authors allows us to conclude that, in most cases,
the development of a suitable comprehensive kinetic model is not limited by the de-
velopment of a mathematical model but by the limitations of the experimental mea-
surements. In fact, in chemical kinetics the experiments are very often expensive, in
terms of time and money, and not all the kinetically relevant reaction intermediates
can be measurable and even defined in their chemical structure. Thus, the testing of
more detailed kinetic models may be hindered by the availability of experimental
data.

A possible solution to this problem is a correct programming of the experimen-
tal campaign. In fact, the model should be improved step by step, together with
the experiments. In a few words, a first set of experimental data should be used to
test simple kinetic models; then, on the basis of the inaccuracies of these models, a
new, more exhaustive and accurate experimental campaign should be planned and
performed. This method may allow one to point out the necessity of measuring the
concentration of a reaction intermediate that has been neglected in the first cam-
paign and also to define the optimal reaction times, i.e., the operating conditions in
which new measurements must be performed. In fact, it can be demonstrated that
information is maximized if new experiments are performed at the times of maxi-
mum sensitivity of the concentrations with respect to the parameters. The expected
overall result of this method is noticeable reduction of the experimental effort.

After performing the kinetic analysis of the reacting system, the researchers pos-
sess suitable kinetic models of different complexity to be used to design and control
the entire process. The more complex model should be used to design the reactor;
this subject is outside the purpose of this book and is only briefly considered in
Sect. 7.4. On the contrary, in Chaps. 5 and 6 the kinetic model is used to design
adaptive model-based control and fault diagnosis schemes for a class of reactions
taking place in batch reactors.

References

1. Y.A. Bard. Nonlinear Parameter Estimation. Academic Press, New York, 1974.
2. R.D. Bartusiak, C. Georgakis, and M.J. Reilly. Nonlinear feedforward/feedback control struc-

tures designed by reference synthesis. Chemical Engineering Science, 44:1837–1851, 1989.
3. T. Bayes. An essay towards solving a problem in the doctrine of chances. Philosophical Trans-

actions of the Royal Society of London, 53:370–418, 1763.
4. B. Bhattacharjee, D.A. Schwer, P.I. Barton, and W.H. Green Jr. Optimally-reduced kinetic

models: reaction elimination in large-scale kinetic mechanisms. Combustion and Flame,
135:191–208, 2003.

5. L.T. Biegler and J.J. Damiano. Nonlinear parameter estimation: a case study comparison.
AIChE Journal, 32(1):29–45, 1986.

6. P. Bilardello, X. Joulia, J.M. Le Lann, H. Delmas, and B. Koehret. A general strategy for
parameter estimation in differential-algebraic systems. Computers and Chemical Engineering,
17(5/6):517–525, 1993.

7. D. Bonvin. Optimal operation of batch reactors—a personal view. Journal of Process Control,
8(5/6):355–368, 1998.

8. A. Cauchy. Méthodes générales pour la résolution des systémes d’équations simultanées.
C. R. Acad. Sci. Paris, 25:536–538, 1847.



References 67

9. K. Edwards, T.F. Edgar, and V.I. Manousiouthakis. Kinetic model reduction using genetic
algorithms. Computers and Chemical Engineering, 22:239–246, 1998.

10. R.A. Fisher. Statistical Methods, Experimental Design and Scientific Inference. Oxford Uni-
versity Press, Oxford, 1990.

11. M.A. Henson and D.E. Seborg. Nonlinear Process Control. Prentice Hall, Upper Saddle River,
1997.

12. D.M. Himmelblau and K. B. Bishoff. Process Analysis and Simulation. Wiley, New York,
1968.

13. K. Levenberg. A method for the solution of certain non-linear problems in least squares. The
Quarterly of Applied Mathematics, 2:164–168, 1944.

14. L. Ljung. System Identification. Theory for the User. Prentice Hall, Upper Saddle River, 1999.
15. D. Marquardt. An algorithm for least squares estimation of nonlinear parameters. SIAM Jour-

nal on Applied Mathematics, 11:431–441, 1963.
16. W. Marquardt. Nonlinear model reduction for optimization based control of transient chemical

processes. AIChE Symposium Series 326, 98:12–42, 2001.
17. K. Popper. The Logic of Scientific Discovery. Hutchinson, London, 1959.
18. E. Ranzi, M. Dente, A. Goldaniga, G. Bozzano, and T. Faravelli. Lumping procedures in

detailed kinetic modeling of gasification, pyrolysis, partial oxidation and combustion of hy-
drocarbon mixtures. Progress in Energy and Combustion Science, 27:99–139, 2001.

19. S.S. Rao. Engineering Optimization: Theory and Practice, 4th Edition. Wiley, Hoboken,
2009.

20. W. Su and H. Huang. Development and calibration of a reduced chemical kinetic model of
n-heptane for HCCI engine combustion. Fuel, 84:1029–1040, 2005.

21. F. Tjärnström and L. Ljung. L2 model reduction and variance reduction. Automatica, 38:1517–
1530, 2002.

22. P.F. Tupper. Adaptive model reduction for chemical kinetics. BIT Numerical Mathematics,
42:447–465, 2002.



Chapter 4
Thermal Stability

List of Principal Symbols
B dimensionless number defined in (4.36)
c mass heat capacity [J kg−1 K−1]
C dimensionless concentration
CA concentration of reactant A [mol m−3]
Ea activation energy [J mol−1]
h incremental step
�HR molar enthalpy change of reaction [J mol−1]
k0 preexponential factor [s−1]
qE dimensionless rate of heat exchange
qR dimensionless rate of heat production by reaction
R universal gas constant [J mol−1 K−1]
s normalized objective sensitivity
S heat transfer area [m2]
Se dimensionless Semenov number
t time [s]
tE characteristic time of heat exchange [s]
tR characteristic reaction time [s]
T temperature [K]
T dimensionless temperature
U overall heat transfer coefficient [J m−2 K−1 s−1]
V volume [m3]

Greek Symbols
θ generic model parameter
Λ dimensionless group defined in (4.7)
ρ density [kg m−3]
τ dimensionless time
τb dimensionless batch time
τI dimensionless induction time
τM dimensionless time to maximum reaction rate
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Φ dimensionless group defined in (4.8)
Ω dimensionless group defined in (4.6)

Subscripts and Superscripts
ad adiabatic conditions
c critical value
j jacket
ma maximum allowable value
max maximum value
r reactor
0 initial value
o reference value

4.1 Runaway in Chemical Batch Reactors

Several reactions commonly encountered in the chemical industry are characterized
by the ability to accelerate even without external intervention. This autocatalytic be-
havior follows two possible mechanisms of positive feedback (sketched in Fig. 4.1)
having a thermal and a chemical nature, respectively. The thermal mechanism can
be observed during exothermic reactions, when the heat generated by reaction is
much larger than the heat leaving the system in thermal sinks (artificial cooling,
heat losses through the reactor walls, parallel endothermic reactions, phase transi-
tions phenomena, etc.). This causes an increase in the reactor temperature that, ac-
cording to the Arrhenius term (2.2), exponentially increases the reaction rate; thus,
the excess heat generated causes a further increase in temperature, then again in the
reaction rate, and so on. On the other side, the chemical mechanism can be observed
in branching chain reactions when the rate of formation of highly reactive interme-
diates (the so-called chain carriers, often radical species) largely exceeds their rate
of disappearance in chemical sinks (chain closing reactions, chemical quenching on
solid surfaces, etc.). In both cases the reaction accelerates and, if not properly con-
trolled, eventually goes out of control (runaway from set point conditions). These
two mechanisms can also occur simultaneously, as commonly observed in gas-phase
combustion reactions.

Of the two mechanisms discussed above, thermal runaway is by far the most
common cause of safety problems in chemical batch reactors, given the ability of
the system to largely exceed the desired reactor temperature and, hence, the nor-
mal operative pressure with high risk of explosion. It has been estimated that an
important fraction of the chemical reactions executed daily in the chemical industry
has heat effects large enough to eventually cause reactor thermal runaway [16] and
that ineffective temperature control has been the cause of many incidents involving
batch reactors [4, 6].

Hence, when dealing with exothermic reactions, it is of utmost importance to
determine in which conditions the batch reactor operation can be considered intrin-
sically safe. This is the subject of the present chapter, where guidelines are given for
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Fig. 4.1 Positive feedback in thermal and chemical runaway

the location of the so-called runaway boundaries, i.e., the critical conditions that sep-
arate the safe operation from the thermal explosion. The thermal stability of batch
reactors is discussed here with reference to noncontrolled systems under adiabatic
and isoperibolic (at constant coolant temperature) conditions, while guidelines for
the setting up of effective control laws are then given in Chap. 5. The analysis is
carried out by using a dimensionless form of the mathematical model of the reac-
tor and under the simplifying assumptions of perfect mixing and negligible thermal
inertia of the reactor walls, which is often satisfied in very large vessels.

4.2 Dimensionless Mathematical Model

Consider the exothermic first-order reaction A −→ B taking place batchwise at re-
actor temperature Tr and coolant temperature Tj. The mathematical model describ-
ing the system is given by the mass balance on reactant A and the energy balance in
the reactor:

ĊA = −k0 exp

(
− Ea

RTr

)
CA, (4.1)

ρrcrVrṪr = (−�HR)k0 exp

(
− Ea

RTr

)
CAVr −US(Tr − Tj), (4.2)

with initial conditions

CA(0)= CA0, Tr(0)= Tr0. (4.3)

Here, the usually small variations of the parameters (ρr, cr,U,�HR) and of the
concentration CA with respect to temperature is neglected.

For a more systematic approach, the model equations can be rewritten in terms
of dimensionless time, concentration, and temperature defined, respectively, as

τ = t

tR
, C = CA

CA0
, Tr = Tr

T o
r
, (4.4)
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where T o
r is an arbitrary reference temperature, and tR is the characteristic reaction

time evaluated at T o
r and given by

tR = 1

k0 exp(− Ea
RT o

r
)
. (4.5)

By introducing the dimensionless groups

Ω = Ea

RT o
r
, (4.6)

Λ= (−�HR)CA0

ρrcrT o
r

, (4.7)

Φ = US

Vrρrcvrk0 exp(−Ω)
, (4.8)

Tj = Tj

T o
r
, (4.9)

Tr0 = Tr0

T o
r
, (4.10)

the model equations become

dC
dτ

= − exp

[
−Ω

(
1 − Tr

Tr

)]
C, (4.11)

dTr

dτ
=Λ exp

[
−Ω

(
1 − Tr

Tr

)]
C −Φ(Tr − Tj), (4.12)

with initial conditions

C(0)= 1, Tr(0)= Tr0. (4.13)

The dimensionless numbers introduced above can provide, in the light of their
physical meaning, some preliminary information about the system behavior:

• Ω is the so-called Arrhenius number, i.e., the dimensionless activation energy
that quantifies the local sensitivity of the reaction rate with respect to deviations
of the reactor temperature from the reference value. The higher the value of Ω ,
the faster the temperature increase during a thermal explosion.

• Λ is the maximum possible increase of the dimensionless temperature in the re-
actor and is calculated as the maximum temperature increase

�Tad = (−�HR)CA0

ρrcr
, (4.14)

corresponding to complete conversion of reactant A in adiabatic condition, di-
vided by the reference temperature. This parameter quantifies the ability of the
reactive system to self-heating.
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• Φ is the ratio of the characteristic reaction time tR defined in (4.5) to the charac-
teristic time of heat exchange tE defined as

tE = ρrcrVr

US
. (4.15)

According to the definition (4.8), operation with very low Φ results in higher
reactor temperatures and higher risk of runaway, because of ineffective reactor
cooling. On the contrary, in the limit Φ → ∞, the reactor temperature approaches
Tj during the entire reaction cycle.

The definition of the dimensionless numbers given here is slightly different from
what can be found in the classical literature on this subject and is based on the more
practical idea to keep different effects separated, i.e., the merely physico-chemical
properties of the reactive mixture (Ω and Λ), the performance of the cooling system
(Φ), the coolant temperature (Tj), and the initial temperature (Tr0). In this way, in
design and scale-up problems the optimal range of Φ can be determined in order
to prevent runaway conditions, while keeping the remaining parameters unchanged.
On the other hand, when considering a given reactor (i.e., a fixed value of Φ), safe
operative conditions can be determined in terms of temperatures Tr 0 and Tj and of
the initial reactant concentration (accounted for in Λ).

By integrating (4.11) and (4.12), the concentration and temperature profiles in the
reactor can be obtained, and conditions leading to reactor runaway can be investi-
gated. Numerical solutions are required even for the simple kinetic scheme adopted
here because of the nonlinear nature of the Arrhenius term.

Different criteria have been introduced in the past decades to individuate runaway
boundaries in batchwise operated reactors. Most of them can be used to ensure a safe
batch operation only when the reaction kinetics is fully known and the hypothesis of
perfect mixing is satisfied. These criteria also strongly depend on the mode of oper-
ation with respect to heat exchange. Excluding isothermal conditions, the following
modes of operation can be considered:

• Adiabatic: heat exchange with cooling media and heat losses through reactor
walls are absent.

• Isoperibolic: the system exchanges heat with a cooling medium kept at constant
temperature.

• Temperature-controlled: the coolant temperature and/or flow rate is adjusted, in
order to obtain a desired temperature profile in the reactor.

In this chapter, the reactor dynamics under adiabatic and isoperibolic conditions
is analyzed, while the temperature-controlled case is addressed in Chap. 5. It must
be pointed out that these conditions can be easily realized in laboratory investiga-
tions, e.g., in reaction calorimetry, but represent mere ideality at the industrial scale.
Nevertheless, this classification is useful to recognize the main paths leading to run-
away without the burden of a more complex mathematical approach.
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Fig. 4.2 Temperature and
concentration profiles in
adiabatic conditions at
Ω = 50 (curve 1), 30
(curves 2 and 4) and 10
(curve 3). All curves are
obtained with Λ= 1 and
Tr0 = 1 except curve 4, which
is obtained with Λ= 1 and
Tr0 = 0.95

4.3 Adiabatic Reactor

Under the assumption of adiabatic conditions, all the heat of reaction is converted
into sensible heat, and, consequently, the final temperature of an adiabatic reaction
is the maximum temperature that can be reached in a given reactive system. In this
case, by imposing Φ = 0 in (4.12), the system dynamics only depends on the values
of Λ, Ω , and Tr0.

In general, three main reaction stages can be recognized in the temperature and
concentration profiles of an adiabatic batch cycle where thermal explosion occurs,
as shown by curves 1 and 2 in Fig. 4.2 obtained with T0 = 1 and Λ= 1. In the first
stage (induction), the reaction is extremely slow, and, consequently, heat accumu-
lated in the system produces a very low temperature increase. After an induction
time τI, a second stage takes place (ignition or thermal explosion), characterized by
an extremely high reaction rate and an abrupt temperature increase that reaches its
final value Tr 0 + Λ (i.e., the adiabatic dimensionless temperature), while reactant
concentration rapidly goes to zero. In the third stage, reaction rate is zero, due to the
full consumption of reactant.

Ignition becomes much less abrupt when decreasing Ω (curve 3), due to the
lower sensitivity of the reaction rate to temperature. In this case, which is per-
haps more representative of chemical reactors, whereas the previous cases better
describe explosive systems, the same final values of temperature and concentration
are reached through a smoother profile.

The effect of Tr 0 can be observed with reference to curve 4 in Fig. 4.2: when
starting with a reactor temperature Tr0 = 0.95, the thermal explosion takes more
time to occur, while the contrary happens when Tr0 > 1 (case not shown in the
figure).
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Fig. 4.3 Time needed to
reach the maximum reaction
rate as a function of Tr0

To quantify the ignition delay, the time τM needed by the system to reach the
maximum reaction rate can be considered (this also corresponds to the time at which
the inflection point on the temperature–time profile occurs). The values of τM are
reported in Fig. 4.3, for two different values of Ω , as a function of Tr0. The effect
of Tr0 in accelerating the reaction proves to be very strong since, even for a small
change in the dimensionless initial temperature, the time to the maximum reaction
rate experiences a change of some orders of magnitude. As expected, the sensitivity
to temperature is higher for higher values of Ω ; this causes a crossing of the curves
as shown in Fig. 4.3.

For reactions characterized by high values of Ω , the onset of a thermal explosion
can be controlled by adjusting the batch time, τb: the explosion occurs if τb > τI and
does not in the opposite case. Hence, the reactor performance shows a typical on–off
behavior, being characterized by either complete or negligible reactant conversion.
It follows that reactions of interest must be carried out under explosion conditions,
provided that the reactor vessel withstands the final internal pressure and the thermal
shock caused by the sudden temperature increase. A similar map can be drawn with
reference to undesired secondary reactions and, in this respect, operative parameters
must be adjusted in order to avoid the ignition stage within the batch length.

4.4 Isoperibolic Reactor

The assumption of constant wall temperature is often more realistic for chemical
reactors than the adiabatic case. In this respect, starting from the pioneering the-
ory of thermal explosions developed by Semenov at the beginning of the last cen-
tury [8], significant advances have been made by the related scientific literature with
approaches that can be roughly classified as geometric and sensitivity-based, as de-
scribed in detail in the following.
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Fig. 4.4 Semenov diagram
showing reaction heat
sigmoid (curve 4) and
subcritical (1), critical (2),
and supercritical (3) lines of
heat exchange for Tj = 1 and
critical line (5) for Tj = T ∗

4.4.1 The Semenov Theory

The theory of Semenov [8] was originally derived for zero-order reactions and can
be applied whenever the reactant conversion is negligible and the reaction is very
temperature-sensitive. It proves, however, to be too conservative in other cases. Nev-
ertheless, it is resumed here since it gives a fundamental view of the dynamics of a
thermal explosion and correct results in many practical cases.

By renaming the two terms on the right-hand side of (4.12) as qR and qE, which
represent the rate of heat production by reaction and of heat exchange with the
cooling medium, respectively, the heat balance in the batch reactor can be rewritten
as

dTr

dτ
= qR − qE (4.16)

with

qR =Λ exp

[
−Ω

(
1 − Tr

Tr

)]
C, (4.17)

qE =Φ(Tr − Tj). (4.18)

Under the assumption C = 1 at each time τ , the system evolves toward steady-
state conditions that can be located graphically on the Semenov diagram of Fig. 4.4
as the intersections of the curves qR and qE; this condition implies, indeed, that
dTr/dτ = 0 in (4.16). For the sake of simplicity, let us first assume that Tr 0 = Tj = 1.
When qE is given by line 1 with slope Φ1, the steady-state condition is given by
point A, characterized by a low operating temperature. Point A is an attractor since
its temperature is spontaneously restored after any small perturbation of the system
and, consequently, in these conditions thermal explosion does not occur.

On decreasing Φ , the slope of qE decreases until the critical (unstable) point B
is reached where qE is tangent to qR (line 2); the corresponding critical temperature
in B is denoted by Tc. The critical slope Φ2 is the lowest value that still leads to
a bounded steady-state temperature. By further decreasing of Φ (line 3, Φ3 <Φ2),
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Fig. 4.5 Temperature
profiles in subcritical (Φ1),
critical (Φ2), and supercritical
(Φ3) conditions of heat
exchange

there is no intersection in the low-temperature range, and the only steady-state so-
lution can be found on the horizontal asymptote of qR, so that the system evolves
toward this point with a thermal explosion.

In Fig. 4.5, temperature profiles are reported in subcritical, critical, and supercrit-
ical conditions. Supercritical solutions of the simplified mathematical model pro-
posed by Semenov are, however, purely theoretical since the assumption of negligi-
ble reactant conversion becomes very unrealistic. As an example, in the worst case
where Φ → 0, the theory predicts an infinitely increasing temperature in the reactor.

For any fixed set of parameters, the critical point for runaway depends also on the
temperature of the cooling medium. For example, if Tj = T ∗ > 1, the heat exchange
is represented in Fig. 4.4 by line 5, and the new critical point is C. Clearly, the
new critical Φ number has increased with respect to the previous case since a lower
cooling time is required to balance the decreased driving force of heat exchange,
Tr − Tj.

The critical point can be determined by imposing the tangency conditions [17],
i.e.,

qR = qE, (4.19)

dqR

dTr
= dqE

dTr
. (4.20)

Two temperature values satisfy these conditions, namely

Tc = Ω

2

(
1 −

√
1 − 4Tj

Ω

)
, (4.21)

T ′
c = Ω

2

(
1 +

√
1 − 4Tj

Ω

)
. (4.22)

The first value corresponds to tangency in point B and is the critical temperature
defined above, while the second one corresponds to tangency in the high temperature
region (surroundings of point D) and is discarded. The value of Tc does not directly
depend on the particular choice of the initial temperature Tr0, but the existence of
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tangent lines holds as far as the following necessary conditions are also satisfied:

Tr0 < Tc, (4.23)

Tj <
Ω

4
. (4.24)

While the latter is true for most practical cases, the former poses an important limit
to the initial temperature. In detail, the limit of Tc as Ω → ∞ can be obtained by
dividing and multiplying (4.21) by the quantity

1 +
√

1 − 4Tj

Ω
(4.25)

and reads

lim
Ω→∞ Tc = lim

Ω→∞
Ω

2

4Tj
Ω

1 +
√

1 − 4Tj
Ω

= Tj. (4.26)

Consequently, condition (4.23) requires that, for very large Ω , the difference be-
tween the coolant and the initial temperature must be strictly positive.

By introducing the Semenov number

Se = ΛΩ

Φ
(4.27)

in (4.20), in critical conditions the following is obtained:

Sec = 1

T 2
c

exp

[
Ω

(
1 − Tc

Tc

)]
. (4.28)

Since, for a given reactive system, Ω and Λ are constant quantities, this corresponds
to the critical cooling number given by

Φc =ΩΛSec. (4.29)

In Fig. 4.6, the critical Semenov number given by (4.28) is reported versus the
coolant temperature Tj for different values of Ω . Operation is safe when Se < Sec,
provided that condition (4.23) is also satisfied. The critical Semenov number de-
creases as Tj increases, with a slope that increases with Ω , and, in the limit Ω → ∞,
it reduces to the vertical line Tj = 1; in this case, operation is safe whenever
Tr0 < Tj < 1. Moreover, all curves nearly cross each other at Tj = 1, where their
value can be approximated by

Sec = exp(−1)= 0.368, (4.30)

which represents the classical simplified result of the Semenov theory on thermal
explosion that defines the runaway boundaries for large Ω values.
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Fig. 4.6 Critical Semenov
number as a function of Tj for
different values of Ω

4.4.2 Geometry-based Runaway Criteria

Less conservative criteria for runaway can be found by removing the assumption
of negligible reactant consumption. Along this line, a class of runaway criteria has
been devised by linking the reactor behavior to suitable geometric features of the
temperature-time history.

Thomas and Bowes [11] observed that, under runaway conditions, two inflection
points exist before the maximum in the temperature-time plane, while they are miss-
ing in slow reaction conditions. Critical conditions are, then, defined as those where
the inflection points first appear before the temperature maximum, i.e.,

dTr

dτ
> 0, (4.31)

d2 Tr

dτ 2
= 0, (4.32)

d3 Tr

dτ 3
= 0. (4.33)

These conditions are satisfied when the second derivative of the temperature profile
with respect to time has a maximum and this maximum value is zero. In Fig. 4.7,
these requirements are satisfied by curve 2.

Adler and Enig [1] applied the same criterion to the temperature-conversion
plane, where slightly less conservative runaway boundaries can be computed. To
this goal, by dividing (4.12) by (4.11), the derivative of temperature with respect to
concentration is obtained:

dTr

dC = −Λ+ Φ

C exp

[
Ω

(
1 − Tr

Tr

)]
(Tr − Tj) (4.34)

with initial condition

Tr(1)= Tr0. (4.35)
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Fig. 4.7 Temperature
profiles and second derivative
in subcritical (1), critical (2),
and supercritical (3)
conditions according to the
Thomas and Bowes criterion

The runaway boundaries are then determined by imposing the appearance of two
coinciding inflection points, i.e., the same conditions as in (4.31), (4.32), and (4.33),
but with the independent variable τ replaced by C . Varma et al. [14] showed that,
when the dimensionless group

B =ΛΩ (4.36)

is large, the criterion of Adler and Enig gives the same results of the Semenov crite-
rion; this happens since, in this case, the thermal explosion occurs in the very early
stages of the batch cycle, when reactant conversion is still negligible. When B de-
creases, however, the Adler and Enig criterion predicts a larger Sec and appears,
therefore, less conservative.

Still with reference to the temperature–concentration profile, van Welsenaere and
Froment [13] proposed a criterion based on the locus of the temperature maxima
that was originally derived for homogeneous tubular reactors but whose validity
for batch reactors was also proved. The criterion is discussed here with reference
to Fig. 4.8, where the temperature–concentration profiles in a batch reactor are re-
ported for Se = 0.470, Ω = 40, Tr0 = Tj = 1, and different values of Λ in the range
0.2–1.16. The maxima of the Tr(C) curves (continuous lines) define a new curve
(dashed line), which has itself a maximum with respect to Tr. According to the
criterion of van Welsenaere and Froment, the latter maximum defines the critical
conditions for runaway, i.e., it provides the maximum value of Λ that allows one to
have an easily controlled temperature in the reactor for any given set of the remain-
ing parameters. In Fig. 4.8, the critical point on curve 1 is found at Λc = 0.7.

