
Peter Corke

Robotics,
 Vision
 and
 Control

123

FUNDAMENTAL

ALGORITHMS

IN MATL AB®

Springer Tracts in Advanced Robotics
Volume 73

Editors: Bruno Siciliano · Oussama Khatib

Robotics,
Vision and Control
Fundamental Algorithms in MATLAB®

Peter Corke

With 393 Images

Additional material is provided at www.petercorke.com/RVC

ISBN 978-3-642-20143-1 e-ISBN 978-3-642-20144-8

DOI 10.1007/978-3-642-20144-8

Springer Tracts in Advanced Robotics ISSN 1610-7438

Library of Congress Control Number: 2011934624

© Springer-Verlag Berlin Heidelberg, first edition 2011, corrected second printing 2013

This work is subject to copyright. All rights are reserved, whether the whole or part of the material

is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitations, broad-

casting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of

this publication or parts thereof is permitted only under the provisions of the German Copyright

Law of September 9, 1965, in its current version, and permission for use must always be obtained

from Springer. Violations are liable to prosecution under the German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this publication does

not imply, even in the absence of a specific statement, that such names are exempt from the rel-

evant protective laws and regulations and therefore free for general use.

Production: Armin Stasch and Scientific Publishing Services Pvt. Ltd. Chennai, India

Typesetting and layout: Büro Stasch · Bayreuth (stasch@stasch.com)

Printed on acid-free paper

9 8 7 6 5 4 3 2

springer.com

Professor Bruno Siciliano

Dipartimento di Informatica e Sistemistica, Università di Napoli Federico II,

Via Claudio 21, 80125 Napoli, Italy, E-mail: siciliano@unina.it

Professor Oussama Khatib

Artificial Intelligence Laboratory, Department of Computer Science,

Stanford University, Stanford, CA 94305-9010, USA, E-mail: khatib@cs.stanford.edu

Author

Peter Corke

School of Electrical Engineering and Computer Science

Queensland University of Technology (QUT)

Brisbane QLD 4000

Australia

e-mail: rvc@petercorke.com

Editorial Advisory Board

Oliver Brock, TU Berlin, Germany

Herman Bruyninckx, KU Leuven, Belgium

Raja Chatila, LAAS, France

Henrik Christensen, Georgia Tech, USA

Peter Corke, Queensland Univ. Technology, Australia

Paolo Dario, Scuola S. Anna Pisa, Italy

Rüdiger Dillmann, Univ. Karlsruhe, Germany

Ken Goldberg, UC Berkeley, USA

John Hollerbach, Univ. Utah, USA

Makoto Kaneko, Osaka Univ., Japan

Lydia Kavraki, Rice Univ., USA

Vijay Kumar, Univ. Pennsylvania, USA

Sukhan Lee, Sungkyunkwan Univ., Korea

Frank Park, Seoul National Univ., Korea

Tim Salcudean, Univ. British Columbia, Canada

Roland Siegwart, ETH Zurich, Switzerland

Gaurav Sukhatme, Univ. Southern California, USA

Sebastian Thrun, Stanford Univ., USA

Yangsheng Xu, Chinese Univ. Hong Kong, PRC

Shin’ichi Yuta, Tsukuba Univ., Japan

STAR (Springer Tracts in Advanced Robotics) has been promoted un-

der the auspices of EURON (European Robotics Research Network)

To my family Phillipa, Lucy and Madeline for their indulgence and support;
my parents Margaret and David for kindling my curiosity;

and to Lou Paul who planted the seed that became this book.

Once upon a time, a very thick document of a dissertation from a faraway land came
to me for evaluation. Visual robot control was the thesis theme and Peter Corke was its
author. Here, I am reminded of an excerpt of my comments, which reads, this is a
masterful document, a quality of thesis one would like all of one’s students to strive for,
knowing very few could attain – very well considered and executed.

The connection between robotics and vision has been, for over two decades, the
central thread of Peter Corke’s productive investigations and successful developments
and implementations. This rare experience is bearing fruit in his new book on Robotics,
Vision, and Control. In its melding of theory and application, this new book has con-
siderably benefited from the author’s unique mix of academic and real-world appli-
cation influences through his many years of work in robotic mining, flying, under-
water, and field robotics.

There have been numerous textbooks in robotics and vision, but few have reached
the level of integration, analysis, dissection, and practical illustrations evidenced in
this book. The discussion is thorough, the narrative is remarkably informative and
accessible, and the overall impression is of a significant contribution for researchers
and future investigators in our field. Most every element that could be considered as
relevant to the task seems to have been analyzed and incorporated, and the effective
use of Toolbox software echoes this thoroughness.

The reader is taken on a realistic walkthrough the fundamentals of mobile robots,
navigation, localization, manipulator-arm kinematics, dynamics, and joint-level con-
trol, as well as camera modeling, image processing, feature extraction, and multi-
view geometry. These areas are finally brought together through extensive discus-
sion of visual servo system. In the process, the author provides insights into how
complex problems can be decomposed and solved using powerful numerical tools
and effective software.

The Springer Tracts in Advanced Robotics (STAR) is devoted to bringing to the
research community the latest advances in the robotics field on the basis of their
significance and quality. Through a wide and timely dissemination of critical research
developments in robotics, our objective with this series is to promote more exchanges
and collaborations among the researchers in the community and contribute to fur-
ther advancements in this rapidly growing field.

Peter Corke brings a great addition to our STAR series with an authoritative book,
reaching across fields, thoughtfully conceived and brilliantly accomplished.

Oussama Khatib
Stanford, California

July 2011

Foreword

Preface

Tell me and I will forget.
Show me and I will remember.

Involve me and I will understand.
Chinese proverb

The practice of robotics and machine vision involves the application of algorithms to
data. The data comes from sensors measuring the velocity of a wheel, the angle of a
robot arm’s joint or the intensities of millions of pixels that comprise an image of the
world that the robot is observing. For many robotic applications the amount of data
that needs to be processed, in real-time, is massive. For vision it can be of the order of
tens to hundreds of megabytes per second.

Progress in robots and machine vision has been, and continues to be, driven by
more effective ways to process data. This is achieved through new and more efficient
algorithms, and the dramatic increase in computational power that follows Moore’s
law. When I started in robotics and vision, in the mid 1980s, the IBM PC had been
recently released – it had a 4.77 MHz 16-bit microprocessor and 16 kbytes (expand-
able to 256 k) of memory. Over the intervening 25 years computing power has doubled
16 times which is an increase by a factor of 65 000. In the late 1980s systems capable
of real-time image processing were large 19 inch racks of equipment such as shown
in Fig. 0.1. Today there is far more computing in just a small corner of a modern
microprocessor chip.

Over the fairly recent history of robotics and machine vision a very large body of
algorithms has been developed – a significant, tangible, and collective achievement of
the research community. However its sheer size and complexity presents a barrier to
somebody entering the field. Given the many algorithms from which to choose the
obvious question is:

What is the right algorithm for this particular problem?

One strategy would be to try a few different algorithms and see which works best
for the problem at hand but this raises the next question:

How can I evaluate algorithm X on my own data without spending days coding and
debugging it from the original research papers?

Fig. 0.1.

Once upon a time a lot of
equipment was needed to do

vision-based robot control. The
author with a large rack full of

image processing and robot
control equipment (1992)

xii

Two developments come to our aid. The first is the availability of general purpose
mathematical software which it makes it easy to prototype algorithms. There are com-
mercial packages such as MATLAB®, Mathematica and MathCad,� and open source
projects include SciLab, Octave, and PyLab. All these tools deal naturally and effort-
lessly with vectors and matrices, can create complex and beautiful graphics, and can
be used interactively or as a programming environment. The second is the open-source
movement. Many algorithms developed by researchers are available in open-source
form. They might be coded in one of the general purpose mathematical languages just
mentioned, or written in a mainstream language like C, C++ or Java.

For more than fifteen years I have been part of the open-source community and
maintained two open-source MATLAB® Toolboxes: one for robotics and one for
machine vision. They date back to my own PhD work and have evolved since then,
growing features and tracking changes to the MATLAB® language (which have been
significant over that period). The Robotics Toolbox has also been translated into a
number of different languages such as Python, SciLab and LabView.

The Toolboxes have some important virtues. Firstly, they have been around for a
long time and used by many people for many different problems so the code is entitled
to some level of trust. The Toolbox provides a “gold standard” with which to compare
new algorithms or even the same algorithms coded in new languages or executing in
new environments.

Secondly, they allow the user to work with real problems, not trivial examples. For
real robots, those with more than two links, or real images with millions of pixels the
computation is beyond unaided human ability. Thirdly, they allow us to gain insight
which is otherwise lost in the complexity. We can rapidly and easily experiment, play
what if games, and depict the results graphically using MATLAB®’s powerful display
tools such as 2D and 3D graphs and images.

Fourthly, the Toolbox code makes many common algorithms tangible and acces-
sible. You can read the code, you can apply it to your own problems, and you can ex-
tend it or rewrite it. At the very least it gives you a headstart.

The Toolboxes were always accompanied by short tutorials as well as reference mate-
rial. Over the years many people have urged me to turn this into a book and finally it
has happened! The purpose of this book is to expand on the tutorial material provided
with the Toolboxes, add many more examples, and to weave it into a narrative that
covers robotics and computer vision separately and together. I want to show how com-
plex problems can be decomposed and solved using just a few simple lines of code.

By inclination I am a hands on person. I like to program and I like to analyze data,
so it has always seemed natural to me to build tools to solve problems in robotics and
vision. The topics covered in this book are based on my own interests but also guided
by real problems that I observed over many years as a practitioner of both robotics
and computer vision. I hope that by the end of this book you will share my enthusiasm
for these topics.

I was particularly motivated to present a solid introduction to machine vision for
roboticists. The treatment of vision in robotics textbooks tends to concentrate on simple
binary vision techniques. In the book we will cover a broad range of topics including
color vision, advanced segmentation techniques such as maximally stable extremal
regions and graphcuts, image warping, stereo vision, motion estimation and image
retrieval. We also cover non-perspective imaging using fisheye lenses and catadioptric
optics. These topics are growing in importance for robotics but are not commonly
covered. Vision is a powerful sensor, and roboticists should have a solid grounding in
modern fundamentals. The last part of the book shows how vision can be used as the
primary sensor for robot control.

This book is unlike other text books, and deliberately so. Firstly, there are already a
number of excellent text books that cover robotics and computer vision separately
and in depth, but few that cover both in an integrated fashion. Achieving this integra-
tion is a principal goal of this book.

Respectively the trademarks of

The Mathworks Inc., Wolfram

Research, and PTC.

Preface

xiii

Secondly, software is a first-class citizen in this book. Software is a tangible instanti-
ation of the algorithms described – it can be read and it can be pulled apart, modified
and put back together again. There are a number of classic books that use software in
this illustrative fashion for problem solving. In this respect I’ve been influenced by
books such as LaTeX: A document preparation system (Lamport 1994), Numerical Reci-
pes in C (Press et al. 2007), The Little Lisper (Friedman et al. 1987) and Structure and
Interpretation of Classical Mechanics (Sussman et al. 2001). The many examples in this
book illustrate how the Toolbox software can be used and generally provide instant
gratification in just a couple of lines of MATLAB® code.

Thirdly, building the book around MATLAB® and the Toolboxes means that we are
able to tackle more realistic and more complex problems than other books.

The emphasis on software and examples does not mean that rigour and theory are
unimportant, they are very important, but this book provides a complementary ap-
proach. It is best read in conjunction with standard texts which provide rigour and
theoretical nourishment. The end of each chapter has a section on further reading and
provides pointers to relevant textbooks and key papers.

Writing this book provided a good opportunity to look critically at the Toolboxes
and to revise and extend the code. In particular I’ve made much greater use of the
ever-evolving object-oriented features of MATLAB® to simplify the user interface and
to reduce the number of separate files within the Toolboxes.

The rewrite also made me look more widely at complementary open-source code.
There is a lot of great code out there, particularly on the computer vision side, so
rather than reinvent some wheels I’ve tried to integrate the best code I could find for
particular algorithms. The complication is that every author has their own naming
conventions and preferences about data organization, from simple matters like the use
of row or column vectors to more complex issues involving structures – arrays of struc-
tures or structures of arrays. My solution has been, as much as possible, to not modify
any of these packages but to encapsulate them with light weight wrappers, particu-
larly as classes.

I am grateful to the following for code that has been either incorporated into the
Toolboxes or which has been wrapped into the Toolboxes. Robotics Toolbox contribu-
tions include: mobile robot localization and mapping by Paul Newman at Oxford and
a quadrotor simulator by Paul Pounds at Yale. Machine Vision Toolbox contributions
include: RANSAC code by Peter Kovesi; pose estimation by Francesco Moreno-Noguer,
Vincent Lepetit, Pascal Fua at the CVLab-EPFL; color space conversions by Pascal
Getreuer; numerical routines for geometric vision by various members of the Visual
Geometry Group at Oxford (from the web site of the Hartley and Zisserman book;
Hartley and Zisserman 2003); the k-means and MSER algorithms by Andrea Vedaldi
and Brian Fulkerson; the graph-based image segmentation software by Pedro
Felzenszwalb; and the SURF feature detector by Dirk-Jan Kroon at U. Twente. The Cam-
era Calibration Toolbox by Jean-Yves Bouguet is used unmodified.

Along the way I got interested in the mathematicians, physicists and engineers whose
work, hundreds of years later, is critical to the science of robotic and vision today.
Some of their names have become adjectives like Coriolis, Gaussian, Laplacian or Car-
tesian; nouns like Jacobian, or units like Newton and Coulomb. They are interesting
characters from a distant era when science was a hobby and their day jobs were as
doctors, alchemists, gamblers, astrologers, philosophers or mercenaries. In order to
know whose shoulders we are standing on I have included small vignettes about the
lives of these people – a smattering of history as a backstory.

In my own career I have had the good fortune to work with many wonderful people
who have inspired and guided me. Long ago at the University of Melbourne John Ander-
son fired my interest in control and Graham Holmes encouraged me to “think before I
code” – excellent advice that I still struggle to heed. Early on I spent a life-direction-
changing ten months working with Richard (Lou) Paul in the GRASP laboratory at the
University of Pennsylvania in the period 1988–1989. The genesis of the Toolboxes was my

Preface

xiv

PhD research (1991–1994) and my advisors Malcolm Good (University of Melbourne)
and Paul Dunn (CSIRO) asked me good questions and guided my research. Laszlo
Nemes provided sage advice about life and the ways of organizations and encouraged
me to publish and to open-source my software. Much of my career was spent at CSIRO
where I had the privilege and opportunity to work on a diverse range of real robotics
projects and to work with a truly talented set of colleagues and friends. Mid book I
joined Queensland University of Technology which has generously made time avail-
able to me to complete the project. My former students Jasmine Banks, Kane Usher,
Paul Pounds and Peter Hansen taught me a lot of about stereo, non-holonomy, quad-
copters and wide-angle vision respectively.

I would like to thank Paul Newman for generously hosting me several times at Oxford
where significant sections of the book were written, and Daniela Rus for hosting me at
MIT for a burst of intense writing that was the first complete book draft. Daniela, Paul
and Cédric Pradalier made constructive suggestions and comments on early drafts of
the material. I would also like to thank the MathWorks, the publishers of MATLAB®
for the support they offered me through their author program. Springer have been
enormously supportive of the whole project and a pleasure to work with. I would spe-
cially like to thank Thomas Ditzinger, my editor, and Armin Stasch for the layout and
typesetting which has transformed my manuscript into a book.

I have tried my hardest to eliminate errors but inevitably some will remain. Please
email bug reports to me at rvc@petercorke.com as well as suggestions for improve-
ments and extensions.

Finally, it can’t be easy living with a writer – there are books and websites devoted
to this topic. My deepest thanks are to Phillipa for supporting and encouraging me in
the endeavour and living with “the book” for so long and in so many different places.

Peter Corke
Brisbane, Queensland

June 2011

Preface

Note on the Second Printing

The second printing of the book provides an opportunity to correct some of the errors
in the first printing. I am very grateful to the following people for their help in finding
these errors: Walter Lucia, Michael Mustillo, Mark Sheehan, Jana Kosecka, Do Nguyen
Tien Thong, Jeff Trinkle, Muhammad Tufail, Frederic Maire, Nino Cauli, Ugo Fabrizi,
Liam O'Sullivan, Bassam Salameh, Rafael Perrone, Henry Carrillo Lindado, João Pinto,
Stephen Fox, David Breneisen, and Richard Roberts.

Contents

1 Introduction . 1
1.1 About the Book . 6

1.1.1 The MATLAB Software . 7
1.1.2 Audience and Prerequisites . 8
1.1.3 Notation and Conventions . 9
1.1.4 How to Use the Book . 9
1.1.5 Teaching with the Book . 10
1.1.6 Outline . 10

Part I Foundations . 13

2 Representing Position and Orientation . 15
2.1 Representing Pose in 2-Dimensions . 19
2.2 Representing Pose in 3-Dimensions . 24

2.2.1 Representing Orientation in 3-Dimensions . 25
2.2.2 Combining Translation and Orientation . 37

2.3 Wrapping Up . 39
Further Reading . 40
Exercises . 41

3 Time and Motion . 43
3.1 Trajectories . 43

3.1.1 Smooth One-Dimensional Trajectories . 43
3.1.2 Multi-Dimensional Case . 46
3.1.3 Multi-Segment Trajectories . 46
3.1.4 Interpolation of Orientation in 3D . 48
3.1.5 Cartesian Motion . 49

3.2 Time Varying Coordinate Frames . 51
3.2.1 Rotating Coordinate Frame . 51
3.2.2 Incremental Motion . 52
3.2.3 Inertial Navigation Systems . 53

3.3 Wrapping Up . 56
Further Reading . 56
Exercises . 56

Part II Mobile Robots . 59

4 Mobile Robot Vehicles . 65
4.1 Mobility . 65
4.2 Car-like Mobile Robots . 67

4.2.1 Moving to a Point . 71
4.2.2 Following a Line . 72
4.2.3 Following a Path . 74
4.2.4 Moving to a Pose . 75

xvi Contents

4.3 Flying Robots . 78
4.4 Wrapping Up . 84

Further Reading . 84
Exercises . 85

5 Navigation . 87
5.1 Reactive Navigation . 88

5.1.1 Braitenberg Vehicles . 88
5.1.2 Simple Automata . 90

5.2 Map-Based Planning . 91
5.2.1 Distance Transform . 93
5.2.2 D* . 95
5.2.3 Voronoi Roadmap Method . 97
5.2.4 Probabilistic Roadmap Method . 99
5.2.5 RRT . 102

5.3 Wrapping Up . 104
Further Reading . 105
Exercises . 106

6 Localization . 107
6.1 Dead Reckoning . 111

6.1.1 Modeling the Vehicle . 111
6.1.2 Estimating Pose . 113

6.2 Using a Map . 116
6.3 Creating a Map . 120
6.4 Localization and Mapping . 123
6.5 Monte-Carlo Localization . 125
6.6 Wrapping Up . 128

Further Reading . 129
Notes on Toolbox Implementation . 130
Exercises . 130

Part III Arm-Type Robots . 133

7 Robot Arm Kinematics . 137
7.1 Describing a Robot Arm . 137
7.2 Forward Kinematics . 140

7.2.1 A 2-Link Robot . 141
7.2.2 A 6-Axis Robot . 143

7.3 Inverse Kinematics . 146
7.3.1 Closed-Form Solution . 146
7.3.2 Numerical Solution . 149
7.3.3 Under-Actuated Manipulator . 149
7.3.4 Redundant Manipulator . 150

7.4 Trajectories . 152
7.4.1 Joint-Space Motion . 153
7.4.2 Cartesian Motion . 155
7.4.3 Motion through a Singularity . 156
7.4.4 Configuration Change . 157

7.5 Advanced Topics . 158
7.5.1 Joint Angle Offsets . 158
7.5.2 Determining Denavit-Hartenberg Parameters 159
7.5.3 Modified Denavit-Hartenberg Notation . 160

7.6 Application: Drawing . 162

xviiContents

7.7 Application: a Simple Walking Robot . 163
7.7.1 Kinematics . 163
7.7.2 Motion of One Leg . 165
7.7.3 Motion of Four Legs . 166

7.8 Wrapping Up . 167
Further Reading . 168
The plot Method . 168
Exercises . 170

8 Velocity Relationships . 171
8.1 Manipulator Jacobian . 171

8.1.1 Transforming Velocities
between Coordinate Frames . 174

8.1.2 Jacobian in the End-Effector Coordinate Frame 175
8.1.3 Analytical Jacobian . 176
8.1.4 Jacobian Condition and Manipulability . 177

8.2 Resolved-Rate Motion Control . 180
8.2.1 Jacobian Singularity . 182
8.2.2 Jacobian for Under-Actuated Robot . 183
8.2.3 Jacobian for Over-Actuated Robot . 184

8.3 Force Relationships . 186
8.3.1 Transforming Wrenches between Frames . 186
8.3.2 Transforming Wrenches to Joint Space . 186

8.4 Inverse Kinematics: a General Numerical Approach . 187
8.5 Wrapping Up . 188

Further Reading . 189
Exercises . 189

9 Dynamics and Control . 191
9.1 Equations of Motion . 191

9.1.1 Gravity Term . 193
9.1.2 Inertia Matrix . 195
9.1.3 Coriolis Matrix . 196
9.1.4 Effect of Payload . 197
9.1.5 Base Force . 198
9.1.6 Dynamic Manipulability . 198

9.2 Drive Train . 200
9.2.1 Friction . 201

9.3 Forward Dynamics . 202
9.4 Manipulator Joint Control . 204

9.4.1 Actuators . 204
9.4.2 Independent Joint Control . 204
9.4.3 Rigid-Body Dynamics Compensation . 211
9.4.4 Flexible Transmission . 213

9.5 Wrapping Up . 215
Further Reading . 216
Exercises . 217

Part IV Computer Vision . 219

10 Light and Color . 223
10.1 Spectral Representation of Light . 223

10.1.1 Absorption . 225
10.1.2 Reflection . 226

xviii Contents

10.2 Color . 227
10.2.1 Reproducing Colors . 230
10.2.2 Chromaticity Space . 233
10.2.3 Color Names . 236
10.2.4 Other Color Spaces . 236
10.2.5 Transforming between Different Primaries . 238
10.2.6 What Is White? . 240

10.3 Advanced Topics . 240
10.3.1 Color Constancy . 241
10.3.2 White Balancing . 241
10.3.3 Color Change Due to Absorption . 242
10.3.4 Gamma . 243
10.3.5 Application: Color Image . 245

10.4 Wrapping Up . 247
Further Reading . 248
Data Sources . 249
Exercises . 249

11 Image Formation . 251
11.1 Perspective Transform . 251

11.1.1 Lens Distortion . 261
11.2 Camera Calibration . 262

11.2.1 Homogeneous Transformation Approach . 262
11.2.2 Decomposing the Camera Calibration Matrix . 264
11.2.3 Pose Estimation . 266
11.2.4 Camera Calibration Toolbox . 266

11.3 Non-Perspective Imaging Models . 269
11.3.1 Fisheye Lens Camera . 270
11.3.2 Catadioptric Camera . 272
11.3.3 Spherical Camera . 274

11.4 Unified Imaging . 275
11.4.1 Mapping Wide-Angle Images

to the Sphere . 276
11.4.2 Synthetic Perspective Images . 278

11.5 Wrapping Up . 280
Further Reading . 280
Camera Classes . 282
Exercises . 283

12 Image Processing . 285
12.1 Obtaining an Image . 285

12.1.1 Images from Files . 285
12.1.2 Images from an Attached Camera . 289
12.1.3 Images from a Movie File . 289
12.1.4 Images from the Web . 290
12.1.5 Images from Code . 291

12.2 Monadic Operations . 293
12.3 Diadic Operations . 296
12.4 Spatial Operations . 299

12.4.1 Convolution . 300
12.4.2 Template Matching . 311
12.4.3 Non-Linear Operations . 316

12.5 Mathematical Morphology . 317
12.5.1 Noise Removal . 321

xixContents

12.5.2 Boundary Detection . 322
12.5.3 Hit and Miss Transform . 322

12.6 Shape Changing . 324
12.6.1 Cropping . 324
12.6.2 Image Resizing . 324
12.6.3 Image Pyramids . 326
12.6.4 Image Warping . 327

12.7 Wrapping Up . 330
Further Reading . 330
Sources of Image Data . 332
MATLAB® Software Tools . 332
General Software Tools . 332
Exercises . 333

13 Image Feature Extraction . 335
13.1 Region Features . 337

13.1.1 Classification . 337
13.1.2 Representation . 346
13.1.3 Description . 350
13.1.4 Recap . 360

13.2 Line Features . 361
13.3 Point Features . 365

13.3.1 Classical Corner Detectors . 366
13.3.2 Scale-Space Corner Detectors . 371

13.4 Wrapping Up . 376
Further Reading . 376
Exercises . 378

14 Using Multiple Images . 381
14.1 Feature Correspondence . 382
14.2 Geometry of Multiple Views . 386

14.2.1 The Fundamental Matrix . 388
14.2.2 The Essential Matrix . 390
14.2.3 Estimating the Fundamental Matrix . 391
14.2.4 Planar Homography . 396

14.3 Stereo Vision . 401
14.3.1 Sparse Stereo . 401
14.3.2 Dense Stereo Matching . 405
14.3.3 Peak Refinement . 412
14.3.4 Cleaning up and Reconstruction . 413
14.3.5 3D Texture Mapped Display . 415
14.3.6 Anaglyphs . 416
14.3.7 Image Rectification . 417
14.3.8 Plane Fitting . 419
14.3.9 Matching Sets of 3D Points . 420

14.4 Structure and Motion . 422
14.5 Application: Perspective Correction . 428
14.6 Application: Mosaicing . 431
14.7 Application: Image Matching and Retrieval . 433
14.8 Application: Image Sequence Processing . 439
14.9 Wrapping Up . 442

Further Reading . 442
Resources . 445
Exercises . 446

xx Contents

Part V Robotics, Vision and Control . 451

15 Vision-Based Control . 455
15.1 Position-Based Visual Servoing . 456
15.2 Image-Based Visual Servoing . 459

15.2.1 Camera and Image Motion . 460
15.2.2 Controlling Feature Motion . 464
15.2.3 Depth . 469
15.2.4 Performance Issues . 471

15.3 Using Other Image Features . 473
15.3.1 Line Features . 473
15.3.2 Circle Features . 474

15.4 Wrapping Up . 476
Further Reading . 476
Exercises . 478

16 Advanced Visual Servoing . 481
16.1 XY/Z-Partitioned IBVS . 481
16.2 IBVS Using Polar Coordinates . 484
16.3 IBVS for a Spherical Camera . 486
16.4 Application: Arm-Type Robot . 488
16.5 Application: Mobile Robot . 489

16.5.1 Holonomic Mobile Robot . 489
16.5.2 Non-Holonomic Mobile Robot . 491

16.6 Application: Aerial Robot . 492
16.7 Wrapping Up . 494

Further Reading . 494
Exercises . 495

Appendices . 497

A Installing the Toolboxes . 499
B Simulink® . 501
C MATLAB® Objects . 505
D Linear Algebra Refresher . 511
E Ellipses . 517
F Gaussian Random Variables . 523
G Jacobians . 527
H Kalman Filter . 529
I Homogeneous Coordinates . 533
J Graphs . 535
K Peak Finding . 539

Bibliography . 543

Index . 553
Index of People . 553
Index of Functions, Classes and Methods . 554
General Index . 558

Nomenclature

The notation used in robotics and computer vision varies considerably from book to book.
The symbols used in this book, and their units where appropriate, are listed below. Some
symbols have multiple meanings and their context must be used to disambiguate them.

The elements of a vector x[i] or a matrix x[i, j] are indicated by square brackets. The
elements of a time series xhki are indicated by angle brackets.

xxii Nomenclature

xxiiiNomenclature

xxiv

MATLAB® Toolbox Conventions

� A Cartesian coordinate, a point, is expressed as a column vector.
� A set of points is expressed as a matrix with columns representing the coordinates

of individual points.
� A rectangular region is represented by its top-left and bottom-right corners

[x
min

 x
max

; y
min

 y
max

].
� A robot configuration, a set of joint angles, is expressed as a row vector.
� Time series data is expressed as a matrix with rows representing time steps.
� A MATLAB® matrix has subscripts (i, j) which represent row and column respec-

tively. Image coordinates are written (u, v) so an image represented by a matrix I is
indexed as I(v, u).

� Matrices with three or more dimensions are frequently used:
– A color image has 3 dimensions: row, column, color plane.
– A greyscale image sequence has 3 dimensions: row, column, index
– A color image sequence has 4 dimensions: row, column, color plane, index
– A trajectory as a homogeneous transformation sequence has 3 dimensions: row,

column, index
� A pose in SE(3) is represented by a 4 × 4 matrix.
� An orientation in SO(3) is represented by a 3 × 3 matrix.
� A pose in SE(2) is represented by a 3 × 3 matrix.

Nomenclature

1
Chapter

The term robot means different things to different people. Science fiction books and
movies have strongly influenced what many people expect a robot to be or what it can
do. Sadly the practice of robotics is far behind this popular conception. One thing is
certain though – robotics will be an important technology in this century. Products
such as vacuum cleaning robots are the vanguard of a wave of smart machines that
will appear in our homes and workplaces.

In the eighteenth century the people of Europe were fascinated by automata such as
Vaucanson’s duck shown in Fig. 1.1a. These machines, complex by the standards of the
day, demonstrated what then seemed life-like behaviour. The duck used a cam mecha-
nism to sequence its movements and Vaucanson went on to explore mechanization of
silk weaving. Jacquard extended these ideas and developed a loom, shown in Fig. 1.1b,
that was essentially a programmable weaving machine. The pattern to be woven was
encoded as a series of holes on punched cards. This machine has many hallmarks of a
modern robot: it performed a physical task and was reprogrammable.

The term robot was coined in a 1921 Czech science fiction play “Rossum’s Universal
Robots” by Karel .apek. The robots were artificial people or androids and the word, in
Czech, is derived from the word for worker. In the play, as in so many robot stories that
follow, the robots rebel and it ends badly for humanity. Isaac Asimov’s robot series,
comprising many books and short stories written between 1950 and 1985, explored
issues of human and robot interaction and morality. The robots in these stories are
equipped with “positronic brains” in which the “Three laws of robotics” are encoded.
These stories have influenced subsequent books and movies which in turn have shaped
the public perception of what robots are. The mid twentieth century also saw the ad-
vent of the field of cybernetics – an uncommon term today but then an exciting sci-
ence at the frontiers of understanding life and creating intelligent machines.

The first patent for what we would now consider a robot was filed in 1954 by George
C. Devol and issued in 1961. The device comprised a mechanical arm with a gripper
that was mounted on tracks and the sequence of motions was encoded as magnetic
patterns stored on a rotating drum. The first robotics company, Unimation, was
founded by Devol and Joseph Engelberger in 1956 and their first industrial robot shown

Introduction

Fig. 1.1.

Early programmable machines.
a Vaucanson’s duck (1739) was

an automaton that could flap its
wings, eat grain and defecate. It

was driven by a clockwork mecha-
nism and executed a single pro-

gram; b The Jacquard loom (1801)
was a reprogrammable machine

and the program was held on
punched cards (photograph by

George P. Landow from
www.victorianweb.org)

2

in Fig. 1.2 was installed in 1961. The original vision of Devol and Engelberger for ro-
botic automation has become a reality and many millions of arm-type robots such as
shown in Fig. 1.3 have been built and put to work at tasks such as welding, painting,
machine loading and unloading, electronic assembly, packaging and palletising. The use
of robots has led to increased productivity and improved product quality. Rather than
take jobs it has helped to keep manufacturing industries viable in high-labour cost
countries. Today many products we buy have been assembled or handled by a robot.

These first generation robots are now a subclass of robotics known as manufactur-
ing robots. Other subclasses include service robots which supply services such as clean-
ing, personal assistance or medical rehabilitation; field robots which work outdoors
such as those shown in Fig. 1.4; and humanoid robots such as shown in Fig. 1.6b that
have the physical form of a human being.

A manufacturing robot is typically an arm-type manipulator on a fixed base that
performs repetitive tasks within a local work cell. Parts are presented to the robot in
an orderly fashion which maximizes the advantage of the robot’s high speed and pre-
cision. High-speed robots are hazardous and safety is achieved by excluding people
from robotic work places.

Field and service robots face specific and significant challenges. The first challenge
is that the robot must operate and move in a complex, cluttered and changing environ-
ment. A delivery robot in a hospital must operate despite crowds of people and a time-
varying configuration of parked carts and trolleys. A Mars rover must navigate rocks
and small craters despite not having an accurate local map in advance of its travel.
Robotic cars, such as demonstrated in the DARPA Grand Challenges (Buehler et al.
2007), must follow roads, obey traffic signals and the rules of the road.

The second challenge for these types of robots is that they must operate safely in
the presence of people. The hospital delivery robot operates amongst people, the ro-
botic car contains people and a robotic surgical device operates inside people.

Fig. 1.2.

Universal automation. a A plan
view of the machine from Devol’s
patent; b the first Unimation
robot working at a General
Motors factory (photo courtesy
of George C. Devol)

Fig. 1.3. A modern six-axis robot
from ABB that would be used for
factory automation. This type of
robot is a technological descen-
dant of the Unimate shown in
Fig. 1.2

Rossum’s Universal Robots (RUR). In the introductory scene Helena Glory is visiting Harry Domin
the director general of Rossum’s Universal Robots and his robotic secretary Sulla.

Domin Sulla, let Miss Glory have a look at you.
Helena (stands and offers her hand) Pleased to meet you. It must be very hard for you out here,
cut off from the rest of the world [the factory is on an island]
Sulla I do not know the rest of the world Miss Glory. Please sit down.
Helena (sits) Where are you from?
Sulla From here, the factory
Helena Oh, you were born here.
Sulla Yes I was made here.
Helena (startled) What?
Domin (laughing) Sulla isn’t a person, Miss Glory, she’s a robot.
Helena Oh, please forgive me …

The full play can be found at http://ebooks.adelaide.edu.au/c/capek/karel/rur. (Image on the
right: Library of Congress item 96524672)

Chapter 1 · Introduction

3

Joseph F. Engelberger (1925–) is an American engineer and entrepreneur who is often referred
to as the “Father of Robotics”. He received his B.S. and M.S. degrees in physics from Columbia
University, in 1946 and 1949, respectively. Engelberger has been a tireless promoter of robotics.
In 1966, he appeared on The Tonight Show Starring Johnny Carson with a Unimate robot which
poured a beer, putted a golf ball, and directed the band. He promoted robotics heavily in Japan,
which led to strong investment and development of robotic technology in that country, and
and gave testimony to Congress on the value of using automation in space. He has written two
books Robotics in Practice (1980) and Robotics in Service (1989), and the former was translated
into six languages.

Engelberger served as chief executive of Unimation until 1982, and in 1984 founded Transi-
tions Research Corporation which became HelpMate Robotics Inc. and was later sold. He re-
mains active in the promotion and development of robots for use in elder care. He was elected to
the National Academy of Engineering and received the Beckman Award and the Japan Prize. Each
year the Robotics Industries Association presents an award in his honour to “persons who have
contributed outstandingly to the furtherance of the science and practice of robotics.”

George Devol, Jr. (1912–2011) was a prolific American inventor. He was born in Louisville,
Kentucky, and in 1932 founded United Cinephone Corp. which manufactured phonograph arms
and amplifiers, registration controls for printing presses and packaging machines. In 1954, he
applied for US patent 2,988,237 for Programmed Article Transfer which introduced the con-
cept of Universal Automation or “Unimation”. Specifically it described a track-mounted polar-
coordinate arm mechanism with a gripper and a programmable controller – the precursor of
all modern robots.

In 2011 he was inducted into the National Inventors Hall of Fame. (Photo on the left: cour-
tesy of George C. Devol)

Fig. 1.4. Non land-based mobile
robots. a SeaBed type Autono-
mous Underwater Vehicle (AUV)
operated by the Australian Cen-
tre for Field Robotics (photo by
Roger T. Hanlon), b Global Hawk
unmanned aerial vehicle (UAV)
(photo: courtesy of NASA)

So what is a robot? There are many definitions and not all of them are particularly
helpful. A definition that will serve us well in this book is

a goal oriented machine that can sense, plan and act.

A robot senses its environment and uses that information, together with a goal, to
plan some action. The action might be to move the tool of an arm-robot to grasp an
object or it might be to drive a mobile robot to some place.

Sensing is critical to robots. Proprioceptive sensors measure the state of the robot
itself: the angle of the joints on a robot arm, the number of wheel revolutions on a mobile
robot or the current drawn by an electric motor. Exteroceptive sensors measure the state
of the world with respect to the robot. The sensor might be a simple contact switch on a
vacuum cleaner robot to detect collision. It might be a GPS receiver that measures dis-
tances to an orbiting satellite constellation, or a compass that measures the direction of
the Earth’s magnetic field relative to the robot’s heading. It might also be an active sensor

Chapter 1 · Introduction

4

Fig. 1.5.

Early results in computer vision
for estimating the shape and pose
of objects, from the PhD work of
L. G. Roberts at MIT Lincoln Lab
in 1963 (Roberts 1963). a Original
picture; b gradient image; c con-
nected feature points; d recon-
structed line drawing

Chapter 1 · Introduction

Cybernetics, artificial intelligence and robotics. Cybernetics flour-
ished as a research field from the 1930s until the 1960s and was
fueled by a heady mix of new ideas and results from neurology,
feedback, control and information theory. Research in neurology
had shown that the brain was an electrical network of neurons.
Harold Black, Henrik Bode and Harry Nyquist at Bell Labs were
researching negative feedback and the stability of electrical net-
works, Claude Shannon’s information theory described digital
signals, and Alan Turing was exploring the fundamentals of com-
putation. Walter Pitts and Warren McCulloch proposed an artifi-
cial neuron in 1943 and showed how it might perform simple logi-
cal functions. In 1951 Marvin Minsky built SNARC (from a B24
autopilot and comprising 3000 vacuum tubes) which was perhaps
the first neural-network-based learning machine as his graduate
project. William Grey Walter’s robotic tortoises showed life-life
behaviour. Maybe an electronic brain could be built!

An important early book was Norbert Wiener’s Cybernetics
or Control and Communication in the Animal and the Machine

(Wiener 1965). A characteristic of a cybernetic system is the use
of feedback which is common in engineering and biological sys-
tems. The ideas were later applied to evolutionary biology, psy-
chology and economics.

In 1956 a watershed conference was hosted by John McCarthy
at Dartmouth College and attended by Minsky, Shannon, Herbert
Simon, Allen Newell and others. This meeting defined the term
artificial intelligence (AI) as we know it today with an emphasis
on digital computers and symbolic manipulation and led to new
research in robotics, vision, natural language, semantics and rea-
soning. McCarthy and Minsky formed the AI group at MIT, and
McCarthy left in 1962 to form the Stanford AI Laboratory. Minsky
focused on artificially simple “blocks world”. Simon, and his stu-
dent Newell, were influential in AI research at Carnegie-Mellon
University from which the Robotics Institute was spawned in
1979. These AI groups were to be very influential in the develop-
ment of robotics and computer vision in the USA. Societies and
publications focusing on cybernetics are still active today.

that emits acoustic, optical or radio pulses in order to measure the distance to points
in the world based on the time taken for a reflection to return to the sensor.

A camera is a passive captures patterns of energy reflected from the scene. Our own
experience is that eyes are a very effective sensor for recognition, navigation, obstacle

5

avoidance and manipulation so vision has long been of interest to robotics research-
ers. Figure 1.5 shows early work in reconstructing a 3-dimensional wireframe model
from an image and gives some idea of the difficulties involved. An important limita-
tion of a single camera is that the 3-dimensional structure must be inferred from the
2-dimensional image. An alternative approach is stereo vision, using two or more cam-
eras, to compute the 3-dimensional structure of the world. The Mars rover shown in
Fig. 1.6a has a stereo camera on its mast.

In this book we focus on the use of cameras as sensors for robots. Machine vision,
discussed in Part IV, is the use of computers to process images from one or more cam-
eras and to extract numerical features. For example determining the coordinate of a
round red object in the scene, or how far a robot has moved based on how the world
appears to move relative to the robot.

If the robot’s environment is unchanging it can make do with an accurate map
and have little need to sense the state of the world, apart from determining where it
is. Imagine driving a car with the front window covered over and just looking at the
GPS navigation system. If you had the roads to yourself you could probably drive
from A to B quite successfully albeit slowly. However if there were other cars, pedes-
trians, traffic signals or roadworks then you would be in some difficulty. To deal with
this you need to look outwards – to sense the world and plan your actions accord-
ingly. For humans this is easy, done without conscious thought, but it is not easy to
program a machine to do the same.

Tele-robots are robot-like machines that are remotely controlled by a human op-
erator. Perhaps the earliest was a radio controlled boat demonstrated by Nikola Tesla
in 1898 and which he called a teleautomaton. According to the definition above these
are not robots but they were an important precursor to robots and are still important
today (Goldberg and Siegwart 2001; Goldberg 2001) for many tasks where people
cannot work but which are too complex for a machine to perform by itself. For
example the underwater robots that surveyed the wreck of the Titanic were techni-
cally remotely operated vehicles (ROVs). The Mars rovers Spirit and Opportunity

Fig. 1.6.

Two very different types of
mobile robots. a Mars rover.

Note the two cameras on the
mast which provide stereo

vision from which the robot can
compute the 3-dimensional

structure of its environment
(image courtesy of NASA/JPL/
Cornell University); b Honda’s
Asimo humanoid robot (photo

courtesy Honda Motor Co. Japan)

The Manhattan Project in World War 2 (WW II) developed the first nuclear weapons and this
required handling of radioactive material. Remotely controlled arms were developed by Ray
Goertz at Argonne National Laboratory to exploit the manual dexterity of human operators
while keeping them away from the hazards of the material they were handling. The operators
viewed the task they were doing through thick lead-glass windows or via a television link. Tele-
robotics is still important today for many tasks where people cannot work but which are too
complex for a machine to perform by itself, for instance the underwater robots that surveyed
the wreck of the Titanic. (Photo on the left: Courtesy Argonne National Laboratory)

Chapter 1 · Introduction

6

autonomously navigate the surface of Mars but human operators provide the high-
level goals. That is, the operators tell the robot where to go and the robot itself deter-
mines the details of the route. Local decision making on Mars is essential given that
the communications delay is several minutes. Some robots are hybrids and the con-
trol task is shared or traded with a human operator. In traded control, the control
function is passed back and forth between the human operator and the computer.
For example an aircraft pilot can pass control to an autopilot and take back control
back. In shared control, the control function is performed by the human operator
and the computer working together. For example an autonomous passenger car might
have the computer keeping the car in the lane and avoiding collisions, while the hu-
man operator just controls the speed.

1.1 lAbout the Book

This book is about robotics and computer vision – separately, and together as robotic
vision. These are big topics and the combined coverage is necessarily broad. The intent
is not to be shallow but rather to give the reader a flavour of what robotics and vision
is about and what it can do – consider it a grand tasting menu.

The goals of the book are:

� to provide a broad and solid base of understanding through theory and examples;
� to tackle more complex problems than other textbooks by virtue of the powerful

numerical tools and software that underpins it;
� to provide instant gratification by solving complex problems with relatively little code;
� to complement the many excellent texts in robotics and computer vision;
� to encourage intuition through hands on numerical experimentation; and
� to limit the number of equations presented to where (in my judgement) they add

value or clarity.

The approach used is to present background, theory and examples in an integrated
fashion. Code and examples are first-class citizens in this book and are not relegated
to the end of the chapter or an associated web site. The examples are woven into the
discussion like this

>> Ts = ctraj(T1, T2, t);
>> p = transl(Ts);
>> plot(t, p);

where the MATLAB® code illuminates the topic being discussed and generally re-
sults in a figure or a crisp numerical result that is then discussed. The examples il-
lustrate how to use the associated MATLAB® Toolboxes and that knowledge can
then be applied to other problems. Most of the figures in this book have been gen-
erated by the code examples provided – in fact the book is just one very large
MATLAB® script.

Unimation Inc. (1956–1982). Devol sought financing to develop his unimation technology and even-
tually met with Joseph Engelberger who was then an engineer with Manning, Maxwell and Moore.
In 1956 they jointly established Unimation, the first robotics company, in Danbury Connecticut.
The company was acquired by Consolidated Diesel Corp. (Condec) and became Unimate Inc. a
division of Condec. Their first robot went to work in 1961 at a General Motors die-casting plant in
New Jersey. In 1968 they licenced technology to Kawasaki Heavy Industries which produced the
first Japanese industrial robot. Engelberger served as chief executive until it was acquired by
Westinghouse in 1982. People and technologies from this company have gone on to be very influ-
ential on the whole field of robotics.

Chapter 1 · Introduction

7

1.1.1 lThe MATLAB® Software

To do good work, one must first have good tools.
Chinese proverb

The computational foundation of this book is MATLAB®, a product of The Mathworks
Inc. MATLAB® is an interactive mathematical software environment that makes linear
algebra, data analysis and high-quality graphics a breeze. MATLAB® is a popular pack-
age and one that is very likely to be familiar to students and researchers. It also sup-
ports a programming language which allows the creation of complex algorithms.

A strength of MATLAB® is its support for Toolboxes which are collections of func-
tions targeted at particular topics. Toolboxes are available from The MathWorks, third
party companies and individuals. Some Toolboxes are products and others are open-
source. This book is based on two open-source Toolboxes written by the author: the
Robotics Toolbox for MATLAB® and the Machine VisionToolbox for MATLAB®. These
Toolboxes, with MATLAB® turn a modern personal computer into a powerful and
convenient environment for investigating complex problems in robotics, machine vi-
sion and vision-based control. The Toolboxes are free to use and distributed under the
GNU Lesser General Public License (GNU LGPL).

The Robotics Toolbox (RTB) provides a diverse range of functions for simulating
mobile and arm-type robots. The original toolbox, dating back to the early 1990s, was
concerned only with arm-type robots and supported a very general method of repre-
senting the structure of serial-link manipulators using matrices and later MATLAB®
objects. Arbitrary serial-link manipulators could be created and the Toolbox provides
functions for forward and inverse kinematics and dynamics. The Toolbox includes
functions for manipulating and converting between datatypes such as vectors, homo-
geneous transformations, 3-angle representations and unit-quaternions which are nec-
essary to represent 3-dimensional position and orientation.

The Toolbox released with this book adds significant new functionality for simu-
lating mobile robots. The RTB now includes models of car-like vehicles and quadrotors
and controllers for these vehicles. It also provides standard algorithms for robot path
planning, localization and map making.

The Machine Vision Toolbox (MVTB) provides a rich collection of functions for
camera modeling, image processing, image feature extraction, multi-view geometry
and vision-based control. This Toolbox is younger than the Robotics Toolbox but it is

The MATLAB® software we use today has a long history. It starts with the LINPACK and EISPACK
projects run by the Argonne National Laboratory in the 1970s to produce high quality, tested and
portable mathematical software. LINPACK is a collection of routines for linear algebra and
EISPACK is a library of numerical algorithms for computing eigenvalues and eigenvectors of
matrices. These packages were written in Fortran which was then, and even today is, the language
of choice for large-scale numerical problems.

Cleve Moler, then at the University of New Mexico, contributed to both projects and wrote the
first version of MATLAB® in the late 1970s. It allowed interactive use of LINPACK and EISPACK
for problem solving without having to write and compile Fortran code. MATLAB® quickly spread
to other universities and found a strong audience within the applied mathematics and engineer-
ing community. In 1984 Cleve Moler and Jack Little founded The MathWorks Inc. which exploited
the newly released IBM PC – the first widely available desktop computer.

Cleve Moler received his bachelor’s degree from Caltech in 1961, and a Ph.D. from Stanford
University. He was a professor of mathematics and computer science at universities including
University of Michigan, Stanford University, and the University of New Mexico. He has served as
president of the Society for Industrial and Applied Mathematics (SIAM) and was elected to the
National Academy of Engineering in 1997.

See also http://www.mathworks.com/company/aboutus/founders/clevemoler.html which in-
cludes a video of Cleve Moler and also http://history.siam.org/pdfs2/Moler_final.pdf.

1.1 · About the Book

8

not a clone of the MATLAB® Image Processing Toolbox (IPT). Although there is some
common functionality the Machine Vision Toolbox predates IPT by many years. The
MVTB contains many functions for image acquisition and display; filtering; blob, point
and line feature extraction; mathematical morphology; image warping; stereo vision;
homography and fundamental matrix estimation; robust estimation; visual Jacobians;
geometric camera models; camera calibration and color space operations. For modest
image sizes on a modern computer the processing rate can be sufficiently “real-time”
to allow for closed-loop control.

The Toolboxes are provided in source code form. The bulk of the code is written in
the MATLAB® M-language but some functions are written in C for increased compu-
tational efficiency.� In general the Toolbox code is written in a straightforward man-
ner to facilitate understanding, perhaps at the expense of computational efficiency. If
you’re starting out in robotics or vision then the Toolboxes are a significant initial
base of code on which to build your project.

This book provides examples of the usage of many Toolbox functions in the con-
text of solving specific problems but it is not a reference manual. Comprehensive docu-
mentation of all Toolbox functions is available through MATLAB’s builtin help mecha-
nism. This approach allows the code to evolve and develop new features over time
while maintaining backward compatibility and not obsoleting the book.

Appendix A provides details of how to obtain the Toolboxes and pointers to online
resources including discussion groups.

1.1.2 lAudience and Prerequisites

The book is intended primarily for third or fourth year undergraduate students and
graduate students in their first year. For undergraduates the book will serve as a com-
panion text for a robotics or machine vision course or to support a major project in
robotics or vision. Students should study Part I and the appendices for foundational
concepts, and then the relevant part of the book: mobile robotics, arm robots, com-
puter vision or vision-based control. The Toolboxes provide a solid set of tools for
problem solving, and the exercises at the end of each chapter provide additional prob-
lems beyond the worked examples in the book.

For students commencing graduate study in robotics, and who have previously stud-
ied engineering or computer science, the book will help fill in the gaps between what you
learned as an undergraduate and what will be required to underpin your deeper study
of robotics and computer vision. The book’s working code base can help bootstrap your
research, enabling you to get started quickly and working productively on your own
problems and ideas. Since the source code is available you can reshape it to suit your
need, and when the time comes (as it usually does) to code your algorithms in some
other language then the Toolboxes can be used to cross-check your implementation.

For those who are no longer students, the researcher or industry practitioner, the
book will serve as a useful companion for your own reference to a wide range of topics
in robotics and computer vision, as well as a Handbook and guide for the Toolboxes.

The book assumes undergraduate-level knowledge of linear algebra (matrices, vec-
tors, eigenvalues), basic set theory, basic graph theory, probability, dynamics (forces,
torques, inertia), the Laplace transform and transfer functions, linear control (propor-
tional control, proportional-derivative control, proportional-integral control) and block
diagram notation. Computer science students are less likely to have encountered the
Laplace transform and classical control but this appears only in Sect. 9.4, and Hellerstein
et al. (2004) may be a useful introduction to the topics. The book also assumes the
reader is familiar with programming in MATLAB® and also familiar with object-ori-
ented programming techniques (perhaps C++, Java or Python). Familiarity with
Simulink®, MATLAB’s graphical block-diagram modeling tool will be helpful but not
essential. The appendices provide concise refreshers on many of these topics.

Chapter 1 · Introduction

These are implemented as MEX files,

which are written in C in a very specific

way that allows them to be invoked

from MATLAB® just like a function writ-

ten in M-language.

9

1.1.3 lNotation and Conventions

The mathematical notation used in the book is summarized in the nomenclature sec-
tion on page xvii. Since the coverage of the book is broad there are just not enough
good symbols to go around, so it is unavoidable that some symbols have different
meanings in different parts of the book.

There is a lot of MATLAB® code in the book and this is indicated in blue fixed-
width font such as

>> a = 2 + 2
a =
 4

The MATLAB® command prompt is >> and what follows is the command issued to
MATLAB® by the user. Subsequent lines, without the prompt, are MATLAB’s response.
All functions, classes and methods mentioned in the text or in code segments are cross-
referenced and have their own indexes at the end of the book. All the MATLAB® code
segments are available from the book’s web page as described in Appendix A. This
book is not a manual and although it illustrates the use of many functions within the
Toolbox the definitive source for information about all Toolbox functions is the online
documentation. Every MATLAB® and Toolbox function used in the code examples is
included in the index of functions on page 554 allowing you to find different ways that
particular functions have been used.

Colored boxes are used to indicate different types of material. Orange informa-
tional boxes highlight material that is particularly important while orange and red
warning boxes highlight points that are often traps for those starting out. Blue boxes
provide technical, historical or biographical information that augment the main text
but they are not critical to its understanding.

As an author there is a tension between completeness, clarity and conciseness. For
this reason a lot of detail has been pushed into notes⊳ and blue boxes and on a first
reading these can be skipped. However if you are trying to understand a particular
algorithm and apply it to your own problem then understanding the details and nu-
ances can be important and the notes are for you.

Each chapter ends with a Wrapping up section that summarizes the important les-
sons from the chapter, discusses some suggested further reading, and provides some
exercises. References are cited sparingly in the text of each chapter. The Further read-
ing subsection discusses prior work and references that provide more rigour or more
complete description of the algorithms. Exercises extend the concepts discussed within
the chapter and are generally related to specific code examples discussed in the chapter.
The exercises vary in difficulty from straightforward extension of the code examples to
more challenging problems.

1.1.4 lHow to Use the Book

The best way to learn is by doing. Although the book shows the MATLAB® commands
and the response there is something special about doing it for yourself. Consider the
book as an invitation to tinker. By running the commands yourself you can look at
the results in ways that you prefer, plot the results in a different way, or try the algo-
rithm on different data or with different parameters. You can also look at the online
documentation for the Toolbox functions, discover additional features and options,
and experiment with those, or read the code to see how it really works and then
modify it.

Most of the commands are quite short so typing them in to MATLAB® is not too
onerous. However the book’s web site, see Appendix A, includes all the MATLAB® com-
mands shown in the book (more than 1 600 lines) and these can be cut and pasted into
MATLAB® or downloaded and used to create your own scripts.

1.1 · About the Book

They are placed as marginal notes near

the corresponding marker.

10

1.1.5 lTeaching with the Book

The book can be used in support of courses in robotics, mechatronics and computer
vision. All courses should include the introduction to coordinate frames and their com-
position which is discussed in Chap. 2. For a mobile robotics or image processing course
it is sufficient to teach only the 2-dimensional case. For robotics or multi-view geometry
the 2- and 3-dimensional cases should be taught. Most figures (MATLAB-generated
and line drawings) in this book are available as a PDF format file from the book’s web
site and are free to use with attribution. All the code in this book can be downloaded
from the web site and used as the basis for demonstrations in lectures or tutorials.

The exercises at the end of each chapter can be used as the basis of assignments, or
as examples to be worked in class or in tutorials. Most of the questions are rather open
ended in order to encourage exploration and discovery of the effects of parameters
and the limits of performance of algorithms. This exploration should be supported by
discussion and debate about performance measures and what best means. True under-
standing of algorithms involves an appreciation of the effects of parameters, how al-
gorithms fail and under what circumstances.

The teaching approach could also be inverted, by diving headfirst into a particular
problem and then teaching the appropriate prerequisite material. Suitable problems
could be chosen from the Application sections of Chap. 7, 14 or 16, or from any of the
exercises. Particularly challenging exercises are so marked.

For graduate students the papers and textbooks mentioned in the Further Reading
could form the basis of a student’s reading list. They could also serve as candidate
papers for a reading group or journal club.

1.1.6 lOutline

I promised a book with instant gratification but before we can get started in robotics
there are some fundamental concepts that we absolutely need to understand, and
understand well. Part I introduces the concepts of pose and coordinate frames – how
we represent the position and orientation of a robot and objects that the robot needs
to work with. We discuss how motion between two poses can be decomposed into
elementary translations and rotations, and how elementary motions can be composed
into more complex motions. Chapter 2 discusses how pose can be represented in a
computer, and Chap. 3 discusses how we can generate a sequence of poses that smoothly
follow some path in space and time and the relationship between velocity and the
derivative of pose.

With these formalities out of the way we move on to the first main event – robots.
There are two important classes of robot: mobile robots and manipulator arms and
these are covered in Parts II and III respectively.

Part II begins, in Chap. 4, with a discussion of robot mobility which covers con-
cepts such as under-actuation and non-holonomy and then introduces motion mod-
els for a car-like vehicle and a quadrotor flying vehicle. Various control laws are dis-
cussed for the car-like vehicle such as moving to a point, following a path and moving
to a specific pose. Chapter 5 is concerned with navigation, that is, how a robot finds a
path between points A and B in the world. Two important cases, with and without a
map, are discussed. Most navigation techniques require knowledge of the robot’s posi-
tion and Chap. 6 discusses various approaches to this problem based on dead-reckon-
ing, or landmark observation and a map. We also show how a robot can make a map,
and even determine its location while simultaneously mapping an unknown region.

Part III is concerned with arm-type robots, or more precisely serial-link manipula-
tors. Manipulator arms are used for tasks such as assembly, welding, material handling
and even surgery. Chapter 7 introduces the topic of kinematics which relates the angles
of the robot’s joints to the 3-dimensional pose of the robot’s tool. Techniques to gener-

Chapter 1 · Introduction

11

ate smooth paths for the tool are discussed and two examples show how an arm-robot
can draw a letter on a surface and how multiple arms (acting as legs) can be used to
create a model for a simple walking robot. Chapter 8 discusses the relationships be-
tween the rates of change of joint angles and tool pose. It introduces the Jacobian
matrix and concepts such as singularities, manipulability, null-space motion, and re-
solved-rate motion control. It also discusses under- and over-actuated robots and the
general numerical solution to inverse kinematics. Chapter 9 introduces the dynamic
equations of motion for a serial-link manipulator and the relationship between joint
forces and joint motion. The design of joint control systems is discussed and covers
important topics such as variation in inertia and payload, flexible transmissions and
independent joint versus non-linear control strategies.

Computer vision is a large field concerned with processing images in order to en-
hance them for human benefit, interpret the contents of the scene or create a 3D model
corresponding to the scene. Part IV is concerned with machine vision, a subset of com-
puter vision, and defined here as the extraction of numerical features from images to
provide input for control of a robot. The discussion starts in Chap. 10 with the funda-
mentals of light, illumination and color. Chapter 11 describes the geometric model of
perspective image creation using lenses and discusses topics such as camera calibra-
tion and pose estimation. We also introduce non-perspective imaging using wide-angle
lenses and mirror systems and the relationship to perspective images. Chapter 12 dis-
cusses image processing which is a domain of 2-dimensional signal processing that
transforms one image into another image. The discussion starts with acquiring real-
world images and then covers various arithmetic and logical operations that can be
performed on images. We then introduce spatial operators such as convolution, seg-
mentation, morphological filtering and finally image shape and size changing. These
operations underpin the discussion in Chap. 13 which describe how numerical fea-
tures are extracted from images. The features describe homogeneous regions (blobs),
lines or distinct points in the scene and are the basis for vision-based robot control.
Chapter 14 discusses how features found in different views of the scene can provide
information about its underlying three-dimensional geometry and the spatial rela-
tionship between the camera views.

Part V discusses how visual features extracted from the camera’s view can be used
to control arm-type and mobile robots – an approach known as vision-based control or
visual servoing. This part pulls together concepts introduced in the earlier parts of the
book. Chapter 15 introduces the classical approaches to visual servoing known as posi-
tion-based and image-based visual servoing and discusses their respective limitations.
Chapter 16 discusses more recent approaches that address these limitations and also
covers the use of non-perspective cameras, under-actuated robots and mobile robots.

This is a big book but any one of the parts can be read standalone, with more or less
frequent visits to the required earlier material. Chapter 2 is the only mandatory mate-
rial. Parts II, III or IV could be read standalone for an introduction to mobile robots,
arm robots or machine vision respectively. An alternative approach, following the in-
stant gratification theme, is to jump straight into any chapter and start exploring –
visiting the earlier material as required.

1.1 · About the Book

Part I Foundations

Chapter 2 Representing Position and Orientation

Chapter 3 Time and Motion

2
Chapter

Representing Position
and Orientation

Fig. 2.1.

a The point P is described by a co-
ordinate vector with respect to an
absolute coordinate frame. b The
points are described with respect

to the object’s coordinate frame {B}
which in turn is described by a

relative pose ξB. Axes are deno-
ted by thick lines with an open

arrow, vectors by thin lines with a
swept arrow head and a pose by a

thick line with a solid head

Fig. 2.2.

The point P can be described by
coordinate vectors relative to

either frame {A} or {B}. The pose
of {B} relative to {A} is AξB

A fundamental requirement in robotics and computer vision is to represent
the position and orientation of objects in an environment. Such objects in-
clude robots, cameras, workpieces, obstacles and paths.

A point in space is a familiar concept from mathematics and can be de-
scribed by a coordinate vector, also known as a bound vector, as shown in
Fig. 2.1a. The vector represents the displacement of the point with respect
to some reference coordinate frame. A coordinate frame, or Cartesian coor-
dinate system, is a set of orthogonal axes which intersect at a point known
as the origin.

More frequently we need to consider a set of points that comprise some
object. We assume that the object is rigid and that its constituent points
maintain a constant relative position with respect to the object’s coordinate
frame as shown in Fig. 2.1b. Instead of describing the individual points we
describe the position and orientation of the object by the position and ori-
entation of its coordinate frame. A coordinate frame is labelled, {B} in this
case, and its axis labels xB and yB adopt the frame’s label as their subscript.

The position and orientation of a coordinate frame is known as its pose
and is shown graphically as a set of coordinate axes. The relative pose of a
frame with respect to a reference coordinate frame is denoted by the symbol ξ

16

– pronounced ksi. Figure 2.2 shows two frames {A} and {B} and the relative pose AξB

which describes {B} with respect to {A}. The leading superscript denotes the reference
coordinate frame and the subscript denotes the frame being described. We could also
think of AξB as describing some motion – imagine picking up {A} and applying a dis-
placement and a rotation so that it is transformed to {B}. If the initial superscript is miss-
ing we assume that the change in pose is relative to the world coordinate frame denoted O.

The point P in Fig. 2.2 can be described with respect to either coordinate frame.
Formally we express this as

(2.1)

where the right-hand side expresses the motion from {A} to {B} and then to P. The
operator · transforms the vector, resulting in a new vector that describes the same
point but with respect to a different coordinate frame.

An important characteristic of relative poses is that they can be composed or com-
pounded. Consider the case shown in Fig. 2.3. If one frame can be described in terms
of another by a relative pose then they can be applied sequentially

which says, in words, that the pose of {C} relative to {A} can be obtained by compound-
ing the relative poses from {A} to {B} and {B} to {C}. We use the operator ⊕ to indicate
composition of relative poses.

For this case the point P can be described

Later in this chapter we will convert these abstract notions of ξ, · and ⊕ into stan-
dard mathematical objects and operators that we can implement in MATLAB®.

In the examples so far we have shown 2-dimensional coordinate frames. This is
appropriate for a large class of robotics problems, particularly for mobile robots which
operate in a planar world. For other problems we require 3-dimensional coordinate
frames to describe objects in our 3-dimensional world such as the pose of a flying or
underwater robot or the end of a tool carried by a robot arm.

Fig. 2.3.

The point P can be described by
coordinate vectors relative to
either frame {A}, {B} or {C}. The
frames are described by relative
poses

In relative pose composition we can check that we have our reference frames correct by ensuring
that the subscript and superscript on each side of the ⊕ operator are matched. We can then cancel
out the intermediate subscripts and superscripts

leaving just the end most subscript and superscript which are shown highlighted.

Chapter 2 · Representing Position and Orientation

17

Figure 2.4 shows a more complex 3-dimensional example in a graphical form where
we have attached 3D coordinate frames to the various entities and indicated some rela-
tive poses. The fixed camera observes the object from its fixed viewpoint and estimates
the object’s pose relative to itself. The other camera is not fixed, it is attached to the robot
at some constant relative pose and estimates the object’s pose relative to itself.

An alternative representation of the spatial relationships is a directed graph (see
Appendix J) which is shown in Fig. 2.5. Each node in the graph represents a pose and
each edge represents a relative pose. An arrow from X to Y is denoted XξY and describes
the pose of Y relative to X. Recalling that we can compose relative poses using the
⊕ operator we can write some spatial relationships

and each equation represents a loop in the graph. Each side of the equation represents
a path through the network, a sequence of edges (arrows) that are written in head to
tail order. Both sides of the equation start and end at the same node.

A very useful property of poses is the ability to perform algebra.⊳ The second loop
equation says, in words, that the pose of the robot is the same as composing two rela-
tive poses: from the world frame to the fixed camera and from the fixed camera to the

Fig. 2.4.

Multiple 3-dimensional coordi-
nate frames and relative poses

René Descartes (1596–1650) was a French philosopher, mathematician and part-time mercenary.
He is famous for the philosophical statement “Cogito, ergo sum” or “I am thinking, therefore I
exist” or “I think, therefore I am”. He was a sickly child and developed a life-long habit of lying in
bed and thinking until late morning. A possibly apocryphal story is that during one such morn-
ing he was watching a fly walk across the ceiling and realized that he could describe its position in
terms of its distance from the two edges of the ceiling. This coordinate system, the Cartesian
system, forms the basis of modern (analytic) geometry and influenced the development of mod-
ern calculus. In Sweden at the invitation of Queen Christine he was obliged to rise at 5 a.m.,
breaking his lifetime habit – he caught pneumonia and died. His remains were later moved to
Paris, and then moved several times, and there is now some debate about where his remains are.
After his death, the Roman Catholic Church placed his works on the Index of Prohibited Books.

Chapter 2 · Representing Position and Orientation

In mathematical objects terms poses

constitute a group – a set of objects that

supports an associative binary operator

(composition) whose result belongs to

the group, an inverse operation and an

identity element. In this case the group

is the special Euclidean group in either

2 or 3 dimensions which are commonly

referred to as SE(2) or SE(3) respectively.

18

robot. We can subtract ξF from both sides of the equation by adding the inverse of ξF

which we denote as ⊖ξF and this gives

which is the pose of the robot relative to the fixed camera.

Fig. 2.5.

Spatial example of Fig. 2.4
expressed as a directed graph

There are just a few algebraic rules:

where 0 represents a zero relative pose. A pose has an inverse

which is represented graphically by an arrow from Y to X. Relative poses can also
be composed or compounded

It is important to note that the algebraic rules for poses are different to nor-
mal algebra and that composition is not commutative

with the exception being the case where ξ1⊕ ξ2= 0. A relative pose can transform a
point expressed as a vector relative to one frame to a vector relative to another

So what is ξ? It can be any mathematical object that supports the algebra described
above and is suited to the problem at hand. It will depend on whether we are consider-
ing a 2- or 3-dimensional problem. Some of the objects that we will discuss in the rest
of this chapter include vectors as well as more exotic mathematical objects such as
homogeneous transformations, orthonormal rotation matrices and quaternions. For-
tunately all these mathematical objects are well suited to the mathematical program-
ming environment of MATLAB®.

Chapter 2 · Representing Position and Orientation

19

To recap:

1. A point is described by a coordinate vector that represents its displacement from a
reference coordinate system;

2. A set of points that represent a rigid object can be described by a single coordinate
frame, and its constituent points are described by displacements from that coordinate
frame;

3. The position and orientation of an object’s coordinate frame is referred to as its
pose;

4. A relative pose describes the pose of one coordinate frame with respect to another
and is denoted by an algebraic variable ξ;

5. A coordinate vector describing a point can be represented with respect to a different
coordinate frame by applying the relative pose to the vector using the · operator;

6. We can perform algebraic manipulation of expressions written in terms of relative
poses.

The remainder of this chapter discusses concrete representations of ξ for various
common cases that we will encounter in robotics and computer vision.

2.1 lRepresenting Pose in 2-Dimensions

A 2-dimensional world, or plane, is familiar to us from high-school Euclidean geom-
etry. We use a Cartesian coordinate system or coordinate frame with orthogonal axes
denoted x and y and typically drawn with the x-axis horizontal and the y-axis vertical.
The point of intersection is called the origin. Unit-vectors parallel to the axes are de-
noted ' and (. A point is represented by its x- and y-coordinates (x, y) or as a bound
vector

(2.2)

Figure 2.6 shows a coordinate frame {B} that we wish to describe with respect to the
reference frame {A}. We can see clearly that the origin of {B} has been displaced by the
vector t= (x, y) and then rotated counter-clockwise by an angle θ. A concrete repre-
sentation of pose is therefore the 3-vector AξB∼ (x, y, θ), and we use the symbol ∼ to
denote that the two representations are equivalent. Unfortunately this representation
is not convenient for compounding since

is a complex trigonometric function of both poses. Instead we will use a different way
of representing rotation.

The approach is to consider an arbitrary point P with respect to each of the coordi-
nate frames and to determine the relationship between Ap and Bp. Referring again to
Fig. 2.6 we will consider the problem in two parts: rotation and then translation.

Euclid of Alexandria (ca. 325 bce–265 bce) was an Egyptian mathematician who is considered
the “father of geometry”. His book Elements deduces the properties of geometrical objects and
integers from a small set of axioms.

Elements is probably the most successful book in the history of mathematics. It describes plane
geometry and is the basis for most people’s first introduction to geometry and formal proof, and
is the basis of what we now call Euclidean geometry. Euclidean distance is simply the distance
between two points on a plane. Euclid also wrote Optics which describes geometric vision and
perspective.

2.1 · Representing Pose in 2-Dimensions

20

To consider just rotation we create a new frame {V} whose axes are parallel to those of
{A} but whose origin is the same as {B}, see Fig. 2.7. According to Eq. 2.2 we can express
the point P with respect to {V} in terms of the unit-vectors that define the axes of the frame

(2.3)

which we have written as the product of a row and a column vector.
The coordinate frame {B} is completely described by its two orthogonal axes which

we represent by two unit vectors

which can be factorized into matrix form as

(2.4)

Using Eq. 2.2 we can represent the point P with respect to {B} as

and substituting Eq. 2.4 we write

(2.5)

Now by equating the coefficients of the right-hand sides of Eq. 2.3 and Eq. 2.5 we
write

which describes how points are transformed from frame {B} to frame {V} when the
frame is rotated. This type of matrix is known as a rotation matrix and denoted VRB

(2.6)

Fig. 2.6.

Two 2D coordinate frames {A}
and {B} and a world point P.
{B} is rotated and translated
with respect to {A}

Chapter 2 · Representing Position and Orientation

21

The rotation matrix VRB has some special properties. Firstly it is orthonormal
(also called orthogonal) since each of its columns is a unit vector and the columns are
orthogonal.⊳ In fact the columns are simply the unit vectors that define {B} with re-
spect to {V} and are by definition both unit-length and orthogonal.

Secondly, its determinant is +1, which means that R belongs to the special orthogo-
nal group of dimension 2 or R∈ SO(2)⊂R2×2. The unit determinant means that the
length of a vector is unchanged after transformation, that is, |Bp| = |Vp|, ∀θ .

Orthonormal matrices have the very convenient property that R−1= RT, that is, the
inverse is the same as the transpose. We can therefore rearrange Eq. 2.6 as

Note that inverting the matrix is the same as swapping the superscript and subscript,
which leads to the identity R(−θ)= R(θ)T.

It is interesting to observe that instead of representing an angle, which is a scalar,
we have used a 2× 2 matrix that comprises four elements, however these elements
are not independent. Each column has a unit magnitude which provides two con-
straints. The columns are orthogonal which provides another constraint. Four ele-
ments and three constraints are effectively one independent value. The rotation ma-
trix is an example of a non-minimum representation and the disadvantages such as
the increased memory it requires are outweighed, as we shall see, by its advantages
such as composability.

The second part of representing pose is to account for the translation between the
origins of the frames shown in Fig. 2.6. Since the axes {V} and {A} are parallel this is
simply vectorial addition

(2.7)

 (2.8)

 (2.9)

or more compactly as

(2.10)

Fig. 2.7.

Rotated coordinate frames in 2D.
The point P can be considered
with respect to the red or blue

coordinate frame

2.1 · Representing Pose in 2-Dimensions

See Appendix D which provides a re-

fresher on vectors, matrices and linear

algebra.

22

where t= (x, y) is the translation of the frame and the orientation is ARB. Note that
ARB=

TRB since the axes of {A} and {V} are parallel. The coordinate vectors for point P
are now expressed in homogenous form and we write

and ATB is referred to as a homogeneous transformation. The matrix has a very
specific structure and belongs to the special Euclidean group of dimension 2 or
T ∈ SE(2)⊂R3×3.

By comparison with Eq. 2.1 it is clear that ATB represents relative pose

A vector (x, y) is written in homogeneous form as p∈P2, p= (x1, x2, x3) where x= x1/x3, y= x2/x3

and x3≠ 0. The dimension has been increased by one and a point on a plane is now represented
by a 3-vector. To convert a point to homogeneous form we typically append a one p= (x, y, 1).
The tilde indicates the vector is homogeneous.

Homogeneous vectors have the important property that p is equivalent to λp, ∀λ≠ 0 which
we write as p≃λp. That is p represents the same point in the plane irrespective of the overall
scaling factor. Homogeneous representation is important for computer vision that we discuss in
Part IV. Additional details are provided in Appendix I.

A concrete representation of relative pose ξ is ξ∼ T∈ SE(2) and T1⊕ T2֏ T1T2
which is standard matrix multiplication.

One of the algebraic rules from page 18 is ξ⊕ 0= ξ. For matrices we know
that TI= T, where I is the identify matrix, so for pose 0֏ I the identity matrix.
Another rule was that ξ⊖ξ= 0. We know for matrices that TT−1= I which im-
plies that ⊖T֏ T−1

For a point p∈ P2 then T·p֏ Tp which is a standard matrix-vector product.

To make this more tangible we will show some numerical examples using MATLAB®
and the Toolbox. We create a homogeneous transformation using the function se2

>> T1 = se2(1, 2, 30*pi/180)
T1 =
 0.8660 -0.5000 1.0000
 0.5000 0.8660 2.0000
 0 0 1.0000

which represents a translation of (1, 2) and a rotation of 30°. We can plot this, relative
to the world coordinate frame, by

Chapter 2 · Representing Position and Orientation

23

>> axis([0 5 0 5]);
>> trplot2(T1, 'frame', '1', 'color', 'b')

The options specify that the label for the frame is {1} and it is colored blue and this
is shown in Fig. 2.8. We create another relative pose which is a displacement of (2, 1)
and zero rotation

>> T2 = se2(2, 1, 0)
T2 =
 1 0 2
 0 1 1
 0 0 1

which we plot in red

>> hold on
>> trplot2(T2, 'frame', '2', 'color', 'r');

Now we can compose the two relative poses

>> T3 = T1*T2
T3 =
 0.8660 -0.5000 2.2321
 0.5000 0.8660 3.8660
 0 0 1.0000

and plot it, in green, as

>> trplot2(T3, 'frame', '3', 'color', 'g');

We see that the displacement of (2, 1) has been applied with respect to frame {1}. It is
important to note that our final displacement is not (3, 3) because the displacement is
with respect to the rotated coordinate frame. The non-commutativity of composition
is clearly demonstrated by

>> T4 = T2*T1;
>> trplot2(T4, 'frame', '4', 'color', 'c');

and we see that frame {4} is different to frame {3}.
Now we define a point (3, 2) relative to the world frame

>> P = [3 ; 2];

which is a column vector and add it to the plot

>> plot_point(P, '*');

Fig. 2.8.

Coordinate frames drawn using
the Toolbox function trplot2

2.1 · Representing Pose in 2-Dimensions

24

To determine the coordinate of the point with respect to {1} we use Eq. 2.1 and
write down

and then rearrange as

Substituting numerical values

>> P1 = inv(T1) * [P; 1]
P1 =
 1.7321
 -1.0000
 1.0000

where we first converted the Euclidean point to homogeneous form by appending a
one. The result is also in homogeneous form and has a negative y-coordinate in
frame {1}. Using the Toolbox we could also have expressed this as

>> h2e(inv(T1) * e2h(P))
ans =
 1.7321
 -1.0000

where the result is in Euclidean coordinates. The helper function e2h converts Euclid-
ean coordinates to homogeneous and h2e performs the inverse conversion. More com-
pactly this can be written as

>> homtrans(inv(T1), P)
ans =
 1.7321
 -1.0000

The same point with respect to {2} is

>> P2 = homtrans(inv(T2), P)
P2 =
 1
 1

2.2 lRepresenting Pose in 3-Dimensions

The 3-dimensional case is an extension of the 2-dimensional case discussed in the
previous section. We add an extra coordinate axis, typically denoted by z, that is or-
thogonal to both the x- and y-axes. The direction of the z-axis obeys the right-hand
rule and forms a right-handed coordinate frame. Unit vectors parallel to the axes are
denoted ', (and) such that�

(2.11)

A point P is represented by its x-, y- and z-coordinates (x, y, z) or as a bound vector

Figure 2.9 shows a coordinate frame {B} that we wish to describe with respect to the
reference frame {A}. We can see clearly that the origin of {B} has been displaced by the
vector t= (x, y, z) and then rotated in some complex fashion. Just as for the 2-dimen-
sional case the way we represent orientation is very important.

Chapter 2 · Representing Position and Orientation

In all these identities, the symbols from

left to right (across the equals sign) are a

cyclic permutation of the sequence xyz.

25

Our approach is to again consider an arbitrary point P with respect to each of
the coordinate frames and to determine the relationship between Ap and Bp. We will
again consider the problem in two parts: rotation and then translation. Rotation
is surprisingly complex for the 3-dimensional case and we devote all of the next sec-
tion to it.

2.2.1 lRepresenting Orientation in 3-Dimensions

Any two independent orthonormal coordinate frames
can be related by a sequence of rotations (not more than three)

about coordinate axes, where no two successive rotations may be about the same axis.
Euler’s rotation theorem (Kuipers 1999).

Figure 2.9 showed a pair of right-handed coordinate frames with very different orien-
tations, and we would like some way to describe the orientation of one with respect to
the other. We can imagine picking up frame {A} in our hand and rotating it until it
looked just like frame {B}. Euler’s rotation theorem states that any rotation can be con-
sidered as a sequence of rotations about different coordinate axes.

We start by considering rotation about a single coordinate axis. Figure 2.10 shows a
right-handed coordinate frame, and that same frame after it has been rotated by vari-
ous angles about different coordinate axes.

The issue of rotation has some subtleties which are illustrated in Fig. 2.11. This
shows a sequence of two rotations applied in different orders. We see that the final
orientation depends on the order in which the rotations are applied. This is a deep and
confounding characteristic of the 3-dimensional world which has intrigued mathema-
ticians for a long time. The implication for the pose algebra we have used in this chap-
ter is that the ⊕ operator is not commutative – the order in which rotations are applied
is very important.

Mathematicians have developed many ways to represent rotation and we will dis-
cuss several of them in the remainder of this section: orthonormal rotation matrices,
Euler and Cardan angles, rotation axis and angle, and unit quaternions. All can be
represented as vectors or matrices, the natural datatypes of MATLAB® or as a Toolbox
defined class. The Toolbox provides many function to convert between these repre-
sentations and this is shown diagrammatically in Fig. 2.15.

Fig. 2.9.

Two 3D coordinate frames {A}
and {B}. {B} is rotated and

translated with respect to {A}

Right-hand rule. A right-handed coordinate frame is defined by the first three fingers of your right
hand which indicate the relative directions of the x-, y- and z-axes respectively.

2.2 · Representing Pose in 3-Dimensions

26

Rotation about a vector. Wrap your right hand around the vector with your thumb (your x-finger)
in the direction of the arrow. The curl of your fingers indicates the direction of increasing angle.

Fig. 2.10.

Rotation of a 3D coordinate
frame. a The original coordinate
frame, b–f frame a after various
rotations as indicated

Fig. 2.11.

Example showing the non-com-
mutivity of rotation. In the top
row the coordinate frame is rota-
ted by ü about the x-axis and
then ü about the y-axis. In the
bottom row the order of rota-
tions has been reversed. The
results are clearly different

Chapter 2 · Representing Position and Orientation

27

2.2.1.1 lOrthonormal Rotation Matrix

Just as for the 2-dimensional case we can represent the orientation of a coordinate frame
by its unit vectors expressed in terms of the reference coordinate frame. Each unit vector
has three elements and they form the columns of a 3× 3 orthonormal matrix ARB

(2.12)

which rotates a vector defined with respect to frame {B} to a vector with respect to {A}.
The matrix R belongs to the special orthogonal group of dimension 3 or R∈ SO(3)⊂R3×3.
It has the properties of an orthonormal matrix that were mentioned on page 16 such as
RT=R−1 and det(R)= 1.

The orthonormal rotation matrices for rotation of θ about the x-, y- and z-axes are

The Toolbox provides functions to compute these elementary rotation matrices, for
example Rx(θ) is

>> R = rotx(pi/2)
R =
 1.0000 0 0
 0 0.0000 -1.0000
 0 1.0000 0.0000

Such a rotation is also shown graphically in Fig. 2.10b. The functions roty and rotz
compute Ry(θ) and Rz(θ) respectively.

The corresponding coordinate frame can be displayed graphically

>> trplot(R)

which is shown in Fig. 2.12a. We can visualize a rotation more powerfully using the
Toolbox function tranimate which animates a rotation

>> tranimate(R)

showing the world frame rotating into the specified coordinate frame.

2.2 · Representing Pose in 3-Dimensions

Reading the columns of an orthonormal rotation matrix from left to right tells us the directions
of the new frame’s axes in terms of the current coordinate frame. For example if

R =
 1.0000 0 0
 0 0.0000 -1.0000
 0 1.0000 0.0000

the new frame has its x-axis in the old x-direction (1, 0, 0), its y-axis in the old z-direction (0, 0, 1),
and the new z-axis in the old negative y-direction (0,−1, 0). In this case the x-axis was unchanged
since this is the axis around which the rotation occurred. The rows are the converse – the current
frame axes in terms of the new frame axes.

28

To illustrate compounding of rotations we will rotate the frame of Fig. 2.12a again,
this time around its y-axis

>> R = rotx(pi/2) * roty(pi/2)
R =
 0.0000 0 1.0000
 1.0000 0.0000 -0.0000
 -0.0000 1.0000 0.0000
>> trplot(R)

to give the frame shown in Fig. 2.12b. In this frame the x-axis now points in the direc-
tion of the world y-axis.

The non-commutativity of rotation can be shown by reversing the order of the
rotations above

>> roty(pi/2)*rotx(pi/2)
ans =
 0.0000 1.0000 0.0000
 0 0.0000 -1.0000
 -1.0000 0.0000 0.0000

which has a very different value.
We recall that Euler’s rotation theorem states that any rotation can be represented

by not more than three rotations about coordinate axes. This means that in general an
arbitrary rotation between frames can be decomposed into a sequence of three rota-
tion angles and associated rotation axes – this is discussed in the next section.

The orthonormal matrix has nine elements but they are not independent. The col-
umns have unit magnitude which provides three constraints. The columns are orthogo-
nal to each other which provides another three constraints.� Nine elements and six
constraints is effectively three independent values.

2.2.1.2 lThree-Angle Representations

Euler’s rotation theorem requires successive rotation about three axes such that no
two successive rotations are about the same axis. There are two classes of rotation
sequence: Eulerian and Cardanian, named after Euler and Cardano respectively.

The Eulerian type involves repetition, but not successive, of rotations about one
particular axis: XYX, XZX, YXY, YZY, ZXZ, or ZYZ. The Cardanian type is character-
ized by rotations about all three axes: XYZ, XZY, YZX, YXZ, ZXY, or ZYX. In common
usage all these sequences are called Euler angles and there are a total of twelve to
choose from.

Fig. 2.12.

Coordinate frames displayed
using trplot. a Reference
frame rotated by ü about the
x-axis, b frame a rotated by ü
about the y-axis

Chapter 2 · Representing Position and Orientation

If the column vectors are ci , i∈ 1⋯ 3

then c1 · c2= c2 · c3= c3 · c1= 0.

29

It is common practice to refer to all 3-angle representations as Euler angles but this

is underspecified since there are twelve different types to choose from. The par-

ticular angle sequence is often a convention within a particular technological field.

The ZYZ sequence

(2.13)

is commonly used in aeronautics and mechanical dynamics, and is used in the Toolbox.
The Euler angles are the 3-vector ¡= (φ, θ, ψ).

For example, to compute the equivalent rotation matrix for ¡= (0.1, 0.2, 0.3) we
write

>> R = rotz(0.1) * roty(0.2) * rotz(0.3);

or more conveniently

>> R = eul2r(0.1, 0.2, 0.3)
R =
 0.9021 -0.3836 0.1977
 0.3875 0.9216 0.0198
 -0.1898 0.0587 0.9801

The inverse problem is finding the Euler angles that correspond to a given rotation
matrix

>> gamma = tr2eul(R)
gamma =
 0.1000 0.2000 0.3000

However if θ is negative

>> R = eul2r(0.1 , -0.2, 0.3)
R =
 0.9021 -0.3836 -0.1977
 0.3875 0.9216 -0.0198
 0.1898 -0.0587 0.9801

the inverse function

>> tr2eul(R)
ans =
 -3.0416 0.2000 -2.8416

returns a positive value for θ and quite different values for φ and ψ . However the cor-
responding rotation matrix

>> eul2r(ans)
ans =
 0.9021 -0.3836 -0.1977
 0.3875 0.9216 -0.0198
 0.1898 -0.0587 0.9801

is the same – the two different sets of Euler angles correspond to the one rotation
matrix. The mapping from rotation matrix to Euler angles is not unique and always
returns a positive angle for θ .

Leonhard Euler (1707–1783) was a Swiss mathematician and physicist who dominated eighteenth
century mathematics. He was a student of Johann Bernoulli and applied new mathematical tech-
niques such as calculus to many problems in mechanics and optics. He also developed the func-
tional notation, y = F(x), that we use today. In robotics we use his rotation theorem and his equa-
tions of motion in rotational dynamics.

He was prolific and his collected works fill 75 volumes. Almost half of this was produced dur-
ing the last seventeen years of his life when he was completely blind.

2.2 · Representing Pose in 3-Dimensions

30

For the case where θ = 0

>> R = eul2r(0.1 , 0, 0.3)
R =
 0.9211 -0.3894 0
 0.3894 0.9211 0
 0 0 1.0000

the inverse function returns

>> tr2eul(R)
ans =
 0 0 0.4000

which is quite different. For this case the rotation matrix from Eq. 2.13 is

since Ry= I and is a function only of the sum φ+ψ. For the inverse operation we can
therefore only determine this sum, and by convention φ= 0. The case θ= 0 is a singu-
larity and will be discussed in more detail in the next section.

Another widely used convention is the roll-pitch-yaw angle sequence angle

(2.14)

which are intuitive when describing the attitude of vehicles such as ships, aircraft and
cars. Roll, pitch and yaw (also called bank, attitude and heading) refer to rotations
about the x-, y-, z-axes, respectively. This XYZ angle sequence, technically Cardan angles,
are also known as Tait-Bryan angles� or nautical angles. For aerospace and ground
vehicles the x-axis is commonly defined in the forward direction, z-axis downward
and the y-axis to the right-hand side.� For example

>> R = rpy2r(0.1, 0.2, 0.3)
R =
 0.9363 -0.2896 0.1987
 0.3130 0.9447 -0.0978
 -0.1593 0.1538 0.9752

and the inverse is

>> gamma = tr2rpy(R)
gamma =
 0.1000 0.2000 0.3000

The roll-pitch-yaw sequence allows all angles to have arbitrary sign and it has a singu-
larity when θp=±ü which is fortunately outside the range of feasible attitudes for
most vehicles.

Chapter 2 · Representing Position and Orientation

Named after Peter Tait a Scottish physi-

cist and quaternion supporter, and George

Bryan an early Welsh aerodynamicist.

Note that most robotics texts (Paul 1981;

Siciliano et al. 2008; Spong et al. 2006)

swap the x- and z-axes by defining

the heading direction as the z- rather

than x-direction, that is roll is about the

z-axis not the x-axis. This was the con-

vention in the Robotics Toolbox prior to

Release 8. The default in the Toolbox is

now XYZ order but the ZYX order can be

specified with the ‘zyx’ option.

Gerolamo Cardano (1501–1576) was an Italian Renaissance mathematician, physician, astrolo-
ger, and gambler. He was born in Pavia, Italy, the illegitimate child of a mathematically gifted
lawyer. He studied medicine at the University of Padua and later was the first to describe ty-
phoid fever. He partly supported himself through gambling and his book about games of chance
Liber de ludo aleae contains the first systematic treatment of probability as well as effective
cheating methods. His family life was problematic: his eldest son was executed for poisoning
his wife, and his daughter was a prostitute who died from syphilis (about which he wrote a
treatise). He computed and published the horoscope of Jesus, was accused of heresy, and spent
time in prison until he abjured and gave up his professorship.

He published the solutions to the cubic and quartic equations in his book Ars magna in
1545, and also invented the combination lock, the gimbal consisting of three concentric rings
allowing a compass or gyroscope to rotate freely (see Fig. 2.13), and the Cardan shaft with
universal joints which is used in vehicles today.

31

2.2.1.3 lSingularities and Gimbal Lock

A fundamental problem with the three-angle representations just described is singu-
larity. This occurs when the rotational axis of the middle term in the sequence be-
comes parallel to the rotation axis of the first or third term. This is the same problem
as gimbal lock, a term made famous in the movie Apollo 13.

A mechanical gyroscope used for navigation such as shown in Fig. 2.13 has as its
innermost assembly three orthogonal gyroscopes which hold the stable member
stationary with respect to the universe. It is mechanically connected to the spacecraft
via a gimbal mechanism which allows the spacecraft to move around the stable
platform without exerting any torque on it. The attitude of the spacecraft is deter-
mined by measuring the angles of the gimbal axes with respect to the stable platform
– giving a direct indication of roll-pitch-yaw angles which in this design are a
Cardanian YZX sequence.⊳

Consider the situation when the rotation angle of the middle gimbal (rotation
about the spacecraft’s z-axis) is 90° – the axes of the inner and outer gimbals are
aligned and they share the same rotation axis. Instead of the original three rotational
axes, since two are parallel, there are now only two effective rotational axes – we say
that one degree of freedom has been lost.⊳

In mathematical, rather than mechanical, terms this problem can be seen using
the definition of the Lunar module’s coordinate system where the rotation of the
spacecraft’s body-fixed frame {B} with respect to the stable platform frame {S} is

For the case when θr= ü we can apply the identity⊳

leading to

which cannot represent rotation about the y-axis. This is not a good thing because
spacecraft rotation about the y-axis will rotate the stable element and thus ruin its
precise alignment with the stars.

The loss of a degree of freedom means that mathematically we cannot invert the
transformation, we can only establish a linear relationship between two of the angles.
In such a case the best we can do is determine the sum of the pitch and yaw angles.
We observed a similar phenomena with the Euler angle singularity earlier.

2.2 · Representing Pose in 3-Dimensions

“The LM Body coordinate system is right-

handed, with the +X axis pointing up

through the thrust axis, the +Y axis

pointing right when facing forward

which is along the +Z axis. The rotational

transformation matrix is constructed by

a 2-3-1 Euler sequence, that is: Pitch

about Y, then Roll about Z and, finally,

Yaw about X. Positive rotations are pitch

up, roll right, yaw left.” (Hoag 1963).

Operationally this was a significant lim-

iting factor with this particular gyro-

scope (Hoag 1963) and could have been

alleviated by adding a fourth gimbal, as

was used on other spacecraft. It was

omitted on the Lunar Module for rea-

sons of weight and space.

Rotations obey the cyclic rotation rules

Rx(ü) Ry(θ) Rx(ü)T≡ Rz(θ)

Ry(ü) Rz(θ) Ry(ü)T≡ Rx(θ)

Rz(ü) Rx(θ) Rz(ü)T≡ Ry(θ)

and anti-cyclic rotation rules

Ry(ü)T Rx(θ) Ry(ü)≡ Rz(θ)

Rz(ü)T Ry(θ) Rz(ü)≡ Rx(θ).

Mission clock: 02 08 12 47

� Flight: “Go, Guidance.”
� Guido: “He’s getting close to gimbal lock there.”
� Flight: “Roger. CapCom, recommend he bring up C3, C4, B3, B4, C1 and C2 thrusters, and ad-

vise he’s getting close to gimbal lock.”
� CapCom: “Roger.”

Apollo 13, mission control communications loop (1970) (Lovell and Kluger 1994, p 131; NASA
1970).

32

All three-angle representations of attitude, whether Eulerian or Cardanian, suffer
this problem of gimbal lock when two consecutive axes become aligned. For ZYZ-
Euler angles this occurs when θ= kπ, k ∈ Z and for roll-pitch-yaw angles when pitch
θp=±(2k+ 1)ü . The best that can be hoped for is that the singularity occurs for an
attitude which does not occur during normal operation of the vehicle – it requires
judicious choice of angle sequence and coordinate system.

Singularities are an unfortunate consequence of using a minimal representation.
To eliminate this problem we need to adopt different representations of orientation.
Many in the Apollo LM team would have preferred a four gimbal system and the clue
to success, as we shall see shortly in Sect. 2.2.1.6, is to introduce a fourth parameter.

2.2.1.4 lTwo Vector Representation

For arm-type robots it is useful to consider a coordinate frame {E} attached to the
end-effector as shown in Fig. 2.14. By convention the axis of the tool is associated
with the z-axis and is called the approach vector and denoted $= (ax, ay, az). For some
applications it is more convenient to specify the approach vector than to specify Euler
or roll-pitch-yaw angles.

However specifying the direction of the z-axis is insufficient to describe the coordi-
nate frame – we also need to specify the direction of the x- and y-axes. An orthogonal
vector that provides orientation, perhaps between the two fingers of the robot’s grip-
per is called the orientation vector, &= (ox, oy, oz). These two unit vectors are sufficient
to completely define the rotation matrix

Fig. 2.13.

Schematic of Apollo Lunar
Module (LM) inertial measure-
ment unit (IMU). The vehicle’s
coordinate system has the x-axis
pointing up through the thrust
axis, the z-axis forward, and the
y-axis pointing right. Starting
at the stable platform {S} and
working outwards toward the
spacecraft’s body frame {B} the
rotation angle sequence is YZX.
The components labelled Xg, Yg

and Zg are the x-, y- and z-axis
gyroscopes and those labelled Xa,
Ya and Za are the x-, y- and z-axis
accelerometers (Apollo Opera-
tions Handbook, LMA790-3-LM)

Chapter 2 · Representing Position and Orientation

33

(2.15)

since the remaining column can be computed using Eq. 2.11 as %= &× $.
Even if the two vectors $ and & are not orthogonal they still define a plane⊳ and the

computed % is normal to that plane. In this case we need to compute a new value for
&′= $×% which lies in the plane but is orthogonal to each of $ and %.

Using the Toolbox this is implemented by

>> a = [1 0 0]';
>> o = [0 1 0]';
>> oa2r(o, a)
ans =
 0 0 1
 0 1 0
 -1 0 0

Any two non-parallel vectors are sufficient to define a coordinate frame. For a camera
we might use the optical axis, by convention the z-axis, and the left side of the camera
which is by convention the x-axis. For a mobile robot we might use the gravitational
acceleration vector (measured with accelerometers) which is by convention the
z-axis and the heading direction (measured with an electronic compass) which is by
convention the x-axis.

2.2.1.5 lRotation about an Arbitrary Vector

Two coordinate frames of arbitrary orientation are related by a single rotation about
some axis in space. For the example rotation used earlier

>> R = rpy2r(0.1 , 0.2, 0.3);

we can determine such an angle and vector by

>> [theta, v] = tr2angvec(R)
theta =
 0.3816
v =
 0.3379 0.4807 0.8092

where theta is the amount of rotation and v is the vector⊳ around which the rotation
occurs.

Fig. 2.14.

Robot end-effector coordinate
system defines the pose in terms

of an approach vector $ and an
orientation vector &, from which
% can be computed. %, & and $
vectors correspond to the x-, y-

and z-axes respectively of the
end-effector coordinate frame.
(courtesy of lynxmotion.com)

2.2 · Representing Pose in 3-Dimensions

So long as they are not parallel.

This is not unique. A rotation of –theta
about the vector –v results in the same

orientation.

34

This information is encoded in the eigenvalues and eigenvectors of R. Using the
builtin MATLAB® function eig

>> [v,lambda] = eig(R)
v =
 0.6655 0.6655 0.3379
 -0.1220 - 0.6079i -0.1220 + 0.6079i 0.4807
 -0.2054 + 0.3612i -0.2054 - 0.3612i 0.8092
lambda =
 0.9281 + 0.3724i 0 0
 0 0.9281 - 0.3724i 0
 0 0 1.0000

the eigenvalues are returned on the diagonal of the matrix lambda and the corre-
sponding eigenvectors are the corresponding columns of v.

An orthonormal rotation matrix will always have one real eigenvalue at λ= 1 and a
complex pair λ= cosθ ± i sinθ where θ is the rotation angle. From the definition of
eigenvalues and eigenvectors we recall that

where v is the eigenvector corresponding to λ. For the case λ= 1 then

which implies that the corresponding eigenvector v is unchanged by the rotation.
There is only one such vector and that is the one about which the rotation occurs. In
the example the third eigenvalue is equal to one, so the rotation axis is the third col-
umn of v.

The inverse, converting from angle and vector to a rotation matrix, is achieved using
Rodrigues’ rotation formula�

Our familiar example of a rotation of ü about the x-axis can be found by

>> R = angvec2r(pi/2, [1 0 0])
R =
 1.0000 0 0
 0 0.0000 -1.0000
 0 1.0000 0.0000

It is interesting to note that this representation of an arbitrary rotation is parameter-
ized by four numbers: three for the rotation axis, and one for the angle of rotation.
However the direction can be represented by a unit vector with only two parameters
since the third element can be computed by

giving a total of three parameters. Alternatively we can multiply the unit vector by
the angle to give another 3-parameter representation vθ . While these forms are minimal

Olinde Rodrigues (1795–1850) was a French-Jewish banker and mathematician who wrote ex-
tensively on politics, social reform and banking. He received his doctorate in mathematics in
1816 from the University of Paris, for work on his first well known formula which is related to
Legendre polynomials. His eponymous rotation formula was published in 1840 and is perhaps
the first time the representation of a rotation as a scalar and a vector was articulated. His formula
is sometimes, and inappropriately, referred to as the Euler-Rodrigues formula. He is buried in the
Pere-Lachaise cemetery in Paris.

Chapter 2 · Representing Position and Orientation

S(·) is the skew-symmetric matrix de-

fined in Eq. 3.5 and also Appendix D.

35

and efficient in terms of data storage they are analytically problematic. Many variants
have been proposed including v sin(θ/2) and v tan(θ) but all are ill-defined for θ = 0.

2.2.1.6 lUnit Quaternions

Quaternions came from Hamilton after his really good work had been done;
and, though beautifully ingenious, have been an unmixed evil to those

who have touched them in any way, including Clark Maxwell.
Lord Kelvin, 1892

Quaternions have been controversial since they were discovered by W. R. Hamilton
over 150 years ago but they have great utility for roboticists. The quaternion is an ex-
tension of the complex number – a hyper-complex number – and is written as a scalar
plus a vector

(2.16)

where s∈R, v∈R3 and the orthogonal complex numbers i, j and k are defined⊳ such that

(2.17)

We will denote a quaternion as

One early objection to quaternions was that multiplication was not commutative but
as we have seen above this is exactly the case for rotations. Despite the initial contro-
versy quaternions are elegant, powerful and computationally straightforward and
widely used for robotics, computer vision, computer graphics and aerospace inertial
navigation applications.

In the Toolbox quaternions are implemented by the Quaternion class. The con-
structor converts the passed argument to a quaternion, for example

>> q = Quaternion(rpy2tr(0.1, 0.2, 0.3))
q =
0.98186 < 0.064071, 0.091158, 0.15344 >

2.2 · Representing Pose in 3-Dimensions

The multiplication rules are the same

as for cross products of the orthogonal

vectors ', (and).

Sir William Rowan Hamilton (1805–1865) was an Irish mathematician, physicist, and astrono-
mer. He was a child prodigy with a gift for languages and by age thirteen knew classical and
modern European languages as well as Persian, Arabic, Hindustani, Sanskrit, and Malay. Hamilton
taught himself mathematics at age 17, and discovered an error in Laplace’s Celestial Mechanics.
He spent his life at Trinity College, Dublin, and was appointed Professor of Astronomy and Royal
Astronomer of Ireland while still an undergraduate. In addition to quaternions he contributed to
the development of optics, dynamics, and algebra. He also wrote poetry and corresponded with
Wordsworth who advised him to devote his energy to mathematics.

According to legend the key quaternion equation, Eq. 2.17, occured to Hamilton in 1843 while
walking along the Royal Canal in Dublin with his wife, and this is commemorated by a plaque on
Broome bridge:

Here as he walked by on the 16th of October 1843 Sir William Rowan Hamilton in a flash of genius
discovered the fundamental formula for quaternion multiplication i2 = j2 = k2 = i j k = −1 & cut it
on a stone of this bridge.

His original carving is no longer visible, but the bridge is a pilgrimage site for mathematicians
and physicists.

36

To represent rotations we use unit-quaternions. These are quaternions of unit mag-
nitude, that is, those for which |h| = 1 or s2+ v1

2+ v2
2+ v3

2= 1. For our example

>> q.norm
ans =
 1.0000

The unit-quaternion has the special property that it can be considered as a rotation of
θ about the unit vector % which are related to the quaternion components by�

(2.18)

and is similar to the angle-axis representation of Sect. 2.2.1.5.

For the case of quaternions our generalized pose is ξ∼ h ∈Q and

which is known as the quaternion or Hamilton product,� and

which is the quaternion conjugate. The zero pose 0֏ 1<0, 0, 0> which is the
identity quaternion. A vector v∈ R3 is rotated h · v֏ hh (v)h−1 where
h(v)= 0,<v> is known as a pure quaternion.

Chapter 2 · Representing Position and Orientation

If we write the quaternion as a 4-vector

(s,v1,v2,v2) then multiplication can be

expressed as a matrix-vector product

where

Compounding two orthonormal rota-

tion matrices requires 27 multiplica-

tions and 18 additions. The quaternion

form requires 16 multiplications and

12 additions. This saving can be particu-

larly important for embedded systems.

The Quaternion class overloads a number of standard methods and functions.
Quaternion multiplication� is invoked through the overloaded multiplication operator

>> q = q * q;

and inversion, the quaternion conjugate, is

>> q.inv()
ans =
0.98186 < -0.064071, -0.091158, -0.15344 >

Multiplying a quaternion by its inverse

>> q*q.inv()
ans =
1 < 0, 0, 0 >

or

>> q/q
ans =
1 < 0, 0, 0 >

results in the identity quaternion which represents a null rotation.
The quaternion can be converted to an orthonormal rotation matrix by

>> q.R
ans =
 0.9363 -0.2896 0.1987
 0.3130 0.9447 -0.0978
 -0.1593 0.1538 0.9752

and we can also plot the orientation represented by a quaternion

>> q.plot()

which produces a result similar in style to that shown in Fig. 2.12.

As for the angle-vector representation this

is not unique. A rotation of –theta
about the vector –% results in the same

orientation.

37

A 3-vector passed to the constructor yields a pure quaternion

>> Quaternion([1 2 3])
ans =
0 < 1, 2, 3 >

which has a zero scalar component. A vector is rotated by a quaternion using the over-
loaded multiplication operator

>> q*[1 0 0]'
ans =
 0.9363
 0.3130
 -0.1593

The Toolbox implementation is quite complete and the Quaternion has many meth-
ods and properties which are described fully in the online documentation.

2.2.2 lCombining Translation and Orientation

We return now to representing relative pose in three dimensions, the position and
orientation change, between two coordinate frames as shown in Fig. 2.9. We have
discussed several different representations of orientation, and we need to combine
this with translation, to create a tangible representation of relative pose. The two
most practical representations are: the quaternion vector pair and the 4× 4 homoge-
neous transformation matrix.

For the vector-quaternion case ξ∼ (t, h) where t∈R3 is the Cartesian position
of the frame’s origin with respect to the reference coordinate frame, and h∈Q is
the frame’s orientation with respect to the reference frame.

Composition is defined by

and negation is

and a point coordinate vector is transformed to a coordinate frame by

Alternatively we can use a homogeneous transformation matrix to describe rota-
tion and translation. The derivation is similar to the 2D case of Eq. 2.10 but extended
to account for the z-dimension

The Cartesian translation vector between the origin of the coordinates frames is t
and the change in orientation is represented by a 3× 3 orthonormal submatrix R. The
vectors are expressed in homogenous form and we write

2.2 · Representing Pose in 3-Dimensions

38

(2.19)

and ATB is a 4× 4 homogeneous transformation. The matrix has a very specific struc-
ture and belongs to the special Euclidean group of dimension 3 or T ∈ SE(3)⊂R4×4.

A concrete representation of relative pose ξ is ξ∼ T∈ SE(3) and T1⊕ T2֏ T1T2
which is standard matrix multiplication.

(2.20)

One of the rules of pose algebra from page 18 is ξ⊕0= ξ . For matrices we
know that TI= T, where I is the identify matrix, so for pose 0֏ I the identity
matrix. Another rule of pose algebra was that ξ⊖ξ= 0. We know for matrices
that TT−1= I which implies that ⊖T֏ T−1

(2.21)

The 4× 4 homogeneous transformation is very commonly used in robotics and
computer vision, is supported by the Toolbox and will be used throughout this book as
a concrete representation of 3-dimensional pose.

The Toolbox has many functions to create homogeneous transformations. For ex-
ample we can demonstrate composition of transforms by

>> T = transl(1, 0, 0) * trotx(pi/2) * transl(0, 1, 0)
T =
 1.0000 0 0 1.0000
 0 0.0000 -1.0000 0.0000
 0 1.0000 0.0000 1.0000
 0 0 0 1.0000

The function transl create a relative pose with a finite translation but no rotation,
and trotx returns a 4× 4 homogeneous transform matrix corresponding to a rota-
tion of ü about the x-axis: the rotation part is the same as rotx(pi/2) and the
translational component is zero.� We can think of this expression as representing a
walk along the x-axis for 1 unit, then a rotation by 90° about the x-axis and then a walk
of 1 unit along the new y-axis which was the previous z-axis. The result, as shown in the
last column of the resulting matrix is a translation of 1 unit along the original x-axis
and 1 unit along the original z-axis. The orientation of the final pose shows the effect
of the rotation about the x-axis. We can plot the corresponding coordinate frame by

>> trplot(T)

The rotation matrix component of T is

>> t2r(T)
ans =
 1.0000 0 0
 0 0.0000 -1.0000
 0 1.0000 0.0000

and the translation component is a vector

>> transl(T)'
ans =
 1.0000 0.0000 1.0000

Chapter 2 · Representing Position and Orientation

Many Toolbox functions have variants

that return orthonormal rotation ma-

trices or homogeneous transforma-

tions, for example, rotx and trotx,

rpy2r and rpy2tr etc. Some

Toolbox functions accept an ortho-

normal rotation matrix or a homoge-

neous transformation and ignore the

translational component, for example,

tr2rpy or Quaternion.

39

2.3 lWrapping Up

In this chapter we learned how to represent points and poses in 2- and 3-dimensional
worlds. Points are represented by coordinate vectors relative to a coordinate frame. A
set of points that belong to a rigid object can be described by a coordinate frame, and
its constituent points are described by displacements from the object’s coordinate frame.
The position and orientation of any coordinate frame can be described relative to
another coordinate frame by its relative pose ξ. Relative poses can be applied sequen-
tially (composed or compounded), and we have shown how relative poses can be ma-
nipulated algebraically. An important algebraic rule is that composition is non-com-
mutative – the order in which relative poses are applied is important.

2.3 · Wrapping Up

Table 2.1.

Summary of the various
concrete representations of

pose ξ introduced in this chapter

Fig. 2.15.

Conversion between rotational
representations

40

We have explored orthonormal rotation matrices for the 2- and 3-dimensional case
to represent orientation and its extension, the homogeneous transformation matrix,
to represent orientation and translation. Rotation in 3-dimensions has subtlety and
complexity and we have looked at other representations such as Euler angles, roll-
pitch-yaw angles and quaternions. Some of these mathematical objects are supported
natively by MATLAB® while others are supported by functions or classes within the
Toolbox.

There are two important lessons from this chapter. The first is that there are many
mathematical objects that can be used to represent pose and these are summarized in
Table 2.1. There is no right or wrong – each has strengths and weaknesses and we
typically choose the representation to suit the problem at hand. Sometimes we wish
for a vectorial representation in which case (x, y, θ) or (x, y, z, ¡) might be appropri-
ate, but this representation cannot be easily compounded. Sometime we may only need
to describe 3D rotation in which case Γ or h is appropriate. The Toolbox supports con-
versions between many different representations as shown in Fig. 2.15. In general
though, we will use homogeneous transformations throughout the rest of this book.

The second lesson is that coordinate frames are your friend. The essential first step
in many vision and robotics problems is to assign coordinate frames to all objects of
interest, indicate the relative poses as a directed graph, and write down equations for
the loops. Figure 2.16 shows you how to build a coordinate frame out of paper that you
can pick up and rotate – making these ideas more tangible.

We now have solid foundations for moving forward. The notation has been defined
and illustrated, and we have started our hands-on work with MATLAB®. The next
chapter discusses coordinate frames that change with time, and after that we are ready
to move on and discuss robots.

Further Reading

The treatment in this chapter is a hybrid mathematical and graphical approach that
covers the 2D and 3D cases by means of abstract representations and operators which
are later made tangible. The standard robotics textbooks such as Spong et al. (2006),
Craig (2004), Siciliano et al. (2008) and Paul (1981) all introduce homogeneous trans-
formation matrices for the 3-dimensional case but differ in their approach. These books
also provide good discussion of the other representations such as angle-vector and
3-angle representations. Spong et al. (2006, Sec 2.5.1) have a good discussion of
singularities. Siegwart et al. (2011) explicitly cover the 2D case in the context of mobile
robot navigation.

Hamilton and his supporters, including Peter Tait, were vigourous in defending
Hamilton’s precedence in inventing quaternions, and for muddying the water with
respect to vectors which were then beginning to be understood and used. Rodrigues
developed the key idea in 1840 and Gauss discovered it in 1819 but, as usual, did not

Chapter 2 · Representing Position and Orientation

Fig. 2.16.

Build your own coordinate frame.
a Get the PDF file from http://

www.petercorke.com/axes.pdf;
b cut it out, fold along the dotted
lines and add a staple. Voila!

41

publish it. Quaternions had a tempestuous beginning. The paper by Altmann (1989) is
an interesting description on this tussle of ideas, and quaternions have even been wo-
ven into fiction (Pynchon 2006).

Quaternions are discussed briefly in Siciliano et al. (2008). The book by Kuipers
(1999) is a very readable and comprehensive introduction to quaternions. Quaternion
interpolation is widely used in computer graphics and animation and the classic pa-
per by Shoemake (1985) is very readable introduction to this topic. The first publica-
tions about quaternions for robotics is probably Taylor (1979) and with subsequent
work by Funda (1990).

Exercises

1. Explore the effect of negative roll, pitch or yaw angles. Does transforming from
RPY angles to a rotation matrix then back to RPY angles give a different result to
the starting value as it does for Euler angles?

2. Explore the many options associated with trplot.
3. Use tranimate to show translation and rotational motion about various axes.
4. Animate a tumbling cube

a) Write a function to plot the edges of a cube centred at the origin.
b) Modify the function to accept an argument which is a homogeneous transfor-

mation which is applied to the cube vertices before plotting.
c) Animate rotation about the x-axis.
d) Animate rotation about all axes.

5. Using Eq. 2.21 show that TT−1= I.
6. Generate the sequence of plots shown in Fig. 2.11.
7. Where is Descarte’s skull?
8. Create a vector-quaternion class that supports composition, negation and point

transformation.

2.3 · Wrapping Up

3
Chapter

In the previous chapter we learnt how to describe the pose of objects in 2- or 3-dimen-
sional space. This chapter extends those concepts to objects whose pose is varying as a
function of time.

For robots we wish to create a time varying pose that the robot can follow, for ex-
ample the pose of a robot’s end-effector should follow a path to the object that it is to
grasp. Section 3.1 discusses how to generate a temporal sequence of poses, a trajectory,
that smoothly changes from an initial pose to a final pose.

Section 3.2 discusses the concept of rate of change of pose, its temporal derivative,
and how that relates to concepts from mechanics such as velocity and angular velocity.
This allows us to solve the inverse problem – given measurements from velocity and
angular velocity sensors how do we update the estimate of pose for a moving object.
This is the principle underlying inertial navigation.

3.1 lTrajectories

A path is a spatial construct – a locus in space that leads from an initial pose to a final
pose. A trajectory is a path with specified timing. For example there is a path from A to B,
but there is a trajectory from A to B in 10 s or at 2 m s–1.

An important characteristic of a trajectory is that is smooth – position and orientation
vary smoothly with time. We start by discussing how to generate smooth trajectories
in one dimension. We then extend that to the multi-dimensional case and then to piece-
wise-linear trajectories that visit a number of intermediate points without stopping.

3.1.1 lSmooth One-Dimensional Trajectories

We start our discussion with a scalar function of time. Important characteristics of
this function are that its initial and final value are specified and that it is smooth. Smooth-
ness in this context means that its first few temporal derivatives are continuous. Typi-
cally velocity and acceleration are required to be continuous and sometimes also the
derivative of acceleration or jerk.

An obvious candidate for such a function is a polynomial function of time. Polyno-
mials are simple to compute and can easily provide the required smoothness and bound-
ary conditions. A quintic (fifth-order) polynomial is often used

(3.1)

where time t ∈ [0, T]. The first- and second-derivatives are also smooth polynomials

(3.2)

(3.3)

Time and Motion

The only reason for time is
so that everything doesn’t happen at once

Albert Einstein

44

The trajectory has defined boundary conditions for position, velocity and acceleration�

and commonly the velocity and acceleration boundary conditions are all zero.
Writing Eq. 3.1 to Eq. 3.3 for the boundary conditions t= 0 and t= T gives six equa-

tions which we can write in matrix form as

Since the matrix is square� we can solve for the coefficient vector (A, B, C, D, E, F)
using standard linear algebra methods such as the MATLAB® \-operator. For a quin-
tic polynomial acceleration will be a smooth cubic polynomial, and jerk will be a
parabola.

The Toolbox function tpoly generates a quintic polynomial trajectory as described
by Eq. 3.1. For example

>> s = tpoly(0, 1, 50);

returns a 50× 1 column vector with values varying smoothly from 0 to 1 in 50 time
steps which we can plot

>> plot(s)

The corresponding velocity and acceleration can be returned via optional output ar-
guments

>> [s,sd,sdd] = tpoly(0, 1, 50);

as sd and sdd respectively. These are shown in Fig. 3.1a and we observe that the ini-
tial and final velocity and acceleration are all zero – the default value. The initial and
final velocities can be set to non-zero values

>> s = tpoly(0, 1, 50, 0.5, 0);

This is the reason for choice of quintic

polynomial. It has six coefficients that

enable it to meet the six boundary con-

ditions on initial and final position,

velocity and acceleration.

Fig. 3.1.

Quintic polynomial trajectory.
From top to bottom is position,
velocity and acceleration versus
time. a With zero-velocity bound-
ary conditions, b initial velocity
of 0.5 and a final velocity of 0

Chapter 3 · Time and Motion

45

in this case, an initial velocity of 0.5 and a final velocity of 0. The results shown in
Fig. 3.1b illustrate a problem with polynomials. The non-zero initial velocity causes
the polynomial to overshoot the terminal value – it peaks at 5 on a trajectory from 0 to 1.

Another problem with polynomials, a very practical one, can be seen in the middle
graph of Fig. 3.1a. The velocity peaks at t= 25 which means that for most of the time
the velocity is far less than the maximum. The mean velocity

>> mean(sd) / max(sd)
ans =
 0.5231

is only 52% of the peak. A real robot joint has a well defined maximum velocity and for
minimum-time motion we want to be operating at that maximum for as much of the
time as possible. We would like the velocity curve to be flatter on top.

A well known alternative is a hybrid trajectory which has a constant velocity seg-
ment with polynomial segments for acceleration and deceleration. Revisiting our first
example the hybrid trajectory is

>> s = lspb(0, 1, 50);

where the arguments have the same meaning as for tpoly and the trajectory is shown
in Fig. 3.2a. The trajectory comprises a linear segment (constant velocity) with para-
bolic blends, hence the name lspb. The term blend is commonly used to refer to a
trajectory segment that smoothly joins linear segments. As with tpoly we can also
return the the velocity and acceleration

>> [s,sd,sdd] = lspb(0, 1, 50);

This type of trajectory is also referred to as trapezoidal due to the shape of the velocity
curve versus time, and is commonly used in industrial motor drives.⊳

The function lspb has chosen the velocity of the linear segment to be

>> max(sd)
ans =
 0.0306

but this can be overridden by specifying it as a fourth input argument

>> s = lspb(0, 1, 50, 0.025);
>> s = lspb(0, 1, 50, 0.035);

Fig. 3.2.

Linear segment with parabolic
blend (LSPB) trajectory: a default

velocity for linear segment;
b specified linear segment velo-

city values

3.1 · Trajectories

The trapezoidal trajectory is smooth in

velocity, but not in acceleration.

46

The trajectories for these different cases are overlaid in Fig. 3.2b. We see that as the
velocity of the linear segment increases its duration decreases and ultimately its dura-
tion would be zero. In fact the velocity cannot be chosen arbitrarily�, too high or too
low a value for the maximum velocity will result in an infeasible trajectory and the
function returns an error.

3.1.2 lMulti-Dimensional Case

Most useful robots have more than one axis of motion or degree of freedom. We repre-
sent this in vector form as x∈RM where M is the number of degrees of freedom. A
wheeled mobile robot is characterised by its position (x, y) or pose (x, y, θ). The tool of an
arm robot has position (x, y, z), orientation (θr, θp, θy) or pose (x, y, z, θr, θp, θy). We there-
fore require smooth multi-dimensional motion from an initial vector to a final vector.

It is quite straightforward to extend the smooth scalar trajectory to the vector case
and in the Toolbox this is achieved using the function mtraj. For example to move
from (0, 2) to (1,−1) in 50 steps

>> x = mtraj(@tpoly, [0 2], [1 -1], 50);
>> x = mtraj(@lspb, [0 2], [1 -1], 50);

which results in a 50× 2 matrix x with one row per time step and one column per axis.
The first argument is a function that generates a scalar trajectory, either tpoly or
lspb. The trajectory for the lspb case

>> plot(x)

is shown in Fig. 3.3.
For a 3-dimensional problem we might consider converting a pose T to a 6-vector by

>> x = [transl(T); tr2rpy(T)']

though as we shall see later interpolation of 3-angle representations has some limita-
tions.

3.1.3 lMulti-Segment Trajectories

In robotics applications there is often a need to move smoothly along a path through
one or more intermediate or via points without stopping. This might be to avoid ob-
stacles in the workplace, or to perform a task that involves following a piecewise con-
tinuous trajectory such as applying a bead of sealant in a manufacturing application.

Fig. 3.3.

Multi-dimensional motion.
x1 varies from 0→ 1 and
x2 varies from 2→−1

The system is over-constrained, having

five constraints (total time, initial and fi-

nal position and velocity) but six degrees

of freedom (blend time, three parabolic

coefficients and two linear coefficients).

Chapter 3 · Time and Motion

47

To formalize the problem consider that the trajectory is defined by N points
xk, k ∈ [1, N] and there are N− 1 motion segments. As in the previous section xk∈R

M

is a vector representation of pose.
The robot starts from x1 at rest and finishes at xN at rest, but moves through (or

close to) the intermediate points without stopping. The problem is over constrained
and in order to attain continuous velocity we surrender the ability to reach each inter-
mediate point. This is easiest to understand for the one dimensional case shown in
Fig. 3.4. The motion comprises linear motion segments with polynomial blends, like
lspb, but here we choose quintic polynomials because they are able to match bound-
ary conditions on position, velocity and acceleration at their start and end points.

The first segment of the trajectory accelerates from the initial pose x1 and zero ve-
locity, and joins the line heading toward the second pose x2. The blend time is set to be
a constant tacc and tacc/2 before reaching x2 the trajectory executes a polynomial blend,
of duration tacc, onto the line from x2 to x3, and the process repeats. The constant velocity ·k

can be specified for each segment. The average acceleration during the blend is

If the maximum acceleration capability of the axis is known then the minimum blend
time can be computed.⊳

For the multi-axis case it is likely that some axes will need to move further than
others on a particular motion segment and this becomes complex if the joints have
different velocity limits. The first step is to determine which axis will be the slowest to
complete the motion segment, based on the distance that each axis needs to travel for
the segment and its maximum achievable velocity. From this the duration of the seg-
ment can be computed and then the required velocity of each axis. This ensures that
all axes reach the next target xk at the same time.

The Toolbox function mstraj generates a multi-segment multi-axis trajectory
based on a matrix of via points. For example 2-axis motion with four points can be
generated by

>> via = [4,1; 4,4; 5,2; 2,5];
>> q = mstraj(via, [2,1], [], [4,1], 0.05, 0);

The first argument is the matrix of via points, one row per point. The remaining
arguments are respectively: a vector of maximum speeds per axis, a vector of dura-
tions for each segment,⊳ the initial axis coordinates, the sample interval, and the
acceleration time.⊳ The function mstraj returns a matrix with one row per time
step and the columns correspond to the axes. If no output argument is provided
mstraj will plot the trajectory as shown in Fig. 3.5a. The parameters in this ex-
ample indicate that the first axis has a higher maximum speed than the second. How-
ever for the last segment both axes move at the same speed since the segment time is
dominated by the slowest axis.

Fig. 3.4.

Notation for multi-segment
trajectory showing four points

and three motion segments.
Blue indicates constant velocity
motion, red indicates regions of

acceleration

Only one of the maximum axis speed or

time per segment can be specified, the

other is set to MATLAB’s empty matrix [].

Acceleration time if given is rounded up

to a multiple of the time increment.

3.1 · Trajectories

The real limit of the axis will be its peak,

rather than average, acceleration. The

peak acceleration for the blend can be

determined from Eq. 3.3 if the quintic

coefficients are known.

48

If we increase the acceleration time

>> q = mstraj(via, [2 1], [], [4 1], 0.05, 1);

the trajectory becomes more rounded, Fig. 3.5b, as the polynomial blending functions
do their work, and the trajectory takes more time to complete. The function also ac-
cepts optional initial and final velocity arguments and tacc can be a vector giving accel-
eration time for each of the N blends.

Keep in mind that this function simply interpolates pose represented as a vector. In
this example the vector was assumed to be Cartesian coordinates, but this function
could also be applied to Euler or roll-pitch-yaw angles but this is not an ideal way to
interpolate rotation. This leads us nicely to the next section where we discuss interpo-
lation of orientation.

3.1.4 lInterpolation of Orientation in 3D

In robotics we often need to interpolate orientation, for example, we require the end-
effector of a robot to smoothly change from orientation ξ0 to ξ1. Using the notation
from Chap. 2 we require some function ξ(s)= σ(ξ0, ξ1, s) where s∈ [0, 1] which has
the boundary conditions σ(ξ0, ξ1, 0)= ξ0 and σ(ξ0, ξ1, 1)= ξ1 and where σ(ξ0, ξ1, s)
varies smoothly for intermediate values of s. How we implement this depends very
much on our concrete representation of ξ.

If pose is represented by an orthonormal rotation matrix, ξ∼ R∈ SO(3), we might
consider a simple linear interpolation σ(R0, R1, s)= (1− s)R0+ sR1 but this would not,
in general, be a valid orthonormal matrix which has strict column norm and inter-
column orthogonality constraints.

A workable and commonly used alternative is to consider a 3-angle representation
such as Euler or roll-pitch-yaw angles, ξ∼Γ∈ S3 and use linear interpolation

For example we define two orientations

>> R0 = rotz(-1) * roty(-1);
>> R1 = rotz(1) * roty(1);

and find the equivalent roll-pitch-yaw angles

>> rpy0 = tr2rpy(R0); rpy1 = tr2rpy(R1);

Fig. 3.5. Multisegment trajectories:
a no acceleration time tacc= 0;
b acceleration time of tacc= 1 s.
The discrete-time points are indi-
cated with circular markers, and
the via points are indicated by solid
black markers

Chapter 3 · Time and Motion

49

and create a trajectory between them over 50 time steps

>> rpy = mtraj(@tpoly, rpy0, rpy1, 50);

which is mostly easily visualized as an animation⊳

>> tranimate(rpy2tr(rpy));

For large orientation changes we see that the axis around which the coordinate frame
rotates changes along the trajectory. The motion, while smooth, sometimes looks un-
coordinated. There will also be problems if either ξ0 or ξ1 is close to a singularity in
the particular 3-angle system being used.

Interpolation of unit-quaternions is only a little more complex than for 3-angle
vectors and produces a change in orientation that is a rotation around a fixed axis in
space. Using the Toolbox we first find the two equivalent quaternions

>> q0 = Quaternion(R0);
>> q1 = Quaternion(R1);

and then interpolate them

>> q = interp(q0, q1, [0:49]'/49);
>> about(q)
q [Quaternion] : 1x50 (1656 bytes)⊳

which results in a vector of 50 Quaternion objects which we can animate by

>> tranimate(q)

Quaternion interpolation is achieved using spherical linear interpolation (slerp) in
which the unit quaternions follow a great circle path on a 4-dimensional hypersphere.
The result in 3-dimensions is rotation about a fixed axis in space.

3.1.5 lCartesian Motion

Another common requirement is a smooth path between two poses in SE(3) which
involves change in position as well as in orientation. In robotics this is often referred
to as Cartesian motion.

We represent the initial and final poses as homogeneous transformations

>> T0 = transl(0.4, 0.2, 0) * trotx(pi);
>> T1 = transl(-0.4, -0.2, 0.3) * troty(pi/2)*trotz(-pi/2);

The Toolbox function trinterp provides interpolation for normalized distance along
the path s∈ [0, 1], for example the mid pose is

>> trinterp(T0, T1, 0.5)
ans =
 -0.0000 1.0000 0 0
 0 -0.0000 -1.0000 0
 -1.0000 0 -0.0000 0.1500
 0 0 0 1.0000

where the translational component is linearly interpolated and the rotation is is spheri-
cally interpolated using the quaternion interpolation method interp.

A trajectory between the two poses in 50 steps is created by

>> Ts = trinterp(T0, T1, [0:49]/49);

where the arguments are the initial and final pose and a path length varying linearly
from zero to one. The resulting trajectory Ts is a matrix with three dimensions

>> about(Ts)
Ts [double] : 4x4x50 (6400 bytes)

rpy is a 50× 3 matrix and the result

of rpy2tr is a 4× 4× 50 matrix

which is explained in Sect. 3.1.5.

3.1 · Trajectories

The size of the object in bytes, shown

in parentheses, will vary between

MATLAB® versions and computer types.

50

representing the homogeneous transformation (first 2 indices) for each time step (third
index). The homogeneous transformation for the first point on the path is

>> Ts(:,:,1)
ans =
 1.0000 0 0 0.4000
 0 -1.0000 0 0.2000
 0 0 -1.0000 0
 0 0 0 1.0000

and once again the easiest way to visualize this is by animation

>> tranimate(Ts)

which shows the coordinate frame moving and rotating from pose T1 to pose T2.
The translational part of this trajectory is obtained by

>> P = transl(Ts);

which returns the Cartesian position for the trajectory in matrix form

>> about(P)
P [double] : 50x3 (1200 bytes)

which has one row per time step, and each row is the corresponding position vector.
This is plotted

>> plot(P);

in Fig. 3.6 along with the orientation in roll-pitch-yaw format

>> rpy = tr2rpy(Ts);
>> plot(rpy);

We see that the position coordinates vary smoothly and linearly with time and that
orientation varies smoothly with time.�

However the translational motion has a velocity and acceleration discontinuity at
the first and last points. The problem is that while the trajectory is smooth in space the
distance s along the trajectory is not smooth in time. Speed along the path jumps from
zero to some finite value and then drops to zero at the end – there is no initial accelera-
tion or final deceleration. The scalar functions tpoly and lspb discussed earlier can
be used to generate s so that motion along the path is smooth. We can pass a vector of
normalized distances along the path as the third argument to trinterp

>> Ts = trinterp(T0, T1, lspb(0,1, 50));

The trajectory is unchanged but the coordinate frame now accelerates to a constant
speed along the path and then decelerates and this is reflected in smoother curves for

Fig. 3.6. Cartesian motion. a Car-
tesian position versus time, b roll-
pitch-yaw angles versus time

The roll-pitch-yaw angles do not vary

linearly with time because they repre-

sent a non-linear transformation of the

linearly varying quaternion.

The discontinuity in roll angle after

the first point is due to angle wrap-

ping around the circle, moving from

−π to +π.

The discontinuity between the last

two points is because the final orien-

tation is a singularity for roll-pitch-yaw

angles.

Chapter 3 · Time and Motion

51

the translational components of the trajectory shown in Fig. 3.7b. The Toolbox pro-
vides a convenient shorthand ctraj for the above

>> Ts = ctraj(T0, T1, 50);

where the arguments are the initial and final pose and the number of time steps.

3.2 lTime Varying Coordinate Frames

The previous section discussed the generation of coordinate frame motion which has
a translational and rotational velocity component. The translational velocity is the
rate of change of the position of the origin of the coordinate frame. Rotational velocity
is a little more complex.

3.2.1 lRotating Coordinate Frame

A body rotating in 3-dimensional space has an angular velocity which is a vector quan-
tity ω= (ωx, ωy, ωz). The direction of this vector defines the instantaneous axis of ro-
tation, that is, the axis about which the coordinate frame is rotating at a particular
instant of time. In general this axis changes with time. The magnitude of the vector is
the rate of rotation about the axis – in this respect it is similar to the angle-axis repre-
sentation for rotation introduced in Sect. 2.2.1.5. From mechanics there is a well known
expression for the derivative of a time-varying rotation matrix

(3.4)

where Rhti∈ SO(2) or SO(3) and S(·) is a skew-symmetric matrix⊳ that, for the 3-di-
mensional case, has the form

(3.5)

and its properties are described in Appendix D. Using the Toolbox we can write

>> S = skew([1 2 3])
S =
 0 -3 2
 3 0 -1
 -2 1 0

Fig. 3.7. Cartesian motion with
LSPB path distance profile. a Car-
tesian position versus time, b roll-
pitch-yaw angles versus time

3.2 · Time Varying Coordinate Frames

Known as the angular velocity matrix.

52

The Toolbox function vex performs the inverse function� of converting a skew-sym-
metric matrix to a vector

>> vex(S)'
ans =
 1 2 3

We might ask what does ½ mean? Consider the approximation to the derivative

(3.6)

which we rearrange as

and substituting Eq. 3.4 we obtain

(3.7)

which describes how the orthnormal rotation matrix changes as a function of angular
velocity.

3.2.2 lIncremental Motion

Consider a coordinate frame that undergoes a small rotation from R0 to R1. We can
write Eq. 3.7 as

and rearrange it as

and then apply the vex operator, the inverse of S(·), to both sides

(3.8)

where δΘ= δtω is a 3-vector with units of angle that represents an infinitesimal rota-
tion about the world x-, y- and z-axes.�

We have strongly, and properly, cautioned about the non-commutivity of rotations
but for infinitesimal angular changes multiplication is commutative. We can demon-
strate this numerically by

>> Rdelta = rotx(0.001)*roty(0.002)*rotz(0.003)
ans =
 1.0000 -0.0030 0.0020
 0.0030 1.0000 -0.0010
 -0.0020 0.0010 1.0000

which is, to four significant figures, the same as

>> roty(0.002) * rotx(0.001)*rotz(0.003)
ans =
 1.0000 -0.0030 0.0020
 0.0030 1.0000 -0.0010
 -0.0020 0.0010 1.0000

Using Eq. 3.8 we can recover the infinitesimal rotation angle δΘ
>> vex(Rdelta - eye(3,3))'
ans =
 0.0010 0.0020 0.0030

Each element appears twice in the skew-

symmetric matrix, with different sign. In

some algorithms we compute an appro-

ximation of the skew-symmetric matrix

and these elements may have slightly

different magnitudes so vex takes the

average of both elements.

It is in the world coordinate frame be-

cause the term (δ tSSSSS (ω) + IIIII3×3) pre-

multiplies RRRRR0.

Chapter 3 · Time and Motion

53

Given two poses ξ0 and ξ1 that differ infinitesimally we can represent the difference
between them as a 6-vector

(3.9)

comprising the incremental displacement and the incremental rotation. The quantity
δ∈R6 is effectively the spatial velocity which we discuss further in Chap. 8 multiplied
by δt. If the poses are represented in homogeneous transformation form then the dif-
ference is

(3.10)

where T0= (R0, t0) and T1= (R1, t1). In the Toolbox this is the function tr2delta.
The inverse operation is

(3.11)

and for homogenous transformation representation is

(3.12)

and in the Toolbox this is the function delta2tr.
For example

>> T0 = transl(1,2,3)*trotx(1)*troty(1)*trotz(1);
>> T1 = T0*transl(0.01,0.02,0.03)*trotx(0.001)*troty(0.002)*trotz(0.003)
T1 =
 0.2889 -0.4547 0.8425 1.0191
 0.8372 -0.3069 -0.4527 1.9887
 0.4644 0.8361 0.2920 3.0301
 0 0 0 1.0000

the function ∆(·) is computed by the Toolbox function tr2delta

>> d = tr2delta(T0, T1);
>> d'
ans =
 0.0191 -0.0113 0.0301 0.0019 -0.0011 0.0030

which comprises the incremental translation and rotation expressed in the world co-
ordinate frame. Given this displacement and the initial pose, the final pose is

>> delta2tr(d) * T0
 0.2889 -0.4547 0.8425 1.0096
 0.8372 -0.3069 -0.4527 1.9859
 0.4644 0.8361 0.2920 3.0351
 0 0 0 1.0000

which is quite close to the true value given above and the error is due to the fact that
the displacement is not infinitesimal. The displacement 6-vector is used in the next
section and several times in Chap. 8.

3.2.3 lInertial Navigation Systems

An inertial navigation system is a “black box” that estimates its velocity, orientation
and position with respect to the inertial reference frame (the universe). Importantly it
has no external inputs such as radio signals from satellites and this makes it well suited
to applications such as submarine, spacecraft and missile guidance. An inertial navi-
gation system works by measuring accelerations and angular velocities and integrat-
ing them over time.

3.2 · Time Varying Coordinate Frames

54

Early inertial navigation systems, such as shown in Fig. 2.13, used mechanical gim-
bals to keep the accelerometers at a constant attitude with respect to the stars using a
gyro-stabilized platform. The acceleration measured on this platform was integrated
to obtain the velocity of the platform, and integrated again to obtain its position. In
order to achieve accurate position estimates over periods of hours or days the gimbals
and gyroscopes had to be of extremely high quality so that the stable platform did not
drift, and the acceleration sensors needed to be extremely accurate.

In a modern strapdown inertial measurement system the acceleration and angular
velocity sensors are rigidly attached to the vehicle. The three orthogonally mounted
gyroscopes measure the components of the angular velocity ω and use Eq. 3.7 to con-
tinuously update the estimated orientation 0RB of the vehicle’s body-fixed frame {B}
with respect to the stars {0}.

A discrete-time version of Eq. 3.7 such as

(3.13)

is used to numerically integrate changes in pose in order to estimate the orientation of
the vehicle. The measured acceleration Ba of the vehicle’s body frame is rotated into
the inertial frame

and can then be integrated twice to update the estimate of the vehicle’s position in the
inertial frame. Practical systems work at high sample rate, typically hundreds of Hertz,
and would employ higher-order numerical integration techniques rather than the
simple rectangular integration of Eq. 3.13.

In Eq. 3.13 we added the matrix δtS(ω)R(t) to an orthonormal rotation matrix and
this is not quite proper – the result will not be an orthonormal matrix. However if the
added term is small� the result will be close to orthonormal and we can straighten it
up. This process is called normalization and enforces the constraints on the elements
of an orthonormal matrix. It involves the following steps where ci is the ith column
of R. We first assume that column 3 is correct

An Inertial Navigation System (INS) comprises a computer and motion sensors and continuously
calculates the position, orientation, and velocity of a moving object via dead reckoning. It has no
need for external references which is important for vehicles, such as submarines or spacecraft, that
are unable to communicate with radio navigation aids or which must be immune to radio jamming.

A gyroscope or gyro is a sensor that measures angular velocity about a particular axis. Early
rotational sensors actually employed a spinning disk, like the childhood toy, but today the term gyro-
scope is generically applied to all angular velocity sensors. To measure the angular velocity a triaxial
assembly of gyroscopes is used – three gyroscopes with their measurement axes in orthogonal direc-
tions. Modern gyroscopes are based on a variety of physical principles such as tiny vibrating beams
or relativistic effects in ring-laser and fibre-optic gyros. An accelerometer is a sensor that measures
acceleration along a particular axis. Accelerometers work by measuring the forces on a small proof
mass within the sensor. The vehicle’s acceleration vector is measured using a triaxial assembly of
accelerometers. The sensors are collectively referred to as an inertial measurement unit (IMU).

Much important development was undertaken by the MIT Instrumentation Laboratory under
the leadership of Charles Stark Draper. In 1953 the Space Inertial Reference Equipment (SPIRE)
system, 1200 kg of equipment, guided a B-29 bomber on a 12 hour trip from Massachusetts to Los
Angeles without the aid of a pilot and with Draper aboard. In 1954 the first self-contained subma-
rine navigation system (SINS) was introduced to service. The Instrumentation Lab also developed
the Apollo Guidance Computer, a one-cubic-foot computer that guided the Apollo Lunar Module to
the surface of the Moon in 1969.

Today high-performance inertial navigation systems based on fibre-optic gyroscopes are widely
available and weigh around one 1 kg and low-cost systems based on MEMS technology can weigh
less than 100 g and cost tens of dollars.

Which is why inertial navigation sys-

tems operate at a high sample rate and

δ t is small.

Chapter 3 · Time and Motion

55

then the first column is made orthogonal to the last two

However the last two columns may not have been orthogonal so

Finally the columns are normalized to unit magnitude

In the Toolbox normalization is implemented by

>> T = trnorm(T);

and is quite similar to the problem of representing pose using two unit vectors dis-
cussed in Sect. 2.2.1.4. In an orientation estimation system using Eq. 3.13 the attitude R
should be normalized after each integration step.⊳

Alternatively we could use unit-quaternions and things, as is generally the case, are a
little simpler. The derivative of a quaternion, the quaternion equivalent of Eq. 3.4 is de-
fined as

(3.14)

which is implemented by the dot method

>> qd = q.dot(omega);

Integration of quaternion rates is achieved by

As with Eq. 3.7 the addition is not quite proper and the result will no longer be a unit
quaternion. Normalization is achieved by ensuring that the quaternion norm is unity,
a straightforward division of all elements by the quaternion norm

Charles Stark (Doc) Draper (1901–1987) was an American scientist and engineer, often referred
to as “the father of inertial navigation.” Born in Windsor, Missouri, he studied at the University of
Missouri then Stanford where he earned a B.A. in psychology in 1922, then at MIT an S.B. in
electrochemical engineering and an S.M. and Sc.D. in physics in 1928 and 1938 respectively. He
started teaching while at MIT and became a full professor in aeronautical engineering in 1939. He
was the founder and director of the MIT Instrumentation Laboratory which made important
contributions to the theory and practice of inertial navigation to meet the needs of the cold war
and the space program.

Draper was named one of Time magazine’s Men of the Year in 1961 and inducted to the National
Inventors Hall of Fame in 1981. The Instrumentation lab was renamed Charles Stark Draper Labora-
tory (CSDL) in his honour. (Photo on the left: courtesy of The Charles Stark Draper Laboratory Inc.)

Rotation matrices also become denor-

malized from repeated compounding

due to the accumulation of errors from

finite precision arithmetic.

3.2 · Time Varying Coordinate Frames

56

or in the Toolbox

>> q = q.unit();

Quaternions are more commonly used in the rotation update equations for strapdown
inertial navigation systems than orthonormal rotation matrices. The results will of course
be the same but the computational cost for the quaternion version is significantly less.

3.3 lWrapping Up

In this chapter we have considered pose that varies as a function of time from two per-
spectives. The first perspective was to create a sequence of poses, a trajectory, that a robot
can follow. An important characteristic of a trajectory is that it is smooth – the position
and orientation varies smoothly with time. We start by discussing how to generate smooth
trajectories in one dimension and then extended that to the multi-dimensional case and
then to piecewise-linear trajectories that visit a number of intermediate points.

The second perspective was to examine the temporal derivative of an orthonormal
rotation matrix and how that relates to concepts from mechanics such as velocity and
angular velocity. This allows us to solve the inverse problem, given measurements from
sensors we are able to update the estimate of pose for a moving object – the principle
underlying inertial navigation. We introduced the infinitesimal motion δ which is re-
lated to spatial velocity and which we will encounter again in Chap. 8.

Interpolation of rotation and integration of angular velocity was treated using both
orthonormal rotation matrices and quaternions. The results are equivalent but the
quaternion formulation is more elegant and computationally more efficient.

Further Reading

The earliest work on manipulator Cartesian trajectory generation was by Paul (1972, 1979)
and Taylor (1979). The muti-segment trajectory is discussed by Paul (1979, 1981) and the
concept of segment transitions or blends is discussed by Lloyd and Hayward (1991). These
early papers, and others, are included in the compilation on Robot Motion (Brady et al.
1982). Polynomial and LSPB trajectories are described in detail by Spong et al. (2006) and
multi-segment trajectories are covered at length in Siciliano et al. (2008) and Craig (2004).

The relationship between orthonormal rotation matrices, the skew-symmetric
matrix and angular velocity is well described in Spong et al. (2006).

The principles of inertial navigation are covered in the book by Groves (2008) which
also covers GPS and other radio-based localization systems which are the subject of Part II.
The book Digital Apollo (Mindell 2008) is a very readable story of the development of the
inertial navigation system for the Apollo Moon landings. The paper by Corke et al. (2007)
describes the principles of inertial sensors and the functionally equivalent sensors lo-
cated in the inner ear of mammals that play a key role in maintaining balance.

Exercises

1. For a tpoly trajectory from 0 to 1 in 50 steps explore the effects of different initial
and final velocities, both positive and negative. Under what circumstances does the
quintic polynomial overshoot and why?

2. For a lspb trajectory from 0 to 1 in 50 steps explore the effects of specifying the
velocity for the constant velocity segment. What are the minimum and maximum
bounds possible?

3. For a trajectory from 0 to 1 and given a maximum possible velocity of 0.025 compare
how many time steps are required for each of the tpoly and lspb trajectories?

Chapter 3 · Time and Motion

57

4. Use tranimate to compare rotational interpolation using quaternions, Euler angles
and roll-pitch-yaw angles. Hint: use the quaternion interp method, and mtraj
with tr2eul and eul2tr
a) Repeat for the case choose where the final orientation is at a singularity. What

happens?
5. Repeat for the case where the interpolation passes through a singularity. What hap-

pens?
6. Develop a method to quantitatively compare the performance of the different ori-

entation interpolation methods. Hint: plot the locus followed by) on a unit sphere.
7. For the mstraj example (page 47)

a) Repeat with different initial and final velocity.
b) Investigate the effect of increasing the acceleration time. Plot total time as a

function of acceleration time.
8. Modify mstraj so that acceleration limits are taken into account when determin-

ing the segment time.
9. Implement an inertial measurement system. First create an angular velocity signal

as a function of time, for example

>> t = [0:0.01:10]’;
>> w = [0.1*sin(t) 0.2*sin(0.6*t) 0.3*sin(0.4*t)];

a) Estimate the rotation matrix at each time step, then animate it.
b) Repeat using quaternions.
c) Add a small amount of Gaussian noise w = w + randn(size(w)) * 0.001

and repeat. What changes?
d) Investigate performance for increasing amounts of noise.

3.3 · Wrapping Up

Part II Mobile Robots

Chapter 4 Mobile Robot Vehicles

Chapter 5 Navigation

Chapter 6 Localization

II
Part

Mobile Robots

In this part we discuss mobile robots, a class of robots that are able to move through
the environment. The figures show an assortment of mobile robots that can move over
the ground, over the water, through the air, or through the water. This highlights the
diversity of what is referred to as the robotic platform – the robot’s physical embodi-
ment and means of locomotion.

However these mobile robots are very similar in terms of what they do and how
they do it. One of the most important functions of a mobile robot is to move to some
place. That place might be specified in terms of some feature in the environment, for
instance move to the light, or in terms of some geometric coordinate or map reference.
In either case the robot will take some path to reach its destination and it faces chal-
lenges such as obstacles that might block its way or having an incomplete map, or no
map at all.

One strategy is to have very simple sensing of the world and to react to what is
sensed. For example Elsie the robotic tortoise built in the 1940s reacted to her environ-
ment and could seek out a light source without having any explicit plan or knowledge
of the position of the light. An alternative to the reactive approach was embodied in
the 1960s robot Shakey which was capable of 3D perception and created a map of its
environment and then reasoned about the map to plan a path to its destination.

