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Preface

Dedication: Peter Young (1939–), Engineer, Academic
and Polymath

This book is dedicated to Professor Peter Young’s 70th birthday. The majority of
the authors in this book are Peter Young’s friends, collaborators, former colleagues,
and former students.

Professor Peter Young is a major pioneer in the development of recursive es-
timation and its use in adaptive forecasting, data assimilation and adaptive control
system design. He has over 40 years experience in academic and industrial research,
with more than 250 publications in the open literature including several books.
He has made important research contributions to the areas of time series analy-
sis, environmental modelling and computer-aided control system design. He is the
leading expert on the identification and estimation of data-based transfer function
models and has successfully promoted their use in forecasting and control system
design.

It is through a strong contextual focus on applications in diverse fields that Peter
has made such innovative contributions to generic methods, algorithms and their as-
sociated software. His environmental applications experience includes: water qual-
ity modelling and control, as well as rainfall-flow modelling and its use in adaptive
forecasting, flood warning and data assimilation. In the earth sciences he has con-
tributed to: weather radar calibration; climate modelling and data analysis. Other
contributions include climate control in agricultural buildings; and the modelling
and control of inter-urban traffic systems.

Peter is an archetypal example of the ever-inquiring charismatic researcher, al-
ways passionately challenging themselves and colleagues with new questions and
ideas. His resultant collaborations have been with co-workers in many research in-
stitutions across the globe. This book dedicated to Peter is a testament to, and cele-
bration of, the depth and breadth of his influences.

v
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Theory of System Identification

Peter Young became interested in data-based modelling of dynamic systems when
he was a student apprentice in the UK aircraft industry (English Electric Aviation,
now BAe Systems). In 1961, he realised the limitations of least squares linear re-
gression analysis when there was noise on the regressors and this led him to look
at various approaches to this problem, particularly in relation to the estimation of
parameters in dynamic systems. Because of its simplicity, he was attracted to the, at
that time, little known Instrumental Variable (IV) method. The rest is, as they say,
history. Peter started serious research on IV methods, first at Loughborough Uni-
versity of Technology in 1963, then in the Engineering Department of Cambridge
University in 1965. During this time, he realised the importance of prefiltering data
when estimating parameters in Transfer Function (TF) models, both to avoid the
direct differentiation of noisy data, in the case of continuous-time TF models, and
to improve the statistical efficiency of the estimates in both continuous and discrete-
time TF models. Finally, after moving to take up a Research Chair at the Australian
National University in 1975, he put all of his previous results together [1], and
showed that, under the usual statistical assumptions (noise-free input variables and a
rational spectral density noise process described by an ARMA process), his iterative
or recursive-iterative Refined Instrumental Variable (RIV) estimation procedure, in-
volving appropriate adaptively updated prefilters, was asymptotically equivalent to
statistically efficient maximum likelihood estimation and prediction error minimiza-
tion. Moreover, both then and now, it is unique in its ability to estimate parameters
in both discrete and continuous-time TF models from sampled data. This RIV ap-
proach was implemented and thoroughly evaluated later by Peter and Professor Tony
Jakeman, who was Peter’s research collaborator at the time [2]. And recent papers
[3, 4] have extended these results to include an improved IV method of ARMA
noise model estimation and a three stage RIV procedure for estimating a TF model
in a closed loop control system.

Given this abiding interest in the concept of instrumental variable estimation and
its implementation in parameter estimation algorithms of various types, it is appro-
priate in this Festschrift for Peter that the first two chapters deal with aspects of
this topic. The book begins with a tutorial-style chapter on instrumental variables
by Professor Torsten Söderström, who has also had a life-long interest in IV esti-
mation. A general derivation of the covariance matrix of the IV parameter estimates
is presented and it is shown how this matrix is influenced by a number of user
choices regarding the nature of the instrumental variables and the estimation algo-
rithm. The chapter discusses how these user choices can be made in order to ensure
that the covariance matrix is as small as possible, in a well-defined sense, and com-
pares optimal instrumental variable algorithms with the alternative prediction error
method. In particular, it discusses optimal instrumental variable methods that yield
statistically efficient parameter estimates and shows that the iterative Refined RIV
algorithm (referred to in the chapter as a ‘multistep’ algorithm) proposed by Peter in
the context of the maximum likelihood estimation of Box-Jenkins transfer function
models, possesses these optimal properties.
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The original papers on the implementation of the RIV method by Peter Young
and Tony Jakeman included results that demonstrated how the Simplified RIV
(SRIV) method could be used for estimating the parameters in a hybrid continuous-
time transfer function model (i.e. a continuous time system model with an additive,
discrete-time noise model) from sampled data. In recent years, Peter has worked
closely with Professor Hugues Garnier and Dr. Marion Gilson on the development
of the full RIV version of this hybrid algorithm. In Chap. 2, Marion and Hugues,
together with their colleague Vincent Laurain, investigate instrumental variables in
the context of nonlinear system identification. In particular, they present RIV esti-
mation methods for discrete or hybrid continuous-time Hammerstein models with
coloured additive noise described by a discrete-time ARMA process. In order to
use a regression form of solution and avoid gradient optimization, the Hammerstein
model is reformulated as a linear, augmented multi-input-single-output model. The
performance of the proposed methods are demonstrated by relevant Monte Carlo
simulation examples.

Identifiability is a very important aspect of model identification and parameter
estimation. In a useful, tutorial-style Chap. 3, Professor Eric Walter investigates
identifiability with the aim of helping readers decide whether identifiability and
the closely connected property of distinguishability are theoretically important and
practically relevant for their research or teaching. The chapter discusses methods
that can be used to test models for these properties and shows that measures of
identifiability can be maximized, provided that there are some degrees of freedom
in the procedure for data collection that allow for optimal experimental design. Fi-
nally, the paper shows that interval analysis and bounded parameter estimation can
provide useful procedures when the model of interest cannot be made identifiable.
Consistent with the tutorial nature of the chapter, simple illustrative examples are
included and worked out in detail.

Professor Bruce Beck was one of Peter Young’s first research students in the
Control and Systems Division of the Engineering Department at Cambridge Uni-
versity, UK, and both of their careers were profoundly affected by the joint work
they did together at this time. Although their subsequent research has moved in
somewhat different directions, they have both pursued an underlying inductive ap-
proach to the identification of model structure from real experimental or monitored
data, mostly in relation to environmental applications. In Chap. 4, Bruce, together
with his colleagues Z. Lin, and Hans Stigter, continue with this theme and address
the important issues involved in model structure identification and the growth of
knowledge, including novel recent research into the possibility of diverting the soft-
ware of molecular graphics into serving the purpose of scientific visualization in
supporting the procedural steps of model structure identification.

Inspired by the work of Peter Young, who has made a life time of contributions
to parameter estimation for real world systems, several chapters follow on the gen-
eral identification concepts and technology. Professor Graham Goodwin is one of
the most important contributors to the theory and practice of automatic control over
the past forty years and is a long-time and valued friend of Peter Young. In Chap. 5,
Graham combines with Mauricio Cea to consider the problem of joint state and
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parameter estimation for continuous time systems in the important practical situa-
tion where data are collected with non-uniform sampling intervals. This problem is
formulated in the context of nonlinear filtering and the chapter shows how a new
class of nonlinear filtering algorithm Minimum Distortion Filtering (MDF) can be
applied to this problem. A simple example is used to illustrate the performance of
the algorithm and the results are compared with those obtained using numerically
intensive Particle Filtering. It is clear that, in this example, the MDF approach has
distinct advantages in both computational and estimation terms.

In the nineteen seventies, Victor Solo was a research student at the Australian
National University supervised by the noted expert on time series analysis, Pro-
fessor Ted Hannan, and Peter Young. Since then, Professor Solo has worked at
the cutting edge of research on novel aspects of both the theory and practice of
time series analysis. In Chap. 6, Victor first notes that adaptive signal process-
ing and adaptive control developed slowly and independently until the 1970s.
And he points out that Peter Young was one of the pioneers in this area of
study and that Peter’s 1984 book Recursive Estimation and Time Series Analy-
sis (a heavily revised and expanded version of which has just been published:
see http://www.springer.com/engineering/control/book/978-3-642-21980-1) is one
of the few books of this era that discusses the use of fixed gain recursive algorithms
for Time Varying Parameter (TVP) estimation, as well as TVP estimation in an off-
line setting, exploiting recursive smoothing. In the former context, Victor’s main
aim is to discuss the powerful tool of ‘averaging analysis’ that can be used to eval-
uate the stability of recursive estimation algorithms. He points out that, although
adaptive or learning algorithms have found wide use in control, signal processing
and machine learning, the use of averaging analysis is not as well known as it should
be. He reviews this approach within the context of the adaptive Least Mean Square
(LMS) type of algorithm and develops averaging in a heuristic manner, illustrating
its use on a number of illustrative examples.

In Chap. 7, Professor Manfred Deistler, another old friend of Peter Young’s and
one of the most important time series analysts of his day, combines with his col-
leagues Christoph Flamm, Ulrike Kalliauer, Markus Waser and Andreas Graef, to
describe measures for dependence and causality between component processes in
multivariate time series in a stationary context. Symmetric measures, such as the
partial spectral coherence, as well as directed measures, such as the partial directed
coherence and the conditional Granger causality index, are described and discussed.
These measures are used for deriving undirected and directed graphs (where the ver-
tices correspond to the one-dimensional component processes), showing the inner
structure of a multivariate time series. The authors’ interest in these graphs origi-
nates from the problem of detecting the focus of an epileptic seizure, based on the
analysis of invasive EEG data and an example for such an analysis is given in the
last section of the chapter.

Although they are not in the same Department at Lancaster, Professor Granville
Tunnicliffe-Wilson and Peter Young have been friends and colleagues for many
years. Together, they helped Peter Armitage, from the Civil Service College in Lon-
don, with courses on forecasting for Civil Servants that were held in London and

http://www.springer.com/engineering/control/book/978-3-642-21980-1
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Lancaster. It is notable that Granville was a research student of Professor Gwilym
Jenkins at Lancaster and contributed much to the writing of the famous 1970 book
by Jenkins and George Box on time series analysis, forecasting and control. It is ap-
propriate, therefore, that Chap. 8, by Granville and Peter Armitage, is a tutorial-style
chapter on Box-Jenkins methods; methods that are now used across the world, not
least because they have been incorporated into standard software, such as the X11-
ARIMA seasonal adjustment package developed by the US Bureau of the Census.
The exposition is not, however, limited to the Box and Jenkins approach and other
methods of model structure identification are suggested. The chapter is based on
several time series case studies, ranging from the airline series example presented
by Box and Jenkins, to an example of half hourly electricity demand. This chapter
also serves as a fitting memorial to Peter Armitage, who died recently but who did
so much to further the adoption of advanced forecasting methods in the UK Civil
Service.

State Dependent Parameter (SDP) modelling was developed by Peter Young in
the 1990s to identify non-linearities in the context of dynamic transfer function
models [5]. SDP estimation is based on exploiting the recursive Kalman Filter (KF)
and Fixed Interval Smoothing (FIS) algorithms to produce non-parametric estimates
(graphs) of the model parameters as a function of other measured variables. This ap-
proach, which is very useful for locating the position and form of the nonlinearities
prior to their parameterization, has been applied successfully in many application ar-
eas, especially to identify the structure of nonlinear Data-Based Mechanistic (DBM)
models (see Chap. 16) from observed time series data. In Chap. 9, Drs. Marco Ratto
and Andrea Pagano, highlight other applications of SDP modelling, where fruitful
co-operation with Peter has led to a series of joint papers in which State-Dependent
Regression (SDR) analysis has been applied to perform various useful functions in
sensitivity analysis, dynamic model reduction and emulation (‘meta’) modelling,
where a linked set of reduced order models is capable of reproducing closely the
main static and dynamic features of large computer simulation models (see also
Chaps. 10 and 16). The chapter also describes how SDR algorithms can be used to
identify and improve the performance of tensor product smoothing spline ANOVA
models.

SDP modelling is also considered in Chap. 10, which is contributed by Peter
Young’s colleagues from Lancaster, Drs. Wlodek Tych, Paul Smith, Arun Chotai
and James Taylor, together with a former research student, Dr. Jafar Sadeghi. This
describes and develops Jafar and Wlodek’s generalization of the SDP approach to
include Multi-State Dependent Parameter (MSDP) nonlinearities. The recursive es-
timation of the MSDP model parameters in a multivariable state space occurs along
a multi-path trajectory, again employing the KF and FIS algorithms. The novelty of
the method lies in redefining the concepts of sequence (predecessor, successor), so
allowing for their use in a multi-state dependent context and facilitating the subse-
quent efficient parameterisation for a fairly wide class of non-linear, stochastic dy-
namic systems. The approach is illustrated by two worked examples in MATLAB.
The format of the estimated SDP model also allows its direct use in new methods
of SDP control system design within a Non-Minimal State Space (NMSS) control
system design framework, as originally suggested by Peter Young (see Chap. 27).
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Peter Young has been friends with Professor Liuping Wang for the last decade
and, over the last few years, he has worked with her on both a NMSS-based for-
mulation of model predictive control and SDP model estimation using wavelets. In
Chap. 11, Liuping and her colleague Nguyen-Vu Truong continue with the SDP
theme and apply a new SDP-based approach to the important problem of electrical
demand forecasting. Such forecasting is critical to power system operation, since
it serves as an input to the management and planning of activities such as power
production, transmission and distribution, the dispatch and pricing process, as well
as system security analysis. From the system’s point of view, this is a complex non-
linear dynamic system in which the power demand is a highly nonlinear function
of the historical data and various external variables. The chapter describes an ap-
plication of an SDP model based on a two-dimensional wavelet (2-DWSDP) to the
forecasting of daily peak electrical demand in the state of Victoria, Australia. The
parsimonious structure of the identified model enhances the model’s generalization
capability, and it shows the advantages of SDP estimation in providing very de-
scriptive views and interpretations about the interactions and relationships between
various components which affect the system’s behaviour.

In Chap. 12, Professor David Hendry and his colleague Jennifer Castle consider
approaches to the automatic selection of nonlinear models within an econometric
context. The strategy is: first, to test for non-linearity in the unrestricted linear for-
mulation; then, if this test is rejected, a general model is specified using polynomials
that are simplified to a minimal congruent representation; finally, model selection is
by encompassing tests of specific non-linear forms against the selected model. The
authors propose solutions to some of the many problems that non-linearity poses:
extreme observations leading to non-normal (fat-tailed) distributions; collinearity
between non-linear functions; situations when there are more variables than ob-
servations in approximating the non-linearity; and excess retention of irrelevant
variables. Finally, an empirical application concerned with a ‘returns-to-education’
demonstrates the feasibility of the non-linear automatic model selection algorithm
Autometrics.

The theme of model structure selection in nonlinear system identification is con-
tinued in Chap. 13 by X. Hong, S. Chen and Professor Chris Harris, this time using
radial-basis functions for the modelling of the nonlinear systems. From the angle of
the diversified RBF topologies, they consider three different topologies; (i) the RBF
network with tunable nodes; (ii) the Box-Cox output transformation based RBF net-
work (Box-Cox RBF); and (iii) the RBF network with boundary value constraints
(BVC-RBF). These proposed RBF topologies enhance the modelling capabilities in
various ways and it is shown to be advantageous if the linear learning algorithms,
e.g. the orthogonal forward selection (OFS) algorithm based leave-one-out (LOO)
criteria, are still applicable as part of the proposed algorithms.

Applications of System Identification

Band-pass, Kalman, and adaptive filters are used for the removal of resuscitation
artifacts from human ECG signals. Chapter 14 by Professor Ivan Markovsky, Anton
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Amann and Sabine Van Huffel is a tutorial-style chapter that clarifies the rationale
for applying these methods in this particular biomedical context. The novel aspects
of the exposition are the deterministic interpretation and comparative study of the
methods using a database of separately recorded human ECG and animal resusci-
tation artifact signals. The performance criterion used in this analysis is the signal-
to-noise ratio (SNR) improvement, defined as the ratio of the SNRs of the filtered
signal and the given ECG signal. The empirical results show that for low SNR,
a band-pass filter yields the best performance; while for high SNR, an adaptive filter
yields the best performance.

Professor Eric Rogers and Peter Young have worked for many years on the Ed-
itorial Board of the International Journal of Control. Chapter. 15, by Fengmin Le,
Chris Freeman, Ivan Markovsky and Eric, reports recent work involving the use of
robots in stroke rehabilitation, where model-based algorithms have been developed
to control the application of functional electrical stimulation to the upper limb of
stroke patients with incomplete paralysis, in order to assist them in reaching tasks.
This, in turn, requires the identification of the response of a human muscle to elec-
trical stimulation. The chapter provides an overview of the progress reported in the
literature, together with some currently open research questions.

Data-based Mechanistic Modelling and Environmental Systems

The term Data-Based Mechanistic (DBM) modelling was first used by Peter Young
in the early nineteen nineties, but the basic concepts of this approach to modelling
dynamic systems have been developed by Peter and various colleagues over many
years. For example, they were first applied seriously within a hydrological context
by Peter and Bruce Beck in the early 1970s, with application to the modelling of
water quality and flow in rivers, and set by Peter within a more general framework
shortly thereafter. Since then, they have been applied to many different systems
in diverse areas of application from ecology, through engineering to economics.
The next several chapters present various applications, mainly in the area of water
resources where DBM modelling, as well as other systems modelling and control
procedures, are used to good effect.

From a philosophical standpoint, DBM modelling stresses the need to rely, when-
ever possible, on inductive inference from time series data, without over-reliance on
pre-conceived notions about the structure of the model that can often lead to over-
large computer simulation models with severe identifiability problems. Indeed, it
was a reaction to such large, over-parameterized models that gave birth to DBM
modelling. In Chap. 16, Peter Young briefly outlines of the main stages and pro-
cedures involved in DBM modelling. Its main aim, however, is to put the DBM
approach to modelling in a philosophical context and demonstrate how this is re-
flected in an illustrative example, where DBM modelling is applied to the investi-
gation of solute transport and dispersion in water bodies. By providing a Dynamic
Emulation Model (DEM) bridge between large computer simulation models, pro-
duced in a hypothetico–deductive manner, and parsimonious DBM models that are
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normally identifiable from the available data, it emphasises the need to utilise both
approaches, in an integrated manner, in order to meet multiple modelling objectives.

Peter Young’s research on flood forecasting techniques based on both rainfall-
flow (run-off generation) and flow-flow (flow routing) modelling goes back a long
way to the early nineteen seventies. However, since the nineteen eighties it has been
heavily influenced by collaboration with his friend and colleague Professor Keith
Beven, one of the foremost contributors to the theory and practice of hydrology.
In this flood forecasting context, the DBM modeling approach normally identifies
a non-linear SDP (see above) transformation of the input rainfall signal that is de-
pendent on the current state (river flow or level) of the system. In Chap. 17, Keith,
David Leedal, Paul Smith and Peter, discuss four methods of parameterizing and op-
timizing the input non-linearity function, each of which have associated advantages
and disadvantages: a simple power law; a radial basis function network; piecewise
cubic Hermite data interpolation; and, finally, the Takagi-Sugeno Fuzzy Inference
method, which employs human-in-the-loop interaction during the parameter estima-
tion process.

The Aggregated Dead Zone (ADZ) model1 was one of the first DBM to be de-
veloped, initially by Peter Young and Tom Beer in the early nineteen eighties and
later by Dr. Steve Wallis, Peter and Keith Beven, who extended it to include the
concept of a ‘dispersive fraction’. In Chap. 18, Dr. Sarka Blazkova, together with
Keith Beven and Dr. Paul Smith, use the ADZ model for the analysis of tracer data
from larger rivers. The model provides excellent explanation of the observed con-
centrations, with a dispersive fraction parameter that varies relatively little with flow
(discharge), making the model applicable over a wide range of flow variations. It is
also shown how the information on transport and dispersion at different flows can
be augmented by pollution incident and continuously logged water quality data. The
model can then be applied to predict the downstream dispersion of pollutants at any
arbitrary flow, taking account of the uncertainty in the SRIV estimation (see above)
of the ADZ model parameters.

Peter Young has worked with Drs. Andrea Castelletti and Francesa Pianosi on
the DBM modeling of river catchments affected by snow melt. However, Andrea
and Francesca, together with Professor Rodolfo Soncini-Sessa are also concerned
with the wider topic of water resources management to effectively cope with all
the key drivers of global change (climate, demographic, economic, social, pol-
icy/law/institutional, and technology changes). Here, it is essential that the tradi-
tional sectoral management approach to water resources is transformed into a new
paradigm, where water is considered as the principal and cross cutting medium for
balancing food, energy security, and environmental sustainability. One major tech-
nical challenge, in expanding the scope of water resources management across sec-
tors and to the river basin level, is to develop new methodologies and tools to cope
with the increasing complexity of water systems. In Chap. 19, Andrea, Francesa and
Rodolfo consider the management and control of a large water system composed of
reservoirs, natural catchments feeding the reservoirs, diversion dams, water users

1Also called the Aggregated Mixing Volume (AMV) model when applied in a more general context.
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(e.g. hydropower plants, irrigation districts), and artificial and natural canals that
connect all the above components. In particular, they review some of the recent, and
in their opinion, more promising alternatives to stochastic dynamic programming in
designing sub-optimal control policies.

The theme of river basin management is continued in Chap. 20. Here Profes-
sors Rob Evans and Ivan Mareels, together with N. Okello, M. Pham, W. Qiu and
S.K. Saleem, point out that river basins are key components of water supply grids.
As a result, river basin operators must handle a complex set of objectives, includ-
ing runoff storage, flood control, supply for consumptive use, hydroelectric power
generation, silting management, and maintenance of river basin ecology. At present,
operators rely on a combination of simulation and optimization tools to help make
operational decisions. However, the complexity associated with this approach makes
it unsuitable for real-time (daily or hourly) operation. The consequence is that be-
tween longer-term optimized operating points, river basins are largely operated in
an open loop manner. This leads to operational inefficiencies, most notably wasted
water and poor ecological outcomes. In the chapter, the authors propose a system-
atic approach for the real-time operation of entire river basin networks, employing
simple low order models on which to design optimal model predictive control strate-
gies.

Agriculture is the world-wide biggest consumer of water. However, a large por-
tion of the water is wasted due to inefficient distribution from lakes and reservoirs
via rivers to farms. While more efficient water distribution can be achieved with the
help of improved control and decision support systems, this requires the identifica-
tion and estimation relatively simple river models, such as the DBM models used
above in river flood forecasting applications. Traditionally, the partial differential
Saint Venant equations have been used for modelling flow in rivers but they are not
suitable for use in control design and simpler alternative models of the DBM type
are required. Such an approach is described in Chap. 21 by Mathias Foo, Su Ki Ooi
and Professor Erik Weyer. Based on operational river data and physical considera-
tions, they estimate simple ‘time-delay’ and ‘integrator-delay’ models and compare
them with the Saint Venant equation model. The efficacy of these simple models
is then illustrated in a simulation exercise where they are used to design a control
system that is applied successfully to the full Saint Venant equation model.

Professor Howard Wheater, who is very well known for his research and devel-
opment work in this area, has been one of Peter Young’s friends since the nineteen
seventies, when both were in different Divisions of the Engineering Department
at Cambridge University. Peter has also worked recently with Howard’s colleague,
Dr. Neil McIntyre, and Howard on the DBM modelling of the non-linear dynamic
processes that are active in an experimental catchment. In Chap. 22, Howard, Neil
and their colleagues consider the insights developed from Peter’s research on DBM
modelling in the context of predicting the effects of land use and land management
change across multiple scales. This is a particularly challenging problem and they
review the strengths and weaknesses of alternative modelling approaches, including:
physics-based modelling; conceptual models, conditioned by regionalised indices;
and DBM modelling, showing the latter’s utility in identifying appropriate model
structures that can guide the hydrological application.
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It is clear from Chaps. 19, 20, 21 and 22 that hydrological models have an im-
portant role to play in supporting water management. Another important problem
in catchment hydrology is river catchment classification. This remains a significant
challenge for hydrologists, with available schemes not providing a sufficient basis
for consistently distinguishing between different types of hydrological behaviour.
However, in Chap. 23, Professors Thorsten Wagener and Neil McIntyre show how
the DBM approach to time-series modelling is an eminently suitable approach to
this problem since it is designed to extract the dominant modes (signatures) of a
system response. They develop a classification procedure based on this idea and
apply it to 278 catchments distributed across the Eastern USA, with the aim of ex-
ploring whether the catchments may be classified according to their dominant mode
responses, including identifying both the type of response (the transfer function
structure) and the scale of the response (the associated parameter values). They con-
clude that the approach holds considerable promise in this kind of application but
that more research is required to establish better which of DBM model signatures,
or combinations of these, are most powerful in the classification role.

Previous chapters show how the ADZ/AMV models can provide a theoretically
elegant and practically useful approach to water quality and pollutant transport mod-
elling that can used both in assessing the risk from pollution incidents and the sus-
tainable management of water resources. An ability to predict the concentrations of
a pollutant travelling along the river is necessary in assessing the ecological impact
of the pollutant and to plan a remedy against possible damage to humans and the
environment. The risk from a pollutant at a given location along the river depends
on the maximum concentration of any toxic component, the travel times of the pol-
lutant from the release point and the duration over which its concentration exceeds
feasible threshold levels. In Chap. 24, Peter Young’s previous research colleague
at Lancaster, Dr. Renata Romanowicz (now at the Institute of Geophysics in War-
saw), outlines on-going research on DBM models and compares the results with
physically-based approaches using worked examples from pollutant transport mod-
elling. In addition to steady-state examples, a transfer function pollutant transport
model for transient flows, that can be interpreted directly in ADZ/AMV terms, is
presented and used in a tutorial-style case study on the application of a multi-rate
transfer function models to the identification of environmental processes.

Dr. Peter Minchin has known Peter Young since the nineteen seventies, when
they worked together on the application of RIV estimation (see above) to the anal-
ysis and modelling of phloem translocation data. In Chap. 25, Peter Minchin de-
scribes the application of such techniques to the problem of modelling Phloem vas-
culature within higher plants functions at very high hydrostatic pressure (circa 10
atmospheres). A detailed time sequence of phloem sap movement through a plant
is possible with in vivo measurement of 11C tracer, which is ideal for input-output
transfer function modelling within a DBM context. The resulting estimates of trans-
port distribution times, pathway leakage, and partitioning between competing sinks
have led to the first mechanistic understanding of phloem partitioning between com-
peting sinks, from which sink priority has been shown to be an emergent property.

Dr. Bellie Sivakumar and Peter Young have maintained contact for some years
because of their mutual interest in the use of low order nonlinear models and DBM



Preface xv

modelling in environmental systems analysis. In this regard, the last two decades
have witnessed a significant momentum in the promising application of Chaos The-
ory (CT) to environmental systems. Nevertheless, there have also been persistent
skepticism and criticism of such studies, motivated by the potential limitations in the
data-based modelling of chaotic systems. In Chap. 26, Sivakumar offers a balanced
perspective of chaos studies in environmental systems: between the philosophy of
CT at one extreme, to the down-to-earth pragmatism that is needed in its application
at the other. After briefly reviewing the development of CT, some basic identifica-
tion and estimation methods are described and their reliability for determining sys-
tem properties are evaluated. A brief review of CT studies in environmental systems
as well as the progress and pitfalls is then made. Analysis of four river flow series
lend support to the contention that environmental systems are neither deterministic
nor stochastic, but a combination of the two; and that CT can offer a middle-ground
approach to these extreme deterministic and stochastic views. It is concluded that, in
view of the strengths of both CT and DBM concepts (commonalities as well as dif-
ferences), the coupling of these two data-based modelling approaches seems to be a
promising way of formulating a much-needed general framework for environmental
modelling.

Control System Design

Peter Young’s early research career was concerned with data-based modelling ap-
plied in the context of automatic control system design and he has retained an abid-
ing interest in control system design for the past fifty years. His most novel contri-
butions in this area are concerned with the exploitation of Non-Minimal State Space
descriptions of dynamic systems based on their estimated transfer function models.
This began with early research carried out while he was working as a civilian for
the U.S. Navy in California and it culminated with a series of research studies be-
ginning at Lancaster in the nineteen eighties and extending to recent research on
NMSS-based model predictive control carried out with Professor Liuping Wang at
RMIT in Melbourne. In this last section of the book, the first three chapters cover
aspects of NMSS and model predictive control system design, while the final one
discusses a recently developed MATLAB Toolbox for the analysis of more general
state space systems.

The largely tutorial Chap. 27 by Peter Young’s long-time colleagues, Drs. James
Taylor, Arun Chotai and Wlodek Tych, use case studies based on recent engineer-
ing applications, to illustrate the NMSS approach to feedback control system de-
sign. The paper starts by reviewing the subject and pointing out that the NMSS
representation is a rather natural state space description of a discrete-time transfer
function, since its dimension is dictated by the complete structure of the transfer
function model. Also, it notes that the resulting Proportional-Integral-Plus (PIP)
control algorithm can be interpreted as a logical extension of the conventional
Proportional-Integral (PI) controller, facilitating its straightforward implementation
using a standard hardware-software arrangement. Finally, the chapter shows how the



xvi Preface

basic NMSS approach is readily extended into multivariable, model-predictive and
nonlinear control system design contexts and gives pointers to the latest research
results in this regard.

Professor Neville Rees and Peter Young have been very close friends for over
forty years since they worked together in California between 1968 and 1970. In
Chap. 28, Neville and his colleague Chris Lu join with Peter to describe a joint
project they have been involved with recently. They briefly introduce the concept of
large computer model reduction using dynamic emulation modelling (DEM), as dis-
cussed in Chap. 16. SRIV identification and estimation methods (see earlier) avail-
able in the CAPTAIN Toolbox are exploited to develop a nominal, reduced order
DEM for a large Simulink model of a complex, nonlinear, dynamic power plant
system, using data obtained from planned experiments performed on this large sim-
ulation model. The authors then show how this single, three input, three output,
linear emulation model can form the basis for multivariable, NMSS control systems
design. The control simulation results cover a wide range of operating conditions
and show significant performance improvements in relation to the standard, multi-
channel PID control system performance. This is despite the fact that the design is
based on the single multivariable model and the simulation model has numerous
nonlinear elements.

One of the key components in a renewable energy system, such as wind energy
generator, is a three-phase regenerative PWM converter, which is both nonlinear
and time-varying by nature. In Chap. 29, Dae Yoo, together with Professor Liuping
Wang and another of Peter Young’s long-time friends, Professor Peter Gawthrop,
consider the model predictive control of such a converter. In particular, with the
classical synchronous frame transformation, the nonlinear PWM model is linearized
to obtain a continuous-time state-space model. Then, based on this linearized model,
a continuous-time model predictive control system for the converter is designed and
implemented successfully on a laboratory scale test-bed built by the authors. The
proposed approach includes a prescribed degree of stability in the algorithm that
overcomes the performance limitation caused by the existing right-half-plant zero in
the system. This also provides an effective tuning parameter for the desired closed-
loop performance.

The final Chap. 30 of this book is written by another former research colleague
of Peter Young, Professor Diego Pedregal, and Dr. James Taylor (see previously).
It illustrates the utility of, and provides the basic documentation for, SSpace, a re-
cently developed Matlab™ toolbox for the analysis of State Space systems. The key
strength of the toolbox is its generality and flexibility, both in terms of the particular
state space form selected and the manner in which generic models are straightfor-
wardly translated into MATLAB code. With the help of a relatively small number
of functions, it is possible to fully exploit the power of state space systems, per-
forming operations such as filtering, smoothing, forecasting, interpolation, signal
extraction and likelihood estimation. The chapter provides an overview of SSpace
and demonstrates its usage with several worked examples.



Preface xvii

References

1. Young, P.C.: Some observations on instrumental variable methods of time-series analysis. Int.
J. Control 23, 593–612 (1976)

2. Young, P.C., Jakeman, A.J.: Refined instrumental variable methods of time-series analysis:
Parts I, II and III. Int. J. Control 29, 1–30; 29, 621–644; 31, 741–764 (1979–1980)

3. Young, P.C.: The Refined instrumental variable method: unified estimation of discrete and
continuous-time transfer function models. J. Eur. Syst. Automat. 42, 149–179 (2008).

4. Young, P.C.: Gauss, Kalman and advances in recursive parameter estimation. J. Forecast. 30,
104–146 (2011) (Special issue celebrating 50 years of the Kalman Filter)

5. Young, P.C.: Stochastic, dynamic modelling and signal processing: time variable and state de-
pendent parameter estimation. In: Fitzgerald, W.J., Walden, A., Smith, R., Young, P.C. (eds.)
Nonlinear and Nonstationary Signal Processing, pp. 74–114. Cambridge University Press, Cam-
bridge (2000)

Liuping Wang
Hugues Garnier

Melbourne, Australia
Nancy, France



Contents

Part I Theory of System Identification

1 How Accurate Can Instrumental Variable Models Become? . . . . . 3
Torsten Söderström

2 Refined Instrumental Variable Methods for Hammerstein
Box-Jenkins Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Vincent Laurain, Marion Gilson, and Hugues Garnier

3 Identifiability, and Beyond . . . . . . . . . . . . . . . . . . . . . . . . 49
Eric Walter

4 Model Structure Identification and the Growth of Knowledge . . . . 69
M.B. Beck, Z. Lin, and J.D. Stigter

5 Application of Minimum Distortion Filtering to Identification of
Linear Systems Having Non-uniform Sampling Period . . . . . . . . 97
Graham C. Goodwin and Mauricio G. Cea

6 Averaging Analysis of Adaptive Algorithms Made Simple . . . . . . 115
Victor Solo

7 Graphs for Dependence and Causality in Multivariate Time Series . 133
Christoph Flamm, Ulrike Kalliauer, Manfred Deistler, Markus Waser,
and Andreas Graef

8 Box-Jenkins Seasonal Models . . . . . . . . . . . . . . . . . . . . . . 153
Granville Tunnicliffe Wilson and Peter Armitage

9 State Dependent Regressions: From Sensitivity Analysis to
Meta-modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
Marco Ratto and Andrea Pagano

xix



xx Contents

10 Multi-state Dependent Parameter Model Identification and
Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
Włodek Tych, Jafar Sadeghi, Paul J. Smith, Arun Chotai, and C. James
Taylor

11 On Application of State Dependent Parameter Models in Electrical
Demand Forecast . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
Nguyen-Vu Truong and Liuping Wang

12 Automatic Selection for Non-linear Models . . . . . . . . . . . . . . 229
Jennifer L. Castle and David F. Hendry

13 Construction of Radial Basis Function Networks with Diversified
Topologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
X. Hong, S. Chen, and C.J. Harris

Part II Applications of System Identification

14 Application of Filtering Methods for Removal of Resuscitation
Artifacts from Human ECG Signals . . . . . . . . . . . . . . . . . . 273
Ivan Markovsky, Anton Amann, and Sabine Van Huffel

15 Progress and Open Questions in the Identification of Electrically
Stimulated Human Muscle for Stroke Rehabilitation . . . . . . . . . 293
Fengmin Le, Chris T. Freeman, Ivan Markovsky, and Eric Rogers

Part III Data-Based Mechanistic Modelling and Environmental
Systems

16 Data-Based Mechanistic Modelling: Natural Philosophy Revisited? . 321
Peter C. Young

17 Identification and Representation of State Dependent Non-
linearities in Flood Forecasting Using the DBM Methodology . . . . 341
Keith Beven, Dave Leedal, Paul Smith, and Peter Young

18 Transport and Dispersion in Large Rivers: Application of
the Aggregated Dead Zone Model . . . . . . . . . . . . . . . . . . . . 367
Sarka Blazkova, Keith Beven, and Paul Smith

19 Stochastic and Robust Control of Water Resource Systems:
Concepts, Methods and Applications . . . . . . . . . . . . . . . . . . 383
Andrea Castelletti, Francesca Pianosi, and Rodolfo Soncini-Sessa

20 Real-Time Optimal Control of River Basin Networks . . . . . . . . . 403
R. Evans, L. Li, I. Mareels, N. Okello, M. Pham, W. Qiu, and S.K. Saleem

21 Modelling of Rivers for Control Design . . . . . . . . . . . . . . . . . 423
Mathias Foo, Su Ki Ooi, and Erik Weyer



Contents xxi

22 Modelling Environmental Change: Quantification of Impacts of
Land Use and Land Management Change on UK Flood Risk . . . . 449
H.S. Wheater, C. Ballard, N. Bulygina, N. McIntyre, and B.M. Jackson

23 Hydrological Catchment Classification Using a Data-Based
Mechanistic Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . 483
Thorsten Wagener and Neil McIntyre

24 Application of Optimal Nonstationary Time Series Analysis to
Water Quality Data and Pollutant Transport Modelling . . . . . . . 501
Renata Romanowicz

25 Input-Output Analysis of Phloem Partitioning Within Higher Plants 519
Peter E.H. Minchin

26 Chaos Theory for Modeling Environmental Systems: Philosophy
and Pragmatism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 533
Bellie Sivakumar

Part IV Control System Design

27 Linear and Nonlinear Non-minimal State Space Control System
Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 559
James Taylor, Arun Chotai, and Wlodek Tych

28 Simulation Model Emulation in Control System Design . . . . . . . . 583
C.X. Lu, N.W. Rees, and P.C. Young

29 Predictive Control of a Three-Phase Regenerative PWM Converter . 599
Dae Keun Yoo, Liuping Wang, and Peter Gawthrop

30 SSpace: A Flexible and General State Space Toolbox for MATLAB . 615
Diego J. Pedregal and C. James Taylor

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 637



Contributors

Anton Amann Innsbruck Medical University and Department of Anesthesia and
General Intensive Care, Anichstr 35, 6020 Innsbruck, Austria,
Anton.Amann@i-med.ac.at

Peter Armitage The Civil Service College, London, England, UK

C. Ballard Imperial College London, London SW7 2AZ, UK

M.B. Beck University of Georgia, Athens, GA, USA, mbbeck@uga.edu

Keith J. Beven Lancaster Environment Centre, Lancaster University, Lancaster,
UK, k.beven@lancaster.ac.uk

Sarka D. Blazkova T G Marsaryk Water Resource Institute, Prague, Czech Repub-
lic

N. Bulygina Imperial College London, London SW7 2AZ, UK

Andrea Castelletti Politecnico di Milano, Milano, Italy, castelle@elet.polimi.it

Jennifer L. Castle Magdalen College & Institute for New Economic Thinking at
the Oxford Martin School, University of Oxford, Oxford, UK,
jennifer.castle@magd.ox.ac.uk

Mauricio G. Cea School of Electrical Engineering and Computer Science, Univer-
sity of Newcastle, University Drive NSW 2308, Australia,
Mauricio.Cea@uon.edu.au

S. Chen School of Electronics and Computer Science, University of Southampton,
Southampton, UK, sqc@ecs.soton.ac.uk

Arun Chotai Lancaster Environment Centre, Lancaster University, Lancaster, UK,
a.chotai@lancaster.ac.uk

Manfred Deistler Institute for Mathematical Methods in Economics, Vienna Uni-
versity of Technology, Vienna, Austria, manfred.deistler@tuwien.ac.at

xxiii

mailto:Anton.Amann@i-med.ac.at
mailto:mbbeck@uga.edu
mailto:k.beven@lancaster.ac.uk
mailto:castelle@elet.polimi.it
mailto:jennifer.castle@magd.ox.ac.uk
mailto:Mauricio.Cea@uon.edu.au
mailto:sqc@ecs.soton.ac.uk
mailto:a.chotai@lancaster.ac.uk
mailto:manfred.deistler@tuwien.ac.at


xxiv Contributors

R. Evans National ICT Australia Ltd, Eveleigh, Australia, rob.evans@nicta.com.au

Christoph Flamm Institute for Mathematical Methods in Economics, Vienna Uni-
versity of Technology, Vienna, Austria, christoph.flamm@tuwien.ac.at

Mathias Foo National ICT Australia, Victoria Research Lab, Department of
Electrical and Electronic Engineering, The University of Melbourne, Parkville,
VIC 3010, Australia, mfoo@ee.unimelb.edu.au

Chris T. Freeman School of Electronics and Computer Science, University of
Southampton, Southampton SO17 1BJ, UK

Hugues Garnier CNRS, Nancy-Université, Vandoeuvre-lès-Nancy Cedex, France,
hugues.garnier@cran.uhp-nancy.fr

Peter Gawthrop School of Engineering, University of Glasgow, Glasgow, UK,
Peter.Gawthrop@glasgow.ac.uk

Marion Gilson CNRS, Nancy-Université, Vandoeuvre-lès-Nancy Cedex, France,
marion.gilson@cran.uhp-nancy.fr

Graham C. Goodwin School of Electrical Engineering and Computer Science,
University of Newcastle, University Drive NSW 2308, Australia,
Graham.Goodwin@newcastle.edu.au

Andreas Graef Institute for Mathematical Methods in Economics, Vienna Univer-
sity of Technology, Vienna, Austria, andreas.graef@tuwien.ac.at

C.J. Harris School of Electronics and Computer Science, University of Southamp-
ton, Southampton, UK

David F. Hendry Economics Department & Institute for New Economic Thinking
at the Oxford Martin School, University of Oxford, Oxford, UK,
david.hendry@nuffield.ox.ac.uk

X. Hong School of Systems Engineering, University of Reading, Reading, UK,
x.hong@reading.ac.uk

Sabine Van Huffel ESAT-SCD, K.U. Leuven, Kasteelpark Arenberg 10, 3001 Leu-
ven, Belgium, Sabine.VanHuffel@esat.kuleuven.be

B.M. Jackson Imperial College London, London SW7 2AZ, UK

Ulrike Kalliauer VERBUND Trading AG, Vienna, Austria,
ulrike.kalliauer@verbund.com

Vincent Laurain CNRS, Nancy-Université, Vandoeuvre-lès-Nancy Cedex, France,
vincent.laurain@cran.uhp-nancy.fr

Fengmin Le School of Electronics and Computer Science, University of Southamp-
ton, Southampton SO17 1BJ, UK

Dave T. Leedal Lancaster Environment Centre, Lancaster University, Lancaster,
UK, d.t.leedal@lancaster.ac.uk

mailto:rob.evans@nicta.com.au
mailto:christoph.flamm@tuwien.ac.at
mailto:mfoo@ee.unimelb.edu.au
mailto:hugues.garnier@cran.uhp-nancy.fr
mailto:Peter.Gawthrop@glasgow.ac.uk
mailto:marion.gilson@cran.uhp-nancy.fr
mailto:Graham.Goodwin@newcastle.edu.au
mailto:andreas.graef@tuwien.ac.at
mailto:david.hendry@nuffield.ox.ac.uk
mailto:x.hong@reading.ac.uk
mailto:Sabine.VanHuffel@esat.kuleuven.be
mailto:ulrike.kalliauer@verbund.com
mailto:vincent.laurain@cran.uhp-nancy.fr
mailto:d.t.leedal@lancaster.ac.uk


Contributors xxv

L. Li National ICT Australia Ltd, Eveleigh, Australia, li.li@nicta.com.au

Z. Lin North Dakota State University, Fargo, ND, USA, zhulu.lin@ndsu.edu

C.X. Lu School of Electrical Engineering and Telecommunications, University of
New South Wales, Sydney, Australia, c.lu@unsw.edu.au

I. Mareels The University of Melbourne, Melbourne, Australia,
iven.mareels@unimelb.edu.au

Ivan Markovsky School of Electronics and Computer Science, University of
Southampton, Southampton SO17 1BJ, UK, im@ecs.soton.ac.uk

Neil McIntyre Department of Civil and Environmental Engineering, Imperial Col-
lege London, London SW72AZ, UK, n.mcintyre@imperial.ac.uk

Peter E.H. Minchin The New Zealand Institute for Plant and Food Research Lim-
ited, Te Puke, 412 No. 1 Rd, RD2, Te Puke 3182, New Zealand

N. Okello National ICT Australia Ltd, Eveleigh, Australia,
nickens.okello@nicta.com.au

Su Ki Ooi Department of Electrical and Electronic Engineering, The University of
Melbourne, Parkville, VIC 3010, Australia, skoo@ee.unimelb.edu.au

Andrea Pagano JRC, Joint Research Centre, The European Commission, TP 361,
21027 Ispra (VA), Italy,
andrea.pagano@jrc.ec.europa.eu

Diego J. Pedregal E.T.S. de Ingenieros Industriales and Institute of Applied Math-
ematics to Science and Engineering (IMACI), University of Castilla, La Mancha,
Ciudad Real, Spain, Diego.Pedregal@uclm.es

M. Pham National ICT Australia Ltd, Eveleigh, Australia,
minh.pham@nicta.com.au

Francesca Pianosi Politecnico di Milano, Milano, Italy, pianosi@elet.polimi.it

W. Qiu National ICT Australia Ltd, Eveleigh, Australia, wanzhi.qiu@nicta.com.au

Marco Ratto JRC, Joint Research Centre, The European Commission, TP 361,
21027 Ispra (VA), Italy, marco.ratto@jrc.ec.europa.eu

N.W. Rees School of Electrical Engineering and Telecommunications, University
of New South Wales, Sydney, Australia, n.rees@unsw.edu.au

Eric Rogers School of Electronics and Computer Science, University of Southamp-
ton, Southampton SO17 1BJ, UK, etar@ecs.soton.ac.uk

Renata J. Romanowicz Institute of Geophysics, Polish Academy of Sciences,
ul. Ksiecia Janusza 64, 01-452 Warsaw, Poland, Romanowicz@igf.edu.pl

mailto:li.li@nicta.com.au
mailto:zhulu.lin@ndsu.edu
mailto:c.lu@unsw.edu.au
mailto:iven.mareels@unimelb.edu.au
mailto:im@ecs.soton.ac.uk
mailto:n.mcintyre@imperial.ac.uk
mailto:nickens.okello@nicta.com.au
mailto:skoo@ee.unimelb.edu.au
mailto:andrea.pagano@jrc.ec.europa.eu
mailto:Diego.Pedregal@uclm.es
mailto:minh.pham@nicta.com.au
mailto:pianosi@elet.polimi.it
mailto:wanzhi.qiu@nicta.com.au
mailto:marco.ratto@jrc.ec.europa.eu
mailto:n.rees@unsw.edu.au
mailto:etar@ecs.soton.ac.uk
mailto:Romanowicz@igf.edu.pl


xxvi Contributors

Jafar Sadeghi Lancaster Environment Centre, Lancaster University, Lancaster, UK

S.K. Saleem National ICT Australia Ltd, Eveleigh, Australia,
khusro.saleem@nicta.com.au

Bellie Sivakumar The University of New South Wales, Sydney, NSW 2052, Aus-
tralia, s.bellie@unsw.edu.au; University of California, Davis, CA 95616, USA,
sbellie@ucdavis.edu

Paul J. Smith Lancaster Environment Centre, Lancaster University, Lancaster, UK,
p.j.smith@lancaster.ac.uk

Victor Solo School of Electrical Engineering, University of New South Wales, Syd-
ney, Australia, v.solo@unsw.edu.au

Rodolfo Soncini-Sessa Politecnico di Milano, Milano, Italy, soncini@elet.polimi.it

J.D. Stigter Wageningen University, Wageningen, The Netherlands,
hans.stigter@wur.nl

Torsten Söderström Division of Systems and Control, Department of Infor-
mation Technology, Uppsala University, PO Box 337, 75105 Uppsala, Sweden,
torsten.soderstrom@it.uu.se

C. James Taylor Engineering Department, Lancaster University, Lancaster, UK,
c.taylor@lancaster.ac.uk

Nguyen-Vu Truong Institute of Applied Mechanics and Informatics, Vietnam
Academy of Science and Technology, Hanoi, Vietnam

Granville Tunnicliffe Wilson Lancaster University, Lancaster, England, UK,
g.tunnicliffe-wilson@lancaster.ac.uk

Włodek Tych Lancaster Environment Centre, Lancaster University, Lancaster, UK,
w.tych@lancaster.ac.uk

Thorsten Wagener Department of Civil and Environmental Engineering, The
Pennsylvania State University, University Park, PA 16802, USA,
thorsten@engr.psu.edu

Eric Walter Laboratoire des Signaux et Systèmes, CNRS–SUPELEC–Univ Paris-
Sud, 91192 Gif-sur-Yvette, France, Eric.Walter@lss.supelec.fr

Liuping Wang School of Electrical and Computer Engineering, RMIT University,
Melbourne, Australia, liuping.wang@rmit.edu.au

Markus Waser Institute for Mathematical Methods in Economics, Vienna Univer-
sity of Technology, Vienna, Austria, markus.waser@tuwien.ac.at

Erik Weyer Department of Electrical and Electronic Engineering, The University
of Melbourne, Parkville, VIC 3010, Australia, ewey@unimelb.edu.au

mailto:khusro.saleem@nicta.com.au
mailto:s.bellie@unsw.edu.au
mailto:sbellie@ucdavis.edu
mailto:p.j.smith@lancaster.ac.uk
mailto:v.solo@unsw.edu.au
mailto:soncini@elet.polimi.it
mailto:hans.stigter@wur.nl
mailto:torsten.soderstrom@it.uu.se
mailto:c.taylor@lancaster.ac.uk
mailto:g.tunnicliffe-wilson@lancaster.ac.uk
mailto:w.tych@lancaster.ac.uk
mailto:thorsten@engr.psu.edu
mailto:Eric.Walter@lss.supelec.fr
mailto:liuping.wang@rmit.edu.au
mailto:markus.waser@tuwien.ac.at
mailto:ewey@unimelb.edu.au


Contributors xxvii

H.S. Wheater Imperial College London, London SW7 2AZ, UK,
h.wheater@imperial.ac.uk

Dae Keun Yoo RMIT University, Victoria 3000, Australia, dkyo@hotmail.com

Peter C. Young Centre for Research on Environmental Systems and Statistics, Uni-
versity of Lancaster, Lancaster, UK, p.young@lancaster.ac.uk; Fenner School of
Environment and Society, Australian National University, Canberra, Australia

mailto:h.wheater@imperial.ac.uk
mailto:dkyo@hotmail.com
mailto:p.young@lancaster.ac.uk


Part I
Theory of System Identification



Chapter 1
How Accurate Can Instrumental Variable
Models Become?

Torsten Söderström

1.1 Introduction

Instrumental variable (IV) methods for system identification has been a popular
technique for several decades. It has its roots in statistics, [8], and early applications
appeared in econometrics. Some early works in the engineering literature include
[6, 7, 20]. Some more recent papers in the field are, for example, [2, 3, 19]. Within
(control) engineering, many papers and other publications by Peter Young has been
pioneering, see [21–25] to mention just a few out of many more. A more compre-
hensive list of his many publications in the field appear elsewhere. The IV method
will be presented in the chapter along with its user parameters. It has low compu-
tational complexity, comparable to the least squares (LS) method, but in contrast
to the LS method it has the ability to give consistent parameter estimates for very
arbitrary type of disturbances.

The accuracy of the estimated IV model, measured for example in terms of
the covariance matrix of the parameter estimates, can be greatly influenced by the
choice of the user parameters in the algorithm. In many cases this influence is stud-
ied using Monte Carlo simulations, which no doubt is a very useful tool. The aim of
this chapter though is to give a theoretical treatment of the accuracy aspects.

Based on discussions with the editors, the presentation will be tutorial in style. Is
largely based on work by the author and colleagues, see for example [11, 14–16, 18].
Basic key results are given with derivations and proofs. Linked to the tutorial style,
several extensions are presented as exercises for the reader. A reader who prefers
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4 T. Söderström

the challenges is thereby welcome to test and generalize the ideas from the basic
case. For those who like to know the details more directly, proper references are
also provided.

A general background on system identification can be found in many textbooks,
for example, [4, 12]. These books as well as [11, 24] contain many references to the
work by various authors on instrumental variable estimators.

1.2 Instrumental Variable Methods

1.2.1 The Least Squares Method

The least squares (LS) method is applicable to models of the form

A(q−1)y(t)= B(q−1)u(t)+ ε(t), (1.1)

with

A(q−1) = 1 + a1q
−1 + · · · + anaq−na,

B(q−1) = b1q
−1 + · · · + bnbq−nb.

(1.2)

Here y(t) denotes the discrete-time output at time t , u(t) is the input, and ε(t) de-
notes an equation error, which can describe disturbances or unmodelled dynamics.
Further q−1 is the backward shift operator q−1, so that q−1u(t)= u(t − 1).

The model (1.1) can be equivalently expressed as the linear regression model

y(t)= ϕT (t)θ + ε(t), (1.3)

where the regressor vector ϕ(t) and the parameter vector θ are given by

ϕT (t) = (−y(t − 1) . . . −y(t − na) u(t − 1) . . . u(t − nb)), (1.4)

θ = (a1 . . . ana b1 . . . bnb)
T . (1.5)

Assume that data u(1), y(1), . . . , u(N), y(N) are available. The LS estimate θ̂ of
the parameter vector θ is defined as the minimizing argument of the sum of squared
equation errors VN(θ)= 1

N

∑N
t=1 ε

2(t). By setting the gradient of VN(θ) to zero we
get the so-called normal equations

[
1

N

N∑

t=1

ϕ(t)ϕT (t)

]

θ̂ = 1

N

N∑

t=1

ϕ(t)y(t). (1.6)

A parameter estimate θ̂ is said to be consistent if

θ̂ → θo as N → ∞ (with prob 1) (1.7)
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where θo is the ‘true’ parameter vector, which is assumed to describe the data, and
this is a desirable property. When the data set is large enough, the obtained model
is then arbitrarily accurate. Let us now examine the LS estimate for consistency.
Consider a linear system of an arbitrary order and write it as

Ao(q
−1)y(t)= Bo(q−1)u(t)+ v(t) (1.8)

or, equivalently

y(t)= ϕT (t)θo + v(t). (1.9)

Assume that v(t) is a stationary stochastic process that is independent of the input
signal. The estimation error becomes

θ̂ − θo =
[

1

N

N∑

t=1

ϕ(t)ϕT (t)

]−1[
1

N

N∑

t=1

ϕ(t)y(t)−
{

1

N

N∑

t=1

ϕ(t)ϕT (t)

}

θo

]

=
[

1

N

N∑

t=1

ϕ(t)ϕT (t)

]−1[
1

N

N∑

t=1

ϕ(t)v(t)

]

. (1.10)

Under weak conditions, the sums in (1.10) tend to the corresponding expected val-
ues as the number of data points, N , tends to infinity, [4, 12]. Hence θ̂ is consistent
if

E
{
ϕ(t)ϕT (t)

}
is nonsingular, (1.11)

E {ϕ(t)v(t)} = 0. (1.12)

The condition (1.11) is satisfied in most cases. There are a few exceptions:

• The input has a spectral density that is nonzero at less than nb frequencies (u(t)
is not persistently exciting of order nb).

• The data are completely noise-free (v(t) ≡ 0 and the model order is chosen too
high (which implies that Ao(q−1) and Bo(q−1) have common factors).

• The input u(t) is generated by a linear low order feedback from the output.

The condition (1.12) is much more restrictive than (1.11). In case the disturbance
v(t) is white noise it will be independent of all the past data values and (1.12) will
be satisfied. If v(t) is correlated noise, it will be correlated with the delayed output
values present in ϕ(t) and (1.12) will be violated. To get consistent and accurate
parameter estimates we must, hence, require that v(t) in (1.8) is an uncorrelated
disturbance.

The LS method is a simple method for system identification that has some at-
tractive properties. The estimate is easy to compute and has good robustness prop-
erties. The restrictive consistency properties are the main drawback and can be
seen as the main reason for considering more advanced methods, including the IV
method.
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1.2.2 The Instrumental Variable Method

Instrumental variable methods can be seen as generalizations of the LS estimates.
The main idea can be said to modify the estimate so that it is consistent for an
arbitrary disturbance. We consider ARX models (1.1), (1.2). Next we modify the
normal equations of (1.6) into

[
1

N

N∑

t=1

z(t)ϕT (t)

]

θ̂ =
[

1

N

N∑

t=1

z(t)y(t)

]

, (1.13)

where z(t) is a vector of instrumental variables. This vector can be chosen in dif-
ferent ways (as exemplified below) subject to certain conditions guaranteeing the
consistency of the estimate (1.13). These conditions will be specified later. Evi-
dently the IV estimate defined by (1.13) is a generalization of the LS estimate: For
z(t) = ϕ(t), (1.13) reduces to (1.6). The basic IV method can be generalized in
different ways.

The extended IV estimates of θo are obtained by generalizing (1.13) in two di-
rections. Such IV estimation methods allow for an augmented z(t) vector (i.e. one
can have dim z(t) > dimϕ(t)), as well as a prefiltering of the data. The extended IV
estimate is given by

θ̂ = arg min
θ

∥∥∥∥∥

[
N∑

t=1

z(t)F (q−1)ϕT (t)

]

θ −
[
N∑

t=1

z(t)F (q−1)y(t)

]∥∥∥∥∥

2

Q

. (1.14)

Here z(t) is the IV vector of dimension nz≥ dim θ , F(q−1) is an asymptotically sta-
ble (pre-)filter, and ‖x‖2

Q = xTQx, whereQ is a positive definite weighting matrix.

When F(q−1)≡ 1 and nz= nθ , (Q= I ), the basic IV estimate (1.13) is obtained.
Note that the estimate (1.14) is the weighted least squares solution of an overdeter-
mined linear system of equations. The solution can readily be found to be

θ̂ = (RTNQRN)−1RTNQrN (1.15)

where

RN = 1

N

N∑

t=1

z(t)F (q−1)ϕT (t), rN = 1

N

N∑

t=1

z(t)F (q−1)y(t) (1.16)

even if this is not the numerically best way to implement it.
Another generalization is to model multi-input multi-output (MIMO) systems.

We write these as

y(t)=ΦT (t)θ + ε(t) (1.17)
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where now y(t) is a column vector and Φ(t) a regressor matrix of the form

ΦT (t) =
⎛

⎜
⎝

ϕT (t) 0
. . .

0 ϕT (t)

⎞

⎟
⎠ , (1.18)

ϕT (t) = (−yT (t − 1) . . . −yT (t − na) uT (t − 1) . . . uT (t − nb)) . (1.19)

The extended IV estimate in the MIMO case is quite similar to (1.14). It now holds

θ̂ = arg min
θ

∥∥∥∥∥

[
N∑

t=1

z(t)F (q−1)ΦT (t)

]

θ −
[
N∑

t=1

z(t)F (q−1)y(t)

]∥∥∥∥∥

2

Q

. (1.20)

1.2.3 Consistency Analysis and Conditions

Consider the extended IV estimate (1.14) applied to a system of the form (1.9).
Assume that the data are stationary, z(t) uncorrelated with the disturbances v(s) for
all t and s. We then have, similarly to (1.10)

θ̂ − θo = (RTNQRN)
−1(RTNQrN −RTNQRNθo)

= (RTNQR)
−1RTNQ

1

N

N∑

t=1

z(t)F (q−1){y(t)− ϕT (t)θo}

→ (RTQR)−1RTQ E
{
z(t)F (q−1)v(t)

}= 0, (1.21)

where

R
Δ= E
{
z(t)ϕT (t)

}
(1.22)

is assumed to have full rank. For any reasonable choice of instrumental vector z(t)
this rank condition is satisfied for almost any (but not all) systems. We can hence say
that the estimate θ̂ is generically consistent. We see that the consistency conditions
(1.11), (1.12) in the general case become here

R must have full column rank (1.23)

E
{
z(t)F (q−1)v(t)

}= 0. (1.24)

For any reasonable choice of instrumental vector z(t) the rank condition (1.23) is
satisfied for almost any (but not all) systems. We can hence say that the estimate θ̂
is generically consistent. There are though counter-examples based on certain com-
binations of input spectrum and system parameter θ that lead to a singular matrix R.
Details are given in [11, 12].
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1.2.4 User Choices. Examples of Instrumental Vectors

The IV estimator contains some user parameters, in addition to the choice of model
order. These user parameters are the following:

1. A first choice is the IV vector z(t). This choice concerns both its dimension, and
how the elements are formed from the measured data. As an example of an IV
vector, consider the case

z(t)= (−η(t − 1) . . . −η(t − na) u(t − 1) . . . u(t − nb))T (1.25)

where the signal η(t) is obtained by filtering the input,

C(q−1)η(t)=D(q−1)u(t). (1.26)

The coefficients of the polynomials C and D can be chosen in many ways. One
special choice is to let C and D be a priori estimates of A and B , respectively.
Another special case is C(q−1)≡ 1, D(q−1)≡ −q−nb, in which case z(t) con-
sists of just delayed inputs. The choice of IV vector can have a significant impact
on the quality of the estimate. Due to the consistency conditions (1.23), (1.24),
it can be said that the IV vector z(t) should be well correlated with the regressor
ϕ(t), and uncorrelated with the disturbances v(t).

2. A second user choice is the prefilter F(q−1).
3. The third user choice applies when the system of IV equations is overdetermined,

that is when the IV vector has higher dimension than the regressor vector. In that
case the weighting matrix Q of the equations, see (1.15), need to be chosen.

Vectors like z(t) in (1.25) above, and more generally those whose elements are
obtained by filtering and delaying the input signal will, for open loop operation,
be independent of the disturbances and mostly also satisfy the rank condition on
R. For closed loop operations some modifications can be done to achieve consis-
tent estimates provided as external signal, independent of the disturbances, can be
measured.

Example 1.1 Consider a system operating in closed loop, where the governing equa-
tions are

y(t) = ϕT (t)θ + v(t), (1.27)

u(t) = − S(q
−1)

R(q−1)
y(t)+ T (q−1)

R(q−1)
r(t), (1.28)

where r(t) is a measurable external signal, and the polynomials R, S and T may not
be known. Construct an IV estimator for identifying θ based on the measurements
of the signals y(t), u(t) and r(t).

Hint. Details for such a construction are given in [13].
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1.3 How Accurate are IV Estimates?

The purpose of this section is to analyze the covariance matrix of the parameter error
θ̂ − θo. Trivially, the error will depend on the disturbances, and it will be necessary
to introduce some assumptions about the statistical properties of the disturbances. It
should be emphasized that these assumptions are not needed to apply the IV method,
but only when we want to analyze and characterize the statistical quality of the
estimates.

For this aim, we assume that the disturbance v(t) in (1.9) is a stationary stochastic
process, and introduce an innovations description

v(t)=H(q−1)e(t), Ee(t)e(s)= λ2δt,s , H(q−1)= 1 +
∞∑

k=1

hkq
−k.

(1.29)
Note that this is equivalent to a spectral factorization of the disturbance spectrum
φv(ω). We assume that coefficients hk decay at an exponential rate, that is, there is
a constant C, and a number α, 0 ≤ α < 1, such that

|hk| ≤ Cαk, ∀k ≥ 0. (1.30)

1.3.1 The Basic IV Estimator

Consider the basic IV estimator (1.13). The normalized parameter error can be writ-
ten as,

√
N
(
θ̂ − θo

)
=
[

1

N

N∑

t=1

z(t)ϕT (t)

]−1[
1√
N

N∑

t=1

z(t)v(t)

]

. (1.31)

Under weak assumptions, the underlying signals are ergodic, [4, 12], and the nor-
malized sum converges to its expected value, cf. (1.22)

1

N

N∑

t=1

z(t)ϕT (t)→ E
{
z(t)ϕT (t)

} Δ=R, N → ∞. (1.32)

Further, one can show that the remaining factor in (1.31) is asymptotically Gaussian
distributed in the sense

1√
N

N∑

t=1

z(t)v(t)
dist−→ N (0, S), N → ∞, (1.33)

S = lim
N→∞ E

[
1√
N

N∑

t=1

z(t)v(t)

][
1√
N

N∑

s=1

z(s)v(s)

]T
. (1.34)
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Expressions for the covariance matrix S in various situations will be given below. It
follows from Slutsky’s theorem that the normalized parameter error is also asymp-
totically Gaussian distributed, [12], as

√
N
(
θ̂ − θo

) dist−→ N (0,PIV), PIV =R−1SR−T . (1.35)

Remark 1.1 Recall the consistency condition (1.23). If R is almost singular (more
precisely, R has a large condition number), the estimate is almost not consistent.
In (1.35) this shows up in that R−1 and hence PIV will have large elements.

To characterize the matrix S in (1.35), we have in particular:

Lemma 1.1 Assume that

1. z(t) and v(s) are jointly Gaussian,
2. The signals z(t) and v(t) are (at least) partly independent in the sense

E {z(t)v(s)} = 0 if either t ≤ s or t ≥ s. (1.36)

Then

S = λ2E
{[H(q−1)z(t)][H(q−1)z(t)]T }. (1.37)

Proof See Appendix A.1. �

Remark 1.2 If the system operates in open loop, and the vector of instruments is
formed from filtered and delayed input values, for example as in (1.25), then the
equality in (1.36) holds for all t and s.

Remark 1.3 In an errors-in-variables setting, [9], the case (1.36) may appear. As-
sume

y(t) = y0(t)+ ỹ(t), (1.38)

u(t) = u0(t)+ ũ(t), (1.39)

v(t) = A(q−1)ỹ(t)−B(q−1)ũ(t), (1.40)

where ỹ(t) and ũ(t) are independent white noise sequences, of zero mean and vari-
ances λ2

y and λ2
u, respectively. Further, y(t), u(t) denote the measured variables,

while y0(t)= ϕT0 (t)θ0. Set n= max(na,nb). Then a possible instrumental vector is

z(t)= ϕ(t − n)+ ϕ(t + n) (1.41)

for which the condition (1.36) applies.

Remark 1.4 The condition (1.36) is fairly general. A main point of IV estimators
is that they should work for quite general disturbances. It is therefore hard to con-
struct realistic conditions on the instrumental vector and the disturbances that are
substantially weaker than (1.36).
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Another result is the following, where we drop the assumption on Gaussian sig-
nals, and instead require the instrumental vector to depend linearly on the data.

Lemma 1.2 Assume that z(t) is a linear process in the sense (μ is an arbitrary
index)

zμ(t) =
∞∑

i=0

g
(μ)
i e(t − i), (1.42)

v(t) =
∞∑

i=0

hie(t − i) (1.43)

and that

E
{
z(t)v(s)

}= 0 if either t ≤ s or t ≥ s. (1.44)

Then

S = λ2E
{[H(q−1)z(t)][H(q−1)z(t)]T }. (1.45)

Proof See Appendix A.2. �

1.3.2 Extensions

We now consider various extensions of the simple and basic case treated above.

Exercise 1.1 Consider the extended IV estimator (1.15). Show that (1.35) general-
izes to

√
N(θ̂ − θo) dist−→ N (0,PIV) (1.46)

with the covariance matrix PIV given by

PIV = λ2(RTQR)−1RTQSQR(RTQR)−1, (1.47)

S = E
{[F(q−1)H(q−1)z(t)][F(q−1)H(q−1)z(t)]T }. (1.48)

Hint. For a derivation, see [11, 12].

Exercise 1.2 Generalize the result of Exercise 1.3.1 to the MIMO case. Show that
the result is as in (1.46), (1.47), but that (1.48) has to be modified. In this case, write
the innovations form for the disturbances as

v(t)=H(q−1)e(t), H(0)= I, E
{
e(t)eT (s)

}=Λδt,s . (1.49)
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Further, introduce matrix coefficients {Ki}∞i=0 by

∞∑

i=0

Kiz
i = F(z)H(z). (1.50)

Then show that in this case

S = E

{[ ∞∑

i=0

Z(t + i)Ki
]

Λ

[ ∞∑

j=0

KTj Z
T (t + j)

]}

. (1.51)

Hint. A derivation of the result appears in [12].

Remark 1.5 There are cases when an IV estimator is based on higher-order statis-
tics, and then the instrumental vector z(t) is no longer a linear function of the
measured input-output data. Such examples appear in errors-in-variables problems.
Consider again the situation given in (1.38)–(1.40). Assume that the noise-free in-
put u0(t) is independent of the noise sequences ũ(t), ỹ(t), and that these noises
are white and Gaussian. Assume further that the noise-free input u0(t) has nonzero
third-order moments

E
{
u3

0(t)
}= μu 
= 0. (1.52)

Then a possible instrumental vector can be constructed as

z(t)= (u2(t − 1) . . . u2(t − na − nb))T . (1.53)

The general analysis leading to (1.46), (1.47) is still valid. To derive an explicit
expression for S becomes fairly complicated, as many high order moments of the
data are involved. Furthermore, in this case the instruments z(t) are not independent
of the noise v(t), which also complicates the analysis. A detailed treatment can be
found, for example, in [18].

1.4 How to Get Optimal Accuracy

1.4.1 General Results

By user choices, such as F(q−1), z(t) and Q, the covariance matrix PIV can be
affected. In this section we discuss how to choose these variables so that the co-
variance matrix PIV of the parameter estimates becomes small, or even as small as
possible.

First there is a result on choosing the weighting matrix Q optimally for a given
instrumental vector z(t) and a fixed prefilter F(q−1).
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Lemma 1.3 Consider the covariance matrix PIV = PIV(Q) given by (1.47), where
the dependence on Q is highlighted. Then it holds

P(Q)≥ P(S−1) (1.54)

(in the sense that P(Q)≥ P(S−1) is a nonnegative definite matrix).

Proof See Appendix A.3. �

Remark 1.6 The condition Q = S−1 is sufficient, but not always necessary to get
optimal accuracy. An example in a particular IV situation, where even the choice of
no weighting (Q= I ) gives optimal accuracy, is given in [10].

Next we discuss the choice of the instrumental vector and treat first the length
of the vector z(t). Of course, the dimension of z(t) must be at least as large as the
dimension of the regressor vector ϕ(t), as otherwise the matrix R will not have full
column rank, and the consistency condition on R would not be fulfilled. Does it
pay to make the dimension of z(t) large? The answer depends on what weighting is
applied.

Lemma 1.4 Consider the general IV estimator (1.15), with the instrumental vector
z(t), and assume that the weighting is taken optimally as Q= S−1. Consider also
an augmented IV estimator with the instrumental vector taken as

z(t)=
(
z(t)

z̃(t)

)
(1.55)

leading to

R =
(
R

R̃

)
, S =

(
S S12
S21 S22

)
. (1.56)

Let the weighting be taken as

Q= S−1
(1.57)

Then it holds that

P
(z)
IV ≥ P (z)IV . (1.58)

Further, equality in (1.58) applies if and only if the columns of R lies in the range
space of the left block of S,

R ∈ R

((
S

S21

))
. (1.59)

Proof See Appendix A.4. �

The lemma means that it pays to include additional instrumental vector elements
provided that optimal weighting is applied. Next we provide an exercise that shows
that the assumption of optimal weighting is essential.
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Exercise 1.3 Consider the ARMA(1,1) process

y(t)+ ay(t − 1)= e(t)+ ce(t − 1) (1.60)

and estimation of the AR parameter a using instrumental variables. Hence, the re-
gressor vector will become a scalar, ϕ(t)= −y(t−1). Consider, and compare, three
different IV vectors.

1. z1(t)= −y(t − 2).
2. z2(t)= −y(t − 3).
3. z3(t)= (−y(t − 2) −y(t − 3) )T , with no weighting, that is Q= I .

Evaluate the variance PIV(a) in the three cases. Use c = 0 for simplicity, and show
that

PIV(â1) < PIV(â3) < PIV(â2). (1.61)

As the variance of â3 is larger than that of â1, the accuracy is not improved when
augmenting z1(t) to z3(t).

Hint. Expressions for the variances are given in Appendix A.5.

For further optimization we have the following result.

Lemma 1.5 Consider the general extended IV estimator, with optimal weighting.
Then the covariance matrix PIV has a lower bound

PIV ≥ λ2E
{[H−1(q−1)ϕ0(t)][H−1(q−1)ϕT0 (t)]

}−1 Δ= P opt
IV . (1.62)

The lower bound is achieved if

F(q−1)=H−1(q−1), z(t)= ϕ0(t) (Q irrelevant). (1.63)

Above ϕ0(t) denotes the “noise–free” part of ϕ(t)

ϕ0(t) = E {[ϕ(t)|u(t − 1), u(t − 2), . . .]}
= (−y0(t − 1) . . . −y0(t − na) u(t − 1) . . . u(t − nb))T , (1.64)

where y0(t), the noise–free part of the output, is given by

A(q−1)y0(t)= B(q−1)u(t). (1.65)

Proof See Appendix A.6. �

1.4.2 A Multistep Algorithm

Even if the optimal choice of instruments and prefilter in (1.63) cannot be applied
in practice (since H(q−1) and ϕ̃(t) are not known, but rather the goal of the es-
timation), a multistep algorithm can be constructed where the quantities in (1.63)
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are substituted by estimated values. Such an algorithm turns out to give as accu-
rate result as the truly optimal IV method, which in turn often is comparable to the
accuracy that can be achieved with a prediction error method (PEM).

When constructing a multistep algorithm we first need to specify a model struc-
ture that also takes the noise correlation into account. Let it be given by

y(t)= ϕT (t)θ +H(q−1; θ, η)e(t) (1.66)

where η is a vector of some additional parameters. We will give two typical exam-
ples of the parameterization of the noise filter H(q−1) later, see Example 1.2.

The multistep algorithm is as follows.

1. Use any IV method to get a first estimate of θ . Denote the result θ̂1.
2. Use the model structure (1.66) and set θ = θ̂1. Estimate η using any method

producing a consistent estimate. Denote the result η̂1.
3. Apply the optimal IV method, as given by (1.63), using H(q−1) = H(q−1;
θ̂1, η̂1). Denote the result θ̂2.

4. Possibly repeat Step 2 using θ = θ̂2. Denote the result η̂2.

The last two steps may be further repeated a number of times.

Remark 1.7 The multistep algorithm is essentially the same as Young’s refined IV
method, [25]. In that method, the starting point is rather the likelihood equations.
Designing an iterative scheme for solving these equations for the so called Box-
Jenkins model, cf. (1.75), leads to a repeated use of Steps 3 and 4 in the multistep
algorithm.

1.5 Influence of Noise Model Parameterization and Analysis
of the Multistep Algorithm

The multistep algorithm is analyzed in [5, 11, 15], and the following result is de-
rived.

Lemma 1.6 The following results apply.

(a) The estimates θ̂1, η̂1, θ̂2, η̂2 are consistent and Gaussian distributed.
(b) The asymptotic normalized covariance matrix (for large values of N ) of the

estimate θ̂2 is equal to that of the optimal IV estimate of Lemma 1.5

N cov(θ̂2)= P opt
IV . (1.67)

(c) Assume that noise filter parameterization fulfills

H(q−1; θ̂ , η̂)=A(q−1)H(q−1; θ̂ , η̂) (1.68)

and that H(q−1) does not depend on the parameter vector θ . Assume further
that a prediction error (or any other statistically efficient) estimator is used in
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Step 2. Then, asymptotically as N → ∞, the normalized covariance matrices
fulfill

N cov(η̂2)=N cov(η̂1) (1.69)

and

N cov

(
θ̂2
η̂1

)
=N cov

(
θ̂PEM
η̂PEM

)
. (1.70)

(d) If the noise parameterization is as in (1.68) but H(q−1) does depend on the
parameter vector θ , then the results are instead that

N cov(η̂2)≤N cov(η̂1) (1.71)

and

N cov

(
θ̂2
η̂1

)
≤N cov

(
θ̂PEM
η̂PEM

)
. (1.72)

The inequalities (1.71), (1.72) are to be interpreted in a matrix sense, as in
(1.54).

Remark 1.8 The relation (1.69) means that (for large enough values of N ) it is
enough to take three steps of the algorithm. The accuracy of the parameter estimates
will not improve by taking also further steps.

Let us now consider two typical cases of noise filter parameterizations.

Example 1.2 Consider first an ARMAX model

A(q−1)y(t)= B(q−1)u(t)+C(q−1)e(t). (1.73)

Then η will consist of the polynomial coefficients of C(q−1). As in this case

H(q−1)= C(q−1)=A(q−1)H(q−1) (1.74)

we find that in this case H(q−1) does depend on θ .
Next consider the so called ‘Box-Jenkins’ (BJ) model, made popular in [1],

y(t)= B(q−1)

A(q−1)
u(t)+ C(q−1)

D(q−1)
e(t). (1.75)

In this case the parameter vector η consists of the polynomial coefficients of both
C(q−1) and D(q−1). Further in this case we have instead of (1.74),

H(q−1)= A(q−1)C(q−1)

D(q−1)
=A(q−1)H(q−1) (1.76)

so in this case the filter H(q−1) does not depend on θ .
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The crucial difference between the two models (1.73) and (1.75) is that the dy-
namics from the input and from the noise are described with independent parameters
in the Box-Jenkins model (1.75), while they are described with common poles in the
ARMAX model (1.73). It is worth stressing that any finite-order linear model can
be transformed into any of these two model forms.

So, what model parameterization of the noise dynamics should be chosen? Fur-
ther, will use of a PEM give more accurate estimates than an optimal IV method?
Apparently, two possible model candidates are the ARMAX structure, and the
BJ structure. There are, in the opinion of this author, no clear cut answer which
one to prefer. Rather, we provide a number of comments and aspects on this
choice.

• The theory has its limitations. For example, an appropriate model structure is
assumed for all results on the covariance matrix of the parameter estimates, such
as (1.35). The theory also concerns the asymptotic case, N → ∞. How large N
should be for the results to ‘apply’, can vary from case to case.

• Any finite-order linear system can be transformed to an ARMAX structure as
well as to a BJ structure.

• When applying the multistep algorithm to achieve the accuracy given by P opt
IV , it

does not matter in what way the noise filter is estimated, as long as a consistent
estimate of H(q−1) is found, cf. (1.67).

• Different choices of the model parameterization of H(q−1) may lead to different
computational complexities when deriving a consistent estimate of this filter.

• When applying a PEM, the use of BJ has some advantages from the consistency
point of view. To get consistent parameter estimates of θ , the model parameteri-
zation of the noise dynamics must cover the ‘true filter’ when an ARMAX model
is chosen, but this is not required for consistency when a BJ model is used.

• If there are disturbances ‘early in the process’ (refer, for example, to process noise
in a state space description), then there are common poles in the dynamics from
the input to the output and in the dynamics from the noise innovations e(t) to
the output. If there are common poles in the dynamics from u(t) and e(t) and a
PEM is applied, then best accuracy is achieved if this fact is exploited, that is, an
ARMAX structure is employed.

• If there are no common poles in the dynamics from u(t) and e(t), and a PEM
is applied, then an ARMAX model structure will have higher order than a BJ
structure, and the estimated model has to be tested for pole-zero cancellations.
This can be done in a statistically optimal way, see [17], and then the use of an
ARMAX structure leads to the same accuracy as a BJ structure.

Consider for illustration the following simple example.

Exercise 1.4 The dynamics is a first order ARMAX system

(1 + aq−1)y(t)= bq−1u(t)+ (1 + cq−1)e(t). (1.77)
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The input signal is assumed to be white noise, with zero mean and variance σ 2.
The white noise source e(t) is assumed to have zero mean and variance λ2. Ap-
ply estimators and evaluate the asymptotic normalized covariance matrices for the
following cases.

(a) A prediction error method is applied with an ARMAX model structure. Show
that this gives the covariance matrix

PARMAX
PEM = λ2

σ 2

(1 − a2)(1 − ac)2(1 − c2)

[b2 + (λ2/σ 2)(a − c)2]

×
⎛

⎝
1

1−c2 − bc

(1−ac)(1−c2)

− bc

(1−ac)(1−c2)

b2(1−a2c2)+(λ2/σ 2)(c−a)2(1−c2)

(1−a2)(1−ac)2(1−c2)

⎞

⎠ . (1.78)

Hint. See [12] for a derivation.
(b) A PEM is applied with a BJ model structure. (This means that in the estimation

we do not make any assumption of the input and noise dynamics to have a joint
pole.) Show that the covariance matrix fulfills

PBJ
PEM = λ2

σ 2

(1 − a2)(1 − ac)2(1 − c2)

b2

⎛

⎝
1

1−c2 − bc

(1−ac)(1−c2)

− bc

(1−ac)(1−c2)

b2(1+ac)
(1−a2)(1−ac)(1−c2)

⎞

⎠ ,

(1.79)

PBJ
PEM−PARMAX

PEM =
(
λ2

σ 2

)2
(c− a)2(1 − a2)(1 − ac)2
b2[b2 + (λ2/σ 2)(c− a)2]

(
1

−bc
1−ac

)(
1 −bc

1−ac
)≥ 0.

(1.80)
(c) The optimal IV method is applied. Show that the covariance matrix will be

PIV = PBJ
PEM. (1.81)

This exercise hence illustrates a case where using a PEM with an ARMAX model
structure gives somewhat better accuracy than the optimal IV method.

Appendix: Proofs and Derivations

A.1 Proof of Lemma 1.1

Using the assumption on joint Gaussian distribution we can apply the general rule
for product of Gaussian variables

E{x1x2x3x4} = E{x1x2}E{x3x4} + E{x1x3}E{x2x4} + E{x1x4}E{x2x3}. (1.82)



1 Accuracy of IV Models 19

Using the result (1.82) in (1.34) leads to

S = lim
N→∞

1

N

N∑

t=1

N∑

s=1

{[
E
{
z(t)zT (s)

}][
E
{
v(t)v(s)

}]

+ [E{z(t)v(s)}][E{zT (s)v(t)}]}

= lim
N→∞

N∑

τ=−N

(
1 − τ

N

){
Rz(τ)rv(τ )+ rzv(τ )rTzv(−τ)

}
. (1.83)

Recall that the covariance function rv(τ ) decays exponentially with τ . Therefore we
can write

∥∥
∥∥∥

lim
N→∞

1

N

N∑

τ=−N
|τ |Rz(τ)rv(τ )

∥∥
∥∥∥

≤ lim
N→∞

1

N

N∑

τ=0

2τCατ = 0 (1.84)

for some |α|< 1. Using this result, we get

S =
∞∑

τ=−∞

[
Rz(τ)rv(τ )+ rzv(τ )rTzv(−τ)

]
. (1.85)

Now use the conventions

h0 = 1, hi = 0 for i < 0 (1.86)

The assumption (1.36) now implies that

rzv(τ )r
T
zv(−τ)= 0 ∀τ (1.87)

as at least one of the factors is zero. Therefore

S =
∞∑

τ=−∞
Rz(τ)rv(τ )=

∞∑

τ=−∞

[

Rz(τ)λ
2

∞∑

i=0

hihi+τ

]

= λ2
∞∑

τ=−∞

∞∑

i=−∞
hihi+τE

{
z(t + τ)zT (t)}

= λ2
∞∑

τ=−∞

∞∑

i=−∞
hihi+τE

{
z(t − i)zT (t − i − τ)}

= λ2E

{ ∞∑

i=−∞
hiz(t − i)

∞∑

τ=−∞
hi+τ zT (t − i − τ)

}
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= λ2E

{( ∞∑

i=−∞
hiz(t − i)

)( ∞∑

k=−∞
hkz

T (t − k)
)}

= λ2E
{[
H(q−1)z(t)

][
H(q−1)z(t)

]T }
(1.88)

which is (1.37).

A.2 Proof of Lemma 1.2

Using the definitions, one find that an arbitrary element of the matrix S is given by

Sμ,ν = lim
N→∞

1

N

N∑

t=1

N∑

s=1

E

{ ∞∑

k=0

gk(μ)e(t − k)
∞∑

i=0

hie(t − i)

×
∞∑

j=0

gj (ν)e(t − j)
∞∑

�=0

h�e(t − �)
}

. (1.89)

To proceed we need to evaluate the expectation of products of the white noise se-
quence. Set me = E{e4(t)}. As e(t) has zero mean, the expected value of a product
of four factors of the noise is nonzero if either the time arguments are pairwise equal,
or all are equal. This principle gives

E {e(t − k)e(t − i)e(t − j)e(t − �)}
= λ4δi,kδj,� + λ4δt−k,s−j δt−i,s−�

+ λ4δt−k,s−�δt−i,s−j + (me − 3λ4)δi,kδj,�δt−k,s−j . (1.90)

Inserting this into (1.89) leads to

Sμ,ν = λ4 lim
N→∞

N∑

τ=−N

(
1 − |τ |

N

)∑

j

g
(ν)
j g

(μ)
τ+j

∑

�

hτ+�h�

+ λ4 lim
N→∞

N∑

τ=−N

(
1 − |τ |

N

)∑

j

g
(ν)
j hτ+j

∑

�

h�g
(μ)
τ+�

+ (me − 3λ4) lim
N→∞

N∑

τ=−N

∑

�

hτ+�gj �(ν)g(μ)τ+�h�

Δ= T1 + T2 + T3. (1.91)
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Comparing the calculations in the proof of Lemma 1.3.1, we find that the first term
in (1.91) is precisely

T1 = E
{[H(q−1)z(t)][H(q−1)z(t)]T }. (1.92)

Further, the second term turns out to be

T2 =
∞∑

τ=−∞
rzv(τ )r

T
zv(−τ) (1.93)

which vanishes due to the assumption (1.44).
The last term can be written as

T3 = (me − 3λ4)
∑

τ

∑

�

h�hτ+�gj �(ν)g(μ)τ+�

= (me − 3λ4)

[∑

k

hkg
(μ)
k

][∑

j

hkg
(ν)
j

]
. (1.94)

However, we know that

E zμ(t)v(t) = E

[∑

k

hke(t − k)
][∑

j

g
(μ)
j e(t − j)

]

= λ2
∑

k

∑

j

hkg
(μ)
j δj,k = λ2

∑

k

hkg
(μ)
k = 0. (1.95)

This implies that

T3 = 0 (1.96)

and the lemma is proven.

A.3 Proof of Lemma 1.3

We first write from (1.47)

P(S−1)= λ2(RT S−1R
)−1
. (1.97)

The inequality (1.54) can equivalently be written as

λ2(RTQR
)−1
RTQSQR

(
RTQR

)−1 ≥ λ2(RT S−1R
)−1 (1.98)

which can be rewritten as
(
RTQR

)(
RTQSQR

)−1(
RTQR

)≤RT S−1R. (1.99)



22 T. Söderström

This in turn follows from the theory of partitioned matrices, cf. Lemma A.3 of [12],
as

(
RT SR RTQR

RTQR RT SQQR

)
=
(
RT S−1

RTQ

)
S
(
S−1R QR

)≥ 0. (1.100)

A.4 Proof of Lemma 1.4

Using the theory of partitioned matrices, see for example Lemma A.2 in [12] and
(1.56)

[
P
(z)
IV /λ

2]−1 = RT S−1
R

= (RT R̃T )
(
S S12
S21 S22

)−1(
R

R̃

)

= (RT R̃T )
[(
S−1 0

0 0

)
+
(−S−1S12

I

)

× (S22 − S21S
−1S12

)−1 (−S21S
−1 I

)
](
R

R̃

)

= RT S−1R

+ (−RT S−1S12 + R̃T )(S22 − S21S
−1S12

)−1(−S21S
−1R + R̃)

≥ RT S−1R = [P (z)IV /λ
2]−1

. (1.101)

Equality in (1.101) applies if and only if

−S21S
−1R + R̃ = 0. (1.102)

The condition (1.59) is equivalent to

R = Sα, R̃ = S21α (1.103)

for some matrix α. As S is nonsingular, this is in turn equivalent to α = S−1R, and

R̃ = S21S
−1R (1.104)

which is (1.102).

A.5 Answer to Exercise 1.3

Use the notation

rk = E {y(t + k)y(t)} = λ2

1 − a2
(−a)|k|. (1.105)
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Then

var(â1) = 1

r2
1

E
{
(y(t − 2)e(t))2

}= r0λ
2

r2
1

= 1 − a2

a2
, (1.106)

var(â2) = 1

r2
2

E
{
(y(t − 3)e(t))2

}= r0λ
2

r2
2

= 1 − a2

a4
= 1

a2
var(â1), (1.107)

var(â3) = 1

(r2
1 + r2

2 )
2

(
r1 r2

)
λ2
(
r0 r1
r1 r0

)(
r1
r0

)
= 1 − a2

a2

1 + 3a2

(1 + a2)2
. (1.108)

A.6 Proof of Lemma 1.5

Using the definition (1.50) of K(z) introduce the notations

α(t) = RTQ
∞∑

i=0

Kiz(t + i), (1.109)

β(t) = H−1(q−1)ϕ0(t). (1.110)

Then it holds

RTQR = RTQE
{
z(t)F (q−1)ϕT0 (t)

}

= RTQE
{
z(t)K(q−1)H−1(q−1)ϕT0 (t)

}

= RTQE

{
z(t)

∑

i

KiH
−1(q−1)ϕT0 (t − i)

}

= E
{
α(t)βT (t)

}
. (1.111)

Using (1.48) leads to

λ2RTQSQR = E
{
α(t)αT (t)

}
. (1.112)

The stated inequality (1.62) then reads

PIV = (E{α(t)βT (t)})−1(
E
{
α(t)αT (t)

})(
E
{
β(t)αT (t)

})−1

≥ λ2(E
{
β(t)βT (t)

})−1
. (1.113)

Now, (1.113) is equivalent to

(
E
{
β(t)αT (t)

})(
E
{
α(t)αT (t)

})−1(
E
{
α(t)βT (t)

})≤ (E{β(t)βT (t)}), (1.114)

which follows from the theory of partitioned matrices, cf. Lemma A.4 in [12], as

E

{(
β(t)βT (t) β(t)αT (t)

α(t)βT (y) α(t)αT (t)

)}
= E

{(
β(t)

α(t)

)(
βT (t) αT (t)

)}≥ 0. (1.115)
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Further, we see that with the specific choice

z(t)=H−1(q−1)ϕ0(t), F (q−1)=H−1(q−1), Q= I (1.116)

it holds that

R = E
{[H−1(q−1)ϕ0(t)][H−1(q−1)ϕT0 (t)]

}= E
{
β(t)βT (t)

}= S (1.117)

from which the equality in (1.62) follows.

References

1. Box, G.E.P., Jenkins, G.W.: Time Series Analysis, Forecasting and Control, 2nd edn. Holden-
Day, San Francisco (1976)

2. Friedlander, B.: The overdetermined recursive instrumental variable method. IEEE Trans. Au-
tom. Control AC-29, 353–356 (1984)

3. Gilson, M., Van den Hof, P.: Instrumental variable methods for closed-loop identification.
Automatica 41(2), 241–249 (2005)

4. Ljung, L.: System Identification—Theory for the User, 2nd edn. Prentice Hall, Upper Saddle
River (1999)

5. Ljung, L., Söderström, T.: Theory and Practice of Recursive Identification. MIT Press, Cam-
bridge (1983)

6. Mayne, D.Q.: A method for estimating discrete time transfer functions. In: Advances in Com-
puter Control, Second UKAC Control Convention, Bristol, UK (1967)

7. Peterka, V., Halousková, Q.: Tally estimate of åström model for stochastic systems. In: Proc.
2nd IFAC Symposium on Identification and System Parameter Estimation, Prague, Chechoslo-
vakia (1970)

8. Reiersøl, O.: Confluence analysis by means of lag moments and other methods of confluence
analysis. Econometrica 9, 1–24 (1941)

9. Söderström, T.: Errors-in-variables methods in system identification. Automatica 43(6), 939–
958 (2007). Survey paper

10. Söderström, T., Hong, M.: Identification of dynamic errors-in-variables systems with periodic
data. In: Proc. 16th IFAC World Congress, Prague, Czech Republic, July 4–8 (2005)

11. Söderström, T., Stoica, P.: Instrumental Variable Methods for System Identification. Springer,
Berlin (1983)

12. Söderström, T., Stoica, P.: System Identification. Prentice Hall International, Hemel Hemp-
stead (1989)

13. Söderström, T., Stoica, P., Trulsson, E.: Instrumental variable methods for closed loop systems.
In: 10th IFAC World Congress, Munich, Germany (1987)

14. Stoica, P., Friedlander, B., Söderström, T.: Instrumental variable methods for ARMA models.
In: Leondes, C.T. (ed.) Control and Dynamic Systems—Advances in Theory and Applications.
System Identification and Adaptive Control, vol. 25, pp. 79–150. Academic Press, New York
(1987)

15. Stoica, P., Söderström, T.: Optimal instrumental variable estimation and approximate imple-
mentation. IEEE Trans. Autom. Control AC-28, 757–772 (1983)

16. Stoica, P., Söderström, T., Friedlander, B.: Optimal instrumental variable estimates of the AR
parameters of an ARMA process. IEEE Trans. Autom. Control AC-30, 1066–1074 (1985)

17. Söderström, T., Stoica, P., Friedlander, B.: An indirect prediction error method. Automatica
27, 183–188 (1991)

18. Thil, S., Hong, M., Söderström, T., Gilson, M., Garnier, H.: Statistical analysis of a third-order
cumulants based algorithm for discrete errors-in-variables identification. In: IFAC 17th World
Congress Seoul, Korea, July 6–11 (2008)



1 Accuracy of IV Models 25

19. Van Huffel, S., Vandewalle, J.: Comparison of total least squares and instrumental variable
methods for parameter estimation of transfer function models. Int. J. Control 50, 1039–1056
(1989)

20. Wong, K.Y., Polak, E.: Identification of linear discrete time systems using the instrumental
variable approach. IEEE Trans. Autom. Control 12, 707–718 (1967)

21. Young, P.C.: An instrumental variable method for real-time identification of a noisy process.
Automatica 6, 271–287 (1970)

22. Young, P.C., Jakeman, A.J.: Refined instrumental variable methods of time series analysis:
Part III extensions. Int. J. Control 31, 741–764 (1980)

23. Young, P.C.: Parameter estimation for continuous-time models—a survey. Automatica 17, 23–
29 (1981)

24. Young, P.C.: Recursive Estimation and Time-Series Analysis. Springer, Berlin (1984)
25. Young, P.C., Jakeman, A.J.: Refined instrumental variable methods of recursive time-series

analysis. Part I: Single input, single output systems. Int. J. Control 29, 1–30 (1979)



Chapter 2
Refined Instrumental Variable Methods
for Hammerstein Box-Jenkins Models

Vincent Laurain, Marion Gilson, and Hugues Garnier

2.1 Introduction

Hammerstein block diagram model is widely represented for modelling nonlinear
systems [3, 6, 8, 26]. The nonlinear block can be represented as a piecewise linear
function [2] or as a sum of basis functions [7, 21].

Among the very recent work on discrete-time (DT) Hammerstein models in the
time domain, the most exposed methods are the extended least squares for Ham-
merstein ARMAX models [6] which were further extended to Hammerstein OE
models [7]. E.R Bai exposed a two stage algorithm involving least squares and sin-
gle value decomposition used in different configurations [3, 4, 19] and was very
recently analysed for Hammerstein Box-Jenkins models [28]. Nonetheless, the con-
vergence properties of the algorithm are studied but there was no study driven in
case of noise modelling error. Suboptimal Hammerstein model estimation in case of
a bounded noise was studied in [5]. A blind maximum likelihood method is derived
in [27] but the output signal is considered to be errorless.

In the continuous-time (CT) case, an exhaustive survey by Rao and Unbehauen
[25] shows that CT model identification methods applied to Hammerstein mod-
els are poorly studied in the literature. In [22], the authors focus on the time-
derivative approximation problems while solving the optimization problem using
least squares. A non-parametric method can be found in [14] while an approach
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dedicated to periodic input signals can be found in [33]. To the best of the authors’
knowledge, the parametric estimation problem has not been addressed yet for CT
Hammerstein models with colored added noise.

Section 2.2 shows how the refined instrumental variable (RIV) method intro-
duced in [29] can be extended in order to deal with Hammerstein BJ models. More-
over, the development of instrumental variable techniques able to cope with the
direct continuous-time model estimation in colored noise conditions are exposed in
Sect. 2.3. All presented methods are statistically analyzed through relevant Monte
Carlo simulations and the features of the proposed method are studied in the differ-
ent pre-cited contexts.

2.2 Discrete-Time Hammerstein Model Identification

2.2.1 System Description

Consider the Hammerstein system represented in Fig. 2.1 and assume that both input
and output signals, u(tk) and y(tk) are uniformly sampled at a constant sampling
time Ts overN samples. The Hammerstein system So, is described by the following
input-output relationship:

So

⎧
⎪⎨

⎪⎩

ū(tk)= f (u(tk)),
χo(tk)=Go(q)ū(tk),

y(tk)= χo(tk)+ vo(tk),

(2.1)

where u and y are the deterministic input and noisy output respectively, χo is the
noise-free output and vo the additive noise with bounded spectral density. Go(q) is
the linear transfer function which can be written as

Go(q)= Bo(q
−1)

Ao(q−1)
, (2.2)

Fig. 2.1 Hammerstein block representation



2 RIV Methods for Hammerstein Box-Jenkins Models 29

where Bo(q
−1) and Ao(q

−1) are polynomial in q−1 of degree nb and na respec-
tively:

Ao(q
−1)= 1 +

na∑

i=1

ao
i q

−i , and Bo(q
−1)=

nb∑

j=0

bo
j q

−j , (2.3)

where the coefficients ao
i and bo

j ∈ R. The most general case is considered where
the colored noise associated with the sampled output measurement y(tk) is assumed
to have a rational spectral density which might have no relation to the actual pro-
cess dynamics of So. Therefore, vo is represented by a discrete-time autoregressive
moving average (ARMA) model:

vo(tk)=Ho(q)eo(tk)= Co(q
−1)

Do(q−1)
eo(tk), (2.4)

where Co(q
−1) and Do(q

−1) are monic polynomials with constant coefficients and
with respective degree nc and nd. Furthermore, all roots of zndDo(z

−1) are inside
the unit disc. It can be noticed that in case Co(q

−1)=Do(q
−1)= 1, (2.4) defines an

OE noise model. It can be noticed that the same theory could be straightforwardly
used if some pure delay was present on the input but this case is not exposed here
for clarity’s sake.

2.2.2 Model Considered

Next we introduce a discrete-time Hammerstein Box-Jenkins (BJ) type of model
structure that we propose for the identification of the data-generating system (2.1)
with noise model (2.4). In the chosen model structure, the noise model and the
process model are parameterized separately.

2.2.2.1 Linear Part of the Hammerstein Model

The linear process model is denoted by LρL and is defined in a linear representation
form as:

LρL : (A(q−1, ρL),B(q
−1, ρL)

)
, (2.5)

where the polynomials A and B are parameterized as

LρL

{

A(q−1, ρL)= 1 +
na∑

i=1

aiq
−i , and B(q−1, ρL)=

nb∑

j=0

bjq
−j .

The associated model parameters ρL are stacked columnwise:

ρL = [a1 . . . ana b0 . . . bnb
]� ∈R

na+nb+1. (2.6)



30 V. Laurain et al.

Introduce also L = {LρL | ρ ∈ R
nρL }, as the collection of all process models in the

form of (2.5).

2.2.2.2 Nonlinear Part of the Hammerstein Model

The static nonlinearity model is denoted by FρNL and defined:

FρNL : (f (u,ρNL)) (2.7)

where f (u,ρNL) is parameterized as a sum of basis functions

f (u(tk), ρNL)=
l∑

i=1

αi(ρNL)γi(u(tk)). (2.8)

In this parametrization, {γi}li=1 are meromorphic functions1 of u(tk) which are
assumed to be a priori known. Furthermore, they have a static dependence on u, and
are chosen such that they allow the identifiability of the model (pairwise orthogonal
functions on R for example). The associated model parameters ρNL are stacked
columnwise:

ρNL = [α1 . . . αl
]� ∈R

l , (2.9)

Introduce also F = {FρNL | ρNL ∈R
l}, as the collection of all process models in the

form of (2.7).

Remark Note that the Hammerstein model (βf (u,ρNL),
G(q,ρL)
β

) produces the
same input-output data for any β . Therefore, to get a unique parametrization, the
gain of (βf (u,ρNL) orG(q,ρL)/β has to be fixed [1, 6]. Hence, the first coefficient
of the function f (.) is fixed to 1, i.e. α1 = 1 in (2.9).

2.2.2.3 Noise Model

The noise model denoted by H is defined as a linear time invariant (LTI) transfer
function:

Hη : (H(q,η)) , (2.10)

where H is a monic rational function given in the form of

H(q,η)= C(q−1, η)

D(q−1, η)
= 1 + c1q

−1 + · · · + cncq
−nc

1 + d1q−1 + · · · + dndq
−nd
. (2.11)

1f :Rn →R is a real meromorphic function if f = g/h with g,h analytic and h 
= 0.
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The associated model parameters η are stacked columnwise in the parameter vector,

η= [c1 . . . cnc d1 . . . dnd

]� ∈R
nη , (2.12)

where nη = nc + nd. Additionally, denote H = {Hη | η ∈R
nη }, the collection of all

noise models in the form of (2.10).

2.2.2.4 Whole Hammerstein Model

With respect to a given nonlinear, linear process and noise part (FρNL ,LρL ,Hη),
the parameters can be collected as

θH = [ρ�
L ρ

�
NL η

� ], (2.13)

and the signal relations of the Hammerstein BJ model, denoted in the sequel as Mθ ,
are defined as:

MθH

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ū(tk)=
l∑

i=1

αi(ρNL)γi(u(tk)),

A(q−1, ρL)χ(tk)= B(q−1, ρL)ū(tk),

v(tk)= C(q−1, η)

D(q−1, η)
e(tk),

y(tk)= χ(tk)+ v(tk).

(2.14)

Based on this model structure, the model set, denoted as M, with the linear pro-
cess (LρL ), the nonlinearity (FρNL ) and noise (Hη) models parameterized indepen-
dently, takes the form

M= {(FρNL ,LρL ,Hη) | col(ρNL, ρL, η)= θH ∈R
nρNL+nρL+nη} . (2.15)

2.2.2.5 Reformulation of the Model

The optimization problem is not convex in general. However, it can be clearly seen
from the parametrization (2.8) that the model (2.14) can be rewritten in order to
obtain a linear regression structure. By combining the first two equations in (2.14),
the model can be rewritten as:

MθH

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

A(q−1, ρL)χ(tk)= B(q−1, ρL)

l∑

i=1

αi(ρNL)γi(u(tk)),

v(tk)= C(q−1, η)

D(q−1, η)
e(tk),

y(tk)= χ(tk)+ v(tk),

(2.16)
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which can be expanded as (note that for clarity’s sake γi(u(tk)) is denoted ui(tk) in
the sequel)

MθH

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

A(q−1, ρL)χ(tk)=
l∑

i=1

αi(ρNL)B(q
−1, ρL)︸ ︷︷ ︸

Bi(q
−1,ρNL,ρL)

γi(u(tk))︸ ︷︷ ︸
ui(tk)

,

v(tk)= C(q−1, η)

D(q−1, η)
e(tk),

y(tk)= χ(tk)+ v(tk).

(2.17)

Under these modelling settings, the nonlinearity model and the linear process
model can be combined into the process model, denoted by Gρ and defined in the
form:

Gρ : (A(q−1, ρ),Bi(q
−1, ρ)

)
, (2.18)

where the polynomials A and Bi are given by

Gρ

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

A(q−1, ρ)= 1 +
na∑

i=1

aiq
−i ,

Bi(q
−1, ρ)= αi

nb∑

j=0

bjq
−j , i = 1 . . . l, α1 = 1.

The associated model parameters are stacked columnwise in the parameter vector ρ,

ρ =

⎡

⎢⎢
⎢
⎣

a
α1b
...

αlb

⎤

⎥⎥
⎥
⎦

∈R
nρ , a =

⎡

⎢⎢
⎢
⎣

a1
a2
...

ana

⎤

⎥⎥
⎥
⎦

∈R
na , b =

⎡

⎢⎢
⎢
⎣

b0
b1
...

bnb

⎤

⎥⎥
⎥
⎦

∈R
nb+1, (2.19)

with nρ = na + l(nb+ 1). Introduce also G= {Gρ | ρ ∈R
nρ }, as the collection of all

process models in the form of (2.18). Finally, with respect to the given process and
noise part (Gρ,Hη), the parameters can be collected as θ = [ρ� η� ] and the signal
relations of the Hammerstein BJ model, denoted in the sequel as Mθ , are defined
as:

Mθ : y(tk)=
∑l
i=1Bi(q

−1, ρ)ui(tk)

A(q−1, ρ)
+ C(q−1, η)

D(q−1, η)
e(tk), (2.20)

with Bi(q−1, ρ)= αiB(q−1, ρ) and ui(tk)= γi(u(tk)). Based on this model struc-
ture, the whole model set including the process (Gρ ) and noise (Hη) models param-
eterized independently, is denoted as M and takes finally the form

M= {(Gρ,Hη) | col(ρ, η)= θ ∈R
nρ+nη} . (2.21)
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Fig. 2.2 Hammerstein augmented model

The set (2.21) corresponds to the set of candidate models in which we seek the
best fitting model using data gathered from So under a given identification criterion
(cost function).

Remarks It has to be noticed that this model transforms the Hammerstein struc-
ture into an augmented LTI Multi Input Single Output model structure such as pre-
sented in Fig. 2.2. Consequently, the number of parameters to be estimated is not
minimal as nρ = na + l(nb + 1) which is in general greater than nρL + nρNL =
na + l + (nb + 1). Therefore, as the model is not minimal, the optimal estimation
of this augmented MISO model does not correspond to the optimal estimates of the
true Hammerstein model. Nonetheless, the gain granted using this modelling is the
possible linear regression form and therefore, the convexification of the optimiza-
tion problem. In order to define the identification problem it is firstly necessary to
define a minimization criterion. Nonetheless, the augmented model structure given
in (2.20) is now an LTI structure, and therefore, the PEM framework from [20] can
be directly used here.

2.2.3 Identification Problem Statement

Based on the previous considerations, the identification problem addressed can now
be stated.

Problem 2.1 Given a discrete-time Hammerstein data generating system So de-
fined as in (2.1) and a data set DN collected from So. Based on the Hammerstein
BJ model structure Mθ defined by (2.20), estimate the parameter vector θ using DN
under the following assumptions:

HA1 So ∈ M, i.e. there exits a θo defining a Gρo ∈ G and a Hηo ∈ H such that
(Gρo ,Hηo) is equal to So.

HA2 u(tk) is not correlated to eo(tk).
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HA3 DN is informative with respect to M.
HA4 So is BIBO stable, i.e. for any bounded input signal u, the output of So is

bounded.

2.2.4 Refined IV for Hammerstein Models

The Hammerstein RIV (HRIV) method derives from the RIV algorithm for DT lin-
ear systems. This was evolved by converting the maximum likelihood estimation
equations to a pseudo-linear form involving optimal prefilters [29, 32]. A similar
analysis can be utilised in the present situation since the problem is very similar, in
both algebraic and statistical terms. The linear-in-the-parameters model (2.20) then
takes the linear regression form [31]:

y(tk)= ϕ�(tk)ρ + ṽ(tk), (2.22)

where ρ is as described in (2.19), ṽ(tk)=A(q−1, ρ)v(tk) and

ϕ(tk)=

⎡

⎢⎢⎢
⎣

−y(tk)
u1(tk)
...

ul(tk)

⎤

⎥⎥⎥
⎦
, y(tk)=

⎡

⎢
⎣

y(tk−1)
...

y(tk−na )

⎤

⎥
⎦ , ui(tk)=

⎡

⎢
⎣

ui(tk)
...

ui(tk−nb )

⎤

⎥
⎦ .

Using the conventional PEM approach on (2.22) leads to the prediction error εθ (tk)
given as:

εθ (tk)= D(q−1, η)

C(q−1, η)

{

y(tk)−
l∑

i=1

Bi(q
−1, ρ)

A(q−1, ρ)
ui(tk)

}

, (2.23)

which can be written as

εθ (tk)= D(q−1, η)

C(q−1, η)A(q−1, ρ)

{

A(q−1, ρ)y(tk)−
l∑

i=1

Bi(q
−1, ρ)ui(tk)

}

, (2.24)

where the prefilter D(q−1, η)/C(q−1, η) will be recognised as the inverse of the
ARMA(nc, nd ) noise model. However, since the polynomial operators commute in
this linear case, (2.24) can be considered in the alternative form:

εθ (tk)=A(q−1, ρ)yf(tk)−
l∑

i=1

Bi(q
−1, ρ)uif(tk) (2.25)

where yf(tk) and uif(tk) represent the outputs of the prefiltering operation using the
filter:

Q(q, θ)= D(q−1, η)

C(q−1, η)A(q−1, ρ)
. (2.26)
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Therefore, from (2.25), the associated linear-in-the-parameters model then takes the
form:

yf(tk)= ϕ�
f (tk)ρ + ṽf(tk), (2.27)

where

ϕf(tk)=

⎡

⎢⎢⎢
⎣

−yf(tk)

u1f(tk)
...

ulf(tk)

⎤

⎥⎥⎥
⎦
, yf(tk)=

⎡

⎢
⎣

yf(tk−1)
...

yf(tk−na )

⎤

⎥
⎦ , uif(tk)=

⎡

⎢
⎣

uif(tk)
...

uif(tk−nb )

⎤

⎥
⎦ , (2.28)

and ṽf(tk)=Q(q, θ)ṽ(tk)= e(tk) which is a white noise.
Therefore, according to the conditions for optimal IV estimates [30], the optimal

instrument and filter for the augmented LTI MISO model structure (2.20) depicted
in Fig. 2.2 are given as:

ζ opt(tk)=
[−χo(tk−1) . . . −χo(tk−na) u1(tk) . . . u1(tk−nb )

. . . ul(tk) . . . ul(tk−nb )
]�
, (2.29)

and

Lopt(q)=Q(q, θo)= Do(q
−1)

Co(q−1)Ao(q−1)
. (2.30)

2.2.5 The Hammerstein RIV (HRIV) Algorithm for BJ Models

Of course none of A(q−1, ρo), Bi(q−1, ρo), C(q−1, ηo) or D(q−1, ηo) is known
and only their estimates are available. Therefore, neither the optimal prefilter nor the
optimal instrument can be accessed and they can only be estimated. The ‘auxiliary
model’ used to generate the noise-free output as well as the computation of the
associated prefilter (2.26), are updated based on the parameter estimates obtained at
the previous iteration to overcome this problem.

Algorithm 2.1 (HRIV)

Step 1 Generate an initial estimate of the process model parameter ρ̂(0)(e.g. using
the LS method). Set C(q−1, η̂(0))=D(q−1, η̂(0))= 1. Set τ = 0.

Step 2 Compute an estimate of χ(tk) via

χ̂ (tk)=
∑l
i=1Bi(q

−1, ρ̂(τ ))ui(tk)

A(q−1, ρ̂(τ ))
,

where ρ̂(τ ) is the estimate obtained at the previous iteration. According to
assumption HA4 each χ̂ is bounded.
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Step 3 Compute the filter as in (2.26):

L(q, θ̂ (τ ))= D(q−1, η̂(τ ))

C(q−1, η̂(τ ))A(q−1, ρ̂(τ ))

and the associated filtered signals {uif = γi(u)f}li=1, yf and {χ̂f}na,nα
i=1,l=0.

Step 4 Build the filtered regressor ϕf(tk) and the filtered instrument ζ̂f(tk) which
equal in the given context:

ϕf(tk)=
[−yf(tk−1) . . . −yf(tk−na) u1f(tk) . . . u1f(tk−nb )

. . . ulf(tk) . . . ulf(tk−nb )
]�
,

ζ̂f(tk)=
[−χ̂f(tk−1) . . . −χ̂f(tk−na) u1f(tk) . . . u1f(tk−nb )

. . . ulf(tk) . . . ulf(tk−nb )
]�
. (2.31)

Step 5 The IV optimization problem can be stated in the form

ρ̂(τ+1)(N)= arg min
ρ∈Rnρ

∥∥
∥∥∥

[
1

N

N∑

k=1

ζ̂f(tk)ϕ
�
f (tk)

]

ρ −
[

1

N

N∑

k=1

ζ̂f(tk)yf(tk)

]∥∥
∥∥∥

2

,

(2.32)
where the solution is obtained as

ρ̂(τ+1)(N)=
[
N∑

k=1

ζ̂f(tk)ϕ
�
f (tk)

]−1 N∑

k=1

ζ̂f(tk)yf(tk).

The resulting ρ̂(τ+1)(N) is the IV estimate of the process model associated
parameter vector at iteration τ +1 based on the prefiltered input/output data.

Step 6 An estimate of the noise signal v is obtained as

v̂(tk)= y(tk)− χ̂ (tk, ρ̂(τ )). (2.33)

Based on v̂, the estimation of the noise model parameter vector η̂(τ+1) fol-
lows, using in this case the ARMA estimation algorithm of the MATLAB
identification toolbox (an IV approach can also be used for this purpose,
see [30]).

Step 7 If θ(τ+1) has converged or the maximum number of iterations is reached,
then stop, else increase τ by 1 and go to Step 2.

At the end of the iterative process, coefficients α̂i are not directly accessible. They
are however deduced from polynomial B̂i(q−1) as Bi(q−1, ρ)= αiB(q−1, ρ). The
hypothesis α1 = 1 guarantees that B1(q

−1, ρ)= B(q−1, ρ) and α̂i can be computed
from:

α̂i = 1

nb + 1

nb∑

j=0

b̂i,j

b̂1,j
, (2.34)
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where b̂i,j is the j th coefficient of polynomial term Bi(q−1, ρ) for i = 2 . . . l.
Moreover, after the convergence is complete, it is possible to compute the esti-

mated parametric error covariance matrix P̂ρ from the expression:

P̂ρ = σ̂ 2
e

(
N∑

k=1

ζ̂f(tk)ζ̂
�
f (tk)

)−1

, (2.35)

where ζ̂ is the IV vector obtained at convergence and σ̂ 2
e is the estimated residual

variance.

Comments By using the described algorithm, if convergence occurs, the HRIV
estimates might be statistically optimal for the augmented model proposed, but the
minimal number of parameters needed for representing the MISO structure and the
Hammerstein structure are not equal. Consequently, the HRIV estimates cannot be
statistically optimal for the Hammerstein model structure. Nonetheless, even if not
optimal, the HRIV estimates are unbiased with a low variance as it will be seen in
the result Sect. 2.2.7.

2.2.6 HSRIV Algorithm for OE Models

A simplified version of HRIV algorithm named HSRIV follows the exact same the-
ory for estimation of Hammerstein output error models. It is mathematically de-
scribed by, C(q−1, ηj ) = Co(q

−1) = 1 and D(q−1, ηj ) = Do(q
−1) = 1. All pre-

vious given equations remain true, and it suffices to estimate ρj as θj = ρj . The
implementation of HSRIV is much simpler than HRIV as there is no noise model
estimation in the algorithm.

2.2.7 Performance Evaluation of the Proposed HRIV and HSRIV
Algorithms

This section presents numerical evaluation of both suggested HRIV and HSRIV
methods. For the presented example, the nonlinear block has a polynomial form,
i.e. γi(u(tk))= ui(tk),∀i and the system to identify is given by

So

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ū(tk)= u(tk)+ 0.5u2(tk)+ 0.25u3(tk),

Go(q)= 0.5q−1 + 0.2q−2

1 + q−1 + 0.5q−2
,

Ho(q)= 1

1 − q−1 + 0.2q−2
,

where u(tk) follows a uniform distribution with values between −2 and 2.
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The models considered for estimation are:

MHRIV

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

G(q,ρ)= b1q
−1 + b2q

−2

1 + a1q−1 + a2q−2
,

H(q,η)= 1

1 + d1q−1 + d2q−1
,

f (u(tk))= u(tk)+ α1u
2(tk)+ α2u

3(tk)

(2.36)

for the HRIV method which fulfills [HA1] and

MHSRIV

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

G(q,ρ)= b1q
−1 + b2q

−2

1 + a1q−1 + a2q−2
,

H(q,η)= 1,

f (u(tk))= u(tk)+ α1u
2(tk)+ α2u

3(tk)

(2.37)

for the HSRIV method which only fulfills Go ∈ G (Ho /∈ H ).
The result of a Monte Carlo simulation (MCs) analysis is shown in Table 2.1 and

the algorithms considered are: HRIV, HSRIV and LSQNONLIN. The LSQNONLIN
is a nonlinear optimization algorithm from the MATLAB� optimization toolbox. It
assumes the same model as the HRIV method (So ∈ M ) and hands out the statis-
tically optimal estimates if the method is properly initialized. In order to place the
LSQNONLIN method at its advantage, it is initialized with the true parameter values
and therefore this method can be considered as the ground truth.

The MCs results are based on Nrun = 100 random realization, with the Gaussian
white noise input to the ARMA noise model being selected randomly for each real-
ization. In order to compare the statistical performance of the different approaches,
the computed mean and standard deviation of the estimated parameters are pre-
sented. The noise added at the output is adjusted such that it corresponds to a Signal-
to-Noise-Ratio (SNR) of 5dB using:

SNR = 10 log

(
Pχ

Pvo

)
, (2.38)

where Pg is the average power of signal g. The number of samples is chosen as
N = 2000.