For the sake of comparison, critical conditions according to Adler and Enig are
reported on the same figure. These are given by the curve with Λ = 1.16, which
is the curve where two (overlapping) inflection points first appear, and this shows
that the Adler and Enig criterion is less conservative when compared to the crite-
rion of van Welsenaere and Froment. Moreover, it can be observed that all curves
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Fig. 4.8 Temperature–
concentration profiles
(continuous lines) at Λ values
of (starting from the lowest
curve) 0.2, 0.4, 0.6, 0.7, 0.8,
0.9, 1, 1.1, and 1.16 and locus
of temperature maxima
(dashed line). Critical
conditions occur at Λc = 0.7
and Tc = 1.026

Tr(C) reported in Fig. 4.8, and corresponding to safe operative conditions according
to the Adler and Enig criterion, are obtained with the Semenov number Se = 0.47,
which is well above the maximum critical value provided by the Semenov crite-
rion, Sec = 0.377, as given by (4.28). This difference mainly arises from the in-
clusion into the mathematical model of the terms accounting for consumption of
reactant A.

The critical temperature Tc in Fig. 4.8 can be computed by observing that the
concentration values corresponding to the temperature maxima Cmax must satisfy
the condition

dTr

dC = 0, (4.37)

which gives

Cmax = Φ

Λ
exp

[
Ω

(
1 − Tr

Tr

)]
(Tr − Tj). (4.38)

The temperature Tc can be now calculated as the value that maximizes Cmax, i.e., by
imposing the condition

dCmax

dTr
= 0, (4.39)

which yields

Tc = Ω

2

(
1 −

√
1 − 4Tj

Ω

)
. (4.40)

Interestingly, this is the same critical temperature predicted by the Semenov cri-
terion (4.21). Again, a necessary condition for stability is Tr0 < Tc, and, for the
conditions of Fig. 4.8, it results in Tc = 1.026.

On decreasing Se and keeping Tj = 1, the locus of maxima moves to the right
until it becomes tangent to the vertical axis C = 1, as shown by curves 1, 2, and 3 in
Fig. 4.9 obtained at Se = 0.47, 0.4, and 0.377, respectively. The tangency at C = 1
occurs when the Semenov number is equal to the critical value predicted by the
Semenov theory; indeed, by substituting Cmax = 1 and Tr = Tc into (4.38), the same
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Fig. 4.9 Locus of
temperature maxima at
Se = 0.47 (curve 1), 0.4 (2),
0.377 (3), and 0.35 (4)

relationship (4.19) is obtained. At any lower Se, the thermal stability of the system
is always guaranteed, regardless of the value of Λ, and the temperature maxima are
always less than Tc, so that only the lower branch of the curves can be defined.

For the sake of brevity, the effects of Tr0 and Tj on the runaway boundaries pre-
dicted by the different criteria are not discussed here and can be found in more
details in the relevant literature (e.g., in [3, 14, 15]).

4.4.3 Sensitivity-based Runaway Criteria

A more recent class of criteria to identify runaway conditions is based on the evi-
dence that, close to runaway boundaries, the system behavior becomes highly sen-
sitive to even small changes of the model parameters. Within this class, the general-
ized criterion of Morbidelli and Varma [14] makes use of the absolute value of the
normalized objective sensitivity s of the temperature maximum Tr,max to the generic
model parameter θ , defined as

s(Tr,max, θ)=
∣∣∣∣ θ

Tr,max

∂Tr,max

∂θ

∣∣∣∣. (4.41)

The criterion locates critical conditions where the values of all objective sensitivities
to any model parameter θ reach a maximum. This is also a necessary condition for
runaway, so that fast reactions that do not meet this requirement are not classified
by Morbidelli and Varma as proper cases of thermal runaway.

Since an analytical expression for s(Tr,max, θ) is usually difficult to obtain, it is
more convenient to use the sensitivities of the reactor temperature Tr to the parame-
ter θ as a function of time,

s(Tr, θ)=
∣∣∣∣ θTr

∂Tr

∂θ

∣∣∣∣, (4.42)

so that s(Tr,max, θ) can be computed as the value of s(Tr, θ) obtained for Tr = Tr,max.
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Fig. 4.10 Absolute
sensitivities of temperature
maximum with respect to Tj
(curve 1), Λ (2), Tr0 (3), Ω
(4), and Φ (5) as a function
of Φ . Here curves 2 and 3
overlap

The computation of the sensitivities in (4.42) is carried out either by approximat-
ing the derivatives with finite differences or by the method already introduced in
Sect. 3.6, i.e., by integrating the differential equations

∂s

∂τ
= ∂

∂τ

∣∣∣∣ θTr

∂Tr

∂θ

∣∣∣∣ (4.43)

together with the reactor mass and energy balances ((4.11) and (4.12)) and the anal-
ogous time derivative of the sensitivities of C , s(C, θ).

In this way, the absolute normalized sensitivities s(Tr,max, θ) as a function of any
model parameter, e.g., Φ , can be computed. This is shown in Fig. 4.10, where all
sensitivities have a maximum at Φc = 32.45, which consequently defines the critical
limit for this parameter in order to guarantee an explosion-free operation.

Following the Morbidelli and Varma criterion, several other methods have been
proposed in recent years in order to characterize the highly sensitive behavior of a
batch reactor when it reaches the runaway boundaries. Among the most successful
approaches, the evidence of a volume expansion in the phase space of the system has
been widely exploited to characterize runaway conditions. For example, Strozzi and
Zaldivar [9] defined the sensitivity as a function of the sum of the time-dependent
Lyapunov exponents of the system and the runaway boundaries as the conditions
that maximize or minimize this Lyapunov sensitivity. This has put the basis for
the development of a new class of runaway criteria referred to as divergence-based
approaches [5, 10, 18]. These methods usually identify runaway with the occurrence
of a positive divergence of the vector field associated with the mathematical model
of the reactor.

Finally, the novel stretching-based approach recently proposed by Adrover et
al. [2] provides a formal bridge between the geometry- and the divergence-based
runaway criteria. After introducing the so-called tangential, normal, and overall tan-
gential stretching rates, runaway conditions are defined as the occurrence of a point
along a system orbit at which the normalized tangential acceleration is positive and,
moreover, the vector field experiences an overall stretching with respect to the initial
value.
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4.5 Operation Limited by the Maximum Allowable Temperature

In many practical cases, the conditions for criticality described in the previous sec-
tions are only necessary to ensure safe operation. Such conditions do not guarantee,
indeed, that the maximum allowable temperature in the reactor, Tma, is not exceeded.
For instance, this upper temperature limit can be imposed, in liquid systems, by the
bubble point of the reacting solution or by the decomposition temperature of some
compounds in it, or, in gaseous systems, by the maximum internal pressure the ves-
sel can comply with.

To deal with the modifications to the runaway criteria determined by the exis-
tence of an upper temperature limit, let us denote by θma the value of the generic
parameter θ that generates a temperature profile with a maximum equal to Tma. In
the same way, let us denote by θc the critical value of the parameter corresponding
to the runaway boundaries obtained with any of the criteria discussed in the previous
sections and generating a temperature profile with maximum value Tc. Two possible
cases can be distinguished, namely

Tc < Tma, (4.44)

Tc > Tma. (4.45)

When condition (4.44) is satisfied, the existence of a maximum allowable tem-
perature does not affect the critical parameter value θc obtained with any of the
classical runaway criteria. On the contrary, when condition (4.45) is satisfied, the
actual limit value of the parameter to define safe operation must be replaced by θma.

Regardless of which one of the previous conditions is met, when θ has a mono-
tonically positive effect on the maximum reactor temperature Tma, as is the case of
Λ, Ω , and Tr0, the following scenarios can be encountered [7]:

1. θ < θc and θ < θma: safe.
2. θ > θc and θ < θma: sensitive.
3. θ < θc and θ > θma: unsafe.
4. θ > θc and θ > θma: unsafe.

If θ has a monotonically negative effect on Tma, as for Tj and Φ , all previous in-
equalities must be inverted.

The second condition (sensitive reaction) denotes a situation where runaway
technically occurs, but the temperature peak does not exceed Tma, so that it can be
still considered as a safe condition. This circumstance is, however, unfavorable in all
cases when it is important to keep the reactor at nearly constant setup temperature
during the entire reaction cycle.

The four scenarios were originally discussed by Fortuin et al. [7] with reference
to the effect of variation of the dimensionless adiabatic temperature raise, but their
validity can be extended to other model parameters as far as their effect on the
maximum reactor temperature is monotonic.
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4.6 Case Study: Runaway Boundaries

The phenol–formaldehyde reactive system introduced in Sect. 2.4 represents an in-
teresting case study to highlight some aspects concerning the runaway boundaries in
complex exothermic reaction networks occurring in the presence of a liquid phase.
Since the set-point temperature for the production of substituted phenols usually
lies in the range 60–90°C and water is used as solvent, under runaway conditions
the boiling temperature of the liquid phase is easily reached: at such a point, evapo-
ration of the solution takes place, and the internal reactor pressure starts to increase.
If the reaction is not promptly stopped by means of thermal or chemical quenching,
this can cause explosion of the reactor or the opening of relief valves with possible
release of the reactor content into the working environment.

Because of the aforementioned circumstances, the loss of control of the phenol–
formaldehyde reaction has been the cause of a number of severe incidents in chem-
ical batch reactors during the last decades [12]. These incidents have caused many
injuries and, in the worst case, even fatalities among the plant operators. Other se-
vere consequences have been the evacuation of residents in the surrounding area due
to chemical contamination and a protracted stop in the plant production.

For a safe operation, the runaway boundaries of the phenol–formaldehyde reac-
tion must be determined. This is done here with reference to an isoperibolic batch
reactor (while the temperature-controlled case is addressed in Sect. 5.8). As shown
in Sect. 2.4, the complex kinetics of this system is described by 89 reactions involv-
ing 13 different chemical species. The model of the system consists of the already
introduced mass (2.27) and energy (2.30) balances in the reactor. Given the system
complexity, dimensionless variables are not introduced.

Safety boundaries have been determined according to three main approaches
based on geometric features, parametric sensitivity, and maximum allowable tem-
perature in the reactor, respectively.

As concerns the first approach, the Thomas and Bowes criterion has been adopted
since it makes use of the second and third derivatives of the temperature-time pro-
file, which are easy to obtain numerically. On the contrary, the Adler and Enig and
the van Welsenaere and Froment criteria were discarded because of the difficulty
in identifying a reference temperature–concentration profile, given the presence of
many different reactants and intermediates.

For the sensitivity-based approach, the classical criterion of Morbidelli and
Varma has been adopted. However, analytical computation of the sensitivities with
respect to the model parameters (4.43) are not approachable, because of the high
model complexity. Hence, the sensitivities have been estimated numerically by ap-
plying the following central approximation for the derivative:

s(Tr,max, θ)= θ

Tr,max(θ)

∣∣∣∣ Tr,max(θ + h)− Tr,max(θ − h)

2h

∣∣∣∣, (4.46)

where h is the step used for incrementing θ (so that the global error of this approxi-
mation is O(h2)).
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Fig. 4.11 Safety boundaries
for the phenol–formaldehyde
reaction according to the
runaway criteria of
Morbidelli and Varma (1),
Thomas and Bowes (2), and
for an imposed maximum
allowable reactor temperature
Tr,ma = 98°C (3)

Finally, as concerns the third approach, the maximum allowable temperature in
the reactor is determined by the boiling point of the reacting solution. This bub-
bling point is not easy to estimate theoretically since it refers to a nonideal solution
containing many different species, and, moreover, it is likely to increase during the
batch cycle, due to the increase of the mean molecular weight of the phenolic com-
pounds. For the sake of simplicity, the boiling point of the reactive solution was
supposed to be 98°C, which can be considered as an acceptable precautionary value
when referred to the early stages of the batch cycle.

The simulations have been focused on the effect of the heat exchange equipment
on reactor stability. To this goal, the minimum value of the group US that guar-
antees a thermally stable operation has been determined as a function of the initial
reactor temperature Tr0 (where Tj = Tr0 has been imposed). The critical US val-
ues are reported in Fig. 4.11 and, regardless of the particular criterion adopted, they
increase—as expected—when Tr0 increases.

Interestingly, the three safety criteria converge when the temperature is decreased
below 75°C, while considerable differences in the definition of the safe operative
conditions are observed in the higher temperature range (80–95°C). Here, the Mor-
bidelli and Varma criterion is the less conservative one since it predicts stability with
the lowest US critical values. The Thomas and Bowes criterion predicts, however,
a critical US that is only slightly larger, so that the two results can be considered as
nearly equivalent in practice. Above 80°C, both curves are largely overwhelmed by
the US critical values imposed by the prevention of the maximum allowable tem-
perature Tr,ma = 98°C (curve 3). This means that, with reference to the particular
chemical system considered here and under the investigated operative conditions,
the safety boundaries for the phenol–formaldehyde reaction are determined by the
need to prevent evaporation of the liquid, rather than by the onset of peculiar condi-
tions indicated by the different runaway criteria available in the literature.
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4.7 Conclusions

The discussion in the present chapter has dealt with the determination of safe op-
erative conditions for exothermic batch reactors. To this aim, classical criteria have
been summarized to define reactor runaway boundaries, and they eventually provide
different results in terms of critical model parameters. For a deeper understanding of
such discrepancies, it must be considered that, when abandoning the mere bifurca-
tional problem addressed by the Semenov theory, the definition of the conditions at
which runaway onsets is mostly a matter of convention. There is, indeed, no discon-
tinuity in the reactor behavior when going from slow to fast reaction by gradually
changing some of the reactor parameters. This does not much affect results in re-
active systems with high B numbers where, given the very high sensitivity of the
system, the transition from slow to fast reaction is always abrupt and, in practical
cases, can still be treated as a discontinuity. Consequently, in this case almost all the
approaches described here provide similar runaway boundaries.

However, several exothermic reactions are characterized by moderate or low val-
ues of the B number: here, the transition stages from safe to runaway conditions may
cover a quite wide range of the parameter values, and the choice of the boundaries
for the safe region is very discretional. Hence, not surprisingly, the main discrep-
ancies among the different criteria are found at low B numbers [14, 15]. Moreover,
in this case, runaway is a less dramatic phenomenon posing the problem to decide
whether a bland explosion still represents a safety issue. In this case, an effective
runaway criterion should be more properly determined on the basis of the actual
ability of the system to comply with certain levels of temperature and pressure.

Moreover, in some practical cases, as highlighted by the case study, the obser-
vance of a maximum allowable temperature may even nullify the results deriving
from the direct application of the runaway criteria. In detail, this happens when op-
eration that is close, but not necessarily beyond, the runaway boundaries already
produces a maximum temperature that, for some reason, the system cannot com-
ply with. Hence, warnings are given about the necessity to include this aspect when
investigating safe conditions at which exothermic reactions are to be carried out.
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Chapter 5
Model-based Control

List of Principal Symbols
A phenol (reduced model)
a(y) vector defined in (5.18)
A(y) matrix defined in (5.16)
aq scalar quantity defined in (5.22) [K s−1]
AE(y) matrix defined in (5.28)
AM(y) matrix defined in (5.17)
AME(y) matrix defined in (5.18)
b(y, u) vector defined in (5.19)
bE(y, u) vector defined in (5.19)
c mass heat capacity [J kg−1 K−1]
C concentration [mol]
C matrix defined in (5.21)
e error vector between desired and measured output [K]
f , g, h functions defining the nonlinear state space model (5.5)
g controller gain
�HR molar enthalpy change of reaction [J mol−1]
I reaction intermediate (reduced model)
Im×n m× n identity matrix
kc rate constant
l scalar gains of the observers
L matrix gains of the observers
N positive definite matrix defined in (5.43)
NC number of compounds involved in the reaction
NS number of time steps
Nϕ number of radial basis functions
Om×n m× n null matrix
P desired product (reduced model)
P c positive definite matrix defined in (5.42)
S heat transfer area [m2]
t time [s]
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T temperature [K]
Tin temperature of the fluid entering the jacket [K]
�t sampling time [s]
u control input variable
U overall heat transfer coefficient [J m−2 K−1 s−1]
u vector of control input variables
v transformed input in (5.6)
V volume [m3]
x vector of state variables
y measured output variable
y vector of measured output variables
‖ · ‖ Euclidean norm

Greek Symbols
α parameters defined in (5.20)
βj parameter defined in (5.19)
γ gain setting the parameter estimate update rate
ε error vector defined in (5.41)
θ parameter US
θq vector of unknown parameters defined in (5.32)
κ centroid of an RBF
λ(·) eigenvalue of a matrix
ξ vector defined in (5.28)
ρ density [kg m−3]
ς interpolation error of the RBFI
υ stoichiometric coefficient
φx , φv nonlinear functions in (5.6)
ϕ vector radial basis functions defined in (5.32)
χc vector defined in (5.41)
ψ vector defined in (5.20)
ψc vector defined in (5.48)
ω width of an RBF

Subscripts and Superscripts
c controller
D derivative term (PID)
des desired
E energy balance
F formaldehyde
I integral term (PID)
j jacket
M mass balance
max maximum value
min minimum value
o observer
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P proportional term (PID)
Ph phenol
r reactor
0 initial conditionŝ estimate˜ estimation error

5.1 Control Strategies for Batch Reactors

The main goal of a control system for chemical batch reactors is that of imposing
a given temperature–time profile inside the vessel. The effectiveness of the control
action in tracking the desired temperature during the different reaction phases is
usually a critical aspect in the chemical industry, since the temperature inside the
reactor vessel strongly affects the reactor productivity and the quality of the final
products [45]. Moreover, temperature control may become critical even for plant and
operators safety since, in the presence of exothermic reactions, the heat generated
by reaction can exceed the rate of heat exchanged with the cooling medium and this
can cause reactor runaway.

Early approaches to control of chemical processes were mainly based on linear
methods. Among them, the classical proportional-integral-derivative (PID) regula-
tor [12] is still frequently adopted in the industrial practice since it is characterized
by a simple structure and its tuning does not require knowledge of the mathematical
model of the process. If the process is only mildly nonlinear or operates near a nom-
inal steady-state condition, linear PID controllers can provide satisfactory perfor-
mance. However, industrial chemical processes are often characterized by a strong
nonlinear behavior and/or operate within a wide range of conditions. In these cases,
PID controllers must be tuned very conservatively in order to guarantee a stable
behavior over the entire range of operation; of course, such a conservative tuning
usually causes degradation of the overall control system performance [31].

The control performance can be usually improved by incorporating the mathe-
matical model of the process into the control law. Starting from the last decades of
the 20th century, some promising model-based control strategies, e.g., the Model
Predictive Control (MPC) [57], based on linear or linearized models, have been pro-
posed. MPC is an optimal control method, which computes the control inputs by
minimizing an objective function. This function is defined in terms of both present
and predicted system variables and is evaluated by using an explicit model to predict
future process outputs. Since MPC is based on the use of linear or linearized models,
it may suffer from the same drawbacks of the PID regulator unless more advanced
nonlinear MPC techniques are adopted [46]. Hence, in the last two decades, nonlin-
ear model-based control strategies have been largely investigated. These techniques
use a nonlinear model of the process to compute the control output.

The most general approach to model-based nonlinear control is the so-called
Feedback Linearization (FL) [35]. In fact, FL control approaches use the model of
the plant to achieve a global linearization of the closed-loop systems, so as well-
established linear controllers can be adopted for the globally linearized model. In
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Fig. 5.1 PID regulator

its basic formulation, FL control needs an accurate mathematical model and the
measurement of the whole state of the controlled plant.

In order to tackle the problem of uncertainties in the available model, nonlinear
robust and adaptive strategies have been developed, while, in the absence of full
state measurements, output-feedback control schemes can be adopted, where the
unmeasurable state variables can be estimated by resorting to state observers. The
development of model-based nonlinear strategies has been fostered by the develop-
ment of efficient experimental identification methods for nonlinear models and by
significantly improved capabilities of computer-control hardware and software.

In the following, an overview of the above discussed linear and nonlinear ap-
proaches to temperature control of batch reactors is provided.

5.2 PID Regulator

The PID regulator is the most widely used feedback controller in industrial settings.
The output of a PID controller is given by the composition of three different cor-
recting terms (Fig. 5.1): a proportional term, an integral term, and a derivative term,
i.e.,

u(t)= gPe(t)+ gI

∫ t

t0

e(ζ ) dζ + gDė(t), (5.1)

where u is the controller output (control action), e is the error between the desired
output (set-point) and the measured output, gP, gI, and gD are positive gains, and ζ

is the integration variable, which represents the time elapsed since the initial time t0.
The gains of the controller must be chosen in order to stabilize robustly the

closed-loop system and, at the same time, to adjust the transient response (e.g.,
in terms of overshoot, rising time, and settling time). Often, these are conflicting
requirements.

Since actuators are subject to saturation, the phenomenon of integral windup
must be properly tackled; namely, if the controller outputs a command beyond the
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actuator saturation limits, the tracking error grows and the output of the integrator
becomes very large; hence, unfavorable behaviors of the closed-loop system may
arise (e.g., large overshoot and/or long settling time). Several anti-windup mecha-
nism have been proposed to counteract this phenomenon [12].

The success of PID controller in industry is partly due to the existence of au-
tomatic tuning methods, requiring a very approximate (or null) knowledge of the
plant. Early tuning methods, due to Ziegler and Nichols, have evolved over the years,
and nowadays many other effective approaches are available [12]. More recently,
many attempts have been made at modifying the basic PID structure in such a way
to take into account the nonlinearities of the process under control. In [17, 33, 59],
self-tuning PID controllers have been proposed, based on optimization criteria or
adaptive techniques, while in [3] the PID design parameters are found via a genetic
algorithm.

5.3 Model Predictive Control

The Model Predictive Control has been characterized by a wide success in industrial
applications. It requires a model of the process (and, eventually, an estimate of the
disturbances), the measurement on a given time horizon of both the input (i.e., the
control action u) and the output (i.e., the controlled variable y) of the controlled
process, the desired output (ydes), and a prediction of the process input and output
on the same time horizon.

MPC is traditionally formulated directly in the discrete-time domain, i.e., for
sampled data systems. In detail, it is assumed that the system’s input is computed
(and the system’s output is measured) only at discrete time steps tk = k�t , where
k is an integer variable, and �t is the sampling time. Hereafter, for the sake of
compactness, the discrete-time variable is denoted simply by the integer k.

The basic idea of MPC is to compute, at each time step, k, a prediction of the con-
trol action values in NS time steps, u(k + i | k) (i = 1, . . . ,NS), where the notation
i|j stands for the value computed at step i on the basis of the information available
up to step j . Then, by using the process model and the predicted control action, an
estimate of the process output in the same NS time steps y(k+ i | k) (i = 1, . . . ,NS)
is computed. The predicted value at time k + 1 is applied to the process.

The prediction of the control input is computed via an optimization method that
minimizes a suitably defined objective function, usually composed by two terms:
the first one is related to the deviation of the predicted output from the reference
trajectory (i.e., the tracking error), while the second term takes into account control
input changes. Hence, the optimization problem has the form

min
u(k+i|k)

i∈[1,...,NS]

NS∑
i=1

∥∥ydes(k + i)− y(k + i | k)∥∥2 +
NS∑
i=1

∥∥�u(k + i | k)∥∥2
, (5.2)

where ‖ · ‖ denotes the usual Euclidean norm, and

�u(k + i | k)= u(k + i | k)− u(k + i − 1 | k). (5.3)
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In this framework, constraints on the decision variables can be directly taken into
account, i.e., the optimization problem is (5.2) subject to

umin ≤ u(k + i | k)≤ umax,

�umin ≤�u(k + i | k)≤�umax,

ymin ≤ y(k + i | k)≤ ymax.

(5.4)

It can be easily argued that the choice of the process model is crucial to deter-
mine the nature and the complexity of the optimization problem. Several models
have been proposed in the literature, ranging from simple state-space linear models
to complex nonlinear mappings. In the case where a linear model is adopted, the
objective function to be minimized is quadratic in the input and output variables;
thus, the optimization problem (5.2), (5.4) admits analytical solutions. On the other
hand, when nonlinear models are used, the optimization problem is not trivial, and
thus, in general, only suboptimal solutions can be found; moreover, the analysis of
the closed-loop main properties (e.g., stability and robustness) becomes more chal-
lenging.

Early applications of MPC took place in the 1970s, mainly in industrial contexts,
but only later MPC became a research topic. One of the first solid theoretic formu-
lations of MPC is due to Richalet et al. [53], who proposed the so-called Model
Predictive Heuristic Control (MPHC). MPHC uses a linear model, based on the im-
pulse response and, in the presence of constraints, computes the process input via
a heuristic iterative algorithm. In [23], the Dynamic Matrix Control (DMC) was in-
troduced, which had a wide success in chemical process control; both impulse and
step models are used in DMC, while the process is described via a matrix of constant
coefficients. In later formulations of DMC, constraints have been included in the op-
timization problem. Starting from the late 1980s, MPC algorithms using state-space
models have been developed [38, 43]. In parallel, Clarke et al. used transfer func-
tions to formulate the so-called Generalized Predictive Control (GPC) [19–21] that
turned out to be very popular in chemical process control. In the last two decades, a
number of nonlinear MPC techniques has been developed [34, 46, 57].

As concerns the application of MPC to batch reactors, a number of works have
been recently proposed [39, 48, 49]. A major challenge in designing MPC for batch
processes is to find a model valid in any operating condition. To this purpose, a
number of different solutions have been proposed, including, among the most inter-
esting ones, adaptive techniques [32] and the use of multiple-model approaches [36].
In [55], a set of linearized models is adopted to design a nonlinear MPC for an in-
dustrial polypropylene semi-batch reactor process; then, a quadratic programming
problem is applied to each local linearization of the nonlinear process to determine
the actual control action.