These two approaches exemplify opposite ends of the spectrum for mobile robot
navigation. Reactive systems can be fast and simple since sensation is connected di-
rectly to action – there is no need for resources to hold and maintain a representation
of the world nor any capability to reason about that representation. In nature such
strategies are used by simple organisms such as insects. Systems that make maps and

Fig. II.1.

a Elsie the tortoise. Burden
Institute Bristol (1948). Now in

the collection of the Smithsonian
Institution but not on display

(photo: courtesy Reuben Hoggett
collection). b Shakey. SRI In-

ternational (1968). Now in the
Computer Museum in Mountain

View (photo: courtesy SRI
International)

62

reason about them require more resources but are capable of performing more complex
tasks. In nature such strategies are used by more complex creatures such as mammals.

The first commercial applications of mobile robots came in the 1980s when auto-
mated guided vehicles (AGVs) were developed for transporting material around fac-
tories and these have since become a mature technology. These free-ranging mobile
wheeled vehicles typically use fixed infrastructure for guidance, for example, a painted
line on the floor, a buried cable that emits a radio-frequency signal, or wall-mounted
bar codes. The last decade has seen significant achievements in mobile robotics that
can operate without navigational infrastructure. We have seen rovers on Mars, the

Fig. II.2.

Some mobile ground robots:
a Mars Exploration Rover, 2004
(image courtesy of NASA/JPL/
Cornell University). b Boss,
Tartan racing team’s autono-
mous car that won the Darpa
Urban Grand Challenge, 2007
(Carnegie-Mellon University).
c The Roomba robotic vacuum
cleaner, 2008 (photo: courtesy
iRobot Corporation). d An auto-
mated straddle carrier that
moves containers. Port of Bris-
bane, 2006 (photo: courtesy
of Port of Brisbane Pty Ltd)

Fig. II.3.

Some mobile air and water robots:
a Yamaha RMAX helicopter with
3 m blade diameter. b Fixed-wing
robotic aircraft (photo of
ScanEagle courtesy of Insitu).
c DEPTHX: Deep Phreatic Ther-
mal Explorer, a 6-thruster under-
water robot. Stone Aerospace/
CMU (2007) (photo by David
Wettergreen, © Carnegie-Mellon
University). d Autonomous boat
(photo by Matthew Dunbabin)

Part II · Mobile Robots

63

DARPA series of grand challenges for autonomous cars (Buehler et al. 2007, 2010) and
even small low-cost robotic vacuum cleaners. Field robotic systems such as trucks in
mines, container transport vehicles in shipping ports, and self-driving tractors for
broad-acre agriculture are now commercially available. Mobile robots are not just lim-
ited to operations on the ground and recent years have seen significant progress with
unmanned aerial vehicles (UAVs), autonomous underwater vehicles (AUVs), and ro-
botic boats which are known as autonomous surface vehicles (ASVs).

The chapters in this part of the book cover the fundamentals of mobile robotics.
Chapter 4 discusses the motion and control of two exemplar robot platforms: wheeled
car-like vehicles that operate on a planar surface, and flying robots that move in
3-dimensional space – specifically quadrotor flying robots. Chapter 5 is concerned
with navigation. We will cover in some detail the reactive and plan-based approaches
to guiding a robot through an environment that contains obstacles. Most navigation
strategies require knowledge of the robot’s position and this is the topic of Chap. 6
which examines techniques such dead reckoning and the use of maps along with ob-
servations of landmarks. We also show how a robot can make a map, and even deter-
mine its location while simultaneously mapping an unknown region.

Part II · Mobile Robots

4
Chapter

Mobile Robot Vehicles

helpful to consider some general, but important, concepts regarding mobility.

4.1 lMobility

We have already touched on the diversity of mobile robots and their modes of locomo-
tion. In this section we will discuss mobility which is concerned with how a vehicle
moves in space.

We first consider the simple example of a train. The train moves along rails and its posi-
tion is described by its distance along the rail from some datum. The configuration of the
train can be completely described by a scalar parameter q which is called its generalized
coordinate. The set of all possible configurations is the configuration space, or C-space, de-
noted by C and q∈C. In this case C⊂R. We also say that the train has one degree of free-
dom since q is a scalar. The train also has one actuator (motor) that propels it forwards or
backwards along the rail. With one motor and one degree of freedom the train is fully
actuated and can achieve any desired configuration, that is, any position along the rail.

Another important concept is task space which is the set of all possible poses ξ of
the vehicle and ξ∈ T. The task space depends on the application or task. If our task
was motion along the rail then T⊂R. If we cared only about the position of the train
in a plane then T⊂R2. If we considered a 3-dimensional world then T⊂ SE(3), and its
height changes as it moves up and down hills and its orientation changes as it moves
around curves. Clearly for these last two cases the dimensions of the task space exceed
the dimensions of the configuration space and the train cannot attain an arbitrary
pose since it is constrained to move along fixed rails. In these cases we say that the
train moves along a manifold in the task space and there is a mapping from q֏ ξ.

Interestingly many vehicles share certain characteristics with trains – they are good
at moving forward but not so good at moving sideways. Cars, hovercrafts, ships and
aircraft all exhibit this characteristic and require complex manoeuvring in order to
move sideways. Nevertheless this is a very sensible design approach since it caters to
the motion we most commonly require of the vehicle. The less common motions such
as parking a car, docking a ship or landing an aircraft are more complex, but not im-
possible, and humans can learn this skill. The benefit of this type of design comes
from simplification and in particular reducing the number of actuators required.

This chapter discusses how a robot platform moves, that is, how its pose
changes with time as a function of its control inputs. There are many differ-
ent types of robot platform as shown on pages 61–63 but in this chapter we
will consider only two which are important exemplars. The first is a wheeled
vehicle like a car which operates in a 2-dimensional world. It can be pro-
pelled forwards or backwards and its heading direction controlled by chang-
ing the angle of its steered wheels. The second platform is a quadrotor, a
flying vehicle, which is an example of a robot that moves in 3-dimensional
space. Quadrotors are becoming increasing popular as a robot platform
since they can be quite easily modelled and controlled.

However before we start to discuss these two robot platforms it will be

66

Next consider a hovercraft which has two propellors whose axes are parallel but not
collinear. The sum of their thrusts provide a forward force and the difference in thrusts
generates a yawing torque for steering. The hovercraft moves over a planar surface
and its configuration is entirely described by three generalized coordinates
q= (x, y, θ) ∈ C and in this case C⊂R2× S. The configuration space has 3 dimen-
sions and the vehicle therefore has three degrees of freedom.

The hovercraft has only two actuators, one fewer than it has degrees of freedom,
and it is therefore an under-actuated system. This imposes limitations on the way in
which it can move. At any point in time we can control the forward (parallel to the
thrust vectors) acceleration and the rotational acceleration of the the hovercraft but
there is zero sideways (or lateral) acceleration since it does not generate any lateral
thrust. Nevertheless with some clever manoeuvring, like with a car, the hovercraft can
follow a path that will take it to a place to one side of where it started. The advantage of
under-actuation is the reduced number of actuators, in this case two instead of three.
The penalty is that the vehicle cannot move directly to an any point in its configura-
tion space, it must follow some path. If we added a third propellor to the hovercraft
with its axis normal to the first two then it would be possible to command an arbitrary
forward, sideways and rotational acceleration. The task space of the hovercraft is
T⊂ SE(2) which is equivalent, in this case, to the configuration space.

A helicopter has four actuators. The main rotor generates a thrust vector whose
magnitude is controlled by the collective pitch, and the thrust vector’s direction is
controlled by the lateral and longitudinal cyclic pitch. The fourth actuator, the tail
rotor, provides a yawing moment. The helicopter’s configuration can be described by
six generalized coordinates q= (x, y, z, θr, θp, θy) ∈ C which is its position and orienta-
tion in 3-dimensional space, with orientation expressed in roll-pitch-yaw angles. The
configuration space C⊂R3× S3 has six dimensions and therefore the vehicle has six
degrees of freedom. The helicopter is under-actuated and it has no means to rotationally
accelerate in the pitch and roll directions but cleverly these unactuated degrees of
freedom are not required for helicopter operation – the helicopter naturally maintains
stable equilibrium values for roll and pitch angle. Gravity acts like an additional actua-
tor and provides a constant downward force. This allows the helicopter to accelerate
sideways using the horizontal component of its thrust vector, while the vertical com-
ponent of thrust is counteracted by gravity – without gravity a helicopter could not fly
sideways. The task space of the helicopter is T⊂ SE(3).

A fixed-wing aircraft moves forward very efficiently and also has four actuators�

(forward thrust, ailerons, elevator and rudder). The aircraft’s thrust provides accelera-
tion in the forward direction and the control surfaces exert various moments on the
aircraft: rudder (yaw torque), ailerons (roll torque), elevator (pitch torque). The aircraft’s
configuration space is the same as the helicopter and has six dimensions. The aircraft
is under-actuated and it has no way to accelerate in the lateral direction. The task
space of the aircraft is T⊂ SE(3).

The DEPTHX underwater robot shown on page 62 also has a configuration space
C⊂R3× S3 of six dimensions, but by contrast is fully actuated. Its six actuators can
exert an arbitrary force and torque on the vehicle, allowing it to accelerate in any di-
rection or about any axis. Its task space is T⊂ SE(3).

Finally we come to the wheel – one of humanity’s greatest achievements. The wheel
was invented around 3000 bce and the two wheeled cart was invented around 2000 bce.
Today four wheeled vehicles are ubiquitous and the total automobile population of the
planet is approaching one billion.� The effectiveness of cars, and our familiarity with
them, makes them a natural choice for robot platforms that move across the ground.

The configuration of a car moving over a plane is described by its generalized coor-
dinates q= (x, y, θ) ∈ C and C⊂R2× S which has 3 dimensions. A car has only two
actuators, one to move forwards or backwards and one to change the heading direc-
tion. The car is therefore under-actuated.� As we have already remarked an under-
actuated vehicle cannot move directly to an any point in its configuration space, it

Some low-cost hobby aircraft have no

rudder and rely only on ailerons to bank

and turn the aircraft. Even cheaper

hobby aircraft have no elevator and rely

on engine speed to control height.

http://hypertextbook.com/facts/2001/

MarinaStasenko.shtml.

Unlike the aircraft and underwater ro-

bot the motion of a car is generally con-

sidered in terms of velocities rather

than forces and torques.

Chapter 4 · Mobile Robot Vehicles

67

must generally follow some nonlinear path. We know from our everyday experience
with cars that it is not possible to drive sideways, but with some practice we can learn
to follow a path that results in the vehicle being to one side of its initial position – this
is parallel parking. Neither can a car rotate on spot, but we can follow a path that
results in the vehicle being at the same position but rotated by 180° – a three-point
turn. The challenges this introduces for control and path planning will be discussed in
the rest of this part of the book. Despite this limitation the car is the simplest and most
effective means of moving in a planar world that we have yet found.

The standard wheel is highly directional and prefers to roll in the direction normal
to the axis of rotation. We might often wish for an ability to roll sideways but the stan-
dard wheel provides significant benefit when cornering – lateral friction between the
wheels and the road counteracts, for free, the centripetal acceleration which would
otherwise require an extra actuator to provide that force. More radical types of wheels
have been developed that can roll sideways. An omni-directional wheel or Swedish
wheel is shown in Fig. 4.1. It is similar to a normal wheel but has a number of passive
rollers around its circumference and their rotational axes lie in the plane of the wheel.
It is driven like an ordinary wheel but has very low friction in the lateral direction. A
spherical wheel is similar to the roller ball in an old-fashioned computer mouse but
driven by two actuators so that it can achieve achieve a velocity in any direction.

In robotics a car is often described as a non-holonomic vehicle. The term non-
holonomic comes from mathematics and means that the motion of the car is subject
to one or more non-holonomic constraints. A holonomic constraint is an equation
that can be written in terms of the configuration variables x, y and θ. A non-holonomic
constraint can only be written in terms of the derivatives of the configuration vari-
ables and cannot be integrated to a constraint in terms of configuration variables. Such
systems are therefore also known as non-integrable systems. A key characteristic of
these systems, as we have already discussed, is that they cannot move directly from one
configuration to another – they must perform a manoeuvre or sequence of motions⊳.

A skid-steered vehicle, such as a tank, can turn on the spot but to move sideways it
would have to stop, turn, proceed, stop then turn – this is a manoeuvre or time-vary-
ing control strategy which is the hallmark of a non-holonomic system. The tank has
two actuators, one for each track, and just like a car is under-actuated.

Mobility parameters for the vehicles that we have discussed are tabulated in Table 4.1.
The second column is the number of degrees of freedom of the vehicle or the dimen-
sion of its configuration space. The third column is the number of actuators and the
fourth column indicates whether or not the vehicle is fully actuated.

4.2 lCar-like Mobile Robots

Wheeled cars are a very effective class of vehicle and the archetype for most ground
robots such as those shown on page 62. In this section we will create a model for a car-
like vehicle and develop controllers that can drive the car to a point, along a line, follow
an arbitrary path, and finally, drive to a specific pose.

Fig. 4.1. Omni-directional (or
Swedish) wheel. Note the circum-
ferential rollers which make mo-
tion in the direction of the wheel’s
axis almost frictionless. (Courtesy
Vex Robotics)

Table 4.1.

Summary of parameters for
three different types of vehicle.
The +g notation indicates that
the gravity field can be consid-

ered as an extra actuator

We can also consider this in control theo-

retic terms. Brockett’s theorem (Brockett

1983) states that such systems are con-

trollable but they cannot be stabilized

to a desired state using a differentiable,

or even continuous, pure state feedback

controller. A time varying or non-linear

control strategy is required.

4.2 · Car-like Mobile Robots

68

A commonly used model for a four-wheeled car-like vehicle is the bicycle model�

shown in Fig. 4.2. The bicycle has a rear wheel fixed to the body and the plane of the
front wheel rotates about the vertical axis to steer the vehicle.

The pose of the vehicle is represented by the coordinate frame {V} shown in Fig. 4.2,
with its x-axis in the vehicle’s forward direction and its origin at the centre of the rear
axle. The configuration of the vehicle is represented by the generalized coordinates
q= (x, y, θ)∈ C where C⊂ SE(2). The vehicle’s velocity� is by definition v in the vehicle’s
x-direction, and zero in the y-direction since the wheels cannot slip sideways. In the
vehicle frame {V} this is

The dashed lines show the direction along which the wheels cannot move, the lines
of no motion, and these intersect at a point known as the Instantaneous Centre of
Rotation (ICR). The reference point of the vehicle thus follows a circular path and its
angular velocity is

(4.1)

and by simple geometry the turning radius is R1= L/ tanγ where L is the length of
the vehicle or wheel base. As we would expect the turning circle increases with vehicle
length. The steering angle γ is limited mechanically and its maximum value dictates
the minimum value of R1.

Fig. 4.2.

Bicycle model of a car. The car
is shown in light grey, and the
bicycle approximation is dark
grey. The vehicle’s coordinate
frame is shown in red, and the
world coordinate frame in blue.
The steering wheel angle is γ
and the velocity of the back
wheel, in the x-direction, is v. The
two wheel axes are extended as
dashed lines and intersect at the
Instantaneous Centre of Rotation
(ICR) and the distance from the
ICR to the back and front wheels
is R1 and R2 respectively

Often incorrectly called the Ackerman

model.

Other well known models include the

Reeds-Shepp model which has only

three speeds: forward, backward and

stopped, and the Dubbins car which has

only two speeds: forward and stopped.

Chapter 4 · Mobile Robot Vehicles

69

For a fixed steering wheel angle the car moves along a circular arc. For this reason
curves on roads are circular arcs or clothoids⊳ which makes life easier for the driver since
constant or smoothly varying steering wheel angle allow the car to follow the road. Note
that R2>R1 which means the front wheel must follow a longer path and therefore rotate
more quickly than the back wheel. When a four-wheeled vehicle goes around a corner the
two steered wheels follow circular paths of different radius and therefore the angles of the
steered wheels γL and γR should be very slightly different. This is achieved by the com-
monly used Ackerman steering mechanism which results in lower wear and tear on the
tyres. The driven wheels must rotate at different speeds on corners which is why a differ-
ential gearbox is required between the motor and the driven wheels.

The velocity of the robot in the world frame is (v cosθ, v sinθ) and combined with
Eq. 4.1 we write the equations of motion as

(4.2)

This model is referred to as a kinematic model since it describes the velocities of the vehi-
cle but not the forces or torques that cause the velocity. The rate of change of heading Ë is
referred to as turn rate, heading rate or yaw rate and can be measured by a gyroscope. It can
also be deduced from the angular velocity of the wheels on the left- and right-hand sides
of the vehicle which follow arcs of different radius and therefore rotate at different speeds.

In the world coordinate frame we can write an expression for velocity in the vehicle’s
y-direction

which is the non-holonomic constraint. This equation cannot be integrated to form a
relationship between x, y and θ .

Equation 4.2 captures some other important characteristics of a wheeled vehicle.
When v= 0 then Ë = 0, that is, it is not possible to change the vehicle’s orientation
when it is not moving. As we know from driving we must be moving in order to turn.
If the steering angle is ü then the front wheel is orthogonal to the back wheel, the
vehicle cannot move forward and the model enters an undefined region.

Vehicle coordinate system. The coordinate system that we will use, and a common one for vehicles
of all sorts is that the x-axis is forward (longitudinal motion), the y-axis is to the left side (lateral
motion) which implies that the z-axis is upward. For aerospace and underwater applications the
z-axis is often downward and the x-axis is forward.

Paths that arcs with smoothly varying

radius.

Rudolph Ackerman (1764–1834) was a German inventor born at Schneeberg, in Saxony. For finan-
cial reasons he was unable to attend university and became a saddler like his father. For a time he
worked as a saddler and coach-builder and in 1795 established a print-shop and drawing-school in
London. He published a popular magazine “The Repository of Arts, Literature, Commerce, Manu-
factures, Fashion and Politics” that included an eclectic mix of articles on water pumps, gas-light-
ing, and lithographic presses, along with fashion plates and furniture designs. He manufactured
paper for landscape and miniature painters, patented a method for waterproofing cloth and paper
and built a factory in Chelsea to produce it. He is buried in Kensal Green Cemetery, London.

In 1818 Ackermann took out British patent 4212 on behalf of the German inventor George
Lankensperger for a steering mechanism which ensures that the steered wheels move on circles
with a common centre. The same scheme was proposed and tested by Erasmus Darwin (grandfa-
ther of Charles) in the 1760s. Subsequent refinement by the Frenchman Charles Jeantaud led to
the mechanism used in cars to this day which is known as Ackermann steering.

4.2 · Car-like Mobile Robots

70

Fig. 4.3. Toolbox Bicycle block
implements the bicycle kinematic
model. The velocity input has a rate
limiter to model finite acceleration,
and limiters on velocity and steer-
ing wheel angle. The block labelled
handbrake is a constant, from the
block’s parameter dialog, that re-
sets the integrator and enforces the
initial condition

Fig. 4.4.

Simulink® model sl_lanechange
that results in a lane changing man-
oeuvre. The pulse generator drives
the steering angle left then right

Fig. 4.5. Simple lane changing
maneuver. a Vehicle response as a
function of time, b motion in the
xy-plane, the vehicle moves in the
positive x-direction

Figure 4.3 shows a Simulink® implementation of the bicycle model. It implements
Eq. 4.2 and also includes a maximum velocity limit, a velocity rate limiter to model
finite acceleration and a limiter on the steering angle to model the finite range of the
steered wheel. The Simulink® system

>> sl_lanechange

shown in Fig. 4.4 uses the Bicycle block in a system with a constant velocity de-
mand. The steering input is a positive then negative pulse on the steering angle and
the configuration is plotted against time in Fig. 4.5a. The result, in the xy-plane, is
shown in Fig. 4.5b and shows a simple lane-changing trajectory.

�
�

Chapter 4 · Mobile Robot Vehicles

71

4.2.1 lMoving to a Point

Consider the problem of moving toward a goal point (x*, y*) in the plane. We will
control the robot’s velocity to be proportional to its distance from the goal

and to steer toward the goal which is at the vehicle-relative angle in the world frame of

using a proportional controller

which turns the steering wheel toward the target. Note the use of the ⊖ operator
since θ *, θ ∈ S we require the angular difference⊳ to also lie within S. A Simulink®
model

>> sl_drivepoint

is shown in Fig. 4.6. We specify a goal coordinate

>> xg = [5 5];

To run the Simulink® model called model we first load it

>> model

and a new window is popped up that displays the model in block-diagram form. The simulation
can be started by typing control-T or by using Simulation+Start option from the toolbar on
the model’s window. The model can also be run directly from the MATLAB® command line

>> sim('model')

Many Toolbox models create additional figures to display robot animations or graphs.
Some models write data to the MATLAB® workspace for subsequent analysis. Some models

simply have unconnected output ports. All models in this chapter have the simulation data ex-
port option set to Format=Array, so the signals are concatenated, in port number order, to form
a row vector and these are stacked to form a matrix yout with one row per timestep. The corre-
sponding time values form a vector tout. These variables can be returned from the simulation

>> r = sim('model')

in the object r. Displaying r lists the variables that it contains and their value is obtained using
the find method, for example

>> t = r.find('tout');

Fig. 4.6. sl_drivepoint, the
Simulink® model that drives the
vehicle to a point

The Toolbox function angdiff com-

putes the difference between two angles

and returns a difference in the interval

[−π, π). Also available in the Toolbox

Simulink® blockset roblocks.

4.2 · Car-like Mobile Robots

72

and an initial pose

>> x0 = [8 5 pi/2];

and then simulate the motion

>> r = sim('sl_drivepoint');

The variable r is an object that contains the simulation results from which we extract
the configuration as a function of time

>> q = r.find('yout');

The vehicle’s path in the plane is

>> plot(q(:,1), q(:,2));

which is shown in Fig. 4.7 for a number of starting poses. In each case the vehicle has
moved forward and turned onto a path toward the goal point. The final part of each
path is a straight line and the final orientation therefore depends on the starting point.

4.2.2 lFollowing a Line

Another useful task for a mobile robot is to follow a line on the plane defined by
ax+ by+ c= 0. This requires two controllers to adjust steering. One controller steers
the robot to minimize the robot’s normal distance from the line which according to
Eq. I.1 is

The proportional controller

turns the robot toward the line. The second controller adjusts the heading angle, or
orientation, of the vehicle to be parallel to the line

Fig. 4.7.

Simulation results for
sl_drivepoint for different
initial poses. The goal is (5, 5)

Chapter 4 · Mobile Robot Vehicles

73

using the proportional controller

The combined control law

turns the steering wheel so as to drive the robot toward the line and move along it.
The Simulink® model

>> sl_driveline

is shown in Fig. 4.8. We specify the target line as a 3-vector (a, b, c)⊳

>> L = [1 -2 4];

and an initial pose

>> x0 = [8 5 pi/2];

and then simulate the motion

>> r = sim('sl_driveline');

The vehicle’s path for a number of different starting poses is shown in Fig. 4.9.

Fig. 4.8. The Simulink® model
sl_driveline drives the ve-
hicle along a line. The line pa-
rameters (a, b, c) are set in the
workspace variable L

Fig. 4.9.

Simulation results from different
initial poses for the line (1,−2, 4)

�
4.2 · Car-like Mobile Robots

See Appendix I.

74

4.2.3 lFollowing a Path

Instead of a straight line we might wish to follow a path that is defined more generally
as some locus on the xy-plane. The path might come from a sequence of coordinates
generated by a motion planner, such as discussed in Sect. 5.2, or in real-time based on
the robot’s sensors.

A simple and effective algorithm for path following is pure pursuit in which the
goal (x*

hti, y*
hti) moves along the path, in its simplest form at constant speed, and the

vehicle always heads toward the goal – think carrot and donkey.

Fig. 4.10. The Simulink® model
sl_pursuit drives the vehicle
to follow an arbitrary moving tar-
get using pure pursuit. In this ex-
ample the vehicle follows a point
moving around a unit circle with
a frequency of 0.1 Hz

Fig. 4.11. Simulation results from
pure pursuit. a Path of the robot
in the xy-plane. The black dashed
line is the circle to be tracked and
the blue line in the path followed
by the robot. b The speed of the
vehicle versus time

Chapter 4 · Mobile Robot Vehicles

75

This problem is very similar to the control problem we tackled in Sect. 4.2.1, mov-
ing to a point, except this time the point is moving. The robot maintains a distance d*

behind the pursuit point and we formulate an error

that we regulate to zero by controlling the robot’s velocity using a proportional-
integral (PI) controller

The integral term is required to provide a finite velocity demand v* when the fol-
lowing error is zero. The second controller steers the robot toward the target which is
at the relative angle

and a simple proportional controller

turns the steering wheel so as to drive the robot toward the target.
The Simulink® model

>> sl_pursuit

shown in Fig. 4.10 includes a target that moves around a unit circle. It can be simu-
lated

>> r = sim('sl_pursuit')

and the results are shown in Fig. 4.11a. The robot starts at the origin but catches up
to, and follows, the moving goal. Figure 4.11b shows how the speed demand picks up
smoothly and converges to a steady state value at the desired following distance.

4.2.4 lMoving to a Pose

The final control problem we discuss is driving to a specific pose (x*, y*, θ *). The con-
troller of Fig. 4.6 could drive the robot to a goal position but the final orientation
depended on the starting position.

In order to control the final orientation we first rewrite Eq. 4.2 in matrix form

and then transform the equations into polar coordinate form using the notation shown
in Fig. 4.12. We apply a change of variables

4.2 · Car-like Mobile Robots

76

which results in

and assumes the goal {G} is in front of the vehicle. The linear control law

drives the robot to a unique equilibrium� at (ρ, α, β)= (0, 0, 0). The intuition behind
this controller is that the terms kρρ and kαα drive the robot along a line toward {G}
while the term kββ rotates the line so that β→ 0. The closed-loop system

is stable so long as

Fig. 4.12.

Polar coordinate notation for the
bicycle model vehicle moving
toward a goal pose: ρ is the
distance to the goal, β is the
angle of the goal vector with
respect to the world frame, and
α is the angle of the goal vector
with respect to the vehicle frame

The control law introduces a disconti-

nuity at ρ= 0 which satisfies Brockett’s

theorem.

Chapter 4 · Mobile Robot Vehicles

77

The distance and bearing to the goal (ρ, α) could be measured by a camera or laser range
finder, and the angle β derived from α and vehicle orientation θ as measured by a compass.

For the case where the goal is behind the robot, that is α ∉ (−ü , ü], we reverse the
vehicle by negating v and γ in the control law. The velocity v always has a constant
sign which depends on the initial value of α .

So far we have described a regulator that drives the vehicle to the pose (0, 0, 0). To
move the robot to an arbitrary pose (x*, y*, θ *) we perform a change of coordinates

The pose controller is implemented by the Simulink® model

>> sl_drivepose

shown in Fig. 4.13. We specify a goal pose

>> xg = [5 5 pi/2];

and an initial pose

>> x0 = [8 5 pi/2];

and then simulate the motion

>> r = sim('sl_drivepose');

As before, the simulation results are stored in r and can be plotted

>> y = r.find('yout');
>> plot(y(:,1), y(:,2));

Fig. 4.13. The Simulink® model
sl_drivepose drives the ve-
hicle to a pose. The initial and fi-
nal poses are set by the workspace
variable x0 and xf respectively

Fig. 4.14.

Simulation results from different
initial poses to the final pose

(5, 5,ü). Note that in some cases
the robot has backed into the

final pose

�
4.2 · Car-like Mobile Robots

78

to show the vehicle’s path in the plane. The vehicle’s path for a number of starting
poses is shown in Fig. 4.14. The vehicle moves forwards or backward and takes a smooth
path to the goal pose.�

4.3 lFlying Robots

In order to fly, all one must do is simply miss the ground.
Douglas Adams

Flying robots or unmanned aerial vehicles (UAV) are becoming increasingly common
and span a huge range of size and shape as shown in shown in Fig. 4.15. Applications
include military operations, surveillance, meteorological investigations and robotics
research. Fixed wing UAVs are similar in principle to passenger aircraft with wings to
provide lift, a propellor or jet to provide forward thrust and control surface for
manoeuvring. Rotorcraft UAVs have a variety of configurations that include conven-
tional helicopter design with a main and tail rotor, a coax with counter-rotating co-
axial rotors and quadrotors. Rotorcraft UAVs are used for inspection and research and
have the advantage of being able to take off vertically.

Flying robots differ from ground robots in some important ways. Firstly they have
6 degrees of freedom and their configuration q ∈ SE(3). Secondly they are actuated
by forces, that is their motion model is expressed in terms of forces and torques rather
than velocities as was the case for the bicycle model – we use a dynamic rather than
a kinematic model. Underwater robots have many similarities to flying robots and
can be considered as vehicles that fly through water and there are underwater equiva-
lents to fixed wing aircraft and rotorcraft. The principle differences underwater are
an upward buoyancy force, drag forces that are much more significant than in air,
and added mass.

In this section we will create a model for a quadrotor flying vehicle such as shown
in Fig. 4.15d. Quadrotors are now widely available, both as commercial products and

Fig. 4.15.

Flying robots. a Global Hawk
unmanned aerial vehicle (UAV)
(photo: courtesy of NASA),
b a micro air vehicle (MAV)
(photo: courtesy of AeroViron-
ment, Inc.), c a 1 gram co-axial
helicopter with 70 mm rotor
diameter (photo courtesy of
Petter Muren and Proxflyer AS),
d a quadrotor, also known as
an X4, which has four rotors and
a block of sensing and control
electronics are in the middle
(photo: courtesy of Inkyu Sa)

The controller is based on the linear bi-

cycle model but the Simulink® model

Bicycle has hard non-linearities

including steering angle limits and ve-

locity rate limiting.

Chapter 4 · Mobile Robot Vehicles

79

as open-source projects. Compared to fixed wing aircraft they are highly manoeuvrable
and can be flown safely indoors which makes them well suited for laboratory or hob-
byist use. Compared to conventional helicopters, with the large main rotor and tail
rotor, the quadrotor is easier to fly, does not have the complex swash plate mechanism
and is easier to model and control.

The notation for the quadrotor model is shown in Fig. 4.16. The body-fixed coordi-
nate frame {B} has its z-axis downward following the aerospace convention. The
quadrotor has four rotors, labelled 1 to 4, mounted at the end of each cross arm. The
rotors are driven by electric motors powered by electronic speed controllers. Some
low-cost quadrotors use small motors and reduction gearing to achieve sufficient torque.
The rotor speed is ωi and the thrust is an upward vector

(4.3)

in the vehicle’s negative z-direction, where b> 0 is the lift constant that depends on
the air density, the cube of the rotor blade radius, the number of blades, and the chord
length of the blade.

The translational dynamics of the vehicle in world coordinates is given by Newton’s
second law

(4.4)

where v is the velocity of the vehicle in the world frame, g is gravitational acceleration,
m is the total mass of the vehicle and T=ΣTi is the total upward thrust. The first term
is the force of gravity which acts downward in the world frame and the second term is
the total thrust in the vehicle frame rotated into the world coordinate frame.

Pairwise differences in rotor thrusts cause the vehicle to rotate. The torque about
the vehicle’s x-axis, the rolling torque, is

where d is the distance from the motor to the centre of mass. We can write this in terms
of rotor speeds by substituting Eq. 4.3

(4.5)

and similarly for the y-axis, the pitching torque is

(4.6)

Fig. 4.16.

Quadrotor notation showing the
four rotors, their thrust vectors
and directions of rotation. The

body-fixed frame {B} is attached
to the vehicle and has its origin

at the vehicle’s centre of mass.
Rotors 1 and 3 rotate counter-

clockwise (viewed from above)
while rotors 2 and 4 rotate

clockwise

4.3 · Flying Robots

80

The torque applied to each propellor by the motor is opposed by aerodynamic drag

where k depends on the same factors as b. This torque exerts a reaction torque on the
airframe which acts to rotate the airframe about the propeller shaft in the opposite
direction to its rotation. The total reaction torque about the z-axis is

(4.7)

where the different signs are due to the different rotation directions of the rotors. A yaw
torque can be created simply by appropriate coordinated control of all four rotor speeds.

The rotational acceleration of the airframe is given by Euler’s equation of motion

(4.8)

where J is the 3× 3 inertia matrix of the vehicle, ω is the angular velocity vector and
¡= (τx, τy, τz)

T is the torque applied to the airframe according to Eq. 4.5 to 4.7.
The motion of the quadrotor is obtained by integrating the forward dynamics equa-

tions Eq. 4.4 and Eq. 4.8 where the forces and moments on the airframe

(4.9)

are functions of the rotor speeds. The matrix A is of full rank if b, k, d> 0 and can be
inverted

(4.10)

to give the rotor speeds required to apply a specified thrust T and moment ¡ to the
airframe.

To control the vehicle we will employ a nested control structure which we illustrate
for pitch and x-translational motion. The innermost loop uses a proportional and de-
rivative controller� to compute the required pitching torque on the airframe

based on the error between desired and actual pitch angle.� The gains Kτ,p and Kτ,d
are determined by classical control design approaches based on an approximate dy-
namic model and then tuned to achieve good performance. The actual vehicle pitch
angle θp would be estimated by an inertial navigation system. The required rotor speeds
are then determined using Eq. 4.10.

Consider a coordinate frame {V} attached to the vehicle and with the same origin
as {B} but with its x- and y-axes parallel to the ground. To move the vehicle in the
Vx-direction we pitch the nose down which generates a force

The rotational dynamics has a second-

order transfer function of Θy(s)/τy(s)=
1/ (Js2+ Bs) where B is aerodynamic

damping which is generally quite small.

To regulate a second-order system re-

quires a proportional-derivative con-

troller.

The term Ëp
* is commonly ignored.

Chapter 4 · Mobile Robot Vehicles

81

which has a component

that accelerates the vehicle in the Vx-direction. We can control the velocity in this di-
rection with a proportional control law

Combine these two equations we obtain the pitch angle

(4.11)

required to achieve the desired forward velocity. The actual vehicle velocity Vvx would
be estimated by an inertial navigation system or GPS receiver. For a vehicle in vertical
equilibrium the total thrust equals the weight force so m/T≈ 1/ g.

If the position of the vehicle in the xy-plane of the world frame is p∈R2 then the
desired velocity is given by the proportional control law

(4.12)

based on the error between the desired and actual position. The desired velocity in
frame {V} is

which is a function of the yaw angle θy

To reach a desired position we can compute the appropriate velocity and from that
the appropriate pitch angle which generates a force to move the vehicle. This indi-
rection is a consequence of the vehicle being underactuated – we have just four rotor
speeds to adjust but the vehicle’s configuration space is 6-dimensional. To move
forward the quadrotor airframe must first pitch down so that the thrust vector
has a horizontal component to accelerate it.⊳ As it approaches its goal the airframe
must be rotated in the opposite direction, pitching up, so that the backward com-
ponent of thrust decelerates the forward motion. Finally the airframe rotates to the
horizontal with the thrust vector vertical. The cost of under-actuation is once again
a manoeuvre. The pitch angle cannot be arbitrarily set, it is a means to achieve trans-
lation control.

The total thrust must be increased so

that the vertical thrust component still

balances gravity.

The rotational inertia of a body that moves in SE(3) is represented by the 3× 3 symmetric matrix

The diagonal elements are the moments of inertia, and the off-diagonal elements are products of
inertia. Only six of these nine elements are unique: three moments and three products of inertia.
The products of inertia are zero if the object’s mass distribution is symmetrical with respect to
the coordinate frame.

4.3 · Flying Robots

82

Figure 4.17 shows a Simulink® model of the quadrotor in a closed-loop control struc-
ture. The inputs to the quadrotor block are the speeds of the four rotors and from
Eq. 4.9 the torques and forces on the quadrotor are computed and it integrates Eq. 4.4,
Eq. 4.8 and Eq. 4.9 to give the position, velocity, orientation and orientation rate. The
output of this block is the state vector x= (x, y, z, θr, θp, θy, ¾, Á, Ã, Ër, Ëp, Ëy). As is com-
mon in aerospace applications we represent orientation and orientation rate in terms
of roll-pitch-yaw angles. The control part of the block diagram involves multiple nested
control loops that compute the required thrust and torques so that the vehicle moves
to the setpoint.

The vehicle’s position control loops, as just discussed, are shown in the top left of
the diagram. The innermost loop, shown in blue, controls the attitude of the vehicle
and its inputs are the actual and desired roll and pitch angles, as well as the roll and
pitch angular rates to provide damping. The outer loop, shown in orange, controls the
xy-position of the flyer by requesting changes in roll and pitch angle so as to provide a
component of thrust in the direction of desired xy-plane motion. In the diagram Eq. 4.11
and Eq. 4.12 have been combined into the form

The xy-position error is computed in the world frame and rotated by 0RT
V(θy) into

frame {V}. Note that according to the coordinate conventions shown in Fig. 4.16
Vx-direction motion requires a negative rotation about the y-axis (pitch angle) and
Vy-direction motion requires a positive rotation about the x-axis (roll angle) so the
gains have different signs for the roll and pitch loops.

Yaw is controlled by a proportional-derivative controller

shown in black and Ëy
* is ignored since it is typically small.

Fig. 4.17. The Simulink® model
sl_quadrotor which is a
closed-loop simulation of the
quadrotor. The flyer takes off
and flies in a circle at constant al-
titude. The dynamics block imple-
ments Eq. 4.9, and the mixer block
implements its inverse while also
enforcing limits on rotor speed.
A Simulink® bus is used for the
12-element state vector X output
by the Quadrotor block

Chapter 4 · Mobile Robot Vehicles

83

Altitude is controlled by a proportional-derivative controller

shown in red which which determines the average rotor speed. The additive term

(4.13)

is the rotor speed necessary to generate a thrust equal to the weight of the vehicle.
This is an example of feedforward control – used here to counter the effect of gravity
which otherwise is a constant disturbance to the altitude control loop. The alterna-
tives to feedforward control would be to have very high gain for the altitude loop
which often leads to actuator saturation and instability, or a proportional-integral
(PI) controller which might require a long time for the integral term to increase to a
useful value and then lead to overshoot. We will revisit gravity compensation in Chap. 9
applied to arm-type robots.

The parameters of a specific quadrotor can be loaded

>> mdl_quadrotor

which creates a structure called quad in the workspace, and its elements are the vari-
ous dynamic properties of the quadrotor. The simulation can be run using the
Simulink® menu or from the MATLAB® command line

>> sim('sl_quadrotor');

and it displays an animation in a separate window.⊳ The vehicles lifts off and flies in a
circle while spinning slowly about its own z-axis. A snapshot is shown in Fig. 4.18. The
simulation writes the results from each timestep into a matrix in the workspace

>> about(result)
result [double] : 419x17 (56984 bytes)

which has one row per timestep, and each row contains the time followed by the state
vector (elements 2–13) and the commanded rotor speeds ωi (elements 14–17). To plot x
and y versus time is

>> plot(result(:,1), result(:,2:3));

Fig. 4.18.

One frame from the quadrotor
simulation. The marker on the
ground plane is a projection of

the vehicle’s centroid

The simulation loads the default quad-

rotor model before it starts, through

the PreLoadFcn callback set from

model’s properties File+Model Prop-

erties+Callbacks+PreLoadFcn.

4.3 · Flying Robots

84

4.4 lWrapping Up

In this chapter we have discussed general concepts about mobility, configuration space
and task space. We created detailed models of two quite different robot platforms. We
first discussed the car-like vehicle which is an exemplar of many ground robots. We
developed a kinematic model which we used to develop a number of different control-
lers in order that the platform could perform useful tasks such as driving to a point,
following a path or driving to a pose. We then discussed a simple flying vehicle, the
quadrotor, and developed a dynamic model. We then implemented a number of nested
control loops that allowed the quadrotor to fly a circuit. The nested control approach
is described in more detail in Sect. 9.4.2.

The next chapters will discuss how to plan paths for robots through complex envi-
ronments that contain obstacles and then how to determine the location of a robot.

Further Reading

Comprehensive modelling of mobile ground robots is provided in the book by Siegwart
et al. (2011). In addition to the bicycle model covered here, it presents in depth discus-
sion of a variety of wheel configurations with different combinations of driven wheels,
steered wheels and passive casters. These topics are covered more succinctly in the
Handbook of Robotics (Siciliano and Khatib 2008, § 17). Siegwart et al. also provide
strong coverage of perception, localization and navigation which we will discuss in
the coming chapters.

Ackermann’s magazine can be found online at http://smithandgosling.wordpress.com/
2009/12/02/ackermanns-repository-of-arts and the carriage steering mechanism is
published in the March and April issues of 1818. King-Hele (2002) provides a com-
prehensive discussion about the prior work on steering geometry and Darwin’s ear-
lier invention.

Mobile ground robots are now a mature technology for transporting parts around
manufacturing plants. The research frontier is now for vehicles that operate auto-
nomously in outdoor environments (Siciliano and Khatib 2008, part F). Research into
the automation of passenger cars has been ongoing since the 1980s but as yet there is
no commercial offering – perhaps society is not yet ready for this technology or per-
haps the legal complexities that might arise in the case of accidents is overwhelming.

The Navlab project at Carnegie-Mellon University started in 1984 and a series of
autonomous vehicles, Navlabs, have been built and a large body of research has re-
sulted. All vehicles make strong use of computer vision for navigation. In 1995 the
supervised autonomous Navlab 5 made a 3 000-mile journey, dubbed “No Hands Across
America” (Pomerleau and Jochem 1995, 1996). The vehicle steered itself 98% of the
time largely by visual sensing of the white lines at the edge of the road.

In Europe, Ernst Dickmanns and his team at Bundeswehr Universität München
demonstrated autononomous control of vehicles. In 1988 the VaMoRs system, a 5 tonne
Mercedes-Benz van, could drive itself at speeds over 90 km h–1 (Dickmanns and Graefe
1988b; Dickmanns and Zapp 1987; Dickmanns 2007). The European Prometheus
Project ran from 1987–1995 and in 1994 the robot vehicles VaMP and VITA-2 drove
more than 1 000 km on a Paris multi-lane highway in standard heavy traffic at speeds
up to 130 km h–1. They demonstrated autonomous driving in free lanes, convoy driv-
ing, automatic tracking of other vehicles, and lane changes with autonomous passing
of other cars. In 1995 an autonomous S-Class Mercedes-Benz made a 1 600 km trip
from Munich to Copenhagen and back. On the German Autobahn speeds exceeded
175 km h–1 and the vehicle executed traffic manoeuvres such as overtaking. The mean
time between human interventions was 9 km and it drove up to 158 km without any
human intervention. The UK part of the project demonstrated autonomous driving
of an XJ6 Jaguar with vision (Matthews et al. 1995) and radar-based sensing for lane

Chapter 4 · Mobile Robot Vehicles

85

keeping and collision avoidance. More recently, in the USA a series of Grand Chal-
lenges were run for autonomous cars. The 2005 desert and 2007 urban challenges are
comprehensively described in compilations of papers from the various teams in
Buehler et al. (2007, 2010).

Flying robots and underwater are not yet discussed in standard robotics texts. The
Handbook of Robotics (Siciliano and Khatib 2008) provides summaries of the state of
the art of aerial and underwater robotics in chapters 41 and 43 respectively. The theory
of helicopters with an emphasis on robotics is provided by Mettler (2003) but the de-
finitive reference for helicopter dynamics is the very large book by Prouty (2002). The
recent book by Antonelli (2006), now in second edition, provides comprehensive cov-
erage of modelling and control of underwater robots.

Some of the earliest papers on quadrotor modelling and control are by Pounds,
Mahony and colleagues (Hamel et al. 2002; Pounds et al. 2004, 2006). The thesis by
Pounds (2007) presents comprehensive aerodynamic modelling of a quadrotor with a
particular focus on blade flapping, a phenomena well known in conventional helicop-
ters but mostly ignored for quadrotors. Quadrotors have been built at a number of
laboratories and some are available commercially for hobbyists or for researchers. The
Mikrokopter open-source project has designs for the airframe and propulsion system
as well as control software and can be found at http://www.mikrokopter.de/ucwiki/

en. The basic principle of the quadrotor is easily extended by adding more rotors and
vehicles with 6, 8 and 16 rotors have been developed and this provides increasing pay-
load capability and even redundancy to rotor failures.

Exercises

1. For a 4-wheel vehicle with L= 2 m and width between wheel centres of 1.5 m
a) compute the difference in wheel steer angle for Ackerman steering around curves

of radius 10, 50 and 100 m.
b) If the vehicle is moving at 80 km h–1 compute the difference in back wheel rota-

tion rates for curves of radius 10, 50 and 100 m.
2. Write an expression for turn rate in terms of the angular rotation rate of the two

back wheels. Investigate the effect of errors in wheel radius and vehicle width.
3. Implement the ⊖ operator used in Sect. 4.2.1 and check against the code for angdiff.
4. Moving to a point (page 71) plot x, y and θ against time.
5. Pure pursuit example (page 74)

a) Investigate what happens when the integral gain is zero. Now reduce the fre-
quency of circular motion to 0.01 rev s–1 and see what happens.

b) With integral set to zero, add a constant to the output of the controller. What
should the value of the constant be?

c) Modify the pure pursuit example so the robot follows a slalom course.
d) Modify the pure pursuit example to follow a target moving back and forth along

a line.
6. Moving to a pose (page 75)

a) Repeat the example with a different initial orientation.
b) Implement a parallel parking manoeuvre. Is the resulting path practical?

7. Use the MATLAB® GUI interface to make a simple steering wheel and velocity con-
trol, use this to create a very simple driving simulator. Alternatively interface a gaming
steering wheel and peddle to MATLAB®.

8. Quadrotor (page 78)
a) Experiment with different control gains. What happens if you reduce the damp-

ing gains to zero?
b) Remove the gravity feedforward and experiment with high altitude-gain or a

PI controller.
c) Derive Eq. 4.13.

4.4 · Wrapping Up

86

d) When the vehicle has non-zero roll and pitch angles, the magnitude of the verti-
cal thrust is reduced and the vehicle will slowly descend. Add compensation to
the vertical thrust to correct this.

e) Simulate the quadrotor flying inverted, that is, its z-axis is pointing upwards.
f) Program a ballistic motion. Have the quadrotor take off at 45 deg to horizontal

then remove all thrust.
g) Program a smooth landing.
h) Program a barrel roll manoeuvre. Have the quadrotor fly horizontally in its

x-direction and then increase the roll angle from 0 to 2π .
i) Program a flip manoeuvre. Have the quadrotor fly horizontally in its x-direction

and then increase the pitch angle from 0 to 2π .
j) Add another four rotors.
k) Use the function mstraj to create a trajectory through ten via points (Xi, Yi, Zi, θy)

and modify the controller of Fig. 4.17 for smooth pursuit of this trajectory.
l) Use the MATLAB® GUI interface to make a simple joystick control, and use this

to create a very simple flying simulator. Alternatively interface a gaming joystick
to MATLAB®.

Chapter 4 · Mobile Robot Vehicles

5
Chapter

Robot navigation is the problem of guiding a robot towards a goal.
The human approach to navigation is to make maps and erect sign-
posts, and at first glance it seems obvious that robots should oper-
ate the same way. However many robotic tasks can be achieved with-
out any map at all, using an approach referred to as reactive naviga-
tion. For example heading towards a light, following a white line on
the ground, moving through a maze by following a wall, or vacu-
uming a room by following a random path. The robot is reacting
directly to its environment: the intensity of the light, the relative
position of the white line or contact with a wall. Grey Walter’s tor-
toise Elsie from page 61 demonstrated “life-like” behaviours – she
reacted to her environment and could seek out a light source. Today
more than 5 million Roomba vacuum cleaners are cleaning floors
without using any map of the rooms they work in. The robots work
by making random moves and sensing only that they have made
contact with an obstacle.

The more familiar human-style map-based navigation is used
by more sophisticated robots. This approach supports more com-
plex tasks but is itself more complex. It imposes a number of re-
quirements, not the least of which is a map of the environment. It
also requires that the robot’s position is always known. In the next
chapter we will discuss how robots can determine their position
and create maps. The remainder of this chapter discusses the reac-
tive and map-based approaches to robot navigation with a focus on
wheeled robots operating in a planar environment.

Navigation

the process of directing a vehicle so as to reach the intended destination
IEEE Standard 172-1983

Fig. 5.1.

Time lapse photograph of a
Roomba robot cleaning a room

(photo by Chris Bartlett)

88

5.1 lReactive Navigation

Surprisingly complex tasks can be performed by a robot even if it has no map and no
real idea about where it is. As already mentioned robotic vacuum cleaners use only
random motion and information from contact sensors to perform a complex task as
shown in Fig. 5.1. Insects such as ants and bees gather food and return it to the nest
based on input from their senses, they have far too few neurons to create any kind of
mental map of the world and plan paths through it. Even single-celled organisms such
as flagellate protozoa exhibited goal seeking behaviours. In this case we need to revise
our earlier definition of a robot to

a goal oriented machine that can sense, plan and act.

The manifestation of complex behaviours by simple organisms was of interest to
early researchers in cybernetics. Grey Walter’s robotic tortoise demonstrated that it
could moves toward a light source, a behaviour known as phototaxis.� This was an
important result in the then emerging scientific field of cybernetics.

5.1.1 lBraitenberg Vehicles

A very simple class of goal achieving robots are known as Braitenberg vehicles and are
characterised by direct connection between sensors and motors. They have no explicit
internal representation of the environment in which they operates and nor do they
make explicit plans.�

Consider the problem of a robot moving in two dimensions that is seeking the
maxima of a scalar field – the field could be light intensity or the concentration of
some chemical.� The Simulink® model

>> sl_braitenberg

shown in Fig. 5.2 achieves this using a steering signal derived directly from the sensors.�

More generally a taxis is the response

of an organism to a stimulus gradient.

Valentino Braitenberg (1926–) is an Italian-Austrian neuro-scientist and cyberneticist, and former
director at the Max Planck Institute for Biological Cybernetics in Tübingen, Germany. His 1986
book “Vehicles: Experiments in Synthetic Psychology” (image on right is of the cover this book,
published by The MIT Press, ©MIT 1984) describes reactive goal-achieving vehicles, and such
systems are now commonly known as Braitenberg Vehicles.

A Braitenberg vehicle is an automaton or robot which combines sensors, actuators and their
direct interconnection to produce goal-oriented behaviors. Grey Walter’s tortoise predates the
use of this term but is nevertheless an example of such a vehicle.

These vehicles are described as conceptually as analog circuits, but more recently small robots
based on a digital realization of the same principles have been developed.

William Grey Walter (1910–1977) was a neurophysiologist and pioneering cyberneticist born in
Kansas City, Missouri and studied at King’s College, Cambridge. Unable to obtain a research fellow-
ship at Cambridge he worked on neurophysiological research in hospitals in London and from 1939
at the Burden Neurological Institute in Bristol. He developed electroencephalographic brain topog-
raphy which used multiple electrodes on the scalp and a triangulation algorithm to determine the
amplitude and location of brain activity.

Walter was influential in the then new field of cybernetics. He built robots to study how complex
reflex behavior could arise from neural interconnections. His tortoise Elsie (of the species Machina
Speculatrix) is shown, without its shell, on page 61. Built in 1948 Elsie was a three-wheeled robot ca-
pable of phototaxis that could also find its way to a recharging station. A second generation tortoise
(from 1951) is in the collection of the Smithsonian Institution. He published popular articles in “Scien-
tific American” (1950 and 1951) and a book “The Living Brain” (1953). He was badly injured in a car
accident in 1970 from which he never fully recovered. (Image courtesy Reuben Hoggett collection)

This is a fine philosophical point, the plan

could be considered to be implicit in the

details of the connections between the

motors and sensors.

This is similar to the problem of mov-

ing to a point discussed in Sect. 4.2.1.

This is similar to Braitenberg’s Vehicle 4a.

Chapter 5 · Navigation

89

To ascend the gradient we need to estimate the gradient direction at the current
location and this requires at least two measurements of the field.� In this example we
use two sensors, bilateral sensing, with one on each side of the robot’s body. The sen-
sors are modelled by the green sensor blocks shown in Fig. 5.2 and are parameterized
by the position of the sensor with respect to the robot’s body, and the sensing function.
In this example the sensors are at ±2 units in the vehicle’s lateral or y-direction.

The field to be sensed is a simple inverse square field defined by

1 function sensor = sensorfield(x, y)
2 xc = 60; yc = 90;
3 sensor = 200./((x-xc).^2 + (y-yc).^2 + 200);

which returns the sensor value s(x, y) ∈ [0, 1] which is a function of the sensor’s posi-
tion in the plane. This particular function has a peak value at the point (60, 90).

The vehicle speed is

where sR and sL are the right and left sensor readings respectively. At the goal, where
sR= sL= 1 the velocity becomes zero.

Steering angle is based on the difference between the sensor readings

so when the field is equal in the left- and right-hand sensors the robot moves straight ahead.⊳

We start the simulation from the Simulink® menu or the command line

>> sim('sl_braitenberg');

and the path of the robot is shown in Fig. 5.3. The starting pose can be changed through
the parameters of the Bicycle block. We see that the robot turns toward the goal and
slows down as it approaches, asymptotically achieving the goal position.

This particular sensor-action control law results in a specific robotic behaviour. We
could add additional logic to the robot to detect that it had arrived near the goal and
then switch to a stopping behaviour. An obstacle would block this robot since its only
behaviour is to steer toward the goal, but an additional behaviour could be added to
handle this case and drive around an obstacle. We could add another behaviour to
search randomly for the source if none was visible. Grey Walter’s tortoise had four
behaviours and switching was based on light level and a touch sensor.

Fig. 5.2. The Simulink® model
sl_braitenberg drives the
vehicle toward the maxima of a
provided scalar function. The ve-
hicle plus controller is an example
of a Braitenberg vehicle

We can make the measurements simul-

taneously using two spatially separated

sensors or from one sensor over time as

the robot moves.

Similar strategies are used by moths

whose two antennae are exquisitely

sensitive odor detectors that are used

to steer a male moth toward a phero-

mone emitting female.

5.1 · Reactive Navigation

90

Multiple behaviours and the ability to switch between them leads to an approach
known as behaviour-based robotics. The subsumption architecture was proposed as a
means to formalize the interaction between different behaviours. Complex, some might
say intelligent looking, behaviours can be manifested by such systems. However as more
behaviours are added the complexity of the system grows rapidly and interactions
between behaviours become more complex to express and debug. Ultimately the pen-
alty of not using a map becomes too great.

5.1.2 lSimple Automata

Another class of reactive robots are known as bugs – simple automata that perform
goal seeking in the presence of non-driveable areas or obstacles. There are a large
number of bug algorithms and they share the ability to sense when they are in proxim-
ity to an obstacle. In this respect they are similar to the Braitenberg class vehicle, but
the bug includes a state machine and other logic in between the sensor and the motors.
The automata have memory which our earlier Braitenberg vehicle lacked.� In this
section we will investigate a specific bug algorithm known as bug2.

We start by loading an obstacle field to challenge the robot

>> load map1

which defines a 100× 100 matrix variable map in the workspace. The elements are
zero or one representing free space or obstacle respectively and this is shown in Fig. 5.4.
Tools to generate such maps are discussed on page 92. This matrix is an example of an
occupancy grid which will be discussed further in the next section.

At this point we state some assumptions. Firstly, the robot operates in a grid world
and occupies one grid cell. Secondly, the robot does not have any non-holonomic con-
straints and can move to any neighbouring grid cell. Thirdly, it is able to determine its
position on the plane which is a non-trivial problem that will be discussed in detail in
Chap. 6. Finally, the robot can only sense its immediate locale and the goal. The robot
does not use the map – the map is used by the simulator to provide sensory inputs to
the robot.

We create an instance of the bug2 class

>> bug = Bug2(map);

and the goal is

>> bug.goal = [50; 35];

Fig. 5.3.

Path of the Braitenberg vehicle
moving toward (and past) the
maximum of a 2D scalar field
whose magnitude is shown
color coded

Braitenberg’s book describes a series of

increasingly complex vehicles, some of

which incorporate memory. However

the term Braitenberg vehicle has be-

come associated with the simplest ve-

hicles he described.

Chapter 5 · Navigation

91

The simulation is run using the path method

>> bug.path([20; 10]);

where the argument is the initial position of the robot. The method displays an anima-
tion of the robot moving toward the goal and the path is shown as a series of green
dots in Fig. 5.4.

The strategy of the bug2 algorithm is quite simple. It moves along a straight line
towards its goal. If it encounters an obstacle it moves around the obstacle (always
counter-clockwise) until it encounters a point that lies along its original line that is
closer to the goal than where it first encountered the obstacle.⊳

If an output argument is specified

>> p = bug.path([20; 10]);

it returns the path as a matrix p

>> about(p)
p [double] : 332x2 (5312 bytes)

which has one row per point, and comprises 332 points for this example. Invoking the
function without the starting position

>> p = bug.path();

will prompt for a starting point to be selected by clicking on the plot.
The bug2 algorithms has taken a path that is clearly not optimal. It has wasted time

by continuing to follow the perimeter of the obstacle until it rejoined its original line.
It would also have been quicker in this case to go clockwise around the obstacle. Many
variants of the bug algorithm have been developed, but while they improve the perfor-
mance for one type of environment they can degrade performance in others. Funda-
mentally the robot is limited by not using a map. It cannot see the big picture and
therefore takes paths that are locally, rather than globally, optimal.

5.2 lMap-Based Planning

The key to achieving the best path⊳ between points A and B, as we know from every-
day life, is to use a map. Typically best means the shortest distance but it may also
include some penalty term or cost related to traversability which is how easy the ter-
rain is to drive over – it might be quicker to travel further but over better roads. A
more sophisticated planner might also consider the kinematics and dynamics of the

Fig. 5.4.

The path taken by the bug2
algorithm is marked by green

dots. The goal is a blue diamond,
the black dashed line is the M-

line, the direct path from the
start to the goal. Obstacles are

indicated by red pixels

It could be argued that the M-line rep-

resents an explicit plan. Thus bug algo-

rithms occupy a position somewhere

between Braitenberg vehicles and

map-based planning systems in the

spectrum of approaches to navigation.

Beyond the trivial straight line case.

5.2 · Map-Based Planning

92

vehicle and avoid paths that involve turns that are tighter than the vehicle can execute.
Recalling our earlier definition of a robot as a

goal oriented machine that can sense, plan and act,

this section concentrates on planning.
There are many ways to represent a map and the position of the vehicle within the

map. One approach is to represent the vehicle position as (x, y) ∈R2 and the the
driveable regions or obstacles as polygons, each comprising lists of vertices or edges.
This is potentially a very compact format but determining potential collisions between
the robot and obstacles may involve testing against long lists of edges.

A simpler and very computer-friendly representation is the occupancy grid. As its
name implies the world is treated as a grid of cells and each cell is marked as occu-
pied or unoccupied. We use zero to indicate an unoccupied cell or free space where
the robot can drive. A value of one indicates an occupied or non-driveable cell. The
size of the cell depends on the application. The memory required to hold the occu-
pancy grid increases with the spatial area represented and inversely with the cell size.
However for modern computers this representation is very feasible. For example a
cell size 1× 1 m requires� just 125 kbyte km–2.

In the remainder of this section we use code examples to illustrate several differ-
ent planners and all are based on the occupancy grid representation. To create uni-
formity the planners are all implemented as classes derived from the Navigation
superclass which is briefly described on page 93. The bug2 class we used previously
was also an instance of this class so the remaining examples follow a familiar pattern.

Once again we state some assumptions. Firstly, the robot operates in a grid world
and occupies one grid cell. Secondly, the robot does not have any non-holonomic
constraints and can move to any neighbouring grid cell. Thirdly, it is able to deter-
mine its position on the plane. Fourthly, the robot is able to use the map to compute
the path it will take.

Making a map. An occupancy grid is a matrix that corresponds to a region of 2-dimensional
space. Elements containing zeros are free space where the robot can move, and those with ones
are obstacles where the robot cannot move. We can use many approaches to create a map. For
example we could create a matrix filled with zeros (representing all free space)

>> map = zeros(100, 100);

and use MATLAB® operations such as

>> map(40:50,20:80) = 1;

to create an obstacle but this is quite cumbersome. Instead we can use the Toolbox map editor
makemap to create more complex maps using a simple interactive editor

>> map = makemap(100)
makeworld:
 left button, click and drag to create a rectangle
 p - draw polygon
 c - draw circle
 e - erase map
 u - undo last action
 q - leave editing mode

which allows you to add rectangles, circles and polygons to an occupancy grid, in this example
the grid is 100× 100.

Note that the occupancy grid is a matrix whose coordinates are conventionally expressed as
(row, column) and the row is the vertical dimension of a matrix. We use the Cartesian convention
of a horizontal x-coordinate first, followed by the y-coordinate therefore the matrix is always
indexed as y,x in the code.

Considering a single bit to represent

each cell. The occupancy grid could be

compressed or could be kept on a disk

with only the local region in memory.

Chapter 5 · Navigation

93

In all examples we use the following parameters

>> goal = [50; 30];
>> start = [20; 10];
>> load map1

for the goal position, start position and world map respectively. The world map is
loaded into the workspace variable map. These parameters can be varied, and the oc-
cupancy grid changed using the tools described on page 92.

5.2.1 lDistance Transform

Consider a matrix of zeros with just a single non-zero element representing the goal.
The distance transform of this matrix is another matrix, of the same size, but the
value of each element is its distance⊳ from the original non-zero pixel. For robot path
planning we use the default Euclidean distance. The distance transform is actually an
image processing technique and will be discussed further in Chap. 12.

Fig. 5.5.

The distance transform path.
Obstacles are indicated by red

cells. The background grey
intensity represents the cell’s

distance from the goal in units
of cell size as indicated by the

scale on the right-hand side

Navigation superclass. The examples in this chapter are all based on classes derived from the
Navigation class which is designed for 2D grid-based navigation. Each example consists of essen-
tially the following pattern. Firstly we create an instance of an object derived from the Navigation
class by calling the class constructor.

>> nav = MyNavClass(world)

which is passed the occupancy grid. Then a plan to reach the goal is computed

>> nav.plan(goal)

The plan can be visualized by

>> nav.plot()

and a path from an initial position to the goal is computed by

>> p = nav.path(start)
>> p = nav.path()

where p is the path, a sequence of points from start to goal, one row per point, and each row
comprises the x- and y-coordinate. If start is not specified, as in the second example, the user is
prompted to interactively click the start point. If no output argument is provided an animation of
the robot’s motion is displayed.

The distance between two points

(x1, y1) and (x2, y2) where ∆x= x2− x1

and ∆y= y2− y1 can be Euclidean

_∆x
2g+g∆gy

2 or CityBlock (also known as

Manhattan) distance |∆x| + |∆y|.

5.2 · Map-Based Planning

94

To use the distance transform for robot navigation we create a DXform object,
which is derived from the Navigation class

>> dx = DXform(map);

and create a plan to reach the specified goal

>> dx.plan(goal)

which can be visualized

>> dx.plot()

as shown in Fig. 5.5. We see the obstacle regions in red overlaid on the distance map
whose grey level at any point indicates the distance from that point to the goal, taking into
account travel around obstacles.

The hard work has been done and finding a path from any point to the goal is now very
simple. Wherever the robot starts, it moves to the neighbouring cell that has the smallest dis-
tance to the goal. The process is repeated until the robot reaches a cell with a distance value of
zero which is the goal. For example to find a path to the goal from position start is

>> dx.path(start);

which displays an animation of the robot moving toward the goal. The path is indi-
cated by a series of green dots as shown in Fig. 5.5.

If the path method is called with an output argument the animation is skipped
and the path

>> p = dx.path(start);

is returned as a matrix, one row per point, which we can visualize

>> dx.plot(p)

The path comprises

>> numrows(p)
ans =
 205

points which is shorter than the path found by bug2. Unlike bug2 this planner has
found the shorter clockwise path around the obstacle.

This navigation algorithm has exploited its global view of the world and has, through
exhaustive computation, found the shortest possible path. In contrast, bug2 without
the global view has just bumped its way through the world. The penalty for achieving
the optimal path is computational cost. The distance transform is iterative. Each itera-
tion has a cost of O(N2) and the number of iterations is at least O(N), where N is the
dimension of the map.

We can visualize the iterations of the distance transform by

>> dx.plan(goal, 0.1);

which shows the distance values propagating as a wavefront outward from the goal.
The wavefront moves upward, splits to the left and right, moves downward and the
two fronts collide at the bottom of the map along the line x= 32. The last argument
specifies a pause of 0.1 s between frames. Although the plan is expensive to create,
once it has been created it can be used to plan a path from any initial point to the goal.

We have converted a fairly complex planning problem into one that can now be
handled by a Braitenberg-class robot that makes local decisions based on the distance
to the goal. Effectively the robot is rolling downhill on the distance function which we
can plot as a 3D

>> dx.plot3d(p)

shown in Fig. 5.6 with the robot’s path overlaid.

Chapter 5 · Navigation

95

For large occupancy grids this approach to planning will become impractical. The
roadmap methods that we discuss later in this chapter provide an effective means to
find paths in large maps at greatly reduced computational cost.

5.2.2 lD*

A popular algorithm for robot path planning is called D*, and it has a number of fea-
tures that are useful for real-world applications.⊳ D* generalizes the occupancy grid
to a cost map which represents the cost c∈R, c> 0 of traversing each cell in the hori-
zontal or vertical direction. The cost of traversing the cell diagonally is c\2. For cells
corresponding to obstacles c=∞ (Inf in MATLAB®).

D* finds the path which minimizes the total cost of travel. If we are interested in the
shortest time to reach the goal then cost is the time to drive across the cell and is
inversely related to traversability. If we are interested in minimizing damage to the
vehicle or maximizing passenger comfort then cost might be related to the roughness
of the terrain within the cell. The costs assigned to cells will depend on the character-
istics of the vehicle: a large 4-wheel drive vehicle may have a finite cost to cross a rough
area whereas for a small car that cost might be infinite.

The key feature of D* is that it supports incremental replanning. This is important
if, while we are moving, we discover that the world is different to our map. If we dis-
cover that a route has a higher than expected cost or is completely blocked we can
incrementally replan to find a better path. The incremental replanning has a lower
computational cost than completely replanning as would be required using the dis-
tance transform method just discussed.

To implement the D* planner using the Toolbox we use a similar pattern and first
create a D* navigation object

>> ds = Dstar(map);

The D* planner converts the passed occupancy grid map into a cost map which we can
retrieve

>> c = ds.costmap();

where the elements of c will be 1 or ∞ representing free and occupied cells respectively.

Fig. 5.6.

The distance transform as a
3D function, where height is

distance from the goal. Navigation
is simply a downhill run. Note

the discontinuity in the distance
transform where the split wave-

fronts met

D* is an extension of the A* algorithm

for finding minimum cost paths through

a graph, see Appendix J.

5.2 · Map-Based Planning

96

A plan for moving to the goal is generated by

>> ds.plan(goal);

which creates a very dense directed graph (see Appendix J). Every cell is a graph vertex
and has a cost, a distance to the goal, and a link to the neighbouring cell that is closest to
the goal. Each cell also has a state t∈ {NEW, OPEN, CLOSED}. Initially every cell is in the
NEW state, the cost of the goal cell is zero and its state is OPEN. We can consider the set of
all cells in the OPEN state as a wavefront propagating outward from the goal.� The cost of
reaching cells that are neighbours of an OPEN cell is computed and these cells in turn are
set to OPEN and the original cell is removed from the open list and becomes CLOSED. In
MATLAB® this initial planning phase is quite slow� and takes tens of seconds and

>> ds.niter
ans =
 10558

iterations of the planning loop.
The path from an arbitrary starting point to the goal

>> ds.path(start);

is shown in Fig. 5.7. The robot has again taken the short path to the left of the obstacles
and is almost the same as that generated by the distance transform.

The real power of D* comes from being able to efficiently change the cost map
during the mission. This is actually quite a common requirement in robotics since real
sensors have a finite range and a robot discovers more of world as it proceeds. We
inform D* about changes using the modify_cost method, for example

>> for y=78:85
>> for x=12:45
>> ds.modify_cost([x,y], 2);
>> end
>> end

where we have raised the cost to 2 for a small rectangular region to simulate a patch of
terrain with lower traversability. This region is indicated by the white dashed rect-
angle in Fig. 5.8. The other driveable cells have a cost of 1. The plan is updated by
invoking the planning algorithm again

>> ds.plan();

but this time the number of iterations is only

>> ds.niter
ans =
 3178

Fig. 5.7.

The D* planner path. Obstacles
are indicated by red cells and all
driveable cells have a cost of 1.
The background grey intensity
represents the cell’s distance from
the goal in units of cell size as
indicated by the scale on the
right-hand side

The distance transform also evolves as

a wavefront outward from the goal.

However D* represents the frontier effi-

ciently as a list of cells whereas the dis-

tance transform computes the frontier

on a per-pixel basis at every iteration –

the frontier is implicitly where a cell with

infinite cost (the initial value of all cells)

is adjacent to a cell with finite cost.

D* is more efficient than the distance

transform but it executes more slowly

because it is implemented entirely in

MATLAB® code whereas the distance

transform is a MEX-file written in C.

Chapter 5 · Navigation

97

which is 30% of that required to create the original plan. The new path for the robot

>> ds.path(start);

is shown in Fig. 5.8. The cost change is relatively small but we notice that the increased
cost of driving within this region is indicated by a subtle brightening of those cells – in
a cost sense these cells are now further from the goal. Compared to Fig. 5.7 the robot’s
path has moved to the right in order to minimize the distance it travels through the
high-cost region. D* allows updates to the map to be made at any time while the robot
is moving. After replanning the robot simply moves to the adjacent cell with the lowest
cost which ensures continuity of motion even if the plan has changed.

5.2.3 lVoronoi Roadmap Method

In planning terminology the creation of a plan is referred to as the planning phase.
The query phase uses the result of the planning phase to find a path from A to B. The
two previous planning algorithms, distance transform and D*, require a significant
amount of computation for the planning phase, but the query phase is very cheap.
However the plan depends on the goal. If the goal changes the expensive planning
phase must be re-executed. Even though D* allows the path to be recomputed as the
costmap changes it does not support a changing goal.

The disparity in planning and query costs has led to the development of roadmap
methods where the query can include both the start and goal positions. The planning
phase provides analysis that supports changing starting points and changing goals. A
good analogy is making a journey by train. We first find a local path to the nearest
train station, travel through the train network, get off at the station closest to our goal,
and then take a local path to the goal. The train network is invariant and planning a
path through the train network is straightforward. Planning paths to and from the
entry and exit stations respectively is also straightforward since they are, ideally, short

Fig. 5.8.

Path from D* planner with modi-
fied map. The higher-cost region
is indicated by the white dashed

rectangle and has changed the
path compared to Fig. 5.7

A graph is an abstract representation of a set of objects connected by links typically denoted G(V, E)
and depicted diagrammatically as shown to the left. The objects, V, are called vertices or nodes, and
the links, E, that connect some pairs of vertices are called edges or arcs. Edges can be directed (ar-
rows) or undirected as in this case. Edges can have an associated weight or cost associated with
moving from one of its vertices to the other. A sequence of edges from one vertex to another is a
path. Graphs can be used to represent transport or communications networks and even social rela-
tionships, and the branch of mathematics is graph theory. Minimum cost path between two nodes
in the graph can be computed using well known algorithms such as Dijstrka’s method or A*.

The navigation classes use a simple MATLAB® graph class called PGraph, see Appendix J.

5.2 · Map-Based Planning

98 Chapter 5 · Navigation

paths. The robot navigation problem then becomes one of building a network of ob-
stacle free paths through the environment which serve the function of the train net-
work. In the literature such a network is referred to as a roadmap. The roadmap need
only be computed once and can then be used like the train network to get us from any
start location to any goal location.

We will illustrate the principles by creating a roadmap from the occupancy grid’s
free space using some image processing techniques. The essential steps in creating the
roadmap are shown in Fig. 5.9. The first step is to find the free space in the map which
is simply the complement of the occupied space

>> free = 1 - map;

and is a matrix with non-zero elements where the robot is free to move. The boundary
is also an obstacle so we mark the outermost cells as being not free

>> free(1,:) = 0; free(100,:) = 0;
>> free(:,1) = 0; free(:,100) = 0;

and this map is shown in Fig. 5.9a where free space is depicted as white.
The topological skeleton of the free space is computed by a morphological image

processing algorithm known as thinning applied to the free space of Fig. 5.9a

>> skeleton = ithin(free);

and the result is shown in Fig. 5.9b. We see that the obstacles have grown and the free
space, the white cells, have become a thin network of connected white cells which are

Fig. 5.9. Steps in the creation of a
Voronoi roadmap. a Free space is
indicated by white cells, b the skel-
eton of the free space is a network
of adjacent cells no more than one
cell thick, c the skeleton with the
obstacles overlaid in red and road-
map junction points indicated in
blue. d the distance transform of
the obstacles, pixel values corre-
spond to distance to the nearest
obstacle

99

equidistant from the boundaries of the original obstacles. Image processing functions,
and morphological operations in particular, will be explained more fully in Chap. 12.

Figure 5.9c shows the free space network overlaid on the original map. We have
created a network of paths that span the space and which can be used for obstacle-free
travel around the map.⊳ These paths are the edges of a generalized Voronoi diagram.
We could obtain a similar result by computing the distance transform of the obstacles,
Fig. 5.9a, and this is shown in Fig. 5.9d. The value of each pixel is the distance to the
nearest obstacle and the ridge lines correspond to the skeleton of Fig. 5.9b. Thinning
or skeletonization, like the distance transform, is a computationally expensive itera-
tive algorithm but it illustrates well the principles of finding paths through free space.
In the next section we will examine a cheaper alternative.

5.2.4 lProbabilistic Roadmap Method

The high computational cost of the distance transform and skeletonization methods
makes them infeasible for large maps and has led to the development of probabilistic
methods. These methods sparsely sample the world map and the most well known of
these methods is the probabilistic roadmap or PRM method.

To use the Toolbox PRM planner for our problem we first create a PRM object

>> prm = PRM(map)

and then create the plan

>> prm.plan()⊳

Note that in this case we do not pass goal as an argument to the planner since the
plan is independent of the goal. Creating the path is a two phase process: planning,
and query. The planning phase finds N random points, 100 by default, that lie in free
space. Each point is connected to its nearest neighbours by a straight line path that
does not cross any obstacles, so as to create a network, or graph, with a minimal num-
ber of disjoint components and no cycles. The advantage of PRM is that relatively few
points need to be tested to ascertain that the points and the paths between them are
obstacle free. The resulting network is stored within the PRM object and a summary
can be displayed

>> prm
prm =
PRM: 100x100
 graph size: 100
 dist thresh: 30.000000
 100 vertices
 712 edges
 3 components

The Voronoi tessellation of a set of planar points, known as sites, is a set of Voronoi cells as shown
to the left. Each cell corresponds to a site and consists of all points that are closer to its site than to
any other site. The edges of the cells are the points that are equidistant to the two nearest sites. A
generalized Voronoi diagram comprises cells defined by measuring distances to objects rather
than points. In MATLAB® we can generate a Voronoi diagram by

>> sites = rand(10,2)
>> voronoi(sites(:,1), sites(:,2))

Georgy Voronoi (1868–1908) was a Russian mathematician, born in what is now Ukraine. He
studied at Saint Petersburg University and was a student of Andrey Markov. One of his students
Boris Delaunay defined the eponymous triangulation which has dual properties with the Voronoi
diagram.

The junctions in the roadmap are indi-

cated by blue circles. The junctions, or

triple points, are identified using the

morphological image processing func-

tion triplepoint.

5.2 · Map-Based Planning

To replicate the following result be sure

to initialize the random number genera-

tor first using randinit. See p. 101.

100

which indicates the number of edges and connected components in the graph. The
graph can be visualized

>> prm.visualize()

as shown in Fig. 5.10a. The dots represent the randomly selected points and the lines
are obstacle-free paths between the points. Only paths less than 30 cells long are se-
lected which is the distance threshold parameter of the PRM class. Each edge of the
graph has an associated cost which is the distance between its two nodes. The color of
the node indicates which component it belongs to and each component is assigned a
unique color. We see two nodes on the left-hand side that are disconnected from the
bulk of the roadmap.

The query phase is to find a path from the start point to the goal. This is simply a
matter of moving to the closest node in the roadmap, following the roadmap, and
getting off at the node closest to the goal and

>> prm.path(start, goal)

shows an animation of the robot moving through the graph and the path followed is
shown in Fig. 5.11. Note that this time we provide the start and the goal position to the
query phase. The next node on the roadmap is indicated in yellow and a line of green
dots shows the robot’s path. Travel along the roadmap involves moving toward the
neighbouring node which has the lowest cost, that is, closest to the goal. We repeat the
process until we arrive at the node in the graph closest to the goal, and from there we
move directly to the goal.

An advantage of this planner is that once the roadmap is created by the planning
phase we can change the goal and starting points very cheaply, only the query phase
needs to be repeated.

However the path is not optimal and the distance travelled

>> p = prm.path(start, goal);
>> numcols(p)
ans =
 299

is greater than the optimal value found by the distance transform but less than that
found by bug2.

There are some important tradeoffs in achieving this computational efficiency.
Firstly, the underlying random sampling of the free space means that a different graph
is created every time the planner is run, resulting in different paths and path lengths.
For example rerunning the planner

>> prm.plan();

Fig. 5.10. Probablistic roadmap
(PRM) planner and the random
graphs produced in the planning
phase. a Almost fully connected
graph, apart from two nodes on
the left-hand edge, b graph with
a large disconnected component

Chapter 5 · Navigation

101

Fig. 5.11.

Probablistic roadmap (PRM)
planner showing the path taken

by the robot, shown as green
dots. The nodes of the roadmap
that are visited are highlighted

in yellow

Random numbers. The MATLAB® random number generator (used for rand and randn) gen-
erates a very long sequence of numbers that are an excellent approximation to a random se-
quence. The generator maintains an internal state which is effectively the position within the
sequence. After startup MATLAB® always generates the following random number sequence

>> rand
ans =
 0.8147
>> rand
ans =
 0.9058
>> rand
ans =
 0.1270

Many algorithms discussed in this book make use of random numbers and this means that the
results can never be repeated. Before all such examples in this book is an invisible call to randinit
which resets the random number generator to a known state

>> randinit
>> rand
ans =
 0.8147
>> rand
ans =
 0.9058

and we see that the random sequence has been restarted.

A real robot is not a point. We have assumed that the robot is a point, occupying a single cell in
the occupancy grid. Some of the resulting paths which hug the sides of obstacles are impractical
for a robot larger than a single cell. Rather than change the planning algorithms which are pow-
erful and work very well we transform the obstacles. The Minkowski sum is used to inflate the
obstacles to accomodate the worst-case pose of the robot in close proximity. The obstacles are
replaced by virtual obstacles which are union of the obstacle and the robot in all its possible
poses and just touching the boundary. The robot’s various poses can be conservatively modelled
as a circle that contains the robot.

If we consider the occupancy grid as an image then obstacle inflation can be achieved using
the image processing operation known as dilation (discussed further in Sect. 12.5). To inflate the
obstacles with a circle of radius 3 cells the Toolbox command would be

>> prm = PRM(map, 'inflate', 3);

5.2 · Map-Based Planning

102

produces the graph shown in Fig. 5.10b which has nodes at different locations and has
a different number of edges.

Secondly, the planner can fail by creating a network consisting of disjoint compo-
nents. The graph in Fig. 5.10a shows some disjoint components on the left-hand side,
while the graph in Fig. 5.10b has a large disconnected component. If the start and goal
positions are not connected by the roadmap, that is, they are close to different compo-
nents the path method will report an error. The only solution is to rerun the planner.

Thirdly, long narrow gaps between obstacles are unlikely to be exploited since the
probability of randomly choosing points that lie along such gaps is very low. In this
example the planner has taken the longer counter-clockwise path around the obstacle
unlike the optimal distance transform planner which was able to exploit the narrow
vertical path on the left-hand side.

5.2.5 lRRT

The next, and final, planner that we introduce is able to take into account the motion
model of the vehicle, relaxing the assumption that the robot is capable of omni-direc-
tional motion.

Figure 5.12 shows a family of paths that the bicycle model of Eq. 4.2 would follow for
discrete values of velocity, forward and backward, and steering wheel angle over a fixed
time interval. This demonstrates clearly the subset of all possible configurations that a
non-holonomic vehicle can reach from a given initial configuration. In this discrete ex-
ample, from the initial pose we have computed 22 poses that the vehicle could achieve.
From each of these we could compute another 22 poses that the vehicle could reach after
two periods, and so on. After just a few periods we would have a very large number of
possible poses.

For any desired goal pose we could find the closest precomputed pose, and working
backward toward the starting pose we could determine the sequence of steering angles
and velocities needed to move from initial to the goal pose. This has some similarities
to the roadmap methods discussed previously, but the limiting factor is the combinatoric
explosion in the number of possible poses.

Fig. 5.12.

A set of possible paths that the
bicycle model robot could follow
from an initial configuration of
(0, 0, 0). For v=±1, α∈ [−1, 1]
over a 2 s period. Red lines
correspond to v< 0

Chapter 5 · Navigation

103

The particular planner that we discuss is the Rapidly-exploring Random Tree or
RRT. Like PRM it is a probabilistic algorithm and the main steps are as follows. A
graph of robot configurations is maintained and each node is a configuration ξ ∈ SE(2)
which is represented by a 3-vector ξ∼ (x, y, θ). The first node in the graph is some
initial configuration of the robot. A random configuration ξrand is chosen, and the
node with the closest configuration ξnear is found – this point is near in terms of a cost
function that includes distance and orientation.⊳ A control is computed that moves
the robot from ξnear toward ξrand over a fixed period of time. The point that it reaches
is ξnew and this is added to the graph.

We create an RRT roadmap for an obstacle free environment by following our fa-
miliar programming pattern. We create an RRT object

>> rrt = RRT()

which includes a default bicycle kinematic model, velocity and steering angle limits.
We create a plan and visualize the results

>> rrt.plan();
>> rrt.plot();

which are shown in Fig. 5.13. We see how the paths have a good coverage of the con-
figuration space, not just in the x- and y-directions but also in orientation, which is
why the algorithm is known as rapidly exploring.

An important part of the RRT algorithm is computing the control input that moves
the robot from an existing point in the graph to ξrand. From Sect. 4.2 we understand
the difficulty of driving a non-holonomic vehicle to a specified pose. Rather than the
complex non-linear controller of Sect. 4.2.4 we will use something simpler that fits
with the randomized sampling strategy used in this class of planner. The controller
randomly chooses whether to drive forwards or backwards and the steering angle,⊳

Fig. 5.13.

An RRT computed for the bicycle
model with a velocity of ±1 m s–1,
steering angle limits of ±1.2 rad,

integration period of 1 s, and
initial configuration of (0, 0, 0).

Each node is indicated by a
green circle in the 3-dimensional

space of vehicle poses (x, y, θ)

The distance measure must account for

a difference in position and orientation

and requires appropriate weighting of

these quantities. From a consideration

of units this is not quite proper since we

are adding metres and radians.

Uniformly randomly distributed be-

tween the steering angle limits.

5.2 · Map-Based Planning

104

simulates motion of the bicycle model for a fixed period of time, and computes the
closest distance to ξrand. This is repeated multiple times and the control input with the
best performance is chosen. The point on its path that was closest to ξrand is chosen
as ξnear and becomes a new node in the graph.

Handling obstacles with the RRT is quite straightforward. The point ξrand is dis-
carded if it lies within an obstacle, and the point ξnear will not be added to the graph if
the path from ξnear toward ξrand intersects an obstacle. The result is a set of paths, a
roadmap, that is collision free and driveable with this non-holonomic vehicle.

We will illustrate this with the challenging problem of moving a non-holonomic
vehicle sideways. Specifically we want to find a path to move the robot 2 m in the
lateral direction with its final heading angle the same as its initial heading angle

>> p = rrt.path([0 0 0], [0 2 0]);

The result is a continuous path

>> about(p)
p [double] : 30x3 (720 bytes)

which we can plot

>> rrt.path([0 0 0], [0 2 0]);

and the result is shown in Fig. 5.14. This is a smooth path� that is feasible for the non-
holonomic vehicle. The robot has an initial heading angle of 0 which means it is facing
in the positive x-direction, so here it has driven backwards to the desired pose. Note
also that the motion does not quite finish at the desired pose but at the node in the
tree closest to the desired pose. This could be remedied by computing a denser tree,
this one had 500 nodes, some adjustment of the steering command on the last seg-
ment of the motion, or using a local motion planner to move from the end of this
path to the goal pose.

5.3 lWrapping Up

Robot navigation is the problem of guiding a robot towards a goal and we have covered a
spectrum of approaches. The simplest was the purely reactive Braitenberg-type vehicle.
Then we added limited memory to create state machine based automata such as bug2
which can deal with obstacles, however the paths that it find are far from optimal.

A number of different map-based planning algorithms were then introduced. The
distance transform is a computationally intense approach that finds an optimal path
to the goal. D* also finds a optimal path, but accounts for traversibility of individual

Fig. 5.14. The path computed by
RRT that translates the non-holo-
nomic vehicle sideways. Nodes in
the RRT are shown as circles, for-
ward motion is shown in blue, re-
verse motion in red. a Path in the
xy-plane; b path in (x, y, θ) space

Although the steering angle is not con-

tinuous.

Chapter 5 · Navigation

105

cells rather than considering them as either free space or obstacle. D* also supports
computationally cheap incremental replanning for small changes in the map. PRM
reduces the computational burden by probabilistic sampling but at the expense of less
optimal paths. In particular it may not discover narrow routes between areas of free
space. Another sampling method is RRT which uses a kinematic model of the vehicle
to create paths which are feasible to drive, and can readily account for the orientation
of the vehicle as well as its position. All the map-based approaches require a map and
knowledge of the robot’s location, and these are both topics that we will cover in the
next chapter.

Further Reading

The defining book in cybernetics was written by Wiener in 1948 and updated in 1965
(Wiener 1965). Grey Walter published a number of popular articles (1950, 1951) and a
book (1953) based on his theories and experiments with robotic tortoises.

The definitive reference for Braitenberg vehicles is Braitenberg’s own book (1986)
which is a whimsical, almost poetic, set of thought experiments. Vehicles of increasing
complexity (fourteen vehicle families in all) are developed, some including non-
linearities, memory and logic to which he attributes anthropomorphic characteristics
such as love, fear, agression and egotism. The second part of the book outlines the
factual basis of these machines in the neural structure of animals. The bug1 and bug2
algorithms were described by Lumelsky and Stepanov (1986). More recently eleven
variations of Bug algorithm were implemented and compared for a number of differ-
ent environments (Ng and Bräunl 2007).

Early behaviour-based robots included the Johns Hopkins Beast, built in the 1960s,
and Genghis (Brooks 1989) built in 1989. Behaviour-based robotics are covered in the
book by Arkin (1999) and the Robotics Handbook (Siciliano and Khatib 2008, § 38).
Matariõ’s Robotics Primer (Matariõ 2007) and associated comprehensive web-based
resources is also an excellent introduction to reactive control, behaviour based control
and robot navigation. A rich collection of archival material about early cybernetic
machines, including Gray-Walter’s tortoise and the Johns Hopkins Beast can be found
at the Cybernetic Zoo http://cyberneticzoo.com.

The distance transform is well described by Borgefors (1986) and its early applica-
tion to robotic navigation was explored by Jarvis and Byrne (1988). The D* algorithm
is an extension of the classic A* algorithm for graphs (Nilsson 1971). It was proposed
by Stentz (1994) and later extensions include Field D* (Ferguson and Stentz 2006) and
D* lite (Koenig and Likhachev 2002). D* was used by many vehicles in the DARPA
challenges (Buehler et al. 2007, 2010).

The ideas behind PRM started to emerge in the mid 1990s and it was first described
by Kavraki et al. (1996). Geraerts and Overmars (2004) compare the efficacy of a num-
ber of subsequent variations that have been proposed to the basic PRM algorithm.
Approaches to planning that incorporate the vehicles dynamics include state-space
sampling (Howard et al. 2008), and the RRT which is described in LaValle (1998, 2006)
as well as http://msl.cs.uiuc.edu/rrt.

Two recent books provide almost encyclopedic coverage of planning for robots.
The book on robot motion by Choset et al. (2005) covers geometric and probabilistic
approaches to planning as well as the application to robots with dynamics and non-
holonomic constraints. The book on robot planning by LaValle (2006) covers motion
planning, planning under uncertainty, sensor-based planning, reinforcement learning,
nonlinear systems, trajectory planning and nonholonomic planning. The powerful plan-
ning techniques discussed in these books can be applied beyond robotics to very high
order systems such as complex mechanisms or even the shape of molecules. More
succinct coverage is provided by Siegwart et al. (2011), the Robotics Handbook (Siciliano
and Khatib 2008, § 35), and also in Spong et al. (2006) and Siciliano et al. (2008).

5.3 · Wrapping Up

106

Exercises

1. Braitenberg vehicles (page 88)
a) Experiment with different starting configurations and control gains.
b) Modify the signs on the steering signal to make the vehicle light-phobic.
c) Modify the sensorfield function so that the peak moves with time.
d) The vehicle approaches the maxima asymptotically. Add a stopping rule so that

the vehicle stops when the when either sensor detects a value greater than 0.95.
e) Create a scalar field with two peaks. Can you create a starting pose where the

robot gets confused?
2. Bug algorithms (page 90)

a) Using the function makemap create a new map to challenge bug2. Try different
starting points. Is it possible to trap bug2?

b) Create an obstacle map that contains a maze. Can bug2 solve the maze?
c) Implement other bug algorithms such as bug1 and tangent bug. Do they perform

better or worse?
3. At 1 m cell size how much memory is required to represent the surface of the Earth?

How much memory is required to represent just the land area of Earth? What cell
size is needed in order for a map of your country to fit in 1 Gbyte of memory?

4. Distance transform (page 93). A real robot has finite dimensions and a common
technique for use with the point-robot planning methods is to grow the obstacles
by half the radius of the robot. Use the Toolbox function imorph (see page 317) to
dilate the obstacles by 4 grid cells.

5. For the D* planner (page 95) increase the cost of the rough terrain and observe
what happens. Add a region of very low-cost terrain (less than one) near the robot’s
path and observe what happens.

6. PRM planner (page 99)
a) Run the PRM planner 100 times and gather statistics on the resulting path length.
b) Vary the value of the distance threshold parameter and observe the effect.
c) Implement a non-grid based version of PRM. The robot is represented by

an arbitrary polygon as are the obstacles. You will need functions to deter-
mine if a polygon intersects or is contained by another polygon (see the Toolbox
Polygon class). Test the algorithm on the piano movers problem.

7. RRT planner (page 102)
a) Find a path to implement a 3-point turn.
b) Define an obstacle field and repeat the planning.
c) Experiment with RRT parameters such as the number of points, the vehicle steer-

ing angle limits, and the path integration time.
d) The current RRT chooses the steering angle as a uniform distribution between

the steering angle limits. People tend to drive more gently, what happens if you
choose a Gaussian distribution for the steering angle?

e) Additional information in the node of each graph holds the control input that
was computed to reach the node. Plot the steering angle and velocity sequence
required to move from start to goal pose.

f) Add a local planner to move from initial pose to the closest vertex, and from the
final vertex to the goal pose.

g) Determine a path through the graph that minimizes the number of reversals of
direction.

h) Add a more sophisticated collision detector where the vehicle is a finite sized
rectangle and the world has polygonal obstacles. You will need functions to de-
termine if a polygon intersects or is contained by another polygon (see the
Toolbox Polygon class).

Chapter 5 · Navigation

6
Chapter

Localization

in order to get somewhere we need to know where we are

Fig. 6.1.

Location estimation by dead
reckoning. The ship’s position

at 3 p.m. is based on its position
at 2 p.m., the estimated distance
travelled since, and the average

compass heading

Measuring speed at sea. A ship’s log is an instrument that provides an estimate of the distance
travelled. The oldest method of determining the speed of a ship at sea was the Dutchman’s log – a
floating object was thrown into the water at the ship’s bow and the time for it to pass the stern was
measured using an hourglass. Later came the chip log, a flat quarter-circle of wood with a lead
weight on the circular side causing it to float upright and resist towing. It was tossed overboard
and a line with knots at 50 foot intervals was payed out. A special hourglass, called a log glass, ran
for 30 s, and each knot on the line over that interval corresponds to approximately 1 nmi h–1 or
1 knot. A nautical mile (nmi) is now defined as 1.852 km.

In our discussion of map-based navigation we assumed that the robot had a
means of knowing its position. In this chapter we discuss some of the common
techniques used to estimate the location of a robot in the world – a process
known as localization.

Today GPS makes outdoor localization so easy that we often take this capa-
bility for granted. Unfortunately GPS is a far from perfect sensor since it relies
on very weak radio signals received from distant orbiting satellites. This means
that GPS cannot work where there is no line of sight radio reception, for in-
stance indoors, underwater, underground, in urban canyons or in deep mining
pits. GPS signals are also extremely weak and can be easily jammed and this is
not acceptable for some applications.

GPS has only been in use since 1995 yet human-kind has been navigating
the planet and localizing for many thousands of years. In this chapter we will
introduce the classical navigation principles such as dead reckoning and the
use of landmarks on which modern robotic navigation is founded.

Dead reckoning is the estimation of location based on estimated speed, di-
rection and time of travel with respect to a previous estimate. Figure 6.1 shows
how a ship’s position is updated on a chart. Given the average compass heading
over the previous hour and a distance travelled the position at 3 p.m. can be
found using elementary geometry from the position at 2 p.m. However the mea-
surements on which the update is based are subject to both systematic and

108

random error. Modern instruments are quite precise but 500 years ago clocks, com-
passes and speed measurement were primitive. The recursive nature of the process,
each estimate is based on the previous one, means that errors will accumulate over
time and for sea voyages of many-months this approach was quite inadequate.

The Phoenicians were navigating at sea more than 4 000 years ago and they did not
even have a compass – that was developed 2 000 years later in China. The Phoenicians
navigated with crude dead reckoning but whereever possible they used additional
information to correct their position estimate – sightings of islands and headlands,
primitive maps and observations of the Sun and the Pole Star.

A landmark is a visible feature in the environment whose location is known with
respect to some coordinate frame. Figure 6.2 shows schematically a map and a num-
ber of lighthouse landmarks. We first of all use a compass to align the north axis of our
map with the direction of the north pole. The direction of a single landmark con-
strains our position to lie along a line on the map. Sighting a second landmark places
our position on another constraint line, and our position must be at their intersection
– a process known as resectioning.� For example lighthouse A constrains us to lie
along the blue line. Lighthouse B constrains us to lie along the red line and the inter-
section is our true position p.

Fig. 6.2.

Location estimation using a map.
Lines of sight from two light-
houses, A and C, and their cor-
responding locations on the map
provide an estimate p of our
location. However if we mistake
lighthouse C for B then we
obtain an incorrect estimate q

Resectioning is the estimation of posi-

tion by measuring the bearing angles

to known landmarks. Triangulation is

the estimation of position by measur-

ing the bearing angles to the unknown

point from each of the landmarks.

Celestial navigation. The position of celestial bodies in the sky is a predictable function of the
time and the observer’s latitude and longitude. This information can be tabulated and is known
as ephemeris (meaning daily) and such data has been published annually in Britain since 1767 as
the “The Nautical Almanac” by HM Nautical Almanac Office. The elevation of a celestial body
with respect to the horizon can be measured using a sextant, a handheld optical instrument.

Time and longitude are coupled, the star field one hour later is the same as the star field 15° to
the east. However the northern Pole Star, Polaris or the North Star, is very close to the celestial
pole and its elevation angle is independent of longitude and time, allowing lattitude to be deter-
mined very conveniently from a single sextant measurememt.

Solving the longitude problem was the greatest scientific challenge to European governments
in the eighteenth century since it was a significant impediment to global navigation and mari-
time supremacy – the British Longitude Act of 1714 created a prize of £20 000. This spurred the
development of nautical chronometers, clocks that could maintain high accuracy onboard ships.
More than fifty years later a suitable chronometer was developed by John Harrison, a copy of
which was used by Captain James Cook on his second voyage of 1772–1775. After a three year
journey the error in estimated longitude was just 13 km. With accurate knowledge of time, the
elevation angle of stars could be used to estimate latitude and longitude. This technological ad-
vance enabled global exploration and trade.

Chapter 6 · Localization

Harrison’s H1 chronometer (1735),
© National Maritime Museum,
Greenwich, London

109

However this process is critically reliant on correctly associating the observed land-
mark with the feature on the map. If we mistake one lighthouse for another, for ex-
ample we see B but think it is C on the map,⊳ then the red dashed line leads to a sig-
nificant error in estimated position – we would believe we were at q instead of p. This
belief would lead us to overestimate our distance from the coastline. If we decided to
sail toward the coast we would run aground on rocks and be surprised since they
were not where we expected them to be. This is unfortunately a very common error
and countless ships have foundered because of this fundamental data association
error. This is why lighthouses flash! In the eighteenth century technological advances
enabled lighthouses to emit unique flashing patterns so that the identity of the par-
ticular lighthouse could be reliably determined and associated with a point on a navi-
gation chart.

Of course for the earliest mariners there were no maps, or lighthouses or even com-
passes. They had to create maps as they navigated by incrementally adding new non-
manmade features to their maps just beyond the boundaries of what was already known.
It is perhaps not surprising that so many early explorers came to grief⊳ and that maps
were tightly kept state secrets.

Robots operating today in environments without GPS face exactly the same prob-
lems as ancient navigators and, perhaps surprisingly, borrow heavily from naviga-
tional strategies that are centuries old. A robot’s estimate of distance travelled will be
imperfect⊳ and it may have no map, or perhaps an imperfect or incomplete map.
Additional information from observation of features is critical to minimizing a robot’s
localization error but the possibility of data association error remains.

We can define the localization problem more formally where x is the true, but un-
known, position of the robot and ' is our best estimate of that position. We also wish
to know the uncertainty of the estimate which we can consider in statistical terms as
the standard deviation associated with the position estimate '.

It is useful to describe the robot’s position in terms of a probability density func-
tion (PDF) over all possible positions of the robot. Some example PDFs are shown in
Fig. 6.3 where the magnitude of the function is the relative likelihood of the vehicle
being at that position. Commonly a Gaussian function is used which can be described
succinctly in terms of its mean and standard deviation. The robot is most likely to be
at the location of the peak (the mean) and increasingly less likely to be at positions
further away from the peak. Figure 6.3a shows a peak with a small standard deviation
which indicates that the vehicle’s position is very well known. There is an almost zero

It is just as bad is to see CCCCC but think it

is BBBBB on the map.

Magellan’s 1519 expedition started

with 237 men and 5 ships but most, in-

cluding Magellan, were lost along the

way. Only 18 men and 1 ship returned.

Radio-based localization. One of the earliest systems was LORAN,
based on the British World War II GEE system. LORAN transmit-
ters around the world emit synchronized radio pulses and a re-
ceiver measures the difference in arrival time between pulses from
a pair of radio transmitters. Knowing the identity of two transmit-
ters and the time difference (TD) constrains the receiver to lie along
a hyperbolic curve shown on navigation charts as TD lines. Using a
second pair of transmitters (which may include one of the first pair)
gives another hyperbolic constraint curve, and the receiver must
lie at the intersection of the two curves.

The Global Positioning System (GPS) was proposed in 1973 but
did not become fully operational until 1995. It currently comprises
around 30 active satellites orbiting the earth in six planes at a dis-
tance of 20 200 km. A GPS receiver works by measuring the time
of travel of radio signals from four or more satellites whose or-
bital position is encoded in the GPS signal. With four known points
in space and four measured time delays it is possible to compute
the (x, y, z) position of the receiver and the time. If the GPS sig-
nals are received after reflecting off some surface the distance trav-

A wheeled robot can estimate distance

travelled by measuring wheel rotation,

but an aerial or underwater robot can-

not do this. Wheel rotation is imperfect

due to variation and uncertainty in

wheel radius, slippage and the effects

of turning. Computer vision can be used

to create a visual odometry system

based on observations of the world

moving past the robot.

Chapter 6 · Localization

elled is longer and this will introduce an error in the position es-
timate. This effect is known as multi-pathing and is common in
large-scale industrial facilities.

Variations in the propagation speed of radio waves through
the atmosphere is the main cause of error in the position esti-
mate. However these errors vary slowly with time and are approxi-
mately constant over large areas. This allows the error to be mea-
sured at a reference station and transmitted to compatible nearby
receivers which can offset the error – this is known as Differential
GPS (DGPS). Many countries have coastal radio networks that
broadcast this correction information, and for aircraft it is broad-
cast by another satellite network called the Wide Area Augmenta-
tion System (WAAS). RTK GPS achieves much higher precision
in time measurement by using phase information from the car-
rier signal. The original GPS system deliberately added error, eu-
phemistically termed selective availability, to reduce its utility to
military opponents but this feature was disabled in May 2000.
Other satellite navigation systems include the Russian GLONASS,
the European Galileo, and the Chinese Beidou.

110

probability that the vehicle is at the point indicated by the *-marker. In contrast the
peak in Fig. 6.3b has a large standard deviation which means that we are less certain
about the location of the vehicle. There is a reasonable probability that the vehicle is at
the point indicated by the *-marker. Using a PDF also allows for multiple hypotheses
about the robot’s position. For example the PDF of Fig. 6.3c describes a robot that is
quite certain that it is at one of four places. This is more useful than it seems at face
value. Consider an indoor robot that has observed a vending machine and there are
four such machines marked on the map. In the absence of any other information the
robot must be equally likely to be in the vicinity of any of the four vending machines.
We will revisit this approach in Sect. 6.5.

Determining the PDF based on knowledge of how the vehicle moves and its obser-
vations of the world is a problem in estimation which we can usefully define as:

the process of inferring the value of some quantity of interest, x, by processing data
that is in some way dependent on x.

For example a ship’s navigator or a surveyor estimates location by measuring the
bearing angles to known landmarks or celestial objects, and a GPS receiver estimates
latitude and longitude by observing the time delay from moving satellites whose loca-
tion is known.

For our robot localization problem the true and estimated state are vector quanti-
ties so uncertainty will be represented as a covariance matrix, see Appendix F. The
diagonal elements represent uncertainty of the corresponding states, and the off-
diagonal elements represent correlations between states.

Fig. 6.3. Notions of vehicle position
and uncertainty in the xy-plane,
where the vertical axis is the rela-
tive likelihood of the vehicle being
at that position. Contour lines are
displayed on the lower plane. a The
vehicle has low position uncer-
tainty, σ= 1; b the vehicle has much
higher position uncertainty, σ=20;
c the vehicle has multiple hypoth-
eses for its position, each σ= 1

Chapter 6 · Localization

111

6.1 lDead Reckoning

Dead reckoning is the estimation of a robot’s location based on its estimated speed,
direction and time of travel with respect to a previous estimate.

6.1.1 lModeling the Vehicle

The first step in estimating the robot’s position is to write a function, f(·), that describes
how the vehicle’s configuration changes from one time step to the next. A vehicle model
such as Eq. 4.2 describes the evolution of the robot’s configuration as a function of its
control inputs, however for real robots we rarely have access to these control inputs. Most
robotic platforms have proprietary motion control systems that accept motion commands
from the user (speed and direction) and report odometry information.

An odometer is a sensor that measures distance travelled, typically by measuring
the angular rotation of the wheels. The direction of travel can be measured using an
electronic compass, or the change in heading can be measured using a gyroscope or
differential odometry.⊳ These sensors are imperfect due to systematic errors such an
incorrect wheel radius or gyroscope bias, and random errors such as slip between
wheels and the ground, or the effect of turning.⊳ We consider odometry to comprise
both distance and heading information.

Instead of using Eq. 4.2 directly we will write a discrete-time model for the evolu-
tion of configuration based on odometry where δhki= (δd, δ θ) is the distance travelled
and change in heading over the preceding interval, and k is the time step. The initial
pose is represented in SE(2) as

We assume that motion over the time interval is small so the order of applying the
displacements is not significant. We choose to move forward in the vehicle x-direction
by δd, and then rotate by δ θ giving the new configuration

or as a 3-vector

(6.1)

which gives the new configuration in terms of the previous configuration and the
odometry.

However this assumes that odometry is perfect, which is not realistic. To model
the error in odometry we add continuous random variables vd and vθ to δd and δ θ
respectively. The robot’s configuration at the next time step, including the odometry
error, is

Measuring the difference in angular ve-

locity of a left- and right-hand side wheel.

When turning, the outside wheel trav-

els faster than the inside wheel, and this

can be accounted for by measuring the

speed of both wheels.

6.1 · Dead Reckoning

112

(6.2)

which is the required function f(·)

(6.3)

where k is the time step, δhki is the odometry measurement and vhki the random mea-
surement noise over the preceding interval.�

In the absence of any information to the contrary we model the odometry noise as
v= (vd, vθ)∼N(0, V), a zero-mean Gaussian processes with variance

This matrix, the covariance matrix, is diagonal which means that the errors in dis-
tance and heading are independent.� Choosing a value for V is not always easy but we
can conduct experiments or make some reasonable engineering assumptions. In the
examples which follow we choose σd= 2 cm and σθ= 0.5° per sample interval which
leads to a covariance matrix of

>> V = diag([0.02, 0.5*pi/180].^2);

The Toolbox Vehicle class simulates the bicycle model of Eq. 4.2 and the odometric
configuration update Eq. 6.2. To use it we create a Vehicle object

>> veh = Vehicle(V)
Vehicle object
 L=1, maxspeed=5, alphalim=0.5, T=0.100000, V=(0.0004,0.00121847), nhist=0
 x=0, y=0, theta=0

which shows the default parameters such as the vehicle’s length, speed, steering limit
and the sample interval which defaults to 0.1 s. The object provides a method to simu-
late one time step

>> odo = veh.step(1, 0.3)
odo =
 0.1002 0.0322
>> odo = veh.step(1, 0.3)
odo =
 0.0991 0.0311

where we have specified a speed of 1 m s–1 and a steering angle of 0.3 rad. The func-
tion updates the robot’s true configuration and returns a noise corrupted odometer
reading. With a sample interval of 0.1 s the robot reports that is moving approximately
0.1 m each interval and changing its heading by approximately 0.03 rad. The robot’s
true (but hidden) configuration can be seen by displaying the object

>> veh
veh =
Vehicle object
 L=1, maxspeed=5, alphalim=0.5, T=0.100000, V=(0.0004,0.00121847), nhist=2
 x=0.199955, y=0.00299955, theta=0.06

We want to run the simulation over a long time period but we also want to keep the
vehicle within a defined spatial region. The RandomPath class is a driver that steers
the robot to randomly selected waypoints within a specified region. We create an in-
stance of the driver object and connect it to the robot

In this case the odometry noise is in-
side the process model and is referred

to as process noise.

In reality this is unlikely to be the case

since odometry distance errors tend to

be worse when change of heading is high.

Chapter 6 · Localization

113

>> veh.add_driver(RandomPath(10))

where the argument to the RandomPath constructor specifies a working region that
spans ±10 m in the x- and y-directions. We can display an animation of the robot with
its driver by

>> veh.run()

which repeatedly calls step and maintains a history of the true state of the vehicle
over the course of the simulation within the Vehicle object.⊳ The RandomPath
and Vehicle classes have many parameters and methods which are described in the
online documentation.

6.1.2 lEstimating Pose

The problem we face, just like the ship’s navigator, is how to best estimate our new pose
given the previous pose and noisy odometry. The mathematical tool that we will use is
the Kalman filter which is described more completely in Appendix H. This filter provides
the optimal estimate of the system state, position in this case, assuming that the noise is
zero-mean and Gaussian. In this application the state of the Kalman filter is the estimated
configuration of the robot. The filter is a recursive algorithm that updates, at each time
step, the optimal estimate of the unknown true configuration and the uncertainty associ-
ated with that estimate based on the previous estimate and noisy measurement data. That
is, it provides the best estimate of where we are and how certain we are about that.

The Kalman filter is formulated for linear systems but our model of the vehicle’s
motion Eq. 6.3 is non-linear. We create a local linear approximation or linearization⊳

of the function 'hki by

with respect to the current state estimate 'hki. The terms Fx and Fv are Jacobians which
are vector versions of derivatives which are sometimes written as ∂f/∂x and ∂f/∂v
respectively. This approach to estimation of a non-linear system is known as the ex-
tended Kalman filter or EKF. Jacobians are reviewed in Appendix G.

The Jacobians are obtained by differentiating Eq. 6.2 and evaluating them for v= 0
giving

(6.4)

Rudolf Kálmán (1930–) is a mathematical system theorist born in Budapest. He obtained his bach-
elors and masters degrees in electrical engineering from MIT, and PhD in 1957 from Columbia
University. He worked as a Research Mathematician at the Research Institute for Advanced Study, in
Baltimore, from 1958–1964 where he developed his ideas on estimation. These were met with some
skepticism amongst his peers and he chose a mechanical (rather than electrical) engineering jour-
nal for his paper A new approach to linear filtering and prediction problems because “When you fear
stepping on hallowed ground with entrenched interests, it is best to go sideways”. He has received
many awards including the IEEE Medal of Honor, the Kyoto Prize and the Charles Stark Draper Prize.

Stanley F. Schmidt is a research scientist who worked at NASA Ames Research Center and
was an early advocate of the Kalman filter. He developed the first implementation as well as the
non-linear version now known as the extended Kalman filter. This lead to its incorporation in
the Apollo navigation computer for trajectory estimation. (Extract from Kálmán’s famous paper
(1960) on the left reprinted with permission of ASME)

The number of history records is indi-

cated by nhist= in the displayed

value of the object. The hist property

is an array of structures that hold the

vehicle state at each time step.

A truncated Taylor series.

6.1 · Dead Reckoning

114

(6.5)

The Vehicle object provides methods Fx and Fv to compute these Jacobians, for
example

>> veh.Fx([0,0,0], [0.5, 0.1])
ans =
 1.0000 0 -0.0499
 0 1.0000 0.4975
 0 0 1.0000

where the first argument is the state about which the Jacobian is computed and the
second is the odometry.

Now we can write the EKF prediction equations�

(6.6)

(6.7)

that describe how the state and covariance evolve with time. The term 'hk+1|ki is read
as the estimate of x = (ú, ù, ø) at the time k+ 1 based on information up to, and in-
cluding, time k. Ï∈R3×3 is a covariance matrix representing uncertainty in the esti-
mated vehicle configuration. The second term in Eq. 6.7 is positive definite which means
that Ï, the position uncertainty, can never decrease. Í is our estimate of the covari-
ance of the odometry noise which in reality we do not know.

To simulate the vehicle and the EKF using the Toolbox we define the initial covariance
to be quite small since, we assume, we have a good idea of where we are to begin with

>> P0 = diag([0.005, 0.005, 0.001].^2);

and we pass this to the constructor for an EKF object

>> ekf = EKF(veh, V, P0);

Runing the filter for 1 000 time steps

>> ekf.run(1000);

drives the robot as before, along a random path. At each time step the filter updates the
state estimate using various methods provided by the Vehicle object.

Error ellipses. If the position of the robot (ignoring orientation) is considered as a PDF such as
shown in Fig. 6.3 then a horizontal cross-section will be an ellipse. The 2-dimensional Gaussian
probability density function is

where µx∈R
2 is the mean of x and P∈R2×2 is the covariance matrix. The 1σ boundary is de-

fined by the points x such that

It is useful to plot such an ellipse, as shown in Fig. 6.4, to represent the positional uncertainty.
A large ellipse corresponds to a wider PDF peak and less certainty about position.

A handy scalar measure of total uncertainty is the area of the ellipse π r1r2 where the radii
ri=]λi and λi are the eigenvalues of P. Since det(P)=Πλi the ellipse area – the scalar uncer-
tainty – is proportional to _det̀ (̀P̀). See also Appendices E and F.

The Kalman filter, Appendix H, has two

steps: prediction based on the model

and update based on sensor data. In

this dead-reckoning case we use only

the prediction equation.

Chapter 6 · Localization

115

We can plot the true path taken by the vehicle⊳

>> veh.plot_xy()

and the filter’s estimate of the path⊳

>> hold on
>> ekf.plot_xy('r')

These are shown in Fig. 6.4 and we see some divergence between the true and esti-
mated robot path.

The covariance at the 700th time step is

>> P700 = ekf.history(700).P
P700 =
 0.4674 0.0120 -0.0295
 0.0120 0.7394 0.0501
 -0.0295 0.0501 0.0267

The diagonal elements are the estimated variance associated with the states, that is σx
2, σy

2

and σθ
2 respectively. The standard deviation of the PDF associate with the x-coordinate is

>> sqrt(P700(1,1))
ans =
 0.6837

There is a 95% chance that the robot’s x-coordinate is within the ±2σ bound or ±1.37 m
in this case. We can consider uncertainty for y and θ similarly.

The off-diagonal terms are correlation coefficients and indicate that the uncertainties
between the corresponding variables are related. For example the value P2,3= P3,2= 0.0501
indicates that the uncertainties in x and θ are related as we would expect – changes in
heading angle will affect the x-position. Conversely new information about θ can be
used to correct θ as well as x. The uncertainty in position is described by the top-left
2× 2 covariance submatrix of Ï. This can be interpreted as an ellipse defining a confi-
dence bound on position. We can overlay such ellipses on the plot by

>> ekf.plot_ellipse([], 'g')

as shown in Fig. 6.4. These correspond to the 1σ confidence bound. The vehicle started at
the origin and as it progresses we see that the ellipses become larger as the estimated uncer-
tainty increases. The ellipses only show x- and y-position but uncertainty in θ also grows.

The total uncertainty,⊳ position and heading, is given by _det̀ (̀P̀ɵ)̀ and is plotted as
a function of time

>> ekf.plot_P();

as shown in Fig. 6.5. We observe that it never decreases.

Fig. 6.4.

Deadreckoning using the EKF.
The true path of the robot,

blue, and the path estimated
from odometry in red. The robot

starts at the origin, uncertainty
ellipses are indicated in green

Stored within the Vehicle object.

Stored within the EKF object.

The elements of PPPPP have different units:

m2 and rad. The uncertainty is therefore

a mixture of spatial and angular uncer-

tainty with an implicit weighting. Typi-

cally x, y≫π so positional uncertainty

dominates.

6.1 · Dead Reckoning

116

Note that we have used the odometry covariance matrix V twice. The first us-

age, in the Vehicle constructor, is the covariance VVVVV of the Gaussian noise that

is actually added to the true odometry to simulate odometry error in Eq. 6.3. In a

real application this noise process would be hidden inside the robot and we would

not know its parameters. The second usage, in the EKF constructor, is ÷ which is

our best estimate of the odometry covariance and is used in the filter’s state

covariance update equation Eq. 6.7. The relative values of VVVVV and ÷ control the

rate of uncertainty growth as shown in Fig. 6.5. If ÷> VVVVV then PPPPP will be larger than it

should be and the filter is pessimistic. If ÷< VVVVV then PPPPP will be smaller than it should

be and the filter will be overconfident of its estimate. That is, the actual uncertainty

is greater than the estimated uncertainty. In practice some experimentation is re-

quired to determine the appropriate value for the estimated covariance.

6.2 lUsing a Map

We have seen how uncertainty in position grows without bound using dead-reckoning alone.
The solution, as the Phoenicians worked out 4 000 years ago, is to bring in new information
from observations of known features in the world. In the examples that follow we will use
a map that contains N fixed but randomly located landmarks whose position is known.

The Toolbox supports a Map object

>> map = Map(20, 10)

that in this case contains N= 20 features uniformly randomly spread over a region
spanning ±10 m in the x- and y-directions and this can be displayed by

>> map.plot()

The robot is equipped with a sensor that provides observations of the features with
respect to the robot as described by

(6.8)

where xv the vehicle state, xf is the known location of the observed feature in the
world frame and w is a random variable that models errors in the sensor.

To make this tangible we will consider a common type of sensor that measures the
range and bearing angle to a landmark in the environment, for instance a radar or a
scanning-laser rangefinder such as shown in Fig. 6.6. The sensor is mounted onboard
the robot so the observation of the ith feature is xfi= (xi, yi) is

Fig. 6.5.

Overall uncertainty is given by
_detg(gPɵ) which shows monotoni-
cally increasing uncertainty
(blue). The effect of changing
the magnitude of V is to change
the rate of uncertainty growth.
Curves are shown for V=αV

*

where α= 1/2, 1, 2

Fig. 6.6. A scanning laser range
finder. The sensor has a rotating
assembly that emits pulses of
infra-red laser light and measures
the time taken for the reflection
to return. This sensor has a maxi-
mum range of 30 m and an angu-
lar range of 270 deg. Angular reso-
lution is 0.25 deg and the sensor
makes 40 scans per second (Cour-
tesy of Hokuyo Automatic Co. Ltd.)

Chapter 6 · Localization

117

(6.9)

where z= (r, β)T and r is the range, β the bearing angle, and the measurement noise is

The diagonal covariance matrix indicates that range and bearing errors are independent.⊳

For this example we set the sensor uncertainty to be σr= 0.1 m and σβ= 1° giving a
sensor covariance matrix

>> W = diag([0.1, 1*pi/180].^2);

In the Toolbox we model this type of sensor with a RangeBearingSensor object⊳

>> sensor = RangeBearingSensor(veh, map, W)

which is connected to the vehicle and the map, and the sensor covariance matrix W is
specified. The reading method provides the range and bearing⊳ to a randomly se-
lected map feature along with the identity of the map feature it has sensed

>> [z,i] = sensor.reading()
z =
 31.9681
 1.6189
i =
 18

The identity is an integer i ∈ [1, 20] since the map was created with 20 features. We
have avoided the data association problem by assuming that we know the identity of
the sensed feature. The position of feature 18 can be looked up in the map

>> map.feature(18)
 -8.0574
 6.4692

Using Eq. 6.9 the robot can estimate the range and bearing angle to the feature based
on its own estimated position and the known position of the feature from the map.
Any difference between the observation and the estimated observation indicates an
error in the robot’s position estimate – it isn’t where it thought it was. This difference

is key to the operation of the Kalman filter.⊳ It is called the innovation since it repre-
sents new information. The Kalman filter uses the innovation to correct the state esti-
mate and update the uncertainty estimate Phki.

As we did previously on page 113 we linearize the observation Eq. 6.8 and write

(6.10)

where the Jacobians are obtained by differentiating Eq. 6.9 yielding

(6.11)

(6.12)

It also indicates that covariance is inde-

pendent of range but in reality covari-

ance may increase with range since the

strength of the return signal, laser or

radar, drops rapidly (1/d 4) with distance

(d) to the target.

A subclass of Sensor.

If the interval property is set to N
then the method returns a reading on

every N th call. A non-measurement is

indicated by i having a value of NaN.

See Appendix H.

6.2 · Using a Map

118

The RangeBearingSensor object above includes methods h to implement Eq. 6.9
and H_x and H_w to compute these Jacobians respectively.

Now we use the innovation to update the predicted state computed earlier using
Eq. 6.6 and Eq. 6.7

(6.13)

(6.14)

which are the Kalman filter update equations. These take the predicted values for the
next time step denoted k+ 1|k and apply information from time step k+ 1 to com-
pute values denoted k+ 1|k+ 1. The innovation has been added to the estimated state
after multiplying by the Kalman gain matrix K which is defined as

(6.15)

(6.16)

where Ñ is the estimated covariance of the sensor noise. Note that the second term in
Eq. 6.14 is subtracted from the covariance and this provides a means for covariance to
decrease which was not possible for the dead-reckoning case of Eq. 6.7.

We now have all the piece to build an estimator that uses odometry and observa-
tions of map features. The Toolbox implementation is

>> map = Map(20);
>> veh = Vehicle(V);
>> veh.add_driver(RandomPath(map.dim));
>> sensor = RangeBearingSensor(veh, map, W);
>> ekf = EKF(veh, V, P0, sensor, W, map);

The Map constructor has a default map dimension of ±10 m which is accessed by its
dim property.

Running the simulation for 1 000 time steps

>> ekf.run(1000);

shows an animation of the robot moving and observations being made to the land-
marks. We plot the saved results

>> map.plot()
>> veh.plot_xy();
>> ekf.plot_xy('r');
>> ekf.plot_ellipse([], 'k')

Fig. 6.7.

EKF localization showing the
true path of the robot (blue)
and the path estimated from
odometry and landmarks (red).
The robot starts at the origin

Chapter 6 · Localization

119

which are shown in Fig. 6.7. We are hard pressed to see the error ellipses since they are
now so small.

Figure 6.8a shows a zoomed view of the robot’s actual and estimated path. We can
see a small error ellipse and we can also see a jag in the estimated path. The vehicle
state evolves smoothly with time according to the bicycle model of Eq. 4.2 but new
information from a sensor reading updates the state and can sometimes cause notice-
able changes, jumping the state estimate either forwards, backwards or sideways.
Figure 6.8b shows that the uncertainty is no longer growing monotonically, new infor-
mation is reducing the uncertainty through Eq. 6.14.

As discussed earlier for V we also use W twice. The first usage, in the constructor

for the RangeBearingSensor object, is the covariance W of the Gaussian

noise that is actually added to the computed range and bearing to simulate

sensor error as in Eq. 6.9. The second usage, ö is our best estimate of the sensor

covariance which is used by the Kalman filter Eq. 6.15.

This EKF framework allows data from many and varied sensors to update the state
which is why the estimation problem is also referred to as sensor fusion. For example
heading angle from a compass, yaw rate from a gyroscope, target bearing angle from a
camera, position from GPS could all be used to update the state. For each sensor we

Reverend Thomas Bayes (1702–1761) was a non-conformist Presbyterian minister. He studied
logic and theology at the University of Edinburgh and lived and worked in Tunbridge-Wells in
Kent. There, through his association with the 2nd Earl Stanhope he became interested in math-
ematics and was elected to the Royal Society in 1742. After his death his friend Richard Price
edited and published his work in 1763 as An Essay towards solving a Problem in the Doctrine of
Chances which contains a statement of a special case of Bayes’ theorem. Bayes is buried in Bunhill
Fields Cemetery in London.

Bayes’ theorem shows the relation between a conditional probability and its inverse: the prob-
ability of a hypothesis given observed evidence and the probability of that evidence given the hy-
pothesis. Consider the hypothesis that the robot is at location X and it makes a sensor observation S
of a known landmark. The posterior probability that the robot is at X given the observation S is

where P(X) is the prior probability that the robot is at X (not accounting for any sensory informa-
tion), P(S|X) is the likelihood of the sensor observation S given that the robot is at X, and P(S) is the
prior probability of the observation S. The Kalman filter, and the Monte-Carlo estimator we dis-
cuss later in this chapter, are essentially two different approaches to solving this inverse problem.

Fig. 6.8. a Closeup of the robot’s
true and estimated path; b the cova-
riance magnitude as a function of
time. Overall uncertainty is given
by det(P) and shows that uncer-
tainty is not increasing with time

6.2 · Using a Map

120

need only to provide the observation function h(·), the Jacobians Hx and Hw and some
estimate of the sensor output covariance W. The function h(·) can be non-linear and
even non-invertible – the EKF will do the rest.

In this example, and in the next two sections, we assume that the sensor provides
information about the position of the target with respect to the robot and also the iden-
tity of the target. In practice most landmarks are anonymous,� that is, we do not know
their identity and hence do not know their true location in the world. We therefore need
to solve the correspondence or target association problem – given the map and the obser-
vation, determine which feature is the most likely to have been seen. Errors in this step can
lead rapidly to failure of the estimator – the system sees target i but thinks it is target j.
The state vector is updated incorrectly making it more likely to incorrectly associate tar-
gets and a downward spiral ensues. The covariance may not necessarily increase greatly
and this is a dangerous thing – a confident but wrong robot. In indoor robotic problems
the sensor may detect spurious targets such as people moving in the environment and the
people will also obscure real landmarks.

An alternative is a multi-hypothesis estimator, such as the particle filter that we will
discuss in Sect. 6.5, which can model the possibility of observing landmark A or land-
mark B, and future observations will reinforce one hypothesis and weaken the others.
The extended Kalman filter uses a Gaussian probability model, with just one peak,
which limits it to holding only a single hypothesis about location.

6.3 lCreating a Map

So far we have taken the existence of the map for granted, an understandable mindset
given that maps today are common and available for free via the internet. Nevertheless
somebody, or something, has to create maps. Our next example considers the problem of
a robot moving in an environment with landmarks and creating a map of their locations.

As before we have a range and bearing sensor mounted on the robot which mea-
sures, imperfectly, the position of features with respect to the robot. There are a total
of N features in the environment and as for the previous example we assume that the
sensor can determine the identity of each observed feature. However for this case we
assume that the robot knows its own location perfectly – it has ideal localization. This
is unrealistic but this scenario is an important stepping stone to the next section.�

Since the vehicle pose is known perfectly we do not need to estimate it, but we do
need to estimate the coordinates of the landmarks. For this problem the state vector
comprises the estimated coordinates of the M landmarks that have been observed so far

and has 2M elements. The corresponding estimated covariance Ï will be a 2M× 2M
matrix. The state vector has a variable length since we do not know in advance how
many landmarks exist in the environment. Initially M= 0 and is incremented every
time a previously unseen feature is observed.

The prediction equation is straightforward in this case since the features do not move

(6.17)

(6.18)

We introduce the function g(·) which is the inverse of h(·) and gives the coordinates of
the observed feature based on the known vehicle pose and the sensor observation

Bar codes could be used to provide dis-

tinct target identity in some applica-

tions such as indoor mobile robots.

A close and realistic approximation

would be a high-end RTK GPS system

operating in an environment with no

buildings or hills to obscure satellites.

Chapter 6 · Localization

121

Since ' has a variable length we need to extend the state vector and the covariance
matrix whenever we encounter a landmark we have not previously seen. The state
vector is extended by the function y(·)

(6.19)

(6.20)

which appends the estimate of the new feature’s coordinates to the coordinates al-
ready in the map. The order of feature coordinates within ' therefore depends on the
order in which they are observed.

The covariance matrix also needs to be extended when a new landmark is observed
and this is achieved by

where Yz is another Jacobian

(6.21)

(6.22)

(6.23)

where n is the dimension of Ï prior to it being extended.
An additional Jacobian for h(·) is

(6.24)

which relates change in map features to change in observation and is implemented by
the Sensor class method H_xf.

The Jacobian Hx used in Eq. 6.14 describes how the feature observation changes
with respect to the state vector. However in this case, the observation depends only on
a single observed feature so this Jacobian is mostly zeros

(6.25)

where Hxi is at the location corresponding to the state xi.
The Toolbox implementation is

>> map = Map(20);
>> veh = Vehicle([]); % error free vehicle
>> veh.add_driver(RandomPath(map.dim));
>> W = diag([0.1, 1*pi/180].^2);
>> sensor = RangeBearingSensor(veh, map, W);
>> ekf = EKF(veh, [], [], sensor, W, []);

6.3 · Creating a Map

122

the empty matrices passed to EKF indicate respectively that there is no estimated
odometry covariance for the vehicle (the estimate is perfect), no initial vehicle state
covariance, and the map is unknown. We run the simulation for 1 000 time steps

>> ekf.run(1000);

and see an animation of the robot moving and the covariance ellipses associated with
the map features evolving over time. The estimated landmark positions

>> map.plot();
>> ekf.plot_map(5, 'g');
>> veh.plot_xy('b');

are shown in Fig. 6.9a as 5σ confidence ellipses (in order to be visible) along with the
true landmark positions and the path taken by the robot. The covariance matrix has a
block diagonal structure which is displayed graphically

>> spy(ekf.P_est);

in Fig. 6.9b. The blue dots represent non-zero elements� and each 2× 2 block repre-
sents the covariance of the position of a map feature. The correlations, the off-diago-
nal elements are zero, which implies that the feature estimates are uncorrelated or
independent. This is to be expected since observing feature i provides no new infor-
mation about feature j≠ i.

Internally the EKF object maintains a table to relate the feature identity, returned
by the RangeBearingSensor, to the position of that feature’s coordinates in the
state vector. For example the landmark with identity 10

>> ekf.features(:,10)
ans =
 19
 51

was seen a total of 51 times during the simulation and comprises elements 19 and 20
of '

>> ekf.x_est(19:20)'
ans =
 5.8441 9.1898

which is its estimated location. Its estimated covariance is

>> ekf.P_est(19:20,19:20)
ans =
 1.0e-03 *
 0.2363 -0.0854
 -0.0854 0.2807

Fig. 6.9. EKF mapping results.
a The estimated landmarks are
indicated by +-markers with 5σ
confidence ellipses (green), the
true location (black ◊-marker)
and the robot’s path (blue); b the
non-zero elements of the final co-
variance matrix

This is known as the sparsity structure

of the matrix, and a large class of nu-

merical algorithms exist that work effi-

ciently on matrices that are predomi-

nantly zero. MATLAB’s spy function

shows the sparsity structure of matri-

ces graphically. See help sparse
for more details.

Chapter 6 · Localization

123

6.4 lLocalization and Mapping

Finally we tackle the problem of determining our position and creating a map at the
same time. This is an old problem in marine navigation and cartography – incremen-
tally extending maps while also using the map for navigation. In robotics this problem
is known as simultaneous localization and mapping (SLAM) or concurrent mapping
and localization (CML). This is sometimes referred to as a “chicken and egg” problem
but based on what we have learnt in the previous sections this problem is now quite
straightforward to solve.

The state vector comprises the vehicle configuration and the coordinates of the
M landmarks that have been observed so far

and has 2M+ 3 elements. The covariance is a (2M+ 3)× (2M+ 3) matrix and has
the structure

where Ïvv is the covariance of the vehicle state, Ïmm the covariance of the map fea-
tures, and Ïvm is the correlation between vehicle and map states.

The predicted vehicle state and covariance are given by Eq. 6.6 and Eq. 6.7 and
the sensor update is given by Eq. 6.13 to 6.16. When a new feature is observed the
state vector is updated using the Jacobian Yz given by Eq. 6.21 but in this case Gx is
non-zero

since the estimate of the new feature depends on the state vector which now contains
the vehicle’s pose.

The Jacobian Hx describes how the feature observation changes with respect to the
state vector. The observation will depend on the position of the vehicle and on the
position of the observed feature and is

(6.26)

where Hxi is at the location corresponding to the state xi. This is similar to Eq. 6.25 but
with the non-zero block Hxv at the left to account for the effect of vehicle position.

The Kalman gain matrix K multiplies innovation from the landmark observation, a
2-vector, so as to update every element of the state vector – the pose of the vehicle and
the position of every map feature.

The Toolbox implementation is by now quite familiar

>> P0 = diag([.01, .01, 0.005].^2);
>> map = Map(20);
>> veh = Vehicle(W);
>> veh.add_driver(RandomPath(map.dim));
>> sensor = RangeBearingSensor(veh, map, W);
>> ekf = EKF(veh, V, P0, sensor, W, []);

and the empty matrix passed to EKF indicates that the map is unknown. P0 is the
initial 3× 3 covariance for the vehicle state.

We run the simulation for 1 000 time steps

>> ekf.run(1000);

6.4 · Localization and Mapping

124

and as usual an animation is shown of the vehicle moving. We also see the covari-
ance ellipses associated with the map features evolving over time. We can plot the
results

>> map.plot();
>> ekf.plot_map(5, 'g');
>> ekf.plot_xy('r');
>> veh.plot_xy('b');

which are shown in Fig. 6.10.
Figure 6.11a shows that uncertainty is decreasing over time. Figure 6.11b shows the

final covariance matrix as an image and we see a complex structure. Unlike the map-
ping case Ïmm is not block diagonal, and the finite off-diagonal terms represent corre-
lation between the features in the map. The feature uncertainties never increase, the
prediction model is that they don’t change, but they also never drop below the initial
uncertainty of the vehicle. The block Ïvm is the correlation between errors in the ve-
hicle and the map features. A feature’s location estimate is a function of the vehicle’s
location and errors in the vehicle location appear as errors in the feature location –
and vice versa.

The correlations cause information about the observation of any feature to af-
fect the estimate of every other feature in the map and the vehicle pose. It is as if
all the states were connected by springs and the movement of any one affects all
the others.

Fig. 6.10.

Simultaneous localization and
mapping showing the true (blue)
and estimated (red) robot path
superimposed on the true map
(black ◊-marker). The estimated
map features are indicated by
+-markers and the 5σ confidence
ellipses (green)

Fig. 6.11. Simultaneous localiza-
tion and mapping. a Covariance
versus time; b the final covariance
matrix (values have been scaled in
the interval 0 to 255)

Chapter 6 · Localization

125

6.5 lMonte-Carlo Localization

The estimation examples so far have assumed that the error in sensors such odometry
and landmark range and bearing have a Gaussian probability density function. In prac-
tice we might find that a sensor has a one sided distribution (like a Poisson distribu-
tion) or a multimodal distribution with several peaks. The functions we used in the
Kalman filter such as Eq. 6.3 and Eq. 6.8 are strongly non-linear which means that
sensor noise with a Gaussian distribution will not result in a Gaussian error distribu-
tion on the value of the function – this is discussed further in Appendix H. The prob-
ability density function associated with a robot’s configuration may have multiple peaks
to reflect several hypotheses that equally well explain the data from the sensors as
shown for example in Fig. 6.3c.

The Monte-Carlo estimator that we discuss in this section makes no assumptions about
the distribution of errors. It can also handle multiple hypotheses for the state of the sys-
tem. The basic idea is disarmingly simple. We maintain many different versions of the
vehicle’s state vector. When a new measurement is available we score how well each ver-
sion of the state explains the data. We keep the best fitting states and randomly perturb
them to form a new generation of states. Collectively these many possible states and their
scores approximate a probability density function for the state we are trying to estimate.
There is never any assumption about Gaussian distributions nor any need to linearize
the system. While computationally expensive it is quite feasible to use this technique
with standard desktop computers. If we plot these state vectors as points we have a
cloud of particles hence this type of estimator is often referred to as a particle filter.

We will apply Monte-Carlo estimation to the problem of localization using odometry
and a map. Estimating only three states (x, y, θ) is computationally tractable to solve
with straightforward MATLAB® code. The estimator is initialized by creating N particles
xv,i, i ∈ [1, N] distributed randomly over the configuration space of the vehicle. All
particles have the same initial weight or likelihood wi= 1/N. The steps in the main
iteration of the algorithm are:

1. Apply the state update to each particle

moving each particle according to the measured odometry. We also add a random
vector qhki which represents uncertainty in the position of the vehicle. Often q is
drawn from a Gaussian random variable with covariance Q but any physically
meaningfull distribution can be used.

Monte Carlo methods are a class of computational algorithms that rely on repeated random sam-
pling to compute their results. An early example of this idea is Buffon’s needle problem posed in
the eighteenth century by Georges-Louis Leclerc (1707–1788), Comte de Buffon: Suppose we have
a floor made of parallel strips of wood of equal width t, and a needle of length l is dropped onto the
floor. What is the probability that the needle will lie across a line between the strips? If n needles
are dropped and h cross the lines, the probability can be shown to be h/n= 2l/2π and in 1901
an Italian mathematician Mario Lazzarini performed the experiment, tossing a needle 3408 times,
and obtained the estimate π≈ 355/113 (3.14159292).

Monte Carlo methods are often used when simulating systems with a large number of coupled
degrees of freedom with significant uncertainty in inputs. Monte Carlo methods tend to be used
when it is infeasible or impossible to compute an exact result with a deterministic algorithm.
Their reliance on repeated computation and random or pseudo-random numbers make them
well suited to calculation by a computer. The method was developed at Los Alamos as part of the
Manhattan project during WW II by the mathematicians John Von Neuman, Stanislaw Ulam and
Nicholas Metropolis. The name Monte Carlo alludes to games of chance and was the code name
for the secret project.

6.5 · Monte-Carlo Localization

126

2. We make an observation z of feature i which has, according to the map, coordinate xf.
For each particle we compute the innovation

which is the error between the predicted and actual landmark observation. A like-
lihood function provides a scalar measure of how well the particular particle ex-
plains this observation. In this example we choose a Gaussian likelihood function

where w is referred to as the importance or weight of the particle, L is a covariance
matrix, and w0> 0 ensures that there is a finite but small probability associated
with any point in the state space. We use a Gaussian function only for convenience,
the function does not need to be smooth or invertible but only to adequately de-
scribe the likelihood of an observation.

3. Select the particles that best explain the observation, a process known as resampling.
A common scheme is to randomly select particles according to their weight.
Given N particles xi with corresponding weights wi we first normalize the weights
w′i=wi/Σ

N
i= 1wi and construct a cumulative histogram cj=Σ

j
i= 1w′i. We then draw

a uniform random number r∈ [0, 1] and find argj min |cj− r| where particle j is
selected for the next generation. The process is repeated N times.

Particles with a large weight will correspond to a larger fraction of the vertical
span of the cumulative histogram and therefore be more likely to be chosen. The
result will have the same number of particles, some will have been copied� mul-
tiple times, others not at all.

The Toolbox implementation is broadly similar to the previous examples. We create
a map

>> map = Map(20);

and a robot with noisy odometry and an initial condition

>> W = diag([0.1, 1*pi/180].^2);
>> veh = Vehicle(W);
>> veh.add_driver(RandomPath(10));

and then a sensor with noisy readings

>> V = diag([0.005, 0.5*pi/180].^2);
>> sensor = RangeBearingSensor(veh, map, V);

For the particle filter we need to define two covariance matrices. The first is the covariance of
the random noise added to the particle states at each iteration to represent uncertainty in
configuration. We choose the covariance values to be comparable with those of W

>> Q = diag([0.1, 0.1, 1*pi/180]).^2;

and the covariance of the likelihood function applied to innovation

>> L = diag([0.1 0.1]);

Finally we construct a ParticleFilter estimator

>> pf = ParticleFilter(veh, sensor, Q, L, 1000);

which is configured with 1 000 particles. The particles are initially uniformly distrib-
uted over the 3-dimensional configuration space.

We run the simulation for 1 000 time steps

>> pf.run(1000);

Step 1 of the next iteration will spread
out these copies through the addition

of qhki.

Chapter 6 · Localization

127

and watch the animation, two snapshots of which are shown in Fig. 6.12. We see the
particles move about as their states are updated by odometry and random perturba-
tion. The initially randomly distributed particles begin to aggregate around those re-
gions of the configuration space that best explain the sensor observations that are
made. In Darwinian fashion these particles become more highly weighted and survive
the resampling step while the lower weight particles are extinguished. The plot is
3-dimensional, so you can rotate the graph while the animation is running to see the
heading angle state which is the height (z-coordinate) of the particles.

The particles approximate the probability density function of the robot’s configuration.
The most likely configuration is the expected value or mean of all the particles. A measure
of uncertainty of the estimate is the spread of the particle cloud or its standard deviation.
The ParticleFilter object keeps the history of the mean and standard deviation of
the particle state at each time step. As usual we plot the results of the simulation

>> map.plot();
>> veh.plot_xy('b');

and overlay the mean of the particle cloud

>> pf.plot_xy('r');

which is shown in Fig. 6.13. The initial part of the estimated path has quite high stan-
dard deviation since the particles have not converged on the true configuration. We
can plot the standard deviation against time

>> plot(pf.std(1:100,:))

and this is shown in Fig. 6.13b. We can see the sudden drop between timesteps 10–20
as the particles that are distant from the true solution are eliminated. As mentioned at the
outset the particles are a sampled approximation to the PDF and we can display this as

>> pf.plot_pdf()

The problem we have just solved is known in robotics as the kidnapped robot problem
where a robot is placed in the world with no idea of its initial location. To represent
this large uncertainty we uniformly distribute the particles over the 3-dimensional
configuration space and their sparsity can cause the particle filter to take a long time
to converge unless a very large number of particles is used. It is debatable whether this
is a realistic problem. Typically we have some approximate initial pose of the robot
and the particles would be initialized to that part of the configuration space. For ex-
ample if we know the robot is in a corridor then the particles would be placed in those
areas of the map that are corridors, or if we know the robot is pointing north then set
all particles to have that orientation.

Fig. 6.12. Particle filter results
showing the evolution of the evo-
lution of the particle cloud (green
dots) over time. The vehicle is
shown as a blue triangle

6.5 · Monte-Carlo Localization

128

Setting the parameters of the particle filter requires a little experience and the best
way to learn is to experiment. For the kidnapped robot problem we set Q and the num-
ber of particles high so that the particles explore the configuration space but once the
filter has converged lower values could be used. There are many variations on the
particle filter in the shape of the likelihood function and the resampling strategy.

6.6 lWrapping Up

In this chapter we learnt about two ways of estimating a robot’s position: by dead
reckoning, and by observing features whose true position is known from a map. Dead
reckoning is based on the integration of odometry information, the distance travelled
and the change in heading angle. Over time errors accumulate leading to increased
uncertainty about the pose of the robot.

We modelled the error in odometry by adding noise to the sensor outputs. The
noise values are drawn from some distribution that describes the errors of that par-
ticular sensor. For our simulations we used zero-mean Gaussian noise with a specified
covariance, but only because we had no other information about the specific sensor.
The most realistic noise model available should be used. We then introduced the Kalman
filter which provides an optimal estimate of the true configuration of the robot based
on noisy measurements. The Kalman filter is however only optimal for the case of
zero–mean Gaussian noise and a linear model. The model that describes how the robot’s
configuration evolves with time is non-linear and we approximated it with a linear
model which requires some Jacobians to be computed, an approach known as extended
Kalman filtering.

The Kalman filter also estimates uncertainty associated with the configuration es-
timate and we see that the magnitude can never decrease and typically grows without
bound. Only additional sources of information can reduce this growth and we looked
at how observations of landmarks, whose location are known, relative to the robot can be
used. Once again we use the Kalman filter but in this case we use both the prediction and
the update phases of the filter. We see that in this case the uncertainty can be decreased by
a landmark observation and that over the longer term the uncertainty does not grow.

We then applied the Kalman filter to the problem of estimating the positions of the
landmarks given that we knew the precise position of the vehicle. In this case the state
vector of the filter was the coordinates of the landmarks themselves.

Finally we brought all this together and estimated the vehicle’s position, the posi-
tion of the landmarks and their uncertainties. The state vector in this case contained
the configuration of the robot and the coordinates of the landmarks.

Fig. 6.13. Particle filter results.
a True (blue) and estimated (red)
robot path; b standard deviation
of the particles versus time

Chapter 6 · Localization

129

An important problem when using landmarks is data association, being able to deter-
mine which landmark has been known or observed by the sensor so that its position can
be looked up in a map or in a table of known or estimated landmark positions. If the
wrong landmark is looked up then an error will be introduced in the robot’s position.

Finally we learnt about Monte-Carlo estimation and introduced the particle filter.
This technique is computationally intensive but makes no assumptions about the dis-
tribution of errors from the sensor or the linearity of the vehicle model,and supports
multiple hypotheses.

Further Reading

The book by Borenstein et al. (1996) has an excellent discussion of robotic sensors in
general and odomery in particular. Although out of print it is available online. The
book by Everett (1995) covers odometry, range and bearing sensors, as well as radio,
ultrasonic and optical localization systems. Unfortunately the discussion of range and
bearing sensors is now quite dated since this technology has evolved rapidly over the
last decade. The handbook (Siciliano and Khatib 2008, § 20, § 22) provides a brief but
more modern treatment of these sensors.

The books of Borenstein et al. (1996) and Everett (1995) were published before GPS
became operational. The principles of GPS and other radio-based localization systems
are covered in some detail in the book by Groves (2008). The Robotics Handbook
(Siciliano and Khatib 2008, § 20) also briefly describes GPS, and a number of links to
GPS technical data are provided from this book’s web site.

There are many published and online resources for Kalman filtering. Kálmán’s origi-
nal paper, Kálmán (1960), is now over 50 years old. The book by Zarchan and Musoff
(2005) is a very clear and readable introduction to Kalman filtering. I have always found
the classic 1970 book by Jazwinski (1970) to be very readable and it has recently been
republished. Bar-Shalom et al. (2001) provide comprehensive coverage of estimation
theory and also the use of GPS. An excellent reference for EKF and Monte-Carlo local-
ization is the book by Thrun et al. (2005). Data association is an important topic and is
covered in detail in, the now very old, book by Bar-Shalom and Fortmann (1988). The
Robotics Handbook (Siciliano and Khatib 2008, § 4) covers Kalman filter and data
association. Welch and Bishop’s online resources at http://www.cs.unc.edu/~welch/

kalman have pointers to papers, courses, software and links to other relevant web sites.
A significant limitation of the EKF is its first-order linearization, particularly for

processes with strong non-linearity. Alternatives include the iterated EKF described
by Jazwinski (1970) or the Unscented Kalman Filter (UKF) (Julier and Uhlmann 2004)
which uses discrete sample points to approximate the PDF. Some of these topics are
covered in the Handbook (Siciliano and Khatib 2008, § 25) as multi-sensor fusion. The
book by Siegwart et al. (2011) also has a good treatment of robot localization.