As expected, Table 2.1 shows that the proposed algorithms produce unbiased es-
timates of the Hammerstein model parameters. It can be further noticed that the stan-
dard deviation of the estimates remains low even under the unrealistic noise level
of 5 dB. Even though, the ratio between the HSRIV and HRIV estimate standard
deviation equals to 2. This can be logically explained by the fact that the HSRIV
algorithm assumes a wrong noise model and such result remains acceptable in prac-
tical applications. Finally it can be depicted that the HRIV provides the statistical
optimal estimates for the parameters which are not replicated inside the parameter
vector ρ, that is a1, a2, d1 and d2. Concerning the other coefficients the standard
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Table 2.1 Estimation results of the proposed algorithm

Method b0 b1 a1 a2 α1 α2 d1 d2

True value 0.5 0.2 1 0.5 0.5 0.25 −1 0.2

LSQNONLIN mean(θ̂ ) 0.4991 0.1983 0.9984 0.4992 0.5011 0.2512 −1.0004 0.2001

std(θ̂) 0.0159 0.0109 0.0114 0.0059 0.0187 0.0194 0.0224 0.0219

HSRIV mean(θ̂ ) 0.4992 0.1975 0.9944 0.4976 0.4956 0.2657 X X

std(θ̂) 0.0402 0.0471 0.0186 0.0071 0.1107 0.0999 X X

HRIV mean(θ̂ ) 0.5004 0.2009 0.9984 0.4992 0.5006 0.2487 −1.0011 0.2007

std(θ̂) 0.0193 0.0208 0.0114 0.0059 0.0384 0.0397 0.0224 0.0220

deviation is approximately multiplied by 2 but the absolute value remains accept-
able considering the level of noise added. It can be concluded that the presented
algorithms, even if not optimal in the Hammerstein case, constitute good candidates
for practical applications where the noise is unknown, and can be a strong help for
initializing optimal methods such as LSQNONLIN.

2.3 Continuous-Time Hammerstein Model Identification

Even if measured data are sampled, the underlying dynamic of a real system is con-
tinuous and direct continuous-time model identification methods regained interest in
the recent years [15]. The advantage of using direct continuous-time model identifi-
cation has been pointed out in many different contexts in the LTI framework [9–13,
15, 24]. Nonetheless, a survey by Rao and Unbehauen [25] shows that CT model
identification methods applied to Hammerstein models are poorly represented in
literature and only a few methods can be found. In [22], the authors focus on the
time-derivative approximation problems while solving the optimization problem us-
ing least squares. A non-parametric method can be found in [14] while an approach
dedicated to periodic input signals can be found in [33]. To the best of the authors’
knowledge, the parametric estimation problem has not been addressed yet for CT
Hammerstein models which focus with some colored added noise. Consequently,
this section presents an RIV algorithm for direct CT model identification for CT
Hammerstein models.

2.3.1 System Description

Consider the CT Hammerstein data generating system depicted in Fig. 2.3 corre-
sponding to the following input-output relationship:

So

⎧
⎪⎨

⎪⎩

ū(t)= fo(u(t)),

χo(t)=Go(d)ū(t),

y(t)= χ(t)+ vo(t),

(2.39)
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Fig. 2.3 CT Hammerstein block representation

Fig. 2.4 Hybrid
Hammerstein block
representation

where

Go(d)= Bo(d)

Ao(d)
(2.40)

and Bo(d) andAo(d) are polynomials in the differential operator d (dix(t)= dix(t)

dt i
)

of respective degree nb and na (na ≥ nb).
In terms of identification we can assume that sampled measurements of (y,u)

are available at a sampling time kTs > 0. Hence, we will denote the discrete time
samples of these signals as u(tk) = u(kTs), where k ∈ Z. The basic idea to solve
the noisy continuous-time (CT) modelling problem is to assume that the CT noise
process vo(t) can be written at the sampling instances as a discrete-time (DT) white
noise process filtered by a DT transfer function [16, 23]. The practically general
case is considered where the colored noise associated with the sampled output mea-
surement y(tk) is assumed to have a rational spectral density which might has no
relation to the actual process dynamics. Therefore, vo is represented by a discrete-
time autoregressive moving average (ARMA) model:

vo(tk)=Ho(q)eo(tk)= Co(q
−1)

Do(q−1)
eo(tk), (2.41)

where eo(tk) is a DT zero mean white noise process, q−1 is the backward time shift
operator, i.e. q−iu(tk)= u(tk−i ), and Co with Do are monic polynomials with con-
stant coefficients. This avoids the rather difficult mathematical problem of treating
sampled CT random process [9] and their equivalent in terms of a filtered piecewise
constant CT noise source (see [23]). Therefore, we will consider the Hammerstein
system represented in Fig. 2.4 where it is assumed that both input and output sig-
nals, u(t) and y(t) are uniformly sampled at a constant sampling time Ts over N
samples.
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Consequently, in terms of (2.41), the Hammerstein system So (2.39), is de-
scribed by the following input-output relationship:

So

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ū(t)= fo(u(t)),

χo(t)=Go(d)ū(t),

vo(tk)=Ho(q)e(tk),

y(tk)= χo(tk)+ vo(tk).

(2.42)

This corresponds to a so-called Hammerstein hybrid Box-Jenkins system concept
already used in CT identification of LTI systems (see [16, 23, 31]). Furthermore, in
terms of (2.4), exactly the same noise assumption is made as in the classical DT
Box-Jenkins models [20].

2.3.2 Model Considered

2.3.2.1 Process Modelling

Similarly to the discrete-time case, by aiming at the convexification of the optimiza-
tion problem, the static nonlinearity model is modelled as the linear sum of basis
functions:

f (u(t), ρ)=
l∑

i=1

αi(ρ)γi(u(t)), α1 = 1 (2.43)

while the CT linear part can be parameterized such that:

χ(t)=G(d,ρ)ū(t)= B(d,ρ)

A(d,ρ)
f (u(t), ρ), (2.44)

with

A(d,ρ)= dna +
na∑

i=1

aid
na−i and B(d,ρ)=

nb∑

j=0

bjd
nb−j . (2.45)

Just as in the DT case, both equations (2.43) and (2.44) can be combined such
that:

χ(t)= B(d,ρ)

A(d,ρ)

l∑

i=1

αi(ρ)γi(u(t))= 1

A(d,ρ)

l∑

i=1

αi(ρ)B(d,ρ)︸ ︷︷ ︸
Bi(d,ρ)

γi(u(t))︸ ︷︷ ︸
ui(t)

. (2.46)

Under these modelling settings, the nonlinearity model and the linear process
model can be combined into a process model, denoted by Gρ and defined in the
form:

Gρ : (A(d,ρ),Bi(d,ρ)) (2.47)
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where the polynomials A and Bi are parameterized as

Gρ

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

A(d,ρ)= 1 +
na∑

i=1

aid
na−i ,

Bi(d,ρ)= αi
nb∑

j=0

bjd
nb−j , i = 1 . . . l.

The associated model parameters are stacked columnwise in the parameter vec-
tor ρ,

ρ =

⎡

⎢⎢
⎢
⎣

a
α1b
...

αlb

⎤

⎥⎥
⎥
⎦

∈R
nρ , a =

⎡

⎢⎢
⎢
⎣

a1
a2
...

ana

⎤

⎥⎥
⎥
⎦

∈R
na , b =

⎡

⎢⎢
⎢
⎣

b0
b1
...

bnb

⎤

⎥⎥
⎥
⎦

∈R
nb+1, (2.48)

with nρ = na + l(nb+ 1). Introduce also G= {Gρ | ρ ∈R
nρ }, as the collection of all

process models in the form of (2.47).

2.3.2.2 Noise Model

The noise model being expressed in discrete-time, it is denoted by H and defined
as in the DT case (see Sect. 2.2.2.3) Additionally, denote H = {Hη | η ∈ R

nη}, the
collection of all noise models in the form of (2.10).

2.3.2.3 Whole Model

With respect to the given process and noise parts (Gρ,Hη), the parameters can be
collected as θ = [ρ� η� ] and the signal relations of the CT Hammerstein BJ model,
denoted in the sequel as Mθ , are defined as:

Mθ

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

χ(t)=
∑l
i=1Bi(d,ρ)ui(t)

A(d,ρ)
,

v(tk)= C(q−1, η)

D(q−1, η)
e(tk),

y(tk)= χ(tk)+ v(tk),

(2.49)

with Bi(d,ρ)= αi(ρ)B(d,ρ) and ui(t)= γi(u(t)). Based on this model structure,
the model set, denoted as M, with the linear process (Gρ ) and noise (Hη) models
parameterized independently, takes the form

M= {(Gρ,Hη) | col(ρ, η)= θ ∈R
nρ+nη} . (2.50)
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Again, this set corresponds to the set of candidate models in which we seek the
best fitting model using data gathered from So under a given identification criterion
(cost function). The identification problem can be stated in the exact same way as in
the DT case (see Sect. 2.2.3).

Remarks It has to be noticed that, just as in the DT case, this model trans-
forms the Hammerstein structure into an augmented LTI Multi Input Single Out-
put model similarly to the DT case. Consequently, the number of parameters to be
estimated is not minimal as nρ = na + l(nb + 1) which is in general greater than
nρL + nρNL = na + l + (nb + 1). Therefore, as the model is not minimal, and there-
fore the optimal estimation of this augmented MISO model does not correspond to
the optimal estimates of the true Hammerstein model. Nonetheless, the gain granted
using this modelling is the possible linear regression form and therefore, the con-
vexification of the optimization problem.

2.3.3 Refined IV for CT Hammerstein BJ Models

Using the LTI model (2.49), y(tk) can be written in the regression form:

y(na)(tk)= ϕ�(tk)ρ + ṽ(tk), (2.51)

where

ϕ(tk) =
[−y(na−1)(tk) . . . −y(tk) u(nb)

1 (tk) . . . u1(tk) . . . u
(nb)
l (tk) . . . ul(tk)

]�

ρ = [a1 . . . ana b0 . . . bnb . . . αlb0 . . . αlbnb

]�

and

ṽ(tk)=A(d,ρ)v(tk),
where x(n)(tk) denotes the sample of the nth derivative of the signal x(t) sampled
at time tk .

By driving the exact same discussion as in Sect. 2.2.4 it can be shown that the
optimal filtered instrument for the augmented LTI MISO model structure (2.49) is
given as:

ζ opt(tk)=
[−χ(na−1)

o (tk) . . . −χo(tk) u
(nb)
1 (tk) . . . u1(tk) . . . u

(nb)
l (tk) . . . ul(tk)

]�

(2.52)
while the optimal filter is given as the filter chain involving the continuous-time
filtering operation using the filter (see [31]):

L
opt
c =Qc(d,ρo)= 1

Ao(d)
, (2.53)



44 V. Laurain et al.

and the discrete-time filtering operation using the filter:

L
opt
d =Qd(q, ηo)= Do(q

−1)

Co(q−1)
. (2.54)

2.3.4 Hammerstein RIVC (HRIVC) Algorithm for BJ Models

For space and redundancy’s sake the HRIVC algorithm is not described here, but
the interested reader can find a detailed algorithm in [18]. By using the HRIVC al-
gorithm, if convergence occurs, the HRIVC estimates might be statistically optimal
for the augmented model proposed, but the minimal number of parameters needed
for representing the MISO structure and the Hammerstein structure are not equal.
Consequently, the HRIVC estimates cannot be statistically optimal for the CT Ham-
merstein model structure. Nonetheless, even if not optimal, the HRIVC estimates
are unbiased with a low variance as it will be seen in the result Sect. 2.3.5. A sim-
plified version of HRIVC algorithm named HSRIVC follows the exact same theory
for estimation of Hammerstein output error models.

2.3.5 Performance Evaluation of the Proposed HRIVC and
HSRIVC Algorithms

This section presents numerical evaluation of both suggested HRIVC and HSRIVC
methods. For the presented example, the nonlinear block has a polynomial form, i.e.
γi(u(t))= ui(t),∀i and

ū(t)= u(t)+ 0.5u2(t)+ 0.25u3(t), (2.55)

where u(t) follows a uniform distribution with values between −2 and 2. The sys-
tem is simulated using a zero-order-hold on the input.

The system considered is a hybrid Hammerstein Box-Jenkins model in which the
linear dynamic block is first a second-order system described by:

Go(d)= 10d + 30

d2 + d + 5
, (2.56)

and the noise is given by

Ho(q)= 1

1 − q−1 + 0.2q−2
.
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Table 2.2 Estimation results for different noise models

SNR Method b0 b1 a1 a2 α1 α2 d1 d2

True value 10 30 1 5 0.5 0.25 −1 0.2

15 dB HSRIVC mean(θ̂) 9.9957 29.8760 1.0001 4.9991 0.5026 0.2523 X X

std(θ̂) 0.3670 1.5660 0.0170 0.0436 0.0201 0.0180 X X

RMSE 0.0367 0.0523 0.0169 0.0087 0.0405 0.0723 X X

HRIVC mean(θ̂) 9.9906 30.0172 1.0006 5.0020 0.5008 0.2506 −1.0002 0.2005

std(θ̂) 0.2497 0.8954 0.0119 0.0265 0.0118 0.0115 0.0219 0.0223

RMSE 0.0250 0.0298 0.0119 0.0053 0.0236 0.0460 0.0218 0.1112

5 dB HSRIVC mean(θ̂) 10.0882 29.6146 1.0010 4.9814 0.5080 0.2604 X X

std(θ̂) 1.0764 4.4585 0.0517 0.1291 0.0610 0.0542 X X

RMSE 0.1079 0.1490 0.0517 0.0261 0.1230 0.2208 X X

HRIVC mean(θ̂) 10.049 30.0277 0.9998 4.9980 0.5015 0.2522 −0.9997 0.1994

std(θ̂) 0.7861 2.8278 0.0379 0.0871 0.0369 0.0366 0.0227 0.0219

RMSE 0.0787 0.0942 0.0378 0.0174 0.0738 0.1466 0.0227 0.1096

The models considered for estimation are:

MHRIVC

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

G(d,ρ)= b0d + b1

d2 + a1d + a2
,

H(q,η)= 1

1 + d1q−1 + d2q−2
,

f (u(t))= u(t)+ α1u
2(t)+ α2u

3(t)

(2.57)

for the HRIVC method and

MHSRIVC

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

G(d,ρ)= b0d + b1

d2 + a1d + a2
,

H(q,η)= 1,

f (u(t))= u(t)+ α1u
2(t)+ α2u

3(t)

(2.58)

for the HSRIVC method.
The result of a Monte Carlo simulation (MCs) analysis is shown in Table 2.2

for the algorithms considered. The MCs results are based on Nrun = 500 random
realization, with the Gaussian white noise input to the ARMA noise model being
selected randomly for each realization. In order to compare the statistical perfor-
mance of the different approaches, the computed mean, standard deviation and Root
Mean Squared Error of the estimated parameters are presented. The noise added at
the output is adjusted such that it corresponds to a SNR of 15 dB and 5 dB. The
number of samples is N = 2000.

Table 2.2 shows that according to the theory, the HRIVC and HSRIVC methods
provide similar, unbiased estimates of the model parameters. Both methods seem to
be robust even at unrealistic noise level of 5 dB as the RMSE remain under 22% for
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both methods. Results obtained using the HRIVC algorithm, have standard devia-
tions which are always smaller than the ones produced by HSRIVC. Even though,
the HSRIVC algorithm based on an Output Error model is a reasonable alterna-
tive to the full HRIVC algorithm based on a Box-Jenkins model: in practice the
noise model cannot be exactly known and therefore the use of the HRIVC algorithm
would simply raise the number of parameters to be estimated. If the noise model is
correctly assumed, it is as well correctly estimated as shown in Table 2.2.

2.4 Conclusion

In this chapter, some methods dedicated to Hammerstein CT and DT nonlinear mod-
els in open-loop were investigated. Extension to the closed-loop case has been pub-
lished and can be found in [17]. Through a relevant set of examples, it was possible
to show that the HRIV approach is robust to noise conditions and to noise error
modelling. The presented methods are suboptimal as they estimate a larger number
of parameters than the minimum needed for the system description. Nonetheless,
the variance in the estimated parameters is acceptable in practical conditions, and if
not satisfactory, the estimates can be used as initialisation values for some optimal
method which usually are posed into some nonlinear optimization problems and of-
ten rely on some robust initialisation. The refined instrumental variable approach
for Hammerstein models remains an interesting estimation method for practical ap-
plications where the noise condition are unknown.
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Chapter 3
Identifiability, and Beyond

Eric Walter

3.1 Colliding with (a Lack of) Identifiability

During the preparation of my PhD dissertation [50], I wrote a quasilinearization
routine to estimate the parameters of a class of continuous-time state-space models
known as compartmental models [18, 23]. These models, widely used in biology,
pharmacokinetics and the modeling of ecosystems, consist of a finite number of
homogeneous subsystems, called compartments, which exchange material with each
other and the environment. To test this routine, I generated data by simulating the
two-compartment model

ẋ∗
m =

[−0.1 0.15
0.1 −0.2

]
x∗

m +
[

0
1

]
u, x∗

m(0−)=
[

0
0

]
, (3.1)

with the observation equation

y∗
m = [1 0

]
x∗

m. (3.2)

In (3.1) and (3.2) and it what follows, the star indicates a quantity that corresponds
to the “true” system assumed to have generated the data. This model has an input
in Compartment 2 and the content x1 of Compartment 1 is directly observed. The
sum of the entries of the first column of the matrix in (3.1) is zero, which implies
that there is no direct flow from Compartment 1 to the environment, so what is in
Compartment 1 can only leave the system after passing through Compartment 2.
Data y(ti), i = 1, . . . , n, were generated taking u as a unit delta impulse at time
t = 0, which is equivalent to assuming that x∗

m(0+)= [0 1]T, with no input. No noise

E. Walter (�)
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was added to the output, except for the errors induced by numerical integration.
These data were then used to estimate the parameters of the model M (θ) defined
by

ẋm =
[−θ1 θ2
θ1 −(θ2 + θ3)

]
xm +

[
0
1

]
u, xm(0−)=

[
0
0

]
, (3.3)

ym = [1 0
]

xm , (3.4)

by minimizing the quadratic cost function

J (θ)=
f∑

i=1

(
y∗

m(ti)− ym(ti , θ)
)2
. (3.5)

Depending on the initial value given to θ , the quasilinearization routine would con-
verge either to a model close to (3.1) or to something like

ẋm =
[−0.05 0.15

0.05 −0.25

]
xm +

[
0
1

]
u, xm(0−)=

[
0
0

]
. (3.6)

In both cases, the optimal value for the cost was very low, and the fit excellent. After
some time spent hunting nonexistent bugs in the software, I finally understood that
the problem came from some defect in the model structure, which led to several val-
ues of the parameter vector corresponding to the same output behavior, and realized
it corresponded to a problem of lack of identifiability. This problem was already
pointed out, e.g., in [29], which stressed its importance in biology, psychology, so-
ciology and economics. If most recent applications of the concept are to biological
models, it seems to have been known much earlier in economy [14, 15], physics and
chemistry [3].

This chapter is organized as follows. Identifiability is defined in Sect. 3.2, before
presenting methods of test in Sect. 3.3. The case when one hesitates between several
models structures is considered in Sect. 3.4. Section 3.5 deals with the design of
experiments so as to maximize some measure of identifiability. Section 3.6 very
briefly presents some tools that can be used to characterize, in a global manner, the
set of all feasible estimates of the parameter vector, thereby making it possible to
bypass the identifiability study. Conclusions and perspectives are in Sect. 3.7.

3.2 Defining Identifiability

Assume that some parametric model structure M (θ) has been chosen, based on
prior knowledge on the system to be modeled. Before attempting to estimate θ from
experimental data, one would like to check that hidden defects do not render the
exercise hopeless. The notion of identifiability can be used for this purpose, in a
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somewhat idealized setting where no noise is present and the data are generated by
a model M (θ∗), with θ∗ the true value for the parameter vector. Write

M (θ̂)= M (θ∗) (3.7)

to denote that the model with parameter vector θ̂ has exactly the same output as the
model with parameter vector θ∗ for any input and time (time may be replaced by a
vector of independent variables, when appropriate). Identifiability then depends on
the number of solutions of (3.7) for θ̂ . If there is only one solution (which can only
be θ̂ = θ∗), then M is uniquely identifiable at θ∗.

Because the conclusion may depend on the value of θ∗, which is of course un-
known in any real-life problem, we are led to the following definitions [51].

The model M is structurally globally identifiable (s.g.i.) if, for almost any value
of θ∗, (3.7) has only one solution θ̂ = θ∗. It is structurally locally identifiable (s.l.i.)
if the set of solutions for θ̂ is finite or at least countable, which means that a neigh-
borhood can be defined around θ∗ in which the solution for θ̂ is unique. The identi-
fiability of the ith entry of θ may be defined similarly: θi is s.g.i. if, for almost any
value of θ∗, (3.7) implies that θ̂i = θ∗i ; it is s.l.i. if the solution for θ̂i is unique when
search is restricted to some neighborhood of θ∗.

With these definitions, it becomes possible to test a model structure for identi-
fiability even before data collection, and sometimes to modify this structure so as
to eliminate ambiguity, if any, for instance by introducing new sensors or actuators.
Section 3.3 will illustrate the fact that there may exist a manifold of atypical values
for θ∗ on which an s.g.i. or s.l.i. model becomes unidentifiable. The probability of
hitting this manifold when picking θ at random is zero (and models with parameter
vectors on this manifold are generally so pathological that one would never consider
them anyway).

Before presenting methods to test models for identifiability in the next section,
it may be useful to stress that identifiability is not always an important property to
be requested of models. If one is only interested in reproducing an observed input-
output behavior, then it does not matter if they are several models that do the job
in exactly the same manner. (The lack of local identifiability may create numerical
difficulties to some optimization algorithms, but these difficulties are easily solved
by regularization.) On the other hand, it is important to test models for identifiability
if the parameters have a physical interpretation, or if decisions are to be taken on the
basis of their numerical values. It is also important when some physically meaning-
ful state variables must be estimated from the input-output data, for instance using
a Kalman filter, as the different models with the same input-output behavior will
correspond to as many state estimates.

3.3 Testing Identifiability

We restrict ourselves here to continuous-time finite-dimensional deterministic state-
space models, and assume throughout the chapter, for the sake of simplicity, that
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x(0−)= 0. The model output vector y may be linear in the input vector u, as in

ẋ = A(θ)x + B(θ)u, y = C(θ)x, (3.8)

or nonlinear in the input, as in

ẋ = f(x, θ ,u), y = h(x, θ ,u). (3.9)

In both cases, the model output is in general nonlinear in the parameters, and this is
the only situation considered here. It corresponds to most knowledge-based models,
for which the concept of identifiability is particularly pertinent. (When the model
output is linear in the parameters, the notions of local and global identifiability be-
come equivalent, and the test for identifiability boils down to a rank condition on a
regression matrix.)

3.3.1 Linear Case

When the model is described by (3.8), the most commonly used routes are the
Laplace transform approach of [1], and the similarity transformation approach,
which can be traced back to [3], see also [17, 56].

3.3.1.1 Laplace Transform Approach

Take the Laplace transform of (3.8) and eliminate the state variables to get

Y(s, θ)= H(s, θ)U(s), (3.10)

where s is the Laplace variable and H(s, θ) is the transfer matrix, which satisfies

H(s, θ)= C(θ)
[
sI − A(θ)

]−1 B(θ), (3.11)

with I the identity matrix. Note that directly implementing (3.11) is a fairly ineffi-
cient way of computing the transfer matrix from the state-space representation, to
be avoided on large-scale problems.

Equation (3.7) will be satisfied for any input if and only if

H(s, θ̂)− H(s, θ∗)= 0 ∀s. (3.12)

Expressing H(s, θ) in some canonical form Hc(s, θ), i.e., a form that can be writ-
ten in only one way, simplifies computation considerably. A canonical form is for
instance obtained by (i) writing each entry of the transfer matrix as a ratio of polyno-
mials ordered in s, (ii) simplifying each numerator and corresponding denominator
by their GCD (only the controllable and observable part of the model remains), and
(iii) setting the coefficient of the denominator monomial with highest (or lowest)
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degree in s equal to one. Equation (3.7) will then be satisfied for any input if and
only if the coefficients of Hc(s, θ) have the same values for θ = θ̂ and for θ = θ∗.
One thus gets a set of algebraic equations in θ̂ and θ∗, to be solved for θ̂ for almost
any value of θ∗.

Example 3.1 Consider the model structure defined by (3.3) and (3.4). Its transfer
function can be written in canonical form as

Hc(s, θ)= θ2

s2 + (θ1 + θ2 + θ3)s + θ1θ3
. (3.13)

Equation (3.7) thus translates into three algebraic constraints linking θ̂ and θ∗:

θ̂2 = θ∗2 ,
θ̂1 + θ̂2 + θ̂3 = θ∗1 + θ∗2 + θ∗3 ,

θ̂1θ̂3 = θ∗1 θ∗3 .
(3.14)

The first of these constraints establishes that θ2 is s.g.i., while the last two only add
that the sum and product of θ1 and θ3 are s.g.i. We thus have two solutions, namely
θ̂ = θ∗ and θ̂ = [θ∗3 , θ∗2 , θ∗1 ]T, so θ1 and θ3 are s.l.i. but not s.g.i. A rational choice
between the two possible values of θ1 and θ3 would be impossible on the sole basis
of the data, even if these data were free of noise. These findings are corroborated by
the numerical experiment reported in Sect. 3.1. Note that if θ∗2 = 0, then the output
y∗

m is identically zero and the output contains no information on θ1 and θ3, which
become completely unidentifiable. This is an example of an atypical hyper-surface,
and illustrates why it is necessary to take such pathological values of the parameters
into account when defining structural identifiability.

3.3.1.2 Similarity Transformation Approach

Consider again the model structure defined by (3.8), and assume that the data are
generated by the model M (θ∗)

ẋ∗ = A(θ∗)x∗ + B(θ∗)u, y = C(θ∗)x∗. (3.15)

If T is the time-invariant invertible matrix of a state-space similarity transformation
such that x̂ = Tx∗, then the model

˙̂x = TA(θ∗)T−1x̂ + TB(θ∗)u, y = C(θ∗)T−1x̂ (3.16)

has the same input-output behavior as M (θ∗). It will correspond to a model M (θ̂)

with the same structure as M (θ∗) if and only if there exists θ̂ such that

A(θ̂)= TA(θ∗)T−1, B(θ̂)= TB(θ∗), and C(θ̂)= C(θ∗)T−1. (3.17)
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Then M (θ̂)= M (θ∗). Kalman’s algebraic equivalence theorem, on the other hand,
states that if two minimal (i.e., controllable and observable) state-space models have
the same input-output behavior, then they can be deduced from one another by a
state-space similarity transformation. Provided that the model structure considered
is observable and controllable, the number of solutions of M (θ̂) = M (θ∗) for θ̂

is thus equal to the number of solutions of (3.17) for θ̂ and T. If the dimension
of the state is n, then the number of unknowns in T is n2, and one may wonder
what is to be gained by augmenting the number of unknowns of the problem by
such a potentially large number. It turns out that the computations are sometimes
simpler than with the Laplace transform approach, so the two approaches should be
viewed as complementary. Partial results obtained by different approaches can also
be combined to reach a conclusion.

Example 3.2 Consider a model defined by (3.8), in which each component of the
input vector u acts directly on a single component of the state and each component
of the output vector y consists of a single component of the state. The control and
observation matrices thus do not depend on the parameters to be estimated. Possibly
after re-indexing the state, input and output variables, they can be written as

B =

⎡

⎢⎢
⎣

Iq 0q×(m−q)
0(p−q)×q 0(p−q)×(m−q)
0(m−q)×q Im−q

0(n−m−p+q)×q 0(n−m−p+q)×(m−q)

⎤

⎥⎥
⎦ , (3.18)

and

C =
[

Iq 0q×(p−q) 0q×(m−q) 0q×(n−m−p+q)
0(p−q)×q Ip−q 0(p−q)×(m−q) 0(p−q)×(n−m−p+q)

]
, (3.19)

where n= dim x, m= dim u, p = dim y and q is the number of state variables that
are directly observed and acted upon. (Matrices B and C that do not satisfy (3.18)
and (3.19) can always be put in this standard form by a series of linear transfor-
mations provided that they have full rank [51, 56]; q is then equal to rank(CB), an
s.g.i. quantity.) Assume that there is no constraint on the drift matrix A, all entries
of which have to be estimated, so dim θ = n2. We want to know under which condi-
tions A is s.g.i. With no prior constraint on A, the model structure is observable and
controllable, so the similarity transformation approach applies. (If it were not the
case, we could restrict ourselves to studying the controllable and observable part of
the model, which would be similar to considering canonical transfer functions with
the Laplace transform approach.) Partition the similarity transformation matrix into
16 blocks with dimensions compatible with those of the blocks of B and C, to get

T =

⎡

⎢⎢
⎣

T11 T12 T13 T14
T21 T22 T23 T24
T31 T32 T33 T34
T41 T42 T43 T44

⎤

⎥⎥
⎦ . (3.20)
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Given (3.18) and (3.19), the last two equations in (3.17) imply that

T =

⎡

⎢⎢
⎣

Iq 0q×(p−q) 0q×(m−q) 0q×(n−m−p+q)
0(p−q)×q Ip−q 0(p−q)×(m−q) 0(p−q)×(n−m−p+q)
0(m−q)×q T32 Im−q T34

0(n−m−p+q)×q T42 0(n−m−p+q)×(m−q) T44

⎤

⎥⎥
⎦ ,

(3.21)

and the first equation in (3.17) does not bring any more information on T, as A is
free. So A is s.g.i. if and only if the total number of entries in the blocks T32, T34,
T42 and T44, which corresponds to the number of degrees of freedom of the model,
is equal to zero. Since T32 is (m− q)× (p− q), T34 is (m− q)× (n−m−p+ q),
T42 is (n−m− p+ q)× (p− q) and T44 is (n−m− p+ q)× (n−m− p+ q),
this number of degrees of freedom is equal to (n−m)(n−p). A is therefore s.g.i. if
and only if (n−m)(n−p)= 0, i.e., if either dim x = dim y or dim x = dim u, which
shows a nice symmetry between action and observation from an informational point
of view.

3.3.2 Nonlinear Case: Local State Isomorphism Approach

Nonlinear models such as (3.9) tend to be more identifiable than linear ones, and
introducing a non-linearity into an otherwise unidentifiable linear model very often
makes it s.g.i., to the point that some even questioned the interest of further de-
veloping methods for testing nonlinear models for identifiability. Indeed, finding a
nonlinear model that was relevant and unidentifiable remained a challenge for quite
some time. We shall limit ourselves here to very briefly presenting one of the most
powerful approaches, namely the local state isomorphism approach [48]. It applies
to models described by

ẋ = f(x, θ)+ g(x, θ)u, y = h(x, θ), (3.22)

with f, g and h analytic. Under conditions of observability and controllability, M (θ̂)
will have the same input-output behavior as M (θ∗) up to some strictly positive time
if and only if there exists a local state isomorphism x̂ = ϕ(x∗) such that, for any x∗
in a neighborhood of the origin, the drift terms correspond

f(x̂, θ̂)= dϕ

dx
(x∗)f(x∗, θ∗), (3.23)

the control terms correspond

g(x̂, θ̂)= dϕ

dx
(x∗)g(x∗, θ∗), (3.24)

and the observations correspond

h(x̂, θ̂)= h(ϕ(x∗), θ̂)= h(x∗, θ∗). (3.25)
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After checking observability and controllability, one may thus look for the set of
all solutions of (3.23), (3.24) and (3.25) for θ̂ and ϕ. Recall that these equations
must hold true for any x∗ in a neighborhood of the origin, so whenever one equation
turns out to be polynomial in the indeterminates forming x∗ it can be split into
equations for each of the monomials. If, for almost any θ∗, this solution set reduces
to a singleton where θ̂ = θ∗ and ϕ is the identity transformation, then the model is
s.g.i.

An important special case is when f and g are polynomials in x, parametrized by
θ and the observation equation is linear in the state, i.e., h(x, θ)= C(θ)x. The state
isomorphism can then be directly written under the form of a linear transformation
ϕ(x∗)= Tx∗, a considerable simplification [9].

Example 3.3 Although this method is dedicated to nonlinear models, it can of
course be applied to linear models, so consider the model defined by

ẋ = A(θ)x + b(θ)u, y = C(θ)x. (3.26)

The conditions of the special case apply, and the local state isomorphism becomes
a similarity transformation ϕ(x∗)= Tx∗, so (3.23), (3.24) and (3.25) translate into

A(θ̂)Tx∗ = TA(θ∗)x∗, b(θ̂)= Tb(θ∗), and C(θ̂)Tx∗ = C(θ∗)x∗. (3.27)

Since these equations must be valid for any x∗ around the origin and since T must
be invertible to correspond to a diffeomorphism, these equations are equivalent to
those that would have been obtained via the similarity transformation approach.

3.3.3 Using Elimination Theory and Computer Algebra

As illustrated by Example 3.1, (3.7) often translates into a set of polynomial equa-
tions in θ̂ parametrized by θ∗, which is unfortunately often not as easy to solve as
on this toy example. Elimination theory makes it possible to transform this set of
equations into one much simpler to solve [45, 57]. In a way reminiscent of Gaus-
sian elimination for solving linear sets of equations, Buchberger’s algorithm [8], for
instance, provides a method for transforming the initial set of polynomial equations
into a triangular set

P1(θ̂1, θ
∗)= 0, P2(θ̂2, θ

∗)= 0, . . . , Pdim θ (θ̂dim θ , θ
∗)= 0, (3.28)

where the components of θ̂ may have been re-indexed. For the model to be s.g.i.,
each Pi should have first order in θ̂i . Although the method is systematic, with con-
ceptually simple steps, it may lead to very complicated algebraic manipulation that
are best left to computer algebra systems such as Maple. It does not take a very
complex model, however, to exceed the ability of even today’s supercomputers, so
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the automated solution of systems of polynomial equations is still an active research
topic.

Differential algebra [28, 46], in which differentiation is added to the usual ax-
ioms of algebra, makes it possible to eliminate state variables from (3.9) so as to
get differential input-output relations. These relations, which involve only known
variables and their derivatives and the parameters to be estimated, can also be used
to test nonlinear models for identifiability [2, 4, 32, 41]. The Maple package dif-
falg, based on results presented in [6], turns out to be very useful in this context.
It can be shown [30] that any s.g.i. model can be rearranged to a linear regression
(since high-order derivatives of noisy measurements may appear in the regressors,
this should be used with caution in the context of actual parameter estimation).

3.4 Testing Model Structures for Distinguishability

It was assumed so far that the structure of the model had been chosen. When one
hesitates between several competing model structures for the description of the same
system, one would also like to check that there is some hope of using experimental
data to select the best of them. The notion of structural distinguishability can then
be used, under similar idealized conditions as for identifiability [58]. Consider a pair
of competing model structures M̂ (·) and M ∗(·), and write

M̂ (θ̂)= M ∗(θ∗) (3.29)

to denote that the model with structure M̂ (·) and parameter vector θ̂ has the same
output as the model with structure M ∗(·) and parameter vector θ∗ for any input and
time. (θ̂ and θ∗are now completely different parameter vectors, and may even differ
in their dimensions.) M̂ (·) is structurally distinguishable (s.d.) from M ∗(·) if, for
almost all values of θ∗, there is no θ̂ such that (3.29) is satisfied. When M̂ (·) is s.d.
from M ∗(·) and M ∗(·) s.d. from M̂ (·), M̂ (·) and M ∗(·) become s.d. Although it
is easy to show via counterexamples that identifiability of two model structures is
neither necessary nor sufficient for their distinguishability, trivial adaptations of the
methods presented above make it possible to test models for structural distinguisha-
bility. The main difference is that we now hope that there is no solution to (3.29),
instead of hoping for a unique solution to (3.7).

3.5 Maximizing Identifiability

Answers to questions of structural identifiability are of a qualitative nature. Once
the structural identifiability of the parameters of interest has been established, one
would like to know how much they are identifiable, and this clearly depends on
the conditions of data collection. An s.g.i. parameter may actually turn out to be
estimated with such an imprecision that it is not identifiable at all in practice, if
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the experimental conditions are badly chosen. To design experiments optimally [12,
19, 60, 61] so as to maximize practical identifiability, we first need an approach to
assess parameter uncertainty as a function of the experimental conditions.

3.5.1 Quantifying Identifiability

The approach based on the Fisher information matrix (FIM) is by far the simplest
and most used method for assessing the uncertainty in the parameters that results
from noise corrupting the data. Under fairly general technical conditions (which
include global identifiability of the model parameters), when the number of data
points tends to infinity, the maximum-likelihood estimate θ̂ML of the parameter
vector tends to be normally distributed N (θ∗,F−1(θ∗,Ξ)), with Ξ describing the
experimental conditions under which the data were collected, and F the FIM. The
FIM is thus strongly connected with the (asymptotic) dispersion of the parameter
estimates around the true value. F(θ ,Ξ) can be computed as the expectation of the
product of the gradient of the log likelihood of the data by its transpose, with the
expectation taken over all possible values of the data under the hypothesis that they
are generated by a model with parameter vector θ . As long as the FIM is invertible,
the parameters are at least locally identifiable. In the important special case where
Ξ consists of the instants of time ti (i = 1, . . . , f ) at which a scalar output y(ti) is
collected, if one assumes that

y(ti)= ym(ti , θ
∗)+ εi, (3.30)

with the εis independently identically distributed N (0, σ 2), computation boils
down to

F(θ ,Ξ)= 1

σ 2

f∑

i=1

(
∂ym(ti , θ)

∂θ

)(
∂ym(ti , θ)

∂θ

)T

, (3.31)

which corresponds to the Gauss-Newton approximation of the Hessian, often used
for parameter optimization. Unless ym is linear or affine in θ , a very special case
not considered here, the FIM thus depends on θ , so evaluating the (asymptotic)
covariance F−1(θ∗,Ξ) is impossible in practice. Instead, one usually evaluate
F−1(θ̂ML,Ξ). This characterization of the uncertainty on the parameter estimates
is more credible if the number of data points is large, the model output is only
mildly nonlinear in θ and the measurement errors are independently distributed
with small magnitudes. Because it is much less computer-intensive than alternative
Monte-Carlo methods, the FIM approach plays a prominent role in optimal exper-
iment design for parameter estimation, which may be seen as a maximization of
practical identifiability, just as optimal experiment design for model discrimination
could be seen as a maximization of practical distinguishability.
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3.5.2 Optimal Experiment Design

Experiment design is of course only feasible if there are some degrees of freedom on
the experiments to be carried out, for instance in terms of location of sensors or actu-
ators, of input shape or of measurement times. We assume here that the design con-
sists of f elementary experiments leading to scalar observations yi , i = 1, . . . , f ,
and denote the experimental conditions of the ith scalar observation by ξ i . For in-
stance, ξ i may simply correspond to the ith measurement time. When f such obser-
vations are collected, the concatenation of their experimental conditions yields the
experimental design

Ξ = [ξ1, ξ2, . . . , ξf
]
. (3.32)

It is important to realize that there are always practical constraints on Ξ (e.g., on the
duration of the experiment, the energy or amplitude of the inputs, the minimum time
between samples, the total number of samples, working hours. . . ), which define a
feasible experimental domain. These constraints must be taken into account for the
solution to be relevant. The definition of an optimality criterion then makes it possi-
ble to cast experiment design as constrained optimization, as opposed to parameter
estimation, usually carried out via unconstrained optimization. In the context of ex-
periment design for parameter estimation, one almost invariably optimizes some
scalar function of the FIM, because the FIM is simple enough to be repeatedly eval-
uated, as required by the optimization algorithms. Disregarding, for the time being,
the problem of the dependency of the FIM in the parameters, the most commonly
used criterion is D-optimality, where

Ξ̂D = arg min
Ξ

det F−1(θ∗,Ξ)= arg max
Ξ

det F(θ∗,Ξ)

= arg max
Ξ

ln det F(θ∗,Ξ). (3.33)

Ξ̂D thus minimizes the volume of the asymptotic confidence ellipsoids for θ∗. It can
be shown to be invariant under any non-singular reparametrization that does not de-
pend on the experiment. Thus, for instance, the optimal experiment does not depend
on the units in which the parameters are expressed. This seems natural to ask for,
and is one of the reasons for the popularity of D-optimality. However, a D-optimal
experiment may correspond to very elongated confidence ellipsoids, with large con-
fidence intervals for the parameters. This is why alternative optimality criteria also
based on the FIM may be worth considering, at the cost of losing invariance under
reparametrization.

Example 3.4 Consider the one-compartment model defined by the state equation

ẋ = −Cl
V
x + u, x(0−)= 0, (3.34)

where the two parameters to be estimated are the clearance Cl and the volume
of distribution V . These parameters are classical in pharmacokinetics, and called
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micro-parameters. Assume an impulsive input of drug u(t)= d0δ(t) (with the dose
d0 known). This is equivalent to assuming that there is no input and x(0+) = d0.
Assume further that the observation equation is

y(ti)= 1

V
x(ti)+ εi, i = 1, . . . , f, (3.35)

with the εis independently identically distributed N (0, σ 2). We cannot do with
less than two measurements (f = 2, Ξ = [t1, t2]) to estimate the two parameters,
and wish to position these measurements in a D-optimal manner. Since

y(ti)= d0

V
exp

(
−Cl
V
ti

)
+ εi, i = 1, . . . , f, (3.36)

and D-optimal design is invariant by design-independent reparametrization, we can
parametrize the model in terms of its macro-parameters as

ym(ti ,p)= p1 exp(−p2ti ), with p1 = d0

V
and p2 = Cl

V
, (3.37)

and use (3.31) to compute the FIM as

F(p,Ξ)= 1

σ 2

2∑

i=1

[
exp(−p2ti )

−p1ti exp(−p2ti )

][
exp(−p2ti ) −p1ti exp(−p2ti )

]
. (3.38)

The objective function to be maximized with respect to Ξ is then

det F(p,Ξ)= 1

σ 4
p2

1(t2 − t1)2 exp
[−2p2(t1 + t2)

]
. (3.39)

Obviously the measurements must take place after the drug is introduced, and we
can arbitrarily label the first measurement time as t1, so we take t2 ≥ t1 ≥ 0 as the
design constraints. The D-optimal design is then Ξ̂D = (0,1/p∗

2). It thus depends
on the very parameters to be estimated! This is typical of models whose output is
nonlinear in their parameters, and a major difficulty with most knowledge-based
models.

Various strategies can be followed to address this difficulty. The first one corre-
sponds to choosing some (hopefully reasonable) nominal value θ0 for the parameter
vector, and designing the experiment to be D-optimal at θ0. This is called local
design. It can be carried out using either generic algorithms for constrained opti-
mization or more specific algorithms, such as DETMAX [34].

With sequential design [10, 16], one cycles through experimentation, estima-
tion and experiment-design steps. One may start experimenting with a local design
(or any reasonable experimental design). Each estimation step improves knowledge
about the parameters, and this knowledge is taken advantage of during the next
experiment-design step. To ensure convergence, a key point is that each estimation
step should make use of all previous observations.
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When repetition of experiments as required by sequential design is impossible,
so that a single (one-shot) experiment must be designed, a first possible approach is
average optimality [13, 42], where parameter dependence is removed by averaging
on θ . One may, for instance, compute an ELD-optimal design [11]

Ξ̂ELD = arg max
Ξ
Eθ {ln det F(θ ,Ξ)} , (3.40)

where the expectation is taken with respect to some prior distribution for θ , as-
sumed to be available. Note that introducing the expectation operator in the three
equivalent expressions for D-optimality provided in (3.33) produces three different
criteria. The one reported above has the advantage over the other two of being jus-
tifiable by information-theoretic arguments. Specific algorithms such as stochastic
gradient make it possible to find Ξ̂ELD without having to evaluate any mathematical
expectation. See [60] for more details.

If the best experiment in the worst circumstances should be preferred to one that
is best on average, then maximin optimality can be considered [43], such that

Ξ̂MMD = arg max
Ξ

min
θ

det F(θ ,Ξ). (3.41)

One must then assume that a set of prior admissible values for θ is available. Again,
specific algorithms must be employed, such as Shimizu and Aiyoshi’s relaxation
algorithm [47].

Example 3.5 Consider again the one-compartment model of Example 3.4, paramet-
rized in terms of its macro-parameters, and assume that the prior distribution of p2

is uniform over [1,10]. Then Ξ̂ELD = (0, 0.182) and Ξ̂MMD = (0, 0.1).

3.6 Beyond Identifiability

One may want to bypass the study of the structural identifiability of the model being
considered for at least two reasons. The first is when one is unable to reach a con-
clusion, either because the calculations involved are too complicated or because no
generic conclusion is possible (for instance, because there are two regions of param-
eter space where the conclusion differ, none of them corresponding to an atypical
manifold). The second, and more fundamental one, is that lack of identifiability of
the model structure is just one of the possible motives for ambiguity or an unac-
ceptable uncertainty in the estimated parameters. Even if the model is s.g.i., there
may exist radically different parameter vectors that are associated to acceptable be-
havior of the model, so there is a need for methods to characterize the set S of
all values of the parameter estimates that are acceptable (in a sense to be specified)
given the data. This is in contrast with the usual methods for nonlinear parameter
estimation, which look for a single parameter vector minimizing some cost function
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by local iterative methods, with the well-known risk of getting trapped at a local
minimizer.

Interval analysis, the main tool to be used to provide an approximate but guaran-
teed approximation of S , will be very briefly presented, before describing applica-
tions of guaranteed set characterization in two contexts, namely optimal estimation
and bounded-error estimation.

3.6.1 Interval Analysis

To allow guaranteed statements on calculations involving real numbers x, inter-
val analysis (IA) [24, 35, 38] computes on intervals [x], described by machine-
representable lower bound x and upper bound x. Thus an interval [x, x] is repre-
sented by a pair of real numbers (just as a complex number). As regards arithmetical
operations, it is easy to derive rules for the addition, subtraction or multiplication
of intervals. For instance, computing [c] = [b] + [a] simply means computing c as
the largest machine-representable number that is smaller than b + a, and c as the
smallest machine-representable number that is larger than b+ a. Division requires
more care, to deal with the case where the interval at the denominator contains zero.
Interval vectors [x] (also called boxes) and interval matrices [M] can be defined as
Cartesian products of scalar intervals, and operations on matrices and vectors such
as addition, subtraction or multiplication are trivially extended to operations on in-
terval matrices and interval vectors.

An interval guaranteed to contain the image of an interval by an elementary func-
tion such as the exponential or any trigonometric function is easy to compute. For
instance, exp([x]) is included in the interval [exp(x), exp(x)], which is rounded out-
ward to get a machine-representable interval.

For any function f(·) defined by combining arithmetical operators and elemen-
tary functions, IA makes it possible to build inclusion functions [f](·) such that
f([x]) ⊂ [f]([x]), where [f]([x]) is a box. It thus becomes possible to make guar-
anteed statements about the image of a box by a function, even though this image
is usually impossible to compute exactly. If, for instance, 0 does not belong to the
box [f]([x]), then we know that it does not belong to f([x]) either. Many types of
inclusion functions can be defined (and combined). Natural inclusion functions, for
example, are obtained by replacing all real variables, operators and elementary func-
tions by their interval counterparts.

The construction of inclusion functions for the solutions of systems of ordinary
differential equations for which no closed-form is available is slightly more compli-
cated. It can be achieved through the use of guaranteed ODE solvers, such as AWA
[31], COSY [5, 22] or VNODE [37]. Since these solvers cannot provide accurate
enclosures of the solutions when the equations are uncertain, it may be necessary to
bound the solutions of uncertain ODEs by those of deterministic ODEs, on which
guaranteed ODE solvers will prove much more accurate. The notion of cooperativity
or Müller’s theorems [36] are then extremely helpful [26, 53–55].
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3.6.2 Optimal Estimation

Hansen’s algorithm is representative of the deterministic global optimization algo-
rithms that can be used when parameter estimation translates into optimization. Its
presentation here will be more than sketchy, and the reader is invited to consult [20]
for more details.

Let c(θ) be the cost to be minimized, assumed to be twice differentiable (it may
correspond, for instance, to minus the log likelihood). Let g(θ) be its gradient and
H(θ) its Hessian. Assume that search must take place within some (possibly very
large) box [θ0] of parameter space, and that we have inclusion functions [c](·) for
the cost, [g](·) for its gradient and [H](·) for its Hessian (or at least [hii](·) for the
ith diagonal entry of its Hessian, i = 1, . . . ,dim θ ). The global minimizers are not
expected to lie on the boundary of [θ0], so this is unconstrained minimization, and
any local or global minimizer θ̂ should be such that g(θ̂)= 0 (stationarity condition)
and hii(θ̂)≥ 0, i = 1, . . . ,dim θ (convexity condition). The idea is to eliminate (or
reduce) sub-boxes of [θ0] that cannot contain any global minimizer. Let [θ ] be one
such sub-box. It can be eliminated

• if the lower bound of [c]([θ ]), which is the best value of the cost that one can
hope for on [θ ], is greater (i.e., worse) than the best value obtained so far,

• if [g]([θ ]) does not contain 0, which proves that [θ ] contains no stationary point,
• if there is a diagonal entry hii of the Hessian such that the upper bound of

[hii]([θ ]) is strictly negative, which proves that the cost is not locally convex
anywhere on [θ ].

It can be reduced by a contractor, i.e., an operator that transforms it into a smaller
box without losing any minimizer. Contractors are particularly important in the
struggle against the curse of dimensionality, because they reduce the size of the
search region without bisection. A number of possible contractors are presented
in [24]. Hansen’s algorithm uses the Newton contractor, an interval counterpart to
the Newton method for the solution of the equation g(θ)= 0. The basic (and beau-
tiful) idea of the Newton contractor is as follows. The mean-value theorem implies
that, for any θ in [θ ], there exists z also in [θ ] such that

g(θ)= g(m)+ H(z)(θ − m), (3.42)

where m is the center of the box [θ ]. Now assume that θ̂ ∈ [θ ] is an unconstrained
minimizer. Since g(θ̂)= 0,

g(m)+ H(z)(θ̂ − m)= 0 (3.43)

and, if the Hessian is invertible,

θ̂ = m − H−1(z)g(m). (3.44)

So, assuming that the Hessian is invertible at any z in [θ ],
θ̂ ∈ m − [H−1]([θ ])g(m). (3.45)
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As θ̂ also belongs to [θ ], we have

θ̂ ∈ [θ ] ∩ [m − [H−1]([θ ])g(m)], (3.46)

which may turn out to be much smaller than [θ ], or even empty. In practice, one
avoids attempting to invert an interval matrix, and looks instead for an outer ap-
proximation to the set of all solutions for θ̂ in [θ ] of the linear system of equations

g(m)+ [H([θ ])] (θ̂ − m)= 0. (3.47)

Hansen’s algorithm manages a list of sub-boxes of [θ0] the union of which is
guaranteed to contain all global minimizers within [θ0]. Initially this list only con-
tains [θ0]. Whenever a sub-box fails to be eliminated or reduced to the empty set, it
is bisected into two sub-boxes, possibly after contraction, unless its width is lower
than some prespecified threshold. The algorithm terminates when all the boxes left
in the list have a width lower than the threshold.

Results obtained by application of this algorithm (with a different contractor)
to the example of Sect. 3.1, using (3.5) as the cost function, can be found in [27].
The algorithm computes a guaranteed outer approximation of the set of all global
minimizers that presents a symmetry around the plane θ1 = θ3, consistent with the
identifiability analysis carried out in Example 3.1 but obtained without taking this
identifiability analysis into account.

3.6.3 Bounded-Error Estimation

In this alternative approach [25, 33, 39, 40, 44, 52], instead of looking for the set
of all global minimizers of the cost function, we look for the set of all parameter
vectors that are consistent with some prior bounds on the errors that we are prepared
to accept. With each vector of experimental data y(ti), we assume that is associated
a known box [ei , ei] of acceptable errors, and look for the set

S = {θ ∣∣ ei ≤ y(ti)− ym(ti , θ)≤ ei , i = 1, . . . , f
}
. (3.48)

Let y, e, e and f(θ) be the vectors obtained by concatenating all y(ti), ei , ei and
ym(ti , θ)(i = 1, . . . , f ), respectively, and take [y] = [y − e,y − e]. Then S can be
defined as

S = {θ | f (θ) ∈ [y] } = f−1([y]), (3.49)

which casts parameter estimation in the context of set inversion. The algorithm
SIVIA (for set inversion via interval analysis) [25] can then be used to compute
two unions of boxes S and S in parameter space, such that S ⊂ S ⊂ S . As
previously, search will be carried out within a prior box [θ0], assumed to be large
enough to contain S , or at least the part of it we are interested in. As with Hansen’s
algorithm, this prior box is bisected into sub-boxes [θ ] that fall into three categories
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• those such that [f]([θ ]) ∈ [y] are proven to be inside S ; they are included in S
and S ;

• those such that [f]([θ ])∩ [y] = ∅ are proven to be outside S ; they are discarded;
• all others are bisected into sub-boxes to be further tested, unless their width is

smaller than some user-defined threshold δ (in which case they are included in
the outer approximation S ).

Because of the threshold δ, this algorithm stops after a finite number of steps. Upon
completion, it produces inner and outer approximations of S , and the distance be-
tween these approximations is indicative of the quality of the characterization of S
achieved. This quality can be increased by decreasing δ, at the cost of more compu-
tation.

An improved version of this algorithm can be found in [27], where it is also
applied to the example of Sect. 3.1. Again, for small enough bounds on the accept-
able errors, S turns out to consist of two disconnected subsets with a symmetry
around the plane θ1 = θ3, consistent with the identifiability analysis carried out in
Example 3.1 but obtained without taking this identifiability analysis into account.

3.7 Conclusions and Perspectives

Structural identifiability is a critical issue when one is interested in estimating the
physically meaningful parameters of knowledge-based models. It is also important
when physically meaningful state variables have to be estimated using filters based
on these models.

Methods of test have been presented for models that may be linear or not in the
input-output sense, but are always nonlinear in their parameters. This is the rule for
knowledge based models.

Having proved that a model is structurally identifiable does not guarantee that it
can actually be estimated satisfactorily. The quality of the estimates crucially de-
pends on that of the data, and optimal experiment design for parameter estimation
may be viewed as maximizing a measure of practical identifiability (just as optimal
experiment design for model discrimination may be viewed as maximizing a mea-
sure of practical distinguishability). The main difficulty with experiment design for
parameter estimation in the context of models that are nonlinear in their parameters
is that the usual approaches yield experiments that depend on the parameters to be
estimated. Several ways of addressing this difficulty have been recalled.

Interval analysis makes it possible to characterize the set of all solutions of the
estimation problem while bypassing the study of structural identifiability altogether.
This does not make this study obsolete as regards the understanding of the math-
ematical properties of the model. Optimal experiment design also remains a much
useful concept. Despite the meaning of the Latin data, it is important to realize
that the data may not be a given of the problem, and that much may be gained by
collecting them in an optimal manner.

Although the examples considered in this chapter were toys, designed to illustrate
specific aspects, the methodology that has been presented already has been used on a
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number of real-life problems (see, e.g., [7, 21, 49, 59]). The main limitations are due
to the curse of dimensionality. Even with computer algebra, it is often impossible
to reach a conclusion on the structural identifiability of models of practical interest,
and the characterization of the set of all optimal or acceptable parameter vectors
is an NP-complete problem, so we need approximations to be able to get solutions
without loosing the guaranteed nature of the conclusions. The use of appropriate
contractors, which makes it possible to limit the numbers of bisections to be carried
out in parameter space, is an important tool in this respect, on which much remains
to be done, as on other methods to struggle against the curse of dimensionality.
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Chapter 4
Model Structure Identification and the Growth
of Knowledge

M.B. Beck, Z. Lin, and J.D. Stigter

When contemplating the interpretation of some time-series data,
often have I thought: “Why bother with the struggle, when I
could simply pass it all over to the virtuoso—Peter”.

By the time I arrived in Cambridge to begin my doctoral studies in October, 1970,
I had convinced myself I was fascinated by systems, dynamics, and control. In fact,
I rather fancy I wanted simply to continue being a student. In my first term, an
acquaintance gathered me up on one of those waves of “environment and conserva-
tion” that wash over us from decade to decade. I put two words together: pollution
and control. Could I do my PhD on the resulting topic? After all, Peter and I were
in what was then called a Control Engineering Group, within the University Engi-
neering Department. From amongst the puzzled faces, Peter emerged to take me on
board. And the rest, as I say, is my history.

At that time (1970), Peter was chipping away at the orthodoxy of the book [13]
just published by Box and Jenkins (Time Series Analysis, Forecasting, and Control),
in what I now recognize as his own inimitable contrarian way. He gave me a passion
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for recursive estimation, from which I subsequently derived my own career-long
commitment to solving the problem of model structure identification. These ideas
of recursive estimation were so powerful. They have shaped the way I think, about so
many problems, including those having more to do with the social sciences than with
engineering. I gave them due recognition by entitling a whole sub-section—“Living
in a Recursive Predictive World”—in one of the chapters of the book Environmental
Foresight and Models: A Manifesto [7].

Somewhere in the 1980s, I came to view the extended Kalman filter (EKF) as
akin to a Model T Ford, when I knew I wanted a contemporary BMW 700 Series.
I could conceive of the overall design, but I needed first Hans Stigter and then Zhulu
Lin to realize my conceptual blueprint. Needless to say, this has since drawn in no
small measure upon the contributions Peter has been continuing to make.

This chapter honors Peter, then, in recounting my career-long experience (1970–
2010) of staring down the devilishly difficult: the problem of model structure identi-
fication—of using models for discovery. I still regard this matter as one of the grand
challenges of environmental modeling [12]. If I appear modest about our progress in
the presence of such enormity, so I am. But let no-one presume that I am therefore
not greatly enthused by the progress I believe I and my students (now colleagues)
have made over these four decades. It has been a privilege to be allowed the time to
work on such a most attractive and engaging topic.

4.1 Introduction

The summer of 1972 in Cambridge was unusually sunny, warm, and dry—an event
that one would have noticed, in the light of the then popular image of the English
summer. While there had been a decade preceding of river water quality modeling,
no-one by 1970 had embarked on collecting appropriate field data for such model
calibration and verification. This was especially true of the unsteady-state, dynamic
models of particular interest to control theory and control engineers.

The goal of the first author’s doctoral research [2] was accordingly to develop
a dynamic model of a stretch of the River Cam, just downstream of Cambridge
and, more to the point, just downstream of a suitably “exciting” input signal, i.e.,
the discharge from the Cambridge Sewage Works. The model had been chosen and
constructed. It described the dynamic interaction between a measure of gross or-
ganic pollution (the concentration of biochemical oxygen demand; BOD) and a
measure of the healthy status or otherwise of the river, its concentration of dis-
solved oxygen (DO). Data collection was a matter of sample retrieval in a pack of
bottles transported by bicycle, followed by manual titration. Model calibration was
implemented using the extended Kalman filter (EKF). The fact that the model failed
to match both the observed DO and BOD behavior during the periods of “good”
weather, the struggle to diagnose the failure, and then the much greater struggle to
rectify its possible causes, came to be known as model structure identification [10].
Its procedure was facilitated by interpreting the temporal variations in the recursive
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estimates of the model’s parameters, conventionally, the supposed “constants”, i.e.,
coefficients α.

Such failure was not the intention. For we all want our models to approximate
the real thing in some demonstrable manner, for reasons of scientific enquiry or for
some other purpose, such as making a prediction in association with determining a
course of future actions of environmental stewardship. Indeed, the extent to which
the model can be reconciled with past observed behavior is a measure of the extent
to which we might judge the primary science to be provisionally corroborated. At
the same time, the map of uncertainty attaching to the posterior model’s conceptual
structure and its constituent mechanisms, after this process of system identification,
will have significant consequences for any exercises in forecasting and investigating
possible future patterns of behavior [4, 6].

In modern times, in the present decade (2001–2010), the US National Science
Foundation (NSF) has committed significant amounts of financial support to the ini-
tiation of Environmental Observatories (EOs), in the Ocean Sciences, Ecology, and
Hydrology-cum-Environmental Engineering (see, for example, [12]). Together with
a commitment to radical enhancement of the environmental cyber-infrastructure,
the EOs extend the promise of vast streams of high-volume, high-quality (HVHQ)
data regarding the behavior of environmental systems. This, in principle, should be
“transformative” for model structure identification.

To appreciate the contemporary significance of model structure identification, we
first introduce the bare bones of some philosophy and some shorthand definitions
of the problems being addressed. They are not matters merely of model calibration.
This establishes the ground on which to express the challenge of model structure
identification, as seen today. Our chapter will not enter into any algorithmic detail,
for this has been recorded and reported fully elsewhere [17–19, 34, 35]. Instead,
we focus on a scheme of scientific visualization, inspired by the software of bio-
molecular graphics. We judge its eventual mechanization and implementation to
be one of the key goals in realizing more effective procedures for addressing the
challenge of model structure identification. And it will continue to be an enduring
challenge, we argue (see also [12]).

In the decades hitherto, the significance of model structure identification has con-
sistently been underplayed, even trivialized through its association with model cal-
ibration, itself viewed by some as somehow disreputable. A “good, physics-based
model”, after all, should not need calibration! If this chapter can help put a stop to
such historic oversight, it will have served its purpose.

4.2 Model Structure Identification: Problem in Contemporary
Context

4.2.1 Models and the Growth of Knowledge

We know that models can be used as succinct archives of knowledge, as instruments
of prediction in support of making decisions and stewardship of the environment, or
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as devices for communicating scientific knowledge to a scientifically lay audience
(and each such task may have different obligations for model evaluation; [8, 24]).
But how, we must ask, might the development and application of models serve the
purposes of basic scientific discovery and, therefore, the growth of knowledge?

In an article on interactive computing as a teaching aid, MacFarlane [22] pre-
sented a three-element characterization of knowledge. According to the American
philosopher Lewis these three elements are (as reported by MacFarlane):

(E1) the given data;
(E2) a set of concepts; and
(E3) acts which interpret data in terms of concepts.

These three pillars, and their inter-relationships, will help to organize our thinking
about the role of model structure identification in core discovery. It would be diffi-
cult to assert that any one of these pillars was supremely important. Yet elevation of
(E3) to rank on a par with the status of (E1) and (E2) is significant.

Given Lewis’s schema, we can see that the impact of NSF’s EOs on the “given
data” (E1) should be substantial and profound. Excellence in modeling can in any
case not be achieved in the absence of first-class data for rigorous model testing and
evaluation.

Just as profound, if not more so, will be the impact of the environmental cyber-
infrastructure on mechanizing the “set of concepts” (E2) in computable form—
although we should take care not to confuse the notion of a computational model
entirely with the “set of concepts” or a theory. For models are a secondary science,
in the sense of enabling organized assembly and encoding of the distilled knowl-
edge emerging from the primary field sciences. But that distilled knowledge is not
indisputable fact. It is a composite assembly of a host of constituent “atomistic” the-
oretical elements, each themselves reflecting individual hypotheses quarried from
laboratory science or a particular field science, often crafted in disciplinary com-
partments without the benefit of the entire picture of the whole system necessarily
in mind. The environmental systems we observe and study behave as indivisible
wholes, so that a basic question becomes: when placed together in the organized
structure of a computational model, which of the constituent hypotheses are ade-
quate/inadequate, in terms of determining the performance of the whole; and how
should the inadequate constituents be removed, modified, and re-introduced in more
adequate form?

This too is model structure identification. The urgency of this matter can only
but grow as mounts the number of constituent hypotheses upon which one wishes
to draw (for a description of the real system’s behavior).

What will be the implications of these profoundly important advances—in the
sensing technologies of the EOs and in the environmental cyber-infrastructure—for
Lewis’s “acts which interpret data in terms of concepts” (E3)? What will be their
implications, in other words, for system identification and for model structure iden-
tification? Indeed, how does this “interpretation” actually come about? How does
one, for example, reconcile a large-scale geophysical model of global deglaciation
with (reconstructed) relative sea level observations at 392 sites spanning a period
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of some 15,000 years [37]? More specifically, which constituents of the very large
and very complex assembly of micro-scale theory is at fault when the model fails—
as inevitably it does—to match the relatively macroscopic historical observations?
“Interpretation” is a result of juggling with, and sifting through, a unique assortment
of disparate facts and figures assembled by the individual, upon which some kind of
order is eventually imposed. It is a subjective mental process. That process, more-
over, is sore in need of some technical support, not least from all the innovations in
computing over the past forty or so years, as the NSF now recognizes [27].

In short, that there will be significant developments in the technical support nec-
essary for engaging the model in a meaningful interpretation of the data, is by no
means assured. News of advances in computational capacity is abundant (witness
[26]); news of advances in the technology of instrumentation and remote sensing is
commonplace (witness [25]); news of the increasing capacity of the brain to jug-
gle with disparate facts and concepts is non-existent. In this resides arguably the
greatest of opportunities to flow from the EOs and the oncoming environmental
cyber-infrastructure for the future of environmental modeling—in what has there-
fore been recorded as perhaps the core, grand challenge of environmental modeling:
model structure identification [12].

4.2.2 In the Gap Between the Model and the “Truth of the Matter”

Let us assume the scope of model building can be succinctly defined by the triplet
of the observed inputs (u), model (M), and observed outputs (y), and that the at-
taching tasks are those of the mathematical textbook: given two out of the three
unknowns, find the third. The three principal computational and algorithmic ques-
tions are thus:

(Q1) Given u and y, find M . This we shall refer to as system identification, i.e.,
largely pillar (E3) above in Lewis’s pragmatic school of thought on the growth
of knowledge, under which falls the task of choosing the contents of u and y

so as to maximize the “identifiability” of M , i.e., the design of experiments
and sensor networks.

(Q2) Given M and u, find y. The problems of forecasting, and scenario and fore-
sight generation.

(Q3) Given M and desired, feared, and/or threatened y, find u. The problems of
control, management, decision-support, and policy formulation.

From (Q1) emerges a fourth question, which is, of course:

(Q4) How well does M approximate the real thing, and what are we going to do in
respect of the other two questions ((Q2) and (Q3)) given there is never such a
match, i.e., that there is more or less substantial uncertainty to be dealt with?

Many models (M) of the behavior of environmental systems can be defined ac-
cording to the following representation of the state variable dynamics of classical
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mechanics,

dx(t)/dt = f {x,u,α; t} + ξ(t) (4.1a)

with observed outputs being defined as follows,

y(t)= h{x,α; t} + η(t) (4.1b)

in which f and h are vectors of nonlinear functions, u, x, and y are the input,
state, and output vectors, respectively, α is the vector of model parameters, ξ and η
are notional representations respectively of those attributes of behavior and output
observation that are not to be included in the model in specific form, and t is con-
tinuous time. Should it be necessary, spatial variability of the system’s state can be
assumed to be accounted for by, for example, the use of several state variables of
the same attribute of interest at the several defined locations.

For any system, the choices of [u,y] determine the (observable) external descrip-
tion of its behavior. Those aspects of the science base mobilized into the computa-
tional encoding of the model—the hypothetical mechanisms considered significant
to the manner in which input, causative disturbances (u) are transcribed into out-
put effects (y)—are signaled by the choices of [f ,h;x,α]. In short, the structure
of the model (M) is most succinctly conveyed in terms of [f ,h], which denote
the logical inter-connections among u, x, and y, while α signifies parameterization
of the particular mathematical expressions of all the hypothetical mechanisms be-
lieved to underpin these interactions. We may call [x,α] the internal description of
the system’s behavior, as the complement of [u,y].

If the “truth” of the matter could be represented in a model, which it cannot
(by definition), the structure of the system’s behavior could be supposed to be of
infinitely high order. Let us denote this as [f ∞,h∞]. We, with our models in the
realm of the finite, [f 0,h0] say, work on a much more macroscopic plane. Our mod-
els have a crude resolving power, even for those of a very high order (+N ), with
structure [f +N,h+N ]. What exactly, however, should we suppose is the content of
the gap between [f 0,h0] and [f ∞,h∞], the structural error and structural uncer-
tainty in the model, that is? For the anomalies observed during the period of good
weather over the River Cam in 1972 derived from within that gap.

Put simply, this inadequacy, or error and uncertainty of approximation, may en-
ter into (4.1a), (4.1b) through α, ξ , and η, although these points of entry differ in
their interpretation and significance. The principal distinction is between α, embed-
ded within the choices for [x,α,f ,h], which signify that which we presume (or
wish) to know of the system’s behavior, relative to the purpose of the model—to be
denoted as {presumed known}—and [ξ ,η], which acknowledge in some form that
which falls outside the scope of what we believe we know, to be denoted the {ac-
knowledged unknown}. Much, of course, must be subsumed under the latter, that
is, under the definitions of ξ and η. We may have chosen to exclude from the model
some of that which was known beforehand, but which was judged not to be signif-
icant. There may be features for which there are no clear hypotheses (and therefore
no clear mathematical expressions), other than that these may in part be stochastic
processes with presumably quantifiable statistical characteristics. There may be yet
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other features of conceivable relevance, but of which we are simply ignorant. And,
as is most familiar, there may be factors affecting the processes of observation such
that we are unable to have uncorrupted, perfect access to knowledge of the values
of the inputs, states, or outputs.

Essentially, the model is all that we have to work with to cope with the gap
between [f 0,h0] and [f ∞,h∞], where this gap will constitute the whole of the
{acknowledged unknown} and of the {presumed known} being wrongly presumed
known. It is all we have to apprehend something of significance, to our understand-
ing and actions, within the gap. In particular, in this process of apprehension, the
model—being the vessel containing all the relevant hypothetical knowledge from
the science base—is to be pitted against all the relevant experience of the observed
past behavior.

Given that there will always be such a gap between the model (M) and the “truth
of the matter”, we must ask:

Can we identify the nature of what lies within it, through model structure identi-
fication?
Can we estimate the magnitude of the inevitable error and uncertainty still re-
maining (after such identification)?
How might we best approximate the consequences of this structural error and
uncertainty in accounting for its propagation in predictions of future behavior?

In this sense of accounting for uncertainty, questions (Q1) (system identification),
(Q2) (forecasting), and (Q3) (policy formation) of our foregoing threesome of text-
book problems, are intimately inter-related [4, 6]. In particular, the same line of
algorithmic framing of this accountancy, i.e., recursive estimation, is presently be-
ing used to make in-roads into quantifying structural error and uncertainty in a
model [20].

Given NSF’s Environmental Observatory initiatives, which are designed to pro-
vide access to unprecedented streams of data [u,y], there is arguably no greater
challenge than that of responding to the novelty unleashed thereby in those “acts”
of Lewis, “which interpret data in terms of concepts”, i.e., system identification, at
the core of which resides model structure identification. This is model calibration
writ immensely more richly.

4.2.3 Neither Model Calibration Nor Trivial

Because model calibration is so familiar and routine to implement (if not to
succeed)—and because the richer, more philosophical facets of system identification
can so often be obscured by the straightforward pragmatism of model calibration—
there is considerable intricacy and deeper subtlety now to be conveyed.

For calibration, the structure of the model ([f 0,h0]) is routinely presumed
known. Whatever resides in the gap between this structure of the model M and the
truth of the matter ([f ∞,h∞]), the algorithm of calibration has not been designed
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to assist in seeking it out. It is not usually the intent of the calibration exercise to
do so, anyway. For calibration, the parameters (α) are routinely presumed every-
where invariant in three-dimensional space (s) and time (t), i.e., they are random
variables but invariant in truth. They are, in any case, not usually acknowledged as
α(s, t), let alone estimated as such. In a Popperian sense, these presumptions about
the model’s structure and its parameters are all as they should be. They are bold
conjectures, made all the more readily falsifiable by their very boldness, if there
were a more deliberate and determined over-arching intent to employ calibration
and its routine presumptions to root out and explain any errors and uncertainties in
the model’s structure—which, in general, there is not.

Our model has been cast at some level of inevitably macroscopic resolving power
(0), i.e., [f 0,h0], relative to the “real thing” resolved down to some infinitesimally
fine degree, i.e., [f ∞,h∞]. The parameters of the model, denoted more precisely
as α0, which we would very much prefer to understand as (temporally) invariant
quantities, must in practice subsume a bundle of states and parameters [xq,αq ]
that would be present in a more refined model, had it been possible or desirable
to cast the model at that more refined level (q) of description. Since state vari-
ables are by definition quantities that vary with time, things contained in the gap
between [f 0,h0] and [f ∞,h∞], i.e., within the structural error/uncertainty, imply
that, given an invariant form for [f 0,h0], the model’s parameters must necessarily,
and in principle, be capable of variation with time t , if the complex of [f 0,h0,α0]
is required to mimic the behavior of [f ∞,h∞].

One only has to conceive of a chemical kinetic rate constant, α0—presumed
to account for a biochemical transformation enacted by a population of bacteria,
x1(t), whose population numbers change with time, according to a set of parameters
of growth and death (α1)—to appreciate the significance of this. Indeed, even this
collection of state and parameters at the more refined resolving power (of +1), will
be well known to be “in truth” a function of yet more refined states, such as intra-
cellular concentrations of enzymes (xq ) and the parameters (αq ) appearing in the
web of cellular biochemistry considered to be taking place at a yet more refined
level of description (q) (see, for example, [1]). In this sense, then, the occurrence of
apparent temporal change in the structure of the model, manifest in terms of α0(t),
is a universal possibility. We might better conceive of the nature of our model’s
parameters, α0, therefore, not as random variables, i.e., as uncertain constants, but
as stochastic processes, whose variation through time is largely systematic—and
capable, in principle, of interpretation—but also random and accordingly ascribable
only to the actions of pure chance [9].

When the River Cam studies were begun in 1970, it was an unquestioned com-
monplace to talk of a BOD decay-rate constant. In the model (4.1a), this would
simply account for a host of bacterial species metabolizing (and thereby degrad-
ing) a multitude of complex organic substances—in truth, something approaching
[f +N,h+N ;x+N(t),α+N ], yet described as though a single invariant α0. The hope
was, presumably, that all of this non-linearity would in the end obey some “law of
large systems” and add up to nothing more than a rudimentary linearity of chemical
kinetics.



4 Model Structure Identification and the Growth of Knowledge 77

4.2.4 It Matters: Both Philosophically and Pragmatically

The previous decade of the 1960s had been a time of “youthful exuberance” in
the development of environmental systems simulation. With this technocratic opti-
mism, fueled by man’s landing on the moon, we entered the 1970s. For calibration,
the prior, rudimentary practice of trial and error—of trying out different values for
the model’s parameters (α) until the “curve” of the estimated outputs would match
satisfactorily (in some sense) the “dots” of the observed output data—was to be
supplanted by the more systematic, objective procedures of mathematical program-
ming, optimization, mathematical filtering theory, and the like. The modernism of
“automatic calibration”, detached from subjective manipulation, was to supercede
the craft-skill of “calibration by hand”.1 To the consternation of all, automatic cal-
ibration turned out to be supremely successful in revealing the very considerable
difficulty in locating the uniquely best set of parameter estimates. And this is what
we know (only too well) as the problem of a lack of model identifiability, hence too
all the artful ways of trying to constrain automated calibration routines not to deliver
nonsensical parameter estimates.

At the time, one might have argued that this problem arose from inappropriate
choices for the contents and forms of u and y, including—of great concern in con-
trol theory—a choice of u that is not “persistently exciting”. The freedom of such
choice remains remote when studying the behavior of environmental systems in situ.
Choosing to observe u just downstream of Cambridge Sewage Works was as good
as that part of the experimental design was going to be, in 1972. Moreover, the abun-
dant lack of model identifiability was manifest even where there were reasonable ap-
proximations of naturally perturbing signals, i.e., precipitation events in hydrologi-
cal modeling. In the early 1970s, input perturbation (experimental) design was itself
being studied as a subject of optimization, to serve the needs of the then burgeon-
ing schemes of adaptive, real-time (on-line) control in engineered systems. Today,
wherever the nonlinear Michelis-Menten or Monod kinetics for the growth of mi-
crobial organisms appears in a model—and it is ubiquitous, in wastewater treatment
[15, 31, 36], river water quality and lake ecology [14, 29] or oceanography [33]—
some detailed account of the problem of (a lack of) model identifiability is given.

The consequences of such nonlinear kinetics, albeit not necessarily realized as
Monod kinetics, were very probably present in the observed behavior of the Cam
in 1972. What might lie beneath their macroscopic approximations exemplifies the
foregoing conceptual discussion of what might reside in the gap between [f 0,h0]
and [f ∞,h∞]. And the consequences of similar nonlinear biochemical kinetics will
be just as apparent and dominant in the case study to follow below.

Attempting to overcome a lack of model identifiability matters philosophically—
in the growth of secure knowledge—because this implies a determined attempt at
expunging ambiguity in competing interpretations of Lewis’s “data” (E1) and at re-
ducing to a singularity an otherwise plurality in his plausible “sets of concepts” (E2).

1It did not, as it happens. The two co-exist fruitfully today, notwithstanding the supposed academic
inferiority of the latter.
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It matters in practice to the public too, since Mooney fully intends scientifically-lay
members thereof to read his (2007) popular account of “Storm World—Hurricanes,
Politics, and the Battle Over Global Warming” [23]. His account (literally) personi-
fies what we consider the challenge of model structure identification (Lewis’s (E3)).

4.3 Scientific Visualization: Towards a Contemporary
“Solution”

What resides in the gap between the model and the truth of the matter has two parts
to it: error in the {presumed known} and uncertainty in the {acknowledged un-
known}. Yet in the representation of (4.1a), (4.1b), the burden of discovery is tilted
towards just the former, as revealed through temporal variability in estimates of
what we must henceforth understand herein as the (conventional) model parameters
(α). But little can be discerned of the latter, i.e., the presence/absence of systematic,
non-random features appearing in the {acknowledged unknown}.

4.3.1 The Algorithm: Special Role of Innovations Representation

We can re-phrase our model in the naturally recursive format of what is called an
innovations representation of the system’s behavior, as follows [5, 21, 34, 35]:

dx(t |tk−1)/dt = f {x(t |tk−1),u(t),α} + Kε(t |tk−1), (4.2a)

y(tk)= h{x(tk|tk−1),α} + ε(tk|tk−1). (4.2b)

Here, attention has been restricted merely to the conventional intervals of time pass-
ing from one observing instant tk−1 to the next, tk . In spite of the formalities, what is
of importance will prove to be of conceptual, as much as algorithmic, significance.
Thus, formally, the argument (t |tk−1) signals a predicted value of the associated
quantity at some (future) time t utilizing the model and all observed information,
in particular, in respect of the observed output y, up to and including that available
at the most recent sampling instant, tk−1. ε(tk|tk−1) is the innovation, i.e., the mis-
match between the predicted and observed values of the output at the next sampling
instant in discrete time, tk , in (4.2b); ε(t |tk−1) in (4.2a) is the value of this quan-
tity at times not coincident with the sampling instant. K is a weighting matrix and
can be thought of as a device—a throttle or valve—for distributing the impacts of
the innovations among the constituent representations of the various state variable
dynamics, i.e., the representations fi(·) for each state xi [5].

K is central to the conceptual argument we now present.
First, comparing (4.1a), (4.1b) and (4.2a), (4.2b), it is evident that the cleavage

in the one, between the {presumed known} and the {acknowledged unknown}, is as
that between [f ,h] and [ξ ,η] (in (4.1a), (4.1b)), while in the other (4.2a), (4.2b) it
is as that between [f ,h] and [Kε, ε].
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Second, unlike ξ and η, ε(tk|tk−1) is a computable quantity, being the mismatch
(in (4.2b)) between the forecast value of the output and the observed output—albeit
not the truth of the matter (hence some of the necessary approximation in our argu-
ment). In this way, ε is a kind of gauge of the foregoing gap between [f 0,h0] and
[f ∞,h∞].

Third, just as we are familiar with the notion of reconciling the model’s behav-
ior with that observed of the real thing, in order to adjust and estimate the values
of the model’s conventional parameters (α), so this same process of reconciliation
can be employed to reconstruct values for the elements (κ , say) of the matrix K .
Indeed, the motivation for using the algorithmic form of (4.2a), (4.2b) was precisely
this: to reconstruct κ , instead of setting their values by prior assumption, in order
to reconstruct estimates of α [21]. If then the estimates of κ remain essentially the
same as their prior, presumed values of 0.0, none of the empirical mismatches be-
tween the model and the data—in effect the innovations ε—are fed back into the
predictions made of future behavior. Our predictive instrument is operating essen-
tially on the basis of the {presumed known} alone. Should the elements of κ come
to be reconstructed in the course of events as substantially non-zero, our predic-
tive instrument is beginning to rely on the {acknowledged unknown}, and perhaps
predominantly so.

Armed with these three conceptual interpretations of the formalities of (4.2a),
(4.2b), we can proceed to our vital insight into the role of K . Given the association
of [Kε, ε] with the {acknowledged unknown}, κ can be attached to the parameteri-
zation of this entity in the same manner as α has been the device for parameterizing
the {presumed known}. We have thus the {presumed known (α)} and {acknowl-
edged unknown (κ)}, where now, given the computability of ε, we have an empir-
ical means of both identifying the inadequacies of what has been included in the
model and apprehending something of significance in what has been excluded from
it. Further, as with all the individual elements of α, what transpires in reconstruct-
ing the individual elements of κ can provide pointers to the specific consequences
of this “something of significance”—something of substance in guiding the search
for the reasons underlying the deformation and/or change of structure.

Alternatively, think of this as follows. Randomness in the gap between [f 0,h0]
and [f ∞,h∞] should cause flutter in ε, possibly even of high amplitude (for ex-
ample, from the spurious corruption of observing errors). Persistent mismatches of
significance in ε should eventually cause adaptation and change within α and κ ,
the one pointing to structural errors in the expression of the {presumed known},
the other to something of significance being apprehended in the {acknowledged un-
known}.

4.3.2 The Visual Metaphor

Figuratively (and approximately), the structure of the model has been parameter-
ized by the branches of the network of Fig. 4.1 [7]. The [αij ] are included within
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Fig. 4.1 Archetypal link-node network visualization of model structure. Nodes represent state
variables (x). Branches represent interactions among the state variables and are parameterized
according to elements of vector α for the {presumed known} and elements of vector κ for the
{acknowledged unknown}

the basic rectangular frame connecting the states (x) with each other, while the [κij ]
attach to the frame but point outwards symbolically into the space surrounding the
structure of the frame, visually suggestive of probing the gap between the model
[f 0,h0] and the truth of the matter [f ∞,h∞]. Figuratively, oscillation and/or de-
formation of the branches of Fig. 4.1 should alert us to something being amiss in
our understanding. The template of the model structure ([f 0,h0]) (Lewis’s (E2))
has caught on something of significance in the space of all possibilities around it, as
it is being navigated through the given, observed behavior (E1) of the real system.
In particular, the indications from engagement between the two—Lewis’s (E3)—
should direct our attention into specific avenues for discovery of the source of the
anomalies, through the tagging devices of α and κ .

Reduced to its essence, the challenge of model structure identification obliges us
in turn:

(S1) To demonstrate unequivocally (a posteriori) the inadequacy of the model’s
structure ([f 0,h0])—with yet the bold intent (a priori) not to succeed in this;

(S2) To diagnose the sources of this failure; and then
(S3) To reason our way through rectification of the causes of inadequacy and fail-

ure.

The metaphor of Fig. 4.1 was introduced as early as 1975. It was indispensable to
grasping better the nature of the problem, hence to fathom what kind of recursive
estimation algorithm—or (at that time) what better way of running the EKF—might
enable the then dimly perceived steps (S1) through (S3) to be realized computa-
tionally. The EKF required many (arbitrary) assumptions about the nature of the
variance-covariance properties of the system (ξ ) and (less so) the observation (η)
noise processes. It would not be until 1979, however, that Ljung would publish his
seminal paper on the Recursive Prediction Error (RPE) algorithm for circumvent-
ing some of this arbitrariness of the EKF (for the purpose of parameter estimation).
And it was not until the early 1990s that Stigter would implement the RPE for the
purposes of model structure identification, starting with the (by then) most familiar
test-bed of the 1972 Cam data [34, 35].
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4.4 Case Study: Mechanization of the Visual Metaphor

Shortly after its publication, the book “Environmental Foresight and Models:
A Manifesto” [7] came somehow to the attention of a bio-pharmaceutical scien-
tist, whose interest lay in optimizing patient treatments for cancer, for example,
of the liver (now expressed fully in [16]). From this chance encounter in 2002—
so unexpected that it very narrowly escaped being pre-emptively deleted as junk
email—has come the central burden of the present chapter: visualizing model struc-
ture identification (four decades on). The encounter has also come to epitomize the
nature of inter-disciplinary research in applied systems analysis [12]. Indeed, what
is now being written would probably not have emerged without yet another related
serendipitous spark of insight across the endless inter-disciplinary gaps: the visual
matching of a diagram such as Fig. 4.1 with images from a “Gallery of Biomolecu-
lar Simulations”, for changes over time in the spatial structure of complex biological
molecules (also see [12]).

4.4.1 Plethora of Numbers

Everything we wish to know about the performance of recursive estimation algo-
rithms for the purposes of model structure identification, cast according to the in-
novations representation of (4.2a), (4.2b), is associated with prodigious volumes of
numbers. There are numbers to record the propagation through the discretized time-
space continuum of various high-dimensional estimation error variance-covariance
(and other) matrices; and there are numbers about the like propagation of input,
state, parameter, and output vectors. So why should visualization be highlighted in
this manner for solving, in particular, the problems of model structure identification?
Our response is this: because learning, discovery, and the forensic science of model
structure identification in the growth of knowledge, are all about the highly con-
densed visual apprehension of the myriad diagnostic facets of the comparisons and
juxtapositions entailed therein. This is especially the case in complex multivariable
situations of HVHQ data and very high order models (or VHOMs).

We need hardly be reminded of the startling expansion over the past few decades
in our capacity to simulate the behavior of systems, in theory, in ever more detail
and completeness on the computer. Equally obvious is the substantial impact of the
EOs and environmental cyber-infrastructure in expanding our technical capacity for
observation, i.e., the volume and quality of data streams. By comparison, there has
been no advance in the capacity of the human brain to juggle with a huge entangle-
ment of computational estimates and observed facts—no advance in our capacities
for lateral thinking, as we have already said—in order to reconcile bundles of ob-
scurely and obliquely discerned anomalies, where data and theory seem to diverge,
and not through the action of spurious chance occurrences. Imagine what is to be
supported: reconstruction in a computational world of a complex assembly of exper-
imental tests of multiple, constituent hypotheses; which hypotheses are of varying
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prior strengths and impossible to isolate clinically from the whole for examination
one by one as singlets; and whose observable causes and consequences all interact
with each other.

What is called for, above all, is a succinct visual representation of the structure
of the model: along the lines of animating the branch-node network of Fig. 4.1,
thereby achieving compression of the plethora of numbers through the rich visual
complexity of color, movement, and animation of the model’s structure. Visualiza-
tion is necessary just as much for the “acts” (E3) of system identification as it is
(already) for the “data” (E1) and for the “set of concepts” (E2). It may be as fa-
miliar as the computer graphics of games, films, and the scientific reconstruction
of history and the imagination of future threats (for the television programs of the
History and National Geographic channels, for instance).

The need has been long-standing: for the kind of software environment enabling
rewiring of the constituents within the whole of the model, almost as quickly and
easily as the serendipitous thought surfaces in the brain; and for support of the kinds
of scientific visualization that will enable the serendipitous thought to occur sooner
rather than later. Much of what is called for in wrestling with model structure iden-
tification, especially in respect of (S2) and (S3), is likely to depend on an essential
element of such serendipity, something which by definition defies full automation
and systematization in any form of environmental cyber-infrastructure.

Our task is to demonstrate how these issues may be addressed using a case study.

4.4.2 Visual Demonstration of Structural Inadequacy

Suppose we have access to HVHQ data for the nutrient-biological dynamics of a
manipulated aquaculture pond, a posterior conceptual model of which is shown in
Fig. 4.2 [18]. Figure 4.3 demonstrates the performance of this model. The result can
be thought of as but a “snapshot” in the ongoing process of reconciling a succession
of evolving candidate model structures with a portion of the HVHQ data. At this par-
ticular juncture, the most significant element of the posterior structure of Fig. 4.2 is
its incorporation of an account of the dynamics of duckweed and alkalinity-related
features. Both had been omitted from the immediately previous prior model struc-
ture, but had been emerging from the joint experience of modeling and working with
the field system as prime candidates for inclusion in the next (trial) model.

When reconciliation of the prior candidate model structure (Mprior) with the field
data was attempted—en route subsequently to the posterior structure (Mposterior) of
Fig. 4.2—that act (sensu Lewis) yielded the recursively generated trajectories of pa-
rameter estimates of Figs. 4.4 and 4.5. These attach respectively to the {presumed
known (α)} and {acknowledged unknown (κ)} divisions of the relevant (prior)
knowledge base. The estimates derive from a Recursive Prediction Error (RPE) al-
gorithm, but with the specific modification [18] of being cast in the parameter space
of α and κ , where all the elements of α and κ can be treated as stochastic processes
represented by generalized random walk (GRW) models [38, 40, 41]. In respect
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Fig. 4.2 Typical block diagram for an a posteriori model structure (Mposterior) of nutrient, algal,
and duckweed dynamics in a manipulated aquaculture pond: blocks represent state variables (x);
model parameters (α) will typically be associated with the mathematical expressions describing
interactions among the state variables (lines/arrows in the diagram) (originally as in [18])

Fig. 4.3 Match of behavior
of posterior model structure
(Mposterior) with field
observations of state variables
(x): (a) algal biomass
(chlorophyl-a) concentration
and (b) dissolved oxygen
concentration (DO). The
reconstructed (unobserved)
state variable for duckweed
biomass is shown as the
dashed line in (a) (originally
as in [18])

of identifying the successes and failures of the various components of the model’s
structure, what is of special interest is bound up with the temporal variability in the
estimates of α (Fig. 4.4) and κ (Fig. 4.5).

In the following, key is the mechanizing of the visual aspect of the numerical re-
sults, not their interpretation with respect to the physics, chemistry, and biology of
the given case study (more detailed discussion of which can be found in [18]). Also
to be borne in mind is the fact that neither the field work nor these studies in model-
ing were set up and implemented a priori with the benefit of the hindsight now being
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Fig. 4.4 Estimates from a
Recursive Prediction Error
(RPE) algorithm for
parameters (α) logically
attaching to the {presumed
known} of the prior model
structure (Mprior) (originally
as in [18])

Fig. 4.5 Estimates from a
Recursive Prediction Error
(RPE) algorithm for
parameters (κ) logically
attaching to the
{acknowledged unknown} of
the prior model structure
(Mprior) (originally as in
[18])

applied to this presentation of them. Fertilization of the pond was intended to excite
algal growth (which it did), not a duckweed bloom, which it also achieved—seen
by all who visited the pond, but not formally observed through any scientifically de-
signed instrument. We note merely in passing, therefore, that the relative conceptual
“insecurity” of any conjectures about the behavior of the duckweed is signaled by
the dashed box for its biomass and dashed lines for all that might relate to this state
variable in the posterior candidate model structure of Fig. 4.2.

4.4.2.1 The {Presumed Known}

The prior structure (Mprior) has fourteen elements in the vector α, with the following
presumed strengths and weaknesses:
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(PK1) Parameters (ten in number): so boldly known as to be constant, certain, hence
entirely absent from Fig. 4.4;

(PK2) Parameters r1, r3, and r4: presumed invariant with time, but uncertain;
(PK3) Parameter r5: presumed variable with time, uncertain, hence behaving as

r5(t).

Inspecting the trajectories of the three elements of (PK2) in Fig. 4.4, all converge
to invariant values. In the case of r1, but not r3 or r4, its final estimated value turns
out to be close to its initial value, as chosen from the literature. None of these three
trajectories is greatly affected by the excitation of the pond through the input of
a substantial quantity of fertilizer, whose timing is marked by the vertical bar in
Figs. 4.4 and 4.5 and whose purpose was to provoke information-rich responses in
the system’s behavior. Parameter r5 of (PK3), permitted to be r5(t) within the pre-
sumed known (α) of the model’s structure, is included in the dynamics (f2) of the
state variable (x2) for DO concentration. It purports to represent the lumped conse-
quences of sources of DO in the pond water other than those articulated through the
markedly bolder conjectures attaching to (PK1), which are here explicit in the ex-
press mathematical forms for the processes of re-aeration and algal photosynthesis.
Figure 4.4 shows that r5 does in fact vary over time and is almost always positively
valued. Old habits die hard. For the same kind of parametric (α) device was incor-
porated into revised model structures conjured up to try and pinpoint the anomalies
of the 1972 Cam study (and then explain them).

Three decades on (in 2000), the real-time monitoring capabilities of the Univer-
sity of Georgia’s Environmental Process Control Laboratory (EPCL; see also [12])
were forearmed for observing the response of algae to the fertilization in Fig. 4.3,
but not for anticipating the eventually impressive growth of the duckweed Lemma.
In 1972, DO and BOD had been observed in the Cam, but not algae. In the 2000
aquaculture pond manipulation, a host of variables were monitored, including algae,
but not the duckweed. Life in situ is always more complex and expansive than the
reach of our experiments and the evolving capacity of our observing systems.2

The observing devices themselves may also fit awkwardly into the mathematical
formality of (4.1b) of the model. The BOD measurement of 1972 essentially sought
to mimic in situ microbial behavior in a bottled test of a water sample taken back
to the laboratory [3]. The EPCL in 2000 was conversely taken to the shoreline of
the aquaculture pond. It withdrew its sample of water from the pond continuously,
to expose that flow to various automated sensing devices housed within this mo-
bile laboratory. So significant was the sample flow that independent supplementary
measurements of the vertical profile of temperature in the pond strongly suggest de-
stratification of the pond’s waters when the EPCL was switched on. The observing
device, often taken for granted under the formality of (4.1b), was arguably changing

2The EPCL, a platform for real-time monitoring of water quality in a variety of aquatic environ-
ments, was operated from 1997 through 2008. All the data bases gathered with it are archived
in the Georgia Watershed Information System (GWIS) and are publicly and freely available for
downloading and analysis at www.georgiawis.org.

http://www.georgiawis.org
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the behavior of the observed entity, generally the exclusive focus of all attention
in (4.1a)—and here at a somewhat larger scale than that of quantum physics.

4.4.2.2 The {Acknowledged Unknown}

With two state variables (x) in Mprior and two observed outputs (y), matrix K has
four elements. Each, within the {acknowledged unknown (κ)}, is:

(AU1) Presumed constant but uncertain.

The recursively estimated trajectories of all four (in Fig. 4.5) are perturbed by the
observed responses to the act of fertilization of the pond, and more so for k1,1(tk)

and k1,2(tk) than for k2,1(tk) and k2,2(tk). In the first row of K , the former pair of
elements are the “throttles” regulating the injection of innovations errors into the
dynamics of the first model state, algal biomass. The second pair act likewise for
the second state, DO. All four elements progress towards values that are estimated
to be significantly non-zero.

Crudely speaking, it would appear that much of significance in accounting for
the pond’s behavior, relative to this candidate prior model structure ([f i ,hi]), must
be present in the {acknowledged unknown}. Not readily forthcoming, however, is
what might be discerned more incisively from these results regarding the possible
nature of the important features omitted from the model and cast under the domain
of the {acknowledged unknown}. The results do not point clearly in the direction
of the influence of the duckweed, the primary suspected missing feature in the prior
candidate model structure.

4.4.2.3 Coping With Complexity and Bewilderment

The evidence of Figs. 4.4 and 4.5 is only a part—yet an important part—of what
must be fed into the expression of Fig. 4.2 from diagnosis of the failure of the
prior model. Crucially, the availability of such kinds of evidence on parametric vari-
ations (or their invariance) should accelerate arrival of the moment at which the
serendipitous thought occurs. It is as though the structure underlying the behavior
captured in the data might be as that encapsulated broadly in the posterior structure
([f i+1,hi+1]), but demonstrably not so in respect of the prior structure ([f i ,hi]).
A number of constituent members of the latter—hypotheses, embedded in which
are parameters—are shown as failing in the attempt to reconcile that prior structure
with the data. This is the outcome of step (S1) of model structure identification.

To assist, even accelerate, the laborious process of proceeding from an obviously
inadequate prior model structure (Mprior) to a less inadequate posterior (Mposterior),
what we should need, in general, is something such as that of Fig. 4.6. This sub-
stantial advance upon the rudimentary structure of Fig. 4.1 was inspired by what
the June (2007) issue of The MathWorks News & Notes called the “world’s most
complex dynamic systems”. In fact, Fig. 4.6 is but a small segment of the structure
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Fig. 4.6 Link-node network diagram representing a model’s structure, based (in part) on the
schematic representation of a biological/pharmaceutical system: state variables (x) are denoted
as yellow nodes in this structure, while model parameters (α; and, in principle, κ) are associated
with the blue (or red) branches connecting the nodes to each other. Blue branches signal those
facets (constituent hypotheses) of the model structure associated with model parameters found to
be invariant and, therefore, robust and reliable in the face of the given test against field observa-
tions. Conversely, red branches indicate significant, non-random variability in what are presumed
to be (ideally) constants and, accordingly, failure of the model structure, in specific, constituent
parts

displayed in the article. While the article trumpets its subject as the “most complex”,
it is merely a part of one of those kinds of biological sub-systems of molecules in-
side the cells of the organs and organisms that make up the kinds of ecosystems
underpinning the behavior of entities such as a BOD decay-rate “constant”!

Coloring of the branches in this visualization of the essential concept of “model
structure” is quite deliberate: blue for invariant parameter estimates and therefore
provisionally secure constituent parameters; red for deformation over time, as the
given constituent members (hypotheses) of the structure buckle (fail). We know in
principle how the RPE algorithm could generate these colors and their changes with
time, which obviously would require some form of animated scientific visualization.

4.4.3 Animating Flexure and Collapse of Model Structure
in Lewis’s Acts of System Identification

Figure 4.6 conveys an “artist’s impression” of a model’s structure, representing a
prior candidate model structure (Mprior) with its apparent failings, as a step en
route to that of an improved posterior structure (Mposterior), all in the overall process
of model structure identification. Transformed into the three-dimensional represen-
tation of Fig. 4.7, we can acquire a yet better visualization of a “real” structure
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Fig. 4.7 Towards model
structure identification:
three-dimensional
representation of the model
structure (previously depicted
merely in two dimensions in
Fig. 4.6)

(and certainly something indicative of the schematized 3-D structure of a biologi-
cal molecule). Now (in Fig. 4.7) the insecure members of the model’s structure are
visualized as the more “diffuse”, “multiple” spans of red branches connecting state-
variable node to state-variable node. Yet Fig. 4.7, like Fig. 4.6 before it, remains a
static snapshot: of either an instant in time tk ; or (but not intended here) the “aver-
age” outcome of some attempt at automatic calibration of the model for some entire
block of time-series data.

Animation would permit changes of color over time. And to color could be added
the dimensions of width and weight of line and flexure, deformation, and oscillation
in these branches pinning together the nodes (state variables) of the structure. This,
however, can only be inadequately shown on a page of text, in the format of Fig. 4.8.
As the current candidate structure of the model is tested and stressed under the
conditions of step (S1), the visualization of Fig. 4.8(a)—its nodes fixed in their
positions on the screen—will reveal changes of color, changes in shape, and changes
in the breadth (“dispersion”) of the flexing branches (parameters) of the constituent
hypotheses implied in the node-node links. What began as a straight blue branch
may evolve into a distorted, flexed red branch, as the mean and variance of the
reconstructed parameter estimate (α in Fig. 4.4; κ in Fig. 4.5) increases/decreases
and wanes/waxes respectively. At some point (tk), the analyst visually apprehends
failure of a sufficient magnitude and freezes the animated visualization, i.e., stops
the RPE algorithm, at Fig. 4.8(a). S/he would then have the facility to rotate the 3-D
structure to the perspective of Fig. 4.8(b), and from there extract just the buckled
(red) portion of the structure for closer inspection.

In this substantially more complex model of, say, the behavior of the aquacul-
ture pond, did the set of concepts (Lewis’s (E2)) fail to be reconciled with the data
(E1) because of the characterization of the fluid mechanics of pond stratification, or
because of its microbial ecology? If the latter, was this because of the algae or the
duckweed or something else—and so on? Failure of the prior model structure has
been apprehended, not in some aggregate whole sense, of a lumped, non-specific,
statistical summary of a “failed Mprior”, but in the specifically targeted sense of αd



4 Model Structure Identification and the Growth of Knowledge 89

Fig. 4.8 Towards model
structure identification
through animation of flexure
and collapse of model
structure: (a) frozen frame of
the animation as the analyst
first detects a red web of
faulty behavior to the rear of
the three-dimensional model
structure, as the model is in
the process of being
reconciled with a recorded
span of field data; (b) same
frozen frame as (a) but
rotated in the
three-dimensional space of
the visualization of the
model’s structure in order to
reveal more clearly the failing
constituents (hypotheses) of
the model’s structure

and/or αe and/or αf of the red, buckled sub-segment of Fig. 4.8(b). In the (ideal-
ized) procedure of model structure identification, thus would the analyst move from
step (S1) to the diagnoses of step (S2).

4.4.4 Procedure

It is important to keep in mind the fact that the performance of an algorithm such
as the RPE is primed—by the choices made about the various initial estimates of
quantities and their attaching variance-covariance matrices (such as those of (PK1)-
(PK3) and (AU1))—to transcribe significant mismatches between overall observed
and conjectured behavior preferentially into changes and fluctuations in those quan-
tities deemed to be time-varying, i.e., r5(t). This particular RPE algorithmic imple-
mentation of a candidate model structure straddles awkwardly steps (S1) and (S2)
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of the current expression of the procedure of model structure identification. It seeks
to demonstrate unequivocally the inadequacy of the prior model structure (Mprior),
i.e., (S1), with yet an equivocal mix of bold-tentative conjectures embedded in the
{presumed known (α)}, i.e., (PK1)–(PK3). Choosing parameter r5(t) to represent a
host of more specific, putative mechanisms, all of which might amount to a single,
lumped entity presumed a priori to be time-varying, undermines the power of the
test of (S1), while anticipating the beginnings of a diagnosis of the sources of the
expected structural failure of (Mprior), i.e., (S2). Such ambiguity from a muddling
of these two procedural steps has long been recognized (as long ago as Beck [5], in
fact). How to avoid it should clearly be the subject of further research.

Yet strict adherence to procedure is but an ideal; and one which might miss the
unexpectedly beneficial outcome of procedure applied faultily in the messiness of
real-life case studies. Our purpose here, moreover, is to attain a blueprint for mecha-
nizing formal, scientific visualizations of the informal pictogram of Fig. 4.1—again,
to move from the analog of a Model T Ford to that of a contemporary BMW 700
Series. Implementation of the RPE algorithm appears genuinely to require fewer
arbitrary assumptions than did the EKF [35], and it was at least designed primarily
for the purpose of parameter estimation, as opposed to state estimation in nonlinear
systems. Here we have been relating the performance of an RPE algorithm adapted
still further, but well beyond its original remit, for the purposes of model structure
identification.

Assumptions have been standardized in the current form of our RPE [18], to those
associated with the variance-covariance properties of the white-noise sequences per-
turbing the GRW models of parametric variation, hitherto for α, if not yet κ . This
permits exquisite sophistication in the analyst’s specification of the relative strengths
and weaknesses of the model’s constituent hypotheses. It also permits endless vari-
ations on this theme, for there is uncertainty about these enumerations of model
structure error and uncertainty (see also [20]). Furthermore, we should not overlook
the complexity that will rapidly ensue from the increasing order of vector κ . This
is a function of the product of the (fixed) order of the observation vector (y) and
the almost inevitably increasing order of the state vector (x), as the model struc-
ture is progressively refined through successive iterations around Mprior , Mposterior ,
Mprior , Mposterior , and so on. Sophistication, as so often, is a two-edged sword.

In essence, the trajectories of the reconstructed parameter estimates vary, both
in terms of departure from their initial values and over extended intervals (in some
cases), yet not in an utterly random manner incapable of sustaining any further in-
terpretation. Such interpretation, through step (S2), is genuinely a struggle. It is not
trivial, even for such a simple, initial candidate model structure. But neither is it aim-
less. There are pointers as to where to seek insight within a rich base of hypothetical
knowledge surrounding possible forms of the posterior model, albeit rarely directed
at description of the dynamics of duckweed. Nevertheless, it is not hard to imagine
the bewilderment of the reader of this chapter, as s/he in turn struggles to follow
the deeper complexities behind the words of text employed here in our attempts to
relate our own (ever-evolving) appreciation of how to interpret Figs. 4.4 and 4.5 in
the scheme of model structure identification—the very acts indeed of Lewis’s (E3).
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Here now words are failing us, which is why we need a picture—and a rather clever
one too.

4.5 Above and Beyond: Diagnosis and Rectification

Our animated visual metaphor has promise. Yet it does not obviate the procedural
pitfalls of addressing step (S1) as distinct from (S2), or those of making therefore
the various numerical assumptions needed for implementing the RPE algorithm.

4.5.1 Step (S2): Diagnosis

The acts of system identification (E3) have conventionally been articulated within
just the space of the system’s and model’s outputs, y, where the curve should be
seen to pass through the dots. In this space, we know that the familiar theory-based
models tacitly dominant in this discussion of discovery and learning can readily be
found to suffer from a lack of model identifiability. Unambiguous interpretation of
the data is not possible. On the other hand, the data-based models of Statistics, the
antithesis thereof, are derived directly from the data (E1), deliberately with no preju-
dices about the set of concepts (E2) that might in due course explain the data. They
can be well identified, using presumed objective methods of statistical inference.
Yet customarily they are believed incapable of supporting a satisfactory theoretical
interpretation of the observed behavior they demonstrably replicate.

That conventional perception is changing, driven on the one side by the ideas
of “data-based mechanistic modeling” of Young [39], Young and Ratto [43]. The
essence of the dynamic behavior of the identified realizations of these models can
frequently be encapsulated in simple macro-parameters (β), such as the system’s
time-constant and steady-state gain. The essence of the various parts of the dy-
namic behavior of the theory-based models can similarly be encapsulated in identi-
cal terms. We know exactly how this is done: see, for example, Young and Parkinson
[42]. Instead of supposing that theory will be entirely successfully confronted with
data in the space of y, by way of evaluating the validity of that theory, abstracted
features of the macro-parameters of the theory-based model can be juxtaposed with
those of the data-based model, and conclusions drawn from this juxtaposition in the
space of β (about how theory diverges from observation). Along this continuum of
transformations of “information”

(E2) Theory � Theory-based model � Macro-parameters (β)

� Data-based model � Data (E1)

the goal is to deduce useful insights about the relationship between theory and data,
as reflected in their shared macro-parameters space [19]. If the recursively estimated
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trajectories of β tbm from the theory-based model match those of βdbm from the
data-based model (and their variations are not randomly insignificant), directions
towards specifically inadequate constituent hypotheses can, in principle, be deduced
[17, 19]. Although both at one remove from Lewis’s concepts (β tbm from (E2))
and data (βdbm from (E1)), reconciling “abstracted” β tbm with “abstracted” βdbm
embodies his “acts” (E3).

This continuum of transformations, and its speculated mechanization in serving
the growth of core scientific knowledge, will readily and convincingly appear dis-
tanced from the immediacy of the (very) public debate over climate change and
hurricane intensity [23]. Yet Mooney structures his book around those characters
(scientists) promoting empiricism over theory, who plead for “the data to speak
for themselves”, and those who promote theory over empiricism. Thus he sculpts
(with seemingly little literary license) the essential difficulty: of reconciling empiri-
cism with theory—Lewis’s (E3)—and the attaching computational complexity of
VHOMs, about which such controversy has boiled. Theorists stand resolutely at the
point of “Theory-based model” in the above continuum; empiricists are mustered at
their “Data” station; and with no apparent meeting of minds somewhere in between.

In less literary terms, that essential difficulty has to do with the vastly differ-
ent orders of magnitude of the data bases to which we have had access—the or-
ders and samples of [u,y] being customarily small—and these VHOMs with high-
dimensional state and parameter vectors [x,α]. It is akin to looking at the world and
trying to comprehend it through a pair of binoculars, with one eye-piece a micro-
scope, the other a telescope. The device of macro-parameter vector β has the appeal
of harmonizing the foci of the two eye-pieces, as a part of what could be needed for
better realizing step (S2) of model structure identification.

4.5.2 Step (S3): Rectification

How then should we reason our way through rectification (step (S3)) of the causes
of inadequacy diagnosed (S2) as being at the root of demonstrable failure (S1)?
Words—and now pictures—fail us. For this is the domain of “illogical” serendipity.
Being flawed in one’s logic, however, is far from being entirely unproductive [5].

4.6 Conclusions

Over four decades, we have made progress in shaping, addressing, and resolving
the issues of model structure identification. Punctuation marks in this intellectual
journey are discernible:

(P1) A certain frustration with the promise and pain of working with the extended
Kalman filter (EKF), for it had not been designed for the purpose of model
parameter estimation, let alone model structure identification. Yet some of that
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frustration doubtless inspired both the visual metaphor of the node(x)-link(α)
network of Fig. 4.1 and the procedural steps of (S1), (S2), and (S3).

(P2) The most welcome relief upon the introduction of the recursive prediction
error (RPE) algorithm of Ljung [21]—as, at least, an algorithm for parame-
ter estimation—and its subsequent re-orientation from its original state-space
representation to that of the parameter-space, and to the recognition of how to
parameterize the {acknowledged unknown (κ)} as significantly distinct from
the already parameterized {presumed known (α)}.

(P3) Recognition of the possibility of diverting the software of molecular graphics
into serving the purpose of scientific visualization in supporting the procedural
steps (S1) through (S3) of model structure identification, as a direct result of an
entirely chance encounter with a bio-pharmaceutical scientist. What is more,
we are far from exhausting the repertoire of graphics and visualization in the
biomedical sciences, as any leafing through current issues of Science (such as
that of 29 October, 2010) will reveal.

We have still not had the temerity to begin the design of a recursive estimation
algorithm—de novo, if necessary—for model structure identification, for its own
sake. However, we may explore the scope for improving the performance of further
adaptations of the RPE algorithm, specifically in respect of estimating time-varying
parameters, for example, through incorporating a Fixed Interval Smoothing (FIS)
algorithm [28].

As for metaphor in guiding any such design of novel algorithms, this chapter
has entirely overlooked the image Fig. 4.1 evokes of the link-node network repre-
sentations used to teach undergraduate students of civil engineering how to design
engineered structures to resist failure, deformation, buckling, and collapse. As an-
other punctuation mark in this narrative, therefore:

(P4) There is a well known duality (static-kinematic) at the basis of the methods
for analyzing the elasto-plastic behavior of engineering structures, which so
closely mirrors the duality of setting up an estimation algorithm in the state
space (x) and its complement in the parameter space (α).

This structural metaphor drove thinking about model structure identification through
(P1) and (P2) above to its culmination in the contribution of Beck et al. [11] to
the book “Environmental Foresight and Models: A Manifesto” [7]—which itself
unexpectedly prompted (P3). Pursuit of (P4) in respect of pushing the problem-
solution couple of model structure identification beyond where it is being left at the
end of this chapter, would be quite an ambitious agenda for the future.

Where we stand now evokes then the title of one of philosopher Popper’s books:
“Unending Quest” [32]. This chapter has been about the overlooked role of model
structure identification in the core scientific matter of discovery of new knowledge,
here according to philosopher Lewis’s characterization of the growth of knowledge.

Decisions and policies regarding environmental stewardship cannot be deferred
for ever, of course. In that pragmatic world—upon the arrest of the endless attempts
at model structure identification (and including in respect of climate change; [30])—
the need may increasingly be to quantify the remaining structural error and uncer-
tainty in a model and to account for their impacts on predictions of future behavior.
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Meeting that need, barely begun, strikes one as an equally massive agenda for future
research [20].

Good, generic problems will keep manifesting themselves in the specifics of case
study after case study, until they demand dedicated, unrelenting attention. Model
structure identification has become just this kind of a challenge, for some of us.
Such was never intended in 1970.
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Chapter 5
Application of Minimum Distortion Filtering
to Identification of Linear Systems Having
Non-uniform Sampling Period

Graham C. Goodwin and Mauricio G. Cea

5.1 Introduction

Sampling of continuous time systems has been studied for many decades [10, 19].
In the linear case, when the sampling rate is constant, there is a closed form for the
sampled data model of a continuous-time linear system. Estimation of the model pa-
rameters is then straightforward. However, when the sampling is non-uniform (time
variable), the discrete-time model becomes time varying and, in this case, the es-
timation of model parameters becomes more difficult [15, 34, 35]. The approach
we follow in this work, is to express the dependency of the discrete-time parame-
ters on the sampling period explicitly, and then to use this nonlinear parameterized
discrete-time model to obtain estimates of the continuous parameters. We use Non-
linear Filtering tools to carry out the associated estimation.

Filtering appears in many areas of Science and Engineering, see for example
[25, 28, 48]. When the system of interest is linear, then the Kalman Filter provides
an elegant and simple solution to the problem [2, 18, 28]. However, it is often the
case that practical problems are inherently nonlinear [27, 31, 43, 44]. Unfortunately,
the Kalman Filter is not directly applicable to these processes due to the presence
of nonlinearities. Hence, there has been on going interest in various approximate
nonlinear filtering algorithms.

Here we use a novel class of algorithms, known as Minimum Distortion Filter-
ing (MDF) [6, 7, 16, 17]. MDF is a class of algorithms based on Vector Quantiza-
tion [17, 45]. The aim, of Vector Quantization, is to choose a representative set of
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Fig. 5.1 Vector Quantization
is a powerful tool. The figure
shows a large Vector (crosses)
which has been approximated
by a relatively small one (red
circles). This allows one to
capture high complexity
distributions. Note there are
several techniques available
to perform Vector
Quantization. Here we use a
Lloyd-based approach

points (Vectors) withNx elements from a larger Vector with L elements [12, 21, 37],
Fig. 5.1 shows an example of quantization of a large vector. The goal of quantization
is to reduce computational load.

We also compare the MDF approach with another class of algorithm known as
Sequential Monte Carlo or Particle methods. Particle methods are based on using
a large number of random points (or particles) to approximate a distribution. Parti-
cle methods have been studied for several decades [22, 32, 39, 42]. Various differ-
ent variants of the basic algorithm have been developed. These strategies provide
widely accepted solutions to the general nonlinear filtering problem. However, due
to the large number of particles required, the methods are computationally expen-
sive. This motivates the search on more numerically “efficient” algorithms specially
when computational resources are limited.

The outline of the remainder of this chapter is as follows: In Sect. 5.2 we review
aspects of sampling. In Sect. 5.3 we formulate the non-uniform sampling identifica-
tion problem. In Sect. 5.4 we explain how to estimate states and parameters using
nonlinear filtering methods. In Sect. 5.5 we review nonlinear filtering theory at a
conceptual level. Section 5.6 presents, a classification of approximate nonlinear fil-
tering algorithms. In Sect. 5.7 we develop an algorithm based on MDF. In Sect. 5.8
we briefly describe Particle Methods. In Sect. 5.9 we present a simple numerical
example. Finally, Sect. 5.10 presents Conclusion.

5.2 From Continuous to Discrete Systems

In this section we briefly discuss the relationship between continuous and discrete
time models.

Most physical systems are described by continuous-time models. However, in
practice, one needs to interact with these systems in some way. Thus, real implemen-
tations are subject to different constraints, such as sensors, actuators and communi-
cation channels. These add extra ingredients to the problem. A key issue in almost
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all problems is that of sampling. Sampling provides the link between continuous-
time systems and discrete-time models.

Discrete system theory for uniformly sampled linear systems has been studied
over many decades using purely discrete methods [10]. However, our interest here
is in non-uniform sampling. In this case, it is convenient to model the system in
continuous time since the associated parameters are then invariant with respect to
different sample periods.

We summarize below some well known results regarding sampling of continuous-
time systems in state-space form. Consider the continuous time system:

dx = fc(x(t), u(t))dt + dω, (5.1)

where x(t) ∈ R
n, u(t) ∈ R

m, are the state, input signal and output signal re-
spectively. fc(·) : Rn+m → R

n. The process u(t) is a known input and we as-
sume that ω(t) ∈ R

n is a stationary Wiener processes with incremental covariance
Qc(x(t)) =Qdt . We also assume that x0 has Gaussian distribution with mean x̄0
and covariance P0. The matricesQ and P0 are symmetric and positive semi-definite.

For the linear case, fc(x(t), u(t))=Ax(t)+Bu(t), with A ∈R
n×n, B ∈R

n×m.
We assume that a zero-order hold (ZOH) is used for the input signal u(t). Then, the
corresponding discrete-time model with sample period Δk takes the form:

xk+1 =Ad(Δk)xk +Bd(Δk)uk +ωk, (5.2)

where k is the discrete-time index.
We assume the following discrete-time measurement equation:

yk+1 = Cdxk + νk. (5.3)

In (5.2), (5.3), ωk and νk are discrete-time white noise processes having covariance
matrix

Σd(Δk)=
[
Qd 0
0 Rd

]
=
[
Δk(Q+ Δk

2 (AQ+QAT )+ · · · ) 0
0 Rd(Δk)

]
, (5.4)

where Qd is a symmetric semi-positive definite and Rd is positive definite.
The system matrices in (5.2) are given by

Ad(Δk) = eAΔk = I +AΔk + 1

2
A2Δ2

k + · · · , (5.5)

Bd(Δk) = A−1(eAΔk − I )B =
(
B + 1

2
ABΔk + · · ·

)
Δk, (5.6)

where A ∈R
n×n, B ∈R

n, Cd ∈R
p×n.

The discrete-time model described above use a time-varying sampling sequence
{Δk}, where

Δk = tk+1 − tk > 0 ∀k ∈N. (5.7)
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Here, {tk} denotes the sample times. We assume that data is collected on the time

interval [0;Tf ], where Tf =∑Nf−1
k=0 Δk and Nf is the total number of samples.