The interested reader is referred to [1], where a wide review of MPC can be found
with special emphasis on applications to chemical and biological processes.
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5.4 Feedback Linearization

In order to briefly introduce the basic principle of the feedback linearizing control,
consider the following Single Input Single Output (SISO) nonlinear model:

{
ẋ = f (x)+ g(x)u,

y = h(x),
(5.5)

where, as usual, x, u, and y denote the vector of the state variables, the plant input,
and the plant output, respectively. The problem of the feedback linearizing control
is to find a state feedback control of the form

u= φx(x)+ φv(x)v (5.6)

such that the resulting closed-loop system is characterized by a linear dynamics [35].
In (5.6), v plays the role of new control input, while φx and φv are suitable nonlinear
functions. Input–output feedback linearization is aimed at obtaining a linear map
between the new control input v and the actual plant output y, whereas the state-
space feedback linearization [31, 35], instead, is aimed at obtaining a linear map
between the new control input v and the state x. In both cases, the new input v can
be designed by resorting to well-established linear control techniques.

Since, in process control, input–output linearization techniques are usually pre-
ferred to state-space approaches, mostly due to the higher complexity of the latter,
in the following, only input–output feedback linearization basic concepts are briefly
reviewed.

5.4.1 Input–Output Linearization

The time derivative of the output of system (5.5) can be written as

ẏ = ∂h

∂x

[
f (x)+ g(x)u

] = Lf h+ (Lgh)u, (5.7)

where Lf h is the Lie derivative of h with respect to f and is defined as

Lf h= ∂h

∂x
f (x). (5.8)

The same definition applies for Lgh, where the function g plays the same role as f

in (5.8). Of course, higher-order Lie derivatives can be defined in a recursive way,
e.g.,

L2
f h= ∂Lf h

∂x
f (x), LgLf h= ∂Lf h

∂x
g(x).
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If the relative order μ of y with respect to u is 1,1 then Lgh �= 0, and the proce-

dure stops here. Otherwise, the procedure is iterated until LgL
μ−1
f h �= 0, i.e., until

the derivative of order μ is computed:

y(μ) = L
μ
f h+ (

LgL
μ−1
f h

)
u. (5.9)

Therefore, if the control input u is chosen as

u= v −L
μ
f h

LgL
μ−1
f h

, (5.10)

the new input–output map, v − y, is reduced to a chain of μ integrators

y(μ) = v, (5.11)

i.e., to a linear system of order μ. For this system, a feedback controller can be
designed by resorting to linear control techniques.

Several process control design methods, such as the Generic Model Control
(GMC) [41], the Globally Linearizing Control (GLC) [37], the Internal Decoupling
Control (IDC) [7], the reference system synthesis [8], and the Nonlinear Internal
Model Control (NIMC) [29], are based on input–output linearization.

However, feedback linearizing control requires the knowledge of an accurate
model of the process. Hence, in the presence of parametric model uncertainties,
adaptive or robust control strategies have been proposed [4, 10, 18, 30]; in [47],
model uncertainties are tackled by adopting an Artificial Neural Network (ANN) in
conjunction with different linearizing control strategies.

5.4.2 Generic Model Control

The Generic Model Control (GMC) is a model-based control strategy developed
by Lee and Sullivan in 1988 [41]. It can be shown that GMC is an input–output
linearization technique for processes with unitary relative order [31].

The basic idea of GMC is that of imposing a desired closed-loop dynamics of the
form

ẏ(t)= gP
(
ydes(t)− y(t)

) + gI

∫ t

0

(
ydes(ζ )− y(ζ )

)
dζ, (5.12)

where gP, gI are positive gains, and ydes is the desired output of the controlled
process. By comparing equations (5.7) and (5.12), the following equality can be
imposed:

Lf h+ (Lgh)u= gP(ydes − y)+ gI

∫ t

0

(
ydes(ζ )− y(ζ )

)
dζ, (5.13)

1The relative order of y with respect to u is the smallest integer μ such that LgL
μ−1
f h �= 0.
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which leads to the control law

u(t)= gP(ydes(t)− y(t))+ gI
∫ t

0 (ydes(ζ )− y(ζ )) dζ −Lf h

Lgh
. (5.14)

Since the dynamics of a batch reactor is characterized by a unitary relative order,
the GMC law can be adopted [6, 14, 22, 40, 42, 65]. In order to cope with model
uncertainties, adaptive GMC approaches have been developed [56, 60, 62]; in [27]
some unknown quantities—namely, the effect of the heat released by the reaction
and the heat transfer coefficient—are estimated by adopting the nonlinear adaptive
observer proposed in [24]; in [63], an ANN-based GMC approach is presented for
semi-batch processes with relative order higher than one.

5.5 State-Space Model for Control Design

Most of the above reviewed approaches, including those based on the mathemati-
cal model of the system, are developed and tested for simplified reaction networks
and/or for particular reactive systems. Nonetheless, it is worthwhile to focus on
more general reaction schemes and on the rigorous analysis of the main structural
properties (i.e., stability and robustness) of the closed-loop system.

In the following, the model-based controller–observer adaptive scheme in [15]
is presented. Namely, an observer is designed to estimate the effect of the heat re-
leased by the reaction on the reactor temperature dynamics; then, this estimate is
used by a cascade temperature control scheme, based on the closure of two tempera-
ture feedback loops, where the output of the reactor temperature controller becomes
the setpoint of the cooling jacket temperature controller. Model-free variants of this
control scheme are developed as well. The convergence of the overall controller–
observer scheme, in terms of observer estimation errors and controller tracking er-
rors, is proven via a Lyapunov-like argument. Noticeably, the scheme is developed
for the general class of irreversible nonchain reactions presented in Sect. 2.5.

In order to design the controller, the model developed in Sect. 2.5 is conveniently
reformulated in a state-space form. The following assumptions on the reactive pro-
cess and on the reactor are used to derive the state-space form of the model.

Assumption 5.1 The reactions involved in the process are exothermic and charac-
terized by first-order kinetics; therefore, the mass balances of the NC compounds
involved in the reaction have the form (2.27).

Assumption 5.2 Both the reactor vessel and the jacket are considered perfectly
mixed; therefore, the energy balances in the reactor and in the jacket can be written
as in (2.30) and (2.31), respectively.

Assumption 5.3 The overall coefficient U of heat exchange between the reactor
and the cooling jacket is assumed to be poorly known, as expected in practical ap-
plications.
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Assumption 5.4 It is assumed that only the temperature measurements in the re-
actor and in the jacket are available, i.e., neither the concentrations nor the heat
released by the reaction can be measured in real-time. As discussed in Sect. 2.7,
the temperature can be usually controlled via the heat exchange between reactor
and a heating/cooling fluid that circulates in a jacket surrounding the vessel or in a
coil inside the vessel. In the following, it is assumed that the control system uses
the inlet temperature of the fluid in the jacket as manipulated variable; nevertheless,
the control approaches developed in this chapter can be easily extended to different
control strategies.

Let us define the (NC + 2)× 1 state vector

x =
[
xM
xE

]
, xM =

⎡
⎢⎢⎢⎣
C1
C2
...

CNC

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
x1
x2
...

xNC

⎤
⎥⎥⎥⎦ , xE =

[
Tr
Tj

]
=

[
xNC+1
xNC+2

]
,

the control input

u= Tin,

the output vector of measurable variables (see Assumption 5.4)

y =
[
Tr
Tj

]
=

[
y1
y2

]
= xE,

and the parameter (assumed to be poorly known, as stated by Assumption 5.3)

θ =US.

Then, (2.27), (2.30), and (2.31) can be rewritten in the following state-space
form: {

ẋ = A(y)x + b(y, u)+ CTψ(y)θ,

y = Cx,
(5.15)

where the matrix A is given by

A =
[

AM(y) ONC×2
AM,E(y) O2×2

]
, (5.16)

Om×n denotes the m× n null matrix, and

AM(y)=

⎡
⎢⎢⎢⎣

−kc1(Tr) 0 . . . 0
υ1,2kc1,2(Tr) −kc2(Tr) . . . 0

...
...

...
...

υ1,pkc1,NC(Tr) υ2,NCkc2,NC(Tr) . . . −kcNC(Tr)

⎤
⎥⎥⎥⎦ , (5.17)
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AM,E(y)=
[
a1(Tr) . . . aNC(Tr)

0 . . . 0

]
=

[
aT(y)

0T
NC×1

]
, (5.18)

ai(y)=
NC+1∑
h=i+1

αi,hkci,h(Tr), αi,h = (−�HRi,h)

ρrcr
, i = 1, . . . ,NC.

The matrix AM is characterized by the following properties:

• each lumped overall rate constant of the reactions of disappearance, kci (Tr), de-
fined in (2.29), is strictly positive (for all Tr) if compound Ai is involved at least
in one reaction

• both kci,h and kci are upper and lower bounded as in (2.32) and (2.33), respec-
tively; and

• the off-diagonal terms in AM are nonnegative (for all Tr) and are null if the cor-
responding reaction, Ai → Ah, does not take place (i.e., υi,h = 0).

The vector b in (5.15) is defined by

b(y, u)=
[

0NC×1
bE(y, u)

]
, bE(y, u)=

[
0

βj(u− Tj)

]
, βj = FV

Vj
, (5.19)

the vector ψ is given by

ψ(y)=
[−αr(Tr − Tj)

αj(Tr − Tj)

]
, α∗ = 1

V∗ρ∗c∗
, ∗ = {r, j}, (5.20)

and the output matrix is given by

C = [
O2×NC I 2×2

]
, (5.21)

where In×n denotes the n× n identity matrix.

5.6 Estimation of the Heat Released by Reaction

From (5.15) it can be argued that the heat released by the reaction affects the dy-
namics of the reactor temperature via the term

aq(xM,y)=
NC∑
i=1

NC+1∑
h=i+1

αi,hkci,h(Tr)xi =
NC∑
i=1

ai(Tr)xi = aT(y)xM. (5.22)

In turn, this term depends on the reactant concentrations, which are usually measur-
able at very low sampling rates, not suitable for real-time control. Hence, the design
of a model-based control law for the reactor temperature should require an estimate
of this term.

More in general, the use of observers for state estimation in batch reactors has
been extensively investigated. In [61], an Extended Kalman Filter (EKF) is adopted
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to estimate the concentrations of reactants in an industrial semibatch reaction, as-
sessing several critical issues related to the adoption of the EKF in industrial settings
against open-loop models, caused by partial lack of observability and poor measure-
ments quality, especially during the initial and final stages of the batch. More recent
results [9], derived for a class of nonlinear differential-algebraic systems, showed
more encouraging results, although these are obtained for a simulated batch reac-
tor and a simple real mixing process. On the other hand, the heat released by the
reaction can be estimated by adopting the approach known as calorimetric method
[13, 54, 58], in which the energy balance is used together with measured values of
temperature and its time derivative. In order to avoid numerical differentiation of the
temperature measurements, an observer can be used to estimate both the effect of
the heat released by the reaction and the heat-transfer coefficient [18, 27]. In [18],
a nonlinear adaptive control strategy is adopted, based on an EKF to achieve online
estimation of the time varying parameters involved in the control law, while in [27]
the effect of the heat released by the reaction is estimated as an unknown parameter.

In the following, three different approaches to estimation of the effect of the
heat released by the reaction on the system dynamics are presented: the first two
are based on the results in [15, 51], while the third is one of the most interesting
model-free approaches in the literature. In detail:

• The first approach adopts a nonlinear model-based adaptive observer to estimate
the reactant concentrations (i.e., the state variables x1, . . . , xNC ), while the heat
transfer coefficient is estimated via an adaptive update law. Then, the term aq is
reconstructed from the estimated concentrations.

• The second approach is based on a model-free estimator; the estimation is based
on the adoption of a universal interpolator, i.e., a Radial Basis Function Interpo-
lator (RBFI). Hence, differently from the previous approach, knowledge of the
reaction kinetics is not required.

• The model-free approach proposed in [27], in which both the heat transfer coef-
ficient and the thermal power are estimated as unknown parameters. As for the
previous one, this approach does not need either the knowledge of the reaction
kinetics or the estimation of the concentrations.

5.6.1 Model-Based Nonlinear Observer

The observer has the form
{ ˙̂x = A(y )̂x + b(y, u)+ Lỹ + CTψ(y)θ̂o,

ŷ = Cx̂,
(5.23)

where x̂ denotes the state estimate, while ŷ and ỹ = y − ŷ denote the output es-
timates and output estimation errors, respectively; L is an (NC + 2)× 2 matrix of
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positive gains

L =
[
LM
LE

]
, LM =

⎡
⎢⎢⎢⎣
l1 0
l2 0
...

...

lNC 0

⎤
⎥⎥⎥⎦ , LE =

[
lr 0
0 lj

]
,

and the estimate θ̂o of θ is computed via the update law

˙̂θo = γ−1
o ψT(y )̃y, (5.24)

where γo is a positive gain setting the update rate.
Therefore, an estimate of aq can be easily computed via (5.22) from the estimates

of the reactants concentrations

âq (̂xM,y)=
NC∑
i=1

NC+1∑
h=i+1

αi,hkci,h(Tr)̂xi =
NC∑
i=1

ai(Tr)̂xi = aT(y )̂xM. (5.25)

The convergence properties of both the state estimation error x̃ = x − x̂ and the
parameter estimation error θ̃o = θ − θ̂o are stated in the following theorem.

Theorem 5.1 If the rate constants are bounded as in (2.32) and (2.33), then, there
exists a set of observer gains such that the state estimation error x̃ is globally uni-
formly convergent to 0 as t → ∞ and the parameter estimation error θ̃o is bounded
for every t .

The proof is based on a Lyapunov-like argument and is reported in Appendix A.1.

Remark 5.1 As usual, in direct adaptive estimation and/or control schemes, the con-
vergence to zero of the parameter estimation error θ̃o is not guaranteed, unless the
persistency of excitation condition is fulfilled [5, 35]. In detail, if there exist three
scalars λ1 > 0, λ2 > 0, and τ > 0 such that

λ1 ≤
∫ t+τ

t

ψT(y(ζ ))ψ(
y(ζ )

)
dζ ≤ λ2 ∀t ≥ 0, (5.26)

then, both the state estimation error x̃ and the parameter estimation error θ̃o are
globally exponentially convergent to zero.

The above remark is of the utmost importance for evaluating the potential of the
proposed observer in a real setup. In fact, exponential stability would ensure robust-
ness of the state estimation against bounded and/or vanishing model uncertainties
and disturbances [35], due to inaccurate and/or incomplete knowledge of reaction
kinetics and to usual simplifying assumptions adopted for the model derivation (e.g.,
perfect mixing).
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Remark 5.2 In the case of perfect knowledge of θ , the observer takes the form
(5.23), where the estimate θ̂o is replaced by the true value of the coefficient.

5.6.2 Model-Free Approaches

When an accurate model of the reaction kinetics is not available (e.g., due to the
lack of reliable data for identification), the previously developed approach may be
ineffective and model-free strategies for the estimation of the effect of the heat re-
leased by the reaction, aq, must be adopted. In detail, the approach in [27] can be
considered, where aq is estimated, together with the heat transfer coefficient, via
a suitably designed nonlinear observer [24]. Other model-free approaches can be
adopted, e.g., those based on the adoption of universal interpolators (neural net-
works, polynomials) for the direct online estimation of the heat [16] and purely
neural approaches [11]. Approaches based on the combination of neural and model-
based paradigms [2] or on tendency models [25] can be considered as well.

In the following, two model-free approaches based on adaptive observer are pre-
sented: the first one is based on the results in [51], and the second one is the well-
established observer proposed by [24] and applied to batch reactors in [27].

5.6.2.1 Approach Based on Universal Interpolators

In order to present this observer, the state space equation referred to the vector xE

can be conveniently rewritten as

{
ẋE = AE(θ)xE + ξ(xM,xE)+ bE(y, u),

y = xE,
(5.27)

where bE has been defined in (5.19), and

AE(θ)=
[−αrθ αrθ

αjθ −αjθ

]
, ξ(xM,xE)=

[
aq(xM,xE)

0

]
. (5.28)

The following observer can be adopted:

{ ˙̂xE = AE(θ̂o)̂xE + ξ̂(θq,y)+ bE(y, u)+ LEỹ,

ŷ = x̂E,
(5.29)

where

AE(θ̂o)=
[−αrθ̂o αrθ̂o

αjθ̂o −αjθ̂o

]
, LE =

[
lr 0
0 lj

]
, ξ̂(θq,y)=

[̂
aq(θq,y)

0

]
,
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and the estimate θ̂o of θ is given by the update law

˙̂θo = γ−1
o ψT(̂y )̃y. (5.30)

An estimate of aq can be obtained via an online approximator linear in the pa-
rameters [44, 52, 64]. In detail, it is assumed that aq can be modeled in the following
way:

aq(θq,y)=
Nϕ∑
i=1

θqiϕi(y1)+ ς = θT
q ϕ(y)+ ς, (5.31)

where ς represents the interpolation error, ϕi(y1) are Nϕ known basis functions, θqi
are unknown parameters, assumed constant (or slowly varying), and the vectors θq
and ϕ(y) are defined, respectively, as

θq =

⎡
⎢⎢⎢⎣
θq1
θq2
...

θqNϕ

⎤
⎥⎥⎥⎦ , ϕ(y)=

⎡
⎢⎢⎢⎣
ϕ1(y1)

ϕ2(y1)
...

ϕNϕ (y1)

⎤
⎥⎥⎥⎦ . (5.32)

When an online interpolator is used to estimate the uncertain term, the interpo-
lation error ς can be kept bounded, provided that a suitable interpolator structure is
chosen [26, 28]. Among universal approximators, Radial Basis Function Interpola-
tors (RBFIs) provide good performance in the face of a relatively simple structure.
Hence, Gaussian RBFs have been adopted, i.e.,

ϕi(y1)= exp

(
−|y1 − κi |2

2ω2
i

)
, i = 1, . . . ,Nϕ, (5.33)

where κi and ωi are the centroid and the width of the ith RBF, respectively.
The weights of the RBFI are adaptively tuned online, on the basis of the output

estimation error, via the following update law:

˙̂θq = γ−1
q ϕ(y)ỹ1, (5.34)

where γq is a positive gain. Then, the estimate of aq is computed as follows:

âq
(
θ̂q,y

) = θ̂
T

q ϕ(y). (5.35)

In the absence of interpolation error, i.e., when ς = 0, the convergence properties
of both the state estimation error x̃E = xE − x̂E and the parameter estimation errors,
θ̃o = θ − θ̂o and θ̃q = θq − θ̂q, are stated by the following theorem.

Theorem 5.2 Under the assumption ς = 0, there exists a set of observer gains such
that the state estimation error x̃E is globally uniformly convergent to 0 as t → ∞,
and the parameter estimation errors θ̃o and θ̃q are bounded for every t .
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The proof is based on the same arguments used for Theorem 5.1 and, for the sake
of completeness, is reported in Appendix A.2.

Remarks 5.1 and 5.2 can be extended to this observer. It is worth noticing that ex-
ponential convergence of the errors is of the utmost importance, since it guarantees
bounded errors in the presence of bounded interpolation errors ς .

5.6.2.2 A Classical Model-Free Approach

Finally, it is worth reviewing the model-free estimation scheme proposed in [27],
which is attractive for its simplicity and effectiveness.

In detail, the term aq is considered as a further unknown parameter to be esti-
mated, together with the heat transfer coefficient, via a suitably designed nonlinear
observer [24]. The estimates âq and θ̂o are obtained by means of the following ob-
server: ⎡

⎢⎢⎢⎣

˙̂T r˙̂T j˙̂aq˙̂θo

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎣

0 0 1 −αr(Tr − Tj)

0 0 0 αj(Tr − Tj)

0 0 0 0
0 0 0 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣
T̂r

T̂j
âq

θ̂o

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣

0
βj(Tin − Tj)

0
0

⎤
⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎣

2lq 0
0 2lθ
l2q

αr
αj
l2θ

0 1
αj(Tr−Tj)

l2θ

⎤
⎥⎥⎥⎥⎦

[
Tr − T̂r

Tj − T̂j

]
, (5.36)

where lq and lθ are suitable positive gains.
It must be noticed that, when (Tr − Tj)→ 0, a singularity occurs due to the term
1

αj(Tr−Tj)
. Hence, in order to avoid this, (Tr −Tj) can be replaced by a constant value

ε, when |Tr − Tj| ≤ ε.
Convergence analysis of the observer (5.36) can be found in [24, 27].

5.7 Adaptive Two-Loop Control Scheme

The controller scheme developed in the following is based on the well-known GMC
paradigm [22, 27] reviewed in Sect. 5.4.2. The key idea of this technique is that
of globally linearizing the reactor dynamics by acting on the jacket temperature Tj,
which is, in turn, controlled by a standard linear (e.g., PID) controller. Since Tj does
not play the role of the input manipulated variable, the only way to impose an as-
signed behavior to the jacket temperature is that of computing a suitable setpoint
Tj,des, to be passed by a control loop closed around Tj. Both in [22] and [27], the
mathematical relationship between the jacket temperature and the setpoint is as-
sumed to be a known linear first-order differential equation, from which Tj,des is
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computed. Here, this assumption is not necessary, since a two-loop control scheme
is explicitly designed.

The whole control scheme is represented in Fig. 5.2. The first control loop (in-
ner loop) is closed around the jacket temperature in such a way to track a desired
temperature, Tj,des(t) = y2,des(t), to be determined; then, an outer loop is closed
around the reactor temperature so as to track the desired reactor temperature profile,
Tr,des(t) = y1,des(t). The outer controller computes the desired jacket temperature
on the basis of the reactor tracking error e1 = y1,des − y1 and of the estimate of aq,
while the inner controller receives y2,des as input and computes the temperature of
the fluid entering the jacket, i.e., the manipulated input u.

Since the control goal is the tracking of a temperature profile for the reactor,
according to the GMC method, a desired profile for ẏ1 must be chosen. By con-
sidering (5.12) and the expression of ẏ1 = ẋNC+1 given by (5.15), the following
equality can be imposed:

âq − αrθ̂c(y1 − y2,des)= ẏ1,des + gP,re1 + gI,r

∫ t

0
e1(ζ ) dζ, (5.37)

where ẏ1,des is added to take into account time-varying temperature profiles, while
gP,r and gI,r are positive gains. In this way, it is possible to compute the desired
value of the jacket temperature as

y2,des = y1 + ẏ1,des + gP,re1 + gI,r
∫ t

0 e1(ζ ) dζ − âq

αrθ̂c
= y1 + z2,des. (5.38)

In the same way, by considering (5.12) and the expression of ẏ2 = ẋNC+2 given by
(5.15), a similar expression for the input u can be devised,

u= y2 + ẏ2,des + gP,je2 + gI,j
∫ t

0 e2(ζ ) dζ − αj(y1 − y2)θ̂c

βj
, (5.39)

where e2 = y2,des − y2 is the tracking error for the jacket temperature, and gP,j and
gI,j are positive gains.

The parameter estimate θ̂c is obtained via the update law

˙̂θc = γ−1
c χT

c (y)P cε, (5.40)

where γc is a positive gain, and the vectors ε and χc are defined, respectively, as

ε =

⎡
⎢⎢⎣

∫ t

0 e1(ζ ) dζ

e1∫ t

0 e2(ζ )dζ

e2

⎤
⎥⎥⎦ , χ c(y)=

⎡
⎢⎢⎣

0
−αrz2,des

0
−αj(y1 − y2)

⎤
⎥⎥⎦ . (5.41)

The matrix P c in (5.40) is symmetric and positive definite,

P c =
[

P r O2×2
O2×2 P j

]
, (5.42)
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Fig. 5.2 Block scheme of the two-loop control

and each matrix P ∗ (∗ = r, j) is the (2 × 2) symmetric and positive definite solution
of the Lyapunov equation

AT∗P ∗ + P ∗A∗ = −N∗, (5.43)

where

A∗ =
[

0 1
−gI,∗ −gP,∗

]
,

while N r and N j are symmetric positive definite matrices satisfying

λmin(N j) >
‖P r‖2‖Arj‖2

λmin(N r)
,

Arj =
[

0 0
0 αrθ

]
,

(5.44)

and λmin(·) denotes the minimum eigenvalue of a matrix. Noticeably, since each
A∗ is Hurwitz (for any choice of the control gains), the solution of the Lyapunov
equation (5.43) exists for any positive definite matrix N∗. This implies that solutions
satisfying condition (5.44) always exist.

An alternative version of the control law (5.38), (5.39) can be obtained by setting
the gains gI,r and gI,j to zero. Therefore, the following control law can be used:

y2,des = y1 + ẏ1,des + gP,re1 − âq

αrθ̂c
= y1 + z′

2,des, (5.45)

u = y2 + ẏ2,des + gP,je2 − αj(y1 − y2)θ̂c

βj
. (5.46)

If (5.45) and (5.46) are used instead of (5.38) and (5.39), respectively, the following
adaptive law can be adopted to estimate θ :

˙̂θc = γ−1
c ψT

c (y)e, (5.47)
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where γc is a positive gain setting the update rate of the estimate, e is the vector of
the tracking errors

e =
[
e1
e2

]
,

and ψc is the vector

ψc(y)=
[ −αrz

′
2,des

−αj(y1 − y2)

]
. (5.48)

The presence of the integral action in the control law (5.38) and (5.39) guarantees
higher robustness of the control scheme; on the other hand, tuning of this controller
is more difficult since two more parameters, gI,r and gI,j, are to be adjusted, and the
matrix P c satisfying (5.44) must be chosen. Moreover, even in the absence of the
integral action, the performance degradation is negligible since the adaptive com-
pensation of the parameter already includes an integral action on the tracking error.
Hence, control law (5.45), (5.46) will be adopted in the case study developed in the
subsequent section.