There is a very large literature on SLAM and this chapter has only touched the
surface with a very classical EKF-based approach which does not scale well for large
numbers of features. FastSLAM (Montemerlo et al. 2002) is a state-of-the-art algorithm
for large-scale applications. There are a lot of online resources related to SLAM. Many
of the SLAM summer schools have websites that host excellent online resources such
as lecture notes and practicals.

A collection of open-source SLAM implementations such as gmapping and iSam is
available from OpenSLAM at http://www.openslam.org. MATLAB® implementations
include the CAS Robot Navigation Toolbox for planar SLAM at http://www.cas.kth.se/

toolbox and a 6DOF SLAM system at http://homepages.laas.fr/jsola/JoanSola/eng/

toolbox.html.
The book Longitude (Sobel 1996) is a very readable account of the longitude prob-

lem and John Harrison’s quest to build a marine chronometer.

6.6 · Wrapping Up

130

Notes on Toolbox Implementation

This chapter has introduced a number of Toolbox classes to solve mapping and local-
ization problems. The principle was to decompose the problem into clear functional
subsystems and implement these as a set of cooperating classes, and this allows quite
complex problems to be expressed in very few lines of code.

The relationships between the objects and their methods and properties are shown
in Fig. 6.14. As always more documentation is available through the online help sys-
tem or comments in the code.

Exercises

1. What is the value of the Longitude Prize in todays currency?
2. Implement a driver object (page 113) that drives the robot around inside a circle

with specified centre and radius.
3. Derive an equation for heading odometry in terms of the rotational rate of the left

and right wheels.
4. Dead-reckoning (page 111)

a) Experiment with different values of P0, V and Í.
b) Fig. 6.4 compares the actual and estimated position. Plot the actual and esti-

mated heading angle.
c) Compare the variance associated with heading to the variance associated with

position. How do these change with increasing levels of range and bearing angle
variance in the sensor?

5. Using a map (page 116)
a) Vary the characteristics of the sensor (covariance, sample rate, range limits and

bearing angle limits) and investigate the effect on performance
b) Vary W and Ñ and investigate what happens to estimation error and final cova-

riance.
c) Modify the RangeBearingSensor to create a bearing-only sensor, that is, as

a sensor that returns angle but not range. The implementation includes all the
Jacobians. Investigate performance.

Fig. 6.14.

Toolbox class relationship for
localization and mapping. Each
class is shown as a rectangle,
method calls are shown as arrows
from caller to callee, properties
are boxed, and dashed lines
represent object references

Chapter 6 · Localization

131

d) Modify the sensor model to return occasional errors (specify the error rate) such
as incorrect range or beacon identity. What happens?

e) Modify the EKF to perform data association instead of using the landmark iden-
tity returned by the sensor.

f) Figure 6.7 compares the actual and estimated position. Plot the actual and esti-
mated heading angle.

g) Compare the variance associated with heading to the variance associated with
position. How do these change with increasing levels of range and bearing angle
variance in the sensor?

6. Making a map (page 120)
a) Vary the characteristics of the sensor (covariance, sample rate, range limits and

bearing angle limits) and investigate the effect on performance.
b) Use the bearing-only sensor from above and investigate performance relative to

using a range and bearing sensor.
c) Modify the EKF to perform data association instead of using identity returned

by the sensor.
7. Simultaneous localization and mapping (page 123)

a) Vary the characteristics of the sensor (covariance, sample rate, range limits and
bearing angle limits) and investigate the effect on performance.

b) Use the bearing-only sensor from above and investigate performance relative to
using a range and bearing sensor.

c) Modify the EKF to perform data association instead of using the landmark iden-
tity returned by the sensor.

d) Fig. 6.10 compares the actual and estimated position. Plot the actual and esti-
mated heading angle.

e) Compare the variance associated with heading to the variance associated with
position. How do these change with increasing levels of range and bearing angle
variance in the sensor?

8. Particle filter (page 125)
a) Run the filter numerous times. Does it always converge?
b) Vary the parameters Q, L, w0 and N and understand their effect on convergence

speed and final standard deviation.
c) Investigate variations to the kidnapped robot problem. Place the initial particles

around the initial pose. Place the particles uniformly over the xy-plane but set
their orientation to its actual value.

d) Use a different type of likelihood function, perhaps inverse distance, and com-
pare performance.

6.6 · Wrapping Up

Part III Arm-Type Robots

Chapter 7 Robot Arm Kinematics

Chapter 8 Velocity Relationships

Chapter 9 Dynamics and Control

III
Part

Arm-Type Robots

of the diversity. The most common is the 6DOF arm-type of robot comprising a series
of rigid-links and actuated joints. This serial-link manipulator is the principle topic of
this chapter. The SCARA (Selective Compliance Assembly Robot Arm) is rigid in the
vertical direction and compliant in the horizontal plane which is an advantage for
planar tasks such as electronic circuit board assembly. A gantry robot has one or two

Fig. III.1.

a A 6DOF serial-link manipu-
lator. General purpose indus-

trial manipulator (source: ABB).
b SCARA robot which has 4DOF,

typically used for electronic as-
sembly (photo of Adept Cobra

s600 SCARA robot courtesy
of Adept Technology, Inc.).

c A gantry robot; the arm moves
along an overhead rail (image
courtesy of Güdel AG Switzer-

land | Mario Rothenbühler |
www.gudel.com). d A parallel-

link manipulator, the end-effec-
tor is driven by 6 parallel links

(Source: ABB)

Arm-type robots or robot manipulators are a very common and fa-
miliar type of robot. We are used to seeing pictures or video of them at
work in factories doing jobs such as assembly, welding and handling
tasks, or even in operating rooms doing surgery. The first robot ma-
nipulators started work over 50 years ago and have been enormously
successful in practice – many millions of robot manipulators are work-
ing in the world today. Many products we buy have been assembled,
packed or handled by a robot.

Unlike the mobile robots we discussed in the previous part, robot
manipulators do not move through the world. They have a static base
and therefore operate within a limited workspace. Many different types
of robot manipulator have been created and Figure III.1 shows some

136

Fig. III.2.

Robot end-effectors. a A vacuum
gripper holds a sheet of glass.
b A human-like robotic hand
(© Shadow Robot Company 2008)

degrees of freedom of motion along overhead rails which gives it a very large working
volume. A parallel-link manipulator has its links connected in parallel to the tool which
brings advantages such as having all the motors on the base and a very stiff structure.

These non-mobile robots allow some significant simplifications to problems such
as perception and safety. The work environment for a factory robot can be made very
orderly so the robot can be fast and precise and assume the location of objects that it is
working with. The safety problem is simplified since the robot has a limited working
volume – it is straightforward to just exclude people from the robot’s work space using
safety barriers.

A robot manipulates objects using its end-effector or tool as shown in Figure III.2.
The end-effector can be a simple 2-finger or parallel-jaw gripper or it could be a com-
plex human-like hand with multiple actuated finger joints and an opposable thumb.

The chapters in this part cover the fundamentals of serial-link manipulators. Chap-
ter 7 is concerned with the kinematics of serial-link manipulators. This is the geomet-
ric relationship between the angles of the robot’s joints and the pose of its end-effec-
tor. We discuss the creation of smooth paths that the robot can follow and present an
example of a robot drawing a letter on a plane surface. We also present an example of
a 4-legged walking robot. Chapter 8 introduces the relationship between the rate of
change of joint coordinates and the end-effector velocity which is described by the
manipulator Jacobian matrix. It also covers alternative methods of generating paths in
Cartesian space and introduces the relationship between forces on the end-effector
and torques at the joints. Chapter 9 discusses the dynamics of serial-link manipula-
tors and effects such as inertia, gyroscopic forces, friction and gravity. This leads to
discussion of strategies for the control of robot joints that includes independent joint
control and fully nonlinear model-based control.

Part III · Arm-Type Robots

7
Chapter

Kinematics� is the branch of mechanics that studies the motion of a body, or a system
of bodies, without consideration given to its mass or the forces acting on it. A serial-
link manipulator comprises a chain of mechanical links and joints. Each joint can
move its outward neighbouring link with respect to its inward neighbour. One end of
the chain, the base, is generally fixed and the other end is free to move in space and
holds the tool or end-effector.

Figure 7.1 shows two classical robots that are the precursor to all arm-type robots
today. Each robot has six joints and clearly the pose of the end-effector will be a complex
function of the state of each joint. Section 7.1 describes a notation for describing the link
and joint structure of a robot and Sect. 7.2 discusses how to compute the pose of the end-
effector. Section 7.3 discusses the inverse problem, how to compute the position of each
joint given the end-effector pose. Section 7.4 describes methods for generating smooth
paths for the end-effector. The remainder of the chapter covers advanced topics and
two complex applications: writing on a plane surface and a four-legged walking robot.

7.1 lDescribing a Robot Arm

A serial-link manipulator comprises a set of bodies, called links, in a chain and con-
nected by joints. Each joint has one degree of freedom, either translational (a sliding
or prismatic joint) or rotational (a revolute joint). Motion of the joint changes the
relative angle or position of its neighbouring links. The joints of most common robot
are revolute but the Stanford arm shown in Fig. 7.1b has one prismatic joint.

The joint structure of a robot can be described by a string such as “RRRRRR” for
the Puma and “RRPRRR” for the Stanford arm, where the jth character represents the
type of joint j, either Revolute or Prismatic. A systematic way of describing the geom-
etry of a serial chain of links and joints was proposed by Denavit and Hartenberg in
1955 and is known today as Denavit-Hartenberg notation.

For a manipulator with N joints numbered from 1 to N, there are N+ 1 links, num-
bered from 0 to N. Link 0 is the base of the manipulator and link N carries the end-

Robot Arm Kinematics

Take to kinematics. It will repay you.
It is more fecund than geometry; it adds a fourth dimension to space.

Chebyshev

Fig. 7.1.

a The Puma 560 robot was the
first modern industrial robot

(courtesy Oussama Khatib).
b The Stanford arm was an early

research arm and is unusual
in that it has a prismatic joint

(Stanford University AI Lab 1972;
courtesy Oussama Khatib). Both
arms were designed by robotics

pioneer Victor Scheinman and
both robots can be seen in the

Smithsonian Museum of Ameri-
can History, Washington DC

From the Greek word for motion.

138

effector or tool. Joint j connects link j− 1 to link j and therefore joint j moves link j. A
link is considered a rigid body that defines the spatial relationship between two
neighbouring joint axes. A link can be specified by two parameters, its length aj and its
twist αj. Joints are also described by two parameters. The link offset dj is the distance
from one link coordinate frame to the next along the axis of the joint. The joint angle θj
is the rotation of one link with respect to the next about the joint axis.

Figure 7.2 illustrates this notation. The coordinate frame {j} is attached to the far (dis-
tal) end of link j. The axis of joint j is aligned with the z-axis. These link and joint param-
eters are known as Denavit-Hartenberg parameters and are summarized in Table 7.1.

Following this convention the first joint, joint 1, connects link 0 to link 1. Link 0 is
the base of the robot. Commonly for the first link d1= α1= 0 but we could set d1> 0
to represent the height of the shoulder joint above the base. In a manufacturing system
the base is usually fixed to the environment but it could be mounted on a mobile base
such as a space shuttle, an underwater robot or a truck.

The final joint, joint N connects link N− 1 to link N. Link N is the tool of the robot and
the parameters dN and aN specify the length of the tool and its x-axis offset respectively.
The tool is generally considered to be pointed along the z-axis as shown in Fig. 2.14.

The transformation from link coordinate frame {j− 1} to frame {j} is defined in
terms of elementary rotations� and translations as

(7.1)

which can be expanded as

(7.2)

Fig. 7.2.

Definition of standard Denavit
and Hartenberg link parameters.
The colors red and blue denote all
things associated with links j− 1
and j respectively. The numbers
in circles represent the order in
which the elementary trans-
forms are applied

Jacques Denavit and Richard Hartenberg introduced many of the key concepts of kinematics for
serial-link manipulators in a 1955 paper (Denavit and Hartenberg 1955) and their later classic
text Kinematic Synthesis of Linkages (Hartenberg and Denavit 1964).

The 3× 3 orthonormal matrix is aug-

mented with a zero translational com-

ponent to form a 4× 4 homogenous

transformation.

Chapter 7 · Robot Arm Kinematics

139

The parameters αj and aj are always constant. For a revolute joint θj is the joint vari-
able and dj is constant, while for a prismatic joint dj is variable, θj is constant and αj= 0.
In many of the formulations that follow we use generalized joint coordinates

For an N-axis robot the generalized joint coordinates q ∈ C where C⊂RN is called
the joint space or configuration space.⊳ For the common case of an all-revolute robot
C⊂ SN the joint coordinates are referred to as joint angles. The joint coordinates are
also referred to as the pose of the manipulator which is different to the pose of the
end-effector which is a Cartesian pose ξ ∈ SE(3). The term configuration is shorthand
for kinematic configuration which will be discussed in Sect. 7.3.1.

Within the Toolbox we represent a robot link with a Link object which is created by

>> L = Link([0, 0.1, 0.2, pi/2, 0])
L =
 theta=q, d=0.1, a=0.2, alpha=1.571 (R,stdDH)

where the elements of the input vector are given in the order θj, dj, aj, αj. The optional
fifth element σj indicates whether the joint is revolute (σj= 0) or prismatic (σj= 1). If
not specified a revolute joint is assumed.

The displayed values of the Link object shows its kinematic parameters as well as
other status such the fact that it is a revolute joint (the tag R) and that the standard
Denavit-Hartenberg parameter convention is used (the tag stdDH).⊳

Although a value was given for θ it is not displayed – that value simply served

as a placeholder in the list of kinematic parameters. θ is substituted by the joint

variable q and its value in the Link object is ignored. The value will be man-

aged by the Link object.

A Link object has many parameters and methods which are described in the online
documentation, but the most common ones are illustrated by the following examples.
The link transform Eq. 7.2 for q= 0.5 rad is

Table 7.1.

Denavit-Hartenberg parameters:
their physical meaning, symbol

and formal definition

Jacques Denavit (1930–) was born in Paris where he studied for his Bachelor degree before
pursuing his masters and doctoral degrees in mechanical engineering at Northwestern Univer-
sity, Illinois. In 1958 he joined the Department of Mechanical Engineering and Astronautical
Science at Northwestern where the collaboration with Hartenberg was formed. In addition to
his interest in dynamics and kinematics Denavit was also interested in plasma physics and
kinetics. After the publication of the book he moved to Lawrence Livermore National Lab,
Livermore, California, where he undertook research on computer analysis of plasma physics
problems. He retired in 1982.

This is the same concept as was intro-

duced for mobile robots on page 65.

A slightly different notation, modifed

Denavit-Hartenberg notation is dis-

cussed in Sect. 7.5.3.

7.1 · Describing a Robot Arm

140

>> L.A(0.5)
ans =
 0.8776 -0.0000 0.4794 0.1755
 0.4794 0.0000 -0.8776 0.0959
 0 1.0000 0.0000 0.1000
 0 0 0 1.0000

is a 4× 4 homogeneous transformation. Various link parameters can be read or al-
tered, for example

>> L.RP
ans =
 R

indicates that the link is revolute and

>> L.a
ans =
 0.2000

returns the kinematic parameter a. Finally a link can contain an offset

>> L.offset = 0.5;
>> L.A(0)
ans =
 0.8776 -0.0000 0.4794 0.1755
 0.4794 0.0000 -0.8776 0.0959
 0 1.0000 0.0000 0.1000
 0 0 0 1.0000

which is added to the joint variable before computing the link transform and will be
discussed in more detail in Sect. 7.5.1.

7.2 lForward Kinematics

The forward kinematics is often expressed in functional form

(7.3)

with the end-effector pose as a function of joint coordinates. Using homogeneous trans-
formations this is simply the product of the individual link transformation matrices
given by Eq. 7.2 which for an N-axis manipulator is

(7.4)

The forward kinematic solution can be computed for any serial-link manipulator
irrespective of the number of joints or the types of joints. Determining the Denavit-
Hartenberg parameters for each of the robot’s links is described in more detail in
Sect. 7.5.2.

The pose of the end-effector ξE∼ TE∈ SE(3) has six degrees of freedom – three in
translation and three in rotation. Therefore robot manipulators commonly have six
joints or degrees of freedom to allow them to achieve an arbitrary end-effector pose.
The overall manipulator transform is frequently written as T6 for a 6-axis robot.

Richard Hartenberg (1907–1997) was born in Chicago and studied for his degrees at the University
of Wisconsin, Madison. He served in the merchant marine and studied aeronautics for two years at
the University of Goettingen with space-flight pioneer Theodor von Karman. He was Professor of
mechanical engineering at Northwestern University where he taught for 56 years. His research in
kinematics led to a revival of interest in this field in the 1960s, and his efforts helped put kinemat-
ics on a scientific basis for use in computer applications in the analysis and design of complex
mechanisms. His also wrote extensively on the history of mechanical engineering.

Chapter 7 · Robot Arm Kinematics

141

7.2.1 lA 2-Link Robot

The first robot that we will discuss is the two-link planar manipulator shown in Fig. 7.3.
It has the following Denavit-Hartenberg parameters
which we use to create a vector of Link objects

Fig. 7.3.

Two-link robot as per
Spong et al. (2006, fig. 3.6, p. 84).

Reproduced with permission.

>> L(1) = Link([0 0 1 0]);
>> L(2) = Link([0 0 1 0]);
>> L
L =
 theta=q1, d=0, a=1, alpha=0 (R,stdDH)
 theta=q2, d=0, a=1, alpha=0 (R,stdDH)

which are passed to the constructor SerialLink

>> two_link = SerialLink(L, 'name', 'two link');

which returns a SerialLink object that we can display

>> two_link
two_link =
two link (2 axis, RR, stdDH)
+---+-----------+-----------+-----------+-----------+
| j | theta | d | a | alpha |
+---+-----------+-----------+-----------+-----------+
| 1| q1| 0| 1| 0|
| 2| q2| 0| 1| 0|
+---+-----------+-----------+-----------+-----------+

grav = 0 base = 1 0 0 0 tool = 1 0 0 0
 0 0 1 0 0 0 1 0 0
 9.81 0 0 1 0 0 0 1 0
 0 0 0 1 0 0 0 1

7.2 · Forward Kinematics

142

This provides a concise description of the robot. We see that it has 2 revolute joints as
indicated by the structure string 'RR', it is defined in terms of standard Denavit-
Hartenberg parameters, that gravity is acting in the default z-direction.� The kine-
matic parameters of the link objects are also listed and the joint variables are shown as
variables q1 and q2. We have also assigned a name to the robot which will be shown
whenever the robot is displayed graphically. The script

>> mdl_twolink

performs the above steps and defines this robot in the MATLAB® workspace, creating
a SerialLink object named twolink.

The SerialLink object is key to the operation of the Robotics Toolbox. It has a
great many methods and properties which are illustrated in the rest of this part, and
described in detail in the online documentation. Some simple examples are

>> twolink.n
ans =
 2

which returns the number of joints, and

>> links = twolink.links
L =
theta=q1, d=0, a=1, alpha=0 (R,stdDH)
theta=q2, d=0, a=1, alpha=0 (R,stdDH)

which returns a vector of Link objects comprising the robot.� We can also make a
copy of a SerialLink object

>> clone = SerialLink(twolink, 'name', 'bob')
clone =
bob (2 axis, RR, stdDH)
+---+-----------+-----------+-----------+-----------+
| j | theta | d | a | alpha |
+---+-----------+-----------+-----------+-----------+
| 1| q1| 0| 1| 0|
| 2| q2| 0| 1| 0|
+---+-----------+-----------+-----------+-----------+

grav = 0 base = 1 0 0 0 tool = 1 0 0 0
 0 0 1 0 0 0 1 0 0
 9.81 0 0 1 0 0 0 1 0
 0 0 0 1 0 0 0 1

which has the name 'bob'.�

Now we can put the robot arm to work. The forward kinematics are computed us-
ing the fkine method. For the case where q1= q2= 0

>> twolink.fkine([0 0])
ans =
 1 0 0 2
 0 1 0 0
 0 0 1 0
 0 0 0 1

the method returns the homogenous transform that represents the pose of the
second link coordinate frame of the robot, T2. For a different configuration the
tool pose is

>> twolink.fkine([pi/4 -pi/4])
ans =
 1.0000 0 0 1.7071
 0 1.0000 0 0.7071
 0 0 1.0000 0
 0 0 0 1.0000

By convention, joint coordinates with the Toolbox are row vectors.

Normal to the plane in which the robot

moves.

Link objects are derived from the

MATLAB® handle class and can be

set in place. Thus we can write code like

twolink.links(1).a = 2
to change the kinematic parameter a2.

A unique name is required when mul-

tiple robots are displayed graphically,

see Sect. 7.8 for more details.

Chapter 7 · Robot Arm Kinematics

143

The robot can be visualized graphically

>> twolink.plot([0 0])
>> twolink.plot([pi/4 -pi/4])

as stick figures shown in Fig. 7.4. The graphical representation includes the robot’s
name, the final-link coordinate frame, T2 in this case, the joints and their axes, and a
shadow on the ground plane. Additional features of the plot method such as mul-
tiple views and multiple robots are described in Sect. 7.8 with additional details in the
online documentation.

The simple two-link robot introduced above is limited in the poses that it can achieve
since it operates entirely within the xy-plane, its task space is T⊂R2.

7.2.2 lA 6-Axis Robot

Truly useful robots have a task space T⊂ SE(3) enabling arbitrary position and atti-
tude of the end-effector – the task space has six spatial degrees of freedom: three trans-
lational and three rotational. This requires a robot with a configuration space C⊂R6

which can be achieved by a robot with six joints. In this section we will use the Puma 560
as an example of the class of all-revolute six-axis robot manipulators. We define an
instance of a Puma 560 robot using the script⊳

>> mdl_puma560

which creates a SerialLink object, p560, in the workspace

>> p560
p560 =
Puma 560 (6 axis, RRRRRR, stdDH)
 Unimation; viscous friction; params of 8/95;
+---+-----------+-----------+-----------+-----------+
| j | theta | d | a | alpha |
+---+-----------+-----------+-----------+-----------+
| 1| q1| 0| 0| 1.571|
| 2| q2| 0| 0.4318| 0|
| 3| q3| 0.15| 0.0203| -1.571|
| 4| q4| 0.4318| 0| 1.571|
| 5| q5| 0| 0| -1.571|
| 6| q6| 0| 0| 0|
+---+-----------+-----------+-----------+-----------+

grav = 0 base = 1 0 0 0 tool = 1 0 0 0
 0 0 1 0 0 0 1 0 0
 9.81 0 0 1 0 0 0 1 0
 0 0 0 1 0 0 0 1

Fig. 7.4. The two-link robot in two
different poses, a the pose (0, 0);
b the pose (ý ,−ý). Note the
graphical details. Revolute joints
are indicated by cylinders and the
joint axes are shown as line seg-
ments. The final-link coordinate
frame and a shadow on the ground
are also shown

The Toolbox has scripts to define a num-

ber of common industrial robots in-

cluding the Motoman HP6, Fanuc 10L,

ABB S4 2.8 and the Stanford arm.

7.2 · Forward Kinematics

144

Note that aj and dj are in SI units which means that the translational part of the for-
ward kinematics will also have SI units.

The script mdl_puma560 also creates a number of joint coordinate vectors in the
workspace which represent the robot in some canonic configurations:

qz (0, 0, 0, 0, 0, 0) zero angle
qr (0, ü ,−ü , 0, 0, 0) ready, the arm is straight and vertical
qs (0, 0,−ü , 0, 0, 0) stretch, the arm is straight and horizontal
qn (0, ý ,−π, 0, ý , 0) nominal, the arm is in a dextrous working pose�

and these are shown graphically in Fig. 7.5. These plots are generated using the plot
method, for example

>> p560.plot(qz)

The Puma 560 robot (Programmable Universal Manipulator for Assembly) shown in Fig. 7.1 was
released in 1978 and became enormously popular. It featured an anthropomorphic design, elec-
tric motors and a spherical wrist which makes it the first modern industrial robot – the archetype
of all that followed.

The Puma 560 catalyzed robotics research in the 1980s and it was a very common laboratory
robot. Today it is obsolete and rare but in homage to its important role in robotics research
we use it here. For our purposes the advantages of this robot are that it has been well studied
and its parameters are very well known – it has been described as the “white rat” of robotics
research.

Most modern 6-axis industrial robots are very similar in structure and can be accomodated
simply by changing the Denavit-Hartenberg parameters. The Toolbox has kinematic models for
a number of common industrial robots including the Motoman HP6, Fanuc 10L, and ABB S4 2.8.

Fig. 7.5. The Puma robot in 4 dif-
ferent poses. a Zero angle; b ready
pose; c stretch; d nominal

Well away from singularities, which will

be discussed in Sect. 7.4.3.

Chapter 7 · Robot Arm Kinematics

145

Forward kinematics can be computed as before

>> p560.fkine(qz)
ans =
 1.0000 0 0 0.4521
 0 1.0000 0 -0.1500
 0 0 1.0000 0.4318
 0 0 0 1.0000

which returns the homogeneous transformation corresponding to the end-effector
pose T6. The origin of this frame, the link 6 coordinate frame {6}, is defined⊳ as the
point of intersection of the axes of the last 3 joints – physically this point is inside the
robot’s wrist mechanism. We can define a tool transform, from the T6 frame to the
actual tool tip by

>> p560.tool = transl(0, 0, 0.2);

in this case a 200 mm extension in the T6 z-direction.⊳ The pose of the tool tip, often
referred to as the tool centre point or TCP, is now

>> p560.fkine(qz)
ans =
 1.0000 0 0 0.4521
 0 1.0000 0 -0.1500
 0 0 1.0000 0.6318
 0 0 0 1.0000

The kinematic definition we have used considers that the base of the robot is the inter-
section point of the waist and shoulder axes which is a point inside the structure of the
robot. The Puma 560 robot includes a 30 inch tall pedestal. We can shift the origin of the
robot from the point inside the robot to the base of the pedestal using a base transform

>> p560.base = transl(0, 0, 30*0.0254);

where for consistency we have converted the pedestal height to SI units. Now, with
both base and tool transform, the forward kinematics are

>> p560.fkine(qz)
ans =
 1.0000 0 0 0.4521
 0 1.0000 0 -0.1500
 0 0 1.0000 1.3938
 0 0 0 1.0000

and we can see that the z-coordinate of the tool is now greater than before.
We can also do more interesting things, for example

>> p560.base = transl(0,0,3) * trotx(pi);
>> p560.fkine(qz)
ans =
 1.0000 0 0 0.4521
 0 -1.0000 -0.0000 0.1500
 0 0.0000 -1.0000 2.3682
 0 0 0 1.0000

which positions the robot’s origin 3 m above the world origin with its coordinate frame
rotated by 180° about the x-axis. This robot is now hanging from the ceiling!

Anthropomorphic means having human-like characteristics. The Puma 560 robot was designed
to have approximately the dimensions and reach of a human worker. It also had a spherical joint
at the wrist just as humans have.

Roboticists also tend to use anthropomorphic terms when describing robots. We use words
like waist, shoulder, elbow and wrist when describing serial link manipulators. For the Puma
these terms correspond respectively to joint 1, 2, 3 and 4–6.

By the mdl_puma560 script.

Alternatively we could change the ki-

nematic parameter d6. The tool trans-

form approach is more general since

the final link kinematic parameters only

allow setting of d6, a6 and α 6 which

provide z-axis translation, x-axis trans-

lation and x-axis rotation respectively.

7.2 · Forward Kinematics

146

The Toolbox supports joint angle time series, or trajectories, such as

>> q
q =
 0 0 0 0 0 0
 0 0.0365 -0.0365 0 0 0
 0 0.2273 -0.2273 0 0 0
 0 0.5779 -0.5779 0 0 0
 0 0.9929 -0.9929 0 0 0
 0 1.3435 -1.3435 0 0 0
 0 1.5343 -1.5343 0 0 0
 0 1.5708 -1.5708 0 0 0

where each row represents the joint coordinates at a different timestep and the col-
umns represent the joints.� In this case the method fkine

>> T = p560.fkine(q);

returns a 3-dimensional matrix

>> about(T)
T [double] : 4x4x8 (1024 bytes)

where the first two dimensions are a 4× 4 homogeneous transformation and the third
dimension is the timestep. The homogeneous transform corresponding to the joint
coordinates in the fourth row of q is

>> T(:,:,4)
ans =
 1.0000 0.0000 0 0.3820
 0.0000 1.0000 -0.0000 -0.1500
 0 -0.0000 1.0000 1.6297
 0 0 0 1.0000

Creating a trajectory is the topic of Sect. 7.4.

7.3 lInverse Kinematics

We have shown how to determine the pose of the end-effector given the joint coordi-
nates and optional tool and base transforms. A problem of real practical interest is the
inverse problem: given the desired pose of the end-effector ξE what are the required
joint coordinates? For example, if we know the Cartesian pose of an object, what joint
coordinates does the robot need in order to reach it? This is the inverse kinematics
problem which is written in functional form as

(7.5)

In general this function is not unique and for some classes of manipulator no closed-
form solution exists, necessitating a numerical solution.

7.3.1 lClosed-Form Solution

A necessary condition for a closed-form solution of a 6-axis robot is that the three
wrist axes intersect at a single point. This means that motion of the wrist joints only
changes the end-effector orientation, not its translation. Such a mechanism is known
as a spherical wrist and almost all industrial robots have such wrists.

We will explore inverse kinematics using the Puma robot model

>> mdl_puma560

Generated by the jtraj function,

which is discussed in Sect. 7.4.1.

Chapter 7 · Robot Arm Kinematics

147

At the nominal joint coordinates

>> qn
qn =
 0 0.7854 3.1416 0 0.7854 0

the end-effector pose is

>> T = p560.fkine(qn)
T =
 -0.0000 0.0000 1.0000 0.5963
 -0.0000 1.0000 -0.0000 -0.1501
 -1.0000 -0.0000 -0.0000 -0.0144
 0 0 0 1.0000

Since the Puma 560 is a 6-axis robot arm with a spherical wrist we use the method
ikine6s to compute the inverse kinematics using a closed-form solution.⊳ The re-
quired joint coordinates to achieve the pose T are

>> qi = p560.ikine6s(T)
qi =
 2.6486 -3.9270 0.0940 2.5326 0.9743 0.3734

Surprisingly, these are quite different to the joint coordinates we started with. How-
ever if we investigate a little further

>> p560.fkine(qi)
ans =
 -0.0000 0.0000 1.0000 0.5963
 0.0000 1.0000 -0.0000 -0.1500
 -1.0000 0.0000 -0.0000 -0.0144
 0 0 0 1.0000

we see that these two different sets of joint coordinates result in the same end-effector
pose and these are shown in Fig. 7.6. The shoulder of the Puma robot is horizontally
offset from the waist, so in one solution the arm is to the left of the waist, in the other
it is to the right. These are referred to as the left- and right-handed kinematic con-
figurations respectively. In general there are eight sets of joint coordinates that give
the same end-effector pose – as mentioned earlier the inverse solution is not unique.

We can force the right-handed solution

>> qi = p560.ikine6s(T, 'ru')
qi =
 -0.0000 0.7854 3.1416 0.0000 0.7854 -0.0000

which gives the original set of joint angles by specifying a right handed configuration
with the elbow up.

In addition to the left- and right-handed solutions, there are solutions with the
elbow either up or down,� and with the wrist flipped or not flipped. For the Puma 560
robot the wrist joint, θ4, has a large rotational range and can adopt one of two angles

Fig. 7.6. Two solutions to the in-
verse kinematic problem, left-
handed and right-handed solu-
tions. The shadow shows clearly
the two different configurations

The method ikine6s checks the De-

navit-Hartenberg parameters to deter-

mine if the robot meets these criteria.

More precisely the elbow is above or be-

low the shoulder.

7.3 · Inverse Kinematics

148

that differ by π rad. Since most robot grippers have just two fingers, see Fig. 2.14, this
makes no difference in its ability to grasp an object.

The various kinematic configurations are shown in Fig. 7.7. The kinematic con-
figuration returned by ikine6s is controlled by one or more of the character flags:

left or right handed 'l', 'r'
elbow up or down 'u', 'd'
wrist flipped or not flipped 'f', 'n'

Due to mechanical limits on joint angles and possible collisions between links not
all eight solutions are physically achievable. It is also possible that no solution can be
achieved, for example

>> p560.ikine6s(transl(3, 0, 0))
Warning: point not reachable
ans =
 NaN NaN NaN NaN NaN NaN

fails because the arm is simply not long enough to reach this pose. A pose may also be
unachievable due to singularity where the alignment of axes reduces the effective de-
grees of freedom (the gimbal lock problem again). The Puma 560 has a singularity
when q5 is equal to zero and the axes of joints 4 and 6 become aligned. In this case the
best that ikine6s can do is to constrain q4+ q6 but their individual values are arbi-
trary. For example consider the configuration

>> q = [0 pi/4 pi 0.1 0 0.2];

for which q4+ q6= 0.3. The inverse kinematic solution is

>> p560.ikine6s(p560.fkine(q), 'ru')
ans =
 -0.0000 0.7854 3.1416 2.9956 0.0000 -2.6956

Fig. 7.7. Different configurations
of the Puma 560 robot. a Right-
up-noflip; b right-down-noflip;
c right-down-flip

Chapter 7 · Robot Arm Kinematics

149

has quite different values for q4 and q6 but their sum

>> q(4)+q(6)
ans =
 0.3000

remains the same.

7.3.2 lNumerical Solution

For the case of robots which do not have six joints and a spherical wrist we need to use
an iterative numerical solution. Continuing with the example of the previous section
we use the method ikine to compute the general inverse kinematic solution

>> T = p560.fkine(qn)
ans =
 -0.0000 0.0000 1.0000 0.5963
 -0.0000 1.0000 -0.0000 -0.1501
 -1.0000 -0.0000 -0.0000 -0.0144
 0 0 0 1.0000
>> qi = p560.ikine(T)
qi =
 0.0000 -0.8335 0.0940 -0.0000 -0.8312 0.0000

which is different to the original value

>> qn
qn =
 0 0.7854 3.1416 0 0.7854 0

but does result in the correct tool pose

>> p560.fkine(qi)
ans =
 -0.0000 0.0000 1.0000 0.5963
 -0.0000 1.0000 -0.0000 -0.1501
 -1.0000 -0.0000 -0.0000 -0.0144
 0 0 0 1.0000

Plotting the pose

>> p560.plot(qi)

shows clearly that ikine has found the elbow-down configuration.
A limitation of this general numeric approach is that it does not provide explicit

control over the arm’s kinematic configuration as did the analytic approach – the only
control is implicit via the initial value of joint coordinates (which defaults to zero). If
we specify the initial joint coordinates

>> qi = p560.ikine(T, [0 0 3 0 0 0])
qi =
 0.0000 0.7854 3.1416 0.0000 0.7854 -0.0000

the solution converges on the elbow-up configuration.⊳

As would be expected the general numerical approach of ikine is considerably slower
than the analytic approach of ikine6s. However it has the great advantage of being
able to work with manipulators at singularities and manipulators with less than six or
more than six joints. Details of the principle behind ikine is provided in Sect. 8.4.

7.3.3 lUnder-Actuated Manipulator

An under-actuated manipulator is one that has fewer than six joints, and is therefore
limited in the end-effector poses that it can attain. SCARA robots such as shown on page 135
are a common example, they typically have an x-y-z-θ task space, T⊂R3

× S and a
configuration space C⊂ S3×R.

7.3 · Inverse Kinematics

When solving for a trajectory as on p. 146

the inverse kinematic solution for one

point is used to initialize the solution

for the next point on the path.

150

We will revisit the two-link manipulator example from Sect. 7.2.1, first defining the robot

>> mdl_twolink

and then defining the desired end-effector pose

>> T = transl(0.4, 0.5, 0.6);

However this pose is over-constrained for the two-link robot – the tool cannot meet
the orientation constraint on the direction of '2 and (2 nor a z-axis translational
value other than zero. Therefore we require the ikine method to consider only er-
ror in the x- and y-axis translational directions, and ignore all other Cartesian de-
grees of freedom. We achieve this by specifying a mask vector as the fourth argument

>> q = twolink.ikine(T, [0 0], [1 1 0 0 0 0])
q =
 -0.3488 2.4898

The elements of the mask vector correspond respectively to the three translations
and three orientations: tx, ty, tz, rx, ry, rz in the end-effector coordinate frame. In this
example we specified that only errors in x- and y-translation are to be considered
(the non-zero elements). The resulting joint angles correspond to an endpoint pose

>> twolink.fkine(q)
ans =
ans =
 -0.5398 -0.8418 0 0.4000
 0.8418 -0.5398 0 0.5000
 0 0 1.0000 0
 0 0 0 1.0000

which has the desired x- and y-translation, but the orientation and z-translation are
incorrect, as we allowed them to be.

7.3.4 lRedundant Manipulator

A redundant manipulator is a robot with more than six joints. As mentioned previ-
ously, six joints is theoretically sufficient to achieve any desired pose in a Cartesian
taskspace T⊂ SE(3). However practical issues such as joint limits and singularities
mean that not all poses within the robot’s reachable space can be achieved. Adding
additional joints is one way to overcome this problem.

To illustrate this we will create a redundant manipulator. We place our familiar
Puma robot

>> mdl_puma560

on a platform that moves in the xy-plane, mimicking a robot mounted on a vehicle. This robot
has the same task space T⊂ SE(3) as the Puma robot, but a configuration space C⊂R2

× S6.
The dimension of the configuration space exceeds the dimensions of the task space.

The Denavit-Hartenberg parameters for the base are

and using a shorthand syntax we create the SerialLink object directly from the
Denavit-Hartenberg parameters

>> platform = SerialLink([0 0 0 -pi/2 1; -pi/2 0 0 pi/2 1], ...
 'base', troty(pi/2), 'name', 'platform');

Chapter 7 · Robot Arm Kinematics

151

The Denavit-Hartenberg notation requires that prismatic joints cause translation in
the local z-direction and the base-transform rotates that z-axis into the world x-axis
direction. This is a common complexity with Denavit-Hartenberg notation and an
alternative will be introduced in Sect. 7.5.2.

The joint coordinates of this robot are its x- and y-position and we test that our
Denavit-Hartenberg parameters are correct

>> platform.fkine([1, 2])
ans =
 1.0000 0.0000 0.0000 1.0000
 -0.0000 1.0000 0.0000 2.0000
 0 -0.0000 1.0000 0.0000
 0 0 0 1.0000

We see that the rotation submatrix is the identity matrix, meaning that the coordinate
frame of the platform is parallel with the world coordinate frame, and that the x- and
y-displacement is as requested.

We mount the Puma robot on the platform by connecting the two robots in series.
In the Toolbox we can express this in two different ways, by multiplication

>> p8 = platform * p560;

or by concatenation

p8 = SerialLink([platform, p560]);

which also allows other attributes of the created SerialLink object to be specified.
However there is a small complication. We would like the Puma arm to be sitting on

its tall pedestal on top of the platform. Previously we added the pedestal as a base
transform, but base transforms can only exist at the start of a kinematic chain, and we
require the transform between joints 2 and 3 of the 8-axis robot. Instead we implement
the pedestal by setting d1 of the Puma to the pedestal height

>> p560.links(1).d = 30 * 0.0254;

and now we can compound the two robots
>> p8 = SerialLink([platform, p560], 'name', 'P8')
p8 =

P8 (8 axis, PPRRRRRR, stdDH)
+---+-----------+-----------+-----------+-----------+
| j | theta | d | a | alpha |
+---+-----------+-----------+-----------+-----------+
1	0	q1	0	-1.571
2	-1.571	q2	0	1.571
3	q3	0.762	0	1.571
4	q4	0	0.4318	0
5	q5	0.15	0.0203	-1.571
6	q6	0.4318	0	1.571
7	q7	0	0	-1.571
8	q8	0	0	0
+---+-----------+-----------+-----------+-----------+

grav = 0 base = 0 0 0 0 tool = 1 0 0 0
 0 0 1 0 0 0 1 0 0
 9.81 1 0 0 0 0 0 1 0
 0 0 0 1 0 0 0 1

resulting in a new 8-axis robot which we have named the P8. We note that the new
robot has inherited the base transform of the platform, and that the pedestal displace-
ment appears now as d3.

We can find the inverse kinematics for this new redundant manipulator using the
general numerical solution. For example to move the end effector to (0.5, 1.0, 0.7) with
the tool pointing downward in the xz-plane the Cartesian pose is

7.3 · Inverse Kinematics

152

>> T = transl(0.5, 1.0, 0.7) * rpy2tr(0, 3*pi/4, 0);

The required joint coordinates are�

>> qi = p8.ikine(T)
qi =
 -0.2854 1.0528 0.1246 -0.5377 -0.6091 -0.0939
 -1.2147 0.1212

The first two elements are displacements of the prismatic joints in the base, and the
last six are the robot arm’s joint angles. We see that the solution has made good use of
the second joint, the platform’s y-axis translation to move the base of the arm close to
the desired point. We can visualize the configuration

>> p8.plot(qi)

which is shown in Fig. 7.8. We can also show that the plain old Puma cannot reach the
point we specified

>> p560.ikine6s(T)
Warning: point not reachable

This robot has 8 degrees of freedom. Intuitively it is more dextrous than its 6-axis
counterpart because there is more than one joint that can contribute to every Carte-
sian degree of freedom. This is more formally captured in the notion of manipulabil-
ity which we will discuss in Sect. 8.1.4. For now we will consider it as a scalar measure
that reflects the ease with which the manipulator’s tool can move in different Carte-
sian directions. The manipulability of the 6-axis robot

>> p560.maniplty(qn)
ans =
 0.0786

is much less than that for the 8-axis robot

>> p8.maniplty([0 0 qn])
ans =
 1.1151

which indicates the increased dexterity of the 8-axis robot.

7.4 lTrajectories

One of the most common requirements in robotics is to move the end-effector smoothly
from pose A to pose B. Building on what we learnt in Sect. 3.1 we will discuss two ap-
proaches to generating such trajectories: straight lines in joint space and straight lines in
Cartesian space. These are known respectively as joint-space and Cartesian motion.

Fig. 7.8.

Redundant manipulator P8

Chapter 7 · Robot Arm Kinematics

The solution is not unique, an infinite

number of joint coordinate vectors will

result in the same end effector pose.

This is related to the null-space motion

discussed in Sect. 8.2.3.

153

7.4.1 lJoint-Space Motion

Consider the end-effector moving between two Cartesian poses⊳

>> T1 = transl(0.4, 0.2, 0) * trotx(pi);
>> T2 = transl(0.4, -0.2, 0) * trotx(pi/2);

which lie in the xy-plane with the end-effector oriented downward. The initial and
final joint coordinate vectors associated with these poses are

>> q1 = p560.ikine6s(T1);
>> q2 = p560.ikine6s(T2);

and we require the motion to occur over a time period of 2 seconds in 50 ms time
steps

>> t = [0:0.05:2]';

A joint-space trajectory is formed by smoothly interpolating between two
configurations q1 and q2. The scalar interpolation functions tpoly or lspb
from Sect. 3.1 can be used in conjunction with the multi-axis driver function
mtraj

>> q = mtraj(@tpoly, q1, q2, t);

or

>> q = mtraj(@lspb, q1, q2, t);

which each result in a 50× 6 matrix q with one row per time step and one column per
joint. From here on we will use the jtraj convenience function

>> q = jtraj(q1, q2, t);

which is equivalent to mtraj with tpoly interpolation but optimized for the multi-
axis case and also allowing initial and final velocity to be set using additional argu-
ments. For mtraj and jtraj the final argument can be a time vector, as here, or an
integer specifying the number of time steps.

We obtain the joint velocity and acceleration vectors, as a function of time, through
optional output arguments

>> [q,qd,qdd] = jtraj(q1, q2, t);

An even more concise expression for the above steps is provided by the jtraj method
of the SerialLink class

>> q = p560.jtraj(T1, T2, t)

The trajectory is best viewed as an animation

>> p560.plot(q)

but we can also plot the joint angle, for instance q2, versus time

>> plot(t, q(:,2))

or all the angles versus time

>> qplot(t, q);

as shown in Fig. 7.9a. The joint coordinate trajectory is smooth but we do not
know how the robot’s end-effector will move in Cartesian space. However we can
easily determine this by applying forward kinematics to the joint coordinate tra-
jectory

>> T = p560.fkine(q);

We choose the tool z-axis, see Fig. 2.14,

downward on these poses as it would

be if the robot was reaching down to

work on some horizontal surface. For

the Puma 560 robot it is physically im-

possible for the tool z-axis to point up-

ward in such a situation.

7.4 · Trajectories

154

which results in a 3-dimensional Cartesian trajectory. The translational part of this
trajectory is

>> p = transl(T);

which is in matrix form

>> about(p)
p [double] : 41x3 (984 bytes)

and has one row per time step, and each row is the end-effector position vector. This is
plotted against time in Fig. 7.9b. The path of the end-effector in the xy-plane

>> plot(p(:,1), p(:,2))

is shown in Fig. 7.9c and it is clear that the path is not a straight line. This is to be
expected since we only specified the Cartesian coordinates of the end-points. As the
robot rotates about its waist joint during the motion the end-effector will naturally
follow a circular arc. In practice this could lead to collisions between the robot and
nearby objects even if they do not lie on the path between poses A and B. The orienta-
tion of the end-effector, in roll-pitch-yaw angles form, can be plotted against time

>> plot(t, tr2rpy(T))

as shown in Fig. 7.9d. Note that the roll angle� varies from π to ü as we specified.
However while the pitch angle has met its boundary conditions it has varied along

Fig. 7.9. Joint space motion. a Joint
coordinates versus time; b Carte-
sian position versus time; c Carte-
sian position locus in the xy-plane
d roll-pitch-yaw angles versus time

Rotation about x-axis from Sect. 2.2.1.2.

Chapter 7 · Robot Arm Kinematics

155

the path. Also note that the initial roll angle is shown as −π but at the next time step
it is π . This is an artifact of finite precision arithmetic and both angles are equivalent
on the circle.

We can also implement this example in Simulink®

>> sl_jspace

and the block diagram model is shown in Fig. 7.10. The parameters of the jtraj
block are the initial and final values for the joint coordinates and the time duration of
the motion segment.⊳ The smoothly varying joint angles are wired to a plot block
which will animate a robot in a separate window, and to an fkine block to compute
the forward kinematics. Both the plot and fkine blocks have a parameter which is
a SerialLink object, in this case p560. The Cartesian position of the end-effector
pose is extracted using the T2xyz block which is analogous to the Toolbox function
transl. The XY Graph block plots y against x.

7.4.2 lCartesian Motion

For many applications we require straight-line motion in Cartesian space which is
known as Cartesian motion. This is implemented using the Toolbox function ctraj
which was introduced in Chap. 3. Its usage is very similar to jtraj

>> Ts = ctraj(T1, T2, length(t));

where the arguments are the initial and final pose and the number of time steps and it
returns the trajectory as a 3-dimensional matrix.

As for the previous joint-space example we will extract and plot the translation

>> plot(t, transl(Ts));

and orientation components

>> plot(t, tr2rpy(Ts));

of this motion which is shown in Fig. 7.11 along with the path of the end-effector in
the xy-plane. Compared to Fig. 7.9b and c we note some important differences. Firstly
the position and orientation, Fig. 7.11b and d vary linearly with time. For orientation
the pitch angle is constant at zero and does not vary along the path. Secondly the end-
effector follows a straight line in the xy-plane as shown in Fig. 7.9c.

The corresponding joint-space trajectory is obtained by applying the inverse ki-
nematics

>> qc = p560.ikine6s(Ts);

and is shown in Fig. 7.11a. While broadly similar to Fig. 7.9a the minor differences are
what result in the straight line Cartesian motion.

Fig. 7.10.

Simulink® model sl_jspace
for joint-space motion

The Simulink® integration time needs to

be set equal to the motion segment time,

through the Simulation menu

or from the MATLAB® command line

>> sim('sl_jspace', 10);.

7.4 · Trajectories

156

7.4.3 lMotion through a Singularity

We have already briefly touched on the topic of singularities (page 148) and we will
revisit it again in the next chapter. In the next example we deliberately choose a trajec-
tory that moves through a robot singularity. We change the Cartesian endpoints of the
previous example to

>> T1 = transl(0.5, 0.3, 0.44) * troty(pi/2);
>> T2 = transl(0.5, -0.3, 0.44) * troty(pi/2);

which results in motion in the y-direction with the end-effector z-axis pointing in the
x-direction. The Cartesian path is

>> Ts = ctraj(T1, T2, length(t));

which we convert to joint coordinates

>> qc = p560.ikine6s(Ts)

and is shown in Fig. 7.12a. At time t≈ 0.7 s we observe that the rate of change of the
wrist joint angles q4 and q6 has become very high.� The cause is that q5 has become
almost zero which means that the q4 and q6 rotational axes are almost aligned – an-
other gimbal lock situation or singularity.

Fig. 7.11. Cartesian motion. a Joint
coordinates versus time; b Carte-
sian position versus time; c Carte-
sian position locus in the xy-plane;
d roll-pitch-yaw angles versus time

q6 has increased rapidly, while q4 has

decreased rapidly and wrapped around

from −π to π.

Chapter 7 · Robot Arm Kinematics

157

The joint alignment means that the robot has lost one degree of freedom and is
now effectively a 5-axis robot. Kinematically we can only solve for the sum q4+ q6 and
there are an infinite number of solutions for q4 and q6 that would have the same sum.
The joint-space motion between the two poses, Fig. 7.12b, is immune to this problem
since it is does not require the inverse kinematics. However it will not maintain the
pose of the tool in the x-direction for the whole path – only at the two end points.
From Fig. 7.12c we observe that the generalized inverse kinematics method ikine
handles the singularity with ease.

The manipulability measure for this path

>> m = p560.maniplty(qc);

is plotted in Fig. 7.12d and shows that manipulability was almost zero around the time of
the rapid wrist joint motion. Manipulability and the generalized inverse kinematics func-
tion are based on the manipulator’s Jacobian matrix which is the topic of the next chapter.

7.4.4 lConfiguration Change

Earlier (page 147) we discussed the kinematic configuration of the manipulator arm
and how it can work in a left- or right-handed manner and with the elbow up or down.
Consider the problem of a robot that is working for a while left-handed at one work

Fig. 7.12. Cartesian motion through
a wrist singularity. a Joint coordi-
nates computed by inverse kine-
matics (ikine6s); b joint coordi-
nates computed by generalized in-
verse kinematics (ikine); c joint
coordinates for joint-space motion;
d manipulability

7.4 · Trajectories

158

station, then working right-handed at another. Movement from one configuration to
another ultimately results in no change in the end-effector pose since both configura-
tion have the same kinematic solution – therefore we cannot create a trajectory in
Cartesian space. Instead we must use joint-space motion.

For example to move the robot arm from the right- to left-handed configuration we
first define some end-effector pose

>> T = transl(0.4, 0.2, 0) * trotx(pi);

and then determine the joint coordinates for the right- and left-handed elbow-up con-
figurations

>> qr = p560.ikine6s(T, 'ru');
>> ql = p560.ikine6s(T, 'lu');

and then create a path between these two joint coordinates

>> q = jtraj(qr, ql, t);

Although the initial and final end-effector pose is the same, the robot makes some
quite significant joint space motion as shown in Fig. 7.13 – in the real world you need
to be careful the robot doesn’t hit something. Once again, the best way to visualize this
is in animation

>> p560.plot(q)

7.5 lAdvanced Topics

7.5.1 lJoint Angle Offsets

The pose of the robot with zero joint angles is frequently some rather unusual (or
even mechanically unachievable) pose. For the Puma robot the zero-angle pose is a
non-obvious L-shape with the upper arm horizontal and the lower arm vertically
upward as shown in Fig. 7.5a. This is a consequence of constraints imposed by the
Denavit-Hartenberg formalism. A robot control designer may choose the zero-angle
configuration to be something more obvious such as that shown in Fig. 7.5b or c.

The joint coordinate offset provides a mechanism to set an arbitrary configu-
ration for the zero joint coordinate case. The offset vector, q0, is added to the user
specified joint angles before any kinematic or dynamic function is invoked,� for
example

Fig. 7.13.

Joint space motions for con-
figuration change from right-
handed to left-handed

It is actually implemented within the

Link object.

Chapter 7 · Robot Arm Kinematics

159

(7.6)

Similarly it is subtracted after an operation such as inverse kinematics

(7.7)

The offset is set by assigning the offset property of the Link object, for example

>> L = Link([0 0 1 0]);
>> L.offset = pi/4

or

>> p560.links(2).offset = pi/2;

7.5.2 lDetermining Denavit-Hartenberg Parameters

The classical method of determining Denavit-Hartenberg parameters is to systemati-
cally assign a coordinate frame to each link. The link frames for the Puma robot using the
standard Denavit-Hartenberg formalism are shown in Fig. 7.14a. However there are strong
constraints on placing each frame since joint rotation must be about the z-axis and the
link displacement must be in the x-direction. This in turn imposes constraints on the
placement of the coordinate frames for the base and the end-effector, and ultimately dic-
tates the zero-angle pose just discussed. Determining the Denavit-Hartenberg param-
eters and link coordinate frames for a completely new mechanism is therefore more dif-
ficult than it should be – even for an experienced roboticist.

Fig. 7.14.

Puma 560 robot coordinate
frames. a Standard Denavit-Har-

tenberg link coordinate frames for
Puma in the zeroangle pose (Corke

1996b); b alternative approach
showing the sequence of elemen-
tary transforms from base to tip.

Rotations are about the axes shown
as dashed lines (Corke 2007)

7.5 · Advanced Topics

160

An alternative approach, supported by the Toolbox, is to simply describe the ma-
nipulator as a series of elementary translations and rotations from the base to the tip
of the end-effector. Some of the the elementary operations are constants such as trans-
lations that represent link lengths or offsets, and some are functions of the generalized
joint coordinates qi. Unlike the conventional approach we impose no constraints on
the axes about which these rotations or translations can occur.

An example for the Puma robot is shown in Fig. 7.14b. We first define a convenient
coordinate frame at the base and then write down the sequence of translations and
rotations, from “toe to tip”, in a string

>> s = 'Tz(L1) Rz(q1) Ry(q2) Ty(L2) Tz(L3) Ry(q3) Tx(L6) Ty(L4)
 Tz(L5) Rz(q4) Ry(q5) Rz(q6)'

Note that we have described the second joint as Ry(q2), a rotation about the y-axis,
which is not possible using the Denavit-Hartenberg formalism.

This string is input to a symbolic algebra function�

>> dh = DHFactor(s);

which returns a DHFactor object� that holds the kinematic structure of the robot
that has been factorized into Denavit-Hartenberg parameters. We can display this in a
human-readable form

>> dh.display
DH(q1, L1, 0, -90).DH(q2+90, 0, -L3, 0).DH(q3-90, L2+L4, L6, 90).
DH(q4, L5, 0, -90).DH(q5, 0, 0, 90).DH(q6, 0, 0, 0)

which shows the Denavit-Hartenberg parameters for each joint in the order θ, d, a and α.
Joint angle offsets (the constants added to or subtracted from joint angle variables such as
q2 and q3) are generated automatically, as are base and tool transformations. The object
can generate a string that is a complete Toolbox command to create the robot named “puma”

>> cmd = dh.command('puma')
cmd =
SerialLink([-pi/2, 0, 0, L1; 0, -L3, 0, 0; pi/2, L6, 0, L2+L4;
 -pi/2, 0, 0, L5; pi/2, 0, 0, 0; 0, 0, 0, 0;], ...
 'name', 'puma', ...
 'base', eye(4,4), 'tool', eye(4,4), ...
 'offset', [0 pi/2 -pi/2 0 0 0])

which can be executed

>> robot = eval(cmd)

to create a workspace variable called robot that is a SerialLink object.�

7.5.3 lModified Denavit-Hartenberg Notation

The Denavit-Hartenberg parameters introduced in this chapter is commonly used and de-
scribed in many robotics textbooks. Craig (1986) first introduced the modified Denavit-Har-
tenberg parameters where the link coordinate frames shown in Fig. 7.15 are attached to the
near (proximal), rather than the far end of each link. This modified notation is in some ways
clearer and tidier and is also now commonly used. However its introduction has increased
the scope for confusion, particularly for those who are new to robot kinematics. The root of
the problem is that the algorithms for kinematics, Jacobians and dynamics depend on the
kinematic conventions used. According to Craig’s convention the link transform matrix is

(7.8)

denoted by Craig as j−1
jA. This has the same terms as Eq. 7.1 but in a different order –

remember rotations are not commutative – and this is the nub of the problem. aj is

Written in Java and part of the Robot-

ics Toolbox, the MATLAB® Symbolic

Toolbox is not required.

Actually a Java object.

The length parameters L1 to L6 must

be defined in the workspace first.

Chapter 7 · Robot Arm Kinematics

161

always the length of link j, but it is the displacement between the origins of frame {j}
and frame {j+ 1} in one convention, and frame {j− 1} and frame {j} in the other.

If you intend to build a Toolbox robot model from a table of kinematic param-

eters provided in a paper it is really important to know which convention the

author of the table used. Too often this important fact is not mentioned. An

important clue lies in the column headings. If they all have the same subscript,

i.e. θj, dj, aj and αj then this is standard Denavit-Hartenberg notation. If half the

subscripts are different, i.e. θj, dj, aj−1 and αj−1 then you are dealing with modi-

fied Denavit-Hartenberg notation. In short, you must know which kinematic con-

vention your Denavit-Hartenberg parameters conform to.

You can also help the cause when publishing by stating clearly which kine-

matic convention is used for your parameters.

The Toolbox can handle either form, it only needs to be specified, and this is achieved
via an optional argument when creating a link object

>> L1 = link([0 1 0 0 0], 'modified')
L1 =
 q1 0 1 0 (modDH)

rather than

>> L1 = link([0 1 0 0 0])
L1 =
 q1 0 1 0 (stdDH)

Everything else from here on, creating the robot object, kinematic and dynamic
functions works as previously described.

The two forms can be interchanged by considering the link transform as a string of
elementary rotations and translations as in Eq. 7.1 or Eq. 7.8. Consider the transfor-
mation chain for standard Denavit-Hartenberg notation

Fig. 7.15.

Definition of modified Denavit
and Hartenberg link parameters.

The colors red and blue denote
all things associated with links

j− 1 and j respectively. The
numbers in circles represent the

order in which the elementary
transforms are applied

7.5 · Advanced Topics

162

which we can regroup as

where the terms marked as MDHj have the form of Eq. 7.8 taking into account that
translation along, and rotation about the same axis is commutative, that is,
TRk(θ)Tk(d)= Tk(d)TRk(θ) for k ∈ {x, y, z}.

7.6 lApplication: Drawing

Our goal is to create a trajectory that will allow a robot to draw the letter ‘E’. Firstly we
define a number of via points that define the strokes of the letter

>> path = [1 0 1; 1 0 0; 0 0 0; 0 2 0; 1 2 0;
 1 2 1; 0 1 1; 0 1 0; 1 1 0; 1 1 1];

which is defined in the xy-plane in arbitrary units. The pen is down when z= 0 and up
when z> 0. The path segments can be plotted

>> plot3(path(:,1), path(:,2), path(:,3), 'color', 'k', 'LineWidth', 2)

as shown in Fig. 7.16. We convert this to a continuous path

>> p = mstraj(path, [0.5 0.5 0.3], [], [2 2 2], 0.02, 0.2);

where the second argument is the maximum speed in the x-, y- and z-directions, the
fourth argument is the initial coordinate followed by the sample interval and the ac-
celeration time. The number of steps in the interpolated path is

>> about(p)
p [double] : 1563x3 (37512 bytes)

and will take

>> numrows(p) * 0.02
ans =
 31.2600

seconds to execute at the 20 ms sample interval.

Fig. 7.16.

The letter ‘E’ drawn with a
10-point path. Markers show
the via points and solid lines
the motion segments

Chapter 7 · Robot Arm Kinematics

163

p is a sequence of x-y-z-coordinates which we must convert into a sequence of Car-
tesian poses. The path we have defined draws a letter that is two units tall and one unit
wide so the coordinates will be scaled by a factor of 0.1 (making the letter 200 mm tall
by 100 mm wide)

>> Tp = transl(0.1 * p);

which is a sequence of homogeneous transformations describing the pose at every point
along the path. The origin of the letter will be placed at (0.4, 0, 0) in the workplace

>> Tp = homtrans(transl(0.4, 0, 0), Tp);

which premultiplies each pose in Tp by the first argument.
Finally we need to consider orientation. Each of the coordinate frames defined in

Tp assumes its z-axis is vertically upward. However the Puma robot is working on a
horizontal surface with its elbow up and writing just like a person at a desk. The orien-
tation of its tool, its z-axis, must therefore be downward. One way to fix this mismatch
is by setting the robot’s tool transform to make the tool axis point upwards

>> p560.tool = trotx(pi);

Now we can apply inverse kinematics

>> q = p560.ikine6s(Tp);

to determine the joint coordinates and then animate it.

>> p560.plot(q)

The Puma is drawing the letter ‘E’, and lifting its pen in between strokes! The ap-
proach is quite general and we could easily change the size of the letter, draw it on an
arbitrary plane or use a robot with different kinematics.

7.7 lApplication: a Simple Walking Robot

Four legs good, two legs bad!
Snowball the pig, Animal Farm by George Orwell

Our goal is to create a four-legged walking robot. We start by creating a 3-axis robot
arm that we use as a leg, plan a trajectory for the leg that is suitable for walking, and
then instantiate four instances of the leg to create the walking robot.

7.7.1 lKinematics

Kinematically a robot leg is much like a robot arm, and for this application a three
joint serial-link manipulator is sufficient. Determining the Denavit-Hartenberg pa-
rameters, even for a simple robot like this, is an involved procedure and the zero-angle
offsets need to be determined in a separate step. Therefore we will use the procedure
introduced in Sect. 7.5.2.

As always we start by defining our coordinate frame. This is shown in Fig. 7.17
along with the robot leg in its zero-angle pose. We have chosen the aerospace coordi-
nate convention which has the x-axis forward and the z-axis downward, constraining
the y-axis to point to the right-hand side. The first joint will be hip motion, forward
and backward, which is rotation about the z-axis or Rz(q1). The second joint is hip
motion up and down, which is rotation about the x-axis, Rx(q2). These form a spheri-
cal hip joint since the axes of rotation intersect. The knee is translated by L1 in the
y-direction or Ty(L1). The third joint is knee motion, toward and away from the body,

7.7 · Application: a Simple Walking Robot

164

which is Rx(q3). The foot is translated by L2 in the z-direction or Tz(L2). The transform
sequence of this robot, from hip to toe, is therefore Rz(q1)Rx(q2)Ty(L1)Rx(q3)Tz(L2).

Using the technique of Sect. 7.5.2 we write this sequence as the string

>> s = 'Rz(q1).Rx(q2).Ty(L1).Rx(q3).Tz(L2)';

Note that length constants must start with L. The string is automatically manipulated
into Denavit-Hartenberg factors

>> dh = DHFactor(s)
DH(q1+90, 0, 0, +90).DH(q2, L1, 0, 0).
DH(q3-90, L2, 0, 0).Rz(+90).Rx(-90).Rz(-90)

The last three terms in this factorized sequence is a tool transform

 >> dh.tool
ans =
trotz(pi/2)*trotx(-pi/2)*trotz(-pi/2)

that changes the orientation of the frame at the foot. However for this problem the foot
is simply a point that contacts the ground so we are not concerned about its orienta-
tion. The method dh.command generates a string that is the Toolbox command to
create a SerialLink object

>> dh.command('leg')
ans =
SerialLink([0, 0, 0, pi/2; 0, 0, L1, 0; 0, 0, -L1, 0;],
 'name', 'leg', 'base', eye(4,4),
 'tool', trotz(pi/2)*trotx(-pi/2)*trotz(-pi/2),
 'offset', [pi/2 0 -pi/2])

which is input to the MATLAB® eval command

>> L1 = 0.1; L2 = 0.1;
>> leg = eval(dh.command('leg'))
>> leg
leg =
leg (3 axis, RRR, stdDH)
+---+-----------+-----------+-----------+-----------+
| j | theta | d | a | alpha |
+---+-----------+-----------+-----------+-----------+
| 1| q1| 0| 0| 1.571|
| 2| q2| 0| 0.1| 0|
| 3| q3| 0| -0.1| 0|
+---+-----------+-----------+-----------+-----------+

grav = 0 base = 1 0 0 0 tool = 0 0 -1 0
 0 0 1 0 0 0 1 0 0
 9.81 0 0 1 0 1 0 0 0
 0 0 0 1 0 0 0 1

after first setting the the length of each leg segment to 100 mm in the MATLAB® workspace.
As usual we perform a quick sanity check of our robot. For zero joint angles the foot is at

>> transl(leg.fkine([0,0,0]))'
ans =
 0 0.1000 0.1000

Fig. 7.17.

The coordinate frame and axis
rotations for the simple leg. The
leg is shown in its zero angle pose

Chapter 7 · Robot Arm Kinematics

165

as we designed it. We can visualize the zero-angle pose

>> leg.plot([0,0,0], 'nobase', 'noshadow')
>> set(gca, 'Zdir', 'reverse'); view(137,48);

which is shown in Fig. 7.18. Note that we tell MATLAB® that our z-axis points down-
ward. Now we should test that the other joints result in the expected motion.
Increasing q1

>> transl(leg.fkine([0.2,0,0]))'
ans =
 -0.0199 0.0980 0.1000

results in motion in the xy-plane, and increasing q2

>> transl(leg.fkine([0,0.2,0]))'
ans =
 -0.0000 0.0781 0.1179

results in motion in the yz-plane, as does increasing q3

>> transl(leg.fkine([0,0,0.2]))'
ans =
 -0.0000 0.0801 0.0980

We have now created and verified a simple robot leg.

7.7.2 lMotion of One Leg

The next step is to define the path that the end-effector of the leg, its foot, will follow.
The first consideration is that the end-effector of all feet move backwards at the same
speed in the ground plane – propelling the robot’s body forward without its feet slip-
ping. Each leg has a limited range of movement so it cannot move backward for very
long. At some point we must reset the leg – lift the foot, move it forward and place it on
the ground again. The second consideration comes from static stability – the robot
must have at least three feet on the ground at all times so each leg must take its turn to
reset. This requires that any leg is in contact with the ground for ¾ of the cycle and is
resetting for ¼ of the cycle. A consequence of this is that the leg has to move much
faster during reset since it has a longer path and less time to do it in.

The required trajectory is defined by the via points

>> xf = 50; xb = -xf; y = 50; zu = 20; zd = 50;
>> path = [xf y zd; xb y zd; xb y zu; xf y zu; xf y zd] * 1e-3;

where xf and xb are the forward and backward limits of leg motion in the x-direction
(in units of mm), y is the distance of the foot from the body in the y-direction, and zu
and zd are respectively the height of the foot in the z-direction for foot up and foot
down. In this case the foot moves from 50 mm forward of the hip to 50 mm behind.

Fig. 7.18.

Robot leg in its zero angle pose

7.7 · Application: a Simple Walking Robot

166

When the foot is down it is 50 mm below the hip and it is raised to 20 mm below the
hip during reset. The points in path comprise a complete cycle correspond to the
start of the stance phase, the end of stance, top of the leg lift, top of the leg return and
the start of stance. This is shown in Fig. 7.19a.

Next we sample the multi-segment path at 100 Hz

>> p = mstraj(path, [], [0, 3, 0.25, 0.5, 0.25]', path(1,:), 0.01, 0);

In this case we have specified a vector of desired segment times rather than maxi-
mum joint velocities.� The final three arguments are the initial position, the sample
interval and the acceleration time. This trajectory has a total time of 4 s and therefore
comprises 400 points.

We apply inverse kinematics to determine the joint angle trajectories required for the
foot to follow the path. This robot is underactuated so we use the generalized inverse
kinematics ikine and set the mask so as to solve only for end-effector translation

>> qcycle = leg.ikine(transl(p), [], [1 1 1 0 0 0]);

We can view the motion of the leg in animation

>> leg.plot(qcycle, 'loop')

to verify that it does what we expect: slow motion along the ground, then a rapid lift,
forward motion and foot placement. The 'loop' option displays the trajectory in an
endless loop and you need to type control-C to stop it.

7.7.3 lMotion of Four Legs

Our robot has width and length

>> W = 0.1; L = 0.2;

We create multiple instances of the leg by cloning the leg object we created earlier,
and providing different base transforms so as to attach the legs to different points on
the body

>> legs(1) = SerialLink(leg, 'name', 'leg1');
>> legs(2) = SerialLink(leg, 'name', 'leg2', 'base', transl(-L, 0, 0));
>> legs(3) = SerialLink(leg, 'name', 'leg3', 'base', transl(-L, -W, 0)*trotz(pi));
>> legs(4) = SerialLink(leg, 'name', 'leg4', 'base', transl(0, -W, 0)*trotz(pi));

Fig. 7.19. a Trajectory taken by a
single leg. Recall from Fig. 7.17
that the z-axis is downward. The
red segments are the leg reset.
b The x-direction motion of each
leg (offset vertically) to show the
gait. The leg reset is the period of
high x-direction velocity

This way we can ensure that the reset

takes exactly one quarter of the cycle.

Chapter 7 · Robot Arm Kinematics

167

The result is a vector of SerialLink objects. Note that legs 3 and 4, on the left-
hand side of the body have been rotated about the z-axis so that they point away from
the body.

As mentioned earlier each leg must take its turn to reset. Since the trajectory is a
cycle, we achieve this by having each leg run the trajectory with a phase shift equal to
one quarter of the total cycle time. Since the total cycle has 400 points, each leg’s tra-
jectory is offset by 100, and we use modulo arithmetic to index into the cyclic gait for
each leg. The result is the gait pattern shown in Fig. 7.19b.

The core of the walking program is

k = 1;
while 1
 q = qleg(p,:);
 legs(1).plot(gait(qcycle, k, 0, 0));
 legs(2).plot(gait(qcycle, k, 100, 0));
 legs(3).plot(gait(qcycle, k, 200, 1));
 legs(4).plot(gait(qcycle, k, 300, 1));
 drawnow
 k = k+1;
end

where the function

gait(q, k, ph, flip)

returns the k+phth element of q with modulo arithmetic that considers q as a cycle.
The argument flip reverses the sign of the joint 1 motion for the legs on the left-
hand side of the robot. A snapshot from the simulation is shown in Fig. 7.20. The en-
tire implementation, with some additional refinement, is in the file examples/
walking.m and detailed explanation is provided by the comments.

7.8 lWrapping Up

In this chapter we have learnt how to describe a serial-link manipulator in terms of a
set of Denavit-Hartenberg parameters for each link. We can compute the relative pose
of each link as a function of its joint variable and compose these into the pose of the
robot’s end-effector relative to its base. For robots with six joints and a spherical wrist
we can compute the inverse kinematics which is the set of joint angles required to
achieve a particular end-effector pose. This inverse is not unique and the robot may
have several joint configurations that result in the same end-effector pose.

For robots which do not have six joints and a spherical wrist we can use an iterative
numerical approach to solving the inverse kinematics. We showed how this could be
applied to an under-actuated 2-link robot and a redundant 8-link robot. We also touched
briefly on the topic of singularities which are due to the the alignment of joints.

Fig. 7.20.

The walking robot

7.8 · Wrapping Up

168

We also learnt about creating paths to move the end-effector smoothly between poses.
Joint-space paths are simple to compute but do not result in straight line paths in Cartesian
space which may be problematic for some applications. Straight line paths in Cartesian
space can be generated but singularities in the workspace may lead to very high joint rates.

Further Reading

Serial-link manipulator kinematics are covered in all the standard robotics textbooks
such as by Paul (1981), Spong et al. (2006), Siciliano et al. (2008). Craig’s text (2004) is
also an excellent introduction to robot kinematics and uses the modified Denavit-
Hartenberg notation, and the examples in the third edition are based on an older
version of the Robotics Toolbox. Most of these books derive the inverse kinematics
for a two-link arm and a six-link arm with a spherical wrist. The first full description
of the latter was by Paul and Zhang (1986).

Closed-form inverse kinematic solution can be derived symbolically by writing down
a number of kinematic relationships and solving for the joint angles, as described in
Paul (1981). Software packages to automatically generate the forward and inverse ki-
nematics for a given robot have been developed and these include Robotica (Nethery
and Spong 1994) and SYMORO+ (Khalil and Creusot 1997).

The original work by Denanvit and Hartenberg was their 1955 paper (Denavit and
Hartenberg 1955) and their textbook (Hartenberg and Denavit 1964). The book has
an introduction to the field of kinematics and its history but is currently out of print,
although a version is available online. Siciliano et al. (2008) provide a very clear de-
scription of the process of assigning Denavit-Harteberg parameters to an arbitrary
robot. The alternative approach based on symbolic factorization is described in detail
by Corke (2007). This has some similarities to the product of exponential (POE) form
proposed by Park (1994). The definitive values for the parameters of the Puma 560
robot are described in the paper by Corke and Armstrong-Hélouvry (1995).

Robotic walking is a huge field in its own right and the example given here is very
simplistic. Machines have been demonstrated with complex gaits such as running
and galloping that rely on dynamic rather than static balance. A good introduction to
legged robots is given in the Robotics Handbook (Siciliano and Khatib 2008, § 16).

Parallel-link manipulators were mentioned briefly on page 136 and have advan-
tages such as increased actuation force and stiffness (since the actuators form a truss-
like structure). For this class of mechanism the inverse kinematics is usually closed-
form and forward kinematics often requiring numerical solution. Useful starting
points for this class of robots are a brief section in Siciliano et al. (2008), the hand-
book (Siciliano and Khatib 2008, § 12) and in Merlet (2006).

The plot Method

The plot method was introduced in Sect. 7.2.1 to display the pose of a robot. Many
aspects of the created figure such as scaling, shadows, joint axes and labels, tool coor-
dinate frame labels and so on can be customized. The plot method also supports
multiple views of the same robot, and figures can contain multiple robots. This sec-
tion provides examples of some of these features and, as always, the full description
is available in the online documentation.

The hold method works in an analogous way to normal data plotting and allows
multiple robots to be drawn into the one set of axes. First create a clone of our stan-
dard Puma robot, with its base at a different location

>> p560_2 = SerialLink(p560, 'name', 'puma #2', ...
 'base', transl(0.5,-0.5,0));

Chapter 7 · Robot Arm Kinematics

169

Draw the first robot

>> p560.plot(qr)

then add the second robot

>> hold on
>> p560_2.plot(qr)

which gives the result shown in Fig. 7.21a. The graphical robots can be separately ani-
mated, for instance

>> p560.plot(qz)

changes the pose of only the first robot as shown in Fig. 7.21b.
We can also create multiple views of the same robot or robots. Following on from

the example above, we create a new figure

>> figure
>> p560.plot(qz)

and plot the same robot. You could alter the viewpoint in this new figure using the
MATLAB® figure toolbar options. Now

>> p560.plot(qr)

causes the robot to change in both figures. The key to this is the robot’s name which is
used to identify the robot irrespective of which figure it appears in. The name of each
robot must be unique for this feature to work.

The algorithm adopted by plot with respect to the usage of existing figures is:

1. If a robot with the specified name exists in the current figure, then redraw it
with the specified joint angles. Also update the same named robot in all other
figures.

2. If no such named robot exists, then if hold is on the robot will be added to the
current plot else a new graphical robot of the specified name will be created in the
current window.

3. If there are no figures, then a new figure will be created.

The robot can be driven manually using a graphical teach-pendant interface

>> p560.teach()

which displays a GUI with one slider per joint. As the sliders are moved the specified
graphical robot joint moves, in all the figures in which it has been drawn.

Fig. 7.21. plot displaying mul-
tiple robots per axis. a Both robots
have the same joint coordinates;
b the robots have different joint
coordinates

7.8 · Wrapping Up

170

Exercises

1. Experiment with the teach method.
2. Derive the forward kinematics for the 2-link robot from first principles. What is

end-effector position (x, y) given q1 and q2?
3. Derive the inverse kinematics for the 2-link robot (page 141) from first principles.

What are the joint angles (q1, q2) given the end-effector coordinates (x, y)?
4. Compare the solutions generated by ikine6s and ikine for the Puma 560 robot

at different poses. Is there any difference in accuracy? How much slower is ikine?
5. For the Puma 560 at configuration qn demonstrate a configuration change from

elbow up to elbow down.
6. Drawing an ‘E’ (page 162)

a) Change the size of the letter.
b) Construct the path for the letter ‘C’.
c) Write the letter on a vertical plane.
d) Write the letter on an inclined plane.
e) Change the robot from a Puma 560 to the Fanuc 10L.
f) Write the letter on a sphere.
g) This writing task does not require 6DOF since the rotation of the pen about its

axis is not important. Remove the final link from the Puma 560 robot model and
repeat the exercise.

7. Walking robot (page 163)
a) Shorten the reset trajectory by reducing the leg lift during reset.
b) Increase the stride of the legs.
c) Figure out how to steer the robot by changing the stride length on one side of the

body.
d) Change the gait so the robot moves sideways like a crab.
e) Add another pair of legs. Change the gait to reset two legs or three legs at a time.
f) Currently in the simulation the legs move but the body does not move forward.

Modify the simulation so the body moves.

Chapter 7 · Robot Arm Kinematics

8
Chapter

In this chapter we consider the relationship between the rate of change of joint coordi-
nates, the joint velocity, and the velocity of the end-effector. The 3-dimensional end-effec-
tor pose ξ∈ SE(3) has a velocity which is represented by a 6-vector known as a spatial
velocity. The joint velocity and the end-effector velocity are related by the manipulator
Jacobian matrix which is a function of manipulator pose.

Section 8.1 uses a numerical approach to introduce the manipulator Jacobian. Next we
introduce additional Jacobians to transform velocity between coordinate frames and an-
gular velocity between different angular representations. The numerical properties of the
Jacobian matrix are shown to provide insight into the dexterity of the manipulator – the
directions in which it can move easily and those in which it cannot – and understanding
about singular configurations. In Sect. 8.2 the inverse Jacobian is used to generate Carte-
sian paths without requiring inverse kinematics, and this can be applied to over- and
under-actuated robots. Section 8.3 demonstrates how the Jacobian transpose is used to
transform forces from the end-effector to the joints and between coordinate frames. Fi-
nally, in Sect. 8.4 the numeric inverse kinematic solution, used in the previous chapter, is
fully described.

8.1 lManipulator Jacobian

We start by investigating how small changes in joint coordinates affect the pose of the
end-effector. Using the homogeneous transformation representation of pose we can
approximate its derivative with respect to joint coordinates by a first-order difference

and recalling the definition of T from Eq. 2.19 we can write

(8.1)

where (δx, δy, δz) is the translational displacement of the end-effector.
For the purpose of example we again use the Puma 560 robot

>> mdl_puma560

and at the nominal configuration qn shown in Fig. 8.1 the end-effector pose is

>> T0 = p560.fkine(qn);

We perturb joint one by a small but finite amount dq

>> dq = 1e-6;

Velocity Relationships

172

and compute the new end-effector pose

>> Tp = p560.fkine(qn + [dq 0 0 0 0 0]);

and using Eq. 8.1 the derivative is

>> dTdq1 = (Tp - T0) / dq
dTdq1 =
 0 -1.0000 -0.0000 0.1500
 -0.0000 -0.0000 1.0000 0.5963
 0 0 0 0
 0 0 0 0

This is clearly no longer a homogeneous transformation – the uppper left 3× 3 matrix
is not an orthonormal matrix and the lower-right element is not a 1. What does this
result mean?

Equating the elements of column four of dTdq1 and the matrix in Eq. 8.1 we can
write

which is the displacement of the end-effector position as a function of a displacement
in q1. From Fig. 8.1 this makes sense – a small rotation of the waist joint (q1) will move
the end-effector in the horizontal xy-plane but not vertically.

We can repeat the process for the next joint

>> Tp = p560.fkine(qn + [0 dq 0 0 0 0]);
>> dTdq2 = (Tp - T0) / dq
dTdq =
 1.0000 -0.0000 -0.0000 0.0144
 0.0000 0 0.0000 0
 0.0000 0.0000 1.0000 0.5963
 0 0 0 0

and write

A small motion of the shoulder joint causes end-effector motion in the vertical
xz-plane, as expected, but not the y-direction. Dividing both sides by an infinitesimal
time step δt we find a relationship

Fig. 8.1.

Puma robot in its nominal pose
qn. The end-effector z-axis
points in the world x-direction,
and the x-axis points downward

Chapter 8 · Velocity Relationships

173

between joint angle velocity and end-effector velocity.
Now we consider the top-left 3× 3 submatrix of the matrix in Eq. 8.1 and multiply

it by δq/ δt to achieve a first-order approximation to the derivative of R

Recalling an earlier definition of the derivative of an orthonormal rotation matrix
Eq. 3.4 we write

from which we find a relationship between end-effector angular velocity and joint
velocity

Continuing with the joint 1 derivative computed above

>> dRdq1 = dTdq1(1:3,1:3);
>> R = T0(1:3, 1:3);
>> S = dRdq1 * R'
S =
 -0.0000 -1.0000 0.0000
 1.0000 -0.0000 0.0000
 0 0 0

which is a skew symmetric matrix from which we extract the angular velocity vector

>> vex(S)
ans =
 0 0 1

and finally we write

From Fig. 8.1 this makes sense. The end-effector’s angular velocity is the same as
the angular velocity of joint one which rotates about the world z-axis.

Repeating the process for small motion of the second joint we obtain

>> dRdq2 = dTdq2(1:3,1:3);
>> S = dRdq2 * inv(R)
S =
 -0.0000 -0.0000 -1.0000
 0.0000 -0.0000 -0.0000
 1.0000 -0.0000 -0.0000
>> vex(S)
 0.0000 -1.0000 0.0000

8.1 · Manipulator Jacobian

174

from which we write

Once again, with reference to Fig. 8.1, this makes sense. Rotation of joint two, whose
rotational axis is in the negative y-direction, results in an angular velocity in the negative
y-direction.

We have established, numerically, the relationship between the velocity of individual
joints and the translational and angular velocity of the robot’s end-effector. Earlier
Eq. 7.3 we wrote the forward kinematics in functional form as

and taking the derivative we write

(8.2)

which is the instantaneous forward kinematics where ν= (vx, vy, vz, ωx, ωy, ωz) ∈R
6 is

a spatial velocity and comprises translational and rotational velocity components. The
matrix J(q) ∈R6×N is the manipulator Jacobian or the geometric Jacobian.

The Jacobian matrix can be computed directly� by the jacob0 method of the
SerialLink object

>> J = p560.jacob0(qn)
J =
 0.1501 0.0144 0.3197 0 0 0
 0.5963 0.0000 0.0000 0 0 0
 0 0.5963 0.2910 0 0 0
 0 -0.0000 -0.0000 0.7071 -0.0000 -0.0000
 0 -1.0000 -1.0000 -0.0000 -1.0000 -0.0000
 1.0000 0.0000 0.0000 -0.7071 0.0000 -1.0000

The rows correspond to Cartesian degrees of freedom and the columns correspond to
joints – they are the end-effector spatial velocities corresponding to unit velocity of
the corresponding joints. The results we computed earlier, using derivative approxi-
mation, can be seen in the first two columns. The 3× 3 block of zeros in the top right
indicates that motion of the wrist joints has no effect on the end-effector translational
motion – this is an artifact of the spherical wrist and a zero length tool.

8.1.1 lTransforming Velocities between Coordinate Frames

Consider two frames {A} and {B} related by

A Jacobian is the matrix equivalent of the derivative – the derivative of a vector-valued function of a
vector with respect to a vector. If y=F(x) and x∈Rn and y∈Rm then the Jacobian is the m×n matrix

The Jacobian is named after Carl Jacobi, and more details are given in Appendix G.

The function jacob0 does not use

finite differences. It has a direct form

based on the Denavit-Hartenberg

parameters of the robot arm (Paul and

Shimano 1978).

Chapter 8 · Velocity Relationships

175

then the spatial velocity of a point with respect to frame {A} can be expressed relative to
frame {B} by

(8.3)

where the Jacobian⊳

(8.4)

is a 6 × 6 matrix and a function of the relative orientation between the frames.⊳

For the case where we know the velocity of the origin of frame {A} attached to a
rigid body, and we want to determine the velocity of the origin of frame {B} attached
to the same body, the Jacobian becomes

(8.5)

These Jacobian matrices have an interesting structure. The rotation matrix ap-
pears twice, to rotate the translational and angular velocities from frame {A} to
frame {B}. The lower-left block of zeros means that rotational velocity in frame {B}
depends only on the rotational velocity in frame {A}. If the frames are rigidly con-
nected and displaced by a translation the top-right 3 × 3 block is non-zero, and this
means that the translational velocity in frame {B} has a component due to both trans-
lational and rotational velocity in frame {A} – a lever arm effect.

For example if two frames are rigidly attached to the same body and the second
frame is related to the first by the transform

>> T = transl(1, 0, 0)*troty(pi/2);

then the Jacobian is given by

>> J = tr2jac(T)
J =
 0.0000 0 -1.0000 0 1.0000 0
 0 1.0000 0 0 0 1.0000
 1.0000 0 0.0000 0 -0.0000 0
 0 0 0 0.0000 0 -1.0000
 0 0 0 0 1.0000 0
 0 0 0 1.0000 0 0.0000

A unit velocity in the x-direction of frame {A} is transformed to

>> vB = J*[1 0 0 0 0 0]';
>> vB'
ans =
 0.0000 0 1.0000 0 0 0

in frame {B}.

8.1.2 lJacobian in the End-Effector Coordinate Frame

The Jacobian computed by the method jacob0 maps joint velocity to the end-effec-
tor spatial velocity expressed in the world coordinate frame – hence the zero suffix for

Carl Gustav Jacob Jacobi (1804–1851) was a Prussian mathematician. He obtained a Doctor of Philo-
sophy degree from Berlin University in 1825. In 1827 he was appointed professor of mathematics at Kö-
nigsberg University and held this position until 1842 when he suffered a breakdown from overwork.

Jacobi wrote a classic treatise on elliptic functions in 1829 and also described the derivative of m
functions of n variables which bears his name. He was elected a foreign member of the Royal Swed-
ish Academy of Sciences in 1836. He is buried in Cementary I of the Dreifaltigkeits-church in Berlin.

As discussed on page 16 the middle in-

dices in Eq. 8.3, the “A”s, can be consid-

ered to cancel out.

8.1 · Manipulator Jacobian

Remember that B
RA = A

R
B
T .

176

the method jacob0. To obtain the spatial velocity in the end-effector coordinate frame
we use the method jacobn instead

>> p560.jacobn(qn)
ans =
 -0.0000 -0.5963 -0.2910 0 0 0
 0.5963 0.0000 0.0000 0 0 0
 0.1500 0.0144 0.3197 0 0 0
 -1.0000 0 0 0.7071 0 0
 -0.0000 -1.0000 -1.0000 -0.0000 -1.0000 0
 -0.0000 0.0000 0.0000 0.7071 0.0000 1.0000

The code for the two Jacobian methods reveals that jacob0 discussed earlier is actu-
ally based on jacobn with a velocity transformation from the end-effector frame to
the world frame based on the inverse of the T6 matrix. Starting with Eq. 8.3 we write

8.1.3 lAnalytical Jacobian

In Eq. 8.2 the spatial velocity was expressed in terms of translational and angular velocity
vectors. It can be more intuitive to consider the rotational velocity in terms of rates of
change of roll-pitch-yaw angles or Euler angles. Consider the case of roll-pitch-yaw angles
¡= (θr, θp, θy) for which the rotation matrix is

where we use the shorthand cθ and sθ to mean cosθ and sinθ respectively. With some
tedium we can write the derivative ½ and recalling Eq. 3.4

we can solve for ω in terms of roll-pitch-yaw angles and rates to obtain

which can be factored as

and written concisely as

Chapter 8 · Velocity Relationships

177

This matrix B is itself a Jacobian that maps roll-pitch-yaw angle rates to angular
velocity. It can be computed by the Toolbox function

>> rpy2jac(0.1, 0.2, 0.3)
ans =
 1.0000 0 0.1987
 0 0.9950 -0.0978
 0 0.0998 0.9752

The analytical Jacobian is

provided that B is not singular. B is singular when cosφ= 0 or pitch angle φ=±ü
and is referred to as a representational singularity. A similar approach can be taken for
Euler angles using the corresponding function eul2jac.

The analytical Jacobian can be computed by passing an extra argument to the Jaco-
bian function jacob0, for example

>> p560.jacob0(qn, 'eul');

to specify the Euler angle analytical form.

8.1.4 lJacobian Condition and Manipulability

We have discussed how the Jacobian matrix maps joint rates to end-effector Cartesian
velocity but the inverse problem has strong practical use – what joint velocities are
needed to achieve a required end-effector Cartesian velocity? We can invert Eq. 8.2
and write

(8.6)

provided that J is square and non singular. This is the basis of a motion control algo-
rithm known as resolved-rate motion control which will be discussed in the next
section.

For an N-link robot the Jacobian is a 6× N matrix so a square Jacobian re-
quires a robot with 6 joints. A robot configuration q at which det(J(q)) = 0 is de-
scribed as singular or degenerate. Singularities occur when one or more axes be-
come aligned resulting in the loss of degrees of freedom – the gimbal lock problem
again.

For example at the Puma’s ready pose two of the wrist joints (joints 4 and 6) are
aligned resulting in the loss of one degree of freedom. The Jacobian is this case is

>> J = p560.jacob0(qr)
J =
 0.1500 -0.8636 -0.4318 0 0 0
 0.0203 0.0000 0.0000 0 0 0
 0 0.0203 0.0203 0 0 0
 0 0 0 0 0 0
 0 -1.0000 -1.0000 0 -1.0000 0
 1.0000 0.0000 0.0000 1.0000 0.0000 1.0000

which is rank deficient. The rank is only

>> rank(J)
ans =
 5

compared to a maximum of six for the 6× 6 Jacobian. Looking at the Jacobian it is
clear that columns 4 and 6 are identical meaning that motion of these joints will result

8.1 · Manipulator Jacobian

178

in the same Cartesian velocity.� The function jsingu performs this analysis auto-
matically, for example

>> jsingu(J)
1 linearly dependent joints:
 q6 depends on: q4

indicating velocity of q6 can be expressed completely in terms of the velocity of q4.
However if the robot is close to, but not actually at, a singularity we encounter prob-

lems where some Cartesian end-effector velocities require very high joint rates – at
the singularity those rates will go to infinity. We can illustrate this by choosing a pose
slightly away from qr which we just showed was singular. We set q5 to a small but non-
zero value of 5 deg

>> q = qr
>> q(5) = 5 * pi/180
q =
 0 1.5708 -1.5708 0 0.0873 0

and the Jacobian is now

>> J=p560.jacob0(q);

To achieve relatively slow end-effector motion of 0.1 m s–1 in the z-direction requires

>> qd = inv(J)*[0 0 0.1 0 0 0]' ;
>> qd'
ans = -0.0000 -4.9261 9.8522 0.0000 -4.9261 0

very high-speed motion of the shoulder and elbow – the elbow would have to move at
9.85 rad s–1 or nearly 600 deg s–1. The reason is that although the robot is no longer at
a singularity, the determinant of the Jacobian is still very small

>> det(J)
ans =
 -1.5509e-05

Alternatively we can say that its condition number is very high

>> cond(J)
ans =
 235.2498

and the Jacobian is poorly conditioned.
However for some motions, such as rotation in this case, the poor condition of the

Jacobian is not problematic. If we wished to rotate the tool about the y-axis then

>> qd = inv(J)*[0 0 0 0 0.2 0]';
>> qd'
ans = 0.0000 -0.0000 0 0.0000 -0.2000 0

the required joint rates are very modest.
This leads to the concept of manipulability. Consider the set of joint velocities with

a unit norm

which lie on the surface of a hypersphere in the N-dimensional joint velocity space.
Substituting Eq. 8.6 we can write

which is the equation of points on the surface of a 6-dimensional ellipsoid in the end-
effector velocity space. If this ellipsoid is close to spherical, that is, its radii are of the
same order of magnitude then all is well – the end-effector can achieve arbitrary Car-
tesian velocity. However if one or more radii are very small this indicates that the end-
effector cannot achieve velocity in the directions corresponding to those small radii.

For the Puma 560 robot arm joints 4 and

6 are the only ones that can become

aligned and lead to singularity. The off-

set distances, dj and aj, between links

prevents other axes becoming aligned.

Chapter 8 · Velocity Relationships

179

To illustrate this we return the robot to the nominal configuration and compute the
ellipsoid corresponding to translational velocity� in the world frame

>> J = p560.jacob0(qn);
>> J = J(1:3, :);

and plot the corresponding velocity ellipsoid

>> plot_ellipse(J*J')

which is shown in Fig. 8.2a. We see that the end-effector can achieve higher velocity in
the y- and z-directions than in the x-direction. Ellipses and ellipsoids are discussed in
more detail in Appendix E.

The rotational velocity ellipsoid for the near singular case

>> J = p560.jacob0(qr);
>> J = J(4:6, :);
>> plot_ellipse(J*J')

is shown in Fig. 8.2b and is an elliptical plate with almost zero thickness.⊳ This indi-
cates an inability to rotate about the direction corresponding to the small radius, which
in this case is rotation about the x-axis. This is the degree of freedom that was lost –
both joints 4 and 6 provide rotation about the world z-axis, joint 5 provides provides
rotation about the world y-axis, but none allow rotation about the world x-axis. The
shape of the ellipsoid describes how well-conditioned the manipulator is for making
certain motions. Manipulability is a succinct scalar measure that describes how spheri-
cal the ellipsoid is, for instance the ratio of the smallest to the largest radius.⊳ The
Toolbox method maniplty computes Yoshikawa’s manipulability measure

which is proportional to the volume of the ellipsoid. For example

>> p560.maniplty(qr, 'yoshikawa')
ans =
 0

Fig. 8.2. End-effector velocity el-
lipsoids. a Translational velocity
ellipsoid for the nominal pose; b
rotational velocity ellipsoid for a
near singular pose, the ellipsoid is
an elliptical plate

Since we can only plot three dimen-

sions.

This is much easier to see if you change

the viewpoint interactively.

The radii are the square roots of the

eigenvalues of the JJJJJ(q)JJJJJ (q)T as dis-

cussed in Appendix E.

8.1 · Manipulator Jacobian

180

indicates a total lack of manipulability in this pose – the robot is at a singularity. At the
nominal pose the manipulability is higher�

>> p560.maniplty(qn, 'yoshikawa')
ans =
 0.0786

but still not particularly high. In practice we find that the seemingly large workspace
of a robot is greatly reduced by joint limits, self collision, singularities and regions of
reduced manipulability. This measure is based only on the kinematics of the mecha-
nism and does not take into account mass and inertia – it is easier to move a small
wrist joint than the larger waist joint. Other manipulability measures, based on accel-
eration and inertia, take this into account and are discussed in Sect. 9.1.6.

8.2 lResolved-Rate Motion Control

Resolved-rate motion control exploits Eq. 8.6

to map or resolve desired Cartesian velocity to joint velocity without requiring inverse
kinematics as we used earlier. For now we will assume that the Jacobian is square
(6× 6) and non-singular but we will relax these constraints later.

The motion control scheme is typically implemented in discrete-time form as

(8.7)

where δt is the sample interval. This forward rectangular integration gives the desired
joint angles for the next time step, q*hk+1i in terms of the current joint angles and the
desired end-effector velocity ν *.

The algorithm is implemented by the Simulink® model

>> sl_rrmc

shown in Fig. 8.3. The Cartesian velocity is a constant 0.1 m s–1 in the y-direction. The
Jacobian block has as its input the current manipulator joint angles and outputs a
6× 6 Jacobian matrix. This is inverted and multiplied by the desired velocity to form the
desired joint rates. The robot is modelled by an integrator, that is, it acts as a velocity servo.�

To run the simulation

>> r = sim('sl_rrmc');

and we see an animation of the manipulator end-effector moving at constant velocity
in Cartesian space. Simulation results are returned in the simulation object r from
which we extract time and joint coordinates

Fig. 8.3. The Simulink® model
sl_rrmc for resolved-rate mo-
tion control for constant end-ef-
fector velocity

The manipulability measure combines

translational and rotational velocity in-

formation which have different units.

The options 'T' and 'R' can be used

to compute manipulability on just the

translational or rotational velocity re-

spectively.

In this model we assume that the ro-

bot is perfect, that is, the actual joint

angles are equal to the desired joint

angles q*. The issue of tracking error is

discussed in Sect. 9.4.

Chapter 8 · Velocity Relationships

181

>> t = r.find('tout');
>> q = r.find('yout');

We apply forward kinematics to determine the end-effector position

>> T = p560.fkine(q);
>> xyz = transl(T);

which we then plot⊳ as a function of time

>> mplot(t, xyz(:,1:3))

which is shown in Fig. 8.4a. The Cartesian motion is 0.1 m s–1 in the y-direction as
demanded but we observe some small and unwanted motion in the x- and z-direc-
tions. The motion of the first three joints

>> mplot(t, q(:,1:3))

is shown in Fig. 8.4b and is not linear with time – reflecting the changing kinematic
configuration of the arm.

The approach just described, based purely on integration, suffers from an accumu-
lation of error which we observed as the unwanted x- and z-direction motion in Fig. 8.4a.
We can eliminate this by changing the algorithm to a closed-loop form based on the
difference between the desired and actual pose

(8.8)

where Kp is a proportional gain. The input is now the desired pose ξ*
hki as a function of

time rather than ν*. The current pose is determined by forward kinematics based on
the measured joint coordinates. The difference between two poses is a 6-vector com-
puted using the function ∆(·) given by Eq. 3.10 and implemented by the Toolbox func-
tion tr2delta.

Fig. 8.4. Resolved-rate motion
control, Cartesian and joint coor-
dinates versus time. a Cartesian
end-effector position; b joint co-
ordinates

The function mplot is a Toolbox util-

ity that plots columns of a matrix in

separate subgraphs.

8.2 · Resolved-Rate Motion Control

182

A Simulink® example to demonstrate this for a circular path is

>> sl_rrmc2

shown in Fig. 8.5. The tool of a Puma 560 robot traces out a circle of radius 50 mm.
The x-, y- and z-coordinates as a function of time are computed by the blue colored
blocks and converted to a homogenous transformation. The difference between the
Cartesian demand and the current Cartesian pose is computed by the tr2delta
block which produces a Cartesian differential, or scaled spatial velocity, described by a
6-vector. The Jacobian block has as its input the current manipulator joint angles and
outputs the Jacobian matrix. The result, after application of a proportional gain, is the
joint-space motion required to correct the Cartesian error.

So far we have assumed that the Jacobian is square. For the non-square cases it is
helpful to consider the velocity relationship

in the diagrammatic form shown in Fig. 8.6. The Jacobian is a 6×N matrix, the joint
velocity is an N-vector, and ν is a 6-vector.

The case of N< 6 is referred to as under-actuated robot, and N> 6 is over-actuated or
redundant. The under-actuated case cannot be solved because the system of equations is
under-constrained but the system can be squared up by deleting some rows of ν and J
– accepting that some Cartesian degrees of freedom are not controllable given the low
number of joints. For the over-actuated case the system of equations is over-constrained
and we could find a least squares solution. Alternatively we can square up the Jacobian to
make it invertible by deleting some columns – effectively locking the corresponding axes.

8.2.1 lJacobian Singularity

For the case of a square Jacobian where det(J(q))=0 we cannot solve Eq. 8.6 directly. One sim-
ple strategy to deal with singularity is to replace the inverse with the damped inverse Jacobian

Fig. 8.5. The Simulink® model
sl_rrmc2 for closed-loop re-
solved-rate motion control with
circular end-effector motion

Chapter 8 · Velocity Relationships

183

where p is a small constant added to the diagonal which places a floor under the deter-
minant. However this will introduces some error in ¸, which integrated over time could
lead to a significant discrepancy in tool position. The closed-loop resolved-rate mo-
tion scheme of Eq. 8.8 would minimize any such error.

The pseudo-inverse of the Jacobian J+ has the property that

just as the inverse does, and is defined as

and readily computed using the MATLAB® builtin function pinv.⊳ The solution

provides a least squares solution for which |J¸− ν| is smallest.
Yet another approach is to delete from the Jacobian all those columns that are lin-

early dependent on other columns. This is effectively locking the joints corresponding
to the deleted columns and we now have an underactuated system which we treat as
per the next section.

8.2.2 lJacobian for Under-Actuated Robot

An under-actuated robot has N< 6, and a Jacobian that is taller than it is wide. For
example the two-link manipulator from Sect. 7.3.3 at a nominal pose

>> mdl_twolink
>> qn = [1 1];

has the Jacobian

>> J = jacob0(twolink, qn)
J =
 -1.7508 -0.9093
 0.1242 -0.4161
 0 0
 0 0
 0 0
 1.0000 1.0000

We cannot solve the inverse problem Eq. 8.6 using the pseudo-inverse since it will
attempt to satisfy motion constraints that the manipulator cannot meet. For example
the desired motion of 0.1 m s–1 in the x-direction gives the required joint velocity

>> qd = pinv(J) * [0.1 0 0 0 0 0]'
qd =
 -0.0698
 0.0431

Fig. 8.6.

Schematic of Jacobian, ν and ¸
for different cases of N. The

dotted areas represent matrix
regions that could be deleted in

order to create a square sub-
system capable of solution

This is the left generalized- or pseudo-

inverse, see Appendix D for more details.

8.2 · Resolved-Rate Motion Control

184

which results in end-effector velocity

>> xd = J*qd;
>> xd'
ans =
 0.0829 -0.0266 0 0 0 -0.0266

This has the desired motion in the x-direction but undesired motion in y-axis transla-
tion and z-axis rotation. The end-effector rotation cannot be independently controlled
(since it is a function of q1 and q2) yet this solution has taken it into account in the
least squares solution.

We have to confront the reality that we have only two degrees of freedom which we
will use to control just vx and vy. We rewrite Eq. 8.2 in partitioned form as

and taking the top partition, the first two rows, we write

where Jxy is a 2× 2 matrix. We invert this

which we can solve if det(Jxy)≠ 0.

>> Jxy = J(1:2,:);
>> qd = inv(Jxy)* [0.1 0]'
qd =
 -0.0495
 -0.0148

which results in end-effector velocity

>> xd = J*qd;
>> xd'
ans =
 0.1000 0.0000 0 0 0 -0.0642

We have achieved the desired x-direction motion with no unwanted motion apart
from the z-axis rotation which is unavoidable – we have used the two degrees of free-
dom to control x- and y-translation, not z-rotation.

8.2.3 lJacobian for Over-Actuated Robot

An over-actuated or redundant robot has N> 6, and a Jacobian that is wider than it is
tall. In this case we rewrite Eq. 8.6 to use the left pseudo-inverse

(8.9)

which, of the infinite number of solutions possible, will yield the one for which |¸| is
smallest – the minimum-norm solution.

Chapter 8 · Velocity Relationships

185

For example, consider the 8-axis P8 robot from Sect. 7.3.4 at a nominal pose

>> qn8 = [0 0 qn];

and its Jacobian

>> J = jacob0(p8, qn8);
>> about(J)
J [double] : 6x8 (384 bytes)

is a 6× 8 matrix. Now consider that we want the end-effector to move at 0.2 m s–1 in
the x-, y- and z-directions. Using Eq. 8.9 we compute the required joint rates

>> xd = [0.2 0.2 0.2 0 0 0]';
>> q = pinv(J) * xd;
>> q'
ans =
 0.1801 0.1800 0.0336 0.3197 0.0322 0.0475 -0.3519 -0.0336

We see that all eight joints have non-zero velocity and contribute to the desired end-
effector motion. If the robot follows a repetitive path the joint angles may drift over
time, that is they may not follow a repetitive path, potentially moving toward joint
limits. We can use null-space control to provide additional constraints.

The Jacobian has eight columns and a rank of six

>> rank(J)
ans =
 6

and a null-space whose basis has two columns

>> N = null(J)
N =
 0.2543 -0.0320
 0.1086 0.2635
 -0.1821 -0.4419
 0.3543 -0.1534
 -0.7260 0.3144
 -0.2576 -0.6250
 0.3718 -0.1610
 0.1821 0.4419

These columns are orthogonal vectors that span the null-space, that is, any joint veloc-
ity that is a linear combination of these two column vectors will result in no end-
effector motion. We can demonstrate this by

>> norm(J * (N(:,1) + N(:,2)))
ans =
 5.7168e-16

This is remarkably useful because it allows Eq. 8.9 to be written as

(8.10)

where the N×N matrix NN+ projects the desired joint motion into the null-space so
that it will not affect the end-effector Cartesian motion, allowing the two motions to
be superimposed.

Null-space motion can be used for highly-redundant robots to avoid collisions
between the links and obstacles (including other links), or to keep joint coordinates
away from their mechanical limit stops. Consider that in addition to the desired Car-
tesian velocity xd we wish to simultaneously move joint 5 (the Puma’s elbow joint)
angle closer to zero (it is currently π), so we set a desired joint velocity

>> qd_ns = [0 0 0 0 -0.1 0 0 0]';

and project it into the null-space

8.2 · Resolved-Rate Motion Control

186

>> qp = N * pinv(N) * qd_ns;
>> qp'
 0.0195 -0.0004 0.0007 0.0305 -0.0626 0.0009 0.0321 -0.0007

The projection has introduced a scaling, the joint 5 velocity is not the −0.1 we desired
but we can apply a scale factor to correct this

>> qp = qp / qp(5) * qd_ns(5)
qp =
 0.0312 -0.0006 0.0011 0.0487 -0.1000 0.0014 0.0513 -0.0011

The other joint velocities provide the required compensating motion in order that the
end-effector pose is not disturbed as shown by

>> norm(J * qp)
ans =
 3.1107e-17

8.3 lForce Relationships

Forces and wrenches are properly the subject of the next chapter, about dynamics, but
it is helpful now to introduce another very useful property of the Jacobian.

In the earlier discussion of motion we introduced the concept of a spatial velocity
ν= (vx, vy, vz, ωx, ωy, ωz). For forces there is a spatial equivalent called a wrench
g= (fx, fy, fz, mx, my, mz) ∈R

6 which is a vector of forces and moments.

8.3.1 lTransforming Wrenches between Frames

Just as the Jacobian maps a spatial velocity from one coordinate frame to another
using Eq. 8.3 it can be used to map wrenches between coordinate frames. For the case
of two frames attached to the same rigid body

(8.11)

where BJ
A
 is given by either Eq. 8.4 or 8.5 and is a function of the relative pose AT

B
 from

frame {A} to frame {B}. Note that the force transform differs from the velocity transform
in using the transpose of the Jacobian and the mapping is reversed – it is from frame {B}
to frame {A}.

For example consider two frames attached to the same rigid body and displaced
by 2 m in the x-direction. We create the Jacobian

>> J = tr2jac(transl(2, 0, 0));

Then a force of 3 N in the y-direction of the second frame is transformed to

>> F = J'*[0 3 0 0 0 0]';
>> F'
ans =
 0 3 0 0 0 6

a force of 3 N in the y-direction of the first frame plus a moment of 6 Nm about the z-axis
due to a lever arm effect.

8.3.2 lTransforming Wrenches to Joint Space

The manipulator Jacobian transforms joint velocity to an end-effector spatial velocity
according to Eq. 8.2 and the Jacobian transpose transforms a wrench applied at the
end-effector to torques and forces experienced at the joints�

(8.12)

Derived through the principle of virtual

work, see for instance Spong et al. (2006,

sect. 4.10).

Chapter 8 · Velocity Relationships

187

where g is a wrench in the world coordinate frame and Q is the generalized joint force vector.
The elements of Q are joint torque or force for revolute or prismatic joints respectively.

If the wrench is defined in the end-effector coordinate frame then we use instead

(8.13)

Interestingly this mapping from external quantities (the wrench) to joint quanti-
ties (the generalized forces) can never be singular as it can be for velocity. We exploit
this property in the next section to solve the inverse kinematic problem numerically.

For the Puma 560 robot in its nominal pose, see Fig. 8.1, a force of 20 N in the world
y-direction results in joint torques of

>> tau = p560.jacob0(qn)' * [0 20 0 0 0 0]';
>> tau'
ans =
 11.9261 0.0000 0.0000 0 0 0

The force pushes the arm sideways and only the waist joint will rotate in response –
experiencing a torque of 11.93 Nm due to a lever arm effect. A force of 20 N applied in
the world x-direction results in joint torques of

>> tau = p560.jacob0(qn)' * [20 0 0 0 0 0]';
>> tau'
ans =
 3.0010 0.2871 6.3937 0 0 0

which is pulling the end-effector away from the base which results in torques being
applied to the first three joints.

8.4 lInverse Kinematics: a General Numerical Approach

In Sect. 7.3 we solved the inverse kinematic problem using an explicit solution that
required the robot to have 6 joints and a spherical wrist. For the case of robots which
do not meet this specification, for example those with more or less than 6 joints, we
need to consider a numerical solution. Here we will develop an approach based on the
forward kinematics and the Jacobian transpose which we can compute for any ma-
nipulator configuration – these functions have no singularities.

The principle is shown in Fig. 8.7. The virtual robot is drawn solidly in its current
pose and faintly in the desired pose. From the overlaid pose graph we write

which we can rearrange as

Fig. 8.7.

Schematic of the numerical
inverse kinematic approach,

showing the current ξE and the
desired ξE

* manipulator pose

8.4 · Inverse Kinematics: a General Numerical Approach

188

We postulate a special spring between the end-effector of the two poses which is
pulling (and twisting) the robot’s end-effector toward the desired pose� with a wrench
proportional to the difference in pose

where the function ∆(·) given by Eq. 3.10 approximates the difference between two
poses as a 6-vector comprising translational and rotational displacement.� The wrench
is also a 6-vector and comprises forces and moments. We write

(8.14)

where γ is a constant and the current pose is computed using forward kinematics

(8.15)

where qhki is the current estimate of the inverse kinematic solution.
The end-effector wrench Eq. 8.14 is resolved to joint forces

(8.16)

using the Jacobian transpose Eq. 8.13. We assume that the virtual robot has no joint
motors only viscous dampers so the joint velocity due to the applied forces will be
proportional

where B is the joint damping coefficients (we assume all dampers are the same). Now
we can write a discrete-time update for the joint coordinates

(8.17)

where α is some well chosen gain. We iterate Eq. 8.14 to Eq. 8.17 until the magni-
tude of the wrench Eg is sufficiently small. Using the Jacobian transpose we do
not face the problem of having to invert a Jacobian which is potentially non-square
or singular.

In Section 7.3.3 we used a mask vector when computing the inverse kinematics of a
robot with N< 6. The mask vector m can be included in Eq. 8.16 which becomes

(8.18)

8.5 lWrapping Up

In this chapter we have learnt about Jacobians and their application to robotics. The
manipulator Jacobian captures the relationship between the rate of change of joint
coordinates and the spatial velocity of the end-effector. The numerical properties of
the Jacobian tell us about manipulability, that is how well the manipulator is able to
move in different directions. The extreme case, singularity, is indicated by linear de-
pendence between columns of the Jacobian. We showed how the inverse Jacobian can
be used to resolve desired Cartesian velocity into joint velocity as an alternative means
of generating Cartesian paths for under- and over-actuated robots. For over-actuated
robots we showed how null-space motions can be used to move the robot’s joints with-
out affecting the end-effector pose.

It has to be a special spring in order to

change the orientation as well as the

position of the end-effector.

This assumes that the difference in ori-

entation between the two poses is

“small” so the approximation becomes

better as the solution converges.

Chapter 8 · Velocity Relationships

189

We created other Jacobians as well. A Jacobian can be used to to map spatial veloci-
ties between coordinate frames. The analytic Jacobian maps angular velocity to roll-
pitch-yaw or Euler angle rates.

The Jacobian transpose is used to map wrenches applied at the end-effector to joint
torques, and also to map wrenches between coordinate frames. We showed, finally,
how to use the Jacobian transpose and forward kinematics to compute inverse kine-
matics numerically for arbitrary robots and singular poses.

Further Reading

The manipulator Jacobian is covered by almost all standard robotics texts such as
Spong et al. (2006), Craig (2004), Siciliano et al. (2008), Paul (1981), and the hand-
book (Siciliano and Khatib 2008, § 1). An excellent discussion of manipulability and
velocity ellipsoids is provided by Siciliano et al. (2008), and the most common
manipulability measure is that proposed by Yoshikawa (1984). Computing the ma-
nipulator Jacobian based on Denavit-Hartenberg parameters was first described by
Paul and Shimano (1978).

The resolved-rate motion control scheme was proposed by Whitney (1969). Exten-
sions such as pseudo-inverse Jacobian-based control are reviewed by Klein and Huang
(1983) and damped least-square methods are reviewed by Deo and Walker (1995). The
approach to numeric inverse kinematics used in the Toolbox is based on results for
control through singularities (Chiaverini et al. 1991).

Exercises

1. For the Puma 560 robot can you devise a configuration in which three joint axes are
parallel?

2. Derive the analytical Jacobian for Euler angles.
3. Manipulability (page 177)

a) Plot the velocity ellipse (x- and y-velocity) for the two-link manipulator at a grid
of end-effector positions in its workspace. Each ellipsoid should be centred on
the end-effector position.

b) For the Puma 560 manipulator find a configuration where manipulability is
greater than at qn.

c) Overlay the translational or rotational velocity ellipsoid on the manipulator as
displayed by the plot method, and create an animation that shows how it changes
shape as the robot moves along a trajectory.

4. Resolved-rate motion control (page 180)
a) Experiment with different Cartesian translational and rotational velocity de-

mands, and combinations.
b) Extend the Simulink® system of Fig. 8.4 to also record the determinant of the

Jacobian matrix to the workspace.
c) In Fig. 8.4 the robot’s motion is simulated for 5 s. Extend the simulation time to

10 s and explain what happens.
d) Set the initial pose and direction of motion to mimic that of Sect. 7.4.3. What

happens when the robot reaches the singularity?
e) Replace the Jacobian inverse block in Fig. 8.3 with the MATLAB® function pinv.
f) Replace the Jacobian inverse block in Fig. 8.3 with a damped least squares func-

tion, and investigate the effect of different values of the damping factor.
g) Replace the Jacobian inverse block in Fig. 8.3 with a block based on the MATLAB®

function lscov.
h) Modify the simulation of Fig. 8.5 to use the 8-axis robot from Sect. 7.3.4. Observe

the joint coordinate trajectory, is it repetitive like the end-effector trajectory?

8.5 · Wrapping Up

190

i) Modify the above to include null-space motion to keep the robot joints away
from their limits.

5. For the over-actuated P8 robot (page 150)
a) Develop a null-space controller that keeps the last six joints in the middle of

their working range by using the first two joints to position the base of the
Puma. Modify this so as to maximize the manipulability of the P8 robot. Con-
sider now that the Puma robot is mounted on a non-holonomic robot, create a
controller that generates appropriate steering and velocity inputs to the mobile
robot (challenging).

b) For an arbitrary pose and end-point spatial velocity we will move six joints and
lock two joints. Write an algorithm to determine which two joints should be
locked.

Chapter 8 · Velocity Relationships

9
Chapter

motor exerts a torque that causes the outward link, j, to rotationally accelerate but it
also exerts a reaction torque on the inward link j− 1. Gravity acting on the outward
links j to N exert a weight force, and rotating links also exert gyroscopic forces on each
other. The inertia that the motor experiences is a function of the configuration of the
outward links.

The situation at the individual link is quite complex but for the series of links the
result can be written elegantly and concisely as a set of coupled differential equations
in matrix form

(9.1)

where q, ¸ and » are respectively the vector of generalized joint coordinates, velocities
and accelerations, M is the joint-space inertia matrix, C is the Coriolis and centripetal
coupling matrix, F is the friction force, G is the gravity loading, and Q is the vector of
generalized actuator forces associated with the generalized coordinates q. The last term
gives the joint forces due to a wrench g applied at the end effector and J is the manipu-
lator Jacobian. This equation describes the manipulator rigid-body dynamics and is
known as the inverse dynamics – given the pose, velocity and acceleration it computes
the required joint forces or torques.

These equations can be derived using any classical dynamics method such as
Newton’s second law and Euler’s equation of motion or a Lagrangian energy-based

Dynamics and Control

In this chapter we consider the dynamics and control of a serial-link manipu-
lator. Each link is supported by a reaction force and torque from the preced-
ing link, and is subject to its own weight as well as the reaction forces and
torques from the links that it supports.

Section 9.1 introduces the equations of motion, a set of coupled dynamic
equations, that describe the joint torques necessary to achieve a particular
manipulator state. The equations contains terms for inertia, gravity and gy-
roscopic coupling. The equations of motion provide insight into important
issues such as how the motion of one joint exerts a disturbance force on other
joints, how inertia and gravity load varies with configuration, and the effect
of payload mass. Section 9.2 introduces real-world drive train issues such as
gearing and friction. Section 9.3 introduces the forward dynamics which de-
scribe how the manipulator moves, that is, how its configuration evolves with
time in response to forces and torques applied at the joints by the actuators,
and by external forces such as gravity. Section 9.4 introduces control systems
that compute the joint forces so that the robot end-effector follows a desired
trajectory despite varying dynamic characteristics or joint flexibility.

9.1 lEquations of Motion

Consider the motor which actuates the jth revolute joint of a serial-link ma-
nipulator. From Fig. 7.2 we recall that joint j connects link j− 1 to link j. The

192

approach. A very efficient way for computing Eq. 9.1 is the recursive Newton-Euler
algorithm which starts at the base and working outward adds the velocity and accel-
eration of each joint in order to determine the velocity and acceleration of each link.
Then working from the tool back to the base, it computes the forces and moments
acting on each link and thus the joint torques.� The recursive Newton-Euler algo-
rithm has O(N) complexity and can be written in functional form as

(9.2)

In the Toolbox it is implemented by the rne method of the SerialLink object.
Consider the Puma 560 robot

>> mdl_puma560

at the nominal pose, and with zero joint velocity and acceleration. The generalized
joint forces, or joint torques in this case, are

>> Q = p560.rne(qn, qz, qz)
Q =
 -0.0000 31.6399 6.0351 0.0000 0.0283 0

Since the robot is not moving (we specified ¸= »= 0) these torques must be those
required to hold the robot up against gravity. We can confirm this by computing the
torques in the absence of gravity

>> Q = p560.rne(qn, qz, qz, [0 0 0]')
ans =
 0 0 0 0 0 0

where the last argument overrides the object’s default gravity vector.
Like most Toolbox methods rne can operate on a trajectory

>> q = jtraj(qz, qr, 10)
>> Q = p560.rne(q, 0*q, 0*q)

which has returned

>> about(Q)
Q [double] : 10x6 (480 bytes)

a 10× 6 matrix with each row representing the generalized force for the correspond-
ing row of q. The joint torques corresponding to the fifth time step is

>> Q(5,:)
ans =
 0.0000 29.8883 0.2489 0 0 0

Consider now a case where the robot is moving. It is instantaneously at the nominal
pose but joint 1 is moving at 1 rad s–1 and the acceleration of all joints is zero. Then in
the absence of gravity, the joint torques

>> p560.rne(qn, [1 0 0 0 0 0], qz, [0 0 0]')
 -24.8240 0.6280 -0.3607 -0.0003 -0.0000 0

Dynamics in 3D. The dynamics of an object moving in 3 dimensions is described by two impor-
tant equations. The first equation, Newton’s second law, describes the translational motion in 3D

where m is the mass, f the applied force and v the velocity. The second equation, Euler’s equation
of motion, describes the rotational motion

where τ is the torque, ω is the angular velocity, and J is the rotational inertia matrix (see page 81).

The recursive form of the inverse dynam-

ics does not explicitly calculate the ma-

trices M, C and G of Eq. 9.1. However we

can use the recursive Newton-Euler al-

gorithm to calculate these matrices and

the Toolbox functions inertia and

coriolis use Walker and Orin’s

(1982) ‘Method 1’. Whilst the recursive

forms are computationally efficient for

the inverse dynamics, to compute the

coefficients of the individual dynamic

terms (M, C and G) in Eq. 9.1 is quite

costly – O(N3) for an N-axis manipulator.

Chapter 9 · Dynamics and Control

193

are non zero. The torque on joint 1 is due to friction and opposes the direction of
motion. More interesting is that torques have been exerted on joints 2, 3 and 4. These
are gyroscopic effects (centripetal and Coriolis forces) and are referred to as velocity
coupling torques since the rotational velocity of one joint has induced a torque on
several other joints.

The elements of the matrices M, C, F and G are complex functions of the link’s ki-
nematic parameters (θj, dj, aj, αj) and inertial parameters. Each link has ten indepen-
dent inertial parameters: the link mass mj; the centre of mass (COM) rj with respect to
the link coordinate frame; and six second moments which represent the inertia of the
link about the COM but with respect to axes aligned with the link frame {j}, see page 81.
We can view the dynamic parameters of a robot’s link by

>> p560.links(1).dyn
l =
 theta=q, d=0, a=0, alpha=1.571 (R,stdDH)
 m = 0.000000
 r = 0.000000 0.000000 0.000000
 I = | 0.000000 0.000000 0.000000 |
 | 0.000000 0.350000 0.000000 |
 | 0.000000 0.000000 0.000000 |
 Jm = 0.000200
 Bm = 0.001480
 Tc = 0.395000(+) -0.435000(-)
 G = -62.611100

which in order are: the kinematic parameters, link mass, COM position, inertia ma-
trix, motor inertia, motor friction, Coulomb friction and gear ratio.

The remainder of this section examines the various matrix components of Eq. 9.1.

9.1.1 lGravity Term

We start our detailed discussion with the gravity term because it is generally the
dominant term in Eq. 9.1 and is present even when the robot is stationary or moving
slowly. Some robots use counterbalance weights⊳ or even springs to reduce the gravity
torque that needs to be provided by the motors – this allows the motors to be smaller
and thus lower in cost.

In the previous section we used the rne method to compute the gravity load by
setting the joint velocity and acceleration to zero. A more convenient approach is to
use the gravload method

>> gravload = p560.gravload(qn)
gravload =
 -0.0000 31.6399 6.0351 0.0000 0.0283 0

Gyroscopic motion. A spinning disc has an angular momentum h= Jω. If a torque τ is applied
to the gyroscope it rotates about an axis perpendicular to both τ and h with an angular
velocity w

P
 known as precession. These quantities are related by

If you’ve ever tried to rotate the axis of a spinning bicycle wheel you will have observed
this effect – “torquing” it about one axis causes it to turn in your hands in an orthogonal di-
rection.

A strapdown gyroscopic sensor contains a high-speed flywheel which has a large h. When
the gyroscope is rotated a gyroscopic force is generated proportional to w

P
 which is measured

by a force sensor.

Counterbalancing will however increase

the inertia associated with a joint since

it adds additional mass at the end of a

lever arm, and increase the overall mass

of the robot.

9.1 · Equations of Motion

194

The SerialLink object contains a default gravitational acceleration vector which is
inititialized to the nominal value for Earth�

>> p560.gravity'
ans =
 0 0 9.8100

We could change gravity to the lunar value

>> p560.gravity = p560.gravity/6;

resulting in reduced joint torques

>> p560.gravload(qn)
ans =
 0.0000 5.2733 1.0059 0.0000 0.0047 0

or we could turn our lunar robot upside down

>> p560.base = trotx(pi);
>> p560.gravload(qn)
ans =
 0.0000 -5.2733 -1.0059 -0.0000 -0.0047 0

and see that the torques have changed sign. Before proceeding we bring our robot
back to Earth and right-side up

>> mdl_puma560

The torque exerted on a joint due to gravity acting on the robot depends very strongly
on the robot’s pose. Intuitively the torque on the shoulder joint is much greater when
the arm is stretched out horizontally

>> Q = p560.gravload(qs)
Q =
 -0.0000 46.0069 8.7722 0.0000 0.0283 0

than when the arm is pointing straight up

>> Q = p560.gravload(qr)
Q =
 0 -0.7752 0.2489 0 0 0

The gravity torque on the elbow is also very high in the first pose since it has to sup-
port the lower arm and the wrist. We can investigate how the gravity load on joints 2
and 3 varies with joint configuration by
1 [Q2,Q3] = meshgrid(-pi:0.1:pi, -pi:0.1:pi);
2 for i=1:numcols(Q2),
3 for j=1:numcols(Q3);
4 g = p560.gravload([0 Q2(i,j) Q3(i,j) 0 0 0]);
5 g2(i,j) = g(2);
6 g3(i,j) = g(3);
7 end
8 end
9 surfl(Q2, Q3, g2); surfl(Q2, Q3, g3);

and the results are shown in Fig. 9.1. The gravity torque on joint 2 varies between
±40 N m and for joint 3 varies between ±10 N m. This type of analysis is very impor-
tant in robot design to determine the required torque capacity for the motors.

Sir Isaac Newton (1642–1727) was an English mathematician and alchemist. He was Lucasian
professor of mathematics at Cambridge, Master of the Royal Mint, and the thirteenth president of
the Royal Society. His achievements include the three laws of motion, the mathematics of gravita-
tional attraction, the motion of celestial objects and the theory of light and color (see page 224),
and building the first reflecting telescope.

Many of these results were published in 1687 in his great 3-volume work “The Philosophiae
Naturalis Principia Mathematica” (Mathematical principles of natural philosophy). In 1704 he
published “Opticks” which was a study of the nature of light and colour and the phenomena of
diffraction. The SI unit of force is named in his honour. He is buried in Westminster Abbey, London.

The 'gravity' option for the

SerialLink constructor can

change this.

Chapter 9 · Dynamics and Control

195

9.1.2 lInertia Matrix

The inertia matrix⊳ is a function of the manipulator pose

>> M = p560.inertia(qn)
M =
 3.6594 -0.4044 0.1006 -0.0025 0.0000 -0.0000
 -0.4044 4.4137 0.3509 0.0000 0.0024 0.0000
 0.1006 0.3509 0.9378 0.0000 0.0015 0.0000
 -0.0025 0.0000 0.0000 0.1925 0.0000 0.0000
 0.0000 0.0024 0.0015 0.0000 0.1713 0.0000
 -0.0000 0.0000 0.0000 0.0000 0.0000 0.1941

which we observe is symmetric. The diagonal elements Mjj describe the inertia seen by
joint j, that is, Qj=MjjÌj. Note that the first two diagonal elements, corresponding to the
robot’s waist and shoulder joints, are large since motion of these joints involves rotation
of the heavy upper- and lower-arm links. The off-diagonal terms Mij=Mji, i≠ j repre-
sent coupling of acceleration from joint j to the generalized force on joint i.

We can investigate some of the elements of the inertia matrix and how they vary
with robot configuration using the simple (but slow) commands
1 [Q2,Q3] = meshgrid(-pi:0.1:pi, -pi:0.1:pi);
2 for i=1:numcols(Q2),
3 for j=1:numcols(Q3);
4 M = p560.inertia([0 Q2(i,j) Q3(i,j) 0 0 0]);
5 M11(i,j) = M(1,1);
6 M12(i,j) = M(1,2);
7 end
8 end
9 surfl(Q2, Q3, M11); surfl(Q2, Q3, M12);

Fig. 9.1. Gravity load variation
with manipulator pose. a Shoul-
der gravity load, g2(q2, q3); b el-
bow gravity load g3(q2, q3)

This inertia matrix includes the motor

inertias, which are added to the diago-

nal elements. Motor and rigid-body in-

ertia are discussed further in Sect. 9.4.2.

Joseph-Louis Lagrange (1736–1813) was an Italian-born French mathematician and astronomer.
He made significant contributions to the fields of analysis, number theory, classical and celestial
mechanics. In 1766 he succeeded Euler as the director of mathematics at the Prussian Academy of
Sciences in Berlin, where he stayed for over twenty years, producing a large body of work and
winning several prizes of the French Academy of Sciences. His treatise on analytical mechanics
“Mécanique Analytique” first published in 1788, offered the most comprehensive treatment of
classical mechanics since Newton and formed a basis for the development of mathematical phys-
ics in the nineteenth century. In 1787 he became a member of the French Academy, became the
first professor of analysis at the École Polytechnique, a member of the Legion of Honour and a
Count of the Empire in 1808. He is buried in the Panthéon in Paris.

9.1 · Equations of Motion

196

The results are shown in Fig. 9.2 and we see significant variation in the value of M11

which changes by a factor of

>> max(M11(:)) / min(M11(:))
ans =
 2.1558

This is important for robot design since, for a fixed maximum motor torque, inertia
sets the upper bound on acceleration which in turn effects path following accuracy.

The off-diagonal term M12 represents coupling between the angular acceleration of
joint 2 and the torque on joint 1. That is, if joint 2 accelerates then a torque will be
exerted on joint 1 and vice versa.

9.1.3 lCoriolis Matrix

The Coriolis matrix C is a function of joint coordinates and joint velocity. The cen-
tripetal torques are proportional to Åi

2, while the Coriolis torques are proportional to
ÅiÅj. For example, at the nominal pose with all joints moving at 0.5 rad s–1

>> qd = 0.5*[1 1 1 1 1 1];

the Coriolis matrix is

Fig. 9.2. Variation of inertia ma-
trix elements as a function of ma-
nipulator pose. a Joint 1 inertia as
a function of joint 2 and 3 angles
M11(q2, q3); b product of inertia
M12(q2, q3); c joint 2 inertia as a
function of joint 3 angle M22(q3).
Inertia has the units of kg m2

Chapter 9 · Dynamics and Control

197

>> C = p560.coriolis(qn, qd)
C =
 0.0000 -0.9115 0.2173 0.0013 -0.0026 0.0001
 0.3140 -0.0000 0.5786 -0.0011 -0.0001 -0.0000
 -0.1804 -0.1929 -0.0000 -0.0005 -0.0023 -0.0000
 -0.0002 0.0006 -0.0000 -0.0000 0.0003 -0.0000
 -0.0000 0.0000 0.0014 -0.0002 -0.0000 -0.0000
 0 0.0000 0.0000 0.0000 0.0000 0

The off-diagonal terms Ci,j represent coupling of joint j velocity to the generalized force
acting on joint i. C1,2=−0.9115 is very significant and represents coupling from joint 2
velocity to torque on joint 1 – rotation of the shoulder exerts a torque on the waist.
Since the elements of this matrix represents a coupling from velocity to joint force
they have the same dimensions as viscous friction or damping, however the sign can
be positive or negative. The joint torques in this example are

>> C*qd'
ans =
 -0.3478
 0.4457
 -0.1880
 0.0003
 0.0006
 0.0000

9.1.4 lEffect of Payload

Any real robot has a specified maximum payload which is dictated by two dynamic
effects. The first is that a mass at the end of the robot will increase the inertia seen by
the joints which reduces acceleration and dynamic performance. The second is that
mass generates a weight force which the joints needs to support. In the worst case the
increased gravity torque component might exceed the rating of one or more motors.
However even if the rating is not exceeded there is less torque available for accelera-
tion which again reduces dynamic performance.

As an example we will add a 2.5 kg point mass to the Puma 560 which is its rated
maximum payload. The centre of mass of the payload cannot be at the centre of the
wrist coordinate frame, that is inside the wrist, so we will offset it 100 mm in the
z-direction of the wrist frame. We achieve this by modifying the inertial parameters of
the robot’s last link⊳

>> p560.payload(2.5, [0, 0, 0.1]);

The inertia at the nominal pose is now

>> M_loaded = p560.inertia(qn);

and the ratio with respect to the unloaded case, computed earlier, is

Gaspard-Gustave de Coriolis (1792–1843) was a French mathematician, mechanical engineer and
scientist. Born in Paris, in 1816 he became a tutor at the École Polytechnique where he carried out
experiments on friction and hydraulics and later became a professor at the École des Ponts and
Chaussées (School of Bridges and Roads). He extended ideas about kinetic energy and work to
rotating systems and in 1835 wrote the famous paper Sur les équations du mouvement relatif des
systëmes de corps (On the equations of relative motion of a system of bodies) which dealt with the
transfer of energy in rotating systems such as waterwheels. In the late 19th century his ideas were
picked up by the meteorological community to incorporate effects due to the Earth’s rotation. He
is buried in Paris’s Montparnasse Cemetery.

This assumes that the last link itself has

no mass which is a reasonable approxi-

mation.

9.1 · Equations of Motion

198

>> M_loaded ./ M;
ans =
 1.3363 0.9872 2.1490 49.3960 80.1821 1.0000
 0.9872 1.2667 2.9191 5.9299 74.0092 1.0000
 2.1490 2.9191 1.6601 -2.1092 66.4071 1.0000
 49.3960 5.9299 -2.1092 1.0647 18.0253 1.0000
 83.4369 74.0092 66.4071 18.0253 1.1454 1.0000
 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

We see that the diagonal elements have increased significantly, for instance the elbow
joint inertia has increased by 66% which reduces the maximum acceleration by nearly
two thirds. Reduced acceleration impairs the robot’s ability to accurately follow a high
speed path. The inertia of joint 6 is unaffected since this added mass lies on the axis of
this joint’s rotation. The off-diagonal terms have increased significantly, particularly
in rows and columns four and five. This indicates that motion of joints 4 and 5, the
wrist joints, which are swinging the offset mass give rise to large reaction forces that
are felt by all the other robot joints.

The gravity load has also increased by some significant factors

>> p560.gravload(qn) ./ gravload
ans =
 0.3737 1.5222 2.5416 18.7826 86.8056 NaN

particularly at the elbow and wrist.�

9.1.5 lBase Force

A moving robot exerts a wrench on its base, a vertical force to hold it up and other
forces and torques as the arm moves around. This wrench is returned as an optional
output argument of the rne method

>> [Q,g] = p560.rne(qn, qz, qz);

In this case g is the wrench

>> g'
ans =
 0 -0.0000 230.0445 -48.4024 -31.6399 -0.0000

that needs to be applied to the base to keep it in equilibrium. The vertical force of
230 N is the total weight of the robot which has a mass of

>> sum([p560.links.m])
ans =
 23.4500

There is also a moment about the x- and y-axes since the centre of mass of the robot is
not over origin of the base coordinate frame.

The base forces are important in situations where the robot does not have a rigid
base such as on a satellite in space, on a boat, an underwater vehicle or even on a
vehicle with soft suspension.

9.1.6 lDynamic Manipulability

In Sect. 8.1.4 we discussed a kinematic measure of manipulability, that is, how well
configured the robot is to achieve velocity in particular directions. An extension of
that measure is to consider how well the manipulator is able to accelerate in different
Cartesian directions. Following a similar approach, we consider the set of generalized
joint forces with unit norm

Elements 1, 4 and 6 should be ignored

and are the results of numerical error

in what should be 0/0, for the case of

gravity load with and without payload

g1= g6= 0.

Chapter 9 · Dynamics and Control

199

From Eq. 9.1 and ignoring gravity and assuming ¸= 0 we write

Differentiating Eq. 8.2 and still assuming ¸= 0 we write

Combining these we write

or more compactly

which is the equation of a hyper-ellipsoid in Cartesian acceleration space. For example,
at the nominal pose

>> J = p560.jacob0(qn);
>> M = p560.inertia(qn);
>> Mx = (J * inv(M) * inv(M)' * J');

If we consider just the translational acceleration, that is the top left 3× 3 submatrix of Mx

>> Mx = Mx(1:3, 1:3);

this is a 3-dimensional ellipsoid

>> plot_ellipse(Mx)

which is plotted in Fig. 9.3. The major axis of this ellipsoid is the direction in which the
manipulator has maximum acceleration at this configuration. The radii of the ellipse
are the square root of the eigenvalues

>> sqrt(eig(Mx))
ans =
 0.4412
 0.1039
 0.1677

Fig. 9.3.

Spatial acceleration ellipsoid for
Puma 560 robot in nominal pose

9.1 · Equations of Motion

200

and the direction of maximum acceleration is given by the first eigenvector. The ratio
of the minimum to maximum radius

>> min(ans)/max(ans)
ans =
 0.2355

is a measure of the non-uniformity of end-effector acceleration.� It would be unity
for isotropic acceleration capability. In this case acceleration capability is good in the
x- and z-directions, but poor in the y-direction.

The manipulability measure proposed by Asada is similar but considers the ratios
of the eigenvalues of

and returns a uniformity measxure m∈ [0, 1] where 1 indicates uniformity of accel-
eration in all directions. For this example

>> p560.maniplty(qn, 'asada')
ans =
 0.2094

9.2 lDrive Train

The vast majority of robots today are driven by electric motors. Typically brushless
servo motors are used for large industrial robots while small laboratory or hobby ro-
bots use brushed DC motors or stepper motors. Robots with very large payloads, hun-
dreds of kilograms, would generally use electro-hydraulic actuators.

Electric motors are compact and efficient but do not produce very high torque.
However they can rotate at very high speed so it is common to use a reduction gearbox
to tradeoff speed for increased torque. The disadvantage of a gearbox is increased cost,
weight, friction and mechanical noise. Many very high-performance robots, such as used
in high-speed electronic assembly, use expensive high-torque motors with a direct drive
or a very low gear ratio achieved using cables or thin metal bands rather than gears.

Figure 9.4 shows in schematic form the drive train of a typical robot joint. For a
G :1 reduction drive the torque at the link is G times the torque at the motor. For rotary
joints the quantities measured at the link, reference frame l, are related to the motor
referenced quantities, reference frame m, as shown in the table in Fig. 9.4. For example
if you turned the motor shaft by hand you would feel the inertia of the load through
the gearbox but it would be reduced by G2 as would the frictional force. However if you
turned the load side shaft by hand you would feel the inertia of the motor through the
gearbox but it would be increased by G2, as would the frictional force.

Fig. 9.4.

Schematic of a typical robot
drivetrain showing motor and
load inertia, gearbox and distur-
bance torque. The frame of refer-
ence, motor or load, is indicated
by the leading superscript. The
table at the right shows the rela-
tionship between load and motor
referenced quantities for gear
ratio G

The 6-dimensional ellipsoid has dimen-

sions with different units: m s–2 and

rad s–2. This makes comparison of all

6 radii problematic.

Chapter 9 · Dynamics and Control

201

There are two components of inertia seen by the motor. The first is due to the rotat-
ing part of the motor itself, its rotor. It is denoted Jm and is an intrinsic characteristic of
the motor and the value is provided in the motor manufacturer’s data sheet. The sec-
ond component is the load inertia Jl which is the inertia of the driven link and all the
other links that are attached to it. For joint j this is element Mjj of the manipulator
inertia matrix discussed previously and is a function of the robot’s configuration.

The total inertia seen by the motor for joint j is therefore

(9.3)

The gearing reduces the significance of the second term which is configuration
dependent. Reducing the variability in total inertia is beneficial when it comes to de-
signing a control system for the joint.

A negative aspect of gearing is an increase in viscous friction and non-linear effects
such as backlash and Coulomb friction which will be discussed in the next section.
Flexible couplings and long drive shafts between the motor and the joint can act as
torsional springs and introduce complex dynamics into the system and this is dis-
cussed in Sect. 9.4.4.

9.2.1 lFriction

For most electric drive robots friction is the next most dominant joint force after
gravity.⊳ For any rotating machinery, motor or gearbox, the friction torque versus speed
characteristic has a form similar to that shown in Fig. 9.5. At zero speed we observe an
effect known as stiction which the applied torque must exceed before rotation can
occur – a process known as breaking stiction.

Once the machine is moving the stiction force rapidly decreases and viscous friction
dominates. Viscous friction, shown by the dashed line in Fig. 9.5, is commonly modeled by

(9.4)

where the slope B is the viscous friction coefficient and the offset is Coulomb friction.
The latter is frequently modeled by the non-linear function

Fig. 9.5.

Typical friction versus speed
characteristic. The dashed lines
depict a simple piecewise-linear
friction model characterized by

slope (viscous friction) and
intercept (Coulomb friction)

For the Puma robot joint friction varied

from 10 to 47% of the maximum motor

torque for the first three joints (Corke

1996b).

9.2 · Drive Train

202

(9.5)

In general the friction value depends on the direction of rotation but this asymme-
try is more pronounced for Coulomb than for viscous friction.

There are several components of the friction seen by the motor. The first compo-
nent is due to the motor itself: its bearings and, for a brushed motor, the brushes rub-
bing on the commutator. The viscous friction coefficient for a motor is constant and
often provided in the manufacturer’s data sheet. Information about Coulomb friction
is not generally provided. Other components of friction are due to the gearbox and the
bearings that support the link.

The Toolbox models friction within the Link object. The friction values are lumped
and motor referenced, that is, they apply to the motor side of the gearbox. Viscous
friction is a scalar that applies for positive and negative velocity.� Coulomb friction is
a 2-vector comprising (QC

+, QC
−). For example, the dynamic parameters of the Puma

robot’s second link are

>> p560.links(2).dyn
l =
 theta=q, d=0, a=0.4318, alpha=0 (R,stdDH)
 m = 17.400000
 r = -0.363800 0.006000 0.227500
 I = | 0.130000 0.000000 0.000000 |
 | 0.000000 0.524000 0.000000 |
 | 0.000000 0.000000 0.539000 |
 Jm = 0.000200
 Bm = 0.000817
 Tc = 0.126000(+) -0.071000(-)
 G = 107.815000

The last three lines show the viscous friction coefficient, Coulomb friction coefficients
and the gear ratio. The online documentation for the Link class describes how to set
these parameters.

9.3 lForward Dynamics

To determine the motion of the manipulator in response to the forces and torques
applied to its joints we require the forward dynamics or integral dynamics. Rearrang-
ing the equations of motion Eq. 9.1 we obtain the joint acceleration

(9.6)

This is computed by the accel method of the SerialLink class

>> qdd = p560.accel(q, qd, Q)

Charles-Augustin de Coulomb (1736–1806) was a French physicist. He was born in Angoulême to
a wealthy family and studied mathematics at the Collége des Quatre-Nations under Pierre Charles
Monnier, and later at the military school in Méziéres. He spent eight years in Martinique involved
in the construction of Fort Bourbon and there he contracted tropical fever.

Later he worked at the shipyards in Rochefort which he used as laboratories for his experi-
ments in static and dynamic friction of sliding surfaces. His paper Théorie des machines simples
won the Grand Prix from the Académie des Sciences in 1781. His later research was on electro-
magnetism and electrostatics and he is best known for the formula on electrostatic forces, named
in his honor, as is the SI unit of charge. After the revolution he was involved in determining the
new system of weights and measures.

In practice some mechanisms have a ve-

locity dependent friction characteristic.

Chapter 9 · Dynamics and Control

203

given the joint coordinates, joint velocity and applied joint torques. This functionality
is also encapsulated in the Simulink® block Robot and an example of its use is

>> sl_ztorque

which is shown in Fig. 9.6. The torque applied to the robot is zero and the initial joint
angles is set as a parameter of the Robot block, in this case to the zero-angle pose. The
simulation is run

>> r = sim('sl_ztorque');

and the joint angles as a function of time are returned in the object r

>> t = r.find('tout');
>> q = r.find('yout');

We can show the robot’s motion in animation

>> p560.plot(q)

and see it collapsing under gravity since there are no torques to counter gravity and
hold in upright. The shoulder falls and swings back and forth as does the elbow,⊳

while the waist joint rotates because of Coriolis coupling. The motion will slowly decay
as the energy is dissipated by viscous friction.

Alternatively we can plot the joint angles as a function of time

>> plot(t, q(:,1:3))

and this is shown in Fig. 9.7. The method fdyn can be used as a non-graphical alter-
native to Simulink® and is described in the online documentation.

This example is rather unrealistic and in reality the joint torques would be com-
puted as some function of the actual and desired robot joint angles. This is the topic of
the next section.

Fig. 9.6.

Simulink® model sl_ztorque
for the Puma 560 manipulator

with zero joint torques

Fig. 9.7.

Joint angle trajectory for
Puma 560 robot collapsing

under gravity and starting at qz

These motions are not mechanically pos-

sible on the real robot.

9.3 · Forward Dynamics

204

Coulomb friction is a strong non-linearity and can cause difficulty when

using numerical integration routines to solve the forward dynamics. This is

usually manifested by very long integration times. Fixed-step solvers tend

to be more tolerant, and these can be selected through the Simulink®

Simulation+Configuration Parameters menu item.

The default Puma 560 model, defined using mdl_puma560, has non-zero

viscous and Coulomb friction parameters for each joint. Sometimes it is useful

to zero all the friction parameters for a robot and this can be achieved by

>> p560_nf = p560.nofriction();

which returns a copy of the robot object that is similar in all respects except

that the Coulomb friction is zero. Alternatively we can set Coulomb and viscous

friction coefficients to zero

>> p560_nf = p560.nofriction('all');

9.4 lManipulator Joint Control

In order for the robot end-effector to follow a desired Cartesian trajectory each of
its joints must follow a specific joint-space trajectory. In this section we discuss the
two main approaches to robot joint control: independent control and model-based
control.

9.4.1 lActuators

Most laboratory and industrial robots are electrically actuated. Electrical motors can
be either current or voltage controlled and we consider here the current control case.�

We assume a motor driver or amplifier which provides motor current

that is linearly related to the applied control voltage u and where Ka is the transcon-
ductance of the amplifier with units of AV–1. The torque generated by the motor is
proportional to current

where Km is the motor torque constant with units of N m A–1. The dynamics of the
motor are described by

(9.7)

where Jm is the total inertia seen by the motor from Eq. 3.9, B is the viscous friction
coefficient and τc is the Coulomb friction torque.