5.3 Non-uniform Sampling as an Identification Problem

In this section we formulate the non-uniform sampling system identification prob-
lem. When the sampling rate is constant and the underlying continuous time system
is time invariant, then the discrete-time model is time invariant. In this case, the
parameters can be estimated directly on the discrete-time model. There are several
possibilities. For example, one can first estimate the discrete-time model matrices.
In a second step, a transformation can be applied to recover the continuous time
model matrices. This operation may involve computation of the logarithm of the
system matrix or the use of Padé like approximations [38, 47]. Different derivative
approximations can also be used to discretize the model. However, the choice of the
particular approximation may have a direct impact on the quality of the estimates
(see, for example, [35]).

When the sampling rate is non-uniform, the discrete-time model becomes time
varying. In this case, estimating the continuous parameters becomes more difficult.

Continuous-time system identification from non-uniform sampled-data has been
considered from several different perspectives. For example, in [15] approximate
output spectrum reconstruction is performed using B-spline functions. Another
identification procedure for the non-uniform sampling was proposed in [9]. In [9] a
least squares approach is used, where the states are estimated using a Kalman filter
in shift operator form.

Here, we use a different approach. We include the sampling period explicitly in
the discrete-time model. We also retain the continuous-time parameters. This leads
to the following model which restates (5.2), (5.3):

xk+1 = eAΔkxk +A−1(eAΔk − I )Buk +ωk, (5.8)

yk+1 = Cxk + νk, (5.9)

where A, B and C are the associated continuous time matrices, Δk is the sampling
period between the kth and (k + 1)th samples. The process noise ωk is Gaussian
and has a time varying covariance which is proportional to the sampling period
Qk =ΔkQ. We consider the measurement noise Gaussian and independent of ωk .
For simplicity we assume that the measurement noise has fixed covariance Rd .

Remark 5.1 This formulation leads to a linear discrete-time model with respect to
the states, but with significant nonlinearities with respect to the parameters.
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5.4 Systems Identification as a Nonlinear Filtering Problem

It is well known that parameter estimation can be combined with state estimation by
augmenting the model with additional states for the parameters. Thus, if we begin
with the linear model (2) to (8), then we have the following model which explicitly
includes the parameters.

xk+1 = Ad(Δk, θk)xk +Bd(Δk, θk)uk +ωk, (5.10)

yk+1 = C(θk)xk + νk, (5.11)

where θk is the unknown parameter vector. We model the time evolution of this
vector by an additional state space model. For example a random-walk process leads
to:

θk+1 = θk +ω(2)k, (5.12)

where ω(2)k is assume to be white Gaussian noise with zero mean and varianceQθ .
The covariance Qθ models how much we expect the parameter θ to change over
time. In turn, this effects the “memory” of the parameter estimator. For example, if
Qθ is large, then the model predicts rapid parameter variations and then the filter
will automatically “discard” the data save very recent observations. Conversely, if
Qθ is small, then the model predicts slow parameter variations and then the filter
will “retain” the data save for observations that are far removed from the present
time.

Remark 5.2 Even if we believe θ is constant, it is usually a good idea to use a value
ofQθ different from zero. The reason is that, otherwise, the parameter estimator will
“lock-up” and not use the on-going data. This is acceptable under ideal conditions
but can lead to erroneous estimates in practical cases, e.g. due to the influence of
outliers.

5.5 Nonlinear Filtering: General Concepts

In this section we introduce general concepts of Nonlinear Filtering. The continuous-
time case is described in [4, 33]. Here we focus on the discrete time case. We note
that the full state space model (5.10) to (5.12) is linear if considered as a func-
tion of xk only but is nonlinear in the extended state x̄k = [xTk , θTk ]T . We write the
augmented model (5.10) to (5.12) in the following general form as:

x̄k+1 = f̄ (x̄k, uk)+ ω̄k, (5.13)

yk+1 = h̄(x̄k, uk)+ ν̄k. (5.14)

The associated discrete nonlinear filter can then be expressed by two equations,
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The State-update (Chapman-Kolmogorov) equation [4, 28]

P(x̄k+1|Yk)=
∫

P(x̄k+1|x̄k)P(x̄k|Yk)dx̄k (5.15)

and the Observation-update (Bayes Rule) [4, 28]

P(x̄k+1|Yk+1)= P(x̄k+1|Yk)P(yk+1|x̄k+1)∫
P(x̄k+1|Yk)P(yk+1|x̄k+1)dx̄k+1

, (5.16)

where Yk denotes the set of measurements up to the kth sample.
The above equations provide a complete conceptual solution to the sampled data

nonlinear filtering problem. However, these equations are infinite dimensional and
then can only be solved in very special cases; e.g. linear-Gaussian problems, in
which case, the solutions reduce to the Kalman Filter. In the general nonlinear case,
various approximations are used to generate state estimates. A review of some of
the existing algorithms is presented below.

5.6 Review of Approximate Algorithms for Discrete Nonlinear
Filtering

There exists a huge volume of research on approximate algorithms for discrete time
nonlinear filtering. Useful reviews can be found in [3, 4, 8]. The existing algorithms
can be broadly classified into 5 categories:

1. Linearization algorithms:

• Here one linearizes about the current estimate x̂. This leads to the Extended
Kalman Filter (EKF) [2, 28]. Various embellishments are possible, e.g. re-
linearizing about updated estimates, leading to the Iterated Extended Kalman
Filter (IEKF) [11, 28].

The advantage of these algorithms is that they are very simple. The disadvantage
is that they will frequently fail when the nonlinearities are far from linear.

2. Mixed Algorithms:

• Here one uses a Gaussian approximation, but then chooses several represen-
tative points to pass through the nonlinearities. These are re-averaged after
passing though the nonlinearity: An example of this class of algorithms is the
Unscented Kalman Filter (UKF) [29, 30]. A more recent algorithm from the
same general class is the algorithm described in [3] which uses Gauss-Hermite
Quadrature.

Again these algorithms are very simple. However, the disadvantage is that they
only work for simple nonlinearities. Also they focus on estimating the mean of
the posterior distribution. This can be acceptable in some case but is, in gen-
eral, an inadequate description of the posterior distribution as is clear form the
distribution shown in Fig. 5.1.
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3. Deterministic Griding Algorithms:

• One can obtain an approximate filtering algorithm by simply representing the
distribution of the states on a finite grid. One choice would be a uniform grid.
However, this is often infeasible since a very large number of grid points are
typically needed.

• Another related idea is to, a-priori, choose a grid that is more focused on the
“likely” areas of the state space where the states might lie. For example [40]
uses vector quantization to choose a grid based on the prior distribution for the
state x̄.

Unfortunately, these methods do not account well for disturbances or uncertainty
in the state trajectories.

4. Monte Carlo/Particle Filtering:

• This technique accounts for disturbances by drawing a set of random samples
from the disturbance distribution. Thus, a discrete approximation to the pos-
terior distribution is generated which is based on a set of randomly chosen
points. The approximation converges in probability with order 1/

√
N , where

N is the number of chosen samples. The main disadvantages of this class of
algorithm is that a very large number of points may be needed and also these
points need to be, in some sense, related to the distribution of interest. Also,
the number of points grows exponentially with time unless some form of re-
duction is used. Thus, there are many ad-hoc fixes needed to get this type of
algorithm to work in practice. Such fixes include the use of proposal distribu-
tions, resampling methods, etc. see [8, 42].

5. Minimum Distortion Filtering [MDF]: This is a new class of algorithm. It was
first described in [16, 17]. More details of the computational details are given in
[6, 7]. We provide a summary of the algorithm in the next section.

5.7 Minimum Distortion Filtering Algorithm

The key idea underlying this class of algorithm is to utilize Vector Quantization to
generate, on-line, a finite approximation to the a-posteriori distribution of the states.

Say that one begins with a discrete approximation to the distribution of x̄0 on Nx
grid points. Also assume that one has a finite approximation to the distribution of
the process noise on Nw grid points. Then utilizing the discretized version of (5.15),
one obtains a finite approximation to P(x̄1) on Nx × Nw grid points. Then, one
uses the discrete equivalent of (5.16) to obtain a finite approximation to P(x̄1|y1)

on Nx × Nw points. Finally, one uses vector quantization ideas to re-approximate
P(x̄1|y1) back to Nx points. One iterates from the beginning to obtain a discrete
approximation to P(x̄2|y1) on Nx ×Nw points and so on. The algorithm is sum-
marized in Table 5.1.

The key step in the MDF algorithm is the vector quantization step (Step 5 in
Table 5.1). We give details of this step below.
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Table 5.1 MDF algorithm
Step Description

1 Initialization: Quantize P(x̄0) to Nx points by xi ,pi ;
i = 1, . . . ,Nx . Quantize P(ω̄) to Nω points by wj ,qj ;
j = 1, . . . ,Nw

2 Begin with P(x̄k |Yk) represented by xi,pi; i = 1, . . . ,Nx
3 Approximate P(x̄k+1|Yk) via (5.15) on Nx ∗Nω points

4 Evaluate P(x̄k+1|Yk+1) on Nx ∗Nw points via (5.16)

5 Quantize back to Nx points

6 Iterate from step 2

Assume we have a vector discrete distribution for some distribution P(x̄), where
x̄ ∈ R

n, quantized to a very large (but finite) set of points. Our goal is to quan-
tize P(x̄) to a smaller finite set of points xi,pi , i = 1, . . . ,N . The first step in
Vector Quantization is to define a measure to quantify the “Distortion” of a given
discrete representation. This measure is then optimized to find the optimal rep-
resentation which minimizes the distortion. In summary, we look for a finite set
Wx = {x1, . . . , xN } and an associated collection of sets S = {S1, . . . , SN } such that⋃N

1 Si =R
n and Si ∩ Sj = 0; i 
= j . We choose Wx , Sx by minimizing a cost func-

tion of the form:

J (Wx,Sx)=
N∑

i=1

E
{
(x̄ − xi)T W(x̄ − xi)|x̄ ∈ Si

}
, (5.17)

where W = diag(W1, . . . ,WN). Other choices of the distance measure, can also be
used; e.g. Manhattan, L1, Jaccard, etc., see [45].

If we fix x1, . . . , xN (the set of grid points), then the optimal choice of the sets Si
is the, so called, Voronoi cells [12, 21]

Si =
{
x̄|(x̄ − xi)T W(x̄ − xi)≤ (x − xj )T W(x − xj ); ∀j 
= i}. (5.18)

Similarly, if we fix the sets S1, . . . , SN , then the optimal choice for xi is the
centroid of the sets Si , i.e.

xi =E(x̄|x̄ ∈ Si). (5.19)

Many algorithms exist for minimizing functions of the form (5.17) to produce
a discrete approximation. One class of algorithm (known as Lloyd’s algorithm [12,
21, 37]) iterates between the two conditions (5.18) and (5.19).

Thus Lloyd’s algorithm begins with an initial set of grid points Wx = {xi; i =
1, . . . ,Nx}. Then one calculates the Voronoi cells Sx of Wx using (5.18). Next,
one computes the centroids of the Voronoi cells Sx via (5.19). One then returns to
the calculation of the associated Voronoi cells and so on. Lloyd’s algorithm iterates
these steps until the distortion measure (5.17) reaches a local minimum, or until the
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change in the distortion measure falls below a given threshold, i.e.

J (W k+1
x ,S k+1

x )− J (W k
x ,S

k
x )

J (W k
x ,Sx)k

≤ ε, (5.20)

where W k
x and S k

x , is the codebook and Voronoi cells at iteration k respectively.
For further details, we refer the reader to [6, 7].

5.8 Particle Methods

Here we describe an alternative scheme for nonlinear filtering based on Particle
filtering. This is actually one of the most commonly used schemes in practical non-
linear filtering problems.

Particle methods deal with the problem of recursively estimating the probability
density function P(x̄k|Yk) by using Monte Carlo ideas. The key idea is to repre-
sent the probability density function by a set of random samples having associated
weights.

P(x̄k|Yk)=
M∑

i=1

(q
(i)
k δ(x̄k − x̄(i)k )),

M∑

i=1

qik = 1, qik ≥ 0, (5.21)

where δ(·) is the Dirac delta function and q(i)k denotes the weight associated with the

particle x̄(i)k . The subscript k indicates the discrete-time index and the superscript (i)
denotes a particular particle.

In obtaining this approximation, one has to be able to draw random numbers
from complicated distributions. The approximation (5.21) can also be obtained us-
ing stochastic integration ideas, see e.g., [5, 13] for related, slightly different, ap-
proaches. In practice. one needs to use a relatively large number of random samples
to adequately represent a given distribution. It is important to note that the prob-
lem of generating random numbers from complicated distributions has previously
been assessed in a non-recursive setting using Markov Chain Monte Carlo methods
(MCMC).

The generation of the random samples presents a major problem. In the litera-
ture one can find various ideas on how to handle the fact that we cannot generate
samples directly from the target density. One option is to use a marginalized particle
filter. This method can be employed when there is a linear, Gaussian sub-structure
available in the model equations. For further details on this topic see [42] and the
references therein. Further details used in our implementation are outlined below:

5.8.1 Random Number Generation

The problem of interest is to generate samples from some known probability density
function, referred to as the target density t (x). However, since we cannot generate
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samples from t (x) directly, the idea is to employ an alternate density that is simple
to draw samples from, referred to as the sampling density s(x). When a sample
x̄ ∼ s(x) is drawn the probability that it was in fact generated from the target density
can be calculated. This probability can then be used to decide whether x̄ should
be considered as a sample from t (x) or not. This probability is referred to as the
acceptance probability, and it is typically expressed as a function of another variable
q(x̄), defined by the following relationship,

t (x̄)∝ q(x̄)s(x̄). (5.22)

Depending on the exact details of how the acceptance probability is computed
different methods are obtained. Some of the best known methods are Sampling Im-
portance Resampling, Acceptance-Rejection Sampling and Metropolis-Hastings In-
dependence Sampling. For a more detailed explanation, see, e.g., [14, 41, 42, 46]
comparison of different methods is provided in [36].

5.8.2 Particle Filter

In the Bayesian framework used in the current chapter, we note that the Observation
update equation given by (5.16) resembles (5.22). Then we can use this to define the
target and sampling density as follows:

P(xk+1|Yk+1)︸ ︷︷ ︸
t (x̄)

= P(xk+1|Yk)P(yk+1|xk+1)∫
P(xk+1|Yk)P(yk+1|xk+1)dxk+1

∝ P(xk+1|Yk)︸ ︷︷ ︸
s(x̄)

P(yk+1|xk+1)︸ ︷︷ ︸
q(x̄)

. (5.23)

The typical Particle Filter is derived using the Sampling Importance Resampling
technique and many derivations can be found in the literature, see [20, 23, 42].
Later it was independently rediscovered by [26, 32]. Some early ideas relating to
the particle filter are given in [1, 22, 24, 39].

The Particle Filter used in this chapter is described in Table 5.2. It is based on
ideas presented in [42] (see Algorithm 4.4).

5.9 Simulation Example

Here we use a simple example to illustrate the ideas discussed above. We assume an
underlying continuous-time system (5.1) of the form:

dx(t)= ax(t)dt + bu(t)+ dω, (5.24)

where dω is defined as in Sect. 5.2 and has variance 0.1dt .
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Table 5.2 MDF algorithm

Step Description

1 Initialization: Quantize P(x̄0) toM particles {x̄(i)}Mi=1;

2 Use the State Update equation to propagate the Particles to produce P(x̄
(i)
k+1|Yk)

3 Measurement Update: Calculate the importance weights {q(i)k }Mi=1 according to q(i)k =
P(yk+1|x̄(i)k+1)

4 Resampling: DrawM particles, with replacement, according to P(xik+1 = xjk )= qjk
6 Iterate from step 2

Non-uniform sampling is used with a total ofK = 100 samples. We use an upper
bound ΔMAX = 0.5 on the sample period. For estimation purposes we consider the
true parameters as a = −1 and b= 5.

The model used for parameter estimation is an extension of (5.8), (5.9) using the
technique described in Sect. 5.4, i.e., the augmented state equation is

xk+1 = eakΔkxk + a−1
k (e

akΔk − 1)bkuk +ω(1)k , (5.25)

ak+1 = ak +ω(2)k , (5.26)

bk+1 = bk +ω(3)k . (5.27)

The measurement equation is taken to be

yk = xk + νk. (5.28)

Here the extended state vector is x̄k = [xk;ak;bk]; ω(1)k , ω(2)k , ω(3)k and νk are
assumed to have variance 0.1Δk , 0.005Δk , 0.0.005Δk and 0.1 respectively. Note
that when we sample a continuous-time system, the variance of the process noise
typically grows proportional to the sampling period, see (5.4).

Figure 5.2 shows one particular realization of the sampling period Δk . Note that
this realization changes for each experiment.

5.9.1 MDF

The MDF algorithm is used to obtain an estimate of the continuous-time parameters.
We quantize the density function of the augmented state on Nx = 27 points. Note
that we are quantizing a 3 dimensional state vector. Another Nw = 27 points are
used to quantize the process noise.

The filter is initialized with P(x̄0) having a Gaussian distribution with random
initial value and variance Q0 = diag(3,3,3).
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Fig. 5.2 Δk vs sample

Fig. 5.3 State xk and the
estimates (mean value of
P(xk |Yk)) at each sample

5.9.2 Particle Filter

The Particle Filter parameters chosen for this simulation are as described in
Sect. 5.8.2 with 100,000 particles.

5.9.3 Results

Here we explain the results obtained using the MDF and Particle Filtering schemes.
Figure 5.3 shows the true state evolution and the estimate obtained by both algo-
rithms. Clearly, both algorithms provide good estimates for the state, although the
Particle Filter achieves a slightly better result. (This is perhaps not surprising given
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Fig. 5.4 Mean value of
P(ak |Yk) at each sample k.
Particle Filter (black: solid)
MDF (blue: dashed)

Fig. 5.5 Mean value of
P(bk |Yk) at each sample k.
Particle Filter (black: solid)
MDF (blue: dashed)

that the MDF uses 27 points in the approximation of the posterior distribution for x̄
whereas the Particle Filter uses 100,000 points.)

Figures 5.4 and 5.5 show the estimates for the parameters obtained using the
MDF algorithm and Particle Filter for a particular data set. It is clear from the fig-
ures, that the MDF algorithm provides much better performance than the Particle
Filter. Of course it is possible that better results could be obtained if the Particle Fil-
ter were to be refined. Thus the authors make no general claim from this example.

Remark 5.3 It is worth noticing that the MDF algorithm uses only 27 points to
quantize the distribution, yet provides excellent results.

Figures 5.6 and 5.7 shows the cumulative distribution at a particular sample time
for the MDF algorithm on a particular data set. The distribution for the parameters
can clearly be seen to be non Gaussian which confirms the nonlinear nature of the
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Fig. 5.6 Cumulative
marginal distribution
P(ak < Ak |yk) at k = 17

Fig. 5.7 Cumulative
marginal distribution
P(bk < Bk |yk) at k = 17

continuous-discrete time mapping. To reinforce this idea we also show the discrete
probability density function at the same sample time in Figs. 5.8 and 5.9.

5.9.4 Robustness

To illustrate the robustness of the MDF algorithm, we run the simulation 20 times
with a different seed. In particular, we have different initial conditions for the real
state, P(x̄0) and the sampling period sequence {Δk}. The average of the estimates
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Fig. 5.8 Density function a
at k = 17

Fig. 5.9 Density function b
at k = 17

after a fixed number of samples are compared in Table 5.3. Note that the averages
are after a fixed number of samples which will correspond to different time periods
depending on the realization of the sampling period sequence.

It can be seen that the MDF algorithm provides consistent estimates. On the other
hand, the Particle Filter has trouble finding the continuous-time parameters.

5.10 Conclusions

We have described how Minimum Distortion Filtering can be applied to the problem
of system identification when the data is collected with non-uniform sampling pe-
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Table 5.3 Average Estimate 20 Experiments

Sample A-MDF B-MDF A-Particle B-Particle True-A True-B

10 −1.17 5.07 0.28 3.69 −1 5

30 −1.10 5.04 0.22 2.63 −1 5

50 −1.0003 5.02 −0.15 0.677 −1 5

riod. A comparison with an alternative scheme based on Particle Filtering has also
been given. The results appear encouraging and show that the Minimum Distortion
Filtering Algorithm is capable of providing excellent estimates despite the presence
of highly variable sampling periods.
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Chapter 6
Averaging Analysis of Adaptive Algorithms
Made Simple

Victor Solo

6.1 Introduction

Adaptive signal processing and adaptive control developed slowly and indepen-
dently until the 1970s. Early workers in the signal processing areas were Widrow,
creator of the LMS algorithm and his colleagues [2]. In the control and system iden-
tification community Peter Young was one of the pioneers [3].

From the 1970s there followed a very rapid theoretical and computational devel-
opment fed partly by the computing revolution but also by demand from control and
communications. By now there a number of books emphasizing methods of algo-
rithm stability analysis and performance analysis, [1, 2, 4–8] and more particularly
for adaptive control [9]. Peter Young’s book [3] is one of the few discussing time
varying parameter estimation in an offline setting; see also [10].

But even now the diffusion of analysis tools across the subdiscipline boundaries
remains slow. Thus e.g. the powerful tools of averaging analysis remain under ap-
plied in adaptive signal processing while performance measures such as excess lag
remain almost unknown in adaptive control. This is at least partly because a deter-
ministic setting dominates in control while a stochastic setting is standard in adap-
tive signal processing. Use of averaging to analyse adaptive (or learning) algorithms
outside signal processing and control e.g. in machine learning is essentially un-
known. We hasten to add however that averaging analysis itself is widely used in
other areas of applied mathematics, e.g. [11, 12].

Although numerous methods have been applied to the analysis of adaptive al-
gorithm it began to become clear in the late 1970s that averaging methods were
capable of providing, under reasonably realistic conditions, an analysis of the be-
haviour of just about any adaptive algorithm no matter how complicated. No other
methods could do this or even come near.
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In applied mathematics averaging analysis has a long history being closely re-
lated to perturbation analysis [12]. It first emerged in a deterministic setting and
then later stochastic versions were developed. There are three approaches to deter-
ministic averaging; Bogoliubov’s transformation technique; Gikhman’s direct aver-
aging technique; and finally the perturbed test function method of Papanicolau. The
first method is very cumbersome and does not extend to a stochastic setting. The
other two methods are relatively straightforward and extend easily to the stochastic
setting. Both these methods have undergone considerable development since their
initial introduction [1, 5, 7, 8]. The latter method may well be however ultimately
the more powerful and we use it here (and in [1]). There seems to be no good reason
for using Bogoliubov’s method. Further discussion can be found in [1, Sects. 7.10,
8.7, 9.9, 10.3].

Stochastic averaging has been viewed as an advanced technique requiring a con-
siderable level of mathematical sophistication. This is partly because it has been
closely associated with weak convergence methods [7, 8] and the ode (ordinary dif-
ferential equation) method [4]. But in fact averaging is a distinct method from these
approaches and can be developed without them. This was indeed the agenda in [1]
where new stochastic averaging methods were developed to parallel the determinis-
tic approach. Further partly because of the significant success of the ode method it
has often been assumed that discrete time algorithms can only be analysed by con-
verting them into continuous time. Again this is simply not the case and was again
part of the message of [1].

In this chapter we provide a simple heuristic approach to (discrete time) averag-
ing analysis and illustrate the method on a non-trivial example. While the approach
described here has been previously developed in the author’s book [1] we expand
on that discussion. While averaging has a long history as a method of perturbation
analysis in applied mathematics, development has continued. And this brief review
is timely if only due to recent advances in stochastic averaging made by the author
[13, 14].

The remainder of the chapter is organised as follows. In Sect. 6.2 we briefly dis-
cuss adaptive algorithms in general and review the typology from [1]. In Sect. 6.3 we
introduce adaptive algorithms and averaging via the best known example, the least
mean square (LMS) algorithm. In Sect. 6.4 we illustrate averaging on a non-trivial
example. In Sect. 6.5 we compare averaging briefly with other related approaches
such as weak convergence and the ode method. Conclusions are in Sect. 6.5.

Acronyms AR(p) = autoregression of order p; LMS = least mean square; wp1
= with probability 1.

6.2 Adaptive Algorithms

In this section we introduce a basic classification of adaptive algorithms that points
up crucial aspects of their behaviour. We then discuss some of the consequent sta-
bility analysis issues.
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6.2.1 Algorithm Classification

A typical adaptive algorithm has the form,

θ̂new = θ̂old + gain × gradient × error.

This admits the following classification [1, Sect. 4.1],

(a) Long memory or Short memory algorithm.
For a long memory algorithm, gain → 0 as time → ∞. For a short memory

algorithm, gain > constant > 0 for all time. Only short memory algorithms
can track time varying parameters. A long memory algorithm loses its ability
to adapt as time increases. In practice then, with few exceptions, only short
memory algorithms are used.

(b) Single Time Scale or Mixed Time Scale.
The gradient consists of external signals for a single time scale algorithm.

Whereas for a mixed time scale algorithm the gradient is generated by an asso-
ciated (fast) state equation driven by an external signal. Mixed time scale algo-
rithms are usually much harder to analyse than single time scale algorithms.

(c) Gradient Construction.
‘Instantaneous’ steepest descent algorithms use only first order gradient in-

formation. ‘Instantaneous’ Newton algorithms use second order information.

There are other classifications but these are the main ones from an analysis point of
view.

6.2.2 Stability Analysis Issues

Firstly we emphasize again that for practical use short memory or fixed gain algo-
rithms are by far the most important. However long memory algorithms can some-
times occur in an auxiliary role. Indeed this is the case in our main illustration later.
Unfortunately however much of the algorithm analysis in machine learning has con-
centrated on the long memory case; see [15] and comments therein.

A crucial feature of short memory adaptive algorithms is their ability to track
time varying parameters. But by far the bulk of stability analysis is silent on this
issue. This feature is however easily handled by averaging analysis and is discussed
in [1, 5].

From the point of view of stability analysis, single time scale systems are much
easier to analyze than mixed time scale systems. Although the averaging approach
works just as well in each case. For this reason we consider only single time scale
algorithms in this expose.

With mixed time scale systems a crucial issue is the stability of the associated fast
state equation. Particularly with stochastic algorithms this has proved to be a major
problem known as the boundedness problem [16]. In fact the boundedness problem



118 V. Solo

is more general but particularly severe for mixed time scale problems. Numerous
monitoring schemes have been introduced but until recently with limited success.
Recently the author has introduced a new approach which resolves this problem for
both single and mixed time scale algorithms [13, 14].

Since the algorithms of interest operate in real time then the stability analysis of
most import is a realization wise analysis i.e. analysis with probability one (wp1).
That is precisely what averaging analysis is able to deliver. Unfortunately much of
the current analysis in the signal processing literature focuses on convergence in
probability i.e. analysis across realizations and so is not directly relevant to adaptive
algorithm stability.

In this discussion we consider only first order analysis i.e. stability analysis. For
second order analysis i.e. analysis of fluctuations about the first order trajectory the
reader is referred to [1, 5]. We simply note that the nature of the gradient term in the
adaptive algorithm controls the size of these fluctuations.

Finally we consider the nature of the analysis. Since adaptive algorithms operate
in real time we have only one realization to deal with. This mean the appropriate
analysis mode is realization-wise and not averaged across realizations. This means
one needs to consider convergence wp1 and not convergence in probability. This
fundamental point is appreciated to a certain extent in the adaptive control literature
and almost completely unknown in adaptive signal processing. Indeed in adaptive
signal processing the standard mode of analysis uses convergence in probability. As
we illustrate below it is usually the case that fixed gain algorithms do not converge,
rather they hover in the vicinity of the equilibrium points of the averaged system.
These two fundamental points are poorly appreciated if at all.

6.3 The LMS Algorithm

We begin by recalling perhaps the best known adaptive algorithm; namely the least
mean squares algorithm (LMS) due originally to [2, 17]. We use a discussion of its
stability as a means of motivating and introducing averaging analysis.

6.3.1 LMS Defined

Consider on-line estimation of a finite impulse response (FIR) filter relating two
observed signals yk,uk . If the filter has p taps then the relation can be described as
a regression

yk = xTk w+ εk, (6.1)

where w is a p-dimensional weight vector of filter taps; xk = (uk−1, . . . , uk−p)T ;
and εk is a noise sequence independent of xk . The LMS algorithm attempts to min-
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imize the squared error e2
k(w), ek(w)= yk − xTk w by an instantaneous steepest de-

scent. Since
∂e2
k (w)

∂w
= −xkek(w) we get an update,

wk+1 =wk +μxkek,
ek = yk − xTk wk,

where μ is a step size or gain.
A fundamental question for any adaptive algorithm is its stability. To pursue that

we always need first to convert the algorithm into so-called error form. Introduce
the deviation w̃k+1 = wk+1 − wk and use the regression equation from the LMS
update to find,

w̃k+1 = w̃k −μxkxTk w̃k +μxkεk. (6.2)

This is a linear time-varying difference equation and we need to analyse its stability.
We call this the primary system. We note that it has the general form,

δw̃k+1 = w̃k+1 − w̃k = μf (k, w̃k), (6.3)

where in the LMS case, f (k, w̃)= −xkxTk w̃+ xkεk .
Before proceeding we introduce an assumption on the signals,

S1 xk, εk are jointly strictly stationary and independent.

From S1 and the ergodic theorem,

1

M

k+M∑

s=k
xsx

T
s →Rx wp1 asM→ ∞,

1

M

M∑

1

xsεs → 0 wp1 asM→ ∞.

We now consider stability analysis.

6.3.2 LMS Equilibrium Points

The most fundamental aspect of stability analysis is to find the equilibrium points
w̃e of the primary system if any. We find equilibrium points by setting δw̃k+1 = 0.
This yields the requirement,

xkx
T
k w̃e + xkεk = 0 for all k.

Multiplying through by w̃Te gives,

(xTk w̃e)
2 + xTk w̃eεk = 0 for all k.
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This implies xTk w̃e = 0 or xTk w̃e+εk = 0 for all k wp1. Since εk, xk are independent
the latter cannot hold. Thus xTk w̃e = 0 whereupon xkεk = 0 wp1 which again cannot
hold.

We conclude the equilibrium point condition has no solution. This delivers,

Result 6.1 Under condition S1 the LMS algorithm has no equilibrium points!

In particular this means the LMS algorithm cannot converge! Although this result
is understood to some extent in parts of the adaptive signal processing community it
is hard to find a reference clearly stating this. Indeed some references give the con-
trary impression. This is partly because most discussions do not treat convergence
wp1 rather only convergence in probability.

6.3.3 Averaged LMS System

To find out what then happens, we approximate the primary system as follows.
Change the time index to s and then sum over a time interval s = k to s = k +N ,
N to be chosen,

w̃k+N+1 = w̃k −μ
N+k∑

k

xsx
T
s w̃s .

Now since μ is small, then in the sum if N is not too large then w̃s will not differ
too much from w̃k so we can approximate the equation by,

w̄k+N+1 = w̄k −μ
N+k∑

k

xss
T
s w̃k.

On the other hand, in view of S1 and the ergodic theorem, if N is large enough, then∑N+k
k xsx

T
s ≈NRx . Thus we get, w̄k+N+1 = w̄k − μNRxw̃k ; or differencing, we

get the averaged system,

w̄k+1 = w̄k −μRxw̄k = (I −μRx)w̄k. (6.4)

This is a linear time-invariant difference equation and its stability analysis is
straightforward. In particular,

Result 6.2 (LMS Averaged System) For the averaged system (6.4), let λmax be
the largest eigenvalue of Rx and λmin the smallest. Then provided, 0 < μλmin <

μλmax < 2 we have w̄k → 0 as k→ ∞.

Proof Elementary and omitted. �
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The question now is; what is the relation between the primary and averaged sys-
tems? We postpone a formal treatment of this question. But let us say informally
that under certain regularity conditions the primary system trajectory hovers in the
vicinity of the averaged system trajectories.

6.3.4 Averaging Analysis

Now let us apply the same approximation method to the general system (6.3). This
leads to the averaged system,

δw̄k+1 = μfav(w̄k), (6.5)

where we assume,

A1 fav(w̄)= limM→∞ 1
M

∑k+M
s=k f (k, w̄) exists.

The connexion between the primary system and averaged system is addressed via,

Result 6.3 (Finite Time Hovering Theorem [1, Sect. 7.2]) Consider the primary
system (6.3) and its averaged counterpart (6.5). Assume they start from the same
initial condition. And let T > 0 be fixed. Then under certain technical conditions,

max
1≤k≤T/μ

‖w̃k − w̄k‖ ≤ cT (μ)bT ,

where bT > 0 is a constant and cT (μ)→ 0 as μ→ 0.

The result says that the primary system trajectory hovers in the vicinity of the
averaged system trajectory uniformly for all time on any finite time interval. Since
by result II the averaged system converges to 0, then the primary system hovers
around 0.

To develop an infinite time version of the result where T/μ is replaced by ∞
requires some extra technical work for which the reader is referred to [1].

To state the technical conditions we introduce the perturbation function,

p(k, w̃)=
k∑

1

[f (s, w̃)− fav(w̃)].

There are five technical conditions [1, Sect. 9.2: conditions 9.2A1–9.2A5]. The main
two are,

A2 f (k,w) obeys a stochastic Lipschitz condition.

‖f (k,w)− f (k,w′)‖ ≤ Lk‖w−w′‖,
where Lk obeys a strong law of large numbers, limM→∞ 1

M

∑M
1 Lk → L wp1.
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A3 The perturbation function p(k,w) obeys a stochastic Lipschitz condition

‖p(k,w)− p(k,w′)‖ ≤Mk‖w−w′‖,
where Mk/k → 0 wp1 as k → ∞. Also ‖p(k,0)‖ ≤ pk where pk/k → 0 as
k→ ∞.

In [1, Condition 9.2A1] it is assumed that fav(w) = E(f (k,w)) which is time in-
variant. But a perusal of the proof shows that we can dispense with the time in-
variance (it is not actually used in the proof) and we can replace the definition of
fav(w) with that in A1. There are two other technical conditions. The first [1, Con-
dition 9.2A4] requires the trajectory of the averaged system to be bounded. This is
trivially satisfied for LMS and the example in Sect. 6.4 below. The second requires
that ‖fav(w)‖ ≤ B when ‖w‖ ≤ h. Again for LMS and the example below this is
trivially satisfied.

Turning to the main conditions, in the case of the LMS algorithm we have firstly

‖f (k,w)− f (k,w′)‖ = ‖xkxTk (w−w′)‖ ≤ ‖xk‖2‖w−w′‖

and limM→∞ 1
M

∑M
1 ‖xk‖2 → tr(Rx) wp1 by S1 and the ergodic theorem.

Secondly, p(k,w)=∑k
1[xsxTs −Rx]w and so,

Mk/k =
∥
∥∥∥∥

1

k

k∑

1

[xsxTs −Rx]
∥
∥∥∥∥

→ 0 as k→ ∞ by S1 and the ergodic theorem.

Also in this case ‖ 1
k
p(k,0)‖ = ‖ 1

k

∑k
1 xsεs‖ → 0 by S1 and the ergodic theorem.

So A2, A3 hold for the LMS algorithm and we obtain result (6.3).

6.4 A More Difficult Illustration

Here we consider a more difficult example based on a modification of the recent
work of [18]. We assume the linear model (6.1) but now the regressors are lagged
values of an observed stationary autoregressive time series AR(p),

uk =
q∑

1

uk−rar + νo,k

= ζ Tk a + νo,k,
ζ Tk = (uk−1, . . . , uk−q),

where νo,k is a white noise sequence independent of εk . We can then write the
regressor vector xk as,

xk = Zka + vk,
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Zk =
⎛

⎜
⎝

ζ Tk−2
...

ζ Tk−p

⎞

⎟
⎠ ,

vk = (νo,k−1, . . . , νo,k−p)T .

The algorithm has two components. An update for wk and an auxiliary update for âk
which is a long memory estimator of a. To keep the analysis manageable we have
replaced the short memory estimator of a used by [18]. The long memory estimator
of a is the least squares estimator

âk =
(
k∑

1

ζsζ
T
s

)−1( k∑

1

ζsus

)

. (6.6)

The update for wk is,

wk+1 = wk +μ v̂k

‖v̂k‖2
ek, (6.7)

ek = yk − xTk wk,
v̂k = xk −Zkâk.

We call this the LMSAR algorithm. The error system is,

w̃k+1 = w̃k −μ v̂kx
T
k

‖v̂k‖2
w̃k +μ v̂k

‖v̂k‖2
νo,k. (6.8)

We now introduce some assumptions on the signals.

S2 xk, νo,k, εk are jointly strictly stationary independent and each has finite vari-
ance; further for some δ > 0 E(|νo,k|4+2δ) <∞.

S3 E[ 1
‖vk‖4+2δ ]<∞ for some δ > 0.

S3 holds e.g. if vk is multivariate Gaussian.

6.4.1 Equilibrium Points of LMSAR

As with LMS we seek equilibrium points by setting δw̃k+1 = 0. This leads to

v̂kx
T
k

‖v̂k‖2
w̃k + v̂k

‖v̂k‖2
νo,k = 0 ⇒ v̂k = 0 or xTk w̃k + νo,k = 0.

And repeating the LMS type analysis we find the latter condition cannot hold for
any choice of w̃e. The former condition also cannot hold since v̂k is stochastic. We
conclude,
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Result 6.4 Under condition S2 the LMSAR algorithm (6.7), (6.6) has no equilib-
rium points.

Again this means LMSAR cannot converge.

6.4.2 Averaged LMSAR System

From (6.8) the averaged system is (6.5) where,

fav(w̄)= lim
N→∞

1

N

N∑

1

f (k, w̄), f (k, w̄)= − v̂kx
T
k

‖v̂k‖2
w̄+ v̂k

‖v̂k‖2
νo,k.

We need to compute fav(w̄). Note that v̂k = vk − Zkãk, ãk = âk − a. We then use
the following result.

Result 6.5 Under conditions S2, S3

ãk → 0 wp1 as k→ ∞.
‖v̂k − vk‖/‖vk‖ → 0 as k→ 0 wp1.

Proof See Appendix A.1. �

To aid further analysis we introduce the idealized signal

fo(k, w̄)= − vkx
T
k

‖vk‖2
w̄+ vk

‖vk‖2
νo,k.

The ergodic theorem delivers, limN→∞ 1
N

∑N
1 fo(k, w̄) = −Gw̄, where G =

E(
vkx

T
k

‖vk‖2 ) and we have used the fact that, E( vk
‖vk‖2 νo,k) = E( vk

‖vk‖2 )E(νo,k) = 0. In

Appendix A.4 we show limN→∞ 1
N

∑N
1 (f (k, w̄)− fo(k, w̄)) = 0 wp1 and so the

averaged system is,

Result 6.6 Under conditions S2, S3 the averaged LMSAR system is δw̄k+1 =
−μGw̄k .

Now we need to analyse the behaviour of the averaged system. For this we need
to investigate the eigenvalues of A. Since the AR polynomial is stable we have a
Wold representation uk =∑∞

0 crνo,k−r where 1
A(z−1)

=∑∞
0 crz

−r . Using this in
the definition of G we find,

G = E
(

1

‖vk‖2

)
⎛

⎜
⎝

νo,k−1
...

νo,k−p

⎞

⎟
⎠ (νo,k−1, . . . , νo,k−p)T L+Δ,
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L =

⎛

⎜⎜⎜
⎝

1 0 . . . 0
c1 1 . . . 0
...

...
. . . 0

cp−1 cp−2 . . . 1

⎞

⎟⎟⎟
⎠
,

Δr = E(mkξk−p−r ), r ≥ 1,

where ξk−r−p depends on Hk−p−r = (νo,k−r−p, νo,k−r−p−1, . . .) andmk is a vector
depending on (νo,k−1, . . . , νo,k−p). Then by iterated conditional expectation

Δr =E(E(mk|Hk−r−p)ξk−r−p)=mo,kE(ξk−r−p)= 0.

We deduce that G=RL,R =E(vkvTk /‖vk‖2).

Result 6.7 For the averaged system of result (6.6), let λmax be the largest eigenvalue
of RL and λmin the smallest. Then provided, 0 < μλmin < μλmax < 2 we have
w̄k → 0 as k→ ∞.

Proof Elementary and omitted. �

We can get some information about λmax as follows. We have,

|λmax| ≤ ‖G‖ = ‖RL‖ ≤ ‖R‖‖L‖.

Now for any fixed α,

αT Rα =E((vTk α)2/‖vk‖2)≤ αT α ⇒ ‖R‖ ≤ 1.

Next to find ‖L‖ we have to consider αT LT Lα. However LT L is very close to
the Toeplitz matrix Ω of autocovariances for the MA process yt = ηt +∑p

1 crηt−r
where ηt is a unit variance white noise. Except for the first diagonal entry the re-
maining diagonal entries are too small. Now let F(ω) be the corresponding MA
spectrum. Thus,

αT LT Lα ≤ αTΩα =
∑∑

αtαs

∫ π

−π
ejω(t−s)F (ω)dω

2π

=
∫ π

−π

∣∣∣∣
∑
αte

jωt

∣∣∣∣

2

F(ω)
dω

2π

≤ Fmax

∫ π

−π

∣
∣∣∣
∑
αte

jωt

∣
∣∣∣

2
dω

2π
= αT αFmax,

where Fmax = maxω F(ω). Thus the upper bound of result (6.7) holds if μFmax < 2.
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6.4.3 Averaging Analysis of LMSAR

We now turn to checking conditions A2, A3; as indicated earlier the other technical
conditions are trivially satisfied.

For A3, we find easily thatMk/k = ‖ma,k +mb,k‖ where,

ma,k = 1

k

k∑

1

(
νsx

T
s

‖vs‖2
−G

)
,

mb,k = 1

k

k∑

1

(
v̂s

‖v̂s‖2
− vs

‖vs‖2

)
xTs .

By S2 and the ergodic theorem,ma,k → 0 wp1. In Appendix A.2 we showmb,k → 0
wp1. Next ‖ 1

k
p(k,0)‖ ≤ ‖ck‖ + ‖bk‖ where,

ck = 1

k

k∑

1

vk

‖vk‖νo,k and bk = 1

k

k∑

1

(
v̂s

‖v̂s‖2
− vs

‖vs‖2

)
νTo,s .

Now ‖bk‖ → 0 by the same argument as used for mb,k . And by S2, S3 and the
ergodic theorem, ck →E(

vk‖vk‖νo,k)= 0 wp1.

For A2, we also find easily that Lk = ‖xk‖
‖v̂k‖ . Introduce Lo,k = ‖xk‖‖vk‖ . By S2 and the

ergodic theorem 1
N

∑N
1 Lo,k →E(

‖xk‖‖vk‖ ) wp1. However,

E

(‖xk‖
‖vk‖

)
≤
√

E(‖xk‖2)E

(
1

‖vk‖2

)
<∞ by S2, S3.

In Appendix A.3 we show 1
N

∑N
1 (Lo,k −Lk)→ 0 wp1.

Thus A2, A3 are established and (6.3) follows.

6.5 Comparison with Other Approaches

Our approach may be compared with the weak convergence method. Firstly our
approach is much simpler since no weak convergence framework is needed. We
make repeated use of the ergodic theorem, elementary wp1 properties of stochas-
tic sequences and elementary bounding arguments. In fact our approach mimics
the kind of arguments used in deterministic averaging analysis and thus shows the
strong connexions between the two ([1] does both). Secondly the weak convergence
approach is not capable of delivering results valid for fixed μ like the Hovering
theorem. Thirdly the weak convergence method can only deliver continuous time
approximations. It cannot provide the type of stability conditions obtained in Re-
sults 2 and 7. These last two criticisms apply also to the ode method.
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On a deeper level we note that in both single time scale and mixed time scale
cases, the weak convergence method can in principle produce results when the Lip-
schitz condition A2 is required of fav(w̄) and not of f (k,w) [5, 7]. This is signif-
icant since it allows discontinuous f (k,w) but the corresponding fav(w̄) is never-
theless usually continuous. We say in principle because there remain doubts about
the boundedness condition in these works. However the corresponding result in the
deterministic case is already given in [1] and the stochastic version is developed in
more recent work [13, 14] where in both single time scale and mixed time scale
cases the boundedness problem has been overcome by a novel monitoring proce-
dure.

Appendix

The following lemmas are used repeatedly below.

Lemma 6.1 If ξs is a strictly stationary sequence of random vectors with
E‖ξs‖<∞ then, ξs/s→ 0 as s→ ∞.

Proof By the ergodic theorem, ξ̄n = 1
n

∑n
1 ‖ξs‖ → E‖ξ0‖ wp1. Now apply the up-

date rule for the sample mean,

ξ̄n = ξ̄n−1 + 1

n
(‖ξn‖ − ξ̄n−1)

⇒ 1

n
‖ξn‖ = ξ̄n −

(
1 − 1

n

)
ξ̄n−1 →E‖ξ0‖ −E‖ξ0‖ = 0 as n→ ∞. �

Remark Suppose δ > 0 and E‖ξ0‖2+δ <∞ then as s → ∞, ‖ξs‖2+δ/s → 0 ≡
‖ξs‖/s 1

2 −ε → 0 where ε = δ/(2(2 + δ)).

Lemma 6.2 If ds, ξs are sequences of positive random variables with ds → 0 wp1
as s→ ∞ and 1

n

∑n
1 ξs → c <∞ wp1 as n→ ∞, then,

Tn = 1

n

n∑

1

dsξs → 0 wp1 as n→ ∞.

Proof We write,

Tn = 1

n

n∑

1

ξs

n∑

1

dsan,s,

an,s = ξs
/[ n∑

1

ξs

]

,

n∑

1

an,s = 1.
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The first term in Tn → c. By the Toeplitz lemma [1] the second term → 0 if
an,s → 0 wp1. But an,s = ξs

n
/[ 1
n

∑n
1 ξs] → 0 as n→ ∞ since s is fixed. �

Lemma 6.3

|‖a‖ − ‖b‖| ≤ ‖a − b‖.

Proof Square both sides to obtain

aT a + bT b− 2‖a‖‖b‖ ≤ aT a + bT b− 2aT b

≡ 2aT b ≤ ‖a‖‖b‖

which holds by the Cauchy-Schwarz inequality.
Returning to the main topic of this appendix we have,

mb,k ≤ 1

k

k∑

1

‖Δs‖‖xs‖,

Δs = v̂s/‖v̂s‖ − vs/‖vs‖. �

Lemma 6.4 If ‖v̂s − vs‖/‖vs‖ → 0 as s→ ∞ then,

(a) ‖v̂s − vs‖/‖v̂s‖ → 0,
(b) |‖v̂s‖/‖vs‖ − 1| → 0,
(c) |‖vs‖/‖v̂s‖ − 1| → 0,
(d) |v̂Ts vs/[‖vs‖‖v̂s‖] − 1| → 0.

Proof (a) Set ds = ‖v̂s − vs‖. Then

‖v̂s − vs‖/‖v̂s‖ = ds/‖vs + v̂s − vs‖
≤ ds/|‖vs‖ − ds | by Lemma 6.3

= [ds/‖vs‖]/[1 − ds/‖vs‖] → 0.

(b) |‖v̂s‖/‖vs‖ − 1| = |‖v̂s‖ − ‖vs‖|/‖vs‖ ≤ ‖v̂s − vs‖/‖vs‖ → 0 by Lemma 6.3.

(c) |‖vs‖/‖v̂s‖ − 1| = |‖vs‖ − ‖v̂s‖|/‖v̂s‖ ≤ ‖v̂s − vs‖/‖v̂s‖ → 0 by (a).

(d) |v̂Ts vs/[‖vs‖‖v̂s‖] − 1| ≤ |(v̂s − vs)T vs |/[‖vs‖‖v̂s‖] + ‖vs‖/[‖v̂s‖] − 1|
≤ ‖v̂s − vs‖/‖v̂s‖ + |‖vs‖/[‖v̂s‖] − 1| → 0 by (a), (c).

�
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A.1

We have ãk = (∑k
1 ζsζ

T
s )

−1(
∑k

1 ζsνo,s). By the ergodic theorem,

1

k

k∑

1

ζsζ
T
s →E(ζ0ζ

T
0 )=Rζ wp1,

1

k

k∑

1

ζsνo,s →E(ζ0νo,0)= 0

and the first part is established. But we need something stronger provided in the
second part.

We claim k
1
2 −εãk → 0 wp1. This follows if

∑k
1 ζsνo,s/k

1
2 +ε → 0. By Kro-

necker’s lemma [1] this follows if,

∞∑

1

ζkνo,k/k
1
2 +ε <∞ wp1.

By the martingale convergence theorem [1] this follows if,

∞∑

1

‖ζs‖2ν2
o,s/s

1+2ε <∞ wp1

which follows if
∞∑

1

E(‖ζs‖2ν2
o,s)/s

1+2ε <∞ wp1.

This holds by S2 since,

E(‖ζs‖2ν2
o,s)=E(‖ζs‖2)E(ν2

o,s) <∞.
Now consider that,

‖v̂k − vk‖/‖vk‖ ≤ ‖Zk‖‖ãk‖/‖vk‖

=
(
k−

1
2 +ε ‖Zk‖

‖vk‖ (‖ãk‖k
1
2 −ε)

)
.

Now the second term → 0 and the first does also by the remark following
Lemma 6.1, if, E(‖Zk‖/‖vk‖)2+δ <∞. By the Cauchy-Schwarz inequality this
follows from S2, S3.

A.2

Proof That mb,k = 1
k

∑k
1(

v̂s
‖v̂s‖2 − vs

‖vs‖2 )x
T
s → 0.
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By Lemma 6.2 this will hold if

Δs =
∥∥
∥∥
v̂s

‖v̂s‖2
− vs

‖vs‖2

∥∥
∥∥‖vs‖ → 0,

1

n

n∑

1

‖xs‖/‖vs‖ → c <∞ wp1.

The second follows from S2, S3. For the first

Δ2
s = ‖vs‖2[1/‖v̂s‖2 + 1/‖vs‖2 − 2v̂Ts vs/(‖v̂s‖2‖vs‖2)]

= ‖vs‖
‖v̂s‖[‖vs‖/‖v̂s‖ + ‖v̂s‖/‖vs‖ − 2v̂Ts vs/(‖v̂s‖‖vs‖)].

By Result 6.5 and Lemmas 6.3(b), 6.3(c), 6.3(d) the term in square rackets, denoted
[·]→ 0. Then by Lemma 6.3(c)

Δ2
s = (‖vs‖/‖v̂s‖ − 1)[·] + [·] → 0. �

A.3

Proof That 1
N

∑N
1 (Lo,k −Lk)→ 0 wp1.

We have,

|Lo,k −Lk| = ‖xk‖|1/‖v̂k‖ − 1/‖vk‖|

= ‖xk‖
‖vk‖ |‖v̂k‖ − ‖vk‖|/‖v̂k‖

≤ ‖xk‖
‖vk‖‖v̂k − vk‖/‖v̂k‖ by Result 6.5 and Lemma 6.3.

And the result follows from Lemma 6.4a, S3 and Lemma 6.2. �

A.4

Proof That limN→∞ TN = 0 wp1; TN = 1
N

∑N
1 (f (k, w̄)− fo(k, w̄)).

In fact TN is a sum of two terms. The first is just mb,N of Appendix A.2. The
second has the same form as mb,N except with xTs replaced by νo,s . So the result
follows from Appendix A.2. �
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Chapter 7
Graphs for Dependence and Causality
in Multivariate Time Series

Christoph Flamm, Ulrike Kalliauer, Manfred Deistler, Markus Waser,
and Andreas Graef

7.1 Introduction

In this paper we describe and discuss measures of dependence between single time
series in the context of a multivariate stationary process.

We consider an n-dimensional stochastic process (x(t))t∈Z, x(t) : Ω → R
n,

which is weakly stationary with mean zero. Its covariance function is given as
γ (s)= Ex(t+s)x(t)′. Although the covariance function in general does not contain
the full information about the underlying stochastic process, the analysis presented
in this paper is based on the covariance only.

As is well known, see [36] and [23], a stationary process has a representation of
the form

x(t)=
∫ π

−π
eitλ dz(λ), (7.1)
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where (z(λ)|λ ∈ [−π,π]), z(λ) : [−π,π] →C
n is a random process with orthogo-

nal increments, which is uniquely defined by x(t).
The spectral distribution function F(λ) of x(t) is defined by F(λ)= E z(λ)z(λ)∗,

where ·∗ denotes the conjugate transpose. For convenience we will use the notation
dF(λ)= Edz(λ)dz(λ)∗. Note that dF(λ) describes the importance of a frequency
band in terms of its contribution to the overall variance.

Under the assumption
∑∞
s=−∞ ‖γ (s)‖ <∞ the spectral distribution function

is absolutely continuous, and the spectral density function is defined as f (λ) =
dF(λ)/dλ in the Radon Nykodym sense. In this case, there is a one-to-one relation
between the covariance function and the spectral density:

γ (s) =
∫

λ∈[−π,π]
f (λ)eiλsdλ, (7.2)

f (λ) = 1

2π

∞∑

s=−∞
γ (s)e−iλs . (7.3)

In this paper we only consider linearly regular processes, see [36] and [23], i.e.
processes where the best linear least squares forecasts tend to zero if the forecast
horizon tends to infinity. Linearly regular processes admit a Wold representation

x(t)=
∞∑

j=0

K(j)ε(t − j), (7.4)

where ε(t) is n-dimensional white noise, i.e. E ε(t) = 0, E ε(s)ε(t)∗ = δstΣ and
K(j) ∈ R

n×n,
∑∞
j=0 ‖K(j)‖2 <∞. Furthermore ε(t) are the innovations of x(t),

i.e. the one step ahead prediction errors of the best linear least squares forecast of
x(t) given its past x(t − 1), x(t − 2), . . . . In addition we assume Σ is non-singular.

There are two important special cases for linearly regular processes: ARMA pro-
cesses and AR(∞) processes. ARMA processes are important, because every lin-
early regular process can be approximated with arbitrary accuracy by an ARMA
process, see [24] for further details. In general these two model classes are not the
same, but there are overlappings.

For the remainder of this paper we will consider AR(∞), i.e. infinite autoregres-
sive, systems and processes only. An AR(∞) system is a linear system of the form

∞∑

j=0

A(j)x(t − j)= ε(t), (7.5)

where A(j) ∈R
n×n,

∑∞
j=0 ‖A(j)‖<∞ holds and ε(t) is white noise. We use z to

denote the backshift operator on Z: z(x(t)|t ∈ Z) = (x(t − 1)|t ∈ Z), as well as a
complex variable. We rewrite (7.5) as

a(z)x(t)= ε(t), (7.6)
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where a(z)=∑∞
j=0A(j)z

j exists inside and on the unit circle. We also assume the
stability condition:

deta(z) 
= 0 for |z| ≤ 1. (7.7)

With this assumption, the transfer function k(z) = a−1(z) =∑∞
j=0K(j)z

j exists
inside and on the unit circle, see [5]. There is a unique weakly stationary solution of
(7.5) of the form

x(t)=
∞∑

j=0

K(j)ε(t − j)= k(z)ε(t). (7.8)

This solution (7.8) of the system (7.5) is called an autoregressive (∞) process. It
corresponds to the Wold representation, and here even

∑∞
j=0 ‖K(j)‖<∞ holds.

For the sake of simplicity of notation we will skip the (∞) sign henceforth.
Every linearly regular (and hence every autoregressive) process has a spectral

density of the form, see e.g. [36]

f (λ)= k(λ)Σk(λ)∗, (7.9)

where we write k(λ) for k(e−iλ). Analogously we use a(λ) for a(e−iλ).
Conversely the transfer function k(z) can be uniquely determined from a spectral

density f (λ) under the assumptions: detk(z) 
= 0 for |z| ≤ 1, k(z) has a Taylor series
expansion in |z| ≤ 1, k(0)= I and Σ > 0. For the remainder of this paper, we will
impose all these assumptions, and so for every linearly regular process we can find
the transfer function k(z) in a unique way from its spectral density. By inverting the
transfer function a(z)= k−1(z) we get an AR representation (7.5), where a(0)= I
holds.

By using ã(z)= −∑∞
j=1A(j)z

j we rewrite (7.6) as follows

x(t)= ã(z)x(t)+ ε(t). (7.10)

This paper is concerned with measures of dependence and causality between
two univariate component processes (xi(t))t∈Z and (xj (t))t∈Z (i 
= j) of the
n-dimensional process x(t) = (x1(t), . . . , xi(t), . . . , xj (t), . . . , xn(t))

′. These mea-
sures are based on the second moments only and due to weak stationarity they are
invariant under time translations.

Dependencies in a multivariate process can be described by a graph. In this paper
we will only consider graphs, where the vertices correspond to the one-dimensional
subprocesses and the edges are defined by a dependency or causality measure. Other
kinds of graphs are possible, see [9]. In particular we distinguish between directed
and undirected graphs respectively, depending whether a directed or an undirected
measure is considered. The construction of these graphs is described in Sect. 7.5 of
this paper.

Using this methodology we obtain information concerning the complexity and
interaction in a multivariate time series. We will discuss in particular Granger
causality and the use of graphical modeling. At the end of the paper we will present
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an example where these measures are used to detect the focus, and to track the prop-
agation, of an epileptic seizure.

The emphasis of this introductory treatment is on description and discussion of
the most common measures.

7.2 Undirected Measures of Dependence

7.2.1 Coherence

From the spectral representation of a stationary process (7.1) we obtain a measure
of the strength of linear dependence in frequency domain. Let xi(t) and xj (t) be
univariate subprocesses of x(t) as mentioned in Sect. 7.1, with the corresponding
orthogonal increment processes zi(λ) and zj (λ) respectively. The idea of coherence
is to measure the squared coefficient of correlation between dzi(λ) and dzj (λ)

C2
ij (λ)=

|E {dzi(λ)dzj (λ)}|2
E |dzi(λ)|2E |dzj (λ)|2 = |fij (λ)|2

fii(λ)fjj (λ)
, (7.11)

where fij is the (i, j)-element of f . Thus, the coherence is a frequency specific
measure for dependence between xi(t) and xj (t). It is a measure of the strength
of dependence between the frequency weights dzi(λ) and dzj (λ). Since C2

ij (λ) is

obviously symmetric, it is not possible to detect a direction of influence from C2
ij (λ).

7.2.2 Partial Spectral Coherence (PSC)

Of course, one could calculate all pair-wise coherences in an n-dimensional process.
However, in such a case, it is impossible to distinguish between direct and indirect
influences. This leads to the partial spectral coherence, see [5] and [8].

The idea of PSC is as follows: In order to measure the dependence between
xi(t) and xj (t) (i 
= j) after removing the influence of all other variables Yij (t)=
(xk(t)|k 
= i, j), we project xi(t) as well as xj (t) onto the Hilbertspace spanned by
all Yij in the L2 over the underlying probability space. This projection leads to the
residuals ηi(t) and ηj (t)

ηi(t)= xi(t)−
∞∑

k=−∞
Di(k)Yij (t − k)= xi(t)− di(z)Yij (t),

ηj (t)= xj (t)−
∞∑

k=−∞
Dj(k)Yij (t − k)= xj (t)− dj (z)Yij (t),
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where the filters di(z) and dj (z) minimize the variance of the residuals. Now we
look at the spectrum of the process (ηi, ηj )′. Let fηiηj denote the corresponding
cross-spectrum. This cross spectrum is a frequency specific measure for the depen-
dence between xi(t) and xj (t) given all Yij . Rescaling leads to the definition of the
partial spectral coherence (PSC)

R2
ij |ij c (λ)=

|fηiηj (λ)|2
fηiηi (λ)fηj ηj (λ)

. (7.12)

As has been shown, see e.g. [8], there exists a more convenient way to compute the
partial spectral coherence using the inverse of the spectral density f−1(λ) of the
original process x(t):

R2
ij |ij c (λ)=

|(f−1(λ))ij |2
(f−1(λ))ii(f−1(λ))jj

,

where (f−1(λ))ij is the (i, j)-element of f−1(λ). Given actual data, the spectral
density can be estimated by fitting an finite AR model or by using non-parametric
spectral estimators. For dealing with actual data, a test with the zero hypothesis
H0 :R2

ij |ij c (λ)≡ 0 has been described in [5] and [10].

7.3 Directed Measures of Dependence

In this section we present important directed measures based on the (infinite) AR
representation (7.5), such as the directed transfer function and the partial directed
coherence.

7.3.1 Directed Transfer Function (DTF)

The first directed dependency measure described, is the directed transfer function
(DTF), as proposed in [27]. This measure is often used in the neuroscience literature
and is defined as

γ 2
ij (λ)=

|kij (λ)|2∑n
m=1 |kim(λ)|2 , (7.13)

where kij is the (i, j)-th component of the transfer function k. The denominator
in (7.13) provides a normalization. The nominator of the directed transfer function
measures the total information flow from xj to xi . This can be seen by expanding
k(z)= a(z)−1 as a geometric series as seen below, and using ã(z) as introduced in
(7.10)

k(z)= a(z)−1 = (I − ã(z))−1 =
∞∑

m=0

ã(z)m = I + ã(z)+ ã(z)2 + · · · .
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Considering the off diagonal elements (i.e. i 
= j ) we obtain

k(z)ij = (a(z)−1)ij = ã(z)ij +
∑

m

ã(z)imã(z)mj +
∑

m,�

ã(z)imã(z)m�ã(z)�j + · · · .

This shows that the nominator is the sum of the direct and all indirect information
flows from the j -th to the i-th component.

Obviously the DTF is bounded by 0 and 1. Also, obviously the directed transfer
function is a directed measure.

As the DTF measures the total information flow between two components in a
multivariate system, the direct and all indirect ones, no conclusions may be drawn
concerning the pathways of information propagation. So the DTF is not very useful
in cases when we want to find the causal structure of a multivariate system.

7.3.2 Direct Directed Transfer Function (dDTF)

In order to overcome the problem of indirect information flows, Korzeniewska et al.
proposed a combination measure of the DTF and the PSC, see [28], the so called
direct directed transfer function (dDTF) defined by

δ2
ij (λ)= γ 2

ij (λ)R
2
ij |ij c (λ). (7.14)

The DTF is used to identify the direction of the information flow, and the PSC is
used to filter out the indirect flows, so the direct information flows are the only
remaining ones. As has been pointed out in [13] the statistical properties of the
dDTF have not been investigated so far and an analysis of actual data based on the
dDTF could detect wrong relationships.

7.3.3 Partial Directed Coherence (PDC)

Now we look at another frequency specific measure, which was introduced by Bac-
cala and Sameshima in [1], the partial directed coherence (PDC), which is defined
as

π2
ij (λ)=

|ãij (λ)|2∑n
m=1 |ãmj (λ)|2 . (7.15)

The PDC can be seen as the ratio of the direct information flow from xj to xi nor-
malized by all outflows of xj . The careful reader may note, that this normalization
is different to the one of the DTF. Of course, other normalizations would also be
possible. Obviously, the PDC is bounded by 0 and 1.

Note that “partial” as part of this measure’s name does not relate to removing
the influences of all other variables Yij (t). It stems from the derivation of the mea-
sure, where Baccala and Sameshima factorized the partial spectral coherence, and



7 Graphs for Dependence and Causality in Multivariate Time Series 139

skipped some components. Obviously the PDC is a directed measure (and thus not
symmetric).

The advantage of this measure is the clear interpretation as the direct information
flow. Furthermore it has a connection to the causal interpretation of the multivariate
process, as discussed in Sect. 7.4.

7.3.4 Generalized Partial Directed Coherence (GPDC)

A disadvantage of the PDC is, that it is not scale invariant, meaning that it is not
invariant under different choices of the unit of measurement. To overcome this prob-
lem, Baccala et al. introduced an extension of the PDC in [2], the generalized partial
directed coherence (GPDC)

π̃2
ij (λ)=

Σ−1
ii |ãij (λ)|2

∑n
m=1Σ

−1
mm|ãmj (λ)|2

, (7.16)

whereΣii is the (i, i)-component of the error variance-covariance matrix. This mod-
ification turns out to be more robust than the PDC when processing actual data.

7.3.5 Other Directed Measures

There exists a broad range of directed measures between two signals in the literature,
not necessarily based on a linear model. There exist measures based on information
theory, see [19, 38, 40], as well as measures based on time continuous models,
see [18]. A not exhaustive list of other surveys on this topic is [7, 32, 33, 37].

7.4 Granger Causality

There have been long and thorough discussions about causality, both philosophical
and mathematical in nature, a brief summary can be found in [34]. This paper fo-
cuses on time series and their causal investigation, using the information contained
in their second moments. As opposed to the iid case, the temporal ordering of the
time series contains causal information.

The concept we will use here is Granger causality (introduced by Granger in
[22]). The basic idea is simple: If the knowledge of the past of one time series im-
proves the predictability of another time series, it is Granger causal for the second
series. This is a plausible definition of causality, but there may occur problems aris-
ing from this definition, which we will address in this section. The interested reader
may be referred to [4] and [30] for additional information.
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First we introduce some notation. We write xI (t) = (xi1(t), . . . , xik (t))′ where
ij ∈ I ⊆ {1,2, . . . , n} and i1 < i2 < · · · < ik to denote the subprocess of x(t) cor-
responding to the index set I . We use ΩI(t) = span({{xi(s)|s ≤ t}|i ∈ I }) with
I ⊆ {1, . . . , n} to denote the space spanned by the past and present of xI in the
Hilbertspace of all square integrable random variables.

For simplification we will use: Ωi(t)=Ω{i}(t) and ΩIJ (t)=ΩI∪J (t) .
By x̂J (t + 1|ΩI (t)), J ⊂ {1, . . . , n} we denote the best linear least squares pre-

dictor of xJ (t + 1) based on the knowledge of ΩI(t), e.g. the past and present val-
ues of xI . We denote the prediction error by εJ (t + 1|ΩI (t))= xJ (t + 1)− x̂J (t +
1|ΩI(t)) and its covariance matrix is ΣJ (t + 1|ΩI(t))= E εJ (t + 1|ΩI(t))εJ (t +
1|ΩI(t))′.

7.4.1 Granger Causality in the Bivariate Case

The original definition of Granger has been given for the bivariate case:

x(t)=
(
x1(t)

x2(t)

)
.

If the knowledge of the past of x2(t + 1) improves the prediction of x1(t + 1) com-
pared to the prediction from its own past only, then x2 is said to be Granger causal
for x1. The criterion for this improvement of prediction is the variance of the errors:
If

Σ1(t + 1|Ω12(t)) < Σ1(t + 1|Ω1(t)) (7.17)

holds x2 is Granger causal for x1. Of course other measures for the errors are possi-
ble. We consider the linear least squares predictor in this definition, which in general
does not have to be the best predictor, therefore we could speak of linear Granger
causality.

In the original paper [22], Granger discussed the relations between two one-
dimensional time series, given all other information in the universe. As he explains,
the assumption of this ultimate knowledge does not hold in general with actual data.
Unknown influences, so called latent variables, can cause spurious causalities, as
shown in [26].

In the following we will give extensions of the two dimensional definition of
Granger causality.

7.4.2 Granger Causality in the Multivariate Case

The concept of Granger causality can be extended to the multivariate case: We par-
tition x(t) into xI (t) and xJ (t) such that I ∪ J = {1, . . . , n} and I ∩ J = ∅. Then xJ
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is said to be Granger causal for xI if

ΣI (t + 1|ΩIJ (t)) < ΣI (t + 1|ΩI (t)). (7.18)

Here B <A means that A−B is positive definite.

7.4.3 Conditional Granger Causality

Now we extend this framework to the case where I ∪ J ⊆ {1,2, . . . , n}. We say xJ
is Granger causal for xI conditional on the rest xK , where I and J are disjoint and
K = {1, . . . , n}\(I ∪ J ) if

ΣI (t + 1|ΩIJK(t)) < ΣI (t + 1|ΩIK(t)). (7.19)

That means that we look at the causality of xI (t) and xJ (t) given the “remain-
ing” process xK(t). Together these three processes give x(t). (Note for I = {i} and
J = {j} we have xK(t)= Yij (t).)

If the variances in (7.19) are equal, then xJ (t) is Granger non-causal for xI (t),
and, as Eichler mentions in [13], this is equal to the condition that

AIJ (k)= 0 for all k ∈N (7.20)

where theAIJ (k) are the coefficients in the series representation of ã(z) (introduced
in (7.10)) corresponding to the sets I and J . This equality is important since it di-
rectly links the autoregressive coefficients with (conditional) Granger non-causality.

7.4.4 General Granger Causality

Of course the most general type of so called Granger causality would be, if we look
at three disjoint index sets I , J andK with I ∪J ∪K ⊆ {1, . . . , n}. So we may only
look at subprocesses of x(t).

Calculating all possible Granger causalities in an n-dimensional process would
be a lot of work. To cope with this problem, Eichler used a graph theoretical ap-
proach to explore the non-causalities rather than the causalities of all subsystems,
see [13, 15, 16]. In Sect. 7.6 we will investigate this approach more closely and will
also introduce Granger Causality Graphs.

7.4.5 Granger Causality Index

When we look at the definitions of different kinds of Granger causality, we can only
say whether one series is causal for the other or not. In order to measure the strength
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of dependence, which in a certain sense all aforementioned measures do, Geweke
introduced the Granger causality index in [20]. Although the original definition was
based on Granger causality in the multivariate case (i.e. I ∪ J = {1,2, . . . , n}),
we present an adapted version for the conditional Granger causality. The condi-
tional Granger causality index from xJ to xI , where I and J are disjoint and
K = {1, . . . , n}\(I ∪ J ), is defined as

cGCIxJ→xI = ln
detΣI (t + 1|ΩIK(t))
detΣI (t + 1|ΩIJK(t)) . (7.21)

Instead of the determinant, in the definition, also the trace could be used as a mea-
sure, see [3]. The cGCI is a directed measure and indicates conditional Granger
causality.

7.4.6 Connection to other Dependency Measures

The computation of Granger dependencies in a high dimensional time series is com-
putationally intensive. It would be desirable to have a frequency based measure that
indicates Granger causality.

The PSC is an undirected measure, so it will not be usable for the detection of
Granger Causality.

In the bivariate case the DTF indicates (bivariate) Granger causality, but as Eich-
ler showed in [14] this does not hold generally in the multivariate case.

Because the PDC is directly based on the coefficientsAij , it indicates conditional
Granger causality from xj (t) to xi(t) given the remaining processes, as we have seen
in (7.20).

7.4.7 Extension to the Non-linear Case

The notion of Granger Causality introduced here is based on a linear model. There
exist ideas to extend the definition for non-linear models, a not exhaustive list of
surveys on this topic is [17, 31].

7.5 Construction of Directed and Undirected Graphs

So far we have discussed about measures of dependence and causality and now we
explain how to construct a graph based on these measures. Normally we distin-
guish between directed and undirected graphs, depending on the considered mea-
sure. In this work we only consider graphs, where the vertices correspond to the
one-dimensional subprocesses.
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First we draw a node for each component xi(t). Then, for undirected graphs,
we draw an edge j i for all pairs of vertices (i, j), j 
= i unless mij (λ) ≡ 0,
where m(λ) is the considered undirected measure. When a directed measure μ(λ)
is considered, we draw an edge j i for all pairs of vertices (i, j), j 
= i unless
μij (λ)≡ 0, where μ(λ)ij measures the influence from xj to xi .

Of course a lot of other kinds of graphs exist, like graphs with directed and undi-
rected edges, see the next section, or graphs where the vertices correspond to just
one random variable, see e.g. [9].

7.6 Graphical Modeling

The ultimate aim here is the analysis of the “inner structure” an n-dimensional pro-
cess. As we have suggested in the last section, the analysis of the whole process as
well as of all subprocesses would be advisable in order to understand the underlying
structure. Of course this kind of analysis would be computationally intensive. Here
we present an easy way for gaining more insights in the structure of the processes.
This approach is called graphical modeling.

In general, graphical modeling refers to the use of graphs and graph theory in
order to analyze the causal structure of some variables. In the last decades there
has been a substantial interest in graphical modeling and a lot of research has been
conducted. Most of this research has been focused on the dependence structure in
the iid case. A not exhaustive list of surveys on this topic is [11, 29, 34, 41].

In this paper, we want to focus on the use of graphical modeling for time series.
To the best of our knowledge this analysis was introduced by Brillinger in [6] and
Dahlhaus in [8]. A good overview can be found in [9, 13]. The interested reader may
be referred to Eichler [12, 15, 16].

We will consider two special kinds of graphical models and their use. First
the partial correlation graphs, which are undirected, and second Granger causal-
ity graphs, which are mixed graphs, because they contain directed and undirected
edges. The presented methodology is applicable for the graphs presented in this
section, but not for all graphs in general.

Consider a graph G = (V ,E), where V = {1, . . . , n} is the vertex set and E is
the edge set. According to the types of connections in E we distinguish undirected,
directed and mixed graphs. We will use the notation xV (t) for x(t) in this section to
stress the fact, that the elements of V correspond to the one dimensional component
processes of x(t).

A path in a graph G= (V ,E) is a sequence p = (e1, e2, . . . , ek) of edges ei ∈E
with an associated sequence of vertices (v0, v1, . . . , vk) such that the edge ei con-
nects the distinct vertices vi−1 and vi .

In undirected graphs for I, J,K ⊂ V (pairwise disjoint) we say that K separates
I and J , if every path from an element of I to an element of J contains at least one
element of the separation set K .
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7.6.1 Partial Correlation Graphs

As the name suggests, the partial correlation graph is a graph (constructed under the
aforementioned rules) based on the partial spectral coherence (PSC), see Sect. 7.2.
It was introduced by Dahlhaus in [8]. The idea behind this graph is, that an edge
(i, j) is missing, if the components xi(t) and xj (t) are uncorrelated conditional on
the other components of the process. For the sake of completeness, we give the exact
definition.

Definition 7.1 Let xV (t) be an autoregressive process (7.5). Then the partial cor-
relation graph GPC = (V ,E) for xV is a graph with vertex set V and edge set E
such that (i, j) /∈E⇔R2

ij |ij c (λ)≡ 0 for i 
= j .

With Definition 7.1 and the common definition of separation in undirected graphs
we get the following important theorem.

Theorem 7.1 Suppose xV is an autoregressive process (7.5) and GPC = (V ,E)
its corresponding partial correlation graph . Let I, J,K ⊂ V where K separates I
and J , then xI is conditionally uncorrelated from xJ given xK .

With the help of the partial correlation graph using this theorem, we are able to
compute independence relations in all subsystems. Note that this approach does not
necessarily give all independences of the subsystems.

7.6.2 Granger Causality Graphs

We extend the idea given above to Granger causality, or rather Granger non-
causality, following Eichler in [13]. For this purpose we reconsider the definition of
conditional Granger Causality in Sect. 7.4, or rather the definition of non-causality
given in (7.20), which states that xJ is Granger non-causal for xI conditional on the
rest, if the coefficients of the respective components in the AR representation are
zero, i.e. AIJ (k)= 0 for all k.

Definition 7.2 Let xV (t) be an autoregressive process (7.5). Then the path diagram
associated with xV is a graph GGC = (V ,E) with vertex set V and edge set E such
that for i, j ∈ V with i 
= j
(i) j i /∈E⇔Aij (k)= 0 for k ∈N

(ii) j i /∈E⇔Σij = 0 for k ∈N.

Now we have a mixed graph (because it contains directed and undirected edges),
which contains the Granger non-causality information for the whole process xV (t).
In order to use this graph for gaining information about the subprocesses we have
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to introduce a notion of separation for this kind of graphs. This is rather techni-
cal and we will skip the details, we will use the m-separation criterion introduced
by Richardson in [35], which is an extension of the normal separation, and the
i-pointing property introduced by Eichler, see [13].

Theorem 7.2 Suppose xV is an autoregressive process (7.5) and let GGC be the
path diagram associated with xV . Additionally suppose that K ⊂ V and let I, J be
two disjoint subsets of K . If every I -pointing path between J and I is m-blocked
given K \J , then xJ is Granger non-causal for xI with respect to xK .

With the graph and the m-separation criterion, we are able to determine Granger
non-causalities for arbitrary subprocesses of xV (t). Here again we want to stress
the fact, that we do not necessarily get all independences of the subprocesses, other
independences in the subprocesses could hold additionally.

Because these graphs reveal Granger causal structures, path diagrams associated
with a process are also called Granger causality graphs.

The aim of using graphs is to better understand the inner structure of a process.
When working with real data, we normally have latent variables, that are not known.
These latent influences may generate spurious causalities. Graphical modeling pro-
vides a tool to cope with the problems associated with latent variables, see [12]
and [16].

7.7 Detection of the Focus of Epileptic Seizures

In this section we describe the application of some of the measures discussed above,
to invasive EEG data of a (human) patient suffering from epileptic seizures. The
aim is to localize the focus of the seizure and to describe its spread, based on the
observed data. This analysis was performed in cooperation with the AIT (Austrian
Institute of Technology GmbH).

7.7.1 Epilepsy

An epileptic seizure is the clinical manifestation of excessive hyper-synchronous
discharges of neurons in the cerebral cortex. In most cases epilepsy can be controlled
by a drug therapy, but in some severe cases, surgical intervention is needed. In this
intervention the focus of the seizure is removed surgically. Thus it is desirable to
localize this focus as precisely as possible.

As part of a presurgical examination the skullcap of the patient is opened and
EEG electrodes are directly placed on the cortex of the patient. These invasive EEG
electrodes (also called channels) remain there for some time and the electric poten-
tial of the brain is measured in this period. Normally some epileptic seizures occur
in during this observation.
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In order to localize the focus of these epileptic seizures the signals from the chan-
nels are analyzed in periods of epileptic activity. Up to now a visual interpretation
of the invasive EEG by an experienced doctor is state of the art.

In the subsequent surgery the focus is removed. The effect of this surgical inter-
vention is successful in 50 to 70% of the cases.

With our methods we want to help clinical doctors in localizing the focus of the
epileptic seizures. In this paper we will present some results from [39], where we
analyzed an epileptic seizure from a patient suffering from temporal lobe epilepsy.

7.7.2 Processing of the Data

In the brain 28 electrodes are implanted and the EEG signals are recorded at a fre-
quency of 256 Hz and the line interference (50 Hz) is filtered out. As a reference
value a non-affected channel is chosen. In the next step the data are averaged and
used as a new reference.

Considering the data, we observe that within an epileptic seizure the variances
of the invasive EEG signals of channels showing epileptic activity are significantly
larger than the variances of non-affected ones. Thus such time series cannot be sta-
tionary over the whole time period. For finding the focus only the beginning and the
propagation of the seizure seems to be important. In this section we analyze only the
first seconds of the signal after the onset of the seizure. The data based identification
of the (temporal) onset of the seizure will not be considered, but one possibility to
do this would be to look at the variances.

In order to be able to work with methods based on stationarity, the sample has to
be segmented into stationary parts. Here, for the sake of brevity, we do not discuss
methods for doing so.

To achieve a precise localization of the focus, the distances between electrodes
are quite small. This leads to strong correlations between neighboring channels and
thus to ill-conditioned variance matrices. In order to avoid the problem associated
with this ill-conditioning, we include only a part of the 28 recorded channels to our
analysis. The selection of the included channels is done empirically, channels which
are not affected by the epileptic seizure and which are far away from the epileptic
area are removed. In this way approximately half of the channels are removed.

7.7.3 Clinical Description

According to the description (see Table 7.1) given by the medical doctors, the
seizure considered had its onset at channels 15 to 21 and at channels 24 to 27.
A propagation of the epileptic activity to the other half of the hemisphere is noticed
thirteen seconds later, where channels 10 and 11 are infected. The seizure ends after
about one minute.

We have tried different measures (see [21] and [39]) and the best results will be
presented here.
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Table 7.1 Clinical
description of the seizure Time Activity Electrodes

Second 0 Start Channels 15–21, 24–27

Second 13 Propagation Channels 10, 11

Second 69 End Channels 10, 11

7.7.4 Graphs Based on Generalized Partial Directed Coherence

As mentioned in Sect. 7.3 the generalized partial directed coherence (GPDC) (7.16)
measures the information flow from time series xj to time series xi .

As mentioned we try to identify the propagation of one epileptic seizure. The
idea of using a coherence measure is based on the observed synchronization ef-
fects of epileptic channels. If we are able to find one electrode which influences
many others at the onset, we have already found the focus. Hence we try to iden-
tify an information flow from the measurement of the focus channel xj to other
channels xi .

Because this measure depends on the chosen frequency, we derive a binary mea-
sure by integrating the modulus of the GPDC over all frequencies. To define the
significance of the interaction between two signals we need a threshold, which may
be defined by a test, but for simplicity in our application it was chosen manually.

Figure 7.1 shows the location of the implemented electrodes in the brain and
the generalized partial directed coherence. To be able to see the propagation of the
seizure, four snapshots are used to represent the first four time windows. Each time
window has a duration of 4 seconds.

The electrodes (channels) are represented by circles and crosses. Whereas circles
represent the channels included in the analysis and crosses represent the others.

An arrow is drawn from channel j to channel i, if the GPDC from j to i is signif-
icantly high (it exceeds the threshold). Our hope is, that the identified information
flow shows the epileptic activity.

In this figure we can see that an interaction between channels 15 and 25 and be-
tween channels 26 and 27 is identified. Comparing these results with the description
of the medical doctors, they found that these channels to show epileptic activity. In
a short time window (from second 8 to second 12) the information flow between
channels 26 and 27 seems to be too low to be measured, but some seconds later
(from second 12 to 16) it gets strong enough to be detected again.

According to the medical doctors a propagation of the seizure to the other side of
the hemisphere (to channels 10 and 11) took place after 13 seconds. In comparison
with the result obtained by us, we can indeed identify a high value of the GPDC
there.

Summarizing it can be stated that the GPDC seems to be a good measure to
identify epileptic activity.
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Fig. 7.1 Results of the generalized partial directed coherence: These four snapshots represent
the brain with the implanted electrodes and the GPDC in four time windows (each of them is
4 seconds long). Circles represent selected channels (electrodes), whereas crosses represent non-
selected ones. The small arrows between two points represent the influence of one channel to
another. The generalized PDC is chosen to measure the influence

7.7.5 Graphs Based on Conditional Granger Causality

As opposed to the previous case, where we performed a calculation over stationary
segments, here we use adaptive estimation.

To be able to cope with the non-stationarity of the time series, we use a finite
AR model with time varying coefficients, estimated by a recursive least squares
algorithm. This Recursive Least Squares Algorithm (see [25]) is equivalent to the
minimization of the weighted sum of residuals

C(t)=
t∑

k=1

λt−kεx(k) ε∗x(k)

in every time step t , where λ is the so called forgetting factor (here it was chosen to
be 0.995)

As defined in Sect. 7.4, xj is said to be Granger causal for xi conditional on all
other channels Yij (t)= (xk(t)|k 
= i, j), if the knowledge of the past of xj improves
the one step predictor of xi .
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Fig. 7.2 Analysis with conditional Granger causality: The results of using conditional Granger
causality as a measure for epileptic activity are shown in four plots, representing four time windows
(each with a duration of 4 seconds). Selected channels (electrodes) are represented with circles, the
others with crosses. An arrow from channel j to channel i represents a high conditional Granger
causality index cGCIxj→xi and hence a causal influence form j to i

In order to be able to differentiate between normal brain activity and epileptic
activity, we calculate the conditional Granger causality index (7.21) for each time t .

In Fig. 7.2 we see the location of the electrodes in the brain. Again we had to
select a smaller set of channels and therefore used the same channels as in the pre-
ceding analysis. To explore the propagation of the seizure, four snapshots are shown.
Each of them represents a duration of 4 seconds.

The conditional Granger causality is illustrated with arrows. An arrow from chan-
nel j to channel i is drawn if the corresponding index exceeds a manually chosen
threshold for more than a quarter of a second. Again we assume that this measure is
able to identify epileptic activity.

According to the medical doctors, the onset should be in channels 15 to 21 and in
channels 24 to 26. Considering our result, the cGCI is significant at these channels.

In the last snapshot (seconds 12 to 16) we may identify an information flow
between channels 10 and 11. According to the clinical description there should be an
epileptic activity after 13 seconds. Again we have found a perfect matching between
this measure and the epileptic activity as described by the medical doctors.
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7.7.6 Conclusion

Both methods, the generalized partial directed coherence, as well as the Granger
causality, have delivered a result which is in good accordance with the findings of
medical experts. In general, conditional Granger causality leads to slightly better
results than the GPDC. We explain this fact, however, not by the use of a different
measure, but by the capability of the RLS algorithm to better cope with the non-
stationary invasive EEG data.
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Chapter 8
Box-Jenkins Seasonal Models

Granville Tunnicliffe Wilson and Peter Armitage

8.1 Seasonality in Time Series

There is a pattern in many time series that reflects the cycles of our calendar. It
is characterized by an approximate repetition of the pattern after each successive
period s of the season, though it may be superimposed on other features such as
trends and other irregular cycles, not directly linked to the calendar, that arise from
the dynamics of economic and business activity. The period of the cycle is usually
an integer, such as the twelve months of the year and seven days of the week, but
it may not be an exact integer, for example if measurements are made every four
weeks giving rise to a period slightly greater than thirteen. There may also be more
than one seasonal period in a series, and we shall give an example of half-hourly
electricity demand with a daily period of 24 hours and weekly period of 168 hours.

Some seasonal patterns are very regular, but more usually the pattern will be
modified over time, eventually becoming noticeably different in shape. However,
the pattern may be modulated (rather than modified) around a persistent long term
shape. Our calendar also imposes some irregular, though predictable, modifications
of seasonal patterns, particularly in monthly data. For example monthly sales of sea-
sonal clothing might be recorded from weekly figures, with the weekly accounting
period ending on Saturday. The series will then be strongly affected by the number
of Saturdays in the month. This is not always the same from year to year and may
appear to be just part of the seasonal irregularity. Programs such as X12-ARIMA
(http://www.census.gov/srd/www/x12a/), designed to adjust time series for their
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seasonal variations, recognize such calendar effects, which may also include the
variable dates of Easter and other holidays. Some seasonal patterns may not be vi-
sually apparent in a series because they are relatively minor and masked by other
sources of variation; nevertheless it may be important to detect and model them.

The aim of this chapter is to review the approach to seasonal time series mod-
elling and forecasting introduced by Box and Jenkins. This is widely used, not least
in the X12-ARIMA program for reducing the magnitude of revisions in seasonal
adjustment. We shall re-examine the data widely know as the Airline Series used
by Box and Jenkins [1] to introduce their seasonal model, and suggest some alter-
natives to the methodology for identifying this model. In particular we will make
use of the sample spectrum of the series as a supplement to the display of sample
autocorrelations. The spectrum is a particularly appropriate statistical summary for
seasonal data because of its cyclical nature.

8.2 The Airline Model and Related Predictors

The first series shown in Fig. 8.1 is the logarithms of the airline passenger totals from
Box and Jenkins. The argument of Box and Jenkins is that it might be appropriate to
predict the sub-series of, say, January, figures, by an exponentially weighted moving
average (EWMA) with trend. Moreover, the same might be applied to each month
of the year, using the same discount parameter across all months. This is equivalent
to fitting to the whole series the seasonal integrated moving average (SIMA) model

xt − xt−12 = c+ ft −Θft−12,

or ∇12xt = c+ (1 −ΘB12)ft in their notation, where c is the mean annual increase
in xt . The series ft is the set of 12 month ahead forecast errors from this model
and is shown as the second plot in Fig. 8.1. Note that in predicting one particular
January, say, the information in the previous eleven months has been ignored, so
it is unsurprising that successive values of this error series are strongly dependent.
Box and Jenkins then proposed that corrections to this first stage, of year on year
forecasting, be made by a second stage, of month on month EWMA forecasting
of the error series ft . This is equivalent to fitting to ft the non-seasonal integrated
moving average (IMA) model

ft − ft−1 = et − θet−1,

or ∇ft = (1 − θB)et , where et is the error in predicting ft , and hence also the final
error in the corrected forecast of xt . Putting together the two steps results in their
famous Airline model

∇∇12xt = (1 − θB)(1 −ΘB12)et . (8.1)

The third plot in Fig. 8.1 shows the final error series which is not far from ran-
dom, which implies that the resulting predictor is close to optimal. The parameters
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Fig. 8.1 The first plot is of
the logarithms of the Airline
Passenger Total series. The
second plot shows the errors
from predicting the series
using a year on year EWMA
predictor. The third plot
shows the final errors from
predicting the seasonal errors
by a standard EWMA

estimated by this two stage process are Θ = 0.3404 and θ = 0.4114, and the resid-
uals et have sample autocorrelation of −0.24 at lag 12. The parameters estimated
simultaneously to minimize the final residual sum of squares are Θ = 0.5571 and
θ = 0.4018, and the corresponding lag 12 autocorrelation is then −0.085. The dif-
ference in the two sets of parameters is explained by the fact that the first stage
EWMA is trying to track both the trend and the seasonal variation. The Airline
model is described by Box and Jenkins as a multiplicative model because the op-
erators in the model are products of non-seasonal and seasonal terms; in this case
nonseasonal and seasonal IMA(1,1) models. This must not be confused with models
for multiplicative trend and seasonality—these effects are additive in this model.

The Airline model (8.1) is one of three well known adaptive predictors for sea-
sonal time series models which track changes in the level, trend and seasonality.
Of the other two, one is the additive seasonal Holt-Winter predictor [13], and the
second is the seasonal state space model, the Basic Structural Model (BSM) of Har-
vey and Todd [4]. All three can be expressed in the predictor-corrector form. As
each new observation is made of the series, the prediction error is used to update
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the states which characterize the level αt , slope of trend, βt and current seasonal
factor γt of the model, for extrapolation of future values. A thorough exposition of
this view point is presented by Newbold [8]. The Holt-Winter predictor is defined
as generalization of exponential smoothing in terms of three smoothing parameters
A, B , and C. Newbold [8, p. 115] shows that the weights applied to the prediction
error et in updating the current level, trend and seasonal factor are

A∗ = A+C(1 −A)/12 = 0.391,

B∗ = AB = 0.009,

C∗ = 11C(1 −A)/12 = 0.733.

(8.2)

The numerical values shown in (8.2) are those obtained by tuning the weights to
minimize the prediction error sum of squares, which Haywood and Tunnicliffe Wil-
son [5] show for the Airline series leads to A= 0.35, B = 0.01, C = 0.75. Newbold
[8, p. 117] also shows how the corresponding state updating form of the Airline
model can be derived, leading to corresponding weights, given in terms of λ= 1− θ
and Λ= 1 −Θ , of

λ

(
1 − 13

24
Λ

)
+ Λ

12
= 0.49

λΛ

12
= 0.022

11

12
Λ− 11

24
λΛ= 0.2823.

(8.3)

The numerical values used here are those obtained for the Airline model. The
state space model of Harvey and Todd contains three variance ratio parameters con-
trolling the independent evolution of the level, trend and seasonal factors. The corre-
sponding updating weights can be derived from these by application of the Kalman
Filter. Tunnicliffe-Wilson [12, p. 70] shows that the corresponding weights obtained
from fitting the BSM to the Airline series are

KL = 0.6380,

KT = 0.0255,

KS = 0.1510.

(8.4)

We have shown only the weight used to update the factor for the current month.
What we have not shown are the weights for updating the seasonal factors for the
previous eleven months; it is these weights that distinguish the three models, all of
which may also be represented in a seasonal ARIMA form with ∇∇12xt expressed
as a moving average of order 13. Both the Holt-Winter predictor and Harvey and
Todd’s BSM allow three free parameters to model the 13 weights, or equivalently
13 moving average parameters, but Box and Jenkins’s Airline Model allows only
two. This seems overly restrictive since it constrains the three rates at which the
predictor adapts to changes in level, trend and seasonality. This criticism can be
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countered by the fact that precise estimation of the variance ratio parameter for the
trend evolution in the BSM is difficult for many practically occurring series, with
an estimate at the boundary value of zero not being unusual. Diagnostic checks on
residual correlations also indicate that the Airline model adequately captures the
moving average structure. Moreover the updating weights for the trend term are not
very dissimilar in (8.2), (8.3) and (8.4).

For series with the same general appearance as the logarithms of the Airline data,
the Airline model is recommended as a first trial model. This is based on our wide
experience. The model is quickly fitted and little is lost if diagnostic checks reveal
inadequacies, but very often the checks are satisfied. The model is robust and we
have even applied it to generate credible forecasts from as little as 18 months of data,
using the same parameters as for the Airline data. This is not to say that the model
cannot be improved upon, even for the Airline data. In the next section we shall look
at this more closely. We shall then perform a comparative exercise on a time series
with similar appearance, a record of monthly atmospheric CO2 measurements.

8.3 A Closer Look at the Airline Data

Figure 8.2 shows, on the left, the forecasts of the last two years of the logarithms
of Airline totals obtained from the first 12 years of the series using the standard
Airline model. Figure 8.3 shows a plot of the estimated one-step prediction errors,
or residuals, from this model, the sample autocorrelations (sacf) of these residuals
and also their sample spectrum. These last two plots are designed to reveal any re-
maining linear predictability in the residuals, by departures of the sacf from zero
and of the spectrum from the general appearance of uniformity. Formal tests for
these conditions have been devised, and the error limits on the sacf give some guid-
ance as to values that might be significantly non-zero. The residuals appear to be
somewhat more variable in the first two thirds of the series which contains sev-
eral more extreme values, leading to some excess kurtosis in the whole series. The
sacf value at lag 23 lies just outside the limits but on inspecting the residual scatter
plot at that lag, it is accounted for mostly by a pair of positive large residuals at
time indices 29 and 52 and a pair of negative large residuals at lags 39 and 62. It
might therefore be concluded that there is no way to improve the predictive ability
of the model, but the sample spectrum contains a clue which does open the way to
this.

The sample spectrum does exhibit several large peaks, but it is well known that
attaching meaningful interpretation to the frequencies at which these peaks happen
to occur, is generally misleading. The distribution of the maximum of the sample
spectrum over the whole frequency range is much more extreme than the (expo-
nential) distribution of its value at any specified frequency. A large peak at a prior
specified frequency will, however, be significant. The sample spectrum shown is
of the normalized residuals, so has mean two, and there is 5% probability that the
spectrum exceeds 6.0 at any specified frequency. The frequency of prior importance
is 0.348 at which there is a spectrum peak of height 8.0. The importance of this
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Fig. 8.2 On the left are forecasts of the last two years of the logarithms of the Airline Passenger
Totals, using the Airline Model fitted to the previous series values. The solid lines are the true
series values, the dashed lines are the forecasts and the dotted lines are 95% error limits. On the
right, the forecasts are constructed using a regression on a cycle for calendar effects, and with the
Airline model extended to include a non-seasonal moving average term at lag 3

Fig. 8.3 Above are the residuals from the Airline series model of Box and Jenkins. Below are
the sacf (on the left), with nominal two standard error limits shown by the dashed lines, and the
standardized sample spectrum (on the right) of the residuals

frequency, as explained by Cleveland and Devlin [3], is that it is characteristic of
a calendar effect in monthly data. This is not surprising in airline totals and inves-
tigation of explanatory regressors such as the number of weekends in each month,
would repay effort in a serious development of the model. An ad-hoc, but highly
recommended alternative is simply to include a cycle at frequency 0.348 as a re-
gressor. We find that the significance of this regression corresponds to a p-value of
0.017. The forecasts are only slightly improved, but, most noticeably, the residual
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Fig. 8.4 Above is the logarithms of numbers of male voluntary leavers from the British Civil
Service in each month from 1971 to 1978. The lower left plot shows the sacf after application of
seasonal and non-seasonal differencing. The lower right plot shows the same sacf but using the
series corrected by regression on the number of Fridays in the corresponding months

sacf at lag 3 now has the highly significant value of −0.256. The model is there-
fore extended to include a non-seasonal moving average term at lag three, which on
estimation has a significant t-value of 2.67. The p-value of the cyclical regression
is also reduced to 0.0012. Figure 8.2 shows, on the right, the forecasts from this
new model. There is a noticeable improvement in the forecast accuracy, including
narrower forecast error limits.

This last illustration emphasizes the importance of modeling the variability aris-
ing from calendar effects on a time series and we conclude this section with an
example in which making the correct allowance for such effects is essential for
Box-Jenkins seasonal modeling. The series shown in the upper plot of Fig. 8.4 is the
logarithms of the number (in thousands) of male voluntary leavers from the British
Civil Service in each month from 1971 to 1977. The lower left plot in the figure is
the sacf of the series following application of seasonal and non-seasonal differenc-
ing. Curiously, this has a large negative value at lag 10, rather than lag 12 which
would characterize a Box-Jenkins seasonal model. There is also a strong oscillation
in the sacf values with a period close to three. However, the sample spectrum (not
shown) of the differenced series clearly reveals the tell-tale spike associated with
calendar effects. In this example we surmise that the number of leavers counted in
each month will be strongly affected by the number of Fridays in that month, so we
corrected the series by a simple regression on a dummy indicator of that number.
The sacf of the corrected series, after applying the same differencing, is shown in
the lower right plot of Fig. 8.4. The strong negative value is now at lag 12.
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Fig. 8.5 The left plot shows forecasts using the Airline model extended to a second order seasonal
moving average. The right plot shows forecasts using seasonal regressors with IMA(1,1) non-sea-
sonal part and MA(1) seasonal part of a multiplicative model. True series value are shown with a
solid line, forecasts with a dashed line and error limits with dotted lines

We proceeded to fit the Airline model to this series with the indicator for Fridays
as a regressor. The estimate of θ was small but was retained. Unusually, a second
order seasonal moving average was indicated and both associated parameters were
strongly significant. The forecasts of the last two years of the series, using this model
fitted to the previous values, is shown on the left in Fig. 8.5. However, the seasonal
moving average operator had a root of unity, indicating that the seasonal pattern was
fixed. Seasonal sinusoidal regressors (described in the next section) were therefore
added to the model and the seasonal part of the Airline model reduced to MA(1)
with no seasonal differencing. The forecasts from this second model are shown on
the right in Fig. 8.5. They are surprisingly accurate, but the error limits are wide,
indicating that on the past behavior of the series the accuracy is somewhat fortuitous.
An important comment must be made on the difference between these two models.
The (extended) Airline model implicitly includes a linear trend term in the forecast
function; the regression model does not—we omitted it as being inappropriate to
a series that gave no indication of any long term trend. If we had included it, the
fit and forecasts would have been the same for both models. We shall shortly see
this with another example of monthly atmospheric CO2 concentrations. Here we
have a distinction between using a unit root seasonal model for fixed seasonality,
and explicitly using seasonal regressors. However, the main point of this example is
being aware of calendar effects.

8.4 Atmospheric CO2 Concentration

Figure 8.6 shows the logarithms of the series of monthly atmospheric CO2 con-
centrations recorded at Mauna Loa from 1974 to 1986 by Keeling et al. [6]. These
appear superficially similar to the Airline data and to make a start we simply fit
the airline model. We keep back the last two years of the series for comparing with
the forecasts obtained from fitting the model to the earlier data. The forecasts are
shown on the left in Fig. 8.7. They are quite accurate because the trend and seasonal
pattern are so regular. However, the estimated seasonal moving average parameter



8 Box-Jenkins Seasonal Models 161

Fig. 8.6 Logarithms of the
atmospheric concentration of
CO2 in ppm

is Θ = 0.9943. A value so close to unity suggests that the seasonal pattern is not
evolving—it is fixed. In that case the seasonal pattern can be represented by fixed
regressors and the seasonal EWMA part of the model can be removed. One possi-
bility for these regressors is a set of indicator variables, one for each month, with
the regressor for a particular month taking the value zero in every month except
at that particular month, when it takes the value one. As a set, these are collinear
with a constant, so it is usual to omit one of them, usually the indicator for Decem-
ber. An alternative is a set of eleven sinusoidal seasonal regressors at the harmonic
frequencies fj = j/12:

vj,t = cos(2πfj t) for j = 1 . . .6, (8.5)

wj,t = sin(2πfj t) for j = 1 . . .5. (8.6)

These regressors were then fitted with just a non-seasonal IMA(1,1) error model, the
role of the seasonal part of the model now being taken over by the regressors. A con-
stant term can be included in the error model to allow for the trend or a trend term
can be included (and the constant omitted) as a further regressor; they are equivalent.
The fit of this model was identical to that of the airline model; the non-seasonal mov-
ing average parameter was the same and the forecasts were identical. More gener-
ally, regressors for seasonality should be introduced whenever seasonal differencing
is removed from the model. Stationary variations of a seasonal nature may, however,
remain, and may be evident as significant residual sacf values at seasonal lags—
multiples of the seasonal period. There is no such evidence in this example, but
for confirmation, both first order seasonal autoregressive and moving average terms
were introduced into the model and estimated. Neither of them were significant.

The IMA(1,1) error model includes adaptability to level but not trend. But the
series may indeed follow a trend with fixed level. This can be investigated by re-
placing the integrated IMA(1,1) error model by the stationary ARMA(1,1) model.
The regressors will now include a constant term besides the trend and seasonal re-
gressors. The stationary error model encompasses the IMA(1,1) model, which is got
by constraining the autoregressive parameter φ to one. When estimated, φ = 0.948
with standard error 0.042. A likelihood ratio test shows that the improvement in fit
is far short of significant. Even so, as shown on the right in Fig. 8.7, the forecast
error limits are slightly reduced though the forecasts are hardly changed. At a lead
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Fig. 8.7 On the left are forecasts of the last two years of the logarithms of the atmospheric CO2
concentration, using the Airline Model fitted to the previous series values. The solid lines are the
true series values, the dashed lines are the forecasts and the dotted lines are 95% error limits. On
the right, the forecasts are constructed using regression on a trend and seasonal sinusoids with an
ARMA(1,1) error model

time of 12 the error limits using the IMA(1,1) error model are less than 25% greater
than those of the ARMA(1,1) model, but at lead time 24 they are over 50% greater. It
may be argued that there is no reason to constrain φ = 1, and the ARMA(1,1) model
should be used. On the other hand the IMA(1,1) error model is robust to future level
changes. Neither is there is any necessity to introduce regressors for seasonality; the
Airline model as initially fitted to this series gives precisely the same forecasts: it
is both acceptable and appropriate for this series. The residuals from both models
were very similar and showed no evidence of model inadequacy.

8.5 Identification of the Box-Jenkins Seasonal Model

Model identification of Box and Jenkins involves selection of the orders of non-
seasonal and seasonal differencing (d,D), autoregressive (p,P ) and moving av-
erage (q,Q) operators. Their general approach is to inspect the sample autocor-
relation function (sacf) and sample partial autocorrelation function (spacf) of the
differences of the series for a limited range of orders of non-seasonal and seasonal
differences. For a seasonal time series this is usually limited to the combinations
of d = 0,1 and D = 0,1. The difficulty with this strategy is that the application
of seasonal differencing in particular, can distort the lower order values of the sacf
that are needed to identify the non-seasonal orders. It is true that for the Airline
model there is an attractive separation of the sacf for ∇∇12xt : the low lag values
characterize the non-seasonal moving average part of the model and the values at
seasonal lags (multiples of 12) characterize the seasonal moving average part. There
is a problem, though, when the non-seasonal part of the model is best modeled as a
stationary ARMA, with significant terms of the sacf extending well beyond lag 12,
so that information relating to the seasonal part of the model interferes with that
of the non-seasonal part. We first discuss questions relating to whether seasonal-
ity is present, and whether it is fixed or evolving. We then describe and illustrate a
procedure which can help in seasonal model identification.
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Fig. 8.8 Above is the quarterly index of gilt numbers. Below are the sacf (on the left), with nominal
two standard error limits shown by the dashed lines, and the standardized sample spectrum of the
series (on the right)

8.5.1 Checking if Seasonality is Present

One question to be asked, and answered, is whether a given time series contains any
seasonality. Some caution is advisable here, because even if a time series is purely
non-seasonal, the application of seasonal differencing will induce some, usually
negative, seasonal autocorrelation at or around the seasonal lag. This could result in
the unnecessary inclusion of a seasonal IMA component in the model. If seasonality
is present it will usually be visually evident as a pattern in the original series. It is,
however, possible that this is modest in amplitude and masked by noise and other
features such as a business cycle. A good check for the presence of seasonality
is then to inspect the sacf of the (non-seasonally) differenced series. Differencing
reduces the amplitude of trends and other cycles and a pattern of significant values
at seasonal lags is then usually quite evident if indeed seasonality is present. The
sample spectrum of the differenced series will, in that case, reveal clear peaks at the
seasonal fundamental and harmonic frequencies.

As an illustration, the upper plot in Fig. 8.8 shows a UK quarterly index of the
number of gilts from 1967 to 1978, which are sows in pig for the first time. This is a
measure of investment in pig production, which was quite volatile at the time. The
series and its sacf, shown in the lower left plot of the figure, reveal a strong market
cycle of approximately 3 years (12 quarters), but no obvious sign of a quarterly
pattern, except possibly just at the start of the series. The sample spectrum in the
lower right plot of the figure does indicate some seasonality of period 4 by a small
peak at frequency 0.25, but this is masked in the other two plots by the strong cycle.
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Fig. 8.9 Above is the second difference of the gilt numbers. Below are the sacf (on the left), with
nominal two standard error limits shown by the dashed lines, and the standardized sample spectrum
of the differenced series (on the right)

The upper plot in Fig. 8.9 shows the result of applying second differencing to the
series which reduces the amplitude of the market cycle. A quarterly pattern is not
so evident to the eye in this series, but it is now clear in its sacf, shown in the lower
left plot of the figure, which peaks at lags 4, 8, 12 and 16. The sample spectrum
in the lower right plot of the figure also reveals the quarterly nature of the series
with a very strong peak at frequency 0.25. Although seasonality is a relatively small
component of this series, its omission could distort a modeling analysis.

8.5.2 Checking if Seasonality is Fixed or Evolving

A further question to be asked, when seasonality is quite evident in the series, is
whether it is fixed or evolving. In the former case the seasonal pattern may be rep-
resented by the fixed regressors that we described earlier, either seasonal indicators
or seasonal sinusoids. In the latter case a seasonal ARIMA model is advocated. As
we have explained with the example of atmospheric CO2 concentrations, a seasonal
IMA(1,1) model with Θ very close to one can give the same fit and forecasts as a
model with trend and seasonal regressors, but estimation problems can arise with Θ
so close to the invertibility boundary. A quick response to the question of whether
seasonality is fixed or evolving, is to fit a simple model with fixed trend and sea-
sonal regressors and look for evidence of any remaining seasonality in the residuals.
A simple ARMA(1,1) error model is usually sufficient to reduce, if not eliminate,
low lag residual sample autocorrelation. Evidence of seasonality that is not removed
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Fig. 8.10 The upper plot shows the logarithms of the level of unemployment in Scotland from
January 1952 to November 1977. On the left below is the sacf after fitting to this series a fixed
trend and seasonal regressors with an ARMA(1,1) error model. On the right below is the sacf for
the same model fitted to the series of atmospheric CO2 concentrations

by fitting the fixed regressors should then be seen as peaks in the residual sacf at
multiples of the seasonal period. We illustrate this with a series of monthly unem-
ployment level for Scotland over the period January 1952 to November 1977. The
logarithms of this series are shown in the upper plot of Fig. 8.10. The lower left
plot in this figure shows the residual sacf from fitting the fixed seasonal regressors
as described. There is still some low lag correlation, but the peaks in the sacf at
lags 12, 24 and possibly 36, show clear evidence that the seasonality is not fixed
but changing. Although we do not show it here, the residual sample spectrum has a
broad peak around frequency 1/12 which also confirms the presence of remaining
seasonality. In contrast, the lower right plot in Fig. 8.10 shows the corresponding
residual sacf for the atmospheric CO2 series. This shows no evidence of seasonality
that has not been accounted for by the fixed regressors.

8.5.3 Identification of Non-seasonal Structure

If seasonality is present in a series, whether it is fixed or evolving, it will be sub-
stantially removed by application of seasonal differencing. Because of this, Box
and Jenkins advocate that inspection of the sacf of the seasonally differenced series
should be one of the steps in identifying an appropriate model. In particular, it bet-
ter reveals the non-seasonal structure in the series. However, although it removes
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Fig. 8.11 On the left is the sacf of the seasonal differences of the atmospheric CO2 series. On the
right is the sacf after applying the filter in 8.7, with Θ = 0.7, to the atmospheric CO2 series

the strong pattern of seasonality in the series, seasonal differencing also induces
negative correlation at lag 12 in the sacf of the differenced series. The plot on the
left of Fig. 8.11 illustrates this for the atmospheric CO2 series. If, as experience has
shown, the seasonal structure of the series is well modeled by a seasonal IMA(1,1),
this induced correlation can be countered by applying, instead, the operator associ-
ated with this part of the model:

∇12

1 −ΘB12
. (8.7)

This will leave a filtered series with only the non-seasonal structure to be identified
from its sacf. The question, though, is how to determine Θ . For many series this
is answered by reference to the motivating argument that we initially presented for
the Airline model: simply fit the seasonal IMA(1,1) model. The residuals from this
are then precisely the series obtained by applying the operator (8.7). This works
well for the Airline series, but we did note that the value of Θ = 0.340 obtained
by this strategy was somewhat smaller than the value Θ = 0.557 estimated for the
final model. For the series of unemployment in Scotland, the value of Θ = −0.415
estimated by fitting the simple seasonal IMA(1,1) model, is very far from the value
Θ = 0.528 which we eventually find in the best model for this series. Applying the
operator (8.7) with Θ = −0.415 leads to greater distortion of the sacf, shown on the
left in Fig. 8.12, than applying differencing alone!

This leads us to the proposal not to estimate Θ , but to apply the operator (8.7)
with the specified value Θ = 0.7 for all series. The sacf of the resulting series is
shown for the atmospheric CO2 series on the right in Fig. 8.11 and for the unem-
ployment in Scotland on the right in Fig. 8.12. These lead us correctly to identify
ARMA(1,1) and ARMA(2,1) models respectively for these series (using also the
pattern of the associated partial sacfs which are not shown). The point is that using
Θ = 0.7 for applying (8.7) is an acceptable compromise which leads to minimal
distortion of the filtered series for a wide range of true values of Θ . In our experi-
ence its use is certainly to be advocated as strongly as simple seasonal differencing,
as a means of revealing the non-seasonal structure of the series.

The same procedure applied to the series of number of gilts also identified an
ARMA(2,1) model for the seasonal part. Figure 8.13 shows forecasts derived for
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Fig. 8.12 On the left is the sacf of the residuals from modelling the unemployment in Scotland
with a SIMA model. On the right is the sacf after applying the filter in 8.7, with Θ = 0.7, to the
series of unemployment in Scotland

Fig. 8.13 Forecasts of the series of unemployment in Scotland on the left, and the number of gilts
on the right, generated from models fitted to the previous series values

both the unemployment and gilts series using the models identified in this way. Re-
definition of official statistics is always a challenge to forecast construction, and
affects the forecast period shown for the unemployment series. From August 1972
adult students were included in the total, but were not included before this time.
Another group, of temporary stopped workers, was also excluded from November
1972.

8.6 Series with Two Seasonal Periods

The Box-Jenkins Airline model has been successfully extended to time series of
electricity demand, for which there are two natural seasonal periods of one day and
one week. Brubacher and Tunnicliffe-Wilson [2] modeled hourly observations for
which the period lengths are 24 and 168. Taylor et al. [10] compared forecasts from
Box-Jenkins models with those from other schemes, using half-hourly observations
for which the period lengths are 48 and 336, and Taylor [9] has more recently con-
sidered models with three natural seasonal periods. Matteson [7] describes a differ-
ent approach to modeling a similar data set of hourly call arrival rates for emergency
medical services. We are grateful to Taylor for providing us with data to which we
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Fig. 8.14 Half hourly
electricity demand for 21
days

Fig. 8.15 Filtered series of
electricity demand

apply our identification strategy. Figure 8.14 shows a plot of this data over a period
of 21 days, with three weekend periods of lower demand quite evident. To this data
we applied the operator (8.7) twice, but with the seasonal period replaced by first
336 and then 48. The value of Θ = 0.7 was used in both operations. The series re-
sulting from this operation is shown in Fig. 8.15 and is very similar to a random
walk. It’s first difference has significant, though small, sacf values at lags 1,5 and 9.
Consequently a model of the form (8.8) was identified for the original series:

∇∇48∇336xt = (1 − θ1B − θ5B
5 − θ9B

9)(1 −Θ48B
48)(1 −Θ336B

336)et . (8.8)

Figure 8.16 shows forecasts of the last three days of the series, based on fitting
model (8.8) to the previous observations. The forecasts are very good, even though
the forecast origin is in the closing hours of a weekend. The forecast error limits
are rather wide which suggest that this accuracy cannot always be expected, but
overall this extension of the Airline model appears to provide a highly successful
forecasting procedure.

8.7 Conclusion

We have shown how the seasonal models of Box and Jenkins, and the procedures
for identifying these models, can be extended in various ways. Not least, we have



8 Box-Jenkins Seasonal Models 169

Fig. 8.16 Forecasts of
electricity demand up to three
days ahead using an extended
Airline model fitted to
previous series values

demonstrated how successful these models can be at constructing forecasts of a wide
range of seasonal times series. All the computations used for the illustrations in this
chapter were carried out in the Genstat package (http://www.vsni.co.uk/) and take at
the most two or three seconds to execute on a modern computer. A particular feature
of Genstat time series estimation software is the ability rigorously to compare mod-
els, which use either trend and seasonal regressors or seasonal ARIMA operators,
by the marginal likelihood criterion of Tunnicliffe Wilson [11].

Several of the series used to illustrate the methods of this chapter were taken from
a set of case studies developed by the second author. These time series were initially
brought along by participants in a series of courses organized at the Civil Service
College, and later at Lancaster University, by Peter Armitage. Peter Young and the
first author were invited lecturers on these courses and enjoyed close collaboration
with Peter Armitage, who sadly died early in 2010. This chapter is therefore written
partly in memory of Peter Armitage as well as a joint tribute to Peter Young.
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Chapter 9
State Dependent Regressions: From Sensitivity
Analysis to Meta-modeling

Marco Ratto and Andrea Pagano

9.1 Introduction

The general concept of State Dependent Parameter (SDP) models for nonlinear,
stochastic dynamic time series was suggested by Priestley [8] and it has been ex-
tensively developed by P.C. Young and co-workers in the last two decades: read-
ers can refer to [20, 23, 24, 26] for a description of the method and a full list of
references on the background to its development. SDP modeling is a very useful
and efficient tool in signal processing and time series analysis; it has been success-
fully applied for many years in non-stationary and non-linear signal processing,
e.g. to identify non-linearities in the context of dynamic transfer function models
and in the framework of Young’s Data-Based Mechanistic modeling [21]. The SDP
model takes the simplified form of a the State Dependent Regression (SDR) when
it is used to identify ‘static’ (non-dynamic) non-linear regression models, i.e. in the
non-parametric regression context [24]. As such, SDR could well be considered
for applications like sensitivity analysis and meta-modelling. Applying the SDR
approach, Ratto et al. [11] have first developed a nonparametric approach for the
efficient estimation of sensitivity indices in the framework Global Sensitivity Anal-
ysis (GSA, [13]). Subsequently, the main goal of our work has been to exploit SDR
as an efficient identification tool for building emulators or meta-models with tensor
product smoothing splines ANOVA models [10].
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In our framework we move from a mathematical (or computational) model

Y = f (X)= f (X1, . . . ,Xp), (9.1)

where Y is the model output that depends on X, a vector of p model parameters (the
‘input factors’ in GSA terminology). In GSA and meta-modeling it is very important
to consider the ANOVA decomposition of f into terms of increasing dimensional-
ity:

f (X1,X2, . . . ,Xp)= f0 +
∑

i

fi +
∑

i

∑

j>i

fij + · · · + f12...p, (9.2)

where each term is a function only of the factors in its index, i.e. fi = f (Xi), fij =
f (Xi,Xj ) and so on.

The input factors Xi have a domain of variability U , linked to the uncertainty
about their precise value. We interpret the term ‘factor’ in a very broad sense:
namely, a factor is anything that can be subject to some degree of uncertainty
in the model. As such, input factors are treated as random variables charac-
terised by specified distributions. Therefore also the Y is a random variable
with a probability distribution, whose characterization is the main goal of our
work.

The various terms are defined as follows:

f0 = E(Y),
fi = E(Y |Xi)− f0,

fij = E(Y |Xi,Xj )−E(Y |Xi)−E(Y |Xj)− f0,

...

(9.3)

and they are as many as 2p − 1. This ANOVA decomposition is strictly linked to
sensitivity analysis: the so-called variance-based sensitivity indices directly derive
from (9.2)–(9.3), as shown in [13]:

Si = V (fi)/V (Y ),
Sij = V (fi,j )/V (Y ), (9.4)

...

Moreover, as discussed in [11], f (XI )’s (I being a multi index I = i1 < i2
< · · ·< is where 1 ≤ s ≤ p) provide the best approximation to f () in a least squares
sense. If the input factors are independent, all the terms of the decomposition are or-
thogonal and the decomposition in (9.2) is unique. Therefore, estimating f (XI )
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provides a route for model approximation, as done by all statistical methods es-
timating ANOVA models, like tensor product cubic splines [4]. In this direction,
SDR modelling is another class of non-parametric smoothing methods which are
available to obtain estimations of the f (XI ) terms. Later in this paper we will show
that SDR may be effective in detecting important functional components (i.e. the
f (XI )’s), providing added value for the smoothing splines techniques (see [10]).