The convergence properties of the error variables (including the parameter es-
timation errors θ̃o = θ − θ̂o and θ̃c = θ − θ̂c) for the overall controller–observer
scheme defined by (5.23)–(5.25) and (5.38)–(5.40) are established by the following
theorem:

Theorem 5.3 If the rate constants are bounded as in (2.32) and (2.33), then, there
exists a set of observer gains such that the state estimation error x̃ and the tracking
error ε globally uniformly converge to 0 as t → ∞, for any positive set of control
gains. Moreover, the parameter estimation errors θ̃o and θ̃c are bounded for every t .

The proof is based on a Lyapunov-like argument and is reported in Appendix A.3.
As for the overall closed-loop system resulting defined by (5.23)–(5.25) and

(5.45)–(5.47), the following theorem holds:

Theorem 5.4 If the rate constants are bounded as in (2.32) and (2.33), then, there
exists a set of observer gains such that the state estimation error x̃ and the tracking
error e globally uniformly converge to 0 as t → ∞, for any positive set of control
gains. Moreover, the parameter estimation errors θ̃o and θ̃c are bounded for every t .

The proof is based on the same arguments used in the proof of Theorem 5.3 and
is reported, for the sake of completeness, in Appendix A.4.

Remarks 5.1 and 5.2 on the exponential stability of the estimation error dynamics
can be extended to the overall controller–observer scheme as well. Hence, robust-
ness with respect to effects due to modeling uncertainties and/or disturbances is
guaranteed. Moreover, the following remarks can be stated.

Remark 5.3 Although the stability analysis considers the dynamics of the overall
system (i.e., the dynamics of both the observer and the controller), tuning of the ob-
server gains (L and γo) and of the controller gains (gP,r, gP,j, and γc and, eventually,
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gI,r, gI,j, and Pc) can be achieved separately, since the stability conditions do not put
mutual constraints on the two set of gains.

Remark 5.4 As can be noticed from (5.40) and (5.47), the estimate, θ̂c, used in the
control law is different from the estimate θ̂o computed by the observer. This is neces-
sary since the convergence of the latter to θ is not guaranteed unless the persistency
of excitation condition is fulfilled. Hence, a different update law is adopted to en-
sure the convergence of the controller tracking errors. A unique update law could
be adopted, ensuring the convergence of both estimation and tracking errors. In this
case, however, stability conditions will put mutual constraints on the observer and
controller parameters, and thus independent tuning of the two structures would not
guarantee the convergence of the estimation/tracking errors.

Remark 5.5 The stability analysis has been developed for the controller in conjunc-
tion with the observer (5.23), (5.24). It can be verified that, if the model-free ob-
server defined by (5.29), (5.30), and (5.34) is considered, the stability of the overall
scheme can be proven by using similar arguments.

5.8 Case Study: Temperature Control

In this section, the proposed approach has been tested in a simulation case study,
developed in the MATLAB/SIMULINK© environment. In detail, the problem of
temperature control of the phenol–formaldehyde reactive system, developed in
Sect. 2.4, has been considered.

In order to analyze the effects of different estimates of aq on the control scheme,
the cascade controller (5.45)–(5.47) is used in conjunction with the three different
observers presented in Sect. 5.6. Finally, the results are compared with those ob-
tained by using the most widely used industrial controller, i.e., the PID controller.
Therefore, five different control schemes have been compared:

• Model-free scheme: the two-loop scheme (5.45)–(5.47) is adopted in conjunction
with the model-free observer (5.36), providing âq and θ̂o. In order to cope with
the singularities occurring when (Tr − Tj) → 0, this term has been replaced by
the constant value 0.1 when |Tr − Tj| ≤ 0.1.

• RBFI-based scheme: the two-loop scheme (5.45)–(5.47) is adopted in conjunction
with the RBFI-based model-free observer defined by (5.29), (5.30), (5.34), and
(5.35). The RBFI uses 15 Radial Basis Functions; the centroids are chosen evenly
distributed in the interval [293 K, 368 K], considered as the range of temperatures
of the reaction; the width, the same for all the RBFs, has been set to 102.

• Model-based scheme: the model-based controller–observer scheme defined
by (5.23) and (5.45), (5.46) is adopted, where the adaptive estimation is not in-
troduced, and thus the available nominal estimate of θ is used.

• Adaptive model-based scheme: the adaptive model-based controller–observer
scheme defined by (5.23)–(5.25) and (5.45)–(5.47) is adopted.
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Fig. 5.3 Desired reactor
temperature profile

• PID controller: the classical PID regulator (5.1) with a feedforward compensation
of the desired reactor temperature (i.e., y1,des is added to the control input).

In order to perform a fair comparison between the above-mentioned control strate-
gies, all the schemes have been tuned so as to achieve the same control effort (i.e.,
so as to obtain the same time histories of u, as far as possible).

A realistic temperature profile Tr,des(t)= y1,des(t), reported in Fig. 5.3, has been
chosen as desired reactor temperature; it is characterized by three phases:

• heating phase: in this phase the desired reactor temperature is raised from its
initial value, 293 K, to 368 K in 6000 s, via a third-order polynomial with null
initial and final derivatives

• isothermal phase: in this phase a constant temperature setpoint (368 K) is com-
manded for 7500 s; and

• cooling phase: in this phase the desired temperature is driven to 298 K in 4000 s;
the profile is a third-order polynomial with null initial and final derivatives. The
final temperature is then kept constant for 500 s.

5.8.1 Simulation Model

The phenol–formaldehyde reaction has been simulated by considering the kinetic
model containing 13 components and 89 reactions developed in Sect. 2.4. A well-
mixed batch reactor, equipped with a cooling/heating jacket fed with liquid water,
has been considered. The mass balances have been written according to the general
scheme (2.27), while the energy balances are written as in (2.30), (2.31). The values
of the main model parameters are reported in Table 5.1, where the heat capacity of
the reacting solution has been taken from [50]. The temperature of the water entering
the jacket ranges from Tin,min = 285 K to Tin,max = 370 K, while the volumetric flow
rate is fixed at FV = 0.1 m3 s−1.

In order to simulate a realistic industrial reactor, some important assumptions on
the actuator and the sensors have been done. Namely, a first-order linear dynamics,
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Table 5.1 Main simulation parameters

Parameter Value Parameter Value

Vr 6 m3 Vj 1.729 m3

θ 11.5 kJ s−1 K−1 FV 0.1 m3 s−1

ρr 1.0 · 103 kg m−3 ρj 1.0 · 103 kg m−3

cr 1.712 kJ kg−1 K−1 cj 4.186 kJ kg−1 K−1

CPh(0) 4200 mol m−3 CF(0) 7560 mol m−3

Tr(0) 293.15 K Tj(0) 293.16 K

Tin,min 285 K Tin,max 370 K

with a time constant of 3 s, has been introduced in the simulation model (but not
considered in the controller) between the commanded control input (computed by
the controller) and the real temperature of the water entering the jacket. Moreover,
it has been assumed that only the reactor and the jacket temperatures are measured;
Gaussian white noise with zero mean and variance of 5 · 10−3 K2 is added to tem-
perature measurements.

Initial conditions for the reactant concentrations and the temperatures of the ves-
sel and the jacket are reported in Table 5.1.

An initial estimation error on the concentrations, which corresponds to 5% of
their true values, has been assumed. Moreover, a wrong nominal estimate of θ has
been considered, which is assumed to be equal to 1.6 times its true value (i.e., a 60%
error has been introduced).

5.8.2 Design of the Controller–Observer Scheme

The model-based controller–observer scheme requires to solve online the system
of differential equations of the observer. The phenol–formaldehyde reaction model
is characterized by 15 differential equations, and it is, thus, unsuitable for online
computations. To overcome this problem, one of the reduced models developed in
Sect. 3.8.1 can be adopted. In order to be consistent with the general form of non-
chain reactions (2.27) adopted to develop the controller–observer scheme, the re-
duced model (3.57) with first-order kinetics has been used to design the observer.
The mass balances of the reduced model are given by

⎧⎪⎨
⎪⎩
ĊA = −kc1(Tr)CA,

ĊI = kc1(Tr)CA − kc2(Tr)CI,

ĊP = kc2(Tr)CI − kc3(Tr)CP,

(5.49)

while the effect of the heat released by the reaction on the reactor temperature is
computed as

aq = a1(Tr)CA + a2(Tr)CI + a3(Tr)CP, (5.50)
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Table 5.2 Observer gains for the control schemes compared in simulation

Gains Model-free RBFI-based Model-based Adaptive model-based

l1, l2, l3 10, 5 · 102, 10−1 10, 5 · 102, 10−1

lr, lj 1, 1 1, 1 1, 1

lq, lθ 2·10−2, 6.5·10−3

γo 1.5 · 10−1 1.5 · 10−1

γq 3 · 10−2

where

ai(Tr)= −�HRi (Tr)kci (Tr)

ρrcr
, i = 1,2,3.

The values of kci (Tr) and �HRi (Tr) (i = 1, . . . ,3) have been identified in Sect. 3.8.
The state vector can be defined as

x =

⎡
⎢⎢⎢⎢⎣

x1
x2
x3
x4
x5

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

CA
CI
CP
Tr
Tj

⎤
⎥⎥⎥⎥⎦ . (5.51)

The matrix A(y) of the observer (5.23) has the form

A(y)=

⎡
⎢⎢⎢⎢⎣

−kc1(Tr) 0 0 0 0
kc1(Tr) −kc2(Tr) 0 0 0

0 kc2(Tr) −kc3(Tr) 0 0
a1(Tr) a2(Tr) a3(Tr) 0 0

0 0 0 0 0

⎤
⎥⎥⎥⎥⎦ . (5.52)

The model-based observer requires tuning of 6 parameters, i.e., the nonzero val-
ues in matrix L and γo. As for the model-free observer defined by (5.29), (5.30),
and (5.34), the dynamics of the reaction is not required, and only two gains (the
main diagonal of matrix LE) and two update gains (γo and γq) are needed. Finally,
the observer (5.36) requires tuning of the two gains lθ and lq . All the above gains
have been tuned via a trial-and-error procedure and are summarized in Table 5.2.

As stated in Remark 5.3, the parameters of the two-loop controller (gP,r, gP,j) and
γc have been chosen independently from the adopted observer via a trial-and-error
procedure. Therefore, they are identical for all the control schemes and are reported
in Table 5.3. In the controller–observer scheme without adaption (i.e., using the
nominal estimate of θ ), both γo and γc have been set to zero.

5.8.3 Discussion of Results

Figures 5.4 to 5.7 show the simulation results. It can be recognized that satisfactory
temperature tracking performance (Fig. 5.4) are achieved in all cases, with similar
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Table 5.3 Two-loop
controller gains gP,r gP,j γc

5 · 10−2 5 · 10−2 6 · 10−2

Fig. 5.4 Reactor temperature tracking errors

values of the control input (Fig. 5.5). Noticeably, the model-based adaptive scheme
achieves tracking performance comparable with respect to the model-free schemes,
also in the presence of large model uncertainties. Moreover, the adaptive approaches
outperform the nonadaptive model-based scheme, since the latter does not take into
account the parametric uncertainties at all.

It can be argued that the differences between the compared schemes are mainly
due to the different estimation accuracy of the quantity aq (Fig. 5.6). It can be seen
that, after the initial transient phase in which the model-free observers present an in-
verse response, both the adaptive (model-based and model-free) approaches achieve
very good estimates. As for the parameter estimate, since both the adaptive ob-
servers (θ̂o) and the controller (θ̂c) estimates converge to the true value of θ (see
Fig. 5.7), it is possible to argue that the persistency of excitation condition is ful-
filled.

As expected, the effect of the singularity in the model-free observer (5.36) is
visible in the last part of the batch, where Tr and Tj tends to be equal, and thus the
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Fig. 5.5 Commanded temperature of the fluid entering the jacket

estimate deviates from the true value of the parameter. The singularity, however,
does not influence the overall behavior of the closed-loop system, since it occurs
during the final stage of the reactivity of the system.

The effect of measurement noise can be observed for all variables (especially the
control input, as shown in Fig. 5.5). In particular, the model-free observer based on
RBFI is the most sensitive to measurement noise.

It can be concluded that the exponential stability property confers to the adap-
tive model-based scheme a satisfactory degree of robustness. Therefore, even in the
presence of large model uncertainties, its performance is comparable with or better
than that of model-free approaches.

5.8.4 Comparison with the PID Controller

The following values have been adopted for the PID gains: gP = 10, gI = 5 · 10−1,
and gD = 10−3. In order to perform a fair comparison between the PID approach and
the two-loop controller-observer strategies, the PID gains have been tuned via a trial-
and-error procedure so as to achieve the same control effort of the other considered
control strategies (i.e., so as to obtain the same time histories of u as far as possible).
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Fig. 5.6 Estimates of aq

Figure 5.8 is referred to the performance of the PID controller. It can be recog-
nized that the temperature tracking error is always below 0.5 K and is characterized
by a very similar time history of the control input with respect to the previously
tested schemes (Fig. 5.5). By comparing the results in Fig. 5.8 with those in Fig. 5.4,
the adaptive model-based scheme presents better performance than the linear PID
control, especially during the heating and cooling phases, i.e., when the reference
temperature is not constant.

The major advantages deriving from the application of the model-based two-loop
control strategies can be highlighted in terms of their ability to prevent potentially
dangerous conditions in the reactor. As already discussed in Sect. 4.6, the safe oper-
ative conditions for this reactive system are to be determined—at least in the early
reaction stages—in the light of a maximum temperature limit imposed by the bub-
bling point of the liquid, rather than by classical runaway boundaries determined
by geometric or sensitivity-based criteria. By assuming a precautionary maximum
temperature of 371 K (98 °C), the performance of the two control strategies are
evaluated by determining the critical value of θ = US, defined as the lowest value
that generates a temperature–time profile in the reactor with maximum lower than
371 K.

The results are shown in Fig. 5.9 as a function of the set-point temperature for
both the model-based and the PID controller. In both cases, the critical θ increases
with the setpoint temperature since a more efficient heat exchange is required when
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Fig. 5.7 Estimates of the parameter θ

Fig. 5.8 Reactor temperature tracking error (left) and commanded temperature of the fluid in the
jacket (right) obtained by using PID controller

working closer to the imposed limit; a vertical asymptote at the maximum allowable
temperature of 371 K is present in both cases. Interestingly, the critical θ values for
the PID-controlled reactor prove to be considerably higher than those obtained with
the model-based approach; hence, in the latter case a much lower heat exchange
area and/or coefficient are required in order to prevent overcoming of the maximum
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Fig. 5.9 Safety boundaries
for the phenol–formaldehyde
reaction when the
temperature reactor is
controlled by using the
model-based adaptive
strategy and the PID
controller

allowable temperature. From a different point of view, this corresponds to the ev-
idence that the model-based controlled reactor has a wider range of safe operative
conditions, hence emphasizing its superior performance. This has to be mainly at-
tributed to the higher adaptivity of the model-based controller to changes of the
model parameters, whereas the performance of a well-tuned PID promptly deterio-
rates far from the standard operative conditions.

5.9 Conclusions

In this chapter an overview of the most widely adopted temperature control schemes
for chemical batch reactors has been provided. Moreover, an adaptive model-based
controller–observer approach has been proposed, analyzed, and compared to other
approaches.

The approach is developed for a fairly wide class of processes, i.e., the class of
irreversible nonchain reactions characterized by first-order kinetics. Although this
is not the most general case, it encompasses several real reactive processes.

A rigorous analysis of the main properties of the overall scheme (i.e., conver-
gence and robustness) has been provided. In detail, convergence of state estimation
and tracking errors is always guaranteed under mild assumptions. Moreover, when
the (stronger) persistency of excitation condition is fulfilled, the exponential con-
vergence of all error signals is ensured. This, in turn, implies the robustness of the
proposed scheme in the face of uncertainties and disturbances.

Moreover, it is worth remarking that the use of an accurate and reliable state
observer, which is necessary for the proposed controller, can be advantageous for
other purposes as well (e.g., process monitoring and fault diagnosis).

Since the design and the tuning of the observer can be achieved independently
from the adopted controller, the latter can be adopted in conjunction with observers
different from those presented in this chapter. The model-based observer (5.23)
needs a good knowledge of the reaction kinetics: this may be regarded as a lim-
itation for its practical application, where a certain degree of mismatch between
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the modeled and the real reaction mechanism is always present. Nevertheless, in
the presence of bounded and/or vanishing uncertainties, the property of exponen-
tial convergence ensures a certain degree of robustness of the controller–observer
scheme. In other words, if the mismatch between the model and the real kinetics is
bounded (vanishing), bounded (asymptotically convergent) estimation and tracking
errors are expected. Of course, modeling errors must be kept as small as possible,
via suitable modeling and identification techniques of the reaction dynamics.

When an accurate model of the reaction kinetics is not available, the estimation
of the heat released can be achieved by resorting to model-free adaptive approaches,
where the estimation of both unknown parameters and the effect of the heat released
by the reaction can be computed by resorting, e.g., to universal interpolators.

In the case study, the adaptive model-based approach is designed on the basis of a
reduced model of the phenol–formaldehyde reaction introduced in the Chap. 2. No-
ticeably, the results show that the model-based control scheme achieves very good
performance even when a strongly simplified mathematical model of the reactive
system is adopted for the design.
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Chapter 6
Fault Diagnosis

List of Principal Symbols
Ad(y) matrix defined in (6.6)
f fault vector
Fa admissible set of actuator/process faults
g, h functions defining the state-space model in (6.1)
kc rate constant [(mol/m−3)1−n s−1]
L matrix gains of the observers
n vector of measurement noise
NC number of compounds involved in the reaction
NF number of considered actuator/process faults
r scalar residual
r residual vector
Sj,i temperature sensors in the cooling jacket (i = 1,2)
Sr,i temperature sensors in the reactor (i = 1,2)
t time [s]
T temperature [K]
tf fault time [s]
T time set
u control input variable
U overall heat transfer coefficient [J m−2 K−1 s−1]
U set of admissible inputs vectors
x vector of state variables
X set of admissible state vectors
y vector of measured output variables
Y set of admissible output vectors
‖ · ‖ Euclidean norm

Greek Symbols
γ positive gain setting the parameter estimate update rate
δ magnitude of the fault
η vector of system uncertainties
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θ parameter US
θ f vector of unknown parameters characterizing the fault magnitude
μ normalization factor of residuals
τ time constant setting the fault evolution rate
ϕ regressor matrix of the fault model

Subscripts and Superscripts
a actuator
E energy balance
f fault
j jacket
m measured
M mass balance
max maximum
min minimum
p process
r reactor
s sensor
SM variables referred to the observers SM1 and SM2
u fault affecting the cooling system
U fault affecting the heat transfer coefficient
0 initial conditions
� nominal valuê estimate˜ estimation error

6.1 Fault Diagnosis Strategies for Batch Reactors

In chemical processes, several kinds of failures may compromise safety and pro-
ductivity. Indeed, the occurrence of faults may affect efficiency of the process (e.g.,
lower product quality) or, in the worst scenarios, could lead to fatal accidents (e.g.,
temperature runaway) with injuries to personnel, environmental pollution, equip-
ments damage.

The term fault is generally defined as a departure of an observed variable or a
parameter from an acceptable range [19, 48]. The causes of this abnormality, such
as a failed coolant pump or a failed sensor, are called basic events or root events and
are often referred as malfunctions or failures.

Fault Diagnosis (FD) consists of three main tasks:

• fault detection, i.e., the detection of the occurrence of a fault
• fault isolation, i.e., the determination of the type and/or location of the fault; and
• fault identification, i.e., the determination of the time evolution of the fault.

Once a fault has been detected, in some applications a controller reconfigura-
tion for the self-correction of the fault is required (fault accommodation). A fault-
tolerant control system possesses this capability, and its adoption is of the utmost
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importance when the controlled system can have potentially damaging effects on
the environment if its components fail.

The relative importance of the three above-mentioned diagnosis tasks depends on
the application at hand. However, while fault detection is an absolute must for any
practical system, fault identification, even if helpful, is not essential when controller
reconfiguration is not required.

Essentially, an FD system must avoid two kinds of errors, false alarms and missed
alarms. A false alarm occurs when a fault is declared but the system is operating in
healthy conditions; typically, they are due to model uncertainties and disturbances.
On the other hand, a missed alarm occurs when, under faulty condition, the FD
system does not detect any fault. Usually, minimization of false alarm and missed
alarms are conflicting requirements.

Early approaches to fault diagnosis were often based on the so-called physical
redundancy [11], i.e., the duplication of sensors, actuators, computers, and softwares
to measure and/or control a variable. Typically, a voting scheme is applied to the
redundant system to detect and isolate a fault. The physical redundant methods are
very reliable, but they need extra equipment and extra maintenance costs. Thus, in
the last years, researchers focused their attention on techniques not requiring extra
equipment. These techniques can be classified into two general categories, model-
free data-driven approaches and model-based approaches.

6.1.1 Model-Free Approaches

Model-free data-driven approaches do not require a model of the monitored pro-
cess, but only a good database of historical data collected in normal operating
conditions. This class of approaches includes both statistical and knowledge-based
methods [49].

As concerns the former, statistical tests on the measured data are usually adopted
to detect any abnormal behavior. In other words, an industrial process is considered
as a stochastic system and the measured data are considered as different realizations
of the stochastic process. The distribution of the observations in normal operat-
ing conditions is different from those related to the faulty process. Early statistical
approaches are based on univariate statistical techniques, i.e., the distribution of a
monitored variable is taken into account. For instance, if the monitored variable
follows a normal distribution, the parameters of interest are the mean and standard
deviation that, in faulty conditions, may deviate from their nominal values. There-
fore, fault diagnosis can be reformulated as the problem of detecting changes in the
parameters of a stochastic variable [3, 30].

However, since failures may involve a large number of parameters, often not in-
dependent from each other, the univariate techniques may be not so efficient; there-
fore, they have been replaced by multivariate techniques, which are powerful tools
able to compress data and reduce the problem dimensionality while retaining the
essential information. In detail, Principal Component Analysis (PCA) [12, 47] is
a standard multivariate technique, whose main goal is to transform a number of



124 6 Fault Diagnosis

related process variables to a smaller set of uncorrelated variables; Projection to
Latent Structures (PLS) [29, 54] is conceptually similar to PCA but allows one to
reduce the dimensions of both process variables and product quality variables to be
analyzed. Finally, it is worth mentioning set-based approaches [26].

Knowledge-based expert system approaches require acquisition of knowledge of
the process, a suitable choice of the knowledge representation, a careful encoding
of the knowledge, and the development of inference procedures for diagnostic pur-
poses. The main drawback of expert systems is the unpredictability of the response
of the system outside the domain of its expertise. This problem can be overcome
by using Artificial Neural Networks (ANNs) that do not require explicit encoding
of knowledge or an accurate knowledge of the mathematical model of the process
and are characterized by good generalization capabilities. Early approaches include
the use of back-propagation networks [20, 25, 48]. Then, a number of more effi-
cient network structures have been considered: for example, Radial Basis Functions
(RBFs) [55] have been suited to fault diagnosis for their better generalization per-
formance. More recently, Bayesian belief networks [32, 33, 40], dynamic neural
networks [34], and pattern recognition methods [31] have been proposed. In [41,
42], an approach based on a combination of ANNs and knowledge-based expert
systems has been developed.

6.1.2 Model-Based Approaches

Model-based approaches to fault diagnosis can be divided into qualitative methods
[51] and quantitative methods [35, 36].

Among qualitative methods, the most successful for chemical processes are those
based on causal models, such as digraphs or fault-trees. Signed Digraphs (SDGs),
i.e., graphs with directed arcs between the nodes, are built in such a way that nodes
correspond to events, while edges represent the causal relationships between the
events. SDGs have been the most widely used form of causal knowledge for process
fault diagnosis until the late 1990s [6, 43, 46].

Fault trees are logic trees that propagate primary events or faults to the top level
events. They are widely used for analyzing fault effects, as well as system reliability
and safety. According to [15], fault tree analysis includes four steps: system defini-
tion, fault tree construction, qualitative evaluation, and quantitative evaluation. Each
node of the tree represents a logical operation (AND or OR). Starting from the top
event (i.e., the fault), the lower nodes are introduced by considering the events caus-
ing the top event, until events which cannot be further expanded are encountered.
A major drawback of fault trees is that formal methods to verify the accuracy of the
developed fault tree are still not available.

In the last two decades, the researchers’ interest has been focused mainly on
quantitative model-based methods, based on the concept of analytical or functional
redundancy, which use a mathematical model of the process to obtain the estimates
of a set of variables characterizing the behavior of the monitored system. The in-
consistencies between estimated and measured variables provide a set of residuals,
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sensitive to the occurrence of faults. Later, the residuals are evaluated in order to
identify and localize faults.

Although there is a close relationship among the various quantitative model-
based techniques, observer-based approaches have become very important and dif-
fused, especially within the automatic control community. Luenberger observers
[1, 45, 53], unknown input observers [44], and Extended Kalman Filters [21] have
been mostly used in fault detection and identification for chemical processes and
plants. Reviews of several model-based techniques for FD can be found in [8, 13,
35, 50] and, as for the observer-based methods, in [1, 36, 44].