9.4.2 lIndependent Joint Control

A common approach to robot joint control is to consider each joint as an independent
control system that attempts to accurately follow the joint angle trajectory. However as
we shall see, this is complicated by various disturbance torques such as gravity, veloc-
ity and acceleration coupling and friction that act on the joint.

Current control is implemented by an

electronic constant current source, or a

variable voltage source with feedback of

actual motor current. In the latter case

the electrical dynamics of the motor due

to its resistance and inductance must be

taken into account. A variable voltage

source is most commonly implemented

by a pulse-width modulated (PWM)

switching circuit.

Chapter 9 · Dynamics and Control

205

A very common control structure is the nested control loop. The outer loop is re-
sponsible for maintaining position and determines the velocity of the joint that will
minimize position error. The inner loop is responsible for maintaining the velocity of
the joint as demanded by the outer loop.

Velocity loop. We will study the inner velocity loop first and we will use as an example the
shoulder joint of the Puma 560 robot since its parameters are well known, see Table 9.1.

Ignoring Coulomb friction we write the Laplace transform of Eq. 9.7 as

where Ω(s) and U(s) are the Laplace transform of the time domain signals ω(t) and u(t)
respectively. Rearranging as a linear transfer function we write

The effective inertia from Eq. 9.3 is

(9.8)

Figure 9.2 shows that M22 varies significantly with manipulator pose so for now we
will take the mean value which is 2 kg m2 which yields a total inertia of

Note that the refered link inertia is comparable to the inertia of the motor itself.
The Simulink® model is shown in Fig. 9.8. A delay of 1 ms is included to model the

computational time of the velocity loop control algorithm and a saturator models the
finite maximum torque that the motor that can deliver. We use a proportional control-
ler based on the error between demanded and actual velocity to compute the demand
to the motor driver

(9.9)

The motor velocity is typically computed by taking the difference in motor posi-
tion at each sample time, and the position is measured by a shaft encoder.

To test this velocity controller we create a test harness
>> vloop_test

Table 9.1.

Motor and drive parameters for
Puma 560 shoulder joint (Corke

1996b)

9.4 · Manipulator Joint Control

206

Fig. 9.8. Velocity control loop,
Simulink® model vloop

Fig. 9.9. Test harness for the veloc-
ity control loop, Simulink® model
vloop_test. The input tau_d
is used to simulate a disturbance
torque acting on the joint

Fig. 9.10. Velocity loop with a
sawtooth demand. a Response;
b closeup of response

Chapter 9 · Dynamics and Control

207

with a sawtooth-shaped velocity demand which is shown in Fig. 9.9. Running the
simulator

>> sim('vloop_test');

and with a little experimentation we find that a gain of Kv= 1 gives satisfactory per-
formance as shown in Fig. 9.10. There is some overshoot at the step⊳ but less gain
leads to increased velocity error and more gain leads to oscillation – as always in con-
trol engineering it is a matter of tradeoffs.

So far we have ignored one very important dynamic effect on robot arms – gravity.
Figure 9.1b shows that the gravity torque on this joint varies from approximately −40
to 40 N m. We now add a disturbance torque equal to just half that amount, 20 N m at
the load. We edit the test harness and rerun the simulation. The results shown in Fig. 9.11
indicate that the control performance has been badly degraded – the tracking error
has increased to more than 1 rad s–1.

There are three common strategies to counter this error. The simplest is to increase
the gain. This will reduce the tracking error but push the system into instability.

The second strategy, commonly used in industrial motor drives, is to add integral
action. We change Eq. 9.9 to a proportional-integral controller

In the Simulink® model of Fig. 9.8 this is achieved by setting Ki to a non-zero
value. With some experimentation we find the gains Kv= 1 and Ki= 10 work well and
the performance is shown in Fig. 9.12. The integrator state evolves over time to cancel
out the disturbance term and we can see the error decaying to zero. In practice the
disturbance varies over time and the integrator’s ability to track it depends on the value
of the integral gain Ki. In reality other disturbances affect the joint, for instance Cou-
lomb friction and torques due to velocity and acceleration coupling. The controller
needs to be well tuned so that these have minimal effect on the tracking performance.

From a classical control system perspective the original velocity loop contains no
integrator block which means it is classified as a Type 0 system. A characteristic of
such systems is they exhibit a finite error for a constant input or constant disturbance
input, just as we observed in Fig. 9.11. Adding the integral controller changed the sys-
tem to Type 1 which has zero error for a constant input or constant disturbance. As
always in engineering there are some tradeoffs. The integral term can lead to increased
overshoot so increasing Ki usually requires some compensating reduction of Kv. If the
joint actuator is pushed to its performance limit, for instance the torque limit is reached,
then the tracking error will grow with time since the motor acceleration will be lower
than required. The integral of this increasing error will grow leading to a condition
known as integral windup. When the joint finally reaches its destination the large ac-
cumulated integral keeps driving the motor forward until the integral decays – leading
to large overshoot. Various strategies are employed to combat this, such as limiting the
maximum value of the integrator, or only allowing integral action when the motor is
close to its setpoint.

Motor limits. Electric motors are limited in both torque and speed. The maximum torque is de-
fined by the maximum current the drive electronics can provide. A motor also has a maximum
rated current beyond which the motor can be damaged by overheating or demagnetization of its
permanent magnets which irreversibly reduces its torque constant. As speed increases so does
friction and the maximum speed is ωmax= τmax/B.

The product of motor torque and speed is the mechanical output power and also has an upper
bound. Motors can tolerate some overloading, peak power and peak torque, for short periods of
time but the sustained rating is significantly lower than the peak.

While a step response is a common and

useful measure of control perforamance,

in practice a velocity loop would never

receive a step demand.

9.4 · Manipulator Joint Control

208

Strategies one and two are collectively referred to as disturbance rejection and are
concerned with reducing the effect of an unknown disturbance. However if we think
about the problem in its robotics context the gravity disturbance is not unknown. In
Sect. 9.1.1 we showed how to compute the torque due to gravity that acts on each
joint. If we know this torque, and the motor torque constant, we can add it to the
output of the PI controller.� The third strategy to reduce the effect of disturbance is
therefore to predict it and cancel it out – a strategy known as torque feedforward
control. The block diagram of Fig. 9.8 is augmented with a feedforward term which is
shown by the red wiring in Fig. 9.13.

The final consideration in control design is how inertia variation affects the closed-
loop response. Using Eq. 9.8 and the data from Fig. 9.2c we find that the minimum
and maximum joint inertia are 320× 10−6 and 450× 10−6 kg m2 respectively. Fig-
ure 9.14 shows the velocity tracking error using the control gains chosen above for
the case of minimum and maximum inertia. We can see that the tracking error de-
cays more slowly for larger inertia, and is showing signs of instability for the mini-
mum inertia case. In practice the gain would be chosen to optimize the closed-loop
performance at both extremes.

Motor speed control is important for all types of robots, not just arms. For example
it is used to control the speed of the wheels for car-like vehicles and and the rotors of a
quad-rotor as discussed in Chap. 4.

Fig. 9.11.

Velocity loop response to a saw-
tooth demand with a gravity
disturbance of 20 N m

Fig. 9.12.

Velocity loop response to a saw-
tooth demand with a gravity
disturbance of 20 N m and
proportional-integral control

Even if the gravity load is known impre-

cisely feedforward can reduce the mag-

nitude of the disturbance.

Chapter 9 · Dynamics and Control

209

Position loop. The outer loop is responsible for maintaining position and its Simulink®
model is shown in Fig. 9.15. The error in position provides the velocity demand for the
inner loop.

To test the position control loop we create another test harness

>> ploop_test

The position demand comes from an LSPB trajectory generator that moves from 0 to
0.5 rad in 1 s with a sample rate of 1 000 Hz. The test harness shown in Fig. 9.16 can
also inject a disturbance torque into the velocity loop.

We use a proportional controller based on the error between actual and demanded
position to compute the desired speed of the motor

(9.10)

Fig. 9.13. Velocity control loop with
feedforward (shown in red), from
Simulink® model vloop_test2

Fig. 9.14. Velocity loop with a saw-
tooth demand with integral action
and 20 N m torque disturbance,
but varying inertia M22. a Re-
sponse; b closeup of response

Back EMF. A spinning motor acts like a generator and produces a voltage Vb called the back EMF
which opposes the current flowing into the motor. Back EMF is proportional to motor speed
Vb=Kmω where Km is the motor torque constant again whose units can also be interpreted as
V s rad–1. When this voltage equals the maximum possible voltage the drive electronics can pro-
vide then no more current can flow into the motor and torque falls to zero. This provides a prac-
tical upper bound on motor speed.

9.4 · Manipulator Joint Control

210

The joint controller is tuned by adjusting the three gains: Kp, Kv, Ki in order to achieve
good tracking performance at both low and high speed. For Kp= 40 the tracking and
error responses are shown in Fig. 9.17a. The error between the demand and actual
curves is due to the integral of the error in the velocity loop which has units of angle.

The position loop is based on feedback of error which is of course a classical approach.
An often overlooked characteristic of proportional control is that zero error means zero
demand to the controlled system. In this case zero position error means zero demanded
velocity to the inner loop – to achieve non-zero joint velocity demand from Eq. 9.10 re-
quires non-zero error which is of course not desirable for accurate tracking. Usefully the
LSPB trajectory function computes velocity as a function of time as well as position. If we
know the velocity we can add it to the output of the proportional control loop, the input to
the velocity loop – a strategy known as velocity feedforward control. The time response
with feedforward is shown in Fig. 9.17b and we see that tracking error is greatly reduced.

Let us recap what we have learnt about independent joint control. A common struc-
ture is the nested control loop. The inner loop uses a proportional or proportional-
integral control law to generate a torque so that the actual velocity closely follows the
velocity demand. The outer loop uses a proportional control law to generate the veloc-
ity demand so that the actual position closely follows the position demand. Distur-
bance torques due to gravity and other dynamic coupling effects impact the perfor-
mance of the velocity loop as do variation in the parameters of the plant being con-
trolled, and this in turn lead to errors in position tracking. Gearing reduces the magni-
tude of disturbance torques by 1/G and the variation in inertia and friction by 1/G2 but
at the expense of cost, weight, increased friction and mechanical noise.

The velocity loop performance can be improved by adding an integral control term,
or by feedforward of the disturbance torque which is largely predictable. The position
loop performance can also be improved by feedforward of the desired joint velocity. In

Fig. 9.15. Position control loop,
Simulink® model ploop

Fig. 9.16.

Test harness for position con-
trol loop, Simulink® model
ploop_test

�

Chapter 9 · Dynamics and Control

211

practice control systems use both feedforward and feedback control. Feedforward is used
to inject signals that we can compute, in this case the joint velocity, and in the earlier case
the gravity torque. Feedback control compensates for all remaining sources of error in-
cluding variation in inertia due to manipulator pose and payload, changes in friction
with time and temperature, and all the disturbance torques due to velocity and accel-
eration coupling. In general the use of feedforward allows the feedback gain to be
reduced since a large part of the demand signal now comes from the feedforward.

9.4.3 lRigid-Body Dynamics Compensation

The previous section showed the limitations of independent joint control and intro-
duced the concept of feedforward to compensate for the gravity disturbance torque.
Inertia variation and other dynamic coupling forces were not explicitly dealt with and
were left for the feedback controller to handle. However inertia and coupling torques
can be computed according to Eq. 9.1 given knowledge of joint angles, joint velocities
and accelerations, and the inertial parameters of the links. We can incorporate these
torques into the control law using one of two model-based approaches: feedforward con-
trol, and computed torque control. The structural differences are contrasted in Fig. 9.18.

9.4.3.1 lFeedforward Control

The torque feedforward controller shown in Fig. 9.18a is given by

where Kp and Kv are the position and velocity gain (or damping) matrices respectively,
and D(·) is the inverse dynamics function. The gain matrices are typically diagonal.
The feedforward term provides the joint forces required for the desired manipulator
state (q*, Å*, Ì*) and the feedback term compensates for any errors due to uncertainty
in the inertial parameters, unmodeled forces or external disturbances.

We can also consider that the feedforward term linearizes the non-linear dynamics
about the operating point (q*, ¸*, »*). If the linearization is ideal then the dynamics of
the error e= q*− q are given by

(9.11)

Fig. 9.17. Position loop following
an LSPB trajectory. a Proportional
control only b proportional control
plus velocity demand feedforward

9.4 · Manipulator Joint Control

212

For well chosen Kp and Kv the error will decay to zero but the joint errors are coupled�

and their dynamics are dependent on the manipulator configuration.
To test this controller using Simulink® we first create a SerialLink object

>> mdl_puma560

and then load the torque feedforward controller model

>> sl_fforward

which is shown in Fig. 9.19. The feedforward torque is computed using the RNE block
and added to the feedback torque computed from position and velocity error. The
desired joint angles and velocity are generated using a jtraj block.

Since the robot configuration changes relatively slowly the feedforward torque can
be evaluated at a lower rate, Tff, than the error feedback loops, Tfb. This is demon-
strated in Fig. 9.19 by the zero-order hold block sampling at the relatively low sample
rate of 20 Hz.

9.4.3.2 lComputed Torque Control

The computed torque controller is shown in Fig. 9.18b. It belongs to a class of con-
trollers known as inverse dynamic control. The principle is that the non-linear
system is cascaded with its inverse so that the overall system has a constant unity
gain. In practice the inverse is not perfect so a feedback loop is required to deal with
errors.

Fig. 9.18.

Manipulator control structures.
a Feedforward control, b com-
puted torque control

Due to the non-diagonal matrix M.

Chapter 9 · Dynamics and Control

213

The computed torque control is given by

where Kp and Kv are the position and velocity gain (or damping) matrices respectively,
and D(·) is the inverse dynamics function.

In this case the inverse dynamics must be evaluated at each servo interval, although
the coefficient matrices M, C, and G could be evaluated at a lower rate since the robot
configuration changes relatively slowly. Assuming ideal modelling and parameteriza-
tion the error dynamics of the system are

(9.12)

where e= q*− q. Unlike the torque feedforward controller the joint errors are un-
coupled and their dynamics are therefore independent of manipulator configuration.
In the case of model error there will be some coupling between axes, and the right-
hand side of Eq. 9.12 will be a non-zero forcing function.

Using Simulink® we first create a SerialLink object, remove Coulomb friction
and then load the computed torque controller

>> mdl_puma560
>> p560 = p560.nofriction();
>> sl_ctorque

which is shown in Fig. 9.20. The torque is computed using the Toolbox RNE block and
added to the feedback torque computed from position and velocity error. The desired
joint angles and velocity are generated using a jtraj block whose parameters are the
initial and final joint angles. We run the simulation

>> r = sim('sl_ctorque');
>> t = r.find('tout');
>> q = r.find('yout');

The tracking error is shown in Fig. 9.21.

9.4.4 lFlexible Transmission

In many high-performance robots the flexibility of the transmission between motor
and link can be a significant dynamic effect. The flexibility might be caused by tor-
sional flexure of an elastic coupling between the motor and the shaft, the drive shaft itself,

Fig. 9.19. The Simulink® model
sl_fforward for Puma 560
with torque feedforward control.
The blocks with the staircase icons
are zero-order holds

9.4 · Manipulator Joint Control

214

or in the case of a cable driven robot, the longitudinal stiffness of the cable. In dynamic
terms the result is to add a poorly damped spring between the motor and the load.

We will demonstrate this for the 2-link robot introduced in Sect. 7.2.1. The Simulink®
model

>> mdl_twolink
>> sl_flex

is shown in Fig. 9.22. The compliant drive is modeled by the motor angle qm and the
link angle ql. The torque acting on the link is due to the spring constant and damping

For simplicity we assume that the motor and its control loop is infinitely stiff, that
is, the reaction torque from the spring does not influence the angle of the motor.

We run the simulation

>> r = sim('sl_flex')

Fig. 9.20. Robotics Toolbox ex-
ample sl_ctorque, computed
torque control

Fig. 9.21.

Computed torque control: joint
tracking error for first 3 joints

Series-elastic actuator (SEA). So far we have considered the flexibility between motor and load
as a nuisance, but in many situations it has a real benefit. A class of actuators known as series-
elastic actuators deliberately introduce a soft spring between the motor and the load. This is
useful for robots that interact closely with people since it makes the robot less dangerous in case
of collision. For robots that must exert a force as part of their task the extension of the elastic
element provides an estimate of the applied force which can be used for control.

�

Chapter 9 · Dynamics and Control

215

and the results are shown in Fig. 9.23. The first joint receives a step position demand
change at time 1 s and we see some significant overshoot in the response of both joints.
Note that joint 2 has an initial negative error due to the inertial coupling from the
acceleration of joint 1.

An effective controller for this system would need to measure the motor and the
link angle, or the motor angle and the length of the spring for each joint. A more
complex phenomena in high-performance robots is link flexibility, but this cannot be
modelled using the rigid-link assumptions of the Toolbox.

9.5 lWrapping Up

In this Chapter we learnt how to model the forces and torques acting on the individual
links of a serial-link manipulator. The equations of motion or inverse dynamics compute
the joint forces required to achieve particular link angle, velocity and acceleration. The
equations have terms corresponding to inertia, gravity, velocity coupling, friction and
externally applied forces. We looked at the significance of these terms and how they vary
with manipulator configuration. The equations of motion provide insight into important
issues such as how the velocity or acceleration of one joint exerts a disturbance force on
other joints which is important for control design. We then discussed the forward dy-
namics which describe how the configuration evolves with time in response to forces and
torques applied at the joints by the actuators and by external forces such as gravity.

We then discussed approaches to control, starting with the simplest case of indepen-
dent joint control, and explored the effect of disturbance torques and variation in inertia.
We showed how feedforward of disturbances such as gravity could provide significant
improvement in performance. We extended the feedforward notion to full model-based
control using torque feedforward and computed torque controllers. Finally we discussed
the effect of compliance between the robot motor and the link.

Fig. 9.22. Robotics Toolbox ex-
ample sl_flex, simple flexible
2-link manipulator

Fig. 9.23.

Flexible link control: joint angle
response to step input

�
9.5 · Wrapping Up

216

Further Reading

The dynamics of serial-link manipulators is well covered by all the standard robotics
textbooks such as Paul (1981), Spong et al. (2006), Siciliano et al. (2008) and the Ro-
botics Handbook (Siciliano and Khatib 2008, § 2). The efficient recursive Newton-
Euler method we use today is the culmination of much research in the early 1980s and
described in Hollerbach (1982). The equations of motion can be derived via a number
of techniques, including Lagrangian (energy based), Newton-Euler, d’Alembert (Fu
et al. 1987; Lee et al. 1983) or Kane’s (Kane and Levinson 1983) method. However the
computational cost of Lagrangian methods (Uicker 1965; Kahn 1969) is enormous, O(N4),
which made it infeasible for real-time use on computers of that era and many simpli-
fications and approximation had to be made. Orin et al. (1979) proposed an alterna-
tive approach based on the Newton-Euler (NE) equations of rigid-body motion ap-
plied to each link. Armstrong (1979) then showed how recursion could be applied
resulting in O(N) complexity. Luh et al. (1980) provided a recursive formulation of
the Newton-Euler equations with linear and angular velocities referred to link coor-
dinate frames which resulted in a 1 000-fold improvement in execution time making
it practical to implement in real-time. Hollerbach (1980) showed how recursion could
be applied to the Lagrangian form, and reduced the computation to within a factor
of 3 of the recursive NE form, and Silver (1982) showed the equivalence of the recur-
sive Lagrangian and Newton-Euler forms, and that the difference in efficiency was
due to the representation of angular velocity.

The forward dynamics, Sect. 9.3, is computationally more expensive. An O(N3)
method was proposed by Walker and Orin (1982). Featherstone’s (1987) articulated-
body method has O(N) complexity but for N< 9 is more expensive than Walker’s
method.

Critical to any consideration of robot dynamics is knowledge of the inertial pa-
rameters, ten per link, as well as the motor’s parameters. Corke and Armstrong-
Hélouvry (1994, 1995) published a meta-study of Puma parameters and provide a
consensus estimate of inertial and motor parameters for the Puma 560 robot. Some
of this data is obtained by painstaking disassembly of the robot and determining the
mass and dimensions of the components. Inertia of components can be estimated
from mass and dimensions by assuming mass distribution, or it can be measured
using a bifilar pendulum.

Alternatively the parameters can be estimated by measuring the joint torques or
the base reaction force and moment as the robot moves. A number of early works in
this area include Mayeda et al. (1990), Izaguirre and Paul (1985), Khalil and Dombre
(2002) and a more recent summary is Siciliano and Khatib (2008, § 14). Key to suc-
cessful identification is that the robot moves in a way that is sufficiently exciting
(Gautier and Khalil 1992; Armstrong 1989). Friction is an important dynamic char-
acteristic and is well described in Armstrong’s (1988) thesis. The survey by Armstrong-
Hélouvry et al. (1994) is a very readable and thorough treatment of friction model-
ling and control. A technique for measuring the electrical parameters of motors, such
as torque constant and armature resistance, without having to remove the motor from
the robot is described by Corke (1996a).

The discussion on control has been quite brief and has strongly emphasized the
advantages of feedforward control. Robot joint control techniques are well covered
by Spong et al. (2006), Craig (2004) and Siciliano et al. (2008) and summarized in
Siciliano and Khatib (2008, § 6). Siciliano et al. have a good discussion of actuators
and sensors as does the, now quite old, book by Klafter et al. (1989). The control of
flexible joint robots is discussed in Spong et al. (2006). Adaptive control can be used
to accomodate the time varying inertial parameters and there is a large literature on
this topic but some good early references include the book by Craig (1987) and key
papers include Craig et al. (1987), Spong (1989), Middleton and Goodwin (1988) and
Ortega and Spong (1989).

Chapter 9 · Dynamics and Control

217

Dynamic manipulability is discussed in Spong et al. (2006) and Siciliano et al.
(2008). The Asada measure used in the Toolbox is described in Asada (1983).

Newton’s Principia was written in Latin but an English translation is available on
line at http://www.archive.org/details/newtonspmathema00newtrich. His writing
on other subjects, including transcripts of his notebooks, can be found online at
http://www.newtonproject.sussex.ac.uk.

Exercises

1. Run the code on page 194 to compute gravity loading on joints 2 and 3 as a function
of configuration. Add a payload and repeat.

2. Run the code on page 195 to show how the inertia of joints 1 and 2 vary with pay-
load?

3. Generate the curve of Fig. 9.2c. Add a payload and compare the results.
4. By what factor does this inertia vary over the joint angle range?
5. Why is the manipulator inertia matrix symmetric?
6. The robot exerts a wrench on the base as it moves (page 198). Consider that the

robot is sitting on a frictionless horizontal table (say on a large air puck). Create a
simulation model that includes the robot arm dynamics and the sliding dynamics
on the table. Show that moving the arm causes the robot to translate and spin. Can
you devise an arm motion that moves the robot base from one position to another
and stops?

7. Overlay the manipulability ellipsoid on the display of the robot. Compare this with
the velocity ellipsoid from Sect. 8.1.4.

8. Independent joint control (page 204)
a) Investigate different values of Kv and Ki as well as demand signal shape and

amplitude.
b) Perform a root-locus analysis of vloop to determine the maximum permis-

sible gain for the proportional case. Repeat this for the PI case.
c) Consider that the motor is controlled by a voltage source instead of a current

source, and that the motor’s impedance is 1 mH and 1.6 Ω. Modify vloop ac-
cordingly. Extend the model to include the effect of back EMF.

d) Increase the required speed of motion so that the motor torque becomes satu-
rated. With integral action you will observe a phenomena known as integral
windup – examine what happens to the state of the integrator during the mo-
tion. Various strategies are employed to combat this, such as limiting the maxi-
mum value of the integrator, or only allowing integral action when the motor is
close to its setpoint. Experiment with some of these.

e) Create a Simulink® model of the Puma robot with each joint controlled by vloop
and ploop. Parameters for the different motors in the Puma are described in
Corke and Armstrong-Hélouvry (1995).

9. The motor torque constant has units of N m A–1 and is equal to the back EMF con-
stant which has units of V s rad–1. Show that these units are equivalent.

10. Model-based control (page 211)
a) Compute and display the joint tracking error for the torque feedforward and

computed torque cases. Experiment with different motions, control parameters
and samplerate Tfb.

b) Reduce the rate at which the feedforward torque is computed and observe its
effect on tracking error.

c) In practice the dynamic model of the robot is not exactly known, we can only
invert our best estimate of the rigid-body dynamics. In simulation we can model
this by using the perturb method, see the online documentation, which re-
turns a robot object with inertial parameters varied by plus and minus the speci-
fied percentage. Modify the Simulink® models so that the RNE block is using a

9.5 · Wrapping Up

218

robot model with parameters perturbed by 10%. This means that the inverse dy-
namics are computed for a slightly different dynamic model to the robot under
control and shows the effect of model error on control performance. Investigate
the effects on error for both the torque feedforward and computed torque cases.

11. Flexible drive robot (page 213)
a) Experiment with different values of joint stiffness and control parameters.
b) Modify the simulation to eliminate the assumption that the motor is infinitely

stiff. That is, replace the motor position with a nested control loop that is subject
to a disturbance torque from the elastic element. Tune the controller for good
performance.

c) Introduce a rigid object into the environment and modify the simulation so that
the robot arm moves to touch the object and applies no more than 5 N force to it.

Chapter 9 · Dynamics and Control

Part IV Computer Vision

Chapter 10 Light and Color

Chapter 11 Image Formation

Chapter 12 Image Processing

Chapter 13 Image Feature Extraction

Chapter 14 Using Multiple Images

IV
Part

Almost all animal species use eyes – in fact evolution has invented the eye many times
over. Figure IV.1 shows a variety of eyes from nature: the compound eye of a fly, the main
and secondary eyes of a spider, the reflector-based eyes of a scallop, and the lens-based
eye of a human. Vertebrates have two eyes, but spiders and scallops have many eyes.

Even very simple animals, bees for example, with brains comprising just 106 neu-
rons (compared to our 1011) are able to perform complex and life critical tasks such as
finding food and returning it to the hive using vision (Srinivasan and Venkatesh 1997).
This is despite the very high biological cost of owning an eye: the complex eye itself,
muscles to move it, eyelids and tear ducts to protect it, and a large visual cortex (rela-
tive to body size) to process its data.

Our own experience is that eyes are a very effective sensor for recognition, naviga-
tion, obstacle avoidance and manipulation. Cameras mimic the function of an eye and
we wish to use cameras to create vision-based competencies for robots – to use digital
images to recognize objects and navigate within the world. Figure IV.2 shows a robot
with a number of different types of cameras.

Technological development has made it feasible for robots to use cameras as eyes.
For much of the history of computer vision, dating back to the 1960s, electronic cameras
were cumbersome and expensive and computer power was inadequate. Today we have
CMOS cameras developed for cell phones that cost just a few dollars each, and personal
computers come standard with massive parallel computing power. New algorithms,
cheap sensors and plentiful computing power make vision a practical sensor today.

In Chap. 1 we defined a robot as

a goal oriented machine that can sense , plan and act

and this part of the book is concerned with sensing using vision, or visual perception.
Whether a robot works in a factory or a field it needs to sense its world in order to plan
its actions.

In this part of the book we will discuss the process of vision from start to finish: from
the light falling on a scene, being reflected, gathered by a lens, turned into a digital image
and processed by various algorithms to extract the information required to support the
robot competencies listed above. These steps are depicted graphically in Figure IV.3.

Development of the eye. It is believed that all animal eyes share a common ancestor in a proto-eye
that evolved 540 million years ago. However major evolutionary advances seem to have occurred in
just the last few million years. The very earliest eyes, called eyespots, were simple patches of photo-
receptor protein in single-celled animals. Multi-celled animals evolved multicellular eyespots which
could sense the brightness of light but not its direction. Gradually the eyespot evolved into a shallow
cup shape which gave a limited ability to discriminate directional brightness according to which
cells were illuminated. The pit deepened, the opening became smaller, and the number of photore-
ceptor cells increased, forming a pin-hole camera that was capable of distinguishing shapes. Next
came an overgrowth of transparent cells to protect the eyespot which led to a filled eye chamber and
eventually the eye as we know it today. The lensed eye has evolved independently seven different
times across species. Nature has evolved ten quite distinct eye designs including those shown above.

Computer Vision

Vision is the process of discovering from images
what is present in the world and where it is.

David Marr

Fig. IV.1. a Robber fly, Holocephala
fusca; b jumping spider, Phidippus
putnami (a and b courtesy Tho-
mas Shahan, thomasshanan.com).
c Scallop (courtesy Sönke Johnsen),
each of the small blue spheres is an
eye. d Human eye

222

In Chap. 10 we start by discussing light, and in particular color because it is such an
important characteristic of the world that we perceive. Although we learn about color
at kindergarten it is a complex topic that is often not well understood. Next, in Chap. 11,
we discuss how an image of the world is formed on a sensor and converted to a digital
image that can be processed by a computer. Fundamental image processing algorithms
are covered in Chap. 12 and provide the foundation for the feature extraction algo-
rithms discussed in Chap. 13. Feature extraction is a problem in data reduction, in
extracting the essence of the scene from the massive amount of pixel data. For ex-
ample, how do we determine the coordinate of the round red object in the scene, which
can be described with perhaps just 4 bytes, given the millions of bytes that comprise
an image. To solve this we must address many important subproblems such as “what is
red?”, “how do we distinguish red pixels from non-red pixels?”, “how do we describe
the shape of the red pixels?”, “what if there are more than one red object?” and so on.

As we progress through these chapters we will encounter the limitations of using
just a single camera to view the world. Once again biology shows the way – multiple
eyes are common and have great utility. This leads us to consider using multiple views
of the world, from a single moving camera or multiple cameras observing the scene
from different viewpoints. This is discussed in Chap. 14 and is particularly important
for understanding the 3-dimensional structure of the world. All of this sets the scene
for describing how vision can be used for closed-loop control of arm-type and mobile
robots which is the subject of the next and final part of the book.

Fig. IV.2.

A cluster of cameras on an out-
door mobile robot: forward
looking stereo pair, side looking
wide angle camera, overhead
panoramic camera mirror
(CSIRO mobile robot)

Fig. IV.3.

Steps involved in image
processing

Part IV · Computer Vision

10
Chapter

In ancient times it was believed that the eye radiated a cone of visual flux which mixed
with visible objects in the world to create a sensation in the observer, like the sense of
touch, the extromission theory. Today we consider that light from an illuminant falls
on the scene, some of which is reflected into the eye of the observer to create a percep-
tion about that scene. The light that reaches the eye, or the camera, is a function of the
illumination impinging on the scene and the material property known as reflectivity.

This chapter is about light itself and our perception of light in terms of brightness
and color. Section 10.1 describes light in terms of electro-magnetic radiation and mix-
tures of light as continuous spectra. Section 10.2 provides a brief introduction to colo-
rimetry, the science of color perception, human trichromatic color perception and
how colors can be represented in various color spaces. Section 10.3 covers a number of
advanced topics such as color constancy, gamma correction, and an example concerned
with distinguishing different colored objects in an image.

10.1 lSpectral Representation of Light

Around 1670 Sir Isaac Newton discovered that white light was a mixture of different
colors. We now know that each of these colors is a single frequency or wavelength of
electro-magnetic radiation. We perceive the wavelengths between 400 and 700 nm as
colors as shown in Fig. 10.1.

In general the light that we observe is a mixture of many wavelengths and can be
represented as a function E(λ) that describes intensity as a function of wavelength λ.
Monochromatic light from a laser that emits light at a single wavelength in which
case E is an impulse.

The most common source of light is incandescence which is the emission of light
from a hot body such as the Sun or the filament of a light bulb. In physics this is mod-
eled as a blackbody radiator or Planckian source. The emitted power is a function of
wavelength λ and given by Planck’s radiation formula

(10.1)

where T is the absolute temperature (K) of the source, h is Planck’s constant, k is
Boltzmann’s constant, and c the speed of light.⊳ This is the power emitted per unit
area per unit wavelength.

Light and Color

I cannot pretend to feel impartial about colours.
I rejoice with the brilliant ones

and am genuinely sorry for the poor browns.
Winston Churchill

c = 2.998× 108 m s–1,

h= 6.626× 10−34 Js,

k= 1.381× 10−23 J K–1.

Spectrum of light. During the plague years of 1665–1666 Isaac Newton developed his theory of
light and color. He demonstrated that a prism could decompose white light into a spectrum of
colours, and that a lens and a second prism could recompose the multicoloured spectrum into
white light. Importantly he showed that the color of the light did not change when it was reflected
from different objects, from which he concluded that color is an intrinsic property of light not the
object. (Newton’s sketch to the left)

224

We can plot the emission spectra for a blackbody at different temperatures. First we
define a range of wavelengths

>> lambda = [300:10:1000]*1e-9;

in this case from 300 to 1 000 nm, and then compute the blackbody spectra

>> for T=1000:1000:6000
>> plot(lambda*1e9, blackbody(lambda, T)); hold all
>> end

as shown in Fig. 10.2a. We can see that as temperature increases the maximum amount
of power increases and the wavelength at which the peak occurs decreases. The total
amount of power radiated (per unit area) is the area under the blackbody curve and is
given by the Stefan-Boltzman law

and the wavelength corresponding to the peak of the blackbody curve is given by Wien’s
displacement law

The wavelength of the peak decreases with increasing temperature and in familiar terms
this is what we observe when we heat an object. It starts to glow faintly red at around 800 K
and moves through orange and yellow toward white as temperature increases.�

The filament of tungsten lamp has a temperature of 2 600 K and glows white hot.
The Sun has a surface temperature of 6 500 K. The spectra of these sources

>> lamp = blackbody(lambda, 2600);
>> sun = blackbody(lambda, 6500);
>> plot(lambda*1e9, [lamp/max(lamp) sun/max(sun)])

Fig. 10.1.

The spectrum of visible colors
as a function of wavelength in
nanometres. The visible range
depends on viewing conditions
and the individual but is gener-
ally accepted as being the range
400–700 nm. Wavelengths
greater than 700 nm are termed
infra-red and those below
400 nm are ultra-violet

Fig. 10.2. Blackbody spectra.
a Blackbody emission spectra for
temperatures from 1 000–6 000 K.
b Blackbody emissions for the
Sun (6 500 K), a tungsten lamp
(2 600 K) and the response of the
human eye – all normalized to
unity for readability

Incipient red heat 770 – 820 K,

dark red heat 920 – 1 020 K,

bright red heat 1 120 – 1 220 K,

yellowish red heat 1 320 – 1 420 K,

incipient white heat 1 520 – 1 620 K,

white heat 1 720 – 1 820 K.

Chapter 10 · Light and Color

225

are compared in Fig. 10.2b. The tungsten lamp curve is much lower in magnitude, but
has been scaled up for readability. The peak of the Sun’s emission is around 450 nm
and it emits a significant amount of power in the visible part of the spectrum. The
peak for the tungsten lamp is at a much longer wavelength and perversely very little of
its power falls within the human visible region. The bulk of the power is infra-red
which we perceive as heat not light.

10.1.1 lAbsorption

The Sun’s spectrum at ground level on the Earth has been measured and tabulated

>> sun_ground = loadspectrum(lambda, 'solar.dat');
>> plot(lambda*1e9, sun_ground)

and is shown in Fig. 10.3a. It differs markedly from that of a blackbody since some
wavelengths have been absorbed more than others by the atmosphere. Our eye’s peak
sensitivity has evolved to be closely aligned to the peak of the spectrum of atmo-
spherically filtered sunlight.

Transmittance T is the inverse of absorptance and is the fraction of light passed as
a function of wavelength. It is described by Beer’s law

(10.2)

where A is the absorption coefficient in units of m–1 and d is the path length. The ab-
sorption spectrum A(λ) for water is loaded from tabulated data

>> [A, lambda] = loadspectrum([400:10:700]*1e-9, 'water.dat');

Sir Humphry Davy demonstrated the first electrical incandescent lamp using a platinum fila-
ment in 1802. Sir Joseph Swan demonstrated his first light bulbs in 1850 using carbonized pa-
per filaments. However it was not until advances in vacuum pumps in 1865 that such lamps
could achieve a useful lifetime. Swan patented a carbonized cotton filament in 1878 and a car-
bonized cellulose filament in 1881. His lamps came into use after 1880 and the Savoy Theatre in
London was completely lit by electricity in 1881. In the USA Thomas Edison did not start re-
search into incandescent lamps until 1878 but he patented a long-lasting carbonized bamboo
filament the next year and was able to mass produce them. The Swan and Edison companies
merged in 1883.

The light bulb subsequently became the dominant source of light on the planet but is now
being phased out due to its poor energy efficiency. (Photo by Douglas Brackett, Inv., Edisonian.com)

Fig. 10.3. a Modified solar spec-
trum at ground level (blue). The
dips in the solar spectrum corre-
spond to various water absorption
bands. CO2 absorbs radiation in
the infra-red region, and ozone O3

absorbs strongly in the ultra-violet
region. The Sun’s blackbody spec-
trum (normalized) is shown in red
and the response of the human
eye is shown dashed. b Trans-
mission through 5 m of water.
The longer wavelengths, reds,
have been strongly attenuated

10.1 · Spectral Representation of Light

226

and the transmission through 5 m of water is

>> d = 5;
>> T = 10.^(-A*d);
>> plot(lambda*1e9, T);

which is plotted in Fig. 10.3b. Differential absorption of wavelengths is a significant
concern when imaging underwater and we revisit this topic in Sect. 10.3.1.

10.1.2 lReflection

The light reflected from a surface, its luminance, has a spectrum given by

(10.3)

where E is the incident illumination and R ∈ [0, 1] is the reflectivity or reflectance
of the surface and is a function of wavelength. White paper for example has a re-
flectance of around 70%. The reflectance spectra of many materials have been
measured and tabulated.� Consider for example the reflectivity of a red house
brick

>> [R, lambda] = loadspectrum([100:10:10000]*1e-9, 'redbrick.dat');
>> plot(lambda*1e6, R);

which is plotted in Fig. 10.4. We see that it reflects red colors more than blue.
The illuminance of the Sun in the visible region

>> lambda = [400:10:700]*1e-9; % visible spectrum

is

>> E = loadspectrum(lambda, 'solar.dat');

at ground level. The reflectivity of the brick is

>> R = loadspectrum(lambda, 'redbrick.dat');

and the light reflected from the brick is

>> L = E .* R;
>> plot(lambda*1e9, L);

which is shown in Fig. 10.5. It is this spectrum that is interpreted by our eyes as the
color red.

Fig. 10.4. Reflectance of a weath-
ered red house brick (data from
ASTER, Baldridge et al. 2009).
a Full range measured from
300 nm visible to 10000 nm (infra-
red); b closeup of visible region

From http://speclib.jpl.nasa.gov/

weathered red brick (0412UUUBRK).

Chapter 10 · Light and Color

227

10.2 lColor

Color is the general name for all sensations arising from the
activity of the retina of the eye and its attached nervous

mechanisms, this activity being, in nearly every case in the normal
individual, a specific response to radiant energy of certain

wavelengths and intensities.
T. L. Troland,

Report of Optical Society of America
Committee on Colorimetry 1920–1921

We have described the spectra of light in terms of power as a function of wavelength,
but our own perception of light is in terms of subjective quantities such as bright-
ness and color. Light that is visible to humans lies in the range of wavelengths from
400 nm (violet) to 700 nm (red) with the colors blue, green, yellow and orange in
between, as shown in Fig. 10.1.

Our eyes contain two types of light sensitive cells as shown in Fig. 10.6. Cone cells
respond to particular colors and provide us with our normal daytime vision. Rod
cells are much more sensitive than cone cells but respond to intensity only and are
used at night.⊳

The brightness we associate with a particular wavelengths is known as luminosity
and is measured in units of lumens per watt. For our daylight cone-cell vision the
luminosity as a function of wavelength has been experimentally determined, tabu-
lated and forms the basis of the 1931 CIE standard that represents the average human
observer.⊳ The luminosity function is provided by the Toolbox

>> human = luminos(lambda);
>> plot(lambda*1e9, human)

and is shown in Fig. 10.7a. Consider two lights emitting the same power (in watts) but
one has a wavelength of 550 nm (green) and the other has a wavelength of 450 nm
(blue). The perceived brightness of these two lights is quite different, in fact the blue
light appears only

>> luminos(450e-9) / luminos(550e-9)
ans =
 0.0382

or 3.8% as bright as the green one.

Fig. 10.5.

Luminance of the weathered red
house brick under illumination

from the Sun at ground level,
based on data from Fig. 10.3a

and10.4b

Therefore at night you have no color vi-

sion.

This is the photopic response for a light-

adapted eye using the cone photorecep-

tor cells. The dark adapted, or scotopic

response, using the eye’s monochro-

matic rod photoreceptor cells is different,

and peaks at around 510 nm.

10.2 · Color

228

Radiometric and photometric quantities. Two quite different sets of units are used when dis-
cussing light: radiometric and photometric. Radiometric units are used in Sect. 10.1 and are based
on quantities such as power and are expressed in familiar SI units such as watts.

Photometric units are analogs of radiometric units but take into account the visual sensation
in the observer. Luminous power or luminous flux is the perceived power of a light source and is
measured in lumens (abbreviated to lm) rather than watts. A 1 W light source at 555 nm, the peak
response, by definition emits a luminous flux of 683 lm. By contrast a 1 W light source at 800 nm
emits a luminous flux of 0 lm – it causes no visual sensation at all.

A 1 W incandescent lightbulb however produces a perceived visual sensation of less than 15 lm
or a luminous efficiency of 15 lm W–1. Fluorescent lamps achieve efficiencies up to 100 lm W–1

and white LEDs up to 150 lm W–1.

Fig. 10.6.

A coloured scanning electron
micrograph of rod cells (white)
and cone cells (yellow) in the
human eye. The cells diameters
are in the range 0.5–4 µm. The
cells contain different types of
light-sensitive protein called
photopsin. The cell bodies (red)
of the receptor cells are located in
a layer above the rods and cones

Fig. 10.7. a Luminosity curve for
standard observer human observer.
The peak response is 683 lm W–1

at 555 nm (green). The response of
a silicon CCD camera is shown
dashed for comparison. b Spectral
response of human cones (normal-
ized)

The eyes of different species have different spectral responses. Many insects are
able to see well into the ultra-violet region of the spectrum. The silicon sensors used in
digital cameras have strong sensitivity in the red and infra-red part of the spectrum�

which we can also plot

>> camera = ccdresponse(lambda);
>> hold on
>> plot(lambda*1e9, camera*max(human), '--')

and is shown superimposed in Fig. 10.7.

The LED on an infra-red remote control

can be seen as a bright light in most digi-

tal cameras – try this with your mobile

phone camera and TV remote. Some se-

curity cameras provide infra-red scene

illumination for covert night time moni-

toring. Note that some cameras are fit-

ted with infra-red filters to prevent the

sensor becoming saturated by ambient

infra-red radiation.

�

Chapter 10 · Light and Color

229

In normal daylight conditions our cone photoreceptors are active and these are
color sensitive. Humans are trichromats and have three types of cones that respond to
different parts of the spectrum. They are referred to as long (L), medium (M) and
short (S) according to the wavelength of their peak response, or more commonly as
red, green and blue. The spectral responses of the cones can be loaded

>> cones = loadspectrum(lambda, 'cones.dat');
>> plot(lambda*1e9, cones)

where cones has three columns for each of the L, M and S cone responses and each
row corresponds to the wavelength in lambda. The spectral response of the cones
L(λ), M(λ) and S(λ) are shown in Fig. 10.7b.⊳

Other species have different numbers of cones. Birds, fish and amphibians are
tetrachromats, that is, they have four types of cones. Most other mammals, for instance
dogs, are dichromats and have only two types of cones. There is speculation that some
human females are tetrachromats.⊳

The retina of the human eye has a central or foveal region which is only 0.6 mm in
diameter and contains most of the 6 million cone cells: 65% sense red, 33% sense green
and only 2% sense blue. We unconsciously scan our high-resolution fovea over the
world to build a large-scale mental image of our surrounds. In addition there are
120 million rod cells, which are also motion sensitive, distributed over the retina.

The sensor in a digital camera is analagous to the retina, but instead of rod and
cone cells there is a regular array of light sensitive photosites on a silicon chip. Each
photosite is of the order 1–10 µm square and outputs a signal proportional to the in-
tensity of the light falling over its area.⊳ For a color camera the photosites are covered
by color filters which pass either red, green or blue light to the photosites. The spectral
response of the filters is the functional equivalent of the cones’ response M(λ) in Fig. 10.7b.
A very common arrangement of color filters is the Bayer pattern shown in Fig. 10.8. It
uses a regular 2× 2 photosite pattern comprising two green filters, one red and one blue.⊳

The luminance of an object L(λ) given by Eq. 10.3 results in a particular response
from each of the three cones

(10.4)

where Mr(λ), Mg(λ) and Mb(λ) are the spectral response of the red, green and blue
cones respectively as shown in Fig. 10.7b. The response is a 3-vector (ρ, γ, β) which is
known as a tristimulus.

Solid angle is measured in steradians,

a full sphere is 4π sr.

Lightmeters, illuminance and luminance. A photographic lightmeter measures luminous flux
which has units of lm m–2 or lux (lx). The luminous intensity of a point light source is the lumi-
nous flux per unit solid angle⊳ measured in lm sr–1 or candelas (cd). For a point source of lumi-
nous intensity I the illuminance E falling normally onto a surface is

where d is the distance between source and the surface. Outdoor illuminance on a bright sunny
day is approximately 10000 lx whereas office lighting levels are typically around 1000 lx.

The luminance or brightness of a surface is

which has units of cd m–2 or nit (nt), and where Ei is the incident illuminance at an angle θ to the
surface normal.

The spectral characteristics are due to

the different photopsins in the cone cell.

George Wald won the 1967 Nobel Prize

in Medicine for his experiments in the

1950s that showed the absorbance of

retinal photopsins.

They have an extra variant version of

the long-wave (L) cone type which

would lead to greater ability in color

discrimination.

More correctly the output is proportional

to the total number of photons captured

by the photosite since the last time it was

read. See page 260.

Each pixel therefore cannot provide in-

dependent measurements of red,

green and blue but it can be estimated.

For example, the amount of red at a blue

sensitive pixel is obtained by interpola-

tion from its red filtered neighbours.

More expensive “3 CCD” cameras can

make independent measurements at

each pixel since the light is split by a set

of prisms, filtered and presented to one

CCD array for each primary color. Digital

camera raw image files contain the actual

outputs of the Bayer-filtered photosites.

10.2 · Color

230

For our red brick example the tristimulus can be computed by approximating the
integrals of Eq. 10.4 as a summation

>> sum((L*ones(1,3)) .* cones)
ans =
 16.3578 10.0702 2.8219

The dominant response is from the L cone, which is unsurprising since we know that
the brick is red.

An arbitrary continuous spectrum is an infinite-dimensional vector and cannot be
uniquely represented by just 3 parameters. A consequence of this is that many differ-
ent spectral power distributions will produce the same visual stimulus and these are
referred to as metamers. More important is the corollary – an arbitrary visual stimu-
lus can be generated by a mixture of just three monochromatic stimuli. These are the
three primary colors we learnt about as children.� There is no unique set of primaries
– any three will do so long as none of them can be matched by a combination of the
others. The wavelength of the CIE 1976 standard primaries are given in Table 10.1.

10.2.1 lReproducing Colors

A computer or television display is able to produce a variable amount of each of three
primaries at every pixel. The primaries for a cathode ray tube (CRT) are created by
exciting phosphors on the back of the screen. For a liquid crystal display (LCD) the
colors are obtained by filtering white light emitted by the backlight. The important
problem is to determine how much of each primary is required to match a given
tristimulus.

We start by considering a monochromatic stimulus of wavelength λS which is de-
fined as

Fig. 10.8.

Bayer filtering. The grey blocks
represents the array of light-
sensitive silicon photosites over
which is an array of red, green
and blue filters. Invented by
Bryce E. Bayer of Eastman
Kodak, U.S. Patent 3,971,065.

Color blindness, or color deficiency, is the inability to perceive differences between some of the
colors that others can distinguish. Protanopia, deuteranopia, tritanopia refer to the absence of the
L, M and S cones respectively. More common conditions are protanomaly, deuteranomaly and
tritanomaly where the cone pigments are mutated and the peak response frequency changed. It is
most commonly a genetic condition since the red and green photopsins are coded in the
X chromosome. The most common form (occurring in 6% of males including the author) is deu-
teranomaly where the M-cone’s response is shifted toward the red end of the spectrum resulting
in reduced sensitivity to greens and poor discrimination of hues in the red, orange, yellow and
green region of the spectrum.

Table 10.1.

The CIE 1976 primaries (Commis-
sion Internationale de L’Éclairage
1987) are spectral colors corre-
sponding to the emission lines in
a mercury vapor lamp

Primary colors are not a fundamental

property of light – they are a fundamen-

tal property of the observer. There are

three primary colors only because we, as

trichromats, have three types of cones.

Birds would have four primary colors and

dogs would have two.

Chapter 10 · Light and Color

231

The response of the cones to this stimulus is given by Eq. 10.4 but because L(·) is an
impulse we can drop the integral to obtain the tristimulus

(10.5)

Consider next three primary light sources denoted R, G and B with wavelengths λr,
λg and λb and intensities R, G and B respectively.⊳ The tristimulus from these light
sources is

(10.6)

For the perceived color of these threee lightsources to match that of the monochro-
matic stimulus the two tristimuli must be equal. We equate Eq. 10.5 and Eq. 10.6 and
write compactly in matrix form as

which we can invert to give the required amounts of primary colors

The required tristimulus values are simply a linear transformation of the cone’s
response to the the monochromatic excitation. The transformation matrix is constant,
but depends upon the spectral response of the cones to the chosen primaries (λr, λg, λb).
This is the basis of trichromatic matching.

Color matching experiments are performed using a light source comprising three adjustable
lamps that correspond to the primary colors and whose intensity can be individually adjusted.
The lights are mixed and diffused and compared to some test color. In color matching notation
the primaries, the lamps, are denoted by R, G and B, and their intensities are R, G and B respec-
tively. The three lamp intensities are adjusted by a human subject until they appear to match the
test color. This is denoted

which is read as the visual stimulus C (the test color) is matched by, or looks the same as, a mix-
ture of the three primaries with brightness R, G and B. The notation RR can be considered as the
lamp R at intensity R.

Experiments show that color matching obeys the algebraic rules of additivity and linearity
which is known as Grassmann’s laws. For example two light stimuli C1 and C2

when mixed will match

The units are chosen such that equal

quantities of the primaries are required to

match the equal-energy white stimulus.

10.2 · Color

232

We can write this in an even more compact form

(10.7)

where –r(λ), –g(λ),
–
b(λ) are known as color matching functions. These functions have

been tabulated for the standard CIE primaries listed in Table 10.1 and are returned by
the function cmfrgb

>> lambda = [400:10:700]*1e-9;
>> cmf = cmfrgb(lambda);
>> plot(lambda*1e9, cmf);

and shown graphically in Fig. 10.9. Each curve shows how much of the corresponding
primary is required to match the monochromatic light of wavelength λ .

For example to create the sensation of light at 600 nm (orange) we would need

>> orange = cmfrgb(600e-9)
orange =
 2.8717 0.3007 -0.0043

Surprisingly this requires a very small negative amount of the blue primary. To create
500 nm green we would need

>> green = cmfrgb(500e-9)
green =
 -0.2950 0.4906 0.1075

and this requires a significant negative amount of the red primary. This is problematic
since a light source cannot have a negative luminance.

We reconcile this by adding some white light (R=G= B=w, see Sect. 10.2.6) so
that the tristimulus values are all positive. For instance

>> w = -green(1);
>> white = [w w w];
>> feasible_green = green + white
feasible_green =
 0 0.7856 0.4025

If we looked at this color side-by-side with the desired 500 nm green we would say that
the generated color had the correct hue but was not as saturated.

Saturation refers to the purity of the color. Spectral colors are fully saturated but
become less saturated (more pastel) as increasing amounts of white is added. In this
case we have mixed a stimulus of

>> white
white =
 0.2950 0.2950 0.2950

which is a light grey.

Fig. 10.9.

The 1931 color matching
functions for the standard
observer, based on the CIE
standard primaries

Chapter 10 · Light and Color

233

This leads to a very important point about color reproduction – it is not possible to re-
produce every possible color using just three primaries. This makes intuitive sense since a
color is properly represented as an infinite-dimensional spectral function and a 3-vector can
only approximate it. To understand this more fully we need to consider chromaticity spaces.

The Toolbox function cmfrgb can also compute the CIE tristimulus for an arbitrary
spectrum. The luminance spectrum of the redbrick illuminated by sunlight at ground
level was computed earlier and its tristimulus is

>> RGB_brick = cmfrgb(lambda, L)
RGB_brick =
 0.6137 0.1416 0.0374

These are the respective amounts of the three CIE primaries that are perceived as hav-
ing the same color as the brick.

10.2.2 lChromaticity Space

The tristimulus values describe color as well as brightness. Relative tristimulus values
are obtained by normalizing the tristimulus values

(10.8)

which results in chromaticity coordinates r, g and b that are invariant to overall bright-
ness. By definition r+ g+ b= 1 so one coordinate is redundant and typically only r
and g are considered. Since the effect of intensity has been eliminated the 2-dimen-
sional quantity (r, g) represents color.

We can plot the locus of spectral colors, the colors of the rainbow, on the chromatic-
ity diagram using a variant of the color-matching functions

>> [r,g] = lambda2rg([400:700]*1e-9);
>> plot(r, g)
>> rg_addticks

which results in the horseshoe-shaped curve shown in Fig. 10.10. The Toolbox function
lambda2rg computes the color matching function Eq. 10.7 for the specified wavelength
and then converts the tristimulus value to chromaticity coordinates using Eq. 10.8.

The CIE primaries listed in Table 10.1 can be plotted as well

>> primaries = cmfrgb([700, 546.1, 435.8]*1e-9);
>> plot(primaries(:,1), primaries(:,2), 'd')

and are shown as diamonds in Fig. 10.10.

Fig. 10.10.

The spectral locus on the
r-g chromaticity plane. The CIE

standard primary colors are
marked by diamonds. Spectral

wavelengths (in nm) are marked.
The straight line joining the ex-
tremities is the purple boundary

and is the locus of saturated
purples

10.2 · Color

234

The centre of gravity law states that a mixture of two colors lies along a line be-
tween those two colors on the chromaticity plane. A mixture of N colors lies within a
region bounded by those colors. Considered with respect to Fig. 10.10 this has signifi-
cant implications. Firstly, since all color stimuli are combinations of spectral stimuli
all real color stimuli must lie on or inside the spectral locus. Secondly, any colors we
create from mixing the primaries can only lie within the triangle bounded by the pri-
maries – the color gamut. It is clear from Fig. 10.10 that the CIE primaries define only
a small subset of all possible colors – shown as a dashed triangle. Very many real col-
ors cannot be created using these primaries, in particular the colors of the rainbow
which lie on the spectral locus from 460–545 nm. In fact no matter where the prima-
ries are located, not all possible colors can be produced.� In geometric terms there are
no three points within the gamut that form a triangle that includes the entire gamut.
Thirdly, we observe that much of the locus requires a negative amount of the red pri-
mary and cannot be represented.

The problem on page 232 with displaying 500 nm green is explained by it lying
outside the gamut of the CIE primaries and this is shown in Fig. 10.11. We plot the
chromaticity of the spectral green color

>> green_cc = lambda2rg(500e-9);
green_cc =
 -0.9733 1.6187
>> plot2(green_cc, 's')

as a square marker. White is by definition R=G= B= 1 and its chromaticity

Colorimetric standards. Colorimetry is a complex topic and standards are very important.
Two organizations, CIE and ITU, play a leading role in this area.

The Commission Internationale de l’Eclairage (CIE) or International Commission on Illu-
mination was founded in 1913 and is an independent non-profit organisation that is devoted
to worldwide cooperation and the exchange of information on all matters relating to the
science and art of light and lighting, colour and vision, and image technology. The CIE’s eighth
session was held at Cambridge, UK, in 1931 and established international agreement on colo-
rimetric specifications and formalized the XYZ color space. The CIE is recognized by ISO as
an international standardization body. See http://www.cie.co.at for more information and
CIE datasets.

The International Telecommunication Union (ITU) is an agency of the United Nations
and was established to standardize and regulate international radio and telecommunications.
It was founded as the International Telegraph Union in Paris on 17 May 1865. The Inter-
national Radio Consultative Committee or CCIR (Comité Consultatif International des
Radiocommunications) became, in 1992, the Radiocommunication Bureau of ITU or ITU-R.
It publishes standards and recommendations relevant to colorimetry in its broadcasting ser-
vice (television) or BT series. See http://www.itu.int for more detail.

Fig. 10.11.

Chromaticity diagram showing
500 nm green (square), equal-
energy white (asterisk), a feasible
green (star) and a displayable
green (circle). The locus of
different saturated greens in
shown as a green line

We could increase the gamut by choos-

ing different primaries, perhaps using

a different green primary would make

the gamut larger, but there is the prac-

tical constraint of finding a light source

(LED or phosphor) that can efficiently

produce that color.

Chapter 10 · Light and Color

235

>> white_cc = tristim2cc([1 1 1])
white_cc =
 0.3333 0.3333
>> plot2(white_cc, '*')

is plotted as an asterisk. According to the centre of gravity law the mixture of our
desired green and white must lie along the indicated line. The chromaticity of the least
saturated displayable green lies at the intersection of this line and the gamut boundary
and is indicated by a circle.

Earlier we said that there are no three points within the gamut that form a triangle
that includes the entire gamut. The CIE therefore proposed, in 1931, a system of imagi-
nary non-physical primaries known as X, Y and Z that totally enclose the spectral locus
of Fig. 10.10. X and Z have zero luminance – the luminance is contributed entirely by Y.
All real colors can thus be matched by positive amounts of these three primaries.⊳ The
corresponding tristimulus values are denoted (X, Y, Z).

The XYZ color matching functions defined by the CIE

>> cmf = cmfxyz(lambda);
>> plot(lambda*1e-9, cmf);

are shown graphically in Fig. 10.12a. This shows the amount of each CIE XYZ primary
required to match a spectral color and we note that these curves are never negative.
The corresponding chromaticity coordinates are

(10.9)

and once again x+ y+ z= 1 so only two parameters are required – by convention y is
plotted against x in a chromaticity diagram. The spectral locus can be plotted in a
similar way as before

>> [x,y] = lambda2xy(lambda);
>> plot(x, y);

A more sophisticated plot, showing the colors within the spectral locus, can be created

>> xycolorspace

and is shown⊳ in Fig. 10.12b. These coordinates are a standard way to represent color
for graphics, printing and other purposes. For example the chromaticity coordinates
of peak green (550 nm) is

>> lambda2xy(550e-9)
ans =
 0.3016 0.6924

Fig. 10.12. a The color matching
functions for the standard observ-
er, based on the imaginary prima-
ries X, Y (intensity) and Z are tabu-
lated by the CIE (Commission In-
ternationale de l’Éclairage 1987).
b Colors on the xy-chromaticity
plane

The units are chosen such that equal

quantities of the primaries are required

to match the equal-energy white sti-

mulus.

Note that the colors depicted are only

approximation of the actual color at that

point due to the gamut limitation of the

printed colors. No display device has a

gamut large enough to present an accu-

rate representation of the chromaticity

at every point.

10.2 · Color

236

and the chromaticity coordinates of a standard tungsten illuminant at 2 600 K is

>> lamp = blackbody(lambda, 2600);
>> lambda2xy(lambda, lamp)
ans =
 0.4679 0.4126

10.2.3 lColor Names

Chromaticity coordinates provide a quantitative way to describe and compare colors,
however humans refer to colors by name. Many computer operating systems contain a
database or file� that maps human understood names of colors to their corresponding
(R, G, B) tristimulus values. A typical database contains more than 800 uniquely named
colors which says something about the importance of color to humans. The Toolbox
provides a copy of a such a file and an interface function colorname. For example
we can query a color name that includes a particular substring

>> colorname('?burnt')
ans =
 'burntsienna' 'burntumber'

The RGB tristimulus value of burntsienna is

>> colorname('burntsienna')
ans =
 0.5412 0.2118 0.0588

with the values normalized to the interval [0, 1]. We could also request xy-chromatic-
ity coordinates

>> bs = colorname('burntsienna', 'xy')
bs =
 0.5258 0.3840

With reference to Fig. 10.12 we see that this point is in the red-brown part of the
colorspace and not too far from the color of chocolate

>> colorname('chocolate', 'xy')
ans =
 0.5092 0.4026

We can also solve the inverse problem. For example consider a tristimulus value close
to, but not exactly the same as, burnt Sienna

>> colorname([0.54 0.20 0.06])
ans =
burntsienna

and the name of the closest color, in Euclidean terms, is returned. We can repeat this
with the color specified in xy-chromaticity coordinates

>> colorname(bs, 'xy')
ans =
 'burntsienna'

10.2.4 lOther Color Spaces

A color space is a 3-dimensional space that contains all possible tristimulus values – all
colors and all levels of brightness. If we think of this in terms of coordinate frames as
discussed in Sect. 2.2 then there are an infinite number of choices of Cartesian frame
with which to define colors. We have already discussed two different Cartesian color spaces:
RGB and XYZ. However we could also use polar, spherical or hybrid coordinate systems.

The chromaticity spaces r-g or x-y do not account for brightness – we normalized it
out in Eq. 10.8 and Eq. 10.9. Brightness is more precisely called luminance and is typi-
cally denoted by Y. The definition from ITU Recommendation 709

The file is named /etc/rgb.txt on

most Unix-based systems.

Chapter 10 · Light and Color

237

(10.10)

is a weighted sum of the RGB-tristimulus values and reflects the eye’s high sensitivity
to green and low sensitivity to blue. Chromaticity plus luminance leads to 3-dimen-
sional color spaces such as r-g-Y or x-y-Y.

Humans seem to more naturally consider chromaticity in terms of two characteristics:
hue and saturation. Hue is the dominant color, the closest spectral color, and saturation
refers to the purity, or absence of mixed white. Stimuli on the spectral locus are completely
saturated while those closer to its centroid are less saturated. The color spaces that we have
discussed lack easy interpretation in terms of hue and saturation so alternative color spaces
have been proposed. The two most commonly known are HSV and CIE L*C*h. In color-
space notation H is hue, S is saturation which is also known as C or chroma. The intensity
dimension is named either V for value or L for lightness but they are computed quite
differently.⊳ The concepts of hue and saturation is illustrated in geometric terms in Fig. 10.13.

The function colorspace can be used to perform conversions between different
color spaces. For example the hue, saturation and intensity for each of pure red, green
and blue RGB tristimulus value is

>> colorspace('RGB->HSV', [1, 0, 0])
ans =
 0 1 1
>> colorspace('RGB->HSV', [0, 1, 0])
ans =
 120 1 1
>> colorspace('RGB->HSV', [0, 0, 1])
ans =
 240 1 1

In each case the saturation is 1, the colors are pure, and the intensity is 1. As shown in
Fig. 10.13 hue is represented as an angle in the range [0, 360)° with red at 0° increasing
through the spectral colors associated with decreasing wavelength (orange, yellow,
green, blue, violet). If we reduce the amount of the green primary

>> colorspace('RGB->HSV', [0, 0.5, 0])
ans =
 120.0000 1.0000 0.5000

we see that intensity drops but hue and saturation are unchanged.⊳ For a medium grey

>> colorspace('RGB->HSV', [0.4, 0.4, 0.4])
ans =
 240.0000 0 0.4000

the saturation is zero, it is only a mixture of white, and the hue has no meaning since
there is no color. If we add the green to the grey

Fig. 10.13.

Hue and saturation. A line is
extended from the white point

through the chromaticity in
question to the spectral locus.

The angle of this line is hue, and
saturation is the length of the

vector normalized with respect
to distance to the locus

L* is a non-linear function of relative lumi-

nance and approximates the non-linear

response of the human eye. Value is given

by V=C (min R, G, B+max R, G, B).

For very dark colors numerical problems

lead to imprecise hue and saturation co-

ordinates.

10.2 · Color

238

>> colorspace('RGB->HSV', [0, 0.5, 0] + [0.4, 0.4, 0.4])
ans =
 120.0000 0.5556 0.9000

we have the green hue and a medium saturation value.
The colorspace function can convert between thirteen different color spaces

including YUV, YCbCr, L*a*b* and L*u*v*. A limitation of many color spaces is that the
perceived color difference between two closely spaced points depends on the position
of those points in the space. This has led to the the development of perceptually uni-
form color spaces such as the CIE L*u*v* (CIELUV) and L*a*b* spaces.

The colorspace function can also be applied to a color image as shown in
Fig. 10.14. In the hue image dark represents red and bright white represents violet. The
red flowers appear as both a very small hue angle (dark) and a very large angle close to
360°. The yellow flowers and the green background can be seen as distinct hue values.
The saturation image shows that the red and yellow flowers are highly saturated, while
the green leaves and stems are less saturated. The white flowers have very low satura-
tion, since by definition the color white contains a lot of white. This example is ex-
plained in more detail, and extended, in Sect. 10.3.5.

10.2.5 lTransforming between Different Primaries

The CIE standards were defined in 1931 which was well before the introduction of
color television in the 1950s. The CIE primaries are based on the emission lines of a
mercury lamp which are highly repeatable and suitable for laboratory use. Early tele-
vision receivers used CRT monitors where the primary colors were generated by phos-
phors that emit light when bombarded by electrons. The phosphors used, and their
colors has varied over the years in pursuit of brighter displays. An international agree-
ment, ITU recommendation 709, defines the primaries for high definition television
(HDTV) and these are listed in Table 10.2.

This raises the problem of converting tristimulus values from one sets of primaries
to another. Consider for example that we wish to display an image, where the tristimulus
values are with respect to CIE primaries, on a screen that uses ITU Rec. 709 primaries.
Using the notation we introduced earlier we define two sets of primaries: P1, P2, P3
with tristimulus values (S1, S2, S3), and P′1, P′2, P′3 with tristimulus values (S′1, S′2, S′3). We
can always express one set of primaries as a linear combination� of the other

(10.11)

and since the two tristimuli match then

(10.12)

Fig. 10.14. Flower scene. a Origi-
nal color image; b hue image;
c saturation image. Note that the
white flowers have low saturation
(they appear dark)

The coefficients can be negative so the

new primaries do not have to lie within

the gamut of the old primaries.

Chapter 10 · Light and Color

239

Substituting Eq. 10.11, equating tristimulus values and then transposing we obtain

(10.13)

which is simply a linear transformation of tristimulus values.
Consider the concrete problem of transforming from CIE primaries to XYZ tri-

stimulus values. We know from Table 10.2 the CIE primaries in terms of XYZ pri-
maries

>> C = [0.7347, 0.2653, 0; 0.2738, 0.7174, 0.0088; 0.1666,
0.0089, 0.8245]'
C =
 0.7347 0.2738 0.1666
 0.2653 0.7174 0.0089
 0 0.0088 0.8245

which is exactly the first three columns of Table 10.2. The transform is therefore

Recall from page 235 that luminance is contributed entirely by the Y primary. It is
common to apply the constraint that unity R, G, B values result in unity luminance Y
and a white with a specified chromaticity. We will choose D65 white whose chroma-
ticity is given in Table 10.2 and which we will denote (xw, yw, zw). We can now write

where the left-hand side has Y= 1 and we have introduced a diagonal matrix J which
scales the luminance of the primaries. We can solve for the elements of J

Substituting real values we obtain

>> J = inv(C) * [0.3127 0.3290 0.3582]' * (1/0.3290)
J =
 0.5609
 1.1703
 1.3080
>> C * diag(J)
ans =
 0.4121 0.3204 0.2179
 0.1488 0.8395 0.0116
 0 0.0103 1.0785

Table 10.2.

xyz-chromaticity of standard
primaries and whites. The CIE

primaries of Table 10.1 and the
more recent ITU recommenda-

tion 709 primaries defined for
HDTV. D65 is the white of a

blackbody radiator at 6 500 K,
and E is equal-energy white

10.2 · Color

240

The middle row of this matrix leads to the luminance relationship

which is similar to Eq. 10.10. The small variation is due to the different primaries used
– CIE in this case versus Rec. 709 for Eq. 10.10.

The RGB tristimulus value of the redbrick was computed earlier and we can deter-
mine its XYZ tristimulus

>> XYZ_brick = C * diag(J) * RGB_brick';
ans =
 0.0351
 0.0224
 0.0039

which we convert to chromaticity coordinates by Eq. 10.9

>> tristim2cc(XYZ_brick')
ans =
 0.5729 0.3645

Referring to Fig. 10.12 we see that this xy-chromaticity lies in the red region and is named

>> colorname([0.5729 0.3645], 'xy')
ans =
 'englishred'

as might be expected for a “weathered red brick”.

10.2.6 lWhat Is White?

In the previous section we touched on the subject of white. White is both the absence of
color and also the sum of all colors. One definition of white is standard daylight which is
taken as the mid-day Sun in Western/Northern Europe which has been tabulated by the
CIE as illuminant D65. It can be closely approximated by a blackbody radiator at 6 500 K

>> d65 = blackbody(lambda, 6500);
>> lambda2xy(lambda, d65)
ans =
 0.3136 0.3241

which we see is close to the D65 chromaticity given in Table 10.2.
Another definition is based on white light being an equal mixture of all spectral

colors. This is represented by a uniform spectrum

>> ee = ones(size(lambda));

which is also known as the equal-energy stimulus and has chromaticity

>> lambda2xy(lambda, ee)
ans =
 0.3333 0.3338

which is close to the defined value of (D, D).

10.3 lAdvanced Topics

In this section we will cover some advanced topics. The first is the effect of illumination on
the apparent color of an object which is a very real problem for a robot using color cues in
an environment with natural lighting. This leads to a discussion of the problem of white
balancing. The next topic is an introduction to gamma encoding which is a very common
non-linear relationship between tristimulus values and actual luminance. Finally we look
at the distribution of colors in a real image and segment the image into regions of similar
colors – this is a preview of techniques that we will cover in Chap. 12 and 13.

Chapter 10 · Light and Color

241

10.3.1 lColor Constancy

Studies show that human perception of what is white is adaptive and has a remarkable
ability to tune out the effect of scene illumination so that white objects always appear
to be white.⊳ For example at night under a yellowish tungsten lamp the pages of a
book still appear white to us, but a photograph of that scene viewed later under differ-
ent lighting conditions will look yellow.

All of this poses real problems for a robot that is using color to understand the
scene because the observed chromaticity varies with lighting. Outdoors the color of
the morning or evening Sun (3 500 K) is different to that of the noon Sun (6 500 K), an
overcast day is different to a clear day, and reflections from buildings or trees all con-
spire to change the illumination spectrum, and hence the luminance and color of the
object. To illustrate this problem we revisit the red brick

>> lambda = [400:10:700]'*1e-9;
>> R = loadspectrum(lambda, 'redbrick.dat');

under two different illumination conditions, the Sun at ground level

>> sun = loadspectrum(lambda, 'solar.dat');

and a tungsten lamp

>> lamp = blackbody(lambda, 2600);

and compute the xy-chromaticity for each case

>> xy_sun = lambda2xy(lambda, sun .* R)
xy_sun =
 0.4760 0.3784
>> xy_lamp = lambda2xy(lambda, lamp .* R)
xy_lamp =
 0.5724 0.3877

and we can see that the chromaticity, or apparent color, has changed significantly. These
values are plotted on the chromaticity diagram in Fig. 10.15.

10.3.2 lWhite Balancing

Photographers are well aware of the importance of illumination and refer to the color
temperature of a light source – the equivalent black body temperature from Eq. 10.1.
Compared to daylight an incandescent lamp appears more yellow, and a photographer

Fig. 10.15.

Chromaticity of a red-brick
under different illumination

conditions

We adapt our perception of color so that

the integral, or average, over the entire

scene is grey. This works well over a color

temperature range 5 000–6 500 K.

10.3 · Advanced Topics

242

would use a blue filter (on the camera) to attenuate the red part of the spectrum to
compensate. We can achieve a similar function by choosing the matrix J

to adjust the gains of the color channels.� For example, boosting JB would compensate
for the lack of blue under tungsten illumination. This is the process of white balancing
– ensuring the appropriate chromaticity of objects that we know are white (or grey).

Some cameras allow the user to set the color temperature of the illumination through
a menu, typically with options for tungsten, fluorescent, daylight and flash which select
different preset values of J. In manual white balancing the camera is pointed at a grey or
white object and a button is pressed. The camera adjusts its channel gains J so that equal
tristimulus values are produced R′= G′= B′ which as we recall results in the desired
white chromaticity. For colors other than white these corrections introduces some color
error but this nevertheless has a satisfactory appearance to the eye. Automatic white bal-
ancing is commonly used and involves heuristics to estimate the color temperature of the
light source but it can be fooled by scenes with a predominance of a particular color.

The most practical solution is to use the tristimulus values of three objects with
known chromaticity in the scene. This allows the matrix C in Eq. 10.13 to be esti-
mated directly, mapping the tristimulus values from the sensor to XYZ coordinates
which are an absolute lighting-independent representation of surface reflectance. From
this the chromaticity of the illumination can also be estimated. This approach is used
for the panoramic camera on the Mars Rover where the calibration target shown in
Fig. 10.16 can be imaged periodically to update the white balance under changing
Martian illumination.

10.3.3 lColor Change Due to Absorption

A final and extreme example of problems with color occurs underwater. For example
consider a robot trying to find a docking station identified by colored targets. As dis-
cussed earlier in Sect. 10.1.1 water acts as a filter that absorbs more red light than blue
light. For an object underwater this filtering affects both the illumination falling on

Fig. 10.16.

The calibration target used
for the Mars Rover’s PanCam.
Regions of known reflectance
and chromaticity (red, yellow,
green, blue and shades of grey)
are used to set the white balance
of the camera. The central stalk
has a very low reflectance and
also serves as a sundial. In the
best traditions of sundials it
bears a motto (photo courtesy
NASA/JPL/Cornell/Jim Bell)

Chapter 10 · Light and Color

Typically JG = 1 and JR and JB are ad-

justed.

243

the object and the reflected light, the luminance, on its way to the camera. Consider
again the red brick

>> [R,lambda] = loadspectrum([400:5:700]*1e-9, 'redbrick.dat');

which is now 1 m underwater and with a camera a further 1 m from the brick. The
illumination on the water’s surface is that of sunlight at ground level

>> sun = loadspectrum(lambda, 'solar.dat');

The absorption spectrum of water is

>> A = loadspectrum(lambda, 'water.dat');

and the total path length through the water is

>> d = 2

The transmission T is given by Beer’s law Eq. 10.2.

>> T = 10 .^ (-d*A);

and the resulting luminance of the brick is

>> L = sun .* R .* T;

which is shown in Fig. 10.17. We see that the longer wavelengths, the reds, have been
strongly attenuated. The apparent color of the brick is

>> xy_water = lambda2xy(lambda, L)
xy_water =
 0.3722 0.3813 0.2465

which is also plotted in the chromaticity diagram of Fig. 10.15. The brick appears much
more blue than it did before. The reality underwater is more complex than this due to
the scattering of light by tiny suspended particles. These result in additional color
filtering of light on its way to the camera. They also reflect ambient light into the cam-
era that has not been reflected from the target.

10.3.4 lGamma

In an old fashioned CRT monitor the luminance produced at the face of the display is
non-linearly related to the control voltage V according to

(10.14)

Fig. 10.17.

Spectrum of the red brick when
viewed underwater. The spectrum

without the water absorption is
shown in red

10.3 · Advanced Topics

244

where γ ≈ 2.2. To correct for this non-linearity cameras generally apply the inverse non-
linearity V= L1/γ to their output signal which results in a system that is linear from end
to end.�

Both operations are commonly referred to as gamma correction though more prop-
erly the camera-end operation is gamma encoding and the display-end operation is gamma
decoding.� LCD displays have a stronger non-linearity than CRTs but correction tables
are applied within the display to make it follow the standard γ= 2.2 behavior.�

To show the effect of display gamma we create a simple test pattern

>> wedge = [0:0.1:1];
>> idisp(wedge)

that is shown in Fig. 10.18 and is like a photographer’s greyscale step wedge. If we display
this on our computer screen it will appear differently to the one printed in the book. We will
most likely observe a large change in brightness between the second and third block – the
effect of the gamma decoding non-linearity Eq. 10.14 in the display of your computer.

If we apply gamma encoding

>> idisp(wedge .^ (1/2.2))

we observe that the intensity changes appear to be more linear� and closer to the one
printed in the book.

The chromaticity coordinates of Eq. 10.8 and Eq. 10.9 are computed as ratios of

tristimulus values which are linearly related to luminance in the scene. The non-

linearity applied to the camera output must be corrected, gamma decoded,

before any colometric operations. The Toolbox function igamma performs this

operation. Gamma decoding can also be performed when an image is loaded

using the 'gamma' option to the function iread.

Today most digital cameras� encode images in sRGB format which uses the ITU
Rec. 709 primaries and a gamma encoding function of

which comprise a linear function for small values and a power law for larger values.
The overall gamma is approximately 2.2.

The important property of colorspaces such as HSV or xyY is that the chroma-

ticity coordinates are invariant to changes in intensity. Many digital video cam-

eras provide output in YUV or YCBCR format which has a luminance component

Y and two other components which are often mistaken for chromaticity coor-

dinates – they are not. They are in fact color difference signals such that

U, CB∝ B′− Y′ and V, CR∝ R′− Y′ where R′, B′ are gamma encoded tristimulus

values, and Y′ is gamma encoded intensity. The gamma nonlinearity means that

UV or CBCR will not be a constant as overall lighting level changes.

The tristimulus values from the camera must be first converted to linear

tristimulus values, by applying the appropriate gamma decoding, and then com-

puting chromaticity. There is no shortcut.

Fig. 10.18.

The linear intensity wedge

Many cameras have an option to choose

gamma as either 1 or 0.45 (=1/2.2).

Gamma encoding and decoding are of-

ten referred to as gamma compression

and gamma decompression respectively,

since the encoding operation com-

presses the range of the signal, while

decoding decompresses it.

Macintosh computers are an exception

and prior to MacOS 10.6 used γ = 1.8

which tends to make colors appear

brighter and more vivid.

For a Macintosh prior to MacOS 10.6 use

1.8 instead of 2.2.

The JPEG file header (JFIF file format) has

a tag Color Space which is set to

either sRGB or Uncalibrated if

the gamma or color model is not known.

See page 289.

Chapter 10 · Light and Color

245

10.3.5 lApplication: Color Image

In this section we bring together many of the concepts and tools introduced in this
chapter. We will also preview a number of functions that will be properly introduced
in the next chapter. We consider a garden scene

>> flowers = iread('flowers4.png', 'double', 'gamma', 'sRGB');

shown in Fig. 10.19a comprising three different colored flowers and background green-
ery. Importantly we have applied gamma decoding so that the tristimulus values are
proportional to the luminance of the original scene. The image flowers has 3 di-
mensions as shown in Fig. 12.2. The first two dimensions are the vertical and hori-
zontal pixel coordinate, and the third is the color plane that selects the red, green or
blue pixels.

We can convert the image to hue, saturation and value

>> hsv = colorspace('RGB->HSV', flowers);

and the result is another 3-dimensional matrix but this time the color planes represent
hue, saturation and value. We can display hue

>> idisp(hsv(:,:,1))

and saturation

>> idisp(hsv(:,:,2))

as images which are shown in Fig. 10.14b and c respectively.
If we plot the chromaticity of each pixel as points in the chromaticity plane we

would observe clusters of points corresponding to different parts of the scenes such as
red flowers, yellow flowers, green leaves and shadows. We convert the color RGB image
to an XYZ image

>> XYZ = colorspace('RGB->XYZ', flowers);

and then to xy-chromaticity coordinates

>> [x,y] = tristim2cc(XYZ);

where x and y are each images the same size as flowers. Next we compute a
2-dimensional histogram of (x, y) values with 100 bins in each dimension

>> xbins = [0 0.01 100]; ybins = [0 0.01 100];
>> [h,vx,vy] = hist2d(x, y, xbins, ybins);

where h is the number of points in each bin and vx and vy are the x- and y-coordi-
nates of the corresponding bins. We display the histogram as a contour map overlaid
on the xy-chromaticity diagram

>> xycolorspace
>> hold on
>> contour(vx, vy, h)

as shown in Fig. 10.19b. We see that there are 5 or 6 peaks: a broad peak in the red area,
a narrow white peak and a number peaks in the green area.

Next we will perform unsupervised clustering using the k-means algorithm

>> [cls, cxy] = colorkmeans(flowers, 7);

where the second argument specifies the number of pixel chromaticity classes or clus-
ters which we have set to seven.⊳ The k-means algorithm is iterative, it adjusts its
estimate of the centre of each cluster and the assignment of pixels to clusters until
equilibrium is reached. The initial cluster centres are chosen randomly which means
that the function will give a different result each time it is run.

A limitation of k-means is that the num-

ber of clusters must be known in ad-

vance, typically guided by domain knowl-

edge.

10.3 · Advanced Topics

246

Fig. 10.19. Color image segmen-
tation. a Original color image;
b xy-chromaticity plane with over-
laid frequency contours; c label
image in false color; d cluster cen-
troids on chromaticity diagram;
e class 5 pixels (yellow) only

Chapter 10 · Light and Color

247

The result is another image cls where each pixel value indicates the cluster to
which the corresponding pixel in flowers has been assigned – its color classifica-
tion, or class, which is an integer in the interval 1 to 7. We can display this

>> idisp(cls, 'colormap', 'jet', 'nogui')

as shown in Fig. 10.19c. In this case class 5 corresponds to yellow flowers and we can
display just those pixels

>> idisplabel(flowers, cls, 5)

as shown in Fig. 10.19e. In addition to the yellow flowers there are many very small
groups of dark pixels that correspond to parts of the foliage – these have the same
chromaticity as the flowers but a low luminance.

The colorkmeans function also returns the centre of the clusters and these are

cxy =
 0.6082 0.5378 0.3328 0.3466 0.4017 0.3176 0.3238
 0.3327 0.3436 0.4599 0.5195 0.4874 0.3788 0.5744

in xy-space. We plot these on the xy-chromaticity diagram

>> xycolorspace
>> plot_point(cxy, '*', 'sequence', 'textsize', 10, 'textcolor', 'b')

as shown in Fig. 10.19d and we can see that class 5 does indeed lie in the yellow area,
and also that classes 1 and 2 are red, class 6 is white, while the rest are different greens.

Finally we convert these cluster centres from xy-coordinates to human meaning-
ful names

>> colorname(cxy, 'xy')
ans =
 Columns 1 through 5
 'cadmiumreddeep' 'brown3' 'olive' 'terreverte' 'yellow4'
 Columns 6 through 7
 'darkseagreen4' 'yellowgreen'

The color names for class 1 “cadmiumreddeep” and class 4 “yellow4” corresponding to
the red and yellow flowers respectively are quite apt. The color name for the white
flowers “darkseagreen4” is surprising, implying dark-green rather than white, but the
xy-chromaticity of this color is quite close to the white point. Dark-green has low lu-
minance but the color name matching is based on chromaticity not luminance.

10.4 lWrapping Up

We have learnt that the light we observe is a mixture of frequencies, a continuous
spectrum, which is modified by reflectance and absorption. The spectrum elicits a
response from the eye which we interpret as color – for humans the response is a
tristumulus, a 3-vector that represents the outputs of the three different types of cones
in our eye. A digital color camera is functionally equivalent. The tristimulus can
be considered as a 1-dimensional brightness coordinate and a 2-dimensional chro-
maticity coordinate which allows colors to be plotted on a plane. The spectral colors
form a locus on this plane and all real colors lie within this locus. The three primary
colors form a triangle on this plane which is the gamut of those primaries. Any color
within the triangle can be matched by an appropriate mixture of the primaries. No
set of primaries can define a gamut that contains all colors. An alternative set of
imaginary primaries, the CIE XYZ system, does contain all real colors and is the stan-
dard way to describe colors. Tristimulus values can be transformed using linear trans-
formations to account for different sets of primaries. Non-linear transformations can
be used to describe tristimulus values in terms of human-centric qualities such as
hue and saturation.

10.4 · Wrapping Up

248

We also discussed definition of white, the problem of white balancing, the non-
linear response of display devices and how this effects the common representation of
images and video. Finally we used chromaticity information to classify pixels in a col-
orful real-world image.

Further Reading

At face value color is a simple concept that we learn in kindergarten but it is actually a
complex topic. In this chapter we have only begun to scrape the surface of photometry
and colorimetry. Photometry is the part of the science of radiometry concerned with
measurement of visible light. It is challenging for engineers and computer scientists since
it makes use of uncommon units such as lumen, steradian, nit, candela and lux. One source
of complexity is that words like intensity and brightness are synonyms in everyday speech
but have very specific meanings in photometry. Colorimetry is the science of color per-
ception and is also a large and complex area since human perception of color depends on
the individual observer, ambient illumination and even the field of view. Colorimetry is
however critically important in the design of cameras, computer displays, video equip-
ment and printers.

The computer vision textbooks by Gonzalez and Woods (2008) and Forsyth and
Ponce (2002) each have a discussion on color and color spaces. The latter also has
a discussion on the effects of shading and inter-reflections. Comprehensive on-
line information about computer vision is available through CVonline at http://

homepages.inf.ed.ac.uk/rbf/CVonline, and the material in this chapter is covered un-
der the sections Image Physics and Sensors and their Properties.

Readable and comprehensive books on color science include Hunt (1987) and from
a television or engineering perspective Benson (1986). A more conversational approach
is given by Hunter and Harold (1987), which also covers other aspects of appearance
such as gloss and lustre. The CIE standard (Commission Internationale de l’Éclairage
1987) is definitive but hard reading. The work of the CIE is ongoing and its standards
are periodically updated at www.cie.co.at. The color matching functions were first
tabulated in 1931 and revised in 1964.

Charles Poynton has for a long time maintained excellent online tutorials about color
spaces and gamma at http://www.poynton.com. His book (Poynton 2003) is an excellent
and readable introduction to these topics while also discussing digital video systems in
great depth. Gamma is also described online at http://www.w3.org/Graphics/Color/sRGB.

Other MATLAB® tools include the ColorLab toolbox at http://cs.joensuu.fi/

colorlab_toolbox/ and the colorspace function at http://www.math.ucla.edu/

~getreuer/colorspace.html.

Infra-red cameras. Consumer cameras are functionally equivalent to the human eye and are sen-
sitive to the visible spectrum. Cameras are also available that are sensitive to infra-red and a
number of infra-red bands are defined by CIE: IR-A (700−1 400 nm), IR-B (1 400−3 000 nm), and
IR-C (3000 nm−1000 µm). In common usage IR-A and IR-B are known as near infra-red (NIR)
and short-wavelength infra-red (SWIR) respectively, and the IR-C subbands are medium-wave-
length (MWIR, 3 000−8000 nm) and long-wavelength (LWIR, 8 000−15 000 nm). LWIR cameras
are also called thermal or thermographic cameras. Ultraviolet cameras typically work in the near
ultra-violet region (NUV, 200−380 nm) and are used in industrial applications such as detecting
corona discharge from high-voltage electrical systems.

Hyperspectral cameras have more more than three classes of photoreceptor, they sample the
incoming spectrum at many points typically from infra-red to ultra-violet and with tens or even
hundreds of spectral bands. Hyperspectral cameras are used for applications including aerial
survey classification of land-use and identification of the mineral composition of rocks.

Chapter 10 · Light and Color

249

Data Sources

The Toolbox contains a number of data files describing various spectra which
are summarized in Table 10.3. Each file has as its first column the wavelength in
metres. The files have different wavelength ranges and intervals but the helper
function loadspectrum interpolates the data to the user specified range and
sample interval.

Several internet sites contain spectral data in tabular format and this is linked from
the book’s web site. This includes reflectivity data for many materials provided by
NASA’s online ASTER spectral library and the Spectral Database from the University
of Eastern Finland Color Research Laboratory. Data on cone response and CIE color
matching functions is available from the Colour & Vision Research Laboratory at Uni-
versity College London. CIE data is also available online.

Exercises

1. You are a blackbody radiator! Plot your own blackbody emission spectrum. What is
your peak emission frequency? What part of the EM spectrum is this? What sort of
sensor would you use to detect this?

2. Consider a sensor that measures the amount of radiated power P1 and P2 at wave-
lengths λ1 and λ2 respectively. Write an equation to give the temperature T of the
blackbody in terms of these quantities.

3. Using the Stefan-Boltzman law compute the power emitted per square metre of the
Sun’s surface. Compute the total power output of the Sun.

4. Use numerical integration to compute the power emitted in the visible band
400−700 nm per square metre of the Sun’s surface.

5. Why is the peak luminosity defined as 683 lm W–1?
6. Given typical outdoor illuminance as per page 229 determine the luminous inten-

sity of the Sun.
7. Sunlight at ground level. Of the incoming radiant power determine, in percentage

terms, the fraction of infra-red, visible and ultra-violet light.
8. Use numerical integration to compute the power emitted in the visible band

400−700 nm per square metre for a tungsten lamp at 2 600 K. What fraction is this
of the total power emitted?

9. Plot and compare the human photopic and scotopic spectral response.
10. Can you create a metamer for the red brick?
11.Prove the center of gravity law.
12. On the xy-chromaticity plane plot the locus of a blackbody radiator with tempera-

tures in the range 1 000–10 000 K.
13. Plot the XYZ primaries on the rg-plane.

Table 10.3.

Various spectra provided with
the Toolbox. Relative luminosity

values lie in the interval [0,1], and
relative spectral power distribu-
tion (SPD) are normalized to a

value of 1.0 at 550 nm

10.4 · Wrapping Up

250

14. The Gretag Macbeth Color Checker shown in Fig. 10.20 is an array of 24 printed color
squares. Spectral data for the Color Checker is available at http://www.rmimaging.com/

information/colorchecker.html. Compute and plot the xy-chromaticity for each square.
15.For Fig. 10.11 determine the chromaticity of the feasible green. Determine the bright-

est possible tristimulus value assuming that the value of any primary lies in the
range [0, 1].

16.Modify the function xycolorspaces to generate an rg-chromaticity plane.
17.Determine the tristimulus values for the red brick using the Rec. 709 primaries.
18.Take a picture of a white object using incandescent illumination. Determine the

average RGB tristimulus value and compute the xy-chromaticity. How far off white
is it? Determine the color balance matrix J to correct the chromaticity. What is the
chromaticity of the illumination?

19.What is the name of the color of the red brick when viewed underwater (page 242).
20.Image a target like Fig. 10.16 that has three colored patches of known chromaticity.

From their observed chromaticity determine the transform from observed tristi-
mulus values to Rec. 709 primaries. What is the chromaticity of the illumination?

21.Consider an underwater application where a target d metres below the surface is
observed through m metres of water, and the water surface is illuminated by sun-
light. From the observed chromaticity can you determine the true chromaticity of
the target? How sensitive is this estimate to incorrect estimates of m and d? If you
knew the true chromaticity of the target could you determine its distance?

22.Is it possible that two different colors look the same under a particular lighting
condition? Create an example of colors and lighting that would cause this?

23.Use one of your own pictures and repeat the exercise of Sect. 10.3.5. Can you distin-
guish different objects in the picture?

24.Show analytically or numerically that scaling a tristimulus value has no effect on
the chromaticity. What happens if the chromaticity is computed on gamma en-
coded tristimulus values?

Fig. 10.20.

The Gretag Macbeth Color
Checker is an array of 24 printed
color squares, which includes dif-
ferent greys and colors as well as
spectral simulations of skin, sky,
foliage etc. Spectral data for the
squares is available online via
http://www.cis.rit.edu/research/

mcsl/online/cie.php

Chapter 10 · Light and Color

11
Chapter

In this chapter we discuss how images are formed and captured, the first step in robot
and human perception of the world. From images we can deduce the size, shape and
position of objects in the world as well as other characteristics such as color and texture.

It has long been known that a simple pin-hole is able to create a perfect inverted
image on the wall of a darkened room. Some marine molluscs, for example the Nauti-
lus, have pin-hole camera eyes. All vertebrates have a lens that forms an inverted im-
age on the retina where the light-sensitive cells rod and cone cells, shown previously in
Fig. 10.6, are arranged. A digital camera is similar in principle – a glass or plastic lens
forms an image on the surface of a semiconductor chip with an array of light sensitive
devices to convert light to a digital image.

The process of image formation, in an eye or in a camera, involves a projection of
the 3-dimensional world onto a 2-dimensional surface. The depth information is lost
and we can no longer tell from the image whether it is of a large object in the distance
or a smaller closer object. This transformation from 3 to 2 dimensions is known as
perspective projection and is discussed in Sect. 11.1. Section 11.2 introduces the topic
of camera calibration, the estimation of the parameters of the perspective transforma-
tion. In Sect. 11.2.3 we discuss the inverse problem, how to reconstruct 3-dimensional
world points given a 2-dimensional image. Section 11.3 introduces alternative types
of cameras capable of wide-angle or panoramic imaging.

11.1 lPerspective Transform

The pin-hole camera produces a very dim image since its radiant power is the scene
luminance in units of Wm–2 multiplied by the size of the pin hole. The key to brighter
images is to collect light over a larger area using a lens or a curved mirror. A convex
lenses can form an image just like a pinhole but the larger diameter of the lens allows
more light to pass which leads to much brighter images.

The elementary aspects of image formation with a thin lens⊳ are shown in Fig. 11.1.
The positive z-axis is the camera’s optical axis. The z-coordinate of the object and its
image are related by the lens law

(11.1)

where zo is the distance to the object, zi the distance to the image, and f is the focal length
of the lens. For zo> f an inverted image is formed on the image plane at z<−f. In a
camera the image plane is fixed at the surface of the sensor chip so the focus ring of
the camera moves the lens along the optical axis so that it is a distance zi from the
image plane – for an object at infinity zi= f. A pin-hole camera does not need focus-
sing – the need to focus is the tradeoff for the increased light-gathering ability of a
lens. Our own eye has a single convex lens made from transparent crystallin proteins,
while a high-quality camera lens is a compound lenses made of multiple glass or plas-
tic lenses.

Image Formation

A little perspective,
like a little humor,

goes a long way.
Allen Klein

Real camera lenses comprise multiple

lens elements but still have focal points

on each side of the compound lens as-

sembly.

252

In computer vision it is common to use the central perspective imaging model shown
in Fig. 11.2. The rays converge on the origin of the camera frame {C} and a non-in-
verted image is projected onto the image plane located at z= f. Using similar triangles
we can show that a point at the world coordinates P= (X, Y, Z) is projected to the
image plane p= (x, y) by

(11.2)

In the 5th century bce, the philosopher Mo Jing in ancient China mentioned the effect of an in-
verted image forming through a pinhole. The camera obscura is a darkened room where a dim
inverted image of the world is cast on the wall by light entering through a small hole. Making the
hole larger increases the brightness of the image but makes it less focussed.

Camera obscuras were popular tourist attractions in Victorian times, particularly in Britain,
and many are still operating today. (Image on the right from the Drawing with Optical Instru-
ments collection at http://vision.mpiwg-berlin.mpg.de/elib)

Fig. 11.1.

Image formation geometry for
a thin convex lens shown in
2-dimensional cross section.
A lens has two focal points at a
distance of f on each side of the
lens. By convention the camera’s
optical axis is the z-axis

Fig. 11.2.

The central-projection model.
The image plane is f in front
of the camera’s origin and on
which a non-inverted image is
formed. The camera’s coordi-
nate frame is right-handed with
the z-axis defining the centre of
the field of view

Chapter 11 · Image Formation

253

Lens aperture. The f-number of a lens, typically marked on the rim, is a dimensionless quantity
F= f/d where d the diameter of the lens (often denoted φ on the lens rim). The f-number is
inversely related to the light gathering ability of the lens. To reduce the amount of light falling on
the image plane the effective diameter is reduced by a mechanical aperture, or iris, which in-
creases the f-number. Illuminance on the image plane is inversely proportional to F2 since it de-
pends on light gathering area. To reduce illuminance by a factor of 2, the f-number must be in-
creased by a factor of \2 or “one stop”. The f-number graduations on the aperture ring of a lens
increase by \2 at each stop. An f-number is conventionally written in the form f/1.4 for F= 1.4.

which is a projective transformation, or more specifically a perspective projection,
from the world to the image plane and has the following characteristics:

1. It performs a mapping from 3-dimensional space to the 2-dimensional image plane:
R

3
֏R

2.
2. Straight lines in the world are projected to straight lines on the image plane.
3. Parallel lines in the world are projected to lines that intersect at a vanishing point as

shown in Fig. 11.3a. In drawing, this effect is known as foreshortening. The excep-
tion are lines in the plane parallel to the image plane which do not converge.

4. Conics⊳ in the world are projected to conics on the image plane. For example, a
circle is projected as a circle or an ellipse as shown in Fig. 11.3b.

5. The mapping is not one-to-one and a unique inverse does not exist. That is, given
(x, y) we cannot uniquely determine (X, Y, Z). All that can be said is that the world
point lies somewhere along the projecting ray OP shown in Fig. 11.2. This is an
important topic that we will return to in Chap. 14.

6. The transformation is not conformal – it does not preserve shape since internal
angles are not preserved. Translation, rotation and scaling are examples of confor-
mal transformations. A general affine transformation comprises translation, rota-
tion and different scaling for each axis and is not conformal.

We can write the image plane point in homogeneous form p= (x′, y′, z′) where

Fig. 11.3. The effect of perspective
transformation. a Parallel lines
converge, b circles become ellipses

Conic sections, or conics, are a family of

curves obtained by the intersection of a

plane with a cone. They include circles,

ellipses, parabolas and hyperbolas.

11.1 · Perspective Transform

254

or in compact matrix form as

(11.3)

where the non-homogeneous image plane coordinates are

These are often referred to as the retinal image plane coordinates. For the case
where f= 1 the coordinates are referred to as the normalized or canonical image plane
coordinates.

If we write the world coordinate in homogeneous form as well Cn= (X, Y, Z, 1)T

then the perspective projection can be written in linear form as

(11.4)

or

(11.5)

where C is a 3× 4 matrix known as the camera matrix. Note that we have written Cn
to highlight the fact that this is the coordinate of the point with respect to the camera
frame {C}. The tilde indicate homogeneous quantities and Appendix I provides a re-
fresher on homogeneous coordinates. The third column of C is a vector parallel to the
camera’s optical axis in the world frame. The camera matrix can be factored

where the second matrix is the projection matrix.
The Toolbox allows us to create a model of a central-perspective camera. For example

>> cam = CentralCamera('focal', 0.015);

returns an instance of a CentralCamera object with a 15 mm lens. By default the
camera is at the origin of the world frame with its optical axis pointing in the world
z-direction as shown in Fig. 11.2. We define a world point

>> P = [0.3, 0.4, 3.0]';

in units of metres and the corresponding image-plane coordinates are

>> cam.project(P)
ans =
 0.0015
 0.0020

Depth of field. A pin-hole camera has no focus control and creates a focussed image of objects
irrespective of their distance. A lens does not have this property – the focus ring changes the
distance between the lens and the image plane and must be adjusted so that the object of interest
is clearly focussed. Photographers refer to depth of field which is the range of object distances for
which acceptably focussed images are formed. Depth of field is high for small aperture settings
where the lens is more like a pin-hole, but this means less light and noisier images or longer
exposure time and motion blur. This is the photographer’s dilemma!

Chapter 11 · Image Formation

255

The point on the image plane is at (1.5, 2.0) mm with respect to the principal point.
This is a very small displacement but it is commensurate with the size of a typical
image sensor.

In general the camera will have an arbitrary pose ξC with respect to the world coordi-
nate frame as shown in Fig. 11.4. The position of the point with respect to the camera is

or in homogeneous coordinates

(11.6)

We can demonstrate this by moving our camera 0.5 m to the left

>> cam.project(P, 'Tcam', transl(-0.5, 0, 0))
ans =
 0.0040
 0.0020

where the third argument is the pose of the camera ξC as a homogeneous transforma-
tion. We see that the x-coordinate has increased from 1.5 mm to 4.0 mm, that is, the
image point has moved to the right.

In a digital camera the image plane is a W×H grid of light sensitive elements
called photosites that correspond directly to the picture elements (or pixels) of the
image as shown in Fig. 11.5. The pixel coordinates are a 2-vector (u, v) of non-negative
integers and by convention the origin is at the top-left hand corner of the image plane.
In MATLAB® the top-left pixel is (1, 1). The pixels are uniform in size and centred on
a regular grid so the pixel coordinate is related to the image plane coordinate by

where ρw and ρh are the width and height of each pixel respectively, and (u0, v0) is the prin-
cipal point – the coordinate of the point where the optical axis intersects the image plane.
We can write Eq. 11.4 for pixel coordinates by prepending a camera parameter matrix K

Fig. 11.4.

Camera coordinate frames

Image sensor. The light sensitive cells in a camera chip, the photosites, are commonly square
with a side length in the range 1–10 µm. Professional cameras have large photosites for increased
light sensitivity whereas cellphone cameras have small sensors and therefore small less-sensitive
photosites. The ratio of the number of horizontal to vertical pixels is the aspect ratio and is com-
monly 4:3 or 16:9 (see page 290). The dimension of the sensor is measured diagonally across the
array and is commonly expressed in inches, e.g. D, 1/4 or C inch.

11.1 · Perspective Transform

256

(11.7)

where p= (u′, v′, w′) is the homogeneous coordinate of the world point P in pixel
coordinates.� The non-homogeneous image-plane pixel coordinates are

(11.8)

For example if the pixels are 10 µm square and the pixel array is 1 280× 1 024 pix-
els with its principal point at image plane coordinate (640, 512) then

>> cam = CentralCamera('focal', 0.015, 'pixel', 10e-6, ...
 'resolution', [1280 1024], 'centre', [640 512], 'name', 'mycamera')
name: mycamera [central-perspective]
 focal length: 0.015
 pixel size: (1e-05, 1e-05)
 principal pt: (640, 512)
 number pixels: 1280 x 1024
 Tcam:
 1 0 0 0
 0 1 0 0
 0 0 1 0
 0 0 0 1

which displays the parameters of the imaging model. The corresponding non-homo-
geneous image plane coordinates of the previously defined world point are

>> cam.project(P)
ans =
 790
 712

Combining Eq. 11.6 and Eq. 11.7 we can write the camera projection in general form as

Fig. 11.5.

Central projection model
showing image plane and
discrete pixels

The matrix K is often written with a fi-

nite value at K[1,2] to represent skew.

This accounts for the fact that the u- and

v-axes are not orthogonal, which with

precise semiconductor fabrication pro-

cesses is quite unlikely.

Chapter 11 · Image Formation

257

(11.9)

where all the terms are rolled up into the camera matrix C⊳. This is a 3× 4 homoge-
neous transformation which performs scaling, translation and perspective projection.
It is often also referred to as the projection matrix or the camera calibration matrix.

We have already mentioned the fundamental ambiguity with perspective pro-

jection, that we cannot distinguish between a large distant object and a smaller

closer object. We can rewrite Eq. 11.9 as

where HHHHH is an arbitrary non-singular 3× 3 matrix. This implies that an infinite

number of camera CCCCC′ and world point n′ combinations will result in the same

image plane projection p.

This illustrates the essential difficulty in determining 3-dimensional world

coordinates from 2-dimensional projected coordinates. It can only be solved if

we have information about the camera or the 3-dimensional object.

The projection can also be written in functional form as

(11.10)

where P is the point in the world frame, K is the camera parameter matrix and ξC is
the pose of the camera.

The intrinsic parameters are innate characteristics of the camera and sensor and
comprise f, ρw, ρh, u0 and v0. The extrinsic parameters describe the camera’s pose and
comprise a minimum of six parameters to describe translation and orientation in SE(3).
There are therefore a total of 11 parameters. The camera matrix has 12 elements so
one degree of freedom, the overall scale factor, is unconstrained. In practice these cam-
era parameters are not known and must be estimated using a camera calibration pro-
cedure which we will discuss in Sect. 11.2.

The camera matrix is implicitly created when the Toolbox camera object is con-
structed and for this example is

>> cam.C
ans =
 1.0e+03 *
 1.5000 0 0.6400 0
 0 1.5000 0.5120 0
 0 0 0.0010 0

and the camera parameter matrix K is

>> cam.K
ans =
 1.0e+05 *
 1.0000 0 0.0064
 0 1.0000 0.0051
 0 0 0.0000

11.1 · Perspective Transform

The terms f /ρw and f /ρh are the focal

length expressed in units of pixels.

258

The field of view of a camera is a function of its focal length f. A wide-angle lens has a
small focal length, a telephoto lens has a large focal length, and a zoom lens has an
adjustable focal length. The field of view can be determined from the geometry of
Fig. 11.5. In the horizontal direction the half-angle of view is

where N is the number of pixels in the horizontal direction. We can then write

(11.11)

We note that the field of view is also a function of the dimensions of the camera chip which
is Wρw×Hρh. The field of view is computed by the fov method of the camera object

>> cam.fov() * 180/pi
ans =
 46.2127 37.6930

in degrees in the horizontal and vertical directions respectively.
The CentralCamera class is a subclass of the Camera class and inherits the

ability to project multiple points or lines. Using the Toolbox we create a 3× 3 grid of
points in the xy-plane with overall side length 0.2 m and centred at (0, 0, 1)

>> P = mkgrid(3, 0.2, 'T', transl(0, 0, 1.0));

which returns a 3× 9 matrix with one column per grid point where each column com-
prises the coordinates in X, Y, Z order. The first four columns are

>> P(:,1:4)
ans =
 -0.1000 -0.1000 -0.1000 0
 -0.1000 0 0.1000 -0.1000
 1.0000 1.0000 1.0000 1.0000

By default mkgrid generates a grid in the xy-plane that is centred at the origin. The
optional last argument is a homogeneous transformation that is applied to the default
points and allows the plane to be arbitrarily positioned and oriented.

The image plane coordinates of the vertices are

>> cam.project(P)
ans =
 490 490 490 640 640 640 790 790 790
 362 512 662 362 512 662 362 512 662

which can also be plotted

>> cam.plot(P)

The field of view of a lens is an open rectangular pyramid that subtends angles θh and θv in the
horizontal and vertical planes respectively. The dimension of a sensor chip d is measured diago-
nally between its corners and is typically expressed in inches. Common dimensions are 1/4, D and
C inch. A normal lens has f≈ d and a wide-angle lens generally has f> d/3 giving a maximum
angular field of view of around 110°.

For wide-angle lenses it is more common to describe the field of view as a solid angle which is
measured in units of steradians (or sr). This is the area of the field of view projected onto the
surface of a unit sphere. A hemispherical field of view is 2π sr and a full spherical view is 4π sr. If
we approximate the camera’s field of view by a cone with apex angle θ the corresponding solid
angle is 2π (1− cosθ/2)sr.

A camera with a field of view greater than a full hemisphere is termed omni-directional or
panoramic.

Chapter 11 · Image Formation

259

giving the virtual camera view shown in Fig. 11.6a. The camera pose

>> Tcam = transl(-1,0,0.5)*troty(0.9);

results in an oblique view of the plane

>> cam.plot(P, 'Tcam', Tcam)

shown in Fig. 11.6b. We can clearly see the effect of perspective projection which has
distorted the shape of the square – the top and bottom edges, which are parallel lines,
have been projected to lines that converge at a vanishing point.

The vanishing point for a line can be determined from the projection of its ideal
line. The top and bottom lines of the grid are parallel to the world vector (1, 0, 0) and
the ideal line is (1, 0, 0, 0). This homogeneous line exists at infinity due to the final
zero element. The vanishing point is therefore

>> cam.project([1 0 0 0]', 'Tcam', Tcam)
ans =
 1.0e+03 *
 1.8303
 0.5120

which is (1 803, 512) and just to the right of the visible image plane.
The plot method can optionally return the image-plane coordinates

>> p = cam.plot(P, 'Tcam', Tcam)

just like the project method. For the oblique viewing case the image plane coordinates

>> p(:,1:4)
ans =
 887.7638 887.7638 887.7638 955.2451
 364.3330 512.0000 659.6670 374.9050

have a fractional component which means that the point is not projected to the centre
of the pixel. However a pixel responds to light equally⊳ over its surface area so the
discrete pixel coordinate can be obtained by rounding.

A 3-dimensional object, a cube, can be defined and projected in a similar fashion.
The vertices of a cube with side length 0.2 m and centred at (0, 0, 1) can be defined by

>> cube = mkcube(0.2, 'T', transl([0, 0, 1]));

which returns a 3× 8 matrix with one column per vertex. The image plane points can
be plotted as before by

>> cam.plot(cube);

Fig. 11.6. Two views of a planar
grid of points. a Frontal view,
b oblique view

This is not strictly true for CMOS sen-

sors where transistors reduce the light

sensitive area by the fill factor – the

fraction of each photosite’s area that is

light sensitive.

11.1 · Perspective Transform

260

Alternatively we can create an edge representation of the cube by

>> [X,Y,Z] = mkcube(0.2, 'T', transl([0, 0, 1.0]), 'edge');

and display it

>> cam.mesh(X, Y, Z)

as shown in Fig. 11.7 along with an oblique view

>> Tcam = transl(-1,0,0.5)*troty(0.8);
>> cam.mesh(X, Y, Z, 'Tcam', Tcam);

The edges are in the same 3-dimensional mesh format� as generated by MATLAB®
builtin functions such as sphere, ellipsoid and cylinder.

Successive calls to plot will redraw the points or line segments and provides a
simple method of animation. The short piece of code

Photons to pixel values. At each photosite photons are converted to electrons, and the fraction of
incoming photons converted to electrons is the quantum efficiency of the sensor. Not all of a photosite
is light sensitive due to the presence of transistors and other devices – the fraction of the photosite’s
area that is sensitive is called its fill factor and for CMOS sensors can be less than 50%. The electrons
are accumulated in a charge well during the exposure interval. In a CMOS sensor, at the end of the
exposure interval the charge is converted to a voltage and amplified, and then a switching network
connects each pixel to an on-chip analog to digital converter. The amount of charge accumulated in
each well is proportional to the product of the photon arrival rate (scene luminance) and the expo-
sure interval. The first is a function of the lens f-number and overall scene brightness. The second
has an upper bound of the frame interval, the time between consecutive frames in a video sequence.
Digital cameras often adjust the exposure interval instead of relying on an expensive, and slow,
mechanical aperture. The charge well has a maximum capacity and in some sensors surplus elec-
trons can overflow into adjacent photosites leading to image flaring.

At low light levels the camera uses an analog amplifier to boost the weak signal from the photosites,
but this also amplifies noise and leads to a grainy appearance in the image. This noise results from
a flow of electrons known as dark current which also accumulates into the charge well. The dark
current is caused by thermal processes and sensitive sensors used for astronomy minimize this by
cryogenically cooling the sensor.

Another source of noise is pixel non-uniformity due to adjacent pixels having a different gain or
offset – uniform illumination therefore leads to pixels with different values which appears as addi-
tive noise. Image sensors typically have some pixels at the edge that are covered by metalization, and
these provide a black reference which is subtracted from other pixel values.

One final consideration with a CMOS camera is that the pixels are read sequentially in raster order
(left to right, top to bottom) so the bottom-right pixel is sampled much later than the top-left pixel.
To combat motion blur a short exposure time is needed, which leads to darker and noisier images.

Fig. 11.7. Line segment represen-
tation of a cube. a Frontal view,
b oblique view

The elements of the mesh (i, j) have co-

ordinates (X[i, j], Y[i, j], Z[i, j]).

Chapter 11 · Image Formation

261

1 theta = [0:500]/100*2*pi;
2 [X,Y,Z] = mkcube(0.2, [], 'edges');
3 for th=theta
4 T_cube = transl(0, 0, 1.5)*trotx(th)*troty(th*1.2)*trotz(th*1.3)
5 cam.mesh(X, Y, Z, 'Tobj', T_cube);
6 end

shows a cube tumbling in space. The cube is defined with its centre at the origin and its
vertices are transformed at each time step.

11.1.1 lLens Distortion

No lenses are perfect and the low-cost lenses used in many webcams are far from
perfect. Lens imperfections result in a variety of distortions including chromatic aber-
ration (color fringing), spherical aberration or astigmatism (variation in focus across
the scene), and geometric distortions where points on the image plane are displaced
from where they should be according to Eq. 11.3.

Geometric distortion is generally the most problematic effect that we encounter for
robotic applications, and comprises two components: radial and tangential. Radial dis-
tortion causes image points to be translated along radial lines from the principal point.
The radial error is well approximated by a polynomial

(11.12)

where r is the distance of the image point from the principal point. Barrel distortion
occurs when magnification decreases with distance from the principal point which
causes straight lines near the edge of the image to curve outward. Pincushion distor-
tion occurs when magnification increases with distance from the principal point and
causes straight lines near the edge of the image to curve inward. Tangential distor-
tion, or decentering distortion, occurs at right angles to the radii but is generally less
significant than radial distortion. Examples of a distorted and undistorted image are
shown in Fig. 11.8.

The coordinate of the point (u, v) after distortion is given by

(11.13)

where the displacement is

Fig. 11.8. Lens distortion. a Dis-
torted image, the curvature of the
top row of the squares is quite pro-
nounced, b undistorted image. This
image is calibration image #19
from Bouguet’s Camera Calibra-
tion Toolbox (Bouguet 2010)

11.1 · Perspective Transform

262

(11.14)

This displacement vector can be plotted for different values of (u, v) as shown in
Fig. 11.12b. The vectors indicate the displacement required to correct the distortion at
different points in the image, in fact (−δu,−δv), and shows dominant radial distortion.

Typically three coefficients are sufficient to describe the radial distortion and the
distortion model is parameterized by (k1, k2, k3, p1, p2) which are considered as addi-
tional intrinsic parameters. Distortion can be modeled by the CentralCamera class
using the 'distortion' option, for example

>> cam = CentralCamera('focal', 0.015, 'pixel', 10e-6, ...
 'resolution', [1280 1024], 'centre', [512 512], ...
 'distortion', [k1 k2 k3 p1 p2])

11.2 lCamera Calibration

The camera projection model Eq. 11.9 has a number of parameters that in practice are
unknown. In general the principal point is not at the centre of the photosite array. The
focal length of a lens is only accurate� to 4% of what it purports to be, and is only
correct if the lens is focussed at infinity. It is also common experience that the intrinsic
parameters change if a lense is detached and reattached, or adjusted for focus or
aperture.� The only intrinsic parameters that it may be possible to obtain are the
photosite dimensions ρw and ρh from the sensor manufacturer’s data sheet. The ex-
trinsic parameters, the camera’s pose, raises the question of where exactly is the centre
point of the camera.

Camera calibration is the process of determining the camera’s intrinsic parameters
and the extrinsic parameters with respect to the world coordinate system. Calibration
techniques rely on sets of world points whose relative coordinates are known and whose
corresponding image-plane coordinates are also known. State-of-the-art techniques
such as Bouguet’s Calibration Toolbox for MATLAB® (Bouguet 2010) simply require a
number of images of a planar chessboard target such as shown in Fig. 11.11. From this,
as discussed in Sect. 11.2.4, the intrinsic parameters (including distortion parameters)
can be estimated as well as the relative pose of the chessboard in each image. Classical
calibration techniques require a single view of a 3-dimensional calibration targets but
are unable to estimate the distortion model. These methods are however easy to un-
derstand and they start of our discussion in the next section.

11.2.1 lHomogeneous Transformation Approach

The homogeneous transform method allows direct estimation of the camera matrix C
in Eq. 11.9. The elements of this matrix are functions of the intrinsic and extrinsic
parameters. Setting p= (u, v, 1), expanding equation Eq. 11.9 and substituting into
Eq. 11.8 we can write

(11.15)

where (u, v) are the pixel coordinates corresponding to the world point (X, Y, Z) and
Cij= C[i, j] are elements of the unknown camera matrix.

Calibration requires a 3-dimensional target such as shown in Fig. 11.9. The posi-
tion of the centre of each marker (Xi, Yi, Zi), i ∈ [1, N] with respect to the target

According to ANSI Standard PH3.13-

1958 “Focal Length Marking of Lenses”.

Changing focus rotates the lens about

the optical axis and if the lens is not per-

fectly symmetric this will move the dis-

tortions with respect to the image plane.

Changing the aperture alters the parts

of the lens that light rays pass through

and hence the distortion that they incur.

Chapter 11 · Image Formation

263

frame {T} must be known, but {T} itself is not known. An image is captured and the
corresponding image-plane coordinates (ui, vi) are determined. For each of the
N markers we stack the two equations of Eq. 11.15 to form the matrix equation

(11.16)

which can be solved for the camera matrix elements C11⋯ C33. The solution can only
be determined to within a scale factor and by convention C34 is set equal to 1. Equa-
tion 11.16 has 11 unknowns and for solution requires that N≥ 6. Often more than
6 points will be used leading to an over-determined set of equations which is solved
using least squares.

If the points are coplanar then the left-hand matrix of Eq. 11.16 becomes rank de-
ficient. This is why the calibration target must be 3-dimensional, typically an array of
dots or squares on two or three planes as shown in Fig. 11.9.

We will illustrate this with an example. The calibration target is a cube, the markers
are its vertices and its coordinate frame {T} is parallel to the cube faces with its origin
at the centre of the cube. The coordinates of the markers with respect to {T} are

>> P = mkcube(0.2);

Where is the camera’s centre? A compound lens has many cardinal points including focal points,
nodal points, principal points and planes, entry and exit pupils. The entrance pupil is a point on
the optical axis of a compound lens system that is its centre of perspective or its no-parallax
point. We could consider it to be the virtual pinhole. Rotating the camera and lens about this point
will not change the relative geometry of targets at different distances in the perspective image.

Rotating about the entrance pupil is important in panoramic photography to avoid parallax
errors in the final, stitched panorama. A number of web pages are devoted to discussion of tech-
niques for determining the position of this point. Some sites even tabulate the position of the
entrance pupil for popular lenses. Much of this online literature refers to this point incorrectly as
the nodal point even though the techniques given do identify the entrance pupil.

Depending on the lens design, the entrance pupil may be behind, within or in front of the lens
system.

Fig. 11.9.

A 3D calibration target showing
its coordinate frame {T}. The

centroids of the circles are taken
as the calibration points. Note that
the calibration circles are situated

on three planes (photo courtesy
of Fabien Spindler)

11.2 · Camera Calibration

264

Now the calibration target is at some “unknown pose” CξT with respect to the camera
which we choose to be

>> T_unknown = transl(0.1, 0.2, 1.5) * rpy2tr(0.1, 0.2, 0.3);

Next we create a perspective camera whose parameters we will attempt to estimate

>> cam = CentralCamera('focal', 0.015, ...
 'pixel', 10e-6, 'resolution', [1280 1024], 'centre', [512 512], ...
 'noise', 0.05);

We have also specified that zero-mean Gaussian noise with σ= 0.05 is added to the
(u, v) coordinates to model camera noise and errors in the computer vision algorithms.
The image plane coordinates of the calibration target at its “unknown” pose are

>> p = cam.project(P, 'Tobj', T_unknown);

Now using just the object model P and the observed image features p we estimate the
camera matrix

>> C = camcald(P, p)
maxm residual 0.067393 pixels.
C =
 883.1620 -240.0720 531.4419 612.0432
 259.3786 994.1921 234.8182 712.0180
 -0.1043 0.0985 0.6494 1.0000

The maximum residual in this case is less than 0.1 pixel, that is, the worst error be-
tween the projection of a world point using the camera matrix C and the actual image
plane location is very small.

Linear techniques such as this cannot estimate lens distortion parameters. The dis-
tortion will introduce errors into the camera matrix elements but for many situations
this might be acceptably low. Distortion parameters are often estimated using a non-
linear optimization over all parameters, typically 16 or more, with the linear solution
used as the initial parameter estimate.

11.2.2 lDecomposing the Camera Calibration Matrix

The elements of the camera matrix are functions of the intrinsic and extrinsic param-
eters. However given a camera matrix most of the parameter values can be recovered.
Continuing the example from above we decompose the estimated camera matrix

>> est = invcamcal(C)
est =
name: invcamcal [central-perspective]
 focal length: 1504
 pixel size: (1, 0.9985)
 principal pt: (518.6, 505)
 Tcam:
 0.93695 -0.29037 0.19446 0.08339
 0.31233 0.94539 -0.093208 -0.39143
 -0.15677 0.14807 0.97647 -1.4671
 0 0 0 1

which returns a CentralCamera object with its parameters set to values that result
in the same camera matrix. We note immediately that the focal length is very large
compared to the true focal length of our lens which was 0.015 m, and that the pixel
sizes are very large. From Eq. 11.9 we see that focal length and pixel dimensions always
appear together as factors f/ ρw and f/ ρh.� The function invcamcal has set ρw= 1
but the ratios of the estimated parameters

>> est.f/est.rho(1)
ans =
 1.5044e+03

These quantities have units of pixels

since ρ has units of m pixel–1. It is quite

common in the literature to consider

ρ = 1 and the focal length is given in

pixels. If the pixels are not square then

different focal lengths fu and fv must be

used for the horizontal and vertical di-

rections respectively.

Chapter 11 · Image Formation

265

are very close to the ratio for the true parameters of the camera

>> cam.f/cam.rho(2)
ans =
 1.500e+03

The small error in the estimated parameter values is due to the noisy image-plane
coordinate values we used for calibration.

The pose of the estimated camera is with respect to the calibration target {T} and is
therefore TûC. The true position of the target with respect to the camera is CξT . If our
estimation is accurate then CξT⊕

TûC will be 0. We earlier set the variable T_unknown
equal to CξT and for our example we find that

>> T_unknown*est.T
ans =
 0.7557 -0.5163 0.4031 -0.0000
 0.6037 0.7877 -0.1227 -0.0001
 -0.2541 0.3361 0.9069 -0.0041
 0 0 0 1.0000

which is the relative pose between the true and estimated camera pose. The camera
pose is estimated to better than 5 mm in position.

We can plot the calibration markers as small red spheres

>> plot_sphere(P, 0.03, 'r')
>> plot_frame(eye(4,4), 'frame', 'T', 'color', 'b', 'length', 0.3)

as well as {T} which we have set at the world origin. The estimated pose of the camera
can be superimposed

>> est.plot_camera()

and the result is shown in Fig. 11.10. The problem of determining the position of a
camera with respect to a calibration object is an important problem in photogramme-
try known as the camera location determination problem.

Fig. 11.10.

Calibration target points and
estimated camera pose with

respect to the target frame {T}
which is assumed to be at the

origin. The camera is depicted as
a rectangular pyramid and the

side represent the bounds of the
field of view

11.2 · Camera Calibration

266

11.2.3 lPose Estimation

The pose estimation problem is to determine the pose CξT of a target’s coordinate
frame {T} with respect to the camera. The geometry of the target is known, that is, we
know the position of a number of points (Xi, Yi, Zi), i ∈ [1, N] on the target with re-
spect to {T}. The camera’s intrinsic parameters are also known. An image is captured
and the corresponding image-plane coordinates (ui, vi) are determined using computer
vision algorithms.

Estimating the pose using (ui, vi), (Xi, Yi, Zi) and camera intrinsic parameters is
known as the Perspective-n-Point problem or PnP for short. It is a simpler problem than
camera calibration and decomposition because there are fewer parameters to estimate.
To illustrate pose estimation we will create a calibrated camera with known parameters

>> cam = CentralCamera('focal', 0.015, 'pixel', 10e-6, ...
 'resolution', [1280 1024], 'centre', [640 512]);

The object whose pose we wish to determine is a cube with side lengths of 0.2 m and
the coordinates of the markers with respect to {T} are

>> P = mkcube(0.2);

which we can consider a simple geometric model of the object. The object is at some
arbitrary but unknown pose CξT pose with respect to the camera

>> T_unknown = transl(0,0,2)*trotx(0.1)*troty(0.2)
T_unknown =
 0.9801 0 0.1987 0
 0.0198 0.9950 -0.0978 0
 -0.1977 0.0998 0.9752 2.0000
 0 0 0 1.0000

The image plane coordinates of the object’s points at its unknown pose are

>> p = cam.project(P, 'Tobj', T_unknown);

Now using just the object model P, the observed image features p and the calibrated
camera cam we estimate the relative pose CξT of the object

>> T_est = cam.estpose(P, p)
T_est =
 0.9801 0.0000 0.1987 -0.0000
 0.0198 0.9950 -0.0978 -0.0000
 -0.1977 0.0998 0.9752 2.0000
 0 0 0 1.0000

which is the same (to four decimal places) as the unknown pose T_unknown of the
object.

In reality the image features coordinates will be imperfectly estimated by the vision
system and we would model this by adding zero-mean Gaussian noise to the image
feature coordinates as we did in the camera calibration example.

11.2.4 lCamera Calibration Toolbox

A popular and practical tool for calibrating cameras using a planar chessboard target
is the Camera Calibration Toolbox. A number of images, typically twenty, are taken of
the target at different distances and orientations as shown in Fig. 11.11.

The calibration tool is launched by

>> calib_gui

and a graphical user interface (GUI) is displayed.� The first step is to load the images
using the Image Names button. The second step is the Extract Grid Corners button which

The GUI is optional, and the Toolbox func-

tions can be called from inside your own

programs. The function calib_gui_
normal shows the mapping from

GUI button names to Calibration Toolbox

function names. Note that most of the

functions are actually scripts and program

state variables are kept in the workspace.

Chapter 11 · Image Formation

267

prompts you to pick the corners of the calibration target in each of the images. This is a
little tedious but needs to be done carefully. The final step, the Calibration button, uses
the calibration target information to estimate the camera parameter values

Focal Length: fc = [661.66988 662.82841] ? [1.17902 1.26556]
Principal point: cc = [306.09593 240.79019] ? [2.38421 2.17462]
Skew: alpha_c = [0.00000] ? [0.00000]
 => angle of pixel axes = 90.00000 ? 0.00000 degrees
Distortion: kc = [-0.26424 0.22644 0.00020 0.00023 0.00000]
 ? [0.00933 0.03826 0.00052 0.00053 0.00000]
Pixel error: err = [0.45328 0.38910]

For each parameter the uncertainty (3σ bounds) is estimated and displayed after the
question mark.

The camera pose relative to the target is estimated for each calibration image and
can be displayed using the Show Extrinsic button. This target-centric view is shown in
Fig. 11.12a indicates the estimated relative pose of the camera for each input image.

The distortion vector kc contains the parameters in the order (k1, k2, p1, p2, k3) –
note that k3 is out of sequence. The distortion map can be displayed by

>> visualize_distortions

and is shown in Fig. 11.12b. This indicates the displacement from true to distorted
image-plane coordinates which in this case is predominately in the radial direction.
This is consistent with k1 and k2 being orders of magnitude greater than p1 and p2 which
is typical for most lenses. The Undistort Image button can be used to undistort a set of
images and a distorted and undistorted image are compared in Fig. 11.8b. The details
of this transformation using image warping will be discussed in Sect. 12.6.4.

Fig. 11.11. Example frames from
Bouguet’s Calibration Toolbox
showing the calibration target
in many different orientations.
These are images 2, 5, 9, 18 from
the Calibration Toolbox example

11.2 · Camera Calibration

268

Fig. 11.12. Calibration results
from the example in Bouguet’s
Calibration Toolbox. a The esti-
mated camera pose relative to the
target for each calibration image,
b the distortion map with vectors
showing how points in the image
will move due to distortion

Fig. 11.13.

Images formation by reflection
from a curved surface (Hand with
Reflecting Sphere, M. C. Escher,
1935). Note that straight lines have
become curves and the light hangs
at an angle

�

Chapter 11 · Image Formation

269

11.3 lNon-Perspective Imaging Models

We have discussed perspective imaging in quite some detail since it is the model of our
own eyes and almost all cameras that we encounter. However perspective imaging
constrains us to a fundamentally limited field of view. The perspective projection
Eq. 11.3 is singular for points with Z= 0 which limits the field of view to at most one
hemisphere – real lenses achieve far less. As the focal length decreases radial distor-
tion is increasingly difficult to eliminate and eventually a limit is reached beyond which
lenses cannot practically be built. The only way forward is to drop the constraint of
perspective imaging. In Sect. 11.3.1 we describe the geometry of image formation with
wide-angle lens systems.

An alternative to refractive optics is to use a reflective surface to form the image
such as shown in Fig. 11.13. Newtonian telescopes, are based on reflection from con-
cave mirrors rather than refraction by lenses. Mirrors are free of color fringing and are
easier to scale to larger sizes than a lens. Nature has also evolved reflective optics – the
spookfish and some scallops (see page 221) have eyes based on reflectors formed from
guanine crystals.

Fig. 11.14.

Fisheye lens image. Note that
straight lines in the world are no
longer projected as straight lines.
Note also that the field of view is

mapped to a circular region on
the image plane

Refraction and reflection. The oldest example of a lens is from Assyria around 2000 bce. It was a
burning-glass used to start fires and these were well known by the time of the ancient Greeks. The
word lens comes from the Latin name of the lentil because a convex lens is lentil-shaped. The
Arab physicist and mathematician Ibn Sahl (circa 940–1000) used what what we now know as
Snell’s law to calculate the shape of lenses. Reading stones appeared in the 11th century and spec-
tacles were invented in Italy in the 1280s.

The first telescope was developed by spectacle makers in the Netherlands in 1608 and Galileo
improved that design and went on to discover four moons (the Galielan satellites) of Jupiter. In
1668 Sir Isaac Newton built the first reflecting telescope which eliminated chromatic aberration
that was a problem in refracting telescopes. Early mirrors and telescope reflectors were made
from speculum metal, an alloy of copper, tin and arsenic. Speculum is Latin for mirror and leads
to terms like specular reflection for mirror-like reflection, or glinting, from objects.

The terms dioptrics and catoptrics are derived from ancient Greek words for refraction and
reflection respectively. A catadioptric camera comprises both reflecting and refractive elements –
mirrors and lenses.

11.3 · Non-Perspective Imaging Models

270

11.3.1 lFisheye Lens Camera

We start by considering a fisheye lens using the notation shown in Fig. 11.15 where the
camera is positioned at the origin O and its optical axis is the z-axis. The world point P
is represented in spherical coordinates (R, θ, φ), where θ is the angle outward from
the optical axis and φ is the angle of rotation around the optical axis. We can write

On the image plane of the camera we represent the projection p in polar coordi-
nates (r, φ) with respect to the principal point, where r= r(θ). The Cartesian image
plane coordinates are

The image-plane displacement from the principal point r(θ) is a function of the
angle θ and depends on the type of fisheye lens. Some common projection models are
listed in Table 11.1.

Using the Toolbox we can create a fisheye camera

>> cam = FishEyeCamera('name', 'fisheye', ...
 'projection', 'equiangular', ...
 'pixel', 10e-6, ...
 'resolution', [1280 1024])

which returns an instance of a FishEyeCamera object which is a subclass of the
Toolbox’s Camera object and polymorphic with the CentralCamera class discussed
earlier. If k is not specified, as in this example, then it is computed such that a hemi-
spheric field of view is projected into the maximal circle on the image plane. As is the
case for perspective cameras the parameters such as principal point and pixel dimen-
sions are generally not known and must be estimated using a calibration procedure.

We create an edge-based model of a cube with side length 0.2 m

>> [X,Y,Z] = mkcube(0.2, 'centre', [0.2, 0, 0.3], 'edge');

Fig. 11.15.

Image formation for a fisheye
lens camera. The world point P
is represented in spherical
coordinates (R, θ,φ) with
respect to the camera’s origin

Chapter 11 · Image Formation

271

and project it to the fisheye camera’s image plane

>> cam.mesh(X, Y, Z)

and the result is shown in Fig. 11.16.
Wide angle lenses are available with 180° and even 190° field of view, however they

have some practical drawbacks. Firstly, the spatial resolution is lower since the cam-
eras pixels are spread over a wider field of view. We also note from Fig. 11.14 that the
field of view is a circular region which means that nearly 25% of the rectangular image
plane is effectively wasted. Secondly, outdoors images are more likely to include bright
sky so the camera will automatically reduce its exposure which can result in some
non-sky parts of the scene being very underexposed.

Table 11.1.

Fisheye lens projection models

Fig. 11.16.

A cube projected using the
FishEyeCamera class. The
straight edges of the cube are

curves on the image plane

11.3 · Non-Perspective Imaging Models

Fig. 11.17.

Catadioptric imaging. a A cata-
dioptric imaging system com-

prising a conventional perspec-
tive camera is looking upward at
the mirror; b Catadioptric image.
Note the dark spot in the centre
which is the support that holds
the mirror above the lens. The

floor is in the centre of the image
and the ceiling is at the edge

272

11.3.2 lCatadioptric Camera

A catadioptric imaging system comprises both reflective and refractive elements, a mirror
and a lens, as shown in Fig. 11.17a. An example catadioptric image is shown in Fig. 11.17b.

The geometry is fairly complex and is shown in Fig. 11.18. A ray is constructed from
the point P to the focus of the mirror at O which is the origin of the camera system. The
ray has an elevation angle of

upward from the optical axis and intersects the mirror at the point M. The reflected
ray makes an angle ψ with respect to the optical axis which is a function of the incom-
ing ray angle, that is ψ(θ). The relationship between θ and ψ is determined by the
tangent to the mirror at the point M and is a function of the shape of the mirror. Many
different mirror shapes are used for catadioptric imaging including spherical, para-
bolic, elliptical and hyberbolic. In general the function ψ(θ) is non-linear but an inter-
esting class of mirror is the equiangular mirror for which

The reflected ray enters the camera at angle ψ from the optical axis, and from the
lens geometry we can write

which is the distance from the principal point. The polar coordinate of the image-
plane point is p= (r, φ) and the corresponding Cartesian coordinate is

where φ is the azimuth angle

In Fig. 11.18 we have assumed that all rays pass through a single focus point or
viewpoint – O in this case. This is referred to as central imaging and the resulting
image can be correctly transformed to a perspective image. The equiangular mirror
does not meet this constraint and is therefore a non-central imaging system – the
viewpoint varies with the angle of the incoming ray and lies along a short locus within
the mirror known as the caustic. Conical, spherical and equiangular mirrors are all
non-central. In practice the variation in the viewpoint is very small compared to the
world scale and many such mirrors are well approximated by the central model.

The Toolbox provides a model for catadioptric cameras. For example we can create
an equiangular catadioptric camera

>> cam = CatadioptricCamera('name', 'panocam', ...
 'projection', 'equiangular', ...
 'maxangle', pi/4, ...
 'pixel', 10e-6, ...
 'resolution', [1280 1024])

which returns an instance of a CatadioptricCamera object which is a subclass of
the Toolbox’s Camera object and polymorphic with the CentralCamera class dis-
cussed earlier. The option maxangle specifies the maximum elevation angle θ from
which the parameters α and f are determined such that the maximum elevation angle
corresponds to a circle that maximally fits the image plane. The parameters can be
individually specified using the options 'alpha' and 'focal'. Other supported

Chapter 11 · Image Formation

273

projection models include parabolic and spherical and each camera type has different
options as described in the online documentation.

We create an edge-based cube model

>> [X,Y,Z] = mkcube(1, 'centre', [1, 1, 0.8], 'edge');

which we project onto the image plane

>> cam.mesh(X, Y, Z)

and the result is shown in Fig. 11.19.
Catadioptric cameras have the advantage that they can view 360° in azimuth but

they also have some practical drawbacks. With fisheye lenses they share the problems
of reduced spatial resolution, wasted image plane pixels and exposure control. Addi-
tionally there is a blind spot for the support that holds the mirror which is commonly
a central stalk or a number of side supports.

Fig. 11.18.

Catadioptric image formation.
A ray from point P at elevation

angle θ and azimuth φ toward O
is reflected from the mirror sur-
face at M and is projected by the

lens on to the image plane at p

Fig. 11.19.

A cube projected with an equi-
angular catadioptric camera

11.3 · Non-Perspective Imaging Models

274

11.3.3 lSpherical Camera

The fisheye lens and catadioptric systems just discussed guide the light rays from a
large field of view onto an image plane. Ultimately the 2-dimensional image plane is
a limiting factor and it is advantageous to consider instead an image sphere as shown
in Fig. 11.20.

The world point P is projected by a ray to the origin of the sphere. The projection is the
point p where the ray intersects the surface of the sphere. If we write p= (x, y, z) then

(11.17)

where R=_(Xg2 g+ gYg2 g+ g Zg2g) is the radial distance to the world point. The surface of the
sphere is defined by x2+ y2+ z2= 1 so one of the three Cartesian coordinates is re-
dundant. A minimal two-parameter representation for a point on the surface of a
sphere (φ, θ) comprises the angle of colatitude

(11.18)

where r=_x2g+ggy2, and the azimuth angle (or longitude)

(11.19)

Conversely the Cartesian coordinates for the point (φ, θ) are given by

(11.20)

where r= sinθ .
Using the Toolbox we can create a spherical camera

>> cam = SphericalCamera('name', 'spherical')

which returns an instance of a SphericalCamera object which is a subclass of the Tool-
box’s Camera object and polymorphic with the CentralCamera class discussed earlier.

Fig. 11.20.

Spherical image formation. The
world point P is mapped to p on
the surface of the unit sphere
and represented by the angles
of colatitude θ and longitude φ

Chapter 11 · Image Formation

275

As previously we can create an edge-based cube model

>> [X,Y,Z] = mkcube(1, 'centre', [2, 3, 1], 'edge');

and project it onto the sphere

>> cam.mesh(X, Y, Z)

and this is shown in Fig. 11.21. To aid visualization the spherical image plane has been
unwrapped into a rectangle – lines of longitude and latitude are displayed as vertical
and horizontal lines respectively. The top and bottom edges correspond to the north
and south poles respectively.

It is not yet possible to buy a spherical camera although prototypes have been dem-
onstrated in several laboratories. The spherical camera is more useful as a conceptual
construct to simplify the discussion of wide-angle imaging. As we show in the next
section we can transform images from perspective, fisheye or catadioptric camera onto
the sphere where we can treat them in a uniform manner.

11.4 lUnified Imaging

We have introduced a number of different imaging models in this chapter. Now we will
discuss how to transform an image captured with one type of camera to the image that
would have been captured with a different type of camera. For example, given a fisheye
lens projection we will generate the corresponding projection for a spherical camera
or a perspective camera. The unified imaging model provides a powerful framework
to consider very different types of cameras such as standard perspective, catadioptric
and many types of fisheye lens.

The unified imaging model is a two-step process and the notation is shown in
Fig. 11.22. The first step is spherical projection of the world point P to the surface of
the unit sphere p′ as discussed in the previous section and described by Eq. 11.17 to
Eq. 11.18. The view point O is the centre of the sphere which is a distance m from the
image plane along its normal z-axis. The single view point implies a central camera.

In the second step the point p′= (θ, φ) is re-projected to the image plane p using
the view point F which is at a distance ` along the z-axis above O. The polar coordi-
nates of the image plane point are p= (r, φ) where

(11.21)

The unified imaging model has only two parameters m and ` and these are a func-
tion of the type of camera as listed in Table 11.2. For a perspective camera the two view
points O and F are coincident and the geometry becomes the same as the central per-
spective model shown in Fig. 11.2.

Fig. 11.21.

Cube projected by a spherical
camera. The spherical image

plane is represented in Cartesian
coordinates: the horizontal and
vertical axes are colatitude and

longitude respectively

11.4 · Unified Imaging

276

For catadioptric cameras with mirrors that are conics the focus F lies between the centre
of the sphere and the north pole, that is, 0< `< 1. This projection model is somewhat
simpler than the catadioptric camera geometry shown in Fig. 11.18. The imaging param-
eters are written in terms of the conic parameters eccentricity ε and latus rectum� 4p.

The projection with F at the north pole is known as stereographic projection and is
used in many fields to project the surface of a sphere onto a plane. Many fisheye lenses
are extremely well approximated by F above the north pole.

11.4.1 lMapping Wide-Angle Images to the Sphere

We can use the unified imaging model in reverse. Consider an image captured by a
wide field of view camera such as the fisheye image shown in Fig. 11.23a. If we know
the location of F then we can project each point from the image onto the sphere to
create a spherical image, even though we do not have a spherical camera.

In order to achieve this inverse mapping we need to know some parameters of the
camera that took the image in the first place. A common feature of images captured with

Table 11.2.

Unified imaging model parame-
ters ℓ and m according to camera
type. ε is the eccentricity of the
conic and 4p is the latus rectum

Fig. 11.22.

Unified imaging model of Geyer
and Daniilidis (2000)

Chapter 11 · Image Formation

The length of a chord parallel to the di-

rectrix and passing through the focus.

277

a fisheye lens or catadioptric camera is that the outer bound of the image is a circle. This
circle can be found and its centre estimated quite precisely – this is the principal point. A
variation of the camera calibration procedure of Sect. 11.2.4 is applied which uses cor-
responding world and image plane points from the planar calibration target shown in
Fig. 11.23a. The calibration parameters for this particular camera have been estimated
to be: principal point (528.1214, 384.0784), `= 2.7899 and m= 996.4617.

Consider a point in the fisheye image p= (r, φ) defined in polar coordinates rela-
tive to the principal point. The corresponding point on the sphere is p′= (θ, φ) where
θ is found by inverting the second projection Eq. 11.21 which gives

(11.22)

We will illustrate this by mapping the image of Fig. 11.23

>> fisheye = iread('fisheye_target.png', 'double', 'grey');

to the sphere using the known camera calibration parameters

>> u0 = 528.1214; v0 = 384.0784;
>> l=2.7899;
>> m=996.4617;

We will use image warping to achieve this mapping. Warping is discussed in detail in
Sect. 12.6.4 but we will preview the approach here. First we define the domain of the
input image

>> [Ui,Vi] = imeshgrid(fisheye);

The output domain covers the lower hemisphere

>> n = 500;
>> theta_range = (0:n)/n*pi/2 + pi/2;
>> phi_range = (-n:2:n)/n*pi;
>> [Phi,Theta] = meshgrid(phi_range, theta_range);

where n is the number of grid cells on the surface of the sphere in the colatitude and
longitude directions.

For warping we require the inverse function, the input image coordinates for each
point on the sphere. This is the second step of the unified imaging model Eq. 11.21
which we implement as

>> r = (l+m)*sin(Theta) ./ (l+cos(Theta));

from which the corresponding Cartesian coordinates in the input image are computed

Fig. 11.23. Fisheye image of a pla-
nar calibration target. a Fisheye
image (image courtesy of Peter
Hansen); b Image warped to (φ, θ)
coordinates

11.4 · Unified Imaging

278

>> U = r.*cos(Phi) + u0;
>> V = r.*sin(Phi) + v0;

We apply the warp

>> spherical = interp2(Ui, Vi, fisheye, U, V);
>> idisp(spherical)

which is shown in Fig. 11.23b with respect to colatitude and longitude coordinates.
The top line of this image corresponds to perimeter of the input image, and the bot-
tom line corresponds to the principal point.

The image is extremely distorted but the coordinate system is very convenient to
texture map onto a sphere

>> sphere_paint(spherical, 'south')

and this is shown in Fig. 11.24. Using the MATLAB® figure toolbar we can rotate the
sphere and look at the image from different view points. The option 'south' indi-
cates that the image covers only the lower or southern hemisphere, the undefined part
of the spherical image is displayed as grey.

Any wide-angle image that can be expressed in terms of central imaging param-
eters can be similarly projected onto a sphere.

11.4.2 lSynthetic Perspective Images

We will finish this chapter with an example of mapping a spherical image to a perspec-
tive image. This is the second step of the unified imaging model where F is at the cen-
tre of the sphere in which case Fig. 11.22 becomes similar to Fig. 11.2. The perspective
camera’s optical axis is the negative z-axis of the sphere.

For this example we will use the spherical image created in the previous section. We
wish to create a perspective image of 1 000× 1 000 pixels and with a field-of-view of
45°. The field of view can be written in terms of the image width W and the unified
imaging parameter m as

For a 45° field-of-view we require

>> W = 1000;
>> m = W / 2 / tan(45/2*pi/180)
m =
 1.2071e+03

For perspective projection we require

>> l = 0;

Fig. 11.24.

Fisheye image mapped to the
unit sphere. We can clearly see
the planar grid lying on a table,
the ceiling light and other linear
features in the room

Chapter 11 · Image Formation

279

and we also require the principal point to be in the centre of the image

>> u0 = W/2; v0 = W/2;

The domain of the output image will be

>> [Uo,Vo] = meshgrid(0:W-1, 0:W-1);

The polar coordinate (r, φ) of each point in the output image is

>> r = sqrt((Uo-u0).^2 + (Vo-v0).^2);
>> phi = atan2((Vo-v0), (Uo-u0));

and the corresponding spherical coordinates (φ, θ) are

>> Phi_o = phi;
>> Theta_o = pi - acos(((l+m)*sqrt(r.^2*(1-l^2) + (l+m)^2) -
l*r.^2) ./ (r.^2 + (l+m)^2));

We now warp from spherical coordinates to the perspective image plane

>> perspective = interp2(Phi, Theta, spherical, Phi_o, Theta_o);

and the result

>> idisp(perspective)

is shown in Fig. 11.25. This is the view from a perspective camera at the centre of the
sphere looking down through the south pole. We see that the lines on the chessboard
calibration target are now straight as we would expect from a perspective image. Im-
portantly we can only create this perspective image for a small field of view.