9.2 Estimating Truncated ANOVA Representations with SDR

9.2.1 Additive Models

In this Section we will describe some of the key features of the SDR technique
applied to a first order (additive) ANOVA representation of model (9.1), expressed
as:

f (X)= f0 +
∑

i

fi(Xi)+ ε, (9.5)

where ε is a Gaussian white noise accounting for all neglected ANOVA terms of
order higher than one.

The estimation of fi ’s is usually performed on a Monte Carlo sample of computer
experiments {Yk,Xk} of dimension N (see Sect. 3.1 in [11] for a discussion about
possible sampling strategies).

The typical form of an SDR model for this kind of computer experiments can be
expressed as [24]

Yk − f0 = XTk sk + ek
= s1,kX1,k + s2,kX2,k + · · · + sp,kXp,k + ek, (9.6)

ek =N(0, σ 2),

where as in (9.5), we may assume that all ANOVA terms of order higher than one
can be approximated by a Gaussian white noise process with zero mean and variance
σ 2, and the index k spans over the entire Monte Carlo dimension, i.e. k = 1, . . . ,N .

Comparing (9.5) and (9.6), we have that fi(Xi,k)= si,kXi,k , provided that each
si,k is a function of the corresponding input factor Xi,k . Hence, as noted in [11],
estimating the terms si,kXi,k provides an estimate of the first order terms fi . We
should notice that whenever the support of some Xi contains zero we may face
some singularity problems. Though it would be possible to overcome this issue by
shifting the parameter by a constant value, it is preferable to reformulate (9.6) as

Yk − f0 = 1Tk sk + ek
= s1,k + s2,k + · · · + sp,k + ek, (9.7)

ek =N(0, σ 2),
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Fig. 9.1 The k-ordering for
recursive estimation in SDR

having introduced constant unity regressors. In this case we have directly fi(Xi,k)=
si,k .

The next step will be to translate (9.7) in terms of State Space formulation. Each
state dependent parameter si,k needs to be characterized in some stochastic manner.
As reported in [11] this is preferably accomplished by employing the Integrated
Random Walk (IRW) process that is, in fact, characterized by similar smoothing
properties as cubic splines. Assuming that the variability of si,k follows an IRW
process we write the State Space equations as:

Observation equation: Yk = sk + ek,
State equations: si,k = si,k−1 + di,k−1,

di,k = di,k−1 + ηi,k,
(9.8)

where ek and ηi,k, i = 1,2, . . . , p are zero mean white noise inputs with variance
σ 2 and σ 2

ηi,.
, respectively. Here, the ηi,k (‘system disturbances’ in systems terminol-

ogy) provide the stochastic stimulus for parametric change in the model and they
are assumed to be independent of each other and independent of the observation
noise ek .

It is important to recall here that the SDR estimation are based on the recursive
Kalman filter (KF) and associated fixed interval smoothing (FIS) algorithms. As
such, SDR needs to be applied to variables having some kind of meaningful order-
ing (think of time series where time gives a natural ordering) and this is not certainly
the case of Monte Carlo samples. Hence, for each variable Xi , the k sorting index
spans the Monte Carlo in the ascending orderXi,1 <Xi,2 < · · ·<Xi,k < · · ·<Xi,N
(Fig. 9.1). Clearly, for each input factor, a different order is used. Hence, a backfit-
ting procedure is employed (see [23, 24] for details about the backfitting). Given the
ascending ordering of the Monte Carlo sample, sk can be estimated by using the KF
and FIS recursive algorithms (see e.g. [5, 22] for details).

It seems necessary to discuss the term ek in (9.8). Normality and independence
is strictly appropriate when there is observational error in the data but can be rea-
sonable for smoothing observed data even in computer experiments. First, because
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there can be applications where the ‘computed’ value is produced with some error
or variability, due to e.g. convergence of numerical algorithms. Furthermore, these
residuals also reflect the truncated ANOVA expansion that is used to approximate
Y(X). In practice, this is done by including a ‘small’ subset of q ANOVA terms
(e.g. main effects and low order interactions) that are statistically identifiable from
the available Monte Carlo sample of computer experiments. Thus, ek can be seen as
the sum of all the terms that are not included in this process of model complexity
reduction. This set of dropped ANOVA terms usually includes a very large number
of elements (namely 2p−q , where q� 2p), which are orthogonal (independent) by
definition. It does not seem out of place to model the sum of a large number of inde-
pendent variables in statistical terms (Central Limit Theorem). As shown in [10] the
inclusion of this ‘error’ term, rather than being a drawback of this method, turns out
to be an advantage (see Examples), since it implies that the ANOVA model approx-
imation (and therefore ‘prediction’ at untried X values) is performed only using
statistically significant ANOVA terms, enhancing the robustness in out-of-sample
performances.

In order to obtain the proper estimate of si,k , it is first necessary to optimize
the hyper-parameters associated with the state space model (9.8), namely the white
noise variances σ 2 and σ 2

ηi
. As discussed for example in [24], by a simple reformu-

lation of the KF and FIS algorithms, the IRW model can be entirely characterized
by one Noise Variance Ratio (NVR) hyper-parameter, where NVRi = σ 2

ηi
/σ 2. This

NVR value is, of course, unknown a priori and needs to be optimized: for example,
in all SDP references, this is accomplished by maximum likelihood optimization
(ML) using prediction error decomposition (see [15]). The NVRi plays the inverse
role of a smoothing parameter: the smaller the NVRi , the smoother the estimate of
si,k (and at the limit NVRi = 0, si,k will be a straight line). Given the NVRi , the
FIS algorithm then yields an estimate ŝi,k|N of si,k at each data sample and it can
be seen that the ŝk|N from the IRW process is the equivalent of f (Xk) in the cubic
smoothing splines model. At the same time, the recursive procedures provide, in a
natural way, standard errors of the estimated ŝk|N , that allow for the testing of their
relative significance.

9.2.2 Extension to 2nd Order Interactions

In order to extend the pure recursive SDR approach to the estimation of 2nd order
interaction terms we need to define a sorting strategy for points on a surface. It
is well known that it is not possible to define a total ordering on R

2 and in [11]
the following approach was proposed. Assume we want to estimate f12(X1,X2):
on the {X1X2} plane, the k sorting index is defined ordering the pairs (X1,k,X2,k)

according to their position with respect to the closed trajectory as in Fig. 9.2.
Similarly to the one dimensional case, this special 2-dimensional k-sorting pro-

vides a low frequency characteristics for the pair {X1X2} of input factors, while all
other factors are still characterized by a high frequency noisy spectrum (Fig. 9.3).
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Fig. 9.2 The 2-dimensional
k-ordering for recursive
estimation of interactions

The corresponding sorted output signal Yk can therefore be analyzed by the SDR al-
gorithms and the 2nd order interaction term associated to the pair X1,k X2,k will
be identified (Fig. 9.4). Since each interaction effect will have a different sort-
ing, the backfitting procedure has to be exploited for the interaction effects as
well.

Considering the above procedure within the SDR formalism, the ANOVA terms
of second order can be expressed as:

∑

j>i

sij,k(χij )+ h.o.t., (9.9)

where each state-dependent parameter sij,k(χij ), j > i = 1, . . . , p, follows a
stochastic IRW process and depends on a state variable χij that moves according
to the 2-dimensional sorting strategy along the co-ordinates of the pair of factors
indexed by ij .

Fig. 9.3 Patterns of input factors produced by the 2-dimensional ordering for the couple [X1, X2]
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Fig. 9.4 Example of Y model output along the 2-dimensional ordering. Lower panel shows the
estimated interaction term f1,2 (solid line) compared to the true sorted interaction signal (dotted).
Dashed lines indicate the width of the uncertainty estimate of the interaction term

9.3 Estimation of Higher Order Moments with SDR

The SDP approach is very flexible and can be adapted to a wide variety of smoothing
problems. For example, random walk (RW) or smoothed random walk (SRW) mod-
els for the SDP’s might be preferable, in some circumstances, because they yield less
smooth estimates than the IRW model. Moreover, if any sharp changes or jumps are
present, then these can be handled using ‘variance intervention’ (see [7]). Within
the sensitivity analysis framework, in [9] we considered such effects that cannot be
attributed to shifts in the mean and are not accounted for by E(Y |Xi) as in (9.3)–
(9.4). For example, this happens when the ‘observation noise’ ei = Y − E(Y |Xi)
has a heteroscedastic nature. This can be modeled by assuming that the variance of
ei,k is modulated by Xi in some state-dependent manner. This can be achieved by
introducing the state-dependent decomposition [27]:

e2
i,t =m2,i,t (Xi)+ n2,i,t , (9.10)

where now the state dependent parameter m2,i,t (Xi) accounts for the heteroscedas-
ticity in ei,t . Hence, remembering the conditional variance expression

Var(Y |Xi)=E(Y 2|Xi)−E2(Y |Xi)=E[(Y −E(Y |Xi))2|Xi] =E(e2
i |Xi) (9.11)
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we see that Var(Y |Xi) = m2,i . Moreover, as shown in [27], feeding back the es-
timated pattern in the observation error within the KF and FIS algorithms used to
estimate E(Y |Xi), one can obtain a much more accurate and efficient estimation of
E(Y |Xi) itself.

This procedure can be further expanded to identify the presence of patterns in
third and fourth order moments and, in particular, to detect changes in the skewness
γ1 or in the kurtosis γ2 of the distribution of Y which may be driven by some input
factor.

For the third moment and skewness, first the state dependent third moment is
defined as:

e3
i,t =m3,i,t (Xi)+ n3,i,t , (9.12)

which then yields the ‘local’ skewness γ1(Xi) = m3,i/m
3/2
2,i . Alternatively, this

local skewness can be estimated directly using the standardized residuals ẽi =
(Y −E(Y |Xi))/√Var(Y |Xi):

ẽ3
i,t = m̃3,i,t (Xi)+ ñ3,i,t (9.13)

providing directly γ1(Xi)= m̃3,i .
Similarly for the fourth moment and kurtosis: first, the state dependent fourth

moment is defined as

e4
i,t =m4,i,t (Xi)+ n4,i,t , (9.14)

which then yields the local kurtosis γ2(Xi)=m4,i/m
2
2,i . As for skewness, the local

kurtosis can be directly estimated using the standardized residuals,

ẽ4
i,t = m̃4,i,t (Xi)+ ñ4,i,t (9.15)

yielding directly γ2(Xi)= m̃4,i .
All of these smoothing procedures for second, third and fourth order moments

are performed on the same MC sample used for the ‘standard’ smoothing estima-
tion of E(Y |Xi). As a result, they have no additional cost in terms of model evalua-
tion. At the same time, they provide extremely useful information about sensitivity
patterns that are not detectable using standard variance-based techniques; or about
parameters that drive shifts in the distribution of Y , like a change in variance, asym-
metry and fat tails. As discussed in [9], this additional information complements
variance-based sensitivity analysis in a very similar manner to other techniques,
such as entropy-based measures and moment-independent measures [1, 2], but with
much smaller computational requirements.

9.4 SDR and Smoothing Splines ANOVA Models

Here we summarize the application of SDR within the framework of smoothing
splines ANOVA models. Moving from the early work of Wahba (see [17]) and Gu
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(see [4]), recently, Storlie et al. (see [14]) presented the ACOSSO, ‘a new regulariza-
tion method for simultaneous model fitting and variable selection in nonparametric
regression models in the framework of smoothing splines ANOVA’. This method is
an improvement of the COSSO (see [6]), penalizing the sum of component norms,
instead of the squared norm employed in the traditional smoothing splines method.
In ACOSSO, an adaptive weight is used in the COSSO penalty which allows for
more flexibility in estimating important functional components while giving a heav-
ier penalty to unimportant functional components.

We will summarize here the main results of [10], where we propose the use of
SDR as the identification step in detecting the important ANOVA functional com-
ponents. This turns out to be a very effective approach, adding valuable information
in the ACOSSO framework.

The use of recursive algorithms in smoothing splines is not new in statistical liter-
ature: the works of Weinert et al. [19] and of Wecker and Ansley [18] demonstrated
the applicability of a stochastic framework for recursive computation of smooth-
ing splines. However, such works were limited to the univariate case, while the
subsequent history of tensor product smoothing splines developed in the ‘standard’
non-recursive form. The SDR recursive approach of Young [24, 26] provides an ex-
tension to such seminal papers, which is applicable to the multivariate case, as well
as for interaction terms.

9.4.1 Additive Models

As before, we begin our analysis studying an additive model

f (X)= f0 +
p∑

j=1

fj (Xj ). (9.16)

To estimate f we can use a multivariate (cubic) smoothing splines minimization
problem, that is, given λ= (λ1, . . . , λp), find the minimizer f (X) of:

1

N

N∑

k=1

(Yk − f (Xk))2 +
p∑

j=1

λj

∫ 1

0
[f ′′
j (Xj )]2dXj , (9.17)

where a Monte Carlo (MC) sample of dimensionN is assumed, as usual. This statis-
tical problem requires the estimation of the p hyper-parameters λj (also denoted as
smoothing parameters). There exist various ways of doing that: by applying general-
ized cross-validation (GCV), generalized Maximum Likelihood procedures (GML)
and so on (see e.g. [4, 17]). Note that in the cubic splines situation higher val-
ues of the smoothing parameters λj correspond to smoother estimates, while in the
SDR recursive approach the NVR plays the inverse role of a smoothing parameter:
smaller NVR’s correspond to smoother estimates.
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In the estimation of the hyper-parameters λj within the classical statistical frame-
work , we observe that, to avoid a perfect fit solution, a penalty term is necessary. To
fix ideas, let us consider the GCV optimization. In the cubic splines context, with
GCV we look for λ minimizing

GCVλ = 1/N ·
∑
k(Yk − fλ(Xk))2
(1 − df (λ)/N)2 , (9.18)

where df ∈ [0,N ] denotes the ‘degrees of freedom’ as function of λ. The smaller λ,
the larger df , i.e. the smoothing splines model will possibly tend to over-fit the data.

As discussed in previous sections, using the SDR recursive estimation approach
the additive model is formalized as in (9.7). Expressing GCV in the SDR notation,
we look for NVR minimizing

GCVNVR = 1/N ·
∑
k(Yk − ŝk|N)2

(1 − df (NVR)/N)2
, (9.19)

where, in this case, the ‘degrees of freedom’ df depend on the NVR: the smaller
NVR, the larger df .

Using classical statistical optimization procedures for the smoothing parame-
ters like GCV and GML, without the penalty term, the optimum would always
be attained at λ= 0 (or NVR→ ∞), i.e. perfect fit.

One key issue of the SDR methodology is that, applying ML optimization within
the recursive framework, a perfect fit solution is impossible. The reason is that the
prediction error (based on Maximal likelihood) estimate uses the filtered estimates
ŝk|k−1 and not the smoothed estimate ŝk|N as in (9.18)–(9.19).

In other words, using ML, we are looking for NVR maximizing the log-
likelihood function L, where:

−2 · log(L)= const +
N∑

k=3

log(1 + Pk|k−1)+ (N − 2) · log(σ̂ 2),

σ̂ 2 = 1

N − 2

N∑

k=3

(Yk − ŝk|k−1)
2

(1 + Pk|k−1)
(9.20)

and where σ̂ 2 is the ‘weighted average’ of the squared innovations (i.e. the predic-
tion error of the IRW model), Pk|k−1 is the one step ahead forecast error of the state
ŝk|k−1 provided by the KF (both Pk|k−1 and ŝk|k−1 are functions of NVR). Since
ŝk|k−1 is based only on the information contained in the sample values [1, . . . , k−1]
(while smoothed estimates use the entire information set [1, . . . ,N]), it can be easily
seen that the limit NVR → ∞ is not a ‘perfect fit’ situation, since a zero variance for
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Fig. 9.5 Example of
one-step-ahead predictions of
the IRW model for NVR = 0

ek implies ŝk|k−1 = sk−1 + dk−1 = Yk−1 + dk−1, i.e. the one step ahead prediction
of Yk is given by the linear extrapolation from the adjacent value Yk−1, so implying
a non-zero prediction error in this limit case.

This is further exemplified in Fig. 9.5: the squares in the plots denote the one step
ahead prediction ŝk|k−1 and the arrows show the linear extrapolation mechanism of
the IRW process when NVR → ∞. Such a prediction departs considerably not only
from a ‘perfect fit’ situation but also from a ‘reasonable fit’, implying that the ML
estimate will automatically penalize this kind of situation and provide the ‘right’
value for the NVR.

These properties of the ML optimization makes it appealing to properly identify
smoothing parameters in smoothing splines. This is made possible by an equivalence
between the hyper-parameters (λ’s for the cubic splines and NVR for SDR). It can
be easily verified that by setting λ = 1/(NVR · N4), and with evenly spaced Xk
values, the f (Xk) estimate in the cubic smoothing splines model equals the ŝk|N
estimate from the IRW process.

9.4.2 Second Order Models

The additive model concept (9.16) can be generalized to include 2-way (and higher)
interaction functions via the functional ANOVA decomposition [4, 17]. For exam-
ple, we can let

f (X)= f0 +
p∑

j=1

fj (Xj )+
p∑

j<i

fj,i(Xj ,Xi). (9.21)

In the ANOVA smoothing splines context, corresponding optimization problems
with interaction functions and their solutions can be obtained conveniently with the
reproducing kernel Hilbert space (RKHS) approach (see [17]).

As discussed in Sect. 9.2.2, in [11] a first attempt to extend the SDR for interac-
tion terms was done, applying the 2-dimensional sorting strategy. We then tried to
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extend the equivalences between NVR and λ’s also for this case and exploit them
in the second order tensor product cubic splines models. The results of these trials
highlighted limitations of this approach, with the resulting ANOVA model perform-
ing worse than using more classical statistical approaches. Therefore, in [10] we
proposed to formulate an interaction function as the product of two state variables
s1 · s2, each of them characterized by an IRW stochastic process. Hence the estima-
tion of a single interaction term Y ∗(Xk)= f (X1,k,X2,k)+ ek is expressed as:

Observation equation: Y ∗
k = sI1,k · sI2,k + ek,

State equations: (j = 1,2) sIj,k = sIj,k−1 + dIj,k−1,

dIj,k = dIj,k−1 + ηIj,k,
(9.22)

where Y ∗ is the model output after having taken out the main effects, I = 1,2 is the
multi-index denoting the interaction term under estimation and ηIj,k ∼ N(0, σ 2

ηIj
).

The two terms sIj,k are estimated iteratively by running the recursive procedure in
turn, i.e.

• take an initial estimate of sI1,k and sI2,k by regressing Y ∗ with the product of simple

linear or quadratic polynomials P1(X1) · P2(X2) and set sI,0j,k = Pj (Xj,k);
• iterate i = 1,2:

– fix sI,i−1
2,k and estimate NVRI1 and sI,i1,k using the recursive procedure;

– fix sI,i1,k and estimate NVRI2 and sI,i2,k using the recursive procedure;

• the product sI,21,k · sI,22,k obtained after the second iteration provides the recursive
SDR estimate of the interaction function.

The latter stopping criterion is a convenient choice to limit the computation
time, and is due to the observation that the estimate of the interaction term never
changed too much in any subsequent iteration. We also observe that the recursive
form for this kind of estimation of second order interactions uses a standard sort-
ing along each co-ordinate X1 and X2. Therefore it does not make any use of the
2-dimensional partial ordering discussed in Sect. 9.2.2.

Unfortunately, as for the generalized 2-dimensional sorting strategy, we could not
derive an explicit and full equivalence between SDR and cubic splines of the type
mentioned for first order ANOVA terms. Therefore, in order to be able to exploit
the SDR estimation results in the context of a smoothing spline ANOVA model, we
proposed in [10] to take a different approach, similar to the ACOSSO case.

9.4.3 Short Summary of ACOSSO

We make the usual assumption that f ∈ F , where F is a RKHS. The space F can
be written as an orthogonal decomposition F = {1} ⊕ {⊕q

j=1 Fj }, where each Fj

is itself a RKHS and j = 1, . . . , q spans ANOVA terms of various orders. Typically
q includes the main effects plus relevant interaction terms.
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We re-formulate (9.17) for the general case with interactions using the function
f that minimizes:

1

N

N∑

k=1

(Yk − f (Xk))2 + λ0

q∑

j=1

1

θj
‖P jf ‖2

F , (9.23)

where P jf is the orthogonal projection of f onto Fj and the q-dimensional vector
θj of smoothing parameters needs to be optimized somehow. This is typically a
formidable problem and in the simplest case θj is set to one, with the single λ0
estimated by GCV or GML.

Problem (9.23) also poses the issue of selection of Fj terms: this is tackled rather
effectively within the COSSO/ACOSSO framework.

The COSSO [6] penalizes the sum of norms, using a LASSO type penalty [16]
for the ANOVA model, which allows us to identify the informative predictor terms
Fj with an estimate of f that minimizes

1

N

N∑

k=1

(Yk − f (Xk))2 + λ
Q∑

j=1

‖P jf ‖F (9.24)

using a single smoothing parameter λ, and whereQ includes all ANOVA terms to be
potentially included in f , e.g. with a truncation up to 2nd or 3rd order interactions.

It can be shown that the COSSO estimate is also the minimizer of

1

N

N∑

k=1

(Yk − f (Xk))2 +
Q∑

j=1

1

θj
‖P jf ‖2

F (9.25)

subject to
∑Q
j=1 1/θj <M (where there is a 1–1 mapping betweenM and λ). So we

can think of the COSSO penalty as the traditional smoothing splines penalty plus a
penalty on theQ smoothing parameters used for each component. The LASSO type
penalty has the effect of setting some of the functional components (Fj ’s) equal to
zero (e.g. the variable Xj or the interaction (Xj ,Xi) is not in the model), thus it
‘automatically’ selects the appropriate subset q of terms out of the Q ‘candidates’.
The key property of COSSO is that with one single smoothing parameter (λ or M)
it provides proper estimates of all θj parameters: therefore it improves considerably
the problem (9.23) with θj = 1 (still with one single smoothing parameter λ0) and
is much more computationally efficient than the full problem (9.23) with optimized
θj ’s.

In the adaptive COSSO (ACOSSO) of [14], f ∈ F minimizes

1

N

N∑

k=1

(Yk − f (Xk))2 + λ
q∑

j=1

wj‖P jf ‖F , (9.26)

where 0 < wj ≤ ∞ are weights that depend on an initial estimate of f̃ , either us-
ing (9.23) with θj = 1 or the COSSO estimate (9.24). The adaptive weights are
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obtained as wj = ‖P j f̃ ‖−γ
L2

,typically with γ = 2 and the L2 norm ‖P j f̃ ‖L2 =
(
∫
(P j f̃ (X))2dX)1/2. The use of adaptive weights improves the predictive capabil-

ity of ANOVA models with respect to the COSSO case.

9.4.4 Combining SDR and ACOSSO for Interaction Functions

As discussed in [10], there is an obvious way of exploiting the SDR identification
and estimation steps in the ACOSSO framework: namely, the SDR estimates of
additive and interaction function terms can be taken as the initial f̃ used to com-
pute the weights in the ACOSSO. However, this would be a minimal approach,
whereas the SDR identification and estimation provides more detailed informa-
tion about ANOVA terms that is worth exploiting. We define K〈j〉 to be the re-
producing kernel (r.k.) of an additive term Fj of the ANOVA decomposition of
the space F . In the cubic splines case, this is constructed as the sum of two terms
K〈j〉 = K01〈j〉 ⊕ K1〈j〉 where K01〈j〉 is the r.k. of the parametric (linear) part and
K1〈j〉 is the r.k. of the purely non-parametric part. The second order interaction
terms are constructed as the tensor product of the first order terms, for a total of four
elements, i.e.

K〈i,j〉 = (K01〈i〉 ⊕ K1〈i〉)⊗ (K01〈j〉 ⊕ K1〈j〉)

= (K01〈i〉 ⊗ K01〈j〉)⊕ (K01〈i〉 ⊗ K1〈j〉)⊕ (K1〈i〉 ⊗ K01〈j〉)

⊕ (K1〈i〉 ⊗ K1〈j〉). (9.27)

In general, considering the problem (9.23), one should attribute a specific coef-
ficient θ〈·〉 to each single element of the r.k. of Fj (see e.g. [4], Chap. 3), i.e. two
θ ’s for each main effect, four θ ’s for each two-way interaction, and so on. In fact,
each Fj would be optimally fitted by opportunely choosing weights in the sum of
K〈·,·〉 elements. This, however, makes the estimation problem rather complex, so,
usually, the tensor product (9.27) is directly used, without tuning the weights of each
element of the sum. This strategy is also applied in ACOSSO.

Instead, we propose to use SDR estimates of interaction to set the weights.
In particular, we can see that the SDR estimate of the interaction (9.22) is given

by the product of two univariate cubic splines. So, one can easily decompose each
estimated ŝIj into the sum of a linear (ŝI01〈j〉) and non-parametric term (ŝI1〈j〉). This
provides a decomposition of the SDR interaction of the form

ŝIi · ŝIj = ŝI01〈i〉ŝI01〈j〉 + ŝI01〈i〉ŝI1〈j〉 + ŝI1〈i〉ŝI01〈j〉 + ŝI1〈i〉ŝI1〈j〉, (9.28)

which can be thought as a proxy of the four elements of the r.k. of the second order
tensor product cubic splines.

This suggests that a natural use of the SDR identification and estimation in the
ACOSSO framework is to apply specific weights to each element of the r.k. K〈·,·〉
in (9.27). In particular the weights are the L2 norms of each of the four elements



9 State Dependent Regressions: From Sensitivity Analysis to Meta-modeling 185

estimated in (9.28). As shown in the examples, this choice can lead to significant im-
provement in the accuracy of ANOVA models with respect to the original ACOSSO
approach.

9.5 Examples

In this section we use an analytical example to put in practice what we have dis-
cussed so far. For further details and other examples we refer to [11] where SDR
techniques were first applied for computing sensitivity indices and to [10] where
SDR is used together with ACOSSO. To help readers to follow the whole history,
we consider an analytical example, based on the Sobol’ g-function, as in [11]. In the
Sobol’ g-function a set of parameters can be modulated in order to achieve different
degrees of complexity, as follows:

Y =
p∏

i=1

gi(Xi), where gi(Xi)= |4Xi − 2| + ai
1 + ai , (9.29)

with ai ≥ 0 and each factor Xi are uniformly distributed in the interval [0, 1]. This
is a strongly non-linear and non-additive model used in the past to test Global Sen-
sitivity Analysis (GSA) methods [13]. The value for p can be chosen to analyze the
dependence of the method on the number of input factors. Moreover, by tuning the
spectrum of parameters ai , the relative importance of the Xi ’s can be modified. The
importance of an input factor is higher when ai is small; while high values of ai
(ai ≥ 99) corresponds to almost null significance of the corresponding factor.

9.5.1 Estimating First Order Sensitivity Indices

As we discussed previously, one may apply SDR to compute sensitivity indices as
well as to identify the additive terms as function of each single input factor. In [11]
sensitivity indices for several g-functions were computed. We consider the results
obtained for a particular g-function, with p = 15, whose ai spectrum is shown in
Table 9.1.

According to the theoretical properties of the g-functions, we have:

• four very significant factors: X7, X9, X11 and X13 which definitely should be
included in the emulator;

• four medium factors: X3, X4, X12 and X14 which may or may not be included in
the emulator;

• seven insignificant factors: X1, X2, X5X6X8X10 and X15 which do not add any
significant information.

Using only SDR, as discussed in [11], we show in Table 9.2 the results of the
estimation of the first order ANOVA model, using a training sample of 1024 Monte
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Table 9.1 g-function spectrum of ai coefficients

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X15

99 99 4.5 4.5 99 99 1 99 0 99 1 9 0 9 99

Table 9.2 First order

Parameter 99 99 4.5 4.5 99 99 1 99 0 99 1 9 0 9 99

Analytical 0 0 0.0096 0.0096 0 0 0.0726 0 0.2905 0 0.0726 0.029 0.2905 0.029 0

Estimated 0 0 0.0102 0.0112 0 0 0.0723 0 0.2856 0 0.0670 0.0046 0.3146 0.0025 0

In sample
R2

0.7576

Carlo runs. The additive part of the g-function is very well identified by the SDR
procedure: this is indicated by the 75.76% in-sample R2, which corresponds to the
true analytical 75.15% of the additive part for this test function.

It is worth mentioning that the estimates of first order sensitivity indices depend
on the model approximation degree. For example, adding interactions we will im-
prove not only the whole approximated model, but also the additive part itself.

For the g-function one can see that the Si mean absolute error (MAE) for the
pure additive model is equal to 0.059 while for the second order model is equal to
0.029.

9.5.2 Estimating Second Order Sensitivity Indices

We now consider the estimation of second order sensitivity indices. According to
the analytical properties of the g-function we have:

• one very significant interaction: 〈X9,X13〉 (9.68%);
• four significant interactions: 〈X7,X9〉, 〈X7,X13〉, 〈X11,X9〉 and 〈X11,X13〉

(2.42%);
• one very mild interaction: 〈X7,X11〉 (0.61%);
• all other interactions not significant (their contribution being �1%).

We report here the estimation of the five largest interactions with the combined
SRD-ACOSSO approach, using the same training sample of 1024 Monte Carlo run
used for first order indices. Results are shown in Fig. 9.6.

It is interesting to consider four different estimations at increasing Monte Carlo
samples size: 128, 256, 512 and 1024 (see Table 9.3). Adding second order ANOVA
terms, the fit obviously improves. Moreover, analyzing the results, one may no-
tice that, as Monte Carlo dimension increases, we are able to better identify how
parameters really interact, as indicated by the increasing R2 portion attributed to
non-additive terms, while at the same time the estimated amount of the additive
component properly converges to the true theoretical value (75%).
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Fig. 9.6 Analytical and estimated second order sensitivity indices for the g-function

Table 9.3 In sample fit

Monte Carlo length 128 256 512 1024

First order ANOVA model R2 0.7171 0.7814 0.7755 0.7576

Second order ANOVA model R2 0.9013 0.9441 0.9793 0.9802

9.5.3 Building a Meta-model

As we have pointed out earlier, one of the major strengths of SDR relies in its ro-
bustness when out of sample performance is considered.

As reported in [10], SDR-ACOSSO performs quite well in term of out-of-sample
fit. Using the same analytical model as before, we compare the results obtained by
using SDR-ACOSSO with those given by DACE.1

In the following exercise we build a meta-model with SDR-ACOSSO and DACE
using a training set of 512 Monte Carlo runs. Then we validate these meta-models
using an out-of-sample set of another 256 MC runs. We repeated 25 random replicas
of this exercise and computed the validation R2 of the two meta-models in predict-
ing the out-of-sample values of the model output. Results are summarized in the
boxplots in Fig. 9.7, where we can see, for this example, the excellent predictive
capability of the SDR-ACOSSO meta-model compared to DACE. We also show the
results obtained by using pure ACOSSO without SDR, to highlight the improve-
ments one may achieve by using SDR to identify the ANOVA terms.

1DACE is a Matlab toolbox used to construct a kriging approximation models on the basis of data
coming from computer experiments (see [3]).
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Fig. 9.7 Boxplots of out-of-sample R2 of SDR-ACOSSO, ACOSSO and DACE

9.6 Conclusion

We have been glad to contribute a Chapter to this book, having the occasion to show
how Peter Young’s work contributed significantly also in the framework of sensitiv-
ity analysis and emulation. There is nowadays a vast stream of research on meta-
modeling, which is becoming a key ingredient to handle complex computational
models as well as in the DBM framework, as underlined also in the present book
by Young [25]. Although kriging and Gaussian Process emulation is most widely
applied in the statistical literature on this subject, non-parametric methods like SDR
demonstrated to be very useful and efficient tools in improving the efficiency and
robustness of emulators. As clearly demonstrated in [10], in fact, it is very difficult
to identify a method which outperforms the others in all applications. According to
our experience, SDR is extremely efficient and accurate in identifying additive mod-
els, at a quite small computational cost, due to its full recursive form. In the case of
ANOVA models with interaction components, ACOSSO provides very good perfor-
mances in terms of efficiency and low computational cost. When the model includes
interactions, SDR combined with ACOSSO improves ACOSSO in many cases, al-
though at the price of a higher computational cost. SDR-ACOSSO also compares
very favorably with respect to DACE in many cases, even if there are cases where
DACE outperforms SDR-ACOSSO in out-of-sample prediction. The main draw-
back of DACE seems to be the occurrence of very bad outliers in out-of-sample
forecasting, implying some lack of robustness. The computational cost of DACE
can be very sensitive to the underlying model. In terms of computational burden,
we found that SDR (for additive models) and ACOSSO (for models with interac-
tions) should be taken as the first choice for a rapid and reliable emulation exercise.
Whenever ACOSSO is unable to explain large part of the mapping, SDR-ACOSSO
or DACE may be considered. Another very important issue that we discussed in
the present Chapter concerns the multivariate extension of SDP modeling. We have
summarized here two approaches that have been developed in the context of sensi-
tivity analysis [11] and emulation [10]. In the latter case [10], in particular, the SDR
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recursive identification is combined with a final en bloc estimation (the ACOSSO)
to produce the full emulator to be used in forecasting. This approach, albeit provid-
ing very good performances, breaks the appeal and elegance of the pure recursive
methods. In this context, ongoing research at Lancaster University on Multi-state
dependent parameter modeling [12] is providing useful and promising contributions
in the direction of a full recursive formulation.
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Chapter 10
Multi-state Dependent Parameter Model
Identification and Estimation

Włodek Tych, Jafar Sadeghi, Paul J. Smith, Arun Chotai, and C. James Taylor

10.1 Introduction

It was what was later termed the Data Based Mechanistic (DBM) modelling ap-
proach (Young [17] and references therein) with its underlying notion that we can
only build a model as good as the data we have, and that data along with the mech-
anistic interpretation of the resulting model should be the main driver dictating the
model structure, that led to the numerous developments sparked by Peter Young’s
thinking.

From the personal perspective of the first author, this approach also led to the
life-changing and never regretted decision to learn more from Peter Young, taken
after attending his seminar at IIASA about 30 years ago and implemented some
eight years later.

The inductive framework of Data Based Mechanistic Modelling is best explained
in Peter Young’s own chapter in the present volume [21], so we will not provide any
further context here.

Time Varying Parameters (TVP) model estimation based on general approach of
Kalman [7], has been explored by Young [13–16, 26] as well as others, e.g. Har-
vey [4]. What makes Young’s approach stand out is that it remains firmly within the
DBM framework through the use of general model structures and minimal assump-
tions made about the model structure prior to its identification. A simple (with the
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benefit of after-sight) shift in the focus of Kalman Filter made a large difference in its
applicability. Parameters of a general linear model became states within the stochas-
tic state-space framework, which led to such developments as GRW smoothers and
Dynamic Harmonic Regression to name but two.

It is easy to see the attractiveness of linear dynamic systems theory, leading to
well defined control system design and time series methods. The growth of interest
in non-linear systems led to numerous attempts of building a bridge between the
well established linear theory and the non-linear systems, creating an arguably less
general, but instead manageable non-linear systems theory. One of the approaches
was making the coefficients of the linear dynamic system model functions of other
variables. While this brings in some control-theoretical complications within the
linear-made-nonlinear paradigm, it remains a pragmatic and very powerful tech-
nique (e.g. Taylor et al. and references therein chapter in the present volume). One
of the difficulties with what is often termed functional coefficients models (see be-
low) is that they may well lead to poorly defined, over-parameterised models due
to the inevitable arbitrary steps in model formulation. This quite fundamental issue
can be overcome by using DBM methodology.

It was in the context of DBM combined with that of TVP estimation that Young
introduced State Dependent Parameter (SDP) models. He noticed [13] that the re-
cursive TVP estimation can be used not just in the time domain, but in the state and
parameter space, which later led to the now well established SDP, based on ordering
of the varying parameter estimates according to a specific parameter-driving state of
the system. This simple concept or moving from time domain to state domain and
performing filtering and smoothing in this new domain, allows to establish, and to
statistically assess any dependencies between the two (Young et al. [27]).

While this approach is very general and has been widely recognised and applied
in numerous developments, one acknowledged shortcoming of the so far imple-
mented SDP estimation procedures within the DBM framework was that each of
the parameters of the system could only depend on a single state. While this is very
often sufficient, and there is usually a single dominant influence on each system
parameter, the need for generalisation into multi-state dependency remained.

State and multi-state dependencies of linear dynamic system parameters have
been present in the literature for a while. It was originally suggested by Priest-
ley [8], but some variations of it were also described by Hastie and Tibshirani [6].
We should also mention NARMAX and related models of Chen and Billings [2],
functional coefficients of Chen and Tsay [1], wavelets of Truong and Wang [12]
to name but a few. Until SDP however they have not been formulated within the
objective, top-down DBM framework of Young [20] and references therein. In-
stead arguably all have been based on multi-variable functional surface approxi-
mations. Non-parametric SDP estimation has some similarity to Generalised Addi-
tive Modelling (GAM) [5]. However, GAM utilises conventional methods of scatter
plot smoothing, rather than the recursive KF/FIS approach. This is important in the
present dynamic context since it allows for maximum likelihood optimisation of
hyper-parameters in the stochastic dynamic model.

While functional approximation is a step within DBM approach, it is a step fol-
lowing the crucial non-parametric identification process based on the TVP estimates
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(Young [17]). The importance of the DBM identification stage has been shown in
numerous papers of Young and others [16, 18, 25] and hence there was a need for a
DBM generalisation of the SDP implementation involving more than one state per
model parameter.

This Multi-State Dependent Parameter (MSDP) presented in this Chapter fits
in seamlessly where SDP is now used, as it operates within the same DBM and
state-dependency paradigms. Therefore all that is said about SDP applications in
the associated chapter (Taylor et al in the present volume [11]) can be transpar-
ently ported into the MSDP context. This is particularly significant in the context of
the new theoretical results in SDP-NMSS control methods (Taylor et al. [9]) where
the main streams of methodologies of System Identification and Control introduced
by Peter Young and colleagues (model identification: [26] and later works; con-
trol: [9, 22, 24] and many others) come together within a powerful methodological
framework.

The multi-state algorithmic extensions of the SDP concept, which naturally does
not exclude multiple driving states, have been developed by building up on the
Generalised Random Walk models, used extensively within the TVP model frame-
work [14] and set within the DBM [20] framework of modelling uncertain dynamic
systems.

In the sequel we show how the univariate SDP algorithm with its associated DBM
conceptual base can be non-trivially extended into multi-state dependency using
recent algorithmic developments. Two documented examples written in Matlab will
be presented in a tutorial manner, showing the DBM context of the approach, its
wide applications and consequences.

10.2 Generalisation of the Univariate SDP Algorithm

Non-parametric SDP estimation produces a graphical estimate of the SDP as a func-
tion of the variables on which it depends. This helps to identify the structural form of
the SDP model and the location of the principal nonlinearities within this structure.
It is a prelude to the parameterisation of the model and its eventual estimation in
this parametric form using specific functional bases (e.g. [12, 19]). This two-stage
procedure of identification and estimation helps to ensure that the final parametric
model is parsimonious and so can be contrasted with the direct estimation of more
general parametric models cited above.

Filtering and smoothing require defining a sequence in which the points in the
state sub-space (the subset of states which the given parameter depends upon).
A similar definition is also required to define the samples preceding the current
sample as well as those which are successors. It is worth noting here that the three
terms (current, preceding and succession) all normally refer to temporal sequences,
inheriting our univariate concept of time. These concepts of a sequence are easily
ported into state spaces with one dimension; more thought is required to define them
in a multi-variable state space.
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To focus attention we shall introduce the general concepts of sequence in two di-
mensions, this can be easily generalised to higher dimensional state-spaces. We need
to define three concepts and pose them within the Stochastic State-Space frame-
work:

(i) The sequence of samples in the multivariable parameter space
(ii) The selection for preceding samples (precursors) to allow filtering

(iii) The selection for following samples (successors) to allow smoothing

All three need to be defined to allow for the problem to be cast in the Stochastic
State Space framework. We shall first introduce the terms of reference, and then
follow with the definitions, the proposed algorithm and examples.

10.2.1 Terms of Reference

To focus the attention we shall investigate a specific class of models: State Depen-
dent Parameter ARX (SDARX) models. The DARX model relating a single input
variable to an output variable, can be written in the following form:

yt = −
n∑

i=1

αi,t yt−i +
m∑

j=0

βj,tut−δ−j + et . (10.1)

The term δ is a pure time delay, measured in sampling intervals, which is introduced
to allow for any time delay that may occur between the incidence of a change in the
input ut and its first effect on the output yt . α and β are time varying parameters
(index t). et is a zero mean, white noise input with a Gaussian amplitude distri-
bution and variance σ 2 (although this assumption is not essential to the practical
application of the resulting estimation algorithms).

In this simplest Single-Input-Single-Output (SISO) form, the more complex,
nonlinear SDARX model equation can be written conveniently for estimation pur-
poses in the following form:

yt =
Nz∑

i=1

ai
(
X(i)t , t

)
zi,t + et , (10.2)

with

X(i)t =
[
x
(i)
1,t x

(i)
2,t . . . x

(i)
j,t . . . x

(i)
nsi ,t
,

]
, (10.3)

Nz = n+m+ 1 being the number of regressor terms, and et =N(0, σ 2) Here ai(·)
is the ith SDP

ai =
{
−αi i ≤ n,
βi−(n+1) i > n

(10.4)
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while yt and x(i)j,t are the observed output and the j th state corresponding to ai(·) is
the ith at temporal sample t respectively. In addition, n+m+ 1 is the number of
parameters of this model, nsi is the number of states which parameter ai(·) depends
on and zi,t is the ith regressor:

zi,t =
{
yt−i i ≤ n,
ut−δ+n+1−i i > n.

(10.5)

A very simple example of an SDARX model which can be used to clarify this
notation is a version of the logistic growth equation:

yt = α1(yt−1) · yt−1 + β0 · ut−1 + et ,
α1(yt−1)= η− ρ · y2

t−1,
(10.6)

where et ∼N(0, σ 2) and (η,ρ) satisfy the conditions

0< η < 3, ρ > 0.

In this case a1(yt−1) depends on yt−1, and a2 is a constant, so we only have one
single-state dependency of one of the parameters in this model.

Casting (10.6) in terms of (10.4) and noting that: x(1)1,t = yt−1 we have:

{
α1(yt−1)= a1(x

(1)
1,t )= η− ρy2

t−1

β0 = a2
∀t. (10.7)

It is easy to see how this simple example can be expanded to multi-state dependency,
and we shall look at such more complex example in the sequel.

10.2.1.1 Modelling Variation of the Parameters

Denoting the value of the i-th parameter a and its derivatives (if the latter exist)
at the kth sample, where ξ k denote the states affecting this parameter, and ignor-
ing index i temporarily for clarity, as Ak = [a(ξ k) a′(ξ k) a′′(ξ k) . . . a(q)(ξ k) ]T and
a(q+1)(ξ k)= νk where the noise term νk is defined as νk ∼N(0, σ 2

ν ) or other seri-
ally uncorrelated process fulfilling the assumptions of the Kalman Filter.

From the qth order Taylor expansion of derivatives of parameter a(·):

Ak+1 = FkAk + Gkνk, (10.8)
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where:

Fk =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

1 Δk
Δ2
k

2! . . .
Δ
q
k

q!

0 1 Δ . . .
Δ
q−1
k

(q−1)!

0 0 1 . . .
Δ
q−2
k

(q−2)!
...

...
...

. . .
...

0 0 0 . . . 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

,

Gk =
[
Δ
q+1
k

(q+1)!
Δ
q
k

q!
Δ
q−1
k

(q−1)! . . . Δk
]T

(10.9)

and Δk = ‖ξ k+1 − ξk‖ is the distance in ξ space.
Note here that in a uniformly sampled series case of Δk ≡ 1 this definition leads

to the widely used Stochastic State Space time series model, with (reintroducing
parameter index i):

Fk =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎣

1 1 1
2 . . . 1

qi !
0 1 1 . . . 1

(qi−1)!
0 0 1 . . . 1

(qi−2)!
...
...
...
. . .

...

0 0 0 . . . 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎦

,

Gk =
[

1
(qi+1)!

1
qi !

1
(qi−1)! . . . 1

]T

(10.10)

and when additionally q = 1 (10.10) describes an Integrated Random Walk model
for a regularly sampled time series. It is worth noting at this point that the G matrix
can take a different form depending on the assumptions about the way the system
noise affects the states.

The problem is now cast in the Stochastic State-Space terms, where the param-
eters Ak can be estimated along the spatial sequence of their respective driving
states.

It is worth to remind here the difference between both concepts of states used
here: parameters Ak , k = 1 . . .N are estimated as states in State equation (10.8),
while other arbitrary states of the investigated system our parameter driving states
{ξ k, k = 1 . . .N}—are influencing parameters Ak , k = 1 . . .N .

10.2.1.2 The Sequence of Samples in the Parametric State Space

In order to use the Kalman Filter and Fixed Interval Smoother in the state-space
to estimate the states-parameter dependency it is required to define a sequence of
samples, which no longer are defined as a well ordered, uniformly sampled time
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series, but as a cloud of points in the state space. There are two components to this
definition.

Firstly, it is a matter of an unambiguous ordering of samples in n-dimensional
space in order to define the order of processing the samples. This is the equivalent
of the temporal sequence k, k = 1 . . .N .

Secondly, it should be noted here that there is no reason why in the nsi -dimen-
sional state space for parameter i we should be using a single preceding sample to
calculate the equivalent of an estimate, which would be expressed as Â(k|k − 1)
within the usual temporal framework. In fact this could be simply incorrect in a
multi-variable case, which is why we need to define the predecessor (or parent) and
the successor (or child) sample sets so that instead of Â(k|k − 1) we use Â(k|{lpk })
where {lp

k
} is the set (list) of samples in the state-space which precede the current

sample k. And by analogy, the successor set {ls
k
} needs to be defined in order to use

the Fixed Interval Smoothing algorithm for the backward pass through the sequence
in the state-space. Each sample (apart from the first and the last in the defined spatial
sequence) will have its own sets of predecessors and successors. This definition also
alleviates the potential (albeit highly unlikely) issue when the same values of states
are associated with different values of parameters, these will be dealt with in the
same way as multiple base sets {lp

k
} and {ls

k
}.

10.2.2 Proposed Algorithm

It should be noted that sorting in a multi-variable state space is non-unique. The
solution we propose is simple and based on the Euclidean norms of the states (dis-
tances from the origin), which have been normalised to lie within a unit hyper-cube
prior to building the sequence. This approach is clearly consistent with single state
dependency (SDP) and its sorting along the single-states values.

10.2.2.1 Definition of the Sequence

We shall normalise the sequence of the original nsi dimensional state variables driv-
ing parameter i: {ξ k, k = 1 . . .N}, so that they lie within an nsi dimensional unit
hyper-cube and call it {ξnk∗}. We can then define the sequence {k∗, k∗ = 1 . . .N} such
that ‖ξnk∗+1‖ ≥ ‖ξnk∗‖, where in this implementation of the algorithm norm ‖ · ‖ is
the standard Euclidean norm taken in the normalised co-ordinates {ξnk∗}.

10.2.2.2 Definition of the Predecessor and Successor Sets

In agreement with the ordering criteria above, we can define the predecessor set {lP
k
}

for each ξ k∗ as the nearest p points (p is a parameter of the algorithm see below)
which are closest to ξ k∗ in terms of the same Euclidean metric in the normalised
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state-space and which precede ξ k∗ in the sequence {k∗, k∗ = 1 . . .N} defined by
their norm for any specific k0 > 1. Obviously there will be fewer such points for the
first p points in the sequence, which does not influence the algorithm. We can thus
define:

{
lPk0

: ξn
(
lP
k0

)
= arg

k∗
min
∥∥ξnk∗ − ξnk0

∥∥, k∗ < k0

}
. (10.11)

In the univariate case this is clearly consistent with simple sorting of the parameter
driving state.

The successor set {lS
k
} for ξ k∗ is defined using the predecessor set definition:

the set includes p points in the normalised state space which are further from the
origin than ξ k∗ , for which ξ k∗ belongs to their predecessor set {lP

k
}. This simple

requirement provides the required continuity of the sequence.
The number of base points p is set in this algorithm as (nsi)2, so it is 4 for

the simplified 2D example given below. Note that at the ends of the sequence this
number will shrink, and also that in this case we have only 3 successor points due to
the duplication of points 7 and 8 state values. The reason for taking the square of the
dimension as the numbers of base points arose in the context of solving the problem
using stochastic splines method. This will be the subject of another publication and
will not be discussed here. There are of course other possibilities of defining the
sequences, all with their own robustness and other characteristics, but we focus here
on the specified definitions.

A simple example using only 20 samples for clarity of the presentation is shown
in Fig. 10.1.

The illustration shows all the positions of ξ i , i = 1 : 20 ordered according to the
Euclidean distance from the origin in normalised space (which the presented plot
does not have to be), with the current ξ k∗ , k

∗ = 9 where ξk∗ is defined by two states.
The numbers show the ordering sequence according to the distance from the lower
left-hand corner of the bounding box shown in Fig. 10.1 with dotted lines (zero
in the normalised space). The star marker shows the state values for the current
sample, the upward pointing triangular markers show the preceding samples set,
the downward pointing triangular markers show the successors set. It is necessary
to note here, as it would be hard to show it in the figure, that the current point ξ9
belongs to the predecessor sets of the points in the successor set according to the
definition above. A careful reader will also notice that points 7 and 8 overlap and
are both zeroes in the 2D space. This is the result of the artificial character of the
data set having been simulated, it would be highly unlikely to happen with real data,
and it is also gracefully handled by the algorithm.

The larger than 1 number of predecessor and successor points forces an inter-
esting variation of the filtering and smoothing procedures. It can arguably be com-
pared to an ensemble Kalman Filter. Although no formal claim of this kind can be
fully substantiated at this stage, averaging between several possible state trajectories
reaching the current point in the state space appears to have a moderating effect on
the resulting estimates.
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Fig. 10.1 Illustration of predecessor $ and successor % (parent and child) points of temporal sam-
ple number 9 (highlighted) in an short example multi-variable (2D) sequence of just 20 samples.
Note how there is no reflection of temporal order (numbers shown) in the sequence within the 2D
state space

10.2.2.3 Detailed Estimation Algorithm

The estimation algorithm remains largely unchanged compared to the standard SDP,
except for the enlarged predecessor and successor sets, for which simple group av-
erages of filtered and smoothed parameters are calculated, and for the sequence
defined earlier.

For completeness we provide the outline of the algorithm here, although it has
been well described already in earlier works by Young and co-workers e.g. [27].

At the highest level, the Backfitting Algorithm (BA) is used to isolate the indi-
vidual contributions from the additive terms. Starting from the original model (10.2)

yt =
Nz∑

i=1

ai
(
X(i)t , t

)
zi,t + et , (10.12)

with

et ∼ N
(
0, σ 2), (10.13)
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X(i)t =
[
x
(i)
1,t x

(i)
2,t . . . x

(i)
j,t . . . x

(i)
nsi ,t

]
(10.14)

by defining: f (i)t = ai(X(i)t , t)zi,t we can cast the problem in terms of an Additive
Model

yt =
Nz∑

i=1

f
(i)
t + et ,

where f (1)t , f
(2)
t , . . . , f

(Nz)
t can be estimated by using Backfitting Algorithm (BA).

By defining y(i)t = f (i)t + et , the BA can be used to estimate f (1)t , f
(2)
t , . . . , f

(Nz)
t

through the following iterations (Young, [27], also in the Additive Models context
Hastie and Tibshirani [6]):

1. Initialise f (i)t = ai(X(i)t , t)zi,t
2. Cycle for i = 1,2, . . . ,Nz

(a) Compute: y(i)t = f (i)t + et = yt −∑n+m+1
κ=1,κ 
=i f̂

(κ)
t

(b) Estimate âi (X
(i)
k )—the parameter value at the kth sample—from

y
(i)
t = ai

(
X(i)t

)
zi,t + et

(c) Update f̂ (i)t = âi (X(i)t , t)zi,t
3. Continue step 2 until convergence.

Estimates in the step (2.b.) of the BA above are obtained by running a Kalman
Filter and Fixed Interval Smoother using the Stochastic State Space form (10.8) of
parameter variation, with the filtering and FIS in the form as described for instance
in Young [26], with the sole assumption of each parameter behaving as a Gener-
alised Random Walk of order q along the defined sequence.

The additional characteristic of the algorithm is that at each step along the tra-
jectory in the state-space, up to p recursive estimates are calculated and pooled to
provide a single summary of the distribution of the estimate in the form of its mean
and variance at the current point in the state-space. The details of this pooling are
provided in the Appendix.

The hyper-parameters for the KF/FIS stage are optimised exactly as they are in
the original SDP approach using Maximum Likelihood for this model.

It is worth noting here that no parametric form is used at all in the algorithm, thus
providing a perfect non-parametric DBM base for further efficient parameterisation
of the investigated relationship.

10.2.3 Method Limitations

So far we have discovered two properties, affecting both MSDP and SDP. As it will
become apparent, both can be derived from common-sense practical considerations
and do not detract from the attractiveness of the SDP approach within the DBM
framework.
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10.2.3.1 Multiple Co-linearity Considerations

This can be illustrated using a simple SDP DARX example of:

yt = atyt−1 + btut−1 + et , (10.15)

where at = f (ut−1,)= sin(ut−1,) and bt = g(yt−1)= tan(yt−1). A simple second
order Taylor Series approximation of at and bt around zero (for simplicity and with-

out loss of generality) produce: at ≈ ut−1 + (ut−1)
3

3! and bt ≈ yt−1 + (yt−1)
3

3! .
By substituting these approximations into the model equation (10.15) it is easy

to see how identical expressions ( ut−1yt−1 ) enter the equation and produce linear
dependencies:

yt ≈
(
ut−1 + (ut−1)

3

3!
)
yt−1 +

(
yt−1 + (yt−1)

3

3!
)
ut−1 + et .

While this is a simple and deliberately exaggerated example, it illustrates the impor-
tance of correct formulation of the model.

10.2.3.2 Singularity Considerations

Using an even simpler AR model:

yt = atyt−1 + et
it is quite apparent that any estimation of at will be equivalent to dividing the ob-
servation yt by its preceding sample value yt−1 which will be creating singularities
when yt−1 is close to zero.

It is clear that both of these properties would affect any estimation method and
will usually result from a badly defined model in the first place. What is interesting is
that when the multiple co-linearity is introduced into a model such as in the example
below, the resulting non-parametric estimate is not unstable, but merely showing no
significant relationship.

10.3 Examples

We shall illustrate the effectiveness of the method with two examples. The first one
is a direct comparison of the original SDP results with the result from MSDP for
a single-state dependency where both methods can be applied. The results should
be very close in both cases. This first example uses real hydrological data and has
been used in an earlier publication by Young [28]. The second example includes a
two-dimensional state-dependency in a simulated system. A simulated example has
been used to provide the reference for the obtained estimate.
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Fig. 10.2 Comparison between SDP and MSDP results (no uncertainty estimates shown but these
are equally consistent). The plots are all showing the model coefficients (from the left): a(Qt ),
b(Qt ) and c(Qt ) as shown in model (10.16)

10.3.1 Example 1: Single State Dependency Comparison Between
SDP and MSDP

This example with three single-state-dependent parameters was chosen to provide
a comparison between the original SDP and MSDP. In the example a simple SDP
DARX model of river discharge Qt is analysed, with the regressors being: lagged
river discharge Qt−1, lagged rainfall Rt−1 and lagged temperature Tt−1

Qt = a(Q)Qt−1 + b(Q)Rt−1 + c(Q)Tt−1 + et . (10.16)

The model rationale and its physical interpretation are given in Young [23] and
are outside the scope of this paper. The example is only used here to verify the
consistency of MSDP with the original SDP in a case where they both apply.

The results shown in Fig. 10.2 indicate very good agreement between the two es-
timation techniques where they are compatible. Although the uncertainty estimates
are not shown for reasons of clarity of the presentation, they are similarly consis-
tent. There are no differences between the model fit, and the run times are of similar
order of magnitude, although MSDP is about a third faster in this case, which can be
attributed to different convergence criteria handling. In Fig. 10.2 the lines showing
the estimated non-parametric relationship between the states and model parameters
are nearly indistinguishable.

This example shows full compatibility of the more general MSDP with the orig-
inal SDP in a single-nonlinearity case.

10.3.2 Example 2: Simulated DARX Model with a Two-State and
a Single-State Parameter Dependencies

This model is simulated, so that it is possible to assess the quality of the SDP es-
timation by comparison of the estimated with simulated relationships. A two-state
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bounded but significant non-linearity puts the method to test.
{
y∗
t = aty∗

t−1 + btut−1 + νt ,
yt = y∗

t + et . (10.17)

Input ut , system noise νt , and observation noise et , are Gaussian distributed, serially
uncorrelated signals with variances of σ 2

u = 1, σ 2
ν = 1 and σ 2

e = 1 respectively. As
is usually assumed y∗

t is the observation noise free output. System is simulated for
1000 sampling times in this example.

The first SDP is a saddle-shaped function of two state variables (x(1)1,t = y∗
t−2 and

x
(1)
1,t = u∗

t−2) while the second SDP is a sine function of only one state variable

(x(2)1,t = u∗
t−2).

at = 0.5 tan−1
(
y∗
t−2 · ut−2

)
,

bt = sin(2ut−2).
(10.18)

To make the problem more realistic, the noise-free output y∗
t values are not avail-

able, so the observed output values yt are used in the estimation making the system
used for estimation:

yt = ât yt−1 + b̂t ut−1 + êt , (10.19)

with its state-dependent parameters:

ât (yt−2, ut−1) = 0.5 tan−1(yt−2 · ut−1),

b̂t (ut−2) = sin(2ut−2).
(10.20)

For the purpose of estimation the parameters are both assumed to vary as Integrated
Random Walk (IRW in the state-space cf. (10.10) with q = 1). Estimation uses
the backfitting algorithm with standard Maximum Likelihood estimation of Noise
Variance Ratios for each of the IRW parameters, as in Sect. 10.2.2.3.

Overall model fit is characterised by R2 = 0.96 comparing the model output to
the noise-free data. It is interesting to note that the fit of the first parameter (with
dependency on 2 states) estimate to the simulated surface (as in Fig. 10.3) is R2 =
0.87, and of the second—single-state dependency parameter—is R2 = 0.99. The
run-time was 20.2 sec (on a standard Windows laptop computer).

The main illustration of the MSDP result is shown in Fig. 10.3 where 3D surfaces
of simulated (offset for clarity) and estimated parameter: at = 0.5 tan−1(y∗

t−2 · ut−2)

and ât (yt−2 · ut−2) respectively, are shown along with the scatter of simulated
observations of the two driving states. The presented surface of the estimate
ât (yt−2, ut−2) is created from the non-parametric estimates of the values of a at
the marked data points, with the illustrated interpolated values obtained using De-
launay triangulation. It is offset vertically by 2 in order to show the shape of both
surfaces at the same time.

It is visible that the general shape of the saddle function is well recovered, which
is further shown in another visualisation in Fig. 10.3. In this figure the simulated



204 W. Tych et al.

Fig. 10.3 Dual state-dependence of parameter at (yt−2, ut−2): simulated above (offset vertically
for clarity of the presentation) and estimated below, including the data points

parametric surface is shown as semi-transparent, with grid. The estimated triangu-
lated surface is shown as solid. The data points are shown as small circles. Although
it is difficult to see much detail, the figure is provided to show the generally good
agreement of the original and recovered 3D surfaces.

Around the centre of the surface there is a visible roughness of the estimated sur-
face. This is related to the singularity issue (see above in Sect. 10.2.3.2) and arises as
small estimation errors in the back-fitting algorithm are amplified through implicit
division by the value of the driving state being close to zero. The same effect arises
in the single state SDP modelling where near-zero values of the driving state are
taken into account. It should be noted however, that this non-parametric estimation
is the first step in the DBM process serving to identify the shape and complexity of
the state-dependency relationship. It is normally followed by an efficient parameter-
isation of the state dependency surface. Therefore such “noise-like”, non-systematic
errors will not be a serious influence upon the modelling process, a the parameterise
surface will be smooth in the middle. It should be noted that as these errors are far
smaller away from the singularity point and the shape of the surface is revealed well,
MSDP estimate serves its purpose well.

In Fig. 10.4 it is visible how the estimation procedure gives a good approxima-
tion of the original simulated single-variable highly non-linear dependency, with
discrepancies appearing only at the ends of the state range where a smaller number
of state values is available. These results are consistent with published single state
SDP results for similar non-linearities.

The two presented examples indicate that the proposed MSDP method of ex-
tending Young’s SDP to multi-state parametric dependency is consistent with the
original where both are applicable, and that it produces informative results that can
be used further, aiding in generating efficient parameterisation of the multi-state-
dependencies for use in control design and other modelling applications.



10 Multi-state Dependent Parameter Model Identification and Estimation 205

Fig. 10.4 State-dependence of parameter bt (ut−2) shown with data points and uncertainty band

10.4 Summary and Future Developments

The presented approach provides a natural extension to the SDP as developed by
Young, by using a well defined sequence in the multivariable state-space, which
builds on the original idea of smoothing not in the time-domain, but in the state-
space driving each of the systems parameters.

The algorithm seems to work well, resulting in well defined and fully non-
parametric hyper-surfaces with acceptable uncertainty, as shown in the examples
provided. For single-state dependencies the results are close to those obtained using
the well tested original single-state SDP.

Since the method is based on the well proven Kalman Filter and Fixed Interval
Smoother, it seems reasonable to assume that there is no need to prove its statis-
tical properties, which it inherits from the applied algorithms. There is a number
of possible extensions and variations of the algorithm, which are briefly introduced
below.

1. The sorting sequence can use a different norm and different reference point. For
example a different normalisation of the states can be used, for instance reducing
the states data to zero mean and unit covariance.

2. The numbers of points in predecessor and successor sets at this stage these are
still somewhat arbitrary, even if the implemented quadratic dependence is based
on other considerations.

3. The distances Δξ between the points in the state space (see (10.8)) are not in-
cluded in the current simplified algorithm, just as it is implemented in the original
SDP. So far this has not proved to be problematic. Further work is underway to
create a general version of the algorithm with variable F and G matrices incorpo-
rating all the distances between the samples in the state-space of each parameter,
as in the formulation (10.8) of the stochastic state-space model.
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4. The multiple predecessor/successor points are a “poor man’s version of an En-
semble Kalman Filter”, as one of the colleagues commented recently. This is a
fair point, and other options of filtering and smoothing will be considered, go-
ing beyond the basic Kalman Filter/Fixed Optimal Smoother approach. In order
to improve the algorithm, the approximation used in averaging the covariance
between the contributing sample points will be replaced by the exact calculation.

5. Finally, development of other approaches to the MSDP problem is the subject of
current work and will be presented in forthcoming publications.
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Appendix: Kalman Filter and Fixed Interval Smoother
Modification for Multiple Predecessor and Successor Points

Starting from the basic TVP model:

yt = zTt at + et (10.21)

as introduced in the main text, with at being the vector of time varying parameters
and zt being the regressors (inputs), we assume that the parameters at vary accord-
ing to the Generalised Random Walk (GRW) model of the form:

Ai,t = FiAi,t−1 + Giνi,t−1, i = 1,2, . . . ,Nz (10.22)

as explained in the main text (Sect. 10.2.1, in (10.3)) as well as in numerous refer-
ences (e.g. Young [27]). We shall bring the initial definitions from these references
here in order to define the multiple point version.

In the present version of the algorithm, matrices F and G defined in (10.9) are
not time- (or state-)varying, but are fixed. This simplification is consistent with the
original SDP and appears to be non-critical.

Note here that according to the defined sequence of filtering, index t in the usual
definitions of filtering and smoothing now has a different meaning, and it belongs
not to the original time sequence, but to the k∗ sequence defined in the main text.

Because we are not assuming interdependency between the additive components
i = 1, . . . ,Nz the estimation can be implemented either using a large block-diagonal
system, or individually, which works well with the Backfitting Algorithm. Therefore
in the sequel for simplicity of notation we shall not refer to i-th equation referring
to Ai,t , but simply to At—the block-diagonal sub-system.
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We now have the following overall State Space model defined by the observation
and state equations:

yt = HtAt + et ,
At = FAt−1 + Gνt−1,

(10.23)

where: At = [AT1,t AT2,t . . . ATNz,t ]T ; Fi is a block diagonal matrix with blocks
defined by the Ai matrices in (10.10); G is a block diagonal matrix with blocks
Gi defined by the corresponding subsystem matrices in (10.10); and ν is an Nz× 1
vector containing the white noise input νi to each of the GRW models in individual
equations (10.10). These white noise inputs are assumed to be independent of the
observation noise et and have a covariance in the form of diagonal Nz×Nz matrix
Q with diagonal elements Qi corresponding to νi,t . Finally, Ht is a row vector of
the following form

Ht =
[
z1,t 01 z2,t 02 . . . zNz,t 0Nz

]
(10.24)

with 0i , i = 1,2, . . . ,Nz defined as 1 × qi vectors of zeroes, empty when qi = 0.
Within this formulation the basic prediction step of the Kalman Filter (in the

usual notation) is:

At |t−1 = FÂt−1,

Pt |t−1 = FP̂t−1FT + GQrGT
(10.25)

and the basic correction step:

Ât = At |t−1 + P̂tHTt {yt − HtAt |t−1},
P̂t = Pt |t−1 − Pt |t−1HTt

[
1 + HtPt |t−1HTt

]−1
HtPt |t−1.

(10.26)

Let us consider the pooling process of the multiple predecessor filtering results.
The same reasoning will apply to smoothing. There are two ways that pooling can be
combined with filtering. (1) pool the predecessors to estimate the first two moments
of the distribution of the predecessors, then perform a single prediction-correction
step of the Kalman Filter; (2) perform the prediction step for each predecessor, thus
forming an ensemble of forecasts, which are then pooled before the correction step;
presuming that the predecessors are IID (independent and identically distributed),
this is analogous to Ensemble Kalman Filter [3].

This work uses an approximation of the second method, using the assump-
tion that (means of) the predecessor points are close together in terms of their
variances—in other words that their distributions are similar. If this assumption
holds we can make the following approximations: (1) that the pooling can occur
after the correction step, and (2) that the estimate of the pooled covariance is given
by (10.30).

Both KF steps can be written in this simple functional form for brevity:

Ât = g1(Ât−1, P̂t−1, yt ,Ht ),

P̂t = h1(P̂t−1,Ht ).
(10.27)
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Similarly, a single step of an implementation of Fixed Interval Smoother (Q al-
gorithm):

Ât |N = F−1[Ât+1|N + GQrG
TLt

]
,

Lt =

⎧
⎪⎨

⎪⎩

[I − HTt+1Ht+1P̂t+1]{FTLt+1 − HTt+1(yt+1 − Ht+1At+1|t )},
t < N,

0, t =N,

Pt |N =
{

P̂t + P̂tFT P−1
t+1|t [Pt+1|N − Pt+1|t ]P−1

t+1|tFP̂t , t < N,

P̂t , t =N.

(10.28)

Can be written as:

Lt =
{
g2(Ât , P̂t ,Lt+1, yt+1,Ht+1), t < N,

0, t =N,

Pt |N =
{
h2(P̂t ,Pt+1|N), t < N,

P̂t , t =N.

(10.29)

In this simplified notation the Kalman Filter for the groups of p predecessor points
becomes:

Âk = 1

p

p∑

j=1

g1(Âk′j , P̂k′j , yk,Hk),

P̂k = 1

p

p∑

j=1

h1(P̂k′j ,Hk).

(10.30)

Importantly, this is now done in the previously defined sequence (see Sect. 10.2.2.1
and Sect. 10.2.2.2) with k′j , j = 1,2, . . . , p—the predecessor points taking on the
role of t − 1, and k—the current point—the role of t in (10.22) and subsequent
expressions.

The applied approximation and averaging make intuitive sense when the esti-
mated mapping from state-space to parameter space is smooth, and its values do not
change much between the state values included in estimating Âk′j , in other words,
when the coverage of the parameter space by data is good.

Similarly, in the smoothing pass we have:

Âk|N = Âk − P̂kFTLk,

Lk =
{

1
f

∑f

j=1 g2(Âk, P̂k,Lk′′j , yk′′j ,Hk′′j ), f > 0,

0, f = 0,

Pk|N =
{
h2(P̂k, 1

f

∑f

j=1 Pk′′j |N), f > 0,

P̂k, f = 0.

(10.31)
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This is now done in the defined sequence, where k′′j , j = 1,2, . . . , f are the
successor points taking on the role of t + 1, and k the current point - the role of
t in 10.29. Note that in general f ≤ p, as there may be fewer than p successor
points, and the start of the smoother from the “far” end of the data requires careful
programming.

Again, the same approximation is being made with regard to averaging the co-
variance matrices, as for the Kalman Filter sequence.

It is worth noting that the averaging has to take the varying trajectories for mul-
tiple state-dependencies into account, hence the index forms of k′j , j = 1,2, . . . , p
and k′′j , j = 1,2, . . . , f .

We should note again, that in the extended case where distances between state-
space points are taken into account, the F and G matrices become dependent upon
these distances as defined in (10.9), and will vary from sample to sample, depending
on the sequence of points.

The above extensions are now the subject of further evaluation. It needs to be
established to what degree the numerical complexity that they add to the present
algorithms can be justified by the improved statistical rigour and possible robustness
to poor sample coverage. Following the evaluation and possible improvements the
MSDP algorithm will be included in a forthcoming release of the Captain Toolbox
for Matlab [10].
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Chapter 11
On Application of State Dependent Parameter
Models in Electrical Demand Forecast

Nguyen-Vu Truong and Liuping Wang

11.1 Introduction

Privatization and deregulation of power system industries in many countries (i.e.
UK, Japan, USA, Australia, etc.) in recent years have lead to the rise of competitive
energy markets. This turns electricity into a commodity and trading article which
can be sold and bought at market prices. Nevertheless, unlike other commodities,
electricity can not be stored; and its transmission is limited by physical and reliabil-
ity constraints. As a result, in order to effectively manage and plan the production for
economical electricity utilities as well as to gain competitiveness in the market, an
accurate forecast of future demands at regular time intervals1 is of great importance
for the management and planning of power production, operation and distribution
as well as customer services.

Electrical demand modeling and forecast is, however, quite challenging due to
the complex dynamics and behaviours exhibited from the load series. That is the
electrical demand pattern is not only dependent on historical demands but as well
influenced by a number of external variables (i.e. weather related variables, house-
hold number, etc.). As a result, from a system’s point of view, this can be interpreted
as a complex nonlinear dynamic system.

1Which can change from hour or day for short-term forecasts to week or year for medium and
long-term forecasts respectively.
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To address this problem, various approaches have been reported in the open lit-
erature. Traditional approaches include regression methods, exponential smoothing,
Kalman filtering as well as non-parametric methods (i.e. [23–29], etc.). More recent
and most common methods in the area of electricity demand/price forecast rely on
artificial intelligence (AI) techniques, for example, Expert Systems (i.e. [9, 10]),
Fuzzy logic (i.e. [11, 12]) and especially Artificial Neural Network (i.e. [13–22],
etc.) which have received quite considerable research interests in the past 2 decades.

The major advantage of such artificial intelligence based approaches is obvious.
That is no complex mathematical formulation or quantitative correlations between
inputs and outputs is required. Nevertheless, they suffer from a number of short-
comings, for example:

• Expert System based approach (i.e. [9, 10]) exploits human expert knowledge
to develop set of rules for the purpose of forecasting by utilizing a comprehen-
sive database. Nevertheless, the major disadvantage of this approach lies on the
difficulties to transform this expert knowledge into a set of mathematical rules.

• Fuzzy logic based approach (i.e. [11, 12]) has similar problems, as it maps input
variables to outputs using a set of logic statements (fuzzy rules) which could be
developed solely from expert knowledge. In addition, when the problem becomes
more complicated, it might lead to a significant increase in the number of fuzzy
rules used for model building, which is as well another common disadvantage of
fuzzy based approaches.

• Although ANN based approach can overcome some of the shortcomings of ex-
pert systems as it can directly acquire experience from training data, it suffers
from a number of limitations including (1) the need of an excessively large num-
ber of parameters used in the model which can subsequently lead to the danger
of over-fitting, (2) difficulties in determining optimum network topology as well
as training parameters (i.e. number and size of the hidden layers, type of neuron
transfer functions for various layers, training rate, etc.) and so on. Another lim-
itation of this approach is the ‘black box’ nature of ANN models. These models
give little insight into the modelled relationships and the relative significance of
various variables, thus providing poor explanation about the system under study.

To tackle such shortcomings, the State Dependent Parameter (SDP) model struc-
ture provides a natural way to express nonlinear systems [1–8]. Model of this type is
quasi-linear ARX structured, but with State Dependent Parameters which are non-
linear functions of the respective state variables (i.e. derivatives or lagged values of
the input and output variables) to describe the system’s nonlinearities. It means that
at a particular sampling instance, such a model is, in turn, a “frozen”, locally valid
linear system, providing useful property of the local dynamics. Such a representa-
tion enables internal connection between various state variables to be descriptively
exploited, thus the dynamic system’s nonlinearities can be represented in a very
interpretable way in comparison to the conventional ‘black-box’ nonlinear system
identification approaches.

This chapter presents an improved methodology to electrical demand forecast
using wavelet based SDP (WSDP) models [5] in which the associated State Depen-
dent Parameters are compactly parameterized in the form of wavelets (i.e. [1–4]). In
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the present study, the essential of the multi-variable state dependencies in the load
dynamics2 is effectively captured and parsimoniously realized using 2-D wavelet
series expansions. This formulates the so called 2-dimensional wavelet based SDP
modelling (2-DWSDP) approach [4]. Here, PRESS statistics in conjunction with a
forward regression are applied to detect efficient nonlinear model structures. Model
obtained in such a manner is parsimonious and descriptive, enhancing its general-
ization capability which is very useful for this particular forecasting application.

This study considers one day ahead forecast of daily peak electrical demands
in the state of Victoria, Australia. Using 2-DWSDP model, various dependencies
among historical demand and weather related variables (in this situation, daily peak
temperature is likely among the most influential) can be exploited and realized
through a very compact and descriptive mathematical formulation.

Section 11.2 of this chapter reviews the 2-DWSDP modeling approach. A fea-
sible model structure for the daily peak electrical demand forecast under study is
discussed in Sect. 11.3. The modeling results are presented in Sect. 11.4 which
illustrates the merits and efficiency of the proposed approach. Finally, Sect. 11.5
concludes the chapter.

11.2 2-DWSDP Model

It is assumed that a nonlinear system can be represented by the following 2-D State
Dependent Parameter (SDP) model:

y(k)=
ny∑

q=1

fq(xmq,nq )y(k − q)+
nu∑

q=0

gq(xlq ,pq )u(k − q)+ e(k) (11.1)

where fq, gq (regarded as 2-D SDPs to carry the nonlinearities) are dependent
on xmq,nq = (xmq , xnq ∈ x) and xlq ,pq = (xlq , xpq ∈ x) in which x = {y(k −
1), . . . , y(k − ny),u(k), . . . , u(k − nu)}; u(k) and y(k) are, respectively, the sam-
pled input-output sequences; while {nu ny} refer to the maximum number of lagged
inputs and outputs. Finally, e(k) refers to the noise variable, assumed initially to be
a zero mean, white noise process that is uncorrelated with the input u(k) and its past
values.

For example, a first order 2-D SDP model representation of a nonlinear system
can take the following form:

y(k)= f1[y(k − 1), u(k)]y(k − 1)+ g0[u(k),u(k − 1)]u(k). (11.2)

Let x = {x1, x2, x3} = {y(k − 1), u(k), u(k − 1)}. In this case, the 2-D State De-
pendent Parameters f1 and g0 are dependent on x1,2 = {x1, x2} = {y(k − 1), u(k)}
and x2,3 = {x2, x3} = {u(k),u(k − 1)} respectively.

2There are a number of variables which directly and indirectly influence the electrical demand at a
particular point of time, such as historical demand, weather related variables (i.e. humidity, wind
and cloud conditions, minimum temperature, etc.), household number and so on.
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Using the 2-D wavelet series expansion (i.e. [4]), the 2-D State Dependent Pa-
rameters fq(xmq,nq ) and gq(xlq ,pq ) can be approximated as

fq(xmq,nq )=
imax∑

imin

∑

k1∈Lixmq

∑

k2∈Lixnq
af q,i,k1,k2Ψ

[2]
i,k1,k2

(xmq,nq ), (11.3)

gq(xlq ,pq )=
imax∑

imin

∑

k1∈Lixlq

∑

k2∈Lixpq
bgq,i,k1,k2Ψ

[2]
i,k1,k2

(xlq ,pq ) (11.4)

in which, Ψ [2]
i,k1,k2

(x, y) regards the scaled and translated version of a 2-Dimensional

wavelet function Ψ [2](x, y), i.e.

Ψ
[2]
i,k1,k2

(xmq,nq )= Ψ [2](2−ixmq − k1,2
−ixnq − k2),

Ψ
[2]
i,k1,k2

(xlq ,pq )= Ψ [2](2−ixlq − k1,2
−ixpq − k2).

To formulate a 2-D wavelet basis function Ψ [2](x, y), a natural approach is based
on the tensor product of 2 1-D wavelet functions Ψ (x) and Ψ (y), i.e.

Ψ [2](x, y)= Ψ (x)Ψ (y). (11.5)

For example, if Ψ (x) is chosen to be a 1-D Mexican hat wavelet, i.e.

Ψ (x)=
{
(1 − x2)e−0.5x2

if x ∈ (−4,4)
0 otherwise

}
. (11.6)

Then its 2-D version3 (shown in Fig. 11.1) will take the following form:

Ψ [2](x, y)=
{
(1 − x2)(1 − y2)e−0.5(x2+y2) if x, y ∈ (−4,4)
0 otherwise

}
. (11.7)

imin and imax refer to the minimum and maximum scaling parameters (finest
and coarsest) which determine the set of terms used for the approximation, and
finally, {Lixmq,Lixnq} and {Lixlq ,Lixpq} correspond to the translation libraries with
respect to {Ψ (xmq),Ψ (xnq)} and {Ψ (xlq),Ψ (xpq)} at scale i.

Substituting (11.3) and (11.4) into (11.1), we obtain

y(k)=
ny∑

q=1

[
imax∑

imin

∑

k1∈Lixmq

∑

k2∈Lixnq
af q,i,k1,k2Ψ

[2]
i,k1,k2

(xmq,nq )

]

y(k − q)

3For simplicity, through-out this paper, this form of 2-D wavelet functions is used.
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Fig. 11.1 2-D Mexican hat wavelet function

+
nu∑

q=0

[
imax∑

imin

∑

k1∈Lixlq

∑

k2∈Lixpq
bgq,i,k1,k2Ψ

[2]
i,k1,k2

(xlq ,pq )

]

u(k − q)+ e(k).

(11.8)

Equation (11.8) is regarded as 2-D Wavelet based SDP model (2-DWSDP).
At this point, (11.8) can be formulated as in the linear-in-the-parameter regres-

sion equation, i.e.

Y = Pθ +Ξ (11.9)

in which,

Y = [y(0), . . . , y(N − 1)
]T
,

U = [u(0), . . . , u(N − 1)
]T
, (11.10)

Ξ = [e(0), . . . , e(N − 1)
]T
.

11.2.1 Model Structure Selection and Parameter Estimation

One of the keys in nonlinear system identification is to effectively select candidate
structures. This is among the most challenging tasks due to infinite possible com-
binations of nonlinear regression terms. Therefore, it is critical, at the first step, to
reduce the set of candidate structures to a manage-able size based on some known
characteristics about the system under study. In the situation of 2-D SDP models
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as considered in this chapter, the finest and coarsest scaling parameters imin, imax
determine the set of terms as well as their associated characteristics4 used for the
approximation of the respective 2-D SDP relationship. As a result, they play an
important roles in the selection of candidate model structures for the nonlinear sys-
tem identification. If imin and imax are properly selected and a compactly supported
mother wavelet is chosen, the set of candidate structures is now limited and deter-
ministic.5 This reduces the computational load and improves the efficiency of the
optimized model structure selection algorithm.

The 2-DWSDP model as formulated in (11.8) includes all the possible combina-
tions of the parameters. Thus, it is regarded as an over-parameterized model. As a
result, in order to obtain a compact representation of nonlinear systems, an efficient
model structure determination approach based on the PRESS statistics and forward
regression is implemented (see [1–4]). This procedure uses the incremental value of
PRESS6 ( PRESS) as criterion to detect the significance of each terms within the
model in which the maximum PRESS signifies the most significant term, while its
minimum reflects the least significant term. Based on this, the algorithm initializes
with the initial subset being the most significant term. It then starts to grow to in-
clude the subsequent significant terms in a forward regression manner, until a speci-
fied performance is achieved. Here, the incorporation of Orthogonal Decomposition
(OD) into the model structure selection algorithm helps to avoid any ill-conditioning
problems associated with the parameter estimation.

PRESS based selection algorithm For the ease of representation, let us denote φi
be the (i + 1)th column of Φ: φi =Φ(:, i+ 1), and P (−i) denotes the matrix which
is resulted from excluding the ith column from the original matrix P .

1. Initialize Φ = P , [N,m] = size(P )
2. Orthogonal Decomposition

a. [N,m1] = size(Φ). Initialize ω0 = φ0, g0 = ωT0 Y

ωT0 ω0
.

b. For 1 ≤ i ≤m1 − 1, compute

αj,i =
ωTj φi

ωTj ωj
, j = 0,1, . . . , i − 1,

ωi = φi −
i−1∑

j=0

αj,iωj ,

4A small value of imin results in a large number of wavelet elements with higher frequency char-
acteristics to be contained in the function’s library. And vice versa, with a large value of imax, the
function’s library will consist of a large number of wavelet elements that are at lower frequency
features.
5Criteria to guide the selection of the scaling parameters imin and imax is described in [4].
6The difference between the overparameterized (original) model’s PRESS value and the one cal-
culated by excluding a term from the original model.
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gi = ωTi Y

ωTi ωi
.

3. PRESS computation

ξ−k(k)= y(k)−∑m1−1
i=0 ωi(k)gi

1 −∑m1−1
i=0

ωi(k)
2

‖ωi‖2

,

PRESS =
N−1∑

k=0

ξ2−k(k).

4. PRESS(m)= PRESS. For 1 ≤ i1 ≤m,
a. Set Φ = P (−i1). Repeat steps 2 and 3.
b. PRESS−i1

m (m− 1)= PRESS. Calculate

 PRESSi1 = PRESS−i1
m (m− 1)− PRESS(m).

5. Based on the largest PRESSi1 value, select the most significant term to be added
to the regressor matrix.

6. Solve for the intermediate parameter estimate in a least squares manner.
7. Calculate the approximation accuracy, and compare it to the desired value:

• If satisfactory performance is achieved, stop the algorithm;
• Otherwise, add extra terms into the regressor matrix based on the next largest
 PRESSi1 values, and repeat from step 6 to 7.

Upon determining the optimized nonlinear model structure for the over-para-
meterized representation as in (11.9), the final identified model structure is generally
found to be

y(k)=
ny∑

q=1

[ nfq∑

j=1

aq,j ϕ
[2]
q,j (xmq,nq )

]

y(k − q)

+
nu∑

q=0

[ngq∑

j=1

bq,jφ
[2]
q,j (xlq ,pq )

]

u(k − q)+ e(k). (11.11)

11.2.2 Identification Procedure

The overall nonlinear system identification using the proposed approach can be sum-
marized into the following steps:

1. Determining the 2-D SDP model’s initial conditions. This includes the follow-
ing:
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a. Select the initial values7 of ny and nu.
b. Based on the available a priori knowledge, select the significant variables

from all the candidate lagged output and input terms (i.e. y(k− 1), . . . , y(k−
ny),u(k), . . . , u(k − nu)) and the significant 2-D state dependencies (i.e.
fq(xmq,nq ), gq(xlq ,pq )) formulated by the selected significant variables. Note
that these a priori knowledge can be some known structural characteristics,
or based on some hypothesis and assumption made about the system under
study.

c. Otherwise, if there is no a priori knowledge available, all the possible vari-
ables as well as their associated possible 2-D dependencies for the selected
model order (ny and nu) need to be considered. For example, if ny = 1
and nu = 1, the possible variables are y(k − 1), u(k), u(k − 1), leading to
the possible 2-D dependencies between: {y(k − 1), u(k)}, {y(k − 1), u(k −
1)}, {u(k),u(k − 1)}.

2. 2-DWSDP’s optimized model structure selection. This involves the following
steps:
a. Select the associated scaling parameters [imin, imax] to be used for the 2-D

SDP parameterization.
b. Formulate an over-parameterized 2-DWSDP model by expanding all the 2-D

SDPs (i.e. fq(xmq,nq ), gq(xlq ,pq )) via 2-D wavelet series expansion using the
selected scaling parameters [imin, imax].

c. Using the PRESS based selection algorithm, determine an optimized model
structure from the candidate model terms.

3. Final parametric optimization.

• Using the measured data, estimate the associated parameters via a Least
Squares algorithm.

4. Model validation.

• If the identified values of ny and nu as selected in step 1 provides a satisfactory
performance over the considered data, terminates the procedure.

• Otherwise, increase the model’s order, i.e. ny = ny + 1 and/or nu = nu + 1,
and repeat Steps 1b, 2 through 4.

11.3 Model Structure Development

The development of a model for daily peak electrical demand forecast in this study
relies on the hypothesis that the daily peak demand for a certain day in a week is
dependent on the following factors:

• The historical peak demands of the previous days (i.e. peak demands of the pre-
vious two days)

7Which normally start with lower values.



11 On Application of SDP Models in Electrical Demand Forecast 219

• The peak demand at the same day of the previous week. This looks after the
weekly trend in the power demand behaviour. It is most likely the fact that the
power consumption during working days (i.e. from Monday to Friday) is higher
than that during the Weekends (Saturday and Sunday).

• The weather related variables associated with these days, particularly in this
study, the peak temperature is used due to its strong link with the power consump-
tion. During a hot day (i.e. summer days), the electrical demand is significantly
increased due to the power consumption for cooling. Similarly, due to the power
utilization for heating, the demand for a cold day (i.e. winter days) increases for
that day as well.

Let y(k) and u(k) respectively denote the peak electrical demand and tempera-
ture at the day index k, a feasible model for daily peak electrical demand forecast
can be realized in the following form using a 2-DWSDP model, i.e.

y(k)= f [2]
1

[
y(k − 1), u(k − 1)

]
y(k − 1)+ g[2]

1

[
y(k − 1), u(k − 1)

]
u(k − 1)

+ f [2]
2

[
y(k − 2), u(k − 2)

]
y(k − 2)+ g[2]

2

[
y(k − 2), u(k − 2)

]
u(k − 2)

+ f [2]
7

[
y(k − 1), y(k − 2)

]
y(k − 7)+ g[2]

7 [u(k − 1), u(k − 2)]u(k − 7)

+ g0 [u(k)]u(k) (11.12)

in which, the components associated with the functions f [2]
1 (·, ·), g[2]

1 (·, ·), f [2]
2 (·, ·)

and g[2]
2 (·, ·) represent the contribution of the peak electrical demand and tempera-

tures in the last 2 days to that of the current day; these associated with the functions
f

[2]
7 (·, ·) and g[2]

7 (·, ·) realize the nonlinear interactions as well as the contribution
of the peak demands and temperatures in the previous 2 days and the previous week
to that of the current day. Finally, the component associated with g0(·) represents
the relationship between the peak temperature and electrical demand of the current
day.

11.4 Results

In this study, the peak temperature and daily electrical demand (from the 1st Jan-
uary to the 24th August of 2007) of the state of Victoria, Australia are used. This
data (Fig. 11.2) was obtained from the Australian National Electricity Market Man-
agement Company (NEMMCO)8 and the Australian Government Bureau of Mete-
orology.9 For the purpose of model building exercise, the data set was standardized
(still designated as {y(k), u(k)}) and separated into (1) estimation set for the model
building (from 1st January 2007 to 8th August 2007) and (2) validation set used
for the evaluation of the model forecast capability (from 9th August 2007 to 24th
August 2007).

8National Electricity Market Management Company, http://www.nemweb.com.au/.
9Australian Government Bureau of Meteorology, http://www.bom.gov.au/weather/vic/.

http://www.nemweb.com.au/
http://www.bom.gov.au/weather/vic/
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Fig. 11.2 (a) Daily peak power demand (b) peak temperature data in the time period under study

With imin and imax chosen to be −3 and 3, the final identified model is found to
be:

y(k)= f̂ [2]
1

[
y(k − 1), u(k − 1)

]
y(k − 1)+ ĝ[2]

1

[
y(k − 1), u(k − 1)

]
u(k − 1)

+ f̂ [2]
2

[
y(k − 2), u(k − 2)

]
y(k − 2)+ ĝ[2]

2

[
y(k − 2), u(k − 2)

]
u(k − 2)

+ f̂ [2]
7

[
y(k − 1), y(k − 2)

]
y(k − 7)+ ĝ[2]

7 [u(k − 1), u(k − 2)]u(k − 7)

+ ĝ0 [u(k)]u(k) (11.13)

in which,

f̂
[2]
1 (x1, x2)= 0.3007Ψ [2]

3,0,0(x1, x2)+ 1.0539Ψ [2]
0,0,0(x1, x2)

+ 0.5396Ψ [2]
1,−1,0(x1, x2), (11.14)

ĝ
[2]
1 (x1, x2)= 0.9056Ψ [2]

3,0,2(x1, x2)+ 0.0503Ψ [2]
−1,3,5(x1, x2), (11.15)

f̂
[2]
2 (x1, x2)= 1.0751Ψ [2]

3,0,2(x1, x2)+ 0.3806Ψ [2]
1,1,1(x1, x2)

+ 0.1523Ψ [2]
1,−1,0(x1, x2)+ 0.1993Ψ [2]

1,0,0(x1, x2), (11.16)
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ĝ
[2]
2 (x1, x2)= 0.0699Ψ [2]

3,0,0(x1, x2)+ 0.2716Ψ [2]
1,0,1(x1, x2)

+ 0.8007Ψ [2]
0,2,1(x1, x2)+ 0.3904Ψ [2]

−1,3,5(x1, x2)

+ 0.5806Ψ [2]
−1,2,3(x1, x2)+ 0.5206Ψ [2]

−1,4,4(x1, x2)

+ 0.4516Ψ [2]
0,0,0(x1, x2), (11.17)

f̂
[2]
7 (x1, x2)= 0.4354Ψ [2]

3,0,0(x1, x2)+ 0.6399Ψ [2]
1,1,1(x1, x2)

+ 0.3224Ψ [2]
0,0,1(x1, x2)+ 0.0702Ψ [2]

1,1,0(x1, x2), (11.18)

ĝ
[2]
7 (x1, x2)= 0.5860Ψ [2]

3,0,2(x1, x2)+ 0.6567Ψ [2]
1,0,−1(x1, x2)

+ 0.8944Ψ [2]
1,−1,0(x1, x2)+ 0.2043Ψ [2]

0,1,1(x1, x2)

+ 1.5331Ψ [2]
−1,4,3(x1, x2), (11.19)

ĝ0(x)= 1.0146Ψ1,1(x)− 0.0754Ψ3,0(x)+ 0.4196Ψ0,3(x)

+ 0.4023Ψ−3,21(x)+ 0.0662Ψ−1,4(x), (11.20)

where

Ψ
[2]
i,k1,k2(x1, x2)= Ψ [2](2−ix1 − k1,2

−ix2 − k2), (11.21)

Ψ [2](x1, x2)= (1 − x2
1)(1 − x2

2)e
−0.5(x2

1+x2
2 ), (11.22)

Ψi,k(x)= Ψ (2−ix − k), (11.23)

Ψ (x)= (1 − x2)e−0.5x2
. (11.24)

Here, Relative Error of forecasting-REF and Mean Absolute Prediction Error-
MAPE are used to measure, thus quantify the model’s forecasting performance:

REFk = yp(k)− y(k)
y(k)

× 100%, (11.25)

MAPE = Mean [|REFk|] , (11.26)

in which, yp(k) denotes the forecasted value of the peak demand of the day index k.
Figure 11.3 compares the prediction (which is recovered to its original amplitude

by de-standardization) of the model (see (11.13)) versus the actual daily peak de-
mand over the estimation set (from 1st January 2007 to 8th August 2007), in which
the identified model fits 95.71% of the data. Figure 11.4 demonstrates the model
performance in the forecasting of daily peak demands over the validation set (from
9th January 2007 to 24th August 2007). These forecasted values are tabulated in
Table 11.1 in comparison with the actual values. The MAPE over the forecasted
period is 1.9%, while the standard deviation of |REFk| is calculated to be 1.6%.
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Fig. 11.3 Model (11.13) prediction (dot-dot) versus the actual daily peak demand (solid) over the
estimation set

Fig. 11.4 Model (11.13) performance in forecasting the daily peak power demands over the vali-
dation set: forecasted values (dot-dot) versus actual values (solid)
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Table 11.1 Forecasted daily peak electrical demands versus the actual values

Date Actual values (MW) Forecasted values (MW) REF

09/08/2007 7242.1 7336.3 1.3%

10/08/2007 7071.7 7312.8 3.41%

11/08/2007 6565.4 6692.8 1.94%

12/08/2007 6764.2 6695.9 −1.01%

13/08/2007 7718.8 7538.1 −2.34%

14/08/2007 7592.6 7644.5 0.68%

15/08/2007 7382.2 7143.8 −3.23%

16/08/2007 7437.7 7259.0 −2.40%

17/08/2007 7245.5 7269.3 0.33%

18/08/2007 6602.5 6917.6 4.77%

19/08/2007 6755.0 6606.8 −2.19%

20/08/2007 7536.1 7141.7 −5.23%

21/08/2007 7514.3 7532.7 0.25%

22/08/2007 7405.1 7341.2 −0.86%

23/08/2007 7323.6 7327.4 0.05%

24/08/2007 7037.8 7062.1 0.35%

MAPE 1.9%

From Table 11.1, it can be observed that the forecasted peak demands are very
close to the actual daily peak power demands. These results indicate the model’s
excellent performance in the sense that it can capture the significant essentials about
this complex nonlinear dynamic system through a very compact mathematical re-
alization (30 terms). This model provides a descriptive representation to the sys-
tem under study. The respective State Dependent Parameters (SDPs) are shown in
Figs. 11.5 and 11.6, demonstrating very clear views about the interaction and rela-
tionships between various components used in building the model.

As shown in Fig. 11.5(a) and Fig. 11.6(a), it demonstrates strong multi-variable
dependencies in the relationship between the electrical demand and its historical
data. Since, there is a strong link between the peak electrical demands and peak
temperatures, this implies that there exists significant multi-variable dependencies
in the relationship between the historical temperature data and the respective peak
demands (as shown in Figs. 11.5(b), (c), (d), and Fig. 11.6(b)).

Figure 11.6(c) demonstrates the direct relationship between the peak demand and
temperature in a certain day. A clearer view can be explored by plotting [ĝ0(x)]x
against the actual temperature range under study. Figure 11.7 indicates that power
consumption at cold temperature (9°C) is significantly higher than that at normal
temperature (i.e. 22°C). The power consumption trend decreases as the tempera-
ture increases from 9°C to 22°C, and reaches its minimum value at 22°C (thermal
comfort). When the temperature goes higher than 22°C, the power consumption in-
creases, and reaches its maximum value at 39°C. Note that, the rate of change in
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Fig. 11.5 SDPs’ plots: (a) f̂ [2]
1 (x1, x2) , (b) ĝ[2]

1 (x1, x2), (c) f̂ [2]
2 (x1, x2) and (d) ĝ[2]

2 (x1, x2)

the power consumption at the temperature above 25°C (especially, above 36°C, the
power consumption is dramatically increased) is quicker than that at the tempera-
ture below 22°C. It demonstrates a common fact that the power consumption during
hot weather (i.e. summer) is higher than that during cold weather (i.e. winter). This
phenomenon has been adequately explained by the model.

11.5 Conclusion

This chapter has described an application of a particular class of State Dependent
Parameter models, 2-DWSDP model, to electrical demand modeling and forecast.
In the present study, forecast of daily peak demand in the state of Victoria, Australia
was considered. The obtained mathematical model is parsimonious, yet descriptive,
enhancing its generalization capability while providing reasonable insights about
the interactions and relationships between several variables within this highly com-
plex, nonlinear system. Excellent performance in forecasting daily peak power de-
mand as demonstrated in the modelling results illustrates the merit of this approach,
in which the identified model efficiently captures the essentials of the system’s dy-
namics. In addition, this approach could be generally applicable to some other ap-
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Fig. 11.6 SDPs’ plots: (a) f̂ [2]
7 (x1, x2), (b) ĝ[2]

7 (x1, x2) and (c) ĝ0(x)

Fig. 11.7 [ĝ0(x)]x versus temperature
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plications in power systems research area which concerns the needs of modelling,
such as in power distribution line modelling, load behaviour study, and so on.

There are several other weather related variables which directly and indirectly
affect the power demand, such as humidity, wind and cloud conditions, minimum
temperature, etc. However, the obtained model’s performance suggests that for the
daily peak power demand modelling and forecasting problem in the present study,
daily peak temperature is the most influential weather-related variable. In the fu-
ture work, all the relevant variables will be incorporated into the model to further
enhance the model’s performance, particularly (1) the development of a composite
variable (i.e. apparent temperature, chill factor, etc.) which looks after all the rel-
evant weather variables as well as (2) the incorporation of some special variables
such as customer’s variables, holiday, etc.
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Chapter 12
Automatic Selection for Non-linear Models

Jennifer L. Castle and David F. Hendry

12.1 Introduction

It is a pleasure to contribute a chapter on non-linear model selection to a volume in
honor of Peter C. Young, who has himself contributed so much to modeling, under-
standing and capturing key aspects of non-linearity, and to data basing the choice of
which models work in a wide range of important areas in statistics, environmental
studies and economics. While we do not also address his interests in forecasting, we
share them strongly and have tried to advance that subject in other publications—
and as a further objective, trying to establish the general approach adopted here for
dynamic, non-stationary processes. We congratulate Peter on his successes to date
and look forward to many more.

Economic processes are complicated entities, which are often modeled by lin-
ear approximations, leading to possible mis-specification when non-linearity mat-
ters. This chapter develops a strategy for selecting non-linear-in-variables models
for cross-section data, following the automatic general-to-specific (Gets) multi-path
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search algorithms of PcGets (see [28], which built on [35]), and Autometrics within
PcGive (see [17], and [27]). The general properties of Autometrics model selection
are established in [9], multiple breaks are investigated by [10], and an empirical ap-
plication is provided in [30]. These properties of Autometrics can be summarized as
follows for a linear static model. When there are K candidate variables, and k of
these are relevant, then α(K − k) irrelevant variables will be retained on average,
where α is the chosen significance level. Because it selects variables (K), rather
than models (2K ), that result continues to hold even when K is greater than the
sample size, N , provided N > k. Also, the k relevant variables will be retained with
a probability close to the theoretical t-test powers determined by the non-centralities
of their parameters. For example, if K − k = 100 and α = 0.01, then one irrelevant
variable will be retained on average by chance sampling, despite the plethora of can-
didate variables. Moreover, coefficients with |t|-values greater than about cα = 2.6
will be retained on average. Next, although selection only retains variables whose
estimated coefficients have |t| ≥ cα , the resulting selection bias is easily corrected,
which greatly reduces the mean-square errors (MSEs) of retained irrelevant vari-
ables: see [29]. Finally, the terminal models found by Autometrics will be congruent
(well specified), undominated reductions of the initial general unrestricted model
(GUM). We will not discuss the details of the multi-path search algorithms that
have made such developments feasible, as these are well covered elsewhere (see
e.g., [17, 27, 28], and [19]): the reader is referred to those publications for biblio-
graphic perspective on this exciting and burgeoning new field. The latest version of
the model selection algorithm Autometrics is likelihood based, so can accommodate
discrete variable models such as logit and probit, along with many other economet-
ric specifications, but we focus on non-linear regression analysis here.

Thus, we investigate non-linear modeling as part of a general strategy of em-
pirical model discovery. Commencing with a low-dimensional portmanteau test for
non-linearity (see [8]), non-rejection entails remaining with a linear specification,
whereas rejection leads to specifying a general non-linear, identified and congru-
ent approximation. Next, the multi-path search procedure seeks a parsimonious,
still congruent, non-linear model, and that in turn can be tested against specific
non-linear functional forms using encompassing tests (see, e.g., [40], and [32]), and
simplified to them if appropriate.

Since the class is one of non-linear in variables, but linear in parameters, the most
obvious approach is to redefine non-linear functions as new variables (e.g., x2

i = zi
say), so the model becomes linear but larger, and standard selection theory applies.
However, non-linearity per se introduces five specific additional problems even in
cross sections, solutions to which need to be implemented as follows.

First, determining whether there is non-linearity. The low-dimensional portman-
teau test for non-linearity in [8] is applied to the unrestricted linear regression to
check whether any non-linear extension is needed. Their test is related to the test
for heteroskedasticity proposed by [49], but by using squares and cubics of the prin-
cipal components of the linear variables, the test circumvents problems of high-
dimensionality and collinearity, and is not restricted to quadratic departures. Pro-
viding there are fewer linear variables, K , than about a quarter of the sample size,
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N , the test can accommodate large numbers, MK , of potential non-linear terms,
including more than N , where for a cubic polynomial:

MK =K(K + 1)(K + 5)/6.

If the test does not reject, the usual Gets approach is applied to the linear model.
Otherwise, a non-linear, or indeed non-constant, model is needed to characterize the
evidence, so these possibilities must be handled jointly, as we do below.

Second, including both the linear and non-linear transformations of a variable can
generate substantial collinearity, similar to slowly-varying regressors (as in [42]).
Such collinearity can be problematic for estimation and selection procedures, as the
information content of the extra collinear variables is small, yet disrupts existing
information attribution. When the additional transformed variables are in fact irrel-
evant, model selection algorithms may select poorly between the relevant and ir-
relevant variables, depending on chance sampling. In a sense, automatic algorithms
still perform adequately, as they usually keep a ‘representative’ of the relevant ef-
fect. Nevertheless, orthogonality is beneficial for model selection in general, both
for that reason, and because deleting small, insignificant coefficients leaves the re-
tained estimates almost unaltered. We use a simple operational de-meaning rule to
eliminate one important non-orthogonality prior to undertaking model selection.

Third, non-linear functions can generate extreme outcomes, and the resulting ‘fat
tails’ are problematic for inference and model selection, as the assumption of nor-
mality is in-built into most procedures’ critical values. Non-linear functions can also
‘align’ with outliers, causing the functions to be retained spuriously, which can be
detrimental for forecasting and policy. Thus, data contamination, outliers and non-
linearity interact, so need to be treated together. To do so, we use impulse-indicator
saturation (denoted IIS), which adds an indicator for every observation to the can-
didate regressor set (see [34], and [36]) to remove the impact of breaks and extreme
observations in both regressors and regressand, and ensure near normality. Johansen
and Nielsen [36] show that IIS is a robust estimation method, and that despite adding
greatly to the number of variables in the search, there is little efficiency loss under
the null of no contamination. In the present context, there is also a potentially large
gain by avoiding non-linear terms that chance to capture unmodeled outliers, but
there are always bound to be more candidate variables for selection than the sample
size.

General non-linear functional approximations alone can create more variables
than observations. However, building on [29], Autometrics already handles such sit-
uations by a combination of expanding and contracting searches (see [15]). Never-
theless, the number of potential regressors,MK , grows rapidly as K increases:

K 1 2 3 4 5 10 15 20 30 40

MK 3 9 19 30 55 285 679 1539 5455 12300
(12.1)

An additional exponential component adds K more to MK , and impulse-indicator
saturation (IIS) adds N more dummies for a sample of size N (below, we use more
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than 5000 observations). Selections of such a magnitude are now feasible, but lead
to the next problem.

The fourth is the related problem of excess retention of linear and non-linear
functions and indicators due to a highly over-parameterized GUM. This is controlled
by implementing a ‘super-conservative’ strategy for the non-linear functions, where
selection is undertaken at stringent significance levels to control the null rejection
frequency. For example, whenMK +K +N = 8000 and no variables actually mat-
ter, a significance level of α = 0.001 would lead on average to 8 irrelevant reten-
tions, of which 5 would simply be indicators, which just dummy out their respective
observations (so is 99.9% efficient). As discussed in [29] and [10], post-selection
bias correction will drive the estimated coefficients of adventitiously retained vari-
ables towards the origin, leading to small mean square errors, so is not a problematic
outcome from learning that 7992 of the candidate variables do not in fact matter.
Thus the distribution under the null is established as retaining α(MK +K +N − k)
chance significant effects when k variables matter.

Finally, non-linearity comprises everything other than the linear terms, so some
functional form class needs to be assigned to search across, and that is almost bound
to be an approximation in practice. In a cross-section context, polynomials often
make sense, so we use that as the basis class. To then implement any economic-
theory based information, encompassing tests of the entailed non-linear form against
the selected model can be undertaken, and this order of proceeding avoids the
potential identification problems that can arise when starting with non-linear-in-
parameters models (see [22]). However, we do not focus on that aspect here.

We undertake an empirical study of returns to education for US males, using
1980 census data, applying the proposed non-linear algorithm after finding strong
evidence for non-linearity using the [8] test. The log-wage data are non-normal,
but we use IIS to obtain an approximation to normality, adding the indicators to
a general non-linear GUM, which controls for a wide range of covariates such as
education, experience, ability, usual hours worked, marital status, race, etc. The non-
linear selection algorithm finds a congruent model in which non-linear functions
play a key role in explaining the data.

The structure of the chapter is as follows. Section 12.2 outlines the non-linear
specification procedure to which a model selection algorithm such as Autometrics
is applied, and details the non-linear functions used, related to the RETINA algo-
rithm in [41]. Section 12.3 addresses the five intrinsic problems of selecting models
that are non-linear in the regressors. First, Sect. 12.3.1 sketches the non-linearity
test, then Sect. 12.3.2 demonstrates the collinearity between linear and non-linear
functions, and proposes a solution by simply de-meaning all functions of variables.
Third, Sect. 12.3.3 outlines the issue of non-normality, with a Monte Carlo study
that highlights the problem of extreme observations for model selection, and ex-
plains the application of IIS jointly with selecting variables. Finally, Sect. 12.3.5
discusses the super-conservative strategy to ensure non-linear functions are retained
only when there is definite evidence of non-linearity in the data. Section 12.4 ap-
plies the non-linear selection algorithm to a cross section of log wages, modeling
the returns to education: there is strong evidence both for non-linearity and outliers
that are captured by the algorithm. Finally, Sect. 12.5 concludes.
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12.2 The Non-linear Algorithm

Finding a unique non-linear representation of an economic process can be formid-
able given the complexity of possible local data generating processes (LDGPs,
namely the DGP in the space of the variables under analysis). As there are an infinite
number of potential functional forms that the LDGP may take, specifying a GUM
that nests the unknown LDGP is problematic. Here, we assume the LDGP is given
by:

yi = f (x1,i , . . . , xk,i; θ)+ εi where εi ∼ IN
[
0, σ 2

ε

]
, (12.2)

for i = 1, . . . ,N , with θ ∈ T ⊆ Rn. Three key concerns for the econometrician
are the specification of the functional form, f (·), the identification of θ , and the
selection of the potentially relevant variables, x′

i = (x1,i , . . . , xk,i) from an available
set of candidates (x1,i , . . . , xK,i) where K ≥ k.

The initial GUM includes all K candidates, in some non-linear form g(·):
yi = g(x1,i , . . . , xK,i;φ)+ vi where vi ∼ IN

[
0, σ 2

v

]
. (12.3)

Economic theory, past empirical and historical evidence, and institutional knowl-
edge all inform the specification of the variables in the GUM and their functional
form. If the initial specification is too parsimonious, relevant variables may be omit-
ted leading to a mis-specified final model. Theory often has little to say regarding
the functional-form specification, so an approximating class is required from the
infinite possibilities of non-linear functions. Many non-linear models—including
smooth-transition regressions, regime-switching models, neural networks and non-
linear equations—can be approximated by Taylor expansions, so polynomials form
a flexible approximating class for a range of possible LDGPs.

A Taylor-series expansion of (12.3) around zero results in (see e.g., [43]):

g(x1,i , . . . , xK,i;φ) = φ0 +
K∑

j=1

φ1,j xj,i +
K∑

j=1

j∑

l=1

φ2,j,lxj,ixl,i

+
K∑

j=1

j∑

l=1

l∑

m=1

φ3,j,l,mxj,ixl,ixm,i + · · · . (12.4)

While motivating the use of polynomial functions, (12.4) demonstrates how quickly
the number of parameters increases as (12.1), shows, exacerbated when N impulse
indicators are added. Polynomial functions are often used in economics because of
Weierstrass’s approximation theorem whereby any continuous function on a closed
and bounded interval can be approximated as closely as one wishes by a polyno-
mial, so if x ∈ [a, b], for any η > 0 there exists a polynomial p(x) ∈ [a, b] such
that |f (x)− p(x)|< η ∀x ∈ [a, b]. However, the goodness of the approximation is
unknown a priori in any given application, although it can be evaluated by testing
against a higher-order formulation and by mis-specification tests.
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A wide range of non-linear functions has been considered to approximate (12.2),
including various orthogonal polynomials, such as Hermite, Fourier series, asymp-
totic series (see e.g., [13]), squashing functions (see [50]), and confluent hyperge-
ometric functions (see [1]). Here, we include cubic functions, as these are sign-
preserving (so could represent, say, non-linear demand or price responses), and add
to the flexibility of the transformations, potentially approximating ogives. We do not
include exponential components, although the most general test in [8] does. If the
LDGP contains an inverse polynomial function, the polynomial will detect this form
of non-linearity due to the high correlation between the variable and its inverse. Al-
though the selected model might then be prone to misinterpretation, we consider the
polynomial approximation to be an intermediate stage before testing parsimonious
encompassing by a specific functional form.

Many other functional forms have been proposed in the literature: for example,
RETINA (see [41]) uses the transformations (see [7]):

K∑

j=1

K∑

l=1

βj,lx
λ1
j,ix

λ2
l,i for λ1, λ2 = −1,0,1. (12.5)

Although we exclude inverses, squared inverses, and ratios due to their unstable
behavior potentially creating outliers, and adequate correlations with levels (12.4)
includes the remaining terms. Also, for example, logistic smooth transition mod-
els (LSTAR: see e.g., [48]) will be approximated by the third-order Taylor expan-
sion given by (12.4). Thus, (12.4) approximates or nests many non-linear specifica-
tions.

While (12.4) already looks almost intractable, the inclusion of more variables
than observations does not in fact make it infeasible for an automatic algorithm, en-
abling considerable flexibility when examining non-linear models despite the num-
ber of potential regressors being large. WhenN >K , the Gets approach is to specify
a GUM that nests the LDGP in (12.2), to ensure the initial formulation is congruent.
As K >N , both expanding and contracting searches are required, and congruence
can only be established after some initial simplification to make it feasible to esti-
mate the remaining model. Here, we propose using the general formulation:

yi = φ0 +
K∑

j=1

φ1,j xj,i +
K∑

j=1

j∑

l=1

φ2,j,lxj,ixl,i

+
K∑

j=1

j∑

l=1

l∑

m=1

φ3,j,l,mxj,ixl,ixm,i

+
N∑

j=1

δj1{j=i} + ui (12.6)

with K potential linear regressors, xi , where 1{j=i} is an indicator for the ith obser-
vation.
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12.3 Problems When Selecting Non-linear Models

There are five problems that arise when selecting from a GUM that consists of a
large set of polynomial regressors as in (12.6). These problems include first detect-
ing non-linearity (Sect. 12.3.1), reducing collinearity (Sect. 12.3.2), handling non-
normality (Sect. 12.3.3) leading to more variables than observations (Sect. 12.3.4),
and avoiding potential excess retention of irrelevant regressors (Sect. 12.3.5). So-
lutions to all of these problems are now proposed, confirming the feasibility of our
non-linear model selection strategy.

12.3.1 Testing for Non-linearity

The LDGP in (12.2) has k relevant and K − k irrelevant variables when f (·) is
linear. The first stage is to apply the test for non-linearity in [8] to see if it is viable
to reduce (12.6) directly to:

yi =
K∑

j=1

βjxj,i +
N∑

j=1

δj1{j=i} + ei . (12.7)

If outliers are likely to be problematic, IIS could first be applied to (12.7) to as-
certain any major discrepancies, leading to say r indicators being retained (see
Sect. 12.3.4):

yi =
K∑

j=1

βjxj,i +
r∑

j=1

δj1{j=i} + ei . (12.8)

When xi denotes the set of linear candidate regressor variables, to calculate their
principal components, denoted zi , define H and B as the eigenvectors and eigenval-
ues of N−1X′X, such that:

zi = B− 1
2
[
(H′xi )− (H′xi )

]
. (12.9)

Let z2
j,i = wj,i and z3

j,i = sj,i , then the test for non-linearity is the F-test of H0:
β2 = β3 = 0 in:

yi = β0 + β ′
1xi + β ′

2wi + β ′
3si +

r∑

j=1

δj1{j=i} + εi, (12.10)

where r = 0 if IIS is not first applied. If the F-test does not reject, the GUM is taken
to be linear, and the usual selection algorithm is applied to select the relevant re-
gressors. Conversely, if the test rejects, non-linearity is established at the selected
significance level, so the remaining four problems need resolving for a viable ap-
proach. If IIS was not applied, non-linearity is only contingently established, as it
may be proxying outliers as Sect. 12.3.3 shows.
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12.3.2 Collinearity

Multicollinearity was first outlined by [20] within the context of static general-
equilibrium linear relations. Confluence analysis was developed to address the prob-
lem, although that method is not in common practice now (see [31]). The definition
of collinearity has shifted over the years, but for an N ×K regressor matrix X, we
can define perfect collinearity as |X′X| = 0, and perfect orthogonality as a diagonal
(X′X) matrix. Since collinearity is not invariant under linear transformations, it is
difficult to define a ‘degree of collinearity’, as a linear model is equivariant under lin-
ear transformations, and so the same model could be defined by various isomorphic
representations, which nevertheless deliver very different inter-correlations. Hence,
collinearity is a property of the parametrization of the model, and not the variables
per se. Moreover, |X′X| = 0 whenever N >K anyway.

Nevertheless non-linear transformations can generate substantial collinearity be-
tween the linear and non-linear functions. We consider a simple case in which we
add the irrelevant transformation f (wi)=w2

i to a linear model in wi . This polyno-
mial transform is common in economics: see Sect. 12.4 for an empirical application.
The degree of collinearity varies as the statistical properties of the process vary:
collinearity between wi and w2

i is zero when E[wi] = 0, but dramatically increases
to almost perfect collinearity as E[wi] = μ increases. To see that, consider the DGP
given by the linear conditional relation:

yi = βwi + ei = 0 + βwi + 0w2
i + εi, (12.11)

where εi ∼ IN[0, σ 2
ε ] with i = 1, . . . ,N , and:

wi ∼ IN
[
0, σ 2

w

]
. (12.12)

Since (12.11) is equivariant under linear transformations, in that both the dependent
variable and the error process are unaffected, it can also be written for zi =wi +μ
as:

yi = −βμ+ β (wi +μ)+ 0 (wi +μ)2 + εi
= −βz+ βzi + 0z2

i + εi
= 0 + β (zi − z)+ 0 (zi − z)2 + εi . (12.13)

Correspondingly, there are three models, namely, the original zero-mean case:

yi = β0 + β1wi + β2w
2
i + ui (12.14)

the non-zero-mean case:

yi = γ0 + γ1zi + γ2z
2
i + ui (12.15)

and the transformed zero-mean case:

yi = λ0 + λ1zi + λ2
(
z2
i − z2

)+ ui, (12.16)

where z2 is the sample mean of z2
i .
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First, letting X denote the general regressor matrix, for (12.15) with a non-zero
mean:

E
[
N−1X′X(μ)

] = E

⎡

⎢
⎣

⎛

⎜
⎝

1.0 z z2

z N−1∑ z2
i N−1∑ z3

i

z2 N−1∑ z3
i N−1∑ z4

i

⎞

⎟
⎠

⎤

⎥
⎦

=
⎛

⎜
⎝

1.0 μ μ2 + σ 2
w

μ μ2 + σ 2
w μ3 + 3μσ 2

w

μ2 + σ 2
w μ3 + 3μσ 2

w 3σ 4
w +μ4 + 6μ2σ 2

w

⎞

⎟
⎠ (12.17)

with the inverse:

(
E
[
N−1X′X(μ)

])−1 = 1

2σ 6
w

⎛

⎜
⎝

μ4σ 2
w + 3σ 6

w −2μ3σ 2
w μ2σ 2

w − σ 4
w

−2μ3σ 2
w 2σ 4

w + 4μ2σ 2
w −2μσ 2

w

μ2σ 2
w − σ 4

w −2μσ 2
w σ 2

w

⎞

⎟
⎠ .