The literature focused on model-based FD presents a few applications of ob-
servers to chemical plants. In [10] an unknown input observer is adopted for a
CSTR, while in [7] and [21] an Extended Kalman Filter is used; in [9] and [28]
Extended Kalman Filters are used for a distillation column and a CSTR, respec-
tively; in [45] a generalized Luenberger observer is presented; in [24] a geometric
approach for a class of nonlinear systems is presented and applied to a polymer-
ization process; in [38] a robust observer is used for sensor faults detection and
isolation in chemical batch reactors, while in [37] the robust approach is compared
with an adaptive observer for actuator fault diagnosis.

Since perfect knowledge of the model is rarely a reasonable assumption, soft
computing methods, integrating quantitative and qualitative modeling information,
have been developed to improve the performance of observer-based schemes for
uncertain systems [36]. Major contributions to observer-based approaches can be
found in [39, 56] as well, where fault isolation is achieved via a bank of observers,
while identification is based on the adoption of online universal interpolators (e.g.,
ANNs whose weights are updated on line). As for the use of observers in the pres-
ence of advanced control techniques, such as MPC or FLC, in [44] an unknown
input observer is adopted in conjunction with an MPC scheme.

However, most of the above-mentioned approaches are referred to continuous
reactors; application of these techniques to batch chemical processes is usually dif-
ficult, because of their nonlinear dynamics, intrinsically unsteady operating condi-
tions, lack of full state measurements, and poor model knowledge.

In this chapter, an FD framework for batch chemical processes is developed,
where diagnosis of sensor, actuator, and process faults can be achieved via an in-
tegrated approach. The proposed approach is based on physical redundancy for de-
tection of sensor faults [38], while an analytical redundancy method, based on a
bank of diagnostic observers, is adopted to perform process/actuator fault detection,
isolation, and identification [4].

6.2 Basic Principles of Model-Based Fault Diagnosis

Consider a nonlinear time-varying dynamic system
{

ẋ = g(t,x,u)+ η(t,x,u),

y = h(t,x,u),
(6.1)
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Fig. 6.1 System modeling

where, as usual, x, u, and y are the state, input, and output vectors, respectively,
while η represents the system uncertainties vector.

The information used for FD are the measured output from sensor and the in-
put to the actuators. Therefore, for FD purposes, the open-loop system is usually
considered as composed by three main blocks [8]: actuators, process, and sensors.
Namely, in Fig. 6.1, u is the system input (control action), ua is the actuator output,
y is the system output, and ym is the output measured by sensors.

If the dynamics of sensors and actuators is neglected, the fault-free condition is
characterized by the following relations:

ym(t)= y(t)+ n(t), ua(t)= u(t),

where n is the vector of measurement noise. A sensor fault can be described math-
ematically as

ym(t)= y(t)+ n(t)+ f s(t), (6.2)

where f s is the sensor fault vector. The above model, although very simple, may
capture all main sensor fault classes, provided that f s is suitably chosen. For in-
stance, an abrupt switch to zero of the measured signal is described by f s(t) =
−y(t), while an abrupt constant bias δy, affecting the measured signal, can be mod-
eled as f s(t)= δy.

In a similar way, the actuator action, in the presence of an actuator fault, becomes

ua(t)= u(t)+ f a(t), (6.3)

where f a is the actuator fault vector. A wide class of actuator faults can be repre-
sented by (6.3), provided that f a is suitably chosen. For instance, an abrupt constant
bias affecting the actuator output, δu, can be modeled as f a(t) = δu; if the actua-
tor output is frozen at the value u(t∗) for t ≥ t∗, the corresponding fault vector is
f a(t)= u(t∗)− u(t).

As for process faults, they can be modeled via an unknown additional term
f p(t,x,u) affecting the state equation of the system dynamics (6.1).

As previously stated, model-based FD consists on detection, isolation, and iden-
tification of faults in the components of a system from the comparison of the sys-
tem measurements with a priori information given by the mathematical model. The
discrepancies between the real system behavior and the behavior predicted by the
model are taken into account via quantities called residuals. Then, the residuals are
processed by a decision making system (Fig. 6.2) whose aim is to generate alarms
and/or directions for other subsystems (e.g., the control system).
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Fig. 6.2 Scheme of a model-based diagnosis system

6.2.1 Residual Generation

In general, residuals can be obtained as functions of the measured output ym and its
estimate ŷ computed via the available mathematical model

r = r(t,ym, ŷ). (6.4)

Ideally, residuals should be equal to zero in the absence of faults, while they
should become nonzero after the occurrence of faults. Of course, in practice, they
are always nonzero due to model uncertainties and disturbances. Since the residual
generation is the most important issue of quantitative model-based fault diagnosis,
most of the works in this research field have been focused on this problem. A wide
variety of techniques are available in the literature (see, e.g., [8, 16] for a complete
overview). Since a complete review is outwith the scope of this book, in the follow-
ing, only the basic concepts of the main approaches are briefly discussed.

The basic idea of observer-based approaches is to estimate the outputs of the
system from available measurements by using suitably defined diagnostic observers.
Then, the output estimation errors are used as residuals. For isolation purposes, a
bank of observers can be adopted, where each observer computes an estimate of the
system state sensitive to all faults but one.

Approaches based on parameter estimation assume that the faults lead to de-
tectable changes of physical system parameters. Therefore, FD can be pursued by
comparing the estimates of the system parameters with the nominal values obtained
in healthy conditions. The operative procedure, originally established in [23], re-
quires an accurate model of the process (including a reliable nominal estimate of the
model parameters) and the determination of the relationship between model param-
eters and physical parameters. Then, an online estimation of the process parameters
is performed on the basis of available measures. This approach, of course, might
reveal ineffective when the parameter estimation technique requires solution to a
nonlinear optimization problem. In such cases, reduced-order or simplified mathe-
matical models may be used, at the expense of accuracy and robustness. Moreover,
fault isolation could be difficult to achieve, since model parameters cannot always
be converted back into corresponding physical parameters, and thus the influence of
each physical parameters on the residuals could not be easily determined.



128 6 Fault Diagnosis

The basic idea of the parity equation approach [18, 52] is to provide a proper
check of the consistency of the measured outputs with the known process inputs.
The residuals are usually given by the value of the parity equations, which should
be, ideally, zero in healthy conditions. Of course, in real situations, the residuals
are nonzero due to measurement and process noise, model inaccuracies, and faults.
These methods usually adopt linear or linearized models; thus, difficulties can be
encountered when dealing with complex and highly nonlinear systems.

6.2.2 Decision Making System and Fault Isolation

After their generation, residuals must be processed in order to detect and isolate
faults. The decision process usually comes down to the selection of suitable thresh-
olds. In ideal conditions (i.e., residuals not affected by uncertainties and distur-
bances), thresholds can be set to zero. However, in practice, this condition cannot
be achieved; therefore, nonzero thresholds must be adopted.

The simplest strategy is to set fixed thresholds, chosen in such a way to find a
compromise between sensitivity to faults and the need to minimize false alarms. In
fact, setting too low thresholds might increase the rate of false alarms, while choos-
ing them too large might reduce sensitivity. As for the thresholds selection, different
approaches may be pursued. A priori selection of the thresholds, i.e., obtained by
computing the upper bounds of the residuals in the absence of faults, may result
in too conservative and thus compromising sensitivity to faults. In alternative, an
empirical approach may be adopted. Namely, a number of experiments, in the ab-
sence of faults, can be performed, and the corresponding residuals recorded; then,
the thresholds can be set on the basis of the values of the residuals in healthy condi-
tions.

Sensitivity to faults can be improved by using adaptive thresholds, adjusted on-
line on the basis of measurements [56]. Adaptive thresholds may help in evaluating
residuals, provided that suitable bounding functions for the uncertainties are de-
vised. In the case of complex systems, the sources of uncertainties are often difficult
to model; hence, it can be quite challenging to derive reliable bounding functions.

A different approach to threshold selection is based on fuzzy logic [14]. By
adopting this approach, the value that represents the crisp discriminant between
faults and disturbances is replaced by a fuzzy set, characterized by a membership
function. Hence, a yes–no decision is replaced by a continuous indication of the
faulty level.

Whilst a single residual may be sufficient to detect faults, a vector of residuals
is usually required for fault isolation. For isolation purposes, structured residuals
[8, 17] can be generated, i.e., each residual is affected only by a specific subset of
faults, and each fault only affects a specific subset of residuals. This concept can be
expressed in a mathematical form by introducing a boolean fault code vector and a
boolean structure matrix [8].

In this chapter, a bank of observers is adopted for isolation of process and actuator
faults. Namely, it is assumed that only NF different types of faults can occur. Then,
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each isolation observer is designed so that its output is sensitive to all faults in the
set but one. In this way, a set of isolation residuals can be computed, where each of
them is sensitive to all faults but one.

6.3 Fault Diagnosis for Chemical Batch Reactors

Consider a jacketed batch reactor in which the same network of irreversible exother-
mic reactions adopted in Chap. 5 takes place. In order to design the FD framework,
the state-space model (5.15) is rewritten in a slightly different form, i.e.,

{
ẋ = Ad(y)x + b(y, u)+ η(t,x, u),

y = Cx + n,
(6.5)

where the state vector x, the input u, the output vector y, the vector b, and the matrix
C are the same defined in Sect. 5.5, while the matrix Ad(y) is given by

Ad =
[

AM(y) ONC×2
AM,E(y) AE

]
, (6.6)

where AM, AM,E, and AE are given in Sects. 5.5 and 5.6.2.1. The matrix AE con-
tains the available estimate θ� of the parameter θ , since all model uncertainties
(e.g., parametric uncertainties, effects of nonideal mixing and/or heating/cooling,
heat losses) have been lumped into the ((NC + 2)× 1) vector η. Finally, the (2 × 1)
vector n represents the measurement noise.

Since a fairly accurate model of the batch reactor can be derived according to the
guidelines given in Chaps. 2 and 3, the existence of a finite (and relatively small)
bound on the magnitude of uncertainties can be assumed. Moreover, it is customary
to assume bounded sensor noise as well. Hence, the following assumption is made:

Assumption 6.1 The vectors η and n are norm-bounded, i.e.,

∃η̄ > 0 : ∥∥η(t,x, u)
∥∥ ≤ η̄ ∀t ∈ T ,x ∈ X , ∀u ∈ U ,

∃n̄ > 0 : ∥∥n(t)
∥∥ ≤ n̄ ∀t ∈ T ,

where X and U are the admissible sets to which the state and the input belong,
respectively, while T is the considered time interval.

6.3.1 Fault Characterization

Faults can occur due to sensors failures, equipment failures, or changes in process
parameters. As previously stated in Sect. 6.2, sensor faults can be modeled as an
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unknown additive term in the output equation, i.e.,

y(t)= Cx(t)+ f s(t)+ n(t), (6.7)

where the (2 × 1) vector f s collects the unknown faults profiles affecting the vessel
and the jacket temperature measurements, respectively. They could be due to, e.g.,
a constant bias superimposed on the measured variable or a drift of the measured
value.

An actuator fault can be generated by a malfunction of the cooling system, such
as electric-power failures, pomp failures, valves failures, and leaking pipes. Without
loss of generality, actuator faults may be modeled as an unknown additive term
affecting the state equation in (6.5), due to unexpected variations of the input u with
respect to its nominal value, i.e., the value computed by the reactor control system.

Process faults can be seen as environmental disturbances affecting the process.
Some examples for this kind of faults are effects of side reactions (caused, e.g.,
by impurities in raw materials) or unexpected changes in the heat transfer coeffi-
cient (due, e.g., to fouling in the heat exchanger). In this chapter, only process faults
affecting the dynamics of the state variables xE are taken into account and are mod-
eled as an additive term affecting the first equation in (6.5). This choice is due to
the fact that the effect of process faults affecting the dynamics of xM cannot be
directly observed, since the measurements of reactants concentrations are assumed
to be not available; however, this choice is only apparently limiting, since a wide
class of faults affecting the dynamics of xM (e.g., effects of side reactions) can be
indirectly detected by modeling their effect on the reactor temperature.

In sum, the effects of both process and actuator faults on the system dynamics
can be modeled via an additive term CTf a(t,y, u) in the state equation in (6.5). As
customary in the literature (see, e.g., [56]), the function f a is assumed to belong to
a finite set of NF functions

Fa = {f a,1, . . . ,f a,NF
}.

Each fault function in Fa is assumed to have a linear-in-the-parameters structure,
i.e.,

f a,i (t,y, u)= ϕi (t,y, u)θ f,i , i = 1, . . . ,NF, (6.8)

where ϕi is a known (2 ×mi ) regressor matrix, while θ f,i is an unknown (mi × 1)
vector of constant parameters. The following standard assumption is adopted:

Assumption 6.2 The regressor matrix ϕi is assumed norm-bounded for all fault
types, i.e., for all i = 1, . . . ,NF,

∃ϕ̄i > 0 : ∥∥ϕi (t,y, u)
∥∥ ≤ ϕ̄i ∀t ∈ T , ∀y ∈ Y, ∀u ∈ U .

It is worth noticing that a general class of faults can be effectively modeled via
(6.8), where ϕi takes into account the structure of the fault, while θ f,i characterizes
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its magnitude. Nevertheless, when the faults are not characterized by a linear-in-the-
parameters structures, some well-established approaches in the literature adopt the
so-called online interpolators [56] (e.g., neural networks, splines) to obtain a good
approximation of the fault via parametric models.

Therefore, in the presence of faults, the state-space model (6.5) becomes
{

ẋ = Ad(y)x + b(y, u)+ CTf a(t,y, u)+ η(t,x, u),

y = Cx + f s + n,
(6.9)

where it is assumed that f s and f a are null before the occurrence of a fault at t = tf,
i.e., f s(t)= 0 and f a(t,y(t), u(t))= 0 for t < tf.

The above model includes the case in which a sensor and a process/actuator fault
occur during the same batch operation. However, occurrence of multiple faults of
the same nature (i.e., multiple process/actuator faults or multiple sensor faults), is
not considered.

Assumption 6.3 It is assumed that multiple process/actuator faults (i.e., two or
more faults belonging to Fa occur) and multiple sensor faults (i.e., two or more
sensors are subject to failures) cannot occur during the same batch operation.

In the following, it is shown that multiple process/actuator faults (multiple sensor
faults) can be detected but not correctly isolated and identified.

On the contrary, occurrence of sensor and process/actuator faults during the same
batch is allowed.

6.3.2 Architecture of the Fault Diagnosis Scheme

Due to the level of risk related to highly exothermic chemical processes, sensors
for temperature monitoring are often duplicated in batch reactors. Hence, a duplex
sensor architecture is assumed. Namely, two temperature sensors (hereafter labeled
as Sr,1 and Sr,2) providing measurements of Tr, and two providing measurements of
Tj (hereafter labeled as Sj,1 and Sj,2) are assumed to be available.

In order to achieve both sensor fault detection and isolation, two state observers
of the system are adopted: the first observer uses the measurements provided by Sr,1
and Sj,1, while the second observer uses the measurements provided by Sr,2 and Sj,2.

A suitable designed diagnostic system, together with a Decision Making System
(DMS), declares the occurrence of a fault, isolates the possible faulty sensor, and
outputs an healthy signal.

Then, the healthy signal is used to feed a bank of NF + 1 nonlinear adaptive
observers (where NF is the number of the possible process/actuator faults). The
first observer is in charge of detecting the occurrence of process/actuator faults. The
other NF observers, each corresponding to a particular type of process/actuator fault,
achieve fault isolation and identification by adopting a suitable adaption mechanism.
Figure 6.3 shows a block diagram representation of the overall architecture.
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6.4 Sensor Fault Diagnosis

As previously stated, two observers are adopted for sensor fault diagnosis:

• observer SM1 uses the measurements provided by Sr,1 and Sj,1, i.e., the output
vector ySM1 = (yr,1 yj,1)

T; and
• observer SM2 uses the measurements provided by Sr,2 and Sj,2, i.e., the output

vector ySM2 = (yr,2 yj,2)
T.

Both the observers have the following form (hereafter i = 1,2):

{ ˙̂xSMi = Ad(ySMi )̂xSMi + b(ySMi , u)+ LsỹSMi ,

ŷSMi = Cx̂SMi ,
(6.10)

where x̂SMi denotes the vector of the state estimates, ŷSMi and ỹSMi = ySMi − ŷSMi

denote the vectors of output estimates and output estimation errors, respectively, and
Ls is an (NC + 2)× 2 matrix of gains defined as follows:

Ls =
[
LM
LE

]
, LM =

⎡
⎢⎢⎢⎣
l1 0
l2 0
...

...

lNC 0

⎤
⎥⎥⎥⎦ , LE =

[
lr 0
0 lj

]
.

The state estimation error x̃SMi = x − x̂SMi can be analyzed by considering the
estimation error dynamics, derived from (6.5) and (6.10),

{ ˙̃xSMi = As,i (ySMi )̃xSMi + ηs,i (t,x, u)+ Lsf s(t),

ỹSMi = Cx̃SMi + f s(t)+ ni ,
(6.11)

where As,i (ySMi )= Ad(ySMi )− LsC, ηs,i = η + Lsni , and ni represents the mea-
surement noise affecting the ith couple of sensors (upper bounded by n̄, as stated by
Assumption 6.1).

Convergence properties of x̃SMi are established by the following result.

Theorem 6.1 In the absence of faults, uncertainties, and sensor noise (i.e., f s = 0,
η = 0, and ni = 0), if the rate constants are bounded as in (2.32) and (2.33), there
exists a set of observer gains such that the state estimation error x̃SMi of the ob-
server (6.10) is globally uniformly convergent to 0 as t → ∞. Moreover, the con-
vergence is exponential.

The above result can be proven by using the same arguments used in the proof of
Theorem 5.1; for the sake of completeness, the proof is reported in Appendix A.5.

Then, the behavior of the estimation error in the absence of faults (f s = 0) and
in the presence of bounded uncertainties and sensor noise is considered. In view of
(6.11), the evolution of x̃SMi starting from the initial time t0, given the initial state
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estimation error x̃SMi (t0), can be expressed as follows:

x̃SMi (t)= Φs,i (t, t0)̃xSMi (t0)+
∫ t

t0

Φs,i (t, ζ )ηs,i
(
ζ,x(ζ ), u(ζ )

)
dζ ∀t ≥ t0,

(6.12)
where Φs,i denotes the state transition matrix [27] corresponding to As,i . Thanks to
the global asymptotic convergence of x̃SMi , stated by Theorem 6.1, the following
inequality holds [27]:

∃κs,i > 0, λs,i > 0 : ∥∥Φs,i (t, t0)
∥∥ ≤ κs,ie

−λs,i (t−t0) ∀t ≥ t0. (6.13)

Hence, in view of (6.13) and Assumption 6.2, in the absence of faults, the norm of
the output estimation error can be upper bounded as follows:

∥∥ỹSMi (t)
∥∥ = ∥∥Cx̃SMi (t)+ ni (t)

∥∥ ≤ ∥∥x̃SMi (t)
∥∥ + ∥∥ni (t)

∥∥
≤

∥∥∥∥Φs,i (t, t0)̃xSMi (t0)+
∫ t

t0

Φs,i (t, ζ )ηs,i
(
ζ,x(ζ ), u(ζ )

)
dζ

∥∥∥∥ + ∥∥ni (t)
∥∥

≤ κs,ie
−λs,i (t−t0)

∥∥x̃SMi (t0)
∥∥ +

∫ t

t0

κs,ie
−λs,i (t−ζ )η̄s dζ + n̄

= κs,ie
−λs,i (t−t0)

∥∥x̃SMi (t0)
∥∥ + κs,i η̄s

λs,i

(
1 − e−λs,i (t−t0)

) + n̄

≤ κs,i

(∥∥x̃SMi (t0)
∥∥ + η̄s

λs,i

)
+ n̄= μ̄s,i ∀t ≥ t0, (6.14)

where η̄s = η̄+ ‖Ls‖n̄.
In sum, thanks to the convergence properties stated by Theorem 6.1, the out-

put estimation error of each observer keeps bounded in the presence of bounded
uncertainties and sensor noise. It is worth noticing that the bound μ̄s,i could be,
in principle, determined if all the constants needed for its computation (i.e., η̄s, n̄,
κs,i , λs,i , and x̃SMi (t0)) are known or, at least, estimated with reasonable accuracy.
Nevertheless, in practice, such a bound may be quite conservative and thus useless.

Remark 6.1 It can be shown [5] that the bound on ‖ỹSMi (t)‖ decreases with the
largest eigenvalue of the matrix AE − LE, λE, and the norm of the initial state es-
timation error; thus, it can be reduced if a suitably large value for λE is chosen
and a good initial guess of the state is available. As for the convergence rate of
ỹSMi , in [5] it is shown that, for suitably large values of λE, the dynamics of ỹSMi

is mainly determined by λE itself and not by the (usually slower) dynamics of the
reactive process.
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Table 6.1 Decisions made by the diagnostic system on the basis of the residuals

|rSr |> 1 |rSj |> 1 ‖rSM1‖> 1 ‖rSM2‖> 1 Decision

No No No No Fault not declared

Yes No Yes No Fault declared on sensor Sr,1

Yes No No Yes Fault declared on sensor Sr,2

Yes No No No Fault declared but not isolated

No Yes Yes No Fault declared on sensor Sj,1

No Yes No Yes Fault declared on sensor Sj,2

No Yes No No Fault declared but not isolated

6.4.1 Residuals Generation and Fault Isolation

Detection of sensor faults can be achieved on the basis of the following residuals:

rSr = yr,1 − yr,2

μs,r
, rSj = yj,1 − yj,2

μs,j
, (6.15)

where μs,r and μs,j are normalization factors to be properly determined. Hence, if
either Sr,1 or Sr,2 (either Sj,1 or Sj,2) is affected by a fault, the absolute value of
rSr (rSj ) is expected to exceed a certain threshold. The normalization factors can
be selected so as to set the threshold to 1. Hence, a possible choice is given by
μs,r = μs,j = 2n̄, since, in the absence of faults, |y∗,1(t) − y∗,2(t)| ≤ 2n̄ (∗ = r, j)
for all t . Then, it can be easily shown that a sensor fault, occurring at t = tf, can be
detected if its absolute value exceeds the quantity μs,∗ + 2n̄ for some t ≥ tf.

For isolation purposes (i.e., determination of the faulty sensor), two other resid-
uals must be defined,

rSM1 = ỹSM1

μs,1
, rSM2 = ỹSM2

μs,2
, (6.16)

where μs,1 and μs,2 are normalization factors, which can be set, e.g., on the basis of
experimental data collected in the absence of faults. According to (6.14), a possible
choice for the normalization factors is the value μ̄s,i . By virtue of these normaliza-
tion factors, the thresholds on the residuals can be set to 1, and the norm of residual
vectors can be used to isolate faults. In fact, the output of the SM1 observer is not
affected by faults on Sr,2 and Sj,2, while the output of the SM2 observer is not af-
fected by faults on Sr,1 and Sj,1. Hence, if the norm of rSM1 (rSM2) exceeds the
threshold, a fault is declared on either Sr,1 or Sj,1 (either Sr,2 or Sj,2), depending on
which detection residual (i.e., rSr or rSj ) exceeds the threshold.

In sum, a fault can be declared and, eventually, isolated, provided that simul-
taneous faults on different sensors do not occur during the same batch operation,
according to the logic summarized in Table 6.1.



136 6 Fault Diagnosis

When a sensor fault (occurring at t = tf) affects one of the sensors in the couple
{Sr,i , Sj,i} (i = 1,2), the following equality holds:

ỹSMi (t)= Cx̃SMi (t)+ f s(t)+ ni (t) ∀t ≥ tf. (6.17)

According to (6.14), the following inequality can be derived:
∥∥ỹSMi (t)

∥∥ ≥ ∥∥f s(t)
∥∥ − μ̄s,i ∀t ≥ tf.

Therefore, a sufficient condition ensuring isolation of a fault affecting sensor S∗,i
(∗ = r, j) is

∃t > tf :
∣∣y∗,1(t)− y∗,2(t)

∣∣>μs,∗ and
∥∥f s(t)

∥∥> μ̄s,i +μs,i , (6.18)

and (for l �= i) ∥∥ỹSMl

∥∥ ≤ μ̄s,l ∀t > tf. (6.19)

In fact, the above condition guarantees that ‖rSMi‖ = ‖ỹSMi‖/μs,i exceeds 1 at
least for a time instant after the occurrence of the fault, while the other residuals,
‖rSMl‖, are kept below the corresponding thresholds. In other words, condition
(6.18) matches the intuitive idea that a fault can be detected and isolated only if
its magnitude overcomes the effect of the uncertainties and disturbances. Of course,
(6.18) may result too conservative, especially if the bounds μ̄s,i and μs,i are over-
estimated; however, it has the merit of showing in a clear and rigorous way how
sensitivity to faults may be affected by uncertainties and noise.

6.4.2 Determination of the Healthy Signal

The key point for fault detection and isolation is the design of a suitable Decision
Making System (DMS), which, on the basis of the available measurements (physi-
cal sensors) and their estimates (virtual sensors), declares the occurrence of a fault,
isolates the possible faulty sensor, and outputs an healthy signal. Once a fault is de-
clared and, eventually, isolated, thanks to redundant temperature measurements, the
batch can be brought to completion, provided that a suitable voting of the healthy
signal is performed. The logic of the Voter/Monitor (the subsystem which votes the
healthy signal) is described in the following procedure [38] and diagrammatically
depicted in Fig. 6.4. As usual, the procedure is based on the assumption that simul-
taneous faults on different sensors do not occur.

Voter procedure

Step 1. Compute the detection residuals defined in (6.15); then:

(a) If the residuals do not exceed the fixed thresholds (no fault condition), vote
the signal given by the average of the two redundant sensors, i.e., the so-called
standard duplex measure.
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Fig. 6.4 DMS voter logic

(b) If a threshold is exceeded (fault condition), check the isolation residuals ‖rSM1‖
and ‖rSM2‖, so as to decide if the faulty signal can be isolated; in this case
determine the healthy signal.