Of course we are not limited to just looking along the negative z-axis of the sphere.
In Fig. 11.24 we can see some other features of the room such as door, a whiteboard
and some ceiling lights. We can point our virtual perspective camera in their direction
by rotating the spherical image

>> spherical = sphere_rotate(spherical, troty(1.2)*trotz(-1.5));

so that the negative z-axis now points toward the distant wall. Repeating the warp
process we obtain the result shown in Fig. 11.26 in which we can see the ceiling light
and a whiteboard.⊳

The original wide-angle image contains a lot of detail though it can be hard to see
because of the distortion. After mapping the image to the sphere we can create a vir-
tual perspective camera view (where straight lines in the world are straight) along any
line of sight in the hemisphere. This is only possible if the original image was taken
with a central camera that has a single viewpoint. In theory we cannot create a per-
spective image from a non-central wide-angle image but in practice if the caustic is
small the parallax errors introduced into the perspective image will be negligible.

Note that the top part of the image is a

reflection about a line that that corre-

sponds to the edge of the original field

of view.

Fig. 11.25.

Perspective projection of spheri-
cal image Fig. 11.24 with a field

of view of 45°. Note that the lines
on the chessboard are now

straight

11.4 · Unified Imaging

280

11.5 lWrapping Up

We have discussed the first steps in the computer vision process – the formation of an
image of the world and its conversion to an array of pixels which comprise a digital
image. The images with which we are familiar are perspective projections of the world
in which 3 dimensions are compressed to 2 dimensions. This leads to ambiguity about
object size – a large object in the distance looks the same as a small object that is close.
Straight lines and conics are unchanged by this projection but shape distortion occurs
– parallel lines can appear to converge and circles can appear as ellipses. We have
modeled the perspective projection process and described it in terms of eleven pa-
rameters – intrinsic and extrinsic. Geometric lens distortion adds additional lens pa-
rameters. Camera calibration is the process of estimating these parameters and two
approaches have been introduced. We also discussed pose estimation where the pose
of an object of known geometry can be estimated from a perspective projection ob-
tained using a calibrated camera.

Perspective images are limited in their field of view and we discussed several wide-
angle imaging systems including the fisheye lens camera and the catadioptric camera.
We also discussed the ideal wide-angle camera, the spherical camera, which is cur-
rently still a theoretical construct. However it can be used as an intermediate repre-
sentation in the unified imaging model which provides one model for almost all cam-
era geometries. We used the unified imaging model to convert a fisheye camera image
to a spherical image and then to a perspective image along a specified view axis.

In this chapter we treated imaging as a problem of pure geometry with a small
number of world points or line segments. In the next chapter we will discuss discuss
the acquisition and processing of images sourced from files, cameras and the web.

Further Reading

Most computer vision textbooks such as Szeliski (2011), Forsyth and Ponce (2002) and
Gonzalez and Woods (2008) provide coverage of the topics in this chapter. Under-
standing the geometry of the world from images is the science of photogrammetry.
The techniques were pioneered by the French scientist Aimé Laussedat in the 1850s
for balloon-based aerial map making. The Manual of Photogrammetry (Slama 1980)
provides comprehensive and definitive coverage of the field including history, theory
and applications of aircraft and satellite imagery. The revised classic textbook by DeWitt
and Wolf (2000) is a thorough and readable introduction to photogrammetry. Photo-
grammetry is normally concerned with making maps from images acquired at great

Fig. 11.26.

Perspective projection of spheri-
cal image Fig. 11.24 with a field of
view of 45°. This view is looking
toward the far wall and ceiling

Chapter 11 · Image Formation

281

distance but the sub-field of close-range or terrestrial photogrammetry is concerned
with camera to object distances less than 100 m which is directly relevant to robotics.
Many topics in geometric computer vision are also considered by the photogrammet-
ric community, but different language is used. For example camera calibration is known
as camera resectioning, and pose estimation is known as space resectioning.

The homogenous transformation calibration (Sutherland 1974) approach of
Sect. 11.2.1 is also known as the direct linear transform (DLT) in the photogrammet-
ric literature. The Toolbox implementation camcald requires that the centroids of
the calibration markers have already been determined which is a non-trivial problem
(Corke 1996b, § 4.2). It also cannot estimate lens distortion. Wolf (1974) describes ex-
tensions to the linear camera calibration with models that include up to 18 parameters
and suitable non-linear optimization estimation techniques. A more concise descrip-
tion of non-linear calibration is provided by Forsyth and Ponce (2002). Hartley and
Zisserman (2003) describe how the linear calibration model can be obtained using
features such as lines within the scene.

There are a number of good camera calibration toolboxes available on the web. The
MATLAB® Toolbox, discussed in Sect. 11.2.4, is by Jean-Yves Bouguet and available from
http://www.vision.caltech.edu/bouguetj/calib_doc. It has extensive online documenta-
tion and includes example calibration images which were used in Sect. 11.2.4. The
MATLAB® Toolbox by Janne Heikkilä is available at http://www.ee.oulu.fi/~jth/calibr/ and
works for planar or 3D targets with circular dot features and estimates lens distortion.

Pose estimation is a classic and hard problem in computer vision and for which
there exists a very large literature. The approaches can be broadly divided into ana-
lytic and iterative solutions. Assuming that lens distortion has been corrected the ana-
lytic solutions for three and four non-collinear points are given by Fischler and Bolles
(1981), DeMenthon and Davis (1992) and Horaud et al. (1989). Typically multiple so-
lutions exist but for four coplanar points there is a unique solution. Six or more points
always yield unique solutions, as well as the intrinsic camera calibration parameters.
Iterative solutions were described by Rosenfeld (1959) and Lowe (1991). A more recent
discussion based around the concept of bundle adjustment is provided by Triggs et al.
(2000). The pose estimation in the Toolbox is a wrapper around an efficient non-itera-
tive perspective n-point pose estimator described by Lepetit et al. (2009) and available
at http://cvlab.epfl.ch/software/EPnP. Pose estimation requires a geometric model of
the object and such computer vision approaches are known as model-based vision. An
interesting historical perspective on model-based vision is the 1987 video by the late
Joe Mundy which is available at http://www.archive.org/details/JosephMu1987.

There is recent and growing interest in wide-angle viewing systems and today good
quality lightweight fisheye lenses and catadioptric camera systems are available. Nayar
(1997) provides an excellent motivation for, and introduction to, wide-angle imag-
ing. A very useful online resource is the catadiopric sensor design page at http://

www.math.drexel.edu/~ahicks/design and a page of links to research groups, compa-
nies and workshops at http://www.cis.upenn.edu/~kostas/omni.html. Equiangular
mirror systems were described by Chahl and Srinivasan (1997) and Ollis et al. (1999).
Nature’s solution, the reflector-based scallop eye is described in Colicchia et al. (2009).
A number of workshops on Omnidirectional Vision have been held, starting in 2000,
and their proceedings are a useful introduction to the field. The book of Daniilidis and
Klette (2006) is a collection of papers on non-perspective imaging and Benosman and
Kang (2001) is another, earlier, published collection of papers. Some information is
available through CVonline at http://homepages.inf.ed.ac.uk/rbf/CVonline in the sec-
tion Sensors and their Properties.

A MATLAB® Toolbox for calibrating wide-angle cameras by Davide Scaramuzza is
available at http://asl.epfl.ch/~scaramuz/research/Davide_Scaramuzza_files/Research/

OcamCalib_Tutorial.htm. It is inspired by, and similar in usage, to Bouguet’s Toolbox
for perspective cameras. Another MATLAB® Toolbox, by Juho Kannala, handles wide
angle central cameras and is available at http://www.ee.oulu.fi/~jkannala/calibration.

11.5 · Wrapping Up

282

The unified imaging model was introduced by Geyer and Daniilidis (2000) in the
context of catadioptric cameras. Later it was shown (Ying and Hu 2004) that many
fisheye cameras can also be described by this model. The fisheye calibration of
Sect. 11.5.1 was described by Hansen et al. (2010) and estimates ` and m rather than a
polynomial function r(θ) as does Scaramuzza’s Toolbox.

Camera Classes

The Toolbox camera classes CentralCamera , FishEyeCamera and
SphericalCamera are all derived from the abstract superclass Camera. Com-
mon methods of all classes are shown in Table 11.3.

The camera view has similar behaviour to a MATLAB® figure. By default plot
and mesh will redraw the camera’s view. If no camera view exists one will be created.
The methods clf and hold are analogous to the MATLAB® commands clf and
hold.

The constructor of all camera classes accepts a number of option arguments which
are listed in Table 11.4. Specific camera subclasses have unique options which are de-
scribed in the online documentation. With no arguments the default CentralCamera
parameters are for a 1 024× 1 024 image, 8 mm focal length lens and 10 µm square
pixels. If the principal point is not set explicitly it is assumed to be in the middle of the
image plane.

Table 11.3.

Common methods for all
Toolbox camera classes

Table 11.4.

Common options for camera
class constructors

Chapter 11 · Image Formation

283

Exercises

1. Create a central camera and a cube target and visualize it for different camera and
cube poses.

2. Write a script to fly the camera in an orbit around the cube, always facing toward
the centre of the cube.

3. Write a script to fly the camera through the cube.
4. Create a central camera with lens distortion and which is viewing a 10× 10 planar

grid of points. Vary the distortion parameters and see the effect this has on the
shape of the projected grid. Create pincushion and barrel distortion.

5. Repeat the homogeneous camera calibration exercise of Sect. 11.2.1 and investigate
the effect of the number of calibration points, noise and camera distortion on the
calibration residual and estimated target pose.

6. Determine the solid angle for a rectagular pyramidal field of view that subtends
angles θh and θv.

7. Do example 1 from Bouguet’s Camera Calibration Toolbox.
8. Calibrate the camera on your computer.
9. For the camera calibration matrix decomposition example (Sect. 11.2.2) determine

the roll-pitch-yaw orientation error between the true and estimated camera pose.
10.Pose estimation (Sect. 11.2.3)

a) Repeat the pose estimation exercise for different object poses (closer, further
away).

b) Repeat for different levels of camera noise.
c) What happens as the number of points is reduced?
d) Does increasing the number of points counter the effects of increased noise?
e) Change the intrinsic parameters of the camera cam before invoking the estpose

method. What is the effect of changing the focal length and the principal point
by say 5%.

11.Repeat exercises 2 and 3 for the fisheye camera and the spherical camera.
12.With reference to Fig. 11.18 derive the function ψ(θ) for a parabolic mirror.
13.With reference to Fig. 11.18 derive the equation of the equi-angular mirror z(x) in

the xz-plane.

11.5 · Wrapping Up

12
Chapter

and spatial operations respectively. Monadic and diadic operations are covered in Sect. 12.2
and 12.3. Spatial operators are described in Sect. 12.4 and include operations such as
smoothing, edge detection, and template matching. A closely related technique is shape-
specific filtering or mathematical morphology and this is described in Sect. 12.5. Finally
in Sect. 12.6 we discuss shape changing operations such as cropping, shrinking, expand-
ing, as well as more complex operations such as rotation and generalized image warping.

Robots will always gather imperfect images of the world due to noise, shadows,
reflections and uneven illumination. In this chapter we discuss some fundamental
tools and “tricks of the trade” that can be applied to real-world images.

12.1 lObtaining an Image

Today digital images are ubiquitous. We obtain them quickly and easily using our digital
cameras, our phones and our laptops, and have personal collections of thousands or
tens of thousands of images. Beyond our personal collections are massive online col-
lection of digital images such as Google Images, Picasa or Flickr which also have meta-
data describing the image content and increasingly its geographic location. Images of
Earth from space, the Moon and Mars are also available. We also have access to live
image streams from other people’s cameras – there are tens of thousands of webcams
around the world capturing images and broadcasting them on the internet.

12.1.1 lImages from Files

We start with images stored in files since it is very likely that you already have lots of
images stored on your computer. In this chapter we will work with some images pro-
vided with the Toolbox, but you can easily substitute your own images. We import an
image into the MATLAB® workspace using the Toolbox function iread

Image Processing

Image processing is a computational process that transforms one or more
input images into an output image. Image processing is frequently used to
enhance an image for human viewing or interpretation, for example to
improve contrast. Alternatively, and of more interest to robotics, it is the
foundation for the process of feature extraction which will be discussed in
much more detail in the next chapter.

An image is a rectangular array of picture elements (pixels) so we will
use a MATLAB® matrix to represent an image in the workspace. This al-
lows us to use MATLAB’s powerful and efficient armoury of matrix opera-
tors and functions.

We start in Sect. 12.1 by describing how to load images into MATLAB®
from sources such as files (images and movies), cameras and the internet.
We then discuss various classes of image processing algorithms. These algo-
rithms operate pixel-wise on a single image or a pair of images, or on local
groups of pixels within an image and we refer to these as monadic, diadic,

286

>> street = iread('street.png');

which returns a matrix

>> about(street)
street [uint8] : 851x1280 (1089280 bytes)

which has 851 rows and 1 280 columns. We normally describe the dimensions of an
image in terms of its width× height, so this would be a 1 280× 851 pixel image.

In Chap. 11 we wrote the coordinates of a pixel as (u, v) which are the horizontal

and vertical coordinates respectively. In MATLAB® this is the matrix element (v, u)

– note the reversal of coordinates. Note also that the top-left pixel is (1, 1) in

MATLAB® not (0, 0).

This image was read from a file called street.png which is in portable network
graphics (PNG) format – a lossless compression format� widely used on the internet.
The function iread searches for the image in the current folder, and then in each
folder along your MATLAB® path.� This particular image has no color, it is a greyscale
or monochromatic image.

The about command used above indicates that the matrix street belongs to the
class uint8 – the elements of the matrix are unsigned 8-bit integers in the interval [0, 255].
The elements are referred to as pixel values or grey values and are proportional to the
luminance of that point in the original scene. For this 8-bit image the pixel values vary
from 0 (darkest) to 255 (brightest). For example the pixel at image coordinate (300,200) is

>> street(200,300)
ans =
 42

which is quite dark – the pixel corresponds to a point in the closest doorway.
For some image processing operations that we will consider later it is useful to

consider the pixel values as floating point numbers. In this case each pixel is an 8-byte
MATLAB® double precision number in the range [0, 1]. We can convert a uint8 class
image to a floating point image by

>> street_d = idouble(street);
>> about(street_d)
street_d [double] : 851x1280 (8714240 bytes)

Alternatively we can specify this as an option when we load the image

>> street_d = iread('street.png', 'double');

Fig. 12.1.

The idisp image browsing
window. The top right shows
the coordinate and value of the
last pixel clicked on the image.
The buttons at the top left allow
the pixel values along a line to
be plotted, a histogram to be
displayed, or the image to be
zoomed

Lossless means that the compressed

image, when uncompressed, will be ex-

actly the same as the original image.

The example images are kept within

the images folder of the Machine

Vision Toolbox distribution which is au-

tomatically searched by the iread
function.

Chapter 12 · Image Processing

287

A tool that we will see and use a lot to display an image is idisp

>> idisp(street)

which displays the matrix as an image and allows interactive inspection of pixel values
as shown in Fig. 12.1. Clicking on a pixel will display the pixel coordinate and its grey
value in the top right of the window. The image can be zoomed (and unzoomed) and we
can display a histogram or the intensity profile along a line between any two selected
points. It has many options and these are described in the online documentation.

We can just as easily load a color image

>> flowers = iread('flowers8.png');
>> about(flowers)
flowers [uint8] : 426x640x3 (817920 bytes)

which is a 3-dimensional matrix of uint8 values as shown in Fig. 12.2. The color of
each pixel is represented as an RGB tristimulus which is a 3-vector. For example the
pixel at (318, 276)

>> pix = flowers(276,318,:)
ans(:,:,1) =
 57
ans(:,:,2) =
 91
ans(:,:,3) =
 198

Fig. 12.2.

Color image shown as a 3-dimen-
sional structure with dimensions:

row, column, and color plane

The dynamic range of a sensor is the ratio of its largest value to its smallest value. For images it is
useful to express the log2 of this ratio which makes it equivalent to the photographic concepts of
stops or exposure value. Each photosite contains a charge well in which photon-generated elec-
trons are captured during the exposure period (see page 260). The charge well has a finite capac-
ity before the photosite saturates and this defines the maximum value. The minimum number of
electrons is not zero but a finite number of thermally generated electrons.

An 8-bit image has a dynamic range of around 8 stops, a high-end 10-bit camera has a range of
10 stops, and negative film is perhaps in the range 10–12 stops but is quite non-linear.

At a particular state of adaptation, the human eye has a range of 10 stops, but the total adapta-
tion range is an impressive 20 stops. This is achieved by using the iris and slower (tens of min-
utes) chemical adaptation of the sensitivity of rod cells. Dark adaptation to low luminance is slow,
from bright Sun to a dark room takes many minutes. Adaptation from dark to bright is faster but
sometimes painful.

12.1 · Obtaining an Image

288

has a tristimulus value (57, 91, 198). This pixel corresponds to one of the small
blue flowers and has a large blue component. We can display the image and exa-
mine it interactively using idisp and clicking on a pixel will display its tristimu-
lus value.

The variable pix has been displayed by MATLAB® in an unusual and non-com-
pact manner. This is because the pixel value is

>> about(pix)
pix [uint8] : 1x1x3 (3 bytes)

a 1× 1× 3 matrix. The first two dimensions are called singleton dimensions and we
can squeeze them out

>> squeeze(pix)'
ans =
 57 91 198

which results in a more familiar 3-vector.
The third dimension of the image shown in Fig. 12.2 is known as the color plane

index. For example

>> idisp(flowers(:,:,1))

would display the red color plane as a greyscale image that shows the red stimulus at
each pixel. The index 2 or 3 would select the green or blue plane respectively.

The tristimulus values are of type uint8 in the range [0, 255] but the image can be
converted to double precision values in the range [0, 1] using the 'double' option
to iread or by applying the function idouble to the integer color image, just as for
a greyscale image. The option 'grey' ensures that a greyscale image is returned
irrespective of whether or not the file contains a color image.�

The iread function can also accept a wildcard filename allowing it to load a se-
quence of files. For example

>> seq = iread('seq/*.png');
>> about(seq)
seq [uint8] : 512x512x9 (2359296 bytes)

loads nine images in PNG format from the folder seq. The result is a 3-dimensional
matrix and the last index represents the image number within the sequence. That is
seq(:,:,k) is the kth image in the sequence and is a 512× 512 greyscale image. In
terms of Fig. 12.2 the images in the sequence extend in the p direction. If the images
were color then the result would be a 4-dimensional matrix where the last index rep-
resents the image number within the sequence, and the third index represents the
color plane.

If iread is called with no arguments a file browsing window pops up allowing
navigation through the file system to find the image. The function also accepts a URL
allowing it to load an image, but not a sequence, from the web. The function can read
most common image file formats including JPEG, TIFF, GIF, PNG, PGM, PPM, PNM.
Other options for iread are described in the online documentation.

A very large number of image file formats have been developed and are comprehensively cata-
logued at http://en.wikipedia.org/wiki/Image_file_formats. The most popular is JPEG which is
used for digital cameras and webcams. TIFF is common in many computer systems and often
used for scanners. PNG and GIF are widely used on the web. The internal format of these files are
complex but a large amount of good quality open-source software exists in a variety of languages
to read and write such files. MATLAB® is able to read many of these image file formats.

A much simpler set of formats, widely used on Unix systems, are PBM, PGM and PPM (generi-
cally PNM) which represent images without compression, and optionally as readable ASCII text.
A host of open-source tools such as ImageMagick provide format conversions and image ma-
nipulation under Unix, MacOS X and Windows.

Chapter 12 · Image Processing

Using ITU Rec. 709 by default. See also

the function imono.

289

12.1.2 lImages from an Attached Camera

Most laptop computers today have a builtin camera for video conferencing. For com-
puters without a builtin camera an external camera can be easily attached via a USB or
FireWire connection. The means of accessing a camera is operating system specific
and the Toolbox provides a simple interface to a camera for MacOS, Linux and Win-
dows. A list of all attached cameras and their capability can be obtained by

>> VideoCamera('?')

We open a particular camera

>> cam = VideoCamera('name')

which returns an instance of a VideoCamera object that is a subclass of the
ImageSource class. If name is not provided the first camera found is used. The
constructor accepts a number of additional arguments such as 'grey' which en-
sures that the returned image is greyscale irrespective of the camera type, and
'framerate' which sets the number of frames captured per second.

The dimensions of the image returned by the camera are given by the size method

>> cam.size()

and an image is obtained using the grab method

>> im = cam.grab();

which waits until the next frame becomes available.⊳

12.1.3 lImages from a Movie File

In Sect. 12.1.1 we loaded an image sequence into memory where each image came
from a separate image file. More commonly image sequences are stored in a movie file
format such as MPEG4 or AVI and it may not be practical or possible to keep the whole
sequence in memory.

The Toolbox supports reading frames from a movie file stored in any of the popular
formats such as AVI, MPEG and MPEG4. For example we can open a movie file

>> cam = Movie('traffic_sequence.mpg');
720 x 576 @ 2.999970e+01 fps
350 frames

JPEG employs lossy compression to reduce the size of the file. This means that the decompressed
image isn’t quite the same as the original image. It exploits limitations of the human eye and
discards information that won’t be noticed such as very small color changes (which are perceived
less accurately than small changes in brightness) and fine texture. It is very important to remem-
ber that JPEG is intended for compressing images that will be viewed by humans. The loss of color
detail and fine texture may be problematic for computer algorithms that analyze images.

JPEG was designed to work well for natural scenes but it does not do so well on lettering and
line drawings with high spatial-frequency content. The degree of lossiness can be varied by ad-
justing the so-called quality factor which allows a tradeoff between image quality and file size.
JPEG can be used for greyscale or color images.

What is commonly referred to as a JPEG file, often with an extension of .jpg or .jpeg, is
more correctly a JPEG JFIF file. JFIF is the format of the file that holds a JPEG-compressed image
as well as metadata. EXIF file format (Exchangeable Image File Format) is a standard for camera
related metadata such as camera settings, time, location and so on. This metadata can be re-
trieved as a second output argument to iread as a cell array, or by using a command-line utility
such as exiftool (http://www.sno.phy.queensu.ca/~phil/exiftool). See the Independent JPEG
group web site http://www.ijg.org for more details.

Since the frames are generated at a rate

of R per second as specified by the

'framerate' option, then the

worst case wait is uniformly distributed

in the interval [0, 1/R).

12.1 · Obtaining an Image

290

which returns a Movie object that is an instance of a subclass of the ImageSource
class and therefore polymorphic with the VideoCamera class just described. This
movie has 350 frames and was captured at 30 frames per second.

The size of each frame within the movie is

>> cam.size()
ans =
 720 576

and the next frame is read from the movie file by

>> im = cam.grab();
>> about(im)
im [uint8] : 576x720x3 (1244160 bytes)

which is a 720× 576 color image. With these few primitives we can write a very simple
movie player

1 while 1
2 im = cam.grab;
3 if isempty(im), break; end
4 image(im)
5 end

where the test at line 3 is to detect the end of file, in which case grab returns an empty
matrix.

The methods nframes and framerate provide the total number of frames and
the number of frames per second. The methods skiptotime and skiptoframe
provide an ability to move to desired frames within the movie.

12.1.4 lImages from the Web

The term web camera has come to mean any USB or Firewire connected local camera
but here we use it to refer to an internet connected camera that runs a web server that
can deliver images on request. There are tens of thousands of these web cameras around
the world that are pointed at scenes from the mundane to the spectacular. Given the
URL of a webcam from Axis Communications� we can acquire an image from a cam-
era anywhere in the world and place it in a matrix in our MATLAB® workspace.

For example we can connect to a camera at Dartmouth College in New Hampshire

>> cam = AxisWebCamera('http://wc2.dartmouth.edu');

which returns an AxisWebCamera object which is an instance of a subclass of the
ImageSource class and therefore polymorphic with the VideoCamera and Movie
classes previously described.

The image size in this case is

>> cam.size()
ans =
 480 640

Aspect ratio is the ratio of an image’s width to its height. It varies widely across different imaging
and display technologies. For 35 mm film it is 3:2 (1.5) which matches a 4× 6" (1.5) print. Other
print sizes have different aspect ratios: 5× 7" (1.4), and 8× 10" (1.25) which require cropping the
vertical edges of the image in order to fit.

TV and early computer monitors used 4:3 (1.33), for example the ubiquitous 640× 480 format.
HDTV has settled on 16:9 (1.78). Modern digital SLR cameras typically use 1.81 which is close to
the ratio for HDTV. In movie theatres very-wide images are preferred with aspect ratios of 1.85 or
even 2.39. CinemaScope was developed by 20th Century Fox from the work of Henri Chrétien in
the 1920s. An anamorphic lens on the camera compresses a wide image into a standard aspect
ratio in the camera, and the process is reversed at the projector.

Webcams support a variety of options

that can be embedded in the URL and

there is no standard for these. This func-

tion works only with recent webcams

from Axis Communications.

Chapter 12 · Image Processing

291

and the next image is obtained by

>> im = cam.grab();

which returns a color image such as the one shown in Fig. 12.3. Webcams are config-
ured by their owner to take pictures periodically, anything from once per second to
once per minute. Repeated access will return the same image until the camera takes
its next picture.

12.1.5 lImages from Code

When debugging an algorithm it can be very helpful to start with a perfect and simple
image before moving on to more challenging real-world images. The Toolbox
function testpattern generates simple images with a variety of patterns in-
cluding lines, grids of dots or squares, intensity ramps and intensity sinusoids.
For example

>> im = testpattern('rampx', 256, 2);
>> im = testpattern('siny', 256, 2);
>> im = testpattern('squares', 256, 50, 25);
>> im = testpattern('dots', 256, 256, 100);

are shown in Fig. 12.4a. The second argument is the size of the of the created image,
in this case they are all 256× 256 pixels, and the remaining arguments are specific to
the type of pattern requested. See the online documentation for details.

We can also construct an image from simple graphical primitives. First we create a
blank canvas containing all black pixels (pixel value of zero)

>> canvas = zeros(200, 200);

Fig. 12.3.

An image from the Dartmouth
University webcam which looks
out over the main college green

Video file formats. Just as for image files there are a large number of different file formats for
videos. The most common formats are MPEG and AVI. It is important to distinguish between the
format of the file (the container), technically AVI is a file format, and the type of compression (the
codec) used on the images within the file.

MPEG and AVI format files can be converted to a sequence of frames as individual files using
tools such as FFmpeg and convert from the ImageMagick suite. The individual frames can
then be loaded individually into MATLAB® for processing using iread. The Toolbox Movie
class provides a more convenient way to read frames from common movie formats without hav-
ing to first convert the movies to a set of individual frames.

12.1 · Obtaining an Image

292

and then we create two squares

>> sq1 = 0.5 * ones(40, 40);
>> sq2 = 0.9 * ones(20, 20);

The first has pixel values of 0.5 (medium grey) and is 40×40. The second is smaller (just
20×20) but brighter with pixel values of 0.9. Now we can paste these onto the canvas

>> canvas = ipaste(canvas, sq1, [20, 40]);
>> canvas = ipaste(canvas, sq2, [60, 120]);

where the last argument specifies the canvas coordinate (u, v) where the pattern will
be pasted – the top-left corner of the pattern on the canvas. We can also create a circle

>> circle = 0.6 * kcircle(30);

of radius 30 pixels with a grey value of 0.6. The Toolbox function kcircle returns a
square matrix

>> size(circle)
ans =
 61 61

of zeros with a centred maximal disk of values set to one. We can also paste that on to
the canvas

>> canvas = ipaste(canvas, circle, [100, 30]);

Finally, we draw a line segment onto our canvas

>> canvas = iline(canvas, [30, 40], [150, 190], 0.8);

which extends from (30, 40) to (150, 190) and its pixels are all set to 0.8.� The result

>> idisp(canvas)

is shown in Fig. 12.4b. We can clearly see that the shapes have different brightness, and
we note that the line and the circle show the effects of quantization which results in a
steppy or jagged shape.�

Note that all these functions take coordinates expressed in (u, v) notation not

MATLAB® row column notation. The top-left pixel is (1, 1) not (0, 0).

Fig. 12.4. Images from code. a Some
Toolbox generated test patterns;
b Simple image created from
graphical primitives

Chapter 12 · Image Processing

In computer graphics it is common to

apply anti-aliasing where edge pixels

and edge-adjacent pixels are set to frac-

tional grey values which give the impres-

sion of a smoother line.

An image/matrix can be edited using the

command openvar('canvas')
which brings up a spreadsheet-like in-

terface.

293

12.2 lMonadic Operations

Monadic image-processing operations are shown schematically in Fig. 12.5. The result
is an image of the same size W×H as the input image, and each output pixel is a
function of the corresponding input pixel

Since an image is represented by a matrix any MATLAB® element-wise matrix func-
tion or operator can be applied, for example scalar multiplication or addition, or func-
tions such abs or sqrt.

The datatype of each pixel can be changed, for example from uint8 (integer pixels
in the range [0, 255]) to double precision values in the range [0, 1]

>> imd = idouble(im);

and vice versa

>> im = iint(imd);

A color image has 3-dimensions which we can also consider as a 2-dimensional image
where each pixel value is a 3-vector. A monadic operation can convert a color image to
a greyscale image where each output pixel value is a scalar representing the luminance
of the corresponding input pixel

>> grey = imono(flowers);

The inverse operation is

>> color = icolor(grey);

which returns a 3-dimensional color image where each color plane is equal to grey –
when displayed it is still appears as a monochrome image. We can create a color image
where the red plane is equal to the input image by

>> color = icolor(grey, [1 0 0]);

which is a red tinted version of the original image.
Many monadic operations are concerned with altering the distribution of grey lev-

els within the image. The distribution can be determined by computing the histogram
of the image⊳ which indicates the number of times each pixel value occurs. For ex-
ample the histogram of the street scene is computed and displayed by

>> ihist(street)

and the result is shown in Fig. 12.6a. We see that the grey values (horizontal axis) span
the complete range from 0 to 255 but the distribution is far from uniform. By inspec-

Fig. 12.5.

Monadic image processing
operations. Each output pixel is
a function of the corresponding

input pixel (shown in red)

Which is not a monadic operator since

the result is not an image. Technically it

is form of feature extraction which is

discussed in the next chapter.

12.2 · Monadic Operations

294

tion we see that there are three significant peaks, but if we look more closely there are
perhaps nine peaks, and if we zoomed right in we would see lots of very minor peaks.
The concept of a peak depends on the scale at which we consider the data. We can
obtain the histogram as a pair of vectors

>> [n,v] = ihist(street);

where the elements of n are the number of times pixels occur with the value of the
corresponding element of v. The Toolbox function peak will automatically find the
position of the peaks

>> [~,x] = peak(n, v)
x =
 8 40 43 51 197 17 60 26 75 213
 88 92 218 176 153 108 111 147 113 119
 121 126 130 138 230 244

and in this case has found 26 peaks most of which are quite minor. Peaks that are
significant are not only greater than their immediate neighbours they are greater than
all other values nearby – the problem now is to specify what we mean by nearby. For
example the peaks that are greater than all other values within ±25 pixel values in the
horizontal direction are

>> [~,x] = peak(n, v, 'scale', 25)
x =
 8 40 197

which are the three significant peaks that we observe by eye. The critical part of find-
ing the peaks is choosing the appropriate scale. Peak finding is a topic that we will
encounter again later and is also discussed in Appendix K.

The peaks in the histogram correspond to particular populations of pixels in the
image. The peak around the greylevel of 40 for example corresponds to a large popu-
lation of dark pixels which are mostly due to shadows. We can identify the pixels in
this peak by a logical monadic operation

>> shadows = (street >= 30) & (street<= 80);
>> idisp(shadows)

and the resulting image is shown in Fig. 12.7b. All pixels that lie in the interval [30, 80]
are shown as white. This image is of type logical but MATLAB® automatically con-
verts logical true and false values to one and zero respectively when used in arithmetic
operations. This is a rather simple, and adhoc, example of thresholding where we have
selected certain pixels based just on their brightness.

Sometimes an image does not span the full range of available grey levels, for
example an underexposed image will have no pixels with high values while an over-

Fig. 12.6. Street scene. a Histo-
gram, b cumulative histogram
before and after normalization

Chapter 12 · Image Processing

295

exposed image will have no low values. We can apply a linear mapping to the grey-
scale values

>> im = istretch(street);

which ensures that pixel values span the full range⊳ which is either [0, 1] or [0, 255]
depending on the class of the image.

A more sophisticated version is histogram normalization or histogram equalization

>> im = inormhist(street);

which is shown in Fig. 12.7c and ensures that the cumulative distribution of pixel in-
tensities is linear. We see that the grey levels in the shadow region have been raised and
stretched out making the details in the shadowed area more visible. The cumulative
histogram of the pixel values can be plotted using

>> ihist(street, 'cdf');

The cumulative distributions of the image before and after normalization are shown
in Fig. 12.6b.

Operations such as istretch and inormhist can enhance the image from

the perspective of a human observer, but it is important to remember that no

new information has been added to the image. Subsequent image processing

steps will not be improved.

Fig. 12.7. Some monadic image
operations, a original, b shadow
regions, c histogram normalized,
d posterization

The histogram of such an image will

have gaps. If M is the maximum possible

pixel value, and N<M is the maximum

value in the image then the stretched

image will have at most N unique pixel

values, meaning that M− N values can-

not occur.

12.2 · Monadic Operations

296

As discussed in Sect. 10.3.4 the output of a camera is generally gamma encoded so
that the pixel value is a non-linear function Lγ of the luminance sensed at the photosite.
Such images can be gamma decoded by a non-linear monadic operation

>> im = igamma(street, 1/0.45);

which raises each pixel to the specified power, or

>> im = igamma(street, 'sRGB');

to decode images with the sRGB standard gamma encoding. The resulting linear im-
age has greylevels, or tristimulus values, which are proportional to the luminance of
the original scene.

Another simple non-linear monadic operation is posterization or banding. This
pop-art effect is achieved by reducing the number of grey levels

>> idisp(street/64)

as shown in Fig. 12.7d. Since integer division is used the resulting image has pixels
with values in the range [0, 3] and therefore just four different shades of grey.

12.3 lDiadic Operations

Diadic operations are shown schematically in Fig. 12.8. Two input matrices result in a
single output matrix, and all three images are of the same size. Each output pixel is a
function of the corresponding pixels in the two input images

Examples of useful diadic operations include binary arithmetic operators such as
addition, subtraction, element-wise multiplication, or builtin MATLAB® diadic ma-
trix functions such as max, min, bitand, atan2 etc.

Subtracting one uint8 image from another results in another uint8 image

even though the result is potentially negative. MATLAB® quite properly clamps

values to the interval [0, 255] so subtracting a larger number from a smaller

number will result in zero not a negative value. With addition a result greater

than 255 will be set to 255. To remedy this, the images should be first converted

to signed integers using the MATLAB® function cast or to floating point val-

ues using the Toolbox function idouble.

We will illustrate diadic operations with two examples. The first example is a tech-
nique used on television to allow the image of a person to be superimposed on some
background, for example a weather presenter superimposed on a weather map. The

Fig. 12.8. Diadic image processing
operations. Each output pixel is a
function of the two corresponding
input pixels (shown in red)

Chapter 12 · Image Processing

297

subject is filmed against a blue or green background which makes it quite easy, using
just the pixel values, to distinguish between background and the subject. We load an
image of a subject taken in front of a green screen

>> subject = iread('greenscreen.jpg', 'double');

and this is shown in Fig. 12.9a. We compute the chromaticity coordinates Eq. 10.8

>> linear = igamma(subject, 'sRGB');
>> [r,g] = tristim2cc(linear);

after first converting the gamma encoded color image to linear tristimulus values. In
this case g alone is sufficient to distinguish the background pixels. A histogram of values

>> ihist(g)

shown in Fig. 12.9b indicates a large population of pixels around 0.55 which is the
background and another population which belongs to the subject. We can safely say
that the subject corresponds to any pixel for which g < 0.45. We define a mask image

>> mask = g < 0.45;
>> idisp(mask)

where a pixel is true (equal to one) if it is part of the subject as shown in Fig. 12.9c. We
need to apply this mask to all three color planes so we replicate it

>> mask3 = icolor(idouble(mask));

Fig. 12.9. Chroma-keying. a The
subject against a green back-
ground; b a histogram of green
chromaticity values; c the com-
puted mask image where true is
white; d the subject masked into
a background scene (photo cour-
tesy of Fiona Corke)

12.3 · Diadic Operations

298

The image of the subject without the background is

>> idisp(mask3 .* subject);

Next we load the desired background image

>> bg = iread('road.png', 'double');

and scale and crop it to be the same size as our original image

>> bg = isamesize(bg, subject);

and display it with a cutout for the subject

>> idisp(bg .* (1-mask3))

Now we add the subject with no background, to the background with no subject to
obtain the subject on the road

>> idisp(subject.*mask3 + bg.*(1-mask3));

which is shown in Fig. 12.9d. The technique will of course fail if the subject contains
any colors that match the color of the background.� This example could be solved
more compactly using the Toolbox per-pixel switching function ipixswitch

>> ipixswitch(mask, subject, bg);

where all arguments are images of the same width and height, and each output pixel is
selected from the corresponding pixel in the second or third image according to the
logical value of the corresponding pixel in the first image.

Distinguishing foreground objects from the background is an important problem in
robot vision but the terms foreground and background are ill-defined and application
specific. We can be almost guaranteed never to have the luxury of a special background as
we did for the chroma-key example. We could instead take a picture of the scene without
a foreground object present and consider this to be the background, but that requires that
we have special knowledge about when the foreground object is not present. It also as-
sumes that the background does not vary over time. Variation is a significant problem in
real-world scenes where ambient illumination and shadows change over quite short time
intervals, and the scene may be structurally modified over very long time intervals.

In the next example we process an image sequence and estimate the background
even though there are a number of objects moving in the scene. We will use a recursive
algorithm that updates the estimated background image Î at each time step based on
the previous estimate and the current image

where k is the time step and c(·) is a monadic image saturation function

To demonstrate this we open a movie showing two people moving in the lobby of a
building

>> vid = Movie('LeftBag.mpg');
384 x 288 @ 24.999750, 1440 frames

and initialize the background to the first image in the sequence

>> bg = vid.grab();

then the main loop is

In the early days of television a blue

screen was used. Today a green back-

ground is more popular because of

problems that occur with blue eyes and

blue denim clothing.

Chapter 12 · Image Processing

299

1 sigma = 2;
2 while 1
3 im = vid.grab;
4 if isempty(im), break; end
5 d = im-bg;
6 d = max(min(d, sigma), -sigma); % apply c(.)
7 bg = bg + d;
8 idisp(bg); drawnow
9 end

One frame from this sequence is shown in Fig. 12.10a. The estimated background image
shown in Fig. 12.10b reveals the static elements of the scene and the two moving people
have become a faint blur. Subtracting the scene from the estimated background creates
an image where pixels are bright where they are different to the background as shown in
Fig. 12.10c. Applying a threshold to the absolute value of this difference image shows the
area of the image where there is motion. Of course if the people stay still long enough they
will become part of the background.

12.4 lSpatial Operations

Spatial operations are shown schematically in Fig. 12.11. Each pixel in the output image is
a function of all pixels in a region surrounding the corresponding pixel in the input image

where W is known as the window, typically a w×w square region with odd side length
w=2h+1 where h∈Z+ is the half-width. In Fig. 12.11 the window includes all pixels in the
red shaded region. Spatial operations are powerful because of the variety of possible func-
tions f(·), linear or non-linear, that can be applied. The remainder of this section discusses
linear spatial operators such as smoothing and edge detection, and some non-linear func-
tions such as rank filtering and template matching. The following section covers a large
and important class of non-linear spatial operators known as mathematical morphology.

Fig. 12.10.

Example of image sequence ana-
lysis for the INRIA LeftBag image
sequence at frame 250. a The cur-
rent image; b the estimated back-

ground image; c the difference
between the current and estima-
ted background images where
white is zero, red and blue are

negative and positive values
respectively and magnitude is

indicated by color intensity
(movie from the collection of

the EC Funded CAVIAR project/
IST 2001 37540)

12.4 · Spatial Operations

300

12.4.1 lConvolution

A very important linear spatial operator is convolution

where K∈Rw×w is the convolution kernel. For every output pixel the corresponding win-
dow of pixels from the input image W is multiplied element-wise with the kernel K. The
centre of the window and kernel is considered to be coordinate (0, 0) and i, j∈ [−h, h].
This can be considered as the weighted sum of pixels within the window where the weights
are defined by the kernel K. As we will see convolution is the workhorse of image process-
ing and the kernel K can be chosen to perform functions such as smoothing, gradient
calculation or edge detection. Convolution is often written in operator form as

Convolution is computationally expensive – an N × N input image with a
w×w kernel requires w2N2 multiplication and additions. In the Toolbox convolution
is performed using the function iconv

>> O = iconv(K, I);

If I has multiple color planes then so will the output image – each output color plane
is the convolution of the corresponding input plane with the kernel K.

Fig. 12.11.

Spatial image processing opera-
tions. The red shaded region
shows the window W that is the
set of pixels used to compute the
output pixel (show in red)

Properties of convolution. Convolution obeys the familiar rules of algebra, it is commutative

associative

distributive (superposition applies)

linear

and shift invariant – if S(·) is a spatial shift then

that is, convolution with a shifted image is the same as shifting the result of the convolution with
the unshifted image.

Chapter 12 · Image Processing

301

12.4.1.1 lSmoothing

Consider a kernel which is a square 21× 21 matrix containing equal elements

>> K = ones(21,21) / 21^2;

and of unit volume, that is, its values sum to one. The result of convolving an image with
this kernel is an image where each output pixel is the mean of the pixels in a correspond-
ing 21× 21 neighbourhood in the input image. As you might expect this averaging

>> lena = iread('lena.pgm', 'double');
>> idisp(iconv(K, lena));

leads to smoothing, blurring or defocus⊳ which we see in Fig. 12.12b. Looking very
carefully we will see some faint horizontal and vertical lines – an artefact known as
ringing. A more suitable kernel for smoothing is the 2-dimensional Gaussian function

(12.1)

which is symmetric about the origin and the volume under the curve is unity. The
spread of the Gaussian is controlled by the standard deviation parameter σ. Applying
this kernel to the image

>> K = kgauss(5);
>> idisp(iconv(K, lena));

Fig. 12.12. Smoothing. a Original
image; b smoothed with a 21× 21
averaging kernel; c smoothed with
a 31×31 Gaussian G(σ= 5) kernel

Defocus involves a kernel which is a

2-dimensional Airy pattern or sinc func-

tion. The Gaussian function is similar in

shape, but is always positive whereas

the Airy pattern has low amplitude

negative going rings.

12.4 · Spatial Operations

302

produces the result shown in Fig. 12.12c. Here we have specified the standard devia-
tion of the Gaussian to be 5 pixels. The discrete approximation to the Gaussian is

>> about(K)
K [double] : 31x31 (7688 bytes)

a 31× 31 kernel. Smoothing can be achieved conveniently using the Toolbox function
ismooth

>> idisp(ismooth(lena, 5))

Blurring is a counter-intuitive image processing operation since we typically go to a lot of
effort to obtain a clear and crisp image. To deliberately ruin it seems, at face value, some-
what reckless. However as we will see Gaussian smoothing turns out to be extremely useful.

The kernel is itself a matrix and therefore we can display it as an image

>> idisp(K);

which is shown in Fig. 12.13a. We clearly see the large value at the centre of the kernel
and that it falls off smoothly in all directions. We can also display the kernel as a surface

>> surfl(-15:15, -15:15, K);

How wide is my Gaussian? When choosing a Gaussian kernel we need to consider the standard
deviation, usually defined by the task, and the dimensions of the kernel W∈Rw×w that contains
the discrete Gaussian function. Computation time is proportional to w2 so ideally we want the
window to be no bigger than it needs to be. The Gaussian decreases monotonically in all direc-
tions but never reaches zero. Therefore we choose the half-width h of the window such that value
of the Gaussian is less than some threshold outside the w×w convolution window.

At the edge of the window, a distance h from the centre, the value of the Gaussian will be
e−h2/2σ2

. For σ= 1 and h= 2 the Gaussian will be e−2≈ 0.14, for h= 3 it will be e−4.5≈ 0.01, and
for h= 4 it will be e−8≈ 3.4× 10−4. If h is not specified the Toolbox chooses h= 3σ. For σ= 1 that
is a 7× 7 window which contains all values of the Gaussian greater than 1% of the peak value.

The Lena image became something of a standard for image processing research in the 1970s. It
was digitized by image compression researchers at the University of Southern California Signal
and Image Processing Institute (SIPI) in 1973 from a November 1972 Playboy centerfold. The
model is Lena Soderberg (nee Sjööblom) who lives in Sweden. She is reported to be amused by
this use of her picture and attended an imaging conference in 1997. See also http://www.lenna.org.

Properties of the Gaussian. The Gaussian function has some special properties. The convolution
of two Gaussians is another Gaussian

For the case where σ1= σ2=σ then

The 2-dimensional Gaussian is separable – it can be written as the product of two 1-dimen-
sional Gaussians

This implies that convolution with a 2-dimensional Gaussian can be computed by convolving
each row with a 1-dimensional Gaussian, and then each column. The total number of operations
is reduced to 2wN2, better by a factor of w. A Gaussian also has the same shape in the spatial and
frequency domains.

Chapter 12 · Image Processing

303

Fig. 12.13. Gallery of commonly
used convolution kernels. h= 15,
σ= 5

as shown in Fig. 12.13b. A crude approximation to the Gaussian is the top hat kernel
which is cylinder with vertical sides rather than a smooth and gentle fall off in ampli-
tude. The function kcircle creates a kernel which can be considered a unit height
cylinder of specified radius

>> K = kcircle(8, 15);

as shown in Fig. 12.13c. The arguments specify a radius of 8 pixels within a window of
half width h= 15.

12.4 · Spatial Operations

304

12.4.1.2 lBoundary Effects

A difficulty with convolution occurs when the window is close to the edge of the input
image as shown in Fig. 12.14. In this case the output pixel is a function of a window
that contains pixels beyond the edge of the input image. There are several common
remedies to this problem. Firstly, we can assume the pixels beyond the image have a
particular value. A common choice is zero and this is the default behaviour imple-
mented by the Toolbox function iconv. We can see the effect of this in Fig. 12.12
where the borders of the smoothed image are dark due to the influence of these zeros.

Another option is to consider that the result is invalid when the window exceeds
the boundary of the image. Invalid output pixels are shown hatched out in Fig. 12.14.
The result is an output image that is (M− 2h)× (N− 2h). This option can be selected
by passing the option 'valid' to iconv.

12.4.1.3 lEdge Detection

Frequently we are interested in finding the edges of objects in a scene. Consider the image

>> castle = iread('castle_sign.jpg', 'double', 'grey');

shown in Fig. 12.15a. It is informative to look at the pixel values along a 1-dimensional
profile through the image. A horizontal profile of the image at v= 360 is

>> p = castle(360,:);

which is a vector that we can plot

>> plot(p);

against the horizontal coordinate u in Fig. 12.15b. The clearly visible tall spikes corre-
spond to the white letters and other markings on the sign. Looking at one of the spikes
more closely, Fig. 12.15c, we see the intensity profile across the vertical stem of the letter T.
The background intensity ≈ 0.3 and the bright intensity ≈ 0.9 but will depend on lighting
levels. However the very rapid increase over the space of just a few pixels is distinctive and
a more reliable indication of an edge than any decision based on the actual grey levels.

The first-order derivative along this cross-section is

which can be computed using the MATLAB® function diff

>> plot(diff(p))

and is shown in Fig. 12.15d. The signal is nominally zero with clear non-zero responses
at the edges of an object, in this case the edges of the stem of the letter T.

Fig. 12.14.

For the case where the window W
falls off the edge of the input
image the output pixel at (u, v)
is not defined. The hatched pixels
in the output image are all those
for which the output value is not
defined

Chapter 12 · Image Processing

305

The derivative at point v can also be written as a symmetrical first-order difference

which is equivalent to convolution with the 1-dimensional kernel

Convolving the image with this kernel

>> K = [-0.5 0 0.5];
>> idisp(iconv(castle, K), 'invsigned')

produces a result very similar to that shown in Fig. 12.16a in which vertical edges, high
horizontal gradients, are clearly seen.

Since this kernel has signed values the result of the convolution will also be

signed, that is, the gradient at a pixel can be positive or negative as shown in

Fig. 12.15d. idisp always displays the minimum, most negative, value as black

and the maximum, most postive, value as white. Zero would therefore appear

as middle grey. The 'signed' option to idisp uses red and blue shading to

clearly indicate sign – zero is black, negative pixels are red, positive pixels are

blue and the intensity of the color is proportional to pixel magnitude. The

'invsigned' option is similar except that zero is indicated by white.

Fig. 12.15. Edge intensity profile.
a Original image; b greylevel pro-
file along horizontal line v= 360;
c close up view of the spike at
u≈ 580; d derivative of c (image
from the ICDAR 2005 OCR dataset;
Lucas 2005)

12.4 · Spatial Operations

306

Many convolution kernels have been proposed for computing horizontal gradient.
The most common is the Sobel kernel

>> Du = ksobel
Du =
 -1 0 1
 -2 0 2
 -1 0 1

and each row is similar to the 1-dimensional kernel K defined above. The overall result
is a weighted sum of the horizontal gradient for the current row, and the rows above
and below. Convolving our image with this kernel

>> idisp(iconv(castle, Du), 'invsigned')

generates the horizontal gradient image shown in Fig. 12.16a which highlights verti-
cal edges. Vertical gradient is computed using the transpose of the kernel

>> idisp(iconv(castle, Du'), 'invsigned')

and highlights horizontal edges� as shown in Fig. 12.16b. The notation used for gradients
varies considerably in the literature. Most commonly the horizontal and vertical gradient are
denoted respectively as ∂I/∂u,∂I/∂v; ∇uI,∇vI or Iu, Iv. In operator form this is written

where D is a derivative kernel such as Sobel.

Fig. 12.16. Edge gradient. a u-axis
derivative; b v-axis derivative;
c gradient magnitude; d gradient
direction

Filters can be designed to respond to

edges at any arbitrary angle. The Sobel

kernel itself can be considered as an im-

age and rotated using irotate. To

obtain angular precision generally re-

quires a larger kernel is required such

as that generated by kdgauss.

Chapter 12 · Image Processing

307

Taking the derivative of a signal accentuates high-frequency noise, and all images
have noise as discussed on page 260. At the pixel level noise is a stationary random
process – the values are not correlated between pixels. However the features that we
are interested in such as edges have correlated changes in pixel value over a larger
spatial scale as shown in Fig. 12.15c. We can reduce the effect of noise by smoothing
the image before taking the derivative

Instead of convolving the image with the Gaussian and then the derivative, we ex-
ploit the associative property of convolution to write

We convolve the image with the derivative of the Gaussian (DoG) which can be
obtained numerically by

>> Gu = iconv(Du, kgauss(sigma));

or analytically by taking the derivative, in the u-direction, of the Gaussian Eq. 12.1
yielding

(12.2)

This is computed by the Toolbox function kdgauss and is shown in Fig. 12.13d.
The standard deviation σ controls the scale of the edges that are detected. For large
σ , which implies increased smoothing, edges due to fine texture will be attenuated
leaving only the edges of large features. This ability to find edges at different spatial
scale is important and underpins the concept of scale space that we will return to
in Sect. 13.3.2. Another interpretation of this operator is as a spatial bandpass filter
since it is a cascade of a low-pass filter (smoothing) with a high-pass filter (differ-
entiation).

Computing the horizontal and vertical components of gradient at each pixel

>> Iu = iconv(castle, –kdgauss(2));
>> Iv = iconv(castle, –kdgauss(2)');

allows us to compute the magnitude of the gradient at each pixel

>> m = sqrt(Iu.^2 + Iv.^2);

Carl Friedrich Gauss (1777–1855) was a German mathematician who made major contributions
to fields such as number theory, differential geometry, magnetism, astronomy and optics. He was
a child prodigy, born in Brunswick, Germany, the only son of uneducated parents. At the age of
three he corrected, in his head, a financial error his father had made, and made his first math-
ematical discoveries while in his teens.

Gauss was a perfectionist and a hard worker but not a prolific writer. He refused to publish
anything he did not consider complete and above criticism. It has been suggested that mathemat-
ics could have been advanced by fifty years if he had published all of his discoveries. According to
legend Gauss was interrupted in the middle of a problem and told that his wife was dying – he
responded “Tell her to wait a moment until I am through”.

The normal distribution, or Gaussian function, was not one of his achievements. It was first
discovered by de Moivre in 1733 and again by Laplace in 1778.

12.4 · Spatial Operations

308

This edge-strength image shown in Fig. 12.16c reveals the edges very distinctly. The
direction of the gradient at each pixel is

>> th = atan2(Iv, Iu);

and is best viewed as a sparse quiver plot

>> quiver(1:20:numcols(th), 1:20:numrows(th), ...
 Iu(1:20:end,1:20:end), Iv(1:20:end,1:20:end))

as shown in Fig. 12.16d. The edge direction plot is much noisier than the magnitude
plot. Where the edge gradient is strong, on the border of the sign or the edges of let-
ters, the direction is normal to the edge, but the fine-scale brick texture appears as
almost random edge direction. The gradient images can be computed conveniently
using the Toolbox function

>> [du,dv] = isobel(castle, kdgauss(2));

where the last argument overrides the default Sobel kernel.
A well known and very effective edge detector is the Canny edge operator. It uses

the edge magnitude and direction that we have just computed and performs two addi-
tional steps. The first is non-local maxima suppression. Consider the gradient magni-
tude image of Fig. 12.16c as a 3-dimensional surface where height is proportional to
brightness as shown in Fig. 12.17. We see a series of hills and ridges and we wish to
find the pixels that lie at the tops of hills or along ridge lines. By examining pixel values
in a local neighbourhood normal to the edge direction, that is in the direction of the
edge gradient, we can find the maximum value and set all other pixels to zero. The
result is a set of non-zero pixels corresponding to peaks and ridge lines. The second
step is hysteresis thresholding. For each non-zero pixel that exceeds the upper thresh-
old a chain is created of adjacent pixels that exceed the lower threshold. Any other
pixels are set to zero.

To apply the Canny operator to our example image is straightforward

>> edges = icanny(castle, 2);

Fig. 12.17.

Close up of gradient magnitude
around the letter T shown as a
3-dimensional surface

Pierre-Simon Laplace (1749–1827) was a French mathematician and astronomer who consoli-
dated the theories of mathematical astronomy in his five volume Mécanique Céleste (Celestial
Mechanics). While a teenager his mathematical ability impressed d’Alembert who helped to pro-
cure him a professorship. When asked by Napoleon why he hadn’t mentioned God in his book on
astronomy he is reported to have said “Je n’avais pas besoin de cette hypothèse-là” (“I have no need
of that hypothesis”). He became a count of the Empire in 1806 and later a marquis.

The Laplacian operator, a second-order differential operator, and the Laplace transform are
named after him.

Chapter 12 · Image Processing

309

and returns an image where the edges are marked by non-zero intensity values corre-
sponding to gradient magnitude at that pixel as shown in Fig. 12.18a. We observe that
the edges are much thinner than those for the magnitude of derivative of Gaussian
operator which is shown in Fig. 12.18b. In this example σ= 2 for the derivative of
Gaussian operation. The hysteresis threshold parameters can be set with optional ar-
guments.

So far we have considered an edge as a point of high gradient, and non-maxima
suppression has been used to search for the maximum value in local neighbourhoods.
An alternative means to find the point of maximum gradient is to compute the second
derivative and determine where this is zero. The Laplacian operator

(12.3)

is the sum of the second spatial derivative in the horizontal and vertical directions. For
a discrete image this can be computed by convolution with the Laplacian kernel

>> L = klaplace()
L =
 0 1 0
 1 -4 1
 0 1 0

which is isotropic – it responds equally to edges in any direction. The second deriva-
tive is even more sensitive to noise than the first derivative and is again commonly
used in conjunction with a Gaussian smoothed image

(12.4)

which we combine into the Laplacian of Gaussian kernel (LoG), and L is the Laplacian
kernel given above. This can be written analytically as

(12.5)

(12.6)

which is known as the Marr-Hildreth operator or the Mexican hat kernel and is shown
in Fig. 12.13e.

Fig. 12.18. Comparison of two
edge operators: a Canny operator
with default parameters; b Mag-
nitude of derivative of Gaussian
kernel (σ= 2). The |DoG| opera-
tor requires less computation than
Canny but generates thicker edges.
For both cases results are shown
inverted, white is zero

12.4 · Spatial Operations

310

We apply this kernel to our image by

>> lap = iconv(castle, klog(2));

and the result is shown in Fig. 12.19a and b. The maximum gradient occurs where the
second derivative is zero but a significant edge is a zero crossing from a strong positive
value (blue) to a strong negative value (red). Consider the closeup view of the Laplacian
of the letter T shown in Fig. 12.19b. We generate a horizontal cross-section of the stem
of the letter T at v= 360

Fig. 12.19. Laplacian of Gaussian.
a Laplacian of Gaussian; b closeup
of a around the letter T where blue
and red colors indicate positive
and negative values respectively;
c a horizontal cross-section of the
LoG through the stem of the T;
d closeup of the zero-crossing de-
tector output at the letter T

Difference of Gaussians. The Laplacian of Gaussian can be approximated by the difference of
two Gaussian functions

where σ1> σ2 and commonly σ1= 1.6σ2. Figure 12.13e and f compares the LoG and DiffG kernels
respectively.

This approximation is useful in scale-space sequences which will be discussed in Sect. 13.3.2.
Consider an image sequence Ihki where Ihk+1i=G(σ)⊗ Ihki, that is, the images are increasingly
smoothed. The difference between any two images in the sequence is therefore equivalent to
DiffG(\2 σ, σ) applied to the original image.

Chapter 12 · Image Processing

311

>> p = lap(360,570:600);
>> plot(570:600, p, '-*');

which is shown in Fig. 12.19c. We see that the zero values of the second derivative lies
between the pixels. A zero crossing detector selects pixels adjacent to the zero crossing
points

>> zc = zcross(lap);

and this is shown in Fig. 12.19d. We see that the edges appear twice. Referring again to
Fig. 12.19c we observe a weak zero crossing in the interval u∈ [573, 574] and a much
more definitive zero crossing in the interval u∈ [578, 579].

A fundamental limitation of all edge detection approaches is that intensity edges

do not necessarily delineate the boundaries of objects. The object may have

poor contrast with the background which results in weak boundary edges. Con-

versely the object may have a stripe on it which is not its edge. Shadows fre-

quently have very sharp edges but are not real objects. Object texture will re-

sult in a strong output from an edge detector at points not just on its boundary,

as for example with the bricks in Fig. 12.15b.

12.4.2 lTemplate Matching

In our discussion so far we have used kernels that represent mathematical functions
such as the Gaussian and its derivative and its Laplacian. We have also considered the
convolution kernel as a matrix, a 3-dimensional shape and even an image as shown in
Fig. 12.13a. In this section we will consider that the kernel is an image or a part of an
image and such a kernel is referred to as a template. In template matching we wish to
find which parts of the input image are most similar to the template.

Template matching is shown schematically in Fig. 12.20. Each pixel in the output
image is given by

where T is the w×w template, the pattern of pixels we are looking for, with odd side
length w= 2h+ 1, and W is the w×w window centred at (u, v) in the input image.
The function s(I1, I2) is a scalar measure that describes the similarity of two equally
sized images I1 and I2.

A number of common similarity measures⊳ are given in Table 12.1. The most intui-
tive are computed simply by computing the pixel-wise difference T−W and taking

David Marr (1945–1980) was a British neuroscientist and psychologist who synthesized results
from psychology, artificial intelligence, and neurophysiology to create the discipline of Computa-
tional Neuroscience. He studied mathematics at Trinity College, Cambridge and his PhD in physi-
ology was concerned with modeling the function of the cerebellum. His key results were pub-
lished in three journal papers between 1969 and 1971 and formed a theory of the function of the
mammalian brain much of which remains relevant today. In 1973 he was a visiting scientist in the
Artificial Intelligence Laboratory at MIT and later became a professor in the Department of Psy-
chology. His attention shifted to the study of vision and in particular the so-called early visual
system.

He died of leukemia at age 35 and his book Vision: A computational investigation into the
human representation and processing of visual information (Marr 2010) was published after his
death.

These measures can be augmented

with a Gaussian weighting to deem-

phasize the differences that occur at the

edges of the two windows.

12.4 · Spatial Operations

312

Table 12.1.

Similarity measures for two
equal-sized image regions I1

and I2. The Z-prefix indicates
that the measure accounts for
zero-offset or the difference in
mean of the two images (Banks
and Corke 2001).

–
I1 and

–
I2 are the

mean of image regions I1 and I2

respectively.Toolbox functions
are indicated in the last column

Fig. 12.20.

Spatial image processing opera-
tions. The red shaded region
shows the window W that is the
set of pixels used to compute the
output pixel (shown in red)

the sum of the absolute differences (SAD) or the sum of the squared differences (SSD).
These metrics are zero if the images are identical and increase with dissimilarity. It is
not easy to say what value of the measure constitutes a poor match but a ranking of
similarity measures can be used to determine the best match.

More complex measures such as normalized cross-correlation yield a score in the
interval [−1,+1] with +1 for identical regions. In practice a value greater than 0.8 is
considered to be a good match. Normalized cross correlation is however computa-
tionally more expensive – requiring multiplication, division and square root opera-
tions. Note that it is possible for the result to be undefined if the denominator is zero,
which occurs if the the elements of either I1 or I2 are identical.

If I2≡ I1 then it is easily shown that SAD= SSD= 0 and NCC= 1 indicating a per-
fect match. To illustrate we will create a 51× 51 template

>> T = iroi(lena, [240 290; 250 300]);

and evaluate the three common measures

Chapter 12 · Image Processing

313

>> sad(T, T)
ans =
 0
>> ssd(T, T)
ans =
 0
>> ncc(T, T)
ans =
 1

Now consider the case where the two images are of the same scene but one image is
darker than the other – the illumination or the camera exposure has changed. In this
case I2= αI1 and now

>> sad(T, T*0.9)
ans =
 132.8090
>> ssd(T, T*0.9)
ans =
 7.3307

these measure indicate a high degree of disimilarity. However the normalized cross-
correlation

 >> ncc(T, T*0.9)
ans =
 1

is invariant to the change in intensity.
Next consider that the pixel values are also offset⊳ so that I2= α I1+ β and we find

that

>> sad(T, T+0.1)
ans =
 260.1000
>> ssd(T, T+0.1)
ans =
 26.0100
>> ncc(T, T+0.1)
ans =
 0.9990

all measures indicate a degree of disimilarity. The problematic offset can be dealt with
by first subtracting from each of T and W their mean value

>> zsad(T, T+0.1)
ans =
 1.7300e-11
>> zssd(T, T+0.1)
ans =
 1.1507e-25
>> zncc(T, T+0.1)
ans =
 1.0000

and these measures indicate a high degree of similarity. The z-prefix denotes variants
of the similarity measures described above that are invariant to intensity offset. Only
the ZNCC measure

>> zncc(T, T*0.9+0.1)
ans =
 1.0000

is invariant to both gain and offset variation. All these methods will fail if the images
have even a small change in relative rotation or scale.

Consider the problem from the well known children’s book “Where’s Wally” or
“Where’s Waldo” – the fun is trying to find Wally’s face in a crowd

This could be due to an incorrect black

level setting. A camera’s black level is

the value of a pixel corresponding to no

light and is often >0.

12.4 · Spatial Operations

314

>> crowd = iread('wheres-wally.png', 'double');
>> idisp(crowd)

Fortunately we know roughly what he looks like and the template

>> T = iread('wally.png', 'double');
>> idisp(T)

was extracted from a different image and scaled so that the head is approximately the
same width as other heads in the crowd scene (around 21 pixel wide).

The similarity of our template T to every possible window location is computed by

>> S = isimilarity(T, crowd, @zncc);

using the matching measure ZNCC. The result

>> idisp(S, 'colormap', 'jet', 'bar')

is shown in Fig. 12.21 and the pixel color indicates the ZNCC similarity as indicated
by the color bar. We can see a number of spots of high similarity (red) which
are candidate positions for Wally. The peak values, with respect to a local 3× 3 win-
dow, are

>> [mx,p] = peak2(S, 1, 'npeaks', 5);
>> mx
mx =
 0.5258 0.5230 0.5222 0.5032 0.5023

in descending order. The second argument specifies the window half-width h= 1 and
the third argument specifies the number of features to return. The largest value 0.5258
is the similarity of the strongest match found. These matches occur at the
coordinates (u, v) given by the second return value p and we can highlight these points
on the scene

>> idisp(crowd);
>> plot_circle(p, 30, 'fillcolor', 'b', 'alpha', 0.3, 'edgecolor', 'none')
>> plot_point(p, 'sequence', 'bold', 'textsize', 24, 'textcolor', 'k')

using transparent blue circles that are numbered sequentially. The best match at
(261, 377) is in fact the correct answer – we found Wally! It is interesting to look at the

Fig. 12.21.

Similarity image S with top five
Wally candidates marked. The
color bar indicate the similarity
scale. Note the border of inde-
terminate values where the
template window falls off the
edge of the input image

Chapter 12 · Image Processing

315

other highly ranked candidates. Numbers two and three at the bottom of the image
are people also wearing baseball caps who look quite similar.

There are some important points to note from this example. The images have quite
low resolution and the template is only 21× 25 – it is a very crude likeness to Wally.
The match is not a strong one – only 0.5258 compared to the maximum possible
value of 1.0 and there are several contributing factors. The matching measure is not
invariant to scale, that is, as the relative scale (zoom) changes the similarity score
falls quite quickly. In practice perhaps a 10–20% change in scale between T and W
can be tolerated. For this example the template was only approximately scaled. Sec-
ondly, not all Wallys are the same. Wally in the template is facing forward but the
Wally we found in the image is looking to our left. Another problem is that the square
template typically includes pixels from the background as well as the object of inter-
est. As the object moves the background pixels may change, leading to a lower simi-
larity score. This is known as the mixed pixel problem. Ideally the template should
bound the object of interest as tightly as possible. In practice another problem arises
due to perspective distortion. A square pattern of pixels in the centre of the image
will appear keystone shaped at the edge of the image and thus will match less well
with the square template.

Non-parametric similarity measures are more robust to the mixed pixel prob-
lem. Two common measures from this class are the census metric and the rank
transform. For the census metric each window, template and candidate, is mapped
to a bit string, and each bit corresponds to one pixel in that window as shown
in Fig. 12.22. If a pixel is greater than the centre pixel its corresponding bit is set
to one, else it is zero. For a w×w window the string will be w2− 1 bits long.⊳ The
two bit strings are compared using a Hamming distance which is the number of
bits that are different. This can be computed by counting the number of set bits in
the exclusive-or of the two bit strings. Thus very few arithmetic operations are re-
quired compared to the more conventional methods – no square roots or division –
and such algorithms are amenable to implementation in special purpose hard-
ware or FPGAs. Another advantage is that intensities are considered relative to the
centre pixel of the window making it invariant to overall changes in intensity or
gradual intensity gradients.

The rank transform maps each window to a scalar which is the number of ele-
ments in the window that are greater than the centre pixel. This measure captures the
essence of the region surrounding the centre pixel, and like the census measure it is
invariant to overall changes in intensity since it is based on local relative grey scale

For a 32-bit integer uint32 this lim-

its the window to 5× 5 unless a sparse

mapping is adopted (Humen-berger

et al. 2009). A 64-bit integer uint64
supports a 7× 7 window.

Fig. 12.22.

Example of census and rank
transform for a 3× 3 window.

Pixels are marked red or blue if
they are less than or greater than

or equal to the centre pixel re-
spectively. These boolean values

are then packed into a binary
word, in the direction shown,

from least significant bit upwards.
The census value is 101011012

or decimal 173. The rank trans-
form value is the total number of

one bits and is 5

12.4 · Spatial Operations

316

values. The rank transform is typically used as a pre-processing step applied to each of
the images before using a simple classical similarity measure such as SAD. The Toolbox
function isimilarity supports these metrics using the 'census' and 'rank'
options.

A common problem with template matching is that false matches can occur. In the
example above the second candidate had a similarity score only 0.5% lower than the
first, the fifth candidate was only than 5% lower. In practice a number of rules are
applied before a match is accepted: the similarity must exceed some threshold and the
first candidate must exceed the second candidate by some factor. Another approach is
to bring more information to bear on the problem such as known motion of the cam-
era or object. For example if we were tracking Wally from frame to frame in an image
sequence then we would pick the best Wally closest to the previous location he was
found. Alternatively we could create a motion model and assume he moves approxi-
mately the same distance and direction between successive frames. Then we would
predict his future position and pick the Wally closest to that predicted position. How-
ever we would have to deal with practical difficulties such as Wally stopping, changing
direction or becoming obscured.

12.4.3 lNon-Linear Operations

Another class of spatial operations is based on non-linear functions of pixels within
the window. For example

>> out = iwindow(lena, 3, 'var');

computes the variance of the pixels in every 7× 7 window. The arguments specify
the window half-width h= 3 and the builtin MATLAB® function var. The function
is called with a 49× 1 vector argument comprising the pixels in the window arranged
as a column vector and the function’s return value becomes the corresponding out-
put pixel value. This operation acts as an edge detector since it has a low value for
homogeneous regions irrespective of their brightness. It is however computationally
expensive because the var function is called over 260 000 times. Any MATLAB® func-
tion, builtin or your own M-file, that accepts a vector input and returns a scalar can
be used in this way.

Rank filters sort the pixels within the window by value and return the specified
element from the sorted list. The maximum value over a 5× 5 window about each
pixel is the first ranked pixel in the window

>> mx = irank(lena, 1, 2);

where the arguments are the rank and the window half-width h= 2. The median over
a 5× 5 window is the twelfth in rank

>> med = irank(lena, 12, 2);

and is useful as a filter to remove impulse-type noise. We can demonstrate this by
adding impulse noise to a copy of an image

>> spotty = lena;
>> npix = prod(size(lena));
>> spotty(round(rand(5000,1)*(npix-1)+1)) = 0;
>> spotty(round(rand(5000,1)*(npix-1)+1)) = 1.0;
>> idisp(spotty)

and this is shown in Fig. 12.23a. We have set 5 000 random pixels to be zero, and an-
other 5 000 random pixels to the maximum value. This type of noise is often referred
to as impulse noise or salt and pepper noise. We apply a 3× 3 median filter

>> idisp(irank(spotty, 5, 1))

Chapter 12 · Image Processing

317

Fig. 12.23. Median filter cleanup
of impulse noise. a Corrupted im-
age; b median filtered result

and the result shown in Fig. 12.23b is considerably improved. A similar effect could
have been obtained by smoothing but that would tend to blur the image, median filter-
ing has the advantage of preserving edges in the scene.

The third argument to irank can be a matrix instead of a scalar and this allows for
some very powerful operations. For example

>> M = ones(3,3);
>> M(2,2) = 0
M =
 1 1 1
 1 0 1
 1 1 1
>> mxn = irank(lena, 1, M);

specifies the first in rank (maximum) over a subset of pixels from the window corre-
sponding to the non-zero elements of M. In this case M specifies the eight neighbouring
pixels but not the centre pixel. The result mxn is the maximum of the eight neighbours
of each corresponding pixel in the input image. We can use this

>> idisp(lena > mxn)

to display all those points where the pixel value is greater than its local neighbours and
performs non-local maxima suppression. These correspond to local maxima, or peaks
if the image is considered as a surface. This mask matrix is very similar to a structur-
ing element which we will meet in the next section.

12.5 lMathematical Morphology

Mathematical morphology is a class of non-linear spatial operators shown schemati-
cally in Fig. 12.24. Each pixel in the output matrix is a function of a subset of pixels in
a region surrounding the corresponding pixel in the input image

(12.7)

where S is the structuring element, typically a w×w square region with odd side length
w= 2h+ 1 where h ∈Z+ is the half-width. The structuring element is similar to the
convolution kernel discussed previously except that the function f(·) is applied only to
a specified subset of pixels within the window. The selected pixels are those for which
the corresponding values of the structuring element are non-zero – these are shown in
red in Fig. 12.24. Mathematical morphology, as its name implies, is concerned with the
form or shape of objects in the image.

12.5 · Mathematical Morphology

318

The easiest way to explain the concept is with a simple example, in this case a syn-
thetic binary image created by the script

>> eg_morph1
>> idisp(im)

which is shown, repeated, down the column of Fig. 12.25. The structuring element is
shown in red at the end of each row. If we consider the top most row, the structuring
element is a square

>> S = ones(5,5);

and is applied to the original image using the minimum operation

>> mn = imorph(im, S, 'min');

and the result is shown in the second column. For each pixel in the input image we take
the minimum of all pixels in the 5× 5 window. If any of those neighbours is zero the
resulting pixel will be zero. The result is dramatic – two objects have disappeared en-
tirely and the two squares have become separated and smaller. The two objects that
disappeared were not consistent with the shape of the structuring element. This is
where the connection to morphology or shape comes in – only shapes that could con-
tain the structuring element will be present in the output image.

The structuring element could define a circle, an annulus, a 5-pointed star, a line
segment 20 pixels long at 30° to the horizontal or a duck – the technique allows very
powerful shape-based filters to be created. The second row shows the results for a
larger square structuring element which has resulted in the complete elimination of
the small square and the further reduction of the large square. The third row shows
the results for a structuring element which is a horizontal line segment 14 pixel wide,
and the only remaining shape is the long horizontal line.

The operation we just performed is often known as erosion since large objects are
eroded or become smaller – in this case the 5× 5 structuring element has caused two
pixels� to be shaved off all the way around the perimeter of each shape. The small
square, originally 5× 5, is now only 1× 1. If we repeated the operation the small square
would disappear entirely, and the large square would be reduced even further.

The inverse operation is dilation which makes objects larger. In Fig. 12.25 we apply
dilation to the second column results

>> mx = imorph(mn, S, 'max');

and the results are shown in the third column. For each pixel in the input image we take
the maximum of all pixels in the 5× 5 window. If any of those neighbours is one the

Fig. 12.24.

Morphological image processing
operations. The operation is de-
fined only for the selected ele-
ments (red) within the structu-
ring element (red outlined square)

The half width of the structuring ele-

ment.

Chapter 12 · Image Processing

319

resulting pixel will be one. In this case we see that the two squares have returned to
their original size, but the large square has lost its protrusions.

Morphological operations are often written in operator form. Erosion is

where in Eq. 12.7 f(·)=min(·), and dilation is

where in Eq. 12.7 f(·)=max(·).
Erosion and dilation are related by

where the bar denotes the logical complement of the pixel values. Essentially this states
that eroding the white pixels is the same as dilating the dark pixels and vice versa. For
morphological operations

which means that successive erosion or dilation with a structuring element is equiva-
lent to the application of a single larger structuring element, but the former is
computationally cheaper.⊳ These operations are also known as Minkowski subtrac-
tion and addition respectively. The shorthand functions

>> out = ierode(im, S);
>> out = idilate(im, S);

can be used instead of the low-level function imorph.

Fig. 12.25.

Mathematical morphology ex-
ample. Pixels are either 0 (grey)

or 1 (white). Each column corre-
sponds to processing using the
structuring element, shown at

the end in red. The first column
is the original image, the second

column is after erosion by the
structuring element, and the

third column is after the second
column is dilated by the

structuring element

For example a 3×3 square structuring

element applied twice is equivalent to

5×5 square structuring element. The

former involves 2×(3×3×N 2) =18N 2

operations whereas the later involves

5×5×N 2 = 25N 2 operations.

12.5 · Mathematical Morphology

320

The sequence of operations, erosion then dilation, is known as opening since it
opens up gaps. In operator form it is written as

Not only has the opening selected particular shapes but it has also cleaned up
the image: the squares have been separated and the protrusions on the large square
have been removed since they are not consistent with the shape of the structuring
element.

In Fig. 12.26 we perform the operations in the inverse order, dilation then
erosion. In the first row no shapes have been lost, they grew then shrank, and
the large square still has its protrusions. The hole has been filled since it is not
consistent with the shape of the structuring element. In the second row, the larger
structuring element has caused the two squares to join together. This sequence of
operations is referred to as closing since it closes gaps and is written in operator
form as

Note that in the bottom row the two line segments have remained attached to the
edge, this is due to the default behaviour in handling edge pixels.

Fig. 12.26.

Mathematical morphology ex-
ample. Pixels are either 0 (grey)
or 1 (white). Each row corre-
sponds to processing using the
structuring element, shown at
the end in red. The first column
is the original image, the second
column is after dilation by the
structuring element, and the
third column is after the second
column is eroded by the
structuring element

Dealing with edge pixels. The problem of a convolution window near the edge of an input image
was discussed on page 299. Similar problems exist for morphological spatial operations, and the
Toolbox functions imorph, irank and iwindow support the option 'valid' as does iconv.
Other options cause the returned image to be the same size as the input image:

� 'replicate' (default) the border pixel is replicated, that is, the value of the closest border
pixel is used.

� 'none' pixels beyond the border are not included in the set of pixels specified by the struc-
turing element.

� 'wrap' the image is assumed to wrap around, left to right, top to bottom.

Chapter 12 · Image Processing

321

Opening and closing⊳ are implemented by the Toolbox functions iopen and
iclose respectively. Unlike erosion and dilation repeated application of opening or
closing is futile since those operations are idempotent

12.5.1 lNoise Removal

A common use of morphological opening is to remove noise in an image. The image

>> objects = iread('segmentation.png');

shown in Fig. 12.27a is a noisy binary image from the output of a rather poor object
segmentation operation.⊳ We wish to remove the dark pixels that do not belong to the
objects and we wish to fill in the holes in the four dark rectangular objects.

We choose a symmetric circular structuring element of radius 3
>> S = kcircle(3)
S =
 0 0 0 1 0 0 0
 0 1 1 1 1 1 0
 0 1 1 1 1 1 0
 1 1 1 1 1 1 1
 0 1 1 1 1 1 0
 0 1 1 1 1 1 0
 0 0 0 1 0 0 0

Fig. 12.27. Morphological cleanup.
a Original image, b original after
opening, c opening then closing,
d closing then opening. Structur-
ing element is a circle of radius 3.
Color map is inverted, set pixels are
shown as black

These names make sense when consid-

ering what happens to white objects

against a black background. For black

objects the operations perform the in-

verse function.

12.5 · Mathematical Morphology

Image segmentation and binarization

is discussed in Sect. 13.1.1.

322

and apply a closing operation to fill the holes in the objects

>> closed = iclose(objects, S);

and the result is shown in Fig. 12.27b. The holes have been filled, but the noise pixels
have grown to be small circles and some have agglomerated. We eliminate these by an
opening operation

>> clean = iopen(closed, S);

and the result shown in Fig. 12.27c is a considerably cleaned up image. If we apply the
operations in the inverse order, opening then closing

>> opened = iopen(objects, S);
>> closed = iclose(opened, S);

the results shown in in Fig. 12.27d are much poorer. Although the opening has re-
moved the isolated noise pixels it has removed large chunks of the targets which can-
not be restored.

12.5.2 lBoundary Detection

We can also use morphological operations to detect the edges of objects. Continuing
the example from above and using the image clean shown in Fig. 12.27c we compute
its erosion using a circular structuring element

>> eroded = imorph(clean, kcircle(1), 'min');

The objects in this image are slightly smaller since the structuring element has caused
one pixel to be shaved off the outside of each object. Subtracting the eroded image
from the original

>> idisp(clean-eroded)

results in a layer of pixels around the edge of each object as shown in Fig. 12.28.

12.5.3 lHit and Miss Transform

The hit and miss transform uses a variation on the morphological structuring ele-
ment. Its values are zero, one or don’t care as shown in Fig. 12.29a. The zero and one

Fig. 12.28.

Boundary detection by morpho-
logical processing. Results are
shown inverted, white is zero

Chapter 12 · Image Processing

323

pixels must exactly match the underlying image pixels in order for the result to be a
one, as shown in Fig. 12.29b. If there is any mismatch of a one or zero as shown in
Fig. 12.29c then the result will be zero. The Toolbox implementation is very similar to
the morphological function, for example

out = hitormiss(image, S);

where the don’t care elements of the structuring element are set to the special MATLAB®
value NaN.

The hit and miss transform is used iteratively with a variety of structuring ele-
ments to perform operations such as skeletonization and linear feature detection. The
skeleton of the objects is computed by

>> skeleton = ithin(clean);

and is shown in Fig. 12.30a. The lines are a single pixel wide and are the edges of a
generalized Voronoi diagram – they delineate sets of pixels according to the shape
boundary they are closest to. We can then find the endpoints of the skeleton

>> ends = iendpoint(skeleton);

and also the triplepoints

>> joins = itriplepoint(skeleton);

which are points at which three lines join. These are shown in Fig. 12.30b and c respec-
tively.

Fig. 12.29.

Hit and miss transform. a The
structuring element has values

of zero, one, or don’t care which
is shown in white; b an example
of a hit; c an example of a miss,
the pixel shown in red is incon-

sistent with the structuring
element

Fig. 12.30.

Hit and miss transform oper-
ations. a Skeletonization; b end-

point detection; c triple-point
join detection. The images are

shown inverted with the original
binary image superimposed in

grey. The end- and triple-points
are shown as black pixels

12.5 · Mathematical Morphology

324

12.6 lShape Changing

The final class of image processing operations that we will discuss are those that change
the shape or size of an image.

12.6.1 lCropping

The simplest shape change of all is selecting a rectangular region from an image which
is the familiar cropping operation. Consider the image

>> lena = iread('lena.pgm');

shown in Fig. 12.31a from which we interactively specify a region of interest or ROI

>> [eyes,roi] = iroi(lena);
>> idisp(eyes)

by clicking and dragging a selection box over the image. In this case we selected the
eyes as shown in Fig. 12.31b. The corners of the selected region can be optionally re-
turned and in this case was

>> roi
roi =
 239 359
 237 294

where the columns are the (u, v) coordinates for the top-left and bottom-right corners
respectively. The rows are the u- and v-span respectively. The function can be used
non-interactively by specifying a ROI

>> mouth = iroi(lena, [253, 330; 332, 370]);

which in this case selects the mouth.

12.6.2 lImage Resizing

Often we wish to reduce the dimensions of an image, perhaps because the large num-
ber of pixels results in long processing time or requires too much memory. We demon-
strate this with a high-resolution image

>> roof = iread('roof.jpg', 'grey');
>> about(roof)
roof [uint8] : 1668x2009 (3351012 bytes)

Fig. 12.31. Example of region
of interest or image cropping.
a Original image, b selected re-
gion of interest

Chapter 12 · Image Processing

325

which is shown in Fig. 12.32a. The simplest means to reduce image size is subsampling or
decimation which selects every mth pixel in the u- and v-direction, where m∈Z+ is the
subsampling factor. For example with m= 2 an N×N image becomes an N/2×N/2
images which has one quarter the number of pixels of the original image.

For this example we will reduce the image size by a factor of seven in each direction

>> smaller = roof(1:7:end,1:7:end);

using standard MATLAB® indexing syntax to select every seventh row and column.
The result is shown is shown in Fig. 12.32b and we observe some pronounced curved
lines on the roof which were not in the original image. These are artefacts of the sam-
pling process. Subsampling reduces the spatial sampling rate of the image which can
lead to spatial aliasing of high-frequency components due to texture or sharp edges.
To ensure that the Shannon-Nyquist sampling theorem is satisfied an anti-aliasing
low-pass spatial filter must be applied to reduce the spatial bandwidth of the image
before it is subsampled.⊳ This is another use for image blurring and the Gaussian
kernel is a suitable low-pass filter for this purpose. The combined operation of smooth-
ing and subsampling is implemented in the Toolbox by

>> smaller = idecimate(roof, 7);

and the results for m= 7 are shown in Fig. 12.32c. We note that the curved line artefacts
are no longer present.

The inverse operation is pixel replication, where each input pixel is replicated as an
m×m tile in the output image

>> bigger = ireplicate(smaller, 7);

Fig. 12.32. Image scaling example.
a Original image; b subsampled
with m= 7, note the axis scaling;
c subsampled with m= 7 after
smoothing; d image c restored to
original size by pixel replication

Any realizable low-pass filter has a finite

response above its cutoff frequency. In

practice the cutoff frequency is selected

to be far enough below the theoretical

cutoff that the filter’s response at the

Nyquist frequency is sufficiently small.

As a rule of thumb for subsampling with

m= 2 a Gaussian with s= 1 is used.

12.6 · Shape Changing

326

which is shown in Fig. 12.32d and appears a little blocky along the edge of the roof and
along the skyline. The decimation stage removed 98% of the pixels and restoring the
image to its original size has not added any new information.� However we could
make the image easier on the eye by smoothing

>> smoother = ismooth(bigger, 4);

which will attenuate the high frequency information at the edges of the blocks.
We can perform the same function using the Toolbox function iscale which scales

an image by an arbitrary factor m∈R+ for example

>> smaller = iscale(lena, 0.1);
>> bigger = iscale(smaller, 10);

The second argument is the scale factor and if m< 1 the image will be reduced,� and
if m> 1 it will be expanded.

12.6.3 lImage Pyramids

An important concept in computer vision, and one that we return to in the next chap-
ter is scale space. The Toolbox function ipyramid returns a pyramidal decomposi-
tion of the input image

>> p = ipyramid(lena)
p =
 Columns 1 through 5
 [512x512 double] [256x256 double] [128x128 double]
 [64x64 double] [32x32 double]

 Columns 6 through 10
 [16x16 double] [8x8 double] [4x4 double]
 [2x2 double] [20.8959]

as a MATLAB® cell array containing images at successively lower resolutions. Note
that the last element is the 1× 1 resolution version – a single grey pixel! These images
are pasted into a composite image which is displayed in Fig. 12.33.

An image pyramid is the basis of many so-called coarse-to-fine strategies. Consider
the problem of looking for a pattern of pixel values that represent some object of in-
terest. The smallest image can be searched very quickly for the object since it has a
very small number of pixels. The search is then refined using the next larger image but
we now know which area of that larger image to search. The process is repeated until
the object is located in the highest resolution image.

Fig. 12.33.

Image pyramid, a succession of
images each half (by side length)
the resolution of the one to the left

Somewhat like the digital zoom func-

tion on a camera.

The image should be smoothed first

using the 'smooth' option to set

the width of the Gaussian kernel.

Chapter 12 · Image Processing

327

12.6.4 lImage Warping

Image warping is a transformation of the pixel coordinates not their values. Warping can
be used to scale image up or down in size, rotate an image or apply quite arbitrary shape
changes. The coordinates of the pixel in the new view (u′, v′) are expressed as functions

(12.8)

of the coordinates in the original view.
Consider a simple example where the image is reduced in size by a factor of 4 in

both directions and offset so that its origin, its top-left corner, is shifted to the coordi-
nate (100, 200). We can express this concisely as

(12.9)

First we establish a pair of coordinate matrices⊳ that span the domain of the input
image

>> [Ui,Vi] = imeshgrid(lena);

and another pair that span the domain of the output image which we choose arbi-
trarily to be 400× 400

>> [Uo,Vo] = imeshgrid(400, 400);

Now, for every pixel in the output image the corresponding coordinate in the input image
is given by the inverse of the functions fu and fv. For our example the inverse of Eq. 12.9 is

(12.10)

which is implemented in matrix form in MATLAB® as

>> U = 4*(Uo-100); V = 4*(Vo-200);

We can now warp the input image using the MATLAB® function interp2

>> lena_small = interp2(Ui, Vi, idouble(lena), U, V);

and the result is shown in Fig. 12.34a. Note that interp2 needs to work on a floating
point image and we used idouble to convert the input image accordingly.

The coordinate matrices are such that

U(u,v) = u and V(u,v) = v and

are a common construct in MATLAB® see

the documentation for meshgrid.

Fig. 12.34. Warped images. a Scaled
and shifted; b rotated by 30° about
its centre

12.6 · Shape Changing

328

Some subtle things happen under the hood here. Firstly, while (u′, v′) are integer
coordinates the input image coordinates (u, v) will not necessarily be integer. The pixel
values must be interpolated� from neighbouring pixels in the input image� Secondly,
not all pixels in the output image have corresponding pixels in the input image as illus-
trated in Fig. 12.35. Fortunately for us interp2 handles all these issues and pixels that
do not exist in the input image are presented as black in the output image. In case of
mappings that are extremely distorted it may be that many adjacent output pixels map to
the same input pixel and this leads to pixelation or blockyness in the output image.

Now let’s try something a bit more ambitious and rotate the image by 30° into an
output image of the same size as the input image

>> [Uo,Vo] = imeshgrid(lena);

We want to rotate the image about its centre but since the origin of the input image is
the top-left corner we must first change the origin to the centre, then rotate and then
move the origin back to the top-left corner. The warp equation is therefore

(12.11)

where (uc, vc) is the coordinate of the image centre and R(ÿ) is a rotation matrix in
SE(2). This can be rearranged into the inverse form and implemented as

>> R = se2(0, 0, pi/6); uc = 256; vc = 256;
>> U = R(1,1)*(Uo-uc) + R(2,1)*(Vo-vc) + uc;
>> V = R(1,2)*(Uo-uc) + R(2,2)*(Vo-vc) + vc;
>> lena_rotated = interp2(Ui, Vi, idouble(lena), U, V);

and the result is shown in Fig. 12.34b. Note the direction of rotation – our definition of
the x- and y-axes (parallel to the u- and v-axes respectively) is such that the z-axis is
defined as being into the page making a clockwise rotation a positive angle. Also note
that the corners of the original image have been lost, they fall outside the bounds of
the output image.

The function iscale uses image warping to change image scale, and the function
irotate uses warping to perform rotation. The example above could be achieved by

>> lena_rotated = irotate(lena, pi/6);

Finally we will revisit the lens distortion example from Sect. 11.1.1. The distorted im-
age from the camera is the input image and will be warped to remove the distortion. We
are in luck since the distortion model Eq. 11.13 is already in the inverse form. Recall that

where δu and δv are functions of (u, v).

Different interpolation modes can be

selected by a trailing argument to

interp2 but the default option is

bilinear interpolation. A pixel at coor-

dinate (u+ δu, v+ δv) where u, v∈Z
and δu, δv∈ [0, 1) is a function of the

pixels (u, v), (u+ 1, v), (u, v+ 1) and

(u+ 1, v+ 1).

Fig. 12.35.

Coordinate notation for image
warping. The pixel (u′, v′) in the
output image is sourced from the
pixel at (u, v) in the input image
as indicated by the arrow. The
warped image is not necessarily
polygonal, nor entirely within
the second image

The interpolation function acts as a

weak anti-aliasing filter, but for very

large reductions in scale the image

should be smoothed first using a Gaus-

sian kernel.

Chapter 12 · Image Processing

329

First we load the distorted image and build the coordinate matrices for the dis-
torted and undistorted images

>> distorted = iread('Image18.tif', 'double');
>> [Ui,Vi] = imeshgrid(distorted);
>> Uo = Ui; Vo = Vi;

and then load the results of the camera calibration

>> load Bouguet

For readability we unpack the required parameters from the Calibration Toolbox vari-
ables cc, fc and kc

>> k = kc([1 2 5]); p = kc([3 4]);
>> u0 = cc(1); v0 = cc(2); fpix_u = fc(1); fpix_v = fc(2);

for radial and tangential distortion vectors, principal point and focal length in pixels.
Next we convert pixel coordinates to normalized image coordinates⊳

>> u = (Uo-u0) / fpix_u;
>> v = (Vo-v0) / fpix_v;

The radial distance of the pixels from the principal point is then

>> r = sqrt(u.^2 + v.^2);

and the pixel coordinate errors due to distortion are

>> delta_u = u .* (k(1)*r.^2 + k(2)*r.^4 + k(3)*r.^6) + ...
 2*p(1)*u.*v + p(2)*(r.^2 + 2*u.^2);
>> delta_v = v .* (k(1)*r.^2 + k(2)*r.^4 + k(3)*r.^6) + ...
 p(1)*(r.^2 + 2*v.^2) + 2*p(2)*u.*v;

The distorted pixel coordinates in metric units are

>> ud = u + delta_u; vd = v + delta_v;

which we convert back to pixel coordinates

>> U = ud * fpix_u + u0;
>> V = vd * fpix_v + v0;

and finally apply the warp

>> undistorted = interp2(Ui, Vi, distorted, U, V);

The results are shown in Fig. 12.36. The change is quite subtle, but is most pronounced
at the edges and corners of the image where r is the greatest.

In units of metres with respect to the

camera’s principal point.

Fig. 12.36. Warping to undistort
an image. a Original distorted
image; b corrected image. Note
that the top edge of the target has
become a straight lines (Example
from Bouguet’s Camera Calibra-
tion Toolbox, image number 18)

12.6 · Shape Changing

330

12.7 lWrapping Up

In this chapter we learnt how to acquire images from a variety of sources such as image
files, movie files, video cameras and the internet, and load them into the MATLAB®
workspace. We then discussed a large number of processing operations and a taxonomy
of these is shown in Fig. 12.37. Operations on a single image include: unary arithmetic
operations, type conversion, various color transformations and greylevel stretching; non-
linear operations such as histogram normalization and gamma encoding or decoding;
and logical operations such as thresholding. We also discussed operations on pairs of
images such as green screening, background estimation and moving object detection.

The largest and most diverse class of operations were spatial operators. We dis-
cussed convolution which can be used to smooth an image and to detect edges. Smooth-
ing is useful to reduce the effect of image noise in edge detection and also to low-pass
filter an image prior to decimation. Non-linear operations can be used to perform
template matching and to compute rank statistics over windows. A particular example
of rank statistics is the median filter which was shown to reduce certain types of im-
age noise. A related technique is mathematical morphology which can be used to filter
images based on shape, to cleanup binary images and to perform skeletonization.

Finally we discussed shape changing operations such as regions of interest, scale chang-
ing and the problems that can arise due to aliasing, and generalized image warping which
can be used for rotation or image undistortion. All these image processing techniques are
the foundations of feature extraction algorithms that we discuss in the next chapter.

Further Reading

Image processing is a large field and this chapter has provided an introduction to many
of the most useful techniques from a robotics perspective. The textbook by Gonzalez and
Woods (2008) has a comprehensive discussion of image processing techniques as does
Szeliski (2011). It expands on methods introduced in this chapter and covers additional
topics such as greyscale morphology, image restoration, wavelet and frequency domain
methods, and image compression. Online information about computer vision is available
through CVonline at http://homepages.inf.ed.ac.uk/rbf/CVonline, and the material in this
chapter is covered under the section Image Transformations and Filters.

Edge detection is a subset of image processing but one with huge literature of its
own. Forsyth and Ponce (2002) have a comprehensive introduction to edge detection
and a useful discussion on the limitations of edge detection. Nixon and Aguado (2008)
also cover phase congruency approaches to edge detection and compare various edge
detectors. The Sobel kernel for edge detection was described in an unpublished 1968
publication from the Stanford AI lab by Irwin Sobel and Jerome Feldman: A 3× 3
Isotropic Gradient Operator for Image Processing. The Canny edge detector was origi-
nally described in Canny (1983, 1987).

Non-parametric measures for image similarity became popular in the 1990s with
with a number of key papers such as Zabih and Woodfill (1994), Banks and Corke
(2001), Bhat and Nayar (2002). The application to real-time image processing systems
using high-speed logic such as FPGAs has been explored by several groups (Corke
et al. 1999; Woodfill and Von Herzen 1997).

Mathematical morphology is another very large topic and we have only scraped the
surface. Important techniques such as greyscale morphology and watersheds have not
been covered. The pioneer of the field is Jean Serra and good starting points for fur-
ther investigation are his book from 1983 (Serra 1983) or online tutorials at the Centre
for Mathematical Morphology at http://cmm.ensmp.fr/index_eng.html. Another thor-
ough treatment is the book by Soille (2003) while the book by Dougherty and Latufo
(2003) is a more hands on tutorial approach. Gonzalez and Woods also has a useful
discussion of greyscale morphology.

Fig. 12.37.

Taxonomy of image processing
algorithms discussed in this

chapter

�

Chapter 12 · Image Processing

33112.7 · Wrapping Up

332

The approach to compute vision covered in this book is often referred to as bot-
tom-up processing. This chapter has been about low-level vision techniques which are
operations on pixels. The next chapter is about high-level vision techniques where sets
of pixels are grouped and then described to represent objects in the scene.

Sources of Image Data

There are thousands of online webcams as well as a number of sites that aggregate web
cameras and provide lists categorized by location. Some of the content on these list
pages can be rather dubious – so beware. Most of these sites do not connect you di-
rectly to the web camera so the URL of the camera is generally not available. Sites such
as Opentopia http://www.opentopia.com do list a large number of web cameras and the
actual URL for the camera is listed below the image on the line marked Website:. The
root part of the URL (before the first single slash) is required for the AxisWebCamera
class.

The motion sequence videos used in Sect. 12.3 are available from the CAVIAR project
at http://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1 and are described in Fisher (2004).

A number of images are provided with the Toolbox in the images folder.

MATLAB® Software Tools

The Image Processing Toolbox (IPT) can be purchased from The Mathwork Inc., the
publishers of MATLAB. The companion to Gonzalez and Woods (2008) is their
MATLAB® based book from 2009 (Gonzalez et al. 2009) which provides a detailed cov-
erage of image processing using MATLAB® and includes functions that extend the
IPT. These are provided for free as P-code format (no source or help available) or as
M-files for purchase.

The Machine Vision Toolbox (MVTB) described in this book is open source. The
MVTB functionality overlaps the IPT, but the MVTB contains functions not in the IPT
and the IPT contains functions not in the MVTB. The image processing category at
MATLAB® CENTRAL http://www.mathworks.com/matlabcentral/fileexchange lists
more than 500 files.

General Software Tools

There is a wealth of high quality software tools for image and video manipulation
outside the MATLAB® environment. OpenCV at http://opencv.org is a mature open-
source computer vision software project. The book by Bradski and Kaehler (2008) is a
good introduction to the software and to computer vision in general.

ImageMagick http://www.imagemagick.org is a cross-platform collection of libraries
and command-line tools for image format conversion (over 100 formats), manipulation
and composition and the API has bindings for many languages. NetPBM http://

netpbm.sourceforge.net can be built on most platforms and is also a collection of com-
mand-line tools for image format conversion (over 100 formats) and manipulation. The
NetPBM utilities are an install option for many Linux distributions. Both packages are
well suited for batch operations on large sets of images. The Toolbox function pnmfilt
can be used to process an image through one of these external programs, for example

>> rlena = pnmfilt('pnmrotate 30', lena);

For video manipulation FFmpeg http://www.ffmpeg.org is an excellent and compre-
hensive cross-platform tool. It supports conversion between video formats as well as
videos to still images and vice versa.

Chapter 12 · Image Processing

333

Exercises

1. Become familiar with idisp for greyscale and color images. Explore pixel values
in the image as well as the zoom, line and histogram buttons.

2. Grab some frames from the camera on your computer or from a movie file and
display them.

3. Write a loop that grabs a frame from your camera and displays it. Add some effects
to the image before display such as “negative image”, thresholding, posterization,
false color, edge filtering etc.

4. Motion detection
a) Write a loop that performs background estimation using frames from your cam-

era. What happens as you move objects in the scene, or let them sit there for a
while? Explore the effect of changing the parameter σ.

b) Modify the LeftBag example on page 298 and highlight the moving people.
c) Combine motion detection and chroma-keying, put the moving people from the

lobby into the desert.
5. Convolution

a) Compare the results of smoothing using a 21× 21 uniform kernel and a Gaussian
kernel. Can you observe the ringing artefact in the former?

b) Why do we choose a smoothing kernel that sums to one?
c) Compare the performance of the simple horizontal gradient kernel K= (−0.5 0 0.5)

with the Sobel kernel.
d) Investigate filtering with the Gaussian kernel for different values of σ and ker-

nel size.
e) Create a 31× 31 kernel to detect lines at 60 deg.
f) Derive analytically the derivative of the Gaussian in the x-direction Eq. 12.2.
g) Derive analytically the derivative of the Laplacian of Gaussian Eq. 12.6.
h) Derive analytically the difference of Gaussian from page 310.

6. Show analytically the effect of an intensity scale error on the SSD and NCC similar-
ity measures.

7. Template matching
a) Use iroi to select one of Lena’s eyes as a template. The template should have

odd dimensions.
b) Use isimilarity to compute the similarity image. What is the best match

and where does it occur? What is the similarity to the other eye? Where does the
second best match occur and what is its similarity score?

c) Scale the intensity of the Lena image and investigate the effect on the peak simi-
larity.

d) Add an offset to the intensity of the Lena image and investigate the effect on the
peak similarity.

e) Repeat steps (c) and (d) for different similarity measures such as SAD, SSD, rank
and census.

f) Scale the template size by different factors (use iscale) in the range 0.5 to 2.0
in steps of 0.05 and investigate the effect on the peak similarity. Plot peak simi-
larity vs scale.

g) Repeat (f) for rotation of the template in the range −0.2 to 0.2 rad in steps of 0.05.
8. Perform the sub-sampling example on page 325 and examine aliasing artefacts

around sharp edges and the regular texture of the roof tiles. What is the appropriate
smoothing kernel width for a decimation by M?

9. Write a function to create Fig. 12.33 from the output of ipyramid.
10.Create a warp function that mimics your favourite funhouse mirror.
11.Warp the image to polar coordinates (r, θ) with respect to the centre of the image,

where the horizontal axis is r and the vertical axis is θ .

12.7 · Wrapping Up

13
Chapter

a line). Image feature extraction is a necessary first step in using image data to control
a robot. It is an information concentration step that reduces the data rate from
106−108 bytes s–1 at the output of a camera to something of the order of tens of features
per frame that can be used as input to a robot’s control system.

In this chapter we discuss features and how to extract them from images. Drawing on
image processing techniques from the last chapter we will discuss several classes of fea-
ture: regions, lines and interest points. Section 13.1 discusses region features which are
contiguous groups of pixels that are homogeneous with respect to some pixel property.
For example the set of pixels that represent a red object against a non-red background.
Section 13.2 discusses line features which describe straight lines in the world. Straight
lines are distinct and very common in man-made environments – for example the edges
of doorways, buildings or roads. The final class of features are interest points which are
discussed in Sect. 13.3. These are particularly distinctive points in a scene which can be
reliably detected in different views of the same scene.

It is important to always keep in mind that image features are a summary of the

information present in the pixels that comprise the image, and that the mapping

from the world to pixels involves significant information loss. We typically counter

this information loss by making assumptions based on our knowledge of the envi-

ronment, but our system will only ever be as good as the validity of our assump-

tions. For example, we might use image features to describe the position and shape

of a group of red pixels that correspond to a red object. However the size feature,

typically the number of pixels, does not say anything about the size of the red

object in the world – we need extra information such as the distance between the

camera and the object and the camera’s intrinsic parameters. We also need to as-

sume that the object is not partially occluded – that would make the observed

size less than the true size. Further we need to assume that the illumination is such

that the chromaticity of the light reflected from the object is considered to be red.

We might also find features in an image that do not correspond to a physical ob-

ject – decorative markings, the strong edges of a shadow, or reflections in a window.

Image Feature Extraction

In the last chapter we discussed the acquisition and processing of images.
We learnt that images are simply large arrays of pixel values but for ro-
botic applications images have too much data and not enough informa-
tion. We need to be able to answer pithy questions such as what is the pose
of the object? what type of object is it? how fast is it moving? how fast am
I moving? and so on. The answers to such questions are measurements
obtained from the image and which we call image features. Features are
the gist of the scene and the raw material that we need for robot control.

The image processing operations from the last chapter operated on
one or more input images and returned another image. In contrast feature
extraction operates on an image and returns one or more image features.
Features are typically scalars (for example area or aspect ratio) or short
vectors (for example the coordinate of an object or the parameters of

336 Chapter 13 · Image Feature Extraction

337

13.1 lRegion Features

Image segmentation is the process of partitioning an image into application meaning-
ful regions as illustrated in Fig. 13.1. The aim is to segment or separate those pixels
that represent objects of interest from all other pixels in the scene. This is one of the
earliest approaches to scene understanding and while conceptually straightforward it
is a very challenging problem. A key requirement is robustness which is how gracefully
the method degrades as the underlying assumptions are violated, for example chang-
ing scene illumination or viewpoint.

Image segmentation is considered as three subproblems. The first is classification
which is a decision process applied to each pixel and assigning it to one of C classes
c∈ {0⋯ C− 1}. Commonly we use C= 2 which is known as binary classification or
binarization and some examples are shown in Fig. 13.1a–f. The pixels have been clas-
sified as object (c= 1) or not-object (c= 0) which are displayed as white or black
pixels respectively. The classification is always application specific – for example the
object corresponds to pixels that are bright or yellow or red or moving. Figure 13.1h is
a multi-level classification where C= 28 and the pixel’s class is reflected in its dis-
played color.

The underlying assumption in the examples of Fig. 13.1 is that regions are homoge-
neous with respect to some pixel characteristic. In practice we accept that this stage is
imperfect and that pixels may be misclassified – subsequent processing steps will have
to deal with this.

The second step in the segmentation process is representation where adjacent pix-
els of the same class are connected to form spatial sets S1… Sm. The sets can be repre-
sented by assigning a set label to each pixel or by a list of pixel coordinates that defines
the boundary of the connected set. In the third and final step, the sets Si are described
in terms of scalar or vector-valued features such as size, position, and shape.

13.1.1 lClassification

The pixel class is represented by an integer c∈ {0⋯ C− 1} where C is the number of
classes. In this section we discuss the problem of assigning each pixel to a class. In
many of the examples we will use binary classification with just two classes corre-
sponding to not-object and object, or background and foreground.

13.1.1.1 lGrey-Level Classification

A common rule for binary classification of pixels is

where the decision is based simply on the value of the pixel. This approach is called
thresholding and t is referred to as the threshold.

Thresholding is very simple to implement. Consider the image

>> castle = iread('castle_sign.jpg', 'grey', 'double');

which is shown in Fig. 13.2a. The thresholded image

>> idisp(castle >= 0.6)

is shown in Fig. 13.2b. The pixels have been quite accurately classified as correspond-
ing to white paint or not. This classification is based on the seemingly reasonable as-
sumption that white paint is brighter than everything else in the image. In the early

Fig. 13.1.

Examples of pixel classification.
The left-hand column is the input
image and the right-hand column
is the classification. The classi-
fication is application specific
and the pixels have been classi-
fied as either object (white) or
not-object (black). The objects
of interest are a the individual
letters on the sign; b the yellow
targets; c the red tomatoes. d is a
multi-level segmentation where
pixels have been assigned to
28 classes that represent locally
homogeneous groups of pixels
in the scene

�

13.1 · Region Features

338

days of computer vision, when computer power was limited, this approach was widely
used – it was easier to contrive a world of white objects and dark backgrounds than to
implement more sophisticated classification. In modern industrial inspection systems
based on modest embedded computers this simple approach is still common – it works
very well if the objects are on a conveyor belt of a suitable contrasting color or in
silhouette at an inspection station. In the real world we generally have to work a little
harder in order to achieve useful grey-level classification. An important question, and
a hard one, is where did the threshold value of 0.6 come from? The most common
approach is trial and error! The Toolbox function ithresh

>> ithresh(castle)

displays the image and a threshold slider that can be adjusted until a satisfactory re-
sult is obtained. However if the intensity of the image changed

>> ithresh(castle*0.9)

a different threshold would be required.
A more principled approach than trial and error is to analyze the histogram of the

image

>> ihist(castle, 'b');

which is shown in Fig. 13.2c. The histogram has two clearly defined peaks, a bimodal
distribution, which correspond to two populations of pixels. The smaller peak
around 0.9 corresponds to the pixels that are bright and it has quite a small range of

Fig. 13.2. Binary classification.
a Original image (image sourced
from the ICDAR collection; Lucas
2005); b binary classification; c his-
togram of greyscale pixel values

Chapter 13 · Image Feature Extraction

339

variation in value. The wider and taller peak around 0.3 corresponds to pixels in the darker
background of the sign and the bricks, and has a much larger variation in brightness.

To separate the two classes of pixels we choose the decision boundary, the thresh-
old, to lie in the valley between the peaks. In this regard the choice of t= 0.6 is a good
one. Since the valley is very wide we actually have quite a range of choice for the thresh-
old, for example t= 0.7 would also work well. The optimal threshold can be computed
using Otsu’s method

Fig. 13.3. Binary segmentation ex-
ample. a Grey scale image with dia-
gonal intensity gradient, b histo-
gram, c thresholded with Otsu’s
threshold at 0.54, d thresholded
at 0.50, e thresholded at 0.60

13.1 · Region Features

340

>> t = otsu(castle)
t =
 0.6000

which separates an image into two classes of pixels in a way that minimizes the vari-
ance of values within each class and maximizes the variance of values between the
classes – assuming that the histogram has just two peaks. Sadly, as we shall see, the real
world is rarely this facilitating.

Consider the same image to which a not-unrealistic diagonal intensity gradient has
been added

>> castle = iread('castle_sign2.png', 'double', 'grey');

which is shown in Fig. 13.3a. The histogram shown in Fig. 13.2b is radically different
and much more complex. Unfortunately for us there are no longer two clearly distinct
populations to separate. In this case Otsu’s method computes a threshold of

>> t = otsu(castle)
t =
 0.5412

and the results of applying this threshold is shown in Fig. 13.2c. The pixel classifica-
tion is poor but the underlying assumption of Otsu’s method, a bimodal distribution, is
violated. Slightly lower and higher thresholds are shown in Fig. 13.2d and e respectively.

Thresholding-based techniques are notoriously brittle – a slight change in illu-

mination of the scene means that the thresholds we chose would no longer be

appropriate. In most real scenes there is no simple mapping from pixel values

to particular objects – we cannot for example choose a threshold that would

select a motorbike or a duck. Distinguishing an object from the background

remains a hard computer vision problem.

One alternative is to choose a local rather than a global threshold. The Niblack
algorithm is widely used in optical character recognition systems and computes a lo-
cal threshold

where W is a region about the point (u, v) and µ(·) and σ(·) are the mean and stan-
dard deviation respectively. The size of the window W is a critical parameter and should
be of a similar size to the objects we are looking for. For this example we make an
assumption about the scene, that the characters are approximately 50–70 pixel tall, to
choose a window half-width of 35 pixel

>> t = niblack(castle, -0.2, 35);
>> idisp(t)

where k=−0.2. The resulting local threshold t is shown in Fig. 13.4a. We apply the
threshold pixel-wise to the original image

>> idisp(castle >= t)

resulting in the classification shown in Fig. 13.4b. All the pixels belonging to the letters
have been correctly classified but compared to Fig. 13.2c there are many false posi-
tives – non-object pixels classified as object. Later in this section we will discuss tech-
niques to eliminate these false positives. Note that the classification process is no longer
a function of just the input pixel, it is now a complex function of the pixel and its
neighbours. While we no longer need to choose t we now need to choose the param-
eters k and window size, and again this is usually a trial and error process that can be
made to work well for a particular type of scene.

Chapter 13 · Image Feature Extraction

341

The results shown in Fig. 13.2c to e are disappointing at first glance but we can see
that every object is correctly classified at some, but not all, thresholds. In fact each
object is correctly segmented for some range of thresholds and what we would like is
the union of regions classified over the range of all thresholds. The maximally stable
extremal region or MSER algorithm does exactly this. It is implemented by the Toolbox
function imser

>> [mser,nsets] = imser(castle, 'light');

and for this image

>> nsets
nsets =
 40

stable sets were found. The other return value is an image

>> idisp(mser, 'colormap', 'jet')

which is shown in Fig. 13.5 as a false color image. Each non-zero pixel corresponds to
a stable set and the value is the label assigned to that stable set which is displayed as a
unique color. All the letters were correctly classified. The boundary has been partly
misclassified as background, and part of it has been joined to the brick texture on the
right hand side of the image. The option 'light' indicates we are looking for light
objects against a dark background.⊳

Fig. 13.4. Niblack thresholding.
a The local threshold displayed as
an image; b the binary segmenta-
tion

Fig. 13.5.

Segmentation using maximally
stable extremal regions (MSER).
The identified regions are uni-

quely color coded

�
13.1 · Region Features

Although no explicit threshold has

been given imser has a number of

parameters and in this case their de-

fault values have given satisfactory re-

sults. See the online documentation for

details of the parameters.

342

13.1.1.2 lColor Classification

Color is a powerful cue for segmentation but roboticists tend to shy away from using it
because of the problems with color constancy discussed in Sect. 10.3.1. In this section we
consider two examples that use color images. The first is a navigation target for an indoor
UAV

>> im_targets = iread('yellowtargets.png', 'gamma', 'sRGB', 'double');

shown in Fig. 13.6a and the second from the MIT Robotic Garden project

>> im_garden = iread('tomato_124.jpg', 'gamma', 'sRGB', 'double');

is shown in Fig. 13.7a. In both cases we were careful to apply gamma decoding to the
color images since we will be performing colorimetric operations. Our objective is to
determine the centroids of the yellow targets and the red tomatoes respectively. The
initial stages of processing are the same for each image but we will illustrate the pro-
cess in detail for the image of the yellow targets as shown in Fig. 13.6.

The Toolbox function colorkmeans first converts each color pixel to its xy-chroma-
ticity coordinate – each color pixel is mapped to a point on the xy-chromaticity plane.
Then the k-means algorithm is used to find clusters of points on the plane and each clus-
ter corresponds to a group of pixels with a distinguishable color.� A limitation of k-means
is that we must specify the number of clusters to find. We will use our knowledge that this
particular scene has four differently colored elements: yellow targets, floor, metal drain
cover and dark shadow. The pixels are clustered into four chromaticity classes (C= 4) by

>> [cls, cxy,resid] = colorkmeans(im_targets, 4);

which returns the xy-chromaticity of each cluster

where a is a 2× 500 matrix with one point per column. We will cluster this data into three sets

>> [cls,centre,r] = kmeans(a, 3);

where cls is a 500-vector whose elements specify the class of the corresponding column of a.
centre is a 2× 3 whose columns specify the centre of each 2-dimensional cluster.

>> r
r =
 4.3166

is the residual which is the norm of the distance of every point from its assigned cluster centroid.
We plot the points in each cluster with the colors red, green and blue

>> plot_point(a(:,cls==1), 'r.')
>> plot_point(a(:,cls==2), 'g.'); plot_point(a(:,cls==3), 'b.')

and superimpose the centroids as well

>> plot_point(centre, 'o'); plot_point(centre, 'x')

and we see that the points have been sensibly partitioned.

k-means clustering is an iterative algorithm for grouping n-dimensional points
into k spatial clusters. Each cluster is defined by a centre point which is an n-vector ck.
At each iteration all points are assigned to the closest cluster centre, and then each
cluster centre is updated to be the mean of all the points assigned to the cluster.

The algorithm is implemented by the Toolbox function kmeans. The distance
metric used is Euclidean distance.� The k-means algorithm requires an initial esti-
mate of the centre of each cluster and this can be provided in three ways. The initial
cluster centres can be provided by the user, the option 'random' will randomly
select k of the provided points, and 'spread' will chooses k random points from
within the hypercube spanned by the set of points. This random initialisation means
the algorithm will return different results at each invocation.�

For example, choose 500 random 2-dimensional points

>> a = rand(2,500);

For a color space Euclidean distance may

not be appropriate since human per-

ception of color difference depends on

distance in the xy-chromaticity plane

and also the location within the plane.

The function randinit sets the

MATLAB® random number generator to

a known state and can be used to en-

sure repeatable results.

colorkmeans invokes kmeans
with the 'random' initialization.

Alternative initializations include

'spread' , or 'pick' which

prompts the user to interactively select

k exemplar pixels from the image.

Chapter 13 · Image Feature Extraction

343

Fig. 13.6. Target image example.
a Original image; b pixel classifi-
cation (C= 4) shown in false color;
c cluster centres in the xy-chro-
maticity space; d all pixels of class
c= 3; e after morphological clos-
ing with a circular structuring el-
ement (radius 2)

>> cxy
cxy =
 0.3331 0.2862 0.4049 0.2947
 0.3544 0.3088 0.4414 0.3215

which has one column per cluster. We can plot these cluster centres on the xy-plane

>> xycolorspace(cxy);

13.1 · Region Features

344

which is shown in Fig. 13.6c. We see that cluster 3 is the closest to yellow

>> colorname(cxy(:,3), 'xy')
ans =
 'banana'

The residual

>> resid
resid =
 6.2583

is the norm of the distance of every point from its assigned cluster centroid. Since the
algorithm uses a random initialization we obtain different clusters and classification
on every run, and therefore different residuals.�

The function colorkmeans also returns the pixel classification which we can
display as an image

>> idisp(cls, 'colormap', 'flag')

in false color as shown in Fig. 13.6b. The pixels in this image have values c= {0, 1, 2, 3}
indicating which class the corresponding input pixels has been assigned to. If we use
idisp to interactively probe the values we see that the yellow targets have indeed
been assigned to class c= 3 which is displayed as blue.

k-means clustering is computationally expensive and therefore not very well suited to
real-time applications. However we can divide the process into a training phase and a
classification phase. In the training phase a number of example images would be concat-
enated and passed to colorkmeans which would identify the centres of the clusters for
each class. Subsequently we can assign pixels to their closest cluster relatively cheaply

>> cls = colorkmeans(im_targets, cxy);

The pixels belonging to class 3 can be selected

>> cls3 = (cls == 3);

which is a logical image that can be displayed

>> idisp(cls3)

as shown in Fig. 13.6d. All pixels of class 3 pixels are displayed as white� and corre-
spond to the yellow targets in the original image. This binary image is a good classifi-
cation but it is not perfect. It has some white pixels that do not belong to the target –
these correspond to pixels that have a chromaticity close to yellow but which have low
intensity and therefore do not look yellow.�

A morphological opening operation as discussed in Sect. 12.5 will eliminate these.
We apply a symmetric structuring element of radius 2

>> targets_binary = iopen(cls3, kcircle(2));

and the result is shown in Fig. 13.6e. It shows a clean binary segmentation of the pixels
into the two classes: target and not-target.

For the garden image we follow a very similar procedure. We classify the pixels into
four clusters (C= 4) based on our knowledge that the scene contains: tomatoes, light
leaves, dark leaves and dark background

>> [cls, cxy] = colorkmeans(im_garden, 4);
>> cxy
cxy =
 0.3610 0.5388 0.3076 0.3249
 0.4829 0.3335 0.3359 0.4034

The pixel classes are shown in false color in Fig. 13.7b. Pixels corresponding to the
tomato have been assigned to class c= 2 which are displayed as white. The cluster
centres are marked on the xy-chromaticity plane in Fig. 13.7c. The red pixels can be
selected

One option is to run k-means a number

of times, and take the cluster centres for

which the residual is lowest.

MATLAB® represents the logical values

true and false by the integer values one

and zero respectively. These are displayed

as white and black pixels respectively.

Chapter 13 · Image Feature Extraction

We encountered a similar issue with the

flowers image in Sect. 10.3.5.

345

Fig. 13.7. Garden image example.
a Original image (courtesy of Dis-
tributed Robot Garden project,
MIT); b pixel classification (C= 4)
shown in false color; c cluster cen-
tres in the xy-chromaticity space2
d all pixels of class c= 2; e after
morphological closing with a circu-
lar structuring element of radius 15

>> cls2 = (cls == 2);

and the resulting logical image is shown in Fig. 13.7d. This segmentation is far from
perfect. Both tomatoes have holes due to specular reflection, in fact the top tomato is
more hole than object. A few pixels at the bottom left have been erroneously classified
as a tomato. We can improve the result by applying a morphological closing operation
with a large circular kernel which is consistent with the shape of the tomato

13.1 · Region Features

346

>> tomatoes_binary = iclose(cls2, kcircle(15));

and the result is shown in Fig. 13.7e. The closing operation has somewhat restored the
shape of the fruit but with the unwanted consequence that the group of misclassified
pixels in the bottom-left corner have been enlarged. Nevertheless this image contains
a workable classification of pixels into two classes: tomato and not-tomato.

The garden image illustrates two common real-world imaging artefacts: specular
reflection and occlusion. The surface of the tomato is sufficiently shiny that the cam-
era sees a reflection of the room light – these pixels are white rather than red.� The top
tomato is also partly obscured by leaves and branches. Depending on how the applica-
tion works this may or may not be a problem. Since the tomato cannot be reached
from the direction the picture was taken, because of the occluding material, it might in
fact be appropriate to not classify this as a tomato.

These examples have achieved a workable classification of the image pixels into
object and not-object. The resulting groups of white pixels are commonly known as
blobs. It is interesting to note that we have not specified any threshold or any defini-
tion of the object color, but we did have to specify the number of classes and deter-
mine which of those classes corresponded to the objects of interest.� We have also had
to choose the sequence of image processing steps and the parameters for each of those
steps, for example, the radius of the structuring element. Pixel classification is a diffi-
cult problem but we can get quite good results by exploiting knowledge of the prob-
lem, having a good collection of image processing tricks, and experience.

13.1.2 lRepresentation

In the previous section we took complex greyscale or color images and processed them
to produce binary or blob images. Representation is the subproblem of connecting
adjacent pixels of the same class to form spatial sets S1… Sm.

Consider the small 10× 8 binary image

>> im = ilabeltest;

which is shown

>> idisp(im)

in Fig. 13.8a. We quickly identify three white blobs in this scene but what defines a
blob? It is a set of pixels of the same class, white in this case, that are connected to each
other. More formally we could say a blob is a spatially contiguous region of pixels of
the same class. Blobs are also known as regions or connected components.

The Toolbox can perform connected component or connectivity analysis on this
binary image

>> [label, m] = ilabel(im);

Specular reflection is a mirror-like reflection from the surface of an object. The light does not
penetrate the surface and scatter which is how an object ordinarily imparts color to reflected light.
The color of the specular reflection is the color of the light source not the surface. A specular reflec-
tor such as a mirror obeys the rule where the angle of reflection of an outgoing light ray equals the
angle of incidence of an incoming ray. A rough surface is a diffuse or Lambertian reflector and has
the same apparent brightness at all viewing angles. Most real surfaces are a mixture of specular and
Lambertian reflectors.

There are several ways to reduce the problem of specular reflection. Firstly, eliminate the light source
that is specularly reflected. Secondly, use a diffuse light source near the camera, for instance a ring
illuminator that fits around the lens of the camera. Thirdly, attenuate the specular reflection using a
polarizing filter since light that is specularly reflected from a dielectric surface will be polarized.

Observe that they have the same chro-

maticity as the black background,

class 3 pixels, which are situated close

to the white point on the xy-plane.

This is a relatively easy problem. The

chromaticity of yellow is well known

(we could use the colorname func-

tion to find it) so we could compute the

distance between each cluster centre

and the standard color and choose the

cluster that is closest.

Chapter 13 · Image Feature Extraction

347

The number of sets, or components, in this image is

>> m
m =
 5

which are the three white blobs and the two black blobs (the background and the
hole). These blobs are labeled from 1 to 5. The returned label matrix

>> label
label =
 2 2 2 1 1 2 2 2 2 2
 2 2 2 1 1 2 3 3 3 2
 2 3 2 2 2 2 2 3 2 2
 2 3 2 3 2 3 2 3 2 2
 2 3 3 3 3 3 3 3 3 2
 2 2 2 2 2 3 4 4 3 2
 2 5 5 2 3 3 3 3 3 2
 2 2 2 2 2 2 2 2 2 2

has the same size as the original image and each element contains the label s ∈ {1⋯m}
of the set to which the corresponding input pixel belongs. The label matrix can be
displayed as an image⊳ in false color

>> idisp(label, 'colormap', 'jet')

as shown in Fig. 13.8b. Each connected region has a unique label and hence unique
color. Looking at the elements of label shown above or by interactively probing the
displayed label image using idisp we see that the background has been labelled as 2,
the small square at the top is labelled 1, and the larger region is labelled 3 and the hole
in that region is labelled 4.

Fig. 13.8. Image labelling ex-
ample. a Binary image; b labelled
image; c all pixels with the label 3

We have seen a label image previously.

The output of the MSER function in

Fig. 13.5 is a label image.

13.1 · Region Features

348

To obtain an image containing just a particular blob is now very easy. To select all
pixels belonging to region 3, the large irregular region, we create a logical image

>> reg3 = (label==3);
>> idisp(reg3)

which is shown in Fig. 13.8c.
The connectivity analysis can return additional output values

>> [label, m, parents, cls] = ilabel(im);

where the vector

>> parents'
ans =
 0 0 2 3 2

describes the topology or hierarchy of the regions. It indicates for example that region 4

>> parents(4)
ans =
 3

is enclosed by region 3 – region 3 is the parent of region 4. Regions 3 and 5 are enclosed
by region 2 which is the background. Regions 1 and 2 have a parent of 0 which indicates
that they touch the edge of the image and are not enclosed by any region. Each connected
region contains pixels of a single class and the pixel class for each region is given by

>> cls'
ans =
 1 0 1 0 1

which indicates that regions 1, 3 and 5 comprise pixels of class 1 (white) and regions 2
and 4 comprise pixels of class 0 (black).�

In this example we have assumed 4-way connectivity, that is, pixels are connected
into a region only through their north, south, east and west neighbours of the same
class. The 8-way connectivity option allows connection via any of a pixel’s eight
neighbours of the same class.�

Returning now to the examples from the previous section. For the colored targets

>> targets_label = ilabel(targets_binary);
>> idisp(targets_label, 'colormap', 'jet');

and the garden image

>> tomatoes_label = ilabel(tomatoes_binary);
>> idisp(tomatoes_label, 'colormap', 'jet');

the connected regions are shown in false color in Fig. 13.9.

Fig. 13.9. Label images for the tar-
gets and garden examples in false
color. The value of each pixel is the
label of the spatially contiguous
set to which the corresponding
input pixel belongs

We use the contraction cls since

class is the name of a useful func-

tion in MATLAB®.

8-way connectivity can lead to surpris-

ing results. For example a black and

white chequerboard would have just

two regions, all white squares are one

region and all the black squares another.

Chapter 13 · Image Feature Extraction

349

13.1.2.1 lGraph-Based Segmentation

So far we have classified pixels based on some homogeneous characteristic of the ob-
ject such as intensity or color. Consider now the complex scene

>> im = iread('58060.jpg');

shown in Fig. 13.10a. The Gestalt principle of emergence says that we identify ob-
jects as a whole rather than as a collection of parts – we see a bowl of grain rather
than deducing a bowl of grain by recognising its individual components. How-
ever when it comes to a detailed pixel by pixel segmentation things become quite
subjective – different people would perform the segmentation differently based
on judgement calls about what is important.⊳ For example, should the colored stripes
on the cloth be segmented? If segments represent real world objects, then the Gestalt
view would be that the cloth should be just one segment. However the stripes are
real, some effort was made to create them, so perhaps they should be segmented.
This is why segmentation is a hard problem – humans cannot agree on what is
correct. No computer algorithm could, or could be expected to, make this type of
judgement.

Nevertheless some recent algorithms can do a very impressive job on complex real
world scenes. The image can be represented as a graph (see Appendix J) where each
pixel is a vertex and has 8 edges connecting it to its neighbouring pixels. The weight
of each edge is a non-negative measure of the dissimilarity between the two pixels –
the absolute value of the difference in color. The algorithm starts with every vertex
assigned to its own set. At each iteration the edge weights are examined and if the
vertices are in different sets but the edge weight is below a threshold the two vertex
sets are merged. The threshold is a function of the size of the set and a global
parameter k which sets the scale of the segmentation – a larger value of k leads to a
preference for larger connected components.

For the image discussed the graph-based segmentation is given by

>> [label, m] = igraphseg(im, 1500, 100, 0.5);
>> m
m =
 28
>> idisp(label, 'colormap', 'jet')

where label is a matrix, shown in Fig. 13.10b, whose elements are the region label
for the corresponding input pixels. The pixel classification step has been integrated
into the representation step. The arguments are a scale parameter k= 1 500, the mini-
mum component size of 100 pixels, and the standard deviation for an initial Gaussian
smoothing applied to the image.

Fig. 13.10. Complex segmenta-
tion example. a Original color
image (image from the Berkeley
Segmentation Dataset; Martin
et al. 2001); b graph-based seg-
mentation

The Berkeley segmentation site http://

www.eecs.berkeley.edu/Research/Pro-

jects/CS/vision/bsds hosts these im-

ages plus a number of different human-

made segmentations.

13.1 · Region Features

350

13.1.3 lDescription

In the previous section we learnt how to find connected components in the image and
how to isolate particular components such as shown in Fig. 13.8c. However this repre-
sentation of the component is still just an image with logical pixel values rather than a
concise description of its size, position and shape.

13.1.3.1 lBounding Boxes

The simplest representation of size and shape is the bounding box – the smallest rect-
angle with sides parallel to the u- and v-axes that encloses the region. Returning to the
targets image we can select all the pixels in region 5

>> reg5 = (targets_label == 5);
>> idisp(reg5);

and the resulting logical image is shown in Fig. 13.11b. The number of pixels in this
region is simply the sum

>> sum(reg5(:))
ans =
 6004

The coordinates of all the non-zero (object) pixels are

>> [v,u] = find(reg5);

where u and v are each vectors of size

>> about(u)
u [double] : 6004x1 (48032 bytes)

The bounds of the region� are

>> umin = min(u)
umin =
 310
>> umax = max(u)
umax =
 382
>> vmin = min(v)
vmin =
 361
>> vmax = max(v)
vmax =
 460

Fig. 13.11. Targets image. a Regions
labels in false color; b region 1 (in-
verted, black is true) with bound-
ing box and centroid marked

This can be obtained more simply

using the Toolbox function ibbox.

Chapter 13 · Image Feature Extraction

351

These bounds define a rectangle which we can superimpose on the image

>> plot_box(umin, vmin, umax, vmax, 'b')

as shown in Fig. 13.11b. The bounding box fits snugly around the blob and its centre
could be considered as the centre of the blob. However the bounding box is not aligned
with the blob, that is, its sides are not parallel with the sides of the blob. This means
that as the blob rotates the size and shape of the bounding box would change even
though the size and shape of the blob does not.

13.1.3.2 lMoments

Moments are a rich and computationally cheap class of image features which can de-
scribe region size and location as well as shape. The moment of an image I is a scalar

(13.1)

where (p+ q) is the order of the moment. The zeroth moment p= q= 0 is

(13.2)

and for a binary image where the background pixels are zero this is simply the number
of non-zero (white) pixels – the area of the region.

Moments are calculated using the Toolbox function mpq and for region 5 of the
target image the zeroth moment is

>> m00 = mpq(reg5, 0, 0)
m00 =
 6004

which is the area of the region in units of pixels.
Moments can be given a physical interpretation by regarding the image function as

a mass distribution. Consider the region as being made out of thin metal plate where
each pixel has one unit of area and one unit of mass. The total mass of the region is m00

and the centre of mass or centroid of the region is

(13.3)

where m10 and m01 are the first-order moments. For our example the centroid of the
target region is

>> uc = mpq(reg5, 1, 0) / m00
uc =
 346.7539
>> vc = mpq(reg5, 0, 1) / m00
vc =
 410.4446

which we can display

>> plot(uc, vc, 'gx'); plot(uc, vc, 'go');

as shown in Fig. 13.11b.
The central moments µpq are computed with respect to the centroid

(13.4)

13.1 · Region Features

352

and are invariant to the position of the region. They are related to the moments mpq by

(13.5)

and are computed by the Toolbox function upq.
Using the thin plate analogy again, the inertia matrix of the region is

(13.6)

about axes parallel to the u- and v-axes and intersecting at the centroid of the region.
The central second moments µ20, µ02 are the moments of inertia and µ11 is the product
of inertia. The product of inertia is non-zero if the shape is asymmetric with respect
to the region’s axes.

The equivalent ellipse is the ellipse that has the same inertia matrix as the region.
For our example

>> u20 = upq(reg5, 2, 0); u02 = upq(reg5, 0, 2); u11 = upq(reg5, 1, 1);
>> J = [u20 u11; u11 u02]
J =
 1.0e+06 *
 2.0436 -0.2329
 -0.2329 4.4181

The eigenvalues and eigenvectors of J are related to the radii of the ellipse and the orien-
tation of its major and minor axes (see Appendix E). For this example the eigenvalues�

>> lambda = eig(J)
lambda =
 1.0e+06 *
 2.0210
 4.4408

are the principle moments of the region. The maximum and minimum radii of the
equivalent ellipse are

(13.7)

respectively where λ2≥ λ1. In MATLAB® this is�

>> a = 2 * sqrt(lambda(2) / m00)
a =
 54.3880
>> b = 2 * sqrt(lambda(1) / m00)
b =
 36.6904

in units of pixels. The ratio
>> b/a
ans =
 0.6746

is the aspect ratio of the region and is a useful measure to characterise the shape of a
region that is scale and rotation invariant.

The eigenvectors of J are the principal axes of the ellipse – the directions of its
major and minor axes. The major, or principal, axis is the eigenvector v corresponding
to the maximum eigenvalue. For our example this is

>> [x,lambda] = eig(J);
>> x
x =
 -0.9954 -0.0962
 -0.0962 0.9954

Chapter 13 · Image Feature Extraction

The function eig returns eigenvalues

in increasing order.

MATLAB® returns eigenvalues in in-

creasing order: λ1 then λ2.

353

and since MATLAB® returns eigenvalues in ascending order v is always the last col-
umn of the returned eigenvector matrix

>> v = x(:,end);

The angle of this vector with respect to the horizontal axis is

and for our example this is

>> atan2(v(2), v(1)) * 180/pi
ans =
 95.5498

degrees which indicates that the major axis of the equivalent ellipse is approximately
vertical. Finally we can superimpose the equivalent ellipse over the region

>> plot_ellipse(4*J/m00, [uc, vc], 'r');

and the result is shown in Fig. 13.12. The orientation and aspect ratio of the equivalent
ellipse is a useful indicator of the region’s shape and orientation.

To summarize, we have created an image containing a spatially contiguous set of
pixels corresponding to one of the objects in the scene that we segmented from the
original color image. We have determined its area, a box that entirely contains it, the
location of its centroid and its orientation.

The Toolbox provides a simpler way to do these useful things

>> blob = imoments(reg5)
blob =
area=6005, cent=(346.8,410.4), theta=1.67, b/a=0.675

which returns a RegionFeature object that contains many features describing this
region including its area, its centroid, orientation and aspect ratio – the ratio of its mini-
mum to maximum radius. These values are available as object properties, for example

>> blob.uc
ans =
 346.7539
>> blob.theta
ans =
 1.6677
>> blob.shape
ans =
 0.6746

Fig. 13.12.

Equivalent ellipse and centroid
for region 5 of the targets image

13.1 · Region Features

354

along with the zeroth- and first-order moments and the second-order central mo-
ments

>> blob.moments.m00
ans =
 6005
>> blob.moments.u11
ans =
 -2.3293e+05

The Toolbox provides a high-level function to compute features for every region in
the image

>> f = iblobs(targets_binary)
f =
(1) area=5927, cent=(365.1,219.2), theta=-1.53, b/a=0.768, class=1,
 label=1, touch=0, parent=4
(2) area=5376, cent=(264.9,311.6), theta=0.10, b/a=0.707, class=1,
 label=2, touch=0, parent=4
(3) area=6315, cent=(452.3,327.1), theta=0.07, b/a=0.687, class=1,
 label=3, touch=0, parent=4
(4) area=283577, cent=(317.1,234.1), theta=-0.02, b/a=0.738, class=0,
 label=4, touch=1, parent=0
(5) area=6005, cent=(346.8,410.4), theta=-1.47, b/a=0.675, class=1,
 label=5, touch=0, parent=4

which returns a vector f of RegionFeature objects. The display method shows a
summary of the region’s properties and the number in parentheses indicates the index
within the vector. Each RegionFeature object contains the area, bounding box,
centroid, raw and central moments, and equivalent ellipse parameters as returned by
imoments as well as additional properties such as the the class of the pixels within
the region, the region label, the label of the parent region and whether or not the blob
touches the edge.� Some examples of the properties of this class are

>> f(1).class
ans =
 1
>> f(1).parent
ans =
 4
>> f(1).touch
ans =
 0
>> f(1).umin
ans =
 328
>> f(1).shape
ans =
 0.7677

The RegionFeature class also has plotting methods such as

>> f(1).plot_box('g')

which overlays the bounding box of feature f(1), in green, on the current plot.
Other plot methods include plot_centroid and plot_ellipse. All methods
add to the current plot and can operate on a single object or a vector of objects,
for example

>> f.plot_box('r:')

overlays the bounding box, in dotted red, for all blobs in f.
The children property is the inverse mapping of the parent property. It is a list

of indices into the feature vector of RegionFeature objects which are children of
this feature. For example the background blob, f(4), has as its children

The moments and area calculations

depend on knowledge of the shape of

each pixel. In modern cameras pixels

are square with typically more pixels in

the horizontal than the vertical direc-

tion. Some vision system provide square

images, for example 512 × 512, and the

pixels can be wider than they are tall.

In such a case the 'aspect' option

should be provided to iblobs to

define a non-unity pixel aspect ratio

which is pixel height over pixel width.

Chapter 13 · Image Feature Extraction

355

>> f(4).children
ans =
 1 2 3 5

blobs f(1), f(2), f(3) and f(5).
Importantly the function iblobs can perform filtering. For the garden image we

might know something about the minimum and/or maximum size of a tomato so we
can set bounds on the possible area

>> f = iblobs(tomatoes_binary, 'area', [1000, 5000])
f =
(1) area=1496, cent=(132.5,135.2), theta=0.21, b/a=0.871, class =1,
 label=2, touch=0, parent=1
(2) area=3380, cent=(95.8,210.9), theta=-0.31, b/a=0.886, class =1,
 label=3, touch=1, parent=0

which returns only blobs with an area between 1 000 and 5 000 pixels. For the tomato
image we might wish to accept only blobs that do not touch the edge

>> f = iblobs(tomatoes_binary, 'touch', 0)
f =
(1) area=1496, cent=(132.5,135.2), theta=0.21, b/a=0.871, class =1,
 label=2, touch=0, parent=1

The filter rules can be cascaded, for example

>> f = iblobs(tomatoes_binary, 'touch', 0, 'area', [500 2000], 'class', 1) ;

and a blob must pass all rules in order to be accepted. Other filter parameters include pixel
class, shape and aspect ratio and more details are provided in the online documentation.

13.1.3.3 lInvariance

In order to recognize particular objects we would like to have some measure of shape
that is invariant to the relative pose of the camera and the object. In this section we
will be concerned only with planar objects that are fronto-parallel to the camera and
which are subject to translation, rotation and scale change.

The shape of an object can be described very simply by the aspect ratio, the ratio of
major to minor ellipse axis lengths a/b, and this is invariant to translation, rotation and
scale. Another commonly used and intuitive shape feature is circularity which is defined as

(13.9)

where p is the region’s perimeter length (discussed in the next section). Circularity
has a maximum value of ρ= 1 for a circle, is ρ= ý for a square and zero for an infi-
nitely long line. Circularity is also invariant to translation, rotation and scale.

More complex ratios of moments can be used to form invariants for recognition of
planar objects irrespective of position, orientation and scale. For example the image
of Fig. 13.15a

>> im = iread('P2.png');

has two P-shaped regions

>> [f,L] = iblobs(im, 'class', 1);
>> f
f =
(1) area=1375, cent=(94.9,108.2), theta=1.98, b/a=0.648, color=1,
 label=2, touch=0, parent=1
(2) area=795, cent=(204.6,122.4), theta=2.76, b/a=0.645, color=1,
 label=4, touch=0, parent=1

13.1 · Region Features

356

with labels 2 and 4. The second output argument is the label image. The moment in-
variants are

>> humoments(L==2)
ans =
 0.4181 0.0292 0.0230 0.0017 0.0000 0.0003 0.0000
>> humoments(L==4)
ans =
 0.4052 0.0280 0.0210 0.0014 0.0000 0.0002 0.0000

which are quite similar despite the different position, orientation and scale of the two
shapes.� This shape descriptor can be considered as a point in 7-dimensional space,
and similarity to other shapes can be defined in terms of Euclidean distance.

A summary of region features and their invariance properties is shown in Table 13.1.

13.1.3.4 lBoundary Representation

A region can also be described by the shape of its boundary or perimeter. Figure 13.13
shows three common ways to represent the perimeter of a region. A chain code is a list of
the outermost pixels of the region whose centre’s are linked by short line segments. In the
case of a 4-neighbour chain code the successive pixels must be adjacent and the pe-
rimeter segments have an orientation of k× 90°, where k∈ {0⋯ 3}. With an 8-neighbour

Table 13.1.

Region features and their
invariance to relative motion:
translation, rotation about the
object’s centroid and scale factor

Moment invariants. The normalized moments

(13.8)

are invariant to translation and scale, and are computed by the Toolbox function npq.
Third-order moments allow for the creation of quantities that are invariant to translation, scale

and orientation within a plane. One such set of moments defined by Hu (1962) are

and computed by the Toolbox function humoments.

In practice the discrete nature of the

pixel data means that the invariance

will only be approximate.

Chapter 13 · Image Feature Extraction

357

chain code, or Freeman chain code, the perimeter segments have an orientation of
k× 45°, where k ∈ {0⋯ 7}. The crack code has its segments in the cracks between the
pixels on the edge of the region and the pixels outside the region. These have orienta-
tions of k× 90°, where k ∈ {0⋯ 3}.

The perimeter can be encoded as a list of pixel coordinates (ui, vi) or very com-
pactly as a bit string using just 2 or 3 bits to represent k for each segment. These various
representations are equivalent and any representation can be transformed to another.

Note that for chain codes the boundary follows a path that is on average half a

pixel inside the true boundary and therefore underestimates the perimeter

length. The error is most significant for small regions.

By default the Toolbox does not compute the boundary of objects,⊳ but this is en-
abled using the 'boundary' option

>> f = iblobs(tomatoes_binary, 'boundary', 'class', 1)
f =
(1) area=1434, cent=(132.9,135.8), theta=-3.10, b/a=0.852, class=1,
 label=2, touch=0, parent=1, perim=176.5, circ=0.641
(2) area=3380, cent=(95.9,210.9), theta=2.83, b/a=0.888, class=1,
 label=3, touch=1, parent=0, perim=222.1, circ=0.958
(3) area=456, cent=(11.7,228.4), theta=-2.98, b/a=0.864, class=1,
 label=4, touch=1, parent=0, perim=82.1, circ=0.951

and we note that perimeter and circularity information are now displayed.⊳ We have
used a blob filter here to select only blobs of class 1 (tomato colored) pixels. The bound-
ary is a list of edge points represented as a matrix with one column per edge point. In
this case there are

>> about(f(1).edge)
 [double] : 2x154 (2464 bytes)

154 edge points and the first five points of the boundary are

>> f(1).edge(:,1:5)
ans =
 142 142 141 140 139
 116 117 118 119 120

The boundary can be overlaid on the current plot using the object’s plot_boundary
method

>> f(1).plot_boundary('g.')

in this case as a series of green dots. The plotting methods can be invoked on a feature vector

>> idisp(tomatoes_binary)
>> f.plot_boundary('r.')
>> f.plot_box('g')

which is shown in Fig. 13.14.

Fig. 13.13. Boundary representa-
tions with region pixels shown in
grey, perimeter segments shown
in blue and the centre of bound-
ary pixels marked by a red dot.
a Chain code with 4 directions;
b Freeman chain code with 8 di-
rections; c crack code. The perim-
eter lengths for this example are
respectively 14, 12.2 and 18 pixels

Since it is computationally more expen-

sive.

Perimeter is computed from the length

of the 8-neighbour chain code bound-

ary as shown in Fig. 13.13b. Note that

this slightly underestimates the perim-

eter length.

13.1 · Region Features

358

Every object has one external boundary, which may include the image border as is
the case for the two lower blobs in Fig. 13.14. An object with holes has one internal
boundary per hole but the Toolbox returns only the external boundary – the inner
boundaries can be found as the external boundaries of the holes which are its child
regions. The external boundary contains all the essential information about the shape
of a region. In fact the moments can be computed given the boundary using the functions
mpq_poly, upq_poly and npq_poly and assuming that the region has no holes.

Consider again the binary image

>> im = iread('P2.png');

shown in Fig. 13.15a which contains two similar shapes but with different translation,
orientation and scale. The features of the white objects are

>> f = iblobs(im, 'boundary', 'class', 1)
f =
(1) area=1375, cent=(94.9,108.2), theta=-1.16, b/a=0.648, class=1,
 label=2, touch=0, parent=1, perim=214.8, circ=0.417
(2) area=795, cent=(204.6,122.4), theta=-0.38, b/a=0.645, class =1,
 label=4, touch=0, parent=1, perim=162.5, circ=0.421
>> f.plot()

and the two shapes have a similar aspect ratio. However the circularity, which should
be the same, is quite different due to the underestimation of perimeter length as men-
tioned on page 357. The ratio of areas is

>> f(2).area / f(1).area
ans =
 0.5782

which implies a reduction in scale by a factor of

>> sqrt(ans)
ans =
 0.7604

The relative orientation of the two shapes is

>> (f(2).theta - f(1).theta) * 180/pi
ans =
 45.1267

degrees.
We can display the edge points with respect to the centroid

>> f(1).boundary();

which is shown in Fig. 13.15b for both regions. The optional return arguments provide
the centroid-relative edge points in polar-coordinate form

Fig. 13.14.