(12.18)

There is substantial collinearity between the variables, except for the squared term,
which is irrelevant in the DGP. As μ—an incidental parameter here—increases,
E[N−1X′X(μ)] tends towards singularity, and for σ 2

w = 1, the ratioR of the largest to
the smallest eigenvalues in (12.18) grows dramatically from R = 5.83 when μ= 0
through R = 60223 for μ= 4 to R = 5.6 × 107 when μ= 10. Note that age enters
some regressions below, often with a mean above 20.

Next, in the zero-mean model in (12.14):

E
[
N−1X′X(0)

] = E

⎡

⎢
⎣

⎛

⎜
⎝

1.0 w w2

w N−1∑w2
i N−1∑w3

i

w2 N−1∑w3
i N−1∑w4

i

⎞

⎟
⎠

⎤

⎥
⎦=

⎛

⎜
⎝

1.0 0.0 σ 2
w

0.0 σ 2
w 0.0

σ 2
w 0.0 3σ 4

w

⎞

⎟
⎠

(12.19)

so the inverse is:

(
E
[
N−1X′X(0)

])−1 = 1

2σ 6
w

⎛

⎜
⎝

3σ 6
w 0 −σ 4

w

0 2σ 4
w 0

−σ 4
w 0 σ 2

w

⎞

⎟
⎠ . (12.20)

There is no collinearity between wi and w2
i although there is an effect on the inter-

cept, but this does not cause a problem for either estimation or a selection algorithm.
Finally, in the transformed zero-mean model in (12.16):

(
E
[
N−1X′X(0,0)

])−1 = 1

3σ 6
w

⎛

⎜
⎝

3σ 6
w 0.0 0.0

0.0 3σ 4
w 0.0

0.0 0.0 σ 2
w

⎞

⎟
⎠ . (12.21)
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Thus, a near orthogonal representation can be achieved simply by taking deviations
from means, which re-creates the specification in terms of the original variables wi
and w2

i as zi =wi +μ where E[z] = μ and E[z2] = μ2 + σ 2
w:

E
[
N−1X′X(μ)

]=
⎛

⎜
⎝

1.0 0.0 0.0

0.0 σ 2
w 2μσ 2

w

0.0 2μσ 2
w 3σ 6

w − σ 4
w + 4μ2σ 2

w

⎞

⎟
⎠ (12.22)

with the inverse:

(
E
[
N−1X′X(μ)

])−1 = 1

σ 6
w(3σ

2
w − 1)

×
⎛

⎜
⎝

3σ 8
w − σ 6

w 0.0 0.0

0.0 3σ 6
w − σ 4

w + 4μ2σ 2
w −2μσ 2

w

0.0 −2μσ 2
w σ 2

w

⎞

⎟
⎠ . (12.23)

Taking deviations from sample means delivers a reduction in collinearity, which is
particularly marked for the intercept, but worse for the linear term (zi−z). Again the
irrelevant squared term ‘benefits’. To remove the collinearity, first de-mean zi , then
also de-mean z2

i . The linear term remains (zi − z), but the squared term becomes
(zi − z)2 − [E(zi − z)]2 which will result in a model that is identical to (12.16).
Double de-meaning thus removes the collinearity generated by the non-zero mean,
and Monte Carlo evidence confirms this is an effective solution to mean-induced
collinearity.

A non-linear selection strategy should automatically double de-mean the gener-
ated polynomial functions prior to formulating the GUM. Two caveats apply. First,
the orthogonalizing rules will not remove all collinearity between higher-order poly-
nomials. We considered orthogonalizing using the Choleski method (see [45]), but
double de-meaning removed enough collinearity to ensure the Autometrics selection
had the appropriate properties. Second, any information contained in the intercepts
of the explanatory variables will be removed, although there is rarely a theory of the
intercept when developing econometric models, especially for cross-section data.

12.3.3 Non-normality

Normality is a central assumption for inference, as conventional critical values tend
to be used, so null rejection frequencies would be incorrect for non-normality. Nor-
mality tends to be even more vital for selection, when many decisions are made.
In non-linear models, normality is essential, as problems arise when fat-tailed dis-
tributions result in extreme observations, as there is an increased probability that
non-linear functions will align with extreme observations, effectively acting as in-
dicators and therefore being retained too often (see e.g., [11]).
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We now show by a Monte Carlo example that non-normal variables pose similar
problems. Consider these DGPs for four variables:

xi,t = εi,t , εi,t ∼ IN [0,1] for i = 1, . . . ,4. (12.24)

We generate non-linear functions given by the inverses of these normal distributions
(as in RETINA):

x−1
i,t = 1

xi,t
. (12.25)

The GUM contains twenty irrelevant variables given by:

x−1
1,t = ρ0 +

4∑

i=1

ρix
−1
1,t−i +

4∑

j=2

4∑

m=0

ρj,mx
−1
j,t−m + εt . (12.26)

Then selecting from (12.26) leads to |t|-values as large as 19 for variables with zero
non-centralities. Such a variable would unequivocally, but incorrectly, be retained as
a DGP variable. On average, two of the twenty irrelevant regressors are retained at
the 1% significance level. This implies that a fat-tailed distribution would have a null
rejection frequency of 10% at the 1% significance level. If the dependent variable
is xi,t rather than x−1

i,t , the retention probabilities are correct as normality results.
Non-normal errors can also pose a similar problem (see [10]). Hence, the problem
of model selection is exacerbated by the inclusion of non-linear functions, such as
inverses, which generate extreme observations.

12.3.4 Impulse-Indicator Saturation

[34] propose the use of impulse-indicator saturation to detect and remove outliers
and breaks, utilizing the fact that Autometrics can handle more variables than ob-
servations. Here the aim is to ensure that the selection process will not overly favor
non-linear functions that chance to capture outliers. The modeling procedure gener-
ates impulse indicators for every observation, 1{i=s} ∀s. The indicators are divided
into J subsets, which form the initial GUMs (including an intercept) and Automet-
rics selects the significant indicators from each subset, which are then stored as
terminal models. The joint model is formulated as the union of the terminal models
and Autometrics re-selects the indicators. Under the null that there are no outliers,
αN indicators will be retained on average for a significance level α. Johansen and
Nielsen [36] show that the cost of testing for the significance of N indicators under
the null is low for small α: for example, when α = 1/N , only one observation is ‘re-
moved’ on average. Also, [10] show that IIS alleviates fat-tailed draws, and allows
near-normal inference, important both during search and for the post-selection bias
correction which assume normality.
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Impulse-indicator saturation also overcomes the problem of ‘undetectable’ out-
liers. One concern with non-linearity is that it is difficult to distinguish between ex-
treme observations that are outliers or data contamination and extreme observations
that are due to the non-linearity in the data. Non-linear functions can ‘hide’ outliers
by fitting to the extreme values, or conversely, methods that remove extreme obser-
vations could be in danger of removing the underlying non-linearity that should be
modeled. IIS avoids this problem by including all potentially relevant variables as
well as indicators for all observations in the initial GUM, effectively applying IIS to
the residuals of the model as opposed to the dependent variable itself. Removing the
extreme observations in conjunction with selecting the non-linear functions avoids
both problems of removing observations that generate the non-linearity and finding
spurious non-linearity that merely captures outliers.

In fact the empirical example does not carry out the strategy precisely as pro-
posed here because the distributions transpired to be so highly non-normal, specif-
ically very badly skewed. Since there were more variables (including indicators)
than observations, initial selection inferences based on subsets of variables could
be distorted by that skewness. Thus, we added a stage of pre-selecting indicators to
‘normalize’ the dependent variable. Johansen and Nielsen [36] show the close rela-
tionship of IIS to robust statistics: both can handle data contamination and outliers,
and IIS appears to be a low cost way of doing so. Thus, in the spirit of robust statis-
tics, we sought the sub-sample that would be near normal, representing the most
discrepant observations by indicators rather than dropping them, so this was only a
transient stage. Those indicators are then retained as if they were additional regres-
sors. If the indicators are essential, then better initial selection inferences will ensue,
and if they really are not needed, as there were no outliers after the non-linear terms
were included, then they should drop out during selection.

12.3.5 Super-conservative Strategy

Irrelevant non-linear functions that are adventitiously retained are likely to be detri-
mental to modeling and forecasting, making such models less robust than linear
models, by ‘amplifying’ changes in collinearity between regressors (see e.g., [12]),
and location shifts within the equation or in any retained irrelevant variables. Hence,
non-linear functions should only be retained if there is strong evidence. Given the
possible excess retention of irrelevant functions due to the large number of potential
non-linear functions in the candidate set, much more stringent critical values must
be used for the non-linear, than linear, functions during multi-path searches. Critical
values should also increase with the number of functions included in the model, and
with the sample size, although as with all significance levels, the choice can also
depend on the preferences of the econometrician and the likely uses of the result-
ing model. Parsimonious encompassing of the feasible GUM by the final selected
model helps control the performance of the selection algorithm: see [16].

A potential problem could arise if the selection procedure eliminated all non-
linear functions, contradicting the results of the non-linearity test: it is feasible that
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the ellipsoid for a joint test at a looser significance level does not include the origin,
whereas the p-value hyper-square from individual tests at a tighter significance level
does. This can be avoided by then repeating the multi-stage strategy with tests un-
dertaken at consecutively looser significance levels. Rules for the super-conservative
strategy could be similar to those implemented for the Schwarz information crite-
rion (see [5]), so the selection strategy should deliver an undominated, congruent,
specific non-linear model that parsimoniously encompasses the feasible GUM.

We have now resolved the main problems likely to distort selection for a non-
linear model, relative to what is known about its performance in linear settings,
so now apply the approach in Autometrics to empirically modeling the returns to
education.

12.4 Empirical Application: Returns to Education

A natural application of the non-linear algorithm is returns to education. The liter-
ature is replete with empirical studies: see, inter alia, [21, 24] and [3]. We focus
on a one-factor model, where education is summarized as a single measure de-
fined by years of schooling, in keeping with the homogeneous returns literature of
[23] and [6]. We do not allow for unobserved heterogeneity, capturing heterogeneity
through the conditioning variables, following [14]. There are a range of estimation
procedures commonly used, including instrumental variables, control functions and
matching methods (see [4], for an overview), all of which have been developed to
mitigate the biases induced by least-squares estimation. There are 3 sources of bi-
ases in a least-squares regression of wage on schooling:

(i) the ability bias, where there is a correlation between the length of schooling
and an individual’s inherent, but unobserved, ability;

(ii) the returns bias, where the marginal return is correlated with the length of
schooling; and

(iii) measurement-error bias due to incorrect measurement of the schooling vari-
able.

In our simple one-factor model, these biases are likely to be small, and [6] argues
that there is some evidence that the biases balance out, resulting in near consistent
OLS estimates of the returns’ coefficient. In order to reduce the biases it is impor-
tant to include many control variables that can capture omitted factors. Since the
functional forms cannot be deduced from theory in this context, a non-linear model
must be postulated and so an automatic selection algorithm is a natural tool to use.

We use data from the 1980 US census, based on a random draw of 0.01%
of the population of US males in employment, resulting in 5173 observations.
Wage income has been top coded at $75,000, resulting in 204 observations that
are truncated. Figure 12.1 records the density and distribution of log wages (wi )
with their Gaussian reference counterparts. Normality is strongly rejected for w
as χ2(2) = 1018.0∗∗, with substantial skewness in the left tail. Many studies have
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Fig. 12.1 Distribution of log wages

Table 12.1 Potential explanatory variables

Variable Label Definition Mean Variance Min Max

Wage w logs 5.58 0.59 −1.24 9.47

Experience exp Age-years education-6 (÷10) 1.82 1.81 −0.3 5.7

Education edu Grade completed (21 categories)
(÷10)

1.26 0.01 0 2

Usual hours worked hrs Log ave. hours worked in 1979 3.70 0.11 0 4.6

Metropolitan status met City/rural (5 categories) – – 0 1

Race race (9 categories) – – 0 1

State state FIPS code (62 categories) – – 0 1

No. of own children child in household 1.01 1.69 0 9

Marital status mar (6 categories) – – 0 1

Educational attainment attain (9 categories) 6.97 3.12 1 9

considered alternative distributions to the log-normal including the Pareto, Cham-
pernowne and inverse Gaussian: see [25, 37, 47] and [2]. Instead, we apply IIS as
outlined in Sect. 12.3.4. Table 12.1 records summary statistics for wages and the
covariates.

12.4.1 Fitting the Theory Model

The standard reduced-form model of returns to education is the Mincer regression
[38, 39]:

wi = β0 + β1edui + β2expi + β3exp2
i + ui, (12.27)

where β1 measures the ‘rate of return to education’ which is assumed to be the
same for all education levels, and E[ui |edui , expi] = 0. In practice, conditioning on
additional covariates reduces the impact of omitted variable bias. Here, the results
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for the augmented Mincer regression are:

ŵi = 2.74
(0.25)

+ 0.624
(0.081)

edui + 0.436
(0.029)

expi − 0.066
(0.006)

exp2
i + 0.002

(0.014)
attaini

+ 0.404
(0.028)

hrsi + 0.019
(0.009)

childi + 47 dummies,

R2 = 0.308, σ̂ = 0.645, χ2(2)= 2065.7∗∗, SC = 1.997,

N = 5173, Fhet(58,5114)= 2.7∗∗, Freset(2,5117)= 0.074.

(12.28)

In (12.28), R2 is the squared multiple correlation, σ̂ is the residual standard devia-
tion, SC is the Schwarz criterion (see [46]), and coefficient standard errors are shown
in parentheses. The diagnostic tests are of the form Fj(k, T − l) which denotes an
approximate F-test against the alternative hypothesis j for: heteroskedasticity (Fhet:
see [49]) and the RESET test (Freset: see [44]); and a chi-square test for normality
(χ2

nd(2): see [18]). ∗ and ∗∗ denote rejection at 5% and 1% respectively.
The model shows a positive ex post average rate of return to education of 6%

which is broadly in line with the Mincer regression results in [26, Table 2] although
these are slightly higher at 10–13% as they consider separate regressions for blacks
and whites, whereas we take a random sample of the population and condition on
3 continuous dummies (hrs, child, attain) and 47 0/1 dummies (met, race, state,
mar) to control for omitted variable bias. The economic theory leads to a relatively
poor fit (R2 = 31%), and does not capture well the behavior of the observed data as
the model fails mis-specification tests for normality and heteroskedasticity. Despite
poor model specification, the elasticity signs are ‘correct’, with positive returns to
education and experience and an earnings profile that is concave with a significant
negative estimated coefficient for experience squared (texp2 = −10.5).

12.4.2 Theory Equation with IIS

Given the poor performance of the theory model, and the highly significant non-
normality test statistic, we next introduce IIS into the specification, using a 0.001
significance level. The resulting model is:

ŵi = 2.44
(0.095)

+ 0.641
(0.062)

edui + 0.470
(0.022)

expi − 0.072
(0.005)

exp2
i − 0.006

(0.011)
attaini

+ 0.473
(0.023)

hrsi + 0.0055
(0.007)

childi + 10 dummies + 114 indicators,

R2 = 0.597, σ̂ = 0.496, χ2(2)= 249.8∗∗, SC = 1.725,

N = 5173, Fhet(21,5037)∗∗ = 9.60, Freset(2,5040)= 3.34∗.

(12.29)

IIS does not remove the heteroskedasticity found in (12.28) (note that the test for
heteroskedasticity excludes the indicators from the variable set), which suggests that
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Fig. 12.2 Log wages adjusted for extreme observations

an alternative functional form should be sought. The RESET test indicates that there
is functional form mis-specification at the 5% significance level; we will see if we
can improve on the functional-form specification in Sect. 12.4.3.1 The normality
test still fails, but the statistic value is vastly reduced. At a significance level of
0.1%, with 5173 observations, 5 variables will be retained on average under the null,
and t-statistics of approximately 3.3 or greater would be retained under normality.
Autometrics finds 114 indicators (less than 2% of observations) and this greatly
reduces non-normality. The test is only an indication, as there is a mass at zero
due to the indicators, although [33] show that forming indexes of the indicators
can avoid this problem. Figure 12.2 records the density and QQ plot of log wages
once the indicators have been included: there is some deviation from the normal
distribution in the tails with the distribution falling outside the pointwise asymptotic
95% standard error bands.

We also applied IIS at α = 0.05% and α = 0.01%, which would imply that un-
der the null of no outliers we would retain 2.5 and 0.5 of an indicator on average.
The resulting Mincer regressions are similar to (12.29) with 58 and 17 indicators
retained.

12.4.3 Non-linear Models

In this section, we extend the Mincer regression in (12.27) to allow for non-
linearities that may enter other than through the experience squared term. We apply
the non-linear algorithm presented in Sect. 12.2, first without IIS and then with IIS
to assess the importance of removing outliers.

12.4.3.1 Testing Non-linearity

The first stage of the algorithm is to test for non-linearity using the test proposed
by [8]. Here x′

i = {expi , edui ,hrsi , childi ,attaini}, so the regressors are a combi-

1p-values shown in brackets.
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nation of variables and continuous dummies with very different ranges, but prin-
cipal components standardize the linear combinations. We apply IIS to the linear
model in which we fix the linear regressors in the model, i.e. do not select over
them, and apply model selection to the impulse-indicators (including discrete dum-
mies), which is equivalent to applying IIS to the residuals after conditioning on
the linear regressors. We retain r = 114 indicators (F(114,5042)= 32.55[0.00]∗∗).
We then compute the non-linearity test (12.10) based on (12.9). The test statis-
tic, F(10,5049) = 1293.2[0.00]∗∗, strongly rejects the null hypothesis of linearity.
Given the strong evidence for a squared experience term in (12.28) and (12.29), the
test may seem redundant, but we wish to illustrate the general approach in action. In
many applications, theory does not provide such a direct non-linear functional-form
specification, so there is value in confirming the need for a non-linear specification
in advance of model selection to avoid over-parameterizing the GUM with non-
linear functions when they are not required.

12.4.3.2 Modeling Non-linearity Without IIS

We form the non-linear GUM given by (12.6), but excluding the impulse indicators,
which results in 132 regressors (we exclude non-linear functions of the discrete
dummy variables, computing 2nd and 3rd powers of edu, exp, hrs, child and attain).
The resulting model nests the Mincer regression (12.28). All functions are double
de-meaned as in Sect. 12.3.2. The GUM equation standard error is σ̂GUM = 0.640.
Selection is undertaken using Autometrics at the 0.1% significance level, and (12.30)
reports the selected model.

ŵi = 3.43
(0.21)

+ 0.817
(0.129)

edu2
i + 0.190

(0.010)
expi − 0.071

(0.007)
exp2

i + 0.26
(0.053)

hrsi

− 0.17
(0.051)

hrs2
i − 0.115

(0.021)
expi × hrsi + 0.053

(0.012)
childi − 0.013

(0.004)
child2

i

+ 0.099
(0.013)

attaini + 9 dummies + 6 cubics, (12.30)

R2 = 0.314, σ̂ = 0.641, χ2(2)= 2218.1∗∗, SC = 1.983,

N = 5173, Fhet(36,5136)= 4.27∗, Freset(2,5146)= 2.34.

Experience and experience squared are retained with the correct signs and are highly
significant. Education is no longer significant, but its square is, as are hours squared
and child squared, and an interaction of experience and hours, as well as 6 cubic
terms, possibly representing a problem of over-fitting when outliers are not ac-
counted for. There is little improvement in fit compared to (12.28), but again the
model fails the diagnostic tests apart from RESET and selection using critical val-
ues based on the normal distribution is clearly violated. We next consider a model
that includes both the non-linear functions and IIS.
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12.4.3.3 Modeling Non-linearity with IIS

The previous regressions demonstrate that both augmenting the Mincer regression
with additional non-linear functions and applying IIS to account for outliers are nec-
essary but insufficient steps on their own in developing a theory-consistent model
that also captures the key characteristics of the data. Instead of applying both jointly,
we add a preliminary step in which IIS is first applied by itself to the linear model
(12.7) to eliminate the most extreme observations: from Sect. 12.4.3.1 we find
r = 114 indicators. Johansen and Nielsen [36] show that under the null, impulse-
indicator saturation can be applied to any asymmetric distribution as long as the
first four moments exist, and the distribution satisfies some smoothness properties.
The reason for this preliminary stage, as opposed to the simultaneous application of
IIS and selection of non-linear functions (as recommended above to overcome the
problem of extreme observations), is that by obtaining a reasonable first approxi-
mation to normality, conventional critical values are then applicable throughout the
selection process, which perforce includes both expanding as well as the usual con-
tracting searches as all variables cannot be included in the GUM from the outset.
By selecting over the indicators again in the non-linear GUM, the problem of ex-
treme observations is overcome, and this second stage can be undertaken at looser
significance levels as the procedure will involve fewer variables than observations.

Augmenting the GUM in Sect. 12.4.3.2 with the 114 impulse indicators re-
sults in 217 regressors in the initial GUM. The GUM equation standard error is
σ̂GUM = 0.487, which is only slightly smaller than (12.29), although an F-test of the
reduction to (12.29) (excluding indicators) is rejected (F(87,4956)= 5.78[0.00]∗∗).
Selection is undertaken using Autometrics at the 0.1% significance level, and equa-
tion (12.31) reports the selected model, with Fig. 12.3 recording the residual density
and residual QQ plot.

ŵi = 3.12
(0.17)

+0.705
(0.106)

edu2
i +5.375

(1.83)
edu3

i +0.196
(0.007)

expi −0.081
(0.005)

exp2
i −0.049

(0.010)
edui × exp2

i

+ 0.076
(0.014)

exp2
i × hrsi + 0.372

(0.041)
hrsi − 0.12

(0.041)
hrs2

i − 0.11
(0.016)

hrs3
i

+ 0.048
(0.014)

hrs2
i × childi + 0.097

(0.010)
attaini − 0.068

(0.013)
attain3

i − 4.141
(1.11)

edu2
i × attaini

+ 0.986
(0.216)

edui × attain2
i + 0.063

(0.015)
expi × hrsi × childi

+ 0.032
(0.009)

expi × hrsi × attaini + 112 indicators + 11 dummies,

R2 = 0.609, σ̂ = 0.489, χ2
nd(2)= 251.2∗∗, SC = 1.646,

N = 5173, Fhet(42,5019)= 5.85∗∗, Freset(2,5031)= 1.54.
(12.31)

17 explanatory variables are retained from the 103. Also, 11 dummies an 112
indicators are retained, picking up most of the left-tail skewness. The model still
does not pass all diagnostics partly due to the large number of indicators putting a
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Fig. 12.3 Non-linear wage model with IIS: residual density and residual QQ plot

mass at the origin, and partly due to some residual skewness in the tails: Fig. 12.3
records the QQ plot with 95% pointwise standard error bands around the normal and
there are significant deviations in the tails. Education enters as a quadratic and cubic,
and experience as a level and quadratic, indicating strong non-linearity, as many
authors have found when including age and age-squared terms. Characteristics such
as usual hours worked, attainments, and the number of children also help explain
wages, with some strong interactions and non-linear terms. Some effects enter with
opposite signs on the level and quadratic term suggesting concave functions. The
equation standard error is similar to the GUM: the parsimonious encompassing test
of the specific model against the GUM is F(77,4956)= 0.879, so a valid reduction
has been undertaken.

Double de-meaning was important: the correlation between exp and exp2 was
0.974, but after double de-meaning the correlation was reduced to −0.327. Impulse-
indicator saturation was also needed to obtain near-normality for selection and in-
ference. Finally, tight significance levels were vital to prevent excess retention of
irrelevant variables.

Although we do not have a substantive functional form specification deduced
from a prior theory to test as an encompassing reduction here, the logic thereof is
fairly clear. Adding such a functional form to (12.31) should eliminate many of the
selected non-linear terms in favor of the theory-based form, thereby delivering a
more robust, identified, interpretable and parsimonious form that does not impugn
the congruence of the model or its parsimonious encompassing of the initial GUM,
and indeed could even improve the fit while reducing the number of parameters.
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Equally, such a theory-based function might not remove all the non-linearity, so
simply imposing it from the outset would have led to a poorer final model.

12.5 Conclusion

This chapter develops a strategy for the selection of non-linear models, designed
to be embedded within the automatic model selection algorithm of Autometrics.
First, a general unrestricted model (GUM), including all potential variables that are
thought to explain the phenomenon of interest, is formulated and estimated. Next,
a test of linearity is applied to that initial approximation. If the null is accepted,
standard selection procedures are applied to the linear GUM. If the null is rejected,
a non-linear functional form is generated using polynomial transformations of the
regressors in which all functions are double de-meaned prior to inclusion in the
GUM to remove one potential collinearity. A set of N impulse indicators is also
generated for a sample of size N , and included in the GUM to remove outliers
and data contamination concurrently with selection of the specific model. Above,
because normality was so strongly rejected, a preliminary stage was applied with
impulse-indicator saturation alone, to ensure more appropriate initial inferences.
Selection is then performed using the techniques developed to handle more variables
than observations.

The chapter has shown that in order to achieve a successful algorithm, it is im-
portant to jointly implement all the developments discussed above, namely:

testing for the need to select a non-linear model when there are many candidates;
transformations to a near-orthogonal representation;
impulse-indicator saturation to remove extreme observations;
tight significance levels to avoid excess retention of irrelevant non-linear func-
tions;
handling more variables than observations.

Removing any one of these ingredients would be deleterious to selection, and hence
to the quality of the resulting model.

An empirical study of returns to education demonstrated the applicability of the
approach. Fitting theory-based models such as the Mincer equation without pay-
ing attention to the data characteristics by addressing evidence of mis-specification
and outliers, can result in poor models. Further, many previous empirical studies
did not address the implications of induced collinearity by including age and age
squared (or experience) without prior de-meaning. The empirical application is large
in dimension, with over 5000 observations and many linear covariates, leading to a
large number of candidate non-linear functions as well as indicators. Fortunately,
advances in automatic model selection make problems of this scale tractable; and
the analyses and simulations in recent research demonstrate the high success rates
of such an approach.
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Chapter 13
Construction of Radial Basis Function Networks
with Diversified Topologies

X. Hong, S. Chen, and C.J. Harris

13.1 Introduction

The identification of nonlinear systems using only observed finite data sets has be-
come a mature research area over the last two decades [1]. A large class of non-
linear models and neural networks can be classified as a linear-in-the-parameters
model [2, 3]. These are well structured for adaptive learning, have provable learn-
ing and convergence conditions, have the capability of parallel processing and have
clear applications in many engineering applications [4–6]. In particular, the radial
basis function (RBF) network is a popular type of linear-in-the-parameters model
and has been widely applied in diverse fields of engineering [7–10]. The ultimate ob-
jective of model construction from observed data sets should be to produce a model
which captures the true underlying dynamics and predicts accurately the output for
unseen data. This translates into the practical principle in nonlinear modelling of
finding the smallest model that generalizes well. Sparse models are preferable in
engineering applications since a models’ computational complexity scales with its
model complexity. Furthermore, a sparse model is easier to interpret from the angle
of knowledge extraction from observed data sets.

A fundamental concept in the evaluation of model generalization capability is
that of cross validation [11] which is often used to derive the information theo-
retic metrics, e.g. the leave-one-out (LOO) cross validation has been used to derive
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model selective criteria such as the Akaike information criterion (AIC) [12]. Model
selective criteria can be used for predicting a model’s performance on unseen data
and evaluating a model’s quality amongst other competitive models. The forward
orthogonal least squares (OLS) algorithm is an efficient nonlinear system identifi-
cation algorithm [13, 14] which selects regressors in a forward manner by virtue of
their contribution to the maximization of the model error reduction ratio (ERR). In
order to produce a model with good generalization capabilities, the AIC [12] is usu-
ally incorporated into the forward orthogonal least squares (OLS) algorithm to de-
terminate the model construction process. The OLS algorithm has become a popular
modelling tool in a wide range of applications [15–18]. Note that most of model se-
lective criteria are formula of approximating the LOO mean-square error (mse), and
due to the approximation, have lost discriminate power in selecting terms if being
used in the forward OLS algorithm. The LOO mean-square error (MSE) criterion,
which directly measures the model generalization capability, has been introduced
into the framework of forward OLS algorithm [19] in which the LOO mean-square
error (MSE) criterion is calculated efficiently (as outlined in Sect. 13.2). An addi-
tional advantage is that the process is fully automatic, so that there is no need for
the user to specify a termination criterion of the model construction process.

In this review we bring together some of our recent work from the angle of the di-
versified RBF topologies, including three different topologies; (i) the RBF network
with tunable nodes [20]; (ii) the Box-Cox RBF [21]; and (iii) the BVC-RBF net-
work [22]. The RBF network with tunable nodes is initially described in Sect. 13.3.
Note that the parameters of the RBF network include its center vectors and variance
or the covariance matrices of the basis function as well as the connecting weights
from the RBF nodes to the network output. In [19] and many other RBF modelling
paradigms [23–26], the RBF centers are restricted to be selected from the input data
sets and a common variance is employed for every RBF node. The common variance
should be treated as a hyperparameter and determined via cross-validation, which
may be computationally costly. The recent work [20] has introduced a construction
algorithm for the tunable RBF network, where each RBF node has a tunable center
and an adjustable diagonal covariance matrix. An OFS procedure is developed to
append the RBF units one by one by minimizing the LOO mse. Because the extra
flexibility for the basis functions is allowed in the tunable RBF topology and all
the parameters are optimized via minimizing the LOO mean-square error (MSE)
criterion, the algorithm is computationally efficient and the resultant models have
sparser representations with excellent generalization capability, in comparison with
the existing sparse kernel modeling methods.

In Sect. 13.4, the Box-Cox RBF topology and its fast model construction algo-
rithm [21] is described. It is a common practice to construct the RBF network in
order to represent a systems’ input/output mapping. For the network training the
system output observations are used as the direct target of the model output. Least
squares algorithm is often used as the parameter estimator, which is equivalent to
the maximum likelihood estimator (MLE) under the assumption that the noise is ad-
ditive and independent identically distributed (i.i.d.) Gaussian with zero mean and
constant variance. In practice the variance of process noise may vary with the output,



13 Construction of Radial Basis Function Networks with Diversified Topologies 253

e.g. the variance of noise may increase as the system output increases. For some dy-
namical processes in which the model residuals exhibit heteroscedasticity, e.g. with
nonconstant variance or skewed distribution, or being multiplicative to the model,
using conventional RBF models to construct a direct systems’ input/output map-
ping based on the least squares estimator is no longer appropriate. The work [21]
has modified RBF topology based on Box-Cox transformation. The fast identifica-
tion algorithm [21] is developed based on a maximum likelihood estimator (MLE)
to find the required Box-Cox transformation. It is shown the OFS-LOO algorithm is
readily applicable to construct a sparse Box-Cox RBF model with good generalisa-
tion [19, 21, 27].

Finally Sect. 13.5 describes the topology of the BVC-RBF network [22]. Note
that most of RBF modelling algorithms fit into the statistical learning framework,
i.e. the model is determined based on the observational data only. In many mod-
elling tasks, there are more or less prior knowledge available. Although any prior
knowledge about the system should help to improve the model generalization, in
general incorporating the deterministic prior knowledge into a statistically learning
paradigm would make the development of modelling algorithms more difficult if not
impossible. The work [22] has introduced the idea of modifying RBF topology in
order to enhance its capability of automatic constraints satisfaction. We considered
a special type of prior knowledge given by a type of boundary value constraints
(BVC), and introduced the BVC-RBF as a new topology of RBF neural network
that has the capability of satisfying the BVC automatically. The BVC-RBF net-
work [22] is constructed and parameterized based on the given BVC. It is shown
that the BVC-RBF remains as a linear-in-the-parameter structure just as the conven-
tional RBF does. Therefore many of the existing modelling algorithms for a con-
ventional RBF are almost directly applicable to the new BVC-RBF without added
algorithmic complexity nor computational cost. Consequently the topology of the
BVC-RBF effectively lends itself as a single framework in which both the deter-
ministic prior knowledge and stochastic data are fused with ease.

13.2 Orthogonal Forward Selection (OFS) Algorithm Based
on Leave-One-Out (LOO) Criteria

Consider the regression problem of approximating the N pairs of training data
DN = {xk, yk}Nk=1 with a linear-in-the-parameter model defined in

yk = ŷk + ek =
M∑

i=1

wigi(xk)+ ek = gT (k)w + ek, (13.1)

where the input xk ∈ &m, the desired output yk ∈ &, ŷk denotes the model out-
put, ek = yk − ŷk is the modelling error, gi(·) for 1 ≤ i ≤M is a known nonlin-
ear basis function mapping, such as RBF, polynomial or B-spline functions, and
g(k) = [g1(xk) g2(xk) . . . gM(xk)]T , w = [w1 w2 . . . wM ] ∈ &M is the weight
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vector, M is the number of basis functions. By defining y = [y1 y2 . . . yN ]T ,
e = [e1 e2 . . . eN ]T , and G = [g1 g2 . . . gM ] with gl = [gl(x1) gl(x2) . . . gl(xN)]T ,
1 ≤ l ≤M . The regression model (13.1) over the training data set can be written in
the matrix form

y = Gw + e. (13.2)

Here gl is the lth column of while gT (k) the kth row of G.
Let an orthogonal decomposition of G be G = PA, where A = {αij } is anM×M

unit upper triangular matrix and P = [p1 p2 · · · pM ] is an N ×M matrix with
orthogonal columns that satisfy

PT P = diag{κ1, . . . , κM}, (13.3)

where κl = pTl pl for 1 ≤ l ≤M . The regression model (13.2) can be alternatively
expressed as

y = Pθ + e, (13.4)

where θ = [θ1 θ2 . . . θM ]T satisfies the triangular system Aw = θ . The model output
ŷk can be equivalently expressed by

ŷk = pT (k)θ , (13.5)

where pT (k)= [p1(xk) p2(xk) · · · pM(xk)] is the kth row of P.
Consider the modeling process that has produced the n-unit model. Let us denote

the constructed n model columns as Pn = [p1, . . . ,pn], the kth model output of this
n unit model identified using the entire training data set as ŷ(n)k =∑n

i=1 θipi(k), and

the corresponding kth modeling error e(n)k = yk − ŷ(n)k .

Definition 13.1 The leave-one-out (LOO) mse: If we “remove” the kth data point
from the trying data set and use the remaining (N − 1) data points to identify the
n-unit model instead, the “test” error of the resulting model can be calculated on
the data point removed from training. This LOO modeling error (this corresponds
to the LOO pseudo-modeling error in the context of Box-Cox RBF network (see
Sect. 13.4)), denoted as e(n,−k)k , is given by [28]

e
(n,−k)
k = e(n)k /η(n)k , (13.6)

where η(n)k is the LOO error weighting [28]. The LOO mse (this corresponds to the
LOO pseudo-mse in the context of Box-Cox RBF network (see Sect. 13.4)) for the
n-unit model is then defined by

Jn = 1

N

N∑

k=1

(
e
(n,−k)
k

)2 (13.7)

which is a measure of the model generalisation capability [11, 28].
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For model (13.5) the computation of the LOO criterion Jn is very efficient, be-
cause e(n)k and η(n)k can be computed recursively using [19, 27]

e
(n)
k = e(n−1)

k − θnpn(k), (13.8)

η
(n)
k = η(n−1)

k − p2
n(k)

κn + ν , (13.9)

where ν ≥ 0 is a small regularization parameter.
The orthogonal forward selection (OFS) algorithm based leave-one-out (LOO)

criteria was proposed [19, 27], in which the LOO mse Jn was minimized by search-
ing a set of candidate regressors at each forward orthogonal regression stage. It
is shown [19] that Jn is concave with respect to the number of model terms, and
this means that the model construction process becomes fully automatic without us-
ing additional termination criterion. Furthermore note that Jn directly measures the
model generalization capability so that there is no need to use a separate validation
data set. Other advantages for using LOO mse criteria are that LOO mse Jn has not
lost discriminative power in selecting terms as happens with AIC, and that there is
no extra tuning parameters in the model selective criterion.

13.3 RBF Network with Tunable Nodes

A popular approach is to construct the RBF models with the Gaussian basis func-
tions, in which the candidate regressors gi(·) are formed using the training data set,
and a given common variance is employed for every RBF node. In order to find a
satisfactory value of the common variance, the algorithms in [19, 27] need to be re-
peated, e.g. via grid search based cross validation. Clearly the true cost of modeling
must take into account the cost of determining all the parameters, e.g. optimizing the
value the common variance. This is because most of the complexity for many ex-
isting learning algorithms is due to the need to tune parameters that have nonlinear
relationship to the system output via cross validation. Therefore a model with less
parameters that are tuned via cross validation could potentially lead to the significant
reduction to the true cost of modeling.

Alternatively if the regressors gi(·) are viewed as the building blocks of the RBF
network, then it is intuitive to make these more flexible by relaxing the constraint
that each regressor has the same shape, because this allows the model generaliza-
tion capability to be maximized for a model with the smallest size. The tunable RBF
network was recently introduced [20], in which each node of the network has a tun-
able center and an adjustable diagonal covariance matrix. Clearly the tunable RBF
topology has more parameters that are nonlinear to the system output, and nonlinear
optimization is necessary, leading to the additional computation costs. Note that it
would be computationally prohibitive to tune a large number of extra parameters
via cross validation. Significantly the OFS-LOO algorithm, the construction algo-
rithm developed for the tunable RBF network in [20], optimizes all the associated
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parameters in order to achieve model generalization without cross validation. This
potentially leads to considerable saving in terms of the true cost of modeling, de-
spite the fact that more parameters that have nonlinear relationship to the system
output are introduced in the tunable RBF topology.

Consider the general RBF regressor of the form [20]

gi(x)=K
(√
(x − μi )

T Σ−1
i (x − μi )

)
(13.10)

where μi is the center vector of the ith RBF unit, the diagonal covariance matrix has
the form Σi = diag{σi,1, . . . , σi,m}, and K(·) is the chosen basis or kernel function.
The proposed algorithm constructs the RBF units one by one by positioning and
shaping the RBF nodes while minimizing the LOO mse Jn. Specifically, at the nth
stage of the constructing procedure, the nth RBF unit is determined by minimizing
Jn with respect to the node’s center vector μn and the diagonal covariance matrixΣn

min
μn,Σn

Jn(μn,Σn) (13.11)

and the construction procedure is automatically terminated when JM ≤ JM+1, yield-
ing an M-term RBF network. Intuitively the extra number of tunable parameters in
each RBF node can enhance the modeling capability such that the final model size
M could be much smaller than that of fixed RBF with each unit having a common
variance, leading to another part of saving in computation cost, and this is often
confirmed in simulation studies.

In [20], a simple yet efficient global search algorithm called the repeating
weighted boosting search (RWBS) algorithm [29] was proposed to solve the task of
the nonconvex optimization problem (13.11). The procedure is summarized here.
Let u be the vector that contains μn andΣn. Giving the following initial conditions:

e
(0)
k = yk and η

(0)
k = 1, 1 ≤ k ≤N

J0 = 1

N
yT y = 1

N

N∑

k=1

y2
k

⎫
⎪⎪⎬

⎪⎪⎭

Specify the RWBS algorithmic parameters, namely, the population size Ps , the num-
ber of generations in the repeated search NG, and the number of weighted boosting
search iterationsMI .

Outer loop: generations For (l = 1; l ≤NG; l = l + 1) {
Generation Initialization: Initialize the population by setting u[l]

1 = u[l−1]
best and ran-

domly generating the rest of the population members u[l]
i ,2 ≤ i ≤ PS , where u[l−1]

best

denotes the solution found in the previous generation. If l = 1, u[l]
1 is also randomly

chosen.
Weighted boosting search initialization: Assign the initial distribution weighting
factors δi(0)= 1/Ps , 1 ≤ i ≤ Ps , for the population. Then
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(1) For 1 ≤ i ≤ PS , generate gi)n from u[l]
i , the candidates for the nth model column,

and orthogonalize them

α
i)
j,n = pTj gi)n /p

T
j pj , 1 ≤ j < n, (13.12)

pi)n = gi)n −
n−1∑

j=1

α
i)
j,npj , (13.13)

θi)n = (pi)n )T y/
(
(pi)n )

T pi)n + ν). (13.14)

(2) For 1 ≤ i ≤ Ps , calculate the LOO cost for each u[l]
i

e
(n)
k (i) = e(n−1)

k − pi)n (k)θ i)n , 1 ≤ k < N, (13.15)

η
(n)
k (i) = η(n−1)

k − (pi)n (k)
)2
/
(
(pi)n )

T pi)n + ν), 1 ≤ k < N, (13.16)

J i)n = 1

N

N∑

k=1

(
e
(n)
k (i)

η
(n)
k (i)

)2

, (13.17)

where pi)n (k) is the kth element of pi)n .

Inner loop: weighted boosting search For (t = 1; t ≤MI ; t = t + 1) {
Step 1: Boosting

1. Find

ibest = arg min
1≤i≤Ps

J i)n , (13.18)

iworst = arg max
1≤i≤Ps

J i)n . (13.19)

Denote u[l]
best = u[l]

ibest
and u[l]

worst = u[l]
iworst

,
2. Normalize the cost function values

J̄ i)n = J
i)
n

∑Ps
j=1 J

j)
n

, 1 ≤ i ≤ Ps. (13.20)

3. Compute a weighting factor βt according to

ξt =
Ps∑

i=1

δi(t − 1)J̄ i)n , βt = ξt

1 − ξt . (13.21)

4. Update the distribution weightings for 1 ≤ i ≤ Ps

δi(t)=
⎧
⎨

⎩
δi(t − 1)βJ̄

i)
n
t for β ≤ 1,

δi(t − 1)β1−J̄ i)n
t for β > 1

(13.22)
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and normalize them

δi(t)= δi(t)
∑Ps
j=1 δj (t)

, 1 ≤ i ≤ Ps. (13.23)

Step 2: Parameter Updating

1. Construct the (P s + 1)th point using

uPs+1 =
Ps∑

i=1

δi(t)u
[l]
i . (13.24)

2. Construct the (P s + 2)th point using

uPs+2 = u[l)]
best +

(
u[l]
best − uPs+1

)
. (13.25)

3. Calculate gPs+1)
n and gPs+2)

n from uPs+1 and uPs+2, orthogonalize these two can-
didate model columns (as in (13.12)–(13.14), and compute the corresponding
LOO cost function values J i)n , i = Ps + 1,Ps + 2 (as in (13.15)–(13.17)). Then
find

i∗ = arg min
i=Ps+1,Ps+2

J i)n . (13.26)

(ui∗ , J
i∗)
n ), which replace (u[l]

worst , J
iworst )
n ) in the population.

} End of inner loop This solution found in the lth generation is u = u[l]
best .

} End of outer loop This yields the solution u = u(NG)best , i.e., μn, Σn of the nth RBF
node, the nth model column gn, the orthogonalization coefficients αj,n, 1 ≤ j < n,
the corresponding orthogonal model column pn, and the weight θn, as well as the
n-term modelling errors e(n)k and the associated LOO modelling error weightings

η
(n)
k for 1 ≤ k ≤N .

Note that the algorithmic parameters Ps , NG and MI are found empirically, and
some general rules are discussed in [29].

Example 13.1 (Chen et al. [20] Boston Housing Data) This benchmark data set
is available at the University of California, Irvine (UCI) repository [30]. The data
set comprises 506 data points with 14 variables. The task of predicting the median
house value was performed from the remaining 13 attributes. 456 data points were
randomly selected from the data set for training and the remaining 50 data points
were used as a test data set. The experiment was repeated and the average results
over 100 repetitions were given [20]. Three construction algorithms, the ε-SVM
[24], the LROLS-LOO [27] and the OFS-LOO [20] were compared, and the Gaus-
sian basis function was used to form the basis function. Table 13.1 summarize the
results for three algorithms over the 100 realizations. The experiments parameters
setting can be found [20]. Discussions on the computational complexity compari-
son can be found [20], in which it is argued that the OFS-LOO algorithm is highly
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Table 13.1 Comparative results for Boston housing data set [20]; The results were averaged over
100 realisations and quoted as the mean ± standard deviation

Algorithm RBF type Model size Training MSE Test MSE

ε-SVM fixed 243.2 ± 5.3 6.7986 ± 0.4444 23.1750 ± 9.0459

LROLS-LOO fixed 58.6 ± 11.3 12.9690 ± 2.6628 17.4157 ± 4.6670

OFS-LOO tunable 34.6 ± 8.4 10.0997 ± 3.4047 14.0745 ± 3.6178

competitive in terms of the real cost of modeling. The computation efficiency as-
pect is further improved by a particle swarm optimization (PSO) aided OFS-LOO
method [31].

13.4 Box-Cox Output Transformation Based RBF Network
(Box-Cox RBF)

In this section we review a modified RBF topology [21], in which a conventional
RBF network was introduced to represent the Box-Cox transformed system output,
rather than the actual system output. One of the motivations of [21] is to provide a
computationally efficient approach to construct a sparse Box-Cox RBF network for
some systems with the heteroscedasticity. Provided that there is a suitable Box-Cox
transformation, the pseudo model errors that are the model residuals between the
transformed system output and model output can be stabilized so that it follows a
normal assumption [32–34]. Provided that the optimal parameter λ used in Box-
Cox transformation, the number and location of candidate RBF centers are known,
various orthogonal forward regression (OFR) algorithms [13, 35–37] are readily
applicable to model structure selection and parameter estimation for the proposed
Box-Cox transformed based RBF network.

Consider the problem of approximating the N pairs of training data {xk, yk}Nk=1,
where yk is positive system output. If the original system output is not negative,
then yk + c→ yk > 0 is used where c is a chosen positive number just large enough
to enable yk to be positive. The Box-Cox transformation is a transformation to the
system output given by

h(y,λ)=
{
(yλ − 1)/(λỹλ−1) if λ 
= 0,

ỹ log(y) if λ= 0,
(13.27)

where ỹ = N

√∏N
k=1 yk , the geometric mean of the output observations.

The Box-Cox transformation based RBF networks (Box-Cox RBF) [21] is illus-
trated in Fig. 13.1. For a given λ, the Box-Cox RBF network with a single output



260 X. Hong et al.

Fig. 13.1 The topology of the Box-Cox RBF network

can be formulated as

h(yk, λ)= ĥk + ek =
M∑

i=1

wigi(xk)+ ek = gT (k)w + ek. (13.28)

Here ek = h(yk, λ) − ĥk is referred as the pseudo error. (In order to reduce the
number of notations, ek is still used here in spite of the difference between (13.1)
and (13.28). This allows that the algorithm in Sect. 13.2 to be shared for the different
topologies.) The regressors gi(xk) are formed using some known RBF functions (see
Sect. 13.2). Note that

lim
λ→0

h(y,λ)= lim
λ→0

[(yλ − 1)/(λỹλ−1)] = ỹ log(y) (13.29)

and the inverse of Box-Cox transformation upon ĥk for given λ 
= 0 is

ŷk = h−1(ĥk)= λ

√
1 + λỹλ−1ĥk. (13.30)

If λ= 0, then ŷk = exp[ĥk/ỹ].
Supposing all the training data were used as centres to construct the candidate

regressors gi(xk), (13.28) can be rewritten in a vector form as

e = h(λ)− Gw (13.31)

in which h(λ) = [h(y1, λ), . . . , h(yN ,λ)]T ∈ &N is transformed system outputs’
vector. e = [e1, . . . , eN ]T ∈ &N is the pseudo-error vector.

The parameter estimation for the Box-Cox RBF network is to adapt model pa-
rameters based on the fundamentals of feedback learning and weight adjustment
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found in conventional parametric optimization so that the model produces a good
approximation to the true system, e.g. to minimize pseudo errors as shown Fig. 13.1.
Compared to the conventional RBF neural networks, there is an additional task of
determining the required Box-Cox transformation, i.e. finding the optimal λ. The
method introduced in [21] is based on the underlying assumption that there exists a
suitable Box-Cox RBF network such that the resultant model residuals, or pseudo
errors ek , become Gaussian with zero mean and constant variance σ 2 [32, 33]. This
leads to a fast algorithm for determining λ based on MLE, as described below.

Because the parameter estimators for linear-in-the-parameters models rely on the
well-conditioning of the model, yet using the full data set to form RBF regressors
usually results in ill-conditioning. Initially we consider the singular value decompo-
sition (SVD) of matrix G with orthonormal matrix QN ∈ &N×N , such that

QTNGQN = ΣN = diag(σ1, σ2, . . . , σL,0, . . . ,0) ∈ &N×N, (13.32)

where σ1 ≥ σ2 ≥ · · · ≥ σL are L nonnegative singular values of G. Denote Σ =
diag(σ1, σ2, . . . , σL) ∈ &L×L, and the submatrix of the first L columns of QN as
Q = [q1, . . . ,qL] ∈ &N×L, and qk = [qk(x1), . . . , qk(xN)]T . Equation (13.31) be-
comes

e(ϑλ)= h(λ)− QΣQTw = h(λ)− Qϑ (13.33)

in which ϑ = [ϑ1, . . . , ϑL]T ∈ &L, ϑλ is defined as ϑλ = [ϑT , λ]T . Denote e(ϑλ)
= [e1(ϑλ), . . . , eN(ϑλ)]T .

Consider the MLE for ϑλ under the assumption that the pseudo errors, ek , is
Gaussian with zero mean and constant variance σ 2 [32, 33]. Specifically, suppose
that there exists a suitable Box-Cox transformation given by (13.27) such that the
transformed output observations h(y,λ) satisfy the normal assumption with the
probability density function [32, 33] in relation to the original observations yk ,
k = 1, . . . ,N proportional to the following function

1√
2πσ

exp

{
−e

2
k(ϑλ)

2σ 2

}
J (k, λ), (13.34)

where

ek(ϑλ)= h(yk, λ)−
L∑

i=1

qi(xk)ϑi (13.35)

and J (k, λ) is the Jacobian of the Box-Cox transformation given by [32, 33]

J (k, λ)= ∂h(y,λ)

∂y

∣∣∣∣
y=yk

=
[
yk

ỹ

]λ−1

.

Define a loglikelihood function as follows [32, 33]

L(θλ)= −N log(σ )−
N∑

k=1

e2
k(ϑλ)

2σ 2
(13.36)
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in which (13.36) is applied. Hence MLE of ϑλ can be solved by nonlinear least
squares algorithm such as Gauss-Newton algorithm to minimize the mean squares
pseudo errors

∑N
k=1 e

2
k(ϑλ).

Consider the minimization of
∑N
k=1 e

2
k(ϑλ) with respect to ϑλ by using Gauss-

Newton algorithm [38]. Denote an iteration step variable l by a superscript (l). With
an initial ϑ

(0)
λ , the iteration formula is given by

ϑ
(l)
λ = ϑ

(l−1)
λ + α{[Q(l)]TQ(l)}−1[Q(l)]T e(ϑ (l−1)

λ ), (13.37)

where α > 0 is a small positive step size. Q (the superscript (l) is removed here for
notational simplicity) is the Jacobian matrix of ek(ϑλ) with respect to ϑλ, given by

Q =

⎡

⎢⎢⎢⎢⎢
⎣

∂
∂θ1
e1(ϑλ)

∂
∂ϑ2
e1(ϑλ) . . . ∂

∂ϑL
e1(ϑλ)

∂
∂λ
e1(ϑλ)

∂
∂θ1
e2(ϑλ)

∂
∂ϑ2
e2(θλ) . . . ∂

∂ϑL
e2(ϑ)

∂
∂λ
e2(ϑλ)

...
...

. . .
...

...

∂
∂ϑ1
e(ϑλ,N)

∂
∂ϑ2
eN(ϑλ) . . . ∂

∂ϑL
eN(ϑλ)

∂
∂λ
eN(ϑλ)

⎤

⎥⎥⎥⎥⎥
⎦

∈ &N×(L+1)

(13.38)
or equivalently

Q = [−Q,∇λh(k,λ)], (13.39)

where

∇λh(k,λ)=
[
∂

∂λ
h(y1, λ),

∂

∂λ
h(y2, λ), . . . ,

∂

∂λ
h(yN,λ)

]T
∈ &N, (13.40)

in which,

∂

∂λ
h(yk, λ)= λyλk log[yk] − (yλk − 1)(1 + λ log ỹ)

λ2ỹλ−1
(13.41)

as derived from (13.27). Hence, due to the fact that Q is orthonormal,

QTQ =
[

I b(λ)
bT (λ) d(λ)

]
(13.42)

in which I is an unit matrix.

b(λ) = −QT∇λh(t, λ)= −[qT1 ∇λh(t, λ), . . . , qTL∇λh(t, λ)]T ,
d(λ) = {∇λh(λ)}T∇λh(λ). (13.43)

At the lth iteration step with previous parameter estimator as ϑ
(l−1)
λ =

[ϑ (l−1), λ(l−1)]T . Denote K(l) = {[Q(l)]TQ(l)}−1. Apply the inverse of matrix block
decomposition lemma to (13.42), in which b(λ), d(λ), Q are replaced by b(λ(l−1)),
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d(λ(l−1)) and Q(l), to yield,

K(l) = 1

h(λ(l−1))

[
I + b(λ(l−1))bT (λ(l−1)) −b(λ(l−1))

−bT (λ(l−1)) 1

]

, (13.44)

where

h(λ(l−1))= d(λ(l−1))− bT (λ(l−1))b(λ(l−1)). (13.45)

The proposed algorithm is fast and stable, as the update of K(l) over iteration step l
is simplified with no need of matrix inversion. Following deriving the MLE for λ
by using the above fast Gauss-Newton algorithm, the Box-Cox transformation is
readily applied to form the transformed output.

For system modelling and control, it is desirable that the model is represented
as (13.28) with a minimal number of M basis functions. Provided that the optimal
parameter λ used in Box-Cox transformation, the number and location of candi-
date RBF centers are known, various orthogonal forward regression(OFR) algo-
rithms [13, 35–37] are readily applicable for model structure selection and param-
eter estimation for the Box-Cox RBF network, simply by using the transformed
system output as target of the RBF networks output. This is based on the assump-
tion that the MLE estimator of λ as derived above can be treated as true parameter
of λ. For the complete algorithm to construct a sparse Box-Cox RBF model with
good generalisation, see [21], which simply extends the algorithm [19, 27] (see
also Sect. 13.2) to Box-Cox RBF model.

Example 13.2 (Hong [21]) Non-stationary time series data: Beveridge wheat price
indices from 1500 to 1869 [39]. The comparison study comprises two different
topologies, the conventional RBF network and the Box-Cox RBF. For both topolo-
gies, all the data (N = 370) were used as training data set, and the input vector
was set as xk = [yk−1, yk−2, yk−3, yk−4, yk−5]T . The thin-plate-spline basis func-
tion gi(xk)= ‖xk − ci‖2 log‖xk − ci‖ was used as basis function with all data sets
initially used as candidate centres ci ’s. The experimental results is given in Fig. 13.2
and the further details can be found in [21].

13.5 The RBF Network with Boundary Value Constraints
(BVC-RBF)

In this section we describe a newly introduced RBF topology [22] which aims to
handle effectively a special type of prior knowledge given by a type of boundary
value constraints (BVC). In many modelling tasks, there are more or less some
prior knowledge available. Note that most of the RBF modelling algorithms are
conditioned on that the model is determined based on the observational data only,
so that these fit into the statistical learning framework. However, despite the fact
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Fig. 13.2 (a) Modelling results of the Box-Cox RBF networks (80 centres) for Example 13.2; and
(b) Autocorrelation function coefficients based on pseudo errors of Box-Cox RBF network (80
centre model) for Example 13.2, where the dotted line is calculated as ± 1.96√

N
. © 2007 IET

that the availability of prior knowledge about the system could help to improve
the model generalization, incorporating the deterministic prior knowledge into a
statistically learning paradigm would generally make the development of modelling
algorithms more difficult if not impossible.

The new topology of RBF network [22] is referred as the BVC-RBF and as
shown in Fig. 13.3. The BVC-RBF is constructed and parameterized based on the
given BVC and has the capability of satisfying the BVC automatically. Because the
BVC-RBF remains as a linear-in-the-parameter structure just as the conventional
RBF does, it is advantageous that many of the existing modelling algorithms for a
conventional RBF are almost directly applicable without added algorithmic com-
plexity nor computational cost. Consequently the BVC-RBF effectively lends itself
as a single framework in which both the deterministic prior knowledge and stochas-
tic data are fused with ease.

Consider the identification of a semi-unknown system. Given a training data set
DN consisting of N input/output data pairs {xk, yk}Nk=1, the goal is to find the un-
derlying system dynamics

yk = f (xk)+ εk. (13.46)

The underlying function f : &m → & is unknown. εk is the noise, which is often
assumed to be independent and identically distributed (i.i.d.) with constant variance.
In addition, it is required that the model strictly satisfies a set of L boundary value
constraints (BVC) given by

f (x′
j )= dj , j = 1, . . . ,L , (13.47)

where x′
j ∈ &m and dj ∈ & are known. Note that the information from the given

BVC is fundamentally different from that of the observational data set DN and
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Fig. 13.3 A graphical illustration of the BVC-RBF network

should be treated differently. The BVC is a deterministic condition but DN is sub-
ject to observation noise and possesses stochastic characteristics. The BVC may
represent the fact that at some critical regions, there is a complete knowledge about
the system.

If the underlying function f (·) is represented by a conventional RBF network
(formulated as (13.1)), then resultant RBF network using the conventional mod-
elling procedure, e.g. Sect. 13.2, cannot meet the BVC given by (13.47). Clearly the
prior knowledge about the system from BVC should help to improve the model gen-
eralization, but equally this makes the modelling process more difficult, since with
constraints we are facing a constrained optimization problem. A simple yet effective
treatment was introduced to ease the problem [22], as summarized below.
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The design goal in [22] is to find a new topology of RBF such that the BVC is
automatically satisfied, and as a consequence the system identification can be carried
out without added algorithmic complexity nor computational cost compared to any
modelling algorithm for a conventional RBF. The BVC-RBF is parameterized and
dependent upon the given BVC as shown below. Consider the following BVC-RBF
model representation

ŷk =
M∑

i=1

gi(xk)wi + h̄(xk), (13.48)

where the proposed RBF function for BVC-RBF model [22] is given by

gi(xk)= s(xk) exp

(
−‖xk − ci‖2

τ 2
1

)
, (13.49)

where s(xk)= L
√∏L

j=1 ‖xk − x′
j‖ is the geometric mean of the data sample xk to

the set of boundary values x′
j , j = 1, . . . ,L . ci ∈ &m is the RBF centers, τ1 is a

positive scalar.

h̄(xk)=
L∑

j=1

αj exp

(
−‖xk − x′

j‖2

τ 2
2

)
, (13.50)

τ2 is also a positive scalar. αj is a set of parameters that is obtained by solving a set
of linear equations g(xj )= dj , j = 1, . . . ,L . That is

α = H̄−1d, (13.51)

where α = [α1, . . . , αL ]T , d = [d1, . . . , dL]T and H̄ is given by

H̄ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜
⎜
⎝

1 e
−‖x′1−x′2‖2

τ2
2 . . . e

−‖x′1−x′L ‖2

τ2
2

e
−‖x′2−x′1‖2

τ2
2 1 . . . e

−‖x′2−x′L ‖2

τ2
2

...
...

. . .
...

e
−‖x′

calL
−x′1‖2

τ2
2 e

−‖x′L −x′2‖2

τ2
2 . . . 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟
⎟
⎠

(13.52)

In the case of the ill-conditioning, the regularization technique is applied to the
above solution. It is easy to verify that with the proposed topology of BVC-RBF
neural networks, the BVC is automatically satisfied [22]. In general, gi(xk) and
h̄(xk) act as building blocks of the BVC-RBF networks in (13.48), with a novel
feature compared to most of the existent neural networks architecture. That is, by
resorting to the given boundary conditions, its topology is designed for the boundary
constraints satisfaction, or more generally, for incorporating given prior knowledge.
Note that the boundary condition satisfaction via the network topology is an in-
herent, but often overlooked, feature for any model representation. For example,
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the autoregressive with exogenous output (ARX) model automatically satisfies the
boundary condition of f (0) = 0, and for the conventional RBF with the Gaussian
basis functions, f (∞)= 0. The aim of [22] is to introduce and exploit the boundary
condition satisfaction via the network topology in a controlled manner, so that the
modelling performance may be enhanced by incorporating the a prior knowledge
via boundary conditions satisfaction.

Substituting (13.48) into (13.46) and defining an auxiliary output variable zk =
yk − h̄(xk), we have

zk =
M∑

i=1

gi(xk)wi + ek (13.53)

conforming to (13.1), except that the auxiliary output variable zk is used as the target
of the first term in (13.48) (the adjustable part of BVC-RBF). Aiming for improved
model robustness, the D-optimality in experimental design [40] has been incorpo-
rated in the D-optimality based model selective criterion [41] to selectM regressors
in a forward regression manner. For completeness the combined D-optimality based
orthogonal least squares algorithm [41] is used in the following example [22].

Example 13.3 ([22]) The Matlab logo was generated by the first eigenfunction of
the L-shaped membrane. A 31 × 31 meshed data set f (x1, x2) is generated by
using Matlab command membrane.m, which is defined over a unit square input
region x1 ∈ [0,1] and x2 ∈ [0,1]. The data set y(x1, x2) = f (x1, x2) + ε(x1, x2)

is then generated by adding a noise term ε(x1, x2) ∼ N(0,0.012). We use all the
data points within the boundary as the training data set DN consisting of the
set of {x1, x2, y(x1, x2)} coordinates (N = 721). For comparison, the combined
D-optimality based orthogonal least squares algorithm was applied [41] to identify
a sparse conventional RBF model. The modeling results are shown in Fig. 13.4 and
Table 13.2. It is shown that the BVC-RBF can achieve significant improvement over
the RBF in terms of the modeling performance to the true function. In particular we
note that the BVC can be satisfied with the proposed BVC-RBF model, but not by
the conventional RBF. The detail of the parameters setting for the experiment can
be found in [22].

13.6 Conclusions

Our recent work on diversified RBF topologies is reviewed. Three different topolo-
gies have been introduced aimed at enhancing the modelling capabilities of RBF
network by modifying their topologies for specific problems; (i) the RBF network
with tunable nodes is introduced with the aim of flexible basis function shaping for
achieving the minimal model and improved model generalisation; (ii) the Box-Cox
RBF network is aimed at effectively handling some dynamical processes in which
the model residuals exhibit heteroscedasticity; and (iii) the BVC-RBF is introduced



268 X. Hong et al.

Fig. 13.4 Example 13.3; (a) the true function f (x1, x2); (b) noisy data y(x1, x2); (c) the boundary
points and (d) the prediction of the resultant BVC-RBF model; (e) the modelling error between
the true function and the model prediction (ŷ(x1, x2)− f (x1, x2)) for the BVC-RBF model; and
(f) The modelling error for the RBF model. IEEE©2008 IEEE

Table 13.2 A comparison between the conventional RBF and the BVC-RBF network for Exam-
ple 13.3

Model size
M

MSE
1
N

∑
(ŷ − f )2

MSE
1
N

∑
(ŷ−y)2

MSE (boundary)
1

L

∑
j (ŷ(x

′
j )−dj )2

BVC-RBF 68 4.3787×10−5 1.0736×10−4 7.2598× 10−11

RBF 91 1.0229×10−4 1.6894×10−4 2.1249 × 10−4

in order to achieve automatic constraints satisfaction and incorporating determinis-
tic prior knowledge with ease. It is advantageous that the model construction algo-
rithms for the diversified RBF topologies are either direct application or extension of
linear learning algorithms. In each case, an illustrative example is used to demon-
strate the efficacy of the proposed topology, together with the application of the
modeling construction algorithm.
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Chapter 14
Application of Filtering Methods for Removal
of Resuscitation Artifacts from Human ECG
Signals

Ivan Markovsky, Anton Amann, and Sabine Van Huffel

14.1 Introduction

We are dealing with a particular filtering problem that arises in a biomedical signal
processing application—removal of resuscitation artifacts from ventricular fibrilla-
tion human ECG signals. The measured ECG signal y has two components: the
ventricular fibrillation ECG signal v, which is the useful signal, and the resuscita-
tion artifacts c, which is the disturbance. Our goal is to extract the unknown useful
signal v from the given signal y. In the application at hand, we are given another
signal u that has causal relation with the artifact c.

A method for artifact removal produces an approximation v̂ of v and as an ap-
proximation ĉ of c, using the observed signals u and y, see Fig. 14.1. An impor-
tant requirement for an artifact removal procedure to be practical is that it works
in real-time, i.e., it computes an approximation of the ventricular fibrillation ECG
signal on-line and at each time instant, it uses only past values of the measurements
(causality). Such a procedure is a dynamical system and is called a filter.

In order to specify a well defined mathematical problem for ECG artifacts re-
moval, we need to impose additional assumptions. The main question, addressed in
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Fig. 14.1 The filter uses as inputs the reference signal u and the artifacts corrupted ECG signal y,
and produces as outputs approximations ĉ and v̂ of, respectively, the artifacts and the pure ECG
signals

this paper, is what assumptions are relevant for the ECG artifacts removal problem
and how they translate to classical filtering problems. Underlying assumptions, used
in the literature, are not explicitly spelt out or they are not scrutinised from the point
of view of their practical relevance. Next we state three important open question
related to design of ECG artifacts removal methods. However, we do not set our
objectives too high and address in this paper only one of them.

A global assumption used in the literature is that the observed ECG signal y is
the sum of the ventricular fibrillation ECG signal v and the artifact c, i.e.,

y = v+ c. (14.1)

A more general alternative to the linear mixture model (14.1) is y = f (v, c), where
f is a possibly nonlinear function. The question

Q1: What class of functions f is “most relevant” for modelling human ECG signals
corrupted by artifacts?

is currently unexplored. (The meaning of “most relevant” is related to our ques-
tion Q3, stated below.) Because of the following reasons, we leave question Q1 for
future study and concentrate in this paper on the linear mixture model.

• We do not have the necessary data for an empirical study of question Q1. (For
empirical study of question Q1, one needs separately recorded human ECG, hu-
man artifacts signals, and corresponding measured human ECG signals corrupted
by artifacts.)

• The linear mixture model is the simplest special case of y = f (v, c), however, as
discussed in the rest of the paper even in this case there are open problems and
room for improvement of the current state-of-the-art.

• Methods developed in the linear setting are a prerequisite for the development of
the intrinsically more complicated methods based on nonlinear models.

Even in the linear case, there are infinitely many ways in which y can be de-
composed as y = v̂ + ĉ and without extra knowledge they are all equally good. An
important question we are going to address in this paper is

Q2: What are the distinguishing properties of the ventricular fibrillation ECG sig-
nal v and the resuscitation artifact signal c?

Our study is empirical and is based on a database of separately recorded resus-
citation artifacts and reference signals (the arterial blood pressure) from pigs and
ventricular fibrillation ECG signals from human. The same data is used in [10] for
tuning and evaluation of an adaptive filtering method.
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The classical bandpass, Kalman, and adaptive filtering methods rely on different
types of prior knowledge that enable the separation of the useful signal from the
artifacts. Band-pass filtering relies on the assumption that the useful signal and the
artifacts have non-overlapping spectral bands, while the Kalman filter uses a linear
model for one of the components. Based on the model the Kalman filter does opti-
mal least squares separation. The adaptive filtering methods are also model based,
however, they identify the model in real-time as the data is collected, so that in the
adaptive case the model is time-varying.

The methods for ECG artifacts removal, presented in [1, 4, 10] are adaptive.
Conceptually these methods are similar: they use a finite impulse response (FIR)
model for the relation between the reference signal u and the artifact c and min-
imise related cost functions in order to identify the model parameters. Apparently
the methods differ in their algorithmic implementation: [1] uses directly the least
squares solution; [4] uses a recursive algorithm, called matching pursuit; and [10]
uses a Kalman filtering algorithm. The methods, however, use different parameters
that are empirically chosen for optimal performance on the test data. The main ef-
fort in the development of these methods is to choose “suitable” values for these
parameters.

In general, different methods for artifacts removal produce different approxima-
tions v̂ of the unknown signal v. The quality of approximation of v by v̂ is evaluated
in [1, 4, 10] by the signal-to-noise ratio (SNR)

SNR(̂v, v) := 20 log10

( ‖v‖
‖v− v̂‖

)
, (14.2)

where ‖ · ‖ denotes the 2-norm. Of course, SNR(̂v, v) can not be computed in real-
life applications. It is used for evaluation of the methods on artificially constructed
ECG signals y, where the true signal v is known. Although 2-norm is a standard
choice in signal processing, its biomedical relevance needs justification. The ques-
tion

Q3: What norm ‖ · ‖ in the definition of (14.2) has medical relevance?

is unexplored. Admittedly the question is fuzzy because it relays on the notion of
“medical relevance”. This is left as a topic for further study.

The contributions of this paper are:

1. give a nontechnical tutorial exposition of the bandpass, Kalman, and adaptive
filtering methods in the context of their application for ECG artifacts removal,

2. clarify the rationale for applying these methods, and
3. perform an empirical study comparing the methods.

Although there are numerous texts describing the theory of the classical filtering
methods, there is no single reference describing the bandpass, Kalman, and adaptive
methods in the context of ECG artifacts removal. In addition, most of the signal
processing literature adopts a stochastic setting that requires certain mathematical
sophistication and in our opinion increases the theory–practise gap. For this reason
we adopt a simpler and more intuitive deterministic setting.



276 I. Markovsky et al.

The rationale for applying the bandpass filtering methods is well known: fre-
quency separation of the signal of interest v and the artifact c. The rationale for
applying the more advanced Kalman and adaptive methods, however, is less well
known. We point out assumptions on which the Kalman and adaptive filters are
based and check to what extent they are satisfied on the ECG signal and the artifacts
in the considered database of signals. The prior knowledge for the Kalman filter is
the given model for the relation between u and c. The adaptive filters automatically
identify such a model, however, for the identification step to be possible, certain
conditions have to be satisfied. The tunable parameters of the adaptive methods are
related to the complexity of the model class and the identification criterion, so that
they influence the identifiability conditions.

The empirical results published in [1, 4, 10] do not compare the methods pro-
posed in the corresponding papers with other methods from the literature. More-
over, the reported empirical results are not reproducible in the sense of [2], i.e.,
the full computational environment that is used to produce the results is not pub-
lished. We fulfil this gap in the literature by presenting a comparative study of
the methods of [1, 10] and classical filtering methods described in this paper.
Matlab implementation of the methods used in our simulation study are avail-
able from: ftp://ftp.esat.kuleuven.be/pub/SISTA/markovsky/abstracts/06-212.html
The data is available upon request. (Please, direct your requests to Prof. A. Amann
(anton.amann@i-med.ac.at).)

14.2 Methods for Artifacts Removal

14.2.1 Band-Pass Filtering

First we consider the application of the classical band-pass filtering method for ar-
tifact removal. The key assumption for applying this technique is that the useful
signal, the ventricular fibrillation ECG signal v, and the disturbance, the resuscita-
tion artifacts c, have well separated spectral bands. The left plot in Fig. 14.2 shows
the power spectral densities of v and c in a particular experiment. (The same data is
used for comparison with the other methods in Sects. 14.2.2 and 14.2.3.) The plot
shows that up to f0 = 0.075 Hz (normalised frequency, which corresponds to 3 Hz
physical frequency) the spectrum of c dominates the spectrum of v and for frequen-
cies above 0.075 Hz the opposite is true—the spectrum of v dominates the spectrum
of c. Therefore, low-pass filtering, with a cut-off frequency f0, can extract from the
signal y = c+ v an approximation ĉ of the resuscitation artifacts c and then find an
approximation of v as v̂ := y − ĉ.

The structure of the low-pass filter for artifacts removal is shown in Fig. 14.3.
Note that this method does not use the reference signal u, i.e., the method can be
applied even in the case when no reference signal is available.

We design a finite impulse response (FIR) low-pass filter with 100 time lags using
the window method [9]. The ideal low-pass filter has magnitude one at all frequen-
cies with magnitude less than the cut-off frequency and magnitude zero at all other

ftp://ftp.esat.kuleuven.be/pub/SISTA/markovsky/abstracts/06-212.html
mailto:anton.amann@i-med.ac.at
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Fig. 14.2 Power spectral densities (PSD) of v and c (left) and magnitude response of the low-pass
filter (right)

Fig. 14.3 Structure of the
low-pass filter for ECG
artifacts removal. The filter F
is low-pass with a cut-off
frequency f0

frequencies. The impulse response of this ideal filter is infinite and non-causal, so
that it is not implementable. The windowing method resolves the implementability
problem by truncating the ideal impulse response by a window of a specified length.
In the example, we use the Hamming window.

The right plot in Fig. 14.2 shows the filter magnitude response. Due to the over-
lap in the spectra of v and c, low-pass filtering does not achieve perfect separation.
In order to illustrate this we show in Fig. 14.4 the signal ĉ obtained by process-
ing c and v with the low-pass filter. These two cases correspond to the extremes
y = c with SNR(y, v)= 0 and y = v with SNR(y, v) = ∞. Ideally, the filter does
not modify c and completely rejects v. In practise, it deforms c and attenuates v.
Figure 14.5 shows the performance of the low-pass filtering technique for artifact
removal on a signal y = c + v with SNR 0 dB. The SNR of the restored signal is
5.7 dB.

In summary, low-pass filtering requires to

1. choose the cut-off frequency f0,
2. design a low-pass filter F with cut-off frequency f0, and
3. apply the filter F on the observed data.

Steps 1 and 2 are done off-line, so that in the simulations they should use only an
identification part of the data, i.e., data available for tuning the methods. Step 3
is done in real-time as test data is obtained. Most expensive computationally is
step 2. However, there are well developed methods for filter design that are read-
ily available in free and commercial software, e.g., the Signal Processing Toolbox
of Matlab, so that from the user point of view, this step is trivial. Once the filter
is designed, applying it on the data involves recursive computation that is very fast
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Fig. 14.4 Deformation of the signal c and attenuation of v by the low-pass filter

Fig. 14.5 Approximated
(dashed) and true (solid)
ventricular artifact signals
using low-pass filtering for
data signal y with SNR 0 dB

and can be implemented on a digital signal processor for practical implementation
of the method.

Step 1 requires human interaction and is ad-hoc. This is a weakness of the
method. Note, however, that a single design parameter has to be chosen. Simula-
tion results with the considered database show that the choice f0 = 0.075 Hz for
the cut-off frequency gives good results on the average for all data sets. This exper-
imental result suggests that the low-pass filtering method is robust with respect to
the choice of the f0 parameter.

14.2.2 Kalman Filtering

By assumption the reference signal u has a causal relation with the artifact signal c.
Formally, this means that there is a model M , such that when u is given as an
input to M and the initial conditions are properly chosen, the resulting output is c.
The model M , however, may be a complicated nonlinear time-varying one, while
in this section we consider simple linear time-invariant models. In addition, apart
from u other unmeasurable signals may affect c. Finally, there may be measurement
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Fig. 14.6 Model for c: ĉ is
“close” to c

noise on the reference and the corrupted ECG signals. For these reasons, in practise,
we can not obtain an exact relation between u and c. The model M is only an
approximation of the unknown exact relation u → c, see Fig. 14.6.

An artifact removal method, called “naive model based method”, using a
model M for the relation between u and c is shown on the left plot of Fig. 14.7.
This method uses the reference signal u and the prior knowledge about the relation
between u and c in the form of the model M . Note that the naive method sets the
initial conditions for M to zero. This is an arbitrary choice (hence the name of the
method).

A proper way of choosing the initial conditions is actually given by the cele-
brated Kalman filter. The Kalman filter for M accepts as inputs both u and y and
recursively updates the initial conditions for optimal prediction ĉ of c. The Kalman
filter, however, uses extra prior knowledge: an initial value xini for the initial condi-
tions and a matrix Pini related to the uncertainty of (or, equivalently, the confidence
in) xini. In addition, the Kalman filter produces optimal prediction of c in certain
specified sense, that involves choice of an approximation criterion.

The main question in applying the naive model based method or the optimal
(Kalman) filtering method is the selection of the model M . In a practical artifacts
removal problem such a model is not given as a prior knowledge but has to be
deduced from the data. This lead us to the adaptive filtering methods that compute
on-line a modelM and, based onM , filter the signal. Before explaining the adaptive
methods, however, we give some background information on offline identification
of a model from data.

We adopt the deterministic identification setting of [8], where the aim is to min-
imise the fitting error ‖y − ĉ‖ over the model parameters and the initial conditions.
The criterion ‖y − ĉ‖ corresponds to what is called output error identification [5],
however, no stability constraint is imposed on the identified model.

Fig. 14.7 Left: naive model based method for artifact removal. The initial conditions of the
model M are set to zero. Right: method for artifact removal based on the Kalman filter F
for M . The initial conditions are recursively updated using the data (u, y), starting from an ini-
tial guess xini with uncertainty Pini
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Fig. 14.8 Model validation: fit of the signals c and v (solid) by the output ĉ (dashed) of the model

Fig. 14.9 Approximation
(dashed) and true (solid)
artifact signals using Kalman
filtering

We consider a linear time-invariant model with a state space representation

x(t + 1)=Ax(t)+Bu(t),
ĉ(t)= Cx(t)+Du(t). (14.3)

The Kalman filter is a linear system derived from the identified model, the approx-
imation criterion, and the assumption about the initial conditions (xini,Pini). The
computational load of finding the approximation ĉ by the Kalman filter depends on
the order of the model.

Figure 14.8, left, shows the signal c and its best fit ĉ by a model of order 5.
The match between ĉ and c is a measure of the model quality. In the particular
example, the identified model (14.3) is a good description of the relation between u
and c. Figure 14.8, right, shows the signal v and its best fit ĉ by the model. Ideally
the Kalman filter should reject v; compare with Fig. 14.4 in the case of low-pass
filtering.

Figure 14.9 shows the performance of the Kalman filtering technique for artifact
removal on a signal y = c + v with SNR 0 dB. The SNR of the restored signal is
6.08 dB.

In summary, applying the Kalman filtering method requires to
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1. identify a model (14.3),
2. design a Kalman filter F for that model, and
3. apply the filter F on the observed data.

As in the case of low-pass filtering, here again, steps 1 and 2 are done off-line
and step 3 is done in real-time as the data is observed. Note that identifying the
model (14.3) in the Kalman filtering case corresponds to the choice of the cut-off
frequency f0 in the low-pass filtering method. Although there is well developed
theory and methods for system identification, step 1 remains the most difficult and
ad-hoc one. Once a model is available, the design of the Kalman filter and its ap-
plication on the data are standard problems that have known solutions and readily
available software implementation, e.g., the one in the Control Toolbox of Matlab.

The main questions are what data and what identification method to use. Con-
cerning the identification method, we decide to use the output error criterion with-
out constraining the model to be stable. Software implementation of this method is
available in the System Identification Toolbox of Matlab and in [6]. Other identi-
fication criteria can also be considered. Currently it is not clear which criterion is
most suitable for artifact removal in ECG signals.

Concerning the data used for identifying the model, in a realistic application of
the method, one could use only identification data (i.e., data that is not used for
testing the method). However, we also apply the Kalman filtering method in an
unrealistic test setup: identifying the model (14.3) from the test data (u, y). This
corresponds to the situation encountered in the next section in the context of the
adaptive filtering method, with the difference that the Kalman filtering method is
not causal (on the identification step all data is used in batch), while the adaptive
filter is causal.

If, in addition to using the test data, the model (14.3) is identified from the true
artifact signals c instead of the observed signal y, we refer to the Kalman filtering
method as the “reference method”. Of course, the reference method is impracti-
cal (for a more essential reason than non-causality), but we consider it because it
performs Kalman filtering with the “best” possible model for the data. Therefore,
it gives the theoretically optimal performance under the assumption that the data
(u, c) satisfy a model of the form (14.3) for some “true” parameter values.

14.2.3 Adaptive Filtering

Adaptive filters are conceptually similar to the Kalman filter: they are model-based
and perform optimal least squares filtering. The main difference is that in the clas-
sical Kalman filter the model is identified off-line or is given as prior knowledge,
while in adaptive filters the model is identified from the data in real-time. The re-
cursive identification procedure is the essential part of any adaptive filter.

There is a large variety of adaptive filters depending on the model class and
the identification algorithm that are used. A common model class is the set of FIR
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models with at most l lags

ĉ(t)= ĥ0(t)u(t)+ ĥ1(t)u(t − 1)+ · · · + ĥl(t)u(t − l). (14.4)

For a time-invariant FIR model (i.e., ĥ constant in time), l specifies the model com-
plexity. The vector

ĥ(t) := col
(̂
h0(t), ĥ1(t), . . . , ĥl(t)

)

is the parameter of the FIR model at time t . At each time step, ĥ(t) is determined
as a minimum point of a certain cost function depending on ĥ(t) and the data (u, y)
(up to and including time instant t , due to the causality requirement). A typical cost
function in adaptive filtering is the 2-norm of the error signal e := y − ĉ over the
window t − t1, t − t1 + 1, . . . , t

J
(̂
h(t)

) :=
t1∑

τ=0

(
y(t − τ)− ĉ(t − τ))2. (14.5)

Common algorithms for adaptive filtering that minimise J are the recursive least
squares and gradient descent algorithms. A class of adaptive filters, using gradient
descent, is the one of least mean squares (LMS) adaptive filters [3].

Tunable parameters of the FIR adaptive filter are the filter length l and one or
more parameters that control the adaptation rate. For example, in the LMS adaptive
filters the adaptation rate is determined by the step size λ of the gradient decent
algorithm.

14.2.3.1 Overview of the Methods of [1, 4, 10]

The methods of [1, 4, 10] use the FIR model (14.4). The parameter ĥ is selected
adaptively from the data, while the parameter l is fixed during the operation of the
algorithm and is user defined. In order to distinguish between these two types of
parameters, we call the latter ones hyper-parameters.

Apart from the model class, another similarity for the methods is that the methods
of [1] and [4] minimise the cost function (14.5) and the method [10] minimises a
closely related cost function (see (14.11) on p. 286). The window length t1 is a
hyper-parameter that determines the speed of adaptation (larger values of t1 imply
slower adaptation).1

The cost function J , forces the approximation ĉ to be as close as possible
to the measurement y in a finite horizon 2-norm sense (specified by the hyper-
parameter t1). The adaptive filters determine the model parameters ĥ(t) as a min-
imum point of J and obtain the filtered signal ĉ(t) at time t from the identified

1Actually the methods of [1, 4, 10] relax the causality condition for the filter, which allows for the
window defining J to extend in the “future”. More specifically, the lower bound for the summation
in (14.5) is t2, where t2 is a hyper-parameter.
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model (14.4). An important implicit assumption, on which these methods are based,
is that by minimising J , the filtered signal ĉ becomes closer to the artifact signal c.

Remark 14.1 Without extra assumptions on the data (u, y), there are no reasons for
the signal ĉ, produced by the FIR adaptive filter, to be close to the signal c. To see
this, consider the special case of the algorithm when l = 0 and t1 = 0, i.e., consider
static model and instantaneous error criterion. The minimisation of J in this case is
the trivial problem

min
h(t),̂c(t)

(
y(t)− ĉ(t))2 subject to ĉ(t)= h(t)u(t),

which solution is h0(t) = y(t)/u(t) and ĉ(t) = y(t), for all t . Independent of u,
ĉ = y, so clearly, in this case, the minimisation of J does not lead to the desired
result—approximate c by ĉ.

The same problem occurs in FIR adaptive filtering with dynamic models (l > 0)
and non-instantaneous errors (t1 > 0), so that the example is not an artificially con-
structed nongeneric one. Next we show that, the case (l + 1)m ≤ t1 + 1 is not of
interest for adaptive filtering. However, the condition (l + 1)m > t1 + 1 is not suffi-
cient to ensure that the filtered signal ĉ approximates the artifact c.

In finding the minimum point of minJ (̂h(t)), the following assumption is made:
the time-varying FIR filter coefficients ĥ(τ ) for τ = t − t1, t − t1 + 1, . . . , t are
assumed fixed and equal to ĥ(t). The assumption implies that the FIR filter is sta-
tionary over the window for which J is computed. Such an assumption is justified
when t1 is small with respect to the rate of variation of the system parameters. Un-
der the assumption ĥ(τ )= ĥ(t) for τ = t − t1, t − t1 + 1, . . . , t , substituting (14.4)
into (14.5) gives

J
(̂
h(t)

)=

∥
∥∥∥∥∥∥∥∥

⎡

⎢⎢⎢
⎣

y(t)

y(t − 1)
...

y(t − t1)

⎤

⎥⎥⎥
⎦

−

⎡

⎢⎢⎢
⎣

u(t) u(t − 1) . . . u(t − l)
u(t − 1) u(t − 2) . . . u(t − l − 1)
...

...
...

u(t − t1) u(t − t1 − 1) . . . u(t − t1 − l)

⎤

⎥⎥⎥
⎦

⎡

⎢⎢⎢
⎣

ĥ0(t)

ĥ1(t)
...

ĥl(t)

⎤

⎥⎥⎥
⎦

∥
∥∥∥∥∥∥∥∥

2

=: ‖y(t)− U(t )̂h(t)‖2.

In what follows we assume that the matrix U(t) is full rank. The technical term
for this condition is “persistency of excitation” of the input u. It is a necessary
condition for identifiability of the model, see [7, Sect. 8.3]. By “identifiability” we
mean that if the data (u, y) were generated by a model in the considered model class
an, then this model could be recovered back from the data.

There are three cases for the solution of the minimisation of J , depending on
the relation between the number of unknowns (l + 1)m and the number of con-
straints t1 + 1.
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• If (l + 1)m > t1 + 1, then minJ (h(t)) is a linear least squares problem and the
unique solution is

ĥ(t)= (U(t)U�(t)
)−1U�(t)y(t). (14.6)

• If (l + 1)m = t1 + 1, then minJ (h(t)) = 0 and the unique solution is ĥ(t) =
U−1(t)y.

• If (l + 1)m < t1 + 1, then minJ (h(t))= 0 and the solution is not unique.

The example shown in Remark 14.1 corresponds to the case minJ (̂h(t))= 0 with
unique solution. From the adaptive filtering point of view, the case (l+1)m≤ t1 +1
is meaningless, because it either leads to a trivial solution or to a nonunique solution.
In the former case, ĉ does not depend on u. In the latter case ĉ is not well defined.
For this reason next we only consider the case (l + 1)m > t1 + 1.

Formula (14.6) gives the solution in closed form and for small number of param-
eters (i.e., a small value of l) it can be used directly for computing ĥ(t) on each
time step. An empirical observation reported in [1] is that best results are obtained
by a static model (l = 0). This means that ĥ(t) is a scalar, so that (14.6) is cheap to
evaluate. With a larger number of parameters, recomputing ĥ(t) from (14.6) may be
prohibitive for a real-time application. Computationally, the core of the adaptive fil-
tering method is a recursive algorithm for ĥ(t), i.e., an algorithm that computes the
optimal solution ĥ(t) by applying a cheap updating on the optimal solution ĥ(t − 1)
of the previous time step.

The matching pursuit algorithm of [4] is based on the idea of updating only one
component of ĥ(t) at a time. This subproblem can be solved recursively and the
resulting algorithm turns out to be computationally cheap. After a finite number of
such updates (for any fixed t), the optimal solution is reached. In [4] the number
of updates is a hyper-parameter. The reason for this is that fewer updates than nec-
essary to compute the optimal solution result in a suboptimal solution that may be
“sufficiently good” for adaptive filtering.

In [4] the authors advocate the method because of its numerical robustness. Ill-
conditioning of the matrix U(t)U�(t) may lead to numerical instability (see (14.6))
and the matching pursuit can handle such a case.2 The numerical robustness and
efficiency make the matching pursuit algorithm the preferred implementation of the
method proposed in [1]. In [4], however, different values for the hyper parameters
are chosen compared to those in [1], e.g., the model is no longer static but dynamic
with l = 5 taps and an additional hyper parameter (the number of matching pursuit
iterations) is introduced.

2Note, that the persistency of excitation assumption ensures that U(t)U�(t) is invertible. There-
fore, ill-conditioning corresponds to input signals that are almost not persistently exciting.
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The method of [10] is based on more assumptions. It is assumed that there is a
“true” FIR model

c(t)= h̄0(t)u(t)+ h̄1(t)u(t − 1)+ · · · + h̄l(t)u(t − l)
=: [u(t) u(t − 1) · · · u(t − l)]
︸ ︷︷ ︸

u(t)

h̄(t), (14.7)

i.e., the artifact signal c satisfies an FIR model with l taps for certain “true” param-
eter h̄. It is assumed, moreover, that h̄ satisfies the “random walk” equation

h̄(t + 1)= h̄(t)+w(t), (14.8)

where w is a zero-mean stationary white stochastic process. Finally, it is assumed
that the ECG signal v = y−c is a zero-mean stationary white stochastic process and
is independent of w. Under these assumptions, (14.7) and (14.8) form a state-space
representation of a classical linear time-varying stochastic system

h̄(t + 1)= h̄(t)+w(t),
y(t)= u(t)h̄(t)︸ ︷︷ ︸

c(t)

+v(t). (14.9)

The parameters of this model are known, so the adaptive filtering problem reduces
to the simpler and easier linear state estimation problem, which optimal (in the
minimum variance sense) solution is the Kalman filter. Note that the identification
of (14.7) is implicitly done by the Kalman filter for (14.9).

Let W be the covariance matrix of w(0) and let V be the covariance matrix of
v(0). Under the above stated assumptions for v and w, the Kalman filter for (14.9)
is

ĥ(t + 1)= ĥ(t)+Σ(t)u�(t)
(
u(t)Σ(t)u�(t)+ V )−1(

y(t)− uĥ(t)
)
,

Σ(t + 1)=Σ(t)+W −Σ(t)u�(t)
(
u(t)Σ(t)u�(t)+ V )−1u(t)Σ(t),

(14.10)

with initial conditions ĥ(0)= hini and Σ(0)=Σini. It defines a minimum variance
estimator ĥ for h̄ and the corresponding ĉ = u(t )̂h(t) is the minimum variance es-
timate of c. Hyper-parameters in this case are the filter length l, the covariance ma-
trices W and V , and the initial conditions hini, Σini, and u(0), u(−1), . . . , u(1 − l).

The stochastic assumptions imposed on w and v are motivated by the reformu-
lation of the original adaptive filtering problem as a classical linear state estimation
problem, of which recursive solution is known. These assumptions, however, are
hard to interpret in the context of the original ECG artifacts removal problem and
their relevance for the real-life problem is unclear.

A deterministic derivation of the Kalman filter is given in [11]. The main result
is that the Kalman filter computes the estimates ĥ, v̂, and ŵ by minimising the
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size of w and v subject to the constraint that y is “explained by the model”. More
specifically at each time step t it solves the approximation problem

min
ŵ,̂v,̂h

t∑

τ=0

ŵ�(τ )W−1ŵ(τ )+ v̂�(τ )V −1v̂(τ )+ (̂h(0)− hini
)�
Σ−1

ini

(̂
h(0)− hini

)

subject to
ĥ(τ + 1)= ĥ(τ )+ ŵ(τ )
y(τ )= u(τ )̂h(τ )+ v̂(τ ) for τ = 0,1, . . . , t. (14.11)

The deterministic formulation (14.11) shows that the method in [10] derives an op-
timal approximation of the observed signal y in the sense that

• y satisfies a time-varying FIR model with parameter ĥ up to equation error v̂,
which is “small” in the sense that the weighted norm

∑
v̂�(τ )V −1v̂(τ ) is min-

imised,
• the FIR model parameter ĥ satisfies a first order auto-regressive equation up

to equation error ŵ, which is “small” in the sense that the weighted norm∑
ŵ�(τ )W−1ŵ(τ ) is minimised and its initial value ĥ(0) is small in the sense

that (̂h(0)− hini)
�Σ−1

ini (̂h(0)− hini) is minimised.

In [10] the hyper parameters V , W , hini, Σini, and u(0), u(−1), . . . , u(1 − l) are
chosen by trial-and-error for optimal performance on the learning part of the data.

14.2.3.2 Numerical Examples

Next, we show the performance of the LMS adaptive filter and the methods of [1]
and [10] on the data set used in the simulation examples of Secs. 14.2.1 and 14.2.2.
All algorithms were coded in Matlab3 and tuned by trial-and-error for optimal per-
formance on the specific data set. The selected parameters are used in the following
section for evaluation of the methods on the test data.

For the LMS algorithm tunable hyper parameters are the FIR filter length l and
the step size λ of the gradient descent algorithm. We chose the following values:

Hyper parameters for the LMS algorithm: l = 100 and λ= 0.1.

For the algorithm of [10] tunable parameters are the covariance matrices V ,W ,Σini,
and the initial conditions hini, u(0), u(−1), . . . , u(1 − l). We chose the following
values:

Hyper parameters for the algorithm of [10]:

V = 10−3, W = 2 × 10−8 × I6, Σini = 10−3 × I6,

3We would like to thank Simon Doclo from K.U. Leuven for a Matlab code for LMS adaptive
filtering.
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Fig. 14.10 Filtered signals c and v by the adaptive filters

hini = 10−3 × col(0.4617,0.1088,−0.2128,−0.1604,−0.0036,0.6199),

uini = 0.

For the algorithm of [1] the window length t1 is a tunable parameter. (The FIR filter
length is l = 0, i.e., the filter is a time-varying static system.) We chose the following
value:

Hyper parameters for the algorithm of [1]: t1 = 10.
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Fig. 14.11 Estimated (dashed) and true (solid) artifact signals using the adaptive filters

Figure 14.10 shows the signals ĉ and v̂ obtained by the adaptive filters. Ideally c
should not be distorted and v should be cancelled. Compare with Figs. 14.4 and 14.8
for similar plots obtained with the low-pass and Kalman filters. Figure 14.11 shows
the performance of the adaptive filtering method on a signal y = c + v with SNR
0 dB. The SNR of the restored signal v̂ are 3.4 dB for the LMS method, 5.9 dB for
the method of [1], and 3.1 dB for the method of [10].

Note that the performance of the adaptive filter is worse than the one of the
Kalman filter. This can be explained as follows: in the case of Kalman filtering, the
model is identified off-line using all the data, while in the case of adaptive filtering,
the model is identified in real-time, using past data only. Therefore, in the Kalman
filter case, more information is used on the identification stage than in the adaptive
filter case.

14.3 Results: Performance Evaluation

The seven ventricular fibrillation ECG signals v and the seven resuscitation artifact
signals c, available in the test database are combined to form 49 test signals y. The
evaluated methods are applied on the 49 signals and the 49 SNRs of the estimated
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Table 14.1 Average performance SNR(̂v, v) in dB of the filtering method on the test data. In
brackets is the standard deviation over the 49 experiments

Method −10 −5 0 5 10

Low-pass 1.5 (2.4) 4.8 (2.0) 6.8 (1.8) 7.8 (1.9) 8.2 (1.9)

Reference −1.3 (1.8) 3.7 (1.8) 8.7 (1.8) 13.7 (1.8) 18.7 (1.8)

Kalman −2.5 (1.9) 2.0 (1.8) 6.2 (1.8) 9.2 (1.9) 11.2 (2.9)

LMS −1.5 (2.0) 2.7 (1.8) 6.0 (1.6) 8.0 (1.6) 9.0 (1.6)

Rheinberger et al. −5.2 (1.4) −0.2 (1.4) 4.6 (1.4) 9.2 (1.3) 13.0 (1.3)

Aase et al. −4.4 (1.6) 0.0 (1.5) 3.4 (1.2) 5.6 (1.1) 6.6 (1.1)

Fig. 14.12 Comparison of the methods in terms of average SNR improvement

signals v̂ are computed. Table 14.1 and Fig. 14.12 show the average results. The
standard deviations (over the 49 experiments) are visualised with the vertical bars
on Fig. 14.12.

For SNR(y, v) less than −3 dB, the low-pass filter achieves the best performance.
A possible explanation is that for low SNR, the system identification methods fail to
obtain a sufficiently good model for the observed data and the Kalman filter, which
is based on the model, is sensitive to model-data discrepancy. Indeed, obtaining a
good model (14.3) for the artifact signal c is a challenging problem even when the
data used for identification is (u, c) (reference method). Note that the signals that
we use in the simulation study are measured in a real-life environment and therefore
they need not satisfy a linear time-invariant model (14.3) of low order. Moreover,
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the actual identification problem encountered in ECG artifact removal is to derive
the model from (u, y) in real-time.

As expected, the reference method outperforms the Kalman filtering method. The
explanation is that the reference method is noncausal and in the system identifica-
tion step uses information (the true artifact signal c) that is not available to the other
methods. The Kalman filtering method is also noncausal and therefore has an ad-
vantage over the adaptive filtering method. Time-invariant is causal, however, it is
based on a time-invariant model, which is a limitation when the data is generated by
a time-varying “true” system. For high SNR the best performance is achieved by the
adaptive filtering method of [10], which suggests that the true model for v is indeed
time-varying.

14.4 Conclusions

The robustness of the filtering methods, i.e., their sensitivity to the models being
used, is crucial in the removal of resuscitation artifacts from ventricular fibrillation
ECG signals. The low-pass filter uses the simplest model: separation of the spectra
of the useful signal and the disturbance. The only tuning parameter in this case
is the cut-off frequency. Because of its simplicity the low-pass filtering method is
more robust than the Kalman filter, which is based on an accurate model of the data.
The experiments show, however, that even in the unrealistic case when the model,
used in the synthesis of the Kalman filter, is identified from the unknown true data,
the low-pass filter on the average still achieves better performance than the Kalman
filter, provided the SNR of the given ECG signal is sufficiently low. For high SNR
the best performance achieves the adaptive filtering method of [10].
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Chapter 15
Progress and Open Questions
in the Identification of Electrically Stimulated
Human Muscle for Stroke Rehabilitation

Fengmin Le, Chris T. Freeman, Ivan Markovsky, and Eric Rogers

15.1 Introduction

Almost 85% of the people living in the UK in 2005 with moderate to severe dis-
abilities as a result of a stroke had an initial deficiency in the upper limb [1] and
less than 50% recovered useful upper limb function [1, 2]. Moreover, due to an ag-
ing population and better acute care, prevalence of stroke is likely to increase. These
features are amongst the main drivers for research aimed at providing more effective
rehabilitation which is, ideally, available for use outside the hospital, for example,
in the patients home. One major area of research in this field is the use of Electrical
Stimulation (ES) to improve motor control, which is supported by a growing body
of clinical evidence [3–5], and also theoretical support from neurophysiology [6]
and motor learning research. There is also strong evidence to support the proposi-
tion that functional recovery is enhanced when stimulation is applied coincidently
with a patient’s voluntary intention whilst performing a task [7]. The need to ac-
curately apply ES to achieve a movement has motivated significant interest in the
development and application of techniques that can control upper limb movement
to a high level of precision.

A survey of the literature in [8] reveals that a wide range of model-based schemes
have been proposed for movement control of paralyzed subjects, including multi-
channel Proportional plus Integral plus Derivative (PID) control of the wrist, op-
timal and H∞ control, fuzzy control of standing, sliding mode control of shank
movement, and data-driven control of the knee joint. A very significant feature to

F. Le · C.T. Freeman · I. Markovsky · E. Rogers (�)
School of Electronics and Computer Science, University of Southampton,
Southampton SO17 1BJ, UK
e-mail: etar@ecs.soton.ac.uk

I. Markovsky
e-mail: im@ecs.soton.ac.uk

L. Wang, H. Garnier (eds.), System Identification, Environmental Modelling,
and Control System Design,
DOI 10.1007/978-0-85729-974-1_15, © Springer-Verlag London Limited 2012

293

mailto:etar@ecs.soton.ac.uk
mailto:im@ecs.soton.ac.uk
http://dx.doi.org/10.1007/978-0-85729-974-1_15


294 F. Le et al.

emerge from this review is that these advanced techniques have not transferred to
clinical practice. In particular, the strategies adopted are either open-loop, or the
stimulation is triggered using limb position or Electromyographic (EMG) signals
to provide a measure of participant’s intended movement. Closed-loop control has
been achieved using EMG [9] but this has not been incorporated in model-based
controllers since EMG does not directly relate to the force or torque generated by
the muscle. In the few cases where model-based control approaches have been used
clinically, they have enabled a far higher level of tracking accuracy.

A major reason for the lack of model-based methods in a program of patient trials
is the difficulty in obtaining reliable biomechanical models of hemiplegic subjects.
In the clinical setting there is minimal set-up time, reduced control over environ-
mental constraints and little possibility of repeating any one test in the program of
treatment undertaken and consequently controllers are required to perform to a min-
imum standard across a wide number of subjects and conditions. In particular, the
underlying musculoskeletal system is highly sensitive to physiological conditions,
such as skin impedance, temperature, moisture and electrode placement, together
with time-varying effects such as spasticity and fatigue [10].

Recent work [11–13] has demonstrated that Iterative Learning Control (ILC) is
one model-based approach that can be effective clinically. In this work a robotic
workstation was designed and constructed for use by stroke patients in order to re-
gain voluntary control of their impaired arm. Here, ES is applied to generate torque
about the elbow joint, and ILC is used to update the stimulation level to assist their
completion of a planar reaching task. This treatment produced statistically signif-
icant improvement for participants across a number of outcome impairment mea-
sures [14], but the need for improved modeling of the patient’s arm, and the muscle
model in particular, was also highlighted by these results.

This chapter begins with a more detailed description of the use of ILC in this
setting and then proceeds to give an overview of recent progress on muscle response
modeling, which typically employs a Hammerstein structure. Included are results
from application to measured data. The chapter concludes by giving some currently
open research questions.

15.2 Background

Iterative learning control is a technique for controlling systems operating in a repet-
itive, or trial-to-trial, mode with the requirement that a reference trajectory r(p)
defined over a finite interval p = 0,1, . . . , α− 1, where α denotes the trial duration,
is accurately followed. Examples of such systems include robotic manipulators that
are required to repeat a given task to high precision, chemical batch processes or,
more generally, the class of tracking systems. Since the original work [15], the gen-
eral area of ILC has been the subject of intense research effort. Initial sources for
the literature here are the survey papers [16, 17].

The robotic workstation which is the starting point for the work covered in this
chapter was developed for use by stroke patients in order to regain voluntary control
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Fig. 15.1 A participant using the robotic workstation

of their impaired arm [11–13]. Here, ES is applied to generate torque about the
elbow joint, and ILC is used to update the stimulation level to assist their completion
of a planar reaching task.

Figure 15.1 shows a stroke participant using the robotic workstation, where the
shoulder strapping is used to prevent trunk movement which would reduce the effec-
tiveness of treatment. In this case, ES is applied to generate torque about the elbow
joint, and ILC is used to update the stimulation level to assist their completion of
a planar reaching task. In particular, the patient’s hand is strapped to the robot and
they attempt to follow a point moving along an illuminated elliptical track.

As they complete the task, the error between the required and achieved joint
angle, ϑ∗(t) and ϑ(t), respectively, is measured and once they reach the end the
robot returns their arm to the starting position, and in this resetting time an ILC
algorithm is used to update the stimulation to be applied on the next attempt or trial.

Figure 15.2 shows a block diagram of the control scheme, consisting of a feed-
back controller, a linearizing controller and an ILC feedforward controller. The for-
mer block, taken as a proportional plus derivative controller in the clinical tests, acts
as a pre-stabilizer and provides satisfactory tracking during initial trials. During the
arm resetting time at the end of trial k, the ILC controller uses a biomechanical
model of the arm and muscle system, together with the previous tracking error, to
produce the feedforward update signal for application on the next trial. A full treat-
ment of the ILC algorithms is given in [11].

The overall performance of this system critically relies on the accuracy of the
arm and muscle model, which contains the following components.
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Fig. 15.2 Block diagram representation of the ILC control scheme

• A stimulated muscle structure that accounts for the torque acting about the elbow
generated in response to the applied ES, u(t).

• A kinematic model which gives the component of this torque in the horizontal
plane of movement.

• A two-link system which provides the resulting angular position, ϑ(t).

This biomechanical model has been experimentally verified with both unimpaired
subjects and stroke patients using a variety of functional parameter forms [13].

Although the model can predict arm movement resulting from applied ES with
reasonable accuracy, experimental data confirms that the model of the stimulated
muscle used is less accurate than the remaining components of the arm. Hence rel-
atively low ILC learning gains had to be used throughout the clinical trials, but
the treatment still resulted in statistically significant improvement for participants
across a number of outcome impairment measures [14]. This work established the
basic feasibility of the approach, but with a clear requirement to improve the mod-
eling of both the patient’s arm and the muscle model.

Muscle models adopted in the wide range of model-based controllers that have
been proposed for both the upper and lower limb vary widely in structure, from
no explicit form of muscle model in [18–20], linear forms in [21, 22] and a gen-
eral non-linear form in [23], but the most widely assumed structure is the Hill-type
model [24]. This model describes the output force as the product of three indepen-
dent experimentally measured factors: the force-length property, the force-velocity
property and the nonlinear muscle activation dynamics under isometric conditions,
respectively, where the latter is termed simply the activation dynamics (AD) of the
stimulation input. The form of the first two is typically chosen to correspond with
physiological observations, see, for example, [25–27], but they have also been com-
bined in a more general functional form [13, 28].

The activation dynamics are almost uniformly represented by a static nonlinear-
ity in series with linear dynamics, and constitute an important component of the
model since controlled motions are typically smooth and slow, so that the effects of
inertia, velocity, and series elasticity are small and the isometric behavior of muscle
dominates. The non-linearity has been parameterized in a number of ways, taking
the form of a simple gain with saturation [29], a piecewise linear function [25, 30]
and a predefined functional form [31, 32]. The linear dynamics have been assumed
to be first order [25], a series of two first order systems [26, 33], critically damped
second order [34–36] or second order with transport delay [30, 37].

The popularity of Hammerstein structure representations of activation dynamics
is supported by their correspondence with biophysics. In particular, the static nonlin-
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Fig. 15.3 Hammerstein
structure representation of
activation dynamics

earity, f (u), represents the Isometric Recruitment Curve (IRC), which is the static
gain relation between stimulus activation level, u(t), and steady-state output torque,
w(t), when the muscle is held at a fixed length. The linear dynamics,G(q), where q
denotes the shift operator, represents the muscle contraction dynamics, which com-
bines with the IRC to give the overall torque generated, y(t). These components are
shown in the block diagram of Fig. 15.3.

Due to its track record in the modeling of stimulated muscle, and also the subse-
quent design and implementation of controllers, the Hammerstein structure has been
employed in the research discussed in this chapter. This was on the previso that the
following limitations restricting its application to upper limb stroke rehabilitation
could be overcome.

• ES has been applied to either in vitro or paretic muscles in the vast majority of
experimental verification tests. This effectively removes the possibility of an in-
voluntary response to stimulation which may occur when applied to subjects with
incomplete paralysis, such as stroke. In addition to motivating the need for ex-
perimental validation on such subjects, this also meant that the excitation inputs
widely used to identify the Hammerstein structure (Pseudo Random Binary Se-
quences (PRBS)), white noise and pulses, are not appropriate as they would elicit
an involuntary response from the subject.

• The absence of test results from subjects with incomplete paraplegia also meant
that physiologically based constraints on the form of the dynamics, such as the
assumption of a critically damped system [38, 39], may not be justified.

• Almost all previously reported in vivo studies and control implementations have
applied ES to the lower limb, even though upper limb functional tasks require
finer control, and are more subject to adverse effects such as sliding electrodes
and the activation of adjacent muscles during stimulation.

The work reported in [8] developed a novel identification scheme, and accom-
panying set of excitation inputs, in order to address these drawbacks through the
following attributes.

• The excitation signal must be chosen from a physiological perspective and hence
the identification scheme cannot use rapidly changing inputs and must be appli-
cable to an arbitrary choice of signal.

• A general form of linear dynamics represented in transfer-function form is used.
• The use of a smooth function with continuous derivatives is preferable to that of

a piecewise linear function in the representation of the static nonlinearity.

The physical realization of the input is a more arbitrary consideration: the stim-
ulus activation level, quantified by the number of muscle fibers activated, can be
achieved by varying either the current or voltage amplitude, or the duration (width)
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of stimulus pulses. The latter method is preferred since it is easier to quantify and
control, provides a more consistent response across subjects, requires a smaller
charge per stimulus pulse, and allows for greater selectivity of recruitment than
amplitude modulation [40].

The modulation by temporal summation (stimulus period modulation, or, in-
versely, pulse frequency modulation), achieved by varying the time interval be-
tween the start of successive pulses, can be represented using a multiplicative func-
tion [26]. It was not used in this application, however, because (i) the use of high
frequencies (>50 Hz) is known to increase muscle fatigue in stroke patients [10]
(frequencies up to 100 Hz are used in the frequency modulation method of [41]),
and (ii) frequency modulation alone may not generate the range of torque needed
to achieve the wide variety of functional tasks required by a stroke rehabilitation
program [42].

Having established the model structure, the task of estimating the model param-
eters is now considered from a systems identification perspective. There are many
methods applicable to Hammerstein models, and in general they can be classified
into two categories: iterative methods and non-iterative methods.

In this work, an iterative technique has been applied since this generally leads
to improved accuracy. Following the discussion in [8], the separable least squares
method using cubic spline nonlinearities [43] appears the most appropriate since it
has been successfully used in modeling stretch reflex dynamics. The approach in-
volves dividing the parameters into linear and nonlinear components: the nonlinear
parameters start from initial values, which are then updated on each iteration using
the Levenberg-Marquardt algorithm [44] to compute the step, and the linear param-
eters are then similarly updated by linear regression. However, this approach cannot
be applied to the present problem because it relies on a finite impulse response
representation of dynamics, rather than the infinite impulse transfer-function form
that has been adopted in the vast majority of Hammerstein structure applications to
muscle modeling, and which also leads to reduced memory requirement and com-
putational work load. Therefore, since [43] is unsuitable, an iterative algorithm has
been developed [8] for identification of the form of Hammerstein structure required,
which uses a different projection approach to update the nonlinear parameters. The
iterative algorithm is now summarized and then experimental results using a human
subject will be given in order to evaluate this method with respect to its convergence
properties, identification and predictive abilities.

15.3 The Identification Problem

Two discrete-time Hammerstein model structures of the form shown in Fig. 15.4
have been used. The stimulation input u is first scaled by the static nonlinear func-
tion f and then passed to a linear time-invariant system described by a transfer-
function G(q)= B(q)/A(q). The internal signal w is not measurable and the noise
v is zero mean and white.
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Fig. 15.4 Two discrete-time
Hammerstein model
structures

The linear system is represented by the transfer-function

G(q)= B(q)

A(q)
= b0q

−d + b1q
−(d+1) + · · · + bnq−(n+d)

1 + a1q−1 + · · · + alq−l , (15.1)

where q−1 is the delay operator and n, l and d are the number of zeros, poles and
the time delay order, respectively, where the last three are assumed to be known.

The nonlinear function f (u) is represented by the cubic spline

f (u)=
m−2∑

i=1

βi |u− ui+1|3 + βm−1 + βmu+ βm+1u
2 + βm+2u

3, (15.2)

where umin = u1 < u2 < u3 < · · ·< um = umax are the spline knots,

θn = [β1 β2 . . . βm+2
]T

are the parameters of the nonlinear block and

θl =
[
θa
θb

]
= [a1 . . . al b0 b1 . . . bn

]T
(15.3)

are the parameters of the linear block.
These two Hammerstein models differ in the form of the noise model. In

Fig. 15.4(a) an Auto Regressive eXternal (ARX) model is used, in which the noise
filter, H = 1/A(q), is coupled to the linear component of the plant model. In
Fig. 15.4(b) an Output-Error (OE) model is used and in this case the noise model is
H = 1.

The identification problem can now be stated as follows: given measured in-
put/output data

{(
u(1), y(1)

)
, . . . ,

(
u(N), y(N)

)}
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find a parameter vector

θ =
[
θn
θl

]

that minimizes the cost function

‖v‖2
2 =

N∑

k=1

v2(k), (15.4)

where

1

Â(q)
v = y −G(q, θ̂l)f (u, θ̂n)= y − B̂(q)

Â(q)
f (u, θ̂n) (15.5)

in the case of ARX noise model and

v = y −G(q, θ̂l)f (u, θ̂n)= y − B̂(q)
Â(q)

f (u, θ̂n) (15.6)

in the case of OE noise model.

15.4 Identification Algorithm

Assume that an initial estimate of the linear parameter vector, θ̂l , is available. In
which case the nonlinear parameters can be identified as follows.

ARX Model Multiplying (15.5) by Â(q) and substituting the resulting expression
for v in (15.4) yields

θ̂nv = arg min
θn

∥∥Â(q)y − B̂(q)f (u, θn)
∥∥

2. (15.7)

From (15.2), it follows that f (u, θn) is linear in θn, and hence

(
B̂(q)f (u, θn)

)
(k)

=
m−2∑

i=1

βi (b̂0|u(k − d)− ui+1|3 + · · · + b̂n|u(k − d − n)− ui+1|3)︸ ︷︷ ︸
fi (u(k),θ̂b)

+ βm−1 (b̂0 + · · · + b̂n)︸ ︷︷ ︸
fm−1(u(k),θ̂b)

+ βm (b̂0u(k − d)+ · · · + b̂nu(k − d − n))︸ ︷︷ ︸
fm(u(k),θ̂b)
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+ βm+1 (b̂0u(k − d)2 + · · · + b̂nu(k − d − n)2)︸ ︷︷ ︸
fm+1(u(k),θ̂b)

+ βm+2 (b̂0u(k − d)3 + · · · + b̂nu(k − d − n)3)︸ ︷︷ ︸
fm+2(u(k),θ̂b)

. (15.8)

Consequently (15.7) can be rewritten as an ordinary least squares problem

arg min
θn

∥∥Yn(y, θ̂a)−Φn(u, θ̂b)θn
∥∥

2 (15.9)

where, assuming that l > n+ d ,

Yn(y, θ̂a)=

⎡

⎢⎢⎢
⎣

y(l + 1)+ â1y(l)+ · · · + âly(1)
y(l + 2)+ â1y(l + 1)+ · · · + âly(2)

...

y(N)+ â1y(N − 1)+ · · · + âly(N − l)

⎤

⎥⎥⎥
⎦

and

Φn(u, θ̂b)=

⎡

⎢⎢⎢
⎣

f1(u(l + 1), θ̂b) · · · fm+2(u(l + 1), θ̂b)
f1(u(l + 2), θ̂b) · · · fm+2(u(l + 2), θ̂b)

...
...

f1(u(N), θ̂b) · · · fm+2(u(N), θ̂b)

⎤

⎥⎥⎥
⎦
.

The solution of (15.7) now is

θ̂n = (Φn(u, θ̂b)T Φn(u, θ̂b)
)−1
Φn(u, θ̂b)

T Yn(y, θ̂a).

OE Model Let ŷ be the output of Ĝ when the input is f (u, θn) or, equivalently,

ŷ(k)= B̂(q)

Â(q)
f (u, θn) (15.10)

or, on multiplying both sides of (15.10) by Â(q) and expanding B̂(q)f (u(k), θn) as
in (15.8),

T (θ̂a)Ŷ =Φn(u, θ̂b)θn, (15.11)

where

T (θ̂a)=

⎡

⎢⎢⎢
⎣

âl · · · â1 1 0 · · · · · · 0
0 âl · · · â1 1 · · · · · · 0
...

...

0 · · · · · · 0 âl · · · â1 1

⎤

⎥⎥⎥
⎦

and Ŷ =

⎡

⎢⎢⎢
⎣

ŷ(1)
ŷ(2)
...

ŷ(N)

⎤

⎥⎥⎥
⎦

in which T (θ̂a) is an (N − l)×N matrix, and hence the solution for Ŷ is not unique.
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The system theoretic interpretation of this linear algebra fact is that the output
cannot be uniquely determined by the given model and input. Indeed, there are ad-
ditional degrees of freedom in the choice of the initial conditions. In order to enforce
a unique solution of (15.11) unique, zero initial conditions are assumed. This choice
is justifiable in the context of the muscle identification problem because the experi-
ment starts with the muscle “at rest”. The choice of zero initial conditions amounts
to extending the data by zeros in the past, which, in turn, means that the matri-
ces T (θ̂a) and Φn(u, θ̂b) are extended to comprise N columns, and then (15.11)
becomes

Text (θ̂a)Ŷ =Φn(uext , θ̂b)θn, (15.12)

with

Text (θ̂a)=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎢⎢
⎣

1 0 · · · 0 0 · · · · · · 0
â1 1 0 0 0 · · · · · · 0
...

. . .
...

âl · · · â1 1 0 · · · · · · 0
0 âl · · · â1 1 · · · · · · 0
...

...

0 · · · · · · 0 âl · · · â1 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎥⎥
⎦

and

Φn(uext , θ̂b)=

⎡

⎢⎢⎢
⎣

f1(u(1), θ̂b) · · · fm+2(u(1), θ̂b)
f1(u(2), θ̂b) · · · fm+2(u(2), θ̂b)

...
...

f1(u(N), θ̂b) · · · fm+2(u(N), θ̂b)

⎤

⎥⎥⎥
⎦
.

Now, from (15.12)

Ŷ = T −1
ext (θ̂a)Φn(uext , θ̂b)θn

and on substituting this expression in (15.6), the cost function (15.4) becomes

θ̂n = arg min
θn

‖Y − T −1
ext (θ̂a)Φn(uext , θ̂b)θn‖2,

which can be solved approximately in the least squares sense to obtain the estimate
of the nonlinear parameter vector, θ̂n, as

θ̂n = ((T −1
ext (θ̂a)Φn(uext , θ̂b)

)T
T −1
ext (θ̂a)Φn(uext , θ̂b)

)−1

×(T −1
ext (θ̂a)Φn(uext , θ̂b)

)T
Y.