Step 2. If, in case (b), fault isolation is not achieved (i.e., both ‖rSM1‖ and ‖rSM2‖
are below the respective thresholds), a missed isolation is declared. In this case,
the weighted average of the signals provided by the physical and virtual sensors is
voted. The weighted average is computed as the arithmetic mean of the measured
variable and the output of the sole observer not signaling the occurrence of the fault.

It is of the utmost importance to guarantee that the worst-case performance of
the proposed scheme, in terms of voted signal, is not worse than that of a standard
duplex measure. Hence, a further elaboration of the residuals is performed. Namely,
if the absolute value of the difference between the weighted average (computed at
Step 2) and each sensor signal is larger than the difference between the standard
duplex measure and the sensor signals, then the standard duplex measure is voted as
healthy measure.

Moreover, a rate limiter on the voted signal is adopted, so as to avoid sudden
changes of the signals due, for example, to abrupt faults; a step-by-step check ver-
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ifies if one of the observers is brought to divergence, and, in this case, the related
outputs are to be inhibited; if the measurements variance exceeds a threshold value,
a fault is signaled: this check is introduced because high-frequency (and zero-mean)
additive faults may be filtered by the observer dynamics, causing missed alarms;
variations of logical signals are taken into account only if they remain constant for a
fixed time window. Noteworthy, a further check on the variation speed of the resid-
uals could be introduced to further enhance detection of abrupt faults, even in the
presence of large uncertainties.

6.5 Actuator and Process Fault Diagnosis

The healthy measure, obtained via the diagnostic system described above, is used
to feed a bank of observers providing process/actuator fault detection and isolation.
One observer detects the occurrence of an actuator or process fault, while the other
NF observers, each one corresponding to a fault type, are used for isolation and
identification.

6.5.1 Fault Detection

The detection observer has the form{ ˙̂xa = Ad(y )̂xa + b(y, u)+ Laỹ,

ŷa = Cx̂a,
(6.20)

where y is given by the healthy measure voted by the diagnostic system described
in Sect. 6.4.2, ỹa = y − ŷa, and La is a matrix gain having the same form of Ls.
Since the voted healthy measure y can be expressed as in (6.5), the state estimation
error dynamics has the form (6.11), i.e.,

{ ˙̃xa = Aa(y )̃xa + ηa(t,x, u)+ CTf a(t,y, u),

ỹa = Cx̃a + n,
(6.21)

where x̃a = x − x̂a, Aa = Ad − LaC, and ηa = η + Lan. Hence, the global asymp-
totic convergence of the state estimation error, in the absence of faults, uncertainties,
and sensor noise (i.e., f a = 0, η = 0, and n = 0), can be established by invoking the
same arguments used to prove Theorem 6.1.

Moreover, in the absence of faults and in the presence of uncertainties and dis-
turbances, a bound on the output estimation error can be found in a similar way as
in Sect. 6.4, i.e.,

∥∥ỹa(t)
∥∥ = ∥∥Cx̃a(t)+ n(t)

∥∥ ≤ ∥∥x̃a(t)
∥∥ + ∥∥n(t)

∥∥
≤

∥∥∥∥Φa(t, t0)̃xa(t0)+
∫ t

t0

Φa(t, ζ )ηa
(
ζ,x(ζ ), u(ζ )

)
dζ

∥∥∥∥ + ∥∥n(t)
∥∥
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≤ κa

(∥∥x̃a(t0)
∥∥ + η̄a

λa

)
+ n̄= μ̄a ∀t ≥ t0, (6.22)

where η̄a = η̄+ ‖La‖n̄, Φa(t, t0) is state transition matrix corresponding to Aa, and
κa and λa are positive numbers such that ‖Φa(t, t0)‖ ≤ κae

−λa(t−t0) for all t ≥ t0.
Hence, the output estimation error of the detection observer keeps bounded in the
presence of bounded uncertainties and sensor noise. Moreover, the bound can be, in
principle, computed if η̄a, n̄, κa, λa, and x̃a(t0) are known or, at least, estimated with
reasonable accuracy. Of course, the same conclusions drawn in Remark 6.1 on the
convergence rate apply to ỹa(t).

A fault is declared when the norm of the residual vector

ra = ỹa

μa
(6.23)

exceeds a suitably defined threshold. The factor μa, as usual, is a normalization
factor, which can be selected in such a way that threshold can be set to 1. A possible
choice for the normalization factor μa is represented by μ̄a in (6.22).

In the presence of a fault occurring at t = tf, the state estimation error can be
expressed as

x̃a(t) = Φa(t, t0)̃xa(t0)+
∫ t

tf

Φa(t, ζ )C
Tf a

(
ζ,y(ζ ), u(ζ )

)
dζ

+
∫ t

t0

Φa(t, ζ )ηa
(
ζ,x(ζ ), u(ζ )

)
dζ ∀t ≥ tf, (6.24)

from which the following chain of inequalities can be derived:∥∥ỹa(t)
∥∥ = ∥∥Cx̃a(t)+ n(t)

∥∥
≥

∥∥∥∥
∫ t

tf

CΦa(t, ζ )C
Tf a

(
ζ,y(ζ ), u(ζ )

)
dζ

∥∥∥∥
−

∥∥∥∥CΦa(t, t0)̃xa(t0)+
∫ t

tf

CΦa(t, ζ )ηa
(
ζ,x(ζ ), u(ζ )

)
dζ + n(t)

∥∥∥∥
≥

∥∥∥∥
∫ t

tf

CΦa(t, ζ )C
Tf a

(
ζ,y(ζ ), u(ζ )

)
dζ

∥∥∥∥ − μ̄a ∀t ≥ tf.

Hence, a sufficient condition for correct detection of the fault is given by

∃t > tf :
∥∥∥∥
∫ t

tf

CΦa(t, ζ )C
Tf a

(
ζ,y(ζ ), u(ζ )

)
dζ

∥∥∥∥> μ̄a +μa, (6.25)

since it guarantees that ‖ra‖ = ‖ỹa‖/μa exceeds 1 at least for a time instant after
the occurrence of the fault. Again, condition (6.25) matches the intuitive idea that
a process/actuator fault can be detected only if its effect on the estimation error
dynamics has a magnitude larger than the effect of the uncertainties. Also, (6.25)
may result too conservative if the bounds μ̄a and μa are overestimated.
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6.5.2 Fault Isolation and Identification

Once a process/actuator fault has been detected, isolation and identification can be
achieved via NF nonlinear adaptive observers. Each observer is designed in such a
way to be insensitive to a particular type of fault. In fact, the ith observer (hereafter
i = 1, . . . ,NF) has the form

{ ˙̂xi = Ad(y )̂xi + b(y, u)+ La,i ỹi + CTf̂ a,i (t,y, u),

ŷi = Cx̂i ,
(6.26)

where La,i is a gain matrix having the same structure of La and Ls, y is given by
the healthy measure voted by the sensor diagnostic system, ỹi = y − ŷi , and f̂ a,i is
an estimate of the ith fault in Fa that, in view of (6.8), can be obtained as follows:

f̂ a,i (t,y, u)= ϕi (t,y, u)̂θ f,i , (6.27)

where θ̂ f,i is an estimate of the unknown vector of fault parameters. The adaptive

law for θ̂ f,i is derived by using the Lyapunov synthesis approach (see [5] and Ap-
pendix A.6):

˙̂θ f,i = γ−1
i ϕT

i (t,y, u)̃yi , (6.28)

where γi is a positive gain. In order to ensure f̂ a,i = 0 prior to the detection of the
fault, the initial value of θ̂ f,i could be set to zero, and the parameters update could
be activated only after a fault is detected.

In the presence of the ith fault (i.e., f a = f a,i ), the state estimation error x̃i of
the ith observer (6.26) is given by

{ ˙̃xi = Aa,i (y )̃xi + CTϕi (t,y, u)̃θ f,i + ηa,i (t,x, u),

ỹi = Cx̃i + n,
(6.29)

where x̃i = x − x̂i , θ̃ f,i = θ f,i − θ̂ f,i , Aa,i = Ad − La,iC, and ηa,i = η + La,in.
The convergence of the state and parameter estimation errors (in the absence of
uncertainties and sensors noise) is stated by the following theorem.

Theorem 6.2 In the presence of the ith fault (i.e., f a = f a,i ) and in the absence
of uncertainties and sensor noise (i.e., η = 0 and n = 0), if the rate constants are
bounded as in (2.32) and (2.33), there exists a set of observer gains such that the
state estimation error x̃i of the observer (6.29) is globally uniformly convergent to 0
as t → ∞, and the parameter estimation error θ̃ f,i is uniformly bounded for every t .

The proof is based on the arguments in [5] and is reported in Appendix A.6.
Remarkably, in the presence of bounded uncertainties and sensors noise, the

boundedness of θ̃ f,i is no longer guaranteed. A sufficient condition to achieve the
boundedness is given by the persistency of excitation [2, 27] (see Remark 5.1). If
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the persistency of excitation cannot be met, the update law (6.28) can be modified
by adopting the so-called projection operator [22] (see Appendix A.6 for further

details). In view of the above remark, the boundedness of θ̃ f,i in the presence of
bounded uncertainties is assumed hereafter, i.e., ‖̃θ f,i (t)‖ ≤ θ̄f,i ∀t ≥ t0.

To achieve fault isolation, the following residuals are computed:

ra,i = ỹi
μa,i

, i = 1, . . . ,NF, (6.30)

where, as usual, μa,i are normalization factors selected in such a way to set the
thresholds to 1. If the ith fault occurs, the norm of all residuals but ra,i exceeds its
threshold.

It is worth remarking that, when a fault occurs which is not included in the NF

types considered in the design of the bank of observers, it can be only detected but
not isolated and identified.

By using the same arguments developed in previous sections it can be shown
that, in the presence of bounded uncertainties and noise, the norm of the output
estimation error can be upper bounded as follows:

∥∥ỹi (t)
∥∥ = ∥∥Cx̃i (t)+ n(t)

∥∥ ≤ ∥∥x̃i (t)
∥∥ + ∥∥n(t)

∥∥
≤

∥∥∥∥Φa,i (t, t0)̃xi (t0)+
∫ t

tf

Φa,i (t, ζ )C
Tϕi

(
ζ,y(ζ ), u(ζ )

)̃
θ f,i dζ

+
∫ t

t0

Φa,i (t, ζ )ηa,i
(
ζ,x(ζ ), u(ζ )

)
dζ

∥∥∥∥ + ∥∥n(t)
∥∥

≤ κa,ie
−λa,i (t−t0)

∥∥x̃i (t0)
∥∥ +

∫ t

tf

κa,i ϕ̄i θ̄f,ie
−λa,i (t−ζ ) dζ

+
∫ t

t0

κa,i η̄a,ie
−λa,i (t−ζ ) dζ + n̄

≤ κa,ie
−λa,i (t−t0)

∥∥x̃i (t0)
∥∥ + κa,i ϕ̄i θ̄f,i

λa,i

(
1 − e−λa,i (t−tf)

)

+ κa,i η̄a,i

λa,i

(
1 − e−λa,i (t−t0)

) + n̄

≤ κa,i

(∥∥x̃i (t0)
∥∥ + ϕ̄i θ̄f,i

λa,i
+ η̄a,i

λa,i

)
+ n̄= μ̄a,i , (6.31)

where η̄a,i = η̄ + ‖La,i‖n̄, Φa,i (t, t0) is the state transition matrix corresponding to
Aa,i , and κa,i and λa,i are suitable positive constants. If μ̄a,i can be estimated, it
represents a possible choice for the normalization factors μa,i . The above inequal-
ity ensures that the output estimation errors of the ith observer keep bounded, in
the presence of bounded uncertainties and sensors noise, provided that ϕi θ̃ f,i is
bounded.
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In the presence of the same fault, the dynamics of the state estimation error x̃l of
the lth observer (l �= i) is given by

{ ˙̃xl = Aa,l(y )̃xl + CT(ϕi (t,y, u)θ f,i − ϕl (t,y, u)̂θ f,l
) + ηa,l(t,x, u),

ỹl = Cx̃l + n.
(6.32)

The state estimation error x̃l is then given by

x̃l (t) = Φa,l(t, t0)̃xl(t0)

+
∫ t

tf

Φa,l(t, ζ )C
T(ϕi

(
ζ,y(ζ ), u(ζ )

)
θ f,i − ϕl

(
ζ,y(ζ ), u(ζ )

)̂
θ f,l

)
dζ

+
∫ t

t0

Φa,l(t, ζ )ηa,l
(
ζ,x(ζ ), u(ζ )

)
dζ ∀t ≥ tf, (6.33)

from which the following inequality can be derived for all t ≥ tf:

∥∥ỹl (t)
∥∥ ≥

∥∥∥∥
∫ t

tf

CΦa,l(t, ζ )C
T(ϕi

(
ζ,y(ζ ), u(ζ )

)
θ f,i

− ϕl

(
ζ,y(ζ ), u(ζ )

)̂
θ f,l

)
dζ

∥∥∥∥ − μ̄a,l .

Hence, a sufficient condition for isolability for the ith type of process/actuators
faults is given by the two inequalities,

∃t > tf :∥∥∥∥
∫ t

tf

CΦa,l(t, ζ )C
T(ϕi

(
ζ,y(ζ ), u(ζ )

)
θ f,i − ϕl

(
ζ,y(ζ ), u(ζ )

)̂
θ f,l

)
dζ

∥∥∥∥
> μ̄a,l +μa,l

∀l = 1, . . . ,NF (l �= i) (6.34)

and
∥∥ỹi (t)

∥∥ ≤ μ̄a,i ∀t > tf, (6.35)

which guarantees that the all the residuals ‖ra,l‖ = ‖ỹl‖/μa,l (l �= i) exceed 1 at
least for a time instant, while the ith residual keeps below its threshold.

The left-hand side of inequality (6.34) can be interpreted as a measure of the
capability of the lth isolation observer to estimate the ith fault. It can be argued that
such a capability may depend on different factors, such as structural similarities of
two distinct faults in Fa and the dynamics each isolation observer. In Sect. 6.7.2, a
case study illustrating this behavior in practical case is developed.
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6.6 Decoupling Sensor Faults from Process and Actuator Faults

In order to make the observer (6.10) insensitive to process/actuator faults, the fol-
lowing modified dynamics can be adopted:

{ ˙̂xSMi = Ad(ySMi )̂xSMi + b(ySMi , u)+ LsỹSMi + CTf̂ a(t,y, u),

ŷSMi = Cx̂SMi ,
(6.36)

where y is the healthy measure voted according to the procedure in Sect. 6.4.2,
and f̂ a(t,y, u) is an estimate of the isolated process/actuator fault. In other words,
if the ith process/actuator fault has been detected and isolated, then f̂ a(t,y, u) =
f̂ a,i (t,y, u). Indeed, by invoking the same arguments used to establish (6.31), it can
be shown that adoption of the form (6.36) instead of (6.10) guarantees that the output
estimation error, ỹSMi , is only marginally influenced by the process/actuator fault,
provided that a bounded (possibly small) error on the fault estimation is achieved.

6.7 Case Study: Fault Diagnosis

The effectiveness of the proposed approach has been tested in simulation by con-
sidering a jacketed batch reactor in which the phenol–formaldehyde reaction pre-
sented in Chap. 2 takes place. The complete system of differential equations
given by the 13 mass balances presented in Sect. 2.4 has been simulated in the
MATLAB/SIMULINK© environment.

The same assumptions in Chap. 5 on the experimental setup have been done. The
reactor parameters and the initial conditions for the reactant concentrations and the
temperatures of the vessel and the jacket are reported in Table 5.1. The model-based
temperature controller proposed in Chap. 5 is adopted. Finally, both in the reactor
vessel and in the jacket, duplicated temperature sensors have been considered.

In order to design the bank of observers and the controller, the reduced model
(3.57) identified in Chap. 3 with first-order kinetics has been considered. Moreover,
a 5% estimation error on the parameter θ has been assumed, i.e., θ� = 0.95 · θ .

Matrix Ad(y) has the following form:

Ad(y)=

⎡
⎢⎢⎢⎢⎣

−kc1(Tr) 0 0 0 0
kc1(Tr) −kc2(Tr) 0 0 0

0 kc2(Tr) −kc3(Tr) 0 0
a1(Tr) a2(Tr) a3(Tr) −αrθ

� αrθ
�

0 0 0 αjθ
� −αjθ

�

⎤
⎥⎥⎥⎥⎦ ,

where the quantities ai (i = 1,2,3) are those defined in (5.52).
It is worth remarking that the above reduced model has been adopted so as to

emulate the presence of modeling errors with a twofold nature, namely:

• structural uncertainties, since the model used to build the observers is based on a
simplified reaction network, where both the reactions and the involved chemical
species have been lumped into a reduced set of reactions and species
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• parametric uncertainties, since the identified model parameters are affected by
unavoidable errors.

The gain matrices of all the diagnostic observers have been set as follows:

Ls = La = La,i =

⎡
⎢⎢⎢⎢⎣

1 · 10 0
5 · 102 0

1 · 10−1 0
1 0
0 1

⎤
⎥⎥⎥⎥⎦ . (6.37)

The normalization factors μs,∗ (∗ = s, r), μs,i (i = 1,2), μa, and μa,i (i =
1, . . . ,NF) have been chosen equal to 0.15; this value has been determined by mea-
suring the maximum values of the estimation errors of the corresponding observers
in healthy condition.

6.7.1 Simulation Results: Sensor Faults

In the simulations, the following classes of faults on the temperature sensors have
been considered:

• abrupt switches to zero of the measured signal
• slow drifts, i.e., a linearly increasing signal is added to the measured data
• abrupt constant biases, i.e., a step disturbance is added to the measured data
• abrupt freezing of the measured signal, i.e., the measured signal is frozen at its

value taken at a certain time instant; and
• increasing noise, i.e., a Gaussian noise with increasing variance is added to the

measured data.

Various simulations with the above kind of faults occurring at different time in-
stants have been done, and the obtained results show that the proposed diagnostic
scheme has been able to detect and isolate all the simulated sensor faults. In de-
tail, Figs. 6.5 to 6.12 show the voted measures and the norms of both detection and
isolation residuals in the presence of different sensor faults.

Figures 6.5 and 6.6 are referred to a slow drift of the output of sensor Sj,2, i.e.,
a linearly increasing signal, with a 10−3 K s−1 rate of change, is added to the mea-
sured variable for t ≥ tf = 9000 s. It can be recognized that the fault is detected a
few time instants after the occurrence, while it is isolated about 2000 s after tf. This
is due to the slow time evolution of the fault; it can be argued that, in the first 2000 s
after the occurrence of the fault, its effect is quite negligible and/or almost totally
compensated by the observers. In order to reduce the isolation time, the normaliza-
tion factors could be reduced, at the expense of an increased probability of false
alarms. Moreover, Fig. 6.5 shows that the voted measure is the mean value of the
measured and estimated data until the isolation is performed, and then it switches to
the value of the healthy sensor (Sj,1).
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Fig. 6.5 Sensor fault: voted
measure for Tj (slow drift at
sensor Sj,2, tf = 9000 s)

Fig. 6.6 Sensor fault: detection and isolation residuals (slow drift at sensor Sj,2, tf = 9000 s)

Figures 6.7 and 6.8 report the obtained results in the presence of an abrupt con-
stant bias, with an amplitude of 10 K added to the output of sensor Sr,1, starting at
time tf = 10 000 s.

Figures 6.9 and 6.10 show the results obtained when the measured signal of sen-
sor Sj,1 has been frozen at its value taken at tf = 3000 s. Since these last two cases
involve abrupt faults, detection and isolation are practically contemporary.
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Fig. 6.7 Sensor fault: voted
measure for Tr (abrupt
constant bias at sensor Sr,1,
tf = 10 000 s)

Fig. 6.8 Sensor fault: detection and isolation residuals (abrupt constant bias at sensor Sr,1,
tf = 10 000 s)

Finally, Figs. 6.11 and 6.12 show the results obtained for an increasing noise
added to the output of the sensor Sr,1; namely, a white noise with zero mean and
increasing variance has been added to the sensor output starting at time 12 000 s. In
this case, the delay for the isolation is about 100 s.
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Fig. 6.9 Sensor fault: voted
measure for Tj (abrupt
freezing at sensor Sj,1,
tf = 3000 s)

Fig. 6.10 Sensor fault: detection and isolation residuals (abrupt freezing at sensor Sj,1,
tf = 3000 s)

It can be easily recognized that all the faults have been correctly detected and
identified. A wide simulation campaign showed that only when an abrupt freezing
on reactor temperature sensors (i.e., Sr,1 or Sr,2) occurs during the isothermal phase,
the fault can be detected but not isolated. Finally, the measure voted by the DMS
results to be always more accurate than the standard duplex measure.
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Fig. 6.11 Sensor fault: voted
measure for Tj (increasing
noise at sensor Sr,1,
tf = 12 000 s)

Fig. 6.12 Sensor fault: detection and isolation residuals (increasing noise at sensor Sr,1,
tf = 12 000 s)

6.7.2 Simulation Results: Process and Actuator Faults

Three classes of actuator and process faults have been considered in the simulations.
A variation of the heat transfer coefficient between the reactor and the jacket

(fault type 1) has been modeled as a time-varying bias �U(t), superimposed to the
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nominal value of the heat transfer coefficient U�, i.e.,
{
�U(t)= 0 if t < tf,

�U(t)= δU (1 − e−(t−tf)/τU ) if t ≥ tf,
(6.38)

where tf is the fault time, τU is a time constant setting the fault rate, and δU is the
magnitude of the fault. Hence, the effect of the fault can be modeled as

f a,1(y)= ϕ1(y)θf,1, (6.39)

where

θf,1 = δU , ϕ1(y)=
[−αrS(y1 − y2)

αjS(y1 − y2)

]
.

A fault affecting the thermal insulation of the cooling jacket (fault type 2) results
in an additive term �j on the energy balance of the jacket, i.e.,

{
�j(t)= 0 if t < tf,

�j(t)= δj(1 − e−(t−tf)/τj)(y2 − Ta) if t ≥ tf,
(6.40)

where τj is a time constant setting the fault rate, δj is the magnitude of the fault, and
Ta is the external environment temperature. The effect of the fault can be modeled
as follows:

f a,2(y)= ϕ2(y)θf,2 (6.41)

with

θf,2 = δj, ϕ2(y)=
[

0
(y2 − Ta)

]
.

A fault affecting the cooling system (fault type 3) is modeled as an additive term
�u(t) on the commanded cooling fluid temperature computed by the controller, i.e.,

{
�u(t)= 0 if t < tf,

�u(t)= δu(1 − e−(t−tf)/τu) if t ≥ tf,
(6.42)

where τu is a time constant setting the fault rate, and δu is the magnitude of the fault.
Hence,

f a,3 = ϕ3θf,3 (6.43)

with

θf,3 = δu, ϕ3 =
[

0
βj

]
.

Hence, a bank of three isolation observers has been designed; the gain matrices
La,i have been set as in (6.37), while the gains γi setting the parameter update rate
have been set, via a trial-and-error procedure, to γ1 = 0.1, γ2 = 1000, and γ3 = 0.03.
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Fig. 6.13 Process fault (type 1): detection residual and estimate of the magnitude of the fault

Fig. 6.14 Process fault
(type 1): isolation residuals

Figures 6.13 and 6.14 report the results obtained when a fault of type 1 has
been simulated, with τU = 300 s, δU = −0.5 kJ s−1 K−1 m−2, and tf = 5000 s. Fig-
ure 6.13 shows that the fault is detected and identified, i.e., its magnitude is correctly
estimated; moreover, Fig. 6.14 shows that only the residuals output of the first ob-
server remains always below the threshold, whereas the other two residuals exceed
their corresponding thresholds a few minutes after tf, thus achieving fault isolation.

Figures 6.15 and 6.16 report the results obtained in the presence of a fault of
type 2, with τj = 600 s, δj = 0.02 s−1, Ta = 293 K, and tf = 10 000 s. As shown in
Fig. 6.15, the fault is clearly detected, and the second observer achieves a fairly ac-
curate fault identification. Figure 6.16 shows the residuals computed by the isolation
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Fig. 6.15 Process fault (type 2): detection residual and estimate of the magnitude of the fault

Fig. 6.16 Process fault
(type 2): isolation residuals

observers; it can be recognized that only the norm of the first residual exceeds the
threshold, whereas the other always remain below their corresponding thresholds;
hence, the fault cannot be isolated in this case.

Figures 6.17 and 6.18 report the results obtained in the presence of a fault of
type 3, with τu = 600 s, δu = 10 K, and tf = 14 000 s. Figure 6.17 shows that the
fault has been detected and its magnitude correctly estimated, while isolation resid-
uals in Fig. 6.18 show that fault isolation is achieved as well.

The missed isolation of the second fault can be explained in view of inequality
(6.34). Indeed, it can be noticed that fault types 2 and 3 are similar, in the sense the
ϕ2 and ϕ3 have the same vector structure; moreover, the gain γ2 is larger than γ3.
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Fig. 6.17 Actuator fault (type 3): detection residual and estimate of the magnitude of the fault

Fig. 6.18 Actuator fault
(type 3): isolation residuals

Hence, it can be argued that in the third isolation observer an accurate estimate of
the second fault type is achieved. On the contrary, the second observer is not able to
estimate the third fault.