Marked bounding boxes and
perimeter for garden image

Chapter 13 · Image Feature Extraction

359

>> [r1,theta1] = f(1).boundary();

which is a unique signature for this region

>> plot(theta1, r1)

and shown in Fig. 13.15c. The angles are with respect to the top-leftmost point in the
region and the polar coordinate vectors have 400 elements by default that span the
interval [−π, π) rad. The shape profile for region 2

>> [r2, theta2] = f(2).boundary();

is also shown in Fig. 13.15c. The horizontal axis is an angle θ∈ S so the graph is wrapped
around a cylinder and the left- and right-hand edges are joined. We see that one pro-
file is shifted horizontally (rotated) with respect to the other and the vertical magni-
tude is different due to the change in scale. If we normalize each profile by its maxi-
mum value then they will differ only by a horizontal shift. For each possible rotation of
one profile with respect to the other we compute the similarity

>> [sim,scale] = boundmatch(r1, r2);

which we plot against angle

>> plot(theta1, sim)

and this is shown in Fig. 13.15d. A clear peak (strong similarity) indicates the relative
rotation of

Fig. 13.15. Region boundary match-
ing. a The original binary image
with object centroids marked; b ob-
ject boundaries with respect to ob-
ject centroids; c boundary signa-
ture, polar coordinate r versus θ ;
d correlation of the two boundary
signatures

13.1 · Region Features

360

>> [s,th] = peak(sim, theta1, 'npeaks', 1);
>> th * 180/pi
ans =
 41.4004

degrees which is in the ballpark of the known rotation and the previous estimate. The
estimated scale ratio is

>> 1/scale
ans =
 0.7651

Compared to moments the perimeter is a richer and higher-dimensional shape de-
scriptor, in this case a 400-element vector. From the perimeter we can identify straight
line segments and curves.

13.1.4 lRecap

We have discussed how to convert an input image, grey scale or color, into concise
descriptors of regions within the scene. The criteria for what constitutes a region is
application specific. For a tomato picking robot it would be round red regions, for
landing a UAV it might be yellow targets on the ground.

The process outlined is the classical bottom up approach to machine vision applica-
tions and the key steps are:

1. Classify the pixels according to the application specific criterion, for example, red-
ness, yellowness or motion. Each pixel is assigned a class c.

2. Group adjacent pixels of the same class into sets, and each pixel is assigned a label s
indicating the set to which it has been assigned.

3. Describe the sets in terms of features derived from their spatial extent, moments,
equivalent ellipse and boundary.

These steps are a progression from low-level to high-level. The low-level operations
consider pixels in isolation, whereas the high-level is concerned with more abstract
concepts such as size and shape. The MSER and graphcuts algorithms are powerful
because they combines steps 1 and 2 and consider regions of pixels and localized dif-
ferences in order to create a segmentation.

Importantly none of these steps need be perfect. Perhaps the first step has some
false positives which will be small noise pixels that we can eliminate by morphological
operations, or by rejecting them after connectivity analysis based on their size. The
first step may also have false negatives, for example specular reflection and occlusion
may cause some pixels to be classified incorrectly. In this case we need to develop
some heuristics, for instance morphological processing to fill in the gaps in the fruit
due to reflection. Another option is to oversegment the scene – increase the number of
regions and use some application-specific knowledge to merge adjacent regions. For
example a specular reflection colored region might be merged with surrounding re-
gions to create a region corresponding to the whole fruit.

An alternative, and some would argue better, approach is to control the lighting so
as to create the best possible image to start with. The stray light causing the unwanted
reflection could be turned off or blocked, or a polarizing filter could be used to attentuate
the reflection. Ideally the illumination would be diffuse lighting from behind the cam-
era such as from a ring illuminator.

Domain knowledge is always a powerful tool. Given that we know the scene con-
tains tomatoes and plants, the fact that we observe a large red region that is not circu-
lar, we use our domain knowledge to infer that the fruit is occluded. We therefore
might command the robot to seek the fruit that is not occluded, and then to move to

Chapter 13 · Image Feature Extraction

361

another location where the occluded fruit might be accessible. Object segmentation
remains one of the hardest aspects of machine vision and there is no silver bullet. It
requires knowledge of image formation, fundamental image processing algorithms,
insight, a good box of tools and patience.

13.2 lLine Features

Lines are distinct visual features that are particularly common in man-made environ-
ments – for example the edges of roads, buildings and doorways. In Sect. 12.4.1.3 we
discussed how image intensity gradients can be used to find edges within an image,
and this section will be concerned with fitting line segments to such edges.

We will illustrate the principle using the very simple scene

>> im = iread('5points.png', 'double');

shown in Fig. 13.16a. Consider any one of these points – there are an infinite number
of lines that pass through that point. If the point could vote for these lines, then each
possible line passing through the point would receive one vote. Now consider another
point that does the same thing, casting a vote for all the possible lines that pass through
it. One line (the line that both points lie on) will receive a vote from each point – a total
of two votes – while all the other possible lines receive either zero or one vote.

We need to describe each line in terms of a minimum number of parameters but
the standard form v=mu+ c is problematic for the case of vertical lines where m=∞.
Instead it is common to represent lines using the (ρ, θ) parameterization

(13.10)

where θ ∈ [−ü , ü) is the angle from the horizontal axis to the perpendicular, and
ρ ∈ [−ρmin, ρmax] is the perpendicular distance between the origin and the line. This is
shown in Fig. 13.17. A horizontal line has θ= 0 and a vertical line has θ=−ü . Each
line can therefore be considered a point (ρ, θ) in the 2-dimensional space of all pos-
sible lines

In practice we cannot consider an infinite number of lines through each point, so we
consider lines drawn from a finite set. The θρ-space is quantized and a corresponding
Nθ×Nρ array A is used to tally the votes – the accumulator array. For a W×H input image

Fig. 13.16. Hough transform fun-
damentals. a Five points that de-
fine six lines; b the Hough accu-
mulator array. The horizontal axis
is an angle θ∈ S so we can imag-
ine the graph wrapped around a
cylinder and the left- and right-
hand edges joined. The sign of ρ
also changes at the join so the the
curve intersections on the left- and
right-hand edges are equivalent

13.2 · Line Features

362

A has Nρ elements spanning the interval ρ ∈ [−ρmax, ρmax] and Nθ elements spanning
the interval θ∈ [−ü , ü). The indices of the array are integers (i, j)⊂ Z2 such that

An edge point (u, v) votes for all lines that satisfy Eq. 13.10 which is all (i, j) pairs for which

(13.11)

and the elements A[i, j] are all incremented. For every i ∈ [1, Nθ] the corresponding
value of θ is computed, then ρ is computed according to Eq. 13.11 and mapped to a
corresponding integer j.

At the end of the process those elements of A with the largest number of votes
correspond to dominant lines in the scene. For the example of Fig. 13.16a the resulting
accumulator array is shown in Fig. 13.16b. Most of the array contains zero votes (black)
and the red curves are trails of single votes corresponding to each of the five input
points. These curves intersect and those points correspond to lines with more than
one vote. We see four locations where two curves intersect, resulting in cells with two
votes, and these correspond to the lines joining the four outside points of Fig. 13.16a.
The horizontal axis represents angle θ∈ S so the left- and right-hand ends are joined
and d changes sign – the curve intersection points on the left- and right-hand sides of
the array are equivalent. We also see two locations where three curves intersect, result-
ing in cells with three votes, and these correspond to the diagonal lines that include the
middle point of Fig. 13.16a. This technique is known as the Hough transform.

Consider the more complex example of a solid square rotated counter-clockwise
by 0.3 rad

>> im = testpattern('squares', 256, 256, 128);
>> im = irotate(im, -0.3);

We compute the edge points

>> edges = icanny(im);

which are shown in Fig. 13.18a. The Hough transform is computed by

>> h = Hough(edges)
Hough: nd=401, ntheta=400, interp=3x3, distance=1

Fig. 13.17.

(θ, ρ) parameterization for two
line segments. Positive quantities
are shown in blue, negative in red

Chapter 13 · Image Feature Extraction

363

and returns an instance of the Hough class. Its properties include the two-dimen-
sional vote accumulator array A with nd elements in the row direction and ntheta
elements in the column direction. By default the θ ρ -plane is quantized into
401× 400 bins.� The accumulator array can be visualized as an image

>> h.show();

which is shown in Fig. 13.18b. The four bright spots correspond to dominant edges in
the input image. We can see that many other possible lines have received a small num-
ber of votes as well.

The next step is to find the peaks in the accumulator array

>> lines = h.lines()
lines =
theta=-1.27224, rho=-19.9157, strength=1
theta=-1.28025, rho=-150.009, strength=0.944099
theta=-1.25704, rho=-146.514, strength=0.801242
theta=0.298531, rho=224.022, strength=0.757764
theta=0.306266, rho=95.7803, strength=0.745342
theta=0.28664, rho=93.9642, strength=0.732919
theta=-1.24916, rho=-16.353, strength=0.68323
theta=0.279094, rho=222.237, strength=0.627329
theta=-1.29124, rho=-22.7355, strength=0.614907
theta=-1.29922, rho=-152.765, strength=0.565217
theta=0.322013, rho=225.884, strength=0.515528

Fig. 13.18. Hough transform for a
rotated square. a Edge image;
b Hough accumulator; c closeup
view of the Hough accumulator;
d estimated lines overlaid on the
original image

ρ is symmetric about zero, so including

zero this is an odd number of elements.

θ has a range of [−ü , ü), it is asym-

metric about zero and has an even

number of elements.

13.2 · Line Features

364

which returns a vector of LineFeature objects corresponding to the lines with the
most votes, as well as the number of votes associated with that line normalized with
respect to the largest vote. If the function is called without output arguments the iden-
tified peaks are indicated on an image of accumulator vote strength.

Note that although the object has only four sides there are many more than four
peaks in the accumulator array. We also note that the first and fourth peaks have quite
similar line parameters, and this region of the accumulator is shown in more detail in
Fig. 13.18c. We see several bright spots (high numbers of votes) that are close together
and this is due to quantization effects. The concept of peak scale discussed on page 294
applies here and once again we apply non-local maxima suppression to eliminate
smaller peaks in the neighbourhood of the maxima

>> h = Hough(edges, 'suppress', 5)
h =
Hough: nd=401, ntheta=400, interp=3x3, distance=5

In this case distance is five accumulator cells – the maxima suppresses smaller local
maxima within a five cell radius. This leads to just four peaks

>> lines = h.lines()
lines =
theta=-1.27224, rho=-19.9157, strength=1
theta=-1.28025, rho=-150.009, strength=0.944099
theta=0.298531, rho=224.022, strength=0.757764
theta=0.306266, rho=95.7803, strength=0.745342

corresponding to the edges of the object.
Since the line parameters are quantized the lines method uses interpolation to refine

the location of the peak (see Appendix K). By default interpolation is performed over a
3× 3 window centred on the local vote maxima. Once a peak has been found all votes within
the suppression distance are zeroed so as to eliminate any close maxima and the process is
repeated for all peaks in the voting array that exceed a specified fraction of the largest peak.�

The detected lines can be projected onto the original image

>> idisp(im);
>> h.plot('b')

and the result is shown in Fig. 13.18d.
A real image example is

>> im = iread('church.png', 'grey', 'double');
>> edges = icanny(im);
>> h = Hough(edges, 'suppress', 5);
>> lines = h.lines();

and the strongest ten lines

>> idisp(im);
>> lines(1:10).plot();

are shown in Fig. 13.19. Many strong lines in the image have been found, but the verti-
cal lines caused by the window edges on the steeple suffer from angular quantization
error over their short length and are not quite vertical.

Another measure of the importance of an edge can be found by reprojecting the
line onto the edge image and counting the maximum number of contiguous edge pix-
els that lie along it

>> lines = lines.seglength(edges);

which returns a vector of LineFeature objects similar to that returned by the lines
method but with the property length set to the maximum edge segment length

>> lines(1)
ans =
theta=0.000638093, rho=775.415, strength=1, length=47

With no argument all peaks greater than

'houghThresh' are displayed. This

defaults to 0.5 but can be set by the

'houghThresh' option to Hough.

Chapter 13 · Image Feature Extraction

365

in this case 47 pixels. An edge segment is defined as an almost contiguous group of
edge pixels with no gap greater than five (by default) pixels. We can then choose all
those Hough peaks corresponding to segments longer than 100 pixels

>> k = find(lines.length > 100);

and then highlight those lines in green

>> lines(k).plot('g')

as shown in Fig. 13.19. The three non-vertical lines converge on a perspective vanish-
ing point.

The Hough transform is elegant in principle and in practice it can either work well
or infuriatingly badly. It performs poorly when the scene contains a lot of texture or
the edges are indistinct. Texture causes votes to be cast widely, but not uniformly, over
the accumulator array which tends to mask the true peaks. Consequently a lot of ex-
perimentation is required for the parameters of the edge detector and the various
thresholds within the Hough peak detector. The function Hough has many options
which are described in the online documentation. The vote cast by each edge point can
be one, or the edge strength at that point which emphasizes stronger edges. Edge
strengths less than edgeThresh times the maximum edge strength are considered
as zero. The Hough object can also be constructed from an array of edge coordinates
and votes in which case the first argument is a 2×N matrix of (u, v) coordinates, one
per column, with equal votes. Alternatively if the input is a 3×N matrix the third row
is the strength of the vote to be cast.

The Hough transform estimates the direction of the line by fitting lines to the edge
pixels. It ignores rich information about the direction of the edge at each pixel which
was discussed on page 308. The consequence of not using all the information available
to us is, ultimately, poorer estimation. There is little added expense in using the direc-
tion at each pixel since we have already computed the image gradients in order to
evaluate edge magnitude.

13.3 lPoint Features

The final class of features that we will discuss are point features. These are visually
distinct in the image and often called interest points, salient points, keypoints or
commonly, but less precisely, corner points. We will first introduce some classical
techniques for finding interest points and then discuss more recent scale-invariant
techniques.

Fig. 13.19.

Hough transform of a real image.
The blue lines correspond to the

ten strongest voting peaks. The
overlaid green lines are those

with an edge segment length of
at least 100 pixels

13.3 · Point Features

366

13.3.1 lClassical Corner Detectors

We recall from Sect. 12.4.1.3 that a point on a line has a strong gradient in a direction
normal to the line. However gradient along the line is low which means that a pixel on
the line will look very much like its neighbours on the line. In contrast, an interest
point is a point that has a high image gradient in orthogonal directions. It might be
single pixel that has a significantly different intensity to all of its neighbours or it
might literally be a pixel on the corner of an object. Since corner points are quite dis-
tinct they have a much higher likelihood of being reliably detected in different views
of the same scene. They are therefore key to multiview techniques such as stereo and
motion estimation which we will discuss in the next chapter.

The earliest corner point detector was Moravec’s interest operator, so called be-
cause it indicated points in the scene that were interesting from a tracking perspective.
It was based on the intuition that if an image region W is to be unambiguously located
in another image it must be sufficiently different to all overlapping adjacent regions.
Moravec defined the similarity between a region centred at (u, v) and an adjacent re-
gion, displaced by (δu, δv), as

(13.12)

where W is some local image region and typically an N×N square window. This is the
SSD similarity measure from Table 12.1 that we discussed previously. Similarity is evalu-
ated for displacements in eight cardinal� directions (δu, δv) ∈D and the minimum
value is the interest measure

(13.13)

The function CM(·) is evaluated for every pixel in the image and interest points are
those where CM is high. The main limitation of the Moravec detector is that it is non-
isotropic since it examines image change, essentially gradient, in a limited number of
directions. Consequently the detector can give a strong output for a point on a line,
which is not desirable.

We can generalize the approach by defining the similarity as the weighted sum of
squared differences between the image region and the displaced region as

where W is a weighting matrix that emphasises points closer to the centre of the
window W. The indicated term can be approximated by a truncated Taylor series

where Iu and Iv are the horizontal and vertical image gradients respectively. We can
now write

which can be written compactly as

N, NE, E, … W, NW or i,j∈ {–1,0,1}.

Chapter 13 · Image Feature Extraction

367

where

If the weighting matrix is a Gaussian kernel W=G(σI) and we replace the summa-
tion by a convolution then

(13.14)

which is a symmetric 2×2 matrix referred to variously as the structure tensor, auto-
correlation matrix or second moment matrix. It captures the intensity structure of the
local neighbourhood and its eigenvalues provide a rotationally invariant description
of the neighbourhood. The elements of the A matrix are computed from the image
gradients, squared or multiplied, and then smoothed using a weighting matrix. This
reduces noise and improves the stability and reliability of the detector. The gradient
images Iu and Iv are typically calculated using a derivative of Gaussian kernel method
(Sect. 12.4.1.3) with a smoothing parameter σD.

An interest point (u, v) is one for which s(·) is high for all directions of the
vector (δu, δv). That is, in whatever direction we move the window it rapidly becomes
dissimilar to the original region. If we consider the original image I as a surface the
eigenvalues of A are the principal curvatures of the surface at that point. If both eigen-
values are small then the surface is flat, that is the image region has approximately
constant local intensity. If one eigenvalue is high and the other low, then the surface is
ridge shaped which indicates an edge. If both eigenvalues are high the surface is sharply
peaked which we consider to be a corner.⊳

The Shi-Tomasi detector considers the strength of the corner, or cornerness, as the
minimum eigenvalue

(13.15)

where λi are the eigenvalues of A. Points in the image for which this measure is high
are referred to as “good features to track”. The Harris detector⊳ is based on this same
insight but defines corner strength as

(13.16)

and again a large value represents a strong, distinct, corner. Since det(A)= λ1λ2 and
tr(A)= λ1+ λ2 the Harris detector responds when both eigenvalues are large and el-
egantly avoids computing the eigenvalues of A which has a somewhat higher computa-
tional cost.⊳ A commonly used value for k is 0.04. Another variant is the Noble detector

(13.17)

which is arithmetically simple but potentially singular.
Typically the corner strength is computed for every pixel resulting in a corner

strength image. Then non-local maxima suppression is applied to only retain values
that are greater than their immediate neighbours. A list of such points is created and
sorted into descending corner strength. A threshold can be applied to only accept cor-
ners above a particular strength, or above a particular fraction of the strongest corner,
or simply the strongest N corners.

Recall that image compression removes

high-frequency detail from the image,

and this is exactly what defines a cor-

ner. Ideally corner detectors should be

applied to images that have not been

compressed and decompressed.

Sometimes referred to in the literature

as the Plessey corner detector.

Evaluating eigenvalues for a 2 × 2 matrix

involves solving a quadratic equation and

therefore requires a square root operation.

13.3 · Point Features

368

The Toolbox provides a Harris corner detector which we will demonstrate using a real image

>> b1 = iread('building2-1.png', 'grey', 'double');
>> idisp(b1)

The Harris features are computed by

>> C = icorner(b1, 'nfeat', 200);
7712 corners found (0.8%), 200 corner features saved

which returns a vector of PointFeature objects. The detector found over 7 000 cor-
ners that were local maxima of the corner strength image and these comprised 0.8% of all
pixels in the image. In this case we requested the 200 strongest corners. The vector con-
tains the corners sorted by decreasing corner strength, and each PointFeature object
contains the corner coordinate (u, v), the corner strength and a descriptor which com-
prises the unique elements of the structure tensor in vector form (A11, A22, A12). The de-
scriptor can be used as a simple signature of the corner to help match corresponding
corners between different views.

The corners can be overlaid on the image as white squares

>> idisp(b1, 'dark');
>> C.plot('ws');

as shown in Fig. 13.20a. The 'dark' option to idisp reduces the brightness of the
image to make the overlaid corner markers more visible. A closeup view is shown in
Fig. 13.20b and we see the features are indeed often located on the corners of objects.

Fig. 13.20. Harris corner detector
applied to two views of the same
building. a View one; b zoomed in
view one; c view two; d zoomed in
view two. Notice that quite a num-
ber of the detected corners are at-
tached to the same world features
in the two views

Chapter 13 · Image Feature Extraction

369

We also see that the corners tend to cluster unevenly, with a greater density in re-
gions of high contrast and texture, and for some applications this can be problematic.
To distribute corner points more evenly we can increase the distance used for non-
local maxima suppression

>> C1 = icorner(b1, 'nfeat', 200, 'suppress', 10);
7422 corners found (0.7%), 200 corner features saved

by specifying a minimum distance between corners, in this case 10 pixel.
We can apply standard MATLAB® operations and syntax to vectors of PointFeature

objects, for example

>> length(C)
ans =
 200

and indexing

>> C(1:4)
ans =
 (3,3), strength=0.00760968, descrip=(0.112697 0.112524 0.0551586)
 (600,662), strength=0.0054555, descrip=(0.0910059 0.0716812 -0.00303761)
 (24,277), strength=0.0039721, descrip=(0.0923745 0.0577764 -0.021521)
 (54,407), strength=0.00393328, descrip=(0.0998847 0.0482311 0.00259472)

where the display method shows the essential properties of the feature. We can create
expressions such as

>> C(1:5).strength
ans =
 0.0076 0.0055 0.0040 0.0039 0.0038
>> C(1).u
ans =
 3

To plot the coordinate of every fifth feature in the first 100 features is

>> C(1:5:100).plot()

The corner strength is computed at each pixel and can be optionally returned

>> [C,strength] = icorner(b1, 'nfeat', 200);
7422 corners found (0.7%), 200 corner features saved

and displayed as an image

>> idisp(strength, 'invsigned')

which is shown in Fig. 13.21a. We observe that the corner strength function is strongly
positive (blue) for corner features and strongly negative (red) for linear features. A
zoomed in view is shown in Fig. 13.21b which indicates that the detected corner is at
the top of a peak of cornerness that is several pixels wide. The detected corner is a local
maxima but we could use the surrounding values to estimate its location to sub-pixel
accuracy (see Appendix K). This involves additional computation but can be enabled
using the option 'interp'.

Another approach to determining image curvature is to use the determinant of the Hessian (DoH).
The Hessian is the matrix of second-order gradients at a point

where Iuu=∂
2I/∂u2, Ivv=∂

2I/∂v2 and Iuv=∂
2I2/∂u∂v. The determinant det(H) is high when

there is grey-level variation in two directions. However second derivatives accentuate image noise
even more than first derivatives and the image must be smoothed first.

13.3 · Point Features

370

A cumulative histogram of the strength of the detected corners

>> ihist(strength, 'normcdf')

is shown in Fig. 13.22. The strongest corner has CH≈ 0.007 and more than 95% of
corners exceed half this value.

Consider another image of the same building taken from a different location

>> b2 = iread('building2-2.png', 'grey', 'double');

and the detected corners

>> C2 = icorner(b2, 'nfeat', 200);
7666 corners found (0.8%), 200 corner features saved
>> idisp(b2,'dark')
>> C2.plot('ws');

are shown in Fig. 13.20c and d. For many useful applications in robotic vision – such
as tracking, mosaicing and stereo vision that we will discuss in the next chapter – it is
important that corner features are detected at the same world points irrespective of
variation in illumination or changes in rotation and scale between the two views. From
Fig. 13.20 we see that many, but not all, of the features are indeed attached to the same
world feature in both views.

The Harris detector is computed from image gradients and is therefore robust to
offsets in illumination, and the eigenvalues of the structure tensor A are invariant to
rotation. However the detector is not invariant to changes in scale. As we zoom in the

Fig. 13.21. Harris corner strength.
a Zoomed view of corner strength
displayed as an image (blue is posi-
tive, red is negative); b zoomed view
of corner strength image (bright-
ness proportional to strength) with
detected feature shown

Fig. 13.22.

Cumulative histogram of positive
corner strengths

�

Chapter 13 · Image Feature Extraction

371

gradients around the corner point become lower – the same change in intensity is
spread over a larger number of pixels. This reduces the image curvature and hence the
corner strength. The next section discusses a remedy for this using scale-invariant
corner detectors.

For a color image the structure tensor is computed using the gradient images of the
individual color planes which is slightly different to first converting the image to grey
scale according to Eq. 10.10. In practice the use of color defies intuition – it makes
surprisingly little difference for most scenes but adds significant computational cost.
The icorner function accepts a large number of options: k, the derivative and smooth-
ing kernel sizes σD and σI, absolute and/or relative corner strength threshold and en-
forcing a minimum distance between corners. The options 'st' and 'noble' allow
computation of the corner measures Eq. 13.15 and Eq. 13.17 respectively. Details are
provided in the online documentation.

13.3.2 lScale-Space Corner Detectors

The Harris corner detector introduced in the previous section works very well in prac-
tice but responds poorly to changes in scale. Unfortunately change in scale, due to
changing camera to scene distance or zoom, is common in many real applications. We
also notice that the Harris detector responds strongly to fine texture, such as the leaves
of the trees in Fig. 13.20 but we would like to be able to detect features that are associ-
ated with larger-scale scene structure.

Figure 13.23 illustrates the fundamental principle of scale-space feature detection.
We first load a synthetic image

>> im = iread('scale-space.png', 'double');

which is shown in Fig. 13.23a. The image contains four squares of different size: 5× 5,
9× 9, 17× 17 and 33× 33. The scale-space sequence is computed by applying a
Gaussian kernel with increasing σ that results in the regions becoming increasingly
blurred and smaller regions progressively disappearing from view. At each step in the
sequence the Gaussian-smoothed image is convolved with the Laplacian kernel Eq. 12.3
which results in a strong negative responses for these bright blobs.⊳

With the Toolbox we compute the scale-space sequence by

>> [G,L,s] = iscalespace(im, 60, 2);

where the input arguments are the number of scale steps to compute, and the σ of
the Gaussian kernel to be applied at each successive step. The function returns two
3-dimensional images, each a sequence of images where the last index corresponds to
the scale. G is the image im at increasing levels of smoothing, L is the Laplacian of the
smoothed images, and s is the corresponding scale. For example the fifth image in the
Laplacian of Gaussian sequence is displayed by

>> idisp(L(:,:,5), 'invsigned')

and has a scale of

>> s(5)
ans =
 4.0311

Figures 13.23b–e show the Laplacian of Gaussian at four different points in the scale-
space sequence.

Figure 13.23f shows the magnitude of the Laplacian of Gaussian response as a
function of scale, taken at the points corresponding to the centre of each square
in the input image. Each curve has a well defined peak, and the scale associated
with the peak is proportional to the size of the region. This is the characteristic scale
of the region.

We actually compute the difference of

Gaussian approximation to the Laplacian

of Gaussian, as illustrated in Fig. 13.26.

13.3 · Point Features

372 Chapter 13 · Image Feature Extraction

373

If we consider the 3-dimensional image L as a volume then a scale-space feature
point is any pixel that is a 3D-maxima. That is, an element that is greater than its
26 neighbours in all three dimensions – its spatial neighbours at the current scale and
at the scale above and below. Such points are detected by the function iscalemax

>> f = iscalemax(L, s)
f =
 (64,64), scale=2.91548, strength=1.96449
 (128,64), scale=4.06202, strength=1.72512
 (128,128), scale=18.1246, strength=1.54391
 (64,128), scale=8.97218, strength=1.54057
 (96,128), scale=15.5081, strength=0.345028
 (97,128), scale=14.7139, strength=0.34459

which returns an array of ScalePointFeature objects which are a subclass of
PointFeature. Each object has properties for the feature’s coordinate, strength and
scale. The features are arranged in order of decreasing strength and we see that four
have significant strength and correspond to the four white objects. We can superim-
pose the detected features on the original image

>> idisp(im)
>> f(1:4).plot('g*')

and the result is shown in Fig. 13.24.
The scale associated with a feature can be easily visualized using circles of radius

equal to the feature scale

>> f(1:4).plot_scale('r')

and the result is also shown in Fig. 13.24. We see that the identified features are
located at the centre of each object and that the scale of the feature is related to the size of
the object. The region within the circle is known as the support region of the feature.

For a real image

>> im = iread('lena.pgm', 'double');

we compute the scale-space in eight large steps with σ= 8

>> [G,L] = iscalespace(im, 8, 8);

which we can flatten and display

>> idisp(G, 'flatten', 'wide', 'square');
>> idisp(L, 'flatten', 'wide', 'square', 'invsigned');

Fig. 13.23.

Scale-space example. a Synthetic
image I with blocks of sizes 5× 5,
9× 9, 17× 17, and 33× 33;
b–e Normalized Laplacian of
Gaussian σ 2L⊗G(σ)⊗ I for in-
creasing values of scale, σ value
indicated in lower left. False color
is used: red is negative and blue
is positive; f magnitude of Lapla-
cian of Gaussian at centre of each
square (indicated by ‘+’) versus σ

Fig. 13.24.

Synthetic image with overlaid
feature centre and scale indicator

�

13.3 · Point Features

374

as shown in Fig. 13.25. From left to right we see the eight levels of scale. The Gaussian
sequence of images becomes increasing blurry. In the Laplacian of Gaussian sequence
the dark eyes are strongly positive (blue) blobs at low scale and the light colored hat
becomes a strongly negative (red) blob at high scale.

Convolving the original image with a Gaussian kernel of increasing σ results in the
kernel size, and therefore the amount of computation, growing at each scale step. Re-
calling the properties of a Gaussian from page 302, a Gaussian convolved with a
Gaussian is another wider Gaussian. Instead of convolving our original image with
ever wider Gaussians, we can repeatedly apply the same Gaussian to the previous re-
sult. We also recall from page 310 that the LoG kernel is approximated by the differ-
ence of two Gaussians. Using the properties of convolution we can write

where σ1> σ2. The difference of Gaussian operator applied to the image is equivalent
to the difference of the image at two different levels of smoothing. If we perform the
smoothing by successive application of a Gaussian we have a sequence of images at
increased levels of smoothing. The difference between successive steps in the sequence
is therefore an approximation to the Laplacian of Gaussian. Figure 13.26 shows this in
diagrammatic form.

13.3.2.1 lScale-Space Point Feature

The scale-space concepts just discussed underpin a number of popular feature detec-
tors which find salient points within an image and determines their scale and also
their orientation. The Scale-Invariant Feature Transform (SIFT) is based on the maxima
in a difference of Gaussian sequence. The Speeded Up Robust Feature (SURF) is based
on the maxima in an approximate Hessian of Gaussian sequence.

To illustrate we will compute the SURF features for the building image used previously

>> surf1 = isurf(b1)
surf1 =
4034 features (listing suppressed)
 Properties: theta image_id scale u v strength descriptor

which returns an array of SurfPointFeature objects which are a subclass of
ScalePointFeature. For example the first feature is

>> surf1(1)
ans = (117.587,511.978), theta=0.453513, scale=2.16257,
strength=0.0244179, descrip= ..

Fig. 13.25. Scale-space sequence
for σ= 2, (top) Gaussian sequence,
(bottom) Laplacian of Gaussian
sequence

Chapter 13 · Image Feature Extraction

375

Each object includes the feature’s coordinate (estimated to sub-pixel precision), scale,
orientation, and a descriptor which is a 64-element vector. Orientation is defined by
the dominant edge direction within the support region.

This image contains over 4 000 SURF features but we can show the first, and stron-
gest, fifty features

>> idisp(b1, 'dark');
>> surf1(1:50:end).plot_scale('g', 'clock')

and the result is shown in Fig. 13.27. The plot_scale method draws a circle around
the feature’s location with a radius that indicates its scale – the size of the support
region. The option 'clock' draws a radial line which indicates the orientation of the
SURF feature.

Feature scale varies widely and a histogram

>> hist(surf1.scale, 100);

shown in Fig. 13.28 indicates that there are many small features associated with fine
image detail and texture. The bulk of the features have a scale less than 25 pixel but
some have scales over 40 pixel. The isurf function accepts a number of options which
are described in the online documentation.

The SURF algorithm is more than just a scale-invariant feature detector, it also com-
putes a very robust descriptor. The descriptor is a 64-element vector that encodes the
image gradient in sub-regions of the support region in a way which is invariant to
brightness, scale and rotation. This enables feature descriptors to be unambiguously

Fig. 13.26. Schematic for calcula-
tion of Gaussian and Laplacian of
Gaussian scale-space sequence

Fig. 13.27.

SURF descriptors showing the
support region (scale) and
orientation as a radial line

�
13.3 · Point Features

376

matched to a descriptor of the same world point in another image even if their scale
and orientation are quite different. The difference in position, scale and orientation of
the matched features gives some indication of the relative camera motion between the
two views. Matching features between scenes is crucial to the problems that we will
address in the next chapter.

13.4 lWrapping Up

In this chapter we have discussed the extraction of features from an image. Instead of
considering the image as millions of independent pixel values we succinctly describe
regions within the image that correspond to distinct objects in the world. For instance
we can find regions that are homogeneous with respect to intensity or color and de-
scribe them in terms of features such as a bounding box, centroid, equivalent ellipse,
aspect ratio, circularity and perimeter shape. Features have invariance properties with
respect to translation, rotation about the optical axis and scale which are important
for object recognition. Straight lines are common visual features in man-made envi-
ronments and we showed how to find and describe distinct straight lines in an image
using the Hough transform.

We can also showed how to find interest points that can reliably associate to par-
ticular points in the world irrespective of the camera view. These are key to techniques
such as camera motion estimation, stereo vision, image retrieval, tracking and
mosaicing that we will discuss in the next chapter

Further Reading

Region-based image segmentation and blob analysis are classical techniques covered
in many books and papers. Gonzalez and Woods (2008) and Szeliski (2011) provide a
thorough treatment of the methods introduced in this chapter, in particular
thresholding and boundary descriptors. Otsu’s algorithm for threshold determination
was introduced in Otsu (1975), and the Niblack algorithm for adaptive thresholding
was introduced in Niblack (1985). The book by Nixon and Aguado (2008) expands on
material covered in this chapter and introduces techniques such as deformable tem-
plates and boundary descriptors. The Freeman chain code was first described in Free-
man (1974).

In addition to region homogeneity based on intensity and color it also possible to
describe the texture of regions – a spatial pattern of pixel intensities whose statistics

Fig. 13.28.

Histogram of feature scales shown
with logarithmic vertical scale

Chapter 13 · Image Feature Extraction

377

can be described (Gonzalez and Woods 2008). Regions can then be segmented accord-
ing to texture, for example a smooth road from textured grass.

Clustering of data is an important topic in machine learning (Bishop 2006). In this
chapter we have used a simple implementation of k-means which is far from state-of-
the-art in clustering, and requires the number of clusters to be known in advance.
More advanced clustering algorithms are hierarchical and employ data structures such
as kd-trees to speed the search for neighbouring points. The initialization of the clus-
ter centres is also critical to performance. Forsyth and Ponce (2002) introduce more
general clustering methods as well as graph-based methods for computer vision. The
graph cuts algorithm for segmentation was described by Felzenszwalb and Huttenlocher
(2004) and the Toolbox graph-cuts implementation is based on code by Pedro
Felzenszwalb and available at http://people.cs.uchicago.edu/~pff/segment. The maxi-
mally stable extremal region (MSER) algorithm is described by Matas et al. (2004) and
the Toolbox implementation is based on the work of Andrea Vedaldi and Brian
Fulkerson which is available at http://vlfeat.org. The Berkeley Segmentation Dataset
at http://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds contains numer-
ous complex real-world images each with several human-made segmentations.

This chapter has presented a classical bottom up approach for feature extraction,
starting with pixels and working our way up to higher level concepts such as regions
and lines. Forsyth and Ponce (2002) provide a good introduction to high-level vision
using probabilistic techniques that can be applied to problems such as object recogni-
tion, for example face recognition, and image retrieval.

The Hough transform was first first described in U.S. Patent 3,069,654 “Method and
Means for Recognizing Complex Patterns” by Paul Hough, and its history is discussed
in Hart (2009). The original application was automating the analysis of bubble cham-
ber photographs and it used the problematic slope-intercept parametrization for lines.
The currently known form with the (ρ, θ) parameterization was first described in Duda
and Hart (1972) as a “generalized Hough transform”. This paper is available at http://

www.ai.sri.com/pubs/files/tn036-duda71.pdf. The Hough transform is covered in text-
books such as Gonzalez and Woods (2008) and Forsyth and Ponce (2002). The latter
has a good discussion on shape fitting in general and estimators that are robust with
respect to outlier data points. The basic Hough transform has been extended in many
ways and there is a large literature. A useful review of the transform and its variants is
presented in Leavers (1993). The transform can be generalized to other shapes (Ballard
1981) such as circles of a fixed size where votes are cast for the coordinates of the
circle’s centre. For circles of unknown size a three-dimensional voting array is required
for the circle’s centre and radius.

The literature on interest operators dates back to the early work of Moravec (1980)
and the work of Förstner (Förstner and Gülch 1987; Förstner 1994). The Harris corner
detector (Harris and Stephens 1988) became very popular for robotic vision applica-
tion in the late 1980s since it was able to run in real-time on computers of the day and
the features were quite stable (Tissainayagam and Suter 2004) from image to image.
The Noble detector is described in Noble (1988). The work of Shi, Tomasi, Lucas and
Kanade (Shi and Tomasi 1994; Tomasi and Kanade 1991) led to the Shi-Tomasi detec-
tor and the Kanade-Lucas-Tomasi (KLT) tracker. Good surveys of the relative perfor-
mance of many corner detectors include those by Deriche and Giraudon (1993) and
Mikolajczyk and Schmid (2004).

Scale-space concepts have long been known in computer vision. Koenderink (1984),
Lindeberg (1993) and ter Haar Romeny (1996) are a readable introduction to the topic.
Scale-space was applied to classic corner detectors creating hybrid detectors such as scale-
Harris (Mikolajczyk and Schmid 2004). An important development in scale-space feature
detectors was the scale-invariant feature transform (SIFT) introduced in the early 2000s
by Lowe (2004) and was a significant improvement for applications such as tracking
and object recognition. Unusually, and perhaps unfortunately, it was patented and could
not be used in this book. Nature abhors a vacuum and an effective alternative called

13.4 · Wrapping Up

378

Speeded Up Robust Features (SURF) was developed (Bay et al. 2008). The Toolbox
function isurf wraps a MATLAB® implementation by Dirk-Jan Kroon and available
at http://www.mathworks.com/matlabcentral/fileexchange/28300-opensurf-includ-

ing-image-warp, which in turn is based on the OpenSurf implementations in C++ and
C# by Chris Evans at http://www.chrisevansdev.com/computer-vision-opensurf.html.
Other implementations are available from http://www.vision.ee.ethz.ch/~surf and
GPU-based parallel implementations have been developed. The SIFT and SURF de-
tectors do give different results and they are compared in Bauer et al. (2007). If you
are interested in trying the SIFT detector you can use the Toolbox function isift
which provides a similar interface to isurf and returns a feature vector of class
SiftPointFeature. This function is a wrapper for the MATLAB® implementa-
tion from http://www.vlfeat.org which you will need to download and compile.

Many other feature detectors have been proposed recently. FAST by Rosten et al.
(2010) is claimed to have very low computational requirements and high repeatability,
and C and MATLAB® software resources are available at http://mi.eng.cam.ac.uk/

~er258/work/fast.html. CenSurE by Agrawal et al. (Agrawal et al. 2008; Rosten et al.
2010) claims higher performance than SIFT, SURF and FAST at lower cost. BRIEF by
Calonder et al. (2010) is not a feature detector but is a low cost and compact feature de-
scriptor, just 256 bits instead of 64 floating point numbers per feature.

Exercises

1. Greyscale classification
a) Experiment with ithresh on the images castle_sign.png and
castle_sign2.png.

b) Experiment with the Niblack algorithm and vary the value of k and window size.
c) Apply iblobs to the output of the MSER segmentation. Develop an algorithm

that uses the width and height of the bounding boxes to extract just those blobs
that are letters.

d) The function imser has many parameters: 'Delta', 'MinDiversity',
'MaxVariation', 'MinArea', 'MaxArea'. Explore the effect of adjust-
ing these.

e) Apply the function igraphcut to the castle_sign2.png image. Under-
stand and adjust the parameters to improve performance.

2. Color classification
a) Change k, the number of clusters, in the color classification examples. Is there a

best value?
b) k-means with 'random' or 'spread' options performs a randomized ini-

tialization. Run k-means several times and determine how different the final
clusters are.

c) Write a function that determines which of the clusters represents the targets,
that is, the yellow cluster or the red cluster.

d) Apply the function igraphcut to the targets and garden image. How does it
perform? Understand and adjust the parameters to improve performance.

e) Experiment with the parameters of the morphological “cleanup” used for the
targets and garden images.

f) Write code that loops over images captured from your computer’s camera,
applies a classification, and shows the result. The classification could be a
greyscale threshold or color clustering to a pre-learnt set of color clusters (see
colorkmeans).

3. Blobs. Create an image of an object with several holes in it. You could draw it and
take a picture, export it from a drawing program, or write code to generate it.
a) Determine the outer, inner and total boundaries of the object.

Chapter 13 · Image Feature Extraction

379

b) Place small objects within the holes in the objects. Write code to display the topo-
logical hiearchy of the blobs in the scene.

c) For the same shape at different scales plot how the circularity changes as a func-
tion of scale. Explain the shape of this curve?

d) Create a square object and plot the estimated and true perimeter as a function of
the square's side length. What happens when the square is small?

e) Create an image of a simple scene with a number of different shaped objects.
Using the shape invariant features (aspect ratio, circularity) to create a simple shape
classifier. How well does it perform? Repeat using the Hu moment features.

f) Repeat the boundary matching example with some objects that you create. Modify
the code to create a plot of edge-segment angle (k) versus θ and repeat the bound-
ary matching example.

g) Another commonly used feature, not supported by the Toolbox, is the aligned
rectangle. This is the smallest rectangle whose sides are aligned with the axes of
the equivalent ellipse and which entirely contains the blob. The aspect ratio of
this rectangle and the ratio of the blob’s area to the rectangle’s area are each scale
and rotation invariant features. Write code to compute this rectangle, overlay the
rectangle on the image, and compute the two features.

4. Hough transform
a) Experiment with varying the size of the Hough accumulator.
b) Experiment with using the Sobel edge operator instead of Canny.
c) Experiment with varying the parameters 'supress', 'interpSize,
'EdgeThresh', 'houghThresh'.

d) Apply the Hough transform to one of your own images.
e) Write code that loops over capturing images from your computer’s camera, find-

ing the two dominant lines and overlaying them on a window showing the image.
5. Corner detectors

a) Experiment with the Harris detector by changing the parameters k, σD and σI.
b) Compare the performance of the Harris, Noble and Shi-Tomasi corner detectors.
c) Implement the Moravec detector and compare to Harris detector.
d) Create a smoothed second derivative Iuu, Ivv and Iuv.

13.4 · Wrapping Up

14
Chapter

plus a geometric object model, and this allowed us to estimate the object’s 3-dimen-
sional pose from the 2-dimensional image data.

In this chapter we consider an alternative approach in which the additional infor-
mation comes from multiple views of the same scene. As already mentioned the pixel
coordinates from a single view constrain the world point to lie along some ray. If we can
locate the same world point in another image, taken from a different but known pose, we
can determine another ray along which that world point must lie. The world point lies at
the intersection of these two rays – a process known as triangulation or 3D recon-
struction. Even more powerfully, if we observe sufficient points, we can estimate the
3D motion of the camera between the views as well as the 3D structure of the world.⊳

The underlying challenge is to find the same world point in multiple images. This is
the correspondence problem, an important but non-trivial problem that we will dis-
cuss in Sect. 14.1. In Sect. 14.2 we revisit the fundamental geometry of image forma-
tion developed in Chap. 11. If you haven’t yet read that chapter, or it’s been a while
since you read it, it would be helpful to (re)acquaint yourself with that material. We
extend the geometry of single-camera imaging to the situation of multiple image planes
and show the geometric relationship between pairs of images. Stereo vision is an im-
portant technique for robotic 3-dimensional perception and is discussed in some de-
tail in Sect. 14.3. Information from two images of a scene, taken from different view-
points, is combined to determine the 3-dimensional structure of the world. Section 14.4
introduces the topic of structure from motion where visual information from a se-
quence of images is used to determine the 3-dimensional structure of the world as
well how the robot has moved through the world. The latter is known as visual odometry.

We finish this chapter, and this part of the book, with four application examples
based on the concepts we have learned. Section 14.5 describes how we can transform
an image with obvious perspective distortion into one without, effectively synthesiz-
ing the view from a virtual camera at a different location. Section 14.6 describes
mosaicing which is the process of taking consecutive images from a moving camera

Using Multiple Images

In the previous chapter we learnt about corner detec-
tors which find particularly distinctive points in a scene.
These points can be reliably detected in different views
of the same scene irrespective of viewpoint or lighting
conditions. Such points are characterised by high im-
age gradients in orthogonal directions and typically
occur on the corners of objects. However the 3-dimen-
sional coordinate of the corresponding world point was
lost in the perspective projection process which we dis-
cussed in Chap. 11 – we mapped a 3-dimensional world
point to a 2-dimensional image coordinate. All we know
is that the world point lies along some ray in space cor-
responding to the pixel coordinate, as shown in
Fig. 11.1. To recover the missing third dimension we
need additional information. In Sect. 11.2.3 the addi-
tional information was camera calibration parameters

Almost! We can determine the transla-

tion of the camera only up to an un-

known scale factor, that is, the transla-

tion is λt where the direction of t is

known but λ is not.

382

and stitching them together to form one large virtual image. Section 14.7 describes
image retrieval which is the problem of finding which image in an existing set of im-
ages is most similar to some new image. This can be used by robot to determine whether
it has visited a particular place, or seen the same object, before. Section 14.8 describes
how we can process a sequence of images from a moving camera to locate consistent
world points and to estimate the camera motion and 3-dimensional world structure.

14.1 lFeature Correspondence

Correspondence is the problem of finding the pixel coordinates in two different im-
ages that correspond to the same point in the world.� Consider the pair of real images

>> im1 = iread('eiffel2-1.jpg', 'mono', 'double');
>> im2 = iread('eiffel2-2.jpg', 'mono', 'double');

shown in Fig. 14.1. They show the same scene viewed from two different positions
using two different cameras – the pixel size, focal length and number of pixels for each
image are quite different. The scenes are complex and we see immediately that deter-
mining correspondence is not trivial. More than half the pixels in each scene corre-
spond to blue sky and it is impossible to match a blue pixel in one image to the corre-
sponding blue pixel in the other – these pixels are insufficiently distinct. This situation
is common and can occur with homogeneous image regions such as dark shadows, smooth
sheets of water, snow or smooth man-made objects such as walls or the sides of cars.

The solution is to choose only those points that are distinctive. We can use the inter-
est point detectors that we introduced in the last chapter to find Harris corner features

>> harris = icorner(im1, 'nfeat', 200);
>> idisp(im1); harris.plot('gs');

or SURF features�

>> sf = isurf(im1, 'nfeat', 200);
>> idisp(im1); sf.plot_scale('g');

and these are shown in Fig. 14.2. We have simplified the problem – instead of millions
of pixels we have just 200 distinctive points.

Consider the general case of two sets of features points: {1pi, i= 1⋯N1} in the
first image and {2pj, j= 1⋯N2} in the second image. Since these are distinctive im-
age points we would expect a significant number of points in image one would corre-
spond to points found in image two. The problem is to determine which (2uj,

2vj), if
any, corresponds to each (1ui,

1vi).

Fig. 14.1. Two views of the Eiffel
tower. The images were captured
approximately simultaneously
using two different handheld digi-
tal cameras. a 7 Mpix camera with
f=7.4 mm; b 10 Mpix camera with
f=5.2 mm (photo by Lucy Corke).
The images have quite different
scale and the tower is 700 and
600 pixel tall in a and b respec-
tively. The camera that captured
image b is held by the person in the
bottom-right corner of a

This is another example of the data as-

sociation problem.

The SURF detector cannot process a color

image, it converts it to greyscale. The Har-

ris detector computes the squared gra-

dients for the individual color planes

separately and then combines them. All

detectors can process an image se-

quence provided as a matrix of dimen-

sion greater than two. There is ambigu-

ity between a color image and an image

sequence of length three. If the image’s

third dimension is three it is deemed to

be a color image, not a sequence. A four-

dimensional image is unambiguous as

a sequence of color images.

Chapter 14 · Using Multiple Images

383

We cannot use the feature coordinates to determine correspondence – the features
will have different coordinates in each image. For example in Fig. 14.1 we see that
most features are lower in the right-hand image. We cannot use the intensity or color
of the pixels either. Variations in white balance, illumination and exposure setting
make it very unlikely that pixels that should correspond will have the same value.
Even if intensity variation was eliminated there are likley to be tens of thousands of
pixels in the other image with exactly the same intensity value – it is not sufficiently
unique. We need some richer way of describing each feature.

In practice we describe the region of pixels around the corner point which provides
a distinctive and unique description of the corner point and its immediate surrounds
– the feature descriptor. In the Toolbox the feature descriptor for a corner point is a
vector – the descriptor property of the PointFeature superclass. For the Har-
ris corner feature the descriptor

>> harris(1).descriptor'
ans =
 0.0805 0.0821 0.0371

is a 3-vector that contains the unique elements of the structure tensor Eq. 13.14. This
low-dimensional descriptor is computationally cheap since the elements were already
computed in order to determine corner strength. These descriptor elements are gradi-
ents which have the advantage of being robust to offsets in image intensity. The simi-
larity of two descriptors is based on Euclidean distance and is zero for a perfect match.
For example, the similarity of corner features one and two is

>> harris(1).distance(harris(2))
ans =
 0.0518

However it is difficult to know whether this value represents strong similarity or not
since the units are somewhat arbitrary. Typically we would compare feature 1pi with
all features in the other image {2pj, j= 1⋯ N2} and choose the one that is most
similar.⊳ However a short descriptor vector like this is still insufficiently distinctive
and prone to incorrect matching.

We can create a large descriptor vector by representing the square window around
the feature point as a vector. For example

>> harris = icorner(im1, 'nfeat', 200, 'color', 'patch', 5)

creates a 121-element descriptor vector for each corner point from the window
of specified half-width around the feature point – in this case an 11× 11 window.
The pixel values are offset by the mean value and normalized to create a unit vec-
tor. We can rewrite the ZNCC similarity measure from Table 12.1 in 1-dimensional
form as

Fig. 14.2. Corner features com-
puted for Fig. 14.1a. a Harris cor-
ner features; b SURF corner fea-
tures showing scale

If the world point is not visible in image

two then the most similar feature will be

an incorrect match.

14.1 · Feature Correspondence

384

(14.1)

which we have factored into the dot product of a unit vector associated with each
image patch. This normalized vector di can be used as the feature descriptor. Normal-
ized cross-correlation is simply the dot product of two descriptors and the resulting
similarity measure s∈ [−1, 1] has some meaning. A perfect match is s= 1 and s≥ 0.8
is typically considered a good match. For the example above

>> harris(1).ncc(harris(2))
ans =
 -0.0292

the correlation score indicates a poor match. This descriptor is distinctive and in-
variant to changes in image intensity but is not invariant to scale or rotation. Other
descriptors of the surrounding region that we could use include census and rank
values as well as histograms of intensity or color. Histograms have the advantage of
being invariant to rotation but they say nothing about the spatial relationship be-
tween the pixels, that is, the same pixel values in a completely different arrangement
have the same histogram.

The SURF algorithm computes a 64-element descriptor� vector to describe the
feature point in way that is scale and rotationally invariant and based on the pixels
within the feature’s support region. It is created from the image in the scale-space
sequence corresponding to the feature’s scale and rotated according to the feature’s
orientation. The vector is normalized to a unit vector to increase its invariance
to changes in image intensity. Similarity between descriptors is based on Euclidean
distance. This descriptor is quite invariant to image intensity, scale and rotation.
SURF is both a corner detector and a descriptor, whereas the Harris operator is
just a corner detector which must be used with one of a number of different de-
scriptors.�

For the remainder of this chapter we will use SURF features. They are compu-
tationally more expensive but pay for themselves in terms of the quality of matches
between widely different views of the same scene. We compute SURF features for
each image

>> s1 = isurf(im1)
s1 =
1288 features (listing suppressed)
 Properties: theta image_id scale u v strength descriptor
>> s2 = isurf(im2)
s2 =
1426 features (listing suppressed)
 Properties: theta image_id scale u v strength descriptor

which results in two vectors of SurfPointFeature objects. Many thousands of
corner features were found in each image.

Next we match the two sets of SURF features based on the distance between the
SURF descriptors

>> m = s1.match(s2)
m =
644 corresponding points (listing suppressed)

which results in a vector of FeatureMatch objects that represents 644 candidate-
corresponding points. The first five candidate correspondences� are

A 128-element vector can be created by

passing the option 'extended' to

isurf.

It is conceivable to use the SURF descrip-

tor with a Harris corner point.

Chapter 14 · Using Multiple Images

We refer to them as candidates because

although they are very likely to corre-

spond this has not yet been confirmed.

385

>> m(1:5)
ans =
(819.56, 358.557) <-> (708.008, 563.342), dist=0.002137
(1028.3, 231.748) <-> (880.14, 461.094), dist=0.004057
(1027.6, 571.118) <-> (885.147, 742.088), dist=0.004297
(927.724, 509.93) <-> (800.833, 692.564), dist=0.004371
(854.35, 401.633) <-> (737.504, 602.187), dist=0.004417

which shows the feature coordinate in the first and second image, as well as the Euclid-
ean distance between the two feature vectors. The matches are ordered by decreasing
similarity, and a threshold on feature similarity has been applied.

We can overlay a subset of these matches on the original image pair

>> idisp({im1, im2})
>> m.subset(100).plot('w')

and the result is shown in Fig. 14.3. White lines connect the matched features in each
image and the lines show a consistent pattern. Most of these connections seem quite
sensible, but a few are quite obviously incorrect. Note that we passed a cell-array of
images to idisp which it displays horizontally tiled as a single image. The subset
method of the FeatureMatch class returns a vector with the specified number of
FeatureMatch objects sampled evenly from the original vector. If all correspon-
dences were shown we would just see a solid white mass.

The correspondences can be obtained via an optional return value

>> [m,corresp] = s1.match(s2);
>> corresp(:,1:5)
ans =
 215 389 357 1044 853
 246 418 312 1240 765

which is a matrix with one column per correspondence. The first column indicates
that feature 215 in image one matches feature 246 in image two and so on. In terms of
workspace variables this is s1(215) and s2(246).

The Euclidean distance between the matched feature descriptors is given by the
distance property and the distribution of these, with no thresholding applied, is

>> m2 = s1.match(s2, 'thresh', []);
>> ihist(m2.distance, 'normcdf')

shown in Fig. 14.4. It shows that 35% of all matches have descriptor distances below 0.05
which is the default threshold, whereas the maximum distance can be over ten times
larger – such matches are less likely to be valid. Instead of a fixed threshold we could
choose to take the matches with the N smallest distances

>> m = s1.match(s2, 'top', N);

or all those below a distance threshold

>> m = s1.match(s2, 'thresh', 0.04);

Fig. 14.3.

Feature matching. Subset (100
out of 1 664) of matches based
on SURF descriptor similarity.

We note that a few are clearly
incorrect

14.1 · Feature Correspondence

386

or all those below the median

>> m = s1.match(s2, 'median');

Feature matching is computationally expensive – it is an O(N2) problem since every
feature in one image must be compared with every feature in the other image.

Although the quality of matching shown in Fig. 14.3 looks quite good there are a
few obviously incorrect matches in this small subset. We can discern a pattern in the
lines joining the corresponding points, they are slightly converging and sloping down
to the left. This pattern is a function of the relative pose between the two camera views,
and understanding this is key to determining which of the candidate matches are cor-
rect. That is the topic of the next section.

14.2 lGeometry of Multiple Views

We start by studying the geometric relationships between images of a single point P ob-
served from two different viewpoints and this is shown in Fig. 14.5. This geometry could
represent the case of two cameras simultaneously viewing the same scene, or one camera
taking a picture from two different viewpoints.� The centre of each camera, the origins of
{1} and {2}, plus the world point P defines a plane in space – the epipolar plane. The world
point P is projected onto the image planes of the two cameras at pixel coordinates 1p

and 2p respectively, and these points are known as conjugate points.
Consider image one. The image point 1e is a function of the position of camera two.

The image point 1p is a function of the world point P. The camera centre, 1e and 1p

define the epipolar plane and hence the epipolar line 2` in image two. By definition the
conjugate point 2p must lie on that line. Conversely 1p must lie along the epipolar line
in image one 1` that is defined by 2p in image two.

This is a very fundamental and important geometric relationship – given a point in
one image we know that its conjugate is constrained to lie along a line in the other
image. We illustrate this with a simple example that mimics the geometry of Fig. 14.5

>> T1 = transl(-0.1, 0, 0) * troty(0.4);
>> cam1 = CentralCamera('name', 'camera 1', 'default', ...
 'focal', 0.002, 'pose', T1)

which returns an instance of the CentralCamera class as discussed previously in
Sect. 11.1. Similarly for the second camera

>> T2 = transl(0.1, 0,0)*troty(-0.4);
>> cam2 = CentralCamera('name', 'camera 2', 'default', ...
 'focal', 0.002, 'pose', T2);

Fig. 14.4.

Cumulative distribution of feature
distance

Assuming the point does not move.

Chapter 14 · Using Multiple Images

387

and the pose of the two cameras is visualized by

>> axis([-0.5 0.5 -0.5 0.5 0 1])
>> cam1.plot_camera('color', 'b', 'label')
>> cam2.plot_camera('color', 'r', 'label')

which is also shown in Fig. 14.6. We define an arbitrary world point

>> P=[0.5 0.1 0.8]';

which we display as a small sphere

>> plot_sphere(P, 0.03, 'b');

which is shown in Fig. 14.6. We project this point to both cameras

>> p1 = cam1.plot(P)
p1 =
 561.6861
 532.6079
>> p2 = cam2.plot(P)
p2 =
 746.0323
 546.4186

and this is shown in Fig. 14.7. The epipoles are computed by projecting the centre of
each camera to the other camera’s image plane

Fig. 14.5.

Epipolar geometry showing the
two cameras with associated

coordinate frames {1} and {2}
and image planes. The world

point P and the two camera
centres form the epipolar plane,

and the intersection of this plane
with the image-planes form

epipolar lines

Fig. 14.6.

Simulation of two cameras and a
target point. The origins of the

two cameras are offset along
the x-axis and the cameras are

verged, that is, their optical axes
intersect

14.2 · Geometry of Multiple Views

388

>> cam1.hold
>> e1 = cam1.plot(cam2.centre, 'Marker', 'd', 'MarkerFaceColor', 'k')
e1 =
 985.0445 512.0000
>> cam2.hold
>> e2 = cam2.plot(cam1.centre, 'Marker', 'd', 'MarkerFaceColor', 'k')
e2 =
 38.9555 512.0000

and these are shown in Fig. 14.7 as a black �-marker.

14.2.1 lThe Fundamental Matrix

The epipolar relationship shown graphically in Fig. 14.5 can be expressed concisely
and elegantly as

(14.2)

where 1p and 2p are the image points 1p axnd 2p expressed in homogeneous form and
F is a 3× 3 matrix known as the fundamental matrix.

We can group the last two terms

(14.3)

which is the equation of a line, the epipolar line, along which conjugate point in image
two must lie

Fig. 14.7. Epipolar geometry
simulation showing the virtual
image planes of two Toolbox
CentralCamera objects. The
perspective projection of point P
is a black circle, the projection of
the other camera’s centre is a black
�-marker, and the epipolar line
is shown in red

2D projective geometry in brief. The projective plane P2 is the set of all points (x1, x2, x3), xi∈R
and xi not all zero. Typically the 3-tuple is considered a column vector. A point p= (u, v) is repre-
sented in P2 by homogeneous coordinates p= (u,v,1). Scale is unimportant for homogeneous quan-
tities and we express this as p≃λp where the operator ≃ means equal up to a (possibly un-
known) non-zero scale factor. A point in P2 can be represented in non-homogeneneous, or Eu-
clidean, form p= (x1/x3, x2/x3) in R2. The homogeneous vector (u, v, f), where f is the focal length
in pixels, is a vector from the camera’s origin that points toward the world point P. More details
are given in Appendix I.

The Toolbox functions e2h and h2e convert between Euclidean and homogeneous coordi-
nates for points (a column vector) or sets of points (a matrix with one column per point).

Chapter 14 · Using Multiple Images

389

(14.4)

This line is a function (Eq. 14.3) of the point 1p in image one and is a powerful test
as to whether or not a point in image two is a possible conjugate. Taking the transpose
of both sides of Eq. 14.2 yields

(14.5)

from which we can write the epipolar line for camera one

(14.6)

in terms of a point viewed by camera two.
The fundamental matrix is a function of the camera parameters and the relative

camera pose between the views

(14.7)

where K is the camera intrinsic matrix given in Eq. 11.7, S(·) is the skew-symmetric
matrix, and 2ξ1∼ (R, t) is the relative pose of camera one with respect to camera two.⊳

The fundamental matrix that relates the two views is returned by the method F of the
CentralCamera class, for example

>> F = cam1.F(cam2)
F =
 0 -0.0000 0.0010
 -0.0000 0 0.0019
 0.0010 0.0001 -1.0208

where the relative pose is from CentralCamera object cam1 to cam2.
The fundamental matrix has some interesting properties. It is singular with a rank of two

>> rank(F)
ans =
 2

and has seven degrees of freedom.⊳ The epipoles are encoded in the null-space of the
matrix. The epipole for camera one is the right null-space of F

>> null(F)'
ans =
 -0.8873 -0.4612 -0.0009

in homogeneous coordinates or

>> e1 = h2e(ans)'
e1 =
 985.0445 512.0000

in Euclidean coordinates – the same as determined above using the plot function. The
epipole for camera two is the left null-space of the transpose of the fundamental matrix

>> null(F');
>> e2 = h2e(ans)'
e2 =
 38.9555 512.0000

The Toolbox can display epipolar lines using the plot_epiline methods of the
CentralCamera class

>> cam2.plot_epiline(F, p1, 'r')

which is shown in Fig. 14.7 as a red line in the camera two image plane. We see, as ex-
pected, that the projection of P lies on this epipolar line. The epipolar line for camera one is

>> cam1.plot_epiline(F', p2, 'r');

Note well that this is the inverse of what

you might expect, camera two with re-

spect to camera one.

The matrix F⊂R3×3 has seven under-

lying parameters so its nine elements

are not independent. The overall scale

is not defined, and there exists a con-

straint that det(F)= 0.

14.2 · Geometry of Multiple Views

390

14.2.2 lThe Essential Matrix

The epipolar geometric constraint can also be expressed in terms of normalized im-
age coordinates

(14.8)

where E is the essential matrix and 1x and 1x are conjugate points in homogeneous nor-
malized image coordinates.� This matrix is a simple function of the relative camera pose

(14.9)

where 2ξ1∼ (R, t) is the relative pose of camera one with respect to camera two. The
essential matrix is singular, has a rank of two, and has two equal non-zero singular values�

and one of zero. The essential matrix has only 5 degrees of freedom and is completely
defined by 3 rotational and 2 translational� parameters. For pure rotation, when t= 0,
the essential matrix is not defined.

We recall from Eq. 11.7 that p≃Kx and substituting into Eq. 14.8 we write

(14.10)

Similarity to Eq. 14.2 yields a relationship between the two matrices

(14.11)

in terms of the intrinsic parameters of the two cameras involved.� This is implemented
by the E method of the CentralCamera class

>> E = cam1.E(F)
E =
 0 -0.0779 0
 -0.0779 0 0.1842
 0 -0.1842 0.0000

where the intrinsic parameters of camera one (which is the same as camera two) are used.
Like the camera matrix in Sect. 11.2.2 the essential matrix can be decomposed to

yield the relative pose 1ξ2 in homogeneous transformation form.� The inverse is not
unique and in general there are two solutions

>> sol = cam1.invE(E)
sol(:,:,1) =
 1.0000 0.0000 -0.0000 -0.1842
 0.0000 -1.0000 -0.0000 -0.0000
 -0.0000 0.0000 -1.0000 -0.0779
 0 0 0 1.0000
sol(:,:,2) =
 0.6967 0.0000 -0.7174 0.1842
 0.0000 1.0000 0.0000 0.0000
 0.7174 -0.0000 0.6967 0.0779
 0 0 0 1.0000

which returns a 3-dimensional matrix where the last index is the solution number.
The true relative pose from view two to view one is

>> inv(cam1.T) * cam2.T
ans =
 0.6967 0 -0.7174 0.1842
 0 1.0000 0 0
 0.7174 0 0.6967 0.0779
 0 0 0 1.0000

which indicates that, in this case, solution two is the correct one.

A 3-dimensional translation (x, y, z)

with unknown scale can be considered

as (x', y', 1).

If both images were captured with the

same camera then K1= K2.

Although Eq. 14.9 is written in terms

of $(R, t)∼ 2ξ1 the Toolbox function

returns 1ξ2.

Chapter 14 · Using Multiple Images

See page 254.

See Appendix D.

391

Unusually we have recovered the camera translation exactly but since E≃ λE the
translational part of the homogeneous transformation matrix has an unknown scale
factor.⊳ In this case it is correct because the essential matrix was determined directly
from the relative pose between the cameras.

In this case we could choose the correct solution because we knew the pose of the
two cameras, but how do we determine the correct solution in practice? One approach
is to determine whether a world point is visible. Typically we would choose a point on
the optical axis in front of the first camera

>> Q = [0 0 10]';

and its projection to the first camera

ans =
 429.7889
 512.0000

is a reasonable value. We can create an instance of the first camera with an arbitrary
displacement using the move method

>> cam1.move(sol(:,:,1)).project(Q)
ans =
 NaN
 NaN

and the values of NaN indicate that the world point is behind the camera. The second
solution

>> cam1.move(sol(:,:,2)).project(Q)
ans =
 594.2111
 512.0000

has a finite value and indicates that this solution is the valid one. We can perform this
more compactly by providing a test point

>> sol = cam1.invE(E, Q)
sol =
 0.6967 0.0000 -0.7174 0.1842
 0.0000 1.0000 0.0000 0.0000
 0.7174 -0.0000 0.6967 0.0779
 0 0 0 1.0000

in which case only the valid solution is returned.
In summary these 3× 3 matrices, the fundamental and the essential matrix,

encode the geometry of the two cameras. The fundamental matrix and a point in
one image defines an epipolar line in the other image along which its conjugate
points must lie. The essential matrix encodes the relative pose of the two camera’s
centres and the pose can be extracted, with two possible values, and with transla-
tion scaled by an unknown factor. In this example the fundamental matrix was
computed from known camera motion and intrinsic parameters. The real world isn’t
like this – camera motion is difficult to measure and the camera may not be cali-
brated. Instead we can estimate the fundamental matrix directly from corresponding
image points.

14.2.3 lEstimating the Fundamental Matrix

Assume that we have N pairs of corresponding points in two views of the same
scene (1pi,

2pi), i= 1⋯ N. To demonstrate this we create a set of twenty random
point features (within a 2× 2× 2 m cube) whose center is located 3 m in front of
the cameras

>> P = homtrans(transl(-1, -1, 2), 2*rand(3,20));

As observed by Hartley and Zisserman

(2003, p 259) not even the sign of t can

be determined.

14.2 · Geometry of Multiple Views

392

and project these points onto the two camera image planes

>> p1 = cam1.project(P);
>> p2 = cam2.project(P);

If N≥ 8 the fundamental matrix can be estimated from these two sets of correspond-
ing points

>> F = fmatrix(p1, p2)
maximum residual 1.932e-29
F =
 0.0000 -0.0000 0.0239
 -0.0000 -0.0000 0.0460
 0.0239 0.0018 -24.4896

where the residual is the maximum value of the left-hand side of Eq. 14.2 and is ide-
ally zero. The value here is not zero, but it is very small, and this is due to the accumu-
lation of errors from finite precision arithmetic. The estimated matrix has the re-
quired rank property

>> rank(F)
ans =
 2

For camera two we can plot the projected points

>> cam2.plot(P);

and overlay the epipolar lines generated by each point in image one

>> cam2.plot_epiline(F, p1, 'r')

which is shown in Fig. 14.8. We see a family or pencil of epipolar lines, and that every
point in image two lies on an epipolar line. Note how the epipolar lines all converge
on the epipole which is possible in this case� because the two cameras are verged as
shown in Fig. 14.6.

To demonstrate the importance of correct point correspondence we will re-
peat the example above but introduce two bad data associations by swapping two
elements in p2

>> p2(:,[8 7]) = p2(:,[7 8]);

Fig. 14.8.

A pencil of epipolar lines on
the camera two image plane.
Note how all epipolar lines pass
through the epipole which is the
projection of camera one’s centre

The example has been contrived so that

the epipoles lie within the images, that

is, the each camera can see the centre of

the other camera. A common imaging

geometry is for the optical axes to be

parallel, such as shown in Fig. 14.19 in

which case the epipoles are at infinity

(the third element of the homogeneous

coordinate is zero) and all the epipolar

lines are parallel.

Chapter 14 · Using Multiple Images

393

The fundamental matrix estimation

>> fmatrix(p1, p2)
maximum residual 236.2
ans =
 0.0000 -0.0000 0.0022
 0.0000 0.0000 -0.0023
 -0.0030 0.0014 1.0000

now has a very high residual – hundreds of pixels. This means that the point corre-
spondence cannot be explained by the relationship Eq. 14.2.

If we knew the fundamental matrix we could test whether a pair of candidate corre-
sponding points are in fact conjugates by measuring how far one is from the epipolar
line defined by the other

>> epidist(F, p1(:,1), p2(:,1))
ans =
 2.3035e-13
>> epidist(F, p1(:,7), p2(:,7))
ans =
 18.8228

which shows that point 1 is a good fit, but point 7 (which we swapped with point 8), is
a poor fit. However we have to first estimate the fundamental matrix and that requires
that point correspondence is known. We break this deadlock with an ingenious algo-
rithm called Random Sampling and Consensus or RANSAC.

The underlying principle is delightfully simple. Estimating a fundamental matrix
requires eight points so we randomly choose eight candidate corresponding points
(the sample) and estimate F to create a model. This model is tested against all the other
candidate pairs and those that fit⊳ vote for this model. The process is repeated a number
of times and the model that had the most supporters (the consensus) is returned. Since
the sample is small the chance that it contains all valid candidate pairs is high. The point
pairs that support the model are termed inliers and those that do not are outliers.

RANSAC is remarkably effective and efficient at finding the inlier set, even in the pres-
ence of large numbers of outliers (more than 50%), and is applicable to a wide range of
problems. Within the Toolbox we invoke RANSAC as a driver of the fmatrix function

>> [F,in,r] = ransac(@fmatrix, [p1; p2], 1e-6, 'verbose')
15 trials
2 outliers
3.48564e-29 final residual

and we obtain an excellent final residual. The set of inliers is also returned

>> in
in =
 Columns 1 through 14
 1 2 3 4 5 6 9 10 11 12 13 14 15 16
 Columns 15 through 18
 17 18 19 20

and the two incorrect associations, points 7 and 8, are notably absent from this list.
The third parameter to ransac is the threshold t which is used to determine whether
or not a point pair supports the model. If t is chosen to be too small RANSAC requires
many more trials than its default maximum and this requires adjustment of addi-
tional parameters. Keep in mind also that the results of RANSAC will vary from run to
run due to the random subsampling performed. Using RANSAC involve some trial
and error to choose the correct threshold based on the final residual and the number
of outliers. There are also a number of other options that are described in the online
documentation.

We return now to the pair of images of the Eiffel tower shown in Fig. 14.3. When we
left off at page 384 we had found candidate correspondences based on descriptor

To within a defined threshold t. The

Toolbox function epidist returns the

distance between a point and an epi-

polar line.

14.2 · Geometry of Multiple Views

394

similarity but there were a number of clearly incorrect matches. RANSAC is available
as a method ransac that operates on a vector of FeatureMatch objects

>> F = m.ransac(@fmatrix, 1e-4, 'verbose')
1527 trials
312 outliers
0.000140437 final residual
F =
 0.0000 -0.0000 0.0098
 0.0000 0.0000 -0.0148
 -0.0121 0.0129 3.6393

A small amount of trial and error was required to settle on the tolerance of 10−4. Mak-
ing it smaller requires more RANSAC trials and requires raising the limit on maxi-
mum number of trials allowed but without any significant change in the result. It is
also unrealistic to expect a very small residual since the real image data is subject to
random error such as pixel noise and systematic error such as lens distortion.�

RANSAC identified 312 outliers or incorrect data associations from the SURF fea-
ture matching stage which is nearly 50% of the candidate matches – the preliminary
matching was worse than it looked. Running RANSAC has also updated the elements
of the FeatureMatch vector

>> m.show
ans =
1667 corresponding points
644 corresponding points
332 inliers (51.6%)
312 outliers (48.4%)

which now displays the total number of inliers and outliers. Compared to page 384 the
elements of the vector

>> m(1:5)
ans =
(819.56, 358.557) <-> (708.008, 563.342), dist=0.002137 +
(1028.3, 231.748) <-> (880.14, 461.094), dist=0.004057 -
(1027.6, 571.118) <-> (885.147, 742.088), dist=0.004297 +
(927.724, 509.93) <-> (800.833, 692.564), dist=0.004371 +
(854.35, 401.633) <-> (737.504, 602.187), dist=0.004417 +

now have a trailing plus or minus sign to indicate whether the corresponding match is
an inlier or outlier.� We can plot some of the inliers

>> idisp({im1, im2});
>> m.inlier.subset(100).plot('g')

or some of the outliers

>> idisp({im1, im2});
>> m.outlier.subset(100).plot('r')

and these are shown in Fig. 14.9.
An alternative way to create a CentralCamera object is from an image

>> cam = CentralCamera('image', im1);

The size of the pixel array is inferred from the image and the intrinsic parameters are
set to default values. As before, we can overlay the epipolar lines computed from the
corresponding points found in the second image

>> cam.plot_epiline(F', m.inlier.subset(20).p2, 'g');

and the result is shown in Fig. 14.10. The epipolar lines intersect at the epipolar point which
we can clearly see is the projection of the second camera in the first image.� The epipole at

Lens distortion causes points to be dis-

placed on the image plane and this vio-

lates the epipolar geometry. Images can

be corrected as discussed in Sect. 12.6.4

but this is computationally expensive. A

cheaper alternative is to correct the co-

ordinates of the features by mapping

them through the inverse distortion

model Eq. 11.13.

We only plot a small subset of the epi-

polar lines since they are too numerous

and would obscure the image.

Chapter 14 · Using Multiple Images

The second match has been determined

to be an outlier even though it was the

second strongest candidate based on

descriptor similarity. Similarity alone is

not enough, the corresponding points in

the two images must be consistent with

the epipolar geometry as represented by

the consensus fundamental matrix.

395

>> h2e(null(F))
ans =
 1.0e+03 *
 1.0359
 0.6709
>> cam.plot(ans, 'bo')

is also superimposed on the plot. With two handheld cameras and a common view we
have been able to pinpoint the second camera in the first image. The result is not quite
perfect – there is a horizontal offset of about 20 pixels which is likely to be due to a
small pointing error in one or both cameras which were handheld and only approxi-
mately synchronized.⊳

Fig. 14.9.

Results of SURF feature matching
after RANSAC. a Subset of all
inlier matches; b subset of the

outlier matches, some are quite
visibly incorrect while others are

more subtle

Fig. 14.10.

Image from Fig. 14.1a showing
epipolar lines converging on the
projection of the second camera’s

centre. In this case the second
camera is clearly visible in the

bottom right of the image

At the focal lengths used a 20 pix displace-

ment on the image plane corresponds to

a pointing error of less than 0.5°.

14.2 · Geometry of Multiple Views

396

14.2.4 lPlanar Homography

In this section we will consider a camera viewing a group of world points Pi that lie on
a plane. They are viewed by two different cameras and the projection in the cameras
are 1pi and 2pi respectively which are related by

(14.12)

where H is a non-singular 3× 3 matrix known as an homography, a planar homography,
or the homography induced by the plane.

For example consider again the pair of cameras from page 387 now observing a
3× 3 grid of points

>> Tgrid = transl(0,0,1)*trotx(0.1)*troty(0.2);
>> P = mkgrid(3, 1.0, 'T', Tgrid);

where Tgrid is the pose of the grid coordinate frame {G} and the grid points are
centred in the frame’s xy-plane. The points are projected to both cameras

>> p1 = cam1.plot(P, 'o');
>> p2 = cam2.plot(P, 'o');

and the images are shown in Fig. 14.11a and b respectively.
Just as we did for the fundamental matrix, if N≥ 8 we can estimate the matrix H

from two sets of corresponding points

>> H = homography(p1, p2)
H =
 -0.4282 -0.0006 408.0894
 -0.7030 0.3674 320.1340
 -0.0014 -0.0000 1.0000

According to Eq. 14.12 we can predict the position of the grid points in image two
from the corresponding image one coordinates

>> p2b = homtrans(H, p1);

which we can can superimpose on image two as +-symbols

>> cam2.hold()
>> cam2.plot(p2b, '+')

Fig. 14.11. Views of the oblique
planar grid of points from two dif-
ferent view points. The grid points
are projected as open circles. Plus
signs in b indicate points trans-
formed from the camera one im-
age plane by the homography

Chapter 14 · Using Multiple Images

397

This is shown in Fig. 14.11b and we see that the predicted points are perfectly aligned
with the actual projection of the world points. The inverse of the homography matrix

(14.13)

performs the inverse mapping, from image two coordinates to image one

>> p1b = homtrans(inv(H), p2);

The fundamental matrix constrains the conjugate point to lie along a line but the
homography tells us exactly where the conjugate point will be in the other image –
provided that the points lie on a plane.

We can use this proviso to our advantage as a test for whether or not points lie on a
plane. We will add some extra world points⊳ to our example

>> Q = [
 -0.2302 -0.0545 0.2537
 0.3287 0.4523 0.6024
 0.4000 0.5000 0.6000];

which we plot in 3D

>> axis([-1 1 -1 1 0 2])
>> plot_sphere(P, 0.05, 'b')
>> plot_sphere(Q, 0.05, 'r')
>> cam1.plot_camera('color', 'b', 'label')
>> cam2.plot_camera('color', 'r', 'label')

and this is shown in Fig. 14.12. The new points, shown in red, are clearly not in the
same plane as the original blue points. Viewed from camera one

>> p1 = cam1.plot([P Q], 'o');

as shown in Fig. 14.13a, these new points appear as an extra row in the grid of points
we used above. However in the second view

>> p2 = cam2.plot([P Q], 'o');

as shown in Fig. 14.13b these out of plane points no longer form a regular grid. If we
apply the homography to the camera one image points

>> p2h = homtrans(H, p1);

we find where they should be in the camera two image if they belonged to the plane
implicit in the homography

>> cam2.plot(p2h, '+')

Fig. 14.12.

World view of target points and
two camera poses. Blue points

lie in a planar grid, while the red
points appear to lie in the grid

from the viewpoint of camera one

These points lie along the ray from the

camera one centre to an extra row of

points in the grid plane. However their

z-coordinates have been chosen to be

0.4, 0.5 and 0.6 m respectively.

14.2 · Geometry of Multiple Views

398

We see that the original nine points overlap, but the three new points do not. We could
make an automated test based on the prediction error

>> colnorm(homtrans(H, p1)-p2)
ans =
 Columns 1 through 9
 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
 0.0000 0.0000 0.0000
 Columns 10 through 12
 50.5969 46.4423 45.3836

which is large for these last three points – they do not belong to the plane that induced
the homography.

In this example we estimated the homography based on two sets of corresponding
points which were projections of known planar points. In practice we do not know in
advance which points belong to the plane so we can again use RANSAC

>> [H,in] = ransac(@homography, [p1; p2], 0.1)
resid =
 4.0990e-13
H =
 -0.4282 -0.0006 408.0894
 -0.7030 0.3674 320.1340
 -0.0014 -0.0000 1.0000
in =
 1 2 3 4 5 6 7 8 9

which finds the homography that best explains the relationship between the sets of
image points. It has also identified those points which support the homography and
the three out of plane points are not on the inlier list.

The geometry related to the homography is shown in Fig. 14.14. We can express the
homography in normalized image coordinates�

where HE is the Euclidean homography which is written

(14.14)

Fig. 14.13. Views of the oblique
planar grid of points from two dif-
ferent view points. The grid points
are projected as open circles. Plus
signs in b indicate points trans-
formed from the camera one im-
age plane by the homography. The
bottom of row of points in each
case are not co-planar with the
other points

Chapter 14 · Using Multiple Images

See page 254.

399

in terms of the motion (R, t)∼ 2ξ1 and the plane nTP+ d= 0 with respect to frame {1}.
The Euclidean and projective homographies are related by

where K is the camera parameter matrix.
As for the essential matrix the projective homography can be decomposed to yield

the relative pose 1ξ2 in homogeneous transformation form⊳ as well as the normal to
the plane. We use the invH method of the CentralCamera class

>> cam1.invH(H)
solution 1
 T =0.82478 -0.01907 -0.56513 -0.01966
 0.01907 0.99980 -0.00591 -0.01917
 0.56513 -0.00591 0.82498 0.19911
 0.00000 0.00000 0.00000 1.00000
 n = 0.95519 0.00998 0.29582
solution 2
 T =0.69671 0.00000 -0.71736 0.18513
 0.00000 1.00000 0.00000 -0.00000
 0.71736 -0.00000 0.69671 0.07827
 0.00000 0.00000 0.00000 1.00000
 n = -0.19676 -0.09784 0.97556

which returns a short structure array. Again there are multiple solutions and we need to
apply additional information to determine the correct one. As usual the translational
component of the transformation matrix has an unknown scale factor. We know from
Fig. 14.12 that the camera motion is predominantly in the x-direction and that the plane
normal is approximately parallel to the camera’s optical- or z-axis and this knowledge
helps us to choose solution two. The true transformation from camera one to two is

>> inv(T1)*T2
ans =
 0.6967 0 -0.7174 0.1842
 0 1.0000 0 0
 0.7174 0 0.6967 0.0779
 0 0 0 1.0000

and supports our choice.⊳ The pose of the grid with respect to camera one is

>> inv(T1)*Tgrid
ans =
 0.9797 -0.0389 -0.1968 -0.2973
 0.0198 0.9950 -0.0978 0
 0.1996 0.0920 0.9756 0.9600
 0 0 0 1.0000

Fig. 14.14.

Geometry of homography
showing two cameras with

associated coordinate frames {1}
and {2} and image planes. The

world point P belongs to a plane
with surface normal n. H is the

homography, a 3× 3 matrix
that maps 1p to 2p

Although Eq. 14.14 is written in terms

of (R, t)∼ 2ξ1 the Toolbox function

returns 1ξ2.

The translation scale factor is quite close

to one in this example, but in general it

must be considered unknown.

14.2 · Geometry of Multiple Views

400

and the third column is the grid’s normal� which matches the estimated normal asso-
ciated with solution two.

We can apply this technique to a pair of real images

>> im1=iread('garden-l.jpg', 'double');
>> im2=iread('garden-r.jpg', 'double');

shown in Fig. 14.15. We start by finding the SURF features

>> s1 = isurf(im1);
>> s2 = isurf(im2);

and the candidate corresponding points

>> m = s1.match(s2)
m =
323 corresponding points (listing suppressed)

then use RANSAC to find the set of corresponding points that best fits a plane in the world

>> [H,r] = m.ransac(@homography, 2)
H =
 0.9966 0.0061 -15.6385
 -0.0105 1.0081 -29.7619
 -0.0000 0.0000 1.0000
r =
 1.2228

The number of inlier and outlier points is

>> m.show
ans =
323 corresponding points
83 inliers (25.7%)
240 outliers (74.3%)

In this case the majority of point pairs do not fit the model, that is they do not belong
to the plane that induces the homography H. However 83 points do belong to the plane
and we can superimpose them on the figure

>> idisp(im1)
>> plot_point(m.inlier.p1, 'w*')

as shown in Fig. 14.15a. RANSAC has found a consensus which is the plane containing
the wall. The tolerance was set to 4 pixel error since the dominant planes in this scene,
the wall and the lawn, are only approximately planar. The lawn is quite large and con-
tains many SURF feature points but the number of corresponding feature points, found

Fig. 14.15. Two pictures of a gar-
den scene taken from different
viewpoints. Image b approximately
30 cm to the right of image a. Im-
age a has superimposed features
that fit a plane. The camera was
handheld with f= 5.2 mm

Since the points are in the xy-plane of

the grid frame {G} the normal is the z-axis.

Chapter 14 · Using Multiple Images

401

by match , on the lawn is very low. If we remove the inlier points from the
FeatureMatch vector, that is, we keep the outliers

>> m = m.outlier

and repeat the RANSAC homography estimation step we will find the next most domi-
nant plane in the scene which turns out to be the top of the front bushes. Planes are
very common in man-made environments and we will revisit homographies and their
decomposition in Sect. 14.5.

14.3 lStereo Vision

Stereo vision is the technique of estimating the 3-dimensional structure of the world
from two images taken from different viewpoints. We will discuss two approaches
known as sparse and dense stereo respectively. Sparse stereo is a natural extension of
what we have learned about feature matching and recovers the world coordinate
(X, Y, Z) for each corresponding point pair. Dense stereo recovers the world coordi-
nate (X, Y, Z) for every pixel in the image.

14.3.1 lSparse Stereo

To illustrate sparse stereo we will return to the pair of garden images shown in
Fig. 14.15. We have already found the SURF features so we will determine candidate
matches based on descriptor similarity

>> m = s1.match(s2)
m =
323 corresponding points (listing suppressed)

and then estimate the fundamental matrix

>> [F,r] = m.ransac(@fmatrix,1e-4, 'verbose');
77 trials
82 outliers
0.000131656 final residual

which captures the relative geometry of the two views. We can display the epipolar
lines for a subset of points overlaid on the the left-hand image

>> cam = CentralCamera('image', im1);
>> cam.plot_epiline(F', m.inlier.subset(30).p2, 'r');

14.3 · Stereo Vision

Fig. 14.16.

Image of Fig. 14.15a with epi-
polar lines for selected right
image points superimposed

402

which is shown in Fig. 14.16. In this case the epipolar lines are approximately hori-
zontal and parallel which is expected for a camera motion that is a pure translation
in the x-direction. Figure 14.17 shows the epipolar geometry for stereo vision. It is
clear that as points move away from the camera, P to P′ the conjugate points in the
right-hand image moves to the right along the epipolar line.

The points 1p and 2p each define a ray in space which intersect at the world point.
However to determine these rays we need to know the two poses of the camera
and its intrinsic parameters. We can consider that the camera one frame {1} is the
origin but the pose of camera two remains unknown. However we could estimate
its pose by decomposing the essential matrix computed between the two views. We
have the fundamental matrix, but to determine the essential matrix according to
Eq. 14.11 we need the camera’s intrinsic parameters. With a little sleuthing we can
find them!

The focal length used when the picture was taken is stored in the header of the
EXIF-format file that holds the image and can be examined

>> [im1,tags] = iread('garden-l.jpg', 'double', 'mono');

where tags is a MATLAB® struct that contains various characteristics of the image as
a structure of text strings. The element DigitalCamera describes the camera

>> tags.DigitalCamera
ans =
 ExposureTime: 0.0667
 FNumber: 3.3000
 .
 .
 FocalLength: 5.2000
 .
 .

from which we determine the focal length is 5.2 mm.
The dimensions of the pixels ρw× ρh are not included in the image header but

some web-based research on this model camera gives the answer. This camera is
reported to have an image sensor that measures 7.18 × 5.32 mm and has
3 264× 2 448 pixel – both sets of numbers are consistent with a 4 :3 aspect ratio. From
this we can determine that the pixels are square and have a side length of 2.2 µm. We
create a CentralCamera object based on the known focal length, pixel size and
image dimension

Chapter 14 · Using Multiple Images

Fig. 14.17.

Epipolar geometry for stereo
vision. We can see clearly that as
the depth of the world point in-
creases, from P to P′, the projec-
tion moves along the epipolar
line in the second image plane

403

>> cam = CentralCamera('image', im1, 'focal', 5.2e-3, ...
 'sensor', [7.18e-3,5.32e-3])
cam =
name: noname [central-perspective]
 focal length: 0.0052
 pixel size: (1.122e-05, 1.108e-05)
 principal pt: (320, 240)
 number pixels: 640 x 480
 Tcam:
 1 0 0 0
 0 1 0 0
 0 0 1 0
 0 0 0 1

The effective pixel dimension is computed from the sensor dimensions and the
pixels dimensions of the image. The image has been subsampled to 640× 480 pixels
so the effective pixel size of 11.2 µm is correspondingly larger. In the absence of
any other information the principal point is assumed to be in the centre of the
image.

The essential matrix is obtained by applying the camera intrinsic parameters to the
fundamental matrix

>> E = cam.E(F)
E =
 -0.0064 -0.5401 0.2240
 0.6914 -0.2065 -4.0732
 -0.1902 4.0445 -0.2493

and we then decompose it to determine the camera motion

>> sol = cam.invE(E, [0,0,10]')
sol =
 0.9995 -0.0011 -0.0331 -4.0549
 0.0029 0.9985 0.0554 -0.2324
 0.0329 -0.0555 0.9979 -0.6766
 0 0 0 1.0000
>> [R,t] = tr2rt(sol);

We chose a test point 1P = (0, 0, 10), a distant point along the optical axis, to determine
the correct solution for the relative camera motion. Since the camera orientation was
kept fairly constant the rotational part of the transformation is expected to be close to
the identity matrix as we observe, and the actual rotation

>> tr2rpy(R, 'deg')
ans =
 -3.1781 -1.8940 0.0602

is just a couple of degrees of rotation about the x- and y-axes.
The estimated translation t from {1} to {2} has an unknown scale factor. Once again

we bring in an extra piece of information – when we took the images the camera
position changed by approximately 0.3 m in the positive x-direction. The estimated
translation has the correct direction, dominant x-axis motion, but the sign and mag-
nitude are quite wrong. We therefore scale the translation

>> t = 0.3 * t/t(1);
>> T = rt2tr(R, t)
T =
 0.9995 -0.0011 -0.0331 0.3000
 0.0029 0.9985 0.0554 0.0172
 0.0329 -0.0555 0.9979 0.0501
 0 0 0 1.0000

and we have 1ξ2 – the relative pose of camera two with respect to camera one repre-
sented as a homogeneous transformation.

14.3 · Stereo Vision

404

Each point p in an image corresponds to a ray in space�

where P0 is the centre of the camera and d ∈R3, |d|= 1 is a unit-vector in the direc-
tion of the ray. If the camera matrix is C= (Π, c4) where Π ∈R3×3 and c4∈R

3 then
the parameters of the ray are

Consider now the first corresponding point pair m(1). The ray from camera one is

>> r1 = cam.ray(m(1).p1)
r1 =
d=(0.429152, -0.210292, 0.878411), P0=(0, 0, 0)

which is an instance of a Ray3D object with properties P0 and d representing P0

and d respectively. The corresponding ray from the second camera is

>> r2 = cam.move(T).ray(m(1).p2)
r2 =
d=(0.38276, -0.21969, 0.897347), P0=(0.3, 0.017194, 0.0500546)

where the move method returns an instance copy of the CentralCamera object
cam with the specified relative pose. The two rays intersect at

>> [x,e] = r1.intersect(r2);
>> x'
ans =
 2.2031 -1.0796 4.5094

which is a point with a z-coordinate, or depth, of 4.51 m. Due to errors in the estimate
of camera two’s pose the two rays do not actually intersect, but their closest point is
returned. At their closest point the rays are

>> e
e =
 0.0049

around 5 cm apart. Considering the lack of rigour in this exercise, two handheld cam-
era shots and only approximate knowledge of the magnitude of the camera displace-
ment, the recovered depth information is quite remarkable.�

We draw a subset of twenty corresponding points from the inlier set

>> m2 = m.inlier.subset(20);

and then compute the rays in world space from each camera

>> r1 = cam.ray(m2.p1);
>> r2 = cam.move(T).ray(m2.p2);

which are each vectors of Ray3D objects. Their intersection points are

>> [P,e] = r1.intersect(r2);

where P is a matrix of closest points, one per column, and the last row

>> z = P(3,:);

is the depth coordinate. The columns of the vector e contains the distance between the
rays at their closest points. We can superimpose the distance to each point on the
image of the garden

>> idisp(im1)
>> plot_point(m.inlier.subset(20).p1, 'w*', 'textcolor', 'w', ...
 'printf', {'%.1f', z});

which is shown in Fig. 14.18 and the feature markers are annotated with the esti-
mated depth.

Even small errors in the estimated rota-

tion between the camera poses will lead

to large closing errors at distances of sev-

eral metres. The closing error observed

here would be induced by a rotational

error of less than 1 deg.

Chapter 14 · Using Multiple Images

Sometimes called a raxel. Many repre-

sentations exist including Plücker coor-

dinates.

405

This is an example of stereopsis where we have used information from two
overlapping images to infer the 3-dimensional position of points in the world. For
obvious reasons the approach used here is referred to as sparse stereo because we only
compute distance at a tiny subset of pixels in the image. More commonly the relative
pose between the cameras would be known as would the camera intrinsic parameters.

14.3.2 lDense Stereo Matching

A stereo pair is taken by two cameras, generally with parallel optical axes, and sepa-
rated by a known distance referred to as the camera baseline. Figure 14.19 shows a
typical stereo camera system which simultaneously captures images from both cam-
eras and transfers them to a host computer for processing.

To illustrate we load an example stereo pair

>> L = iread('rocks2-l.png', 'reduce', 2);
>> R = iread('rocks2-r.png', 'reduce', 2);

We can interactively examine these two images together

>> stdisp(L, R)

as shown in Fig. 14.20. Clicking on a point in the left-hand image updates a pair of
cross hairs that mark the same coordinate in the right-hand image. Clicking in the
right-hand image sets another vertical cross hair and displays the difference between
the horizontal coordinate of the two crosshairs. The cross hairs as shown are set to a
small white spot on the front leftmost rock and we observe several things. Firstly the
spot has the same vertical coordinate in both images, and this implies that the epipolar
line is horizontal. Secondly, in the right-hand image the spot has moved to the left by
82.4 pixel. If we probed more points we would see that disparity is greater for points
that are closer to the camera.

Fig. 14.18.

Image of Fig. 14.15a with depth
of selected points indicated (units

of metres)

Fig. 14.19.

A stereo vision sensor which with
PC-based software can compute

depth maps at 25 frames per
second. The cameras and lenses

are identical and the relative
pose is constant (image courtesy

of Point Grey Research Inc.)

14.3 · Stereo Vision

406

As shown in Fig. 14.17 the conjugate point in the right-hand image moves rightward along
the epipolar line as the point depth increases. For the parallel-axis camera geometry the
epipolar lines are parallel and horizontal, so conjugate points have the same v-coordinate. If
the coordinates of two corresponding points are (Lu, Lv) and (Ru, Rv) then Rv= Lv. The
displacement along the horizontal epipolar line d= Lu−Ru where d≥0 is called disparity.

The dense stereo process is illustrated in Fig. 14.21. For the pixel at (Lu, Lv) in the left-
hand image we know that its corresponding pixel is at some coordinate (Lu− d, Lv) in the
right-hand image where d∈ [dmin, dmax]. To reliably find the corresponding point for a
pixel in the left-hand image we create a W×W pixel template region T about that pixel.
As shown in Fig. 14.21 we slide the template window horizontally across the right-hand
image. The position at which the template is most similar is considered to be the corre-
sponding point from which disparity is calculated. Compared to other matching prob-
lems we have encountered this one is much simpler because there is no change in relative
scale or orientation between the two images.

The epipolar constraint means that we only need to perform a 1-dimensional search
for the corresponding point. The template is moved in D steps of 1 pixel in the range
dmin⋯ dmax. At each template position we perform a template matching operation,
such as we discussed in Sect. 12.4.2, and for a W×W window these have a computa-
tional cost of O(W2). The total cost of dense stereo matching is O(DW2N2) which is
high but feasible in real time.

To perform stereo matching for the image pair in Fig. 14.20 using the Toolbox is
quite straightforward

>> d = istereo(L, R, [40, 90], 3);

The result is a matrix the same size as L and the value of each element d[u, v], or
d(v,u) in MATLAB®, is the disparity at that coordinate in the left image. The corre-
sponding pixel in the right image would be at (u− d[u, v], v). We can display the dis-
parity as a disparity image

>> idisp(d, 'bar')

which is shown in Fig. 14.22. Disparity images have a distinctive ghostly appearance
since all surface color and texture is absent. The third argument to stereo is the
range of disparities to be searched, in this case from 40 to 90 pixel so the pixel values in
the disparity image lie in the range [40, 90]. The disparity range was determined by
examining some far and near points using stdisp.� The fourth argument to istereo

Fig. 14.20. The stdisp image
browsing window. The black cross
hair in the left-hand image has
been positioned on a small white
spot on the bottom-left rock. An-
other black cross hair is automati-
cally positioned at the same coor-
dinate in the right-hand image.
Clicking on the corresponding
point in the right-hand image sets
the green cross-hair, and the panel
at the top indicates a horizontal
shift of 82.7 pixel to the left. This
stereo image pair is from the Mid-
dlebury stereo database (Schar-
stein and Pal 2007). The focal
length f/ρ is 3740 pixel, and the
baseline is 160 mm. The images
have been cropped so that the ac-
tual disparity should be offset by
274 pixel

We could chose a range such as [0, 90]
but this increases the search time: 91 dis-

parities would have to be evaluated in-

stead of 51. It also increases the possi-

bility of matching errors.

Chapter 14 · Using Multiple Images

407

Fig. 14.21.

Stereo matching. A search
centred at (ul, vL) in the right

image is swept horizontally
until it matches the template

window T from the left image

Fig. 14.22.

Disparity image for the rock pile
stereo pair, where brighter means
higher disparity or shorter range

Fig. 14.23.

The disparity space image is a
3-dimensional image where ele-

ment D(u, v, d) is the similarity
between the support regions
centered at (Lu, Lv) in the left
image and (Lu− d, Lv) in the

right image

is the half-width of the template, in this case we are using a 7× 7 window. By default
stereo uses the ZNCC similarity measure.

In the disparity image we can clearly see that the rocks at the bottom of the pile have a
larger disparity and are closer to the camera than those at the top. There are also some
errors, such as the anomalous bright values around the edges of the rocks. These pixels
are indicated as being nearer than they really are. The similarity score is set to NaN around
the edge of the image where the similarity matching template falls off the edge of the
image and to Inf for the case where the denominator of the ZNCC similarity metric
(Table 12.1) is equal to zero.⊳ The values NaN and Inf are both displayed as black.

This occurs if all the pixels in either tem-

plate have exactly the same value.

14.3 · Stereo Vision

408

14.3.2.1 lStereo Failure Modes

The stereo function can also return the disparity space image (DSI)

>> [d,sim,DSI] = istereo(L, R, [40 90], 3);

which is an H×W×D matrix

>> about(DSI)
DSI [double] : 555x638x51 (144468720 bytes)

whose elements (v, u, d) are the similarity measure between the templates centred at
(u, v) in the left image and (u− d, v) in the right image.� The disparity image we saw
earlier is simply the position of the maximum value in the d-direction evaluated at
every pixel� and the matrix sim is the value of those maxima.

Each column in the d-direction gives the similarity measure versus disparity for
the corresponding pixel in the left image. For the pixel at (138, 439) we can plot this

>> plot(squeeze(DSI(439,138,:)), 'o-');

which is shown in Fig. 14.24a. We are using the ZNCC measure and we see a perfect
match occurs at a disparity of 80 pixel, since the horizontal axis is d− dmin and dmin= 40.

Figure 14.24 shows some very typical plots of similarity metric as a function of
disparity and this provides insight into the causes of error in stereo matching.
Figure 14.24a shows a single unambiguous strong peak nearly equal to one which is
the value for a perfect match. Fortunately this case is very common.

Fig. 14.24. Some typical ZNCC
metric versus disparity curves.
a Single strong peak; b multiple
peaks; c weak peak; d broad peak

This is a large matrix (144 Mbyte) which

is why the images were reduced in size

when loaded.

This is a simplistic approach. A better

approach is to apply regularization and

estimate a function g(u, v) that fits the

points of maximum similarity while

maintaining smoothness and continuity.

Chapter 14 · Using Multiple Images

409

Two peaks of almost similar amplitude are shown in Fig. 14.24b. This means that
the template pattern was found twice in the search region. This typically occurs when
there are regular vertical features in the scene as is often the case in man-made scenes:
brick walls, rows of windows, architectural features or a picket fence. The problem,
illustrated in Fig. 14.25, is commonly known as the picket fence effector and more
properly as spatial aliasing. There is no real cure for this problem⊳ but we can detect
its presence. The ambiguity ratio is the ratio of the height of second peak to the height
of the first peak – a high-value indicate that the result is uncertain and should not be
used. The chance of detecting incorrect peaks can be reduced by ensuring that the
disparity range used in istereo is as small as possible and this requires some knowl-
edge of the expected range of objects.

A weak peak is shown in Fig. 14.24c. This typically occurs when the corresponding
scene point is not visible in the right-hand view due to occlusion or the missing parts
problem. Occlusion is illustrated in Fig. 14.26 and it is clear that point 3 is only visible
to the left camera. Dense stereo matching will attempt to find the best match in the
right-hand image, but it will not find a point corresponding to 3. Even though the
figure is an exaggerated depiction, real images suffer this problem where the depth
changes rapidly. For example, this occurs at the edges of the rocks which is exactly
where we observe the incorrect disparities in Fig. 14.22. The problem becomes more
prevalent as the baseline increases. The problem also occurs when the corresponding
point does not lie within the disparity search range, that is, the disparity search range
is too small.

Fig. 14.25.

Picket fence effect. The template
will match well at a number of
different disparities. This prob-

lem occurs in any scene with
repeating patterns

Fig. 14.26.

Occlusion in stereo vision. The
field of view of the two cameras

are shown as colored sectors.
Points 1 and 7 fall outside the

overlapping view area and are
seen by only one camera each.

Point 5 is occluded from the left
camera and point 3 is occluded

from the right camera. The
order of points seen by the

cameras is given

Multi-camera stereo, more than two

cameras, is a powerful method to solve

this ambiguity.

14.3 · Stereo Vision

410

The problem cannot be cured but it can be detected. The simplest method is to apply
a threshold to the similarity score and ignore those disparity results where similarity is
low. The istereo function can return the value of the similarity score at the peak

>> [d,sim] = istereo(L, R, [40 90], 3);
>> idisp(sim)

and this is shown in Fig. 14.27a. We see that the erroneous disparity values correspond
to low maximum similarity score. For example

>> ipixswitch(sim<0.7, 'red', d/90);

shown in Fig. 14.27b displays pixels with similarity s< 0.7 as red. The distribution of
maximum similarity scores

>> ihist(sim(isfinite(sim)), 'normcdf');

is shown in Fig. 14.28. We see that only 5% of pixels have a similarity score less than 0.5,
and that 55% of pixels have a similarity score greater than 0.9.

A more powerful means to test for occlusion is to perform the matching in two
directions which is known as the left-right consistency check. Starting with a pixel in
the left-hand image the strongest match in the right-image is found. Then the stron-
gest match to that pixel is found in the left-hand image. If this is the original left-hand
image point the match is considered valid, otherwise it is discarded.

From Fig. 14.26 it is clear that pixels on the left-side of the left-hand image may not
overlap at all with the right-hand image – point 1 is outside the field of view of the

Fig. 14.27. Stereo template simi-
larity. a Similarity image where
brighter means higher similarity;
b disparity image with pixels hav-
ing low similarity score marked
in red

Fig. 14.28.

Cumulative probability of ZNCC
scores. The probability of a score
less than 0.9 is 45%

�

Chapter 14 · Using Multiple Images

411

right-hand camera. This is the reason for the large number of incorrect matches on
the left hand side of the disparity image in Fig. 14.22. It is common practice to discard
the dmax left-most columns of the disparity image.

The final problem that can arise is a similarity function with a very broad peak as
shown in Fig. 14.24d. The breadth makes it difficult to precisely estimate the maxima.
This generally occurs when the template region has very low texture for example corre-
sponding to the sky, dark shadows, sheets of water, snow, ice or smooth man-made
objects. Simply put, in a region that is all grey, a grey template matches equally well with
any number of grey candidate regions. One approach to detect this is to look at the vari-
ability of pixel values in the template using measures such as the difference between the
maximum and minimum value or the variance of the pixel values. If the template has
too little variance it is less likely to give a strong peak. Measures of peak sharpness can
also be used to eliminate these cases and this is discussed in the next section.

For the various problem cases just discussed disparity cannot be determined, but the
problem can be detected. This is important since it allows those pixels to be marked as
having no known range and this allows a robot path planner to be prudent with respect
to regions whose 3-dimensional structure cannot be reliably determined.

The design of a stereo-vision system has three degrees of freedom. The first is the base-
line distance between the cameras. As it increases the disparities become larger making it
possible to estimate depth to greater precision, but the occlusion problem becomes worse.
The disparity search range needs to be set carefully. If the maximum is too large the chance
of spatial aliasing increases but if too small then points close to the camera will generate
incorrect and weak matches. A large disparity range also increases the computation time.
Template size involves a tradeoff between computation time and quality of the disparity
image. A small template size can pick up fine depth structure but tends to give results that
are much noisier since a small template is more susceptible to ambiguous matches. A
large template gives a smoother disparity image but results in greater computation time.
It also more likely that the template will contain pixels that belong to objects at different
depths which is referred to as the mixed pixel problem. This tends to cause poor quality
matching at the edges of objects, and the resulting disparity map appears blurred.

An alternative way to look at the failure modes is to use MATLAB’s volume visual-
ization functions to create horizontal slices through the disparity space image

>> slice(DSI, [], [100 200 300 400 500], []); view(-52,18)
>> shading interp; colorbar

which is shown in Fig. 14.29. These are slices at constant v-coordinate, and within
each of the ud-planes we see a bright path (high similarity values) that represents

Fig. 14.29.

The disparity space image is a
3-dimensional image where ele-
ment D(u, v, d) is the similarity

between the support regions
centered at (Lu, Lv) in the left
image and (Lu− d, Lv) in the

right image

14.3 · Stereo Vision

412

disparity d(u). Note the significant discontinuities in the path for the plane at v= 100
which correspond to sudden changes in depth. The planes at v= 200, 300, 400 show
that the path also fades away in places. In these regions the maximum similarity is
low, there is no strong match in the right-hand image, and the most likely cause is
occlusion.

14.3.3 lPeak Refinement

The disparity at each pixel is an integer value d ∈ [dmin, dmax] at which the optimal
similarity was found. Figure 14.24a shows a single unambiguous strong peak and we
can use the disparity values adjacent to the peak to refine the estimate of the peak’s
position.� A parabola

(14.15)

is fitted to the optimal disparity and its immediate neighbours. The optimal ZNCC
similarity measure is a maxima which means that the parabola is inverted and A< 0.
The interpolated maximum occurs when the derivative of Eq. 14.15 equals zero, from
which we can estimate the horizontal position of the peak of the fitted parabola

The A coefficient will be large for a sharp peak, and a simple threshold can be used
to reject broad peaks, as we will discuss in the next section.

Disparity peak refinement is enabled with the 'interp' option

>> [di,sim,peak] = istereo(L, R, [40 90], 3, 'interp');
>> idisp(di)

and the resulting disparity image is shown in Fig. 14.30a. We see that it is much smoother
than the one shown previously in Fig. 14.22. The additional optional output argument
peak is a structure

>> peak
peak =
 A: [555x638 double]
 B: [555x638 double]

that contains the per-pixel values of the parabola coefficients. The A coefficient is shown
as an image in Fig 14.30b.

Fig. 14.30. a Disparity image with
peak refinement; b coefficient of
d2 term at each peak. High values
(bright) correspond to sharp peaks
and occur where image texture is
high. Broad peaks (dark) occur
where image texture is low

Chapter 14 · Using Multiple Images

This two-dimensional peak refinement

is discussed in Appendix K.

413

14.3.4 lCleaning up and Reconstruction

The result of stereo matching, such as shown in Fig. 14.22, has a number of imperfec-
tions for the reasons we have just described. For robotic applications such as path
planning and obstacle avoidance it is important to know the 3-dimensional structure
of the world, but it is also critically important to know what we don’t know. Where
reliable depth information from stereo vision is missing a robot should be prudent
and treat it differently to free space. We use a number of simple measures to mark
elements of the disparity image as being invalid or unreliable.

We start by creating a matrix status the same size as d and initialized to zero

>> status = zeros(size(d));

The elements are set to non-zero values if they correspond to specific failure conditions

>> [U,V] = imeshgrid(L);
>> status(isnan(d)) = 4;
>> status(U<=90) = 1;
>> status(sim<0.8) = 2;
>> status(peak.A>=-0.1) = 3;

We can display this matrix as an image

>> idisp(status)
>> colormap(colorname({'lightgreen', 'cyan', 'blue', 'orange', 'red'}))

which is shown in Fig. 14.31. The colormap is chosen to display the status values
as light green for a good stereo match, cyan if the disparity search range extends
beyond the left edge of the right image, blue if the peak similarity is too small, orange
if the peak is too broad, and red for NaN values where the search template would
fall off the edge of the image. The good news is that there are a lot of light green
pixels! In fact

>> sum(status(:)) / prod(size(status)) * 100
ans =
 86.0674

nearly 90% of disparity values pass our battery of quality tests. The blue pixels, indi-
cating weak similarity, occur around the edges of rocks and are due to occlusion. The
orange pixels, indicating a broad peak, occur in areas that are fairly smooth, either
deep shadow between rocks or the non-rock background.

Earlier we created an interpolated disparity image di and now we will invalidate
the disparity values that we have determined to be unreliable

>> di(status>0) = NaN;

Fig. 14.31.

Stereo matching status on a per
pixel basis. Good stereo match
(green); disparity search range
extends beyond the left edge of

the right image (cyan); low maxi-
mum similarity (blue); no-sharp

peak (orange); search template
beyond edge of image (red)

14.3 · Stereo Vision

414

by setting them to the value NaN.� We can display this with the unreliable pixels marked
in red by

>> ipixswitch(isnan(di), 'red', di/90);

which is shown in Fig. 14.32.� This is now in useful form for a robot – it contains
disparity values interpolated to better than a pixel and all unreliable values are clearly
marked.

The final step is to convert the disparity values in pixels to world coordinates in metres
– a process known as 3D reconstruction. In the earlier discussion on sparse stereo we
determined the world point from the intersection of two rays in 3-dimensional space. For
a parallel axis stereo camera rig as shown in Fig. 14.19 the geometry is much simpler as
illustrated in Fig. 14.33. For the red and blue triangles we can write

where b is the baseline and the angles of the rays correspond to the horizontal image
coordinate iu, i= {L, R}

Substituting and eliminating X gives

which shows that depth is inversely proportional to disparity d= Lu− Ru and d> 0.

Fig. 14.32.

Interpolated disparity image
with unreliable estimates
indicated in red

Fig. 14.33.

Stereo geometry for parallel
camera axes. X and Z are
measured with respect to
camera one, b is the baseline

The special floating point value NaN (for

not a number) has the useful property

that the result of any arithmetic opera-

tion involving NaN is always NaN. Many

MATLAB® functions such as max or

min ignore NaN values in the input

matrix, and plotting and graphics func-

tions do not display this value, leaving a

hole in the graph or surface.

The division by 90 is to convert the float-

ing point disparity values in the range

[40, 90] into valid greyscale values in the

range [0, 1].

Chapter 14 · Using Multiple Images

415

We can also recover the X- and Y-coordinates

The images shown in Fig. 14.20, from the Middlebury dataset, were taken with a

very wide camera baseline. The left edge of the left-image and the right edge of

the right-image have no overlap and have been cropped. Cropping N pixels from

the left of the left-hand image reduces the disparity by N. For this stereo pair

the actual disparity must be increased by 274 to account for the cropping.

The true disparity is

>> di = di + 274;

and we compute the X-, Y- and Z-coordinate of each pixel as separate matrices to ex-
ploit MATLAB’s efficient matrix operations⊳

>> [U,V] = imeshgrid(L);
>> u0 = size(L,2)/2; v0 = size(L,1)/2;
>> b = 0.160;
>> X = b*(U-u0) ./ di; Y = b*(V-v0) ./ di; Z = 3740 * b ./ di;

which can be displayed as a surface

>> surf(Z)
>> shading interp; view(-150, 75)
>> set(gca,'ZDir', 'reverse'); set(gca,'XDir', 'reverse')
>> colormap(flipud(hot))

as shown in Fig. 14.34. This is somewhat unimpressive in print but by using the mouse
to rotate the image using the MATLAB® figure toolbar 3D rotate option the 3-dimen-
sionality becomes quite clear. The axis reversals are required to have z increase from
our viewpoint and to maintain a right-handed coordinate frame. There are many holes in
this surface which are the NaN values we inserted to indicate unreliable disparity values.

14.3.5 l3D Texture Mapped Display

For human, rather than robot, consumption it would be nice to enhance the surface
representation so that it looks less ragged. We create a median filtered image

>> dimf = irank(di, 41, ones(9,9));

A process known as vectorizing. Using

matrix and vector operations instead of

for loops greatly increases the speed

of MATLAB® code execution. See http://

www.mathworks.com/support/tech-

notes/1100/1109.html for details.

Fig. 14.34.

3-dimensional reconstruction for
parallel stereo cameras. Hotter

colors indicate parts of the
surface that are closer to the

camera

14.3 · Stereo Vision

416

where each output pixel is the median value over a 9× 9 window. This has patched
many of the smaller holes but has the undesirable side effect of blurring the underly-
ing disparity image. Instead we will keep the original interpolated disparity image and
insert the median filtered values only where a NaN exists

>> di = ipixswitch(isnan(di), dimf, di);

We perform the reconstruction again

>> X = b*(U-u0) ./ di; Y = b*(V-v0) ./ di; Z = 3740 * b ./ di;

and plotting this as a surface displays a surface that looks significantly less ragged.
However we can do even better. We can drape the left-hand image over the 3-di-

mensional surface using a process called texture mapping. We reload the left-hand
image, this time in color

>> Lcolor = iread('rocks2-l.png');

and render the surface with the image texture mapped

>> surface(X, Y, Z, Lcolor, 'FaceColor', 'texturemap', ...
 'EdgeColor', 'none', 'CDataMapping', 'direct')
>> xyzlabel
>> set(gca,'ZDir', 'reverse'); set(gca,'XDir', 'reverse')
>> view(-160, 75)

which creates the image shown in Fig. 14.35. Once again it is easier to get an impres-
sion of the 3-dimensionality by using the mouse to rotate the image using the MATLAB®
figure toolbar 3D rotate option.

14.3.6 lAnaglyphs

Human stereo perception of depth works because each eye views the scene from a
different viewpoint. If we look at a photograph of a 3D scene we still get a perception
of depth, albeit reduced, because our brain uses many visual cues besides stereo to
infer depth. Since the invention of photography in the 19th century people have been
fascinated by 3D photographs and movies, and the recent introduction of 3D television
is further evidence of this.

The key in all 3D display technologies to take the image from two cameras, with a
similar baseline to the human eyes (approximately 8 cm) and present those images
again to the corresponding eyes. Old fashioned stereograms required a binocular view-
ing device or could, with difficulty, be viewed by squinting at the stereo pair and cross-
ing your eyes. More modern and convenient means of viewing stereo pairs are LCD
shutter glasses or polarized glasses which allow full-color stereo movie viewing.

Fig. 14.35.

3-dimensional reconstruction
for parallel stereo cameras with
image texture mapped onto the
surface

Chapter 14 · Using Multiple Images

417

An old but inexpensive method of viewing and distributing stereo information is
through anaglyph images in which the left and right images are overlaid in different
colors. Typically red is used for the left eye and cyan (greeny blue) for the right eye but
many other color combinations are used. The red lens allows only the red part of the
anaglyph image through to the left eye, while the cyan lens allows only the cyan parts
of the image through to the right eye. The disadvantage is that only the scene intensity,
not its color, can be portrayed. The big advantage of anaglyphs is that they can be
printed on paper or imaged onto ordinary movie film and viewed with simple and
cheap glasses such as those shown in Fig. 14.36a.

The rock pile stereo pair can be displayed as an anaglyph

>> anaglyph(L, R, 'rc')

which is shown in Fig. 14.36b. The argument 'rc' indicates that left and right images
are encoded in red and cyan respectively. Other color options include: blue, green,
magenta and orange.

14.3.7 lImage Rectification

The rock pile stereo pair of Fig. 14.20 has corresponding points on the same row
in the left- and right-hand images. These are referred to as an epipolar-aligned
image pair. Stereo cameras such as shown on page 405 are built with precision
to ensure that the optical axes of the cameras are parallel and that the u- and v-axes
of the two sensor chips are parallel. However there are limits to the precision of
mechanical alignment and lens distortion will introduce error. Typically one or
both images are warped to correct for these errors – a process known as rectifi-
cation.

Fig. 14.36. Anaglyphs for stereo
viewing. a Anaglyph glasses shown
with red and blue lenses, b ana-
glyph rendering of the rock scene
from Fig. 14.20 with left in red and
right in cyan

Anaglyphs. The earliest developments occurred in France. In 1858 Joseph D’Almeida projected
3D magic lantern slide shows as red-blue anaglyphs and the audience wore red and blue goggles.
Around the same time Louis Du Hauron created the first printed anaglyphs. Later, around 1890
William Friese-Green created the first 3D anaglyphic motion pictures using a camera with two
lenses. Anaglyphic films called plasticons or plastigrams were a craze in the 1920s.

A century later stereo images from the surface of Marse are available on the web in anaglyph
form at http://marsprogram.jpl.nasa.gov/MPF/mpf/anaglyph-arc.html.

14.3 · Stereo Vision

418

We will illustrate rectification using the garden stereo pair shown from Fig. 14.15

>> L = iread('garden-l.jpg', 'mono', 'double');
>> R = iread('garden-r.jpg', 'mono', 'double');

which we recall are far from being epipolar aligned. We first find the SURF features

>> sL = isurf(L);
>> sR = isurf(R);

and determine the candidate matches

>> m = sL.match(sR);

then determine the epipolar relationship

>> F = m.ransac(@fmatrix,1e-4, 'verbose');
46 trials
81 outliers
9.60297e-05 final residual

The rectification step requires the fundamental matrix as well as the set of correspond-
ing points which is embedded in the FeatureMatch object m

>> [Lr,Rr] = irectify(F, m, L, R);

and returns rectified versions of the two input images. We display these using stdisp

>> stdisp(Lr, Rr)

which is shown in Fig. 14.37. We see that corresponding points in the scene now have
the same vertical coordinate. The function irectify works by computing unique
homographies to warp the left and right images. As we have observed previously
when warping images not all of the output pixels are mapped to the input images
which results in undefined pixels which are displayed here as black. This pair of rec-
tified images could now be used for dense stereo matching

>> d = istereo(Lr, Rr, [5 120], 4);

and the result is shown in Fig. 14.38. We have been able to create a dense 3-dimen-
sional representation of the scene using just two images taken from a handheld camera.

Fig. 14.37.

Rectified images of the garden

Chapter 14 · Using Multiple Images

419

14.3.8 lPlane Fitting

Stereo vision results in a set of 3-dimensional world points Pi which are referred to as
a point cloud. A common problem is fitting a plane to such a set of points. One simple
and effective approach is to fit an ellipsoid to the data, and the ellipsoid will have one
very small radius in the direction normal to the plane – that is, it will be an elliptical
plate. The inertia matrix of the points can be calculated by

(14.16)

where x=Pi−
−
P are the coordinates of the points with respect to the centroid of the

points
−
P = 1/N Σ

N

i=1
Pi . The ellipsoid is centred at the centroid of the point cloud. The radii

of the ellipsoid are the eigenvalues of J and the eigenvector corresponding to the smallest
eigenvalue is the direction of the minimum radius which is the normal to the plane.

To illustrate this we create a 10× 10 grid of points in a plane

>> T = transl(1,2,3) * rpy2tr(0.3, 0.4, 0.5);
>> P = mkgrid(10, 1, T);
>> P = P + 0.02*randn(size(P));

with an arbitrary orientation represented by the homogeneous transformation T, and
to which some Gaussian noise has been added.

The mean of the point cloud is

>> x0 = mean(P')
ans =
 0.9980 1.9979 2.9973

and this is subtracted from all the data points

>> P = bsxfun(@minus, P, x0');

and then the moments are computed

>> J = 0;
>> for x = P, J = J + x*x'; end
>> J
J =
 8.4143 1.0722 -3.3781
 1.0722 9.6187 2.5577
 -3.3781 2.5577 2.3441

Fig. 14.38.

Dense stereo disparity image for
the garden shows near objects as

brighter than far objects

14.3 · Stereo Vision

420

The eigenvalues are

>> [x,lambda] = eig(J);
>> diag(lambda)'
ans =
 0.0357 9.9135 10.4279

and we see two large eigenvalues corresponding to the spread of points within the
plane, and one eigenvalue which is the thickness of the plane. The eigenvector corre-
sponding to the first, and smallest, eigenvalue is

>> n = x(:,1)'
n =
 0.3896 -0.2779 0.8781

which is the estimated normal to the plane.
The true direction of the plane’s normal is given by the third column� of the trans-

formation matrix

>> T
T =
 0.8083 -0.4416 0.3894 1.0000
 0.5590 0.7832 -0.2722 2.0000
 -0.1848 0.4377 0.8799 3.0000
 0 0 0 1.0000

and we see that it is very close to the estimated normal.
The equation of a plane is the set of points x such that

(14.17)

where n is the normal and x0 is the centroid.
Outlier data points are problematic with this type of estimator since they signifi-

cantly bias the solution. A number of approaches are commonly used but a simple one
is to modify Eq. 14.16 to include a weight

which is inversely related to the distance of xi from the plane and solve iteratively.
Initially all weights wi= 1, and on subsequent iterations the weights� are set accord-
ing to the distance of Pi from the plane estimated at the previous step. Alternatively we
could apply RANSAC by taking samples of three points to solve for Eq. 14.17.
Appendix E has more details about ellipses.

14.3.9 lMatching Sets of 3D Points

Consider a model of some object represented by a set of points in 2- or 3-dimensions
with respect to the world frame. Now consider an example of that object somewhere in
the world and we observe a set of 2- or 3-dimensional points on the object. The task is
to determine the relative pose ξ that will transform the model points to the observed
data points by matching the two sets of points.�

More formally, given two sets of points Di, Mj∈R
3, i, j ∈ 1⋯N in the world frame

determine the relative pose ξ such that

The points Mi are the model of a 3-dimensional object which we want to fit to the
observed data Dj.

To illustrate we will create a model which is a cloud of 100 random points in a
1×1×1 m cube centred at the origin�

Since the points lie in the frame’s xy-

plane, the normal is the frame’s z-axis.

Commonly a Cauchy-Lorentz function

w= r2/ (x2+ r2) is used which is smooth

over the range of point distance 0→∞
and has a value of C when x= r.

Chapter 14 · Using Multiple Images

The dual problem is that the camera has

moved, not the object. The same tech-

nique can be applied to determine the

camera motion.

The technique can work for 2- or 3-di-

mensional data but we will illustrate it

here for 3-dimensional data.

421

>> M = rand(3,100) - 0.5;

The data is a copy of the model that has been rotated and translated

>> T_unknown = transl(1, 2, 3) * rpy2tr(0.2, 0.3, 0.4);
>> D = homtrans(T_unknown, M);

by an unknown relative pose ξ.
At first glance this looks like a problem where we need to establish correspondence

between the points in the two sets but we will introduce an alternative approach called
iterative closest point or ICP. For each data point Di, the corresponding model point Mj

is assumed to be the closest one, that is Mj which minimizes |Di−Mj|. Correspon-
dence is not unique and quite commonly several data points can be associated with a
single model point, and consequently some model points Mj will be unpaired. This
approach to correspondence is far from perfect but it is (generally) good enough to
improve the alignment of the point clouds so that in the next iteration the computed
correspondences will be a little more accurate.

The first step is to compute a translation that makes the centroids of the two point
clouds coincident⊳

from which we compute a displacement

Next we compute correspondence. For each data point Di we find the closest model
point Mj, and for this we use the Toolbox function closest

>> corresp = closest(D, M);

where corresp(i) is the column of M that corresponds to column i of D. The next
step is to compute the 3×3 moment matrix

which encodes the rotation between the two point sets.⊳ The singular value decompo-
sition is

from which the rotation matrix is determined⊳ to be

The estimated relative pose between the two point clouds is ξ∼ (R, t). The model
points are transformed so that they are now closer to the data points

and the process repeated until it converges. The correspondences used are unlikely to
have all been correct and therefore the estimate of the relative orientation between the
sets is only an approximation.

The Toolbox provides an implementation of ICP
>> [T,d] = icp(M, D, ’plot’);

14.3 · Stereo Vision

This is the sum of a number of rank 1

matrices.

We consider the general case where the

two points clouds have different num-

bers of points, that is, ND≠ NM.

See Appendix D, page 516.

422

which returns the pose ξ

>> trprint(T, ’rpy’, ’radian’)
t=(1 2 3),R=(0.2 0.3 0.4) rad

which is exactly the unknown relative pose of the second point cloud that we chose
above. The residual

>> d
d =
 6.8437e-08

is the root mean square of the errors between the transformed model points and
the data. The option ’plot’ shows the model and data points at each step as well as
the closest-point correspondences. ICP is a popular algorithm because it is both fast
and robust.

We can demonstrate the robustness of ICP by simulating some realistic sensor er-
rors. Firstly we will randomly remove twenty points from the data

>> D(:,randi(100, 20,1)) = [];

which are points in the model not observed by the sensor. Then we will add ten spuri-
ous points that are not part of the model

>> D = [D rand(3,10)];

and finally we will add Gaussian noise with σ= 0.05 to the data

>> D = D + randn(size(D)) * 0.05;

Now we fit the corrupted data to the model

>> [T,d] = icp(M, D, ’plot’, ’distthresh’, 1.5);

using an additional option to eliminate incorrect closest-point correspondences. The
correspondences are established as described above and the median of the distances
between the corresponding points is computed. In this case the correspondence is not
made if the distance between the points is more than 1.5 times the median distance.
The estimated pose ξ is now

>> trprint(T, ’rpy’, ’radian’)
t = (1.02161,1.98456,2.98566), R = (0.164436,0.299455,0.418697) rad

which is still close to the value computed for the ideal case but the residual

>> d
d =
 0.6780

is higher since an exact fit between the model and noise corrupted data is no longer
possible.� ICP is fast and robust for modest sized point clouds but the correspondence
determination is an O(N2) problem which leads to computational bottlenecks for very
large data sets.�

14.4 lStructure and Motion

In the sparse stereo example of Sect. 14.3.1 we estimated the motion of the camera, its
change in pose, from corresponding image points. Using this as a baseline we were
then able to estimate the 3-dimensional position of some points in the world, the struc-
ture of the scene.

For robotic applications we would like to perform these operations on the fly, that
is, as each new observation is made we wish to update the estimates of the robot’s pose
and the structure of its world. We will illustrate this with an example using a sequence
of image from a single moving camera.

Chapter 14 · Using Multiple Images

We would expect the residual to be ap-

proximately equal to √

Nσ where N is

the number of corresponding points

and σ is the standard deviation of the

additive noise.

For large-scale problems the data would

be kept in a kd-tree which reduces the

time required to find the closest point.

423

We create a central perspective camera

>> camera = CentralCamera('name', 'sfm', 'default');

and some points positioned at the vertices and face centres of a cube

>> cube = mkcube(0.6, 'facepoint')

a total of 14 points.⊳ The camera moves in a circle of radius 3 m around the cube in the
xy-plane while always facing the origin

>> nsteps = 50;
>> theta = tpoly(0, 2*pi, nsteps);
>> T = [];
>> for th=theta'
>> T = cat(3, T, trotz(-th) * transl(0, -3, 0) * trotx(-pi/2));
>> end

where T is the path, a sequence of camera poses, represented by a 4× 4× 50 matrix
where the first two indices represent a homogeneous transformation and the last in-
dex corresponds to the camera viewpoint.

The image plane projection is

>> p = camera.plot(cube, 'Tcam', T);

which returns a 2× 14× 50 matrix where the second index corresponds to the world
point, and the last index corresponds to the camera view.

At each step along the path we perform the following algorithm, illustrated here for
step twenty

>> k = 20;

of the path. The corresponding points between the current and previous image are
used to estimate the fundamental matrix

>> F = fmatrix(p(:,:,k-1), p(:,:,k));

and then upgrade it to an essential matrix

>> E = camera.E(F);

Fig. 14.39.

Structure from motion example
showing camera and world points

A subsequent step estimates the funda-

mental matrix which requires at least

eight points. A cube with only eight

points leads to poor estimates of the fun-

damental matrix, hence the addition of

six extra points in the centre of each face.

14.4 · Structure and Motion

424

and decompose that to an estimate of the motion from the last camera pose to the current

>> relpose = camera.invE(E, [0 0 10]');
solution 2 is good
relpose =
 0.9775 -0.0000 0.2108 -11.2645
 0.0000 1.0000 0.0000 -0.0000
 -0.2108 -0.0000 0.9775 1.2008
 0 0 0 1.0000

where we use a world point along the optical axis to determine which of the two solu-
tions is valid.

The true relative pose determined from the known camera trajectory is

>> inv(T(:,:,k-1))*T(:,:,k)
ans =
 0.9775 0.0000 0.2108 -0.6324
 -0.0000 1.0000 -0.0000 0.0000
 -0.2108 -0.0000 0.9775 0.0674
 0 0 0 1.0000

The rotational part of the estimated pose is accurate but the translational part suffers
from the unknown scale factor problem that we have discussed previously. Figure 14.40
shows the magnitude of the estimated and true translation versus time. We see that the
translation is always overestimated and that there is no obvious relationship to the
true translation magnitude.�

Without knowledge of the scale factor we are somewhat stuck – we cannot estimate
the incremental motion between views. As we have seen before the solution involves in-
corporating other sources of information. For example other sensors such as odometry
or GPS can provide an estimate for the magnitude of the translational motion. The
odometer is only required to provide the distance travelled, since the rotational com-
ponent of the motion is determined without ambiguity. Alternatively we could use a
stereo camera to provide the depth information directly and the problem at each time
step is then determining the relative pose that aligns the 3D point clouds from the
current and previous time step, which is can be solved using ICP. Another option, and
the one we consider next is to consider that we know the height above ground of just one
observed world point. In a robotic scenario we might know that the robot moves on a
plane and that a particular feature point lies on the ground or the top of a doorway.

For this example we will assume that we know the height of point j and we arbi-
trarily choose

>> j = 1;

Fig. 14.40.

Magnitude of camera transla-
tional motion at each time step
as estimated from the essential
matrix and the ground truth

The true translation magnitude shows

the smoothly changing velocity created

by the tpoly function.

Chapter 14 · Using Multiple Images

425

and the point’s world coordinate is

>> P(:,j)'
ans =
 -0.3000 -0.3000 -0.3000

Since the camera lies in the world xy-plane with its y-axis pointing downward, then
CYj= 0.3

>> Yj = 0.3;

This is the only extra piece of information that we need but it does require that this
particular point can be found in all future images.

We will again illustrate the algorithm for step twenty of the path. We consider that
{1} is the camera frame in the previous time step and frame {2} the current time step.
A ray corresponding to the projection of the known point in {1} is

>> r1 = camera.ray(p(:,j,k-1))
r1 =
d=(0.117002, 0.108684, 0.987167), P0=(0, 0, 0)

which intersects the plane CY= CYj at the point⊳

>> P1 = r1.intersect([0 1 0 -Yj])
P1 =
 0.3230
 0.3000
 2.7249

The projection of this world point in {2} which we observe with the camera is given by Eq. 11.5

which we can write in terms of an explicit homogeneous scale factor λ

where σ is the unknown translational scale factor and a and b are vectors that are a
function of the known camera matrix C and the estimated camera rotation R. The
difference between the observed and actual image plane coordinate is known as
reprojection error and its magnitude is

To determine values of the translation scale factor σ and the homogeneous scale
factor λ we minimize this error by taking the partial derivatives and setting them to zero

which implies that the vector term in parentheses is orthogonal to both a and 2p. This
is the same as being proportional to their cross product

and by introducing another scale factor α we write this as an equality

In vector form the plane is (0, 1, 0)

(X, Y, Z)T= CY j or in homogeneous

form (0, 1, 0, −CYj) (X, Y, Z, 1)T= 0.

14.4 · Structure and Motion

426

that we rearrange as

which is a linear equation that can be solved for the unknown parameters σ , λ and α .
For this example

>> C = cam.C; PI = C(:,1:3); c4 = C(:,4);
>> [R,t] = tr2rt(inv(relpose))
>> a = PI*t; b = PI*R*P1+c4;
>> p2 = e2h(p(:,j,k));

and the parameters are estimated

>> phi = [-a p2 cross(a, p2)] \ b
phi =
 0.0561
 2.7991
 0

from which the displacement 1ξ2 can be computed

>> dT = inv([R phi(1)*t; 0 0 0 1])
dT =
 0.9775 0.0000 0.2108 -0.6324
 -0.0000 1.0000 -0.0000 0.0000
 -0.2108 0.0000 0.9775 0.0674
 0 0 0 1.0000

This is the same, to four significant figures, as the known camera motion shown earlier.
The missing scale factor has been recovered using the known height above ground of a
single observed point, known robot motion and a calibrated camera. The pose of the
camera in the world frame is estimated by accumulating the frame-to-frame pose changes

to obtain an estimate of the camera’s pose at each time step with respect to the initial
camera pose. Figure 14.41 shows the true and estimated position of camera’s centre

Fig. 14.41. Structure from a motion
with estimated scale from a single
world point. a Estimated and true
camera centre; b estimated and
true translational scale factor

Chapter 14 · Using Multiple Images

427

along the path as well as the estimated scale factor. This is a dead-reckoning approach
to position estimation and, as we discussed in Sect. 6.1, the error in the estimate of each
incremental motion will accumulate over time. The results for the case with noise added
to the feature coordinates is shown in Fig. 14.42 and we see that the scale estimate is
less accurate and that the dead-reckoned camera position has diverged from the true
position. The full code for this example is available as sfm1 in the examples directory.

Next we will estimate the structure of the scene with the sparse stereo approach we
used previously in Sect. 14.3.1. The rays in 3-dimensional space corresponding to the
projected points at the previous position are

>> r1 = camera.ray(p(:,:,k-1))

and at the current position they are

>> r2 = camera.move(dT).ray(p(:,:,k))

The rays intersect at

>> x = r1.intersect(r2)

which is a matrix where each column is the 3-dimensional location of the point with
respect to the previous camera pose. Using our estimate of the camera pose with re-
spect to the world these points can be transformed into the world coordinate frame

>> xc = homtrans(inv(T_est(:,:,k-1), x))

This approach is simple but has a number of drawbacks. The biggest problem is that
the 3-dimensional coordinates of every world point is estimated at every time step,
and the quality of the estimates depends strongly on the relative motion between the
camera and the world point. The triangulation involves three points, the two camera
centres and the world point as shown in Fig. 14.17. The side of the triangle between
the camera centres is the baseline, and if the baseline is small the estimates will be
susceptible to noise. This will be the case here since the camera motion between im-
ages is small. However if the second camera centre is collinear with the first camera
centre and the world point – the motion is along a line toward or away from the point
– there is a zero base line and we can learn nothing about that point’s depth.

Figure 14.42 showed the effect of image noise on the estimate of camera position,
and Fig. 14.43 shows the effect of this noise on the estimated location of a single world

Fig. 14.42. Structure from motion
with estimated scale from single
world point and pixel noise σ= 0.5.
a Estimated and true camera cen-
tre; b estimated and true transla-
tional scale factor

14.4 · Structure and Motion

428

point. We see that the estimates are scattered with some significant outliers that are in
error by more than 1 m. One solution is to increase the effective baseline by triangulat-
ing between every N frames instead of between every consecutive frame. Another op-
tion is to apply some low-pass filter� to the estimates, and Fig. 14.43 shows that the
mean of the estimates is close to the true position.� A better solution is to invert the
problem and use an extended Kalman filter as we did for the localization problem of
Sect. 6.1.2.� The filter’s state comprises the pose of the camera and the world coordi-
nates of landmarks. The observations are the pixel coordinates of the features. The
difference between the observed and predicted pixel coordinates is the innovation
which updates the state vector via the Kalman gain matrix. This framework allows for
improved estimates of the world point locations since it incorporates measurements
over many time steps and allows for explicit modeling of the uncertainty associated
with the world points. The Kalman filter framework also allows for the incorporation
of any number of other sensors such as odometry, GPS or laser range measurements
which can help to resolve the scale problem. Some book keeping is required to keep
track of features as they enter the camera view and later leave.

14.5 lApplication: Perspective Correction

Consider the image

>> im = iread('notre-dame.jpg', 'double');
>> idisp(im)

shown in Fig. 14.44. The shape of the building is significantly distorted because the camera’s
optical axis was not normal to the plane of the building and we see evidence of perspec-
tive foreshortening or keystone distortion. We manually pick four points, clockwise from
the bottom left, that are the corners of a large rectangle on the planar face of the building

>> p1 = ginput(4)'
ans =
 44.1364 94.0065 537.8506 611.8247
 377.0654 152.7850 163.4019 366.4486

which has one column per point that contains the u- and v-coordinate. We overlay this
on the image of the cathedral

>> plot_poly(p1, 'wo', 'fill', 'b', 'alpha', 0.2);

with translucent blue fill.� We use the extrema of these points to define the vertices of
a rectangle in the image

Fig. 14.43.

Estimated spread, pixel noise
σ= 0.5. Blue dots are the pair-
wise estimated point position,
red ◊-marker is the true location
of the world point (in camera
frame), and the green circle is
the mean of the estimated
positions

Such as a moving average filter, a Kalman

filter or an α−β tracking filter.

The errors do not appear to be zero-mean

so a mean estimate would be biased.

The Kalman filter assumes that the noise

is zero-mean and Gaussian, which is un-

likely to be the case here.

In computer graphics terminology alpha

is the transparency of a surface, and var-

ies from 0 completely transparent to 1

which is opaque.

Chapter 14 · Using Multiple Images

429

>> mn = min(p1');
>> mx = max(p1');
>> p2 = [mn(1) mx(2); mn(1) mn(2); mx(1) mn(2); mx(1) mx(2)]';

which we overlay on the image

>> plot_poly(p2, 'k', 'fill', 'r', 'alpha', 0.2)

in red.
The sets of points p1 and p2 are projections of world points that lie approximately

in a plane so we can compute an homography

>> H = homography(p1, p2)
H =
 1.4003 0.3827 -136.5900
 -0.0785 1.8049 -83.1054
 -0.0003 0.0016 1.0000

that will transform the vertices of the blue trapezoid to the vertices of the red rectangle.⊳

That is, the homography maps image coordinates from the distorted keystone shape
to an undistorted rectangular shape.

We can apply this homography to the coordinate of every pixel in an output image in
order to warp the input image. We use the Toolbox generalized image warping function

Fig. 14.44.

Photograph taken from the
ground shows the effect of

foreshortening which gives the
building a trapezoidal appear-
ance (also known as keystone

distortion). Four points on the
approximately planar face of the

building have been manually
picked as indicated by the white
�-markers (Notre Dame de Paris)

An homography can also be computed

from four lines in the plane, but this is

not supported by the Toolbox.

Fig. 14.45.

A fronto-parallel view synthe-
sized from Fig. 14.44. The image

has been transformed so that
the marked points become the

corners of a rectangle in the
image

14.5 · Application: Perspective Correction

430

>> homwarp(H, im, 'full')

and the result shown in Fig. 14.45 is a synthetic fronto-parallel view. This is equiva-
lent to the view that would be seen by a camera high in the air with its optical axis
normal to the face of the cathedral. However points that are not in the plane, such as
the left-hand side of the right bell tower have been distorted. The black pixels in the
output image are due to the corresponding pixel coordinates not being present in the
input image. Note that with no output argument specified the warped image is dis-
played using idisp.

In addition to creating this synthetic view we can decompose the homography to
recover the camera motion from the actual to the virtual viewpoint and also the sur-
face normal of the cathedral. As we saw in Sect. 14.2.4 we need to determine the cam-
era calibration matrix so that we can convert the projective homography into a Euclid-
ean homography. We obtain the focal length from the header of the EXIF-format file
that holds the image

>> [im,tags] = iread('notre-dame.jpg', 'double');
>> tags.DigitalCamera
ans =
 ExposureTime: 0.0031
 FNumber: 5.6000
 .
 .
 FocalLength: 7.4000
 .
 .

and the pixel dimensions are the same as for the example on page 402. We create a
calibrated camera

>> cam = CentralCamera('image', im, 'focal', 7.4e-3, ...
 'sensor', [7.18e-3,5.32e-3])
cam =
name: noname [central-perspective]
 focal length: 0.0074
 pixel size: (5.609e-06, 6.251e-06)
 principal pt: (640, 425.5)
 number pixels: 1280 x 851
 Tcam:
 1 0 0 0
 0 1 0 0
 0 0 1 0
 0 0 0 1

Now we use the camera model to compute and decompose the Euclidean homography

>> sol = cam.invH(H, 'verbose');
solution 1
 T = 0.98415 -0.15470 0.08667 0.23438
 0.15902 0.98623 -0.04534 0.92578
 -0.07846 0.05841 0.99520 -1.29375
 0.00000 0.00000 0.00000 1.00000
 n = -0.23041 0.88969 0.39416
solution 2
 T = 0.95800 0.23545 0.16369 0.07289
 -0.20987 0.18671 0.95974 -1.53146
 0.19541 -0.95378 0.22828 0.48488
 0.00000 0.00000 0.00000 1.00000
 n = -0.28109 0.11855 0.95233

which returns a structure array of two possible solutions. The coordinate frames for
this example are sketched in Fig. 14.46 and shows the actual and virtual camera poses.
In this case the second solution is the correct one since it represents considerable rota-
tion about the x-axis. The camera translation vector, which is not to scale but has the

Chapter 14 · Using Multiple Images

431

correct sign,⊳ is dominantly in the negative y- and positive z-direction with respect to
the frame {1}. The rotation matrix in XYZ-angle form

>> tr2rpy(sol(2).T, 'deg')
ans =
 -76.6202 9.4210 -13.8081

indicates that the camera needs to be tilted downward (roll is rotation about the
camera’s x-axis) by 76 degrees to achieve the attitude of the virtual camera. The nor-
mal to the frontal plane of the church n is defined with respect to {1} and is essen-
tially in the camera z-direction as expected.

14.6 lApplication: Mosaicing

Mosaicing or image stitching is the process of creating a large-scale composite image
from a number of overlapping images. It is commonly applied to aerial and satellite
images to create a seemingly continuous single picture of the earth’s surface. It can
also be applied to images of the ocean floor captured from downward looking cam-
eras on an underwater robot. The panorama generation software supplied with digital
cameras is another example of mosaicing.

The input to the mosaicing process is a sequence of overlapping images.⊳ It is not
necessary to know the camera calibration parameters or the pose of the camera where
the images were taken – the camera can rotate arbitrarily between images and the scale
can change. However for the approach that we will use the scene is assumed to be planar
which is reasonable for high-altitude photography where the vertical relief⊳ is small.

We will illustrate our discussion with a real example using the pair of images

>> im1 = iread('mosaic/aerial2-1.png', 'double', 'grey');
>> im2 = iread('mosaic/aerial2-2.png', 'double', 'grey');

which are each 1 280× 1 024. We create an empty composite image that is 2 000× 2 000

>> composite = zeros(2000,2000);

that will hold the mosaic. The essentials of the mosaicing process are shown in Fig. 14.47.
The first image is easy and we simply paste it into the top left corner

>> composite = ipaste(composite, im1, [1 1]);

of the composite image as shown in red in Fig. 14.47. The next image, shown in blue, is
more complex and needs to be rotated, scaled and translated so that it correctly over-
lays the red image.

Fig. 14.46.

Notre-Dame example showing
the two camera coordinate

frames. The blue frame {1} is
that of the camera that took the
image, and the red frame {2} is
the viewpoint for the synthetic

fronto-parallel view

See Malis and Vargas (2007).

As a rule of thumb images should over-

lap by 60% of area in the forward direc-

tion and 30% sideways.

The ratio of the height of points above

the plane to the distance of the camera

from the plane.

14.6 · Application: Mosaicing

432

The first step is to identify common feature points which are known as tie points,
and we use now familiar tools

>> surf = isurf(im1)
>> surf = isurf(im2)
>> m = surf.match(surf);

and then RANSAC to estimate the homography

>> [H,in] = m.ransac(@homography, 0.2)

Since we assume the features lie on a plane the homography maps 1p to 2p. Now we
wish to map 2p to its corresponding coordinate in the first image

We do this for every pixel in the new image by warping

>> [tile,t] = homwarp(inv(H), im2, 'full', 'extrapval', 0);

As shown in Fig. 14.47 the warped blue image falls outside the bounds of the original
blue image and the option 'full' specifies that the returned image is the minimum
containing rectangle� of the warped image. This image is referred to as a tile and
shown with a dashed black line. The vector t is returned by homwarp and gives the
offset of the tile’s coordinate frame with respect to the original image. In general not
every pixel in the tile has a corresponding point in the input image and those pixels
are set to zero, as specified by the fifth argument.�

Now the tile has to be blended into the composite image

>> canvas = ipaste(canvas, tile, t, 'add');

and the result is shown in Fig. 14.48. We can clearly see several images overlaid and
with excellent alignment. The non-mapped pixels in the warped image are set to zero
so adding them causes no change to the existing pixel values in the composite image.