15.4.1 Identification of the Linear Parameters

Given an estimate θ̂n for the nonlinear parameter vector θn, the cost function (15.4)
can be minimized over the linear parameter vector θl . This subproblem is a linear
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least squares minimization in the ARX case but a difficult nonlinear least squares
problem in the OE case.

ARX Model The minimization problem for this model is

θ̂l = arg min
θl

∥∥A(q)y −B(q)f (u, θ̂n)
∥∥

or in matrix form

arg min
θl

∥∥Y ′ −Φl(u, y, θ̂n)θl
∥∥

2, (15.13)

where

Y ′ = [y(l + 1) y(l + 2) . . . y(N)
]T

and

Φl(u, y, θ̂n)

=

⎡

⎢⎢
⎣

−y(l) · · · −y(1) f (u(l + 1 − d), θ̂n) · · · f (u(l + 1 − d − n), θ̂n)
−y(l + 1) · · · −y(2) f (u(l + 2 − d), θ̂n) · · · f (u(l + 2 − d − n), θ̂n)

...
...

...
...

−y(N − 1) · · · −y(N − l) f (u(N − d), θ̂n) · · · f (u(N − d − n), θ̂n)

⎤

⎥⎥
⎦ .

Therefore, the solution of (15.13) is

θ̂l =
(
Φl(u, y, θ̂n)

T Φl(u, y, θ̂n)
)−1
Φl(u, y, θ̂n)

T Y ′.

OE Model Recall the partition of the transfer-function linear parameters vector θl
into parameter θa of the denominator A and parameter θb of the numerator B . Then
the output error can be minimized analytically over θb, reducing the number of
optimization variables for the minimization problem.

For a given θa , (15.10) can be rewritten in a matrix form similar to (15.12) as

Text (θ̂a)Ŷ =Φ ′
l (uext , θ̂n)θb, (15.14)

where

Φ ′
l (uext , θ̂n)=

⎡

⎢⎢⎢
⎣

f (u(1 − d), θ̂n) · · · f (u(1 − d − n), θ̂n)
f (u(2 − d), θ̂n) · · · f (u(2 − d − n), θ̂n)

...
...

f (u(N − d), θ̂n) · · · f (u(N − d − n), θ̂n)

⎤

⎥⎥⎥
⎦

to give

Ŷ (θa, θb)= T −1
ext (θ̂a)Φ

′
l (uext , θ̂n)θb.
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Thus, for a given θ̂a , the solution, θ̂b , for θb is given by

θ̂b = arg min
θb

‖Y − Ŷ‖2

= ((T −1
ext (θ̂a)Φ

′
l (uext , θ̂n)

)T
T −1
ext (θ̂a)Φ

′
l (uext , θ̂n)

)−1(
T −1
ext (θ̂a)Φ

′
l (uext , θ̂n)

)T
Y

︸ ︷︷ ︸
g(θ̂a)

.

(15.15)

The OE minimization problem has now been reduced to an unconstrained nonlinear
least squares problem

θ̂a = arg min
θa

‖Y − Ŷ (θa, g(θa))‖2

with θa as the only variable to be optimized. Such a problem can be solved
by standard local optimization methods, for example, the Levenberg–Marquardt
method [44].

In general it is difficult to impose the requirement that the identified model is
stable but in the muscle identification context, a second order system has often been
assumed by many authors, and in this case the stability constraint reduces to the
following bound constraints on the parameters

0< â2 ≤ 1 and − 2 ≤ â1 ≤ 0.

15.4.2 Iterative Algorithms

For both model structures, minimization over the θn and θl parameters can be exe-
cuted iteratively, resulting in Algorithms 15.1 and 15.2 given next.

Algorithm 15.1: Iterative algorithm for Hammerstein system identification
with ARX model

Inputs: an initial value of the linear component, θ̂0
l , an input/output data set

u(k), y(k), k = 1,2, . . . ,N , and a convergence tolerance ε.
j = 0
repeat
j = j + 1
θ̂
j
n = (Φn(u, θ̂ j−1

b )T Φn(u, θ̂
j−1
b )

)−1
Φn(u, θ̂

j−1
b )T Yn(y, θ̂

j−1
a )

θ̂
j
l = (Φl(u, y, θ̂ jn )T Φl(u, y, θ̂ jn )

)−1
Φl(u, y, θ̂

j
n )
T Y ′

until |VN(θ̂jl , θ̂ jn )− VN(θ̂j−1
l , θ̂

j−1
n )|< ε

Output: θ̂ =
[
θ̂
j
n

θ̂
j
l

]
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Algorithm 15.2: Iterative algorithm for Hammerstein system identification
with OE model

Inputs: an initial value of the linear component, θ̂0
l , an input/output data set

u(k), y(k), k = 1,2, . . . ,N , and a convergence tolerance ε.
j = 0
repeat
j = j + 1

θ̂
j
n = ((T −1

ext (θ̂
j−1
a )Φn(uext , θ̂

j−1
b )

)T
T −1
ext (θ̂

j−1
a )Φn(uext , θ̂

j−1
b )

)−1

× (T −1
ext (θ̂

j−1
a )Φn(uext , θ̂

j−1
b )

)T
Y

θ̂
j
a = arg min

θa
‖Y − Ŷ (θa, g(θa))‖2

where g(θa) is defined in (15.15) and θ̂ jb = g(θ̂ ja )
until |VN(θ̂jl , θ̂ jn )− VN(θ̂j−1

l , θ̂
j−1
n )|< ε

Output: θ̂ =
[
θ̂
j
n

θ̂
j
l

]

15.5 Experimental Test Design

The choice of suitable experimental test procedure is a crucial step for any success-
ful model identification. This is especially true in the present case since tests are
not applied to a mechanical or physical process, but to a human being; care must
be taken to avoid triggering involuntary reflex mechanisms, fatigue, inhibition due
to subject discomfort [6] and to operate within physiological constraints and limi-
tations. Whilst the experimental test procedure ensures that the maximum levels of
stimulation are within suitable bounds, as discussed in more detail in Sect. 15.6.1
below, it is also necessary to ensure that motor units are recruited gradually rather
than abruptly exciting a large number simultaneously [10]. This clearly excludes
rapidly increasing input signals with wide amplitude fluctuation, and instead neces-
sitates a more slowly varying signal to ensure the rate of recruitment of nerve fibers
is limited above the excitation threshold. The need for a limitation on rapidly de-
creasing signals is also necessary since the sudden reduction in stimulation is also
associated with involuntary reflexes and patient discomfort [10]. A more subject-
specific concern is that it has also been observed that certain types of signal elicit a
greater degree of involuntary response than others, despite possessing similar char-
acteristics.

Detailed investigation [8] based on the arguments just given, led to four candidate
tests for use in the identification of electrically stimulated muscle. Examples of the
excitation inputs used in each are given in Fig. 15.5, where it is the pulse duration
which is selected as the controlled variable, as discussed in Sect. 15.2. These tests
are as follows.
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Fig. 15.5 Examples of the four candidate tests

• Triangular Ramp (TR) test
The pulse duration rises linearly from 0 to 300 µs and then returns to 0, its

range being uniformly distributed.
• Staircase test

The duration of each pulse changes step by step. The number of steps should
be large enough to identify the nonlinearity and their width chosen carefully. Let
τ = Ts/4 (where Ts is the 98% settling time). It is then recommended to use
mixed step widths, with step width τ for 1/3 of the test period, 2τ for another
1/3 of the test period and 3τ for the remaining 1/3 of the test period, and to
randomize these widths when creating the test signals [45].

• Filtered Random Noise (FRN) test
The pulse width signal is produced by low-pass filtering white noise, using

a suitable cut-off frequency to balance the opposing physiological and identifi-
cation issues discussed above. Having filtered the signal, an offset and gain are
applied to ensure the desired pulsewidth range is spanned.

• Pseudo-Random Multi-level Sequences (RMS) test
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The excitation signal is an multi-level pseudo random signal which is a pe-
riodic, deterministic signal having an autocorrelation function similar to white
noise. The amplitude level is uniformly distributed over the full range.

15.6 Results

15.6.1 Experimental Set-Up

The ILC workstation has been described in Sect. 15.2, and is a platform on which
model-based ES has been clinically applied. The system has been used to obtain the
experimental results which follow since it

• provides a facility whose software and hardware components, including sensor
and stimulation systems, have been experimentally assessed and verified [12]

• ensures that the experimental set-up procedure, as used in clinical trials, is appro-
priate to the intended application area of stroke rehabilitation.

Tests were performed on a single unimpaired subject, and took place during two
sessions conducted over consecutive days. Biometric measurements, including the
length of upper arm and forearm, were first made using anatomical landmarks, and
then the participant was seated in the workstation. Their right arm was strapped
to the extreme link of the five-bar robotic arm which incorporates a six axis
force/torque sensor, which provides support and constrains it to lie in a horizon-
tal plane, and straps were also applied about the upper torso to prevent shoulder and
trunk movement (as shown in Fig. 15.1). The subject’s upper limb was then moved
over as large an area as possible and a kinematic model of the arm was produced us-
ing the measurements recorded. This kinematic model is the same as that appearing
in the arm and muscle system shown in Fig. 15.2, but it is now used to convert the
force recorded by the force/torque sensor to a torque acting about the elbow (full
details are given in [12]). The electrode was then positioned on the lateral head of
triceps and adjusted so that the applied ES generated maximum forearm movement.
The stimulation consists of a series of bi-phasic pulses at 40 Hz, whose pulsewidth
is variable from 0 to 300 µs with a resolution of 1 µs. The amplitude, which is
fixed throughout all subsequent tests, is determined by setting the pulsewidth equal
to 300 µs and slowly increasing the applied voltage until a maximum comfortable
limit is reached. A sample frequency of 1.6 KHz is used by the real-time hardware,
and all calculations are performed using the Matlab/Simulink environment.

The position of the robotic arm was then fixed using a locking pin, at an elbow
extension angle of approximately π/2 rads. This removes the non-isometric com-
ponents of the biomechanical model, so that the resulting system corresponds to
the Hammerstein structure shown in Fig. 15.3. The identification tests that followed
were each of 30 sec duration, and used excitation signals in which the first and last
5 sec periods consisted of zero stimulation. Only the middle 20 sec section of input
and output data was used for identification, with the adjoining periods used to estab-
lish the baseline torque offset (taken as the mean torque value). The identification
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Table 15.1 Identification results of Algorithm 15.1 and Algorithm 15.2 for the four candidate
tests. The results are in terms of the Best Fit Rate

Triangular ramp Filtered random noise Staircase PRMS

(a) Algorithm 15.1

1 85.88 42.54 87.62 50.34

2 88.34 36.39 89.16 52.48

3 91.33 36.09 85.18 52.43

4 89.23 36.58 89.68 36.69

5 92.25 63.38 89.84

6 90.68 55.23 91.35

7 89.14 48.12 88.33

8 91.41 58.09 88.17

9 94.25 74.74 83.46

10 89.02 66.84 91.85

Average 90.15 51.8 88.46 48.00

(b) Algorithm 15.2

1 92.65 73.03 90.89 66.89

2 92.25 65.19 93.32 78.91

3 93.88 51.69 93.49 63.79

4 93.36 70.92 93.49 65.92

5 93.08 79.94 93.77

6 91.98 68.46 92.34

7 95.74 58.48 93.38

8 92.41 61.50 94.66

9 95.32 79.74 90.85

10 92.60 71.32 94.23

Average 93.33 68.03 93.04 68.88

calculations were carried out immediately following each test in order to establish
the efficacy of the data.

For the TR, Staircase and FRN tests, 10 trials were performed, however, in the
case of the PRMS test, only 4 trials were carried out as it was evident that the
fit rate was poor. Between every two tests there was a rest period of at least 10
min in order to eliminate fatigue [46], and the order of identification tests was also
randomized to minimize the effect of subject memory or acclimatization increasing
their involuntary response.

15.6.2 Experimental Results

For both algorithms, the identification, validation and cross-validation results are
listed in Tables 15.1, 15.2 and 15.3, respectively. Results are in terms of the Best Fit
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Table 15.2 Validation results of Algorithm 15.1 and Algorithm 15.2 for the four candidate tests.
The model is identified from the listed data set and validated on all the data of the same test. The
results are expressed in terms of the average Best Fit Rate

Triangular ramp Filtered random noise Staircase PRMS

(a) Algorithm 15.1

1 82.28 28.01 73.99 11.17

2 82.78 45.00 83.63 43.45

3 79.01 40.52 77.77 46.32

4 82.51 8.79 77.27 44.10

5 82.83 37.62 82.72

6 81.94 28.97 82.28

7 78.51 40.67 81.20

8 80.11 30.37 80.68

9 82.80 44.77 78.09

10 83.25 −45.65 81.04

Average 81.60 25.91 79.87 36.26

(b) Algorithm 15.2

1 76.12 16.90 75.86 46.08

2 80.94 26.34 84.39 32.15

3 76.58 36.32 83.42 29.50

4 81.80 16.31 83.47 50.22

5 81.79 24.37 75.82

6 75.98 41.43 83.09

7 68.03 29.49 83.32

8 79.87 20.76 81.96

9 80.32 46.80 80.67

10 78.61 −30.94 83.81

Average 78.00 22.78 81.58 39.49

rate, defined as the percentage,

Best Fit =
(

1 − ‖y − ŷ‖2

‖y − ȳ‖2

)
× 100,

where y is the measured output, ŷ is the simulated model output and ȳ is the mean
of y. To aid visual comparison of the identification and validation results between
Algorithms 15.1 and 15.2, box and whisker plots are given in Fig. 15.6.

The identification results for each individual trial of four candidate tests are given
in Table 15.1 together with the average results for all the trials. To obtain the valida-
tion results, a model is firstly identified from the data of one trial and then is used to



310 F. Le et al.

Table 15.3 Cross Validation results of Algorithms 15.1 and 15.2 for the TR, FRN, and Staircase
tests. The model is identified from all the data of one type of test and validated on all the data of
the other type of test. The results are the average Best Fit Rate

Triangular ramp (TR) Filtered random noise (FRN) Staircase

(a) Algorithm 15.1

(TR) 84.83 17.76 47.94

(FRN) 83.96 40.23 71.40

Staircase 79.53 42.67 84.48

(b) Algorithm 15.2

(TR) 81.80 41.08 64.11

(FRN) 68.75 46.80 67.86

Staircase 80.72 45.00 84.39

Fig. 15.6 Comparison between Algorithm 15.1 and Algorithm 15.2 for the identification and val-
idation results
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predict the outputs for all the trials in the same type of the tests. The results are the
average values of all the prediction results in terms of Best Fit rate. The validation
results, in Table 15.2, show the predictive ability within the same type of identifica-
tion tests. Similarly, in order to show the predictive ability for different stimulation
patterns, cross-validation analysis is conducted, see Table 15.3. Firstly, a model is
identified from the data of all the trials in one type of test and then is used to predict
the outputs for all the trials in one of the other tests. The results are again the average
value of the Best Fit rate. Here only the TR, FRN, and Staircase tests are compared,
due to the poor performance of the PRMS test in both identification and validation.

15.7 Discussion

15.7.1 Initial Values for Linear Parameters

Both algorithms require the initial values of the linear parameters, which can be ob-
tained using any existing method that applies an input suitable for use with stroke
patients. One such technique is the ramp deconvolution method [34], which was
used in [13]. By using representative choice of parameters to provide an initial
value estimate, both algorithms can achieve convergence after several iterations, il-
lustrated by Fig. 15.7(a) and 15.7(b). However, irrespective of the iteration number,
Algorithm 15.2 takes a longer period of time because in each iteration, an iterative
search is applied.

In order to expedite the identification procedure of Algorithm 15.2, a better so-
lution to the linear parameter estimate is required. The representative estimate from
[13] is obviously not sufficiently accurate and, moreover, the values of the linear
parameters vary widely from subject to subject and it is difficult to find a single rep-
resentative estimate across all subjects. Therefore, the optimal solution of the linear
parameters from Algorithm 15.1 has been used to initialize Algorithm 15.2. This
thereby unites the two algorithms in a single scheme which combines the speed of
the first with the accuracy of the second. The results confirm high accuracy with
fewer iterations to converge, as illustrated in Fig. 15.7(c).

15.7.2 Algorithmic Comparison

• Structure and unknown parameters
A Hammerstein structure is used in both algorithms, but with different linear

models. Algorithm 15.1 uses the ARX linear model, where the white noise is
assumed to pass through the denominator dynamics of the linear block before
being added to the output. However, it is perhaps not the most natural form from
a physical point of view. Thus, another linear model, the OE model, is assumed
in Algorithm 15.2, where white noise is added directly to the output, accounting
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Fig. 15.7 Examples of
convergence properties for
Algorithm 15.1 and
Algorithm15.2:
(a) A representative estimate
from [13] is used to give the
initial values and
Algorithm 15.1 is applied.
Convergence is achieved after
18 trials; (b) A representative
estimate from [13] is used as
the initial values and
Algorithm 15.2 is applied.
Convergence is achieved after
35 trials; (c) The optimal
solution from Algorithm 15.1
is used to provide the initial
values and Algorithm 15.2 is
applied. Convergence is
achieved after 4 iterations

for the measured errors from the equipment. The number of unknown parameters
is kept the same for both algorithms.

• Identification procedure
The identification procedures for the two algorithms are not the same but they

both alternatively optimize the nonlinear and linear parameters at each iteration.
Algorithm 15.1 is a development of a two stage identification method, see [47],

which has been shown to outperform both the ramp deconvolution and Separable
Least Squares methods on a simulated muscle system with a range of noise lev-
els. It alternatively solves the least squares problems to optimize the linear and
nonlinear parameters. It is computationally easy and is reasonably fast in imple-
mentation.
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Fig. 15.8 The force outputs
of Algorithm 15.1 (dashed),
Algorithm 15.2 (dotted) and
the measured force outputs
(solid) are plotted

The identification procedure of Algorithm 15.2 is more complicated. On each
iteration, the nonlinear parameters can be identified in a least squares sense
through use of transformations and related assumptions, while the identification
of the linear parameters necessitates an iterative search technique to find the lo-
cal optimal solution. Thus, it is more time consuming than Algorithm 15.1, but,
by using the optimal solution from Algorithm 15.1 to provide initial values, the
identification procedure of Algorithm 15.2 can be greatly accelerated in terms of
speed to the point where it is not a matter of concern.

• Performance
Both algorithms provide good fitting performance and predictive ability. Fig-

ure 15.8 shows the fitting performance between the modeled outputs and mea-
sured outputs in both identification and validation cases.

In terms of identification results, Algorithm 15.2 is superior to Algorithm 15.1,
as observed directly from Figs. 15.6(a) and 15.6(b). Numerically, Algorithm 15.2
improves the average results by up to 20% compared with Algorithm 15.1, as
shown in Table 15.1.

In validation, both algorithms have similar performance, as shown by
Figs. 15.6(c) and 15.6(d). Through examination of Table 15.2, Algorithm 15.1
is seen to be better for TR and FRN test data, while Algorithm 15.2 is better for
the staircase and PRMS test data. It is therefore reasonable to conclude that both
algorithms have comparable performance in prediction.
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The validation and prediction results provide the most direct indication of the
models’ accuracy when applied to the design of controllers for stroke rehabilitation.
Since both algorithms exhibit similar performance in this area, it is Algorithm 15.1’s
simpler implementation and faster computation that make it the preferable option.
Whilst in this application Algorithm 15.2’s increased complexity does not translate
to improved results in validation and prediction, it is anticipated that applications
exist in which it does outperform Algorithm 15.1.

15.7.3 Test Comparisons

Although the TR test is widely used in muscle tests such as [13, 34, 39] and can
achieve satisfactory fitting rates (almost the highest values in the identification case
and approximately 80% for Algorithm 15.1 and a little lower for Algorithm 15.2 in
the validation case), it shows poor capability in predicting other stimulation patterns,
such as those in Table 15.3. This is due to its non-persistent excitation property
discussed in the previous section, which leads to an unreliable model identified from
this test.

For the FRN and PRMS tests, the average identification results for Algo-
rithm 15.1 are 51.8% and 48% respectively, as shown in Table 15.1(a). Although
Algorithm 15.2 improves on these by as much as 20%, these tests are still far lower
than those of the TR and Staircase tests. The validation results in Table 15.2 are
even lower, and this lack of output prediction may be expected to lead to poor re-
sults when transferred to model-based control application. There may be two rea-
sons for this: the first is that the model structure and the identification algorithms are
not proper, but this is not the case because they perform very well for the other two
identification tests. The second reason is that the experimental data is not proper.
Considering the effects caused by randomly exciting tests on the human subjects,
it is believed that these signals elicit involuntary reflexes and subject discomfort,
which results in noisy data.

This is the first time the Staircase test has been used in the identification of elec-
trically stimulated muscles, and it has shown clear advantages over alternatives, that
is, it is persistently exciting, gives high fitting rates in the identification case (the
second highest one in Table 15.1) and in the validation case (surpassing even the
TR test for Algorithm 15.2 in Table 15.2(b)) and shows accurate predictive ability
across different stimulation patterns (see Table 15.3). Therefore the Staircase test is
highly recommended for the identification of the response of electrically stimulated
muscle.

15.8 Conclusions and Open Research Questions

Two identifications schemes have been considered in order to address the limita-
tions in the suitability and effectiveness of existing methods for identification of



15 Human Muscle Modeling 315

electrically stimulated muscle models in the case of incomplete paralysis. These
limitations relate to the underlying model structure, and also to the associated ex-
citation input required in the identification of its parameters. Experimental results
have been used to confirm the efficacy of each approach and assess their perfor-
mance over a range of identification test inputs with respect to persistence of ex-
citation and modeling accuracy. Limitations in the identification procedure of each
were subsequently overcome by combining them into a unified scheme.

The algorithms considered in this chapter represent significant progress in the
identification of electrically stimulated muscle, but the resulting models were only
verified over a short time interval of 20 sec duration. For application in stroke re-
habilitation, however, stimulation must be applied during intensive, goal orientated
practice tasks in order to maximize improvement in motor control. In clinical trials
this translates to sustained application of stimulation during each treatment session
of between 30 minutes and 1 hour duration [4]. In this case, slowly time-varying
properties of the muscle system arise due to fatigue, changing physiological condi-
tions or spasticity [46].

One possible route to obtaining more effective algorithms is to use online, or
recursive, identification where the model parameters are updated once new data is
available. Only a few of the existing identification methods are recursive, and can
be divided into three categories. The first category is the recently developed recur-
sive subspace identification method, see, for example, [48], the second is stochastic
approximation, see, for example, [49, 50], and the third is recursive least squares
or extended recursive least squares. The Recursive Least Squares (RLS) algorithm
is a well known method for recursive identification of linear-in-parameter models,
and if the data is generated by correlated noise, the parameters describing the model
of the correlation can be estimated by Extended Recursive Least Squares (ERLS).
Here, a typical way to use these two algorithms is to treat each of the cross-product
terms in the Hammerstein system equations as an unknown parameter. This proce-
dure, which results in an increased number of unknowns, is usually referred to as
the over-parameterization method [51, 52]. After this step, the RLS or ERLS method
can be applied, see, for example, [53].

A review of the limitations of current algorithms leads to the following conclu-
sions with respect to their application the problem area considered in this chapter

• The first two categories have only been applied in simulation and the stochastic
approximation has not considered time-varying linear dynamics. The third cate-
gory is the most promising as it has already been applied to electrically stimulated
muscle in [54, 55].

• Most of the test signals used are formed as random noise in order to guaran-
tee persistent excitation, even when applied to the human muscle [55], and use
pseudo-random binary sequences. This type of signal, as has been described, ex-
cites the motor units abruptly, causing patient discomfort and, and entails eliciting
an involuntary response, as reported in [10]. In [54] a test consisting of 25 pulses
is used, each of which is of 1 second duration in the form of a noisy triangular
wave. This test meets our requirements but is too short to exhibit time-varying
properties.
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• The most relevant previous work is [54] where the system considered had lin-
ear constraints and RLS was developed for constrained systems. However, the
results given do not establish that the constraints are achieved. For example, even
when considering the prediction error, the posteriori estimated output without
constraints is better than the one with constraints. Thus, the idea of adding con-
straints to RLS, leading to increased computational load, is well worth consider-
ing.

Overall, RLS is the most promising technique for recursive identification of elec-
trically stimulated muscle, but the problem of consistent estimation must be re-
solved [50, 54]. It is, however, possible that unsatisfactory performance will result,
especially for noisy measurements, and hence alternative recursive algorithms for
Hammerstein systems may be required. Moreover, a long-period test signal needs to
be designed for this application area, which is persistently exciting and also gradu-
ally recruits the motor units.
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Part III
Data-Based Mechanistic Modelling

and Environmental Systems



Chapter 16
Data-Based Mechanistic Modelling: Natural
Philosophy Revisited?

Peter C. Young

Hypotheses non fingo
Isaac Newton (1713): appears in the concluding ‘Scholium
Generale’ in the revised second edition of the Philosophiae
Naturalis Principia Mathematica’ and has been translated as
‘I frame no hypotheses’.

16.1 Introduction

While there is much debate [5] about exactly what Newton meant by the above
phrase, surely there can be little doubt what views he held on the formulation of
hypotheses when he says:

As in Mathematics, so in Natural Philosophy, the Investigation of difficult Things by the
Method of Analysis, ought ever to precede the Method of Composition. This Analysis con-
sists in making Experiments and Observations, and in drawing general Conclusions from
them by Induction, and admitting of no Objections against the Conclusions, but such as are
taken from Experiments, or other certain Truths. For Hypotheses are not to be regarded in
experimental Philosophy.
Isaac Newton (1718). Opticks, 2nd edition (1718), Book 3, Query 31, 380.

Here, ‘Natural Philosophy’ (from the Latin philosophia naturalis), is the term used
to describe ‘science’ before the development of ‘modern’ science in the 19th Cen-
tury and beyond. Newton was, of course, the greatest ‘Natural Philosopher’ of his

P.C. Young (�)
Centre for Research on Environmental Systems and Statistics, University of Lancaster, Lancaster,
UK
e-mail: p.young@lancaster.ac.uk

P.C. Young
Fenner School of Environment and Society, Australian National University, Canberra, Australia

L. Wang, H. Garnier (eds.), System Identification, Environmental Modelling,
and Control System Design,
DOI 10.1007/978-0-85729-974-1_16, © Springer-Verlag London Limited 2012

321

mailto:p.young@lancaster.ac.uk
http://dx.doi.org/10.1007/978-0-85729-974-1_16


322 P.C. Young

age and, indeed, the English translation of his famous 1687 scientific treatise (see
above) is ‘The Mathematical Principles of Natural Philosophy’.

Newton clearly equated hypotheses with guesses (particularly, it seems, if they
were made by others!). For example, in a famous letter to Edmond Halley1 concern-
ing his controversy with Robert Hooke over the inverse square law, Newton says:

. . . so Mr Hooke without knowing what I have found out since his letters to me can know no
more but that the proportion was duplicate quam proximé at great distances from the centre
and only guessed it to be so accurately and guessed amiss in extending that proportion down
to the very centre whereas Kepler guessed right at the ellipsis.2

Although Newton’s use of the word ‘guess’ is probably meant here to be somewhat
derogatory, such an interpretation is perfectly sensible (if rather unfair to Robert
Hooke, who was a great scientist in his own right). A dynamic modelling hypothe-
ses, for instance, is a (hopefully inspired) guess based on the current understanding
of some physical or other system. But the point made by Newton in the above letter
was that this hypothesis must not be a vague statement of belief made in general
conversation, but has to be supported by evidence that gives it scientific credence.

The inductive approach to science and mathematical modelling preferred by
Newton (1643–1727) was not his invention: it has a long history in philosophy and
had been discussed by Francis Bacon (1561–1626) and, almost contemporaneously
with Newton, by Robert Boyle (1627–1691). Interestingly, the polymath William
Whewell (1794–1866), who was actually born in Lancaster and also came up with
the terms ‘scientist’, and ‘physicist’, wrote two books on induction: a History of the
Inductive Sciences, from the Earliest to the Present Times (1837) and The Philoso-
phy of the Inductive Sciences (1840).

In the 20th Century, scientific philosophers such as Karl Popper (1959) and
Thomas Kuhn (1962), looked at the philosophy of science in a wider context and
Popper [13], in particular, was a proponent of an alternative to the inductive ap-
proach that he termed the hypothetico–deductive method. Here, the model forms a
hypothesis that is tested against data, usually obtained from carefully planned ex-
periments. And the aim is not to ‘prove’ the hypothesis, but rather to attempt its
‘falsification’ and consider it to be ‘conditionally valid’ until falsified.

Whether Kuhn [9] subscribed to the hypothetico-deductive concept is not clear.
Rather, he viewed science from a ‘paradigmatic’ standpoint in which most ‘ordi-
nary science’ worked within, and embroidered, defined paradigms; while the more
fundamental achievements of science were those that questioned or even overturned
these current paradigms (as Einstein’s theories of relativity radically changed the
Newtonian view of the World). In this regard, the hypothetico-deductive approach
to scientific research used by ordinary scientists often tends to be too constrained
by current paradigms: hypotheses are made within the current paradigm and do not
often seek to question it.

1Newton’s friend and famous fellow scientist, who convinced him to write the Principia and fi-
nanced its publication.
2This extract is taken from the book by Rigaud [15], which is available from Google books and
makes very interesting reading.
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So, in a modelling context, which is better: the inductive approach that con-
centrates on inference from experimental or monitored data; or the hypothetico–
deductive approach that relies on the creation of a prior hypotheses that are then
tested against such data? The answer is, of course, that they are not mutually ex-
clusive methodologies and should be combined in a constructive way to yield an
array of models that satisfy different objectives. My own predilection is to concen-
trate on an inductive approach whenever the availability of suitable data allows for
this. Such an approach can often yield a useful, physically meaningful model rather
quickly, without being overly constrained by existing hypotheses; and it can also
be an aid in the falsification of hypothetico–deductive models (see the later illustra-
tive example). But suitable data are not always available and hypothetico–deductive
‘simulation models’ provide an obvious alternative in this data-scarce situation that
occurs so often in the natural sciences. Moreover, in making inferences about the
model structure, inductive analysis is normally guided by existing or new hypothe-
ses concerning the physical interpretation of parsimonious model structures. In other
words, inductive and hypothetico–deductive modelling are synergistic activities, the
relative contributions of which will depend upon the system being modelled and the
information of all types, not only time-series data, that are available to the scientist
and modeller.

With above caveats in mind, this chapter will present the main aspects of Data-
Based Mechanistic (DBM) modelling, a predominantly, but not exclusively, induc-
tive approach to modelling that harks back to the era of natural philosophy. It recog-
nises that, in contrast to most man-made dynamic systems, the nature of many nat-
ural systems, particularly at the holistic or macro-level (global climate, river catch-
ment, macro-economy), is still not well understood. ‘Reductionist’ approaches to
modelling such systems, based on the aggregation of hypothetico–deductive models
at the micro level, or the rather naïve application of micro-scale laws at the macro
level, often results in very large simulation models that suffer from ‘equifinality’
[2, 3] and are not fully identifiable from the available data.

It will be argued that the DBM approach is often a more appropriate method of
scientific inference in research on natural systems, where the ‘natural laws’ at the
macro-level, as used in reductionist modelling, are normally untestable by planned
experimentation, which is often difficult or impossible in the broad gamut of the
natural sciences. In such applications, DBM modelling not only helps to avoid the
possibility of false hypotheses and overly-parameterised, poorly identifiable mod-
els, but also provides a compelling reason for exploiting the powerful and relatively
novel tools of statistical inference that have been developed to service the require-
ments of DBM modelling. These tools are collected together in the CAPTAIN Tool-
box3 for Matlab and are used to generate the results presented in this chapter.

The latest exposition of the DBM approach [37] is not, however, exclusively
inductive in its approach: it recognises the need for, and utility of, hypothetico–
deductive simulation modelling and so covers the whole range of model-based sci-
entific inference, from hypothetico–deductive simulation modelling when data are

3The CAPTAIN Toolbox can be downloaded from http://www.es.lancs.ac.uk/cres/captain/.

http://www.es.lancs.ac.uk/cres/captain/
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scarce, to inductive modelling when suitable data become available. The present
chapter is dominated, therefore, by an illustrative example that considers the mod-
elling in this combined manner, with ‘large model emulation’ or ‘meta-modelling’
providing a bridge between the simulation and data-based model forms. This is
a particularly suitable example for the present book because it harks back to one
of the earliest examples of DBM modelling carried out by the author and his col-
leagues: the development of the Aggregated Dead Zone (ADZ) model [1, 21] for
the characterisation of pollutant transport and dispersion in water bodies (see also
Chap. 18).

16.2 Data-Based Mechanistic (DBM) Modelling

The term ‘data-based mechanistic modelling’ was first used in [35] but the basic
concepts of this approach to modelling dynamic systems have been developed over
many years. For example, they were first applied seriously within a hydrological
context in the early 1970s, with application to the modelling of water quality and
flow in rivers [22, 34] and set within a more general framework shortly thereafter
[23]. Since then, they have been applied to many different systems in diverse areas
of application from ecology, through engineering to economics: see e.g. [25, 30].

The seven major phases in the DBM modelling strategy are as follows [37]:

1. The important first stage in any modelling exercise is to define the objectives
and to consider the types of model that are most appropriate to meeting these
objectives. Since the concept of DBM modelling requires adequate data if it is
to be completely successful, this stage also includes considerations of scale and
the likely data availability at this scale, particularly as they relate to the defined
modelling objectives.

2. In the initial phases of modelling, it may well be that real observational data will
be scarce, so that any major modelling effort will have to be centred on simu-
lation modelling, normally based on largely deterministic concepts, such as the
conservation laws (mass, energy momentum etc.). In the DBM simulation mod-
elling approach, which is basically Bayesian in concept, these deterministic sim-
ulation equations are converted to a stochastic form by assuming that the associ-
ated parameters and inputs are inherently uncertain and can only be characterised
in some suitable stochastic form, such as a probability distribution function (pdf)
for the parameters and a continuous or discrete time-series model for the in-
puts. The subsequent stochastic analysis uses Monte Carlo Simulation (MCS),
to explore the propagation of uncertainty in the resulting stochastic model, and
sensitivity analysis of the MCS results to identify the most important parameters
which lead to a specified model behaviour: e.g. [12].

3. The initial exploration of the simulation model in stochastic terms is aimed at
revealing the relative importance of different parts of the model in explaining the
dominant behavioural mechanisms. This understanding of the model is further
enhanced by employing Dominant Mode Analysis (DMA). This approach to dy-
namic model order reduction [26] is applied to time-series data obtained from
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planned experimentation, not on the system itself, but on the simulation model
that, in effect, becomes a surrogate for the real system. In particular, optimal
methods of Refined Instrumental Variable (RIV) estimation [24, 31] are applied
to these experimental data and yield low order approximations to the high order
simulation model that are almost always able to explain its dynamic response
characteristics to a remarkably accurate degree (e.g. greater than 99.99% of the
large model output variance explained by the reduced order model output).

4. A more complete understanding of the links between the high order simulation
model and its reduced order representation obtained in stage 3 is obtained by per-
forming multiple DMA analysis over a user-specified range of simulation model
parameter values. The mapping between the large and reduced order model pa-
rameters or responses then yields a full Dynamic Emulation (or ‘meta’) Model
(DEM) that can replace the simulation model over a wide range of parameter
values. This approach to high order model emulation is introduced in [37], while
[38] describes in detail two methods of emulation: namely, ‘stand-alone parame-
ter mapping’, which is used in the present chapter, and ‘response mapping’, with
application to the emulation of the Nash-Cascade hydrological model and a large
economic model.

5. Once experimental time series data are available, an appropriate model struc-
ture and order is identified by a process of statistical inference applied directly
to these real time-series data and based on a generic class of dynamic models:
in the present chapter, these are simply linear, stochastic models described by
continuous-time transfer functions (i.e. lumped parameter differential equations).
If such time series data are available at the start of the study, then this analysis
will constitute the first stage in DBM modelling. The identification and estima-
tion procedures used in the DBM modelling are the same optimal RIV methods
used in dominant mode analysis (see above 3 and 4). Note that statistical ter-
minology is utilised here, so that ‘identification’ is the process of determining a
model structure that is identifiable from the data; and ‘estimation’ is the statisti-
cal estimation of the parameters that characterise this identified structure.

6. If emulation modelling has been carried out prior to the acquisition of data, then
the DBM model obtained at the previous stage 5 should be reconciled with the
dynamic emulation version of the simulation model considered in stage 4. Other-
wise, if time series data are available at the start of the study and a DBM model
has been obtained at the previous stage 5, then an emulation model should be
considered at this stage and reconciled with the DBM model. Although such rec-
onciliation will depend upon the nature of the application being considered, the
DBM model obtained from the real data should have strong similarities with the
reduced order dynamic emulation model. If this is not the case, then the differ-
ences need to be investigated, with the aim of linking the reduced-order model
with the high order simulation model via the parametric mapping of the dynamic
emulation model (see later illustrative example).

7. The final stage of model synthesis should always be an attempt at model valida-
tion: see e.g. [27]. The word ‘attempt’ is important since validation is a complex
process and even its definition is controversial. Some academics (e.g. Konikow
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and Bredehoeft [8], within a ground-water context; and Oreskes et al. [11], in
relation to the whole of the earth sciences) question even the possibility of val-
idating models. However, statistical evaluation of the model by confirming that
statistical diagnostics are satisfactory (e.g. no significant autocorrelation in the
residuals or cross correlation between the residuals and input variables; no ev-
idence of un-modelled nonlinearity etc.) is always possible and can engender
greater confidence in the efficacy of the model. Also, one specific, quantitative
aspect of validation is widely accepted; namely ‘predictive validation’ or ‘cross-
validation’, in which the predictive potential of the model is evaluated on data
other than that used in the identification and estimation stages of the analysis.
When validated in this narrow sense, it can be assumed that the ‘conditionally
valid’ model represents the best theory of behaviour currently available that has
not yet been ‘falsified’ in a Popperian sense.

Although these are the seven major stages in the process of DBM model synthe-
sis, they may not all be required in any specific application: rather, they are ‘tools’
to be used at the discretion of the modeller. Also, they are not the end of the mod-
elling process. If the model is to be applied in practice (and for what other reason
should it be constructed?) then, as additional data are received, they should be used
to evaluate further the model’s ability to meet its objectives. Then, if possible, both
the model parameters and structure can be modified if they are inadequate in any
way. This process, sometimes referred to as ‘data assimilation’, can be achieved
in a variety of ways. Since most data assimilation methods attempt to mimic the
Kalman Filter, however, it is likely to involve recursive updating of the model pa-
rameter and state estimates in some manner, as well as the use of the model in a
predictive (forecasting) sense. This process of data assimilation is made simpler in
the DBM case because the optimal RIV estimation methods used in DBM modelling
(see next Sect. 16.3) are all inherently recursive in form and so can be used directly
for on-line, Bayesian data assimilation [16, 24, 29, 32, 33].

16.3 An Illustrative Example: DBM Modelling of Pollution
Transport and Dispersion in a Wetland Area

One of the first models to be considered seriously in DBM terms was the Aggregated
Dead Zone (ADZ) model for the transport and dispersion of solutes in river systems:
see e.g. Beer and Young [1]; Wallis et al. [21]; Green et al. [7]. This has also led to
related models that describe the imperfect mixing processes that characterise mass
and energy flow processes in the wider environment: for instance, Beven and Young
[4] use a similar equation for modelling flow through porous media; Young and Lees
[35] generalise the concept to an Active Mixing Volume (AMV) form and apply it
to the DBM modelling of heat flow in soils; while Price et al. [14] and Young et
al. [36] show how it can be used very successfully for the DBM modelling of heat
flow and the resultant temperature changes in buildings. It is clear therefore that the
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Fig. 16.1 Wetland tracer experiment data: the sampled input u(tk) is an impulsive (or ‘gulp’)
application of bromide tracer (dashed line) and the sampled output y(tk) is the concentration of
bromide measured every two hours at a downstream weir (full line)

same ADZ/AMV modelling ideas have fairly wide applicability to flow processes
involving mass and energy transfer in both the natural and built environment.

Research in this area of study is aided by the ability to conduct simple planned
experiments using conservative tracer materials, such as the fluorescent red dye,
Rhodamine WT. Small quantities of such tracers can be injected into the environ-
ment, for example into a river system, and then the subsequent low concentrations
can be measured using special equipment, such as a fluorometer in the case of Rho-
damine WT [21]. The typical results of a tracer experiment in a wetland area are
shown in Fig. 16.1, in this case using conservative potassium bromide (KBr) as the
tracer material. The wetland area is located in Florida, USA, and it receives treated
domestic wastewater which travels slowly through the wetland to allow for further
nutrient removal. The tracer experiment was part of a study carried out by Chris
Martinez and William R. Wise of the Environmental Engineering Sciences Depart-
ment, University of Florida for the City of Orlando [10]. The study objective was to
determine residence times for each wetland cell in the system and to assess whether
the same degree of treatment could be maintained should the wastewater loading be
raised from 16 to 20 million gallons per day.

The data shown in Fig. 16.1 are used later as the basis for direct DBM modelling.
However, the main objective of this illustrative example is to show how the complete
DBM modelling procedure, as outlined in previous sections of this chapter, can
develop from an initial, fairly large, simulation model, through emulation modelling,
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to modelling on the basis of real data, such as those in Fig. 16.1. So, although these
data are already available and could be used directly for modelling analysis, let us
assume, for illustrative purposes, that the data collection experiments have not yet
taken place and, without access to data, we resort to more speculative simulation
modelling.

16.3.1 The Large Simulation Model

Although its efficacy as a description of solute transport and dispersion in rivers
has been questioned, the Advection Dispersion Equation (ADE) has been the basis
of many models that have been used in practice over many years. In the case of a
conservative (non-decaying or non-reactive) solute, this model takes the form of the
following partial differential equation for the solute concentration c(t, s) in time (t)
and space (s):

∂c(t, s)

∂t
+U ∂c(t, s)

∂s
=D∂

2c(t, s)

∂s2
, (16.1)

where D is the ‘dispersion coefficient’ and U is the velocity. Its derivation is dis-
cussed in many fluid dynamic texts and is outlined in [39].

The ADE derives originally from the work of the great fluid dynamicist G.I.
Taylor [18] who used a one dimensional Fickian diffusion equation to describe the
random diffusion of a solute in a pipe, once sufficient time had elapsed to allow
for full cross sectional mixing. Subsequently, although the same partial differential
equation (PDE) model has been applied to solute dispersion in river channels, tracer
studies such as that shown in Fig. 16.1 show a longer ‘tail’ in the response that is
redolent of non-Fickian behaviour. Two main solutions to this limitation have been
suggested: the ADZ approach mentioned above, which replaces the PDE model by
a lumped parameter, ordinary differential equation (ODE) relating solute concentra-
tion between spatial locations along the river; and a modified version of the ADE
that is now termed the ‘transient storage ADE’ model [10, 19] and takes the follow-
ing form:

∂c(t, s)

∂t
+U ∂c(t, s)

∂s
=D∂

2c(t, s)

∂s2
+KΓc{u(t, s)− c(t, s)},

du(t, s)

dt
=KΓs{u(t, s)− c(t, s)}.

(16.2)

Here, u(t, s) is the solute concentration in the storage zone; K is the mass exchange
coefficient between the storage zone and the main flow; Γc is ratio of interfacial
area (between the main flow and the dead zone) to the main flow volume; and Γs
is the ratio of the interfacial area to dead zone volume. In (16.1) and (16.2), it is
straightforward to add terms to allow for non-conservative or reactive solutes. Beer
and Young [1] suggested, and provided evidence to show, that the effect of the dead
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zone may be dominant in many rivers and so the transient storage equation can be
replaced by the single ADZ equation:

∂c(t, s)

∂t
+U ∂c(t, s)

∂s
= 1

T
{u(t)− c(t, s)}, (16.3)

where the two terms on the left hand side represent ‘plug’ flow, which leads to a pure
‘advective’ time delay τ between the ‘upstream’ input u(t) and the ‘downstream’
output c(t); while the right hand term incorporates the dispersive effect of the, now
‘aggregated’, dead zone (strictly an ‘imperfect mixing’ zone).

For our purposes, (16.3) is better written in the ODE form:

dc(t)

dt
= 1

T
{u(t − τ)− c(t)}, (16.4)

where τ is the pure advective time delay and T is the time constant. This can then
be written in the transfer function form:

c(t)= 1

1 + T s u(t − τ)=
b0

s + a1
u(t − τ), (16.5)

where sr = dr/dtr is the derivative operator and, in this conservative situation, b0 =
a1 = 1/T . In other words, it is assumed that the length of the river reach is such that
the distributed dead zones can be represented by a single dead zone, where T is the
‘effective’ time constant, or residence time, that characterises the ADZ dynamics.

Equation (16.4) will be recognised as simple mass balance equation, where it is
assumed that the mass of solute being lost from the reach, because of the predom-
inantly downstream flow, is proportional to the solute concentration in the reach
[35]. Consequently, in a more general, possibly non-conservative situation, the TF
equation (16.5) becomes:

c(t)= G

1 + T s u(t − τ), (16.6)

where the ‘steady state gain’ G = 1.0 in the conservative case; G< 1.0 if mass is
being lost; andG> 1.0 is there is an accretion of mass for some reason. In addition,
the ADZ model can be modified to allow for ‘back-flow’ caused, for example, by
the physical nature of the river channel or, in the extreme case, by tidal effects. In
this situation, the ADZ equation takes the following more general form:

T
dc(t)

dt
= −c(t)+Gu(t − τ)+Gdcd(t), (16.7)

where cd(t) are the changes in the downstream solute concentration and Gd is the
steady state gain for this downstream input that defines its effect on the concen-
tration c(t) of the solute in the reach. In this case, the model is conservative when
G+Gd = 1.0.

Of course, the above ADZ equations only relate the temporal changes in solute
concentration between two spatial locations on a river. However, a Semi-Distributed
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ADZ (SDADZ) model can be constructed rather simply by a chain of suitably small
ADZ elements such as (16.7) connected in series, parallel or even feedback (should
this relate to a physically meaningful situation). For example, in this SDADZ model,
the cd(t) in (16.7) would be interpreted as the solute concentration in the immedi-
ate downstream reach, which would also be modelled as an ADZ element. In this
manner, the equation for transport and dispersion of a conservative solute in the
ith ADZ reach, of a uniform river system of n such identical reaches, with all the
intermediate pure time delays set to zero, would then take the form:

T
dci(t)

dt
= −ci(t)+Gci−1(t)+Gdci+1(t), i = 1,2, . . . , n. (16.8)

Alternatively, this model can be represented in TF form:

ci(t)= G

1 + T s ci−1(t)+ Gd

1 + T s ci+1(t), i = 1,2, . . . , n (16.9)

or as the following element in a n dimensional state space model:

⎡

⎢⎢
⎣

dci−1(t)

dt

dci (t)
dt

dci+1(t)

dt

⎤

⎥⎥
⎦=

⎡

⎢⎢
⎣

− 1
T

Gd
T

0

G
T

− 1
T

Gd
T

0 G
T

− 1
T

⎤

⎥⎥
⎦

⎡

⎣
ci−1(t)

ci(t)

ci+1(t)

⎤

⎦ , (16.10)

where the output is defined by the state variable ci(t). The input to the whole system
is then the input to the farthest upstream reach, denoted by u(t) = c0(t), and the
output is the output of the farthest downstream reach, denoted by x(t)= cn(t). If it
is assumed that any pure advective time delays are lumped into a single time delay
τ at the input, the complete deterministic model can be represented in the following
general TF form:

x(t)= B(s)

A(s)
u(t − τ)= b0s

n−1 + b1s
n−2 + · · · + bm

sn + a1sn−1 + · · · + an u(t − τ). (16.11)

If G and Gd are selected so that the system is conservative, then bm = an and the
overall steady state gain is unity.

The original idea was to base this example around either the ADE or the tran-
sient storage ADE. Although analytical solutions of these models can be obtained
for specified inputs [6], the models are normally implemented on a computer us-
ing some form of numerical approximation that can, more usefully, apply for any
specified input forcing functions. A popular approach is the Crank-Nicolson finite-
difference solution developed by Runkle and Chapra [17] for the solution of the
transient storage model (16.2), which is the basis for the well known OTIS simula-
tion model: see http://csdms.colorado.edu/wiki/Model:OTIS. However, this model
is not available in Matlab and so, as a an interesting alternative, the SDADZ state
space model, with elements defined by (16.10), will be used here since it is straight-
forward to program it in Matlab.

http://csdms.colorado.edu/wiki/Model:OTIS
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In the present example, the entire system needs to be conservative and uniform,
so that all of the reach elements are of the same form (16.10), with G+Gd = 1.0,
and the complete state space model matrix is 3-band diagonal, similar (16.10) but
of dimension n. The model is simulated with n = 40, τ = 0 and the {Gi Ti} pa-
rameters defined as appropriate functions of D, V and the reach length dz: e.g.
1/T = −(2D/dz2 + U/dz). Note that, since this SDADZ model can be solved
explicitly, it can be considered as a possible alternative to the transient storage
model (16.2). However, further research is continuing on the model and its rela-
tionship with both the ADE and the transient storage model.

16.3.2 Emulation Modelling

Given the artificial assumption that, at this stage, we have no measured data from
the wetland area, the simulation modelling is based on its physical characteristics
and the measurement locations in the anticipated tracer experiment. This suggests
model parameter values in the range ofD : {0.030−1.5} m2/sec andU : {0.00045−
0.0014} m/sec (although note that these are parameters in the SDADZ model, not
the ADE). For the specific measurement location considered later in Sect. 16.3.3,
reach 5 appears to be most suitable but, in order to ensure that a single model struc-
ture is possible for emulation at all reaches, if this is required, the initial nominal
DMA considers both reach 5 and reach 40, withD = 0.318 and V = 0.0013 in both
cases.

This nominal emulation analysis is carried out using an input signal in the form
of two repeated pulses of period 1000 hours and amplitude 180 entering at reach 1.
Although this is not an optimal input from a statistical identification and estimation
standpoint, it is sufficient to produce good TF emulation models. For instance, the
continuous-time RIV (RIVC) identification results (verbatim) for reach 5, as pro-
duced by the rivcbjid routine in the CAPTAIN Toolbox, are as follows for reach 5:

den num del AR MA YIC RT2 BIC
5 6 1 0 0 -25.7517 1.000000 -200025
5 6 0 0 0 -18.6377 0.999998 -180477
5 5 0 0 0 -22.4703 0.999998 -180288
4 5 1 0 0 -19.1426 0.999976 -147983
4 5 0 0 0 -11.6862 0.999976 -147983
4 4 0 0 0 -18.1096 0.999976 -147990

In these results, RT2 =R2
T is the simulation coefficient of determination (R2

T = 1.0
indicates a perfect fit), while YIC and BIC are order identification criteria. Although
this suggests that the [5 6 1] model is marginally better, the [5 5 0] model is not only
almost as good but it has one less parameter and, most importantly, it proves superior
in the case of reach 40, where, the best identified model is [5 5 79].
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To summarise, therefore, this initial nominal emulation analysis, which examines
the extremes of the large simulation model response characteristics, shows that a
[5 5 τ ] continuous-time TF model of the TF form;

x̂(t) = b̂0s
4 + b̂1s

3 + b̂2s
2 + b̂3s + b̂4

s5 + â1s4 + â2s3 + â3s2 + â4s + â5
u(t − τ) (16.12)

provides very good emulation at both extremes. For reach 5, τ = 0 and the SRIVC
parameter estimates are (note that a5 = b4 and mass is conserved):

â1 = 0.5003; â2 = 0.0772; â3 = 0.00335; â4 = 4.6033 × 10−5;
â5 = 1.7265 × 10−7; b̂0 = 7.0278 × 10−4; b̂1 = −4.5845 × 10−4;
b̂2 = 1.0403 × 10−3; b̂3 = 3.1639 × 10−5; b̂4 = 1.7265 × 10−7

(16.13)
while for reach 40, τ = 79 and the estimates are:

â1 = 0.06116; â2 = 0.001475; â3 = 1.6720 × 10−5;
â4 = 8.7469 × 10−8; â5 = 1.6736 × 10−10; b̂0 = 1.2088 × 10−5;
b̂1 = 1.0735 × 10−6; b̂2 = 9.9738 × 10−8; b̂3 = 2.8188 × 10−9;
b̂4 = 1.6736 × 10−10.

(16.14)

In both cases, the explanation of the large model response, when validated with a
single impulse input of 70 for two hours, is almost perfect, as shown in Fig. 16.2,
withR2

T = 0.999999 in both cases. Similarly good validation results are obtained for
other inputs but final emulation model validation is considered in more detail later.

The full emulation mapping analysis is carried out using the same input forcing
function and it involves 850 separate TF model identification and estimation runs,
using 50 equally spaced values of D over the range {0.030 − 1.5} m2/sec and 17
equally spaced values of V over the range {0.00045 − 0.0014} m/sec. Because the
computational burden is not too large in this case, it is possible to carry out the
mapping over this complete grid of simulation model parameter values and so en-
sure good mapping coverage without having to resort to MCS randomization (see
Sect. 16.2). More specifically, the TF model identification at each combination ofD
and V values is based on the [5 5 τ ] model with τ considered in the range {0−2} sec.
These 3 calls to the rivcbj routine in CAPTAIN take about 10 seconds on a quad-core
Mac Pro computer, so that the overall computation time for the mapping analysis is
about 2.3 hours.

Given the results of these mapping experiments, the mapping relationships are
obtained using the interp2 routine in Matlab, with the ‘spline’ option. Figure 16.3 is
a three dimensional plot of the resulting mapping surface for the five TF denomina-
tor parameters ai, i = 1,2, . . . ,5; while Fig. 16.4 provides a more quantitative idea
of this surface by showing how the parameter estimates vary with the dispersion
coefficient D for ‘slices’ across the surface at different values of velocity V .
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Fig. 16.2 Nominal emulation of the large simulation model at reaches 5 and 40 by continuous-time
RIVC estimated 5th order TF models

Fig. 16.3 Parameter mapping for reach 5: 3 dimensional plot of the five TF denominator parame-
ters ai , i = 1,2, . . . ,5, as functions of the dispersion coefficient, D, and the velocity, V

Note that the mapping surface in Fig. 16.3 is quite smooth for D > 0.1 m2/sec
but there is a quite sharp change at smaller values than this, suggesting that a finer
grid might be necessary in this region. However this region is not important in the
present case and this has not been investigated further.
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Fig. 16.4 Parameter mapping for reach 5: the TF denominator parameters as changing functions
of the dispersion coefficient, D, for four different velocity, V , values (‘slices’ from Fig. 16.3)

The final stage of the full emulation analysis is validation on interpolated values
of parameters and two examples of such validation analysis are shown in Fig. 16.5,
for an impulse forcing function, and Fig. 16.6 for a forcing function of the more gen-
eral type that might be expected if the model was being employed for the evaluation
of pollutant transport and dispersion. In both cases, the emulation is exceptional,
with R2

T values greater than 0.999.

16.3.3 Modelling from Real Data

The standard, inductive DBM approach to the analysis of data such as those shown
in Fig. 16.1 is to use them to identify and estimate a TF model in either discrete or
continuous-time form. Discrete-time modelling of these data is described in [28],
where a [4 2 22] model is identified and estimated in a constrained form to ensure
physically interpretable real poles in the estimated TF model. In the present con-
text, it is clear that a continuous time model makes more sense. However, rivcbjid
identification in CAPTAIN reveals that a number of models explain the data well in
this case, including 5th order models, such as those used in the emulation analysis.
Also, as in the discrete-time model case, the poles of the estimated TF are always
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Fig. 16.5 Validation of DBM stand-alone emulation model with an impulsive-type input

Fig. 16.6 Validation of DBM stand-alone emulation model with a typical input

complex. Using the same arguments as those used in the above reference [28], the
continuous-time model, constrained to have real poles, is identified this time to have
a [4 2 20] structure with additive coloured noise identified by the Akaike Information
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Fig. 16.7 Model outputs compared with the tracer data

Criterion (AIC) as an AR(20) process: i.e.,

y(tk)= b0s + b1

(s + α1)3(s + α2)
u(tk − 20)+ ξ(tk),

ξ(tk)= 1

1 + c1z−1 + . . . + c20z−20
e(tk), e(tk)=N(0, σ 2)

(16.15)

and the parameter estimates for the system model are as follows, with the standard
errors shown in parentheses:

α̂1 = 0.07734(0.0005); α̂2 = 0.0099(0.00015); σ̂ 2 = 0.0003;
b̂0 = 1.9157 × 10−4(1.908 × 10−6); b̂1 = 4.5415 × 10−6(3.157 × 10−8).

(16.16)
Note the ‘hybrid’ nature of this TF model, with a continuous-time TF model,
a discrete-time noise model, and the changed time argument tk (denoting ‘snapshot’
sampled values at time tk : see [31] for a full explanation). It is characterised by three
real, equal modes with short time constants of 12.9 hours and one mode with a long
time constant of 101 hours. The tracer data are explained well, as shown in Fig. 16.7,
with R2

T = 0.997 and a standard coefficient of determination for the residual white
noise (one-step-ahead prediction errors) of R2 = 0.9996. The autocorrelation func-
tion of the estimated residuals e(tk) shows that they are reasonably white although,
as is usual with hydrological systems, they are somewhat heteroscedastic.

But can the model (16.15) be reconciled with the large simulation model? The
answer to this question is aided by the nature of this large model which has been



16 Data-Based Mechanistic Modelling 337

chosen specially, for the purposes of this illustrative example, as a particular ODE
approximation of the ADE that it is identifiable from the tracer data in Fig. 16.1.
It should be noted that this is unusual for large simulation models because they are
often over-parameterised. For instance, Wagener et al. [20] have investigated the
identifiability of a particular version of the transient storage equation (16.2) and
they conclude that:

It can be seen that very different combinations of the parameters yield identical perfor-
mances in terms of the selected objective function (the weighted sum of squared differences
between simulated and observed concentrations). From this analysis, only one parameter
seems identifiable.

This despite the fact that their version of the model has only four parameters.
If, in the present case, the parameters D and V in our 40th order SDADZ model

are optimized by simple nonlinear least squares, based on the tracer data in Fig. 16.1
and using the optimisation routines in Matlab, then the estimates are clearly de-
fined at D̂ = 0.3126 m2/sec and V̂ = 0.00126 m/sec. As pointed out previously in
Sect. 16.3.1, these numerical values ofD and V are not particularly important in the
present context and, in any case, should not be interpreted directly in ADE terms:
for our purposes, it is only required that the output of this high order SDADZ model
is able to explain the tracer data well. This is certainly the case here, as shown in
Fig. 16.7, where the simulation coefficient of determination is R2

T = 0.995.
Now, if a constrained [4 2 0] model, of similar form to (16.15), is estimated

on the basis of deterministic data generated by this SDADZ model, the estimated
parameters are as follows:

α̂1 = 0.07366; α̂2 = 0.00888; σ̂ 2
ξ = 0.0021;

b̂0 = 1.9671 × 10−4; b̂1 = 3.5308 × 10−6.
(16.17)

Note that here τ = 0 since this is based on the SDADZ simulated data (see
Sect. 16.3.1); also no AR noise model is estimated and standard errors are omit-
ted, because they are inappropriate in this simple least squares estimation situation,
where the SDADZ simulated model output is noise free: i.e. here, σ̂ 2

ξ is the simply
the variance of the fitted residuals, with an associated coefficient of determination
of 0.990. Most significantly, the time constants of this model (13.6 and 113 hours)
are quite similar to those of the directly estimated DBM model.

Exactly the same results are obtained with a constrained [5 3 0] model because
the estimated TF numerator then has a zero that cancels almost exactly with one
of the four identical poles, suggesting that any TF model over 4th order is likely
to be over-parameterised. This is confirmed if constrained or unconstrained [5 5 0]
models are estimated, since there are again clear signs of pole-zero cancellation.
These results suggest that, while the large simulation model can be reconciled with
the DBM model based on real data, since they can both be fitted to the tracer ex-
periment data and yield similar response characteristics, this reconciliation is only
partial. In particular, although the large model has only two parameters, it is a 40th
order dynamic system with 40 dynamic modes and so has an enormous surplus ca-
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pacity when we realise that the data can be explained marginally better (R2
T = 0.997

vs R2
T = 0.995) by the 4th order DBM (here an ADZ) model.

With the above results in mind, there is clearly a case for considering how the
large SDADZ model that we have emulated here could be simplified in cases where
its enormous explanatory potential is not required: for instance, when the detail pro-
vided by the 40 short reaches is not essential to the solution of the problem at hand.
They also raise the question of how this SDADZ model relates to its ‘pure’ ADE pro-
genitor. The model is able to explain the rather elevated ‘tail’ of the tracer response
shown in Figs. 16.1 and 16.7 simply because of the ‘numerical dispersion’ that arises
from its lumped parameter ODE approximation. In contrast to this, the pure, partial
differential ADE model would not be able to explain this ‘tail’ at all because the nu-
merical dispersion is not present. Indeed, this was the original reason why the ADZ
model was developed. Finally, one might question also whether the additional com-
plication of the transient storage model is required, particularly when the Wagener
et al. results mentioned previously suggest that it has severe identifiability problems.

It must be emphasised that this example is intended only to illustrate various
aspects of the DBM approach and is in no sense a complete modelling study. For
instance, the limited data availability has prevented any predictive validation of the
models considered above. It could, however, constitute the first step in a much more
comprehensive research project, such as that carried out into the ADZ model by
Wallis et al. [21]. This established that, for many natural and man-made channels,
the ‘dispersive fraction’, defined by the ratio T/(T + τ), is relatively invariant over
most of the flow régime so that, once this is established, the ADZ model is able to
describe pollution transport and dispersion for any defined flow conditions (which
is not possible in the case of the OTIS model: see [10], p. 217). It would be very
interesting, therefore, to see whether the limited results presented in this chapter are
confirmed in this wider context and with a much larger data base.

16.4 Conclusions

This chapter provides a brief outline of the procedures involved in DBM modelling.
Its main aim, however, is to put the DBM approach to modelling in a philosophi-
cal context and demonstrate how this is reflected in an illustrative example, where
DBM modelling is applied to the investigation of solute transport and dispersion in
water bodies. From a philosophical standpoint, DBM modelling stresses the need
to rely, whenever possible, on inductive inference from time series data, without
over-reliance on pre-conceived notions about the structure of the model that can of-
ten lead to over-large simulation models with severe identifiability problems. But,
by providing an emulation modelling bridge between such large simulation models,
produced in a hypothetico–deductive manner, and parsimonious DBM models that
are normally identifiable from the available data, it emphasises the need to utilise
both approaches, in an integrated manner, in order to meet multiple modelling ob-
jectives.

The chapter is dominated by the illustrative example which is aimed at demon-
strating, in as simple a manner possible, how large simulation and DBM models can
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be reconciled to some extent, so providing useful cross-fertilisation that should lead,
in any specific study, to a model which achieves two main aims. First and most im-
portantly, to satisfy the modelling objectives; second, to combine the hypothetico–
deductive virtues of good scientific intuition and simulation modelling with the
pragmatism of inductive data-based modelling, where more objective inference
from data is the primary driving force. In this way, it is hoped to encourage changes
in modelling practice away from the fractionisation of modelling activities that has
been a feature of much environmental modelling for too long, towards a more in-
tegrated and cooperative endeavour that is able to tackle the many problems that
remain in the modelling of natural systems from time series data.
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Chapter 17
Identification and Representation of State
Dependent Non-linearities in Flood Forecasting
Using the DBM Methodology

Keith J. Beven, David T. Leedal, Paul J. Smith, and Peter C. Young

17.1 Flood Forecasting: Concepts and Issues

There is a wide variety of rainfall-run-off models used in hydrology from simple
black-box conceptual structures to distributed models based on process representa-
tions of different degrees of complexity (Beven [1]). Most of these different types of
models have been used in flood forecasting, from artificial neural networks to com-
plex distributed models. The essential requirements of a flood forecasting model are
that it should reflect the non-linear dependence of run-off generation and initial hy-
drograph rise on the antecedent state of a catchment; that it should then route the
generated run-off in time to get the timing of the hydrograph peak right; and that
it should minimise the variance of the predictions at the required lead time. This
is something that has not always been properly appreciated in the past: flood fore-
casts have often been made deterministically without any account being taken of the
uncertainties inherent in the forecasting process. This is despite the fact that an ap-
preciation of such uncertainties might have an important impact on decisions about
flood warnings and post-event evaluations of the success of a warning system (e.g.
Pielke [11]).

Minimising the prediction variance at the required lead time is much easier in
some catchments and some events than others. This is a result of both the sources
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of uncertainty and the natural time delay in a catchment relative to the required lead
time. In large catchments, where it may take days to reach a flood peak but there
is a standard of service to give 6 hours warning to the public, then the prediction
problem (given some upstream flow gauges and raingauges feeding into the warning
system) should be much easier. In small catchments, subject to flash floods, where
the response time of a catchment above a community at risk might be less than a
minimum standard of service for warnings of 2 hours, then the prediction problem
will be much more difficult. In this case, to achieve the require lead time will require
estimation of the precipitation (or snowmelt) inputs ahead of time which introduces
a very significant source of uncertainty, however these estimates are made.

In what follows we will consider the case only of catchments where the natural
response time is equal to or greater than the required lead time for flood warnings.
In that case, it should be possible to achieve good forecasts at the required lead
time using only estimates of the inputs to the catchment up to the time of forecast.
The major sources of uncertainty in the flood forecasting process are then due to
error in the estimation of rainfall and snowmelt inputs based on the measurements
available, and error in the rainfall-run-off model used, including the way in which
predicted run-off generation reflects the antecedent state of the catchment. We will
not consider the additional error associated with quantitative precipitation forecasts
for the flash flood case. Even so, the estimates of past inputs based on available
measurements may be subject to significant uncertainty because of lack of spatial
coverage of the raingauge network or, if rainfall radar data are available, the many
different sources of error in the conversion to rainfall rates. Moreover, estimates of
snowmelt (e.g. Young et al. [27]) can introduce special problems.

Thus we should expect that any flood forecast will be in error and, therefore, it
should be associated with a representation of that error (for example in the form of
a standard error). In very many situations it will be possible to make an assessment
of that error, in real-time, by comparing the forecast with the current state of a river
as observed at gauging stations sites. Thus, it should be possible to see if the model
is under- or over-predicting (for whatever reason) and use this information to both
improve the accuracy and minimise the error variance of the next forecast out to the
required lead time. This is adaptive forecasting which is now becoming more widely
used in forecasting systems world-wide (see Young [28, 29]).

Flood forecasting involves two types of non-linearity. The most important is the
non-linearity in run-off generation in relation to the state of the catchment and the
temporal and spatial pattern of rainfall (and sometimes snowmelt) inputs in a par-
ticular event. Hydrologists have long tried to represent this non-linearity in mod-
els, ranging from simple conceptual models to fully distributed representations of
infiltration and subsurface flow processes (Beven [1]). Hydraulic theory also then
suggests that the routing of that run-off to a point at risk of flooding should also
be non-linear, since the celerity of the flood wave will depend non-linearly on the
temporal and spatial pattern of run-off generation, the geometry of the channel and
flood plain and the magnitude of the flood peak. However, there has been a tradi-
tion in hydrology of treating the routing problem as a linear problem, ranging from
the unit hydrograph of Sherman [15], to linearisations of the hydrodynamic equa-
tions for 1D flow in a channel (see Cunge [3], Dooge et al. [4]). The widely used



17 Flood Forecasting Using the DBM Methodology 343

Muskingum-Cunge equation is one such linearisation which, because of its lack of
an explicit time delay and non-minimum phase characteristics should be used with
care if a non-physical, albeit volume preserving, impulse-response is to be avoided
(Nash [8]).

The work of Peter Young in developing flood forecasting techniques for both
the run-off generation and routing problems goes back a long way (see Young
[17, 18, 20]). It makes use of what has come to be known as the Data-Based Mech-
anistic (DBM) methodology which has the aim of defining a model structure based
on the information in the observed response of a system. The foundation of the
DBM approach is in the robust estimation of linear transfer functions. Thus, to ap-
ply the method to the type of non-linear problems found in flood forecasting, some
additional non-linear component is needed. This is usually applied as a non-linear
transformation of the input signal, dependent on the current state of the system. This
type of state-dependent non-linearity was first introduced to hydrological modelling
by Young [19], Young and Beven [23, 24] and first used in flood forecasting in
an application to the River Nith to predict flooding in Dumfries, Scotland in Lees
et al. [7]. Since then, the methods have been tested on a variety of UK catchments,
using a number of different forms of non-linear transform (see for example, Young
[20, 21, 25], Young et al. [27], Ratto et al. [12], Pappenberger et al. [9], Romanow-
icz et al. [13, 14], Leedal et al. [6], Smith et al. [16]). This Chapter presents work
carried out using data from the River Eden (Cumbria UK).

17.2 River Eden Study Site Description

DBM models are ideally suited to real-time flood forecasting applications. The flex-
ibility of the approach allows for good model performance over a broad range of
catchment characteristics. The parametrically efficient formulation permits rapid
computation time. The separation of the model into linear and non-linear compo-
nents permits straightforward inclusion of a DBM representation into a modified
Kalman filter scheme for real-time data assimilation. Two flood forecasting schemes
from the Eden catchment were used to illustrate the above properties and the use of
the alternate input non-linearity methods. These schemes are described below.

1. A rainfall to level model taking as input the mean value of hourly data from the
following UK Environment Agency (EA) gauge sites:
a. Barras;
b. Scalebeck;
c. Wet Sleddale;
d. Burnbank and
e. Aisgill.

2. A level to level model taking as input the (EA) gauge site at Kirkby Stephen.

Both models were used to forecast river level at the Appleby level gauging station.
The town of Appleby is vulnerable to flooding and relies on an extensive system of
demountable defences that require a reasonable forecast lead time to install.
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Fig. 17.1 Study site and
gauge locations. Key:
rectangles show river level
gauge sites at Kirkby Stephen
and Appleby, triangles show
rain gauge sites at (from l–r)
Burnbank, Wet Sleddale,
Scalebeck, Aisgill and Barras.
©Crown Copyright. O.S.
Licence No. A281220

The calibration data extended from the 25th July 2004 to the 10th March 2005.
The testing or ‘validation’ data covered the period from 9th September 2003 to the
start of the calibration time series. Figure 17.1 shows the location of gauge sites
used by the study.

The various input non-linearity functions together with their associated linear
transfer function component were incorporated into a series of rainfall to level and
level to level forecast models incorporating a data assimilation scheme designed for
real-time flood forecasting as described by Young [22].

17.3 Outline of the DBM Methodology for Real-Time Flood
Forecasting

The DBM methodology for real-time flood forecasting aims to produce a physically
meaningful model of run-off generation and/or routing processes. The structure and
parameterisation of the DBM model is derived from and supported by the informa-
tion content of input-output time series. The relationship between input and output
is split into a non-linear transformation of the inputs and a linear transfer function
that distributes the transformed input series through time (a ‘Hammerstein’model).
In this respect, the DBM approach is similar to the traditional unit hydrograph mod-
elling approach; however, DBM modelling differs by fitting the transfer function in
a way that is robust to noisy data. The method for identifying the input non-linearity
transformation is also unique in its use of a state dependent parameter estimation
algorithm (see later Sect. 17.4). The DBM method for real-time flood forecasting
applications then takes the transfer function and input non-linearity function and
embeds these within a data assimilation scheme. The model parameters and hy-
perparameters are optimized so as to minimise the uncertainty in the n-step ahead
forecast, where n is a discrete number of observation sample periods.

The DBM model process is described by the following steps.
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1. Fit a linear transfer function to the input-output data.
2. Pass through the data again to identify recursively the gain on the inputs required

to best fit the output observations.
3. Examine the non-parametric relationship between the gain and an index of the

state of the catchment.
4. Find a mathematical function to describe this relationship in a way that can be

used as the non-linear transformation of the system input.
5. Apply the transformation and re-identify the transfer function using the trans-

formed inputs in Step 1.
6. Repeat Steps 2 to 5 to convergence if necessary.
7. Embed the transfer function and input non-linearity within a data assimilation

scheme and optimize the data assimilation hyperparameters for the chosen n step
forecast.

Intrinsic to this method is the estimation of the linear transfer function in a way
that is robust to noise in the input-output data using one of the recursive instrumental
variable methods developed by Peter Young (see Young [18]) and available in the
CAPTAIN toolbox for Matlab. The transfer functions are taken from the general
class of linear models described by:

yk = B(z−1)

A(z−1)
uk−δ + ξk, (17.1)

where B(z−1) and A(z−1) are polynomials of order m and n respectively such that
B(z−1)= b0 + b1z

−1 + · · · + bmz−m and A(z−1)= 1 + a1z
−1 + · · · + anz−n; z−1

is the discrete time backwards shift operator such that for example z−iuk = uk−i ; ξk
is a noise input at sample k representing all the stochastic components of the system
not represented by the model.

The CAPTAIN algorithms can be used to fit a number of different model struc-
tures to find the one best supported by the input-output observations. The choice of
model is based on minimising the squared residuals while requiring that parameter
estimates have low variance so as to avoid over-fitting. This is achieved using the
Young Information Criterion (YIC) which is defined as:

YIC = loge
σ̂ 2

σ 2
y

+ loge
1

np

np∑

i=1

σ̂ 2�i,i

â2
i

, (17.2)

where σ̂ 2 is the variance of the model residuals; σ̂ 2
y is the variance of the data; np

is the number of model parameters i.e., n+m+ 1; � is the parameter covariance
matrix; â2

i is the square of the ith parameter. The first term on the RHS represents
goodness of fit, the second is a joint expression of the variance of the estimated
parameter values. Both should be as small as possible (or in log that the YIC be as
negative as possible) while maintaining a good fit to the data.

Once the linear TF component and a suitable input non-linearity scheme have
been identified (see later) the DBM model can be incorporated into a data assimila-
tion algorithm in the following way. Firstly the TF model of (17.1) is recast into the
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equivalent state space form shown by (17.3).

xk = Fxk−1 + Guk−δ + ζ k,

yk = hT xk + ξk,
(17.3)

where xk is a vector of model states; the elements of F, G, and h are determined by
the associated linear TF parameters; uk−δ is a suitably lagged input value (generally
rainfall or upstream level) transformed by one of the non-linear functions described
in this chapter); δ is the identified advective time delay between input and output; ζ k
is a vector of process noise [ζ1,k . . . ζn,k]T with each element applied to the associ-
ated n internal states; ξk is the observation noise associated with the measurement.
It is possible to transform the noise processes using an Auto Regressive Moving Av-
erage (ARMA) filter to account for correlation in time. However, from a pragmatic
standpoint, it has often been found acceptable to make the simplifying assumption
that the elements of ζ k and ξk are zero mean, serially uncorrelated and statistically
independent, normally distributed random variables with variance at sample k spec-
ified by ζ1,k . . . ζn,k and ξk . This is the approach taken in the results presented below.
The facility to specify variance at each sample period allows for heteroscedasticity
within the modelling framework (see later).

The state space form of the model can then be placed within a recursive two-stage
filter as shown by (17.4a) and (17.4b).

Forecast:

x̂k|k−1 = Fx̂k−1 + Grk−δ,

Pk|k−1 = FPk−1FT + σ̂ 2
kQr ,

ŷk|k−1 = hT x̂k|k−1.

(17.4a)

Correction:

x̂k = x̂k|k−1 + Pk|k−1h[σ̂ 2 + hT Pk|k−1h]−1{yk − ŷk|k−1},
Pk = Pk|k−1 − Pk|k−1h[σ̂ 2 + hT Pk|k−1h]−1hT Pk|k−1,

ŷk = hT x̂k.

(17.4b)

Here Qr is a square, Noise Variance Ratio (NVR) matrix with diagonal entries
representing the ratio of variance of the process to observation noise for the model
states (off-diagonal entries = 0) i.e., the diagonal elements of Qr are [ ζ1,k

ξk
. . .

ζn,k
ξk

];
σ̂ 2
k is an estimate of the heteroscedastic observation noise variance at sample k cal-

culated using the empirical formula shown by (17.5).

σ̂ 2
k = θ0 + θ1ŷ

2
k , (17.5)

where θ0 and θ1 are hyperparameters determining the degree of inflation in obser-
vation uncertainty for increasing amplitude of the observation. The n-step forecast
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(where n ≤ δ) is produced by iterating the forecast step of (17.4a) and (17.4b) the
required number of times. The estimate of the variance of the forecast output ŷk+n|k
is calculated as shown by (17.6).

var(ŷk+n|k)= q̂k+n|k = σ̂ 2
k + hT Pk+n|kh. (17.6)

17.3.1 Hyperparameter Optimisation

The hyperparameters required to define the data assimilation scheme shown
by (17.4a) and (17.4b) cannot be optimized directly due to the multiplicative re-
lationship between θ0 and ζ1,k . . . ζn,k . However, the scheme can be optimized up
to proportionality if θ0 from (17.5) is set to 1 and the optimized parameters are
limited to θ1 and the diagonal element of Qr . This provides the ratio of distribution
of process noise between the internal state variables (the diagonal elements of Qr ),
and the degree of inflation of observation noise variance for increasing observation
level (θ1). Having identified these optimal values, (17.5) is replaced with (17.7):

σ̂ 2
k = cscale(1 + θ1ŷ

2
k ). (17.7)

If we make the simplifying assumption that the model residuals are distributed nor-
mally then cscale can be estimated using (17.8) following an initial optimization.

yk − ŷk
q̂k|k−n

∼N(0, cscale). (17.8)

Further details about hyperparameter optimisation can be found in Smith et al. [16].
The results in this Chapter were produced using the modelling and data assimila-

tion scheme described by (17.1) to (17.7), applied to data collected from the model
site described in Sect. 17.2. The remainder of this Chapter focuses on the identi-
fication and parameterisation of the input non-linearity function used to transform
the observed input (rainfall or upstream level) into the effective input term uk−δ of
(17.1), (17.3) and (17.4a) and (17.4b).1

1A common addition to the scheme described above is an adaptive gain module. This module
is not included in the results presented in this chapter but for completeness a brief description
follows. An adaptive gain module assumes that the forecast value is scaled by a probabilistic, non-
stationary gain whose value is conditioned by the mismatch between observed and forecast output.
A NVR hyperparameter for the adaptive gain module determines how quickly the gain reacts to
this mismatch. It is usual to set a low NVR value so that in operation the adaptive gain responds
sluggishly and can correct for the slow accumulation of model error. This mechanism provides
a simple means to correct for scenarios such as seasonal variation in catchment dynamics. Full
details of the adaptive gain module can be found in Young [22].
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17.4 Methods for Identification of State-Dependent
Non-linearity

There are two approaches to identifying the form of the state dependent non-
linearity function:

1. A functional representation describing the mechanistic processes assumed to be
operating within the catchment

2. An empirical functional form, identified from available data

Here we focus on method two as it appeals to Peter Young’s DBM philosophy that
emphasises an inductive approach driven by observational data. This allows the data
to take precedent over the prior assumptions of the model builder.

The first step in method two is to apply the State Dependent Parameter (SDP)
estimation algorithm from the Captain toolbox. The SDP algorithm has been de-
scribed in detail in several papers (see for example: Young et al. [21]). Here the
present authors make some observations relating to the use of the SDP tool that may
prove useful to others attempting the DBM modelling approach.

The SDP algorithm is designed as an identification tool. The output from the
algorithm is not a parametric function and, therefore, is not intended to be used for
forecasting or simulation. Instead the shape of the non-parametric curve provides
an indication of the state dependency identified from the data. This then provides
the modeller with a guide for designing an appropriate parameterization scheme (as
well as some justification for pursuing this approach).

Because the SDP algorithm is often only required to provide a guide for a subse-
quently optimized parameterization scheme, it is not usually necessary to include a
high order transfer function model structure within the algorithm setup. The method
used in this Chapter was to limit the identification to a suitably lagged first order re-
lationship i.e., provide the algorithm with the observed output as the time series; the
input lagged by the delay in the system and the observed output lagged by one sam-
ple as the regressors; and the observed output is the dependent state for the lagged
input regressor. This arrangement produced a good indication of the state dependent
relationship linking observed output to the effective input series.

The SDP algorithm requires a NVR hyperparameter (similar to the NVRs defined
in Qr in (17.4a) and (17.4b)) for estimating the state dependency. This can either be
optimized by the algorithm or set manually. If the signal to noise ratio of the state
dependency is low the optimisation may result in an overfit to the time series. If
automatic optimization of the NVR is not possible then a useful relationship may
still be identified by manually limiting the NVR to a low value (for example 1e−7).
However, if the user is required to set the NVR parameter the resulting estimation
provides less compelling evidence for the existence of a strong state dependency.

By their nature, extreme flood events are rare. This results in a paucity of data at
critical flood levels. As a result, the identification of an input non-linearity function
at flood levels is unfortunately often reliant on a small number of data points. It
is also challenging to estimate the full uncertainty of the state dependency at high
flows. This situation is not critical from an uncertainty representation perspective
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Fig. 17.2 Figure showing the estimated dependency of the model input (level at Kirkby Stephen)
to the output state (level at Appleby) for a first order transfer function model produced with the
SDP algorithm in the CAPTAIN toolbox for Matlab. The box and whisker plot shows the density
of data points in the time series. Box represents lower, median, and upper quartile range; whiskers
extend to ×1.5 the interquartile range; crosses mark data points beyond this range. The relative
scarcity of data in the important high level region is clearly shown

as all uncertainty is lumped into the total model error which is conditioned on the
performance of the model. Therefore, if the model performs poorly at high levels
due to inaccuracy in the representation of the input non-linearity shape at these
levels this will still be reflected in the width of the overall forecast uncertainty.

For the Kirkby Stephen to Appleby level to level example the estimated SDP in-
put non-linearity function, determined as described above and with NVR optimized
internally by the algorithm, is shown in Fig. 17.2. This non-parametric curve pro-
vides evidence to support the inclusion of an input non-linearity scheme in a model
representation of the parent system. The box-whisker plot included with Fig. 17.2
provides an indication of the low density of data at high flows.

17.5 Representation of State-Dependent Non-linearity

If an SDP analysis provides compelling evidence to the model builder for the ex-
istence of a well defined input non-linearity function, then he or she is faced with
the task of choosing a suitable parameterisation scheme. This section considers four
methods for generating such a function and provides some commentary on the ad-
vantages, disadvantages and issues with each. The methods are:

1. a power law input non-linearity described in Sect. 17.5.1;
2. a radial basis function input non-linearity described in Sect. 17.5.2;
3. a polynomial cubic hermitian spline input non-linearity described in Sect. 17.5.3

and
4. A fuzzy input non-linearity described in Sect. 17.5.4.
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Fig. 17.3 Figure showing the
estimated dependency of the
model input (rainfall at sites
shown in Fig. 17.1) to the
output state (level at
Appleby) as identified and
estimated using a three
parameter power law function

17.5.1 Power Law

The power law input transformation is described by (17.9) and (17.10).

gk−δ = d + yλk
{
yk = yk if yk ≤ ythd,
yk = ythd if yk > ythd,

(17.9)

where d is an offset term to allow for a non-zero gain when y is zero; y is the ob-
served output; k is the present sample period, δ is the pure time delay between input
and output measured in an integer number of sample periods; ythd is a threshold
level for the output and λ is a power law parameter used to define the non-linear
relationship between output and gk . In many cases both d and ythd are not used.
A gain term (gk) is formed by applying (17.9) to the observed output. This gain is
then used to transform the observed input into an effective input rk using (17.10):

rk = gk · uk. (17.10)

17.5.1.1 Advantages

Figure 17.3 shows an example power law input non-linearity function including
d,λ, and ythd . The key advantage of the power law non-linearity is simplicity. In
many cases the optimisation of the function requires only the tuning of a single
parameter (λ) with the optimisation expanding to tune d and ythd if necessary.
Provided the input non-linearity can be reasonably represented by this family of
functions the optimal parameter set is usually well defined and robust to initial con-
ditions. A mechanistic interpretation of the function is straightforward for rainfall
as input: low flows represent a ‘dry’catchment where a larger proportion of rainfall
input is transferred to storage this is represented in the curve as a low gain applied
to the input when the output is low.
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17.5.1.2 Disadvantages

The power law function is limited to a smooth monotonically increasing or decreas-
ing form. This cannot capture more complex structure in the non-linear relationship
that may result from mechanisms such as large changes in channel dynamics at spe-
cific points in the level range. In situations where well identified state dependent
information is present in the data this information may be lost by choosing the sim-
ple power law form for parameterising the input non-linearity function.

17.5.1.3 Comments

In common with the other methods described here it has been found that the most
efficient way to achieve optimal parameter estimates is to embed a refined instru-
ment variable (RIV) transfer function optimisation routine within the power law
optimisation function. The order of events is then: (1) choose a set of parameters for
the power law equations; (2) form the effective input; (3) optimize a linear transfer
function between the effective input and the observed output using the CAPTAIN
RIV algorithm rivbj form; (4) form the cost function (generally the model residuals).
Steps (1) through (4) are generally carried out within a generic non-linear optimisa-
tion routine such as Matlab’s lsqnonlin.

Additional heuristics can be built into the optimization routine. Options that may
be added include a weighting scheme to emphasise specific regions of the hydro-
graph: for example, placing greater significance on the model fit to the rising limb
which is key for flood forecasting applications; and placing constraints on the struc-
ture and parameter range of the linear transfer function parameters to guarantee that
only models with a sensible mechanistic interpretation (i.e. all real poles, positive
flow partitions etc.: see Young [28]) are accepted.

17.5.2 Radial Basis Function Network

The RBF approach described here uses a network of Gaussian basis functions to
approximate the input non-linearity function. The operation of the network is de-
scribed by (17.11).

gk−δ =
q∑

i=1

αi · exp(−βi‖yk − ci‖2), (17.11)

where gk−δ and yk are defined as previously; q is the chosen number of basis func-
tions; the αi ’s, βi ’s and ci ’s are a set of weights, widths and centre locations respec-
tively describing each of the q basis functions.

RBF methods provide a convenient and flexible function interpolation scheme.
The input value is evaluated by each individual RBF, the output from each RBF
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Fig. 17.4 Figure showing the
estimated dependency of the
model input (level at Kirkby
Stephen) to the output state
(level at Appleby) as
identified and estimated using
a radial basis function
network trained with 6373
hourly data points (bold line).
The form of the 12 individual
RBFs is also shown (fine
lines)

is scaled by the RBF’s associated weighting term, finally the output from the RBF
group is calculated as the sum of these individual values. It has been shown that
given enough individual basis functions this method can be used as a Universal
Approximator (Park et al. [10]).

In the examples used here the RBF functions provide an effective way to param-
eterize a curve in the x, y plane albeit using a relatively large number of parameters.
An example RBF input non-linearity function for the Kirkby Stephen to Appleby
level to level model is shown in Fig. 17.4.

17.5.2.1 Advantages

As Universal Approximators, an RBF network can replicate any continuous func-
tion. This implies that given enough individual basis function components, the RBF
network should have the flexibility to approximate any input non-linearity shape
provided the shape is well defined by the information content of the data.

17.5.2.2 Disadvantages

The RBF approach requires many parameters. For the example shown in Fig. 17.4,
12 basis functions where used resulting in a total of 36 parameters. This is generally
a larger number than would be selected in practice but provides a clear illustration of
both the flexibility of the method in terms of curve fitting as well as the drawbacks
in terms of over parameterization (see below). The large number of parameters can
lead to problems such as long optimisation times, poorly defined parameters or op-
timization runs that fail to converge on a solution.

The large number of degrees of freedom afforded by the RBF network allows the
input non-linearity function to achieve very complex shapes. These shapes may be
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very specific to the chosen training data i.e., the model can become over-fitted. It
could be hypothesised that model over-fit is a particular risk in environmental sys-
tems where stochastic fluctuation in system dynamics is the norm in contrast, for
example, to engineering systems where system performance is more tightly con-
strained. A dedicated over-fit protection data set can be included in the optimisation
algorithm but this approach requires the user to surrender a portion of data from the
calibration or testing set to use for this purpose.

It is impossible to optimize RBFs centred in regions with no observed data i.e.,
into the region of future unprecedented flood events. The Gaussian basis functions
provide a convenient mechanism for the RBF network within the range of the train-
ing data; however, these RBFs trail off to zero at the edges of the parameterized
function. This may be more desirable than an erratic extrapolation method. How-
ever, it seems mechanistically unlikely that the effective input would tend to zero as
the output value increases. To counter this it is generally necessary to incorporate
an additional function, such as a sigmoid, that maintains an arbitrary constant value
beyond the upper range of the RBF network.

17.5.2.3 Comments

Defining the initial parameter vector and setting up the optimisation function for
an RBF network can be quite complex. As with the power law input non-linearity
described above, the optimisation function incorporates the CAPTAIN rivbj trans-
fer function estimation algorithm placed inside the Matlab lsqnonlin optimisation
routine. The optimisation routine is passed a vector of α,β and c parameters that
are first used to form a gain time series as a function of the observed output. The
gain series is applied to the observed input to form the effective input using (17.11).
The rivbj algorithm is then used to estimate the optimal transfer function model.
This model is used to form an output estimate and the optimisation cost function
is formed from the model deterministic or stochastic residuals. The last weighting
term αq is fixed to prevent the ill-conditioned optimization problem that would re-
sult from the interaction of the gain generated by the input non-linearity and the gain
of the TF component.

One option for defining the initial parameter values for the optimisation routine
is to fit the RBF network to the non-parametric input nonlinearity shape estimated
by the CAPTAIN sdp algorithm. This process is made easier by the linear properties
of the network. If the ci ’s and βi ’s are chosen manually, then a curve fit to the SDP
results can be performed to estimate the αi ’s using ordinary least squares (OLS):

α = (XTX)−1XT g, (17.12)

where α is a column vector of the q individual RBF weights; X is a r × q matrix
such that xi,j is equal to exp(−βj‖yi − cj‖2); and g is a column vector of r input
non-linearity gains estimated via SDP i.e., the data pairs (yi, gi) form the line shown
in Fig. 17.3.
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Fig. 17.5 Comparison of
PCHIP against cubic
polynomial spline for data
interpolation. Favourable
characteristics of PCHIP
include the interpolation
performance over flat regions
of the data and the sensible
endpoint extrapolation

The success or otherwise of an RBF curve fitting scheme can be determined
easily from an inspection of the basis functions. When the optimisation works the
basis functions show a distinct tendency to spread evenly across the input range,
and to select weightings and widths that fall within a narrow range. An unsuccessful
scheme will tend to group RBFs closely in some regions, include wildly different
weights and/or widths, and cancel poorly defined RBFs with a second identical, but
negatively weighted partner. These symptoms should prompt the user to repeat the
optimisation process using an alternate initial parameter set and/or number of RBFs.

17.5.3 Piecewise Cubic Hermite Data Interpolation (PCHIP)

The PCHIP method for parameterizing curves described in Fritch et al. [5] pro-
vides great benefit in situations where the user requires a smooth curve through
data pairs, including flat sections and requiring ‘sensible’extrapolation character-
istics. Figure 17.5 shows a simple example illustrating the advantages of PCHIP
over polynomial spline interpolation when a more natural and safe fit to the data is
required.

Interpolation algorithms are a popular method for parameterising functional
forms when a set of Cartesian x, y data points are known and the objective is to pro-
duce f (x) passing through these points and extended to f : X→ Y where x ∈ R.
For the application described here, an arbitrary set of x, y pairs (or knots) are chosen
from the estimated non-parametric SDP input nonlinearity function and the Mat-
lab pchip algorithm is used to fit the appropriate function f (x). The set X is held
constant and Y is used as initial parameters for an optimisation procedure using
Matlab’s lsqnonlin. The optimisation then proceeds as follows:

1. an updated Y set is formed
2. the new X,Y set is used to build an updated PCHIP function f (x)
3. the updated f (x) is used to form the effective input
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Fig. 17.6 The estimated
PCHIP input non-linearity
function for the Kirkby
Stephen to Appleby level to
level model. The dots show
the location of the chosen X
set and corresponding f (x)
values (the PCHIP knots).
Note the similarity in shape to
the RBF network estimation
(Fig. 17.4)

4. the CAPTAIN rivbj algorithm is used to estimate the linear transfer function be-
tween effective input and observed output

5. the cost function is formed from the model’s deterministic or stochastic residuals.

Steps 1 to 5 are repeated until the optimization converges.
Figure 17.6 shows the estimated PCHIP input non-linearity function for the

Kirkby Stephen to Appleby level to level model. The PCHIP input non-linearity
functions illustrated in this chapter use 13 internal knots plus two end knots. As
with the RBF network example, this is more parameters than would generally be
used but illustrates well the curve fitting flexibility as well as potential for data over-
fit.

17.5.3.1 Advantages

If a human, with understanding of the requirements of a good input non-linearity
function, was asked to sketch a line through a set of optimally positioned x, y pairs,
the result would look very much like the PCHIP solution. This is the advantage of
the PCHIP method; it is able to parameterize a very natural looking line through
the function knots. Once built, the function can be used to evaluate f (x) for any
chosen x. Extrapolated values can be easily controlled by adding a single knot to
each end of the domain range holding the extrapolated values constant or applying
a gentle linear slope (Fig. 17.6 shows f (> 4.4) held constant at 0.26).

The optimization of each knot of a PCHIP function requires one less parameter
than for each individual function from the RBF network method. If the x ordinate of
the knots are distributed heuristically across the function domain then the optimisa-
tion can be reduced to the corresponding y ordinates. This later method is generally
sufficient to produce a successful input non-linearity function and was used to pro-
duce the results presented in this chapter.
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17.5.3.2 Disadvantages

In common with the RBF network method, the PCHIP function carries the potential
to overfit the input non-linearity function to the chosen calibration data. An overfit
prevention method could be included as a precaution.

17.5.3.3 Comments

In the results presented in this chapter, a logarithmic spacing for the x ordinates of
the PCHIP knots was used. This method was chosen as it allows for more function
shape detail to be included towards the origin of the input non-linearity function.
In this region there is a higher density of data from which to draw information for
function shaping. Other methods for selecting x ordinates are available including a
linear spacing, manual grouping of points, fuzzy clustering algorithms and full opti-
misation of both the x and y component of the PCHIP knots. In practice the authors
have found little if any advantage in applying more complex x ordinate locating
methods. For the optimisation, the location of the final knot is fixed to prevent the
ill-conditioned optimization problem that would result from the interaction of the
gain generated by the input non-linearity and the gain of the TF component.

17.5.4 Takagi-Sugeno Fuzzy Inference Method

The methods described thus far have been inductive in that they have relied on nu-
merical optimisation techniques to parameterize the shape of the input non-linearity
function based on observed data. This section departs from this approach in-order
to explore the possibilities offered by fuzzy inference to translate the expert judge-
ment held by the user into a parametric form of the input non-linearity function. To
achieve this a simple Takagi-Sugeno Fuzzy Inference System (T-S FIS) was built us-
ing four input membership functions and four first-order output functions together
with a rule linking an input to an output function. The input into the T-S FIS is the
observed output data yk , the output is the gain to apply to the observed input at sam-
ple k–δ in order to form the effective input rk . The form of the T-S FIS used here
can be described by (17.13).

gk−δ =
∑N
i=1wizi∑N
i=1wi

. (17.13)

Here N is the number of rules; the wi ’s are the degree of membership of the input
to each of the N membership functions (wi ∈ [0,1]); and the zi ’s are the first order
output functions (in this case simply a set of N constants).

In an attempt to capture the expert judgement of the user, an interactive heuristic
procedure is followed whereby the user interacts dynamically with the shape and
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Fig. 17.7 The estimated T-S FIS input non-linearity function for the level to level (top) and rainfall
to level (bottom) modelling schemes. The left side plots show the shape and location of the four
input membership functions, the right side plots show the resulting input non-linearity shape

location of the T-S FIS membership functions in order to shape an overall input
non-linearity function. This function is then used to form the effective input series
and again the rivbj algorithm from CAPTAIN is used to estimate the optimal linear
transfer function component of the model.

The nature of T-S FIS provides a natural set of signifiers in the form of member-
ship functions with which the user can interact. Unlike RBF networks and PCHIP
splines, the user can break down the problem into a series of decisions about the sub
units of the overall function. A set of simple rules form a mechanistically meaning-
ful association between the input and the output (for example: if LEVEL is LOW
then OUTPUT is LOW). Using the rule base as a start point, the user can then make
decisions based on his/her interpretation of the system and any other relevant expe-
rience. Example decisions include: where to locate the membership functions, what
widths to apply to them and what output gains to associate with each. The combi-
nation of a meaningful linguistic naming convention for the T-S FIS membership
functions together with a graphical interface such as Matlab’s fuzzy tool provide a
relatively rapid means to shape and investigate the form of the input non-linearity
function.

Figure 17.7 shows example input non-linearity function developed for the models
in this chapter.
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17.5.4.1 Advantages

The T-S FIS method provides the user with a means to form an input non-linearity
function using knowledge of the system or experience of similar systems. By in-
teractively shaping the input non-linearity function, the user gains an intuitive un-
derstanding of the impact of the function on the model performance. This type of
human-in-the-loop computer interaction has been shown to be effective in applica-
tions where a straight forward globally optimal parameter set is not available (see
for example Colgan et al. [2]).

17.5.4.2 Disadvantages

The resulting model will not be optimal in any statistical sense. The input non-
linearity function will be dependent on the skill of the user.

17.5.4.3 Comment

One interesting feature of the T-S FIS process described here is it allows the user
to focus the model performance on specific portions of the data. When the model is
intended for flood forecasting, the user can tune the input non-linearity such that the
model performs well on the rising limb of the hydrograph—the most crucial charac-
teristic to capture simply by using a visual inspection of the simulation results. The
performance of the model over low flow and recession periods can be discounted
to a larger degree. This can also be achieved with the other methods presented but
requires a more complex formulation of the optimisation cost function.

17.6 Results

The eight input non-linearity function produced by the methods described above are
shown in Fig. 17.8. The figure also shows the input non-linearity shape identified
using non-parametric SDP estimation.

17.6.1 Rainfall to Level Forecasting on the River Eden

Figure 17.9 shows the largest event from the data calibration period. The calibration
period ran from 17th June 2004 to the 10th March 2005. The detail shows the ob-
served and forecast data for the large event that took place around the 8th January
2005.

Figure 17.10 shows a detail from the validation data period 9th September 2003
to the 25th June 2004 including the largest event in this range that resulted in signif-
icant flooding at Appleby on the 2nd February 2004. The forecast lead time was five
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Fig. 17.8 The shape of the input non-linearity functions together with SDP identification for the
level to level and rainfall to level model schemes

hours. The model efficiency RT2 (Coefficient of Determination based on the simu-
lation output error) is used here for assessment where an RT2 score of 1 is a perfect
fit between modelled and observed data; RT2 = 0 occurs when model predictions
are as accurate as the mean of the observed data; RT2 < 0 occurs when the resid-
ual variance is larger than the data variance. The RT2 scores for the full validation
period at each forecast step are shown in Table 17.1.

The results presented in Fig. 17.10 show that all the input non-linearity methods
combined with appropriate TF component perform reasonably well. The combina-
tion of DBM methods and data assimilation provide a robust forecasting framework.
However, within the overall performance range exhibited by the four level to level
forecasting schemes, points to note include:

1. The power law method demonstrated an over-estimate of the peak level.
2. The RBF network would have provided the best performance for flood forecast-

ing but by a very slim margin over the other methods.

17.6.2 Level to Level Forecasting on the River Eden

Figures 17.11 and 17.12 show the same subset of the calibration and validation data
presented in Figs. 17.9 and 17.10 but here showing the level to level results. The
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Fig. 17.9 Calibration results for five hour rainfall to level forecast on the River Eden using alter-
nate input non-linearity function parameterisation methods

forecast lead time is three hours. Table 17.2 shows Model Efficiency scores for the
full validation period. The results presented in Fig. 17.12 show that all the input non-
linearity methods combined with appropriate TF component perform reasonably
well. The combination of DBM methods and data assimilation provide a robust
forecasting framework. However, within the overall performance range exhibited
by the four rainfall to level forecasting schemes points to note include:

1. The RBF network demonstrates some sharp level adjustments which may be a
result of the over-fit when this method is applied with many degrees of freedom.

2. The PCHIP method marginally provides the best performance for flood forecast-
ing applications.

For comparison with the results presented above, the optimal linear model (i.e.,
TF model optimized with no input non-linearity function) results are shown in
Fig. 17.13. A visual inspection of the subset of validation data shown in Fig. 17.13
demonstrates that the optimal linear models perform reasonably well but both mod-
els show a tendency to lag the rising limb of the storm event. The lag of the rising
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Fig. 17.10 Validation results (detail) for five hour rainfall to level forecast on the River Eden using
alternate input non-linearity methods

Table 17.1 Model Efficiency
scores (RT2) for rainfall to
level forecasting between 1
and 5 hour lead times. Score
calculated from validation
period data

Non-linearity type 1 hour 2 hour 3 hour 4 hour 5 hour

Power law 0.978 0.963 0.948 0.936 0.926

RBF network 0.979 0.965 0.950 0.938 0.927

PCHIP 0.979 0.965 0.952 0.940 0.931

T-S FIS 0.976 0.961 0.946 0.933 0.923

Table 17.2 Model Efficiency
(RT2) scores for level to level
forecasting between 1 and 3
hour lead times. Score
calculated from validation
period data

Non-linearity type 1 hour 2 hour 3 hour

Power law 0.958 0.950 0.946

RBF network 0.956 0.944 0.940

PCHIP 0.954 0.944 0.938

T-S FIS 0.894 0.862 0.838
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Fig. 17.11 Calibration results for three hour level to level forecast on the river Eden using alternate
input non-linearity function parameterisation methods

limb observed in the linear models is more significant than that found in any of the
model configurations incorporating an input non-linearity function.

17.7 Conclusions and Comment

Comparing results between Figs. 17.12, 17.10 and 17.13 demonstrates that some
form of input non-linearity function is an important component of a flood forecast-
ing system. The optimal linear model produces more significant errors on both the
timing and scale of the large event within the calibration data.

The four methods presented here for parameterizing and optimizing the in-
put non-linearity function have associated advantages and disadvantages. The best
method to choose for a particular modelling/data assimilation exercise is dependent
on the characteristics of the system. The power law method is an appropriate choice
when the non-linearity is equally simple. It is also a good choice when there is insuf-
ficient data to identify the input non-linearity shape in any detail. The RBF network
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Fig. 17.12 Validation results for three hour level to level forecast on the river Eden using alternate
input non-linearity function methods

Fig. 17.13 Validation results for three hour level to level (l) and five hour rainfall to level(r)
forecast on the River Eden using optimal linear models i.e., models using no input non-linearity
function
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method is appropriate for systems that exhibit very well defined and complex input
non-linearity shapes. However, the flexibility of the RBF network to produce any
shape may lead to model over-fit problems. The PCHIP method also provides the
flexibility to map complex input non-linearity shapes while providing the ability to
maintain a natural curve. Overfit to calibration data is also a risk however especially
is a large number of knots are used. The T-S FIS method, together with interactive
tuning, provides an entirely different approach employing human-in-the-loop inter-
action during the parameter estimation process. This approach can be aided by easy
to use visual interfaces such as Matlab’s fuzzy toolbox. However, this method is not
optimal in any statistical sense.

It is hoped users of the DBM modelling approach will find this chapter provides a
solid foundation for producing input non-linearity parameterization schemes. Future
users may go on to refine these or develop useful methods of their own.

17.8 Future Work

The DBM modelling approach to real-time flood forecasting and data assimilation
is an ongoing field of research. Active areas of research include, but are not limited
to, the following.

1. Continuous time transfer function form. With continuous time modelling the sys-
tem is modelled in differential equation in differential equation terms (or the s
operator transfer function equivalent, where sn = dn

dt
: see Young [26] for more

detail). This approach will prove advantageous in situations where data are avail-
able, and forecasts are required, at unevenly spaced intervals, as well as when the
data are sampled rapidly.

2. Single stage optimization. In the examples presented here, the optimisation of
the linear transfer function model is embedded within the optimisation of the in-
put non-linearity scheme. Work by Smith et al. in this volume is investigating a
single stage recursive optimisation procedure for estimating both parameter sets
together. This would be useful for both automating the identification/estimation
procedure and also for identifying the covariance structure of the full model pa-
rameter set. Also Young [28, 29] presents an adaptive forecasting system where a
recursive form of the rivbj algorithm in CAPTAIN is used to continuously update
the parameters of the TF model.

Acknowledgements This research was carried out as part of RPA9 and SWP1 of the Flood
Risk Management Research Consortium (FRMRC) phases 1 and 2. The principal sponsors of
FRMRC are: the Engineering and Physical Sciences Research Council (EPSRC) in collabora-
tion with the Environment Agency (EA), the Northern Ireland Rivers Agency (DARDNI), the
United Kingdom Water Industry Research (UKWIR) Organisation, the Scottish Government (via
SNIFFER), the Welsh Assembly Government (WAG) through the auspices of the Defra/EA, and
the Office of Public Works (OPW) in the Republic of Ireland. For details of the FRMRC, see
http://www.floodrisk.org.uk.

http://www.floodrisk.org.uk


17 Flood Forecasting Using the DBM Methodology 365

References

1. Beven, K.: Rainfall-Runoff Modelling: The Primer. Wiley, New York (2001)
2. Colgan, L., Spence, R., Rankin, P.: The cockpit metaphor. Behav. Inf. Technol. 14(4), 251–263

(1995)
3. Cunge, J.A.: On the subject of a flood propagation computation method (Muskingum method).

J. Hydraul. Res. 7(2), 205–230 (1969)
4. Dooge, J.C., Strupczewski, W.G., Napiorkowski, J.J.: Hydrodynamic derivation of storage

parameters of the Muskingum model. J. Hydrol. 54(4), 371–387 (1982)
5. Fritsch, F.N., Carlson, R.E.: Monotone piecewise cubic interpolation. SIAM J. Numer. Anal.

17, 238–246 (1980)
6. Leedal, D., Beven, K.J., Young, P.C., Romanowicz, R.J.: Data assimilation and adaptive real-

time forecasting of water levels in the Eden catchment, UK. In: Samuels, P., Huntington,
S., Allsop, W., Harrop, J. (eds.) Flood Risk Management Research and Practice. Taylor and
Francis, London (2008)

7. Lees, M., Young, P.C., Beven, K.J., Ferguson, S., Burns, J.: An adaptive flood warning sys-
tem for the river Nith at Dumfries. In: White, W.R., Watts, J. (eds.) River Flood Hydraulics.
Institute of Hydrology, Wallingford (1994)

8. Nash, J.E.: A note on the Muskingham flood routing method. J. Geophys. Res. 64, 1053–1056
(1959)

9. Pappenberger, F., Beven, K.J., Hunter, N., Gouweleeuw, B., Bates, P., de Roo, A.: Cascading
model uncertainty from medium range weather forecasts (10 days) through a rainfall-runoff
model to flood inundation predictions within the European flood forecasting system (EFFS).
Hydrol. Earth Syst. Sci. 9(4), 1430–1449 (2005)

10. Park, J., Swandberg, I.W.: Universal approximation using radial-basis-function networks.
Neural Comput. 3(2), 246–257 (1991)

11. Pielke, R.A. Jr., Pielke, R.A. Sr.: Hurricanes: Their Nature and Impacts on Society. Wiley,
New York (1997)

12. Ratto, M., Young, P.C., Romanowicz, R., Pappenberger, F., Saltelli, Pagano A.: Uncertainty,
sensitivity analysis and the role of data based mechanistic modeling in hydrology. Hydrol.
Earth Syst. Sci. 11, 1249–1266 (2007)

13. Romanowicz, R.J., Young, P.C., Beven, K.J.: Data assimilation and adaptive forecasting of
water levels in the river Severn catchment, United Kingdom. Water Resour. Res. 42, W06407
(2006)

14. Romanowicz, R.J., Young, P.C., Beven, K.J., Pappenberger, F.: A data based mechanistic ap-
proach to nonlinear flood routing and adaptive flood level forecasting. Adv. Water Resour.
31(8), 1048–1056 (2008)

15. Sherman, L.K.: Streamflow from rainfall by the unit-hydrograph method. Eng. News-Rec.
108, 501–505 (1932)

16. Smith, P., Beven, K.J., Tych, W., Hughes, D., Coulson, G., Blair, G.: The provision of site
specific flood warnings using wireless sensor networks. In: Samuels, P., Huntington, S., All-
sop, W., Harrop, J. (eds.) Flood Risk Management Research and Practice. Taylor and Francis,
London (2008)

17. Young, P.C.: Recursive approaches to time-series analysis. Bull. Inst. Math. Appl. 10, 209–224
(1974)

18. Young, P.C.: Recursive Estimation and Time-Series Analysis. Springer, Berlin (1984)
19. Young, P.C.: Time variable and state dependent modelling of nonstationary and nonlinear time

series. In: Subba Rao, T. (ed.) Developments in Time Series Analysis, pp. 374–413. Chapman
and Hall, London (1993)

20. Young, P.C.: Data-based mechanistic modelling and validation of rainfall-flow processes. In:
Anderson, M.G., Bates, P.D. (eds.) Model Validation: Perspectives in Hydrological Science,
pp. 117–161. Wiley, Chichester (2001)

21. Young, P.C.: The identification and estimation of nonlinear stochastic systems. In: Mees, A.I.
(ed.) Nonlinear Dynamics and Statistics, pp. 127–166. Birkhäuser, Boston (2001)



366 K.J. Beven et al.

22. Young, P.C.: Advances in real-time flood forecasting. Philos. Trans. R. Soc. Lond. A
360(1796), 1433–1450 (2002)

23. Young, P.C., Beven, K.J.: Computation of the instantaneous unit hydrograph and identifiable
component flows with application to two small upland catchments comment. J. Hydrol. 129(1–
4), 389–396 (1991)

24. Young, P.C., Beven, K.J.: Data-based mechanistic (DBM) modelling and the rainfall-flow non-
linearity. Environmetrics 5, 335–363 (1994)

25. Young, P.C.: Top-down and data-based mechanistic modelling of rainfall-flow dynamics at the
catchment scale. Hydrol. Process. 17, 2195–2217 (2003)

26. Young, P.C., Garnier, H.: Identification and estimation of continuous-time data-based mech-
anistic (DBM) models for environmental systems. Environ. Model. Softw. 21(8), 1055–1072
(2006)

27. Young, P.C., Castelletti, A., Pianosi, F.: The data-based mechanistic approach in hydrological
modelling. In: Castelletti, A., Sessa, R.S. (eds.) Topics on System Analysis and Integrated
Water Resource Management, pp. 27–48. Elsevier, Amsterdam (2007)

28. Young, P.C.: Real-time updating in flood forecasting and warning. In: Pender, G.J., Faulkner,
H. (eds.) Flood Risk Science and Management, Oxford, UK, pp. 163–195. Wiley-Blackwell,
Oxford (2010)

29. Young, P.C.: Gauss, Kalman and advances in recursive parameter estimation. J. Forecast. 30,
104–146 (2010) (special issue celebrating 50 years of the Kalman Filter)



Chapter 18
Transport and Dispersion in Large Rivers:
Application of the Aggregated Dead Zone Model

Sarka D. Blazkova, Keith J. Beven, and Paul J. Smith

18.1 Transport and Dispersion in Large Rivers: Some Issues

The transport and dispersion of solutes in rivers is an important issue for many pur-
poses. Understanding the way in which nutrients are available to phytoplankton and
macrophytes; the licensing of effluents; the prediction of pollution incidents and
consequent damage to ecological services all depend on the adequate prediction of
transport and dispersion (most famously the Sandoz incident on the River Rhine
in 1986 [32], but many other incidents have caused significant ecological damage).
There is, of course, an extensive body of theory concerned with the transport and
dispersion of solutes in rivers (e.g. [9, 30]). There have also been many tracer ex-
periments carried out on both small and large rivers (and laboratory flumes) to try
and determine the dispersion characteristics of particular reaches directly.

The advection-dispersion equation (ADE) is the most widely used description
of transport and dispersion in rivers. It is based on an assumption of a linear rela-
tionship between dispersive flux and concentration gradient, scaled by the disper-
sion coefficient. This assumption can be justified if the dispersion is assumed to
be controlled by the velocity distribution in the vertical [9, 30]. Unfortunately, this
theoretical justification does not guarantee that the ADE provides good predictions
of tracer observations. The ADE predicts that after an initial mixing length, when
the solute becomes “fully mixed” with the flow, the concentration plume develops
the shape of a symmetric Gaussian distribution in the downstream direction and a
slightly asymmetric as it passes a particular cross-section of the river.
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But tracer experiments almost invariably have much heavier tails than predicted
by the ADE. This is not a new observation: it has been recognised for decades (e.g.
[8, 10, 24, 33–35]). This is the result of the fact that mixing over longer distances
is not dominated by shear dispersion (which is actually rather an efficient mixing
process). It is rather dominated by the imperfect mixing associated with the lateral
shear associated with secondary currents, including secondary circulation cells and
the effects of backwaters and other “dead zones” (e.g. [27]). Even with artificially
high dispersion coefficients, the ADE cannot adequately mimic these larger scale
controls on dispersion. It simply predicts (in many cases) the wrong shape of plume.
These larger scale effects also imply that the effective mixing length in real rivers
may be much longer than predicted on the basis of vertical velocity shear. This
is something that is often observed downstream of junctions between tributaries of
similar discharges but with different sediment concentrations. Thus the failure of the
ADE should not be a surprise (even if it is still widely used in many water quality
models).

The ADE can be modified to predict longer tails by the inclusion of additional
exchange terms, such as in the transient storage model of [2] and [29] amongst oth-
ers. There is however a much simpler alternative based on assuming that dispersion
is dominated by dead zone mixing: the Aggregated Dead Zone model.

18.2 The Aggregated Dead Zone Model

The Aggregated Dead Zone (ADZ) model was first introduced by Peter Young and
Tom Beer in their 1983 paper [1]. The original motivation for the ADZ was to show
that actual dispersion in rivers, as revealed by tracer data, could be predicted quite
simply by a first (or higher) order linear transfer function. It followed what Peter
Young would later call data-based mechanistic (DBM) principles of letting the data
show what form of model might be needed [40, 44]. Further development and testing
of the approach was later carried out at Lancaster by Peter Young in collaboration
with Steve Wallis, Keith Beven and Hannah Green [13, 14, 31, 36, 37, 40, 42–44]
including the collection of many tracer experiments on (mostly small) UK rivers.
The Lancaster group also produced software for the analysis of tracer experiments
and the prediction of pollution incidents in river networks [3, 5, 6]. An interesting
application was made in analysing the sequence of events in a pollution incident in
the River Eden in Cumbria, UK [11].

The ADZ concepts have also been used to describe transport in soils [4], in a gen-
eral water quality mode [22], in bedrock channels [28], and in urban sewer channels
[16–18]. The ADZ method did merit a very brief mention in Rutherford’s book in
1994 but, perhaps because of its lack of a theoretical link to hydraulic principles and
velocity distributions, has not been widely taken up (though see [23] for a method
for matching ADZ and transient storage model results through the use of the method
of moments). In the UK, it was used as an alternative to the ADE in an analysis of
all the UK Environment Agency tracer database [15] but elsewhere there has been
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less interest (though see [7, 20, 26, 29]). This is unfortunate since it is simple and
generally provides excellent predictive capability.

The DBM method is based on the use of general linear transfer functions to
identify a model structure from the data by induction, without preconceptions about
what form of model should be used. In this case, this has the advantage of producing
a representation of the processes that can reproduce the long tails of experimental
tracer and pollutant concentration data, which the basic ADE cannot. The ADZ
model is best understood in terms of simple “lag and route” concepts. In any trans-
port problem there is a lag between the time at which the solute concentration starts
to rise at the start of a reach and when it starts to rise at the end of the reach. This, in
the ADZ methodology, is called the advective time delay, τ . It will be expected to
decrease with increasing discharge in the reach. The dispersion of the input plume
in the reach is modelled as a linear transfer function. In the simplest first-order case,
the transfer function is equivalent to a linear store with a mean residence time, T .
The mean travel time in the reach is then (τ + T ). Given a steady discharge, Q,
the volume of this effective mixing store is then Ve =Q · T . The total volume in
the reach involved in the transport process is V · [τ + T ]. The ratio Ve/V is called
the Dispersive Fraction (DF ). It can also be defined in terms of the advective travel
time and mean residence time as T/(τ + T ).

In some analyses it has been shown that a higher order transfer function can give
a slightly better fit to the observed tracer experiments (e.g. [36, 43]. This suggests
that there might be different mechanisms affecting the dispersion with rather longer
mean residence times than in the bulk flow and its associated dead zones. This might
be due to exchanges into larger dead zones or perhaps mixing with hyporheic zone
waters in the bed and banks. It is worth noting that, as shown by [27], the lateral
velocity shear at the boundary between a dead zone and the main flow can induce
locally efficient mixing. However, once solute or pollutant is transferred into such
a storage, mixing is much slower and the time scale of pollutant retention much
longer. This contributes to the heavy tails of observed tracer concentrations.