6.7.3 Simulation Results: Sensor and Actuator Faults

Finally, a simulation has been carried out in which both a sensor and an actuator fault
occur during the same batch run. First, the output of sensor Sr,2 suddenly switches
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Fig. 6.19 Sensor Sr,2 and
cooling system faults: voted
measure of Tr

Fig. 6.20 Sensor Sr,2 and cooling system faults: detection and isolation residuals for the sensor
fault

to zero at tf,s = 5000 s; then, an actuator fault (fault type 2) with δj = 0.03 s−1 and
τj = 60 s, occurs at tf,a = 10 000 s. The DMS is able to vote the healthy measure of
temperature Tr (Fig. 6.19). Figure 6.20 shows that the residuals rSMi (i = 1,2), rSr ,
and rSj are able to detect and isolate the sensor fault. Figures 6.21 and 6.22 show the
detection and isolation residuals and the estimate of the fault. It can be noticed that
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Fig. 6.21 Sensor Sr,2 and thermal insulation faults: detection residual and estimate of the magni-
tude of the thermal insulation fault

Fig. 6.22 Sensor Sr,2 and
thermal insulation faults:
isolation residuals for the
thermal insulation fault

residuals rSMi , rSr , and rSj are insensitive to the actuator fault, while residuals r l
(l = 1,2,3) are insensitive to the sensor fault, i.e., the effects of sensor and actuator
faults have been correctly decoupled by adopting the observers (6.36) presented in
Sect. 6.6.

It is worth noticing that, in this case, the fault affecting the thermal insulation of
the jacket (fault type 2) is correctly isolated. This can be explained by noticing that
the fault rate is much larger than in the previous case (i.e., τj is ten times smaller);
hence, the estimate computed by the third observer is not able to track accurately the
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fault profile during its rising edge, and thus the third residual exceeds the threshold
until the observer estimation error is recovered.

6.8 Conclusions

In this chapter an integrated approach to fault diagnosis for chemical batch reactors
has been developed. The approach is based on the so-called analytical redundancy,
i.e., a model of the system is adopted to design the diagnostic observers needed to
achieve fault detection, isolation, and identification. A limited degree of hardware
redundancy is assumed as well, since duplicated temperature sensors are considered.
The use of duplicated sensor may be justified by the high level of risk of strongly
exothermic reactive systems; moreover, thanks to the duplex sensor architecture, the
batch can be brought to its completion in the case of sensor faults.

The approach is able to detect, isolate, and identify a wide class of failures of
sensors, actuators, and process. Sufficient conditions for residuals convergence, de-
tectability, and isolability of faults have been derived. In detail, detection is guar-
anteed under mild assumptions on the magnitude of model uncertainties and distur-
bances, whereas correct isolation may not be achieved if multiple faults of the same
nature (i.e., sensor faults and process/actuator faults) occur during the same batch
operation.

In the case study, the adaptive model-based approach is designed on the basis
of a reduced model of the phenol–formaldehyde reaction introduced in Chap. 2.
Noticeably, the results show that the fault diagnosis scheme achieves very good
performance even when a strongly simplified mathematical model of the reactive
system is adopted for the design.
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Chapter 7
Applications to Nonideal Reactors

List of Principal Symbols
C concentration [mol m−3]
D reactor diameter [m]
ds stirrer diameter [m]
fRT retention time distribution function
FV volumetric flow rate [m3 s−1]
Fr dimensionless Froude number
g gravitational acceleration [m s−2]
h heat transfer coefficient [J m−2 K−1 s−1]
k thermal conductivity [J m−1 K−1 s−1]
KP power number
L characteristic length [m]
Nc number of reactor compartments
Nu dimensionless Nusselt number
P stirring power [J s−1]
Q̇ thermal power [J s−1]
Re dimensionless Reynolds number
S heat exchange surface [m2]
t time [s]
tb batch time [s]
tP residence time [s]
U overall heat transfer coefficient [J m−2 K−1 s−1]
v characteristic velocity [m s−1]
V volume [m3]
Vc compartment volume [m3]

Greek Symbols
β surface fraction
δ scale-up ratio of linear dimensions
ν kinematic viscosity [m2 s−1]
ρ density [kg m−3]
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χ dimensionless number defined in (7.6)
ω angular stirrer speed [rad s−1]

Subscripts and Superscripts
av mean value
c main circulation flow
e secondary exchange flow
E exchanged
G gas
j jacket
ll lower level
r reactor
R reaction
S segregated conditions
ul upper level
us upstream

7.1 Nonideal Batch Reactors

In Chaps. 5 and 6 model-based control and early diagnosis of faults for ideal batch
reactors have been considered. A detailed kinetic network and a correspondingly
complex rate of heat production have been included in the mathematical model,
in order to simulate a realistic application; however, the reactor was described by
simple ideal mathematical models, as developed in Chap. 2. In fact, real chemical
reactors differ from ideal ones because of two main causes of nonideal behavior,
namely: the nonideal mixing of the reactor contents and the presence of multiphase
systems.

Since real reactors are characterized by very different forms, it is deemed that the
detailed analysis of a single real application may produce an increase in realism but
also an unacceptable decrease in generality. Therefore, it is preferred to face these
problems through theoretical analysis and mathematical modeling in order to give
a general framework of the behavior of real batch reactors. This approach is hoped
to be more useful both for developing practical applications of model-based control
and fault diagnosis, and for suggesting future research work in this field.

In general, multiphase chemical reactors may contain any combination of differ-
ent phases: solid, liquid, and gaseous. Figure 7.1 schematically shows a somewhat
simplified classification of the batch reactors that are considered. In the simplest
case (Fig. 7.1(a)), the reactor contains a liquid reacting mixture mixed by a mechan-
ical stirrer, whereas the reactor head contains a gaseous phase made out of inert
gases and/or of vapors, generated by the liquid phase components (solvent, reac-
tants, products). In some cases, as shown in Fig. 7.1(b), the reactions occurring in
the liquid phase produce a gaseous phase in the form of small bubbles that accu-
mulates in the head and must be withdrawn from the reactor. In this respect, it is
possible to distinguish the case of fermenters, in which the production of gas is usu-
ally accounted for by the kinetic model of the adopted reaction network, and the
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Fig. 7.1 Nonideal batch reactors: liquid-phase batch reactor (a), liquid-phase batch reactor with
release of gaseous bubbles (b), semi-batch gas–liquid bubble column (c), and slurry batch reac-
tor (d)

case of gassy reactions, in which the gases are produced by secondary unexpected
side reactions.

Usually, the typology of batch reactors also includes the semi-batch gas–liquid
reactors, in which a gaseous phase is fed continuously in order to provide one of
the reactants. A typical example is given by the reactors used both in different ox-
idative industrial processes and in the active sludge processes for the treatment of
wastewater. It is possible to distinguish between the bubble columns (Fig. 7.1(c)), in
which the gas rises undisturbed in the liquid phase, and the bubble stirred reactor, in
which a mechanical mixer is added. Finally, the slurry reactors can be considered,
in which the liquid phase contains a finely dispersed solid phase as well, which can
act as a reactant or as a heterogeneous catalyst; these reactors assume in general the
features of Fig. 7.1(d).

Each of these four categories could be further subdivided when considering the
operating temperature and pressure, the significance of thermal effects (exothermic
or endothermic reactions) and the presence of heat exchange devices, the physical
properties of the liquid phase (density, viscosity), the volume fraction occupied by
the different phases in the reactors, and other minor effects. Notwithstanding these
differences, once again, the modeling approach highlights the functional aspects,
thus producing simpler and unifying descriptions.

7.2 Nonideal Mixing

As discussed in Sect. 2.1, physical and mathematical models of ideal chemical re-
actors are based on two very simplified fluid dynamic assumptions, namely perfect
mixing (BR and CSTR) and perfect immiscibility (PFR). On the contrary, in real
tank reactors the stirring system produces a complex motion field made out of vor-
tices of different dimensions interacting with the reactor walls and the internal baf-
fles, as schematically shown in Fig. 7.2(a). As a consequence, a complex field of
composition and temperature is established inside the reactor.

The main features of this behavior may be captured by a simple modeling ap-
proach based on a proper combination of ideal reactors. The simplest example is
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Fig. 7.2 Tank batch reactor
with a segregated zone (a)
modeled as two ideal suitably
connected CSTRs (b)

Fig. 7.3 Scheme of a compartment network around the impeller in a stirred tank reactor

the reactor with a segregated zone (Fig. 7.2(b)) described by two CSTRs suitably
connected. In this model, two adjustable parameters are introduced, namely the seg-
regated volume VS and the relevant volumetric flow rate FS. Since a very complex
behavior is described by a very simple physical model and lumped in these param-
eters, their physical meaning is not straightforward, and the relevant values must be
evaluated experimentally. In general, these parameters depend on the geometry of
the reactor and the stirring system, on the rotation speed of the stirrer, and on the
reactor dimensions; as discussed later in this chapter, the quality of mixing usually
decreases when the dimensions of the reactor increase.

The modeling can be improved by increasing the number of ideal reactors so that
a complex network composed of fictitious interacting compartments is created. This
approach can be applied to describe a large number of industrial reactors, in which
partial mixing phenomena take place [3, 10].

As an example, a compartment model for a single-phase jacketed batch reactor
can be developed according to [4] when a vessel agitated by a Rushton turbine
located halfway with respect to the liquid depth is considered. If the vorticity is
eliminated by suitable baffles, the main liquid circulation flow rate Fc, generated by
the impeller is radially directed and then split into two equal returning flows Fc/2,
which are recirculated to the turbine (Fig. 7.3). Additionally, secondary exchange
flow rates Fe must be considered to account for the axial mixing occurring at the
ideal planes of separation between the main circulation streams. The circulation and
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exchange flow rates are related to both the impeller speed ω and the blade diameter
ds via the relationships [7, 9]

Fc =Kcωd
3
s (7.1)

and

Fe =Keωd
3
s , (7.2)

where the factors Kc and Ke mainly depend on the system geometry [4]. Hence, for
any given system, a linear relationship between Fc and Fe holds.

On the basis of the considered macroscopic flow pattern, the dominant circulation
flows (Fc and Fc/2) subdivide the reactor into three parallel levels, where each level
is then divided into Nc/3 equally sized compartments of equal volume Vc = Vr/Nc.
Every compartment is modeled as a nonstationary ideal continuous stirred tank re-
actor, with a main inlet and outlet flow, which connects the given compartment with
adjacent compartments on the same level, and secondary exchange flow rates ac-
counting for the turbulent mixing with adjacent compartments laying on the upper
and/or lower level (Fig. 7.3).

The mathematical model of the reactor consists of the mass and energy balances
written for all the compartments and an energy balance written for the jacket. The
mass balance written for the reactant and for a first-order reaction in a generic com-
partment on the central level holds:

Ċ = −kcC + Fc(Cus −C)

Vc
+ Fe(Cll +Cul − 2C)

Vc
. (7.3)

Here, subscripts u and l denote the concentrations in the adjacent compartment lying
on the upper and lower levels, respectively, while subscript us denotes the concen-
tration in the compartment located on the same level but upstream with respect to the
dominant circulation flow. When this equation is written for the first compartment
of the central level, the term accounting for the inlet circulation flow is modified,
since it is composed by two different contributes at different concentrations origi-
nating from the corresponding compartments located on the upper and lower levels,
respectively. Moreover, (7.3) must be suitably modified when the balance is referred
to compartments laying on levels 1 and 3, where Cul and Cll, respectively, are equal
to zero, and Fc has to be replaced by Fc/2.

The energy balance in the generic compartment on the central level yields

Ṫ = (−�HR)kcC

ρcp
+ βSU(T − Tj)

Vcρcp
+ Fc(Ts − T )

Vc
+ Fe(Tll + Tul − 2T )

Vc
, (7.4)

where S is the total heat transfer area of the reactor, and β is the fraction of S fac-
ing the compartment considered (β = 0 for compartments not bordering the jacket).
Moreover, the same corrections as for mass balances must be introduced in the en-
ergy balance written for the first compartment on the central level and for the com-
partments on levels 1 and 3.
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Finally, the energy balance in the jacket reads

Ṫj =
Nj∑
i=1

βiSU(Ti − Tj)

Vjρjcpj
+ (Tin − Tj)

Vj
FV, (7.5)

where the sum is extended to the Nj compartments bordering the jacket.
It has been shown [2] that, with reference to the mixing effectiveness, the reactor

behavior can be described in terms of a dimensionless group χ , defined as the ratio
of the length of the batch cycle tb to the residence time Vc/Fc of the fluid in each
compartment,

χ = Fctb

Vc
. (7.6)

For low values of χ , noticeable temperature gradients may establish inside the
reactor, with a consequent worsening of the controller performance. This effect de-
pends on the sensor location as well. As an example, when temperature is measured
in peripheral compartments, the higher temperatures established in the reactor core,
i.e., in the proximity of the stirrer, are ignored. As a consequence, the average re-
action rate and the rate of heat production are underestimated, so that the resulting
control action is less effective in counteracting possible runaway phenomena.

In order to obtain a more detailed mathematical modeling, nonideal mixing must
be considered in terms of Computational Fluid Dynamics (CFD). In CFD models
the lumped parameter approach discussed above is substituted by a distributed pa-
rameter approach. By expanding the concept of CSTR, the reactor is described by
a very large number of very small, perfectly mixed volumes, and the conservation
equations are written in their differential form. In the simplest case (isothermal and
nonreacting flow) the model is essentially made out of the Navier–Stokes equa-
tions and contains the tensor of turbulent stresses, which accounts for the turbulent
transfer of momentum. This tensor depends not only on physical properties, such as
density and laminar viscosity, but also on the geometry of the system and the whole
motion field. In the general case, the corresponding turbulent terms for energy and
mass transfer must be included, which show similar laws of dependence on physical
properties, geometry, and fluid dynamics.

The description of small scale turbulent fields in confined spaces by fundamental
approaches, based on statistical methods or on the concept of deterministic chaos, is
a very promising and interesting research task; nevertheless, at the authors’ knowl-
edge, no fundamental approach is at the moment available for the modeling of large-
scale confined systems, so that it is necessary to introduce semi-empirical models to
express the tensor of turbulent stresses as a function of measurable quantities, such
as geometry and velocity. Therefore, even in this case, a few parameters must be
adjusted on the basis of independent measures of the fluid dynamic behavior. In any
case, it must be underlined that these models are very complex and, therefore, well
suited for simulation of complex systems but neither for identification of chemical
parameters nor for online control and diagnosis [5, 6].
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7.3 Multiphase Batch Reactors

The main effect of the presence of gases and vapors in the reactor head is the rele-
vance of an additional variable, the pressure. In a simple mathematical model, each
phase may be described as a well-mixed volume (even if no mechanical stirrer is
present in the gaseous phase), and it is also possible to consider thermal and me-
chanical equilibrium between the phases, i.e., to set equal values of temperature and
pressure in the two phases.

A few additional equations must be included in the mathematical model, namely
a mass balance and an equation of state for the gaseous phase, and the equilib-
rium relationships between the phases, i.e., a distinct equation for each component
present in both phases. Moreover, the heat balance for the reacting mixture must be
modified by including the heat of evaporation, which usually has a nonnegligible
effect on the reactor temperature. This augmented mathematical model is complex
enough to hinder a unified approach; an example may be found in [8], where some
guidelines are given for the design of suppression systems against chemical run-
away.

In fact, since vapor pressure is usually a strong positive function of tempera-
ture, pressure is the most sensible variable to evaluate the possible occurrence of an
explosion, which is just defined as an uncontrolled growth of pressure. A similar ap-
proach allows considering the more dangerous case of runaway represented by the
so-called gassy reactions, i.e., the case in which gaseous products are generated by
the chemical reaction, irrespective of thermal effects. In the case of gassy reaction,
an increase of pressure can be observed even in the absence of a significant increase
of temperature, thus presenting a severe challenge for the reactor controller, since
pressure sensors are usually less sensible and less accurate than temperature sensors,
as discussed in Sect. 2.6.

A more complex behavior is expected when multiphase reacting systems are ex-
amined. As an example, consider the gas–liquid reactor sketched in Fig. 7.1(c),
which behaves as a batch reactor with respect to the liquid phase and as a con-
tinuous reactor with respect to the gaseous phase. A reactant is transferred from the
gaseous to the liquid phase, where it reacts with a substrate.

In the absence of a stirring system, the bubbles rise undisturbed through the liq-
uid phase at a velocity that depends on their dimensions. This bubble phase can be
modeled as a plug flow reactor, whereas the liquid phase can be described by one or
a few well-mixed reactors in series (Fig. 7.4(a)). On the contrary, when a mechanical
stirrer is included in the liquid phase, a well-mixed model can be also considered for
the bubble phase (Fig. 7.4(b)). In fact, the stirrer captures the bubbles in the liquid
vortices, thus increasing their average residence time in the liquid phase, and, more-
over, it also produces a fragmentation and coalescence mechanism which mixes the
contents of the gaseous bubbles. The PFR model for the gaseous phase can be more
appropriate than the CSTR model not only when the stirrer speed is very low but
also whenever a preferential bubble channel is formed along the stirrer axis, as it is
sometimes observed for very large stirrer speeds.

The mathematical models corresponding to the schemes in Fig. 7.4 contain the
diffusive fluxes between the phases, which depend both on fluid dynamics (through
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Fig. 7.4 Schemes for mathematical models of a gas–liquid bubble column (a) and a gas–liquid
stirred reactor (b). B = bubble phase, H = reactor head, L = liquid phase, FG = gas flow rate;
dashed arrows represent diffusive interphase flux

a suitable mass transfer coefficient and on the interfacial area between the phases)
and the difference between the concentrations of the transferred component in the
two phases. The diffusive fluxes connect different phases present in the reactor, thus
playing a role similar to that of the volumetric flow rate FS connecting segregated
volumes in partially mixed monophasic reactors. Nevertheless, in practical cases,
this segregation effect between phases can be quantitatively more noticeable than
the simple fluid dynamic segregation of different volumes within a single phase. Of
course, in the presence of noticeable thermal effects, interphase heat transfer may
be observed as well.

7.4 Scaling-up the Information

The performance of real chemical reactors depends on the interaction between
chemical kinetics, fluid dynamics, and interphase transport phenomena. Therefore,
it is not surprising that two geometrically similar reactors (i.e., having equal shape)
usually show a behavior strongly dependent on dimensions. Therefore, the design
procedures of real chemical reactors make a wide use of the concept of scaling up
to the industrial scale the information obtained at the laboratory and/or at the pilot
scale. Since control and fault diagnosis performance is affected by reactor dimen-
sions, a brief account of these concepts may be useful in the present context in order
to obtain a deeper understanding of the behavior of real chemical reactors.

7.4.1 Basic Ideas of Scale-up

Scaling is a very important tool in science and engineering, because, in general,
the physical behavior of a system is not independent from dimensions. The first
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approach to scaling consists in writing the physical laws in nondimensional form in
order to derive the expressions for the relevant dimensionless groups; in fact, if these
groups are kept constant on increasing dimensions, the dimensionless solutions are
simply scaled as functions of space and time. Perhaps, the simplest example is the
fluid dynamic behavior of fluids in smooth tubes, which is scaled by simply taking
as a constant the ratio between inertia and drag forces expressed by the Reynolds
number Re = vL/ν, where L is a characteristic length, v is a characteristic velocity,
and ν is the kinematic viscosity.

Unfortunately, real things are rarely simple: a more complex example from fluid
dynamics is taken from [1] and refers to the vortex depth in unbaffled agitated tanks.
The dimensionless equation of motion shows that the dynamic similarity may be
obtained in two geometrically similar tanks of different diameter (D2 >D1), when
the same values are fixed for the two relevant dimensionless numbers, namely the
Reynolds number and the Froude number, which represents the ratio between inertia
and gravity forces. Here, the impeller diameter ds is taken as the reference length,
whereas the reference velocity is taken to be proportional to the velocity of the
stirrer tips, i.e., the product between ds and the impeller angular speed ω; thus,
the Reynolds number is defined as Re = ωd2

s /ν, and the Froude number as Fr =
ω2d2

s /gds = ω2ds/g, where g denotes the gravitational acceleration.
Since two geometrically similar tanks are considered, the ratio δ = ds2/ds1 equals

the ratio D2/D1 of the reactor diameters, and the vortex depths are in the same ratio
if Re2 = Re1 and Fr2 = Fr1. It can be shown that, at constant ν, these two conditions
of dynamic similarity, respectively, yield the following scale-up prescriptions:

ω2

ω1
=

(
D1

D2

)2

= δ2 (7.7)

and

ω2

ω1
=

√
D1

D2
= √

δ, (7.8)

which cannot be satisfied at the same time if the same fluid is used in the two
tanks. In conclusion, a proportionally deeper vortex is obtained in the smaller tank,
whereas it is possible to restore dynamic similarity by using in the smaller tank a
fluid of smaller kinematic viscosity. Of course, this last condition, which is widely
used in physical modeling of large natural systems, cannot be satisfied in chemical
reactors.

A second example of interest in the present context refers to the scaling of ther-
mal effects. Any object (a chemical reactor such as a living body) that produces heat
at a rate proportional to its volume (Q̇R ∝ Vr) and exchanges heat with a cooling de-
vice or with the ambient at a rate proportional to its lateral surface SL and to the tem-
perature difference with respect to the external heat sink (i.e., Q̇E =USL(Tr − Ta))
can maintain the same temperature, independently of its dimensions, only if the ra-
tio USL/Vr is kept constant. In general, this condition cannot be satisfied, since the
ratio SL/Vr is inversely proportional to the characteristic linear dimension, and the
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overall heat exchange coefficient U is a complex function of dimensions and of fluid
dynamics.

7.4.2 The Scale-up of Real Batch Reactors

The principles and methods of scale-up can be applied to chemical reactors. In the
absence of significant thermal effects, i.e., when the ratio Q̇R/Vr may be considered
negligible, ideal batch reactors do not show any problem of scale-up, because the
volume Vr does not appear in the mathematical model (2.17), so that their perfor-
mance is only determined by chemical kinetics (see Sect. 2.3). On the contrary, a
very complex behavior is expected for real reactors; in fact, this behavior cannot
be analyzed in terms of mathematical models, and the design procedures must be
largely based on semi-empirical rules of scale-up.

For the sake of completeness, two different scale-up rules are briefly considered
here, and their different results are shown. First, let us define the stirring power P
as

P =KPρω
3d5

s , (7.9)

where the dimensionless power number KP represents a drag coefficient which de-
pends on the geometry of the stirrer and on the Reynolds number, again defined as
Re = ωd2

s /ν. If both (geometrically similar) tank reactors are operated at elevated
Reynolds numbers, it is possible to assume that NP2 =NP1, so that (7.9) yields

P2

P1
=

(
ω2

ω1

)3(
ds2

ds1

)5

=
(
ω2

ω1

)3

δ5. (7.10)

If the power per unit volume P/Vr is assumed to determine the effectiveness of
the mixing, it is possible to introduce the scale-up criterion P/Vr = constant, which
gives the scale-up prescriptions

P2

P1
= δ2 (7.11)

and
ω2

ω1
= δ−2/3. (7.12)

An alternative criterion is derived by considering that the velocity of the stirrer
tips, v = πdsω, determines the shear stress on the fluid and, consequently, its micro
mixing. The scale-up criterion dsω = constant gives

P2

P1
= δ3 (7.13)

and
ω2

ω1
= δ−1, (7.14)
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so that, on increasing the reactor volume, the required stirrer speed decreases more
strongly than in the previous case; correspondingly, the required stirring power in-
creases less strongly.

In the presence of significant thermal effects, one of the above-mentioned fluid
dynamic scale-up criteria must be considered, together with the criterion US/V =
constant, which can be made more realistic by considering that heat exchange sur-
face S can be different from SL and by introducing a proper functional relationship
for U . If the internal resistance to heat transfer prevails, U may be intended as the
internal heat transfer coefficient h, so that the relationship

h∝ ω0.65d1.3
s D−1 ∝ ω0.65d0.3

s (7.15)

holds, as it can be easily derived from a dimensionless correlation of the type Nu =
(hD)/k ∝ Re0.65.

In general, on increasing the reactor volume, the required heat transfer surface
increases faster than δ3; this effect is enhanced by the decrease of the heat transfer
coefficient. This prescription cannot be obeyed by the lateral surface of the reac-
tor (which increases as δ2) so that an internal or external additional heat exchange
surface, whose dimensions can be fixed independently from the reactor dimensions,
must be provided.

7.5 Suggestions and Conclusions

It is hoped that the arguments developed in this chapter can provide some useful
suggestions both for developing practical applications of the control and diagnosis
approaches developed in this book to real batch reactors and for planning new re-
search work in this field. No definitive conclusion of general validity is expected
from these activities because of the very different forms assumed by real reactors;
nevertheless, some expected results can be anticipated when considering a few sim-
ple cases.

The case of gassy reactions represents a severe test for any control system. Since
in this case a pressure increase is almost independent of the temperature increase,
the system must be monitored by means of pressure sensors, and these are, in gen-
eral, less accurate and reliable when compared to temperature sensors. In the more
general case of nonideal mixing in homogeneous reacting media, it appears that the
effect of segregated zones may be that of transforming the reactor in a higher-order
system. Thus, not only the response of the system is slowed down, but, in some
cases, an oscillating behavior may be observed.