Simply adding the tile into the composite image means that overlapping pixels are
necessarily brighter and a number of different strategies can be used to remedy this. We
could instead set pixels in the composite image from the tile only if the composite image
pixels have not yet been set. Conversely we could always set pixels in the composite image
from the non-zero pixels in the tile. Alternatively we set the composite image pixels to the
mean of the tile and the composite image. This requires that we tag the tile pixels that are
not mapped

>> [tile,t] = homwarp(inv(H), im2, 'full', 'extrapval', NaN);

and then blend using the 'mean' option�

>> canvas = ipaste(canvas, tile, t, 'mean');

Fig. 14.47.

The first image in the sequence is
shown as red, the second as blue.
The second image is warped into
the image tile and then blended
into the composite image

The bounding box of the tile is com-

puted by applying the homography to

the image corners A= (1, 1), B= (W, 1),

C= (W, H) and D= (1, H), where W and

H are the width and height respectively,

and finding the bounds in the u- and

v-directions.

The default is NaN.

Chapter 14 · Using Multiple Images

Which ignores any pixels with the value

NaN.

433

If the images were taken with the same exposure then the edges of the tiles would not
be visible. If the exposures were different the two sets of overlapping pixels have to
analyzed to determine the average intensity offset and scale factor which can be used
to correct the tile before blending – a process known as tone matching.

Finally, we need to consider the effect of points in the image that are not in the
ground plane such as those on a tall building. An image taken from directly overhead
will show just the roof of the building, but an image taken from further away will be an
oblique view that shows the side of the building. In a mosaic we want to create the
illusion that we are directly above every point in the image so we should not see the
sides of any building.⊳ This type of image is known as an orthophoto and unlike a
perspective view, where rays converge on the camera’s focal point, the rays are all par-
allel which implies a viewpoint at infinity. At every pixel in the composite image we
can choose a pixel from any of the overlapping tiles. To best approximate an orthophoto
we should choose the pixel that is closest to overhead, that is, prior to warping the
pixel was closest to the principal point.

In photogrammetry this type of mosaic is referred to as an uncontrolled digital
mosaic since it does not use explicit control points – manually identified corresponding
features in the images. The result is an orthophoto which has a viewpoint at infinity.
The full code is given by mosaic1 in the examples directory. The principles illustrated
here can also be applied to the problem of image stabilization. The homography is
used to map features in the new image to the location they had in the previous image.

14.7 lApplication: Image Matching and Retrieval

Given a set of images {Ij, j= 1⋯N} and a new image I′ the image matching problem
is to determine j such that I′ and Ij are most similar. This is a difficult problem when
we consider the effect of changes in viewpoint and exposure. Pixel-level similarity
measures such as SSD or ZNCC that we used previously are not suitable for this prob-
lem since quite small changes in viewpoint will result in almost zero similarity.

Image matching can be used by a robot to determine if it has visited a particular
place before, or seen the same object before. If those previous images have some asso-

Fig. 14.48.

Example image mosaic. At the
bottom of the frame we can

clearly see three overlapping
views of the airport runway

which shows good alignment
between the frames

Google Earth provides an imperfect

orthophoto. When looking at cities it is

very common to see oblique views of

buildings.

14.7 · Application: Image Matching and Retrieval

434

ciated semantic data such as the name of an object or the name of a place then by
inference that semantic data applies to the new image. For example if a new image
matches an existing image that has the semantic tag “lobby” then it implies the robot is
seeing the same scene and is therefore in or close to, the lobby.

The particular technique that we will introduce is commonly referred to as “bag of words”
and has become very popular in robotics in the last few years. It builds on techniques we
have previously encountered such as SURF point features and k-means clustering.

We start by loading a set of twenty images

>> images = iread('campus/*.jpg', 'mono');

as a 426× 640× 20 array and for each of these we compute the SURF features

>> sf = isurf(images);

which returns a MATLAB® cell array whose elements are vectors of SURF features that
correspond to the input images. For example

>> sf{1}
ans =
663 features (listing suppressed)
 Properties: theta image_id scale u v strength descriptor

is a vector of 663 SURF feature objects corresponding to the first image in the se-
quence. The set of all SURF features across all images is

>> sf = [sf{:}]
sf =
17945 features (listing suppressed)
 Properties: theta image_id scale u v strength descriptor

which is a vector of 17 945 SURF features objects.
Consider a particular SURF feature

>> sf(380)
ans =
 (48.1448,219.771), theta=4.4736, image_id=1, scale=3.48386,
 strength=0.000615617, descrip= ..

and we see the SurfPointFeature properties discussed earlier such as centroid,
scale and orientation. The property image_id indicates that this feature was extracted
from the first image in the original image sequence. We can display that image and
superimpose the feature

>> idisp(images(:,:,1))
>> sf(380).plot('g+')
>> sf(380).plot_scale('g', 'clock')

which is shown in Fig. 14.49a. The support region for this feature

>> sf(380).support(images)

is shown in Fig. 14.49b. The support region shows bricks and the edge of a window.
The support method uses the image_id property to determine which of the passed
images contains the feature.

The key insight behind the bag of words technique is that many of these features
will describe visually similar scene elements such as leaves, corners of windows, bricks,
chimneys and so on. If we consider each SURF feature descriptor as a point in a
64-dimensional space then similar descriptors will form clusters, and this a k-means
problem. To find 2 000 feature clusters

>> bag = BagOfWords(sf, 2000)

returns a BagOfWords object that contains the original features, the centre of each
cluster, and various other information.� Each cluster is referred to as a visual word
and is described by a 64-element SURF descriptor. The set of all visual words, 2 000 in
this case, is a visual vocabulary. Just as a document comprises a set of words drawn

The BagOfWords class use the

MEX-file k-means implementation

from http://www.vlfeat.org/. This uses

its own random number generator and

to initialize it to a known state use

vl_twister('STATE', 0.0);.

Chapter 14 · Using Multiple Images

435

from some vocabulary, each image comprises a collection (or bag) of words drawn
from the visual vocabulary.

The clustering step assigns a visual word index to every SURF feature. For the par-
ticular feature shown above

>> bag.words(380)
ans =
 1057

we find that the k-means clustering has assigned this image feature to word 1 057 in the
vocabulary – it is an instance of visual word 1 057. That particular visual word appears

>> bag.occurrence(1057)
ans =
 6

times across the set of images, and it appears at least once in each of the images

>> bag.contains(1057)
ans =
 1 2 3 4 14 16

We can display some of the different instances of word 1 057 by

>> bag.exemplars(1057, images)

which is shown in Fig. 14.50. These exemplars actually look quite different, but we
need to keep in mind that we are viewing them as patterns of pixels whereas the simi-
larity is in terms of the descriptor.⊳ The exemplars do however share some dominant
horizontal and vertical structure.

Visual words occur with quite different frequencies

>> [word,f] = bag.wordfreq()

where word is a vector containing all unique words and f are their corresponding
frequencies. We can display these in descending order of frequency

>> bar(sort(f, 'descend'))

Fig. 14.49.

a Image 1 with visual word
SURF feature 380 indicated by

green circle showing scale and a
radial line showing orientation
direction; b the square support
region has the same area as the
circle and the horizontal axis is

parallel to the orientation
direction

Fig. 14.50. Exemplars of visual
word 1057 from the various images
in which it appears. The annotation
is of the form word/image

The descriptor comprises responses of

Haar wavelet detectors computed over

multiple windows within the support

region.

14.7 · Application: Image Matching and Retrieval

436

which is shown in Fig. 14.51. Words that occur very frequently have less meaning or
power to discriminate between images. They are analogous to English words that are
considered stop words in text document retrieval.� The visual stop words are removed
from the bag of words

>> bag.remove_stop(50)
Removing 1850 features associated with 50 most frequent words
>> bag
bag =
BagOfWords: 16095 features from 20 images
 1950 words, 50 stop words

which leaves some 16 000 SURF features behind. This method performs relabelling so
that word labels are now in the interval 1⋯ 1 950.

Our visual vocabulary comprises K visual words and in this case K= 1 950. We
apply a technique from text document retrieval and describe each image by a
K-element vector

whose elements describes the frequency of the corresponding visual words in the image.

(14.18)

where j is the visual word label, N is the total number of images in the database, Nj is
the number of images which contain word j, ni is the number of words in image i, and nji

is the number of times word j appears in image i. The inverse document frequency
(idf) term is a weighting that reduces the significance of words that are common across
all images and which are thus less discriminatory. The weighted word frequency vec-
tors are a property of the BagOfWords object but can be accessed by

>> M = bag.wordvector;

which is a 1 950× 20 matrix and each column is a 1 950-element vector that concisely
describes the corresponding image.�

The similarity between two images is the cosine of the angle between their corre-
sponding word-frequency vectors

Fig. 14.51.

Histogram of the number of oc-
currences of each word (sorted).
Note the small number of words
that occur very frequently

Search engines ignore words such as ‘a’,

‘and’, ‘the’ and so on.

This might seem like a very large vector

but it contains less than 1% of the num-

ber of elements of the original image.

Chapter 14 · Using Multiple Images

437

and is implemented by the similarity method. A value of one indicates maximum
similarity. To compute the mutual similarity between two bags of words is simply

>> S = bag.similarity(bag)

which returns a 20× 20 similarity matrix where the elements S(i,j) indicates the
similarity between the ith column and jth columns of M, or between image i and image j.
Such a similarity matrix is best interpreted visually

>> idisp(S, 'bar')

which is shown in Fig. 14.52. The bright diagonal indicates, as a useful cross check,
that image i is identical to image i.

Consider image 11 shown in Fig. 14.53a. Its similarity to other images is given by
row, or column, 11 of the similarity matrix

>> s = S(:,11);

which we sort into descending order of similarity

>> [z,k] = sort(s, 'descend');
>> [z k]
ans =
 1.0000 11.0000
 0.3448 9.0000
 0.2377 13.0000
 0.1948 10.0000
 0.1719 7.0000
 .
 .

where each row comprises the similarity measure and the corresponding image. Im-
age 11 is identical to image 11 as expected, and in decreasing order of similarity we
have images 9, 13, 10 and so on. These are shown in Fig. 14.53 and we see that the
algorithm has recalled quite different views of the same building.

Now consider that we have some new images and we wish to determine which of
the previous images is the most similar. Perhaps the robot has taken a picture and
wishes to compare it to its database of existing images. The steps are broadly similar to
the previous case

>> images2 = iread('campus/holdout/*.jpg', 'mono');
>> sf2 = isurf(images2)

but rather than perform clustering we want to assign the features to the existing set of
visual words, that is, to determine the closest visual word for each of the new feature
descriptors

Fig. 14.52.

Similarity matrix for 20 images
where light colors indicate strong
similarity. Element (i, j) indicates

the similarity between image i
and image j

14.7 · Application: Image Matching and Retrieval

438

>> bag2 = BagOfWords(sf2, bag)
bag2 =
BagOfWords: 4708 features from 5 images
 1950 words, 50 stop words

This operation also removes any features words that were previously determined to be
stop words, and computes the word frequency vectors� according to Eq. 14.18.

Finally the similarity between the images in the two bags of words is

>> S2 = bag.similarity(bag2);

which returns a 20× 5 matrix where the elements S(i,j) indicates the similarity
between the existing image i and new image j. The maxima in each column corresponds
to the most similar image in the previously observed set

>> [z,i] = max(S2)
z =
 0.2751 0.690 0.5121 0.5017 0.3177
i =
 7 11 16 18 20

New image 1 best matches image 7 in the original sequence, new image 2 matches im-
age 11 and so on. The new images and their closest existing images are shown in
Fig. 14.54. The first recall has a low similarity score and is incorrect – it shows a very
different building. However the two scenes do have some similar features such as win-
dows, roof line and gutters.

Fig. 14.53. Image recall. Image 11
is the query, and in decreasing
order of match quality we have re-
called images 9, 13 and 10

Which requires the image-word statistics

from the existing bag of words to com-

pute the idf weighting terms.

Chapter 14 · Using Multiple Images

439

14.8 lApplication: Image Sequence Processing

In this final section of the chapter, and this part of the book, we look at how to use the
Toolbox for processing image sequences. We load a sequence of images taken from a
car driving along a road

>> im = iread('bridge-l/*.png', 'roi', [20 750; 20 480]);

and the option 'roi' selects a region of interest from each image to eliminate an
irregular black border.⊳ These images are unusual in having 16-bit pixels

>> about(im)
im [uint16] : 461x731x251 (169169482 bytes)

and the image im belongs to the class 'uint16'. Since this sequence is already nearly
200 Mbyte we do not convert it to double precision since this would quadruple the
amount of memory required.

The image sequence can be displayed as an animation

>> ianimate(im, 'fps', 10);

at 10 frames per second.

Fig. 14.54. Image recall for new
images. The new query images
a and c recall the database images
b and d respectively

The black border is the result of image

rectification.

14.8 · Application: Image Sequence Processing

440

For each frame we compute corner features

>> c = icorner(im, 'nfeat', 200, 'patch', 7);

and for a change we have used Harris corners since they are computationally cheaper.
For this application the change in orientation and scale from frame to frame is small
and Harris corner features are well suited for this purpose. The function returns a
cell array with one element per input image, and each element is a vector of the
200 strongest Harris corner features per image. The 'patch' option specifies a
15× 15 local neighbourhood descriptor according to Eq. 14.1 which is a 225-element
unit vector. The image sequence can be displayed as an animation with the features
overlaid

>> ianimate(im, c, 'fps', 10);

at 10 frames per second and a single frame of this sequence is shown in Fig. 14.55. The
features are associated with regions of high gradient such as the edges of trees, as well
as the corners of signs and cars. Watching the animation we see that the corner fea-
tures stick reliably to world points for many frames. The motion of features in the
image is known as optical flow and is a function of the camera’s motion through the
world and the 3-dimensional structure of the world.�

The Toolbox class Tracker maintains a list of tracks, which are the motion of
individual features over time

>> t = Tracker(im, c);

Figure 14.56a shows one frame from the operation of Tracker where the features are
annotated with a unique identifier associated with a particular track. For each track
the object maintains the track number, the current position of the feature, the feature
descriptor and some statistics such as the number of times it has been seen and how
many frames since it was last seen.

For each new frame every track finds a subset of features within a specified radius
of its position in the previous frame. The descriptors of these features are compared
with the track’s feature descriptor from the previous frame, and if a match is found the
track is updated. Any feature that is not claimed by a track is considered to be the start
of a new track – a new entry is created in the table and a unique track identifier is
assigned to it. If a track doesn’t find a matching feature in the current frame a counter
is incremented, and when it exceeds some threshold the track is retired.

The descriptor associated with the track is updated at each time step. In this way,
even if the support region changes in appearance from frame to frame, we always
compare new features to the most recent appearance of the tracked feature.

Fig. 14.55.

Frame number 15 from the
bridge-l image sequence
with overlaid features (image
from .enpeda. project, Klette
et al. 2011)

Chapter 14 · Using Multiple Images

We will revisit optical flow in the next

chapter.

441

Data about the tracks is stored as a property of the class. The feature trajectories
can be displayed as individual lines

>> t.plot()

as shown in Fig. 14.56b. The motion of features outward from the centre of the image
is very clear and the point from which features appear to expand is called the centre of
expansion. In terms of 2-camera epipolar geometry the second camera is in front of
the first camera, so the epipole will be close the middle of the image and the epipolar
lines all pass through it. The corresponding points must lie on the epipolar lines so
therefore move along these radiating lines, and the amount of motion is inversely re-
lated to the depth of the world point. In the next part of the book we will explore the
relationship between feature motion and camera motion in more detail.

We see that there are some tracks that are not radial and these are due to the rather
simplistic tracker which is not enforcing frame-to-frame epipolar constraints and which
RANSAC could eliminate. One of the horizontal tracks is due to a car driving across a
bridge which has violated our assumption that the world is rigid, that is, points in the
world do not move with respect to each other. The number of frames over which fea-
tures are tracked varies considerably. The method tracklengths returns a vector
of the number of frames that each feature was tracked for

>> ihist(t.tracklengths(), 'normcdf')

and Fig. 14.57 shows the distribution of feature track lengths. The majority are quite
short, the mean is 14 frames, but the longest is 140 frames.

Fig. 14.56. Temporal tracking of
features. a Features with unique
track identifiers shown; b all fea-
ture tracks

Fig. 14.57.

Cumulative histogram of track
length. 50% of the tracks are

longer than 10 frames, and 5%
are longer than 40 frames

�
14.8 · Application: Image Sequence Processing

442

14.9 lWrapping Up

This chapter has covered many topics but the aim has been to demonstrate a multiplicity
of concepts that are of use in real robotic vision systems. There have been two common
threads through this chapter. The first has been the use of corner features to find distinc-
tive points in images, and matching them to the same world point in another image. The
second thread has been the use of additional sources of information to recover the depth
of a point or translation scale that is lost in the perspective projection process.

We extended the geometry of single camera imaging to the case of two cameras and
showed how corresponding points in the two images are constrained by the funda-
mental matrix. We showed how the fundamental matrix can be estimated from image
data, the effect of incorrect data association, and how to overcome this using the RANSAC
algorithm. Using camera intrinsic parameters the essential matrix can be computed
and then decomposed to give the camera motion between the two view, but the transla-
tion has an unknown scale factor. With some extra information such as the magnitude of
the translation the camera motion can be estimated completely. Given the camera mo-
tion then the 3-dimensional coordinates of points in the world can be estimated.

World points that lie on a plane induce an homography that is a linear mapping of
image points between images. The homography can be used to detect points that do
not lie in the plane and can be decomposed to give the camera motion between the
two views (translation again has an unknown scale factor) and the normal to the plane.

If the fundamental matrix is known then a pair of overlapping images can be recti-
fied to create an epipolar-aligned stereo pair and dense stereo matching can be used to
recover the world coordinates for every point. Errors due to effects such as occlusion
and lack of texture were discussed as were techniques to detect these situations.

These multi-view techniques were then used in a number of application examples
such as perspective correction, mosaic creation, image retrieval and image sequence
analysis.

Further Reading

3-dimensional reconstruction and camera pose estimation has been studied by the
photogrammetry community since the mid nineteenth century. 3-dimensional com-
puter vision or robot vision has been studied by the computer vision and artificial
intelligence communities since the 1960s. This book follows the language and nomen-
clature associated with the computer vision literature, but the photogrammetric lit-
erature can be comprehended with only a little extra difficulty.

Significant early work on multi-view geometry was conducted at laboratories such
as Stanford, SRI International, MIT AI laboratory, CMU, JPL, INRIA, Oxford and ETL
Japan in the 1980s and 1990s and led to a number of text books being published in
the early 2000s.

The definitive references for multiple-view geometry are Hartley and Zisserman
(2003) and Ma et al. (2003). These books present quite different approaches to the
same body of material. The former takes a more geometric approach while the latter is
more mathematical. Unfortunately they use quite different notation, and each differs
from the notation used in this book – a summary of the important notational ele-
ments is given in Table 14.1. These books all cover feature extraction (using Harris
corner features, since they were published before scale invariant feature detectors such as
SIFT and SURF corner detectors were developed); the geometry of one, two and N views;
fundamental and essential matrices; homographies; and the recovery of 3-dimensional
scene structure and camera motion through offline batch techniques. Both provide
the key algorithms in pseudo-code and have some supporting MATLAB® code on their
associated web sites. The slightly earlier book by Faugeras et al. (2001) covers much of
the same material using a fairly mathematical approach and with different notation

Chapter 14 · Using Multiple Images

443

again. The older book by Faugeras (1993) focuses on sparse stereo from line features.
The recent book by Szeliski (2010) provides a very readable and deeper discussion of
the topics in this chapter.

References related to SURF and other feature detectors were previously discussed
on page 377. The performance of feature detectors and their matching performance is
covered in Mikolajczyk and Schmid (2005) which reviews a number of different fea-
ture descriptors including spin images and local jets.⊳

The RANSAC algorithm described by Fischler and Bolles (1981) is the workhorse
of all the feature-based methods discussed in this chapter. A more recent development
is PROSAC (Chum and Matas 2005) which exploits the ordering of corresponding
points. Pilu (1997) discusses how SVD can be applied to a matrix formed from the
distances between features to determine correspondence. Dellaert et al. (2000) describe
a probabilistic approach to determining structure from a group of images not neces-
sarily in order.

The term fundamental matrix was defined in the thesis of Luong (1992). The book
by Xu and Zhang (1996) is a readable introduction to epipolar geometry. Epipolar
geometry can also be formulated for non-perspective cameras in which case the
epipolar line becomes an epipolar curve (Miãuïík and Pajdla 2003; Svoboda and Pajdla
2002). For three views the geometry is described by the trifocal tensor T which is a
3× 3× 3 tensor with 18 degrees of freedom that relates a point in one image to epipolar
lines in two other images (Hartley and Zisserman 2003; Ma et al. 2003). An important
early paper on epipolar geometry for an image sequence is Bolles et al. (1987).

The essential matrix was first described a decade earlier in a letter to Nature
(Longuet-Higgins 1981) by the eminent theoretical chemist and cognitive scientist
Christopher Longuet-Higgins (1923–2004). The paper describes a method of estimating
the essential matrix from eight corresponding point pairs. The decomposition of the
essential matrix was first described in Faugeras (1993, § 7.3.1) but is also covered in the
texts Hartley and Zisserman (2003) and Ma et al. (2003). In this chapter we have esti-
mated camera motion by first computing the essential matrix and then decomposing
it. The first step requires at least eight pairs of corresponding points but algorithms
such as Nistér (2003), Li and Hartley (2006) compute the motion directly from just five
pairs of points. Decomposition of an homography is described by Faugeras and Lustman
(1988), Hartley and Zisserman (2003), Ma et al. (2003), and the comprehensive technical
report by Malis and Vargas (2007). The relationships between these matrices, camera
motion, and the relevant Toolbox functions are summarized in Fig. 14.58.

Stereo cameras and stereo matching software are available today from several ven-
dors and can provide high-resolution depth maps at more than 10 Hz on standard
computers. A decade ago this was difficult and custom hardware including FPGAs was
required to achieve real-time operation (Corke et al. 1999; Woodfill and Von Herzen
1997). The application of stereo vision for planetary rover navigation is discussed by

Table 14.1.

Rosetta stone. Summary of
notational differences between

two other popular textbooks
and this book

A jet is a vector of higher order deriva-

tives such as IIIIIuu, IIIIIvv, IIIIIuv, IIIIIuuu, IIIIIuuv, IIIIIuvv, IIIIIvvv,

IIIIIuuuu, IIIIIuuuv, IIIIIuuvv, IIIIIuvvv, IIIIIvvvv and so on (Miko-

lajczyk and Schmid 2005).

14.9 · Wrapping Up

444

Matthies (1992). More than two cameras can be used, and multi-camera stereo was
introduced by Okutomi and Kanade (1993) and provides robustness to problems such
as the picket fence effect.

Brown et al. (2003) provide a readable review of stereo vision techniques with a focus
on real-time issues. An old but clearly written book on the principles of stereo vision is
Shirai (1987). Scharstein and Szeliski (2002) consider the stereo process as four steps:
matching, aggregation, disparity computation and refinement. The cost and performance
of different algorithms for each step are compared. The example in this chapter would be
described as: NCC matching, box filter aggregation, winner takes all, and sub-pixel re-
finement. More sophisticated approaches are described that take similarity of neigh-
bouring pixels into account using iterative regularization, dynamic programming or graph-
based methods which can give improved performance at discontinuities and can explic-
itly model occlusion. However improving the smoothness and appearance of disparity
data involves making assumptions about the world for which the images do not provide
strong evidence, and should be used with caution for robotic control. The similarity of a
stereo camera to our own two eyes is very striking, and while we do make strong use of
stereo vision it is not the only technique we use to infer distance (Cutting 1997).

The ICP algorithm (Besl and McKay 1992) is used for a wide range of applications
from robotics to medical imaging. ICP is fast but determing the correspondences via
nearest neighbours is an expensive O(N2) operation. Many variations have been devel-
oped that make the approach robust to outlier data and to improve computational
speed for large datasets. Salvi et al. (2007) provide a recent review and comparison of
some different algorithms. Determining the relative orientation between two sets of
points is a classical problem and the SVD approach used here is described by Arun
et al. (1987). Solutions based on quaternions and orthornormal rotation matrices were
described by Horn (Horn et al. 1988; Horn 1987).

Structure from motion (SfM), the simultaneous recovery of world structure and cam-
era motion, is a classical problem in computer vision. Two useful review papers are by
Huang and Netravali (1994) which provides a taxonomy of approaches, and Jebara et al.
(1999). Broida et al. (1990) describe an early recursive SfM technique for a monocular
camera sequence using an EKF where each world point is represented by its (X, Y, Z)
coordinate. McLauchlan provides a detailed description of a variable-length state estima-
tor for SfM (McLauchlan 1999). Azarbayejani and Pentland (1995) present a recursive
approach where each world point is parameterized by a scalar, its depth with respect
to the first image. A more recent algorithm with bounded estimation error is described

Fig. 14.58.

Toolbox functions and camera
object methods, and their inter-
relationship

Chapter 14 · Using Multiple Images

445

by Chiuso et al. (2002) and also discusses the problem of scale variation. The MonoSlam
system by Davison et al. (2007) is an impressive monocular SfM system that maintains
a local map that includes features even when they are not currently in the field of view.
The application of SfM to large-scale urban mapping is becoming increasing popular
and Pollefeys et al. (2008) describe a system for offline processing of large image sets.

The offline SfM problem, in which a sequence of images is processed to recover the
motion and structure, is not covered in this book. The approach typically involves
estimating the camera matrix for each view, computing a projective reconstruction,
and then upgrading it to a Euclidean reconstruction (Hartley and Zisserman 2003; Ma
et al. 2003). A key part of these offline techniques is bundle adjustment which is an
optimization process that adjusts the estimated camera poses and world points to
minimize the error between estimated and actual image points. A good introduction
to bundle adjustment is Triggs et al. (2000).

The SfM problem can be simplified by using stereo rather than monocular image
sequences (Molton and Brady 2000; Zhang et al. 1992), or by incorporating inertial
data (Strelow and Singh 2004). A related technique is visual odometry (VO) which is
concerned only with recovering the camera motion. Nistér et al. (2006) describe a point
feature-based system for monocular or stereo vision. Maimone et al. (2007) describe
experience with stereo-camera VO on the Mars rover and Corke et al. (2004) describe
catadioptric VO for a prototype planetary rover.

Mosaicing is a process as old as photography. In the past it was highly skilled
and labour intensive requiring photographs, scalpels and sandpaper. The surface of
the Moon and nearby planets was mosaiced manually in the 1960s using imagery
sent back by robotic spacecraft. Today a number of high-quality mosaicing tools are
available for creating panoramas, for example the Hugin open source project http://

hugin.sourceforge.net and the proprietary AutoStitch.
The “bag of words” technique for image retrieval was first proposed by Sivic and

Zisserman (2003) and has been used by many other researchers since. A notable ex-
tension for robotic applications is FABMAP (Cummins and Newman 2008) which ex-
plicitly accounts for the joint probability of feature occurrence and associates a prob-
ability with the image match.

Image sequence analysis is the core of many real-time robotic vision systems. Real-
time feature tracking is described by Hager and Toyama (1998), Lucas and Kanade
(1981) and is typically based on the computationally cheaper Harris detectors or the
pyramidal Kanade-Lucas-Tomasi (KLT) tracker. SURF detectors are still too time con-
suming to use for this purpose although some C-based implementations and GPU
implementations are capable of modest real-time perofrmance.

Resources

The field of computer vision has progressed through the availability of standard
datasets. These have enabled researchers to quantitatively compare the performance
of different algorithms on the same data. One of the earliest collections of stereo
image pairs was the JISCT dataset (Bolles et al. 1993) named for the research groups
that contributed to it: JPL, INRIA, SRI, CMU, and Teleos. It is available at http://

vasc.ri.cmu.edu/idb/html/jisct. The more recent Middlebury dataset (Scharstein and
Szeliski 2002) at http://vision.middlebury.edu/stereo provides an extensive collec-
tion of stereo images, at high resolution, taken at different exposure settings and
including ground truth data. Stereo images from NASA’s Mars exploration rovers Spirit
and Opportunity are available online at http://marsrover.nasa.gov/gallery/3d. These
are in anaglyph format with left and right images encoded as red and cyan respec-
tively. The red and blue color planes of the anaglyph image are rectified left and right
images. Motion datasets include classic motion sequences of indoor scenes http://

vasc.ri.cmu.edu//idb/html/motion, people moving inside a building http://

14.9 · Wrapping Up

446

homepages.inf.ed.ac.uk/rbf/CAVIARDATA1, traffic scenes http://i21www.ira.uka.de/

image_sequences, and from a moving vehicle http://www.mi.auckland.ac.nz/EISATS.
An implementation of the KLT feature tracker, in C, written by Stan Birchfield is

available at http://www.ces.clemson.edu/~stb/klt. A GPU-based version of KLT, in C,
by Christoper Zach is available at http://www.cs.unc.edu/~cmzach/opensource.html.
Pointers to SIFT and SURF implementations are given on page 377. The Epipolar Geom-
etry Toolbox (Mariottini and Prattichizzo 2005) for MATLAB® by Gian Luca Mariottini
and Domenico Prattichizzo is available at http://egt.dii.unisi.it/#tth_sEc7 and handles
perspective and catadioptric cameras. Andrew Davison’s MonoSLAM system for C and
MATLAB® is available at http://www.doc.ic.ac.uk/~ajd/software.html.

There are several offline or batch SfM Toolboxes available. The Structure and Motion
Toolkit in MATLAB® by Philip Torr (2002) is available at http://www.mathworks.com/

matlabcentral/fileexchange/4576-structure-and-motion-toolkit-in-MATLAB®. The Struc-
ture from Motion Toolbox by Vincent Ribaud is a collection of popular SFM algorithms
(Rabaud, http://vision.ucsd.edu/~vrabaud/toolbox) and is available at http://

code.google.com/p/vincents-structure-from-motion-matlab-toolbox. That in turn makes
use of the Sparse Bundle Adjustment (SBA) tool by Lourakis and Argyros (2009). An
alternative bundle adjustment package is Simple Sparse Bundle Adjustment (SSBA) by
Christoper Zach which is available at http://www.cs.unc.edu/~cmzach/opensource.html.

The fundamental matrix song can be found at http://danielwedge.com/fmatrix/.

Exercises

1. Corner features. Examine the cumulative distribution of corner strength for Harris
and SURF features. What is an appropriate way to choose strong corners for feature
matching?

2. Feature matching. We could define the quality of descriptor-based feature match-
ing in terms of the percentage of inliers after applying RANSAC.
a) Take any image. We will match this image against various transforms of itself to

explore the robustness of SURF and Harris features. The transforms are: (a) scale
the intensity by 70%; (b) add Gaussian noise with standard deviation of 0.05, 0.5
and 2 greyvalues; (c) scale the size of the image by 0.9, 0.8, 0.7, 0.6 and 0.5; (d) rotate
by 5, 10, 15, 20, 30, 40 degrees.

b) For the Harris detector compare the performance for the structure-tensor-based
feature and and the patch descriptor sizes of 3× 3, 7× 7 and 11× 11 and 15× 15.

c) Try increasing the suppression radius for SURF and Harris corners. Does the
lower density of matches improve the matching performance?

d) The Harris detector can process a color image. Does this lead to improved per-
formance compared to the greyscale version of the same image.

e) Is there any correlation between outlier matches and strength of the corner fea-
tures involved?

3. Write the equation for the epipolar line in image two, given a point in image one.
4. Show that the epipoles are the null-space of the fundamental matrix.
5. Can you determine the camera matrix C for camera two given the fundamental

matrix and the camera matrix for camera one?
6. Estimating the fundamental matrix (page 391)

a) For the synthetic data example vary the number of points and the additive
Gaussian noise and observe the effect on the residual.

b) For the Eiffel tower data observe the effect of varying the parameter to RANSAC.
Repeat this with SURF features computed with a lower strength threshold (the
default is 0.002).

c) What is the probability of drawing 8 inlier points in a random sample (without
replacement)?

Chapter 14 · Using Multiple Images

447

7. Essential matrix (page 390)
a) Create a set of corresponding points for a camera undergoing pure rotational

motion, and compute the fundamental and essential matrix. Can you recover the
rotational motion?

b) For a case of translational and rotational motion visualize both poses that result
from decomposing the essential matrix. Sketch it or use trplot.

8. Sparse stereo (page 401)
a) The ray intersection method can return the closest distance between the rays

(which is ideally zero). Plot a histogram of the closing error and compute the
mean and maximum error.

b) The assumed camera translation magnitude was 30 cm. Repeat for 25 and 35 cm.
Are the closing error statistics changed? Can you determine what translation
magnitude minimizes this error?

9. Derive a relationship for depth in terms of disparity for the case of verged cameras.
That is, cameras with their optical axes intersecting similar to the cameras shown
in Fig. 14.6.

10. Stereo vision. Using the rock piles example (page 405)
a) Use idisp to zoom in on the disparity image and examine pixel values on the

boundaries of the image and around the edges of rocks.
b) Experiment with different similarity measures and window sizes. What effects

do you observe in the disparity image and computation time?
c) Experiment with changing the disparity range. Try [50,90], [30,90],
[40,80] and [40,100]. What happens to the disparity image and why?

11. Using the rock piles example (page 405) obtain the disparity space image D
a) For selected pixels (u, v) plot D(u, v, d) versus d. Look for pixels that have a

sharp peak, broad peak and weak peak. Repeat this for stereo computed using
ZSSD similarity. For a selected row v display D(u, v, d) as an image. What does
this represent?

b) For a particular pixel plot s versus d, fit a parabola around the maxima and over-
lay this on the plot.

c) Use raw data from the DSI, find the second peak at each pixel and compute the
ambiguity ratio

d) Display the epipolar lines on image two for selected points in image one.
12.Download an analglyph image and convert it into a pair of greyscale images, then

compute dense stereo.
13. Epipolar geometry

a) Create two central cameras, one at the origin and the other translated in the
x-direction. For a sparse fronto-parallel grid of world points display the family
of epipolar lines in image two that correspond to the projected points in image
one. Describe these epipolar lines? Repeat for the case where camera two is
translated in the y- and z-axes and rotated about the x-, y- and z-axes. Repeat
this for combinations of motion such as x- and z-translation or x-translation
and y-rotation.

b) The garden example of Fig. 14.16 has epipolar lines that slope slightly down-
ward. What does this indicate about the two camera views?

14. Homography (page 396)
a) Compute Euclidean homographies for translation in the x-, y- and z-directions

and for rotation about the x-, y- and z-axes. Convert these to projective
homographies and apply to a fronto-parallel grid of points. Is the resulting im-
age motion what you would expect? Apply these homographies as a warp to a
real image such as Lena.

b) Decompose the homography of Fig. 14.15, the garden image, to determine the
plane of the wall with respect to the camera. You will need the camera intrinsic
parameters.

14.9 · Wrapping Up

448

15. Plane fitting (page 419)
a) Test the robustness of the plane fitting algorithm to additive noise and outlier points.
b) Implement an iterative approach with weighting to minimize the effect of outliers.
c) Create a RANSAC-based plane fit algorithm that takes random samples of three

points to solve for Eq. 14.17. Use the fmatrix and homography code to guide
you. You will need to create a number of functions that are invoked by the
ransac_driver.

16. ICP (page 420)
a) Run the ICP example on your computer and watch the animation.
b) Change the initial relative pose between the point clouds. Try some very large

rotations.
c) Increase the noise added to the data points.
d) For the case where there are missing and/or spurious data points experiment

with different values of the 'distthresh' option.
17. Structure from motion (page 422)

a) Experiment with different levels of camera noise and see the effect on estimated
camera position.

b) What is the effect of noise on estimated camera orientation?
c) Modify the simulation to model an odometer, based on the known distance trav-

elled between frames, and use that information to correct the translational scale.
Repeat with a systematic scale error in the odometer. Repeat with additive noise
in the odometer.

d) Use a moving average filter to smooth the frame to frame world point estimates.
e) Use an extended Kalman filter to smooth the frame to frame world point esti-

mates (challenging).
18. Perspective correction (page 428)

a) Create a virtual view looking downward at 45° to the front of the cathedral.
b) Create a virtual view from the original camera height but with the camera ro-

tated 20° to the left.
c) Find another real picture with perspective distortion and attempt to correct it.

19. Mosaicing (page 431)
a) Run the example file mosaic and watch the whole mosaic being assembled.
b) Modify the way the tile is pasted into the composite image to use pixel averaging

rather than addition.
c) Modify the way the tile is pasted into the composite image so that pixels closest

to the principal point are used.
d) Run the software on a set of your own overlapping images and create a panorama.

20. Bag of words (page 433)
a) Examine the different support regions of different visual words using the
exemplars method.

b) Investigate the effect of changing the number of stop words.
c) Investigate the effect of changing the size of the vocabulary. Try 1 000, 1 500, 2 500,

3 000.
d) Build a bag of words from a set of your own images.

21. Image sequence tracking (page 439)
a) Run the example on your computer.
b) Repeat using the default Harris feature descriptor, that is, without the 'patch'

option. What happens to the quality of the tracks?
c) Repeat with different patch sizes. What happens to the quality of the tracks?
d) Repeat using SURF rather than Harris corner features. Is the quality of the tracks

improved? How has compute time changed?
e) Modify the tracker so that it keeps an estimate of the velocity of the feature in the

image (based on its motion over two or more previous frames). Modify the associa-
tion logic so that the search disk is centered on the predic-ted position of the feature
rather than its previous position. The filter could be based on a simple constant-

Chapter 14 · Using Multiple Images

449

velocity model, an α− β tracker (use the AlphaBetaFilter class) or subclass
the Toolbox Kalman filter (KalmanFilter) abstract superclass.

f) At each frame estimate the fundamental matrix using RANSAC. Modify the as-
sociation logic to use the epipolar line constraint.

g) Estimate the essential matrix from frame to frame. The required camera calibra-
tion data is in the README file. Decompose the matrix to determine frame to
frame change in pose. Integrate the change in orientation over time to provide a
visual compass or gyroscope function. How could you recover the unknown scale
factor on frame to frame translation? Can you plot the car’s trajectory as seen
from overhead?

h) The bridge sequence was recorded in stereo and so far we have used just the left-
hand camera. The folder bridge-r contains the corresponding right-hand
images. Using the camera calibration data in the README file tp perform a sparse
stereo reconstruction for every image pair. Use ICP to determine the change in
pose of the car from frame to frame.

i) Perform a dense stereo reconstruction for every image pair.
j) Compute Harris features for live video captured on your computer and overlay

these on the captured frame. How many frames per second will this run on
your computer? Use the step method of the Tracker class to track these live
features.

14.9 · Wrapping Up

Part V Robotics, Vision and Control

Chapter 15 Vision-Based Control

Chapter 16 Advanced Visual Servoing

V
Part

The first problem, determining the pose of an object, is typically avoided in manufac-
turing applications by ensuring that the object is always precisely placed. This requires
mechanical jigs and fixtures which are expensive, and have to be built and setup for every
different part the robot needs to interact with – somewhat negating the flexibility of ro-
botic automation.

The second problem, ensuring the robot can achieve a desired pose, is also far from
straightforward. As we discussed in Chap. 7 a robot end-effector is moved to a pose by com-
puting the required joint angles. This assumes that the kinematic model is accurate, which
in turn necessitates high precision in the robot’s manufacture: link lengths must be pre-
cise and axes must be exactly parallel or orthogonal. Further the links must be stiff so
they do not to deform under dynamic loading or gravity. It also assumes that the robot has
accurate joint sensors and high-performance joint controllers that eliminate steady state
errors due to friction or gravity loading. The non-linear controllers we discussed in Sect. 9.4.3
are capable of this high performance but they require an accurate dynamic model that
includes the mass, centre of gravity and inertia for every link, as well as the payload.

None of these problems are insurmountable but this approach has led us along a path
toward high complexity. The result is a heavy and stiff robot that in turn needs powerful
actuators to move it, as well as high quality sensors and a sophisticated controller – all
this contributes to a high overall cost. However we should, whenever possible, avoid solv-
ing hard problems if we do not have to. Stepping back for a moment and looking at this
problem it is clear that

the root cause of the problem is that the robot cannot see what it is doing.

Robotics, Vision and Control

It is common to talk about
a robot moving to an object,
but in reality the robot is only
moving to a pose at which it
expects the object to be. This
is a subtle but deep distinction.
A consequence of this is that
the robot will fail to grasp
the object if it is not at the ex-
pected pose. It will also fail if
imperfections in the robot
mechanism or controller re-
sult in the end-effector not ac-
tually achieving the end-effec-
tor pose that was specified. In
order for this approach to
work successfully we need to
solve two quite difficult prob-
lems: determining the pose of
the object and ensuring the
robot achieves that pose.

454

Consider that the robot could see the object and its end-effector, and could use that in-
formation to guide the end-effector toward the object. This is what humans call hand-eye
coordination and what we will call vision-based control or visual servo control – the
use of information from one or more cameras to guide a robot in order to achieve a task.

The pose of the target does not need to be known apriori, the robot moves toward
the observed target wherever it might be in the workspace. There are numerous ad-
vantages of this approach: part position tolerance can be relaxed, the ability to deal
with parts that are moving comes almost for free, and any errors in the robot’s open-
loop accuracy will be compensated.

A vision-based control system involves continuous measurement of the target and
the robot using vision to create a feedback signal and moves the robot arm until the
visually observed error between the robot and the target is zero. Vision-based control
is quite different to taking an image, determining where the target is and then reach-
ing for it. The advantage of continuous measurement and feedback is that it provides
great robustness with respect to any errors in the system. There are of course some
practical complexities. If the camera is on the end of the robot it might interfere with
the task, or when the robot is close to the target the camera might be unable to focus,
or the target might be obscured by the gripper.

In this part of the book we bring together much that we have learnt previously:
robot kinematics and dynamics for arms and mobile robots; geometric aspects of image
formation; and feature extraction. The part comprises two chapters. Chapter 15 dis-
cusses the two classical approaches to visual servoing which are known as position-
based and image-based visual servoing. The image coordinates of world features are
used to move the robot toward a desired pose relative to the observed object. The first
approach requires explicit estimation of object pose from image features, but because
it is performed in a closed-loop fashion any errors in pose estimation are compen-
sated for. The second approach involves no pose estimation and use image plane in-
formation directly. Both approaches are discussed in the context of a perspective cam-
era which is free to move in SE(3) and their respective advantages and disadvantages
are described. The chapter also includes a discussion of the problem of determining
object depth, and the use of line and ellipse image features.

Chapter 16 extends the discussion to hybrid visual-servo algorithms which over-
come the limitations of the position- and image-based visual servoing by using the
best features of both. The discussion is then extended to non-perspective cameras
such as fisheye lenses and catadioptric optics and arm robots, holonomic and non-
holonomic ground robots, and a flying robot.

This part of the book is pitched at a higher level than earlier parts. It assumes a
good level of familiarity with the rest of the book, and the increasingly complex ex-
amples are sketched out rather than described in detail. The text introduces the essen-
tial mathematical and algorithmic principles of each technique, but the full details are
to be found in the source code of the MATLAB® classes that implement the controllers,
or in the details of the Simulink® diagrams. The results are also increasingly hard to
depict in a book and are best understood by running the supporting MATLAB® or
Simulink® code and plotting the results or watching the animations.

Part V · Robotics, Vision and Control

15
Chapter

The image of the target is a function of the relative pose CξT. Features such as coor-
dinates of points, or the parameters of lines of ellipses are extracted from the image
and these are also a function of the relative pose CξT.

There are two fundamentally different approaches to visual servo control: Posi-
tion-Based Visual Servo (PBVS) and Image-Based Visual Servo (IBVS). Position-based
visual servoing, shown in Fig. 15.2a, uses observed visual features, a calibrated camera
and a known geometric model of the target to determine the pose of the target with
respect to the camera. The robot then moves toward that pose and the control is per-
formed in task space which is commonly SE(3). Good algorithms exist for pose esti-
mation but it is computationally expensive and relies critically on the accuracy of the
camera calibration and the model of the object’s geometry. PBVS is discussed in Sect. 15.1.

Vision-Based Control

Fig. 15.1. Visual servo configura-
tions and relevant coordinate
frames: world, end-effector {E},
camera {C} and target {T}. a End-
point closed-loop configuration
(eye-in-hand); b end-point open-
loop configuration

A servo-mechanism, or servo is an automatic device that uses feedback of error between the desired
and actual position of a mechanism to drive the device to the desired position. The word servo is
derived from the Latin root servus meaning slave and the first usage was by the Frenchman J. J. L. Farcot
in 1868 – “Le Servomoteur” – to describe the hydraulic and steam engines used for steering ships.

Error in position is measured by a sensor then amplified to drive a motor that generates a force to
move the device to reduce the error. Servo system development was spurred by WW II with the
development of electrical servo systems for fire-control applications that used electric motors and
electro-mechanical amplidyne power amplifiers. Later servo amplifiers used vacuum tubes and more
recently solid state power amplifiers (motor drives). Today servomechanisms are ubiquitous and
are used to position the read/write heads in optical and magnetic disk drives, the lenses in autofocus
cameras, remote control toys, satellite-tracking antennas, automatic machine tools and robot joints.

“Servo” is properly a noun or adjective but has become a verb “to servo”. In the context of
vision-based control we use the verb “visual servoing”.

The task in visual servoing is to control the pose of the robot’s end-effec-
tor, relative to the target, using visual features extracted from the image.
As shown in Fig. 15.1 the camera may be carried by the robot or fixed in
the world. The configuration of Fig. 15.1a has the camera mounted on the
robot’s end-effector observing the target, and is referred to as end-point
closed-loop or eye-in-hand. The configuration of Fig. 15.1b has the cam-
era at a fixed point in the world observing both the target and the robot’s
end-effector, and is referred to as end-point open-loop. In the remain-
der of this book we will discuss only the eye-in-hand configuration.

456

Image-based visual servoing, shown in Fig. 15.2b, omits the pose estimation step, and
uses the image features directly. The control is performed in image coordinate space R2.
The desired camera pose with respect to the target is defined implicitly by the image
feature values at the goal pose. IBVS is a challenging control problem since the image
features are a highly non-linear function of camera pose. IBVS is discussed in Sect. 15.2.

15.1 lPosition-Based Visual Servoing

In a PBVS system the pose of the target with respect to the camera CξT is estimated.
The pose estimation problem was discussed in Sect. 11.2.3 and requires knowledge of
the target’s geometry, the camera’s intrinsic parameters and the observed image plane
features. The relationships between the poses is shown in Fig. 15.3. We specify the
desired relative pose with respect to the target C*ξT and wish to determine the motion
required to move the camera from its initial pose ξC to ξC

* which we call ξ
∆

. The actual
pose of the target ξT is not known. From the pose network we can write

where CûT is the estimated pose of the target relative to the camera. We rearrange this as

which is the camera motion required to achieve the desired relative pose. The change
in pose might be quite large so we do not attempt to make this movement in one step,
rather we move to a point closer to {C*} by

which is a fraction λ ∈ (0, 1) of the translation and rotation required.

Fig. 15.2.

The two distinct classes of visual
servo system

Chapter 15 · Vision-Based Control

457

Using the Toolbox we start by defining a camera with known parameters

>> cam = CentralCamera('default');

The target comprises four points that form a square of side length 0.5 m that lies in
the xy-plane and centred at (0, 0, 3)

>> P = mkgrid(2, 0.5, 'T', transl(0,0,3));

and we assume that this pose is unknown to the control system. The camera is at some
pose Tc so the the pixel coordinates of the world points are

>> p = cam.plot(P, 'Tcam', Tc)

from which the pose of the target with respect to the camera CûT is estimated

>> Tc_t_est = cam.estpose(P, p);

The required motion ξ∆ is

>> Tdelta = TcStar_t * inv(Tc_t_est);

and the fractional motion toward the goal is given by

>> Tdelta = trinterp(eye(4,4), Tdelta, lambda);

giving the new value of the camera pose

>> Tc = trnorm(Tc * Tdelta);

where we ensure that the transformation remains a proper homogeneous transforma-
tion by normalizing it using trnorm. At each time step we repeat the process, moving
a fraction of the required relative pose until the motion is complete. In this way even if
the robot has errors and does not move as requested, or the target moves the motion
computed at the next time step will account for that error.

For this example we choose the initial pose of the camera in world coordinates as

>> Tc0 = transl(1,1,-3)*trotz(0.6);

and the desired pose of the target with respect to the camera is

>> TcStar_t = transl(0, 0, 1);

which has the target 1 m in front of the camera and fronto-parallel to it. We create an
instance of the PBVS class

>> pbvs = PBVS(cam, 'T0', Tc0, 'Tf', TcStar_t)
Visual servo object: camera=noname
 200 iterations, 0 history
 P= -0.25 -0.25 0.25 0.25
 -0.25 0.25 0.25 -0.25
 0 0 0 0
 Tc0: t = (1 1 -3), R = (34.3775deg | 0 0 1)
 Tc*_t: t = (0 0 1), R = nil

Fig. 15.3.

Relative pose network for PBVS
example. Frame {C} is the current

camera pose and frame {C*} is
the desired camera pose

15.1 · Position-Based Visual Servoing

458

Fig. 15.4. Snapshop from the vi-
sual servo simulation. a An exter-
nal view showing camera pose
and features; b camera view show-
ing current feature positions on
the image plane

Fig. 15.5. Results of PBVS simula-
tion. a Image motion, � is initial
feature location, � is desired; b

Car-tesian velocity; c camera pose

Chapter 15 · Vision-Based Control

459

which is a subclass of the VisualServo class and implements the controller out-
lined above. The object constructor takes a CentralCamera object as its argu-
ment, and drives this camera to achieve the desired pose relative to the target. Many
additional options can be passed to this class constructor. The display methods shows
the coordinates of the world points, the initial camera pose, and the desired target
relative pose. The simulation is run by

>> pbvs.run();

which repeatedly calls the step method to execute a single time step. The simu-
lation animates both the image plane of the camera and the 3-dimensional visu-
alization of the camera and the world points as shown in Fig. 15.4. The simu-
lation completes after a defined number of iterations or when ξ∆ falls below some
threshold.

The simulation results are stored within the object for later analysis. We can plot
the path of the target features in the image, the Cartesian velocity versus time or
Cartesian position versus time

>> pbvs.plot_p();
>> pbvs.plot_vel();
>> pbvs.plot_camera();

which are shown in Fig. 15.5. We see that the feature points have followed a curved
path in the image, and that the camera's translation and orientation have converged
smoothly on the desired values.

15.2 lImage-Based Visual Servoing

IBVS differs fundamentally from PBVS by not estimating the relative pose of the tar-
get. The relative pose is implicit in the values of the image features. Figure 15.6 shows
two views of a square target. The view from the initial camera pose is shown in red
and it is clear that the camera is viewing the target obliquely. The desired view is
shown in blue where the camera is further from the target and its optical axis is
normal to the plane of the target – a fronto-parallel view.

The control problem can be expressed in terms of image coordinates. The task
is to move the feature points indicated by �-markers to the points indicated by
�-markers. The points may, but do not have to, follow the straight line paths in-
dicated by the arrows. Moving the feature points in the image implicitly changes
the pose – we have changed the problem from pose estimation to control of points
on the image.

Fig. 15.6.

Two views of a square target.
The blue shape is the desired
view, and the red shape is the

initial view

15.2 · Image-Based Visual Servoing

460

15.2.1 lCamera and Image Motion

Consider the default camera

>> cam = CentralCamera('default');

and a world point at

>> P = [1 1 5]';

which has image coordinates

>> p0 = cam.project(P)
p0 =
 672
 672

Now if we displace the camera slightly in the x-direction the pixel coordinates will
become

>> px = cam.project(P, 'Tcam', transl(0.1,0,0))
px =
 656
 672

Using the camera coordinate conventions of Fig. 11.4, the camera has moved to the
right so the image point has moved to the left. The sensitivity of image motion to
camera motion is

>> (px - p0) / 0.1
ans =
 -160
 0

which is an approximation to the derivative ∂p/δx. It shows that 1 m of camera motion
would lead to −160 pixel of feature motion in the u-direction. We can repeat this for
z-axis translation

>> (cam.project(P, 'Tcam', transl(0, 0, 0.1)) - p0) / 0.1
ans =
 32.6531
 32.6531

which shows equal motion in the u- and v-directions. For x-axis rotation

>> (cam.project(P, 'Tcam', trotx(0.1)) - p0) / 0.1
ans =
 40.9626
 851.8791

the image motion is predominantly in the v-direction. It is clear that camera motion
along and about the different degrees of freedom in SE(3) causes quite different motion
of image points. Earlier we expressed perspective projection in functional form Eq. 11.10

and its derivative with respect to camera pose ξ is

where ν= (vx, vy, vz, ωx, ωy, ωz) ∈R
6 is the velocity of the camera, the spatial velocity,

which we introduced in Sect. 8.1. Jp is a Jacobian-like object, but because we have taken
the derivative with respect to a pose ξ ∈ SE(3) rather than a vector it is technically
called an interaction matrix. However in the visual servoing world it is more com-
monly called an image Jacobian or a feature sensitivity matrix.

Consider a camera moving with a body velocity ν= (v,ω) in the world frame and
observing a world point P with camera relative coordinates P= (X, Y, Z). The velocity

Chapter 15 · Vision-Based Control

461

of the point relative to the camera frame is

(15.1)

which we can write in scalar form as

(15.2)

The perspective projection Eq. 11.2 for normalized coordinates is

and the temporal derivative, using the quotient rule, is

Substituting Eq. 15.2, X= xZ and Y= yZ we can write this in matrix form

(15.3)

which relates camera velocity to feature velocity in normalized image coordinates.
The normalized image-plane coordinates are related to the pixel coordinates by Eq. 11.7

which we rearrange as

(15.4)

where –u= u− u0 and –v= (v− v0) are the pixel coordinates relative to the principal
point. The temporal derivative is

(15.5)

and substituting Eq. 15.4 and Eq. 15.5 into Eq. 15.3 leads to

(15.6)

15.2 · Image-Based Visual Servoing

462

in terms of pixel coordinates with respect to the principal point. We can write this in
concise matrix form as

(15.7)

where Jp is the 2× 6 image Jacobian matrix for a point feature.�

The Toolbox CentralCamera class provides the method visjac_p to compute
the image Jacobian and for the example above it is

>> J = cam.visjac_p([672; 672], 5)
J =
 -160 0 32 32 -832 160
 0 -160 32 832 -32 -160

where the first argument is the coordinate of the point of interest with respect to the
image, and the second argument is the depth of the point. The approximate values
computed on page 460 appear as columns one, three and four respectively. Image Jaco-
bians can also be derived for line and circle features and these are discussed in Sect. 15.3.

For a given camera velocity, the velocity of the point is a function of the point’s
coordinate, its depth and the camera parameters. Each column of the Jacobian indi-
cates the velocity of a feature point with respect to the corresponding component of
the velocity vector. The flowfield method of the CentralCamera class shows
the feature velocity for a grid of points on the image plane for a particular camera
velocity. For camera translational velocity in the x-direction the flow field is

>> cam.flowfield([1 0 0 0 0 0]);

which is shown in Fig. 15.7a. As expected moving the camera to the right causes all the
features points to move to the left. The motion of points on the image plane is known
as optical flow and can be computed from image sequences as we showed in Sect. 14.8.
For translation in the z-direction

>> cam.flowfield([0 0 1 0 0 0]);

the points radiate outward from the principal point – the Star Trek warp effect – as
shown in Fig. 15.7e. Rotation about the z-axis is

>> cam.flowfield([0 0 0 0 0 1])

causes the points to rotate about the principal point as shown in Fig. 15.7f.
Rotational motion about the y-axis is

>> cam.flowfield([0 0 0 0 1 0]);

is shown in Fig. 15.7b and is very similar to the case of x-axis translation, with some
small curvature for points far from the principal point. The reason for this is that the
first and fifth column of the image Jacobian above are approximately equal which
implies that translation in the x-direction causes almost the same image motion as
rotation about the y-axis. You can easily demonstrate this equivalence by watching
how the world moves if you translate your head to the right or rotate your head to the
right – in both cases the world appears to move to the left. As the focal length increases
the element J[2,5] becomes smaller and column five approaches a scalar multiple of
column one. We can easily demonstrate this by increasing the focal length to f= 20 mm
(the default focal length is 8 mm) and the flowfield

>> cam.f = 20e-3;
>> cam.flowfield([0 0 0 0 1 0]);

which is shown in Fig. 15.7c is almost identical to that of Fig. 15.7a. Conversely, for
small focal lengths (wide-angle cameras) the image motion due to these camera mo-
tions will be more dissimilar

>> cam.f = 4e-3;
>> cam.flowfield([0 0 0 0 1 0]);

This is commonly written in terms of u

and v rather than –u and –v but we use the

overbar notation to emphasize that the

coordinates are with respect to the prin-

cipal point, not the image origin which

is typically in the top-left corner.

Chapter 15 · Vision-Based Control

463

Fig. 15.7. Image plane velocity
vectors for canonic camera veloci-
ties where all corresponding world
points lie in a fronto-parallel plane.
a x-axis translation; b y-axis ro-
tation, f= 8 mm; c y-axis rota-
tion, f= 20 mm; d y-axis rotation,
f= 4 mm; e z-axis translation;
f z-axis rotation

and as shown in Fig. 15.7d the curvature is much more pronounced. The same applies
for columns two and four except for a difference of sign – there is an equivalence
between translation in the y-direction and rotation about the x-axis.

The Jacobian matrix has some interesting properties. It does not depend at all on
the world coordinates X or Y, only on the image plane coordinates (u, v). However the
first three columns depend on the point’s depth Z and reflects the fact that for a trans-
lating camera the image plane velocity is inversely proportional to depth. You can eas-
ily demonstrate this to yourself – translate your head sideways and observe that near
objects move more in your field of view than distant objects. However, if you rotate
your head all objects, near and far, move equally in your field of view.

15.2 · Image-Based Visual Servoing

464

The matrix has a rank of two,� and therefore has a null-space of dimension four.
The null-space comprises a set of spatial velocity vectors that individually, or in any
linear combination, cause no motion in the image. Consider the simple case of a point
in front of the camera on the optical axis

>> J = cam.visjac_p([512; 512], 1)

The null-space of the Jacobian is

>> null(J)
ans =
 0 0 -0.7071 0
 0 0.7071 0 0
 1.0000 0 0 0
 0 0.7071 0 0
 0 0 0.7071 0
 0 0 0 1.0000

The first column indicates that motion in the z-direction, along the ray toward the
point, results in no motion in the image. Nor does rotation about the z-axis, as indi-
cated by column four. Columns two and three are more complex, combining rotation
and translation. Essentially these exploit the image motion ambiguity mentioned above.
Since x-axis translation causes the same image motion as y-axis rotation, column three
indicates that if one is positive and the other negative the resulting image motion will
be zero – that is translating left and rotating to the right.

We can consider the motion of two points by stacking their Jacobians

to give a 4× 6 matrix which will have a null-space with two columns. One of these
camera motions corresponds to rotation around a line joining the two points.

For three points

(15.8)

the matrix will be non-singular so long as the points are not coincident or collinear.

15.2.2 lControlling Feature Motion

So far we have shown how points move in the image plane as a consequence of camera
motion. As is often the case it is the inverse problem that is more useful – what camera
motion is needed in order to move the image features at a desired velocity?

For the case of three points {(ui, vi), i= 1⋯3} and corresponding velocities {(Éi, Êi)}
we can invert Eq. 15.8

(15.9)

and solve for the required camera velocity.

The rank cannot be less than 2, even if

Z→∞.

Chapter 15 · Vision-Based Control

465

Given feature velocity we can compute the required camera motion, but how do
we determine the feature velocity? The simplest strategy is to use a simple linear
controller

(15.10)

that drives the features toward their desired values p* on the image plane. Combined
with Eq. 15.9 we write

That’s it! This controller will drive the camera so that the feature points move to-
ward the desired position in the image. It is important to note that nowhere have we
required the pose of the camera or of the object,⊳ everything has been computed in
terms of what can be measured on the image plane.

For the general case where N> 3 points we can stack the Jacobians for all features
and solve for camera motion using the pseudo-inverse

(15.11)

Note that it is possible to specify a set of feature point velocities which are inconsis-
tent, that is, there is no possible camera motion that will result in the required image
motion. In such a case the pseudo-inverse will find a solution that minimizes the norm
of the feature velocity error.

For N≥ 3 the matrix can be poorly conditioned if the points are nearly co-inci-
dent or collinear. In practice this means that some camera motions will cause very
small image motions, that is, the motion has low perceptibility. There is strong simi-
larity with the concept of manipulability that we discussed in Sect. 8.1.4 and we take
a similar approach in formalizing it. Consider a camera spatial velocity of unit mag-
nitude

and from Eq. 15.7 we can write the camera velocity in terms of the pseudo-inverse

and substituting yields

which is the equation of an ellipsoid in the point velocity space. The eigenvectors of JpJp
T

define the principal axes of the ellipsoid and the singular values of Jp are the radii. The
ratio of the maximum to minimum radius is given by the condition number of Jp and
indicates the anisotropy of the feature motion. A high value indicates that some of the
points have low velocity in response to some camera motions. An alternative to stack-
ing all the point feature Jacobians is to select just three that when stacked result in the
best conditioned square matrix which can then be inverted.

We do require the depth Z of the point

but we will come to that shortly.

15.2 · Image-Based Visual Servoing

466

Using the Toolbox we start by defining a camera

>> cam = CentralCamera('default');

The target comprises four points that form a square of side length 0.5 m that lies in the
xy-plane and centred at (0, 0, 3)

>> P = mkgrid(2, 0.5, 'T', transl(0,0,3));

and we assume that this pose is unknown to the control system. The desired position
of the target features on the image plane are a 400× 400 square centred on the princi-
pal point

>> pStar = bsxfun(@plus, 200*[-1 -1 1 1; -1 1 1 -1], cam.pp');

which implicitly has the square target fronto-parallel to the camera.
The camera is at some pose Tc so the the pixel coordinates of the world points are

>> p = cam.plot(P, 'Tcam', Tc)

from which we compute the image plane error�

>> e = pStar - p;

and the stacked image Jacobian

>> J = visjac_p(ci, p, depth);

is a 8× 6 matrix in this case since p contains four points. The Jacobian does require
the point depth which we do not know, so for now we will just choose a constant value.
This is an important topic that we will address in Sect. 15.2.3.

The control law determines the required translational and angular velocity of the camera

>> v = lambda * pinv(J) * e;

where lambda is the gain, a positive number, and we take the pseudo-inverse of the
non-square Jacobian to implement Eq. 15.11. The resulting velocity is expressed in the
camera coordinate frame, and integrating it over a unit time step results in a displace-
ment of the same magnitude. The camera pose is updated by

where ∆−1(·) is defined by Eq. 3.12. Using the Toolbox this is implemented as

>> Tc = trnorm(Tc * delta2tr(v));

where we ensure that the transformation remains a proper homogeneous transforma-
tion by normalizing it using trnorm.

For this example we choose the initial pose of the camera in world coordinates as

>> Tc0 = transl(1,1,-3)*trotz(0.6);

Similar to the PBVS example we create an instance of the IBVS class

>> ibvs = IBVS(cam, 'T0', Tc0, 'pstar', pStar)

which is a subclass of the VisualServo class and implements the controller out-
lined above. The option 'T0' specifies the initial pose of the camera and 'pstar'
specifies the desired image coordinates of the features. The object constructor takes a
CentralCamera object as its argument, and drives this camera to achieve the de-
sired pose relative to the target. Many additional options can be passed to this class
constructor. The display methods shows the coordinates of the world points, the initial
absolute pose, the desired image plane feature coordinates. The simulation is run by

>> ibvs.run();

Note that papers based on the task func-

tion approach such as Espiau et al. (1992)

write this as actual minus demand and

write −λ in Eq. 15.11 to ensure nega-

tive feedback.

Chapter 15 · Vision-Based Control

467

which repeatedly calls the step method to execute a single time step. The simulation
animates both the image plane of the camera and the 3-dimensional visualization of
the camera and the world points.

The simulation results are stored within the object for later analysis. We can plot
the path of the target features on the image plane, the Cartesian velocity versus time or
Cartesian position versus time

>> ibvs.plot_p();
>> ibvs.plot_vel();
>> ibvs.plot_camera();
>> ibvs.plot_jcond();

which are shown in Fig. 15.8. We see that the feature points have followed an almost
straight-line path in the image, and the Cartesian position has changed smoothly
toward the final value. The condition number of the image Jacobian decreases over
the motion indicating that the Jacobian is becoming better conditioned, and this is a
consequence of the features moving further apart.

How is p* determined? The image points can be found by demonstration, by mov-
ing the camera to the desired pose and recording the observed image coordinates.
Alternatively, if the camera calibration parameters and the target geometry are known
the desired image coordinates can be computed for any specified goal pose. Note that
this calculation, world point point projection, is computationally cheap and is per-
formed only once before visual servoing commences.

Fig. 15.8. Results of IBVS simula-
tion, created by IBVS. a Image
plane motion, ∗ is desired, � is ini-
tial, b spatial velocity compo-
nents; c camera pose; d image Ja-
cobian condition number

15.2 · Image-Based Visual Servoing

468

The IBVS system can also be expressed in terms of a Simulink® model

>> sl_ibvs

which is shown in Fig. 15.9. The simulation is run by

>> r = sim('sl_ibvs')

and the camera pose, image plane feature error and camera velocity are animated.
Scope blocks also plot the camera velocity and feature error against time. The initial
pose of the camera is set by a parameter of the pose block, and the world points are
parameters of the camera block. The CentralCamera object is a parameter to
both the camera and visual Jacobian blocks.

The simulation results are stored in the simulation output object r. For example the
camera velocity is the second recorded signal�

>> t = r.find('tout');
>> v = r.find('yout').signals(2).values;
>> about(v)
v [double] : 501x6 (24048 bytes)

which has one row for every simulation step, and the columns are the camera spatial
velocity components. We can plot camera velocity against time

>> plot(t, v)

The image plane coordinates are also logged

>> p = r.find('yout').signals(1).values;
>> about(p)
p [double] : 2x4x1001 (64064 bytes)

which can be plotted by

>> plot2(p)

Fig. 15.9. The Simulink® model
sl_ibvs drives the feature points
to the desired positions on the im-
age plane. The initial camera pose
is set in the pose block and the
desired image plane points p* are
set in the green constant block

It is connected to the Output block

number 2.

Chapter 15 · Vision-Based Control

469

15.2.3 lDepth

Computing the image Jacobian requires knowledge of the camera intrinsics, the prin-
cipal point and focal length, but in practice it is quite tolerant to errors in these. The
Jacobian also requires knowledge of Zi, the distance to, or the depth of, each point. In
the simulations just discussed we have assumed that depth is known – this is easy in
simulation but not so in reality. Fortunately, in practice we find that IBVS is remark-
ably tolerant to errors in Z.

A number of approaches have been proposed to deal with the problem of unknown
depth. The simplest is to just assume a constant value for the depth which is quite reason-
able if the required camera motion is approximately in a plane parallel to the plane of the
object points. To evaluate the performance of different constant estimates of point
depth, we can compare the effect of choosing z= 1 and z= 10 for the example above

>> ibvs = IBVS(cam, 'T0', Tc0, 'pstar', pStar, 'depth', 1)
>> ibvs.run(50)
>> ibvs = IBVS(cam, 'T0', Tc0, 'pstar', pStar, 'depth', 10)
>> ibvs.run(50)

and the results are plotted in Fig. 15.10. We see that the image plane paths are no longer
straight, because the Jacobian is now a poor approximation of the relationship between
the camera motion and image feature motion. We also see that for Z= 1 the convergence
is much slower than for the Z= 10 case. The Jacobian for Z= 1 overestimates the optical
flow, so the inverse Jacobian underestimates the required camera velocity. Nevertheless,
for quite significant errors, the true depth is Z= 3, IBVS has converged. For the Z= 10
case the displacement at each timestep is large leading to a very jagged path.

Fig. 15.10. Results of IBVS with
different constant estimates of
point depth: a, b Image and cam-
era motion for Z= 1; c, d Image
and camera motion for Z= 10

15.2 · Image-Based Visual Servoing

470

A second approach is to use standard computer vision techniques to estimate the value
for Z. If the camera intrinsic parameters were known we could use sparse stereo tech-
niques from consecutive camera positions to estimate the depth of each feature point.

A third approach is to estimate the value of Z online using measurements of robot
and image motion. We can create a simple depth estimator by rearranging Eq. 15.6
into estimation form

which we rearrange as

(15.12)

The right-hand side is the observed optical flow from which the expected optical
flow due to rotation of the camera is subtracted – a process referred to as derotating
optical flow. The remaining optical flow, after subtraction, is only due to translation.
Writing Eq. 15.12 in compact form

(15.13)

we have a simple linear equation with one unknown parameter θ= 1/Z which can be
solved using least-squares.

In our example we can enable this by

>> ibvs = IBVS(cam, 'T0', Tc0, 'pstar', pStar, 'depthest')
>> ibvs.run()
>> ibvs.plot_z()
>> ibvs.plot_p()

and the result is shown in Fig. 15.11. Figure 15.11b shows the estimated and true point
depth versus time. The estimate depth was initially zero, a poor choice, but it has risen
rapidly and then tracked the actual target depth and then tracked it accurately as the
controller converges. Figure 15.11a shows the feature motion, and we see that the fea-
tures initially move in the wrong direction because of the error in depth.

Fig. 15.11. IBVS with online depth
estimator. a Feature paths; b com-
parison of estimated (dashed) and
true depth (solid) for all four points

Chapter 15 · Vision-Based Control

471

15.2.4 lPerformance Issues

The control law for PBVS is defined in terms of the 3-dimensional workspace so there
is no mechanism by which the motion of the image features is directly regulated. For
the PBVS example shown in Fig. 15.5 the feature points followed a curved path on the
image plane, and therefore it is possible that they could leave the camera’s field of view.
For a different initial camera pose

>> pbvs.T0 = transl(-2.1, 0, -3)*trotz(5*pi/4);
>> pbvs.run()

the result is shown in Fig. 15.12a and we see that two of the points move outside the
image which would cause the PBVS control to fail. By contrast the IBVS control for the
same initial pose

>> ibvs = IBVS(cam, 'T0', pbvs.T0, 'pstar', pStar, 'lambda',
0.002, 'niter', Inf, 'eterm', 0.5)
>> ibvs.run()
>> ibvs.plot_p();

gives the feature trajectories shown in Fig. 15.12b.
Conversely for image-based visual servo control there is no direct control over the

Cartesian motion of the camera. This can sometimes result in surprising motion, par-
ticularly when the target is rotated about the z-axis

>> ibvs = IBVS(cam, 'T0', transl(0,0, -1)*trotz(1), 'pstar',
pStar);
>> ibvs.run()
>> ibvs.plot_camera

which is shown in Fig. 15.13(top). We see that the camera has performed an unneces-
sary translation along the z-axis – away from the target and back again. This phenom-
enon is termed camera retreat. The resulting motion is not time optimal and can re-
quire large and possibly unachievable camera motion. An extreme example arises for
a pure rotation about the optical axis by π rad

>> ibvs = IBVS(cam, 'T0', transl(0,0, -1)*trotz(pi), ...
 'pstar', pStar, 'niter', 10);
>> ibvs.run()
>> ibvs.plot_camera

which is shown in Fig. 15.13 (bottom). The feature points are, as usual, moving in a
straight line toward their desired values, but for this problem the paths all pass through
the origin which is a singularity and where IBVS will fail. The only way the target
points can be at the origin in the image is if the camera is at negative infinity, and that
is where it is headed!

Fig. 15.12. Image plane feature
paths for a PBVS and b IBVS

15.2 · Image-Based Visual Servoing

472

A final consideration is that the image Jacobian is a linearization of a highly non-
linear system. If the motion at each time step is large then the linearization is not valid
and the features will follow curved rather than linear paths in the image, as we saw in
Fig. 15.10. This can occur if the desired feature positions are a long way from the ini-
tial positions and/or the gain λ is too high. One solution is to limit the maximum
norm of the commanded velocity

The feature paths do not have to be straight lines and nor do the features have
to move with asymptotic velocity – we have used these only for simplicity. Using
the trajectory planning methods of Chap. 3 the features could be made to follow
any arbitrary trajectory in the image and to have an arbitrary speed versus time
profile.

In summary, IBVS is a remarkably robust approach to vision-based control.
We have seen that it is quite tolerant to errors in the depth of points. We have also
shown that it can produce less than optimal Cartesian paths for the case of large
rotations about the optical axis. We will discuss remedies to these problems in the
next chapter.

Fig. 15.13. IBVS for pure target
rotation about the optical axis.
a, b for rotation of 1 rad; c, d for
rotation of π rad

Chapter 15 · Vision-Based Control

473

15.3 lUsing Other Image Features

So far we have considered only point features. In a real system we would use the
feature extraction techniques discussed in Chap. 13 and the points would be the cen-
troids of distinct regions, or Harris or SURF corner features. The points would then
be used for pose estimation in a PBVS scheme, or directly in an IBVS scheme. For
both PBVS or IBVS we need to solve the correspondence problem, that is, for each
observed feature we must determine which desired image plane coordinate it corre-
sponds to. IBVS can also be formulated to work with other image features such as
lines, as found by the Hough transform, or the shape of an ellipse.

15.3.1 lLine Features

For a line the Jacobian is written in terms of the (ρ, θ) parameterization that we used
for the Hough transform in Sect. 13.2

and the Jacobian is

where λθ= (a cosθ− b sinθ)/d and λρ=−(aρ sinθ+ bρ cosθ+ c)/d. The Jacobian
describes how the line parameters change as a function of camera velocity. Just as the
point feature Jacobian required some partial 3-dimensional knowledge, the point depth Z,
the line feature Jacobian requires the equation of the plane aX+ bY+ cZ+ d= 0 that
contains the line. Since each line is the intersection of two planes and therefore lies in
two planes we choose the plane for which d≠ 0. Like a point feature, a line provides
two rows of the Jacobian so we require a minimum of three lines in order to have a
Jacobian of full rank.⊳Interestingly a line feature provides two

rows of the stacked Jacobian, yet two

points which define a line would provide

four rows.

Fig. 15.14.

IBVS using line features. The
image plane showing the three

current lines (solid) and desired
(dashed)

15.3 · Using Other Image Features

474

We illustrate this with an example comprising three lines that all lie in the plane
Z= 3, and we construct three points in that plane using the circle function with
just three boundary points

>> P = circle([0 0 3], 0.5, 'n', 3);

and use the familiar CentralCamera class methods to project these to the image.
For each pair of points we compute the equations of the line

The simulation is run in familiar fashion

>> ibvs = IBVS_l(cam, 'example');
>> ibvs.run()

and a snapshot of results is shown in Fig. 15.14. Note that we need to perform corre-
spondence between the observed and desired lines.

15.3.2 lCircle Features

A circle in the world will be projected, in the general case, to an ellipse in the image
which is described by�

(15.14)

where Ei are parameters of the ellipse. The rate of change of the ellipse coefficients is
related to camera velocity by

where the Jacobian is

and where ρ= (α, β, γ) defines a plane in world coordinates aX+ bY+ cZ+ d= 0 in
which the ellipse lies and α=−a/d, β=−b/d and γ=−c/d. Just as was the case
for point and line feature Jacobians we need to provide some depth information about
the target. The Jacobian normally has a rank of five, but this drops to three when the
projection is of a circle centred in the image plane, and a rank of two if the circle is a point.

An advantage of the ellipse feature is that the ellipse can computed from the set of all
boundary points without needing to solve the correspondence problem. The ellipse feature
can also be computed from the moments of all the points within the ellipse boundary. We
illustrate this with an example of a circle comprising ten points around its circumference

>> P = circle([0 0 3], 0.5, 'n', 10);

and the CentralCamera class project these to the image plane.

This is different to the representation of

an ellipse given in Appendix E, but the

two forms are simply related by constant

scale factors applied to the coefficients.

Chapter 15 · Vision-Based Control

475

>> p = cam.project(P, 'Tcam', Tc);

where Tc is the current camera pose and we convert to normalized image coordinates

>> p = homtrans(inv(cam.K), p);

The parameters of an ellipse are calculated using the methods of Appendix E

>> a = [y.^2; -2*x.*y; 2*x; 2*y; ones(1,numcols(x))]';
>> b = -(x.^2)';
>> E = a\b;

which returns a 5-vector of ellipse parameters. The image Jacobian for an ellipse fea-
ture is computed by a method of the CentralCamera class

>> J = cam.visjac_e(E, plane);

where the plane containing the circle must also be specified. For this example the plane
is Z= 3 so plane = [0 0 1 -3].

The Jacobian is 5× 6 and has a maximum rank of only 5 so we cannot uniquely
solve for the camera velocity. We have at least two options. Firstly, if our final view is of
a circle then we may not be concerned about rotation around the centre of the circle,
and in this case we can delete the sixth column of the Jacobian to make it square and
set ωz to zero. Secondly, and the approach taken in this example, is to combine the
features for the ellipse and a single point⊳

and the stacked Jacobian is now 7× 6 and we can solve for camera velocity. As for the
previous IBVS examples the desired velocity is proportional to the difference between
the current and desired feature values

Fig. 15.15. IBVS using ellipse fea-
ture. a The image plane showing
the current points (solid) and de-
manded (∗); b a world view show-
ing the points and the camera

Here we arbitrarily choose the first point,

any one will do.

15.3 · Using Other Image Features

476

The simulation is run in the now familiar fashion

>> ibvs = IBVS_e(cam, 'example');
>> ibvs.run()

and a snapshot of results is shown in Fig. 15.15.

15.4 lWrapping Up

In this chapter we have learnt about the fundamentals of vision-based robot control,
and the fundamental techniques developed over two decades up to the mid 1990s.
There are two distinct configurations. The camera can be attached to the robot ob-
serving the target, eye-in-hand, or fixed in the world observing both robot and target.
Another form of distinction is the control structure: Position-Based Visual Servo (PBVS)
and Image-Based Visual Servo (IBVS). The former involves pose estimation based on
a calibrated camera and a geometric model of the target, while the latter performs the
control directly in the image plane. Each approach has certain advantages and disad-
vantages. PBVS performs efficient straight-line Cartesian camera motion in the world
but may cause image features to leave the image plane. IBVS always keeps features in
the image plane but may result in trajectories that exceed the reach of the robot, par-
ticularly if it requires a large amount of rotation about the camera’s optical axis. IBVS
also requires a touch of 3-dimensional information, the depth of the feature points,
but is quite robust to errors in depth and it is quite feasible to estimate the depth as the
robot moves. IBVS can be formulated to work with not only point features, but also for
lines and ellipses.

So far in our simulations we have determined the required camera velocity and
moved the camera accordingly, without consideration of the mechanism to move it. In
the next chapter we consider cameras attached to arm-type robots, mobile ground
robots and flying robots.

Further Reading

The tutorial paper by Hutchinson et al. (1996) was the first comprehensive articula-
tion and taxonomy of the field. More recent articles by Chaumette and Hutchinson
(2006) and Siciliano and Khatib (2008, § 24) provide excellent coverage of the funda-
mentals of visual servoing. Chapters on visual servoing are included in recent text-
books by Spong et al. (2006, § 12) and Siciliano et al. (2008, § 10).

The 1993 book edited by Hashimoto (1993) was the first collection of papers cover-
ing approaches and applications in visual servoing. The 1996 book by Corke (1996b) is
now out of print but available free online and covers the fundamentals of robotics and
vision for controlling the dynamics of an image-based visual servoing system. It con-
tains an extensive, but dated, collection of references to visual servoing applications
including industrial applications, camera control for tracking, high-speed planar mi-
cro-manipulator, road vehicle guidance, aircraft refuelling, and fruit picking. Another
important collection of papers (Kriegman et al. 1998) stems from a 1998 workshop on
the synergies between control and vision: how vision can be used for control and how

Chapter 15 · Vision-Based Control

477

control can be used for vision. More recent algorithmic developments and application
are covered in a collection of workshop papers by Chesi and Hashimoto (2010).

Visual servoing has a very long history – the earliest reference is by Shirai and
Inoue (1973) who describe how a visual feedback loop can be used to correct the posi-
tion of a robot to increase task accuracy. They demonstrated a system with a servo
cycle time of 10 s, and this highlights a harsh reality for the field which has been the
problem of real-time feature extraction. Until the late 1990s this required bulky and
expensive special-purpose hardware such as that shown in Fig. 15.16. Other signifi-
cant early work on industrial applications occurred at SRI International during the
late 1970s (Hill and Park 1979; Makhlin 1985).

In the 1980s Weiss et al. (1987) introduced the classification of visual servo struc-
tures as either position-based or image-based. They also introduced a distinction be-
tween visual servo and dynamic look and move, the former uses only visual feedback
whereas the latter uses joint feedback and visual feedback. This latter distinction is
now longer in common usage and most visual servo systems today make use of joint-
position and visual feedback. Weiss (1984) applied adaptive control techniques for
IBVS of a robot arm without joint-level feedback, but the results were limited to low
degree of freedom arms due to the low-sample rate vision processing available at that
time. Others have looked at incorporating the manipulator dynamics Eq. 9.1 into con-
trollers that command motor torque directly (Kelly 1996; Kelly et al. 2002a,b) but all
still require joint angles in order to evaluate the manipulator Jacobian, and the joint
rates to provide damping. Control and stability in closed-loop visual control systems
was addressed by several researchers (Corke and Good 1992; Espiau et al. 1992;
Papanikolopoulos et al. 1993) and feedforward predictive, rather than feedback, con-
trollers were proposed by Corke (1994) and Corke and Good (1996).

Feddema (Feddema and Mitchell 1989; Feddema 1989) used closed-loop joint control
to overcome problems due to low visual sampling rate and demonstrated IBVS for 4-DOF.
Chaumette, Rives and Espiau (Chaumette et al. 1991; Rives et al. 1989) describe a similar
approach using the task function method (Samson et al. 1990) and show experimental
results for robot positioning using a target with four features. Feddema et al. (1991) de-
scribe an algorithm to select which subset of the available features give the best condi-
tioned square Jacobian. Hashimoto et al. (1991) have shown that there are advantages in
using a larger number of features and using a pseudo-inverse to solve for velocity.

It is well known that IBVS is very tolerant to errors in depth and its effect on control
performance is examined in detail in Marey and Chaumette (2008). Feddema and Mitchell
(1989) performed a partial 3D reconstruction to determine point depth based on observed
features and known target geometry. Papanikolopoulos and Khosla (1993) described adap-
tive control techniques to estimate depth, as used in this chapter. Hosoda and Asada (1994),
Jägersand et al. (1996) and Piepmeier et al. (1999) have shown how the image Jacobian
matrix itself can be estimated online from measurements of robot and image motion.

Fig. 15.16.

A 19 inch VMEbus rack of
hardware image processing

cards, capable of 10 Mpix s–1

throughput or framerate for
512× 512 images. Used by the
author circa in the early 1990s

15.4 · Wrapping Up

478

The most common image Jacobian is based on the motion of points in the image,
but it can also be derived for the parameters of lines in the image plane (Chaumette
1990; Espiau et al. 1992) and the parameters of an ellipse in the image plane (Espiau
et al. 1992). More recently moments have been proposed for visual servoing of planar
scenes (Chaumette 2004; Tahri and Chaumette 2005).

The literature on PBVS is much smaller, but the paper by Westmore and Wilson
(1991) is a good introduction. They use an EKF to implicitly perform pose estimation,
the target pose is the filter state and the innovation between predicted and feature
coordinates updates the target pose state. Hashimoto et al. (1991) present simulations
to compare position-based and image-based approaches.

Visual servoing has been applied to a diverse range of problems that normally re-
quire human hand-eye skills such as ping-pong (Andersson 1989), juggling (Rizzi and
Koditschek 1991) and inverted pendulum balancing (Dickmanns and Graefe 1988a;
Andersen et al. 1993), catching (Sakaguchi et al. 1993; Buttazzo et al. 1993; Bukowski
et al. 1991; Skofteland and Hirzinger 1991; Skaar et al. 1987; Lin et al. 1989), and con-
trolling a labyrinth game (Andersen et al. 1993).

Exercises

1. Position-based visual servoing
a) Run the PBVS example. Experiment with varying parameters such as the initial

camera pose, the path fraction λ and adding pixel noise to the output of the
camera.

b) Create a Simulink® model for PBVS.
c) Use a different camera model for the pose estimation (slightly different focal

length or principal point) and observe the effect on final end-effector pose.
d) Implement an EKF based PBVS system as described in Westmore and Wilson (1991).

2. Optical flow fields
a) Plot the optical flow fields for cameras with different focal lengths.
b) Plot the flow field for some composite camera motions such as x- and y-transla-

tion, x- and z-translation, and x-translation and z-rotation.
3. For the case of two points the image Jacobian is 4× 6 and the nullspace has two

columns. What camera motions do they correspond to?
4. Image-based visual servoing

a) Run the IBVS example, either command line or Simulink® version. Experiment
with varying the gain λ . Remember that λ can be a scalar or a diagonal matrix
which allows different gain settings for each degree of freedom.

b) Implement the function to limit the maximum norm of the commanded velocity.
c) Experiment with adding pixel noise to the output of the camera.
d) Experiment with different initial camera poses and desired image plane coor-

dinates.
e) Experiment with different number of target points, from three up to ten. For the

cases where N> 3 compare the performance of the pseudo-inverse with just
selecting a subset of three points (first three or random three). Can you design
an algorithm that chooses a subset of points which results in the stacked Jaco-
bian with the best condition number?

f) Create a set of desired image plane points that form a rectangle rather than a
square. There is no perspective viewpoint from which a square appears as a rect-
angle. What does the IBVS system do?

g) Create a set of desired image plane points that cannot be reached, for example
swap two adjacent world or image points. What does the IBVS system do?

h) Use a different camera model for the image Jacobian (slightly different focal
length or principal point) and observe the effect on final end-effector pose.

Chapter 15 · Vision-Based Control

479

i) For IBVS we generally force points to move in straight lines but this is just a
convenience. Use a trajectory generator to move the points from initial to de-
sired position with some sideways motion, perhaps a half or full cycle of a sine
wave. What is the effect on camera Cartesian motion?

5. Derive the image Jacobian for a pan/tilt camera head.
6. When discussing motion perceptibility we used the identity (Jp

+)TJp
+= (JpJp

T)−1.
Prove this. Hint, use the singular value decomposition J=UΣVT and remember
that U and V are orthogonal matrices.

7. End-point open-loop visual servo systems have not been discussed in this book.
Consider a group of target points on the robot end-effector as well as the those on
the target object, both being observed by a single camera (challenging).
a) Create an end-point open-loop PBVS system.
b) Use a different camera model for the pose estimation (slightly different focal

length or principal point) and observe the effect on final end-effector relative
pose.

c) Create an end-point open-loop IBVS system.
d) Use a different camera model for the image Jacobian (slightly different focal length

or principal point) and observe the effect on final end-effector relative pose.
8. Run the line-based visual servo example.
9. Ellipse-based visual servo

a) Run the ellipse-based visual servo example.
b) Modify to servo five degrees of camera motion using just the ellipse parameters

(without the point feature).
c) For an arbitrary shape we can compute its equivalent ellipse which is expressed

in terms of an inertia matrix and a centroid. Determine the ellipse parameters
of Eq. 15.14 from the inertia matrix and centroid. Create an ellipse-feature vi-
sual servo to move to a desired view of the arbitrary shape (challenging).

15.4 · Wrapping Up

16
Chapter

This chapter builds on the previous one and introduces some advanced visual servo
techniques and applications. Section 16.1 introduces a hybrid visual servo method
that avoids some of the limitations of the IBVS and PBVS schemes described pre-
viously.

Wide-angle cameras such as fisheye lenses and catadioptric cameras have signifi-
cant advantages for visual servoing. Section 16.2 shows how IBVS can be reformulated
for polar rather than Cartesian image-plane coordinates. This is directly relevant to
fisheye lenses but also gives improved rotational control when using a perspective
camera. The unified imaging model from Sect. 11.4 allows most cameras (perspective,
fisheye and catadioptric) to be represented by a spherical projection model, and
Sect. 16.3 shows how IBVS can reformulated for spherical coordinates.

The remaining sections present a number of application examples. These illus-
trate how visual servoing can be used with different types of cameras (perspective
and spherical) and different types of robots (arm-type robots, mobile ground robots
and flying robots). Section 16.4 considers a 6 degree of freedom robot arm manipu-
lating the camera. Section 16.5 considers a mobile robot moving to a specific pose
which could be used for navigating through a doorway or docking. Finally, Sect. 16.6
considers visual servoing of a quadrotor flying robot to hover at fixed pose with re-
spect to a target on the ground.

16.1 lXY/Z-Partitioned IBVS

In the last chapter we encountered the problem of camera retreat in an IBVS system.
This phenomenon can be explained intuitively by the fact that our IBVS control law
causes feature points to move in straight lines on the image plane, but for a rotating
camera the points will naturally move along circular arcs. The linear IBVS controller
dynamically changes the overall image scale so that motion along an arc appears as
motion along a straight line. The scale change is achieved by z-axis translation.

Partitioned methods eliminate camera retreat by using IBVS to control some de-
grees of freedom while using a different controller for the remaining degrees of freedom.
The XY/Z hybrid schemes consider the x- and y-axes as one group, and the z-axes as
another group. The approach is based on a couple of insights. Firstly, and intuitively,
the camera retreat problem is a z-axis phenomenon: z-axis rotation leads to unwanted
z-axis translation. Secondly, from Fig. 15.7, the image plane motion due to x- and y-axis
translational and rotation motion are quite similar, whereas the optical flow due to z-axis
rotation and translation are radically different.

We partition the point-feature optical flow of Eq. 15.7 so that

(16.1)

where νxy= (vx, vy, ωx, ωy), νz= (vz, ωz), and Jxy and Jz are respectively columns {1, 2, 4, 5}
and {3, 6} of Jp. Since νz will be computed by a different controller we can write Eq. 16.1 as

Advanced Visual Servoing

482

(16.2)

where ¹* is the desired feature point velocity as in the traditional IBVS scheme Eq. 15.10.
The z-axis velocities vz and ωz are computed directly from two additional image

features A and θ that shown in Fig. 16.1. The first image feature θ∈ [0, 2π), is the angle
between the u-axis and the directed line segment joining feature points i and j. For
numerical conditioning it is advantageous to select the longest line segment that can
be constructed from the feature points, and allowing that this may change during the
motion as the feature point configuration changes. The desired rotational rate is ob-
tained using a simple proportional control law

where the operator ⊖ indicates modulo-2π subtraction. As always with motion on a
circle there are two directions to move to achieve the goal. If the rotation is limited, for
instance by a mechanical stop, then the sign of ωz should be chosen so as to avoid
motion through that stop.

The second image feature that we use is a function of the area A of the regular
polygon whose vertices are the image feature points. The advantages of this measure
are: it is a scalar; it is rotation invariant� thus decoupling camera rotation from
Z-axis translation; and it can be cheaply computed. The area of the polygon is just the
zeroth-order moment, m00 which can be computed using the Toolbox function
mpq_poly(p, 0, 0). The feature for control is the square root of area

which has units of length, in pixels. The desired camera z-axis translation rate is ob-
tained using a simple proportional control law

(16.3)

The features discussed above for z-axis translation and rotation control are simple
and inexpensive to compute, but work best when the target normal is within ±40° of
the camera’s optical axis. When the target plane is not orthogonal to the optical axis its
area will appear diminished, due to perspective, which causes the camera to initially
approach the target. Perspective will also change the perceived angle of the line seg-
ment which can cause small, but unnecessary, z-axis rotational motion.

The Simulink® model

>> sl_partitioned

is shown in Fig. 16.2. The initial pose of the camera is set by a parameter of the pose
block. The simulation is run by

Fig. 16.1.

Image features for XY/Z parti-
tioned IBVS control. As well as
the coordinates of the four
points (blue dots), we use the
polygon area A and the angle
of the longest line segment θ

Rotationally invariant to rotation about

the z-axis, not the x- and y-axes.

Chapter 16 · Advanced Visual Servoing

483

>> sim('sl_partitioned')

and the camera pose, image plane feature error and camera velocity are animated.
Scope blocks also plot the camera velocity and feature error against time.

If points are moving toward the edge of the field of view the simplest way to keep them
in view is to move the camera away from the scene. We define a repulsive force that acts on
the camera, pushing it away as a point approaches the boundary of the image plane

where d(p) is the shortest distance to the edge of the image plane from the image
point p, and d0 is the width of the image zone in which the repulsive force acts, and
η is a scalar gain coefficient. For a W×H image

(16.4)

The repulsion force is incorporated into the z-axis translation controller

where η is a gain constant with units of damping. The repulsion force is discontinuous
and may lead to chattering where the feature points oscillate in and out of the repul-
sive force – this can be remedied by introducing smoothing filters and velocity limiters.

Fig. 16.2. The Simulink® model
sl_partitioned is an XY/Z-
partitioned visual servo scheme,
an extension of the IBVS system
shown in Fig. 15.9. The initial
camera pose is set in the pose
block and the desired image plane
points p* are set in the green con-
stant block

16.1 · XY/Z-Partitioned IBVS

484

16.2 lIBVS Using Polar Coordinates

In Sect. 15.3 we showed image feature Jacobians for non-point features, but here we
will show the point-feature Jacobian expressed in terms of a different coordinate sys-
tem. In polar coordinates the image point is written p= (r, φ) where r is the distance
of the point from the principal point

(16.5)

where we recall that –u and –v are the image coordinates with respect to the principal
point rather than the image origin. The angle from the u-axis to a line joining the
principal point to the image point is

(16.6)

The two coordinate representations are related by

(16.7)

and taking the derivatives with respect to time

and inverting

which we substitute into Eq. 15.6 along with Eq. 16.7 to write

(16.8)

where the feature Jacobian is

(16.9)

This Jacobian is unusual in that it has three constant elements. In the first row the
zero indicates that radius r is invariant to rotation about the z-axis. In the second row
the zero indicates that polar angle is invariant to translation along the optical axis
(points move along radial lines), and the negative one indicates that the angle of a
feature (with respect to the u-axis) decreases with positive camera rotation. As for the
Cartesian point features, the translational part of the Jacobian (the first 3 columns) are
proportional to 1/Z. Note also that the Jacobian is undefined for r= 0, that is for a
point at the image centre. The interaction matrix is computed by the visjac_p_polar
method of the CentralCamera class.

Chapter 16 · Advanced Visual Servoing

485

The desired feature velocity is a function of feature error

where ⊖ is modulo-2π subtraction for the angular component which is imple-
mented by the Toolbox function angdiff. Note that |r|≫|φ | and should be nor-
malized

so that r and φ are of approximately the same order.
An example of IBVS using polar coordinates is implemented by the class

IBVS_polar. We first create a canonic camera,⊳ that has normalized image coordi-
nates

>> cam = CentralCamera('default')
>> Tc0 = transl(0, 0, -2)*trotz(1);
>> vs = IBVS_polar(cam, 'T0', Tc0, 'verbose')

and we run run a simulation

>> vs.run()

The animation shows the feature motion in the image, and the camera and world
points in a world view. The camera motion is quite different compared to the Carte-
sian IBVS scheme introduced in the previous chapter. For the previously problematic
case of large optical-axis rotation the camera has simply moved toward the target
and rotated. The features have followed straight line paths on the rφ-plane. The per-
formance of polar IBVS is the complement of Cartesian IBVS – it generates good
camera motion for the case of large rotation, but poorer motion for the case of large
translation.

The methods plot_error, plot_vel and plot_camera can be used to show
data recorded during the simulation. An additional method

>> vs.plot_features()

displays the path of the features in φr-space and this is shown in Fig. 16.3 along with
the camera motion which shows no sign of camera retreat.

Fig. 16.3. IBVS using polar co-
ordinates. a Feature motion in
φ r-space; b camera motion in
Cartesian space

The default camera parameters lead to

large image coordinate values and hence

to large values of r. The other feature co-

ordinate is an angle φ ∈ [−π, π] with

a much lower value and this leads to

numerical problems when solving for

camera velocity.

16.2 · IBVS Using Polar Coordinates

486

16.3 lIBVS for a Spherical Camera

In Sect. 11.3 we looked at non-perspective cameras such as the fisheye lens camera
and the catadioptric camera. Given the particular projection equations we can derive
an image-feature Jacobian from first principles. However the many different lens and
mirror shapes leads to many different projection models and image Jacobians. Alter-
natively we can project the features from any type of camera to the sphere, Sect. 11.5.1,
and derive an image Jacobian for visual servo control on the sphere.

The image Jacobian for the sphere is derived in a manner similar to the perspective
camera in Sect. 15.2.1. Referring to Fig. 11.20 the world point P is represented by the
vector P= (X, Y, Z) in the camera frame, and is projected onto the surface of the sphere
at the point p= (x, y, z) by a ray passing through the centre of the sphere

(16.10)

where R = _(X2g+ggY2g+ggZg2) is the distance from the camera origin to the world point.
The spherical surface constraint x2+ y2+ z2= 1 means that one of the Cartesian

coordinates is redundant so we will use a minimal spherical coordinate system com-
prising the angle of colatitude

(16.11)

where r=√

x2+

y2, and the azimuth angle (or longitude)

(16.12)

which yields the point feature vector p= (θ, φ).
Taking the derivatives of Eq. 16.11 and Eq. 16.12 with respect to time and substitut-

ing Eq. 15.2 as well as

(16.13)

we obtain, in matrix form, the spherical optical flow equation

(16.14)

where the image feature Jacobian is

(16.15)

There are similarities to the Jacobian derived for polar coordinates in the previous
section. Firstly, the constant elements fall at the same place, indicating that colatitude
is invariant to rotation about the optical axis, and that azimuth angle is invariant to
translation along the optical axis but equal and opposite to camera rotation about the
optical axis. As for all image Jacobians the translational sub-matrix (the first three
columns) is a function of point depth 1/R.

Chapter 16 · Advanced Visual Servoing

487

The Jacobian is not defined at the north and south poles where sinθ= 0 and azi-
muth also has no meaning at these points. This is a singularity, and as we remarked in
Sect. 2.2.1.3, in the context of Euler angle representation of orientation, this is a conse-
quence of using a minimal representation. However, in general the benefits outweigh
the costs for this application.

For control purposes we follow the normal procedure of computing one 2× 6 Jaco-
bian, Eq. 8.2, for each of N feature points and stacking them to form a 2N× 6 matrix

(16.16)

The control law is

(16.17)

where ¹* is the desired velocity of the features in φθ -space. Typically we choose this to
be proportional to feature error

(16.18)

where λ is a positive gain, p is the current point in φθ -coordinates, and p* the desired
value. This results in locally linear motion of features within the feature space.⊳ ⊖
denotes modulo subtraction and returns the smallest angular distance given that
θ ∈ [0, π] and φ= [−π, π).

An example of IBVS using spherical coordinates (Fig. 16.4) is implemented by the
class IBVS_sph. We first create a spherical camera

>> cam = SphericalCamera()

and then a spherical IBVS object

>> Tc0 = transl(0.3, 0.3, -2)*trotz(0.4);
>> vs = IBVS_sph(cam, 'T0', Tc0, 'verbose')

and we run run a simulation for the IBVS failure case

>> vs.run()

Fig. 16.4. IBVS using spherical
camera and coordinates. a Feature
motion in θ−φ space; b four tar-
get points projected onto the
sphere in its initial pose

Note that motion on this plane is in gen-

eral not a great circle on the sphere –

only motion along lines of colatitude and

the equator are great circles.

16.3 · IBVS for a Spherical Camera

488

The animation shows the feature motion on the φθ -plane and the camera and world
points in a world view. Spherical imaging has many advantages for visual servoing.
Firstly, a spherical camera eliminates the need to explicitly keep features in the field of
view which is a problem with both position-based visual servoing and some hybrid
schemes. Secondly, we previously observed an ambiguity between the optical flow fields
for Rx and −Ty motion (and Ry and −Tx motion) for small field of view. For IBVS with
a long focal length this can lead to slow convergence and/or sensitivity to noise in
feature coordinates. For a spherical camera, with the largest possible field of view, this
ambiguity is reduced.�

Spherical cameras do not yet exist but we can can project features from one or more
cameras of any type onto spherical image plane, and compute the control law in terms
of spherical coordinates.

16.4 lApplication: Arm-Type Robot

In this example the camera is carried by a 6-axis robot which can control all six de-
grees of camera motion. We will assume that the robot’s joints are ideal velocity sources,
that is, they move at precisely the velocity that was commanded. A modern robot is
very close to this ideal, typically having high performance joint controllers using ve-
locity and position feedback from encoders on the joints.

The nested control structure for a robot joint was discussed in Sect. 9.4.2. The inner
velocity loop uses joint velocity feedback to ensure that the joint moves at the desired
speed. The outer position loop uses joint position feedback to determine the joint speed
required to follow the trajectory. In this visual servo system the position loop function is
provided by the vision system. Vision sensors have a low sample rate compared to an
encoder, typically 25 or 30 Hz, and often with a high latency of one or two sample times.

The Simulink® model of this eye-in-hand system

>> sl_arm_ibvs

is shown in Fig. 16.5. This is a complex example that simulates not only the camera
and IBVS control but also the robot, in this case the ubiquitous Puma 560 from Part III
of this book. The joint angles are the outputs of an integrator which represents the
robot’s velocity loops. These angles are input to a forward kinematics block which
outputs the end-effector pose. A perspective camera with default parameters is mounted

Fig. 16.5. The Simulink® model
sl_arm_ibvs drives a Puma
robot arm that holds the camera
using IBVS

Provided that the world points are well

distributed around the sphere.

Chapter 16 · Advanced Visual Servoing

489

on the robot’s end-effector and its axes are aligned with the coordinate frame of the robot’s
end-effector. The camera’s parameters include the CentralCamera object and the world
coordinates of the target points which are the corners of a square in the yz-plane. The
image features are used to compute a Jacobian with an assumed Z value for every point,
and also to determine the feature error in image space. The image Jacobian is inverted
and a gain applied to determine the spatial velocity of the camera. The inverse manipula-
tor Jacobian maps this to joint rates which are integrated to determine joint angles. This
closed loop system drives the robot to the desired pose with respect to a square target.

We run this model

>> r = sim('sl_arm_ibvs')

which displays the robot moving and the image plane of a virtual camera. The signals
at the various output blocks are stored in the object r and the joint angles at each time
step, output port one, are

>> q = squeeze(out.find('yout').signals(1).values)';
>> about(q)
q [double] : 60x6 (2880 bytes)

Note that this model does not include any dynamics of the robot arm or the vision
system. The joints are modelled as perfect velocity control devices, and the vision sys-
tem is modelled as having no delay. This model could form the basis of more realistic
system models that incorporate these real-world effects.

16.5 lApplication: Mobile Robot

In this section we consider a camera mounted on a mobile robot moving in a planar
environment. We will first consider a holonomic robot, that is one that has an omni-
directional base and can move in any direction, and then extend the solution to a
non-holonomic car-like base which touches on some of the issues discussed in Chap. 4.
The camera observes two or more point landmarks that have known 3-dimensional
coordinates, that is, they can be placed above the plane on which the robot operates.
The visual servo controller will drive the robot until its view of the landmarks matches
the desired view.

16.5.1 lHolonomic Mobile Robot

For this problem we assume a central perspective camera fixed to the robot and a
number of landmarks with known locations that are continuously visible to the cam-
era as the robot moves along the path. The vehicle’s coordinate frame is such that the
x-axis is forward and the z-axis is upward.

We define a perspective camera

>> cam = CentralCamera('default', 'focal', 0.002);

with a wide field of view so that it can keep the landmarks in view as it moves. The
camera is mounted on the vehicle with an offset VξC of

>> T_vc = transl(0.2, 0.1, 0.3)*trotx(-pi/4);

relative to the vehicle coordinate frame. This is forward of the rear axle, to the left of
the vehicle centre line, 30 cm above ground level, with its optical axis forward but
pitched upward at 45°, and its x-axis pointing to the right of the vehicle. The two land-
marks are 2 m above the ground and situated at x= 0 and y=±1 m

>> P = [0 0; 1 -1; 2 2]

The desired vehicle position is with the centre of the rear axle at (−2, 0, 2).

16.5 · Application: Mobile Robot

490

Since the robot operates in the xy-plane and can rotate only about the z-axis we
can remove the columns from Eq. 15.6 that correspond to non-permissible motion
and write

(16.19)

As for standard IBVS case we stack these Jacobians, one per landmark, and then
invert the equation to solve for the vehicle velocity. Since there are only three un-
known components of velocity, and each landmark contributes two equations, we need
two or more feature points in order to solve for velocity.

The Simulink® model

>> sl_mobile_vs

is shown in Fig. 16.6 and is similar in principle to earlier models such as Fig. 16.5 and
15.9. The model is simulated by

>> r = sim('sl_mobile_vs')

and displays an animation of the vehicle’s path in the xy-plane and the camera
view. Results are stored in the simulation results object r and can be displayed as
for previous examples. The parameters and camera are defined in the properties of
the model’s various blocks.�

Fig. 16.6. The Simulink® model
sl_mobile_vs drives a holo-
nomic mobile robot to a pose us-
ing IBVS control

Simulink® menu File+Model Properties

+Callbacks+PreLoadFcn. These com-

mands are executed once when a model

is loaded.

Chapter 16 · Advanced Visual Servoing

491

16.5.2 lNon-Holonomic Mobile Robot

The difficulties of servoing a hon-holonomic mobile robot to a pose were discussed
earlier and a non-linear pose controller was introduced in Sect. 4.2.4. The notation for
our problem is shown in Fig. 16.7 and once again we use a controller based on the
polar coordinates ρ, α and β. For this control example we will use PBVS techniques to
estimate the variables needed for control. We assume a central perspective camera
that is fixed to the robot with a relative pose VξC, a number of landmarks with known
locations that are continuously visible to the camera as it moves along the path, and that
the vehicle’s orientation θ is also known, perhaps using a compass or some other sensor.

The Simulink® model

>> sl_drivepose_vs

is shown in Fig. 16.8. The initial pose of the camera is set by a parameter of the
Bicycle block. The view of the landmarks is simulated by the camera block and its
output, the projected points, are input to a pose estimation block and the known loca-
tions of the landmarks are set as parameters. As discussed in Sect. 11.2.3 at least three
landmarks are needed and in this example four landmarks are used. The output is the
estimated pose of the landmarks with respect to the camera, but since the landmarks
are defined in the world frame {0} the output is Cû0. The vehicle pose in the world
frame is obtained by a chain of simple transform operations ûV=⊖

Cû0⊖
VξC. The

x- and y-components of this transform are combined with estimated heading angle⊳

to yield an estimate of the vehicle’s configuration (ú, ù, ø) which is input to the pose con-
troller. The remainder of the system is essentially the same as the example from Fig. 4.14.

The simulation is run by

>> r = sim('sl_ibvs')

and the camera pose, image plane feature error and camera velocity are animated.
Scope blocks also plot the camera velocity and feature error against time. Results are
stored in the simulation results object r and can be displayed as for previous examples.

Fig. 16.7.

PBVS for non-holonomic vehicle
(bicycle model) vehicle moving
toward a goal pose: ρ is the dis-
tance to the goal, β is the angle

of the goal vector with respect to
the world frame, and α is the
angle of the goal vector with
respect to the vehicle frame.

P1 and P2 are landmarks which
are at bearing angles of ψ1 and ψ2

with respect to the camera

16.5 · Application: Mobile Robot

In a real system heading angle would

come from a compass, in this simulation

we “cheat” and simply use the true

heading angle.

492

16.6 lApplication: Aerial Robot

A spherical camera is particularly suitable for platforms that move in SE(3) such as
aerial and underwater robots. In this example we consider a spherical camera attached
to a quadrotor and we will use IBVS to servo the quadrotor to a particular pose with
respect to four targets on the ground.

As we discussed in Sect. 4.3 the quadrotor is underactuated and we cannot inde-
pendently control all 6 degrees of freedom in task space. We can control position
(X, Y, Z) and also yaw angle. Roll and pitch angle are manipulated to achieve transla-
tion in the horizontal plane and must be zero when the vehicle is in equilibrium. The
Simulink® model

>> sl_quadrotor_vs

is shown in Fig. 16.9. The model is a hybrid of the quadrotor controller from Fig. 4.17
and the underactuated IBVS system of Fig. 16.6. There are however a number of key
differences.

Firstly, in the quadrotor control of Fig. 4.17 we used a rotation matrix to map
xy-error in the world frame to the pitch and roll demand of the flyer. This is not needed
for the visual servo case since the xy-error is given in the camera, or vehicle, frame rather
than the world frame. Secondly, like the mobile robot case the vehicle is underactuated,
and here the Jacobian comprises only the columns corresponding to (vx, vy, vz, ωz). Thirdly,
we are using a spherical camera, so a SphericalCamera object is passed to the
camera and visual Jacobian blocks.

Fourthly there is a derotation block immediately following the camera. We re-
call how the quadrotor cannot translate without first tilting into the direction
it wishes to translate, and this will cause the features to move in the image and
increase the image feature error. For small amounts of roll and pitch this could be
ignored but for aggressive manoeuvres it must be taken into account. We can use the
image Jacobian to approximate� the displacements in θ and φ as a function of
displacements in camera roll and pitch angle which are rotations about the x- and
y-axes respectively

Fig. 16.8. The Simulink® model
sl_drivepose_vs drives a
non-holonomic mobile robot to a
pose (derived from Fig. 4.13)

This is a first-order approximation to the

feature motion.

Chapter 16 · Advanced Visual Servoing

493

and these are subtracted from the features observed by the camera to give the features
that would be observed by a camera in the vehicle’s frame {V}.

Comparing Fig. 16.9 to Fig. 4.17 we see the same outermost position loops on x- and
y-position, but the altitude and yaw loops are no longer required. The IBVS controller
generates the required velocities for these degrees of freedom directly. Note that rate
information is still required as input to the velocity loops and in a real robot this
would be derived from an inertial measurement unit.

The simulation is run by

>> sim('sl_quadrotor_vs')

and the camera pose, image plane feature error and camera velocity are animated.
Scope blocks also plot the camera velocity and feature error against time. The simula-
tion results can be obtained from the simulation output object out. The initial pose of
the camera is set in the model’s properties⊳.

Fig. 16.9. The Simulink® model
sl_quadrotor_vs. IBVS with
a spherical camera for hovering
over a target

Simulink® menu File+Model Properties

+Callbacks+InitFcn. These commands

are always executed prior to the begin-

ning of a simulation.

16.6 · Application: Aerial Robot

494

16.7 lWrapping Up

Further Reading

A recent introduction to advanced visual servo techniques is their tutorial article
Chaumette and Hutchinson (2007) and also briefly in Siciliano and Khatib (2008, § 24).
Much of the interest in so-called hybrid techniques was sparked by Chaumette’s paper
(Chaumette 1998) which introduced the specific example that drives the camera of a
point-based IBVS system to infinity for the case of target rotation by π about the
optical axis. One of the first methods to address this problem was 2.5D visual servoing,
proposed by Malis et al. (1999), which augments the image-based point features with a
minimal Cartesian feature. Other notable early hybrid methods were proposed by Morel
et al. (2000) and Deguchi (1998) which partitioned the image Jacobian into a transla-
tional and rotational part. An homography is computed between the initial and final
view (so the target points must be planar) and then decomposed to determine a rota-
tion and translation. Morel et al. combine this rotational information with transla-
tional control based on IBVS of the point features. Conversely, Deguchi et al. combine
this translational information with rotational control based on IBVS. Since translation
is only determined up to an unknown scale factor some additonal means of determin-
ing scale is required.

Corke and Hutchinson (2001) presented an intuitive geometric explanation for the
problem of the camera moving away from the target during servoing, and proposed a
partitioning scheme split by axes: x- and y-translation and rotation in one group, and
z-translation and rotation in the other. Another approach to hybrid visual servoing is
to switch rapidly between IBVS and PBVS approaches (Gans et al. 2003). The perfor-
mance of several partitioned schemes is compared by Gans et al. (2003).

The polar form of the image Jacobian for point features (Iwatsuki and Okiyama
2002a; Chaumette and Hutchinson 2007) handles the IBVS failure case nicely, but re-
sults in somewhat suboptimal camera translational motion (Corke et al. 2009) – the
converse of what happens for the Euclidean formulation.

The Jacobian for a spherical camera is similar to the polar form. The two angle
parameterization was first described in Corke (2010) and was used for control and for
structure-from-motion estimation. There has been relatively little work on spherical vi-
sual servoing. Fomena and Chaumette (2007) consider the case for a single spherical
target from which they extract features derived from the projection to the spherical im-
aging plane such as the center of the circle and its apparent radius. Tahri et al. (2009)
consider spherical image features such as lines and moments. Hamel and Mahony (2002)
describe kino-dynamic control of an underactuated aerial robot using point features.

The manipulator dynamics Eq. 9.1 and the perspective projection Eq. 11.2 are highly
nonlinear and a function of the state of the manipulator and the target. Almost all
visual servo systems consider that the robot is velocity controlled, and that the under-
lying dynamics are suppressed and linearized by tight control loops. As we learnt in
Sect. 9.4 this is the case for arm-type robots and in the quadrotor example we used a
similar nested control structure. This approach is driven by the short time constants
of the underlying mechanism and the slow sample rate and latency of any visual con-
trol loop. Modern computers and high-speed cameras make it theoretically possible to
do away with axis-level velocity loops but it is far simpler to use them.

Visual servoing of non-holonomic robots is non-trivial since Brockett’s theorem
(1983) shows that no linear time-invariant controller can control it. The approach used
in this chapter was position based which is a minor extension of the pose controller
introduced in Sect. 4.2.4. IBVS approaches have been proposed (Tsakiris et al. 1998;
Masutani et al. 1994) but require that the camera is attached to the base by a robot with
a small number of degrees of freedom. Mariottini et al. (1994, 2007) describe a two-
step servoing approach where the camera is rigidly attached to the base and the epipoles

Chapter 16 · Advanced Visual Servoing

495

of the geometry defined by the current and desired camera views are explicitly servoed.
Usher (Usher et al. 2003; Usher 2005) describes a switching control law that takes the
robot onto a line that passes through the desired pose, and then along the line to the
pose – experimental results on an outdoor vehicle are presented. The similarity between
mobile robot navigation and visual servoing problem is discussed in Corke (2001).

Exercises

1. XY/Z-partitioned IBVS (page 481)
a) Investigate the generated motion for different combinations of initial camera trans-

lation and rotation, and compare to the classical IBVS scheme of the last chapter.
b) Create a scenario where the features leave the image.
c) Add a repulsion field to ensure that the features remain within the image.

2. Investigate the performance of polar and spherical IBVS for different combinations
of initial camera translation and rotation, and compare to the classical IBVS scheme
of the last chapter.

3. Arm-robot IBVS example (page 488)
a) Add an offset (rotation and/or translation) between the end-effector and the

camera. Your controller will need to incorporate an additional Jacobian (see
Sect. 8.1.1) to account for this.

b) Add a discrete time sampler and delay after the camera block to model the
camera’s frame rate and image processing time. Investigate the response as the
delay is increased, and the tradeoff between gain and delay. You might like to
plot a discrete-time root locus diagram for this dynamic system.

c) Model a moving target. Hint use the Camera2 block from the roblocks library.
Show the tracking error, that is, the distance between the camera and the target.

d) Investigate feedforward techniques to improve the control (Corke 1996b). Hint,
instead of basing the control on where the target was seen by the camera, base it
on where it will be some short time into the future. How far into the future?
What is a good model for this estimation? Check out the Toolbox class
AlphaBeta for a simple to use tracking filter (challenging).

e) An eye-in-hand camera for a docking task might have problems as the camera
gets really close to the target. How might you configure the targets and camera
to avoid this?

4. Mobile robot visual servo (page 489)
a) For the holonomic and non-holonomic cases replace the perspective camera with

a catadioptric camera.
b) For the holonomic case with a catadioptric camera, move the robot through a

series of via points, each defined in terms of a set of desired feature coordinates.
c) For the non-holonomic case implement the pure pursuit and line following con-

trollers from Chap. 4 but in this case using visual features. For pure pursuit con-
sider the object being pursued carries one or two point features. For the line
following case consider using one or two line features.

5. Display the feature flow fields, like Fig. 15.7, for the polar r− φ and spherical θ− φ
projections (Sect. 16.2 and 16.3). For the spherical case can you plot the flow vec-
tors on the surface of a sphere?

6. Quadrotor
a) Replace the perspective camera with a spherical camera.
b) Create a controller to follow a series of point features rather than hover over a

single point (challenging).
c) Create a controller to follow a series of point features rather than hover over a

single point (challenging).
7. Implement the 2.5D visual servo scheme by Malis (1999) (challenging).

16.7 · Wrapping Up

Appendices

Appendix A Installing the Toolboxes

Appendix B Simulink®

Appendix C Matlab® Objects

Appendix D Linear Algebra Refresher

Appendix E Ellipses

Appendix F Gaussian Random Variables

Appendix G Jacobians

Appendix H Kalman Filter

Appendix I Homogeneous Coordinates

Appendix J Graphs

Appendix K Peak Finding

A
Appendix

The Toolboxes are freely available from the book’s home page

http://www.petercorke.com/RVC

which also has a lot of additional information related to the book such as web links (all
those printed in the book and more), code, figures, exercises and errata.

Files and Paths

The files for both Toolboxes reside in a top-level directory called rvctools and be-
neath this are a number of subdirectories:

robot The Robotics Toolbox.
vision The Machine Vision Toolbox.
common Utility functions common to the Robotics and Machine Vision

Toolboxes.
simulink Simulink® blocks for robotics and vision, as well as examples.
contrib Code written by third-parties.

Downloading

The Toolboxes are each packaged in a single zip format file (rtb.zip or mvtb.zip).
The download site requests some information such as your country, type of organiza-
tion and application. There is nothing sinister in this, just a means to gauge interest
and gather some feedback for the software which is a substantial personal effort.

Installing

Use your favourite unarchiving tool to unpack the files that you downloaded.
To add the Toolboxes to your MATLAB® path execute the command

>> addpath RVCDIR ;
>> startup_rvc

where RVCDIR is the full pathname of the directory where you unpacked the top-level
toolbox directory rvctools. The script startup_rvc adds various subfolders to
your path and displays the version of the Toolboxes.

This command can be executed interactively or placed in your startup.m file to
be executed automatically every time you start MATLAB®. Alternatively, for Linux and
Mac OS systems, you could add the paths to the environment variable MATLABPATH
which is a colon-separated list of paths.

Installing the Toolboxes

500

MEX-Files

Some functions in the Toolbox are implemented as MEX-files, that is, they are written
in C for computational efficiency but are callable from MATLAB® just like any other
function. Prebuilt MEX binaries are provided for Ubuntu Linux, MacOS 10.6 (32 bit)
and Windows, but the C source code is also provided. Specific details and build in-
structions for MEX-files can be found on the book’s website.

Online Discussion Group

An online discussion group is available via the book’s website and provides answers to
questions, discussions and bug fixes.

Contributed Code

A number of useful related functions are provided by third-parties and wrappers have been
written to make them consistent with other Toolbox functions. All such code resides in
the subdirectory contrib. To access this functionality you must first download the file
contrib.gz or contrib.zip and unarchive it into the top-level directory rvctools.

If you do not download the contributed code but access a function within the con-
tributed code base, you will receive an error message. The contributed code can be
downloaded and installed at any time.

Many of these contributed functions are part of active software projects and the
downloadable file is a snapshot that has been tested and works as described in this
book. These functions are being improved over time and the book’s web page has
links to the home pages of these various projects.

Licence

All the non third-party code is released under the LGPL licence. This means you are free
to distribute it in original or modified form provided that you keep the licence and au-
thorship information intact.

The third-party code modules are provided under various open-source licences. The
Toolbox compatibility wrappers for these modules are provided under compatible licences.

MATLAB® Versions

The Toolbox software for this book has been developed and tested using MATLAB®
R2011a and R2012a under Mac OS X (Snow Leopard). A number of recent features of
MATLAB® are used so older versions of MATLAB® are increasingly unlikely to work.
Please do not report bugs if you are using a MATLAB® version older than R2010a.

Octave

GNU Octave (www.octave.org) is an impressive piece of free software that implements
a language that is close to, but not the same as, MATLAB®. However the two languages are
converging and once massive differences with respect to graphics and object handling
are reducing over time. However it is unlikely that Octave will have GUI or Simulink®-like
capability in the near future. Currently the arm-robot functions of the Toolbox, Chap. 7–9,
have been ported to Octave and this code is distributed in RVCDIR/robot/octave.

Appendix A · Installing the Toolboxes

B
Appendix

Simulink® is the block diagram editing and simulation environment for MATLAB®. It
is a separately licenced module but the functionality is included in the student version
of MATLAB®. Simulink® provides a very convenient way to create and visualize com-
plex dynamic systems, and is particularly applicable to robotics. Users with no previ-
ous Simulink® experience are advised to read the relevant Mathworks manuals and
experiment with the examples supplied. Experienced Simulink® users should find the
use of the Robotics blocks quite straightforward. Generally there is a one-to-one cor-
respondence between Simulink® blocks and Toolbox functions.

Using Simulink®

If you have installed the Toolboxes then the Simulink® blocks and examples will be
available for use. The Toolbox block library is loaded and displayed by

>> roblocks

and the blocks can be dragged and dropped into a model. Example Simulink® models used
in this book are included in the directory rvctools/simulink/examples. These are
all prefixed with sl_ and are listed in the index of functions on page 557. A model is loaded
and displayed in Simulink® by just entering the model name at the prompt, for example

>> sl_lanechange

To display the underlying model for any block, right-click on it and choose Look

under mask.

Signals and Display Format

The wires in a Simulink® model can carry a scalar, vector or matrix. To explicitly show
the type of the signal on each wire set the options Format+PortSignal Displays+Signal

Dimensions and Format+PortSignal Displays+Wide Nonscalar Lines from the
Simulink® toolbar.

Workspace Variables and Callbacks

Most Toolbox Simulink® blocks have parameters and these can be any MATLAB® ex-
pression comprising constants, function calls or MATLAB® workspace variables. Some of
the provided Simulink® models set their own parameters in the workspace, by using a
callback function. Each model has a number of callback functions that are invoked on dif-
ferent events, these can be seen from the menu at File+Model Properties+Callbacks. The
PreLoadFcn callback is invoked when the model is being loaded and is used by some mod-
els to set the parameters. As a Toolbox convention, this parameter initialization code dis-
plays a message in the command window to let you know that it has updated the workspace.

Simulink®

502

Simulink® Version

The Simulink® models for this book has been developed and tested using MATLAB®
R2010a under Mac OS X. A number of recent features of Simulink® are used so older
versions are unlikely to work. Please do not report bugs if you are using Simulink®
with a MATLAB® version older than R2010a.

Notes on Implementation

Some of the Simulink® blocks are implemented in MATLAB® code as S-files. These
are functions written in the MATLAB® M language in a proscribed form in order to
interface with the Simulink® simulation engine. While at first sight quite daunting the
wrapping of existing functions is quite straightfoward and has the advantage that tried
and true functions can be made accessible to the Simulink® environment. See the rel-
evant Mathworks manuals for more information about writing S-files.

Simulink® Blocks

Arm Robots

Robot represents a serial-link robot, with input of generalized joint force
input and output of joint coordinates, velocities and accelerations.
The parameters are the robot object to be simulated and the initial
joint angles. It computes the forward dynamics of the robot.

RNE computes the inverse dynamics using the recursive Newton-Euler
algorithm. Inputs are joint coordinates, velocities and accelerations
and the output is the generalized joint force. The robot object is a
parameter.

jacob0 outputs a manipulator Jacobian matrix, with respect to the
world frame, based on the input joint coordinate vector. The robot
object is a parameter.

jacobn outputs a manipulator Jacobian matrix, with respect to the
end-effector frame, based on the input joint coordinate vector. The
robot object is a parameter.

fkine outputs a homogeneous transformation for the pose of the
end-effector corresponding to the input joint coordinates. The
robot object is a parameter.

plot creates a graphical animation of the robot in a new window. The
robot object is a parameter.

Other Robots

Bicycle is the kinematic model of a mobile robot that uses the bicycle
model. The inputs are speed and steer angle and the outputs are
position and orientation.

Pose integral integrates a spatial velocity over time and outputs a homogeneous
transformation. The parameter is the initial pose.

Quadrotor is the dynamic model of a quadrotor. The inputs are rotor speeds
and the output is translational and angular position and velocity.
Parameter is a quadrotor structure.

ControlMixer accepts thrust and torque commands and outputs rotor speeds for
a quadrotor.

Appendix B · Simulink®

SerialLink.fdyn

SerialLink.rne

SerialLink.jacob0

SerialLink.jacobn

SerialLink.fkine

SerialLink.plot

503

Quadrotor plot creates a graphical animation of the quadrotor in a new window.
Parameter is a quadrotor structure.

Trajectory

jtraj outputs coordinates of a point following a quintic polynomial as a
function of time, as well as its derivatives. Initial and final velocity
are assumed to be zero. The parameters include the initial and
final points as well as the overall motion time.

lspb outputs coordinates of a point following an LSPB trajectory as a
function of time. The parameters include the initial and final
points as well as the overall motion time.

circle outputs the xy-coordinates of a point around a circle. Parameters
are the centre, radius and angular frequency.

Vision

camera input is a camera pose and the output is the coordinates of points
projected on the image plane. Parameters are the camera object
and the point positions.

camera2 input is a camera pose and point coordinate frame pose, and the
output is the coordinates of points projected on the image plane.
Parameters are the camera object and the point positions relative
to the point frame.

image Jacobian input is image points and output is the point feature Jacobian.
Parameter is the camera object.

image Jacobian

sphere input is image points in spherical coordinates and output is the
point feature Jacobian. Parameter is a spherical camera object.

Pose estimation computes camera pose from image points. Parameter is the camera
object.

Miscellaneous

Inverse outputs the inverse of the input matrix.
Pre multiply outputs the input homogeneous transform pre-multiplied by the

constant parameter.
Post multiply outputs the input homogeneous transform post-multiplied by the

constant parameter.
inv Jac inputs are a square Jacobian J and a spatial velocity ν and outputs

are J−1
ν and the condition number of J.

pinv Jac inputs are a Jacobian J and a spatial velocity ν and outputs are J+ν
and the condition number of J.

tr2diff computes ∆(·), the difference between two homogeneous trans-
formations as a 6-vector comprising the translational and rota-
tional difference.

xyz2T converts a translational vector to a homogeneous transformation
matrix.

rpy2T converts a vector of roll-pitch-yaw angles to a homogeneous
transformation matrix.

eul2T converts a vector of Euler angles to a homogeneous transfor-
mation matrix.

Appendix B · Simulink®

jtraj

lspb

Camera.project

Camera2.project

CentralCamera.visjac

SphericalCamera.visjac

CentralCamera.estpose

tr2delta

transl

rpy2tr

eul2tr

504

T2xyz converts a homogeneous transformation matrix to a translational
vector.

T2rpy converts a homogeneous transformation matrix to a vector of
roll-pitch-yaw angles.

T2eul converts a homogeneous transformation matrix to a vector of
Euler angles.

angdiff computes the difference between two input angles modulo 2π .

Appendix B · Simulink®

angdiff

transl

tr2rpy

tr2eul

C
Appendix

The MATLAB® programming language, known as ‘M’, has syntax and semantics some-
what similar to the classical computer language Fortran. In particular array indices start
from one not zero, and subscripts are indicated by parentheses just like function call
arguments. In early versions of MATLAB® the only data type was a two-dimensional
matrix of real or complex numbers and a scalar was just a 1× 1 matrix. This changed
with the release of MATLAB® version 5.0 in 1997 which introduced many features that
are part of the language today: structures, cells arrays and classes.

The early computer languages (Fortran, Pascal, C) are imperative languages in which the
programmer describes computation in terms of actions that change the program’s state –
its data. The program is a logical procedure that takes input data, processes it, and produces
output data. As program size and complexity grew the limitations of imperative program-
ming became evident and new languages were designed to address these shortcomings.

A very powerful idea, dating from the mid 1980s, was object-oriented programming
(OOP). The OOP programming model is organized around objects rather than actions.
Each object encapsulates data and the functions, known as methods, to manipulate that
object’s data. The inner details of the object need not be known to the programmer using
the object. The object presents a clean interface through its methods which makes large
software projects easier to manage.

OOP languages support the concept of object classes. For example, we might define a
class that represents a quaternion and which has methods to return the inverse of the
quaternion, multiply two quaternions or to display a quaternion in a human-readable
form. Our program might have a number of quaternion variables, or objects, and each is
an instance of the quaternion class. Each instance has its own value, the data part of the
object, but it shares the methods defined for the class.

Well known OOP languages such as C++, Java, Python and Ruby are still impera-
tive in style but have language features to support objects. MATLAB® shares many
features with these other well-known OOP languages and the details are provided in
the MATLAB® documentation. The Toolboxes define a number of classes to represent
robot arms, robot arm links, quaternions, robot path planners and various types of image
feature. Toolbox classes are shown in bold font in the index of functions on page 554.

The use of objects provides a solution to the namespace pollution problem that occurs
when using many MATLAB® toolboxes. When a MATLAB® function is invoked it is
searched for in a list of directories – the MATLAB® search path. If the search path con-
tains lots of Toolboxes from various sources the chances of two functions having the
same name increases and this is problematic. If instead of functions we provide methods
for objects then those method names don’t occupy the function namespace, and can only
be invoked in the context of the appropriate object.

Using a Class

The following illustrates some capabiltiies of the quaternion class provided as part of
the Robotics Toolbox. A quaternion object is created by

>> q = Quaternion(rotx(0.2));

MATLAB® Objects

506

which invokes the constructor method for the class. By convention class names begin
with a capital letter. This method checks the types of arguments and computes the
equivalent quaternion. The quaternion’s scalar and vector components are stored within
this particular object or instance of the quaternion class. In MATLAB® the data part of
an object is referred to as its properties. The arguments to the constructor can be a
rotation matrix (as in this case), an angle and a vector, a 4-vector comprising the scalar
and vector parts, or another quaternion. The result is a new object in the workspace

>> about(q)
q [Quaternion] : 1x1 (88 bytes)

and it has the type Quaternion. In a program we can inquire about the type of an object

>> class(q)
ans =
 Quaternion

which returns a string containing the name of the object’s class. All MATLAB® objects
have a class

>> x = 3
>> class(x)
ans =
 double

and this class double is built in, unlike Quaternion which is user defined. We can
test the class of an object

>> isa(q, 'double')
ans =
 0
>> isa(q, 'Quaternion')
ans =
 1

We can access the properties of the quaternion object by

>> q.s
ans =
 0.9950

which returns the value of the scalar part of the quaternion. However the Toolbox
implementation of the Quaternion does not allow this property to be set

>> q.s = 0.5;
??? Setting the 's' property of the 'Quaternion' class is not allowed.

since the scalar and vector part should be set together to achieve some consistent
quaternion value.

We can compute the inverse of the quaternion by

>> qi = inv(q);

which returns a new quaternion qi equal to the inverse of q.
MATLAB® checks the type of the first argument and because it is a Quaternion

it invokes the inv method of the Quaternion class. Most object-oriented languages
use the dot notation which would be

>> qi = q.inv();

which makes it very clear that we are invoking the inv method of the object q. Either
syntax is permissible in MATLAB® but in this book we use the dot notation for clarity.
MATLAB® does not require the empty parentheses either, we could write

>> qi = q.inv

but for consistency with object-oriented practice in other languages, and to avoid con-
fusion with accessing properties, we will always include them.

Appendix C · Matlab® Objects

507

Any MATLAB® expression without a trailing semicolon will display the value of the
expression. For instance

>> qi
qi =
0.995 < -0.099833, 0, 0 >

causes the display method of the quaternion to be invoked. It is exactly the same as typing

>> qi.display()
qi =
0.995 < -0.099833, 0, 0 >

This in turn invokes the char method to convert the quaternion value to a string

>> s = qi.char();
>> about(s)
s [char] : 1x25 (50 bytes)

We will create another quaternion

>> q2 = Quaternion(roty(0.3));

and then compute the product of the two quaternions which we can write concisely as

>> q * q2

This is an example of operator overloading which is a feature of many object-oriented
languages. MATLAB® interprets this as

>> q.mtimes(q2)

For more complex expressions operator overloading is critical to expressivity, for ex-
ample we can write

>> q*q2*q
ans =
0.96906 < 0.19644, 0.14944, 0 >

and MATLAB® does the hardwork of computing the first product q*q2 into a tempo-
rary quaternion, multiplying that by q and then deleting the temporary quaternion. To
implement this without operator overloading would be the nightmare expression

>> q.mtimes(q2.mtimes(q))
ans =
0.96906 < 0.19644, 0.14944, 0 >

which is both difficult to read and to maintain.

Creating a Class

The quaternion class is defined by the Toolbox file Quaternion.m which is over 500
lines long but the basic structure is

1 classdef Quaternion
2
3 properties (SetAccess = private)
4 s % scalar part
5 v % vector part
6 end
7
8 methods
9
10 function q = Quaternion(a1, a2)
11 % constructor
12 end
13 .
14 % other methods
15 .
16 .
17 end
18 end

Appendix C · Matlab® Objects

508

The properties block, lines 3–6, defines the data associated with each quaternion
instance, in this case the internal representation is the scalar part in the variable s and
the vector part in the variable v. The methods block, lines 8–17, defines all the meth-
ods that the class supports. The name after classdef at line 1 must match the name
of the file and is the name of the class.

The properties have a SetAccess mode private which means that the proper-
ties can be read directly by programs but not set. If q is a quaternion object then q.s
would be the value of the scalar part of the quaternion. This is a matter of program-
ming style, and some people prefer that all access to object properties is via explicit
getter functions such as q.get_s().

Every class must have a constructor method which is a function with the same name
as the class. The constructor is responsible for initialising the data of the object, in this
case its properties s and v. Some object-oriented languages also support a destructor
function that is invoked when an object is no longer needed, in MATLAB® this is the
optional method delete.

The quaternion class implements 20 different methods. Each method is written as
a MATLAB® function with an end statement. The first argument to each method is
the quaternion object itself. For example the method that returns the inverse of a
quaternion is

function qi = inv(q)
 qi = Quaternion([q.s -q.v]);
end

which uses the constructor method Quaternion to create the quaternion that it
returns.

The method to convert a quaternion to a string is

function s = char(q)
 s = [num2str(q.s), ' < ' num2str(q.v(1)) ...
 ', ' num2str(q.v(2)) ', ' num2str(q.v(3)) ' >'];
end

The method mtimes is invoked for operator overloading whenever the operand on
either side of an asterisk is a quaternion object.

function qp = mtimes(q1, q2)
 if ~isa(q1, 'Quaternion')
 error('left-hand side of * must be a Quaternion');
 end

 if isa(q2, 'Quaternion')
 %Multiply unit-quaternion by unit-quaternion
 s1 = q1.s; v1 = q1.v;
 s2 = q2.s; v2 = q2.v;
 qp = Quaternion([s1*s2-v1*v2' s1*v2+s2*v1+cross(v1,v2)]);
 elseif isa(q2, 'double'),
 if length(q2) == 3
 % Multiply vector by unit-quaternion
 qp = q1 * Quaternion([0 q2(:)']) * inv(q1);
 qp = qp.v(:);
 elseif length(q2) == 1
 % Multiply quaternion by scalar
 qp = Quaternion(double(q1)*q2);
 else
 error('quaternion-vector product: must be a 3-vector
or scalar');
 end
 end
end

The method tests the type of the second operand and computes either a quaternion-
quaternion, quaternion-vector or quaternion-scalar product.

Appendix C · Matlab® Objects

509

MATLAB® classes support inheritance. This is a feature whereby a new class can
inherit the properties and methods of an existing class and extend that with addi-
tional properties or methods. In Part II the various planners such as Dstar and RRT
inherit from the class Navigation and in Part IV the different types of camera such
as CentralCamera and FishEyeCamera inherit from the class Camera. Inherit-
ance is indicated at the classdef line, for example

 classdef Dstar < Navigation

Inhertitance, particularly multiple inheritance, is a complex topic and the MATLAB®
documentation should be referred to for the details.

The MATLAB® functions methods and properties return the methods and
properties of an object. The function metaclass returns a data structure that in-
cludes all methods, properties and parent classes.

Pass by Reference

One particularly useful application of inheritance is to get around the problem of
pass by value. Whenever a variable is passed to a function MATLAB® passes its value,
that is a copy of it, rather than a reference to it. This is normally quite convenient, but
consider now the case of some object which has a method that changes a property. If
we write

>> myobj.set_x(2);

then MATLAB® creates a copy of the object myobj and invokes the set_x() method
on the copy. However since we didn’t assign the copied object to anything the change
is lost. The correct approach is to write this as

>> myobj = myobj.set_x(2);

which is cumbersome. If however the object myobj belongs to a reference class then
we can write

>> myobj.set_x(2);

and the value of myobj would change. To create a reference class the class must in-
herit from the handle class

 classdef MyClass < handle

A number of classes within the Toolbox, but not the Quaternion class, are refer-
ence classes. A possible trap with reference classes is that an assignment of a reference
class object

>> myobj2 = myobj;

means that myobj2 points to the same object as myobj. If myobj changes then so
does myobj2. It is good practice for an object constructor to accept an argument of
the class type and to return a copy

>> myobj2 = MyClass(myobj);

so now changes to myobj will not effect myobj2

Arrays of Objects

MATLAB® handles arrays or vectors of objects in a very familiar way. Consider the
example of an array of SIFT feature objects (from page 384)

Appendix C · Matlab® Objects

510

>> s1 = isurf(im1);

which returns a vector of SurfPointFeature objects. We can determine the num-
ber of objects in the vector

>> n = length(s1)
n =
 1288

or perform indexing operations such as

>> x = s1(1:100);
>> y = s1(1:20:end);

Note that the SurfPointFeature objects are reference objects so the elements
of x and y are the same objects as referred to by s1. We can also delete objects from
the vector

>> s1(50:end) = [];

Invoking a method on an object array, for example the hypothetical method

>> z = s1.fewer();

results in the entire vector being passed to the method

function r = fewer(s)
 r = s(1:20:end);
end

so methods can perform operations on single objects or arrays of objects.
A class that supports vectors must have a constructor that handles the case of no

passed arguments.

Multi-File Implementation

For a complex class a single file might be too long to be workable and it would be prefer-
able to have multiple files, one per method or group of methods. This would certainly be
the case if some of the methods were defined as MEX-files rather than M-files.

In MATLAB® this is handled by creating a directory in the MATLAB® search path
with an ‘@’ symbol prefix. The SerialLink class which represents a robot arm is
defined this way, and all its files are within a directory called @SerialLink.

Appendix C · Matlab® Objects

D
Appendix

A taxonomy of matrices is shown in Fig. D.1. In this book we are concerned only with
real m× n matrices

with m rows and n columns. If n=m the matrix is square.
The transpose is

and it can be shown that

Linear Algebra Refresher

Fig. D.1. Taxonomy of matrices.
Classes of matrices that are always
singular are shown in red, those that
are never singular are shown in blue

512

A square matrix may have an inverse A−1 in which case

where

is the identity matrix, a unit diagonal matrix. The inverse exists provided that the
matrix is non-singular, that is its determinant det(A)≠ 0. If A and B are square and
non-singular then

and also

For a square matrix if

A=AT the matrix is symmetric. The inverse of a symmetric matrix is also
symmetric. Many matrices that we encounter in robotics are symmet-
ric, for example covariance matrices and manipulator inertia matrices.

A=−AT the matrix is anti-symmetric or skew-symmetric. Such a matrix has
a zero diagonal and the property that vTS(v)=0, ∀v. For the 3×3 case

(D.1)

and the inverse operation is

Also v1× v2 = S(v1)v2.
A−1=AT the matrix is orthogonal. The matrix is also known as orthonormal

since its column vectors (and row vectors) must be of unit length and
orthogonal to each other. The product of two orthogonal matrices of
the same size is an orthogonal matrix. The set of n× n orthogonal
matrices forms a group O(n), known as the orthogonal group. The
determinant of an orthogonal matrix is either +1 or −1. The sub-
group SO(n) consisting of orthogonal matrices with determinant +1
is called the special orthogonal group, and each of its elements is a
special orthogonal matrix. The columns (and rows) are orthogonal
vectors, that is, their dot product is zero. The product of two orthogo-
nal matrices is also orthogonal.

A=MTM the matrix is normal and can be diagonalized by an orthogonal
matrix U so that UTAU is a diagonal matrix. All symmetric, skew-
symmetric and orthogonal matrices are normal matrices.

For a non-square matrix A∈Rm×n we can determine the left generalized inverse or
pseudo inverse or Moore-Penrose pseudo inverse

Appendix D · Linear Algebra Refresher

Ai = inv(A)

S = skew(v)

v = vex(S)

A=MMT

513

where A+= (ATA)−1AT. The right generalized inverse

where A+= AT(AAT)−1.
The square matrix A ∈Rn×n can be applied as a linear transformation to a vector
x ∈ Rn

which results in another vector, generally with a change in its length and direction.
However there are some important special cases. If A∈ SO(n) the transformation is
isometric and the vector’s length is unchanged |x′| = |x|.

In 2-dimensions if x is the set of all points lying on a circle then x′ defines points
that lie on an ellipse. The MATLAB® builtin demonstration

>> eigshow

shows this very clearly as you interactively drag the tip of the vector x around the
unit circle.

The eigenvectors of a square matrix are those vectors x such that

(D.2)

that is, their direction is unchanged when transformed by the matrix. They are simply
scaled by λi, the corresponding eigenvalue. The matrix has n eigenvalues which can be
real or complex. For an orthogonal matrix the eigenvalues lie on a unit circle in the
complex plane, |λi| = 1, and the eigenvectors are all orthogonal to one another.

A symmetric matrix is positive definite if all its eigenvalues are positive

and is positive semi-definite if

If A is non singular then the eigenvectors of A−1 are the same as A and the eigenval-
ues of A−1 are the reciprocal of those of A. The eigenvalues of AT are the same as those
of A but the eigenvectors are different.

The matrix form of Eq. D.2 is

where X∈Rn×n is a matrix of eigenvectors of A, arranged column-wise, and Λ is a diago-
nal matrix of corresponding eigenvalues. If X is not singular we can rearrange this as

which is the eigenvalue or spectral decomposition of the matrix. This implies that the
matrix can be diagonalized by a similarity transform

If A is normal (for example symmetric) then X is orthogonal and we can instead write

(D.3)

Appendix D · Linear Algebra Refresher

[x,e] = eig(A)

514

The matrices ATA and AAT are always symmetric and positive semidefinite. This
implies than any symmetric matrix A can be written as

where L is the Cholesky decomposition of A.
The matrix R such that

is the square root of A or AC.
If T is any non-singular matrix then

is known as a similarity transform and A and B are said to be similar, and it can be
shown that the eigenvalues are unchanged by the transformation.

The determinant of a square matrix A∈Rn×n is the factor by which the transfor-
mation changes changes volumes in an n-dimensional space. For 2-dimensions imag-
ine a shape defined by points xi with an enclosed area a. The shape formed by the
points Axi would have an enclosed area a det(A). If A is singular the points Axi would
lie at a single point or along a line and have zero enclosed area. In a similar way for
3-dimensions, the determinant is a scale factor applied to the volume of a set of points
mapped through the transformation A. The determinant of a skew-symmetric matrix
is always zero det(S(·))= 0.

The determinant is equal to the product of the eigenvalues

thus a matrix with one or more zero eigenvalues will be singular. A positive definite
matrix, λi> 0, therefore has det(A)> 0 and is not singular. The trace of a matrix is the
sum of the diagonal elements

which is also the sum of the eigenvalues

The columns of A= (c1c2⋯ cn) can be considered as a set of vectors that define
a space – the column space. Similarly, the rows of A can be considered as a set
of vectors that define a space – the row space. The column rank of a matrix is the
number of linearly independent columns of A. Similarly, the row rank is the number
of linearly independent rows of A. The column rank and the row rank are always
equal and are simply called the rank of A and the rank has an upper bound of
min (m, n). A square matrix for which rank(A)< n is said to be rank deficient or
not of full rank.

If the matrix A is not of full rank then it has a finite null space or kernel. A vector x
lies in the null space of the matrix if

Appendix D · Linear Algebra Refresher

L = chol(A)

det(A)

trace(A)

rank(A)

515

More precisely this is the right-null space. A vector lies in the left-null space if

The left null space is equal to the right null space of AT.
The null space is defined by a set of orthogonal basis vectors whose dimension is

called the nullity of A and is equal to n− rank(A). Any linear combination of these
null-space basis vectors lies in the null space.