18.3 Fitting the ADZ Model to Tracing Experiments in Larger
Rivers

Most of the early work with the ADZ model was based on the analysis and pre-
diction of tracer data from small UK river reaches. In smaller rivers the boundary
effects (including vegetation, hyporheic zone and other dead zone effects) might be
expected to have a greater influence on the transport of solutes. It is therefore of
interest to see if the ADZ approach can apply equally to larger rivers.

Fitting the ADZ model to tracer data is equivalent to fitting a linear transfer
function to the downstream concentration curve, given the input concentration curve
at the entry to a reach. A general linear transfer function model may be written

Ct = bo + b1z
−1 + · · · + bmz−m

1 − a1z−1 − a2z−2 + · · · + anz−n Ut−τ , (18.1)



370 S.D. Blazkova et al.

Table 18.1 Application of the ADZ model to tracer data from the Glen Canyon Dam controlled
flood realise in March 1996. Models fitted to input and output data for each reach length with time
step of 0.2 hours. Distances in river km from injection point. Advective time delays (τ ) in hours

Reach River
km

Reach
length

(n,m, τ) RT2 YIC DF

Badger Creek Rapid 12.7

to Little Colorado River 98.3 85.6 (3,2,13.0) 0.9994 −16.58 0.852

to Hance Rapids 123.5 25.2 (1,1,3.2) 0.9988 −16.53 0.758

to Diamond Creek 362.3 238.8 (1,1,33.7) 0.9934 −14.28 0.787

where Ct is the output concentration at the downstream end of a reach at time t ,
U is the input concentration from upstream and z−1 is the backward difference
operator such that Ut−1 = z−1Ut . This general model is defined in terms of the
triplet (m,n, τ ). Here, the CAPTAIN Matlab toolbox routines developed by Peter
Young have been used to define the correct order of the model and the associated a
and b coefficients. The Young Information Crtierion (YIC) is used to guard against
overfitting the data [41].

Three examples demonstrate how well the ADZ model can predict tracer trans-
port over long distances (and the persistence of the long tails in the observed tracer
concentrations in such large rivers). The first is the set of tracer data collected in
the Colorado River, USA. In this experiment, rhodamine tracer was added during
an experimental steady high flow event generated by a controlled flood release from
the Glen Canyon Dam in 1996 [12, 21]. A number of input-output concentration
curves were available for different reaches. Details of the sites, reach lengths, ADZ
model structure and fit are given in Table 18.1. A representative demonstration of
the excellent fit by the simplest first order model for the 239 km Hance Rapids to
Diamond Creek reach is given in Fig. 18.1. The third order model required to fit the
Badger Creek to Little Colorado Reach might be an indication that the initial mixing
was incomplete at Badger Creek, only 12.7 km downstream of the injection point.

A second example, from the River Labe/Elbe, crossing the border from the Czech
Republic into Germany also illustrates the accuracy of the ADZ model in reproduc-
ing the concentration curves from tracing experiments. Table 18.2 provides details
of the reaches, ADZ model structures and fit. Figure 18.2 provides a demonstration
of the application of the model in calibration. For the first experiment, in June 1997,
the first four reaches (to 43 km) were still considered to be in the initial mixing
length, as indicated by concentration measurements made at 4 different points in
the channel.

The third example makes use of tracer experiments from the River Rhine. Ta-
ble 18.3 provides details of the reaches, ADZ model structures and fit. Figure 18.3
provides a demonstration of the application of the model in calibration.

Of greater interest, of course, is how well the model can perform in prediction.
It is well known that both the mean advective velocity and the dispersive character-
istics of rivers can change strongly and nonlinearly with discharge. There is some
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Fig. 18.1 Fit of ADZ model to tracer data during the Glen Canyon flood release, Hance Rapids to
Diamond Creek reach, 1996

Fig. 18.2 Fit of ADZ model
to tracer data from the Pirna
to Dresden reach on the River
Elbe

evidence that, in the case of the ADZ model, the Dispersive Fraction is a near con-
stant with discharge in many reaches where multiple tracing experiments have been
carried out [13, 36]. There would appear to be no real theoretical reason why this
should be the case; it is simply an empirical result. From the definition of the Dis-
persive Fraction, this means that since the advective time delay is changing with
discharge, the mean residence time of the aggregated dead zone is changing with
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Table 18.2 Application of the ADZ model to data from two tracer experiments in the River Elbe.
Models fitted to input and output data for each reach length. Discharge in June 1997 at the Dresden
gauge was 330 m3/s and in November 1997, 127 m3/s. Distances in river km from November 1997
injection point at Strekov. Advective time delays (τ ) in hours

Reach River

km

Reach

length
June 1997 November 1997

(n,m, τ) RT2 YIC DF (n,m, τ) RT2 YIC DF

Veseli 9

to Dobkovice 20 11 (1,1,3.3) 0.981 −10.63 0.213

to Loubi 29 9 (1,1,2.2) 0.991 −13.27 0.230

to Hrensko 39 10 (0,1,3.8) 0.976 −12.10 0.185

to Bad Schandau 52 13 (1,1,3.6) 0.997 −14.97 0.177

to Pirna 75 23 (1,1,4.9) 0.994 −14.15 0.235 (1,1,7.3) 0.995 −14.98 0.173

to Dresden 98 23 (1,1,5.0) 0.992 −13.73 0.215 (1,1,7.3) 0.996 −15.03 0.169

to Scharfenberg 116 18 (1,1,4.0) 0.996 −15.66 0.186 (0,1,5.6) 0.994 −15.52 0.151

to Riesa 147 31 (1,1,7.3) 0.996 −15.16 0.180 (1,1,10.0) 0.992 −12.93 0.141

to Muhlberg 167 20 (1,1,4.4) 0.998 −16.02 0.157 (1,1,6.6) 0.998 −15.65 0.134

to Pretzch 224 57 (1,1,13.5) 0.994 −14.74 0.154 (1,1,17.5) 0.990 −13.60 0.126

to Wittenberg 254 30 (1,1,6.9) 0.980 −11.53 0.159 (0,1,10.4) 0.985 −14.26 0.117

to Rosslau 298 44 (1,1,13.3) 0.989 −13.27 0.158 (0,1,15.3) 0.976 −13.43 0.109

to Barby 331 33 (1,1,8.4) 0.992 −13.80 0.160 (1,1,11.6) 0.996 −15.39 0.121

to Magdeburg 358 27 (0,1,8.5) 0.990 −15.33 0.148 (1,1,9.0) 0.997 −15.04 0.119

to Niegripp 385 27 (0,1,5.7) 0.982 −14.26 0.169 (0,1,8.0) 0.985 −14.65 0.116

to Tangermunde 429 44 (1,1,13.9) 0.996 −15.19 0.157 (0,1,17.2) 0.983 −14.54 0.118

to Sandau 456 27 (0,1,9.4) 0.985 −14.78 0.156 (1,1,10.9) 0.994 −14.16 0.119

to Wittenberge 493 37 (0,1,14.5) 0.974 −13.75 0.134 (0,1,15.3) 0.973 −13.77 0.107

to Lenzen 524 31 (1,1,9.8) 0.972 −11.35 0.144 (0,1,11.7) 0.980 −14.46 0.111

to Bleckede 590 66 (0,1,25.0) 0.966 −13.55 0.138 (1,1,27.7) 0.936 −10.53 0.116

to Lauenburg 609 19 (0,1,6.8) 0.986 −15.37 0.135 (0,1,8.0) 0.983 −15.00 0.119

to Geesthacht 625 16 (0,1,9.6) 0.969 −13.90 0.130 (0,1,21.0) 0.970 −14.08 0.103

discharge with a similar scaling. In the ADE model, in contrast, the dispersion coef-
ficient changes approximately with the square of discharge (see e.g. [39]), making
it more difficult to extrapolate to different discharges, especially if only one or two
tracer experiments are available (as is often the case in larger rivers).

18.4 Making Use of Surrogate Data at Different Flows

Even so, use of the ADZ model in prediction requires information about the vari-
ability of the advective time delay and dispersive fraction with discharge. It is more
expensive and logistically more difficult to carry out tracing experiments in larger
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Table 18.3 Application of the ADZ model to tracer data from the River Rhine. Models fitted
to input and output data for each reach length with time step in hours. Distances in river km.
Advective time delays (τ ) in hours. June 1991 tracer experiment to Mainz analysed separately for
data collected at 4 different sites in the cross-section

Reach River km Reach length (n,m, τ) RT2 YIC DF

April/May 1989, 1100 m3/s at Rheinfelden

Bruecke Neuenburg 199.25

to Fessenheim 211.1 11.85 (1,1,2.83) 0.986 −11.83 0.151

September 1990, 950 m3/s at Koblenz

Koblenz 591

to Bimmen 865 274 (1,1,71) 0.978 −11.82 0.339

June 1991, 1800 m3/s at Speyer

Speyer 400.0

to Mainz 498.5 98.5

L1 left bank (1,1,20) 0.993 −12.77 0.407

L2 right bank (1,1,22) 0.987 −12.24 0.460

L3 middle left (1,1,20) 0.992 −12.39 0.412

L4 middle right (1,1,22) 0.997 −14.43 0.412

Fig. 18.3 ADZ model fit to
tracer data for the Koblenz
(discharge 950 m3/s) to
Bimmen (discharge 990
m3/s) reach of the River
Rhine, September 1990

rivers so that (with some exceptions, such as the tracer experiment programme car-
ried out by the United States Geological Survey) the available data on large rivers is
relatively sparse. It might also be possible, however, to make use of surrogate data
where distinct episodes of changes in water quality can be tracked at successive
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Fig. 18.4 Identification of a transport event using surrogate (electrical conductivity) data: Valy to
Lysa reach, River Elbe, Czech Republic

Fig. 18.5 Prediction of
advective time delay based on
regression of uncertain values
from small pollution incidents
(closed circle), surrogate data
at higher non-steady flows
(open circles), first tracer
experiment (square), and
second tracer experiment
used as test (diamond): Valy
to Lysa reach, River Elbe,
Czech Republic
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Fig. 18.6 Prediction of a new tracer experiment based on statistical regression of Fig. 18.5: Valy
to Lysa reach, River Elbe, Czech Republic. Left panel: after excluding first tracer experiment from
the regression. Right panel: including first tracer experiment in regression

measurement sites downstream. Such surrogate data will be subject to significantly
greater uncertainty than planned tracer experiments but Smith et al. [31] have shown
that such episodes can still provide a useful constraint on the uncertainty in the pre-
diction of future pollution incidents.

An example of the identification of a time delay from logged electrical conduc-
tivity data at the Valy and Lysa sites on the River Elbe is shown in Fig. 18.4. The
chosen perturbation in conductivity occurs just following the peak of the hydro-
graph. Since the ADZ model has an intrinsic assumption that the flow can be treated
as steady some account has to be taken of the changing discharge in assessing the
change in dispersion characteristics with flow. Smith et al. show how this can be
done by allowing for the uncertainty in the observations within a Bayesian statis-
tical regression framework. Figure 18.5 shows the resulting relationship between
advective time delay and discharge for this 76.5 km reach, based on different types
of data including one tracer experiment, three small pollution incidents and surro-
gate data of the type shown in Fig. 18.4.

18.5 Predicting Dispersion: Extrapolation to an Arbitrary
Discharge

Based on this type of relationship, predictions can be made of dispersion at other
discharges. Figure 18.6 shows the results of predicting the concentration curve for
a new tracing experiment conditional on the uncertainties in advective time delay
shown in Fig. 18.5. Estimating the dispersive fraction, however, requires fitting of
the full ADZ model, and was carried out for the three pollution incidents and an
earlier tracer experiment. In prediction, the dispersive fraction was then represented
by the mean and variance of these estimates for all discharges. The left hand panel
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of Fig. 18.6 shows the predictions made without taking account of the first tracer
experiment; the right hand panel demonstrates the increased accuracy and reduced
uncertainty achieved when the information in the first tracer experiment is included.
Even so, and despite the uncertainties demonstrated in Fig. 18.5, the dispersive frac-
tion has been overestimated in the mean and the predictions show a longer tail than
the observed tracer concentrations.

A further issue in predicting the transport of an arbitrary pollutant is that the gain
in a reach might be uncertain due to processes affecting the tracer mass, such as
sorption, chemical reactions, or volatilization. This was not an issue with the tracer
experiment in Fig. 18.6 since the tracer was chosen so as to be largely conservative.
For other pollutants the gain might be less than one, and the estimation of the gain
might also be a source of significant uncertainty in predicting transport of that pol-
lutant. This issue arises, of course, with all models of fluvial transport of pollutants,
not just the ADZ model.

18.6 Using Fuzzy Regression for the Prediction of Advective
Time with Uncertainty

There are limitations to the use of surrogate data in constraining the uncertainty in
the prediction of changing ADZ parameters with discharges. On the lower reaches
of larger rivers the surrogate data (i.e. consistent changes in water quality parameters
which can be recognised in two water quality monitoring stations) can be identified
mostly during high flow (smaller flood) discharges. On the Elbe below the monitor-
ing station Lysa, the next downstream station is Obristvi (at a distance of 24 km)
which is placed just upstream the confluence with the Vltava River. The Vltava is a
major tributary of the Elbe (in fact it usually contributes the greater proportion of the
downstream discharge). The last Czech water quality station on the Elbe before the
German frontier is then Decin at a distance of 102 km from Obristvi. At these sites
surrogate data are mostly masked by other water quality fluctuations while (small)
pollution incidents can mostly only be identified at one site, so cannot be used for
estimating either the advective time delay or the dispersive fraction.

In such situations, the number of data points that can be used to estimate the
change in advective time delay and dispersive fraction with discharge will generally
be small. In the stretch Lysa to Obristvi to Decin on the Elbe, there have been 4
cases of flood discharges where drops in conductivity could be recognised at all
three stations in addition to the tracer data reported in Table 18.3. There is also data
on a pollution incident (P-PO4) that can be tracked downstream, but this has been
left for validating the resulting ADZ dispersion estimates. All the data, however,
have some problems with uncertainty for various reasons (including problems of
changing discharge in space and time at high flows and incomplete concentration
curves for the tracer experiments), but there are fewer points than in the study of
Smith et al. [31].

In this situation, the assumptions of the statistical regression may not be valid
and an alternative approach was taken using the fuzzy regression method HBS2
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Fig. 18.7 Fuzzy regression
of advective time delay on
discharge for surrogate data
(conductivity during flood
discharges), for tracer data
and for all data together for
the reach Lysa to Obristvi,
River Elbe, Czech Republic.
The validation P-PO4
pollution incident is also
shown but was not included
in calculation of regression

(Hojati et al. [19]) which allows both independent and dependent variables to be
specified with uncertainty. The fuzzy regression is solved using linear programming
in the Excel solver. The results are shown in Fig. 18.7 and Fig. 18.8 for the reaches
Lysa to Obristvi and Obristvi to Decin respectively. In each case there were 4 high
discharge points from surrogate data and 3 points at lower discharges from the trac-
ing experiments. The advective time delay of the P-PO4 pollution incident is also
plotted in the figures for comparison.

The HBS2 regression has been first carried out separately for surrogate data (high
discharges) and tracing data (lower and middle discharges) and then all points, ex-
cept the validation incident, have been evaluated together. For the Lysa to Obristvi
reach the regression uncertainty bounds using all the data points are very near to the
bounds from tracing alone. It can also be seen from these plots that two of the tracer
experiments were rather similar in both discharge and travel time. The real pollu-
tion incident being used as validation happened at a higher discharge than any of
the tracings but is within the fuzzy uncertainty bounds (and shows almost identical
advective time delay to one of the surrogate data points).

The reach Obristvi to Decin is more difficult. Here, the regression has a large
uncertainty in the surrogate regression on the intercept and small uncertainty on
the slope; the bounds, however, include the validation incident point. The tracer
regression bounds and the all-over regression have the uncertainty predominantly
on the slope, but they are very different from each other. The tracer regression does
not comprise the validation point and the all-over regression misses one surrogate
point, albeit by only a small amount in both cases.
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Fig. 18.8 Fuzzy regression
of advective time delay on
discharge for surrogate data
(conductivity and UV
absorbance during flood
discharges), for tracer data
and for all data together for
the reach Obristvi to Decin,
River Elbe, Czech Republic.
The validation P-PO4
pollution incident is also
shown but was not included
in calculation of regression

Prediction of the validation incident for the two reaches, scaled such that the
predicted mass matches the observed, is shown in Fig. 18.9. The ADZ models are
sampled from the fuzzy estimates of τ in Fig. 18.7 and Fig. 18.8 and the range
of dispersive fraction determined from the available tracer experiments. The uncer-
tainty in the predictions, arising from the uncertainty in predicting both τ and the
dispersive fraction is significant, but in both cases spans the observed transport for
this incident. In the Obristvi to Decin reach, the observed incident concentrations
are only just within the range of the predictions. Figure 18.8 shows, however, that
the surrogate data indicates that much slower transport is possible at similar dis-
charges. At the time of the incident the input from the Vltava tributary was adding
more than 50% of the total discharge in the main Elbe downstream of Obristvi.

18.7 Conclusions

The results presented in this paper have shown how the ADZ model concepts, orig-
inally developed by Peter Young and Tom Beer, can be applied in the analysis and
prediction of transport and dispersion in large rivers. In analysis, the model provides
much better predictions of concentration curves than the simple ADE model, par-
ticularly in reproducing the long tails often seen in experimental tracer data, and is
simpler to calibrate and apply than the transient storage form of the ADE.

Tracer experiments in large rivers are, however, expensive, and it has been shown
how the information provided from the analysis of tracers can be augmented by the
use of pollution incidents and more readily logged surrogate water quality indica-
tors such as electrical conductivity while allowing for the inherent uncertainties in
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Fig. 18.9 ADZ model prediction of a P-PO4 pollution incident in (top) the Lysa—Obristvi and
(bottom) Obristvi to Decin reaches, River Elbe, Czech Republic, based on the full data sets of
Fig. 18.7 and Fig. 18.8

such data and associated (changing) discharges. With large numbers of data points
at different discharges, a form of statistical regression has been used to predict the
uncertain change of travel times with discharge. The technique allows uncertainty
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to be considered on both dependent and independent variables. With only small
numbers of points, a fuzzy regression has been used. The successful validation pre-
diction of a real P-PO4 pollution incident, given only a small amount of tracer and
surrogate data in reaches of the River Elbe has been demonstrated.

There is further research to be done with the ADZ model. In particular, to have a
more generally useful pollution incident prediction tool, it would be very useful to
relate the advective time delay and dispersive fraction to the physical and hydraulic
characteristics of a reach. Neither can be easily linked to the more useful uniform
flow estimates of mean velocity in a reach; both will be affected by the full three-
dimensional geometry of the reach at different discharges. In addition, it would be
useful to develop a database of the likely gains to be expected in predicting the
transport of different non-conservative solutes in such rivers to include in prediction,
such as that provided by the original ADZ-Protect software [5]. At present, there is
very little information on which to base such estimates. Predictions can, of course,
be made as if the solute is conservative to provide estimates of arrival and duration
of an incident at, say, a downstream water intake.
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Chapter 19
Stochastic and Robust Control of Water
Resource Systems: Concepts, Methods
and Applications

Andrea Castelletti, Francesca Pianosi, and Rodolfo Soncini-Sessa

19.1 Introduction

In order for water resources management to effectively cope with all the key drivers
of global change (climate, demographic, economic, social, policy/law/institutional,
and technology changes), it is essential that the traditional sectoral management ap-
proach to water resources is transformed into a new paradigm, where water is con-
sidered as the principal and cross cutting medium for balancing food, energy secu-
rity, and environmental sustainability. One major technical challenge in expanding
the scope of water resources management across sectors and to the river basin level
is to develop new methodologies and tools to cope with the increasing complexity of
water systems. When dealing with large water resources systems, particularly with
water reservoir networks, traditional non-linear, stochastic control approaches, like
Stochastic Dynamic Programming, suffer from the curse of dimensionality [5] that
makes them essentially unusable.

Stochastic Dynamic Programming (SDP) is by far one of the most studied method
to design optimal water reservoir operation (see, e.g., [50] and references therein).
SDP is based on the formulation of the control policy design problem as a sequential
decision making process. The key idea is to use cost-to-go functions to organize and
structure the search for optimal policies. A decision taken now can produce not only
an immediate cost, but also affect the next system state and, through that, all the
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subsequent rewards. SDP is thus based on looking ahead to future events and com-
puting a backed-up value, which is then used to update the value function. The first
application of (deterministic) Dynamic Programming to water systems management
is probably owed to [24]. Since then, the method has been systematically applied to
reservoir management, particularly for hydropower production (see, e.g., [21, 25,
26, 53]). Beginning in the early 1980s, the interest expands to the stochastic version
of dynamic programming for multi-purpose reservoirs operation and networks of
reservoirs (see the reviews by [59] and the contributions by [23, 45, 47, 56]). The
uncertain version of Dynamic Programming (that we will still call SDP) was pro-
posed by [44].

Despite being studied so extensively in the literature, SDP suffers from a dual
curse which, de facto, prevents its practical application to even reasonably complex
water systems. (i) The computational complexity grows exponentially with state,
control and disturbance dimensions (Bellman’s curse of dimensionality [5]), so that
SDP cannot be used with water systems where the number of reservoirs is greater
than a few (2–3) units. (ii) An explicit model of each system component is required
(curse of modeling [9]) to anticipate the effects of the system transitions. Any infor-
mation included into the SDP framework can only be either a state variable described
by a dynamic model or a stochastic disturbance, independent in time, with the as-
sociated pdf. Exogenous information, such as temperature, precipitation, snowpack
depth, which could effectively improve reservoir operation [27], cannot be explic-
itly considered in taking the release decision, unless a dynamic model is identified
for each additional information, thus adding to the curse of dimensionality (addi-
tional state variables). Further, in large reservoir networks, disturbances are very
likely to be spatially and temporally correlated. While including space variability in
the identification of the disturbance’s pdf can be sometimes rather complicated, it
does not add to the computational complexity. Conversely, temporal correlation can
be properly accounted for by using a dynamic stochastic model, which could be a
cumbersome contribution to the curse of dimensionality.

Attempts to overcome the SDP’s curses are ubiquitous in the literature, e.g. Dy-
namic Programming based on Successive Approximations [6], Incremental Dy-
namic Programming [32], and Differential Dynamic Programming [28]. However,
these methods have been conceived mainly for deterministic problems and are of
scarce interest for the optimal operation of reservoirs networks, where the uncer-
tainty associated with the underlying hydro-meteorological processes cannot be ne-
glected. A number of authors propose decomposition/aggregation methods for re-
ducing the system to a smaller, computationally tractable one (see, e.g., [1, 48, 55]).
Most of these methods, however, exploit some particular topological feature of the
system and are thus problem-specific.

In this chapter we review the most advanced, general approaches available to
overcome, or at least effectively mitigate, the SDP limits in dealing with large water
reservoir networks. They can be classified in two main classes depending on the
strategy they adopt to alleviate the dimensionality burden: methods based on the re-
striction of the degrees of freedom of the control problem (Approximate Dynamic
Programming and Policy Search) and methods based on the simplification of the
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water system model (on-line suboptimal controllers and Reinforcement Learning).
Emphasis is given to the technical implications of the very nature of the water reser-
voir systems on the problem formulation and solution. Indeed, reservoir networks
are high dimension and highly non-linear systems, affected by strong uncertainties,
with multiple objective functions usually non-linear, strongly asymmetric and to be
defined over an infinite horizon. Further, their operation directly or indirectly in-
volves human beings (decision-makers and stakeholders), whose risk aversion and
preference structure influence formulation and solution of the problem. Finally, for
each approach a real world numerical application is briefly presented.

19.2 Problem Formulation

We consider a water system composed of reservoirs, natural catchments feeding the
reservoirs, diversion dams, water users (e.g. hydropower plants, irrigation districts),
and artificial and natural canals that connect all the above components. Even if the
physical processes that are involved in the system are time-continuous, the model is
time-discrete as decisions are taken at discrete instants of time. The decision time-
step is usually one week or one day and, in any case, not smaller than few hours,
because of the physical constraints in the implementation of the decision (e.g. dam’s
gate operation). The system dynamics is thus given by the state transition equation

xt+1 = f (xt ,ut ,εt+1, t), (19.1)

where xt ∈ R
nx and ut ∈ Ut ⊆ R

nu are the state and control vectors at time t ; and
εt+1 ∈ R

nε is the disturbance1 acting in the time interval [t, t + 1). The state vec-
tor xt is composed of the reservoir storages and the state variables of catchments,
canals, and water users. The control vector includes the release decisions at the
reservoir outlet and the distribution decisions at the regulated diversion dams. The
disturbance vector ε collects the random disturbances acting in the system, e.g. cli-
mate or hydrological inputs, and error terms in the model of the system. It can be de-
scribed either as an uncertain or a stochastic variable and modelled by membership-
set Ξt or a pdf φt (·) respectively. At each time t , either Ξt and φt (·) may be a
function of state and control, that is

εt+1 ∼ φt ( · |xt ,ut ) or εt+1 ∈Ξt(xt ,ut ). (19.2)

For each of the m issues that have to be considered in operating the system (e.g.
agricultural and hydropower production, flood control, ecological services) an ob-
jective function J i , with i = 1, . . . ,m, can be defined to express the cost payed over
the time horizon [0, h]

J i = Ψ
ε1,...,εh

[
Φ
(
gi0(x0,u0,ε1), . . . , g

i
h−1(xh−1,uh−1,εh), g

i
h(xh)

)]
, (19.3)

1According to the notation adopted, the time subscript of a variable indicates the instant when the
its value is deterministically known.
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where git (·), for t = 1, . . . , h− 1 and with i = 1, . . . ,m, are step-cost functions as-
sociated to the transitions from t to t + 1, gih(·) is a penalty function over the final
state, Φ is an operator for aggregation over time and Ψ a statistic used to filter
the disturbance. Common choices for Φ are the sum (Φ = Σ ) and the maximum
(Φ = max), whereas for Ψ , the expected value is often used (Ψ =E), but the maxi-
mum (Ψ = max) is preferred when the stakeholders are risk averse [41, 51]. In prin-
ciple, all the combinations of these operators can be considered; in practice, only
two are of interest in real-life applications: Ψ = E and Φ =Σ (Laplace problem),
and both Ψ and Φ equal to the maximum operator (Wald problem). The control
vector is specified by a time-varying control law

ut =mt(xt ) (19.4)

and the aim of the control problem is to define the sequence of control laws mt(·)
over the horizon [0, h− 1], i.e. the control policy

p = [m0(·), . . . ,mh−1(·)]. (19.5)

The optimal control problem is formulated as

min
p

[
J 1, J 2, . . . , Jm

]
(19.6)

subject to constraints (19.1), (19.2), (19.4), (19.5), and with x0 given. The pdf for-
mulation in equation (19.2) is used when the expected value is adopted as filtering
criterion Ψ in equation (19.3); the membership-set formulation is used when Ψ is
the maximum. Note that the control variable is unconstrained because unfeasible
decisions are not transformed into feasible ones due to the form of the reservoir’s
model.

The control problem (19.5) is a multi-objective (MO) optimization problem,
whose solution is the set P of Pareto optimal (efficient) policies (see, e.g., [36]).
Each policy in P can be computed by solving the following single (aggregate) ob-
jective (SO) optimal control problem:

min
p
J (19.7)

subject to constraints (19.1), (19.2), (19.4), (19.5), and with x0 given, with

J = Ψ
ε1,...,εh

[
Φ(g0(x0,u0,ε1), . . . , gh−1(xh−1,uh−1,εh), gh(xh))

]
, (19.8)

where gt (·) and gh(·) are the aggregate step-cost and penalty functions obtained
from git (·) and gih(·) (with i = 1, . . . ,m) according to the aggregation method (see,
e.g., [34]) used to re-conduct the MO problem to a SO problem. The choice of this
method is constrained by the formulation adopted for the problem, particularly, by
the choice of the filtering operator Ψ .

In the water resources context, the choice of the time horizon and the penalty
function gh(xh) might be critical since the life time of the system is infinite. Gen-
erally, the adoption of an infinite horizon, which vanquishes the influence of the
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penalty, is recommended. When the model of the system and all the step-cost func-
tions are cyclostationary with period T , the problem on the infinite horizon is well-
posed and the solution is a periodic control policy. The SO problem over an infinite
horizon is formulated as

min
p

lim
h→∞J (19.9)

subject to (19.1), (19.2), (19.4), given x0, and

p = [m0(·), . . . ,mT−1(·)
]

(19.10)

instead of (19.5). If Φ = Σ in (19.8), the objective function must be adjusted in
order to avoid divergence because it is not guaranteed that the controlled system
will converge to a stable cycle. To overcome this difficulty, the objective function
can be defined as the Total Discounted Cost (TDC)

J = lim
h→∞ Ψ

ε1,...,εh

[
h∑

t=0

γ tgt (xt ,ut ,εt+1)

]

, (19.11)

with 0< γ < 1, or as the Average Expected Value (AEV)

J = lim
h→∞ Ψ

ε1,...,εh

[
1

h+ 1

h∑

t=0

gt (xt ,ut ,εt+1)

]

. (19.12)

The TDC form gives more weight to the short-term, transient conditions and it is
well suited for expressing economic costs, for which the discount factor γ can be
easily estimated. The AEV accounts only for the steady-state conditions and should
be preferred over the TDC when social or environmental issues are implicated.

19.3 Traditional Problem Solution: The Dynamic Programming
Approach

Stochastic Dynamic Programming (SDP) appears to be the most suitable, and one
of the more commonly adopted, method for solving problem (19.7). One pillar of
SDP success is its wide applicability. Indeed, the only requirements for its applica-
tion are: (1) the inputs in the model can only be controls or random disturbances,
which means that it is not possible to consider (and condition the policy upon) un-
controlled, exogenous, deterministic variables whose value is known in real time
(e.g. rainfall measures), unless these are described by a dynamic model and so are
not exogenous inputs anymore; (2) the membership-set or the pdf of the disturbance
vector must be in the form as in (19.2), i.e. either the disturbance process is indepen-
dent in time or, at time t , any dependency on the past could be completely accounted
for by the value of the state at the same time; and (3) the step-cost functions gt (·)
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only depend upon variables defined for the same time interval. As anticipated in the
introduction, the first condition leads to the so-called curse of modelling.

The Bellman equation for the SO finite horizon optimal control problem (19.7) is

Ht(xt )= min
ut
Ψ

εt+1

[
Φ
[
gt (xt ,ut ,εt+1),Ht+1(xt+1)

]]
(19.13)

where Ht(·) is the optimal cost-to-go function for the aggregate objective and only
the following combinations of Φ and Ψ are considered

Φ[v,w] = v+w and Ψ =E,
Φ[v,w] = max{v,w} and Ψ = max .

The solution is obtained by initializingHh(xh) with gh(xh) and recursively comput-
ing Ht(xt ) with (19.13). Once the optimal costs-to-go have been computed for all
the time instants t = h− 1, . . . ,0, the optimal control law at any time t is derived as

mt(xt )= arg min
ut
Ψ

εt+1

[
Φ
[
gt (xt ,ut ,εt+1),Ht+1(xt+1)

]]
. (19.14)

If the system is linear, the step-cost functions quadratic and the random distur-
bance is stochastic and Gaussian, the analytical solution to the Bellman equation is
given as in the well known LQG framework. Unfortunately, this result can not be
exploited in most of the water field applications, since none of the assumptions of
the LQG framework is satisfied and forcing the system description to fit them can
dramatically reduce the solution significance [16].

An approximate solution can be obtained by discretizing sets Sxt , Sut , and Sεt ,
of state, control and disturbance, and numerically solving the Bellman equation
(19.13). Uniform discretization is suitable when no information is available about
the form of the optimal cost-to-go function Ht(·). The intuition is confirmed by
some numerical results [18], which show that the error in the estimation of Ht(·),
given the values that it assumes in P points (xit ,Ht (x

i
t+1)) with xit ∈ Sxt , is propor-

tional to an index, called discrepancy index, which expresses the minimum density
of the points xit among all the subsets of Sxt . For fixed P , the uniform discretiza-
tion has a low discrepancy index and thus produces a low estimation error. However,
when a uniform grid is adopted, P =Nnxxt and thus the number of points P can not
be increased continuously and the distance between two successive values of P in-
creases exponentially with nx − 1. Methods have been developed (see, e.g. [39]) to
iteratively produce non-uniform discretizations whose discrepancy index decreases
polynomially with P (low-discrepancy sequences).

When an infinite horizon is considered, the idea is still to recursively solve equa-
tion (19.13), however the algorithm is started at time t = 0, with a suitable initializa-
tion for H0(x0), and proceeds backwards in time until the optimal cost-to-go func-
tion converges to a periodic function of period T . The initialization can be arbitrary
chosen when Ψ =E, while it must be equal to

H0(x0)= inf
xt∈Sxt ,ut∈Sut ,εt+1∈Sεt+1

gt (xt ,ut ,εt+1),
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when Ψ = max. If the TDC formulation (19.11) is used, the operator Φ[·, ·] in the
Bellman equation (19.13) must be defined as Φ[v,w] = v + γw, which guarantees
that Ht(·) does not diverge. If instead the AEV formulation (19.12) is used, it is not
possible to avoid divergence of Ht(·) if it is recursively computed with (19.13). To
overcome this difficulty, the idea is to replace Ht(xt ) with the difference between
Ht(xt ) and the cost-to-go Ht(x̄t ) of a reference state x̄t . Based on this idea, the Suc-
cessive Approximation Algorithm (ASA) has been proposed for either the stationary
[58] and cyclostationary [52] case. Asymptotical convergence of both the algorithms
is guaranteed under suitable conditions (see [8] for the stochastic case and [44] for
the uncertain one) which are always satisfied by real world water systems.

19.3.1 Curse of Dimensionality

The main limit of SDP is the associated computational complexity. Let Nxt , Nut and
Nεt be the number of elements in the discretized state, control and disturbance sets
Sxt ⊂ R

nx , Sut ⊂ R
nu and Sεt ⊂ R

nε : the recursive resolution of (19.13) for K
iteration steps (with K = h if the optimization horizon is finite and K = kT if the
horizon is infinite, where T is the period and k is usually lower than ten) requires

K · (Nnxxt ·Nnuut ·Nnεεt
)

(19.15)

evaluations of the operator Φ[·, ·] in (19.13). Equation (19.15) shows the so-called
curse of dimensionality: the computational complexity grows exponentially with the
state, control and disturbance dimensions. This limits the use of SDP to small water
systems where the number of reservoirs is smaller than few units.

19.3.2 Set-Valued Policies

Equation (19.14) might have more than one solution. If this is the case, one can com-
pute the set Mt of all these solutions (equivalent optimal controls). Since this set is
a function of the state it can be viewed as a set-valued control law and the sequence
P = [M0(·), . . . ,Mh−1(·)] is the optimal set-valued policy. Aufiero et al. [2] prove
that P is the ‘largest’ set-valued policy that solves problem (19.7). Determining the
general set-valued policy implies almost the same computing time as determining a
point-valued policy and can be much more effective. In fact, not only uniqueness of
the solution is not necessary, since the control is supposed to be implemented by a
human regulator, but it is not even favourable: leaving the regulator the possibility
of choosing a control in Mt is preferable since in this way (s)he can consider other
information that are available when the release decision is taken (e.g. down-time pe-
riods of some plant) but that have not been included in the model of the system when
formulating the control problem. The adoption of a set-valued policy approach turns
out to be particularly useful also when some priority among the objectives can be
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established a priori (e.g. accordingly to national regulations). In this event, the opti-
mal control problem (19.7) can be reformulated decomposing it into a hierarchy of q
(with q ≤ m) single or/and multi-objective subproblems (lexicographic approach),
each of which is formulated considering as feasible control set the optimal set-value
policies obtained by solving the problem at the higher level in the hierarchy.

19.4 Alternate Problem Solutions

Large water systems comprising more than two/three reservoirs are the rule rather
than exception and this is the reason why SDP has had a very limited applicability to
real world systems. Since the 1970s, many approaches have been proposed to par-
tially remedy the curse of dimensionality and the topic is still actively investigated
[46]. In this section, we present a short survey of alternate approaches we recently
explored to overcome the curse of dimensionality in the stochastic or uncertain case,
and provide some numerical results of their application to different water systems.

These approaches can be classified in two main classes depending on the strategy
they adopt to alleviate the dimensionality burden: methods based on the restriction
of the degrees of freedom of the control problem and methods based on the simplifi-
cation of the water system model. With the first, the problem complexity is reduced
by assuming a priori some regularity in the structure either of the optimal cost-to-
go function (Sect. 19.4.1) or the control policy (Sect. 19.4.2). With the second, the
original model of the system is substituted for a simplified, low order version, in
which the state dimension is reduced and the lost information is recovered either by
using an on-line suboptimal control scheme (Sect. 19.4.3) or a data-driven learning
approach (Sect. 19.4.4).

19.4.1 Approximate Dynamic Programming

The key idea of a broad class of approaches usually categorized as Approximate
Dynamic Programming (ADP) is to avert the SDP curse of dimensionality by intro-
ducing some hypotheses on the regularity of the optimal cost-to-go function. Since
SDP requires discretization of the state and decision spaces, one way to mitigate (but
not vanquish) the dimensionality problem is to combine a coarser discretization grid
with a continuous approximation of the cost-to-go function.

Instead of computing the exact value of Ht(·) for Nnxxt state values, the idea is
to evaluate it in a smaller number (Ñnxxt < N

nx
xt ) of points and then interpolate such

points with a function belonging to a given class of functions. Thereby (19.13) must
be replaced by

Ĥt (xt )= min
ut
Ψ

εt+1
Φ
[
gt (xt ,ut ,εt+1), H̃t+1(xt+1)

]
, (19.16)
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where H̃t+1(·) is an approximation of the optimal cost-to-go function Ht+1(·). The
approximation is derived from the Ñnxxt+1 evaluations of Ĥt+1(·) made at previous

step, by fitting the approximation function to the points {(xit+1, Ĥt+1(xit+1)); i =
1, . . . , Ñnxxt+1}. Different classes of approximators have been explored in the liter-
ature, including linear polynomials [7, 54], cubic Hermite polynomials [22] and
splines [30, 42]. As universal function approximators, artificial neural networks are
particularly suited for this purpose, as discussed in [9] and practically demonstrated
by [13]. They lead to the so called Neural Stochastic Dynamic Programming (NSDP)
approach. NSDP can be used for either finite and infinite horizon except for the AEV

formulation, since in this case the convergence of the solution algorithm is not guar-
anteed. As for the other formulations, [9] proved that under broad hypothesis it is
guaranteed that the solution H̃·(·) lies in a bounded neighbourhood of the exact
solution H·(·).

NSDP cuts down the computing time by reducing the term Nxt in (19.15); how-
ever, the exponential growth with the state dimension nx is not avoided and so the
curse of dimensionality only mitigated. This is why, with a modern computer, NSDP

can be used when nx is indicatively of the order of ten units at most [49]. Some
recent experiments [3, 17] have demonstrated that coupling NSDP and state dis-
cretization with low-discrepancy sequences allows for solving problems (on a finite
or receding horizon!) with even higher state dimension (30 state variables in [17]).

Application Example A comparison between SDP and NSDP is given by applica-
tion to the river Piave system, Italy. The system is composed of three main artificial
reservoirs (total storage 215 Mm3) fed by a 4,100 km2 catchment and operated for
hydropower production and irrigation supply. The system description requires at
least 3 state variables (reservoir storages), 4 controls (3 release decisions and 1 di-
version decision) and 3 disturbances (reservoir inflows). Table 19.1 compares the
objective values (average annual revenue from power production and annual irri-
gation deficit) attained with the optimal policies designed with SDP and NSDP, and
different discretization grids. SDP with a dense grid of 10, 6 and 7 discrete values
for the first, second and third component of the state (for a total of 420 grid points)
and NSDP with a coarse grid of 6, 3, 3 values (54 points) achieve almost the same
performance, but NSDP is almost 450% faster. SDP with the coarse discretization
grid (6, 3, 3) further reduces the computing time but gives significantly worse (from
5% to 100%, depending on the objective) performance. Finally, NSDP with a slightly

Table 19.1 River Piave
system: objective values and
computing time of SDP and
NSDP with different state
space discretization grids

Control
scheme

Objectives Computing time
[hours]Hydropower

[€]
Irrigation
[m3]

SDP420 30999499 751596 9.1300

NSDP54 30995522 752812 2.2825

SDP54 28336389 1301902 1.3300

NSDP140 31401457 751430 6.1325
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denser grid (140 points) overcomes SDP with dense grid, at least for the hydropower
objective, while still requiring less computing time. More details on the application
can be found in [13].

19.4.2 Policy Search

One way to completely overcome the curse of dimensionality is to directly work in
the policy domain (Policy Search) and transfer the ADP’s key idea of a regularity of
the cost-to go function to the policy structure. Strictly, we can assume that, for any
t , the control law (19.4) belongs to a given class of functions {m(·; θ t )}, where θ t
is a vector of parameters to be estimated. The optimal control problem (over a finite
horizon) can be formulated as

min
θ0,...,θh−1

Ψ
ε1,...,εh

[
Φ(g0(x0,u0,ε1), . . . , gh−1(xh−1,uh−1,εh), gh(xh))

]

subject to constraints (19.1), (19.2), x0 given, and

ut =m(xt ; θ t ).
The same could be done for an infinite horizon cyclostationary problem, were the
unknown would be the sequence [θ0, . . . , θT−1].

The clear advantage of Policy Search is that the optimal control problem is re-
conducted to an optimization problem that can be solved by means of traditional
Mathematical Programming techniques, Evolutionary Methods (see, e.g., [37]) or
other optimization techniques (e.g. [29]). It does not require any discretization and
therefore totally avoids the curse of dimensionality. However, the final result de-
pends on the choice of the class of functions (e.g. linear, piecewise linear, fuzzy
rule base, etc.) to which the control law is assumed to belong and optimality can
not be guaranteed. Reservoir operation practice often provides indications for this
choice, which, however, becomes harder as the complexity of the system increases:
a review of Policy Search approaches based on empirical experience can be found
in [40]. Alternatively, universal approximators (e.g. Artificial Neural Networks) can
be used [3].

Application Example Policy Search is applied to designing the operating pol-
icy of the Hoa Binh reservoir on the Da River, Vietnam. The reservoir has a live
storage of 5.6 billion m3 and a total catchment area of 169,000 km2. The main op-
eration objectives are hydropower production, irrigation supply and flood control
in the downstream city of Hanoi. The optimal control problem is reconducted to a
nonlinear programming problem by using Artificial Neural Network (ANN) to ap-
proximate the unknown optimal control law, which we assume to be time-varying
and depending on the storage and the previous day flows. The ANN inputs thus are
the current reservoir storage, the inflow to the reservoir in the previous day, and
time itself. Multi-Objective Evolutionary Algorithms, namely NSGA II, [19], are
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Table 19.2 Hoa Binh reservoir: objective values for the historical operation and different Pareto
optimal policies designed by Policy Search (ANN with 1 hidden layer of 4 log-sigmoid neurons
and a linear output layer) and DDP, and simulated over the validation period 1989–2004. At each
simulation step, physical units are multiplied by a time-varying parameter to account for variations
in the value of energy and water during the year

Control scheme
Objectives

Hydropower
∼ 107×[kWh]

Irrigation
∼[m3/s]2

Flooding
[m]

Historical 2.66 1271 0.063

Policy search (hydropower only) 3.54 4168 0.056

(compromise irrigation and flooding) 3.08 66 0.044

(compromise among all objectives) 3.35 68 0.049

DDP (hydropower only) 3.56 4907 0.032

(compromise irrigation and flooding) 2.85 4 0.011

(compromise among all objectives) 3.52 89 0.022

used to optimize the ANN parameters θ . Time series of measured inflow over the
period 1961–1976 are used in the optimization phase, while time series over the
period 1989–2004 are used to simulate the performances of the optimized networks
(validation) and compare with historical regulation. As a matter of comparison, the
performances of Deterministic Dynamic Programming (DDP) are also simulated:
they provide the upper bound of performances that could be attained by a manager
with perfect knowledge of all future flows. Table 19.2 compares the objective values
(average daily power production, irrigation deficit and exceedence of the flooding
threshold) of several of these policies: the historical one, the best for hydropower
designed by DDP and Policy Search, and two possible compromise solutions. It can
be noted that policy search can effectively find policies that Pareto dominate the his-
torical operation and, as far as hydropower production is concerned, almost reach
the performances of DDP.

19.4.3 On-line Suboptimal Controllers

The idea is to use a simplified model of the system, where the dynamics of the com-
ponents that are not influenced by the control action (e.g. uncontrolled catchments)
is neglected and their outputs are modelled as disturbances to the reduced model.
The loss of information associated with this forced model order reduction is par-
tially compensated by solving the control problem on-line over a finite, receding (or
rolling) horizon and using all available information (e.g. the state of the neglected
components or other new relevant measurements) to update the disturbance pdfs.
The on-line control problem can be formulated as:
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1. A deterministic open-loop control problem

min
ut ,...,ut+h−1

Φ
(
gt (x̃t ,ut , ε̄t+1), . . . , gt+h(x̃t+h)

)

subject to

x̃τ+1 = f̃τ (x̃τ ,uτ , ε̄τ+1), τ = t, . . . , t + h− 1

x̃t given,

where x̃τ is the reduced state vector, f̃ (·) is the corresponding state transition func-
tion and, for each τ = t, . . . , t + h − 1, ε̄τ+1 is the expected or maximum value
of ετ+1 based on φτ (·|It ) or Ξτ (It ), and It is a vector including all the real-time
information available at time t .

2. A stochastic open-loop control problem

min
ut ,...,ut+h−1

Ψ
εt+1,...,εt+h

[
Φ
(
gt (x̃t ,ut ,εt+1), . . . , gt+h(x̃t+h)

)]

subject to

x̃τ+1 = f̃τ (x̃τ ,uτ ,ετ+1), (19.17a)

ετ+1 ∼ φτ ( · |It ) or ετ+1 ∈Ξτ (It ), (19.17b)

τ = t, . . . , t + h− 1, (19.17c)

x̃t given. (19.17d)

3. A stochastic closed-loop control problem

min
p

Ψ
εt+1,...,εt+h

[
Φ
(
gt (x̃t ,ut ,εt+1), . . . , gt+h(x̃t+h)

)]

subject to (19.17a)–(19.17d) and

uτ =mτ (x̃τ ), τ = t, . . . , t + h− 1

p = [mt(·), . . . ,mt+h−1(·)].
Problem 1 is referred to by [8] as Naive Feedback Control NFC problem, prob-

lem 2 as Open-Loop Feedback Control (OLFC) and problem 3 as Partial Open-Loop
Feedback Control (POLFC). Problems 1 and 2 can be solved by means of Mathemat-
ical Programming techniques, problem 3 is solved by means of SDP.

For all problems, one of the main difficulties is the choice of the penalty function
gh(·), which influences either the performances of the closed loop scheme and its
stability [35]. One possibility [38] is to let gh(·) be equal to the optimal cost-to-
go Hh(·) obtained by solving an off-line infinite horizon problem with the reduced
model and a trivial predictor, i.e. with a priori pdf or membership-set for the descrip-
tion of the disturbance. However, since the solution of the latter problem requires to
use SDP, this approach still suffers from the curse of dimensionality.
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Table 19.3 Lake Verbano system: average step-cost (aggregate, flooding and irrigation) with off-
line and on-line (POLFC) control scheme

Control scheme Objectives

Aggregate
[–]

Flooding
[km2]

Irrigation
[m3/s]12

Off-line 5.43 × 1019 7.75×10−3 2.04 × 1014

On-line h= 1 (prediction) 5.20 × 1019 7.42×10−3 6.21 × 1013

h= 1 (observation) 5.33 × 1019 7.61×10−3 5.28 × 1013

h= 2 (observation) 5.04 × 1019 7.20×10−3 1.59 × 1014

h= 4 (observation) 4.73 × 1019 6.75×10−3 1.38 × 1014

h= 8 (observation) 4.54 × 1019 6.48×10−3 1.33 × 1013

As for optimality, it is well known from the certainty equivalence principle that
the solution to problem 1 coincides with the optimal solution of the off-line closed-
loop problem with the complete model (19.1)–(19.2), i.e. of the original problem,
when the model is linear and the objective function quadratic. [8] proved that, in-
dependently of the form of the model, the solution to problem 3 can not be worse
than the solution of the off-line open-loop problem with the complete model. As
for the other problems, performance generally increases when passing from prob-
lem 1 to problem 3, but in some cases the solution to problem 2 is better than that
of problem 3.

Application Example As an application of on-line suboptimal control, the per-
formance of the on-line POLFC approach are compared with off-line SDP in the
operation of the lake Verbano system, Italy/Switzerland.

The lake is fed by an alpine catchment of about 6560 km2 and has been oper-
ated since from 1942 to increase the water supply for irrigation and hydropower
production in the downstream territory. Lake regulation must also consider flood
prevention on the lake and the downstream river shores, environmental quality, nav-
igation and other issues (for more details see [15]). In this numerical application,
we formulate a simple bi-objective problem (irrigation supply and flood control on
the lake shores).

A reduced model of the system is identified with one state variable (the lake
storage), one control (the release decision) and one disturbance (the lake inflow).
Table 19.3 compares the off-line policy obtained with SDP and the on-line POLFC

scheme. Comparison is based on the objective values (aggregated objective and its
components: the average daily flooded area around the lake and the daily crop stress,
defined as the irrigation deficit at power 12) over a simulation period of 5 years
(1998–2002). By comparing the first two lines in the table, it can be noticed that
the POLFC scheme with 1-step-ahead (24 hours) inflow prediction is significantly
better than the off-line solution on both the objectives. Lines 3–6 report the perfor-
mances of the on-line POLFC scheme for different length h of the prediction/control
horizon. Since the current prediction ability cannot extend over such horizon, the



396 A. Castelletti et al.

control scheme is simulated using observed inflows in place of inflow forecast. Per-
formances so obtained must thus be regarded as the upper bound that could be at-
tained with perfect prediction ability. The minimum cost is reached when h = 8
(days), which is right the time constant of the lake. More details on the application
can be found in [43].

19.4.4 Reinforcement Learning

The only way to use the reduced model of the system also in off-line policy design,
without resorting to the unrealistic assumption that the outflows from uncontrolled
catchments are purely random disturbances as imposed by SDP, is to use a solution
approach based on Reinforcement Learning (see, e.g., [4]). With this approach, the
control law depends on the reduced state vector x̃t and on an information vector It ,
constituted with the exogenous information (e.g. rainfall, snow cover, snow depth,
evapotranspiration) that might have a key role in the outflow formation process and
result in an improved control policy. In its original concept, Reinforcement Learning
(RL) is based on the idea of designing the control policy through a trial-and-error
learning process, in which the model-based estimates of the system transitions are
substituted for a learning by experiencing. The learning experience can be acquired
on-line, by directly experimenting controls on the real system without any model, or
generated off-line, either by using an external simulator or historical observations.
While the first option is clearly impracticable on real water systems, off-line learning
has been successfully experimented in the operation of water systems, particularly
the Q-learning algorithm developed by [57] (see the works by [10, 12, 33]).

Recently, a new approach, called fitted Q-iteration (FQI), which combines the
RL concept of off-line learning and functional approximation of the cost-to-go func-
tion (here called Q-function) as in ADP, has been proposed [20]. Unlike traditional
stochastic approximation algorithms (see, e.g., [54]), which use parametric function
approximators and thus require a time consuming parameter estimation process at
each iteration step, FQI uses tree-based approximation [11]. The use of tree-based
regressors offers a twofold advantage: first, a great modeling flexibility, which is
a paramount characteristic in the typical multi-objective context of water reservoir
systems with multi-dimensional states, where the Q-functions to be approximated
are unpredictable in shape; second, a higher computational efficiency as no optimal
parameter estimation is required for the Q-function approximation at each iteration
step. Further, while traditional Q-learning has been provably shown to converge
only when the Q-function updates are performed incrementally, following the state
trajectory produced by the sequence of optimal controls selected at each iteration
step, FQI processes the information in a batch mode, by simultaneously using, in
making an update of the Q-function, all the learning experience structured as a
sample data-set F of six-tuples 〈x̃t , It ,ut , x̃t+1, It+1, gt+1〉. This has been shown
to speed up the convergence rate [31].
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The key idea in applying FQI to our problem is to generate the data-set F using
the historical observations (i.e. a time series of (It , It+1)) as a sample of the dy-
namics of the uncontrolled components. The reduced state sample is obtained via
one-step (or multi-step) simulation of the model of the controlled components under
different control policies and the historical inflow series (see [14] for more details).

The computational advantages of FQI over SDP are only slightly better than those
of ADP methods in alleviating the computational burden associated with the explo-
ration of the reduced state space. However, it provides a remarkable improvement
with respect to the exogenous information and the disturbance vector dimension, as
the uncontrolled components and the disturbance comes at nearly no computational
additional time, and so it is particularly suitable when a large amount of potentially
useful exogenous information is available or the exogenous information is strongly
temporally correlated, and/or when the disturbance vector as a high dimension.

Application Example As an example of RL to water resources management, FQI

is applied to design the optimal operation of a selective withdrawal reservoir in
Japan, with the purpose of meeting established water quality/quantity targets both
in-reservoir and downstream.

Tono dam (Tottori prefecture, Japan) is being constructed these days and will
form an impounded reservoir of 12.4 × 106 m3 (gross capacity), fed by a 38.1 km2

catchment. The reservoir is being built for multiple purposes (irrigation, hydropower
production, flood control, water supply) and is equipped with a selective withdrawal
structure (SWS) through which the water can be released at different heights to pre-
serve the river fish habitat affected by too high or too low water temperature, to
prevent in-reservoir algal blooms and the reservoir silting by sedimentation.

A simplified model of the SWS is assumed, with 2 controlled outlets at −3 m
and −13 m below the lake surface. The reduced state vector includes 5 components
(storage, temperature at −3 m and −13 m, and total suspended solids at −3 m and
−13 m), whose dynamics is influenced by more than 15 disturbances (two inflows,
different nutrient loads, solar radiation, wind speed, etc.). The sample data set F
is constructed via multi-step simulation of a 1D coupled hydrodynamic-ecological
model (DYRESM) under different control policies generated pseudo-randomly and
the historical time series of the disturbances. The policies generated with FQI by
considering in-reservoir algal bloom and silting reduction, irrigation supply, and
preservation of the fish habitat as objectives are compared with the reference oper-
ation rule adopted in the dam design and so constructed: the total amount of water
to be daily released is computed by solving an open-loop control problem assum-
ing perfect knowledge of the inflow; the allocation of this volume among the SWS

outlets is obtained using a scenario analysis. Results (Table 19.4) indicate that a
greater control over algal bloom and release temperature can be gained with FQI,
which more effectively exploits the operational flexibility provided by the selective
structure.
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Table 19.4 Tono dam: objective values for the reference rule curve and one of the Pareto optimal
policies obtained via simulation over a validation horizon

Control scheme Objectives

Algal-blooms
[g (Chl-a)/m3]

Silting
[g (TSS)]

Irrigation
[m3/s]

Fish habitat
[C°]

FQI 2.23 2.99 × 106 1.91×10−2 1.31

Reference rule 6.90 2.88 × 106 1.08×10−2 1.6

19.5 Closure

Although the problem of designing Pareto optimal water reservoir operation policies
has been extensively studied in the past, it is still a very intriguing and investigated
research theme. In this chapter we reviewed some of the recent, and in our opinion,
more promising alternatives to SDP in designing (sub-)optimal control policies for
large water systems, namely water reservoir networks.

The problem proposed has many other facets that have not been dealt with in
the paper, but are very topical, especially in a global change perspective. (1) When
new water facilities are being planned, the control problem discussed in this chap-
ter has to be nested into a mathematical programming problem whose arguments
are the design parameters (e.g. number and capacity of reservoirs), thus adding
to the computational burden. (2) In a globally changing world the control policy
should adapt to the underlying variability of hydro-climatic, social and economic
processes. New adaptive control approaches have to be developed to link optimal-
ity to changes. (3) Water quality is becoming a critical issue in most of reservoirs
worldwide. Integrating quality and quantity targets in water resources management
will dramatically enlarge the complexity of the problem as biochemical and eco-
logical processes are spatially distributed and intrinsically more complex than the
simply storing and moving water volumes in space and time. (4) In a multipurpose
and multistakeholder context the choice of the policy to adopt in the set of the Pareto
optimal policies is the final step of a complex, often recursive, decision making pro-
cess that involve many different phases: from the stakeholder analysis, through the
system model identification and the very policy design, to comparison and nego-
tiations of the policies. The activities within these phases require full stakeholder
involvement and integration among the different and disparate issues. They have to
be organized in a procedure [15] and supported by proper computer tools, namely,
Multi-Objective Decision Support Systems.
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Chapter 20
Real-Time Optimal Control of River Basin
Networks

R. Evans, L. Li, I. Mareels, N. Okello, M. Pham, W. Qiu, and S.K. Saleem

20.1 Introduction

River basins are key components of water supply grids. However, unlike energy
grids which are operated in closed-loop [16, 28], river basins are largely open-loop
systems. One reason is the difficulty associated with the development of suitable
models. Traditionally, river basin modeling efforts have focused on process-based
methodologies that are potentially very accurate but not amenable to the design
of feedback controllers. For control purposes river basin operators often rely on
simulation-optimization and/or rule-based approaches. This method may work well
for long-term planning intervals (e.g. months) but is impractical for real-term op-
erations (e.g. hours). This limitation results in suboptimal river flows and releases
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Fig. 20.1 Framework

from water storages. A systematic approach to real-time river operation is needed.
Feedback control offers one solution, and is the subject of this chapter.

A common framework for describing river basin management is illustrated in
Fig. 20.1 [5]. The river planning block generates system set-points that are usually
held constant over long periods, ranging from weeks to decades. The river opera-
tions block tracks commanded set-points and rejects disturbances.

Real-time river basin operation is typical of large-scale control problems that
have the following characteristics [23]:

1. A network structure with some kind of flow along links connecting storage units;
2. Flow is to be routed from specific sources to designated destinations;
3. Flow is subject to capacity constraints;
4. There are time-varying demand variables at the source, along the network and at

the destination;
5. The links and storage units are characterized by transport lags as well as a storage

component; and,
6. A communication network with limited bandwidth is used to transmit network

state.

The general control problem is to specify control inputs to influence the flow in
the network so as to minimize a performance criterion subject to capacity con-
straints and time-varying loads. River basin real-time operational objectives include
in-stream flow rates and water levels in storages. This basic structure is also useful
for managing water quality.

Modeling and optimization of water resources systems has a rich history [8]. The
Saint-Venant equations [4] are the basis for the mathematical modeling of open wa-
ter channels. These are hyperbolic partial differential equations making them diffi-
cult to use in feedback controller design. Moreover, the Saint-Venant equations how-
ever do not apply to modeling rainfall-runoff, and surface and ground-water reser-
voirs. Nonetheless, numerous studies have applied these equations either directly, or
as starting points, to develop feedback controllers. The studies in [1] and [30] have
focused on the use of decentralized PI control, [32] applied centralized LQ control
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to overflow regulation in sewer networks, [11] used H∞ control, and [25] applied
multivariable predictive control. The studies in [21, 26] explored the use of model
predictive control. Optimal control of sewer networks has been studied extensively
in [14, 15]. An alternative to the Saint-Venant equations is to exploit grey-box or
data-based models derived using system identification experiments [7, 17, 33]. The
key advantage of these models is that feedback controllers are easier to design [13].

With the exception of some applications in large-scale sewer network optimiza-
tion, most of the studies cited above focus on modeling and control of irrigation
canal networks and short river reaches. Combined simulation-optimization methods
are commonly used to plan and operate river basin networks [3, 6]. This chapter
builds on previous work in open canals and sewer networks to develop a frame-
work for real-time river basin operation based on optimal control theory. The River
Murray system in Australia is used as a case study.

The River Murray system [19] drains a catchment region which covers the south
east corner of the Australian continent and extends over 1,060,000 km2. The total
length of the main river channel is 3,780 km and the mean discharge is 0.4 ML/sec.
The system is largely fed by precipitation and snow-melt in the Australian Alps.
The main consumptive demands are irrigation districts and rural populations and
one major metropolitan demand site in Adelaide, South Australia. The River Murray
is permanently navigable to a distance of 970 kilometers from the mouth due to a
series of locks and weirs.

Water is diverted from the River Murray all year round, though demand is small
in Winter. During Winter and Spring, as much water is stored as possible. Irrigation
diversions normally increase progressively from August to November, but in Spring
they can often be met largely from natural flows. From December to May, inflows
to the river usually recede and the demand for water is largely met by controlled
releases from storages.

The River Murray is operated in three modes [20]: (1) Supply mode; (2) Storing
mode; and (3) Spilling mode. It is possible for different reaches of the river to be
in different modes. Supply mode typically occurs during the irrigation season. The
flow in the river is set to meet demands with little excess. Storing mode generally
occurs when the flows in the river are in excess of that required to meet diversions,
water supply, and minimum flow requirements; but which are confined within the
channel. Spilling mode occurs when flow exceeds the river’s channel capacity at
a point as a result of runoff generated by heavy rain. This operation can be quite
complex as the flow varies as tributaries join the main stream. Spilling mode occurs
at a storage when there is limited airspace left in the storage and inflow rates are
high. Spilling mode is also important for flood event routing. Using the River Mur-
ray system as a case study, the remainder of this chapter presents an approach for
the real-time operation of entire river basin networks. In particular we derive simple
low order models for storages and reaches based on real measurements. We then
propose controller strategies to achieve the operational objectives while meeting
various practical constraints.
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20.2 Models

A schematic of the River Murray System is illustrated in Fig. 20.2. Following the
methodology in [23] the river system is subdivided into sub-networks with storage
capabilities. Links connecting the sub-networks are treated as pure delays. In this
sense flow rates leaving a sub-network (or storage element) are control variables,
whereas the volumes (or water levels) in the storage elements are state variables.
In-stream flow rates further downstream from storage outlets can also be considered
as state variables.

20.2.1 Storage Models

River basin storages are modeled using the continuity equation

V̇ (t)=
∑

n∈I
qin,n(t)−

∑

m∈O
qout,m(t), (20.1)

where V is the storage volume, qin,n(t) and qout,m(t) are inflow rate and outflow
rates respectively, and I and O denote the set of all inflows and outflows, respec-
tively. The inflow is a measurement some distance upstream of the storage. The
outflow depends on the specific outflow control structure. In the case of variable
height overflow weirs qout = cwh3/2 where cw is an normalizing coefficient and h
represents the depth of flow, or head, over the weir structure. In the case of an ori-
fice opening, the outflow rate is given by qout = cor2

√
d where co is a normalizing

coefficient, r is the radius of the opening and d is the depth of water, or head, over
the center of the orifice. As indicated above, in this problem the storage outflows are
the control variables and with the above models the resulting dynamics are clearly
non-linear.

An alternative is to linearize the system through an input transformation depen-
dent on the state of the system. This approach was originally proposed in [32] and
later in [29] where the control components are defined in terms of flows. In the case

of a overflow weir we define u
 = cwh3/2. The system dynamics then assume the

following for

V̇ (t)=
∑

n∈I
qin,n(t)−

∑

m∈O
um(t). (20.2)

In river basin operations, storage volume is generally inferred from water level
measured at the downstream end of a storage element, close to the outflow control
point. The water level is often expressed as an elevation with respect to a common
datum such as mean sea level. The function relating storage volume and water level
depends on the storage element’s geometry. Assuming only a single outflow struc-
ture is present, the following model for water level y(t) in a storage element can be
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Fig. 20.2 River Murray
schematic

used

ẏ(t)=
∑

n∈I
αn(y)qin,n(t)−

∑

m∈O
βm(y)um(t), (20.3)

where the functions α(.)(y) and β(.)(y) are related to the storage element’s geometry.
Generally these will be non-linear, for example when the storage is deep and has
sloping sides. In this chapter, these functions will be assumed constant. Without this
simplification, the system can still be described by a set of linearized models by
selecting several operating points over the range of set-points. Gain scheduling is
a popular method used for designing controllers for such systems [27]. Letting Ts
denote the sample interval, and using a first order approximation for ẏ, the discrete-
time model for water level is given by

y[k + 1] = y[k] + Ts
(∑

n∈I
αnqin,n[k] −

∑

m∈O
βmum[k]

)
. (20.4)
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Fig. 20.3 Inflow and outflow
time series for storage
elements H

20.2.1.1 Parameter Estimation

This section outlines the parameter estimation for storage elements D, H, and Y in
Fig. 20.2. Daily data for selected storage elements is available at [19]. Figure 20.3
illustrates the data for storage element H.

The predictor associated with the model in (20.4) for storage node D is given by

ŷD[k+ 1, θD] = ŷD[k, θD] + α1qD[k] − β1uD[k], (20.5)

where Ts = 1 day and θD = [α1 β1]T . For storage node H we have

ŷH [k + 1, θH ] = ŷH [k, θH ] + α1qMM[k − 1] + α2qIN[k] − β1uH [k], (20.6)

where θH = [α1 α2 β1]T . For storage node Y we have

ŷY [k + 1, θY ] = ŷY [k, θY ] + α1dKO[k] + α2dYM[k] + α3dMC − β1uY1[k]
− β2uY2[k], (20.7)

where θY = [α1 α2 α3 β1 β2]T . The coefficients are estimated using

θ̂j = arg minθj
1

M

k0+M−1∑

k=k0

(
yj [k] − ŷj [k, θ(·)]

)2
, (20.8)
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Table 20.1 Estimated parameters and mean squared water level prediction errors

Node θ̂j Error (m2)

D 4.226e−5,1.922e−5 0.37

H 1.056e−5,9.84e−6,1.01e−5 0.13

Y 2.552e−5,2.702e−5,3.229e−5,1.996e−5,2.697e−5 1.962e−5

Table 20.2 Storage models parameters

Storage Aj (ha) Capacity (GL) AMSL (m)  y (m) αj

D (Dartmouth) 6,380 3,906 486 61 3.5e−5

H (Hume) 20,019 3,038 192 15 1.1e−5

Y (Yarrawonga) 3,933 118 125 3 5.6e−5

E (Stevens) 4,000 120 80 3 5.5e−5

26 1,233 37 86 3 1.8e−4

15 1,233 37 48 3 1.8e−4

11 1,233 37 35 3 1.8e−4

10 1,567 47 31 3 1.4e−4

V (Victoria) 11,283 677 27 6 1.9e−5

9 1,067 32 27 3 2e−4

8 800 24 25 3 2.8e−4

7 433 13 22 3 5.1e−4

6 1,167 35 19 3 1.9e−4

5 1,300 39 16 3 1.7e−4

4 1,033 31 13 3 2.2e−4

3 1,733 52 10 3 1.3e−4

2 1,433 43 6 3 1.6e−4

1 2,133 64 3 3 1e−4

A (Alexandrina) 67,167 2,015 0.75 0.75 3.3e−6

where M is the number of data points and j is the storage index. The results are
summarized in Table 20.1. Daily inflow and outflow data is only available for a
limited number of the elements in Fig. 20.2. However, storage element surface areas
are available, see Table 20.2. To parameterize the remaining elements we propose
the following general model for all storage elements

yj [k + 1] = yj [k] + αj
(
∑

n∈I
q
(·)
in,n[k] −

∑

m∈O
u(·)m [k]

)

, (20.9)

where

αj = γ AD
Aj

(20.10)
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and Aj are the storage element surface areas in Table 20.2 and the scalar γ is se-
lected based on the results in Table 20.1. Table 20.2 lists the constant scalar αj for
all storage elements, calculated according to (20.10) with γ = 3.5e−5. Using (20.9)
and (20.10) all storage element models are scaled relative to element D. Summa-
rizing, the first column in Table 20.2 is the storage surface area when it is at full
capacity. The second column is the volume at full capacity. The third column is the
storage water level relative to sea level at full capacity, and the fourth column is the
draw-down capability from the maximum water level.

20.2.2 River Reach Models

The Saint-Venant equations are a good starting point for modeling river reaches. It
has been shown in [9] (see also [29]) that under relatively mild assumptions, the
Saint-Venant equations can be linearized about a reference flow rate resulting in the
following river reach dynamics

q̇out,i + 1

K
qout,i = qin,i(t − τi), (20.11)

where τi is the input delay, and K is the time constant. It is important to note the
parameters in (20.11) vary with the reference flow rate. The above first-order system
takes into account the transport delay, in-stream storage phenomena and the disper-
sion of the flow (or wave attenuation) as it moves downstream. In [10] the above
models were used to design controllers based on the Smith Predictor. Robustness of
the designs were estimated with the use of margins and also with the use of a bound
on multiplicative uncertainty taking into account modeling errors. In this study the
river reach model is simplified to a transport delay. As for storages described above,
without this simplification, river reaches can still be described by a set of linearized
models by selecting a several operating points over the range of set-points. Once
again, gain scheduling can be applied. With the above simplification, in discrete-
time notation we have

qouti [k + 1] = qini [k − 'τi/Ts(]. (20.12)

Reference flow rates at various points along the river are indicated in Table 20.3.

20.3 Controller Objectives

Controlling a river basin network involves regulating a selected set of states around
their set-points based on the operational mode of interest. For example in storage
mode a river operator maintains water levels in storages at specified levels while
allowing flows to take on values necessary to maintain those levels. On the other
hand, in supply mode a river operator maintains constant flow rates in-stream while
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Table 20.3 Reference flow
rates (GL/day) Node Mean Median Mode Max Min

qIN 4.7 5.0 4.8 8.6 1.2

qD 0.6 0.43 0.35 3.8 0.14

dKO 1.8 1.5 0.7 3.1 0.4

dYM 0.76 0.68 0.62 2 0

dMC 1.6 1.5 2 2.5 0

q12 7.3 7.7 1.3 14.6 1.2

uY1 6.2 5.7 5.5 10.6 1.8

qY2 1.6 1.3 2 3.4 0.06

dCG 0.6 0.6 0.6 2.8 0.3

dL 0.02 0.01 0.01 0.06 0

dE 0.2 0.2 0.03 0.3 0

dMR 0.5 0.3 0.2 1.4 0.2

q20 5.6 5.4 6 9.6 2.1

q2 4.9 4.8 3.9 8.6 2.4

dDR 2.8 0.8 0.06 12 0.04

q10 5.4 5.4 5.4 8.3 3

u4 5.2 5.4 3.4 8.7 2.9

allowing storage levels to take on values necessary to maintain those flows. This
section summarizes the main operational objectives for the River Murray [19]:

1. Meet water demands for both consumptive use and environmental flows, ex-
pressed as a flow rate (set-point regulation);

2. Keep storage water levels close to a reference level (also set-point regulation);
3. Reject disturbances caused by urban and irrigation withdrawals and rainfall-

runoff;
4. Minimize control effort by minimizing gate movement; and,
5. Maintain rate of rise and rate of fall within bounds to avoid river bank slumping.

The remainder of this chapter develops two alternative optimal control frameworks
to achieve these objectives.

20.4 Centralized Controller

In this section, the River Murray control problem is formulated as a finite hori-
zon Linear Quadratic Regulator (LQR) problem incorporating feedforward of fore-
cast disturbances. Since this is a regulation problem, we define a set of states that
are deviations from setpoints, for example xi,0[k] = yi[k] − y∗

i [k], where y∗
i [k] is

the setpoint at node i. The same applies to flow, but with the following notation
xi,0[k] = qi[k] − q∗

i [k]. To deal with time delays associated with flows within the
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network, it is necessary to define auxiliary states that remember past values. We
therefore introduce the states xj,i[k] = uj [k − i] which implies that whenever the
term uj [k− τ ] appears in the model equations we introduce the following auxiliary
state equations

xj,1[k + 1] = uj [k],
xj,i+1[k + 1] = xj,i[k], i = 1, . . . , τ − 1

and the substitute xj,τ [k] in all model equations where uj [k − τ ] appears [15, 31].
For the network in Fig. 20.2, the state equations associated with the first two

storages and the last storage take on the form

xD,0[k + 1] = xD,0[k] + aD(qD[k] − uD[k])+ vsp,D,
xD,1[k + 1] = uD[k],
xH,0[k + 1] = xH,0[k] + aH (xD,1[k] + dMM [k − 1] + qIN(k)− uH [k])+ vsp,H ,
xH,1[k + 1] = uH [k],

xH,i+1[k + 1] = xH,i[k], i = 1, . . . ,3,

. . .

xA,0[k + 1] = xA,0[k] + aA(x1,10[k] − uA[k] − dA[k])+ vsp,A,
xA,1[k + 1] = uA[k].

The disturbances qD , dMM , qIN and dA are inflows or offtakes while disturbances
vsp,A, vsp,H , vsp,A represent water level and flow setpoints. All these disturbances
are known in advance and their effects can be minimized through feedforward. Note
that while the last control input uA[k] does not feed any storage within the network,
it is still necessary to introduce the state xA,1[k] if we are to control flow and gate
movement of storage A.

Using the above set of equations as an example, the state space equation for the
entire network can be generated and expressed as

x̃[k + 1] =Ax̃[k] +Bu[k] + (A− I )xSP +BuSP + w[k], (20.13)

where

x̃[k] = [xD,0[k] xD,1[k] xH,0[k] xH,1[k], . . . , xH,4[k], . . . , xA,0[k] xA,1[k]
]T
,

u[k] = [uD[k] uH [k], . . . , uA[k]
]T

and xSP and uSP are the set setpoint vectors for state x̃(k) and control input u(k),
respectively. Note that all state variables are accessible and so there is no need for
an observer or estimator.

For a set of selected states it is possible to achieve zero steady-state error in the
presence of disturbances by including the integral of these setpoint errors in the
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controller criterion function. Let xint[k] be the vector of integrated setpoint errors.
If E is a matrix that maps the river network state vector x̃[k] to the integrated error
state vector xint[k], then the state equation for the integrated error state vector takes
on the form

xint[k + 1] = xint[k] + T Ex̃[k]), (20.14)

where T is the sampling interval. A new augmented state vector x[k] =
[ x̃T [k] xTint[k] ]T and a new state equation obtained from (20.13) and (20.14) there-
fore takes on the form

x[k+ 1] = Ax[k] + Bu[k] + d[k], (20.15)

where

A =
[
A 0
E I

]
, B =

[
B

0

]
, d[k] =

[
(A− I )xSP +BuSP + w[k]

0

]
.

The quadratic cost function to be minimized is

JK = 1

2
x[K]T Sx[K] + 1

2

K−1∑

k=0

[
xT [k] uT [k] ]

[
Q N

NT R

][
x[k]
u[k]

]

= 1

2
x[K]T Sx[K] + 1

2

K−1∑

k=0

xT [k]Qx[k] + 2x[k]TNu[k]

+ uT [k]Ru[k], (20.16)

where R> 0 and [ Q N
NT R

] is a positive semi-definite matrix.
From objective 4, the physical input effort is the gate movement and so terms of

the form (uj [k] − uj [k − 1])2 should be penalized, where j = 1,2, . . . ,ND is the
storage index. When expressed in terms of state variables and inputs, these terms
take on the form (uj [k]−xj,1[k])2. We note that these terms include both inputs and
states and so we get a non-zero N matrix in the cost function. The weight matrices
therefore take on the form

[
Q1 N1

NT1 R1

]

=
ND∑

i=1

sis
T
i , (20.17)

where the vectors si , i = 1,2,3, . . . ,ND have a η in the position corresponding to
the uj (k) and −η in the position corresponding to xj1(k) and zero elsewhere.

From control objectives 1, 2 and 4, the terms of interest are the level setpoint
errors xj,0[k], the setpoint errors xj,1[k] of delayed gate outflows, the integrated
setpoint errors xj,int[k], and the control input or gate flow errors uj [k]. We denote
the weights associated with the setpoint errors by γj , the weights associated with
the delayed setpoint errors of gate outflows by ξj , the weights associated with the
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integrated setpoint errors by ζj , and the weights associated with gate flow errors by
σj for j = 1, . . . ,ND . We therefore construct a matrix

[
Q2 N2

NT2 R2

]

, (20.18)

with the weights γi , ξi , and ζi , and σj , i = 1, . . . ,ND in the appropriate places.
Hence the physical control problem can be formulated in an LQ framework, with

the matrices Q, R, and N given by

Q = Q1 + Q2,

R = R1 + R2, (20.19)

N = N1 + N2.

The control objective 3 is achieved through feedforward control while the remaining
objectives can be achieved through the use of constraints. This is a basic description
of the composition of the Q, R, and N matrices and assumes that each storage has a
single control gate. Extension to include storages with multiple gates is straightfor-
ward.

For a given disturbance trajectory w[k], k = 1, . . . ,K − 1 we seek a control u(k)
that minimizes (20.16) subject to (20.15) with initial condition x[0] = x0. Such an
LQ controller that employs feedforward for disturbance rejection can be obtained
by first formulating the discrete-time Hamiltonian and then applying the maximum
principle [24]. When the resulting difference equations are solved we obtain

u[k] = −Kx[k] − Kdp[k + 1], (20.20)

where K = (R + BT PB)−1(BT PA + NT ) and Kd = R + BT PB)−1BT are the feed-
back and feedforward gain matrices respectively [15, 24]. The matrix P is the posi-
tive definite solution to the steady-state Riccati equation

P = AT PA − (AT PB + N)(BT PB + R)−1(BT SA + NT )+ Q (20.21)

and the feedforward signal is

p[k] = Pd[k − 1] + AT (I − PBKd)p[k + 1]. (20.22)

The vector p[k] is calculated by backward integration of (20.22) starting from ter-
minal condition p[K + 1] = 0.

20.5 MPC Controller Design

Model predictive control (MPC) [12, 18] is one of the leading advanced control tech-
nologies in the process industries. The most attractive feature of MPC is the ability
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to accommodate complex performance objectives, dynamic systems and constraints
in a unified framework. Similar to the process industries, the dynamics of water
systems are relatively slow. Also, during control design, physical limitations and
managing water level and flow within certain bounds need to be considered. MPC is
a suitable controller design strategy for the current problem. Applications of MPC
to water systems can be found in the literature [2, 21, 22].

While a deviation model is adopted in Sect. 20.4, in this section, for the purpose
of MPC design, a slightly different non-deviation model is used, as shown below,

xm[k + 1] = Axm[k] +Bum[k] +w[k],
zm[k] = Cxm[k]. (20.23)

Here xm = x̃ + xSP , um = u + uSP where x̃,xSP ,u,uSP are defined in equation
(20.15). The main control objectives are set-point tracking, minimizing energy con-
sumption and disturbance rejection. As stated before, disturbance rejection can be
achieved through feedforward. Denoting Hp prediction horizon and Hu control
horizon, set-point tracking and minimizing energy consumption can be achieved
by minimizing the following quadratic objective function at time k

J [k] =
Hp∑

i=1

‖zm[k + i|k] − r[k+ i|k]‖2
Q[i] +

Hu−1∑

i=0

‖ u[k + i|k]‖2
R[i], (20.24)

subject to (20.23), where r is a filtered version of set-point signals,  um[i] :=
um[i] − um[i − 1].

As introduced in Sect. 20.3, river operation is subject to many constraints. The
constraints considered here comprise of hard constraints and soft constraints. Hard
constraints are those which cannot be violated, for example, positive water level and
flow rate, velocity of gate movement, x> 0, u> 0, | um|< εu. Soft constraints
can be violated, but only for a very short period, to prevent the overall optimization
problem infeasible, for example, the upper and lower bounds on outputs, |zm|< εz.
Now, a typical optimization problem at time k can be formulated as follows,

minimize J [k], subject to (20.23) and underlying constraints, (20.25)

where J [k] is defined in (20.24). Once the optimal solution { u[k|k], u[k+ 1|k],
. . . , u[k+Hu− 1|k]} to the optimization problem in (20.25) is obtained, only the
first one  u[k|k] is used to calculate the control action at time k, u[k] = u[k|k] +
u[k− 1].

20.6 Simulation Results

The following section outlines simulation results obtained using BasinCad, a com-
puter aided design software tool for simulating river basin networks. Figures 20.4,
20.5(a), and 20.5(b) show storage water level, flow rate transients and rate of change
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Fig. 20.4 Rate of change of
flow-rate transients at storage
H in response to disturbance
flow qD

of flow rate for different coefficients in weighting matrix R. For this example the rel-
evant elements of Q were set to one. Using this figure, one can select the appropriate
weighting coefficients based on actuator constraints. A unit step input disturbance
with amplitude of 6 GL/day was introduced at qD . Using Fig. 20.4 and assuming
that 250 ML/day is the maximum permissible rate of change of flow rate, we select
σ = 10−6 for the results that follow.

Figures 20.6 and 20.7 illustrate the effect of upstream disturbances and com-
pares the performance of the LQR and MPC controller schemes. In this example
a step change at qD of 1 GL/day is introduced at time index 300. Figures 20.6(a)
and 20.6(b) illustrate the corresponding water level and flow rate transients at nodes
H and A for the LQR controller. Figures 20.7(a) and 20.7(b) correspond to MPC
controller. The results clearly indicate firstly the pre-release of water to accommo-
date the disturbance inflow. This is apparent from the rise in water levels and flow
rates before time index 300. Secondly, the integral action inherent in this system
smoothers out the transients as we move further downstream.

An important function for a controller is water pre-release for flood mitigation.
This is demonstrated by generating a pulse disturbance of amplitude 10 GL/day
over 25 days resulting a total volume of 250 GL. The immediate downstream node
D has an output flow constraint set at 6 GL/day and a maximum water level of
486 m. A successful control strategy must incorporate pre-release to overcome the
outflow constraint and maximum water level constraint. Figure 20.8 illustrates the
water level and outflow from node D in response to the disturbance indicated by the
dashed line. The key point to note is the mandatory pre-release which is evident in
Fig. 20.8(a) between time indices 290 and 300.

It is well known that control of flow networks with transport lags require accurate
knowledge of time delays. As indicated in the previous discussion, the transport
delays in the link element change with flow rate. In this chapter we assume that these
delays are constant, however this is not always the case. In the following example
all link delays are overestimated in the model by one time index. Figure 20.9 shows
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Fig. 20.5 Water level and
flow transients at storage H in
response to disturbance
flow qD

flow rate transients using LQR at storages A and H in response to delay mismatch.
This can lead to potential instability at downstream nodes as illustrated in Fig. 20.9.

20.7 Conclusions and Further Work

This chapter has introduced a systematic framework of modeling and controlling
river basin networks using simple linear models and optimal control principles. Two
controller designed have been proposed based on LQR and MPC. This chapter has
investigated the effects of disturbances, constraints, and sensitivity to transport delay
and disturbance estimation. There are three important aspects that require further
attention. Firstly, this chapter has assumed constant parameter linear models for
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Fig. 20.6 LQR control: Disturbance rejection at storages A and H in response to disturbance
flow qD

Fig. 20.7 MPC control: Disturbance rejection at storages A and H in response to disturbance
flow qD

both links and storage elements. In practice these elements will exhibit non-linear
and time-varying characteristics. As mentioned previously, this is typical in river
channels where time-delay varies with flow rate and water level changes in storages
depend on geometry of the reservoir. Another example of such non-linearities is the
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Fig. 20.8 Flood mitigation using MPC

Fig. 20.9 Flow rate at
storages A and H in response
to delay mismatch

rainfall-runoff rate as a function of soil moisture. A potential practical solution to
this problem is the use of gain switching mechanisms using a set of linear models
that capture the relevant dynamics. This may be compatible with MPC, but perhaps
not so with LQR. Secondly, as the sampling rate is increased the dimensionality of
the problem may preclude the use of centralized control strategies described here.
Future studies will investigate the application of distributed control to address this
challenge. A third important extension of this work is to incorporate water quality
and groundwater reservoirs in the problem formulation. This poses a significant
modeling challenge.
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Chapter 21
Modelling of Rivers for Control Design

Mathias Foo, Su Ki Ooi, and Erik Weyer

21.1 Introduction

The increase in world population and the growth of farming have created an in-
creased demand for water. Agricultural accounts for about 70% of the world’s fresh-
water use [42], and the operational losses in the delivery of water to farms are large.
After more than a decade of drought in Southern Australia, it has become increas-
ingly important to explore new farming practices and strategies for management of
water in order to prepare for a drier future. Such a complex resource management
issue calls for an interdisciplinary approach including agricultural science, engineer-
ing, ecology, hydrology, economics, social sciences, etc. The research described in
this chapter is part of the project “Farms, Rivers, and Markets” (FRM), which was
initiated by Uniwater, a joint research initiative by The University of Melbourne and
Monash University in response to the above challenges.

As the name suggests, the project consists of three key integrated components:
Farms, Rivers and Markets. The aim of the Farms project is to explore how the
various sources of water can be used in flexible combinations to make farming op-
erations more resilient. The Rivers project is concerned with the development of
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systems for managing the water capable of handling the needs of irrigators and the
environment in a cooperative way. The Markets project aims at developing new wa-
ter products and services better suited to future demands from consumers and the
environment.

Modelling and control system have important parts to play in the Rivers project
since well designed control systems for river flows and levels will allow for a more
efficient distribution of water leading to reduced operational water losses. In addi-
tion, it will allow for a more accurate and timely delivery of water to farmers while
ensuring that the environmental and ecological water needs are satisfied.

Broadly speaking the aim of the control system is to improve water resource
management and operation for the benefit of consumptive users and the environ-
ment. However, what the specific control objectives should be is not fully under-
stood. Most likely there will be a change in farming practices due to less available
water in the future which again will change the demand patterns for irrigation wa-
ter. On the legislative side, higher priorities have been given to environmental water
demands in the Water Act 2007 [43] in order to ensure a sustainable water supply to
protect and restore environmental assets such as wetlands and streams. Part of the
River project is to investigate what constitute desirable flows and water levels from
an environmental and ecological point of view, and this will have an impact on the
control objectives. E.g. instead of keeping the water levels at constant setpoints, the
control system may in the future aim to recreate more natural flow conditions.

Under the National Water Initiative, water trading out of catchment is allowed
between different entities, see [28]. Water trading allows scarce water resources to
be transferred to their most productive uses, and it is anticipated that increased wa-
ter trading will take place in the future. This has the implication that the demand
patterns and locations will change with corresponding changes in the control objec-
tives.

In order to design a well functioning control system, a model of the river which
captures the relevant dynamics is required. Most models used to describe rivers are
either too complex (partial differential equations) or operate on a too slow time scale
(days and weeks) to be used for control design. An important part of the control
design is therefore to find models which capture the important dynamics of the river
and which are suitable for control design.

Previous work on modelling and control of irrigation channels (see e.g. [9, 20, 24,
29, 35, 44]), have demonstrated that control systems can yield significant improve-
ments in the quality of service and water distribution efficiency. A key to this has
been the use of system identification techniques to develop simple models useful for
control design (see e.g. [29]) and hence particular attention will be paid to system
identification of rivers. There are a number of works on modelling and control of
rivers, e.g. [3, 10, 15, 18, 19, 26, 32, 36, 37, 39, 40, 46, 48]. Unlike the problem con-
sidered in this chapter, most of the modelling studies have focused on flood events
and the control objectives are often connected to the operation of hydro-electric
power plants.

This chapter is organised as follows. Section 21.2 describes the Broken River.
Modelling and system identification for the purpose of control design are discussed
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in Sect. 21.3, while control design using the obtained models is considered in
Sect. 21.4.

21.2 Description of the River and the Catchment

21.2.1 The Broken River

Figure 21.1 shows a map of the Broken River in Victoria, Australia. The Broken
basin covers 7,724 km2 of catchment area, and rainfall varies from 1,000 mm per
year in the upper catchment to less than 500 mm per year in the lower catchment,
[7]. The primary entitlements for water shares, licenses and associated commitments
in the Broken system are 17,929.8 ML high-reliability water shares and 3,338.3 ML
low-reliability water shares. The environment is protected with minimum flow re-
quirements ranging from the natural flow to 25 ML/day (0.2894 m3/s), [8].

The river originates from Lake Nillahcootie which stores 40 GL of water. Typical
historical releases into the Broken River is about 15 ML/day (0.1736 m3/s) during
winter and in the range 50 to 60 ML/day (0.5787 to 0.6944 m3/s) during summer.
These releases are expected to increase due to the decommissioning of an artificial
lake (not shown on the map), which also contributed to the flow in the lower parts
of the river. The length of the river from Lake Nillahcootie to Gowangardie Weir
(HS4) is about 75.8 km.1 In this paper, we focus on the reach between Casey’s Weir
(HS3) and Gowangardie Weir (HS4) and the stretch from Lake Nillahcootie to Lake
Benalla.

21.2.2 Description of the Reach Between Casey’s Weir and
Gowangardie Weir

Casey’s Weir is a free overflow weir about 50 km downstream of Lake Nillahcootie.
Upstream of the weir, there are three manually operated gates used to divert water
into Broken Creek. Gowangardie Weir is also a free overflow weir located 27 km
downstream of Casey’s Weir. Figure 21.2 shows a side view of the reach. The water
level at Casey’s Weir and Gowangardie Weir are denoted by yC and yG respectively.
They are measured with respect to the sea level, and the unit is meter Australian
Height Datum (mAHD). The heights of the weirs relative to sea level are denoted
by pC and pG. The height of the water above the weirs are called head over weir and
given by hC = yC − pC and hG = yG − pG respectively. The physical parameters
of the river include reach length, L, bottom slope, S0, side slope, s, bottom width, b,
top width, T , wetted perimeter, P and wetted cross sectional area, A (see Figs. 21.2
and 21.3).

1Obtained by approximating the rivers by straight lines between the hydraulic structures (HS) on
the map.
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Fig. 21.1 Map of Broken River (not to scale)

Fig. 21.2 Side view of the reach between Casey’s Weir and Gowangardie Weir (not to scale)
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Fig. 21.3 Cross sectional view of the reach between Casey’s Weir and Gowangardie Weir (not to
scale)

21.3 Modelling of Rivers

In this section we consider system identification and Saint Venant equations models
of river reaches, and we assess the accuracy of the models against operational data.

21.3.1 The Saint Venant Equations

Under the assumption that the flow is one-dimensional, velocity is uniform and that
there are no lateral in-flows and out-flows along the river reach, the Saint Venant
equations are given by (see e.g. [11])

∂A

∂t
+ ∂Q
∂x

= 0,

∂Q

∂t
+
(
gA

T
− Q

2

A2

)
∂A

∂x
+ 2Q

A

∂Q

∂x
+ gA(Sf − S0)= 0,

(21.1)

where Q is the flow, A is the wetted cross sectional area, T is the top width,
g = 9.81 m/s2 is the gravity constant, S0 is the bottom slope and Sf is the fric-
tion slope. The friction slope is given by Sf = n2Q2P 4/3A−10/3, where P is the
wetted perimeter and n is the Manning friction coefficient which represents the ef-
fect of flow resistance and river roughness. Here, we assume a trapezoidal cross

section, hence, A = (b + sy)y, T = b + 2sy and P = b + 2y
√

1 + s2 where b, s
and y are the bottom width, side slope and water level respectively. The boundary
conditions are the flows over Casey’s and Gowangardie weirs which are both sharp
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Table 21.1 River parameters
of the reach between Casey’s
Weir and Gowangardie Weir

Parameters Values

Reach length, L 26.7 km

Bottom width, b 9.0–12.0 m

Side slope, s 2.0–3.0

Bottom slope, S0 0.0008–0.0020

Manning friction coefficient, n 0.060–0.085

crested weirs, and thus, the flow can be approximated by [6],

QC(t)≈ cCh3/2
C (t)= cC[yC(t)− pC]3/2, (21.2)

QG(t)≈ cGh3/2
G (t)= cG[yG(t)− pG]3/2. (21.3)

The constants, cC and cG can be approximated by 0.6
√
gbw,C and 0.6

√
gbw,G

respectively [5], where bw,C and bw,G are the width of the weirs. The equations
are simulated using the Preissmann scheme, a finite difference method (see e.g.
[2, 11, 14]). The initial values used for the flows and water levels are given by the
steady state solution of (21.1). The input to the simulation scheme is the measured
flow over Casey’s Weir, which is also the upstream boundary condition, and the
output is the water level at Gowangardie Weir from which the downstream bound-
ary condition can be computed via (21.3). Based on the Hydrologic Engineering
Center—River Analysis System (HEC-RAS) model in [12], the approximate river
parameters for the reach are summarised in Table 21.1.

As the values in Table 21.1 are only approximate, the Saint Venant equations
are calibrated against observed data. The flow and water level measurements2

with 15 minutes sampling period for the months April to July 2001 are shown in
Fig. 21.4. This period corresponds to autumn and winter where there are few with-
drawals for irrigation, and the assumption that there are no lateral out-flows is more
likely to be satisfied. It has been shown in [17] that for the purpose of simulating the
water level at Gowangardie Weir, it is sufficient to represent the river as a straight
stretch with constant geometries and to tweak the friction coefficient in order to
account for the meandering of the river and the variation in the river parameters.
Thus, the river parameters used are the average values of the bottom width and the
side slope, which are 10.5 m and 2.5 m respectively. The average bottom slope is
(161.07–137.04 m)/26700 m ≈ 9.0×10−4, where 161.07 and 137.04 are the eleva-
tion in mAHD of Casey’s and Gowangardie weirs respectively, while 26700 m is the
length of the reach. The weir constant, cG at Gowangardie Weir and the Manning
friction coefficient, n are estimated from the data using a prediction error method

2Only the water levels are measured. The flows are obtained from the water levels using rating
curves.
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Fig. 21.4 Measurements at Casey’s Weir and Gowangardie Weir from April to June 2001. Top:
Flows. Bottom: Water levels at Casey’s Weir (left-axis) and Gowangardie Weir (right-axis)

with quadratic criterion, i.e.

θ̂ = argmin
θ

1

N

N∑

t=1

[ymea(t)− ŷsim(t, θ)]2, (21.4)

where N = 8640 is the number of data points, θ = [cG,n]T , ymea is the measured
water level and ŷsim is the simulated water level using the Saint Venant equations.
The estimated weir constant is cG = 10.10 m3/2/s while the estimated Manning
friction coefficient is n = 0.146. This value for n is higher than the values given
in Table 21.1. Those values of Manning friction coefficient correspond to a partic-
ular section of the river reach, and they do not include the effect of meandering.
Incorporating the meandering effect results in a larger estimated value of the Man-
ning friction coefficient. The estimation results and the accuracy of the Saint Venant
equations are further discussed in Sects. 21.3.3 and 21.3.5.

The length in Table 21.1 is the length of a straight line (“as the crows fly”) be-
tween Casey’s and Gowangardie weirs. In [38], the length of the river itself between
the two weirs is estimated to 36600 m. With this value and the corresponding bot-
tom slope, S0 = 6.6 × 10−4 the estimated Manning coefficient is n= 0.079 which
is in agreement with the values in Table 21.1. The estimate of the weir constant is
10.11 m3/2/s which is nearly the same as before. Using these values for L, S0, cG
and n only leads to very minor changes to the results in Sects. 21.3.3 and 21.3.5,
and hence they are not reported.
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21.3.2 System Identification Approach

The Saint Venant equations are not easy to use for control design, and we therefore
seek simpler models which capture the relevant dynamics for control design. From
Fig. 21.4 we observe that the flow measurements show a lag between Casey’s and
Gowangardie weirs and this indicates that the system can be modelled as a time-
delay system, i.e.,

QG(t)=QC(t − τ), (21.5)

where τ is the time delay and the subscripts ‘C’ and ‘G’ denotes the Casey’s and
Gowangardie weirs respectively. Using (21.2) and (21.3), equation (21.5) can be
rewritten as

cGh
3/2
G (t)= cCh3/2

C (t − τ)
⇓

cG[yG(t)− pG]3/2 = cC[yC(t − τ)− pC]3/2 (21.6)

⇓
yG(t)= γ1yC(t − τ)+ γ2, (21.7)

γ1 = (cC/cG)2/3 and γ2 = pG − (cC/cG)2/3pC are unknown constants, which are
estimated from the observed data together with the time delay. The associated pre-
dictor for (21.7) is given by

ŷG(t, θ, τ )= γ1yC(t − τ)+ γ2. (21.8)

Note that the parameterised mass balance modelQG(t)= αQC(t − τ) used in [25]
leads to the same predictor, (21.8), but with different expressions for γ1 and γ2.

As in [25], the time delay, τ is estimated from the cross-correlation between the
flow measurements at the upstream and downstream ends. The cross-correlation is
shown in Fig. 21.5 and computed from

RQ′
GQ

′
C
(τ )= 1

N − τ
N∑

n=τ+1

Q′
G(n)Q

′
C(n− τ), τ = 0,±1, . . . , (21.9)

where

Q(n)′ =Q(n)− 1

N

N∑

j=1

Q(j), N = 8640 and τ̂ = argmax
τ

RQ′
GQ

′
C
(τ ).

The parameter vector θ = [γ1, γ2]T is estimated using least squares, i.e.

θ̂ =
[

N∑

t=τ+1

ϕ(t)ϕT (t)

]−1[ N∑

t=τ+1

ϕ(t)yG(t)

]

, (21.10)
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Fig. 21.5 Cross-correlation between flows at Casey’s Weir and Gowangardie Weir

Table 21.2 Parameter
estimates γ̂1 γ̂2 τ̂

2.711 −300.05 1650 mins

where ϕ(t)= [yC(t − τ),1]T . The data set shown in Fig. 21.4 is used for estimation
and the estimated values are given in Table 21.2.

21.3.3 Accuracy of the Saint Venant Equations
and the Time-Delay Model

The accuracy of the Saint Venant equations and the time-delay model were com-
pared on data sets not used for estimation. The data sets are from summer 2001 and
winter 2002. Figure 21.6 shows the measured water levels, predicted water levels
using the time-delay model and the simulated water levels from the calibrated Saint
Venant equations. The mean square errors, (MSE) and the coefficient of determina-
tion, R2

T are given by

MSE = 1

N − τ
N∑

t=τ+1

[yG(t)− ŷG(t)]2, (21.11)

R2
T = 1 − σ̂ 2

σ 2
Y

, (21.12)

where yG(t) is the measured water level and ŷG(t) is the water level predicted by
the time-delay model or simulated using the calibrated Saint Venant equations. σ̂ 2 is
variance of the model residuals (i.e. the MSE) and σ 2

Y = 1
N−τ

∑N
t=τ+1[yG(t) −

ȳG(t)]2 where ȳG(t) = 1
N−τ

∑N
t=τ+1 yG(t). R

2
T tells us how well the data is ex-

plained by the model. The closer the value of R2
T is to unity, the better the model

explains the data. The MSE and R2
T are given in Table 21.3. From the bottom part of

Fig. 21.6, it can be seen that both the time-delay model and the Saint Venant equa-
tions are accurate when compared to the measured water levels during the winter
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Fig. 21.6 Measured and simulated water levels at Gowangardie Weir. Top: Spring/summer period
2001. Bottom: Autumn/winter period 2002

Table 21.3 Values of MSE
and R2

T
Data period Time-delay model Saint Venant equations

MSE
(10−3 m2)

R2
T MSE

(10−3 m2)
R2
T

Summer 2001 2.25 0.904 5.38 0.782

Winter 2002 0.72 0.887 0.52 0.920

period. They pick up the trends in the data very well, and the MSE values are small.
The values of R2

T are close to unity indicating that the model explains the data well.
The results from the summer period when larger volumes of water are taken from
the river for irrigation are shown in the top part of Fig. 21.6. The water levels simu-
lated using the Saint Venant equations and the time-delay model are higher than the
measured water levels. This is expected as the irrigation off-takes are not taken into
account in the models. The results show that both models are accurate in describing
the relevant dynamics of the river systems. The time-delay model is much simpler
than the Saint Venant equations, and it is preferred for control design.

21.3.4 Frequency Analysis

The Saint Venant equations and the time-delay model showed similar behaviour
when compared against time domain data in Sect. 21.3.3. Many control design
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Fig. 21.7 Bode plot for the reach between Casey’s Weir and Gowangardie Weir

methods are based on frequency domain considerations, and it is therefore of in-
terest to compare the frequency domain properties of the two models. Despite be-
ing nonlinear partial differential equations, the Saint Venant equations display a
nearly linear behaviour to sinusoidal flow inputs. A number of simulated sine wave
tests were carried out on the Saint Venant equations where the upstream flow was
given by (0.75 sin(ωt) + 3.00) m3/s. The magnitude and the phase of the down-
stream flow were recorded and the Bode plot in Fig. 21.7 was obtained. In the
frequency range relevant for control the frequency response of the Saint Venant
equations is similar to the frequency response of the time-delay model. The 3 dB
bandwidth of the system is approximately 0.0032 rad/min, but we notice that the
phase shift is already more than −180° at 0.0023 rad/min, indicating a dominant
time delay.

21.3.5 Analysis of the Effect of Varying Flow Conditions

It is known (see e.g. [22, 41]) that the flow conditions affect the time delay in a
river which again will affect the robustness margins of a control system. From the
available data, sets with different flows were found. The time delays for those data
sets were estimated using cross-correlation analysis as in Sect. 21.3.2. In addition,
we also included the cross-correlation between the upstream flow measurements at
Casey’s Weir and the simulated downstream flow at Gowangardie Weir obtained
from the Saint Venant equations. The estimated time delays are shown in Fig. 21.8,
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Fig. 21.8 Cross-correlations and estimated time delays. Flows plot. Solid line: Casey’s Weir, Dot-
ted line: Gowangardie Weir (measured), Dashed: Gowangardie Weir (simulated). Cross-correlation
plots. Solid line: Cross-correlation from measured data. Dash-dotted line: Cross-correlation from
measured and simulated data

and as expected the estimated time delay decreases with higher flows. In addition,
there is good agreement between the cross-correlations obtained using the measured
data and those obtained using the Saint Venant equations, reconfirming the accuracy
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of the Saint Venant equations. The varying time delay must be taken into account in
the robustness specification of the controllers. This is further discussed in Sect. 21.4.

21.3.6 Discussion of the Models

21.3.6.1 Undermodelling

A number of factors such as in-flows and out-flows from creeks, rainfall, water
withdrawals for irrigation, evaporation and surface-water/ground-water interactions
have been ignored in the models. Here we briefly discuss the influence of these
factors taking into account that the models are going to be used for control design.

Surface-water/ground-water interactions. Some stretches of the Broken River
are gaining water from the ground water, while others are loosing. The reach be-
tween Casey’s Weir and Gowangardie Weir is a loosing reach [1]. However, the
surface-water/ground-water dynamics is slow, and it is not considered important
for control. Moreover, if the surface-water/ground-water interaction is modelled as
a constant in- or out-flow, QSW/GW , then (21.5) becomes QG(t) =QC(t − τ) −
QSW/GW , and we will still end up with the model structure (21.7), but with a dif-
ferent expression for γ2. This is however of no importance as γ2 is estimated from
data. Furthermore a controller with integral action will reject constant unmodelled
in- or out-flows.

Evaporation. The rate of evaporation is dependent on temperature, solar radi-
ation, wind speed, atmospheric pressure, area of water surface, etc. [16]. In [46],
temperature was included as an input variable in a rainfall-flow model, and the flow
showed a long term dependence on temperature which could account for the effect
of evaporation. As with the surface-water/ground-water interactions, the loss due to
evaporation from the river is a disturbance and its effect on the levels and flows is
of lesser importance for control. Evaporation from storages may be significant [13],
and this may influence how the storages are operated and hence also the control
objectives.

Water withdrawal from the river for irrigation. The withdrawals can be large and
they can have a big impact on the predictive accuracy of the models. From a control
point of view the withdrawals are load disturbances which should be rejected. The
farmers order their water some days in advance, and better control can be achieved
by releasing water early using feedforward action to match the amount of ordered
water (see Sect. 21.4). However, as water withdrawals act as disturbances the trans-
fer function from the in-flow we can manipulate to the water level or flow we want
to control remains the same. That is, the transfer function on which a feedback
control design is based remains the same, although the estimate of it may become
more uncertain if there are large water withdrawals which have not been taken into
account.

In- and out-flows from creeks and rainfall. If measured, the in- and out-flows
from creeks can easily be included in the models (see Sect. 21.3.7), and they can
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also be accounted for in the controller by e.g. regarding them as part of the flow
to be released by the controller. When the flows in the creeks are not measured,
rainfall-runoff models (see e.g. [3, 46–49] and the references therein) are useful for
estimating the additional contributions from creeks and rain. Even when the flows
and water levels in creeks are measured, it may be of interest to predict flows into
the future if the time delays associated with the flows in the creeks are much smaller
than the time delays of the flows commanded by the control system.

21.3.6.2 Use of the Time-Delay Model for Control

Although the time-delay model gives a good representation of a river reach in the
time and frequency domain as illustrated in the previous sections, some care needs
to be exercised when using it for control design. One key aspect in the previous sec-
tions was that the downstream flow could not be manipulated, and the downstream
flow was simply modelled as the delayed upstream flow, i.e. QD(t) =QU(t − τ).
However, if the downstream flowQD can be set independently of the upstream flow
QU (e.g. by regulation gates or valves), the time-delay model is obviously not go-
ing to be a good model. This point must be kept in mind if hydraulic structures are
changed, e.g. if fixed weirs are replaced by regulation gates.

The time-delay model also assumes that there is little storage capabilities in the
river reach in the sense that the volume of water in the reach is nearly constant.
This may not be a valid assumption, particularly if the river flows through a lake as
the Broken River does at Lake Benalla. In both the above cases an integrator-delay
model of the type

V̇ (t)=QU(t − τ)−QD(t)
seems more appropriate where V is the volume of water in (a part of) the reach.
This model structure will be discussed in the next section.

21.3.7 Integrator-Delay Models

We consider the reach from Moorngag3 to Lake Benalla (see Fig. 21.1). Two creeks,
Lima Creek and Hollands Creek, from which we have measurements enter this
reach. The data are shown in Fig. 21.9.

Due to the storage in the lake, we use the mass balance equation,

V̇LB(t)=QM(t − τM)+QLC(t − τLC)+QHC(t − τHC)−QLB(t), (21.13)

where V is the volume of Lake Benalla, Qi and τi with i = M (Moorngag), LC
(Lima Creek), HC (Hollands Creek) and LB (Lake Benalla) are the flows and time

3We have chosen Moorngag rather than Lake Nillahcootie as the upstream end of the reach simply
because there are better data available from Moorngag.
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Fig. 21.9 Measurements at Moorngag, Lima Creek, Hollands Creek and Lake Benalla from Jan-
uary to May 1996. Top: Flows. Bottom: Water levels

delays respectively. The flow and water level relationships are obtained from rating
curves. In the absence of a reliable rating curve for the out-flow of Lake Benalla for
the range of levels in Fig. 21.9, a local linear relationship is used, i.e.

QLB(t)≈mLByLB(t)+ΔLB, (21.14)

where yLB is the water level, and m and Δ are constants. Although there are reg-
ulation gates at Broken Weir downstream of Moorngag, it usually just act as a free
overfall weir and it does not need to be accounted for in the model. There is also a
large channel originating just upstream of Broken Weir, but in the absence of data,
out-flows through this channel are not modelled.

Substituting (21.14) into (21.13) and assuming that the water level is proportional
to the volume and using an Euler approximation for the derivative, we arrive at

yLB(t + 1) = yLB(t)+
(
Ts

A

)
[QM(t − τM)+QLC(t − τLC)+QHC(t − τHC)]

−
(
TsmLB

A

)
yLB(t)−

(
TsΔLB

A

)
, (21.15)

where Ts is the sampling interval and A is the surface area of Lake Benalla. Equa-
tion (21.13) is known as an “Integrator-Delay Model” but becomes a first order
model when the volume and out-flow are expressed in terms of the water level as in
(21.15). The associated “Output Error” (OE) type predictor for (21.15) is
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Table 21.4 Parameter
estimates θ̂1 θ̂2 θ̂3 τ̂MG τ̂LC τ̂HC

0.0368 −1.8670 315.90 1395 min 1380 min 525 min

ŷLB(t + 1, θ, τ ) = ŷLB(t, θ, τ )+ θ1[QM(t − τM)
+QLC(t − τLC)+QHC(t − τHC)]
+ θ2ŷLB(t, θ, τ )+ θ3, (21.16)

where θ = [θ1, θ2, θ3]T = [( Ts
A
), (−TsmLB

A
), (−TsΔLB

A
)]T and τ = [τM, τLC, τHC].

An OE model usually gives a good description of a system in the low frequency
range (see e.g. [23, 44]) which is of most interest for control design.

As in Sect. 21.3.2, the time delays, τM , τLC and τHC were estimated from the
cross-correlation (see (21.9)) between the measurements at Moorngag, Lima Creek,
Hollands Creek and Lake Benalla. The parameter θ was estimated using a prediction
error method with a quadratic criterion, i.e.,

θ̂τM = argmin
θτM

1

N − τM
N∑

t=τM+1

[yLB(t)− ŷLB(t, θ, τM)]2, (21.17)

where N = 14700, yLB is the measured water levels and ŷLB is predicted using
(21.16). The data set shown in Fig. 21.9 is used for estimation and the estimated
values are given in Table 21.4. The positive value of θ1 and the negative value of
θ2 are consistent with in-flow and out-flow. The estimated time delays are also con-
sistent in view of the distances from Moorngag, Lima Creek and Hollands Creek to
Lake Benalla (see Fig. 21.1).

The integrator-delay model and the Saint Venant equations were compared
against measured data on the data sets not used for estimation. The data set are
from October to December 1996 and January to March 1997. For the Saint Venant
equations, two straight stretches with different geometries were used to represent
this reach. The first stretch represents Moorngag to the entrance of the lake, while
the second stretch represents the lake. The Manning friction coefficient for the two
segments were calibrated from the data as in Sect. 21.3.1.

Figure 21.10 shows the measured water levels, the predicted water levels using
the integrator-delay model and the simulated water levels using the calibrated Saint
Venant equations. Both the integrator-delay model and the Saint Venant equations
are accurate, and they pick up the trends in the data well. The MSE calculated using
(21.11) and the R2

T calculated using (21.12) are shown in Table 21.5.
The MSEs for both the models are relatively small. Likewise, the values ofR2

T in-
dicate that both models explain the data well. Although, the integrator-delay model
picks up the trends in the water levels and is accurate for flow conditions similar
to those on the estimation set, it is not very accurate in predicting flow peaks, and
moreover the estimate of the parameters associated with in-flows can be quite sen-
sitive to flow peaks in the estimation data. This could be due to inaccuracies in the
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Fig. 21.10 Top: October to December 1996. Bottom: January to March 1997. The data sets are
plotted separately for clarity of presentation

Table 21.5 Values of MSE and R2
T

Data period Integrator-delay model Saint Venant equations Time-delay model

MSE
(10−4 m2)

R2
T MSE

(10−4 m2)
R2
T MSE

(10−4 m2)
R2
T

Oct–Dec 1996 2.00 0.902 2.05 0.900 1.96 0.904

Jan–May 1997 0.74 0.856 0.24 0.954 0.24 0.954

measurements and rating curves or simply due to deficiencies in the model struc-
ture. Nonetheless, this is not of a major concern for design of control system whose
purpose mainly is to reduce operational losses under low flow conditions.

21.3.7.1 Time-Delay Model for the Reach Between Moorngag and Lake
Benalla

The surface area of Lake Benalla is 211239.0 m2 [38]. However, from the esti-
mated value of θ1 in Table 21.4, the estimated area of Lake Benalla is A= Ts/θ1 =
24456.5 m2 (Ts = 900 s) which is only 12% of the area reported in [38]. One pos-
sible reason for this could be that the location of the sensor at Lake Benalla is in
the middle of the lake rather than at the outlet. The smaller estimated area suggests
that the “effective storage” in the lake is quite small. We therefore also consider the
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time-delay model for this reach. It is given by

QLB(t)=QM(t − τM)+QLC(t − τLC)+QHC(t − τHC). (21.18)

Substituting (21.14) into (21.18), we arrive at

yLB(t)= 1

mLB
[QM(t − τM)+QLC(t − τLC)+QHC(t − τHC)]− ΔLB

mLB
. (21.19)

The associated predictor is given by

ŷLB(t, γ )= γ1[QM(t − τM)+QLC(t − τLC)+QHC(t − τHC)] + γ2. (21.20)

The parameter vector γ = [γ1, γ2]T = [ 1
mLB

,−ΔLB
mLB

]T is estimated using least
squares. The data set shown in Fig. 21.9 is used for estimation, and the estimated
parameters are γ1 = 0.0197 and γ2 = 169.20. Comparing (21.15) and (21.19), we
see that ideally γ1 should be equal to θ1/θ2 and γ2 should be equal to −θ3/θ2. Us-
ing the values in Table 21.4 we found that θ1/θ2 = 0.0197 and −θ3/θ2 = 169.20,
which indeed are equal to the estimated values of γ1 and γ2. Using the estimated
parameters, we compute the MSE and R2

T on the data set shown in Fig. 21.10. The
results are given in Table 21.5.

The value of MSE for the time-delay model is smaller and R2
T is larger than the

corresponding values for the integrator-delay model. As the data material is limited
for Lake Benalla we do not want to draw any strong conclusions, but the findings
indicate that the effective storage in Lake Benalla is much smaller than what the
surface area suggests.

21.3.8 Previous Work on System Identification of Rivers

There are a number of works in the literature on modelling and system identifi-
cation of rivers and irrigation channels for prediction and control purposes. Most
of the works which aim at finding a model relating the flow or water level at one
location to flows or levels at other locations end up using linear transfer function
models possibly with an input non-linearity. The use of transfer function model is
not new. In [27], the model which is known as the Nash cascade flow model was
introduced. This model is essentially a cascade of first order transfer functions with
delay relating in-flow to out-flow.

System identification of models similar to the time-delay model were used in
[25, 26]. Integrator-delay models are commonly used in control of irrigation chan-
nels, and system identification of such models for irrigation channels was consid-
ered in [44] which also considered a high order version which incorporated wave
dynamics. For rivers, identification of integrator-delay models and the correspond-
ing first order models in the water levels were considered in [3, 32, 39, 41, 50]. In
[32, 50], following a Data Based Mechanistic approach, an input nonlinearity in the
water level was first identified resulting in a Hammerstein type model. In [20, 21]
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a second order model with delay was considered based on a simplification of the
Saint Venant equations while [37] considered neural network models.

21.4 Design of Controllers for the River Reach

There are a number of control design methods which have been considered for rivers
for various purposes (see e.g. [4, 19, 30, 31, 33, 34, 39]). In this section the aim
is to demonstrate the usefulness of the models obtained in Sect. 21.3 for control
design. As mentioned in the introduction, what the control objectives should be, is
still an open question, but it is reasonable to assume that they will include rejection
of disturbances due to off-takes of water and keeping the water levels and flows
on setpoints, possibly time-varying ones, or within a certain range. As an initial
control design methodology, we therefore consider decentralised PI control [9, 45]
due to its ease of design and implementation. The PI controllers will also serve as
a benchmark for more advanced designs. As the aim is to illustrate the usefulness
of the models, we only consider control of the reach between Casey’s Weir and
Gowangardie Weir. Although the controllers are designed based upon the time-delay
model, the Saint Venant equations are used in the simulations.

21.4.1 Preliminary Control Design

At present, there are no regulation gates at Casey’s Weir. However, one objective of
the FRM project is to explore what can be achieved by employing control systems,
and depending on the outcomes, making a case for improved infrastructure. Thus,
we assume that the flow can be manipulated at Casey’s Weir. For a number of rea-
sons an upgrade of the infrastructure at Gowangardie Weir is unlikely, and we will
therefore assume it remains a free overfall weir. Hence the flow cannot be manipu-
lated at Gowangardie Weir, and the time-delay model (21.5) is therefore suitable for
control design. The value in Table 21.2, τ = 1650 minutes is used as the nominal
time delay.

The water in Broken River is supplied on demand and the most suitable de-
centralised controller configuration for demand driven systems is the distant down-
stream configuration shown in Fig. 21.11. In addition, water ordered for irrigation is
known four days in advance, and feedforward action from the orders are employed.

The idea behind the configuration in Fig. 21.11 is that the scheduler will release
the flow corresponding to future orders from farmers 1650 minutes (the nominal
time delay) before the water is required, and the PI controller will adjust for any
discrepancy in the flow e.g. due to model mismatch or errors in the rating curve.
From (21.3) there is a one to one relationship between the flow and water level at
Gowangardie Weir, and the water level setpoint is replaced by the corresponding
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Fig. 21.11 Distant downstream control configuration with scheduler

flow setpoint. The feedback controller is a PI controller,

C(s)= Kp(1 + Tis)
Tis

. (21.21)

The controller takes the difference between the desired flow, QG,setpoint and the
actual flow, QG over Gowangardie Weir as input and the output, QC,PI is added to
the early release flow from the scheduler to give the flow over Casey’s Weir,QC (see
Fig. 21.11). The PI controller is tuned using classical frequency response methods.

Due to the variation in the time delay with the flow as shown in Sect. 21.3.5,
the controller is tuned rather conservatively to ensure robustness with Kp = 0.007
and Ti = 60. The controller has a gain margin of 9.88 dB at 9.88 × 10−4 rad/min
and a phase margin of 61.2° at 3.16 × 10−4 rad/min. This means that an additional
3375 minutes time delay can be tolerated before the closed loop system becomes
unstable, and this is well within the range of time delays found in Sect. 21.3.5.
The Bode plots of the PI controller, the time-delay model and the model with PI
controller are shown in Fig. 21.12.