This effect can be forecast on the basis of the retention time distribution function
in continuous tank reactors, which represents the simplest approach to the analysis
of reactor dynamics. In its cumulative form, this function represents, for any time t ,
the fraction of the exit volumetric flow rate characterized by a residence time smaller
than t and can be measured experimentally by submitting the reactor to a step forc-
ing input in the entering stream. Whereas for the ideal tank reactor, the following
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simple exponential function is obtained:

fRT(t)= 1 − exp

(
− t

tP,av

)
, (7.16)

in which the ratio tP,av = Vr/FV between volume and volumetric flow rate repre-
sents the average residence time, in the presence of segregated volumes more com-
plex functions, which present a zero derivative at t = 0 and inflection points, are
obtained.

A similar, but more significant, effect is expected for multiphase reactors. A gen-
eral conclusion may be that the more the reactors are complex, the more advan-
tageous is the use of model-based approaches, when compared to more empirical
ones. This is true from a practical point of view as well, since the increasing avail-
ability of fast and low-price computing devices allows improving the complexity of
the models; it is deemed that the limits to this approach depend essentially on the
quality of the experimental data available for identification purposes.
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Appendix A
Proofs

A.1 Proof of Theorem 5.1

The error dynamics can be readily derived from (5.15) and (5.23):

{ ˙̃x = Ao(y )̃x + CTψ(y)θ̃o,

ỹ = Cx̃,
(A.1)

where Ao(y) = A(y) − LC. Let us consider the following positive definite Lya-
punov candidate function:

Vo
(̃
x, θ̃o

) = 1

2
x̃TP ox̃ + 1

2
γoθ̃

2
o , (A.2)

where P o is the positive definite diagonal matrix

P o = diag{σ1, . . . , σNC,1,1}, (A.3)

and the σis are constant positive values to be determined.
The derivative of Vo along the trajectories of the error dynamics, taking into

account that the parameter θ is constant, is given by

V̇o = −
NC∑
i=1

σikci x̃
2
i − lrx̃

2
NC+1 − ljx̃

2
NC+2 +

NC−1∑
i=1

NC∑
h=i+1

σhυi,hkci,hx̃i x̃h

+
NC∑
i=1

(ai − σili )̃xi x̃NC+1 + ψT(y)Cx̃θ̃o − γo
˙̂θoθ̃o,

where the dependence of the rate constants upon the temperature has been dropped
for notation compactness. By considering the update law (5.24) and inequali-

F. Caccavale et al., Control and Monitoring of Chemical Batch Reactors,
Advances in Industrial Control,
DOI 10.1007/978-0-85729-195-0, © Springer-Verlag London Limited 2011

171

http://dx.doi.org/10.1007/978-0-85729-195-0


172 A Proofs

ties (2.32) and (2.33), V̇o can be bounded as follows:

V̇o ≤ −
NC∑
i=1

σikci x̃
2
i − lrx̃

2
NC+1 − ljx̃

2
NC+2

+
NC−1∑
i=1

NC∑
h=i+1

σhυi,hkci,h |̃xi ||̃xh| +
NC∑
i=1

(ai + σili)|̃xi ||̃xNC+1|

= −
NC−1∑
i=1

NC∑
h=i+1

[ |̃xi |
|̃xh|

]T

Ω i,h

[ |̃xi |
|̃xh|

]
−

NC∑
i=1

[ |̃xi |
|̃xNC+1|

]T

Φi

[ |̃xi |
|̃xNC+1|

]
− ljx̃

2
NC+2,

where

ai =
NC+1∑
h=i+1

αi,hkci,h. (A.4)

The matrices on the right-hand side of the above inequality,

Ω i,h =
⎡
⎣

σikci
NC

−σhυi,hkci,h
2

−σhυi,hkci,h
2

σhkch
NC

⎤
⎦ , Φi =

⎡
⎣

σikci
NC

− ai+σi li
2

− ai+σi li
2

lr
NC

⎤
⎦ , (A.5)

are all positive definite if the gains satisfy the inequality

lr > max
i=1,...,NC

{
N2

C(ai + σili)
2

4σikci

}
(A.6)

and the positive constants σis satisfy the inequalities

σi > max
h=i+1,...,NC

{
N2

Cυ
2
i,hk

2
ci,h

4kcikch
σh

}
, i =NC − 1, . . . ,1. (A.7)

Therefore, V̇o can be upper bounded as follows:

V̇o ≤ −
NC−1∑
i=1

NC∑
h=i+1

λmin(Ω i,h)
(
x̃2
i + x̃2

h

)

−
NC∑
i=1

λmin(Φ i )
(
x̃2
i + x̃2

NC+1

) − ljx̃
2
NC+2, (A.8)

where λmin(·) is the smallest eigenvalue of a matrix. Thus,

V̇o ≤ −ζo‖x̃‖2, (A.9)
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where

ζo = min
{
(NC − 1)ω+ φ,NCφ, lj

}
,

ω = min
i=1,...,NC−1
h=i+1,...,NC

{
λmin(Ω i,h)

}
, φ = min

i=1,...,NC

{
λmin(Φi )

}
.

Hence, V̇o is negative semi-definite: this guarantees the boundedness of x̃ and θ̃o.
By invoking Barbalat’s lemma [3], it can be recognized that V̇o → 0, which implies
the global uniform convergence to 0 of x̃ as t → ∞, while θ̃o is only guaranteed to
be uniformly bounded. �

A.2 Proof of Theorem 5.2

The estimation error dynamics can be derived from (5.27) and (5.29):{ ˙̃xE = AE,o(θ )̃xE + ψ (̂y)θ̃o + ξ̃
(
y, θ̃q

)
,

ỹ = x̃E,
(A.10)

where AE,o = AE − LE and

ξ̃
(
y, θ̃q

) =
[̃
θ

T
q ϕ(y)

0

]
.

Let us consider the following positive definite Lyapunov candidate function:

Vo
(̃
xE, θ̃o, θ̃q

) = 1

2
x̃T

Ex̃E + 1

2
γoθ̃

2
o + 1

2
γqθ̃

T
q θ̃q. (A.11)

The derivative of Vo along the trajectories of the error dynamics, taking into
account that the parameters θ and θq are constant, is given by

V̇o = −(αrθ + lr)̃x
2
NC+1 − (αjθ + lj)̃x

2
NC+2 + (αrθ + αjθ )̃xNC+1x̃NC+2

+ ψ (̂y)Tỹθ̃o − γoθ̃o
˙̂θo + θ̃

T
q ϕ(y)ỹ1 − γqθ̃

T
q
˙̂θq.

By considering the update laws (5.24) and (5.34), V̇o can be bounded as follows:

V̇o ≤ −(αrθ + lr)̃x
2
NC+1 − (αjθ + lj)̃x

2
NC+2 + (αrθ + αjθ)|̃xNC+1||̃xNC+2|

= −
[|̃xNC+1|
|̃xNC+2|

]T
[
αrθ + lr −αr+αj

2 θ

−αr+αj
2 θ αjθ + lj

][|̃xNC+1|
|̃xNC+2|

]
. (A.12)

The matrix on the right hand-side of the above inequality is positive definite if
the gains satisfy the following inequality:

lj >
(αr + αj)

2θ2

4(αrθ + lr)
− αjθ. (A.13)
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Therefore, V̇o can be upper bounded as follows:

V̇o ≤ −ζo‖x̃E‖2, (A.14)

where ζo is the minimum eigenvalue of the matrix in (A.12).
Hence, V̇o is negative semi-definite: this guarantees the boundedness of x̃, θ̃o,

and θ̃q. By invoking Barbalat’s lemma [3], it can be recognized that V̇o → 0, which
implies the global uniform convergence to 0 of x̃ as t → ∞, while θ̃o and θ̃q are
only guaranteed to be uniformly bounded. �

A.3 Proof of Theorem 5.3

The closed-loop dynamics can be derived by plugging (5.38) and (5.39) into (5.15)
and taking into account that y2 = y2,des − e2 and θ̃c = θ − θ̂c (and thus, θ = θ̂c + θ̃c):

ε̇ = Acε + χc(y)θ̃c − Aco(y )̃x, (A.15)

where the matrices Ac and Aco are given by

Ac =
[

Ar Arj
O2×2 Aj

]
, Aco(y)=

⎡
⎣ 01×NC 01×2

aT(y) 01×2
O2×NC O2×2

⎤
⎦ .

Let us consider the Lyapunov candidate function

V
(̃
x,ε, θ̃o, θ̃c

) = Vo
(̃
x, θ̃o

) +  Vc
(
ε, θ̃c

)
, (A.16)

where Vo is the function defined in (A.2), Vc is given by

Vc
(
ε, θ̃c

) = 1

2
εTP cε + 1

2
γcθ̃

2
c , (A.17)

and  > 0 is a positive constant to be determined.
The derivative of Vc along the trajectories of the system (A.1), (A.15), taking into

account that the parameter θ is constant, is given by

V̇c = −1

2
εTNcε + χT

c (y)P cεθ̃c − γc
˙̂θcθ̃c − εTP cAco(y )̃x, (A.18)

where

Nc =
[

N r −P rArj

−AT
rjP r N j

]

is a symmetric matrix, which turns out to be positive definite if N r and N j sat-
isfy (5.44). Finally, taking into account the update law (5.40), V̇c becomes

V̇c = −1

2
εTNcε − εTP cAco(y )̃x. (A.19)
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Hence, V̇c can be upper bounded as follows:

V̇c ≤ −ζc‖ε‖2 + ζco‖x̃‖‖ε‖, (A.20)

where ζc = λmin(Nc)/2 and

ζco = ‖P c‖max
y

{∥∥Aco(y)
∥∥},

since (2.33) ensures that Aco is norm-bounded for any y.
Therefore, by considering the inequalities in (A.9) and (A.20), V̇ can be upper

bounded as follows

V̇ = V̇o +  V̇c ≤ −ζo‖x̃‖2 −  ζc‖ε‖2 +  ζco‖x̃‖‖ε‖

= −
[‖x̃‖
‖ε‖

]T [
ζo − ζco/2

− ζco/2  ζc

][‖x̃‖
‖ε‖

]
. (A.21)

The function V̇ is guaranteed to be negative semi-definite if the arbitrary positive
constant  is chosen so as to satisfy the inequality

 <
4ζoζc

ζ 2
co

. (A.22)

This guarantees the boundedness of all error signals. By invoking Barbalat’s
lemma [3], it can be recognized that V̇ → 0, which implies the convergence to 0
of both x̃ and ε, while the estimation errors θ̃c and θ̃o are only guaranteed to be
uniformly bounded. �

A.4 Proof of Theorem 5.4

The closed-loop dynamics can be derived by plugging (5.45) and (5.46) into (5.15)
and taking into account that y2 = y2,des − e2 and θ̃c = θ − θ̂c (and thus, θ = θ̂c + θ̃c):

ė = A′
ce + ψc(y)θ̃c − A′

co(y )̃x, (A.23)

where

A′
c =

[−gP,r αrθ

0 −gP,j

]
, A′

co = [
AM,E O2×2

]
.

Let us consider the following positive definite Lyapunov candidate scalar func-
tion:

V
(̃
x, e, θ̃o, θ̃c

) = Vo
(̃
x, θ̃o

) +  Vc
(
e, θ̃c

)
,

where Vo is the same function defined in (A.2), Vc is given by

Vc
(
e, θ̃c

) = 1

2
eTe + 1

2
γcθ̃

2
c , (A.24)

and  > 0 is a positive constant to be determined.
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The derivative of Vc along the trajectories of the system (A.1), (A.23), taking into
account that the parameter θ is constant, is given by

V̇c = eTA′
ce − eTA′

cox̃ + ψT
c eθ̃c − γc

˙̂θcθ̃c.

Taking into account the update law (5.47), V̇c becomes

V̇c = eTA′
ce − eTA′

cox̃.

Hence, V̇c can be upper bounded as follows:

V̇c ≤ −ζc‖e‖2 + ζc,o‖x̃‖‖e‖, (A.25)

where

ζc = min{gP,r, gP,j} and ζc,o = max
i=1,...,NC

{ai}

with ai defined in Appendix A.1, (A.4).
Hence, by considering the inequalities in (A.9) and (A.25), V̇ can be upper

bounded as follows:

V̇ = V̇o +  V̇c ≤ −ζo‖x̃‖2 −  ζc‖e‖2 +  ζc,o‖x̃‖‖e‖

= −
[‖x̃‖
‖e‖

]T [
ζo − ζc,o/2

− ζc,o/2  ζc

][‖x̃‖
‖e‖

]
.

The function V̇ is guaranteed to be negative semi-definite if the arbitrary positive
constant  is chosen so as to satisfy the inequality

 <
4ζoζc

ζ 2
c,o

.

This guarantees the boundedness of all error signals. By invoking Barbalat’s
lemma [3], it can be recognized that V̇ → 0, which implies the global convergence
to 0 of both x̃ and e, while the parameters estimation errors θ̃o and θ̃c are only
guaranteed to be uniformly bounded. �

A.5 Proof of Theorem 6.1

Let us consider the following positive definite Lyapunov candidate function:

VSMi (̃xSMi )= 1

2
x̃T

SMiP ox̃SMi , (A.26)

where P o is the same matrix defined in (A.3).
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The derivative of VSMi along the trajectories of the error dynamics (6.11), in the
absence of uncertainties and noise (i.e., η = 0 and n = 0), is given by

V̇SMi = −
NC∑
l=1

σlkcl x̃
2
SMi,l − (lr + αrθ )̃x

2
SMi,NC+1 − (lj + αjθ )̃x

2
SMi,NC+2

+
NC−1∑
l=1

NC∑
h=l+1

σhυl,hkcl,hx̃SMi,l x̃SMi,h +
NC∑
l=1

(al − σlll )̃xSMi,l x̃SMi,NC+1

+ (αrθ + αjθ )̃xSMi,NC+1x̃SMi,NC+2, (A.27)

where the dependence of the rate constants upon the temperature has been dropped
for notation compactness. By considering the inequalities in (2.32) and (2.33) V̇SMi

can be bounded as follows:

V̇SMi ≤ −
NC∑
l=1

σlkcl x̃
2
SMi,l − (lr + αrθ )̃x

2
SMi,NC+1 − (lj + αjθ )̃x

2
SMi,NC+2

+
NC−1∑
l=1

NC∑
h=l+1

σhυl,hkci,h |̃xSMi,l ||̃xSMi,h|

+
NC∑
l=1

(al + σlll)|̃xSMi,l ||̃xSMi,NC+1|

+ (αrθ + αjθ)|̃xSMi,NC+1||̃xSMi,NC+2|

= −
NC−1∑
l=1

NC∑
h=l+1

[ |̃xSMi,l |
|̃xSMi,h|

]T

Ω l,h

[ |̃xSMi,l |
|̃xSMi,h|

]

−
NC∑
l=1

[ |̃xSMi,l |
|̃xSMi,NC+1|

]T

Φ l

[ |̃xSMi,l |
|̃xSMi,NC+1|

]

−
[|̃xSMi,NC+1|
|̃xSMi,NC+2|

]
Π

[|̃xSMi,NC+1|
|̃xSMi,NC+2|

]
,

where ai and the matrices Ω l,h and Φ l have been defined in Appendix A.1 ((A.4)
and (A.5), respectively), while

Π =
[

αrθ − (αr+αj)θ

2

− (αr+αj)θ

2 lj + αjθ

]
.

As shown in Appendix A.1, the matrices Ω l,h and Φ l are positive definite, provided
that the gain lr and the constants σls satisfy inequalities (A.6) and (A.7), respec-
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tively. The matrix Π is positive definite if lj satisfies the following inequality:

lj >
(α2

r + α2
j + αrαj)θ

4αr
. (A.28)

Therefore, V̇SMi can be upper bounded as follows:

V̇SMi ≤ −
NC−1∑
l=1

NC∑
h=l+1

λmin(Ω l,h)
(
x̃2

SMi,l + x̃2
SMi,h

)

−
NC∑
l=1

λmin(Φ l)
(
x̃2

SMi,l + x̃2
SMi,NC+1

)

− λmin(Π)
(̃
x2

SMi,NC+1 + x̃2
SMi,NC+2

)
.

Thus,

V̇SMi ≤ −ζSMi‖x̃SMi‖2, (A.29)

where

ζSMi = min
{
(NC − 1)ω+ φ,NCφ,λmin(Π)

}
,

ω = min
l=1,...,NC−1
h=l+1,...,NC

{
λmin(Ω l,h)

}
, φ = min

l=1,...,NC

{
λmin(Φ l )

}
. (A.30)

Hence, V̇SMi is negative semi-definite: this guarantees the boundedness of x̃SMi . By
invoking Barbalat’s lemma [3], it can be recognized that V̇SMi → 0, which implies
the global uniform convergence to 0 of x̃SMi as t → ∞. �

A.6 Proof of Theorem 6.2

Let us consider the following positive definite Lyapunov candidate function:

Vi
(̃
xi , θ̃ f,i

) = 1

2
x̃T
i P ox̃i + 1

2
γi θ̃

T
f,i θ̃ f,i , (A.31)

where P o is the same matrix defined in (A.3). The derivative of Vi along the trajec-
tories of the error dynamics (6.29), in the absence of uncertainties and noise (i.e.,
η = 0 and n = 0) and taking into account that the parameter vector θ f is constant, is
given by
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V̇i = −
NC∑
l=1

σlkcl x̃
2
i,l − (lr + αrθ )̃x

2
i,NC+1 − (lj + αjθ )̃x

2
i,NC+2

+
NC−1∑
l=1

NC∑
h=l+1

σhυl,hkcl,hx̃i,l x̃i,h +
NC∑
l=1

(al − σlll )̃xi,l x̃i,NC+1

+ (αrθ + αjθ )̃xi,NC+1x̃i,NC+2 + x̃T
i C

Tϕi (t,y, u)̃θ f,i − γi
˙̂θT

f,i θ̃ f,i ,

where the dependence of the rate constants upon the temperature has been dropped
for notation compactness. By considering the update law (6.28), V̇i has the same
form of V̇SMi (see (A.27)), thus the proof follows the same steps of the proof of
Theorem 6.1, and it is possible to write

V̇i ≤ −ζi‖x̃i‖2, (A.32)

where ζi has the same expression of ζSMi in (A.30).
Hence, V̇i is negative semi-definite: this guarantees the boundedness of x̃i and

θ̃ f,i . By invoking Barbalat’s lemma [3], it can be recognized that V̇i → 0, which
implies the global uniform convergence to 0 of x̃i as t → ∞, while θ̃ f,i is only
guaranteed to be uniformly bounded.

The above result is usual in direct adaptive estimation and/or control schemes.
The exponential convergence to zero of both the state estimation error and the pa-
rameter estimation error is guaranteed only in the presence of the persistency of ex-
citation condition [1, 3]. This, in turn, implies that they keep bounded in the presence
of bounded uncertainties. However, since persistency of excitation may be difficult
to guarantee in practice, a modified parameters update law can be adopted, accord-
ing to the concept of projection operator [2]. In detail, adoption of the following
update law instead of (6.28),

˙̂θ f,i =
(

Imi
−Λγ−1

i θ̂ f,i θ̂
T
f,i

‖̂θ f,i‖
)
γ−1
i ϕT

i (y, u)̃yi , (A.33)

where Λ is a boolean variable defined as

Λ=
{

0, if {‖̂θ f,i‖<M} or {‖̂θ f,i‖ =M and γ−1
i ϕT

i (y, u)̃yi ≤ 0},
1, if {‖̂θ f,i‖ =M and γ−1

i ϕT
i (y, u)̃yi > 0},

guarantees that θ̂ f,i never leaves the hypersphere

M = {̂
θ f,i ∈ R

mi : ∥∥̂θ f,i
∥∥ ≤M

}
,

and thus θ̃ f,i keeps uniformly bounded in the presence of uncertainties as well. �
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Identification of Continuous-time Models
from Sampled Data
Hugues Gamier and Liuping Wang (Eds.)

Model-based Process Supervision
Arun K. Samantaray and Belkacem
Bouamama

Diagnosis of Process Nonlinearities and
Valve Stiction
M.A.A. Shoukat Choudhury, Sirish L. Shah
and Nina F. Thornhill

Magnetic Control of Tokamak Plasmas
Marco Ariola and Alfredo Pironti

Real-time Iterative Learning Control

Jian-Xin Xu, Sanjib K. Panda

and Tong H. Lee

Deadlock Resolution in Automated

Manufacturing Systems

ZhiWu Li and MengChu Zhou

Model Predictive Control Design

and Implementation Using MATLAB®

Liuping Wang

Predictive Functional Control

Jacques Richalet and Donal O’Donovan

Fault-tolerant Flight Control

and Guidance Systems

Guillaume Ducard

Fault-tolerant Control Systems

Hassan Noura, Didier Theilliol,

Jean-Christophe Ponsart and Abbas

Chamseddine

Detection and Diagnosis of Stiction

in Control Loops

Mohieddine Jelali and Biao Huans (Eds.)

Stochastic Distribution Control

System Design

Lei Guo and Hong Wang

Dry Clutch Control for Automotive

Applications

Pietro J. Dolcini, Carlos Canudas-de-Wit

and Hubert Béchart

Advanced Control and Supervision

of Mineral Processing Plants

Daniel Sbárbaro and René del Villar (Eds.)

Active Braking Control Design for Road

Vehicles

Sergio M. Savaresi and Mara Tanelli

Active Control of Flexible Structures

Alberto Cavallo, Giuseppe de Maria,

Ciro Natale and Salvatore Pirozzi



Induction Motor Control Design
Riccardo Marino, Patrizio Tomei
and Cristiano M. Verrelli

Fractional-order Systems and Controls
Concepcion A. Monje, YangQuan Chen,
Blas M. Vinagre, Dingyu Xue and Vincente
Feliu

Model Predictive Control of Wastewater
Systems
Carlos Ocampo-Martinez

Wastewater Systems
Carlos Ocampo-Martinez

Tandem Cold Metal Rolling Mill Control
John Pitter and Marwan A. Simaan


	Control and Monitoring of Chemical Batch Reactors
	Series Editors' Foreword
	Preface
	Acknowledgements
	Contents

	Introduction
	Overview of the Main Topics
	The Batch Reactor
	The Case Study

	Identification of Mathematical Models
	Thermal Stability
	Control of Batch Reactors
	Fault Diagnosis for Chemical Batch Reactors
	Applications to Non-ideal Reactors
	Suggested Reading Paths

	The Chemical Batch Reactor
	Ideal Chemical Reactors
	The Rate of Chemical Reactions
	The Ideal Batch Reactor
	Conservation of Mass
	Conservation of Energy

	Introducing the Case Study
	Components
	Reactions

	A General Model for a Network of Nonchain Reactions
	Measuring the Reactor Status
	Measurements Quality
	Online Measurements
	Offline Measurements

	Manipulating the Reactor Status
	Conclusions
	References

	Identification of Kinetic Parameters
	Bayesian Approach and Popper's Falsificationism
	Experimental Data and Mathematical Models
	Maximum Likelihood and Least Squares Criteria
	Optimization for Models Linear in the Parameters
	Optimization for Models Nonlinear in the Parameters
	Steepest Descent Algorithm
	Newton-Raphson Algorithm
	Levenberg-Marquardt Algorithm

	Implicit Models
	Statistical Analysis of the Results
	Case Study: Identification of Reduced Kinetic Models
	Reduced Models
	Generation of Data for Identification
	Estimating the Kinetic Parameters
	Estimating the Heats of Reaction
	Validation of the Reduced Models

	Conclusions
	References

	Thermal Stability
	Runaway in Chemical Batch Reactors
	Dimensionless Mathematical Model
	Adiabatic Reactor
	Isoperibolic Reactor
	The Semenov Theory
	Geometry-based Runaway Criteria
	Sensitivity-based Runaway Criteria

	Operation Limited by the Maximum Allowable Temperature
	Case Study: Runaway Boundaries
	Conclusions
	References

	Model-based Control
	Control Strategies for Batch Reactors
	PID Regulator
	Model Predictive Control 
	Feedback Linearization
	Input-Output Linearization
	Generic Model Control

	State-Space Model for Control Design
	Estimation of the Heat Released by Reaction
	Model-Based Nonlinear Observer
	Model-Free Approaches
	Approach Based on Universal Interpolators
	A Classical Model-Free Approach


	Adaptive Two-Loop Control Scheme
	Case Study: Temperature Control
	Simulation Model
	Design of the Controller-Observer Scheme
	Discussion of Results
	Comparison with the PID Controller

	Conclusions
	References

	Fault Diagnosis
	Fault Diagnosis Strategies for Batch Reactors
	Model-Free Approaches
	Model-Based Approaches

	Basic Principles of Model-Based Fault Diagnosis
	Residual Generation
	Decision Making System and Fault Isolation

	Fault Diagnosis for Chemical Batch Reactors
	Fault Characterization
	Architecture of the Fault Diagnosis Scheme

	Sensor Fault Diagnosis
	Residuals Generation and Fault Isolation
	Determination of the Healthy Signal
	Voter procedure


	Actuator and Process Fault Diagnosis
	Fault Detection
	Fault Isolation and Identification

	Decoupling Sensor Faults from Process and Actuator Faults
	Case Study: Fault Diagnosis
	Simulation Results: Sensor Faults
	Simulation Results: Process and Actuator Faults
	Simulation Results: Sensor and Actuator Faults

	Conclusions
	References

	Applications to Nonideal Reactors
	Nonideal Batch Reactors
	Nonideal Mixing
	Multiphase Batch Reactors
	Scaling-up the Information
	Basic Ideas of Scale-up
	The Scale-up of Real Batch Reactors

	Suggestions and Conclusions
	References

	Appendix A Proofs
	Proof of Theorem 5.1
	Proof of Theorem 5.2
	Proof of Theorem 5.3
	Proof of Theorem 5.4
	Proof of Theorem 6.1
	Proof of Theorem 6.2
	References


	Index


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing false
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