For a non-square matrix A∈ Rm×n the analog to Eq. D.2 is

where ui∈ Rm and vi∈ Rn are respectively the right- and left-singular vectors of A,
and σi its singular values. The singular values are non-negative real numbers that are
the square root of the eigenvalues of AAT and ui are the corresponding eigenvectors.
vi are the eigenvectors of ATA.

The singular value decomposition or SVD of the matrix A is

where U∈Rm×m and V ∈Rn×n are both orthogonal matrices comprising, as columns,
the corresponding singular vectors ui and vi. Σ∈R

n×m is a diagonal matrix of the
singular values

where r= rank(A) is the rank of A. For the case where r< n the diagonal will have
zero elements as shown. The condition number of a matrix A is maxσi/minσi and a
high value means the matrix is close to singular or “poorly conditioned”.

The matrix quadratic form

(D.4)

is a scalar. For the case that A is diagonal this can be written

which is a weighted sum of squares. If A is symmetric then

the result also includes products or correlations between elements of x.
Real matrices are a subset of all matrices. For the general case of complex matrices

the term Hermitian is the analog of symmetric, and unitary the analog of orthogo-
nal. AH denotes the Hermitian transpose, the complex conjugate transpose of the com-
plex matrix A.

Appendix D · Linear Algebra Refresher

cond(A)

null(A)

[U,S,Vt] = svd(A)

516

Solving Systems of Equations

We frequently need to solve systems of linear equations

where A∈Rn×m and b ∈Rn are known, and x∈Rm is unknown. If n=m then A is
square, and if A is non-singular then the solution is obtained using the matrix inverse

If n>m the system is over constained we use the pseudo inverse

which gives x that minimizes the norm of the residual |Ax− b|. Using SVD where
A=UΣVT this is

where Σ−1 is simply the element-wise inverse of the diagonal elements of ΣT.
If the matrix is singular, or the system is under constrained n<m, then there infi-

nitely many solutions. We can again use the SVD approach

where this time Σ−1 is the element-wise inverse of the non-zero diagonal elements
of Σ, all other zeros are left in place.

In MATLAB® all these problems can be solved using the backslash operator

>> x = A\b

Singular value decomposition can also be used to estimate a rotation matrix given a
set of vectors {(pi, qi), i= 1⋯N} for which qi= Rpi. We first compute the moment
matrix

and take then compute the SVD M=UΣVT. The least squares estimate of the rotation
matrix is

and is guaranteed to be an orthogonal matrix.

Appendix D · Linear Algebra Refresher

E
Appendix

An ellipse belongs to the family of planar curves known as conics. The simplest form
of an ellipse is defined implicitly

and is shown in Fig. E.1a. This canonical ellipse is centered at the origin and has its
major and minor axes aligned with the x- and y-axes. The radius in the x-direction is
a and in the y-direction is b. The longer of the two radii is known as the semi-major
axis length and the other is the semi-minor axis length.

We can write the ellipse in matrix quadratic form Eq. D.4 as

(E.1)

(E.2)

In the most general form E is a symmetric matrix

(E.3)

and its determinant det(E)= AB− C2 defines the type of conic

Ellipses

Fig. E.1. Ellipses. a Canonical el-
lipse centred at the origin and
aligned with the x- and y-axes;
b general form of ellipse

518

An ellipse is therefore represented by a positive definite symmetric matrix E. Con-
versely any positive definite symmetric matrix, such as an inertia matrix or covari-
ance matrix, can be represented by an ellipse.

Non-zero values of C change the orientation of the ellipse. The ellipse can be arbi-
trarily centred at xc by writing it in the form

which leads to the general ellipse shown in Fig. E.1b.
Since E is symmetric it can be diagonalized by Eq. D.3

where X is an orthogonal matrix comprising the eigenvectors of E. The inverse is

so the quadratic form becomes

This is similar to Eq. E.2 but with the ellipse defined by the diagonal matrix Λ with
respect to the rotated coordinated frame x′= XTx. The major and minor ellipse axes
are aligned with the eigenvectors of E. The squared radii of the ellipse are the eigen-
values of E or the diagonal elements of Λ.

For the general case of E∈Rn×n the result is an ellipsoid in n-dimensional space.
The Toolbox function plot_ellipse will draw an ellipse for the n= 2 case and an
ellipsoid for the n= 3 case.

Alternatively the ellipse can be represented in polynomial form. If we write the ellipse as

and expand we obtain

where e1= a, e2= b, e3= 2c, e4=−2(ax0+ cy0), e5=−2(by0+ cx0) and e6= ax0
2+ by0

2

+ 2cx0y0− 1. The ellipse has only five degrees of freedom, its centre coordinate and
the three unique elements in E. For a non-degenerate ellipse e1≠ 0 and we rewrite the
polynomial in normalized form

(E.4)

with five unique parameters.

Properties

The area of an ellipse is πab and its eccentricity is

The eigenvectors of E define the principal directions of the ellipse and the square
root of the eigenvalues are the corresponding radii.

Appendix E · Ellipses

519

Consider the ellipse

which is represented in MATLAB® by

>> E = [2 -1; -1 1];

We can plot this by

>> plot_ellipse(E)

which is shown in Fig. E.2.
The eigenvectors and eigenvalues of E are

>> [x,e] = eig(E)
x =
 -0.5257 -0.8507
 -0.8507 0.5257
e =
 0.3820 0
 0 2.6180

and the ellipse radii are

>> r = sqrt(diag(e))
r =
 0.6180
 1.6180

which correspond to b and a respectively. If either radius is equal to zero the ellipse is
degenerate and becomes a line. If both radii are zero the ellipse is a point.

The eigenvectors are unit vectors in the minor- and major-axis directions and we
will scale them by the radii to yield radius vectors which we can plot

>> arrow([0 0]', x(:,1)*r(1));
>> arrow([0 0]', x(:,2)*r(2));

The orientation of the ellipse is the angle of the major-axis with respect to the hori-
zontal axis and is

For our example this is

>> atan2(x(2,2), x(1,2)) * 180/pi
ans =
 148.2825

in units of degrees.

Fig. E.2.

Ellipse corresponding to sym-
metric 2× 2 matrix, and the unit

circle shown in red. The arrows
indicate the major and minor

axes of the ellipse

Appendix E · Ellipses

520

The ellipse area is πr1r2 and the ellipsoid volume is 4/3πr1r2r3 where the radii ri = λ̂i

where λi are the eigenvalues of E. Since det(E)=Πλi the area or volume is propor-
tional to _detg(gE).

Drawing an Ellipse

In order to draw an ellipse we first define a point y= [x, y]T on the unit circle

and rewrite Eq. E.3 as

where EC is the matrix square root (MATLAB® function sqrtm). Equating these two
equations we can write

It is clear that

which we can rearrange as

which transforms a point on the unit circle to a point on an ellipse. If the ellipse is
centered at x

c
 rather than the origin we can perform a change of coordinates

from which we write the transformation as

Continuing the MATLAB® example above

>> E = [2 -1; -1 1];

We define a set of points on the unit circle

>> th = linspace(0, 2*pi, 50);
>> y = [cos(th); sin(th)];

which we transform to points on the perimeter of the ellipse

>> x = (sqrtm(E) * y)';
>> plot(x(:,1), x(:,2));

which is encapsulated in the Toolbox function

>> plot_ellipse(E, [0 0])

An ellipsoid is described by a positive-definite symmetric 3× 3 matrix. Drawing an
ellipsoid is tackled in an analogous fashion and plot_ellipse is also able to dis-
play a 3-dimensional ellipsoid.

Appendix E · Ellipses

521

Fitting an Ellipse to Data

From a Set of Interior Points

We wish to find the equation of an ellipse that best fits a set of points that lie within the el-
lipse boundary. A common approach is to find the ellipse that has the same mass proper-
ties as the set of points. From the set of N points xi= (xi, yi) we can compute the moments

The centre of the ellipse is taken to be the centroid of the set of points

which allows us to compute the central second moments

The inertia matrix for a general ellipse is the symmetric matrix

where the diagonal terms are the moments of inertia and the off-diagonal terms are
the products of inertia. Inertia can be computed more directly by

Fig. E.3.

Point data

Appendix E · Ellipses

522

The relationship between the inertia matrix and the symmetric ellipse matrix is

To demonstrate this we can create a set of points that lie within the ellipse used in
the example above

1 % generate a set of points within the ellipse
2 p = [];
3 while true
4 x = (rand(2,1)-0.5)*4;
5 if norm(x'*inv(E)*x) <= 1
6 p = [p x];
7 end
8 if numcols(p) >= 500
9 break;
10 end
11 end
12 plot(p(1,:), p(2,:), '.')
13
14 % compute the moments
15 m00 = mpq_point(p, 0,0);
16 m10 = mpq_point(p, 1,0);
17 m01 = mpq_point(p, 0,1);
18 xc = m10/m00; yc = m01/m00;
19
20 % compute second moments relative to centroid
21 pp = bsxfun(@minus, p, [xc; yc]);
22
23 m20 = mpq_point(pp, 2,0);
24 m02 = mpq_point(pp, 0,2);
25 m11 = mpq_point(pp, 1,1);
26
27 % compute the moments and ellipse matrix
28 J = [m20 m11; m11 m02];
29 E_est = 4 * J / m00

which results in an estimate

>> E_est
E_est =
 0.9776 0.9395
 0.9395 1.8976

which is similar to the original value of E. The point data is shown in Fig. E.3. We can
overlay the estimated ellipse on the point data

>> plot_ellipse(E_est, [xc yc], 'r')

and the result is shown in red in Fig. E.3.

From a Set of Boundary Points

We wish to find the equation of an ellipse given a set of points (xi, yi) that define the
boundary of an ellipse. Using the polynomial form of the ellipse Eq. E.4 for each point
we write this in matrix form

and for N≥ 5 we can solve for the ellipse parameter vector.

Appendix E · Ellipses

F
Appendix

The 1-dimensional Gaussian function

(F.1)

is described by the position of its peak µ and its width σ. The total area under the
curve is unity and g(x)> 0, ∀x.

The function can be plotted using the Toolbox function gaussfunc

>> x = linspace(-6, 6, 500);
>> plot(x, gaussfunc(0, 1, x))
>> hold on
>> plot(x, gaussfunc(0, 2^2, x), '--')

and Fig. F.1 shows two Gaussians with zero mean and σ= 1 and σ= 2. Note that the
second argument to gaussfunc is the variance not standard deviation.

If the Gaussian is considered to be a probability density function (PDF) then this
is the well known normal distribution and the peak position µ is the mean value and
the width σ is the standard deviation. A random variable drawn from a normal dis-
tribution is often written as X∼ N(µ, σ2), and N(0, 1) is referred to as the standard
normal distribution. The probability that a random value falls within an interval
x ∈ [x1, x2] is obtained by integration

or evaluation of the cumulative distribution function Φ(x). The marked points in
Fig. F.1 at µ± 1σ delimit the 1σ confidence interval. The area under the curve over
this interval is 0.68, so the probability of a random value being drawn from this inter-
val is 68%.

Gaussian Random Variables

Fig. F.1.

Two Gaussian functions, both
with with mean µ= 0, and with

standard deviation σ= 1 (solid),
and σ= 2 (dashed). The markers

indicate the points x= µ± 1σ .
The dashed curve is wider but

less tall, since the total area
under the curve is unity

524

The n-dimensional Gaussian, or multivariate normal distribution, is

(F.2)

and compared to the scalar case of Eq. F.1 x and µ have become n-vectors, the squared
term in the exponent has been replaced by a matrix quadratic form, and σ2, the vari-
ance, has become a covariance matrix C. The diagonal elements represent the variance
of xi and the off-diagonal elements Cij are the correlationss between xi and xj. If the
variables are uncorrelated the matrix C would be diagonal. The covariance matrix is
symmetric and positive definite.

We can plot a 2-dimensional Gaussian

>> [x,y] = meshgrid(-5:0.1:5, -5:0.1:5);
>> C = diag([1 2^2]);
>> g = gaussfunc([0 0], C, x, y) ;
>> axis([-5 5 -5 5 -.05 .12]); hold on
>> surfc(x, y, g)

as a surface which is shown in Fig. F.2. In this case µ= (0, 0) and C= diag(12, 22) which
corresponds to uncorrelated variables with standard deviation of 1 and 2 respectively.
Figure F.2 also shows a number of contour lines for the surface which we see are ellip-
tical, and the radii in the y- and x-directions are in the ratio 2:1 as defined by the
standard deviations.

Looking at the exponent in Eq. F.2 we see the equation of an ellipse. All the points
that satisfy

result in a constant probability density value, that is, a contour line corresponding to
the 1σ boundary. For higher order Gaussians, n> 2, the corresponding confidence
interval is a surface of an ellipsoid in n-dimensional space.

Consider that this 2-dimensional probability density function represents the position
of a robot in the xy-plane. The most likely position for the robot is at (0, 0) and we would
have a 68% probability of being inside the ellipse corresponding to the 1σ boundary

>> plot_ellipse(C, [0 0])

The size of the ellipse says something about our spatial certainty. A large ellipse im-
plies we have a 68% probability being anywhere within a large area, whereas a small
ellipse means we have the same probability to be within a much smaller area. A useful
measure of ellipse size is det(C) as discussed in Appendix E. We can also say that our
uncertainty is higher in the y-direction than the x-direction.

Fig. F.2.

The 2-dimensional Gaussian with
covariance C=diag(12, 22). Con-
tours lines of constant probabil-
ity density are shown beneath

Appendix F · Gaussian Random Variables

525

In estimation filters for localization, Chap. 6, it is common to represent the robot’s
uncertainty graphically as an ellipse. If the covariance matrix is diagonal then the
ellipse is aligned with the x- and y-axes as we saw in Appendix E. This indicates that
the two variables are independent and have zero correlation. Conversely a rotated el-
lipse indicates that the covariance is not diagonal and the two variables are correlated.

If x∈Rn is drawn from a multivariate Gaussian its distance from the point µ is

and this scalar has a chi-squared distribution with n degrees of freedom

The Mahalanobis distance is a scalar measure

of the unlikeness of the point x with respect to the distribution µ and C.

Appendix F · Gaussian Random Variables

G
Appendix

A scalar-valued function of a vector f :Rn→R has a derivative with respect to the vector x

and is itself a vector that points in the direction at which the function f(x) has maximal in-
crease. It is often written as ∇x f to make explicit that the differentiation is with respect to x.

A vector-valued function of a vector f :Rm→Rn can be written as

where fi:R
m→R for i ∈ {1, 2,⋯ n}. The derivative of f with respect to the vector x

can be expressed in matrix form as a Jacobian matrix

which can also be written as

This derivative is also known as the tangent map of f, denoted Tf, or the differen-
tial of f denoted Df. To make explicit that the differentiation is with respect to x this
can be denoted as Jx, Txf, Dxf or even ∂f/∂x. Jacobians of functions are required for
many optimization algorithms as well as for the extended Kalman filter, and can be
evaluated numerically or symbolically.

Consider equation Eq. 6.9 for the range and bearing angle of a landmark given the
pose of the vehicle and the position of the landmark. We can express this as the very
simple MATLAB® function

1 function z = zrange(xi, xv, w)
2 z = [sqrt((xi(1)-xv(1))^2 + (xi(2)-xv(2))^2) + w(1);
3 atan((xi(2)-xv(2))/(xi(1)-xv(1)))-xv(3) + w(2)];

To estimate the Jacobian Hxv=∂h/∂xv for xv= (1, 2, þ) and xi= (10, 8) we can com-
pute a first order numerical difference

>> xv = [1, 2, pi/3]; xi = [10, 8]; w= [0,0];
>> h0 = zrange(xi, xv, w)

Jacobians

528

h0 =
 10.8167
 -0.4592
>> d = 0.001;
>> J = [zrange(xi, xv+[1,0,0]*d, w)-h0 ...
 zrange(xi, xv+[0,1,0]*d, w)-h0, ...
 zrange(xi, xv+[0,0,1]*d,w)-h0] / d
J =
 -0.8320 -0.5547 0
 0.0513 -0.0769 -1.0000

which shares the characteristic last column with the Jacobian shown in Eq. 6.4. Note that
in computing this Jacobian we have set the measurement noise w to zero. The principle diffi-
culty with this approach is choosing d, the difference used to compute the finite-difference
approximation to the derivative. Too large and the results will be quite inaccurate if the
function is non-linear, too small and numerical problems will lead to reduced accuracy.

Alternatively we can perform the differentiation symbolically. This particular func-
tion is relatively simple and the derivatives can be determined easily using differential
calculus. The numerical derivative can be used as a quick check for correctness. To avoid
the possibility of error, or for more complex functions we can perform the differentiation
symbolically using any of a large number of computer algebra packages. Using the
MATLAB® Symbolic Math Toolbox we can declare some symbolic variables

>> syms xi yi xv yv thetav wr wb

and then evaluate the same function as above

>> z = zrange([xi yi], [xv yv thetav], [wr wb])
z =
 wr + ((xi - xv)/(yi - yv)^2)^(1/2)
 wb - thetav + atan((yi - yv)/(xi - xv))

which is simply Eq. 6.9 in MATLAB® symbolic form. The Jacobian is computed by a
Symbolic Math Toolbox function

>> J = jacobian(z, [xv yv thetav])
J =
[-(2*xi - 2*xv)/(2*((xi - xv)^2 + (yi - yv)^2)^(1/2)),
 -(2*yi - 2*yv)/(2*((xi - xv)^2 + (yi - yv)^2)^(1/2)), 0]
[(yi - yv)/((xi - xv)^2*((yi - yv)^2/(xi - xv)^2 + 1)),
 -1/((xi - xv)*((yi - yv)^2/(xi - xv)^2 + 1)), -1]

which has the required dimensions

>> about(J)
J [sym] : 2x3 (60 bytes)

and the characteristic last column. We could cut and paste this code into our program
or automatically create a MATLAB® callable function

>> Jf = matlabFunction(J);

where Jf is a MATLAB® function handle. We can evaluate the Jacobian at the operat-
ing point given above

>> xv = [1, 2, pi/3]; xi = [10, 8]; w= [0,0];
>> Jf(xi(1), xv(1), xi(2), xv(2))
ans =
 -0.8321 -0.5547 0
 0.0513 -0.0769 -1.0000

which is similar to the approximation above obtained numerically. The function
matlabFunction can also write the function to an M-file. The functions ccode
and fcode generate C and Fortran representations of the Jacobian.

Another interesting approach is the package ADOL-C which is an open-source tool
for the automatic differentiation of C and C++ programs, that is, given a function
written in C it will return a Jacobian function written in C. It is available at http://

www.coin-or.org/projects/ADOL-C.xml

Appendix G · Jacobians

H
Appendix

Consider the discrete-time linear time-invariant system

with state vector x∈Rn. The vector u∈Rm is the input to the system at time k, for
example a velocity command, or applied forces and torques. The vector z∈Rp repre-
sents the outputs of the system as measured by sensors. The matrix F∈Rn×n describes
the dynamics of the system, that is, how the states evolve with time. The matrix G∈Rn×m

describes how the inputs are coupled to the system states. The matrix H∈Rp×n de-
scribes how the system states are mapped to the observed outputs.

To account for errors in the model (represented by F and G) and also unmodeled dis-
turbances we introduce a Gaussian random variable v∈Rn termed the process noise.
vhki∼N(0, V), that is, it has zero-mean and covariance V. The sensor measurement
model H is not perfect either and this is modelled by measurement noise, another Gaussian
random variable w∈Rp and whki∼N(0, W). The covariance matrices V∈Rn×n and
W∈Rp×p are symmetric and positive definite.

The general problem that we confront is:

given a model of the system, the known inputs u and some noisy sensor measure-
ments z, estimate the state of the system x.

In a robotic localization context x is the unknown pose of the robot, u is the com-
mands sent to the motors and z is the output of various sensors on the robot. For a
flying robot x could be the attitude, u the known forces applied to the airframe and z
are the measured accelerations and angular velocities.

The Kalman filter is an optimal estimator for the case where the process and
measurement noise are zero-mean Gaussian noise. The filter has two steps. The first
is a prediction of the state based on the previous state and the inputs that were
applied.

(H.1)

(H.2)

where ' is the estimate of the state and Ï∈Rn×n is the estimated covariance, or uncer-
tainty, in '. This is an open-loop step and its accuracy depends completely on the qual-
ity of the model F and G and the ability to measure the inputs u. The notation k+ 1|k
makes explicit that the left-hand side is an estimate at time k+ 1 based on informa-
tion from time k.

The prediction of P involves the addition of two positive-definite matrices so the
uncertainty, given no new information and the uncertainty in the process, has increased.
To improve things we have to introduce new information and that comes from mea-

Kalman Filter

530

surements obtained using sensors. The new information that is added is known as the
innovation

which is the difference between what the sensors measure and what the sensors are
predicted to measure. Some of the difference will be due to the noise in the sensor, the
measurement noise, but the remaining discrepancy indicates that the predicted state
was in error and does not properly explain the sensor observations.

The second step of the Kalman filter, the update step, uses the Kalman gain

(H.3)

to map the innovation into a correction for the predicted state, optimally tweaking the
estimate based on what the sensors observed

Importantly we note that the uncertainty is now decreased or deflated, since the
second term is subtracted from the predicted covariance. The term indicated by S is
the estimated covariance of the innovation and comes from the uncertainty in the
state and the measurement noise covariance. If the innovation has high uncertainty in
relation to some states this will be reflected in the Kalman gain which will make corre-
spondingly small adjustment to those states.

The covariance update can also be written in the Joseph form

which has improved numerical properties and keeps the covariance estimate symmet-
ric, but it is computationally more costly.

The equations above constitute the classical Kalman filter which is widely used in
applications from aerospace to econometrics. The filter has a number of important
characteristics. Firstly it is recursive, the output of one iteration is the input to the
next. Secondly, it is asynchronous. At a particular iteration if no sensor information is
available we perform just the prediction step and not the update. In the case that there
are different sensors, each with their own H, and different sample rates, we just apply
the update with the appropriate z and H. The Kalman-Bucy filter is a continuous-time
version of this filter.

The filter must be initialized with some reasonable value of ' and Ï. The filter also
requires our best estimates of the covariance of the process and measurement noise.
In general we do not know V and W but we have some estimate Í and Ñ that we use in
the filter. From Eq. H.2 we see that if we overestimate Í our estimate of P will be larger
than it really is giving a pessimistic estimate of our certainty in the state. Conversely if
we overestimate Í the filter will be overconfident of its estimate.

The covariance matrix Ï is rich in information. The diagonal elements Ïii are the
variance, or uncertainty, in the state xi. The off-diagonal elements Ïij are the correla-
tions between states xi and xj. The correlations are critical in allowing any piece of
new information to flow through to adjust multiple states that affect a particular pro-
cess output.

The term FPhk|kiFThki in Eq. H.2 is interesting. Consider a one dimensional example
where F is a scalar and the state estimate úhki has a PDF that is a Gaussian with a mean
–xhki and a variance σ2hki. The prediction equation maps the state and its Gaussian dis-

Appendix H · Kalman Filter

531

tribution to a new Gaussian distribution with a mean F–xhki and a variance F2σ2hki. The
term FPhk|kiFThki is the matrix form of this since

and appropriately scales the covariance. The term HPhk+1|kiHT in Eq. H.3 projects the
covariance of the state estimate into the observed values.

Now consider the case where the system is not linear

where f and h are now functions instead of constant matrices. f :Rn,Rm→Rn is a
function that describes the new state in terms of the previous state and the input to the
system. The function h :Rn→Rp maps the state vector to the sensor measurements.

To use the linear Kalman filter with a non-linear system we first make a local linear
approximation

where Fx∈R
n×n, Fu∈R

n×m, Fv∈R
n×n, Hx∈R

p×n and Hw∈R
p×p are Jacobians of the

functions f(·) and h(·) and are evaluated at each time step.
We define a prediction error

and a measurement residual

which are linear and the Kalman filter equations above can be applied. The prediction
step of the extended Kalman filter is

and the update step is

where the innovation is

and the Kalman gain is

A fundamental problem with the extended Kalman filter is that PDFs of the ran-
dom variables are no longer Gaussian after being operated on by the non-linear

Appendix H · Kalman Filter

532

functions f(·) and h(·). We can easily illustrate this by considering a scalar system
with the PDF of the state estimate being the Gaussian N(5, 2)

>> x = linspace(0, 20, 100);
>> g = gaussfunc(5, 2, x);
>> plot(x, g);

Now consider the nonlinear function y= x2/5 and we overlay the PDF of y

>> y = x.^2 / 5;
>> plot(y, g, 'r');

which is shown in Fig. H.1. We see that the PDF of y has its peak, the mode, at the same
location but the distribution is no longer Gaussian. It has lost its symmetry so the
mean value will actually be greater than the mode. The Jacobians that appear in the
EKF equations appropriately scale the covariance but the resulting non-Gaussian dis-
tributions break the assumptions which guarantee that the Kalman filter is an optimal
estimator. Alternatives include the iterated EKF described by Jazwinski (1970) or the
Unscented Kalman Filter (UKF) (Julier and Uhlmann 2004) which uses discrete sample
points to approximate the PDF.

Fig. H.1.

PDF of the state x (blue) which is
Gaussian N(5, 2) and the PDF of
the non-linear function x2/5 (red)

Appendix H · Kalman Filter

I
Appendix

A point in n-dimensional Euclidean space x∈Rn is represented by a coordinate
vector (x1, x2⋯ xn). The corresponding point in homogeneous coordinates, or the pro-
jective space x ∈ Pn is represented by a coordinate vector (²1, ²2⋯ ²n+1). The Euclid-
ean coordinates are related to the projective coordinates by

Conversely a homogeneous coordinate vector can be constructed from a Euclidean
coordinate vector by

and the tilde is used to indicate that the quantity is homogeneous.
The extra degree of freedom offered by projective coordinates has several advantages.

It allows points and lines at infinity, known as ideal points and lines, to be represented
using only real numbers. It also means that scale is unimportant, that is x and x′= αx
both represent the same Euclidean point for all α≠ 0. We express this as x≃ x′. Points in
homogeneous form can also be rotated with respect to a coordinate frame and translated
simply by multiplying the homogeneous coordinate by an (n+ 1)× (n+ 1) homoge-
neous transformation matrix.

Homogeneous vectors are important in computer vision when we consider points
and lines that exist in a plane – a camera’s image plane. We can also consider that the
homogeneous form represents a ray in Euclidean space, and the relationship between
points and rays is at the core of the projective transformation.

In P2 a line is defined by a 3-tuple,
~
` = (`1, `2, `3)T, not all zero, and the equation of

the line is the set of all points

which expands to `1x+ `2y+ `3= 0 and can be manipulated into the more familiar rep-
resentation of a line. Note that this form can represent a vertical line, parallel to the y-axis,
which the familiar form y=mx+ c cannot. This is the point equation of a line. The non-
homogeneous vector (`1, `2) is a normal to the line, and (−`2, `1) is parallel to the line.

A duality exists between points and lines. A point is defined by the intersection of
two lines. If we write the point equations for two lines

~
`1

Tp= 0 and
~
`2

Tp= 0 their inter-
section is the point

and is known as the line equation of a point. Similarly, a line joining two points p1

and p2 is given by the cross-product

Homogeneous Coordinates

534

Consider the case of two parallel lines at 45° to the horizontal axis

>> l1 = [1 -1 0]';
>> l2 = [1 -1 -1]';

which we can plot

>> plot_homline(l1, 'b')
>> plot_homline(l2, 'r')

The intersection point of these parallel lines is

>> cross(l1, l2)
ans =
 1 1 0

This is an ideal point since the third coordinate is zero – the equivalent Euclidean
point would be at infinity. Projective coordinates allow points and lines at infinity to
be simply represented and manipulated without special logic to handle the special
case of infinity.

The distance from a point p to a line
~
` is

(I.1)

In the projective space P3 a duality exists between points and planes: three points
define a plane, and the intersection of three planes defines a point.

Appendix I · Homogeneous Coordinates

J
Appendix

A graph is an abstract representation of a set of objects connected by links and
depicted graphically as shown in Fig. J.1. Mathematically a graph is denoted
G(V, E) where V, are called vertices or nodes, and the links, E, that connect some
pairs of vertices are called edges or arcs. Edges can be directed (arrows) or un-
directed as in this case. Edges can have an associated weight or cost associated
with moving from one vertex to another. A sequence of edges from one vertex
to another is a path, and a sequence that starts and ends at the same vertex is a
cycle. An edge from a vertex to itself is a loop. Graphs can be used to represent
transport, communications or social networks, and this branch of mathematics is
graph theory.

The Toolbox provides a MATLAB® graph class called PGraph that supports em-
bedded graphs where the vertices are associated with a point in an n-dimensional
space. To create a new graph

>> g = PGraph()
g =
 2 dimensions
 0 vertices
 0 edges
 0 components

and by default the nodes of the graph exist in a 2-dimensional space. We can add nodes
to the graph

>> g.add_node(rand(2,1));
>> g.add_node(rand(2,1));
>> g.add_node(rand(2,1));
>> g.add_node(rand(2,1));
>> g.add_node(rand(2,1));

Graphs

Fig. J.1.

An example graph generated by
the PGraph class

536

and each has a random coordinate. A summary of the graph is given with its display method
>> g
g =
 2 dimensions
 5 vertices
 0 edges
 5 components

and shows that the graph has 5 nodes but no edges. The nodes are numbered 1 to 5
and we add edges between pairs of nodes

>> g.add_edge(1, 2);
>> g.add_edge(1, 3);
>> g.add_edge(1, 4);
>> g.add_edge(2, 3);
>> g.add_edge(2, 4);
>> g.add_edge(4, 5);
>> g
g =
 2 dimensions
 5 vertices
 6 edges
 1 components

By default the distance between the nodes is the Euclidean distance between the verti-
ces but this can be overridden by a third argument to add_edge. This class supports
only undirected graphs so the order of the vertices provided to add_edge does not
matter. The graph has one component, that is all the nodes are connected into one
network. The graph can be plotted by

>> g.plot('labels')

as shown in Fig. J.1. The vertices are shown as blue circles, and the option 'labels'
displays the vertex index next to the circle. Edges are shown as black lines joining verti-
ces. Note that only graphs embedded in 2- and 3-dimensional space can be plotted.

The neighbours of vertex 2 are

>> g.neighbours(2)
ans =
 3 4 1

which are vertices connected to vertex 2 by edges. Each edge has a unique index and
the edges connecting to vertex 2 are

>> e = g.edges(2)
e =
 4 5 1

The cost or length of these edges is

>> g.cost(e)
ans =
 0.9597 0.3966 0.6878

and clearly edge 5 has a lower cost than edges 4 and 1. Edge 5

>> g.vertices(5)
ans =
 2
 4

joins vertices 2 and 4, and vertex 4 is clearly the closest neighbour of vertex 2. Fre-
quently we wish to obtain a node’s neighbouring vertices and their distances at the
same time, and this can be achieved conveniently by

>> [n,c] = g.neighbours(2)
n =
 3 4 1
c =
 0.9597 0.3966 0.6878

Appendix J · Graphs

537

To plan a path through the graph we specify the goal vertex

>> g.goal(5)

which assigns every node in the graph its distance from the goal in a breadth-first
fashion. To find a path to the goal from a specified starting vertex is

>> g.path(3)
ans =
 3 2 4 5

In this case the shortest path from vertex 3 to vertex 5 is via vertices 2 and 4. The ver-
tex closest to the coordinate (0.5, 0.5) is

>> g.closest([0.5, 0.5])
ans =
 4

The minimum cost path between any two nodes in the graph can be computed using
well known algorithms such as A* (Nilsson 1971)

>> g.Astar(3, 5)
ans =
 3 2 4 5

or the earlier method by Dijstrka (1959).

Appendix J · Graphs

K
Appendix

A commonly encountered problem is estimating the position of the peak of some dis-
crete signal y(k), k ∈Z, see for example Fig. K.1a

>> load peakfit1
>> plot(y, '-o')

Finding the peak to the nearest integer is straightforward using MATLAB’s max function

>> [ypk,xpk] = max(y)
ypk =
 0.9905
xpk =
 8

which indicates the peak occurs at the eighth element and has a value of 0.9905. In this
case there is more than one peak and we can use the Toolbox function peak instead

>> [ypk,xpk] = peak(y)
ypk =
 0.9905 0.6718 -0.5799
xpk =
 8 25 16

which has returned three maxima in descending magnitude. A common test of the
quality of a peak is its magnitude and the ratio of the height of the second peak to the
first peak

>> ypk(2)/ypk(1)

which is called the ambiguity ratio and is ideally small.
This signal is a sampled representation of a continuous underlying signal y(x) and

the real peak might lie between the samples. If we look at a zoomed version of the
signal, Fig. K.1b, we can see that although the eighth point is the maximum the ninth

Fig. K.1. Peak fitting. a A signal
with several local maxima; b close-
up view of the first maxima with
the fitted curve (red) and the esti-
mated peak (red-◊)

Peak Finding

540

point is only slightly lower so the peak lies somewhere between points eight and nine.
A common approach is to fit a parabola

(K.1)

to the points surrounding the peak. For the discrete peak that occurs at (xpk, ypk) then
δ= 0 corresponds to xpk and the discrete x-coordinates on either side correspond to
δ=−1 and δ=+1 respectively. Substituting the points (−1, y(−1)), (0, y(0)) and
(1, y(1)) into Eq. K.1 we can write three equations

or in compact matrix form as

and then solve for the parabolic coefficients

(K.2)

The maxima of the parabola occurs when its derivative is zero

and substituting the values of a and b from Eq. K.2 we find the displacement of the
peak of the fitted parabola with respect to the discrete maxima

so the refined, or interpolated, position of the maxima is at

The coefficient a, which is negative for a maxima, indicates the sharpness of the
peak which can be useful in determining whether a peak is sufficiently sharp. A large
magnitude of a indicates a well defined sharp peak wheras a low value indicates a very
broad peak for which estimation of a refined peak detection may not be so accurate.

Continuing the earlier example we can use the Toolbox function peak to estimate
the refined peak positions

>> [ymax,xmax] = peak(y, 'interp', 2)
ymax =
 0.9905 0.6718 -0.5799
xmax =
 8.4394 24.7299 16.2438

where the argument after the 'interp' option indicates that a second order poly-
nomial should be fitted. The fitted parabola is shown in red in Fig. K.1b and is plotted
if the option 'plot' is given.

Appendix K · Peak Finding

541

If the signal has superimposed noise then there are likely to be multiple peaks,
many of which are quite minor, and this can be overcome by specifying the scale of the
peak. For example the peaks that are greater than all other values within ±5 values in
the horizontal direction are

>> peak(y, 'scale', 5)
ans =
 0.9905 0.8730 0.6718

In this case the result is unchanged since the signal is fairly smooth.
For a 2D signal we follow a similar procedure but instead fit a paraboloid

(K.3)

which has five coefficients that can be calculated from the centre value (the discrete
maximum) and its four neighbours (north, south, east and west) using a similar pro-
cedure to above. The displacement of the estimated peak with respect to the central
point is

In this case the coefficients a and b represent the sharpness of the peak in
the x- and y-directions, and the quality of the peak can be considered as being
min a, b.

A 2D discrete signal was loaded from peakfit1 earlier

>> z
z =
 0.0800 0.2000 0.3202 0.4400 0.5600
 0.0400 0.1717 0.3662 0.4117 0.5200
 0.0002 0.2062 0.8766 0.4462 0.4802
 -0.0400 0.0917 0.2862 0.3317 0.4400
 -0.0800 0.0400 0.1602 0.2800 0.4000

In this small example it is clear that the peak is at element (3, 3) but programatically
this is

>> [zmax,i] = max(z(:))
zmax =
 0.8766
i =
 13

and the maximum is at the thirteenth element in row-major order⊳ which we convert
to array subscripts

>> [ymax,xmax] = ind2sub(size(z), i)
xmax =
 3
ymax =
 3

We can find this more conveniently using the Toolbox function peak2

>> [zm,xy]=peak2(z)
zm =
 0.8766
xy =
 3
 3

Counting the elements, starting with 1

at the top-left down each column then

back to the top of the next rightmost

column.

Appendix K · Peak Finding

542

This function will return all non-local maxima where the size of the local region is
given by the 'scale' option. As for the 1-dimensional case we can refine the esti-
mate of the peak

>> [zm,xy]=peak2(z, 'interp')
zm =
 0.8839
xy =
 2.9637
 3.1090

that is, the peak is at element (2.9637, 3.1090). When this process is applied to image
data it is referred to as subpixel interpolation.

Appendix K · Peak Finding

Agrawal M, Konolige K, Blas M (2008) CenSurE: Center surround extremas for realtime feature detec-
tion and matching. In: Forsyth D, Torr P, Zisserman A (eds) Lecture notes in computer science.
Computer Vision – ECCV 2008, vol 5305. Springer-Verlag, Berlin Heidelberg, pp 102–115

Altmann SL (1989) Hamilton, Rodrigues, and the Quaternion scandal. Math Mag 62(5):291–308
Andersen N, Ravn O, Sørensen A (1993) Real-time vision based control of servomechanical systems.

In: Chatila R, Hirzinger G (eds) Lecture Notes in Control and Information Sciences. Experimental
Robotics II, vol 190. Springer-Verlag, Berlin Heidelberg, pp 388–402

Andersson RL (1989) Dynamic sensing in a ping-pong playing robot. IEEE T Robotic Autom 5(6):
728–739

Antonelli G (2006) Underwater robots: Motion and force control of vehicle-manipulator systems, 2nd ed.
Springer Tracts in Advanced Robotics, vol 2. Springer-Verlag, Berlin Heidelberg

Arkin RC (1999) Behavior-based robotics. The MIT Press
Armstrong WW (1979) Recursive solution to the equations of motion of an N-link manipulator. In:

Proc. 5th World Congress on Theory of Machines and Mechanisms, Montreal, Jul, pp 1343–1346
Armstrong BS (1988) Dynamics for robot control: Friction modelling and ensuring excitation during

parameter identification. Stanford University
Armstrong B (1989) On finding exciting trajectories for identification experiments involving systems

with nonlinear dynamics. Int J Robot Res 8(6):28
Armstrong-Hélouvry B, Dupont P, De Wit CC (1994) A survey of models, analysis tools and compensa-

tion methods for the control of machines with friction. Automatica 30(7):1083–1138
Arun KS, Huang TS, Blostein SD (1987) Least-squares fitting of 2 3-D point sets. IEEE T Pattern Anal

9(5):699–700
Asada H (1983) A geometrical representation of manipulator dynamics and its application to arm

design. J Dyn Syst-T ASME 105:131
Azarbayejani A, Pentland AP (1995) Recursive estimation of motion, structure, and focal length. IEEE

T Pattern Anal 17(6):562–575
Baldridge AM, Hook SJ, Grove CI, Rivera G (2009) The ASTER spectral library version 2.0. Remote Sens

Environ 113(4):711–715
Ballard DH (1981) Generalizing the Hough transform to detect arbitrary shapes. Pattern Recogn

13(2):111–122
Banks J, Corke PI (2001) Quantitative evaluation of matching methods and validity measures for ste-

reo vision. Int J Robot Res 20(7):512–532
Bar-Shalom Y, Fortmann T (1988) Tracking and data association. Mathematics in Science and Engi-

neering, vol 182. Academic Press
Bar-Shalom Y, Rong Li X, Thiagalingam Kirubarajan (2001) Estimation with applications to tracking

and navigation. Wiley-Interscience
Bauer J, Sünderhauf N, Protzel P (2007) Comparing several implementations of two recently published

feature detectors. In: IFAC Symposium on Intelligent Autonomous Vehicles (IAV), Toulouse
Bay H, Ess A, Tuytelaars T, Van Gool L (2008) Speeded-up robust features (SURF). Comput Vis Image

Und 110(3):346–359
Benosman R, Kang SB (2001) Panoramic vision: Sensors, theory, and applications. Springer-Verlag
Benson KB (ed) (1986) Television engineering handbook. McGraw-Hill
Besl PJ, McKay HD (1992) A method for registration of 3-D shapes. IEEE T Pattern Anal 14(2):239–256
Bhat DN, Nayar SK (2002) Ordinal measures for image correspondence. IEEE T Pattern Anal 20(4):

415–423
Bishop CM (2006) Pattern recognition and machine learning. Information Science and Statistics.

Springer-Verlag, New York
Bolles RC, Baker HH, Marimont DH (1987) Epipolar-plane image analysis: An approach to determin-

ing structure from motion. Int J Comput Vision 1(1):7–55, Mar
Bolles RC, Baker HH, Hannah MJ (1993) The JISCT stereo evaluation. In: Image Understanding Work-

shop: proceedings of a workshop held in Washington, DC apr 18–21, 1993. Morgan Kaufmann,
pp 263

Bibliography

544 Bibliography

Borenstein J, Everett HR, Feng L (1996) Navigating mobile robots: Systems and techniques. AK Peters,
Ltd. Natick, MA, USA, Out of print and available at http://www-personal.umich.edu/˜johannb/
Papers/pos96rep.pdf

Borgefors G (1986) Distance transformations in digital images. Comput Vision Graph 34(3):344–371
Bouguet J-Y (2010) Camera calibration toolbox for MATLAB. http://www.vision.caltech.edu/bouguetj/

calib_doc
Bradski G, Kaehler A (2008) Learning OpenCV: Computer vision with the OpenCV library. O’Reilly

Media
Brady M, Hollerbach JM, Johnson TL, Lozano-Pérez T, Mason MT (eds) (1982) Robot motion: Planning

and control. The MIT Press
Braitenberg V (1986) Vehicles: Experiments in synthetic psychology. The MIT Press
Brockett RW (1983) Asymptotic stability and feedback stabilization. In: Brockett RW, Millmann RS,

Sussmann HJ (eds) Progress in mathematics. Differential geometric control theory, vol 27. pp 181–191
Broida TJ, Chandrashekhar S, Chellappa R (1990) Recursive 3-D motion estimation from a monocular

image sequence. IEEE T Aero Elec Sys 26(4):639–656
Brooks R (1986) A robust layered control system for a mobile robot. IEEE T Robotic Autom 2(1):14–23
Brooks RA (1989) A robot that walks: Emergent behaviors from a carefully evolved network. MIT AI

Lab, Memo 1091
Brown MZ, Burschka D, Hager GD (2003) Advances in computational stereo. IEEE T Pattern Anal

25(8):993–1008
Buehler M, Iagnemma K, Singh S (eds) (2007) The 2005 DARPA grand challenge: The great robot race.

Springer Tracts in Advanced Robotics, vol 36. Springer-Verlag
Buehler M, Iagnemma K, Singh S (eds) (2010) The DARPA urban challenge. Tracts in Advanced Robot-

ics, vol 56. Springer-Verlag
Bukowski R, Haynes LS, Geng Z, Coleman N, Santucci A, Lam K, Paz A, May R, DeVito M (1991) Robot

hand-eye coordination rapid prototyping environment. In: Proc ISIR, pp 16.15–16.28
Buttazzo GC, Allotta B, Fanizza FP (1993) Mousebuster: A robot system for catching fast moving ob-

jects by vision. In: Proc. IEEE Int. Conf. Robotics and Automation, Atlanta. pp 932–937
Calonder M, Lepetit V, Strecha C, Fua P (2010) BRIEF: Binary robust independent elementary features.

In: Daniilidis K, Maragos P, Paragios N (eds) Lecture notes in computer science. Computer Vision –
ECCV 2010, vol 6311. Springer-Verlag, Berlin Heidelberg, pp 778–792

Canny JF (1983) Finding edges and lines in images. MIT, Artificial Intelligence Laboratory, AI-TR-720.
Cambridge, MA

Canny J (1987) A computational approach to edge detection. Readings in computer vision: issues, prob-
lems, principles, and paradigms 184

Chahl JS, Srinivasan MV (1997) Reflective surfaces for panoramic imaging. Appl Optics 31(36):
8275–8285

Chaumette F (1990) La relation vision-commande: Théorie et application et des tâches robotiques.
Université de Rennes 1

Chaumette F (1998) Potential problems of stability and convergence in image-based and position-
based visual servoing. In: Kriegman DJ, Hager GD, Morse AS (eds) Lecture notes in control and
information sciences. The confluence of vision and control, vol 237. Springer-Verlag, pp 66–78

Chaumette F (2004) Image moments: A general and useful set of features for visual servoing. IEEE T
Robotic Autom 20(4):713–723

Chaumette F, Hutchinson S (2006) Visual servo control 1: Basic approaches. IEEE T Robotic Autom
13(4):82–90

Chaumette F, Hutchinson S (2007) Visual servo control 2: Advanced approaches. IEEE T Robotic Autom
14(1):109–118

Chaumette F, Rives P, Espiau B (1991) Positioning of a robot with respect to an object, tracking it and
estimating its velocity by visual servoing. In: Proc. IEEE Int. Conf. Robotics and Automation, Seoul.
pp 2248–2253

Chesi G, Hashimoto K (eds) (2010) Visual servoing via advanced numerical methods. Lecture notes in
computer science, 401. Springer-Verlag

Chiaverini S, Sciavicco L, Siciliano B (1991) Control of robotic systems through singularities. Lecture
Notes in Control and Information Sciences. Advanced Robot Control, Proceedings of the Interna-
tional Workshop on Nonlinear and Adaptive Control: Issues in Robotics, vol 162. Springer-Verlag,
pp 285–295

Chiuso A, Favaro P, Jin H, Soatto S (2002) Structure from motion causally integrated over time. IEEE T
Pattern Anal 24(4):523–535

Choset HM, Lynch KM, Hutchinson S, Kantor G, Burgard W, Kavraki LE, Thrun S (2005) Principles of
robot motion. The MIT Press

Chum O, Matas J (2005) Matching with PROSAC – Progressive sample consensus. In: IEEE Conf. on
Computer Vision and Pattern Recognition, vol 2. San Diego, pp 220–226

Colicchia G, Waltner C, Hopf M, Wiesner H (2009) The scallop’s eye – A concave mirror in the context
of biology. Physics Education 44(2):175–179

545Bibliography

Commission Internationale de L’Éclairage (1987) Colorimetry, 2nd ed. Commission Internationale de
L’Eclairage, CIE No 15.2

Corke PI (1994) High-performance visual closed-loop robot control. University of Melbourne, Dept.
Mechanical and Manufacturing Engineering. http://eprints.unimelb.edu.au/archive/00000547/01/
thesis.pdf

Corke PI (1996a) In situ measurement of robot motor electrical constants. Robotica 14(4):433–436
Corke PI (1996b) Visual control of robots: High-performance visual servoing. Mechatronics, vol 2. Re-

search Studies Press (John Wiley). Out of print and available at http://www.petercorke.com/bluebook
Corke PI (2001) Mobile robot navigation as a planar visual servoing problem. In: Jarvis RA, Zelinsky A

(eds) Springer tracts in advanced robotics. Robotics Research: The 10th International Symposium,
vol 6. IFRR, Lorne, pp 361–372

Corke PI (2007) A simple and systematic approach to assigning Denavit-Hartenberg parameters. IEEE
T Robotic Autom 23(3):590–594

Corke PI (2010) Spherical image-based visual servo and structure estimation. In: Proc. IEEE Int. Conf.
Robotics and Automation, Anchorage, pp 5550–5555

Corke PI, Armstrong-Hélouvry BS (1994) A search for consensus among model parameters reported for
the PUMA 560 robot. In: Proc. IEEE Int. Conf. Robotics and Automation, San Diego. pp 1608–1613

Corke PI, Armstrong-Hélouvry B (1995) A meta-study of PUMA 560 dynamics: A critical appraisal of
literature data. Robotica 13(3):253–258

Corke PI, Good MC (1992) Dynamic effects in high-performance visual servoing. In: Proc. IEEE Int.
Conf. Robotics and Automation, Nice. pp 1838–1843

Corke PI, Good MC (1996) Dynamic effects in visual closed-loop systems. IEEE T Robotic Autom
12(5):671–683

Corke PI, Hutchinson SA (2001) A new partitioned approach to image-based visual servo control. IEEE
T Robotic Autom 17(4):507–515

Corke PI, Dunn PA, Banks JE (1999) Frame-rate stereopsis using non-parametric transforms and pro-
grammable logic. In: Proc. IEEE Int. Conf. Robotics and Automation, Detroit. pp 1928–1933

Corke PI, Strelow D, Singh S (2004) Omnidirectional visual odometry for a planetary rover. In: Proc.
Int. Conf on Intelligent Robots and Systems (IROS), Sendai. pp 4007–4012

Corke PI, Spindler F, Chaumette F (2009) Combining Cartesian and polar coordinates in IBVS. In: Proc.
Int. Conf on Intelligent Robots and Systems (IROS), St. Louis. pp 5962–5967

Craig JJ (1987) Adaptive control of mechanical manipulators. Addison-Wesley
Craig JJ (2004) Introduction to robotics: Mechanics and control. Prentice Hall
Craig JJ, Hsu P, Sastry SS (1987) Adaptive control of mechanical manipulators. Int J Robot Res 6(2):16
Cummins M, Newman P (2008) FAB-MAP: Probabilistic localization and mapping in the space of ap-

pearance. Int J Robot Res 27(6):647
Cutting JE (1997) How the eye measures reality and virtual reality. Behav Res Meth Ins C 29(1):27–36
Daniilidis K, Klette R (eds) (2006) Imaging beyond the pinhole camera. Computational Imaging, vol 33.

Springer-Verlag
Davison AJ, Reid ID, Molton ND, Stasse O (2007) MonoSLAM: Real-time single camera SLAM. IEEE T

Pattern Anal 29(6):1052–1067
Deguchi K (1998) Optimal motion control for image-based visual servoing by decoupling translation

and rotation. In: Proc. Int. Conf on Intelligent Robots and Systems (IROS), Victoria, Canada. Oct,
pp 705–711

Dellaert F, Seitz SM, Thorpe CE, Thrun S (2000) Structure from motion without correspondence. In:
IEEE Conf. on Computer Vision and Pattern Recognition, Hilton Head Island, SC. pp 557–564

DeMenthon D, Davis LS (1992) Exact and approximate solutions of the perspective-three-point prob-
lem. IEEE T Pattern Anal 14(11):1100–1105

Denavit J, Hartenberg RS (1955) A kinematic notation for lower-pair mechanisms based on matrices.
J Appl Mech-T ASME 22(1):215–221

Deo AS, Walker ID (1995) Overview of damped least-squares methods for inverse kinematics of robot
manipulators. J Intell Robot Syst 14(1):43–68

Deriche R, Giraudon G (1993) A computational approach for corner and vertex detection. Int J Comput
Vision 10(2):101–124

DeWitt BA, Wolf PR (2000) Elements of photogrammetry (with applications in GIS). McGraw-Hill
Higher Education

Dickmanns ED (2007) Dynamic vision for perception and control of motion. Springer-Verlag, London
Dickmanns ED, Graefe V (1988a) Applications of dynamic monocular machine vision. Mach Vision

Appl 1:241–261
Dickmanns ED, Graefe V (1988b) Dynamic monocular machine vision. Mach Vision Appl 1(4):

223–240
Dickmanns ED, Zapp A (1987) Autonomous high speed road vehicle guidance by computer vision. In:

Tenth Triennial World Congress of the International Federation of Automatic Control, vol 4. Munich,
pp 221–226

Dijkstra EW (1959) A note on two problems in connexion with graphs. Numer Math 1(1):269–271

546 Bibliography

Dougherty ER, Lotufo RA (2003) Hands-on morphological image processing. Society of Photo-Opti-
cal Instrumentation Engineers (SPIE)

Duda RO, Hart PE (1972) Use of the Hough transformation to detect lines and curves in pictures.
Commun ACM 15(1):11–15

Espiau B, Chaumette F, Rives P (1992) A new approach to visual servoing in robotics. IEEE T Robotic
Autom 8(3):313–326

Everett HR (1995) Sensors for mobile robots: Theory and application. AK Peters, Ltd.
Faugeras OD (1993) Three-dimensional computer vision: A geometric viewpoint. The MIT Press
Faugeras OD, Lustman F (1988) Motion and structure from motion in a piecewise planar environment.

Int J Pattern Recogn 2(3):485–508
Faugeras O, Luong QT, Papadopoulou T (2001) The geometry of multiple images: The laws that govern

the formation of images of a scene and some of their applications. The MIT Press
Featherstone R (1987) Robot dynamics algorithms. Kluwer Academic
Feddema JT (1989) Real time visual feedback control for hand-eye coordinated robotic systems. Purdue

University
Feddema JT, Mitchell OR (1989) Vision-guided servoing with feature-based trajectory generation. IEEE

T Robotic Autom 5(5):691–700
Feddema JT, Lee CSG, Mitchell OR (1991) Weighted selection of image features for resolved rate visual

feedback control. IEEE T Robotic Autom 7(1):31–47
Felzenszwalb PF, Huttenlocher DP (2004) Efficient graph-based image segmentation. Int J Comput

Vision 59(2):167–181
Ferguson D, Stentz A (2006) Using interpolation to improve path planning: The Field D* algorithm.

J Field Robotics 23(2):79–101
Fischler MA, Bolles RC (1981) Random sample consensus: A paradigm for model fitting with applica-

tions to image analysis and automated cartography. Commun ACM 24(6):381–395
Fisher RB (2004) The PETS04 surveillance ground-truth data sets. In: Proc. 6th IEEE International

Workshop on Performance Evaluation of Tracking and Surveillance, Prague. pp 1–5
Fomena R, Chaumette F (2007) Visual servoing from spheres using a spherical projection model. In:

Proc. IEEE Int. Conf. Robotics and Automation, Rome, pp 2080–2085
Förstner W (1994) A framework for low level feature extraction. In: Ecklundh J-O (ed) Lecture notes in

computer science. Computer Vision – ECCV 1994, vol 800. Springer-Verlag, Berlin Heidelberg,
pp 383–394

Förstner W, Gülch E (1987) A fast operator for detection and precise location of distinct points, corners
and centres of circular features. In: ISPRS Intercommission Workshop, Interlaken, pp 149–155

Forsyth DA, Ponce J (2002) Computer vision: A modern approach. Prentice Hall
Freeman H (1974) Computer processing of line-drawing images. ACM Comput Surv 6(1):57–97
Friedman DP, Felleisen M, Bibby D (1987) The little LISPer. MIT Press
Funda J, Taylor RH, Paul RP (1990) On homogeneous transforms, quaternions, and computational

efficiency. IEEE T Robotic Autom 6(3):382–388
Gans NR, Hutchinson SA, Corke PI (2003) Performance tests for visual servo control systems, with

application to partitioned approaches to visual servo control. Int J Robot Res 22(10–11):955
Gautier M, Khalil W (1992) Exciting trajectories for the identification of base inertial parameters of

robots. Int J Robot Res 11(4):362
Geraerts R, Overmars MH (2004) A comparative study of probabilistic roadmap planners. In: Boissonnat

J-D, Burdick J, Goldberg K, Hutchinson S (eds) Springer Tracts in Advanced Robotics. Algorithmic
Foundations of Robotics V, vol 7. Springer-Verlag, pp 43–58

Geyer C, Daniilidis K (2000) A unifying theory for central panoramic systems and practical implica-
tions. In: Vernon D (ed) Lecture notes in computer science. Computer vision – ECCV 2000, vol 1843.
Springer-Verlag, pp 445–461

Goldberg K (ed) (2001) The robot in the garden: Telerobotics and telepistemology in the age of the
internet. The MIT Press

Goldberg K, Siegwart R (eds) (2001) Beyond webcams: An introduction to online robots. The MIT
Press

Gonzalez R, Woods R (2008) Digital image processing, 3rd ed. Prentice Hall
Gonzalez R, Woods R, Eddins S (2009) Digital image processing using MATLAB, 2nd ed. Gatesmark
Groves PD (2008) Principles of GNSS, inertial, and multisensor integrated navigation systems. Artech

House
Hager GD, Toyama K (1998) X Vision: A portable substrate for real-time vision applications. Comput

Vis Image Und 69(1):23–37
Hamel T, Mahony R (2002) Visual servoing of an under-actuated dynamic rigid-body system: An im-

age based approach. IEEE T Robotic Autom 18(2):187–198
Hamel T, Mahony R, Lozano R, Ostrowski J (2002) Dynamic modelling and configuration stabilization for

an X4-flyer. IFAC World Congress 1(2), p 3. Available at: http://citeseerx.ist.psu.edu/viewdoc/download
Hansen P, Corke PI, Boles W (2010) Wide-angle visual feature matching for outdoor localization. Int J

Robot Res 29(1–2):267–297

547Bibliography

Harris CG, Stephens MJ (1988) A combined corner and edge detector. In: Proceedings of the Fourth
Alvey Vision Conference, Manchester. pp 147–151

Hart PE (2009) How the Hough transform was invented [DSP history]. IEEE Signal Proc Mag 26(6):
18–22

Hartenberg RS, Denavit J (1964) Kinematic synthesis of linkages. McGraw-Hill New York, available
online at http://kmoddl.library.cornell.edu/bib.php?m=23

Hartley R, Zisserman A (2003) Multiple view geometry in computer vision. Cambridge University Press,
New York

Harvey P (nd) ExifTool. http://www.sno.phy.queensu.ca/~phil/exiftool
Hashimoto K (ed) (1993) Visual servoing. In: Robotics and automated systems, vol 7. World Scientific
Hashimoto K, Kimoto T, Ebine T, Kimura H (1991) Manipulator control with image-based visual servo.

In: Proc. IEEE Int. Conf. Robotics and Automation, Seoul. pp 2267–2272
Hellerstein JL, Diao Y, Parekh S, Tilbury DM (2004) Feedback control of computing systems. IEEE Press

– Wiley
Hill J, Park WT (1979) Real time control of a robot with a mobile camera. In: Proc. 9th ISIR, SME, Wash-

ington, DC. Mar, pp 233–246
Hoag D (1963) Consideration of Apollo IMU gimbal lock. MIT Instrumentation Laboratory, E–1344,

http://www.hq.nasa.gov/alsj/e-1344.htm
Hollerbach JM (1980) A recursive Lagrangian formulation of manipulator dynamics and a compara-

tive study of dynamics formulation complexity. IEEE T Syst Man Cyb 10(11):730–736, Nov
Hollerbach JM (1982) Dynamics. In: Brady M, Hollerbach JM, Johnson TL, Lozano-Perez T, Mason MT

(eds) Robot motion – Planning and control. The MIT Press, pp 51–71
Horaud R, Canio B, Leboullenx O (1989) An analytic solution for the perspective 4-point problem.

Comput Vision Graph 47(1):33–44
Horn BKP (1987) Closed-form solution of absolute orientation using unit quaternions. J Opt Soc Am A

4(4):629–642
Horn BKP, Hilden HM, Negahdaripour S (1988) Closed-form solution of absolute orientation using

orthonormal matrices. J Opt Soc Am A 5(7):1127–1135
Hosoda K, Asada M (1994) Versatile visual servoing without knowledge of true Jacobian. In: Proc. Int.

Conf on Intelligent Robots and Systems (IROS), Munich. Sep, pp 186–193
Howard TM, Green CJ, Kelly A, Ferguson D (2008) State space sampling of feasible motions for high-

perfor-mance mobile robot navigation in complex environments. J Field Robotics 25(6–7):325–345
Hu MK (1962) Visual pattern recognition by moment invariants. IRE T Inform Theor 8:179–187
Huang TS, Netravali AN (1994) Motion and structure from feature correspondences: A review. P IEEE

82(2):252–268
Humenberger M, Zinner C, Kubinger W (2009) Performance evaluation of a census-based stereo match-

ing algorithm on embedded and multi-core hardware. In: Proc. 19th Int. Symp. on Image and Signal
Processing and Analysis (ISPA). Sep, pp 388–393

Hunt RWG (1987) The reproduction of colour, 4th ed. Fountain Press
Hunter RS, Harold RW (1987) The measurement of appearance. John Wiley
Hutchinson S, Hager G, Corke PI (1996) A tutorial on visual servo control. IEEE T Robotic Autom

12(5):651–670
Iwatsuki M, Okiyama N (2002a) A new formulation of visual servoing based on cylindrical coordinate

system with shiftable origin. In: Proc. Int. Conf on Intelligent Robots and Systems (IROS), Lausanne,
pp 354–359

Iwatsuki M, Okiyama N (2002b) Rotation-oriented visual servoing based on cylindrical coordinates.
In: Proc. IEEE Int. Conf. Robotics and Automation, Washington, DC. May, pp 4198–4203

Izaguirre A, Paul RP (1985) Computation of the inertial and gravitational coefficients of the dynamics
equations for a robot manipulator with a load. In: Proc. IEEE Int. Conf. Robotics and Automation.
Mar, pp 1024–1032

Jägersand M, Fuentes O, Nelson R (1996) Experimental evaluation of uncalibrated visual servoing for
pre-cision manipulation. In: Proc. IEEE Int. Conf. Robotics and Automation, Albuquerque, NM.
pp 2874–2880

Jarvis RA, Byrne JC (1988) An automated guided vehicle with map building and path finding capabili-
ties. In: Robotics Research: The Fourth international symposium. The MIT Press, pp 497–504

Jazwinski AH (1970) Stochastic processes and filtering theory. Academic Press
Jebara T, Azarbayejani A, Pentland A (1999) 3D structure from 2D motion. IEEE Signal Proc Mag 16(3):66–84
Julier SJ, Uhlmann JK (2004) Unscented filtering and nonlinear estimation. P IEEE 92(3):401–422
Kahn ME (1969) The near-minimum time control of open-loop articulated kinematic linkages. Stanford

University, AIM-106
Kálmán RE (1960) A new approach to linear filtering and prediction problems. J Basic Eng-T Asme 82(1):

35–45
Kane TR, Levinson DA (1983) The use of Kane’s dynamical equations in robotics. Int J Robot Res 2(3):3–21
Kavraki LE, Svestka P, Latombe JC, Overmars MH (1996) Probabilistic roadmaps for path planning in

high-dimensional configuration spaces. IEEE T Robotic Autom 12(4):566–580

548 Bibliography

Kelly R (1996) Robust asymptotically stable visual servoing of planar robots. IEEE T Robotic Autom
12(5):759–766

Kelly R, Carelli R, Nasisi O, Kuchen B, Reyes F (2002a) Stable visual servoing of camera-in-hand ro-
botic systems. IEEE-ASME T Mech 5(1):39–48

Kelly R, Shirkey P, Spong MW (2002b) Fixed-camera visual servo control for planar robots. In: Proc.
IEEE Int. Conf. Robotics and Automation. IEEE, Washington, DC, pp 2643–2649

Khalil W, Creusot D (1997) SYMORO+: A system for the symbolic modelling of robots. Robotica 15(2):
153–161

Khalil W, Dombre E (2002) Modeling, identification and control of robots. Kogan Page Science
King-Hele D (2002) Erasmus Darwin’s improved design for steering carriages and cars. Notes and

Records of the Royal Society of London 56(1):41–62
Klafter RD, Chmielewski TA, Negin M (1989) Robotic engineering – An integrated approach. Prentice-Hall
Klein CA, Huang CH (1983) Review of pseudoinverse control for use with kinematically redundant

manipulators. IEEE T Syst Man Cyb 13:245–250
Klette R, Kruger N, Vaudrey T, Pauwels K, van Hulle M, Morales S, Kandil F, Haeusler R, Pugeault N,

Rabe C (2011) Performance of correspondence algorithms in vision-based driver assistance using
an online image sequence database. IEEE T Veh Technol 60(5):2012–2026

Koenderink JJ (1984) The structure of images. Biol Cybern 50(5):363–370
Koenig S, Likhachev M (2002) D* Lite. In: Proceedings of the National Conference on Artificial Intelli-

gence, Menlo Park, CA; Cambridge, MA; London; AAAI Press; MIT Press; 1999, pp 476–483
Koenig S, Likhachev M (2005) Fast replanning for navigation in unknown terrain. IEEE T Robo-

tic Autom 21(3):354–363
Kriegman DJ, Hager GD, Morse AS (eds) (1998) The confluence of vision and control. Lecture Notes in

Control and Information Sciences, vol 237. Springer-Verlag
Kuipers JB (1999) Quaternions and rotation sequences: A primer with applications to orbits, aeroespace

and virtual reality. Princeton University Press
Lamport L (1994) LATEX: A document preparation system. User’s guide and reference manual. Addison-

Wesley Publishing Company, Reading, Ma
LaValle SM (1998) Rapidly-exploring random trees: A new tool for path planning. Computer Science

Dept., Iowa State University, TR 98–11
LaValle SM (2006) Planning algorithms. Cambridge Univ Press
LaValle SM, Kuffner JJ (2001) Randomized kinodynamic planning. Int J Robot Res 20(5):378–400
Leavers VF (1993) Which Hough transform? Comput Vis Image Und 58(2):250–264
Lee CSG, Lee BH, Nigham R (1983) Development of the generalized D’Alembert equations of motion

for mechanical manipulators. In: Proc. 22nd CDC, San Antonio, Texas. pp 1205–1210
Lepetit V, Moreno-Noguer F, Fua P (2009) EPnP: An accurate O(n) solution to the PnP problem. Int J

Comput Vision 81(2):155–166
Li H, Hartley R (2006) Five-point motion estimation made easy. In: 18th Int. Conf. on Pattern Recogni-

tion ICPR 2006, Hong Kong, pp 630–633
Lin Z, Zeman V, Patel RV (1989) On-line robot trajectory planning for catching a moving object. In:

Proc. IEEE Int. Conf. Robotics and Automation. pp 1726–1731
Lindeberg T (1993) Scale-space theory in computer vision. Springer-Verlag
Lloyd J, Hayward V (1991) Real-time trajectory generation using blend functions. In: Proc. IEEE Int.

Conf. Robotics and Automation, Seoul. pp 784–789
Longuet-Higgins H (1981) A computer algorithm for reconstruction of a scene from two projections.

Nature 293:133–135
Lourakis MIA, Argyros AA (2009) SBA: A software package for generic sparse bundle adjustment.

ACM T Math Software 36(1):1–30
Lovell J, Kluger J (1994) Apollo 13. Coronet Books
Lowe DG (1991) Fitting parametrized three-dimensional models to images. IEEE T Pattern Anal 13(5):

441–450
Lowe DG (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vision 60(2):

91–110
Lucas SM (2005) ICDAR 2005 text locating competition results. In: Proceedings of the Eighth Interna-

tional Conference on Document Analysis and Recognition, ICDAR05, pp 80–84
Lucas BD, Kanade T (1981) An iterative image registration technique with an application to stereo

vision. In: International joint conference on artificial intelligence (IJCAI), Vancouver, vol 2. http://
ijcai.org/Past%20Proceedings/IJCAI-81-VOL-2/PDF/017.pdf, pp 674–679

Luh JYS, Walker MW, Paul RPC (1980) On-line computational scheme for mechanical manipulators.
J Dyn Syst-T ASME 102(2):69–76

Lumelsky V, Stepanov A (1986) Dynamic path planning for a mobile automaton with limited informa-
tion on the environment. IEEE T Automat Contr 31(11):1058–1063

Luong QT (1992) matrice fondamentale et autocalibration en vision par ordinateur. Universitéde Paris-
Sud, Orsay, France

Ma Y, Kosecka J, Soatto S, Sastry S (2003) An invitation to 3D. Springer-Verlag

549Bibliography

Maimone M, Cheng Y, Matthies L (2007) Two years of visual odometry on the Mars exploration rovers.
J Field Robotics 24(3):169–186

Makhlin AG (1985) Stability and sensitivity of servo vision systems. In: Proc 5th Int Conf on Robot
Vision and Sensory Controls – RoViSeC 5. IFS (Publications), Amsterdam, pp 79–89

Malis E, Vargas M (2007) Deeper understanding of the homography decomposition for vision-based
control. INRIA, 6303

Malis E, Chaumette F, Boudet S (1999) 2-1/2D visual servoing. IEEE T Robotic Autom 15(2):238–250
Marey M, Chaumette F (2008) Analysis of classical and new visual servoing control laws. In: Proc. IEEE

Int. Conf. Robotics and Automation, Pasadena, pp 3244–3249
Mariottini GL, Prattichizzo D (2005) EGT for multiple view geometry and visual servoing: Robotics

vision with pinhole and panoramic cameras. IEEE T Robotic Autom 12(4):26–39
Mariottini GL, Oriolo G, Prattichizzo D (2007) Image-based visual servoing for nonholonomic mobile

robots using epipolar geometry. IEEE T Robotic Autom 23(1):87–100
Marr D (2010) Vision: A computational investigation into the human representation and processing of

visual information. The MIT Press
Martin D, Fowlkes C, Tal D, Malik J (2001) A database of human segmented natural images and its

application to evaluating segmentation algorithms and measuring ecological statistics. Proc. 8th Int’l
Conf. Computer Vision, vol 2, pp 416–423

Masutani Y, Mikawa M, Maru N, Miyazaki F (1994) Visual servoing for non-holonomic mobile robots.
In: Proc. Int. Conf on Intelligent Robots and Systems (IROS), Munich, pp 1133–1140

Matariõ MJ (2007) The robotics primer. MIT Press
Matas J, Chum O, Urban M, Pajdla T (2004) Robust wide-baseline stereo from maximally stable extremal

regions. Image Vision Comput 22(10):761–767
Matthews ND, An PE, Harris CJ (1995) Vehicle detection and recognition for autonomous intelligent

cruise control. Image, Speech and Intelligent Systems 6
Matthies L (1992) Stereo vision for planetary rovers: Stochastic modeling to near real-time implemen-

tation. Int J Comput Vision 8(1):71–91
Mayeda H, Yoshida K, Osuka K (1990) Base parameters of manipulator dynamic models. IEEE T Ro-

botic Autom 6(3):312–321
McLauchlan PF (1999) The variable state dimension filter applied to surface-based structure from

motion. University of Surrey, VSSP-TR-4/99
Merlet JP (2006) Parallel robots. Kluwer Academic
Mettler B (2003) Identification modeling and characteristics of miniature rotorcraft. Kluwer Academic
Miãuïík B, Pajdla T (2003) Estimation of omnidirectional camera model from epipolar geometry. In:

IEEE Conf. on Computer Vision and Pattern Recognition, Madison, vol 1. pp 485–490
Middleton RH, Goodwin GC (1988) Adaptive computed torque control for rigid link manipulations.

Syst Control Lett 10(1):9–16
Mikolajczyk K, Schmid C (2004) Scale and affine invariant interest point detectors. Int J Comput Vision

60(1):63–86
Mikolajczyk K, Schmid C (2005) A performance evaluation of local descriptors. IEEE T Pattern Anal

27(10):1615–1630
Mindell DA (2008) Digital Apollo. MIT Press
Molton N, Brady M (2000) Practical structure and motion from stereo when motion is unconstrained.

Int J Comput Vision 39(1):5–23
Montemerlo M, Thrun S, Koller D, Wegbreit B (2002) FastSLAM: A factored solution to the simulta-

neous localization and mapping problem. In: Proceedings of the AAAI National Conference on
Artificial Intelligence. AAAI, Edmonton, Canada

Moravec H (1980) Obstacle avoidance and navigation in the real world by a seeing robot rover. Stanford
University

Morel G, Liebezeit T, Szewczyk J, Boudet S, Pot J (2000) Explicit incorporation of 2D constraints in
vision based control of robot manipulators. In: Corke PI, Trevelyan J (eds) Lecture notes in control
and information sciences. Experimental robotics VI, vol 250. Springer-Verlag, pp 99–108

NASA (1970) Apollo 13: Technical air-to-ground voice transcription. Test Division, Apollo Spacecraft
Program Office, http://www.hq.nasa.gov/alsj/a13/AS13_TEC.PDF

Nayar SK (1997) Catadioptric omnidirectional camera. In: IEEE Conf. on Computer Vision and Pattern
Recognition, Los Alamitos, CA, pp 482–488

Nethery JF, Spong MW (1994) Robotica: A mathematica package for robot analysis. IEEE T Robotic
Autom 1(1):13–20

Ng J, Bräunl T (2007) Performance comparison of bug navigation algorithms. J Intell Robot Syst
50(1):73–84

Niblack W (1985) An introduction to digital image processing. Strandberg Publishing Company
Birkeroed, Denmark

Nilsson NJ (1971) Problem-solving methods in artificial intelligence. McGraw-Hill
Nistér D (2003) An efficient solution to the five-point relative pose problem. In: IEEE Conf. on Com-

puter Vision and Pattern Recognition, vol. 2. Madison, pp 195–202

550 Bibliography

Nistér D, Naroditsky O, Bergen J (2006) Visual odometry for ground vehicle applications. J Field Ro-
botics 23(1):3–20

Nixon MS, Aguado AS (2008) Feature extraction and image processing. Academic Press
Noble JA (1988) Finding corners. Image Vision Comput 6(2):121–128
Okutomi M, Kanade T (1993) A multiple-baseline stereo. IEEE T Pattern Anal 15(4):353–363
Ollis M, Herman H, Singh S (1999) Analysis and design of panoramic stereo vision using equi-angular pixel

cameras. Robotics Institute, Carnegie Mellon University, CMU-RI-TR-99-04, Citeseer, Pittsburgh, PA
Orin DE, McGhee RB, Vukobratovic M, Hartoch G (1979) Kinematics and kinetic analysis of open-

chain linkages utilizing newton-euler methods. Math Biosci 43(1/2):107–130
Ortega R, Spong MW (1989) Adaptive motion control of rigid robots: A tutorial. Automatica 25(6):877–888
Otsu N (1975) A threshold selection method from gray-level histograms. Automatica 11:285–296
Papanikolopoulos NP, Khosla PK (1993) Adaptive robot visual tracking: Theory and experiments. IEEE

T Automat Contr 38(3):429–445
Papanikolopoulos NP, Khosla PK, Kanade T (1993) Visual tracking of a moving target by a camera

mounted on a robot: A combination of vision and control. IEEE T Robotic Autom 9(1):14–35
Park FC (1994) Computational aspects of the product-of-exponentials formula for robot kinematics.

Automatic Control, IEEE Transactions on 39(3):643–647
Paul R (1972) Modelling, trajectory calculation and servoing of a computer controlled arm. Stanford

University
Paul R (1979) Manipulator Cartesian path control. IEEE T Syst Man Cyb 9:702–711
Paul RP (1981) Robot manipulators: Mathematics, programming, and control. MIT Press, Cambridge,

Massachusetts
Paul RP, Shimano B (1978) Kinematic control equations for simple manipulators. In: IEEE Conference

on Decision and Control, vol 17. pp 1398–1406
Paul RP, Zhang H (1986) Computationally efficient kinematics for manipulators with spherical wrists

based on the homogeneous transformation representation. Int J Robot Res 5(2):32–44
Piepmeier JA, McMurray G, Lipkin H (1999) A dynamic quasi-Newton method for uncalibrated visual

servoing. In: Proc. IEEE Int. Conf. Robotics and Automation, Detroit. pp 1595–1600
Pilu M (1997) A direct method for stereo correspondence based on singular value decomposition. In:

Proc. Computer Vision and Pattern Recognition, IEEE Computer Society, San Juan, pp 261–266
Pollefeys M, Nistér D, Frahm JM, Akbarzadeh A, Mordohai P, Clipp B, Engels C, Gallup D, Kim SJ,

Merrell P, et al. (2008) Detailed real-time urban 3D reconstruction from video. Int J Comput Vi-
sion 78(2):143–167, Jul

Pomerleau D, Jochem T (1995) No hands across America Journal. http://www.cs.cmu.edu/~tjochem/
nhaa/Journal.html

Pomerleau D, Jochem T (1996) Rapidly adapting machine vision for automated vehicle steering. IEEE
Expert 11(1):19–27

Pounds P (2007) Design, construction and control of a large quadrotor micro air vehicle. Australian
National University

Pounds P, Mahony R, Gresham J, Corke PI, Roberts J (2004) Towards dynamically-favourable quad-
rotor aerial robots. In: Proc. Australasian Conf. on Robotics and Automation, Canberra

Pounds P, Mahony R, Corke PI (2006) A practical quad-rotor robot. In: Proc. Australasian Conf. on
Robotics and Automation, Auckland

Pounds P, Mahony R, Corke PI (2007) System identification and control of an aerobot drive system. In:
Information, Decision and Control. pp 154–159

Poynton CA (2003) Digital video and HDTV: Algorithms and interfaces. Morgan Kaufmann
Press WH, Teukolsky SA, Vetterling WT, Flannery BP (2007) Numerical recipes, 3rd ed. Cambridge Uni-

versity Press
Prouty RW (2002) Helicopter performance, stability, and control. Krieger
Pynchon T (2006) Against the day. Jonathan Cape
Rabaud V (nd) Vincent’s structure from motion toolbox. http://vision.ucsd.edu/~vrabaud/toolbox
Rives P, Chaumette F, Espiau B (1989) Positioning of a robot with respect to an object, tracking it and

estimating its velocity by visual servoing. In: Hayward V, Khatib O (eds) Lecture Notes in Control
and Information Sciences. Experimental Robotics I, vol 139. Springer-Verlag, pp 412–428

Rizzi AA, Koditschek DE (1991) Preliminary experiments in spatial robot juggling. In: Chatila R,
Hirzinger G (eds) Lecture Notes in Control and Information Sciences. Experimental Robotics II,
vol 190. Springer-Verlag, pp 282–298

Roberts LG (1963) Machine perception of three-dimensional solids. MIT Lincoln Laboratory, TR 315,
http://www.packet.cc/files/mach-per-3D-solids.html

Rosenfield GH (1959) The problem of exterior orientation in photogrammetry. Photogramm Eng
25(4):536–553

Rosten E, Porter R, Drummond T (2010) FASTER and better: A machine learning approach to corner
detection. IEEE T Pattern Anal 32:105–119

Sakaguchi T, Fujita M, Watanabe H, Miyazaki F (1993) Motion planning and control for a robot per-
former. In: Proc. IEEE Int. Conf. Robotics and Automation, Atlanta. May, pp 925–931

551Bibliography

Salvi J, Matabosch C, Fofi D, Forest J (2007) A review of recent range image registration methods with
accuracy evaluation. Image Vision Comput 25(5):578–596

Samson C, Espiau B, Le Borgne M (1990) Robot control: The task function approach. Oxford University
Press

Sanderson AC, Weiss LE, Neuman CP (1987) Dynamic sensor-based control of robots with visual feed-
back. IEEE T Robotic Autom RA-3(5):404–417

Scharstein D, Pal C (2007) Learning conditional random fields for stereo. In: IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (CVPR 2007), Minneapolis, MN

Scharstein D, Szeliski R (2002) A taxonomy and evaluation of dense two-frame stereo correspondence
algorithms. Int J Comput Vision 47(1):7–42

Serra J (1983) Image analysis and mathematical morphology. Academic Press
Shi J, Tomasi C (1994) Good features to track. In: Proc. Computer Vision and Pattern Recognition. IEEE

Computer Society, Seattle, pp 593–593
Shirai Y (1987) Three-dimensional computer vision. Springer-Verlag, New York
Shirai Y, Inoue H (1973) Guiding a robot by visual feedback in assembling tasks. Pattern Recogn

5(2):99–106
Shoemake K (1985) Animating rotation with quaternion curves. In: Proceedings of ACM SIGGRAPH,

San Francisco, pp 245–254
Siciliano B, Khatib O (eds) (2008) Springer handbook of robotics. Springer-Verlag, New York
Siciliano B, Sciavicco L, Villani L, Oriolo G (2008) Robotics: Modelling, planning and control. Springer-

Verlag
Siegwart R, Nourbakhsh IR, Scaramuzza D (2011) Introduction to autonomous mobile robots. The

MIT Press
Silver WM (1982) On the equivalance of Lagrangian and Newton-Euler dynamics for manipulators. Int

J Robot Res 1(2):60–70
Sivic J, Zisserman A (2003) Video Google: A text retrieval approach to object matching in videos. In:

Proc. Ninth IEEE Int. Conf. on Computer Vision, pp 1470–1477
Skaar SB, Brockman WH, Hanson R (1987) Camera-space manipulation. Int J Robot Res 6(4):20–32
Skofteland G, Hirzinger G (1991) Computing position and orientation of a freeflying polyhedron from

3D data. In: Proc. IEEE Int. Conf. Robotics and Automation, Seoul. pp 150–155
Slama CC (ed) (1980) Manual of photogrammetry, 4th ed. American Society of Photogrammetry
Sobel D (1996) Longitude: The true story of a lone genius who solved the greatest scientific problem of

his time. Fourth Estate London
Soille P (2003) Morphological image analysis: Principles and applications. Springer-Verlag
Spong MW (1989) Adaptive control of flexible joint manipulators. Syst Control Lett 13(1):15–21
Spong MW, Hutchinson S, Vidyasagar M (2006) Robot modeling and control. Wiley
Srinivasan VV, Venkatesh S (1997) From living eyes to seeing machines. Oxford University Press
Stentz A (1994) The D* algorithm for real-time planning of optimal traverses. The Robotics Institute,

Carnegie-Mellon University, CMU-RI-TR-94-37
Strelow D, Singh S (2004) Motion estimation from image and inertial measurements. Int J Robot Res

23(12):1157–1195
Sussman GJ, Wisdom J, Mayer ME (2001) Structure and interpretation of classical mechanics. The MIT Press
Sutherland IE (1974) Three-dimensional data input by tablet. P IEEE 62(4):453–461
Svoboda T, Pajdla T (2002) Epipolar geometry for central catadioptric cameras. Int J Comput Vision

49(1):23–37
Szeliski R (2011) Computer vision: Algorithms and applications. Springer-Verlag
Tahri O, Chaumette F (2005) Point-based and region-based image moments for visual servoing of

planar objects. IEEE T Robotic Autom 21(6):1116–1127
Tahri O, Mezouar Y, Chaumette F, Corke PI (2009) Generic decoupled image-based visual servoing for

cameras obeying the unified projection model. In: Proc. IEEE Int. Conf. Robotics and Automation,
Kobe, pp 1116–1121

Taylor RA (1979) Planning and execution of straight line manipulator trajectories. IBM J Res Dev
23(4):424–436

ter Haar Romeny BM (1996) Introduction to scale-space theory: Multiscale geometric image analysis.
Utrecht Univ.

Thrun S, Burgard W, Fox D (2005) Probabilistic robotics. The MIT Press
Tissainayagam P, Suter D (2004) Assessing the performance of corner detectors for point feature track-

ing applications. Image Vision Comput 22(8):663–679
Tomasi C, Kanade T (1991) Detection and tracking of point features. Carnegie Mellon University, CMU-

CS-91-132
Torr PHS (2002) A structure and motion toolkit in MATLAB – Interactive adventures in S and M.

Microsoft Research. MSR-TR-2002-56, Cambridge, UK
Triggs B, McLauchlan P, Hartley R, Fitzgibbon A (2000) Bundle adjustment – A modern synthesis.

Lecture notes in computer science. Vision algorithms: theory and practice, vol 1883. Springer-Verlag,
pp 153–177

552

Tsakiris D, Rives P, Samson C (1998) Extending visual servoing techniques to nonholonomic mobile
robots. In: Kriegman DJ, Hager GD, Morse AS (eds) Lecture Notes in Control and Information Sci-
ences. The confluence of vision and control, vol 237. Springer-Verlag, pp 106–117

Uicker JJ (1965) On the dynamic analysis of spatial linkages using 4 by 4 matrices. Dept. Mechanical
Engineering and Astronautical Sciences, NorthWestern University

Usher K (2005) Visual homing for a car-like vehicle. Queensland University of Technology
Usher K, Ridley P, Corke PI (2003) Visual servoing of a car-like vehicle – An application of omnidirec-

tional vision. In: Proc. IEEE Int. Conf. Robotics and Automation, Taipai. Sep, pp 4288–4293
Vedaldi A, Fulkerson B (2008) VLFeat: An open and portable library of computer vision algorithms.

http://www.vlfeat.org
Walker MW, Orin DE (1982) Efficient dynamic computer simulation of robotic mechanisms. J Dyn

Syst-T ASME 104(3):205–211
Walter WG (1950) An imitation of life. Sci Am 182(5):42–45
Walter WG (1951) A machine that learns. Sci Am 185(2):60–63
Walter WG (1953) The living brain. Duckworth London
Weiss LE (1984) Dynamic visual servo control of robots: An adaptive image-based approach. Carnegie-

Mellon University
Weiss L, Sanderson AC, Neuman CP (1987) Dynamic sensor-based control of robots with visual feed-

back. IEEE T Robotic Autom 3(1):404–417
Westmore DB, Wilson WJ (1991) Direct dynamic control of a robot using an end-point mounted cam-

era and Kalman filter position estimation. In: Proc. IEEE Int. Conf. Robotics and Automation, Seoul.
Apr, pp 2376–2384

Whitney DE (1969) Resolved motion rate control of manipulators and human prostheses. IEEE T Man
Machine 10(2):47–53

Wiener N (1965) Cybernetics or control and communication in the animal and the machine. The MIT
Press

Wolf PR (1974) Elements of photogrammetry. McGraw-Hill
Woodfill J, Von Herzen B (1997) Real-time stereo vision on the PARTS reconfigurable computer. In:

Proc. IEEE Symposium on FPGAs for Custom Computing Machines, Grenoble. pp 201–210
Xu G, Zhang Z (1996) Epipolar geometry in stereo, motion, and object recognition: A unified approach.

Springer-Verlag
Ying X, Hu Z (2004) Can we consider central catiodioptric cameras and fisheye cameras within a uni-

fied imaging model. In: Pajdla T, Matas J (eds) Lecture notes in computer science. Computer vision
– ECCV 2004, vol 3021. Springer-Verlag, pp 442–455

Yoshikawa T (1984) Analysis and control of robot manipulators with redundancy. In: Brady M, Paul R
(eds) Robotics Research: The First International Symposium. The MIT Press, pp 735–747

Zabih R, Woodfill J (1994) Non-parametric local transforms for computing visual correspondence. In:
Ecklundh J-O (ed) Lecture notes in computer science. Computer Vision – ECCV 1994, vol 800.
Springer-Verlag, Berlin Heidelberg, pp 151–158

Zarchan P, Musoff H (2005) Fundamentals of Kalman filtering: A practical approach. Progress in As-
tronautics and Aeronautics, vol 208. American Institute of Aeronautics and Astronautics

Zhang Z, Faugeras O, Kohonen T, Hunag TS, Schroeder MR (1992) Three D-dynamic scene analysis:
A stereo based approach. Springer-Verlag, New York

Bibliography

Index of People

A

Ackerman, Rudolph 69

B

Bayer, Bryce E. 230
Bayes, Reverand Thomas 119

Beer, August 225
Black, Harold 4
Bode, Henrik 4
Boltzman, Ludwig 223
Braitenberg, Valentino 88

Bryan, George 30

C

Cardano, Gerolamo 30

Chrétien, Henri 290
Cook, Captain James 108
Coriolis, Gaspard-Gustave de 197

Coulomb, Charles-Augustin de 202

D

Davy, Sir Humphry 225
Delaunay, Boris 98
Denavit, Richard 138, 139

Descartes, René 17

Devol, Jr., George 3
Draper, Charles Stark (Doc) 54, 55,112

E

Edison, Thomas Alva 225
Engelberger, Joseph F. 3
Euclid of Alexandria 19

Euler, Leonhard 29, 195

G

Galileo, Galilei 269
Gauss, Carl Friedrich 41, 307

Goetz, Raymond 5

H

Hamilton, Sir William Rowan 35, 40, 41
Harrison, John 108

Index

Hartenburg, Jacques 138, 140

Hough, Paul 377

J

Jacobi, Carl Gustav Jacob 175

K

Kálmán, Rudolf 113

L

Lagrange, Joseph-Louis 195

Laplace, Pierre-Simon 308

Laussedat, Aimé 280
Lazzarini, Mario 125
Leclerc, Georges-Louis 125

M

Markov, Andrey 98
Marr, David 320

McCarthy, John 4
McCulloch, Warren 4
Metropolis, Nicholas 125
Minsky, Marvin 4
Moler, Cleve 7

N

Newell, Allen 4
Newton, Sir Isaac 194, 217, 223, 269
Nyquist, Harold 4, 325

P

Pitts, Walter 4
Planck, Max 223

R

Rodrigues, Olinde 34, 41

S

Scheinman, Victor 137
Schmidt, Stanley F. 112

Shannon, Claude 4, 325

554 Index

Simon, Herbert 4
Sobel, Irwin 330
Soderberg, Lena 302

Stefan, Joz̆ef 223
Swan, Sir Joseph 225

T

Tait, Peter 30, 40
Turing, Alan 4

U

Ulam, Stanislaw 125

V

von Karman, Theodor 140
Von Neuman, John 125
Voronoy, Georgy Feodosevich 98

W

Walter, William Grey 4, 88

Wien, Wilhelm 223
Wiener, Norbert 4

A

about 49, 50, 83, 91, 104, 146, 154, 162, 185, 192, 286–288, 290, 302,
324, 350, 408, 439, 468, 489, 506, 507, 528

abs 293
AlphaBeta 495
AlphaBetaFilter 448
anaglyph 417
angdiff 71, 85, 485, 504
angvec2r 34
atan2 296
AxisWebCamera 290, 332

–, .grab 291
–, .size 290

B

BagOfWords 434, 436, 438
–, .contains 435
–, .exemplars 435, 448
–, .occurrence 435
–, .remove_stop 436
–, .similarity 437, 438
–, .wordfreq 435
–, .words 435
–, .wordvector 436

bicycle 78
bitand 296
blackbody 224, 236, 240, 241
boundmatch 359
bug2 90

–, .goal 90
–, .path 91, 94

C

camcald 264, 281
Camera 258, 270, 272, 274, 282, 509

–, .project 503
cast 296
CatadioptricCamera 269
ccdresponse 228

ccode 528
CentralCamera 254, 258, 270, 272, 274, 282, 389, 390, 397, 399, 401,

423, 457, 460, 462, 466, 474, 475, 484, 485, 489, 509
–, .C 257, 426
–, .clf 282
–, .E 390, 403, 423
–, .estpose 266, 457, 503
–, .F 389
–, .f 462
–, .flowfield 462
–, .fov 258
–, .hold 282
–, .invE 403, 424
–, .invH 399, 430
–, .K 257, 475
–, .mesh 260, 261, 270, 272, 282
–, .move 391, 404, 427
–, .plot 258–260, 282, 395, 423, 457, 466
–, .plot_epiline 389, 394, 401
–, .pp 466
–, .project 254–256, 258, 259, 266, 460, 475
–, .ray 404, 425, 427
–, .T 260
–, .visjac 503
–, .visjac_e 475
–, .visjac_p 462, 464
–, .visjac_p_polar 484

circle 474
closest 421
cmfrgb 232, 233
cmfxyz 235
colnorm 398
colorkmeans 342, 344, 378
colorname 236, 240, 247, 344, 346, 413
colorseg 245, 247
colorspace 237, 238, 245, 249
ctraj 6, 51, 155, 156
cylinder 260

D

delta2tr 53, 466

Index of Functions, Classes and Methods

Classes are shown in bold, Simulink® models in italics, and methods are prefixed by
a dot. All others are Toolbox functions.

555

DHFactor 160
–, .dh.command 164

diff 304
distance 383
double 288
Dstar 95, 509

–, .costmap 95
–, .modify_cost 96
–, .niter 96
–, .path 96, 97
–, .plan 96

DXform 94
–, .path 94
–, .plan 93, 94, 96
–, .visualize 93, 94
–, .visualize3d 94

E

e2h 24, 388, 426
eig 34
EKF 113–123, 129, 131
ellipsoid 260
epidist 393
eul2jac 177
eul2r 29, 30, 39
eul2tr 39, 57

F

fcode 528
FeatureMatch 384, 385, 394, 401, 418

–, .inlier 394, 400, 401, 404
–, .outlier 394, 401
–, .plot 385, 394
–, .ransac 394, 400, 401
–, .show 394, 400
–, .subset 385, 394, 401, 404

FishEyeCamera 271, 282, 509
fmatrix 392, 393, 423

G

gamma 244
gaussfunc 523, 524, 532
genpath 499
grey 288

H

h2e 24, 388, 389, 395
homography 396, 429, 448
homtrans 24, 163, 391, 396–398, 421, 427, 475
homwarp 430, 432
Hough 362–364, 376

–, .lines 363, 364
–, .plot 364
–, .show 363

humoments 356

I

ianimate 439, 440
ibbox 350

iblobs 354, 355, 357, 358, 378
IBVS 466

–, .plot_camera 485
–, .plot_error 485
–, .plot_vel 485
–, .step 467

IBVS_polar 485
IBVS_sph 487
icanny 308, 362, 364
iclose 321, 322, 346
icolor 293, 297
iconv 300, 301, 304–307, 310, 320
icorner 368–371, 382, 383, 440
icp 421, 422
idecimate 325
idisp 244, 245, 247, 278, 279, 287, 288, 292, 294, 296–299, 301, 302, 305, 306,

314, 316–318, 322, 324, 337, 340, 341, 344, 346–350, 357, 364, 368–371,
373, 375, 382, 385, 394, 400, 404, 406, 410, 412, 413, 428, 434, 437

idisplabel 247
idouble 286, 288, 293, 296, 327, 328
iendpoint 323
igamma 244, 296, 297
igraphcut 378
ihist 293–295, 297, 338, 370, 385, 410, 441
iint 293
ilabel 346
iline 292
ImageSource 289, 290
imeshgrid 277, 327–329, 413, 415
imoments 353
imono 293
imser 341
imorph 106, 318, 320, 322
imser 341, 378
inormhist 293, 295
interp2 278, 279, 327–329
invcamcal 264
iopen 321, 322, 344
ipaste 292, 431, 432
ipixswitch 298, 410, 414, 416
ipyramid 326, 333
irank 316, 317, 320, 415
iread 244, 245, 277, 285–289, 291, 297, 298, 301, 304, 314, 321, 324,

329, 337, 340, 342, 349, 355, 358, 361, 364, 368, 370, 371, 373, 382,
400, 402, 405, 416, 418, 428, 430, 431, 434, 437, 439

irectify 418
ireplicate 325
iroi 312, 324
irotate 306, 328, 362
isamesize 298
iscale 326, 328, 333
iscalemax 373
iscalespace 371, 373
isift 378
isimilarity 314, 316, 333
ismooth 302, 326
isobel 308
istereo 406, 408, 410, 412, 418
istretch 295
isurf 374, 375, 378, 382, 384, 400, 418, 432, 434, 437, 510
ithin 98, 323
ithresh 338, 378
itriplepoint 323
iwindow 316, 320

Index of Functions, Classes and Methods

556 Index

J

jsingu 178
jtraj 146, 153, 155, 158, 192, 212, 213, 503

K

KalmanFilter 448
kcircle 101, 292, 303, 321, 322, 344, 346
kdgauss 307, 308
kgauss 301, 307
klog 310
kmeans 342

L

lambda2rg 233, 234
lambda2xy 235, 236, 240, 241, 243
LineFeature 364

–, .plot 364, 365
–, .seglength 364

Link 139, 141, 142, 158, 159, 202
–, .A 140
–, .a 140
–, .offset 140, 159

loadspectrum 225, 226, 229, 241, 243, 249
lscov 189
lspb 45, 46, 50, 56, 153, 503
luminos 227

M

makemap 92, 106
Map 116, 118, 121, 123, 126
match 384–386, 400, 401, 418, 432
matlabFunction 528
max 296, 299
mdl_puma560 143, 146, 150, 171, 192, 194, 212, 213
mdl_quadrotor 83
mdl_twolink 142
meshgrid 194, 195, 277, 279, 524
metaclass 509
methods 507, 509
min 296
mkcube 259–261, 263, 266, 270, 272, 274, 423
mkgrid 258, 396, 419, 457, 466
Movie 289, 298

–, .framerate 290
–, .grab 290, 298, 299
–, .nframes 290
–, .size 290
–, .skiptoframe 290
–, .skiptotime 290

mplot 181
mpq 351, 352, 358
mpq_point 522
mpq_poly 358, 482
mstraj 47, 48, 57, 86, 162, 166
mtraj 46, 49, 57, 153

N

Navigation 92–94, 100, 509
ncc 312, 313, 384

niblack 340
npq 356
npq_poly 358
numcols 100, 194, 195, 308, 475, 522
numrows 94, 162, 308

O

oa2r 33, 39
otsu 340

P

ParticleFilter 126, 127
PBVS 457–459, 471

–, .step 459
peak 294, 539–541
peak2 314, 541, 542
PGraph 97, 535

–, .add_edge 536, 537
–, .add_node 535
–, .closest 537
–, .cost 536
–, .edges 536
–, .goal 537
–, .neighbours 536
–, .path 537
–, .plot 536
–, .vertices 536

pinv 183, 185, 186, 189, 466
ploop 210, 217
plot 389
plot_box 351, 354, 357
plot_circle 314
plot_ellipse 115, 118, 179, 199, 353, 354, 518–520, 522, 524
plot_frame 265
plot_homline 534
plot_point 23, 247, 314, 342, 400, 404
plot_poly 428
plot_sphere 265, 387, 397
plot2 104, 234, 235, 468
pnmfilt 332
PointFeature 368–370, 373, 382, 383, 440

–, .descriptor 383
–, .plot 368, 370, 382

PRM 99, 100
–, .path 100
–, .plan 99, 100, 102
–, .visualize 100

properties 509

Q

q.get_s() 508
q.plot 39
q.r 39
qplot 153
Quaternion 35–37, 41, 49, 506–508

–, .char 507
–, .delete 508
–, .display 507
–, .dot 55
–, .interp 49, 57
–, .inv 36, 506

557

–, .mtimes 507, 508
–, .norm 36
–, .plot 36
–, .r 36
–, .s 506, 508
–, .unitize 56
–, .v 508

quaternion 39
quaternion 507–509

–, .mtimes 507

R

r2t 39
rand 99, 101
randinit 101, 131, 342
randn 101
RandomPath 112, 113, 118, 121, 123, 126
RangeBearingSensor 117–123, 126, 130

–, .h 118
–, .H_w 118
–, .H_x 118
–, .reading 117

ransac 393, 394, 398, 400, 401, 418, 432
Ray3D 404

–, .intersect 404, 425, 427
RegionFeature 353–355, 357, 358

–, .moments 354
–, .plot 358
–, .plot_boundary 357
–, .plot_box 354, 357
–, .plot_centroid 354
–, .plot_ellipse 354
–, .shape 353
–, .theta 353
–, .uc 353

roblocks 71
rotx 27, 28, 38, 39, 52, 506
roty 27–29, 39, 48, 52, 507
rotz 29, 39, 48, 52
rotvec2tr 39
rpy2jac 177
rpy2r 30, 33, 38, 39
rpy2tr 35, 38, 39, 49, 152, 264, 419, 421
RRT 102–106, 509

–, .path 104
–, .plan 103
–, .visualize 103

rt2tr 403

S

sad 312, 313
ScalePointFeature 373, 374
se2 22, 23, 39, 328
Sensor 117, 121

–, .H_xf 121
sensorfield 89, 106
SerialLink 141–143, 150, 151, 153, 155, 160, 164, 166–168, 174, 192,

194, 202, 212, 213, 502, 510
–, .accel 202
–, .base 145, 194
–, .coriolis 192, 197
–, .fdyn 203, 502

–, .fkine 142, 145–149, 153, 171, 172, 181, 502
–, .gravity 194
–, .gravload 193, 194, 198
–, .hold 168
–, .ikine 149, 150, 152, 157, 166, 170
–, .ikine6s 147–149, 152, 153, 155–158, 163, 170
–, .inertia 192, 195, 197, 199
–, .jacob0 174–179, 183, 185, 187, 199, 502
–, .jacobn 176, 189, 502
–, .jtraj 146, 153
–, .links 151, 159, 193, 198, 202
–, .maniplty 152, 157, 179, 180, 200
–, .nofriction 204
–, .payload 197
–, .plot 143, 144, 149, 152, 153, 158, 163, 168, 169, 189, 203, 502
–, .rne 192, 193, 198, 502
–, .teach 169, 170
–, .tool 145, 163

SiftPointFeature 378
skew 51
sl_arm_ibvs 488
sl_bicycle 70
sl_braitenberg 89
sl_driveline 73
sl_drivepoint 71, 72
sl_drivepose 77
sl_drivepose_vs 492
sl_ibvs 468
sl_jspace 155
sl_lanechange 70
sl_mobile_vs 490
sl_partitioned 483
sl_pursuit 74
sl_quadrotor 82
sl_quadrotor_vs 493
sl_rrmc 180
sl_rrmc2 182
sl_ztorque 203
sphere 260, 265, 387, 397
SphericalCamera 274, 282, 487, 492, 503

–, .grab 289
–, .mesh 274
–, .size 289
–, .visjac 503

spy 122
sqrt 293
sqrtm 520
ssd 312, 313
stdisp 405, 406, 418
stereo 406, 407, 410
SurfPointFeature 374, 382, 384, 400, 418, 432, 434, 437, 510

–, .fewer 510
–, .match 384–386, 400, 401, 418, 432
–, .plot_scale 375, 382
–, .scale 375
–, .support 434

T

t2r 38, 39
t2rt 403, 426
testpattern 291, 362
tpoly 44–46, 49, 50, 56, 153, 423, 424
tr2angvec 33

Index of Functions, Classes and Methods

558 Index

tr2delta 53, 181, 182
tr2eul 29, 30, 39, 57
tr2jac 175, 186
tr2rotvec 39
tr2rpy 30, 39, 46, 48, 50, 154, 155, 403, 431
tr2rpyl 39
Tracker 440, 449

–, .plot 441
–, .step 449
–, .tracklengths 441

tranimate 27, 41, 49, 50, 57
transl 6, 38, 39, 46, 49, 50, 53, 145, 148, 150, 152–156, 158, 163–166,

168, 175, 181, 186, 255, 258–261, 264, 266, 386, 391, 396, 419, 421,
423, 457, 460, 466, 471, 485, 487, 489

trinterp 49, 50, 457
triplepoint 99
tristim2cc 235, 240, 245, 297
trnorm 55, 457, 466
trotx 38, 39, 49, 53, 145, 153, 158, 163, 164, 194, 261, 266, 396, 423, 460, 489
troty 39, 49, 53, 151, 156, 175, 259–261, 266, 279, 386, 396
trotz 39, 49, 53, 166, 261, 279, 423, 457, 466, 471, 485, 487
trplot 23, 27, 28, 38, 39, 41, 447
trplot2 23
trprint 422

U

upq 352, 358
upq_poly 358

V

var 316, 415
Vehicle 115
Vehicle 112–114, 116, 118, 121, 123, 126

–, .Fv 114
–, .Fx 114
–, .step 113

vex 52, 173
VideoCamera 289, 290

–, .grab 289
–, .size 289

VisualServo 459, 466
vloop 206, 217
vloop_test 206
vloop_test2 209

X

xv 527, 528
xycolorspace 235, 245, 247, 343
xycolorspaces 250

Z

zcross 311
zncc 313
zsad 313
zssd 313

General Index

Symbols

\-operator 44, 426, 475, 516
3D reconstruction 381, 414

A

aberration
–, chromatic 261, 269
–, spherical 261

absorption, light 225, 242

–, underwater 226
acceleration sensor 54

accelerometer 32, 33, 54

Ackerman steering 69

actuator 204
–, series-elastic 214

addition, Minkowski 101, 319
adjustment, bundle 281
affine transformation 253
Airy pattern 301
algorithm

–, bug 90

–, k-means 342

aliasing
–, anti- 292
–, spatial 325, 409

alpha transparency 428

ambiguity ratio 409, 447
anaglyph image 416, 417, 445

analysis
–, connected component 346

–, connectivity 346

analytical Jacobian 177

angle
–, joint 139

–, nautical 30
–, roll-pitch-yaw 30, 31, 66, 176

–, rate 82, 176
–, singularity 30

–, solid 229, 258

–, Tait-Bryan 30
angle-axis representation 33, 51
angular

–, momentum 193

–, velocity 51, 54, 177, 192, 193
–, matrix 51

anthropomorphic 105, 144, 145

anti-aliasing 292
aperture, lens 253

Apollo
–, 13 31
–, Lunar Module 31, 32, 54

approach vector 32

architecture, subsumption 90

Asimo humanoid robot 5
aspect ratio 255, 290, 352, 402
astigmatism 261

autocorrelation matrix 367
automata 90

559

automated guided vehicle 62

autonomous surface vehicle 63

availability, selective 109

axis
–, of motion 46

–, optical 33, 251, 254, 255
–, principal 352

B

back EMF 209

bag of words 434

balancing, white 242

barrel distortion 261

base force 198
Bayer filtering 229, 230

Beer’s law 225

behaviour-based robot 90
bicycle model 68

binarization 337
black level 313
blackbody 239

–, radiator 223

blend 45

–, parabolic 45

Boltzmann’s constant 223
boundary

–, detection 322
–, effect 304

–, purple 233
–, representation 356

bounding box 350

Braitenberg vehicle 88

Buffon’s needle problem 125

bug algorithm 90

bundle adjustment 281

C

C-space 65

calibration, camera 257, 262, 266

camera
–, baseline 405
–, calibration 257, 262, 266

–, catadioptric 269, 272, 445, 486
–, matrix 264
–, toolbox 266
–, homogeneous transform

method 262
–, non-linear method 266

–, centre 263

–, fisheye lens 269, 270, 486
–, infra-red 248
–, location determination problem 265

–, matrix 254, 257, 262, 264, 404, 425
–, motion 460
–, omni-directional 258
–, panoramic 258
–, parameter

–, extrinsic 257

–, intrinsic 257, 262
–, matrix 255, 257, 399

–, pin-hole 221, 254
–, resectioning 281

–, retreat 471, 481
–, spherical 273, 274, 492
–, verged 392

Canny edge operator 308

Cardan angle sequence 28
Cartesian

–, coordinate system 19

–, motion 49, 155
catoptrics 269

caustic 272

census metric 315, 384
central

–, imaging 272, 279
–, moment 351, 521
–, perspective model 252

centre of
–, expansion 441
–, gravity law 234
–, mass 193

centripetal force 193
charge well 260, 287
child region 354
Cholesky decomposition 514

chroma keying 296

chromaticity 239
–, coordinates 233

–, diagram 233, 235

–, space 233
CIE (see Commission Internationale de l’Eclairage)
circle feature 474
city block distance 93
classification 337

–, binary 337
–, grey-level 337

cleaning up 413
clustering, k-means 342
CMOS sensor 260

coarse-to-fine strategy 326

code, Freeman chain 357

coefficient, viscous friction 201

colatitude 274, 486
color 223, 227

–, blindness 230
–, change due to absorption 242
–, classification 342
–, constancy 241

–, gamut 234
–, image 245
–, matching 231
–, name 236

–, functions 232, 235
–, plane 245, 288, 297, 300, 371
–, space 236

–, CIE L*C*h 237

–, CIE L*u*v 238

–, HSV 237

–, perceptually uniform 238
–, reproduction 230

–, YUV 238

–, temperature 241
colorimetry 234
column space 514

Commission Internationale de l’Eclairage (CIE) 234

–, 1976 standard primary 230

General Index

560 Index

–, color space
–, L*C*h 237

–, L*u*v 238

–, XYZ primary 235
compensation, gravity 83
compliant drive 214
compound

–, eye 221
–, lens 251

compression
–, gamma 244
–, image 286, 289, 367

concurrent mapping and localization 123

condition number (see matrix condition number)
cone cell 227

configuration
–, change 157
–, kinematic 139, 147, 157
–, space 65, 66, 67, 78, 81, 103, 139, 143, 150

conformal mapping 253
conics 253, 275
conjugate point 386, 388, 390, 391, 393, 397, 402, 405
connected components

–, analysis 346

–, graph 100, 536
–, image 346, 349

connectivity analysis 346

consistency, left-right, check 410

constant
–, Boltzmann’s 223
–, Planck’s 223

constraint, non-holonomic 67, 69
control 191

–, feedforward 83, 210, 211
–, flexible transmission 213
–, integral

–, action 207
–, windup 217

–, loop, nested 205

–, model-based 211
–, proportional 205, 209
–, proportional-integral 207
–, resolved-rate motion 177, 180

–, shared 6
–, torque

–, computed 211–215
–, feedforward 208, 211

–, traded 6
– vision-based 455
–, visual servo 453

convolution 300, 307
–, kernel 300
–, properties of 300

coordinate
–, frame 19, 174

–, end-effector 175
–, multiple 3-dimensional 17
–, right-handed 24
–, rotation 26, 51
–, time varying 51

–, generalized 65, 191
–, homogeneous 533
–, joint, generalized 139

–, system, Cartesian 19

Coriolis
–, force 191, 193, 196

–, matrix 196
corner

–, detector
–, classical 366
–, Plessey 367
–, scale-space 371
–, Shi-Tomasi 367

–, feature (see also point feature) 365
–, points 365

correction
–, gamma 244

–, perspective 428
correspondence problem 120

corresponding point 406
cost map 95

Coulomb friction 201

covariance matrix 110, 112, 114, 116, 117, 121, 122, 524

–, correlation 110, 524, 530
–, ellipse 114

–, extending 121
crack code 357

cropping 324
curvature, principal 367
cybernetics 1, 4, 88, 105

D

D* 95

D65 white 240

damped inverse 182
data association 120, 382, 392, 394

–, error 109

dead reckoning 54, 63, 107, 111
decimation, image 325
decoding, gamma 244, 296, 297, 342
decomposition

–, Cholesky 514

–, pyramidal 326
–, spectral 513

decompression, gamma 244
definition, ellipse 517

degrees of freedom 31, 46, 65, 66, 67, 78, 136, 137, 140, 148, 150, 152,
174, 177, 179, 182, 184, 460, 478, 481, 493

Denavit-Hartenberg
–, notation 137, 138, 150, 151, 158–160, 163, 167

–, modified 160
–, parameters 139

–, determination 159
depth 469

–, of field 254
derivative of

–, Gaussian 309
–, kernel 367

–, quaternion 55

description 350
detector, zero crossing 311
determinant 21, 178, 183, 369, 514

–, of the Hessian 369
difference of Gaussian 310

dimension, singleton 288

dioptrics 269

direct linear transform 281

561

disparity 406

–, image 406
–, space image 408

display, 3D texture mapped 415
distance

–, city block 93
–, Euclidean 19, 93
–, Hamming 315

–, Mahalanobis 525

–, Manhattan 93
–, transform 93, 96, 99, 100, 102

distortion
–, barrel 261

–, geometric 261

–, pincushion 261

–, radial 261

–, tangential 261

dnapped robot 127
DoG kernel 307, 310
DoH 369
drawing 162
drive

–, compliant 214
–, train 200

Dubbins car 68

dynamic range 287
dynamics 191

–, forward 202

–, integral 202

–, inverse 191, 211, 213
–, rigid-body 191

E

eccentricity 276, 518

edge
–, detector 304, 316
–, operator, Canny 308

–, preserving filter 317
effective inertia 205
effector, picket fence 409

eigenvalue 34, 114, 179, 199, 200, 352, 367, 419, 513

eigenvector 34, 352, 419, 513

EISPACK 7
element, structuring 317

ellipse 517
–, definition 517

–, drawing 520

–, error 114, 115, 119, 122, 124
–, fitting 521

–, inertia of 521

–, properties 518

ellipsoid, equivalent 419

Elsie 61, 87
encoding, gamma 244, 296
end-effector 137

end-point
–, closed-loop 455

–, open-loop 455

ephemeris 108

epipolar
–, line 386, 388, 391, 393, 394, 401, 405, 441
–, plane 386

epipolar-aligned image 417

epipole 388, 389, 441
equal-energy white 240
equation

–, lens 251
–, linear, solving 516

–, of motion 191'"'
–, of plane 420
–, solving system 516

equiangular mirror 271

equivalent ellipsoid 419

error 109
–, ellipse 114, 115, 119, 122, 124
–, reprojection 425

essential matrix 390, 391, 399, 402, 403, 423
estimation 110

–, Monte-Carlo 125

Euclidean
–, distance 19, 93
–, homography 398, 430

Euler
–, angle 29, 176

–, singularity 30
–, equation of motion 80, 191, 192
–, rotation theorem 25, 28

EXIF file format 289, 402, 430
expansion, centre 441
exposure

–, interval 260

–, value 287
extended Kalman filter 113, 527, 529, 531

exteroceptive 3
–, sensor 3

eye
–, compound 221
–, cone cell 227, 229
–, dynamic range 287

–, evolution of 221

–, fovea 229

–, lens-based 221
–, reflector-based 221
–, rod cell 227, 287

eye-in-hand 455

F

f-number 253

feature
–, boundary 356

–, circle 474
–, correspondence 382
–, descriptor 368, 375, 383
–, Harris corner 367, 368, 370, 371, 382–384
–, image 335

–, line 361

–, motion controlling 464
–, region 337, 350

–, sensitivity matrix 460

feedforward control 83, 210, 211
field

–, of view 258, 268
–, robot 2, 63

file format
–, image 288

–, JFIF 244

General Index

562 Index

fill factor 259, 260

filter
–, edge preserving 317
–, Kalman 113, 529

–, extended 113, 527, 529, 531

–, median 316

–, particle 125

filtering, Bayer 229
fisheye lens

–, camera 269, 270, 486
–, projection model 271

flow, optical 440, 462, 481, 486, 488
–, derotation 470

flux, luminous 229

focal
–, length 251
–, point 252

following
–, line 72
–, path 74

force
–, centripetal 193
–, Coriolis 191, 193, 196
–, friction 191
–, generalized 191

foreshortening 253, 428, 429
form

–, homogeneous 22, 24, 388, 425
–, Joseph 530

formula
–, Planck radiation 223
–, Rodrigues rotation 34

forward
–, dynamics 202

–, kinematics 140, 145
–, instantaneous 174

fovea 229

frame
–, body-fixed 31, 54, 79
–, coordinate, right-handed 24
–, transforming wrench 186
–, world coordinate 16

freedom, degrees of 31, 46, 65, 66, 67, 78, 136, 137, 140, 148, 150,
152, 174, 177, 179, 182, 184, 460, 478, 481, 493

Freeman chain code 357

friction 201
–, coefficient, viscous 201

–, Coulomb 201

–, force 191
–, stiction 201

fully actuated 65

function, probability density 109, 114, 125, 523
fusion 119

G

gait pattern 167

Galileo 109

gamma 243
–, compression 244
–, correction 244
–, decoding 244, 296, 297, 342
–, decompression 244
–, encoding 244, 296
–, sRGB 244, 296

gantry robot 135
Gaussian

–, derivative 309
–, difference 310

–, function 301, 307
–, width 301, 302

–, kernel 325, 367, 371, 374
–, derivative 367
–, Laplacian of 309

–, Laplacian of 310, 371, 374
–, noise 264, 266, 419, 422
–, properties of 302
–, smoothing 349
–, width of 302

generalized
–, coordinate 65, 191
–, force 191

–, joint coordinate 139

–, matrix inverse 512

–, Voronoi diagram 323
Gestalt principle 349

gimbal lock 31, 148, 156, 177
Global Hawk unmanned aerial vehicle (UAV) 3
Global Positioning System (GPS) 81, 107, 109, 424

–, differential 109
–, multi-pathing 107

–, RTK 109

–, selective availability 109

GLONASS 109

goal seeking 90
GPS (see Global Positioning System)
gradient, image 366, 367
graph 97, 99, 349, 535

–, embedded 535

Grassmann laws 231

gravity
–, compensation 83
–, law, centre 234
–, load 191, 193, 203, 207, 208
–, term 193

grey value 286
group, special

–, Euclidean 17, 22, 38
–, orthogonal 21, 27, 512

gyroscope 31, 54, 69, 111, 193
–, strapdown 193

H

Hamming distance 315

Harris corner feature 367, 368, 370, 371, 382–384
heading rate (see yaw rate)
Hessian

–, determinant 369
–, matrix 369

histogram 286, 293, 297, 338, 370, 384, 441
–, 2-dimensional 245
–, normalization 295

hit-and-miss transform 323

homogeneous
–, form 22, 388, 425
–, transformation 22, 37, 38, 140, 145, 171, 255, 257, 258, 389,

399, 403, 419, 533
–, interpolation 49
–, normalization 55, 457, 466

563

–, sequence 146, 163, 423
homography 396, 397, 398, 400, 401, 418, 429, 430, 432

–, Euclidean 398, 430
–, geometry 399

–, planar 396

–, projective 399

Hough transform 362

hue 232, 237

humanoid robot 2
hybrid

–, trajectory 45

–, visual servo 481
hysteresis threshold 308

I

IBVS
–, spherical camera 486
–, polar coordinates 484

ICP 421, 424
ideal

–, line 259, 533

–, point 533

identity quaternion 36
illuminance 229

image
–, anaglyph 417, 445
–, compression 286, 289, 367
–, coordinate, canonical 254

–, disparity 406
–, space 408

–, normalized 254, 329, 390, 398, 461, 475, 485
–, decimation 325
–, epipolar-aligned 417

–, feature 335, 473
–, formation 251

–, extraction 335
–, file

–, format 288

–, raw 229
–, from

–, camera 289
–, motion 460
–, movie 289
–, code 291
–, file 285
–, web 290

–, gradient 366, 367
–, Jacobian 460, 462, 469, 484, 486
–, Lena 302

–, matching 433

–, moment 351
–, monochromatic 286
–, multiple 381
–, noise 260

–, obtaining 285
–, perspective, synthetic 278
–, plane 251, 533
–, processing 285, 439
–, pyramid 326
–, rectification 417
–, region 346
–, resizing 324
–, retrieval 433
–, segmentation 337

–, similarity 311, 366
–, census 315
–, non-parameteric 315
–, rank transform 315

–, sphere 273

–, stabilization 433
–, stitching 431
–, subsampling 325, 403
–, warping 267, 277, 327, 418, 429, 432

imaging
–, central 272, 279
–, non-central 272

–, unified 275
–, model 275

impulse noise 316
IMU 32, 54

incandescence 223

inertia
–, effective 205
–, matrix 195, 419
–, moment of 81, 352, 521

–, product of 81, 352, 521

–, rotational 81, 192
inertial

–, measurement unit 32, 54, 493
–, navigation system 54, 80, 81
–, reference frame 53

Inf 407
infra-red

–, camera 248
–, radiation 224, 225

inheritance 509
innovation 117

INS 54

integral
–, dynamics 202

–, windup 207
intelligence, artificial 4
intensity, luminous 229

interaction matrix 460

interest point 365
International Telecommunication Union (ITU) 234

interpolation
–, spherical linear 49

–, subpixel 542
interval, property 117
intrinsic parameter 390
invariance 355, 375, 376

–, rotational 367
–, shift 300

inverse
–, dynamic control 212
–, dynamics 191, 211, 213

iterative closest point 421

ITU (see International Telecommunication Union)

J

Jacobian 113, 157, 174, 527

–, analytical 176, 177

–, damped inverse 182
–, geometric 174

–, image 460, 462, 469, 484, 486
–, manipulator 171, 174, 186, 191
–, numerical 527

General Index

564 Index

–, robot
–, over-actuated 184
–, under-actuated 183

–, singularity 177, 182
–, symbolic 528

jerk 43

JFIF file format 244
joint

–, angle 139, 158
–, control, manipulator 204
–, space 139

joint-space trajectory 153
Joseph form 530

K

k-means 245, 434
–, algorithm 342

–, clustering 342
Kalman filter 113, 529

kernel
–, convolution 300
–, DoG 307, 310
–, Gaussian 325, 367, 371, 374

–, derivative of 367
–, Laplacian 309, 371

–, LoG 309, 310, 374
–, Mexican hat 309

–, Sobel 306

–, top hat 303

keypoint 365
keystone 428

–, distortion 429
kinematic

–, configuration 139, 147, 157
–, model 69

kinematics 137

–, forward 140, 145
–, instantaneous 174

–, inverse 146, 187
–, closed form 146

–, numerical 149, 187

L

Lambertian reflection 346

landmark 108

Laplacian
–, kernel 309, 371
–, of Gaussian 309, 310, 371, 374

lateral motion 69
latus rectum 276
law

–, Beer 225

–, Grassmann 231

–, Newton, second 79, 191, 192
–, Stefan-Boltzman 224

–, Wien displacement 224

left-right consistency check 410

Lena image 302

length, focal 251
lens

–, anamorphic 290

–, aperture 253

–, compound 251
–, distortion 261
–, entrance pupil 263

–, equation 251
–, f-number 253

–, fisheye 269, 486
–, focal length 251
–, simple 251
–, thin 251
–, zoom 258

light 223
–, absorption 225, 242

–, monochromatic 223
–, solar spectrum 225

–, visible 223

line
–, epipolar 386, 388, 391, 393, 394, 401, 405, 441
–, equation of a point 533
–, feature 361, 473
–, following 72
–, ideal 259, 533

–, of no motion 68

LINPACK 7
load, gravity 191, 193, 203, 207, 208
localization 107, 123

–, and mapping, simultaneous 123

–, Monte-Carlo 125
locus, spectral 233–235
LoG kernel 309, 310, 374
longitude problem 108

LORAN 109

LSPB trajectory 45

lumen 227
luminance 226, 229, 232, 233, 235, 236, 240, 243, 286
luminosity 227

luminous
–, flux 229

–, intensity 229

M

Manhattan distance 93
manifold 65
manipulability, dynamic 198
manipulator (see also robot) 135

–, Jacobian 171, 174, 186, 191
–, joint control 204
–, redundant 150
–, serial-link 137

–, under-actuated 149
manufacturing robot 2
map

–, creation 120
–, using 116

mapping 123
–, and localization, concurrent 123

–, conformal 253
–, texture 278, 416

Marr-Hildreth operator 309

Mars rover 5
mass, centre 193
matching, trichromatic 231
mathematical morphology 98, 317

–, closing 320, 345

565

–, dilation 101, 318

–, erosion 318

–, hit and miss 323

–, end point 323

–, skeleton 323

–, triple point 323

–, opening 320, 344
–, properties of 319
–, triple point 99

MATLAB®
–, objects 505
–, software 7
–, versions 500

matrix
–, matrix, angular velocity 51
–, anti-symmetric 512

–, autocorrelation 367
–, camera 254, 257, 262, 264, 404, 425

–, parameter 255, 257, 399
–, condition number 178, 465, 467, 515

–, covariance 110, 112, 114, 116, 117, 121, 122, 524

–, correlation 110, 524, 530
–, ellipse 114

–, essential 390
–, extending 121

–, damped inverse 182
–, diagonalization 513

–, essential 390, 391, 399, 402, 403, 423
–, feature sensitivity 460

–, fundamental 388, 391, 443
–, Hessian 369

–, inertia 195, 419
–, interaction 460

–, inverse, generalized 512

–, normal 512

–, null space of 185, 188, 389, 464, 514

–, orthogonal 21, 27, 512, 515
–, orthonormal (see matrix, orthogonal)
–, positive

–, definite 513

–, semi-definite 513
–, projection 254

–, pseudo inverse 183, 184, 465, 466, 477
–, rank 177, 263, 514

–, rotation 20, 27, 29, 32, 34, 36, 176, 328, 431, 492
–, derivative 51, 173
–, estimating 421, 516
–, reading 27

–, similar 514

–, skew-symmetric 51, 512

–, symmetric 195, 367, 512

–, trace of 514
maximally stable extremal region 341

maximum
–, suppression, non-local 308, 317, 364, 367, 369, 542
–, torque 207

–, velocity 45
measurement

–, noise 112, 117
–, unit, inertial 32, 54, 493

median filter 316

metamer 230

MEX-files 500
Mexican hat kernel 309

mile, nautical 107

minimum-norm solution 184
Minkowski addition 101, 319
mirror, equiangular 272

missing parts problem 409

mixed pixel problem 315, 411
mobile robot 61, 489
mobility 65
model

–, bicycle 68

–, central perspective 252

–, imaging, non-perspective 269
–, kinematic 69

–, Reeds-Shepp 68

–, unified imaging 275, 481
moment 351, 521

–, central 351, 521
–, image 351
–, invariant 356

–, normalized 356
–, of inertia 81, 352, 521

–, principle 352
momentum, angular 193

monochromatic
–, image 286
–, light 223

Monte-Carlo
–, estimation 125

–, localization 125
Moore-Penrose pseudo inverse 512

Moravec interest operator 366
morphology, mathematical 98, 317

–, closing 320, 345
–, dilation 101, 318

–, erosion 318

–, hit and miss 323

–, end point 323

–, skeleton 323

–, triple point 323

–, opening 320, 344
–, properties of 319
–, triple point 99

mosaicing 431

motion 43, 422
–, axis 46

–, Cartesian 49, 155
–, control, resolved-rate 177, 180

–, equation, Euler 80, 191, 192
–, incremental 52
–, joint-space 153
–, lateral 69

–, longitudinal 69

–, perceptibility 465

–, robot leg 165, 166
–, straight-line 155
–, through singularity 156

motor
–, limit 207
–, torque 204

moving
–, to a point 71
–, to a pose 75

multi-pathing 107

multi-segment trajectory 46

General Index

566 Index

N

NaN 407, 414
nautical

–, angle 30
–, mile 107

navigation 87
–, celestial 108
–, reactive 88
–, system, inertial 53, 54, 80, 81

NCC 312, 333, 444
Newton’s second law 79, 191, 192
Newton-Euler, recursive 191
Niblack threshold 340

Noble corner detector 367
noise

–, dark current 260

–, Gaussian 264, 266, 419, 422
–, image 260

–, impulse 316
–, measurement 112, 117
–, pixel 307, 260

–, process 112, 529
–, removal 321
–, salt and pepper 316

normal matrix 512

normalization
–, homogeneous transformation 55, 457, 466
–, quaternion 55
–, transform 54

normalized
–, image coordinate 254, 329, 390, 398, 461, 475, 485
–, moment 356

null space of matrix 185, 188, 389, 464, 514

O

observation 116
occlusion 346
occupancy grid 90, 92

odometer 111

odometry 111, 424
–, visual 445

omni-directional
–, camera 258
–, wheel 67

operation
–, diadic 296
–, monadic 293
–, non-linear 316
–, spatial 299

operator
–, Canny edge 308

–, Marr-Hildreth 309

–, Moravec interest 366
–, overloading 507

optical
–, axis 33, 251, 254, 255
–, flow 440, 462, 481, 486, 488

–, derotation 470

orientation 15, 37
–, 3-dimensional 25
–, interpolation 48
–, vector 32

orthophoto 433

Otsu’s method threshold 339

P

parallel-link robot 135
parameter

–, camera matrix 255, 257, 399
–, Denavit-Hartenberg 139

particle filter 125

path 43

–, following 74
pattern, Airy 301
payload effect 197
peak

–, finding 338, 359, 539

–, refinement 412
pencil of lines 392
pendulum, bifilar 216
perceptibility, motion 465

performance issue 471
perspective

–, correction 428
–, distortion 428

–, model, cetral 525

–, projection 253, 254, 257, 259, 278, 280, 388, 391, 425, 460,
461

–, transform 251
perspective-n-point problem 266

photogrammetry 280, 442
photometric unit 228
photopsin 228
photosite 229, 255, 287
phototaxis 88

picket fence effector 409

pin-hole camera 221, 254
pincushion distortion 261

pixel
–, noise 307
–, non-uniformity noise 260

–, value 286
Planck radiation formula 223
Planckian source 223

Planck’s constant 223
plane

–, epipolar 386

–, equation of 420
–, fitting data to 419

planning, map-based 91
Plessey corner detector 367
PnP 266

point
–, 3D 420
–, cloud 419

–, conjugate 386, 388, 390, 391, 393, 397, 402, 405
–, corresponding 406
–, equation of a line 533
–, feature 365

–, scale-space 374
–, SIFT 374
–, SURF 374, 382, 384, 394, 400, 401, 418, 434

–, focal 252
–, ideal 533

–, line equation 533

567

–, principal 255, 261, 262, 270, 271, 276, 278, 279, 403, 433, 461,
462, 466, 484

–, salient 365
–, white 237

polynomial, quintic 43
pose 15

–, 2-dimensional 19
–, 3-dimensional 24
–, estimation 113, 266, 455
–, relative 15, 17
–, singular 177

position 15
posterior probability 119

posterization 296

power distribution, spectral (SPD) 249
precession 193

primary
–, CIE 230, 239
–, CIE 1976 230

–, CIE XYZ 235

–, standard 239
–, transforming 238

principle
–, Gestalt 349

–, moment 352
prior probability 119

PRM 99
probability

–, density function 109, 114, 125, 523
–, posterior 119

–, prior 119

problem
–, correspondence 120

–, longitude 108

–, missing parts 409

–, mixed pixel 315, 411
–, target association 120

process noise 112, 529
processing, image 285

product of inertia 81, 352, 521

projection
–, matrix 254

–, stereographic 276

proof mass 54

property interval 117
proprioceptive 3
pseudo inverse 512, 516

–, Moore-Penrose 512

Puma 560 robot 144

pure
–, pursuit 74

–, quaternion 36
purple boundary 233

Q

quadrotor 78, 492
–, dynamics 80

quantum efficiency 260

quaternion 35

–, computational efficiency 36

–, conjugate 36
–, convert to rotation matrix 36
–, identity 36

–, interpolation 49

–, normalization 55
–, pure 36, 37
–, unit 35, 36

quiver plot 308

R

radiation
–, infra-red 224, 225
–, ultra-violet 224, 225

radio navigation aid 54, 109
random

–, number 101
–, variable, Gaussian 523

range, dynamic 287
rank

–, filter 316

–, of matrix 514

–, transform 315, 348
RANSAC 393, 394, 398, 400, 401, 420, 432, 441
Rapidly-exploring Random Tree 103

ratio, ambiguity 409, 447
raxel 404
recap 360
reconstruction 413
rectification 417

redundant robot 150, 182
Reeds-Shepp model 68

reference frame, inertial 53

reflectance 226, 242
reflection 226

–, Lambertian 346

–, specular 269, 346

reflectivity 226

region
–, area 351

–, aspect ratio 352

–, bounding box 350

–, centroid 351
–, child 358

–, circularity 355

–, equivalent ellipse 352
–, inertia matrix 352

–, maximally stable extremal 341

–, of interest 324
–, orientation 353

–, support 373, 375, 384
replanning, incremental 95
representation, three-angle 28
reprojection error 425
resampling 126
resectioning 108

–, camera 281
–, space 281

resolved-rate motion control 177, 180

response
–, photopic 227

–, scotopic 227

retreat, camera 471, 481
right-hand rule 25
rigid scene 441
rigid-body dynamics 191

–, compensation 211

General Index

568 Index

roadmap 98
–, probabilistic 99

robot (see also manipulator) 135
–, 2-link 141
–, 6-axis 2, 143
–, aerial 492
–, arm 137

–, kinematics 137
–, arm-type 135, 488
–, base transform 145, 160
–, behaviour-based 90

–, definition of 3
–, end-effector 136, 137
–, field 2, 63
–, flying 78
–, gantry 135
–, humanoid 2
–, joint 137

–, angle 138

–, offset 138

–, leg motion 165, 166
–, prismatic 137

–, revolute 137

–, kidnapped 127
–, link 137

–, length 137

–, twist 138

–, manipulability 152, 157, 178, 179
–, manufacturing 2
–, maximum payload 197
–, mobile 61, 67, 489

–, vehicles 65
–, holonomic 489
–, land-based 3
–, non-holonomic 491

–, over-actuated 182, 184
–, parallel-link 135
–, Puma 560 144

–, redundant 150, 182
–, SCARA 135, 149
–, service 2
–, singularity 148, 156
–, tele- 5
–, tool transform 145, 160, 163, 164
–, tortoise 61

–, under-actuated 149, 183

–, Unimation 2
–, walking 163

rod cell 227

Rodrigues rotation formula 34
roll-pitch-yaw angle 30, 31, 66, 176

–, rate 82, 176
–, singularity 30

Rossum’s Universal Robots (RUR) 2
rotation

–, centre, instantaneous 68

–, matrix 20, 27, 29, 32, 34, 36, 176, 328, 431, 492
–, derivative 51, 173
–, estimating 421, 516

rotational
–, inertia 81,192
–, invariance 367

row space 514

RRT 102, 103

rule, right-hand 24, 25

S

SAD 312, 316
salient point 365
salt and pepper noise 316
sampling rate, spatial 325
saturation 232, 237

scale
–, characteristic 371
–, space 307, 326, 384

SCARA robot 135, 149
scene, rigid 441
SE(2) 22

SE(3) 38

SEA 214

segmentation
–, graph-based 349
–, image 337

sensor
–, acceleration 54

–, angular velocity 54

–, CMOS 260

–, exteroceptive 3
–, fusion 119

–, proprioceptive 3
–, range and bearing 116

serial-link manipulator 137

service robot 2
servo-mechanism 455

servoing, visual 481
–, image-based 456, 459
–, position-based 455, 456

Shakey 61

shape changing 324
Shi-Tomasi corner detector 367
shift invariance 300

similar matrix 514

similarity transform 514

Simulink® 501

–, blocks 502
–, running 71
–, version 502

singleton dimension 288

singular
–, pose 177
–, value 515

–, decomposition (SVD) 515

–, vector 515

singularity 31
–, Euler angle 30
–, Jacobian 177
–, representational 177

–, robot 148, 156
–, roll-pitch-yaw angle 30
–, three angle representation 31

skeleton, topological 98
skeletonization 99
skid steering 67

SLAM 123

smoothing 301
SO(2) 21

SO(3) 27

Sobel kernel 306

solar spectrum 225

solid angle 229, 258

569

solution
–, closed-form 146
–, minimum-norm 184
–, numerical 149

source, Planckian 223

space
–, chromaticity 233
–, joint 139

–, resectioning 281
–, task 65, 143, 150

sparse stereo 401, 405, 470
spatial

–, aliasing 325, 409
–, sampling rate 325
–, velocity 53, 174, 175, 182, 186, 460, 464, 489

special
–, Euclidean group 17, 22, 38
–, orthogonal group 21, 27, 512

spectral
–, decomposition 513

–, locus 233–235
–, power distribution (SPD) 249

spectrum, solar 225

spherical
–, aberration 261

–, camera 273, 274, 492
–, linear interpolation 49

–, wheel 67

–, wrist 146

SSD 312, 366, 433
stabilization, image 433
Stanford arm 137

steering, Ackerman 69

Stefan-Boltzman law 224

steradian 258
stereo

–, failure mode 408
–, matching 405
–, pair 405
–, vision 401

stereopsis 405

stop word 436

straight-line motion 155
strapdown inertial measurement system 54
strategy, coarse-to-fine 326

structure 422
–, tensor 367

subpixel interpolation 542
subsampling, image 325, 403
subsumption architecture 90

support region 373, 375, 384
SVD (see singular value decomposition)
Swedish wheel 67

symmetric matrix 195, 367, 512

system
–, non-integrable 67

–, strapdown inertial measurement 54
–, under-actuated 66

–, vehicle coordinate 69
–, Wide Area Augmentation 109

T

Tait-Bryan angle 30
target association problem 120

task space 65, 143, 150
taxis 88

TCP 145

tele-robot 5
template matching 311, 406
tensor

–, structure 367
–, trifocal 443

texture mapping 278, 416
theorem

–, Euler rotation 25, 28
–, rotation, Euler’s 25

thin lens 251
thinning 98, 99
threshold

–, fixed 337

–, hysteresis 308

–, method, Otsu’s 339

–, Niblack 340

thresholding 294, 337

tie point 432
time 43
tone matching 433

tool centre point 145

Toolbox
–, installing 499
–, obtaining 499

top hat kernel 303

torque
–, control#2, 212#

–, computed 213

–, feedforward 208, 211
–, maximum 207

–, velocity coupling 193

trace of matrix 514
trajectory 43, 70, 149, 152, 153, 162, 165, 191, 192, 204, 209, 210, 423

–, Cartesian 155

–, hybrid 45

–, joint-space 153
–, LSPB 45

–, multi-dimensional 46
–, multi-segment 46
–, one-dimensional 43
–, polynomial 43

–, trapezoidal 45

transconductance 204
transform

–, direct linear 281
–, distance 93, 96, 99, 100, 102
–, hit-and-miss 322, 323

–, Hough 362

–, normalization 54

–, perspective 251
–, similarity 514

transformation
–, affine 253

–, approach, homogeneous 262
–, conformal 253
–, homogeneous 22, 37, 38, 140, 145, 171, 255, 257, 258, 262,

389, 399, 403, 419, 533
–, interpolation 49
–, normalization 55, 457, 466
–, sequence 146, 163, 423

–, projective 253
translation 37

General Index

570 Index

transmission, flexible 213
transparency, alpha 428

traversability 91, 95, 96
triangulation 108, 381

trifocal tensor 443
triple point 99
tristimulus 229, 230–233, 235–240, 242, 244, 245, 288
turning radius 68

U

UAV 78

ultra-violet radiation 224, 225
under-actuated

–, robot 149, 183

–, system 66

unified imaging model 275, 481
Unimation Inc. 6

–, robot, first 2
unit

–, photometric 228
–, quaternion 35, 36
–, radiometric 228

unmanned aerial vehicle 78

V

value
–, decomposition, singular (SVD) 515

–, pixel 286
–, singular 515

vanishing point 253, 259, 365
Vaucanson’s duck 1
vector

–, approach 32

–, orientation 32

–, representation 32
–, rotation 33
–, singular 515

vectorizing 415

vehicle
–, automated guided 62

–, autonomous surface 63

–, Braitenberg 88

–, coordinate system 69
–, modeling 111
–, non-holonomic 67
–, unmanned aerial 78

velocity 174
–, coupling torques 193

–, loop 205
–, angular 51, 177, 192, 193
–, maximum 45
–, relationships 171
–, spatial 53, 174, 175, 182, 186, 460, 464, 489

view
–, field of 258, 268
–, fronto-parallel 430, 459
–, multiple 386

viscous friction coefficient 201

vision 221, 401
visual

–, odometry 445
–, servo control 453
–, vocabulary 435

–, word 434

Voronoi
–, diagram 98, 100

–, generalized 99, 323
–, roadmap method 97
–, tessellation 98

W

WAAS 109

walking robot 163

waypoint 112
wheel

–, omni-directional 67

–, spherical 67

–, Swedish 67

white 240
–, balancing 241, 242

–, D65 240

–, equal-energy 240
–, point 237

Wide Area Augmentation System 109
Wien displacement law 224

window, convolution 299
word, visual 434

world coordinate frame 16

wrench 186, 191, 198
–, transforming 186

wrist, spherical 146

X

XY/Z-partitioned IBVS 481

Y

yaw rate 69, 119

Z

zero crossing detector 311
ZNCC 312, 407, 433
zoom lens 258

ZSAD 312
ZSSD 312

	Cover
	Title
	Foreword
	Preface
	Contents
	Nomenclature
	Introduction
	About the Book
	The MATLAB Software
	Audience and Prerequisites
	Notation and Conventions
	How to Use the Book
	Teaching with the Book
	Outline

	Part I Foundations
	Representing Position and Orientation
	Representing Pose in 2-Dimensions
	Representing Pose in 3-Dimensions
	Representing Orientation in 3-Dimensions
	Combining Translation and Orientation

	Wrapping Up

	Time and Motion
	Trajectories
	Smooth One-Dimensional Trajectories
	Multi-Dimensional Case
	Interpolation of Orientation in 3D
	Cartesian Motion

	Time Varying Coordinate Frames
	Rotating Coordinate Frame
	Incremental Motion
	Inertial Navigation Systems

	Wrapping Up

	Part II Mobile Robots
	Mobile Robot Vehicles
	Mobility
	Car-like Mobile Robots
	Moving to a Point
	Following a Line
	Following a Path
	Moving to a Pose

	Flying Robots
	Wrapping Up

	Navigation
	Reactive Navigation
	Braitenberg Vehicles
	Simple Automata

	Map-Based Planning
	Distance Transform
	D*
	Voronoi Roadmap Method
	Probabilistic Roadmap Method
	RRT

	Wrapping Up

	Localization
	Dead Reckoning
	Modeling the Vehicle
	Estimating Pose

	Using a Map
	Creating a Map
	Localization and Mapping
	Monte-Carlo Localization
	Wrapping Up

	Part III Arm-Type Robots
	Robot Arm Kinematics
	Describing a Robot Arm
	Forward Kinematics
	A 2-Link Robot
	A 6-Axis Robot

	Inverse Kinematics
	Closed-Form Solution
	Numerical Solution
	Under-Actuated Manipulator
	Redundant Manipulator

	Trajectories
	Joint-Space Motion
	Cartesian Motion
	Motion through a Singularity
	Configuration Change

	Advanced Topics
	Joint Angle Offsets
	Determining Denavit-Hartenberg Parameters
	Modified Denavit-Hartenberg Notation

	Application: Drawing
	Application: a Simple Walking Robot
	Kinematics
	Motion of One Leg
	Motion of Four Legs

	Wrapping Up

	Velocity Relationships
	Manipulator Jacobian
	Transforming Velocities between Coordinate Frames
	Jacobian in the End-Effector Coordinate Frame
	Analytical Jacobian
	Jacobian Condition and Manipulability

	Resolved-Rate Motion Control
	Jacobian Singularity
	Jacobian for Under-Actuated Robot
	Jacobian for Over-Actuated Robot

	Force Relationships
	Transforming Wrenches between Frames
	Transforming Wrenches to Joint Space

	Inverse Kinematics: a General Numerical Approach
	Wrapping Up

	Dynamics and Control
	Equations of Motion
	Gravity Term
	Inertia Matrix
	Coriolis Matrix
	Effect of Payload
	Base Force
	Dynamic Manipulability

	Drive Train
	Forward Dynamics
	Manipulator Joint Control
	Actuators
	Independent Joint Control
	Rigid-Body Dynamics Compensation
	Flexible Transmission

	Wrapping Up

	Part IV Computer Vision
	Light and Color
	Spectral Representation of Light
	Absorption
	Reflection

	Color
	Reproducing Colors
	Chromaticity Space
	Color Names
	Other Color Spaces
	Transforming between Different Primaries
	What Is White?

	Advanced Topics
	Color Constancy
	White Balancing
	Color Change Due to Absorption
	Gamma
	Application: Color Image

	Wrapping Up

	Image Formation
	Perspective Transform
	Lens Distortion

	Camera Calibration
	Homogeneous Transformation Approach
	Decomposing the Camera Calibration Matrix
	Pose Estimation
	Camera Calibration Toolbox

	Non-Perspective Imaging Models
	Fisheye Lens Camera
	Catadioptric Camera
	Spherical Camera

	Unified Imaging
	Mapping Wide-Angle Images to the Sphere
	Synthetic Perspective Images

	Wrapping Up

	Image Processing
	Obtaining an Image
	Images from Files
	Images from an Attached Camera
	Images from a Movie File
	Images from the Web
	Images from Code

	Monadic Operations
	Diadic Operations
	Spatial Operations
	Convolution
	Template Matching
	Non-Linear Operations

	Shape Changing
	Cropping
	Image Resizing
	Image Pyramids
	Image Warping

	Wrapping Up

	Image Feature Extraction
	Region Features
	Classification
	Representation
	Description
	Recap

	Line Features
	Point Features
	Scale-Space Corner Detectors

	Wrapping Up

	Using Multiple Images
	Feature Correspondence
	Geometry of Multiple Views
	The Fundamental Matrix
	The Essential Matrix
	Estimating the Fundamental Matrix
	Planar Homography

	Stereo Vision
	Sparse Stereo
	Dense Stereo Matching
	Peak Refinement
	Cleaning up and Reconstruction
	3D Texture Mapped Display
	Anaglyphs
	Image Rectification
	Plane Fitting
	Matching Sets of 3D Points

	Structure and Motion
	Application: Perspective Correction
	Application: Mosaicing
	Application: Image Matching and Retrieval
	Application: Image Sequence Processing
	Wrapping Up

	Part V Robotics, Vision and Control
	Vision-Based Control
	Position-Based Visual Servoing
	Image-Based Visual Servoing
	Camera and Image Motion
	Controlling Feature Motion
	Depth
	Performance Issues

	Using Other Image Features
	Line Features
	Circle Features

	Wrapping Up

	Advanced Visual Servoing
	XY/Z-Partitioned IBVS
	IBVS Using Polar Coordinates
	IBVS for a Spherical Camera
	Application: Arm-Type Robot
	Application: Mobile Robot
	Holonomic Mobile Robot
	Non-Holonomic Mobile Robot

	Application: Aerial Robot
	Wrapping Up

	Appendices
	Installing the Toolboxes
	Simulink
	MATLAB Objects
	Linear Algebra Refresher
	Ellipses
	Gaussian Random Variables
	Jacobians
	Kalman Filter
	Homogeneous Coordinates
	Graphs
	Peak Finding

	Bibliography
	Index
	00730381.pdf
	Using Multiple Images
	Feature Correspondence
	Geometry of Multiple Views
	The Fundamental Matrix
	The Essential Matrix
	Estimating the Fundamental Matrix
	Planar Homography

	Stereo Vision
	Sparse Stereo
	Dense Stereo Matching
	Peak Refinement
	Cleaning up and Reconstruction
	3D Texture Mapped Display
	Anaglyphs
	Image Rectification
	Plane Fitting
	Matching Sets of 3D Points

	Structure and Motion
	Application: Perspective Correction
	Application: Mosaicing
	Application: Image Matching and Retrieval
	Application: Image Sequence Processing
	Wrapping Up