21.4.2 Simulation Example

Two simulation scenarios were considered. In the first scenario the flow was low
and the time delay was longer than the nominal one. In the second scenario the flow
was higher, and the time delay was shorter than the nominal one. The flow setpoint
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Fig. 21.12 Bode plots for the reach between Casey’s Weir and Gowangardie Weir

at Gowangardie Weir was 0.2864 m3/s (25 ML/day) and 2.3148 m3/s (200 ML/day)
under the low and high flow scenario respectively. Between time 15165 and 20925
minutes, a flow of 0.1157 m3/s (10 ML/day) was ordered for irrigation down-
stream of Gowangardie Weir under the low flow scenario and a flow of 0.5787 m3/s
(50 ML/day) was ordered under the high flow scenario. Hence, the flow setpoint at
Gowangardie Weir was changed accordingly in order to deliver the water requested.
These flows were released by the scheduler at time 13515 minutes (1650 minutes
before water was required) for 5760 minutes (see Fig. 21.13). In order to account
for uncertainty in the rating curves, a 10% error in the flow over Casey’s Weir was
introduced in the simulations such that the actual flow was only 90% of what the
controller asked for. The control configuration without the scheduler, i.e. purely
feedback control was also considered, and the results are shown in Fig. 21.13.

Due to the time delay, a control solution based only on feedback is not satisfac-
tory, and feedforward action from future known demands should be included. Under
low flow (plots in the left column of Fig. 21.13), the scheduler released the required
flow about 600 minutes late, and then the feedback controller increased the in-flow
to compensate for the shortfall in flow. Under high flow, the scheduler released the
flow about 650 minutes early due to the shorter time delay. Due to the error in the
flow equation the flow released from Casey’s Weir by the scheduler was short of
what was required, and hence the flow over Gowangardie Weir was below setpoint.
The feedback controller partly compensated for this error by increasing the flow
over Casey’s Weir. The controller gave acceptable performance under both flows,
but obviously there is still room for improvements. For example a more advanced
scheduler could take into account that the time delay varies with flow. However, the
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Fig. 21.13 Flows over of Casey’s Weirs and Gowangardie Weir

results demonstrate that a simple time-delay model of the river reach is sufficient
for control design.

21.5 Conclusions

System identification for control of the Broken River has been considered. Based on
operational data and physical considerations, a time-delay model and an integrator-
delay model have been proposed as suitable for control design. The models have
been compared to Saint Venant equation models and experimentally verified against
operational data from the Broken River. The proposed models accurately reflect the
dynamics of the river important for control design.

Based on the time-delay model, control designs were carried out taking the vary-
ing time delays into account in the robustness specifications. The controller showed
an acceptable performance in a simulation example based on the full Saint Venant
equations further validating the usefulness of the simple time-delay model in control
design.
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Chapter 22
Modelling Environmental Change:
Quantification of Impacts of Land Use and Land
Management Change on UK Flood Risk

H.S. Wheater, C. Ballard, N. Bulygina, N. McIntyre, and B.M. Jackson

22.1 Introduction

The management of water is one of society’s most fundamental challenges. There is
pressure on water resources to meet the needs of both society and the natural envi-
ronment. Increasing population and social and economic development are increas-
ing demand for water, while pollution and over-abstraction of water are reducing
availability. At the same time, flood risk is increasing with increasing population
and asset values in flood-prone areas. Superimposed on these pressures are the im-
pacts of environmental change—changing land use and changing climate.

Given these management challenges, hydrological models have a key role to
play, and the work of Peter Young has had a profound influence on the history
of hydrological modelling. Increasing computing power has enabled development
of models of increased complexity, from the early conceptual representation of hy-
drological processes in models such as the Stanford Watershed Model, to the de-
velopment of so-called physics-based models, such as the Stysteme Hydrologique
Europeen (SHE) model. Peter has consistently taken a systems analysis approach
to the modelling problem, and argued (forcefully!) that most hydrological models
are over-parameterised, and hence non-identifiable from the available data. Gradual
acceptance of this view has led to a parsimonious family of models—hybrid metric-
conceptual (HMC) models (as well as to Peter’s well-known CAPTAIN software
for Data Based Modelling and systems identification.

Some of the most challenging modelling issues arise in the prediction of the
impacts of environmental change. In this chapter we review the strengths and weak-
nesses of alternative hydrological modelling approaches in this context and with
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perspectives developed from Peter’s work. In particular, we focus on the predic-
tion of the effects of changing rural land use and land management, for flood risk
assessment and management.

22.2 An Overview of Rainfall-Runoff Model Types

The physical processes by which rainfall is translated into river flow are complex
and subject to a high degree of spatial heterogeneity. However, the data available to
support modelling is typically limited to an estimate of spatial rainfall, derived from
one or more gauge locations, some index of the evaporative power of the atmosphere
(derived from temperature or a more complete set of meteorological variables) and
an observed river flow time series. Hence the modelling of rainfall-runoff processes
presents methodological challenges, and raises important issues of modelling phi-
losophy (also addressed by Young [85]). A convenient classification of model types,
after Wheater et al. [79], is presented below, with a discussion of relative strengths
and weaknesses.

22.2.1 Metric Models

At the simplest level, the catchment-scale relationship between storm rainfall and
stream response to climatic inputs can be represented by a volumetric loss, to ac-
count for processes such as evaporation, soil moisture storage and groundwater
recharge, and a time distribution function, to represent the various dynamic modes
of catchment response. In the 1930s, prior to the availability of digital computers,
the unit hydrograph method was developed. In its basic form it represents the stream
response to individual storm events by a non-linear loss function and linear transfer
function. The simplicity of the method has provided a powerful tool for data anal-
ysis and model identification, once a set of assumptions has been adopted (identi-
fying event response in the streamflow hydrograph and allocating rainfall losses).
The method is widely used around the world; for example, its analytic capability
was exploited in the UK [51] to provide methods of flood estimation for ungauged
catchments. Using data from 138 UK catchments, regression relationships were de-
fined for the model parameters as functions of storm and catchment characteristics.
Similarly, Wheater et al. [77] were able to quantify potential effects of urbanisation
through analysis of the differences in response of a set of catchments with varying
degrees of urban development.

This data-based approach to hydrological modelling has been defined as metric
modelling [79]. Such models are based primarily on observations and seek to char-
acterise system response from those data. In principle, this limits application to the
range of observed data, and effects such as catchment change cannot be directly
represented. In practice, as discussed above, the analytical power of the method has
enabled some effects of change to be quantified through regional analysis.
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The unit hydrograph is a simple model with limited performance capability, and
in general the level of model complexity that can be identified from a typical rain-
fall/flow data set is limited [76]. However methods of time-series analysis, which
treat a body of data without isolating it into discrete events, can be used to iden-
tify more complex model structures. These are typically based on parallel linear
stores, and provide a capability to represent both fast and slow-flow components
of a streamflow hydrograph. These provide a powerful set of tools for a range of
hydrological applications, and in particular, with updating techniques, in real-time
flood forecasting [85].

22.2.2 Conceptual Models

The most common class of hydrological model in general use incorporates prior in-
formation subjectively in the form of a conceptual representation of the processes
perceived to be important. The model form originated in the 1960s, when comput-
ing power first allowed integrated representation of hydrological processes, using
simplified relationships, to generate continuous flow sequences. These models are
characterised by parameters that usually have no direct, physically measurable iden-
tity. The Stanford Watershed Model [22], now available as the HSPF model [11], is
one of the earliest examples, and, with some 16–24 parameters, one of the more
complex. In application to a particular catchment, the model must be calibrated, i.e.
fitted to an observed data set to obtain an appropriate set of parameter values, using
either a manual or automatic procedure. However, as noted above, the information
content of the available data is limited, particularly if a single performance criterion
(objective function) is used, and hence the problem of non-identifiability arises, de-
fined by Beven [7] as “equifinality”. For a given model, many combinations of pa-
rameter values may give similar performance (for a given performance criterion), as
indeed may different model structures. This has given rise to two major limitations.
If parameters cannot be uniquely identified, then they cannot be linked to catchment
characteristics, and there is a major problem in application to ungauged catchments.
Similarly, it is difficult to represent catchment change if the physical significance of
parameters is ambiguous.

Developments in computing power, linked to an improved understanding of mod-
elling limitations, have led to important developments for conceptual modelling.
Firstly, methods to analyse and represent parameter ambiguity have been developed.
The concept of Generalized Sensitivity Analysis was introduced [63], in which the
search for a unique best fit parameter set for a given data set is abandoned; param-
eter sets are classified as either “behavioural” (consistent with the observed data)
or “non-behavioural” according to a defined performance criterion. An extension
of this is the Generalised Likelihood Uncertainty Estimation (GLUE) procedure
[9, 26]. Using Monte Carlo simulation, parameter values are sampled from the fea-
sible parameter space (conditioned on prior information, as available). Based on
a performance criterion, a “likelihood” measure can be evaluated for each simula-
tion. Non-behavioural simulations can be rejected (based on a pre-selected threshold
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value), and the remainder assigned re-scaled likelihood values. The outputs from the
runs can then be weighted and ranked to form a cumulative distribution of output
time series, which can be used to represent the modelling uncertainty. This formal
representation of uncertainty is an important development in hydrological modelling
practice, although it should be noted that the GLUE procedure lumps together vari-
ous forms of uncertainty, including data error, model structural uncertainty and pa-
rameter uncertainty. More generally, Monte Carlo analysis provides a powerful set
of methods for evaluating model structure, parameter identifiability and uncertainty.
For example, in a recent refinement [72], parameter identifiability is evaluated using
a moving window to step through the output time-series, thus giving insight into the
variability of model performance with time.

A second development is a recognition that more information is available within
an observed flow time series than is indicated by a single performance criterion,
and that different segments of the data contain information of relevance to different
modes of model performance [78]. This has long been recognised in manual model
calibration, but has only more recently been used in automatic methods. A formal
methodology for multi-criterion optimisation has been developed for rainfall-runoff
modelling (e.g. [29, 70, 73]). Provision of this additional information reduces the
problem of equifinality and provides new insights into model performance. Mod-
elling tool-kits for model building and Monte-Carlo analysis are currently available,
which include GLUE and other associated tools for analysis of model structure, pa-
rameter identifiability, and prediction uncertainty [43, 71]. In several senses, this
parsimonious conceptual modelling represents an extension of the metric concept
(hence such models have been termed hybrid metric-conceptual models). There has
been a progressive recognition that the first-generation conceptual models, while
seeking a comprehensive and integrated representation of the component processes,
are non-identifiable with typically-available data. The current generation of stochas-
tic analysis tools allows detailed investigation of model structure and parameter un-
certainty, leading to parameter-efficient models that seek to extract the maximum
information from the available data. They also allow formal recognition of uncer-
tainty in model parameters, and provide the capability to produce confidence limits
on model simulations.

22.2.3 Physics-Based Modelling

An alternative modelling approach is to seek to develop “physics-based models”,
i.e. models explicitly based on the best available understanding of the physical
hydrological processes. Such models are based on a continuum representation of
catchment processes and the equations of motion of the constituent processes are
solved numerically, using a spatial mesh, normally discretized relatively crudely in
catchment-scale applications due to computational limitations. They first became
feasible in the 1970s when computing power became sufficient to solve the relevant
coupled Partial Differential Equations [27, 28]. One of the best known models in
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current use is the Systeme Hydrologique Europeen (SHE) model [1, 2, 59]. These
models are characterised by parameters that are in principle measurable and have a
direct physical significance; an important theoretical advantage is that if the physi-
cal parameters can be determined a priori, such models can be applied to ungauged
catchments, and the effects of catchment change can be explicitly represented. How-
ever, whether this theoretical advantage is achievable in practice is a question to
which we return below.

In practice two fundamental problems arise. The underlying physics has been
derived from small-scale, mainly laboratory-based, process observations. Hence,
firstly, the processes may not apply under field conditions and at field scales of in-
terest [12]. Secondly, although measurable at small scale, the parameters may not be
measurable at the scales of application. An obvious example is the representation of
soil water flow at hillslope scale. Field soils are characterised by heterogeneity and
complexity. Macropore flow is ubiquitous, yet neglected in physics-based models,
for lack of relevant theory and supporting data; the Richards’ equation commonly
used for unsaturated flow depends on strongly non-linear functional relationships to
represent physical properties, for which there is no measurement basis at the areal
scales of practical modelling interest. And field studies such as those of Pilgrim et al.
[57] demonstrate that the dominant modes of process response cannot be specified
a priori. For more detailed discussion see, for example, [6, 8].

22.3 Modelling Environmental Change: Land Use and Land
Management Effects

Modelling the expected effects of catchment change represents one of the most dif-
ficult challenges for hydrological modellers; important limitations arise for each of
the model types above. Here we focus on the issue of rural land use and land man-
agement change. The context is that recent floods in the UK have focused attention
on the potential effects of agricultural intensification on flood risk [75]. Over recent
decades agricultural intensification has been widespread across the uplands of the
UK, with increases in stocking density, ploughing, reseeding and drainage of fields,
use of heavy machinery, and the removal of trees from the landscape. Have the ma-
jor changes that have taken place since the Second World War affected flood runoff?
And if so, what is the potential of changing land management to mitigate flood risk?

Although land use and land management changes have been observed to change
local runoff [45, 53, 65], quantification of catchment scale effects has proved elu-
sive. The key methodological challenge is how to predict effects of local scale land
use changes at local to catchment scales using hydrological models. In a review of
the current state of knowledge about the effects of land use and management change
on flood risk, O’Connell et al. [52] concluded that new modelling techniques will
need to be developed in order to predict the impacts of land management on flood
risk.

The application of metric models requires the availability of a set of gauged
catchments spanning the range of changes of interest, and from which effects can
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be discriminated. This requires that (a) a signal of the effect of change is identifi-
able in the data, and (b) that the causes of change can be quantified as a catchment
descriptor. As part of a UK review [52], a national data base of catchment flows
was interrogated to see whether effects of land use change could be identified. In
previous UK studies [36, 51], the effects of urbanisation could be discriminated,
but when these analyses were revisited to identify more subtle effects of rural land
use and land management change, these were not identifiable. One major source of
difficulty is the heterogeneity of land use at catchment scale, and hence the need to
identify effects of change to one part of a catchment in the presence of the mosaic
of land use types at catchment scale. Another is the fact that for a given land use,
effects of different land management practices may be significant, but underlying
data to quantify historical changes in land management are not readily available.

Subsequently, a more targeted study [10] considered a set of catchments for
which reliable data sets were available and for which significant changes in land use
or land management had taken place. The conclusion was that attempts to isolate
the response to these changes at catchment scale failed due to reasons including cli-
mate variability, poorly constrained spatial distribution of land management types
and poor historical records of land use and land management change. Alternative
ways forward were needed.

As noted above, the role of distributed physics-based models has been the sub-
ject of much debate. However, there are classes of modelling problem, such as the
representation of changing catchment land use and land management, where such
models can potentially offer useful insights, not readily achieved by other modelling
approaches. Given that the processes modelled are highly non-linear, the parameters
uncertain, particularly at the model scale, and that data on physical processes and
properties are limited, important questions arise. Can effects of change be discrimi-
nated from effects of model and parameter uncertainty? If detailed process data are
unavailable (as would be the case for the majority of potential applications), is there
value in speculative simulation? And if surrogate data are available from donor sites,
can the utility of such models be enhanced?

Conceptual or Hybrid Metric Conceptual (HMC) models also potentially have a
role to play. Firstly, although the parameters of such models have no direct physical
significance, there is the possibility of identifying effects through inverse modelling
of detailed data sets, and also of constraining parameters using signature indices of
catchment response. In the USA, for example, the US Department of Agriculture
Soil Conservation Service has developed a conceptual model for event response
that can be parameterised a priori to represent effects of crop type and soil degrada-
tion [68], with potential utility for the UK. Secondly, such models are parsimonious
and computationally efficient, so the possibility arises of their use in emulating the
response of computationally-demanding physics-based models for large scale ap-
plications. Where such models are constrained to a HMC form, we term this meta-
modelling.

In the rest of this chapter, we report on the modelling results from a major UK
research programme into the effects of rural land management on hydrological re-
sponse (and in particular, flood risk). A key element of the programme has been
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a detailed multi-scale experimental programme at Pontbren, Wales [45], which has
provided data to support the development and evaluation of new modelling methods.
We explore the utility of physics-based models for data rich sites based on Pontbren,
and the use of surrogate data for data poor applications, considering issues of upland
peat management in the Hodder catchment, North West England. We report a new
methodology in which HMC models are used as meta-models for a library of land
management interventions to quantify effects of detailed local-scale interventions at
catchment scale. We also report HMC application to data-poor sites, evaluating the
role of regional indices of catchment response in model conditioning, and the util-
ity of the SCS procedure for UK application. Finally we introduce results of joint
work with Peter Young in the application of systems identification methods to de-
tailed experimental data from Pontbren, and consider the strengths and weaknesses
of data-based and HMC methods in that context.

22.4 Physics-Based Modeling of Land Use and Land
Management Change

22.4.1 Pontbren—A Data-Rich Site

We first consider the role of physics-based models in a relatively data-rich environ-
ment, and turn to an extensive field experimental programme established at Pont-
bren, in the headwaters of the river Severn in Wales. The aim of the experiment
was to provide multi-scale data on the effects of land management practices for a
typical set of upland land management issues and interventions to support develop-
ment of the new modelling approaches needed for flood risk policy and management
[45, 80].

Pontbren is a farmers’ cooperative, involving 10 hill farms and 1000 ha of agri-
culturally improved pasture (drained, ploughed, re-seeded and fertilized) and wood-
land (Fig. 22.1). Elevations range from 170 to 438 m AOD, and the soils are clay-
rich, mainly from the Cegin and Wilcocks series, which are common in Wales. They
have low permeability subsoil overlying glacial drift deposits, and are seasonally
wet or waterlogged. Field drainage is ubiquitous where pasture has been improved.
The predominant land use is grazing, mainly for sheep.

The Pontbren experiment arose as a result of farmers’ concerns that changes
to land management, and in particular changes to grazing densities and animal
weights, had changed runoff response. Between the 1970s and 1990s major changes
in farming intensity took place; sheep numbers increased by a factor of 6 and an-
imal weights doubled (R. Jukes, pers.comm.). Recent farmers’ initiatives have in-
cluded the reduction of grazing densities and reinstatement of woodland areas and
hedgerows. Research on the infiltration rates of the grazed hillslopes and woodland
buffer strips (e.g. [19]) demonstrated a significant change in soil response to rainfall.
Infiltration rates on the grazed pastures were extremely low, but within a few years
of tree planting, soil structure and permeability in buffer strips showed significant
improvement.
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Fig. 22.1 Pontbren study site
location

Details of the multi-scale experiment can be found in [45, 80]. Replicated ma-
nipulation plots have been instrumented to observe the plot-scale effects of land
management change, instrumented fields and hillslopes provide data on soil water
response and runoff processes (overland and drain flow) at larger scale, and mul-
tiple flow monitoring installations provide data on stream flows at scales ranging
from ditches and drains to second order catchment response (12 km2). In addition,
soil physical properties have been derived from extracted soil cores and in situ in-
filtration tests. The modelling challenges include representing the effects of soil
compaction and tree buffer strips on soil properties and runoff processes, as well
as the effects of agricultural field drainage, at the scale of individual fields, and at
whole catchment scale.

22.4.2 The Pontbren Physics-Based Model

A detailed, physically-based model was required, capable of representing the im-
portant hydrological processes operating at Pontbren and similar catchments, at the
scale of individual fields and hillslopes. For this we developed further an Imperial
College model based on Richards’ equation for saturated/unsaturated soil water flow
[38], to represent macropore processes and overland flow, incorporating vegetation
processes (such as interception) and associated effects such as changing root depths
and soil hydraulic properties, and capable of being run in 1, 2 or 3 dimensions [37].
The model has been conditioned, within a Monte Carlo-based framework of uncer-
tainty analysis, using physically-determined soil hydraulic properties and continu-
ous measurements of climate inputs, soil water states and runoff (as overland flow
and drain flow) from the Pontbren experimental sites. Due to the highly non-linear
dynamics, individual fields and hillslopes are represented at fine resolution (1 cm
vertical and 1 m horizontal resolution).

The detailed model can be exercised to simulate scenarios of interest, including
the planting of strips of woodland within a hillslope, and the associated changes
to soil structure, evaporation processes, overland flow and drainage. Figure 22.2
illustrates the simulated response for a representative hillslope (100 m × 100 m)
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using the detailed model for a range of land management types, including grazed
and ungrazed drained grassland, grassland with tree shelter belts (80 m length, 15 m
width) in different locations, and full tree cover. The envelopes of response represent
the range of parameter uncertainty.

While these results are instructive, some caveats remain. For example, despite the
extensive field programme, there are residual uncertainties in the perceptual model,
concerned with the fate of subsurface water in the tree planted areas is the fate of
subsurface water. We assume here that connection to field drainage systems exists.
And while the modeling allows for uncertainty in soil properties, and the model has
been conditioned on field-scale data, the effects of spatial heterogeneity have not
been explicitly evaluated. Another notable effect was non-stationarity in observed
response associated with a hot dry summer (2006) in which soils cracked and only
gradually returned to normal over the following Autumn and Winter. Nevertheless,
in the absence of alternatives, the model provides a relatively sound basis for the
quantification of field scale effects of these complex and spatially-localised land
management options.

22.4.3 Meta-Modelling

The detailed model is computationally-intensive and not suitable for direct appli-
cation at catchment scale. We have therefore developed a strategy to upscale the
results in a computationally-efficient procedure. We use meta-modelling, whereby
the detailed model is used to train a simpler, conceptual model that represents the
response in a parsimonious and computationally-efficient manner, using basic hy-
drological components of loss and routing functions. This requires classification of
the landscape into hydrological units, based for example on soils, land use and ex-
isting/proposed interventions. Each field in the Pontbren catchment is classified into
a land use/management type, so that the corresponding set of field-scale models can
be applied. The field types currently included were chosen based on dominant land
use types currently within the catchment and those management changes that were
perceived as likely to have an impact on flood peaks.

The detailed model is run for each member of a library of hydrological units,
and hence a meta-model parameterisation is obtained for each member through
the model training process. Uncertainty in parameter values is carried forward to
this stage via Monte Carlo analysis. Figure 22.3 illustrates the performance of the
meta-model in emulating the detailed model response for a grazed hillslope with a
woodland buffer strip at the base of the slope.

22.4.4 Catchment-Scale Modelling

With a library of meta-models, the final element of the procedure is a catchment-
scale semi-distributed model. We use a modular modelling structure (RRMTSD,
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Fig. 22.3 Realisations of
field-scale runoff (drain flow
+ overland flow) for different
land use types, with
uncertainty bounds

[54]), in which the meta-model elements represent individual hydrological ele-
ments, and flows are subsequently routed down the stream network. Using the semi-
distributed model, the meta-model can be further conditioned on catchment-scale
data to reduce parameter uncertainty.

The hydrological processes and climatological forcing data within the sub-areas
are considered to be homogeneous; the degree of spatial distribution is represented
mainly through the number of sub-areas. These can represent subcatchments or
hydrological response units, and can incorporate the meta-model structures dis-
cussed above. Fields were chosen as the individual response units in the present
application as these are an appropriate management unit when looking at the in-
fluence of land use changes. They also generally form sensible hydrological units,
due to the tendency of farmers to set ditches and drainage outlets at field bound-
aries.

RRMTSD simulates streamflow for the uppermost sub-areas first and then adds
sequentially the downstream contributions. A variety of interchangeable pre-built
modules are available; others can be added, providing additional flexibility. The
toolbox also allows for different optimisation methods for calibration: uniform ran-
dom search, the shuffled complex evolution method [24], and local nonlinear multi-
constrained methods based on simplex searching. The input data and simulated vari-
ables in every sub-area can be analysed using a variety of visualisation tools.

The overall modelling procedure provides a powerful set of modelling tools,
summarised in Fig. 22.4.

We illustrate the impacts of land management change at the catchment-scale in
Fig. 22.5, for a 4 km2 Pontbren sub-catchment. The baseline is the current day
land use at Pontbren, the first scenario removes the effect of the recent Pontbren
tree plantings (and hence takes the catchment back to something approximating the
intensive use of the early 1990s), the second adds shelter belts to all grazed grassland
sites, and the third assumes the entire catchment is woodland. The median changes
in flood peaks observed for the three scenarios are: removing all the trees causes
up to 20% increase in flood peaks from the baseline condition, adding tree shelter
belts to all grazed grassland sites causes up to 20% decrease in flood peaks from the
baseline condition, and full afforestation causes up to 60% decrease in flood peaks
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Fig. 22.4 Physics-based modelling framework for catchment-scale scenario analysis

from the baseline condition. However, these effects decrease with increasing storm
return period [80].

22.4.5 Extension to Data-Poor Sites and Land Use Types

Having considered tools developed and applied to a data-rich environment, sup-
ported by an extensive field programme, we now turn to a different problem of land
management, associated with the peat uplands of North-West England, and consider
the role of physics-based models and the new modelling framework in a data-poor
environment.

The lack of small scale data for a catchment causes problems for the methodology
outlined in Fig. 22.4, given the need for data to condition the physics-based model.
However, even in the absence of such data, physics-based models may still be an
effective way to upscale local changes to the catchment scale, as our understand-
ing of the impacts of land use and land management changes is largely restricted
to changes in small scale processes (i.e. interception and infiltration) and physical
properties (i.e. hydraulic conductivity and water retention curves). The critical ques-
tion becomes—what is the role of physics-based models in data-sparse areas?

Even without hydrological measurements for a site of interest, physics-based
models can be developed and tested using information about small scale hydrolog-
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Fig. 22.5 Pontbren land management scenarios showing uncertainty

ical processes and properties from the literature, or possibly from surrogate sites,
as well as qualitative information about responses through engagement with field
hydrologists. By using such data to parameterise the physics-based models, uncer-
tainty in prior parameters is likely to increase. Limited data also implies that there
is a greater chance that the model structures will be poorly defined [25], thereby
adding additional uncertainty to the model predictions [17]. The extent to which
uncertainty can be constrained by such data is a key research question. We also
note that physics-based models have the power to support the development of im-
proved conceptual understanding of runoff processes and the dominant physical
controls, and can thereby provide qualitative insights that may be of value when
considering the effects of land management change and may also assist in the de-
sign of more effective monitoring programmes in order to reduce model uncer-
tainty.

We therefore propose an alternative upscaling procedure taking into account data
scarcity, shown in Fig. 22.6. Changes compared to Fig. 22.4 are shown in bold text,
and dashed boxes. The key change is that data scarcity no longer automatically leads
to a bypass of the physics based modelling. An alternative regionalisation approach,
which by-passes the physics based modelling (stage 3), will be discussed in more
detail in Sect. 22.5.
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Fig. 22.6 Generalised upscaling procedure

22.4.6 Peat Management in the UK Uplands

In the UK there are approximately 2.9 Mha of upland peat, with the majority of
this present as blanket peat; these areas constitute approximately 15% of the blanket
peatlands globally [33]. Although historically considered to be regions of low value,
the importance of peatlands in terms of carbon sequestration, ecological value and
water supply is now increasingly recognised [13]. The management of peatlands has
therefore become a topic of interest for a number of different stakeholders.

Almost half of the upland blanket peatlands were drained, typically using open
ditch drainage, during a period of agricultural intensification across the UK in
the 1960s and 1970s [64]. The intention was that water tables would be lowered
to create conditions more suitable for livestock grazing [64]. The reality is that
drainage generally causes only localised drawdown of the water table, while also
acting as a rapid conduit for runoff. In most reported cases, the runoff response
from drained blanket peatlands has reduced times to peak and increased peak flows
[3, 20, 34, 60, 65]. Not only does peatland drainage cause potentially detrimental
changes in the runoff response, but the practice has also been observed to lead to
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greater erosion in these sensitive environments [35], to changes in local ecosystems
and to increases in concentrations of DOC in the runoff [81]. Due to the multiple
problems perceived to be related with drainage, activities are now under way in
the UK to attempt to restore these upland environments. Beginning in the 1980s, a
programme of blocking peatland drains was started.

Due to the complex process interactions and relatively limited observations, there
are large uncertainties about the best management practices for upland blanket peat-
lands; therefore suitable process-based models can potentially aid our understand-
ing of impacts of management interventions. Although we could have used the
physics-based model used in the Pontbren application (albeit modified to account
for open ditch drainage), we considered that the available data could not justify such
a complex model structure. We have adopted a modelling philosophy similar to that
of [74], which places the main modelling effort on the representation of first-order
controls on hydrological response, where these processes are identified through en-
gagement between the modeller and the field hydrologist (or in our case, literature
about field observations). In this way we developed a priori model structures where
the key hydrological processes were included whilst working to maintain an appro-
priate level of complexity relative to the detail of available information concerning
the system hydrological processes. To avoid over-parameterisation, minor processes
were excluded or treated in a simplified manner. Full details of the peatland model
development are available in [4, 5].

The drained blanket peatland model was tested against data from a surrogate site.
The site had six boreholes and a weir in a peatland drain that were monitored at a
high resolution over a two year period. The model was calibrated on these data,
with the primary objective to examine the performance of the a priori model struc-
ture and to assess the identifiability of the model parameters. The model was found
to perform well [5], which provided a degree of confidence that the a priori model
structure captured the key hydrological processes for drained peatlands, particularly
for peak flows. All calibrated parameters were found to be identifiable within the a
priori parameter ranges, although some more strongly than others, and some only
when including the additional borehole data. This suggests that the physical inter-
pretation of these parameters is reasonable.

For sites that can be modelled with the same structure but different parameter
values, the models were used to perform “virtual experiments” to explore aspects
of hydrological response to a range of design storm events throughout the potential
parameter space of UK blanket peatlands. This allows qualitative validation of the
model results relative to responses reported in the literature for a range of sites, as
well as providing a more general picture of the sensitivity of the flow peaks to the
model parameters. Figure 22.7 demonstrates the sensitivity of the mean peak flow
and time to peak to the model parameters. Parameter values are normalised by their
a priori ranges and the x axis for the hydraulic conductivity is shown on a log scale.
Details of the simulations are provided in [4].

The model behaviour was found to be consistent with observations from the liter-
ature. For example, at high hydraulic conductivities, drainage is effective in reduc-
ing peak flows; with low hydraulic conductivities (such as in peatlands), drainage
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Fig. 22.7 Peatland drained model peak flow sensitivities to model parameter ranges. Mean flow
rates (a) and mean times to peak (b) versus scaled parameter values

is found to increase model peak flows and decrease times to peak, with the effects
generally larger in systems with closer drains and lower hydraulic conductivities
[34, 60, 65]. At very close drain spacing, the peak model flows begin to reduce, sug-
gesting that spacing contributes to both increased storage and increased conveyance.
Examination of the water table profiles also shows that the spatial variation in water
table depth observed in the field [21, 34] is replicated in the model. These observa-
tions provide further (albeit qualitative) validation of the model peak flow response
throughout a wider parameter space.

The peatland models have then been used to perform simulations for 200 m ×
200 m hillslopes, of intact, drained and blocked drain blanket peatlands for a spe-
cific upland catchment in North-West England. 100 parameter sets were selected
from a priori parameter ranges that were restricted based on specific site knowledge
(drainage maps and DEMs) and information from the literature. The flow response
for the largest runoff event in the one year test period is shown in Fig. 22.8. The
uncertainty bounds show the range of response for the 100 parameter sets. For the
largest runoff event, the mean increase in peak flow from intact to drained peatland
was 25% and the mean decrease in peak flow from drained to blocked drained peat-
land is 3%; the range in responses was 4–42% increase and 16% increase to 25%
decrease respectively. The change in runoff response was highly dependent on local
conditions and peak flow changes from drained to blocked were also dependent on
the flow magnitudes, with simulations with the largest runoff in the drained sim-
ulations most likely to give larger percentage reductions in flows following drain
blocking.

The a priori parameter ranges reflect a combination of the natural variability
observed within the hydrological unit class, as well as the uncertainty about these
parameter values. For example, the geometric parameters of the peatland model:
the slope, drain spacing and drain angles, can be very accurately predicted for a
given grid cell; therefore the a priori ranges used in the simulations are simply the
ranges of these known parameters within the hydrological unit class and cannot be
further restricted, unless the hydrological unit class is subdivided. Other parame-
ters, however, are less readily measurable, such as the hydraulic conductivity and
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Fig. 22.8 Ensemble uncertainty bounds for a rainfall event on 2 September 2009 for (a) drained,
(b) intact and (c) blocked drain peatlands

the overland flow and drain roughnesses; the values for individual grid cells are
already uncertain, therefore their a priori ranges incorporate both local parameter
uncertainty as well as hydrological unit class variability. The changes in peak flows
for these simulations were most sensitive to the drain roughness parameter. This is
related largely to the high degree of parameter uncertainty, rather than hydrological
unit class variability, and therefore could potentially be constrained by detailed data.
As the flow response was less sensitive to the local uncertainties of other parameters,
the greatest gains in terms of reduction in ensemble uncertainty could be obtained
from surface flow roughness investigations in peatlands.

Despite parameter uncertainty, the ensemble responses of the different land man-
agement types are found to be distinct; suggesting that even limited data can be
used to reduce ensemble uncertainty sufficiently to allow meaningful insights into
the changes in runoff response related to land management. Thus the first set of
new meta-models that were added to the existing library from Pontbren, were three
meta-models to describe the management of upland blanket peat, representing in-
tact, drained and blocked drain blanket peatlands. Work is currently ongoing to ex-
amine the performance of the meta-models derived from these data-scarce physics-
based models when incorporated into the catchment scale semi-distributed model.

22.5 Conceptual Modelling and Regionalisation

In this section we consider an alternative approach to the problem of estimating
land use change effects in the absence of detailed data, and present a regionalisation
scheme that employs indices of hydrological behavioural to constrain model param-
eters. First the methodology and the model used are introduced. Then parameter
conditioning for the Pontbren catchment model is evaluated using the regionalised
index BFIHOST . BFI is a Base Flow Index, representing the proportion of the stream-
flow hydrograph that comprises baseflow rather than rapid stormflow, and HOST is
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the UK Hydrology of Soil Types classification, which has been used as a predictor of
BFI for ungauged catchments. Here, speculative changes in BFIHOST allow estima-
tion of heavy grazing and afforestation effects. The conceptual model library is then
expanded to include other land uses and management practices by additional param-
eter restriction using an “imported” behavioural index, based on the US Department
of Agriculture Soil Conservation Service model, which uses a “curve number” as
the key parameter, denoted here as CNUSDA. Finally in this section, findings and
approach limitations are discussed.

22.5.1 Methods

We propose a parameter conditioning approach that uses uncertain and limited infor-
mation about the catchment response in a formal Bayesian framework. This infor-
mation is represented as hydrological indices that describe different aspects of the
expected rainfall-runoff time series behaviour. The indices must be derived from a
regionalisation procedure, thus allowing model parameter estimation for ungauged
catchments both in current and future (hypothetical) conditions. In this study, we
rely on two regionalised indices: Base Flow Index (BFI) and Curve Number (CN).

As noted above, BFI is the proportion of the total catchment discharge which
is considered to be base flow. BFI has been regionalised in the UK as a part of
the HOST classification system [14] based on the following soil characteristics:
depth to gleyed/slowly permeable layer, depth to ground water, presence of a peaty
surface layer, and soil substrate. CN relates rainfall volume to corresponding storm
runoff volume [31, 32]. Based on data from experimental catchments, estimated
values of CNUSDA were regionalized within the Soil Conservation Service runoff
Curve Number system [67, 68] based on hydrological soil group, land use and land
management.

The information is used to estimate posterior parameter distributions for a given
soil class and land use management description as described in [15, 16]. In summary,
the posterior likelihood of a sampled parameter set is proportional to the consistency
of simulated BFI, considered alone, or BFI and CN values considered together, with
the values predicted by the regionalisation method for those indices. A large sam-
ple of parameter sets and associated likelihoods defines the posterior distribution.
The simulated BFI values are calculated from the continuous time simulations us-
ing the hydrograph separation procedure of [30], and the simulated CN values are
calculated following [32] and [68].

The first study uses information contained in BFIHOST only, and includes land
use effects via BFIHOST change (see below), interception and evapotranspiration
changes. Two types of land use effects are evaluated: afforestation, and increased
stocking density. The second study includes information from the Curve Number
method (additionally to BFIHOST information) to represent a much wider variety of
land uses/managements [16]. To represent effects of trees and high stocking density,
the first study relies on the following assumptions about BFI change. Afforestation
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Fig. 22.9 PDM rainfall-runoff conceptual model

is assumed to lead to higher BFI, while keeping the same HOST soil type, so that the
posterior includes only those parameter sets that lead to a base flow increase (with
respect to the unforested BFI). Changes in interception losses associated with af-
forestation are estimated using a simple hard threshold bucket model, with canopy
storage capacity depending on species, leaf area index, canopy cover, vegetation
structure, and density [23]. Increased stocking density leads to soil structural degra-
dation. And, following the approach of Hollis [55], degraded soil is assigned an
appropriate analogue HOST class to represent the change. The rationale for the pro-
posed changes is that soil structural degradation, in the form of topsoil and upper
subsoil compaction and seasonal “capping” and sealing of soil surfaces, causes a
reduction in the effective soil storage, which in turn results in increased surface
runoff.

The second study adjoins CN information to BFI information to represent effects
of different land uses and managements. To assign CN to each considered soil—land
use combination, the British HOST soil classification (29 types) is mapped into the
American USDA soil classification (4 classes) [16]. Thus, an important assumption
is that the CN index can be used under conditions other than those from which it
was derived.

The chosen rainfall-runoff model is the probability distributed moisture (PDM)
model with two parallel linear routing stores (Fig. 22.9) [15, 49]. The choice of
the PDM model has two motivations: its structural simplicity is thought appropriate
given the imposed data limitations (i.e. the information used to condition the model
comes from only one, or two flow indices), and it has been extensively applied to
other catchments in upland Wales and other UK regions [18, 40, 41]. This model
has five parameters: Cmax is the maximum soil water storage capacity within the
modelled element, b is a shape parameter defining the storage capacity distribution,
kf and ks are fast and slow routing store residence times, and α is the proportion of
the total flow going through the fast routing store.
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Fig. 22.10 Prediction uncertainty bounds for flows at gauge 10 due to the 18th of January, 2007
rainfall event: (a) afforestation, (b) soil degradation

22.5.2 The First Case Study—The Pontbren Catchment

Concurring with the Pontbren data time resolution we developed a 15-minute time
resolution rainfall-runoff model. We discretised the Pontbren catchment into runoff
generating elements (100 m × 100 m squares), so that catchment response is the
integration of all the individual elemental responses (via a simple constant celerity
routing). Each element response is estimated using the PDM model (see above).
Our motivation behind this fine scale is to allow element-scale land management
changes to be easily represented within catchment scale models. Potentially, the
catchment model needs a separate set of parameters for each element. Here, it is
assumed that all elements with the same BFIHOST have the same set of parameter
values—this number cannot exceed the number of soil types in the HOST classifi-
cation (29 types).

The posterior parameter distributions restrict two (out of five) model para-
meters—the slow flow residence time ks and runoff partitioning coefficient α.
Low ks values have low posterior probability, and the runoff partitioning coefficient
distribution is concentrated around a value of (1-BFIHOST ). Model performance was
estimated over a highly variable flow period of 1, January, 2007—31, March, 2007.
Posterior prediction uncertainty was significantly reduced when compared to prior
predictions (unrestricted parameter space). Nash-Sutcliffe statistics for the expected
values of probabilistic flow predictions varied between 0.7 and 0.85 for different
Pontbren subcatchments, supporting the view that BFIHOST is an effective response
index.

Figure 22.10 shows the predicted impacts of full afforestation and increased
stocking density on runoff at the most downstream gauge in Pontbren for the 18th
of January, 2007 event. Here, the solid lines represent the 90 percentiles for cur-
rent conditions and the dashed lines are the corresponding results for full afforesta-
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tion and soil degradation. The uncertainty in the peak flow is high compared to the
expected changes, requiring more information about the model parameter values.
The afforestation delayed the highest peak arrival by 15 minutes (one simulation
time step), and the soil degradation scenario did not show any difference in peak
flow arrival time. Full afforestation decreased peak flow by 8% (median value), and
stocking intensification increased peak flow by 11% (median value).

22.5.3 The Second Case Study—The Plynlimon Catchments

The Plynlimon catchments are located in Wales, UK, and comprise the Wye and
Severn River headwaters [9, 39, 44, 61]. The Wye catchment (10.55 km2) is al-
most exclusively under extensively grazed grassland, while for the Severn catch-
ment (8.7 km2), most of the area is covered with mature coniferous forest. Both
catchments are humid—the ratio of long term precipitation to potential evapotran-
spiration is about 5, with similar slowly permeable soil composition. Because of
soil similarity, geographical proximity, and qualitatively different land uses in the
catchments, the Wye and Severn catchments are ideal for Curve Number application
and testing.

We used hourly data from May 1980 through June 1981, before the Severn tree-
felling started and when gap-free Automatic Weather Station data are available. The
simulated (by PDM) response for a catchment is the average of the responses for all
relevant soil type/land use/land management combinations weighted by their rela-
tive contributing areas; this might introduce a one hour timing error at the most.

As in the previous case study, only two parameters: the slow flow residence time
ks and runoff partitioning coefficient α were restricted by the information available
(BFI and CN). But, different land uses/managements (as represented by CN) intro-
duced shifts in the parameter distributions—mainly for parameter α. Performance
with respect to observed flow in all 8 subcatchments was considered generally good:
the prior uncertainty was reduced by a large degree throughout the simulated peri-
ods; and probabilistic NS values [15] ranged from 0.70 to 0.81.

As an illustration of the potential applicability of the method, two simple land use
change scenarios were considered: (a) the upper Severn becomes pasture in good
condition; and (b) the upper Wye becomes forest in good condition. Figure 22.11
shows predictions for the event with the highest flow peak (5–6 October, 1980).
Here, black lines represent 95% confidence intervals for the existing land use condi-
tions and grey lines represent 95% confidence intervals for the scenario. The median
peak flow in the Severn increases by 9% when the afforested area becomes pasture;
in the Wye it reduces by 13% when the pasture land is afforested.

22.5.4 Conclusions Concerning Conceptual Model
Regionalisation

In this section we presented a method to integrate regionalised information, in the
form of hydrological indices, into model conditioning. We approached this task us-
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Fig. 22.11 Predictions during a large flood event. (a) Severn becomes pasture in good condition;
(b) Wye becomes forest in good condition

ing either a single source of information (BFI from the HOST classification) and
speculative changes due to land use/management, or combining dual sources of in-
formation (from the USDA and HOST classification systems) in a formal Bayesian
framework. Applied to both the Pontbren catchment and Plynlimon paired catch-
ment data sets, it was concluded that both CN and BFIHOST are potentially valu-
able sources of information for hydrological modelling of ungauged catchments and
the effects of land use change, if used appropriately within a stochastic modelling
framework. A more extensive evaluation that introduces more sources of informa-
tion and covers a range of UK conditions is recommended.

22.6 Using DBM Modelling to Identify HMC Models for Land
Use Impacts Analysis

22.6.1 Previous Achievements in Using DBM as a Tool for Model
Identification and Land Management Impacts Analysis

The modelling approaches so far demonstrated in this chapter—physics-based mod-
elling, meta-modelling and regionalisation of conceptual models—may be termed
“hypothetico-deductive” approaches, after [85, 86]. This is because they pre-assume
a model structure and information about model parameter values based on a prior
hypothesis of system functioning. For example, this is an explicit part of the meta-
modelling procedure (Fig. 22.4). While the prior model structure may be refined
based on testing its performance relative to observations, this refinement tends to
include some speculation rather than truly letting the data speak for themselves.
The need for process-based approaches, such as those we have illustrated in this
chapter, is evident when considering the underlying requirement to make predic-
tions which go beyond the range of available observations. However this comes at a
price: only a limited range of possible model structures are considered; they provide
little scope for detecting response modes and non-linearities which are unexpected a
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priori; and parameter and prediction uncertainty may be high due to inherent over-
parameterisation.

Two goals may therefore be proposed: to improve the procedure for HMC model
identification by making it more objective; to reduce parametric uncertainty through
model order reduction while maintaining an adequate mechanistic basis. The DBM
approach can play a major role in these aims. A variety of Peter Young’s papers
illustrate the power of DBM as a hydrological system identification method [85–
88, 91, 93]. Peter’s recent work [92] illustrates the model order reduction that can
be achieved within an emulation framework, with clear applicability to formalis-
ing the model identification within the meta-modelling approach demonstrated in
this chapter. His work with Renata Romanowicz and others in [10] illustrates the
benefits of DBM rainfall-runoff models for seeking land use signals in time-series
data, while also illustrating the role of data noise in interfering with signal detec-
tion. McIntyre and Marshall [46] applied DBM in a similar fashion to expose spatial
land use signals within Pontbren. Wagener and McIntyre, in this book, apply DBM
to the catchment classification problem, including land use effects. And Peter and
colleagues, [58] and [54], have illustrated the role of DBM models in critically as-
sessing conceptual hydrological model structures.

Beyond these published demonstrations of applying the DBM approach to model
identification for land use and management impacts analysis, there is scope to take
this contribution further. A limitation of most previous DBM hydrological applica-
tions is the a priori assumption that routing is a linear process. Exceptions are [62]
(although this was in a real-time context without aiming for conceptualisation) and
[50] (although in that case the non-linear routing was an assumption rather than in-
ference using DBM). The assumption of linear routing is understandable given the
common knowledge that the dominant non-linearity tends to be in runoff genera-
tion (which the DBM models do include), the huge saving in computer time which
is usually made by assuming linearity, and the limitations in operational catchment
scale rainfall-flow data which may hinder identification of routing non-linearity.
Nevertheless, better understanding of non-linearity is a key element of developing
HMC models suitable for land use impacts prediction. In particular, for flood studies
the nature of the non-linearity, and how it is manipulated, may strongly govern peak
flow rates.

Hence, in our recent joint work with Peter, we have explored how the HMC
structure identification problem can be addressed using DBM methods including
the disaggregation of non-linearity to runoff generation and routing components.
This work is summarised in the rest of this section.

22.6.2 Identification of Rainfall-Runoff Non-linearity Using DBM
Analysis

This work will demonstrate that the DBM approach can identify non-linear signals
both in runoff generation, i.e. the dynamic nature of r/u; and in routing (i.e. the
dynamic nature of (dq/dt)/(u− q), where r is rainfall, u is effective rainfall and
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q is runoff); and will discuss applicability to developing improved predictive HMC
models.

The DBM method may be regarded as being built around a general family of
transfer functions, described in the discrete time form by,

q̂k = b0 + b1z
−1 + b2z

−2 + · · · + bmz−m
1 − a1z−1 − a2z−2 − · · · − anz−n rk−δ/ t , (22.1)

where r is the measured model input, q̂ is the model output, δ is the time de-
lay between the onsets of x and q̂ ,  t is the sampling interval used in the model
(= tk − tk − 1), k is the time-step number, z−r is the backward shift operator (i.e.
z−rxk = xk−r ), and a and b are parameter vectors usually estimated using instru-
mental variable (IV) techniques [83, 89]. The simplest, and the most common, form
of (22.1) identified in hydrological applications is,

q̂k = b0

1 − a1z−1
rk−δ/ t , (22.2)

where q is the modelled runoff and r is the input rainfall. If both a1 and b0 are real
and positive numbers, this can be shown to be equivalent to one conceptual linear
store with response time T = −1/ ln(a1) and steady state gain G = b0/(1 − a1).
Other transfer functions may also be identified, and be shown to have conceptual in-
terpretations, for example two or three linear stores in parallel [76, 84, 89, 90, 93]).
A key strength of the DBM approach is the ability to identify conceptually meaning-
ful structures and parameter values, with the only pre-specification being the general
transfer function form defined in (22.1).

A further generalisation of (22.1) can be made by introducing state dependence
into the parameter vectors a and b. For the simple model in (22.2), this would lead
to the form,

q̂k = b0(y)

1 − a1(y)z−1
rk−δ/ t . (22.3)

An attraction of the DBM modelling toolbox, CAPTAIN [56, 66], is the ability
to identify the form of b0(y) and a1(y) using state dependent parameter estimation
techniques [94]. We have shown that although these two functions are not indepen-
dent, the form of b0(y) allows specification of non-linear function for estimating
effective rainfall u from observed rainfall r1 and a1(y) allows specification of the
form of the non-linear routing function [47], using y = q . The parameters of func-
tions b0(y) and a1(y) can then be optimised numerically.

22.6.3 A Case Study

A 3.2 km2 subcatchment of Pontbren is used as a case study. In this subcatchment,
77% of the land area used intensively for sheep grazing, 6% is woodland, and the
remainder is rough grazing, arable land, open water and paved areas. The average
surface slope is 5 degrees. Soils are relatively impermeable silty clay loams. The
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Fig. 22.12 Using the DBM analysis to inform development of HMC models

average annual rainfall is approximately 1449 mm (measured between 1st April
2007 and 31st March 2009). Rainfall is estimated from three nearby tipping bucket
gauges, and flow from an in-situ Doppler gauge [45]. The time series data are aggre-
gated to 1-hour intervals for the purpose of the modelling. The period used is 10th
November 2006 to 25th January 2007, selected to be consistent with the period we
previously used for plot-scale DBM analysis [47].

State dependent parameter analysis was first applied to identify the functions
b0(q) and a1(q). This gave the results in Fig. 22.12. The power law form of the
function a1(q) indicates non-linearity in the routing, which is consistent, except at
the highest flows, with a kinematic wave model,

q̂k = βqαk

1 − (1 − βqαk )z−1
ûk−δ/ t . (22.4)

This is derived by McIntyre et al. [47]. When coding this model, qk is replaced
by the simulated flow at the previous time step qk−1, which avoids instability when
zero flow is observed. The routing model in (22.4) explains the form of the function
b0(q) in Fig. 22.12; however Fig. 22.12 is also consistent with the non-linearity in
the runoff generation of the form,

ûk = c qλk rk. (22.5)

Parameters (α, β , λ and δ) are optimised using the Nash-Sutcliffe Efficiency
(NSE) as the criterion (in principle the IV criterion could be applied however this
would be complex without obvious benefits). c is fixed to ensure that the volume of
effective rainfall is equal to the volume of observed flow. The optimised model is,

q̂k = 0.160q̂0.54
k−1

1 − (1 − 0.160q̂0.54
k−1)z

−1
ûk, (22.6)

ûk = 0.878q0.1
k rk. (22.7)
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The NSE value is 0.93. Interestingly, and consistent with our previous plot-scale
results [47], the flow generation component is nearly linear (λ= 0.1) while the rout-
ing is relatively strongly non-linear (α = 0.54). This result is in contrast to the linear
stores generally used in catchment scale models; but is consistent with theoretically
derived values of α (see [47]).

Three points are worth noting before continuing with the discussion: (1) Of
course, alternative conceptualisations of this catchment may be reached, but only
if a poorer performance is accepted, or if a less parsimonious model is accepted;
(2) Including a mixture of drier and wetter periods in the identification period leads
to a higher value of parameter λ as would be expected (e.g. [46]); (3) While (22.6)
uses simulated flow q̂ as an input, (22.7) uses observed flow q as a surrogate mea-
sure of catchment wetness. The need for an observation of q to run this model means
that it cannot be used directly for scenario analysis—therefore attention is needed
to the task of converting (22.7) into a predictive model.

22.6.4 Using the DBM Analysis to Inform Development of HMC
Models

A major motivation for the DBM analysis is to assist in identification of models
for predicting flow response to scenarios of land use and land management change.
This includes providing insights into plot scale processes [47] which can poten-
tially be used in development of physics-based models, and into catchment scale
responses which instruct the development of HMC models to be used within the
meta-modelling and regionalisation frameworks. In order to develop (22.7) into a
predictive model for this purpose, rather than using q as a wetness index, the wetness
needs to be simulated using an explicit soil moisture accounting model. This also
provides opportunity to introduce some physical constraints into the model, such
as constraining losses by potential evaporation estimates. Three HMC soil moisture
accounting models were tested:

1. A version of the catchment wetness index (CWI) model [47], derived originally
from the early work of Peter Young et al. [82]. The two-parameter version of
this model uses an empirical factor to force runoff generation volume to equal
streamflow volume, assumes a first order loss, and runoff generation is equal to
wetness raised to a power. Peter has shown that this CWI model is comparable
with the power law in (22.5) [86].

2. A version of the probability distributed moisture (PDM) model of [48] using a
two-parameter Pareto distribution developed by Wagener et al. [69]. Losses are
control by simulated evaporation rates, with the evaporation: potential evapora-
tion ratio being proportional to the relative wetness of the catchment. This model
may also be deduced from the power law model of (22.6) because both may be
interpreted as representing a dynamic contributing area [42].

3. A three-parameter bucket model with storage thresholds for initiation of drain
and surface flow, with an upper limit to drainage, and with evaporation equal to
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potential evaporation when soil moisture is present. This was originally devel-
oped based on process understanding of experimental plots at Pontbren [37], and
thus it is the only soil moisture model structure which was chosen independently
of the DBM analysis.

These models are typically applied assuming linear routing, however here we ap-
ply the non-linear store identified above (22.6), and focus on assessing performance
of the wetness index/loss components when optimised to NSE. The CWI and PDM
models, with NSE = 0.94 and 0.93 respectively, more or less match the performance
of the DBM runoff generation model. The third model, while performing less well
with NSE = 0.90, has the conceptual attraction of distinguishing between surface
flow and drain flow generation. This distinction is potentially important for predict-
ing the effects of changes to soil and drainage associated with land management,
and hence this model, with linear routing, has been used so far for the Pontbren
meta-modelling. The DBM analysis has indicated that non-linear routing should be
implemented in this model, and that the lumped treatment of soil wetness may be
improved by adding a dynamic contributing area concept such as is implicit to the
CWI and PDM models. Clearly, the DBM analysis would first need to be repeated
for different subcatchments and periods including validation tests.

22.6.5 Concluding Upon the Value of DBM Modeling for Land
Use Impacts Analysis

The DBM modelling framework has been applied previously to identifying spatial
and temporal signals in hydrological response, and linking these to land use and
land management change [10, 46], and there is scope for broadening such analyses
to the catchment classification problem (Wagener and McIntyre, this book). DBM
analysis has recently been used for emulation of complex physics-based models
[92], with clear applicability to further formalising our meta-modelling strategy.
Our recent work (McIntyre et al. in review) has illustrated the insights into plot
scale responses provided by a DBM analysis, which can inform development of
small-scale physics-based models. And finally, the DBM analysis in this chapter
has provided initial indications of how the HMCs used in our meta-modelling may
be improved to better represent observed non-linearity.

22.7 Conclusions

In this chapter, we have reflected critically on the role of alternative modelling ap-
proaches and philosophies, guided by Peter Young’s work. We consider the practical
problem of prediction of the effects of land use and land management change on hy-
drological response at scales from individual fields to catchments, which challenges
current methodologies. While the role of physics-based models has received much
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critical discussion in the literature, we show that with data support from a detailed
field experimental programme, at Pontbren, Wales, useful predictions of the effects
of complex interventions (for example planting spatially-localised tree shelter belts)
can be made at field scale, albeit with relatively large confidence intervals. These
models are too demanding computationally to be applied at catchment scale, hence
we use simpler Hybrid Metric Conceptual (HMC) meta-models to emulate their be-
haviour and hence produce catchment-scale estimates of the impacts of different
land management strategies.

We explore the role of physics-based models in a data-scarce situation through
consideration of the management of upland peat in the UK. A simplified physics-
based model is conditioned on surrogate data, and provides a useful tool to explore
scenarios of land management change. Current work is extending this through meta-
modelling to catchment scale.

We also consider an alternative approach, using a conceptual modelling frame-
work, constrained using regionalised indices of hydrological response. A region-
alised Base Flow Index, dependent on soil type, has considerable power in constrain-
ing ungauged catchment simulations; by speculating on the effects of land manage-
ment interventions on soils we produce estimates of the catchment-scale effects. In
addition we consider the use of US Curve Number methods. These have been de-
veloped on the basis of small scale experiments and contain tabulated guidance on
the effects of soil structural change. By mapping US to UK soils we provide an ad-
ditional source of information with which to constrain catchment-scale simulations.
Despite the limited data support for these methods, results to date are convincing,
and generally consistent with the physics-based upscaling approach. Clearly further
work is desirable to establish the validity of these methods for more general applica-
tion, but in the absence of alternatives, the method shows great promise for national
applicability.

Finally, we apply Peter’s algorithms to Data-Based Modelling, using our Welsh
experimental data. It could of course be argued that this should have been the first,
not the last, model analysis; the results show the power of DB modelling in pro-
viding insight into experimental data and appropriate model structures. The specific
results have significant implications for the representation of flow routing in hydro-
logical models; more generally the results illustrate the major potential for Peter’s
DBM analysis to be applied to high quality experimental data to improve under-
standing of appropriate model structures and their identifiability.
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Chapter 23
Hydrological Catchment Classification Using
a Data-Based Mechanistic Strategy

Thorsten Wagener and Neil McIntyre

‘In plain words, Chaos was the law of nature; Order was the
dream of man.’ Henry Adams (1918)

23.1 Introduction

An important task in any field of science is to perpetually organize the body of
knowledge gained by scientific inquiry. Classification or taxonomy is an essential
component of such organization, whereby we attempt to organize the entity of in-
terest into homogeneous or similar classes. If the object of classification is a natural
entity (rather than, for example, human-made objects), then classification becomes
the search for a theory about the basis of natural order and to make sense of the het-
erogeneous world around us [9]. In this sense classification is not merely the creation
of a filing system, but a rigorous scientific inquiry into the causes of similarities and
dissimilarities of a particular entity of interest (e.g. organisms in biology). Some sci-
ences (such as biology and fluid mechanics) have made great strides in establishing
classification systems, which have led to rapid advances in their theoretical founda-
tions [5], while other sciences (such as hydrology) are younger and therefore less
advanced in understanding how their knowledge set could be similarly organized or
generalized.
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In the field of hydrology, the catchment forms an entity of major interest, which
provides a sensible (though of course not the only possible) unit for a hydrologi-
cal classification system. A catchment is typically defined as the drainage area that
contributes water to a particular point (usually) along a channel network, based on
its surface topography. Catchments form landscape elements across spatial scales
that integrate all aspects of the hydrologic cycle within a defined area that can be
studied, quantified, and acted upon [36]. Catchments vary widely in terms of their
landscape characteristics (e.g., vegetation, topography, soils, geology) and in terms
of the climatic characteristics of the region they are located in (e.g., precipitation,
temperature, radiant energy). Despite the degree of uniqueness and complexity that
each catchment exhibits [2], we generally assume that some level of organization
and therefore a degree of predictability of the functional behavior of a catchment
exists [5, 30], which may be a result of natural self-organization or co-evolution of
the climate, soils, vegetation and topography. While we are relying heavily on the
assumption of hydrological similarity, and therefore on the ability to transfer infor-
mation from one region to a similar one, the science of hydrology has thus far not
established a common catchment classification system that would provide order and
structure to the global assemblage of these heterogeneous spatial units (see detailed
discussions in [18, 36]).

Identifying and categorizing catchments based on their dominant functional char-
acteristics, i.e. based on their hydrological behavior, is one strategy to quantify the
degree of similarity that may exist between catchments. Understanding how and
why certain functional behavior occurs in a given catchment would ultimately shed
new light on the reasons for the similarity or dissimilarity that is exhibited between
catchments [8]. Grigg [10, 11] lists three main reasons for the classification of ge-
ographical data: (1) to give names to things, i.e. the main classification step; (2) to
permit transfer of information, i.e. regionalization of information; (3) to permit de-
velopment of generalizations, i.e. to develop new theory. In the light of increasing
concerns about non-stationarity of the responses of hydrologic systems [21, 37],
we add a fourth reason for the need for a robust catchment classification system,
namely: (4) to provide a first order environmental change impact assessment, i.e.,
the hydrologic implications of climate, land use and land cover change.

All four of the above aspects have to be objectives of any catchment classifica-
tion system to ultimately achieve order, new understanding and predictive power.
As mentioned above, classification implies that entities (e.g. catchments) with sim-
ilar characteristics belong to the same group, while dissimilar entities form separate
groups. The first question to be addressed is therefore how one should define hydro-
logic similarity or dissimilarity in a catchment classification system. Strategies for
classification in the past have largely focused on physical similarity (e.g., similarity
in physical characteristics, or how the catchments look) or on similarity of some
(narrow) characteristic of the streamflow record (how the catchments behave within
a given, somewhat narrow context). Below we argue that both approaches fall short
in achieving all of our objectives, and that the general idea of catchment function
[30, 36] can bridge the gap between them and in this way help fulfill the needs of a
more general classification system.
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A wide range of previous studies has grouped catchments based on the sim-
ilarity in physical characteristics, such as soils, land cover, or topography. Win-
ter [38] developed a catchment classification system that is based on the idea
of hydrologic landscapes, which are defined on the basis of similarity of cli-
mate, topography and geology, assuming that catchments that are similar with
respect to these three criteria will behave similarly in a hydrological sense. In
a similar manner, Buttle [4] suggests that, within a hydro-climatic region, three
factors should provide first-order controls on the streamflow response of catch-
ments: (1) typology—hydrologic partitioning between vertical and lateral pathways,
(2) topology—drainage network connectivity, and (3) topography—hydraulic gra-
dients as defined by basin topography. These studies then make the (often) im-
plicit assumption that the physical (climate and landscape) characteristics consid-
ered are the dominant controls on the ‘hydrologic behavior’ of a catchment and
are therefore sufficient to group catchments that are hydrologically similar. In gen-
eral, these strategies are based on the expected mapping or assumed relationships
between physical, climatic and hydrological response characteristics, including an
eventual test of the predictive power of these relationships. The general availabil-
ity of physical and climatic characteristics enables the widespread implementa-
tion of such schemes. However, such assumed relationships might not always be
a complete or even sufficient explanation of the inter-catchment variability. To fully
permit (hydrologic) information transfer and to achieve a generalization of the re-
lationships between catchment attributes, climate and hydrologic responses (i.e.
steps (2) and (3) in our objectives listed above), an explicit quantitative assess-
ment of such relationships is required, whereas implicit assumptions will prove to
be ultimately insufficient (although they can be good starting point for the analy-
ses).

An alternative strategy to the above physically based classification scheme relies
on the analysis of some aspect of the streamflow response. Assessing similarity in
terms of certain streamflow characteristics, such as river regime, has been particu-
larly useful in aquatic ecology, due to their importance for maintenance of aquatic
habitats [22]. For example, Haines et al. [12] classified river regimes in terms of
seasonality of flow, Olden and Poff [22] with respect to ecologically relevant flow
characteristics, Krasovskaia [15] based on entropy and Krasovskaia et al. [16] with
respect to inter-annual variability of streamflow. This is by no means an exhaustive
list of studies of this type, but merely a representative sample. These studies provide
a grouping with respect to similarity of a specific hydrologic response, and thus
represent similarity only in a narrow sense. In particular, they suffer from the fact
that they do not attempt to connect the hydrologic responses back to both climate
and landscape characteristics that caused them, and hence do not achieve all of our
objectives, as stated above.

Black [3] introduced the idea of hydrologic function, defined as the actions of
the catchment exerted on the precipitation it collects. Wagener et al. [35, 36] ex-
panded on this idea by viewing catchments as non-linear space-time filters, which
perform a set of common hydrologic functions, broadly consisting of the partition-
ing, storage, and release of water. Using the definitions introduced in those previous
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papers, partitioning is defined as the process whereby incoming precipitation is par-
titioned at the land surface into several components (e.g. infiltration, interception
and surface runoff). Storage refers to the mechanism by which any of the compo-
nents of the incoming precipitation is held in temporary storage before its eventual
release from the catchment, which arises due to the fact that the rate of arrival of
precipitation is greater than the rate of release of water from the catchment. Types
of storage within a catchment include soil moisture (unsaturated zone), ground-
water (saturated zone), surface storage (lakes, wetlands), above surface storage in
vegetation or leaf litter (interception zone), as well as snow and ice (though one
could see the latter also as external to the catchment since it is climate driven).
Release of stored water is defined as the pathway (and state) through which water
ultimately leaves the catchment. Examples include evaporation, transpiration, sur-
face runoff, and groundwater flow. Aspects of the release function are of course
crucial with regard to several water resource questions, such as the amount of blue
water (mainly in rivers and aquifers) and green water (soil moisture and subsequent
evapotranspiration) [7]. These dominant functions of a catchment are of course cap-
tured in hydrological models that reflect this dominant behavior as well as possi-
ble.

In this paper we attempt to utilize data-based mechanistic modeling [44, 45] to
classify and group a large number of catchments across the Eastern US. This ap-
proach relates to what has been described as a downward or top-down modeling
framework for hydrologic analysis [14, 31, 32]. The general idea is to identify the
appropriate level of model complexity from input-state-output data of environmen-
tal systems with the objective to understand dominant controls on the system’s re-
sponse. The DBM approach put forward by Young [45] is one particularly elegant
and statistically consistent framework in which such a downward strategy can be
implemented. In the DBM approach to modeling the hydrology of catchments, the
(acknowledged) non-linear response of the catchment is usually broken into a non-
linear loss function and a linear routing component. The appropriate level of non-
linearity of the loss function and the required complexity of the routing function can
then be estimated as discussed in detail below. The DBM approach has previously
been applied to distinguishing dominant modes and response parameters between
catchments [1, 20], although only for small groups of catchments in the UK for the
specific goal of land use impacts analysis. Despite its clear potential for doing so,
the DBM method has not yet been used to contribute to a more general catchment
classification scheme.

In the study presented here, we analyze 278 catchments distributed across the
Eastern USA using a DBM strategy. We attempt to understand the catchment sim-
ilarity that can be found with respect to both model parameters (if the same model
structure is applied) and with respect to model structures identified as most suitable.
Finally, we relate the identified structures and parameters to available physical and
climatic catchment-scale characteristics to see whether a further generalization of
our result is possible.



23 Hydrological Catchment Classification Using a Data-Based Mechanistic Strategy 487

23.2 Data-Based Mechanistic (DBM) Modelling

The DBM framework is based on a set of methods of statistical identification of
transfer functions, and the subsequent decomposition of the transfer functions into
structures and parameter values which have a conceptual interpretation. Commonly,
in the rainfall-runoff context, the identified structure is a system of linear hydro-
logical storages in parallel and series, although bypasses, feedbacks and non-linear
responses may also be identified. Non-linear components of the system can be iden-
tified through time and/or state dependent parameter estimation. The modeler may
then make hypotheses about the physical processes, which could lead to the identi-
fied structure and set of parameter values. The ethos behind the method is that any
hypothesis-making should come after the information is extracted from the data, not
beforehand as is common in conceptual or physics-based modeling.

The attractions of DBM modeling over more conventional conceptual modeling
include: (1) using DBM modeling, the reliance on prior assumptions about hydro-
logical behavior is minimal, and the insights delivered by the method may go beyond
prior expectations [19, 25]; (2) the DBM transfer function framework and associated
parameter estimation methods are computationally efficient and thus allow rapid as-
sessment of large amounts of data (e.g. [20]), and can provide efficient emulation
of higher order models [47]; (3) DBM models are identified in a statistically de-
fendable manner with consistent, transparent and testable underlying assumptions;
(4) the requirement for models to be statistically identifiable means that the DBM
approach guarantees parsimonious models.

The DBM approach is described extensively elsewhere (e.g. [43]) and the de-
scription here is limited to the immediately relevant components. The general form
of a single input discrete time linear transfer function is:

ŷk = b0 + b1z
−1 + b2z

−2 + · · · + bmz−m
1 − a1z−1 − a2z−2 − · · · − anz−n uk−δ/ t , (23.1)

where u is the model input and y is the model output, a and b are parameter vectors,
δ is a time-lag parameter, k is the time-step number, and z is the backward shift
operator (so that for example (i.e. z−1xk = xk−1)). The linear relationship in (23.1)
means that, in the context of rainfall-runoff modeling, where y is the estimated
streamflow at the catchment outlet, it is usual for u to be the estimated catchment
average effective rainfall with the assumption that linear routing applies.

Equation (23.1) defines a family of model structures depending on how many
terms are included (i.e. the values of m and n), and for any one catchment it is usual
to seek just one structure which is considered most applicable. Naturally, we may
seek the model structure which gives the best fit between modeled and observed
streamflow, measured for example using the coefficient of determination applied
to the residuals (R2

T ) ((6.54) in [24]) which in this case is the same as using the
NSE. This may favor model structures with large numbers of parameters and poor
parameter identifiability, therefore it is common to also assess parsimony, for ex-
ample using Young’s Information Criterion (YIC) [41], with the intention that both
a good fit and good identifiability should be achieved. The final criterion, central
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to the DBM ethos, is that the identified model structure should be decomposable
into a conceptually plausible combination of hydrological storages, feedbacks and
bypasses [39].

Several forms of (23.1) have been identified for different catchments. The struc-
ture

ŷk = b0 + b1z
−1

1 − a1z−1 − a2z−2
uk−δ/ t (23.2)

(with the same definitions as for (23.1)) has been identified in numerous hydro-
logical studies [45]. With two denominator and two numerator parameters, this is
referred to as a [2 2 δ] structure. This transfer function can often be decomposed
into two parallel linear stores with real and positive response time parameters, con-
sistent with the routing presumed in many conceptual rainfall-runoff models. In
many cases, however, the response times associated with this structure are not phys-
ically plausible (i.e. they are complex or negative), in which case a simpler [1 1 δ]
structure, equivalent to only one linear store, is likely to be preferred:

ŷk = b0

1 − a1z−1
uk−δ/ t . (23.3)

This single store model tends to ensure physically plausible parameters, and usu-
ally improved YIC values over more complex models. The identification of more
than two storages is uncommon although possible (e.g. [19, 39, 40]). The addition
of a parallel bypass pathway to either (23.2) or (23.3) allows an instantaneous re-
sponse to be superimposed [45], for example applied to (23.3) it would result in the
[1 2 δ] structure:

ŷk = b0 + b1z
−1

1 − a1z−1
uk−δ/ t . (23.4)

The response time, steady state gain and bypass flow of the catchment may be
estimated from the transfer function parameters. For example, for the single store
model of (23.4), the response time of the store (T ) would be,

T = −1

ln(a1)
(23.5)

and the steady-state gain of the model (G= yk/uk at steady state) would be,

G= b0 + b1

1 − a1
(23.6)

and the proportion of flow bypassing the store (P ) would be,

P = b1

b1 − b0a1+b1
1−a1

. (23.7)

A corresponding derivation can be done from (23.3), which gives T for each
of the two stores (one relatively small value Tq which may be interpreted as the
stormflow response time and a larger value Ts representing the baseflow response
time), the gain G for each store and the split between the two stores q equal to the
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ratio of the gain for the stormflow response divided by the sum of the two gains [43,
p. 2211].

As effective rainfall u cannot itself be measured, it is usually estimated using a
non-linear model. Various conceptual soil moisture models are available and may be
applied prior to the transfer function identification (e.g. [13, 43]). However, it has
been found that a more empirical method, which uses observed flow as a wetness
index, often performs better (also see [17, 26, 39, 42]),

ûk = c rk qλk . (23.8)

For example, λ = 0 represents a linear loss model while λ = 1 represents large
variability in the runoff generation between wet and dry periods. Parameter λ can be
estimated by trial and error or optimization [17, 43]. Parameter c is usually fixed so
that the cumulative volume of effective rainfall is equal to the observed volume of
streamflow, so that we may expect the resultG= 1. A limitation in the use of (23.6)
is that observed flow is required, therefore while this model can be used for sys-
tem identification, it cannot be used for prediction, although short-term forecasting
applications are possible (e.g. [34]).

In summary, the runoff is estimated using (23.6) or another suitable non-linear
model and a suitable linear transfer function belonging to the family of models de-
fined by (23.1). The DBM approach may be significantly extended by including
data-based identification of non-linear components [19]; by estimation of an error
model which would explicitly allow for the presence of colored noise [43]; and the
introduction of continuous-time transfer functions to remove parameter bias asso-
ciated with the discrete time approximation [46]. For the purpose of the case study
below, where 278 catchments are screened as part of a classification procedure, the
simple implementation of DBM using (23.1) and (23.8) is adopted.

23.3 Case Study: Data

A total of 278 catchments were used in this study, spanning the eastern half of
the United States (Fig. 23.1). The studied catchments range in size from 67 km2

to 10,096 km2, and show aridity indices between 0.41 and 3.3, demonstrating the
heterogeneity of the dataset (Table 23.1). They cover type 1 eco-regions 5, 8 and 9,
which are defined as Northern Forests, Eastern Temperate Forests, and Great Plains,
respectively [23].

Time-series of hydrologic variables at a daily time-step used in this study were
provided by the MOPEX project [6]. Streamflow (from USGS) and precipitation are
daily observed variables. Results shown are based on analysis of 10 years of daily
data between 1970 and 1979. The National Climate Data Center (NCDC) provided
the precipitation data used in the MOPEX database, and hence in this study. Min-
imum acceptable precipitation gauge density within each catchment was defined
following the equation,

Nk = 0.6A0.3, (23.9)



490 T. Wagener and N. McIntyre

Fig. 23.1 Map showing the 278 study catchments, distributed across the eastern half of the United
States

Table 23.1 Selected physical and climatic catchment attributes of the study basins

Name Units Mean value Min value Max value

Mean annual precipitation (P) [mm] 1011 490 1900

Mean annual potential evaporation (PE) [mm] 915 660 1620

Aridity index (PE/P) [–] 0.97 0.41 3.3

Mean annual streamflow [mm] 373 12 1280

Drainage area [km2] 2924 67 10096

where N is the number of precipitation gauges and A is the area of the catchment
(km2) [29]. The number of precipitation gauges calculated by (23.9) is the required
minimum to capture the heterogeneity of storm events to estimate reliable spatially
averaged precipitation values for a catchment. The use of this guideline provides
mean areal precipitation estimates at each time step and should result in less than
20% error 80% of the time [28].

23.4 Case Study: Methods

A relatively simple implementation of the DBM approach, using the family of linear
models defined by (23.1) and an assumed non-linear model, (23.8), are adopted.
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Due to the significant snowfall in most of the catchments, the non-linear model
is extended to include a one-parameter degree-day snowmelt model. Precipitation
falling when the air temperature is less than zero is taken to be snow. The rate of
snow melt m (mm day−1) is given by mk = θKk when snow cover is present and air
temperature Kk (°C) is above freezing, otherwise mk = 0. Parameter θ is a degree-
day factor (mm °C−1) estimated as explained below.

Firstly, the most basic DBM models thought to be useful for classification pur-
poses are implemented, with the view that the models with the fewest degrees of
freedom may best expose spatial signals in the system response. Then the degrees
of freedom in the model optimization are increased in order to look for new and/or
more physically interpretable differences between catchments. Thus, the following
three levels of modeling were implemented:

Level 1. The transfer function structure is fixed to one linear store with zero time
delay (denoted by [1 1 0], equivalent to (3) with δ = 0). The non-linearity parameter
λ is fixed at a value of 0.4 (after McIntyre and Marshall [20]) and θ is fixed at a value
of 8 (after some initial modeling which showed this to be amongst the best of the
uniformly applied values). Parameter c in (23.8) is fixed so that the volume of effec-
tive rainfall is equal to the volume of observed streamflow over the 10-year period.
The transfer function parameters are optimized using the simplified refined instru-
mental variable (SRIV) technique within the CAPTAIN toolkit ([24, 33]; available
from http://www.es.lancs.ac.uk/cres/captain/).

Level 2. The transfer function structure remains fixed at [1 1 0]; but both the trans-
fer function parameters and the non-linear model parameters are optimized. While
the transfer function parameters are optimized using SRIV, λ and θ are optimized
using a non-linear least squares optimization. At each iteration in the non-linear pro-
cedure the SRIV-optimal linear transfer function is identified—this guarantees that
the optimal combination of linear and non-linear model is found. c is again defined
by volume balance.

Level 3. The transfer function parameters and structure are optimized. The trans-
fer function structure is optimized by repeating the parameter optimization for all
possible combinations of m, n and δ from [1 1 0] to [3 3 1], resulting in 18 tested
model structures, including various combinations of routing stores in parallel and in
series. The optimization of the model structure is conditional on the optimum values
of θ and λ which were found in Level 2—this makes the procedure more computa-
tionally tractable than attempting to simultaneously optimize the non-linearity pa-
rameters with the structure. The best model structure is taken to be the one with the
least squares solution, equivalent to the highest R2

T value, subject to the constraint
that the optimized parameter values must be physically plausible. Using the R2

T cri-
terion without requiring physical plausibility would be unsuitable because the high-
est R2

T values are (almost) always achieved by the most complex model structure
tested. The requirement for physical plausibility limits complexity because model
structures beyond a certain complexity, depending on the nature of the catchment
(see results below), produce G and/or T and/or P values which are physically im-
plausible (negative or complex). A possible further constraint would be the YIC (or
a comparable criterion), which penalizes high covariance in the parameter estimates

http://www.es.lancs.ac.uk/cres/captain/
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and hence promotes parsimonious models; however this would require some sub-
jective decision about the suitable compromise between R2

T and YIC, which proved
difficult to implement successfully over the large sample of catchments.

For each of these three levels of analysis, the transfer function parameters were
transformed to the physically interpretable forms (e.g. (23.5)–(23.7)). The variabil-
ity of the parameter values and the routing structure across the 278 catchments was
then examined. This consisted of assessing the nature and strength of the relation-
ships between parameter values/structures and six selected physical catchment de-
scriptors (PCDs). The selected PCDs are those identified by [27] to be potentially
important in describing differences in catchment function: Aridity (annual average
potential evaporation divided by annual average rainfall), Number of cold days (de-
fined byK < 0°C), Percentage tree coverage, Percentage sand in the soil, Catchment
area, and Average elevation.

23.5 Case Study: Results

From the Level 1 analysis (using the [1 1 0] model with default values of λ and θ ),
the variability of the identified response time over space is shown in Fig. 23.2, and
over the six other PCDs is shown in Fig. 23.3. There is only a slight trend towards
worse performance in the more snowy (more northern) catchments, indicating that
the simple spatially uniform degree-day model reasonably (but not entirely) lim-
ited influence of snow on performance. The clearest linear univariate relationships
identified were between log(T ) and percentage sand, and between log(T ) and area;
significant relationships between log(T ) and the other variables were also present
although not clearly visible. Multiple linear regression showed that these six vari-
ables together explained 46% of the variability of log(T ).

The Level 2 analysis (using the [1 1 0] model with optimized values of λ and θ )
provided the opportunity to explore influences on the degree of non-linearity. Fig-
ures 23.4 and 23.5 show that the degree of non-linearity (λ) is related to location
and to all six PCDs. Due to the correlations between PCDs, this is not straight-
forward to interpret. However it is proposed that the primary physical reason for
the variability in λ is aridity (climate), with more arid catchments tending to be
more non-linear, since this has the strongest univariate effect (R2 = 0.18). Another
potential influence indicated by Figs. 23.4 and 23.5 is elevation (with high, steep
catchments tending to be more linear, potentially due to less non-linear storage ef-
fects). The influences on response time T are essentially the same as for the Level
1 analysis.

The Level 3 analysis allowed us to explore the influence of catchment type on
model structure. A single linear store was preferred for 113 of the 278 catchments,
two parallel stores for 163 catchments, three parallel stores for one catchment, and
no suitable structures were found for one catchment. In all cases the time lag δ was
zero. For all but one of the single store models, and two of the parallel flow models,
a bypass was identified. This is because the addition of a bypass almost always im-
proves the fit due to the improved performance at high flows without compromising
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Fig. 23.2 [1 1 0] model with default λ and θ : spatial variability of T

Fig. 23.3 [1 1 0] model with default λ and θ : variability of T and R2
T with PCDs
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Fig. 23.4 [1 1 0] model with optimized λ and θ : spatial variability of λ

Fig. 23.5 [1 1 0] model with optimized λ and θ : variability of λ, T and R2
T with PCDs
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Fig. 23.6 [n m δ] model with pre-optimized λ and θ : spatial variability of R2
T

the physical plausibility of the model (recalling that the fitting process allowed the
fit to be improved by adding more parameters so long as the model remained phys-
ically plausible). Figure 23.7 shows the spatial variability of the optimized model
structure, while Fig. 23.6 maps their performance distribution. This indicates that
the Appalachian chain and the northeastern US in general are best modeled by two
parallel stores, the flatter humid catchments in the south favor a single store while
the picture in the rest of the country is more mixed. The 277 catchments for which
models were identified were separated into the two groups: those that favored a sin-
gle store, and those that favored parallel stores. For both groups, Fig. 23.8 (top two
rows) shows the frequency of catchments across each of the six PCDs (frequency is
plotted as number of catchments within a bin divided by the total number of catch-
ments in that group to make the subplots comparable). The aim is to indicate which
of the six PCDs influences the identified model structure: if a PCD has no influence
then the two frequency distributions should be the same within the bounds of sam-
pling error. The strongest inferences from this plot are: more arid catchments tend
to prefer a single store; warmer catchments prefer a single store; lower elevation
(and less steep) catchments prefer a single store. Figure 23.8 also includes plots of
the model parameter values against the PCDs. The proportion of flow going to the
quick store (q) is only plotted for the parallel store models. It is most related to
the elevation and the area of the catchment (R2 = 0.12 for each) and also weakly
related to percentage sand (R2 = 0.04), percentage forest (R2 = 0.09) and number
of cold days (R2 = 0.06), although the significance of these relationships cannot be
seen in the scatter plots. Catchments at higher elevations and with high proportions
of forest do not show small values of q , and hence require a mix of quick and slow
contributions for a good fit.
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Fig. 23.7 [n m δ] model with pre-optimized λ and θ : spatial variability of structure. The single
[3 3 0] model is omitted for clarity

23.6 Case Study: Discussion and Conclusions

Catchment classification remains a significant challenge for hydrologists, with avail-
able schemes not providing a sufficient basis for consistently distinguishing between
different types of hydrological behavior. The inconsistencies and overlaps within
available general classification schemes are intellectually unsatisfying and do not
provide the sought level of support for simulation of hydrology of ungauged basins
or for environmental change assessment. Thus, despite this being a well-established
general area of research, there remains considerable interest and activity in seeking
better classifications. One opportunity for improvement lies in distinguishing be-
tween catchments according to their functional behavior as embedded in selected
response signatures (rather than their physical properties, just streamflow character-
istics alone, or the values of parameters which represent these properties within a
conceptual model).

The idea of classification via response signatures requires a practical and consis-
tent method of describing a range of signatures from large samples of catchments.
The data-based mechanistic (DBM) approach to time-series modeling, developed
by Peter Young and colleagues throughout the last 40 years, seems an eminently
suitable approach. The DBM approach is designed to extract the dominant modes
(signatures) of a system’s response; its value for this in the hydrological context
has previously been established (albeit not for classification purposes). The DBM
approach, with its formal statistical basis, can be applied consistently; and the es-
timation algorithms within the DBM toolbox, CAPTAIN, allow efficient dominant
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Fig. 23.8 [n m δ] model with pre-optimized λ and θ : relative frequency of single store and parallel
store models (top two rows of plots) over each PCD; and variability of q , λ, T and R2

T with PCDs

mode and parameter estimation over very large numbers of catchments. Further-
more, the method of DBM modeling—to eradicate or at least minimize the reliance
on prior perceptions of how a catchment functions—provides an opportunity to un-
cover responses and classifications which were unexpected a priori.

Hence the DBM approach was applied in this chapter to 278 catchments dis-
tributed across the Eastern USA, with the aim of exploring whether the catchments
may be classified according to their dominant mode responses. This includes iden-
tifying both the type of response (the transfer function structure) and the scale of
the response (the associated parameter values). In terms of the type of response,
the DBM dominant mode identification distinguished between catchments best de-
scribed by one routing store, and those best described by two routing stores in par-
allel. A significant regional pattern emerged (Fig. 23.7), reflecting the influences
of aridity, elevation (steepness) and temperature (Fig. 23.8). In terms of parameter
estimates, the most interesting variability between catchments is that in response
non-linearity. Significant regional patterns in the non-linearity parameters emerged,
and reasonable physical explanations were proposed.

The results give the impression that DBM could be fruitfully applied towards
the catchment classification goal. The classification of catchments by their domi-
nant modes of response, over regional to national scales, could provide new insights
into how catchments differ functionally, beyond those achievable by merely apply-
ing parameter estimation to a pre-conceived hydrological model. In principle, the
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parameter estimates might then be seen as secondary classification measures. Our
study, however, merely states the hypothesis that DBM modeling is a useful step in
catchment classification, along with preliminary steps towards testing the hypothe-
ses: it is not conclusive and further investigation is recommended.

Using the same data set as used here, further investigation could include using
state dependent parameter analysis to identify the nature of the non-linearities in
the model, as opposed to presuming a power law. How can routing non-linearity
be used to aid classification; and how do controls on effective rainfall generation
differ over catchments? Such questions should be examined using a more advanced
level of DBM analysis. Whatsmore, there are a number of limitations in the case
study which need to be addressed. The runoff coefficient is implicit in the value of
parameter c, but this parameter is difficult to interpret because it has the dual role
of also making (23.8) dimensionally consistent. An explicit runoff coefficient could
be added. There is potential for interaction between parameter values and model
structures, for example the single store models tended to have higher non-linearity,
potentially compensating for the fact that they are missing flow components [19]:
this complication requires further exploration. Another particular limitation of the
method is that model structure identification was conditional on pre-optimized non-
linearity parameters, however these parameters were found to be not very sensitive
to model structure. Finally, the interpretation of the results could benefit from a
deeper multi-variate analysis to inspect how combinations of physical properties
explain functional similarity.

In conclusion, the DBM modeling approach developed since the 1970s by Peter
Young and colleagues provides a consistent and efficient framework for classify-
ing catchments with respect to their dominant modes of hydrological response and
associated parameter estimates. The potential of the DBM method in this role has
been demonstrated in this chapter by identification of time series models for 278
catchments across the eastern USA.
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Chapter 24
Application of Optimal Nonstationary Time
Series Analysis to Water Quality Data
and Pollutant Transport Modelling

Renata J. Romanowicz

24.1 Introduction

This chapter addresses the application of a data-based systems approach to two
closely related issues, pollutant transport and water quality modelling. The aim is
the presentation of on-going research on data-based models and a comparison of the
results with physically based approaches using worked case examples.

It is well known that environmental systems are poorly defined and difficult to
model, because of a lack, or limited number, of observations of the inputs to the
system, spatial variability and heterogeneity of the processes involved, scale issues
(the process variability requires a small spatial scale with a relatively large time scale
required), uncertainty of climatic variables influencing the system, and difficulties
in reproducing the experiments. Among many approaches to modelling, the most
popular are, the so called physically-based and black-box models that describe an
input-output relationship.

Black-box models can be simple or complex in terms of the number of param-
eters involved. The Artificial Neural Network (ANN) modelling approach [15] in-
volves a great number of parameters and is not statistically efficient. On the con-
trary, a black-box model in the form of a Stochastic Transfer Function (STF), being
the basic tool of the Data Based Mechanistic (DBM) approach introduced by Peter
Young [32], involves the minimum number of parameters that are necessary from
the point of view of the goal of modelling and the available data.

The Multiple-Input-Single-Output (MISO) STF model, including the Box-
Jenkins time series model [4], is equivalent to a linear stochastic difference equation.
This approach introduces simplifications into the description of usually nonlinear
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physical processes that allow for the application of statistically efficient methods
of analysis. The derived models are fit for purpose and provide the best use of the
available data. The application of physically-based models, on the other hand, re-
quires an extensive pool of observations that are usually not available. Therefore, the
complexity of the process description is not supported by the experimental data and
details are lost due to a lack of knowledge of the physical parameters involved [9]. In
addition, due to the complexity of the physical models, an estimation of their predic-
tive uncertainty is difficult. In contrast, much simpler, but well defined, black-box
stochastic time series models give robust predictions over a wide range of input
variability together with estimates of the predictive uncertainty.

The inability to reach a physical interpretation of statistical models is one of
the main criticisms of that approach. The introduction of the concept of inductive,
Data Based Mechanistic (DBM) modelling [33] is an answer to that criticism. This
concept advocates an inductive, top-down approach to environmental modelling,
where the best identifiable model structure is first inferred from the available data
in an inductive way. This black-box, but statistically efficient, approach is followed
by a physical interpretation of the model structure and its parameters. The approach
was introduced to water quality and pollutant transport in the 1970s [31], although
its underlying philosophy was formulated much later [33].

The main challenge of the DBM approach lies in the search for a physical expla-
nation of the model structure. This is the area where the knowledge and expertise of
the scientists involved in the detailed studies of environmental processes are of the
utmost value. We shall show here that a similar linear dynamic model can be used
to describe the solute transport processes in the river and the biological processes
governing the oxygen concentrations. There may be different lines of explanation
used depending on the aim of the research and the background of the researcher.
One of the possible approaches is an idea of the dominant mode of behaviour of the
dynamic environmental systems [33]. The “dominant mode of behaviour” can be
described as a typical mode of working of the system for most commonly occurring
input patterns. This approach is well known and widely studied in control science.
In the environmental sciences, due to the wide ranges of variability of environmental
processes, this approach is not popular and a reductionist approach is preferred [32].
The argument often used is that environmental processes are so complex that simple
linear models cannot give appropriate solutions. However, in the search for general
models of environmental systems, such as rainfall-runoff, solute transport or water
quality processes, the scientist applies the general goodness of fit criteria that, by
definition, average the model’s behaviour towards typical input patterns. As a re-
sult, a linear approximation of the process dynamics works well, despite the process
complexity. The proof can be found in many examples given by Peter Young and
his co-workers in articles published over the last 30 years. In certain cases, in or-
der to secure the linear model assumptions (i.e. a linear relationship between model
variables), nonlinear transformation of the process variables is required. Following
the DBM philosophy, these approximations should have a physical justification.

This chapter addresses Peter Young’s contributions to water quality and pollutant
transport modelling against a wider background of recent developments in the area.
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Professor Young’s main interest lies in data-based modelling and in looking for
a simple representation of complex environmental processes that would fulfil the
conditions of identifiability and the best use of available observations. His engineer-
ing approach ensures that the aims of his research are reached in the most efficient
way whilst the scientific rigour of his work assures the validity of the approaches
undertaken. Professor Young’s main contribution lies in the introduction of a uni-
fied, statistical systems approach to environmental modelling ([34], and references
therein). Its success is due largely to the application of recursive estimation methods
that allows the model parameters to be updated sequentially while working through
the data [35]. This in turn enables an estimation to be made of time-variable model
parameters of non-stationary and nonlinear processes [32]. The work presented in
this chapter was carried over many years and followed the development of methods
of pollutant transport modelling. Its contributions include many aspects of water
pollution modelling, from the simplest advection dispersion modelling through wa-
ter quality models to the parameterisation of the dependence of models parameters
on flow.

In the second subsection we present an application of DBM methods to solute
transport, based on tracer experiments and compare the results with a physically-
based model. It is a typical input-output process, in the sense that both input and
output variables have the same physical meaning of pollutant concentration. The
calibration of both physically-based and DBM pollutant transport models for a river
tracer study is usually performed under steady and known flow values. The model
parameters depend on two main processes, longitudinal advection by turbulent flow
and molecular cross-sectional diffusion with diffusivity depending on flow. It will
be shown that the parameterisation of the dependence of the DBM model param-
eters on discharge allows it to be applied to discharges different to the calibration
runs, as well as under gradually varying (unsteady) flow conditions and in water
quality assessment. The application of STF methods to the analysis of tracer experi-
ments and comparison with physical model results will be illustrated using the River
Narew (North Poland) case study, whilst the procedure of transformation of model
parameters that take into account their dependence on flow and an application of
the obtained model to transport of pollutant in varying flow conditions is illustrated
using the Murray Burn (UK) experiments.

The third subsection deals with water quality modelling in rivers, which usually
employs both rainfall-runoff and flow routing models and transport modelling in
order to derive the time-variable concentration profiles [29, 30]. In what follows
we shall present an application of a multi-rate STF procedure to model concen-
trations of oxygen at one river cross-section, without the involvement of transport
models. The evolution of oxygen concentration is modelled using temperature, ra-
diation and pH measurements from the same site as input variables. These inputs
are related to biological processes that control the oxygen production and depletion.
The procedure will be illustrated using the River Elbe case study. The summary
and conclusions of the applications of STF modelling tools will be given in the last
Sect. 24.4.
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24.2 Solute Pollutant Transport

In nature, the transport of passive and conservative pollutant in a river is governed
by the combined action of the advection and diffusion processes. The assumption
of passiveness enables the separation of the flow process from the pollutant trans-
port. A full description of the transport process involves 3-D equations describing
the changes of pollutant concentrations due to changes in the velocity of the flow
and volume [19]. Analytical solutions to the idealized cases can be found [22], but
in real-life problems of transport and mixing, simplified numerical solutions are
commonly applied, due to the problem’s complexity and the lack of observations
regarding boundary conditions. The common approach is to average the velocity
field. The introduction of simplifications into the process description is an impor-
tant task for the modeller. It should be preceded by a detailed analysis of the goals
of the modelling, the available information about the processes involved and the
observational data base, as well as the computer resources.

24.2.1 Physically-Based Models: Advection Dispersion Models
(ADE) and One-Dimensional Transport with Inflow and
Storage Model (OTIS)

The transport of a conservative soluble pollutant along a uniform channel with a
steady flow is usually described by the well-known Advection-Dispersion Equation
(ADE) [7]. This model was successfully applied to many engineering applications
(e.g. [26]). A review of the ranges of its applicability in small lowland rivers is given
by [24], who show that the natural process studied follows Fickian behaviour at
distances greater than 80 to 100 times the river width. The main problems discussed
in the literature regarding the applicability of ADE to describe dispersion in natural
rivers point to a quicker decrease of the concentration maximum than predicted by
ADE, the nonlinear growth of the variance of concentration distribution with time
and the existence of longer tails of concentration distribution at sufficiently long
distances, than those that follow from the balance between advection and dispersion.
The main reasons for the violation of dispersion process laws as described by ADE
are thought to be the influence of a laminar sublayer, the irregular geometry of the
channel producing so-called dead-zones, and heterogeneous velocity profiles [24].

The One-dimensional Transport with Inflow and Storage model (OTIS) was in-
troduced by [2] to describe the long tails of the concentration profiles observed
in real cases in a physically meaningful way. The OTIS model is formed by writing
mass balance equations for the stream channel and the so-called storage zone. Water
in the storage zone is considered immobile relative to water in the stream channel.
The exchange of solute mass between the stream channel and the storage zone is
modelled as a first-order mass transfer process. Under steady flow conditions, con-
servation of mass for the stream channel and storage zone yields [2, 18].

∂C

∂t
= −U ∂C

∂x
+ ∂D∂C

∂x
+ α (Cs −C)+ qL

A
(CL −C) , (24.1)
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dCs

dt
= α Q

UAs
(C −Cs) , (24.2)

where: C—solute concentration in the stream [g/m3], t—time [s], Q—flow [m3/s],
A—the main channel cross-sectional area [m2], x—distance downstream [m], D—
the coefficient of longitudinal dispersion [m2/s], CS—the concentration in the stor-
age zone [g/m3], α—the exchange coefficient [1/s] and AS—the storage zone cross-
sectional area [m2], qL—lateral volumetric inflow rate [m3/s], CL—solute concen-
tration in lateral inflow [g/m3], U—mean cross-sectional flow velocity in x direc-
tion [m/s].

The variables in (24.1)–(24.2) are defined as averaged over the channel cross-
section and the equation is valid when the solute is well mixed. The physically-
based models are formulated in a deterministic set-up and their prediction uncer-
tainty is evaluated using Monte Carlo (MC) based techniques. These involve simple
MC sampling e.g. with the application of Generalised Likelihood Uncertainty Esti-
mation (GLUE) methods [3] or Markov Chain Monte Carlo (MCMC) approaches,
e.g. [21].

24.2.2 DBM Modelling Approach: Active Mixing Volume AMV
Model

As an alternative to the transient storage model, the Active Mixing Volume (AMV)
model was introduced by [36]. This concept is a further extension of the earlier
Advection-Dispersion with dead zones ADZ approach [1]. The AMV model struc-
ture is identified and the parameters are estimated from the observed time series data
(i.e. temporal concentration profiles) using system identification techniques [35].
The method is stochastic and the model parameters, including the residence time of
the tracer transport process, have the form of random variables, thus allowing for
derivation of their dependence on flow in a stochastic form. Obviously, the AMV
model parameters also depend on discharge, as shown by [28, 36, 38].

In the AMV model the change of solute concentration in a river reach is described
as a Stochastic Transfer Function model [13, 35]:

Coutk = B(z−1)

A(z−1)
Cink−δ; (24.3)

Cobsk = Coutk + ξk (24.4)

where Cink is the concentration at the upstream end of the river reach at a sample
time k t , Coutk is the estimated concentration at the downstream end of the river
reach, Cobsk is the measured concentration at the downstream end of the river reach,
z−1 is the backshift operator, and δ is a pure, advective time delay of δ t time
units, A and B are polynomials of the backshift operator of the order ‘m’ and ‘n’
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respectively, and ξk represents the combined effect of all stochastic inputs to the
system, including measurement noise. A and B are given by:

B
(
z−1)= b0 + b1z

−1 + · · · + bmz−m, (24.5)

A
(
z−1)= 1 + a1z

−1 + · · · + anz−n. (24.6)

The time series transfer function model described by (24.3)–(24.6) is equivalent
to a stochastic difference equation:

Coutk + a1Coutk−1 + · · · + anCoutk−n = b0Cink−δ + · · · + bmCink−m−δ + ζk.
(24.7)

The order of the STF model describing the transport of solutes in a river reach
is described by the triad [n,m, δ] and is determined in a statistical time series anal-
ysis technique using the recursive-iterative simplified, refined, instrumental vari-
able (SRIV) method [35] which is available in the CAPTAIN Toolbox developed at
Lancaster University (www.es.lancs.ac.uk/cres/captain/). The toolbox functions and
their use in a wide range of environmental and engineering applications is described
in the manual [13]. The SRIV method gives the estimates of parameter uncertainty
and the uncertainty of its predictions and these two factors are used during the choice
of best model structures. However, the choice of model structure and its parameters
depends not only on statistical criteria but also on the physical interpretation of the
model structure and its parameters. The approach can be summarized as follows:

• Prepare (normalize) input and output data in the form of equal length columns;
input data should have no gaps, but gaps filled with NaNs may be present in
output.

• Apply rivid CAPTAIN function to identify the model structure, applying two
goodness of fit criteria simultaneously—YIC and RT 2.

• Apply riv CAPTAIN function to estimate the AMV model parameters.
• Check the model roots for the physical interpretation of the model (only values

lying between 0 and 1 are feasible).
• Check the autocorrelation of the model residuals using the acf MATLAB func-

tion.

In the case where the model residuals are highly auto-correlated, a full recursive
instrumental variable (RIV) approach including the noise model should be used. The
model may have first order, and then it can be directly related to the ADE model.
The parameters (a1, b0) of that model can be used to calculate the residence time
Tres and a mean travel time of a pollutant t̄ :

Tres =  t

ln(−a1)
(24.8)

and mean travel time defined as:

t̄ = tδ + Tres . (24.9)

The b0 parameter can be related to mass conservation (or steady state gain), SSG =
b0/(1 + a1). The model can also be of second order and can be decomposed into

http://www.es.lancs.ac.uk/cres/captain/
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first order models using fractional analysis, thus representing different pathways
with different residence times [36]. For each of the pathways of the AMV model, the
mean travel time of the pollutant and the dispersive coefficient [10] can be compared
with the parameters derived from the physically-based models ADE and OTIS.

24.2.3 Case Studies

The application of the data Based Mechanistic modelling approach to solute trans-
port will be illustrated using two separate case studies. The Upper River Narew case
study [17] will be used to compare the AMV model results with the numerical so-
lution of the OTIS model and solute transport in unsteady flow conditions will be
illustrated using the Murray Burn tracer experiments [27].

24.2.3.1 Upper Narew Case Study

The case study illustrating an application of AMV model to pollutant transport and
comparison with OTIS model results is based on a tracer experiment performed
in a multi-channel system of the Upper River Narew in northeast Poland. The ex-
periment is described in detail by [17]. It consisted of the injection of a solution
of Rhodamine WT upstream the 17 km long river reach. The concentration pro-
files were measured at 5 cross-sections downstream, using the field Turner Design
fluorometer. Water samples were also collected at sampling points. The transient
storage model OTIS was calibrated using the tracer experiment data. As the OTIS
model is deterministic, the Generalised Likelihood Uncertainty Estimation (GLUE)
method [3] was applied to derive the uncertainty of model predictions [11].

The same tracer data were used to derive AMV models for each of the cross-
sections. The best identified models were first order, as shown in Table 24.1. The
identification of the model’s structure and estimation of their parameters for each
of the cross-sections were performed using the SRIV algorithm from the CAPTAIN
toolbox, following the procedure outlined in Sect. 24.2.2. The measurements from
the 4th cross-section had to be omitted due to their bad quality (no mass conserva-
tion of the tracer).

Apart from the model structure, the table gives the values of goodness of fit
criteria (RT )2, the YIC criterion, steady state gain SSG, residence time constants
Tres (24.8) and mean travel times t̄ (24.9). The scheme of the whole analysed river
reach, equivalent to the distributed OTIS model, is shown in Fig. 24.1. The advective
delays for each of the models are measured in the relation to each model input. Each
of the boxes represents a separate river reach, e.g. “2N − 3N” represents the reach
between the 2nd and 3rd cross-section where the measurements were taken.

The OTIS and AMV model predictions together with 0.95 confidence limits de-
rived by the AMV model, for the calibration stage, are shown in Fig. 24.2.

A comparison of the model results shows that both give very similar predictions.
However, the AMV model required much less computation effort, as its predictions
included both the estimated concentration values and their uncertainty.
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Table 24.1 The AMV
models structure for the river
sections described in
Fig. 24.1

Section 2N − 3N 3N − 5N 5N − 6N 6N − 7N

[n,m, δ] [1,1,29] [1,1,18] [1,1,29] [1,1,46]
(RT )

2 0.9996 0.9994 0.9970 0.9934

YIC −19 −18 −15 −15

SSG 0.95 0.93 0.80 0.91

Tres [h] 0.24 0.40 0.39 1.43

t̄[h] 2.65 1.90 2.80 5.25

Fig. 24.1 Schematic representation of the AMV system for four modelled reaches of the River
Narew located within the National Narew Park

Fig. 24.2 Comparison of
AMV (continuous line) and
OTIS (dashed line) model
predictions, observations of
concentrations of Rhodamine
WT at 4 cross-sections in the
National Narew Park are
marked with dots, shaded
area denotes 0.95 confidence
limits

24.2.3.2 Solute Transport in Unsteady Flow Conditions: Murray Burn Case
Study

An application of the Data Based Mechanistic approach to solute transport in un-
steady flow conditions will be illustrated using the Murray Burn tracer experi-
ments [27]. The dispersion and travel times of a pollutant along the river depend
on the flow conditions and in particular on the discharge. The nature of that de-
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pendence is complex and usually is derived from a number of tracer experiments
[6, 8].

Studies of pollutant transport under varying flow conditions require either com-
bined numerical modeling of flow and transport equations, or these equations are
solved in sequence. The main difficulty in modeling this sort of problem lies in
the lack of observations necessary for model calibration and validation. In this sub-
section we present the application of an AMV model, calibrated using a series of
tracer experiments, for predicting solute transport in unsteady flow conditions with
the assumption that mixing of the pollutant is fast enough and the concentrations at
the cross-sections downstream are the sum of impulse responses related to the con-
centrations upstream at varying flow rates. The idea of this approach originates from
the basic integration characteristics of linear transfer function models. The simplify-
ing assumptions, required by the proposed approach, are consistent with those made
in the previous studies, e.g. [20].

The Murray Burn, where the experiments were performed, is a small stream flow-
ing through the Heriot-Watt University Campus at Riccarton in Edinburgh, UK. The
experiments are described in [27]. Each experiment consisted of the gulp injection
of a known mass of Rhodamine WT tracer and the measurement of tracer concentra-
tions at up to four cross-sections below the point of injection, which were performed
using a calibrated Turner Designs fluorometer. Each experiment was carried out un-
der steady flow conditions. Only first two cross-sections were used in this research.
The results presented form part of the research described in detail in [12] and [16].

An outline of the procedure for the development of an “unsteady flow” AMV
model and evaluating its predictive uncertainty is as follows:

• Stochastic calibration of AMV models for a range of flow values.
• Parameterisation of a mean and variance of posterior distribution of the AMV

model parameters on flow using the power law.
• Uncertainty analysis of parameterised model using GLUE with variance adjusted

for heteroscedastic errors.
• Running the parameterised AMV model with input concentration values in the

form of a series of impulses of a given amplitude, related to each measured flow
value.

• Numerical integration (summation) of the model impulse responses into the total
response concentration profile.

Following the above procedure, the AMV model structure and its parameters
are estimated from the input observed tracer concentrations from the first cross-
section and the output tracer concentrations from the second cross-section. 14 out
of 18 experiments were used for the calibration and 4 experiments were used for the
validation. The estimated stochastic transfer function models were of 1st order (i.e.
n=m= 1) for all the experiments, given by (24.3)–(24.6).

In order to account for the observation errors varying with the value of flow,
the MC analysis was performed with flow values following a heteroscedastic dis-
tribution and the AMV model parameters derived for each generated value of flow.
Additionally, in the inner loop, the AMV model parameters were also sampled ran-
domly following the distribution estimated by the SRIV routine.
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Fig. 24.3 AMV model
parameter a1 as a function of
flow; dotted lines denote 0.95
confidence limits

The dependence of AMV model denominator (parameter a1) on flow is shown in
Fig. 24.3.

We chose for the analysis only the experiments with no mass losses and therefore
the AMV models could be further simplified by substituting b0 = 1+a1. Apart from
the parameter a1, also advective time delay of the model depends on flow and has
been parameterised using the power law [16]. After the parameterization, the new
AMV model has the form:

Coutk = 1 + xaQpa
(1 − xaQpa )z−1

Cink−xδQpδ ; Cobsk = Coutk + ξk. (24.10)

It is now not linear in its new parameters, xa,pa, xδ,pδ , so the uncertainty of
its predictions should be estimated using the MC based uncertainty analysis. The
GLUE approach was used here. The parameter values were varied following a nor-
mal distribution with mean value equal to the median values and with variances
estimated from the parameterization. In order to account for the heteroscedastic-
ity we applied the weighting of the likelihood function following the methodology
outlined by [23] and [14].

Following the “unsteady flow” scheme outlined above, for each discrete flow
measurement at a given time instant, the pollutant at the input of the power-law pa-
rameterised AMV model has a form of an impulse with the amplitude ascribed to
that time instant. The resulting ensemble concentration profiles (Fig. 24.4, dashed
lines) are summed up to obtain the total concentration profile at the cross-section
downstream. The approach was tested using flow measurements from the Murray
Burn during autumn 2003, varying in the range 0.47–0.54 m3/s, with input concen-
trations taken from the tracer experiment run at the steady flow of 0.128 m3/s. The
MC sampling of the power law parameters and flow values was applied with the
same a priori distributions as those used for the estimation of uncertainty of model
parameterisation. The uncertainty bounds of the model predictions in the unsteady
flow conditions were obtained using the weights obtained from the model calibra-
tion stage (i.e. only the uncertainty of parameterisation was taken into account). The
total predictive uncertainty could be assessed only if observations of the pollutant
transport under varying flow conditions were available.

In Fig. 24.4 the total estimated concentration profiles for unsteady flow are shown
by continuous lines with 0.95 confidence limits marked by shaded area. The concen-
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Fig. 24.4 Modelling
transport in unsteady flow
conditions using AMV
model; observed
concentrations at steady flow
0.128 m3/s are shown by dots,
continuous line denotes AMV
model predictions in unsteady
flow with 0.95 confidence
limits denoted by shaded
area; impulse responses are
shown by dashed lines

tration profiles obtained for the steady flow of 0.128 m3/s are shown by the black
dots. Due to the higher flow values, the concentration profile starts earlier and is
more asymmetrical, with higher maximum concentration peak than the steady-flow
profile. Unfortunately, we do not have observations that allow for the validation of
the proposed procedure and on-going research will show how useful this approach
may be to model pollutant transport in rivers.

24.3 Water Quality Modelling

In a natural river system, the transport of a pollutant is a complex process and some
adequate approximations must be made to predict the concentration distribution.
There are many numerical modelling tools available for water quality prediction.
They differ in the type of simplifications introduced, from plug-flow reactors that
assume the dominance of advection, to continuously stirred reactors, assuming the
dominance of diffusion. In between these two extremes there are models that use
various numerical approximations to the governing transport equations. A review of
the methods is given, for example, by [22].

In this section we shall present an application of Data Based Mechanistic ap-
proach to water quality modelling using the River Elbe case study as an example.
This work was done during the author’s involvement in the IMPACT EU project
(2000–2003), together with Peter Young and colleagues from GKSS [5]. The first
subsection presents the modelling of total oxygen using Multi Input Single Out-
put (MISO) STF model with radiation, temperature and pH as input variables, the
second presents the MISO STF model in a multi-rate set-up.

The available observations consist of 4 year-long (1997–2000) hourly measure-
ments of total oxygen DO, acidity measure, pH, water temperature T and radiation
R at the Geesthacht Weir station, Germany. The measurements have some missing
samples. However, these are very good data in comparison with many water quality
data sets found in the literature. The data were initially analysed using the Dynamic
Harmonic Regression (DHR) techniques [37] in the CAPTAIN toolbox.
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Fig. 24.5 Validation of
MISO STF model for DO
with radiation and
temperature as input
variables, dotted lines denote
observed values, continuous
red line denotes the
simulation and shaded areas
show the 0.95 confidence
limits, year 1997

24.3.1 STF Model of Total Oxygen Using Temperature and
Radiation as Input Variables

In order to find a black box model equivalent to the biological processes governing
the water quality in the river, we should use temperature and radiation as input vari-
ables. This choice is not the only one possible, of course, and the further analysis
discussed below shows that some other input variables provide a superior explana-
tion of the data. This first MISO STF model is calibrated on the 1999 data. The
same as before SRIV routine from CAPTAIN toolbox is applied (Sect. 24.2.2), with
a vector B in (24.3) replaced by a matrix with dimensions corresponding to the num-
ber of input variables. We applied all the “growing season” period (from April until
October). The best identified model has the form [1 1 1 4 1], which reads: n = 1;
m= [1 1]; d = [4 1] in [n m d] triad:

DOk + 0.9265DOk−1 = −0.0157Tk−4 + 0.6850Rk−1, (24.11)

where DOk denotes total oxygen concentrations [mg/L] at sample time k, Tk denotes
temperature [°C], and Rk denotes radiation [mJ].

This model has a coefficient of determination RT 2 = 0.39, i.e. 39% of the vari-
ance of the DO observations are explained by the model on the basis of the temper-
ature and radiation observations). Validation was performed on both 1997 and 2000
year data sets: the results for the year 1997 are shown in Fig. 24.5, with RT 2 = 0.41,
where a continuous line denotes the simulations and a dotted line denotes the ob-
served values. Also shown are 0.95 confidence limits for the predictions, denoted by
shaded areas. The analysis of autocorrelation function of model residuals was done
using a Matlab function acf. The analysis indicates that the residuals are highly
correlated. That means that a great deal of data variability is not explained by a
linear model based only on temperature and radiation. Higher order models were
also examined but their structure was not physically feasible (i.e. the denominator
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roots were complex variables). Therefore these models were not fulfilling the as-
sumptions of Data Based Mechanistic approach [33]. The model reproduces mean
variations of oxygen concentrations but fails to reproduce the extreme values (both
low and high oxygen levels).

The STF model (24.11) used in this first example is linear and based solely on
the external forcing variables, not taking into account variations of nutrient con-
centrations in the river. According to water quality specialists, extreme values of
oxygen often result from the sudden changes in nutrient concentration, in particular,
the changes of nutrient resources in the upper reaches of the river. Therefore the
extreme oxygen concentration values are related to algal growth in the river, which
introduces a feedback mechanism.This kind of information is not present in the ex-
ternal forcing variables, temperature and radiation. Consequently, it was decided to
introduce pH as an additional input variable. This choice was made following the
results of previous analysis based on the relations between DO concentrations and
the other water quality indicators. Moreover, pH is easily measured and has conser-
vative properties, so it constitutes a reliable indicator of water quality.

24.3.2 DO Model Using Temperature, Radiation and pH as Input
Variables

The acidity measure pH is a logarithmic indicator of the amount of carbon ions in
water since algae use carbon during their growth, thus changing water acidity. The
pH values during pre-unification times were much lower than after German unifica-
tion due, in part, to the low algal population in the water. Hence, the introduction of
an exponent of pH measurements should provide information about the biological
processes taking place in water.

As before, the whole growing period from 1999 was used for the calibration,
using the SRIV algorithm from CAPTAIN toolbox. The resulting STF model has
the following form [1 1 1 1 1 3 4]:

DOk + 0.5199DOk−1 = −0.331Tk−1 + 3.89Rk−3

+ 0.0015 exp(pHk−4). (24.12)

This model gave better goodness of fit than the previous model, both for the
calibration and validation stages (year 1997) (RT 2 = 0.68 and RT 2 = 0.77, respec-
tively). The validation results for this model are shown in Fig. 24.6.

Due to its additive structure, it is possible to distinguish the components of the
model output due to each of the input variables (Fig. 24.7). These results show that
temperature governs mainly the average variations of the oxygen concentrations;
radiation is responsible for the diurnal pattern of the changes in DO; and pH models
the remaining variations of DO. The analysis of the model residuals shows a high
degree of autocorrelation, as in the case of two input variables. This DO model could
be extended by the noise model, using RIV, but it seems to be not very practical for
the off-line predictions.
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Fig. 24.6 MISO STF model
for DO with exp(pH),
temperature and radiation as
an input variables, validation
1997; dotted lines denote
observed values, continuous
line denotes the simulation
and shaded areas show the
0.95 confidence limits

Fig. 24.7 Temperature
(upper panel), radiation
(middle panel) and exp(pH)
(lower panel) components of
MISO STF model for DO,
validation 1997

24.3.3 A Multi-rate STF Model

The results of modelling using discrete transfer function methods can depend on the
interval of sampling [25]. The analysis of the time constant obtained from model
(24.12) indicates that different input variables may require different time constants
in the model. Further analysis of the three input STF model, allowing the three STFs
to have different time constants, yielded time constant estimates of about 10 hours
for temperature, 20 hours for radiation and 30 days for pH. This strongly suggests
that a larger sampling interval is required to model the pH transfer function relation-
ship. Consequently, a new model was estimated in which temperature and radiation
were based on hourly sampling interval and pH was sampled every 2 hours. This
‘multi-rate’ model consists of three STF sub-models: the first two with a one hour
sampling interval and temperature and radiation, respectively, as inputs; and the sec-
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ond with 2 hour sampling interval and non-linearly transformed pH as input. The
choice of this sampling interval gave best validation results and best conditioning of
model parameter uncertainty.

The following MISO model was estimated using the iterative ‘relaxation’ proce-
dure based on the SRIV estimation algorithm in CAPTAIN toolbox:

DOk = − 0.0084

1 − 0.98134z−1
Tk−4 + 0.1888

1 − 0.9813z−1
Rk−1

+ 0.9126 − 0.9175Z−1

1 − 0.9972Z−1
exp(pH)k−1. (24.13)

This equation is presented in a rather unusual nomenclature to denote the multi-
rate nature of the relationship: the lower case z−1 denotes the backward shift op-
erator for a sampling interval of one hour; while the upper case Z−1 denotes the
operator for a sampling interval of 2 hours. The resulting equation form of the first
two STF functions (upper line of (24.13)) is as follows:

DOk + 0.9724DOk−1 = −0.0084Tk−4 + 0.1888Rk−1 + ηk, (24.14)

where the sampling interval is one hour. A second sub-model is then defined that
considers the error ηk as the output and the exponentially transformed pH as the
input, i.e.,

ηk − 0.9972ηk−1 = 0.9126 exp(pH)k−1 − 0.9175 exp(pH)k−2, (24.15)

with the sampling interval in this case being 2 hours. This multi-rate model (24.13)
has a structure similar to the previous model (24.12) but the introduction of different
sampling intervals has provided a slight improvement in the goodness of fit function
(RT 2= 0.84). The procedure consists of multiple iterations with estimation of one
of the model parameters using SRIV with the other model parameters fixed. Six
iterations were required to obtain model convergence.

The validation of the model (24.13) was performed using the data from 2000 and
the results are shown in Fig. 24.8. The coefficient of determination for the validation
stage is now (RT 2= 0.68) and this is a bit worse than previous MISO model results.
However, the model structure distinguishes different patterns of process behaviour
in response to “external” (i.e. temperature and radiation) and “internal” (pH) inputs.
The residence time for radiation and temperature is equal to 1.8 days, while the pH
has residence time of 27 days.

The estimation and validation results for this final, multi-rate STF model indi-
cate that it is more general and flexible than the models identified previously and
describes the water quality processes equally well. The differences in the time con-
stants that necessitated the use of the multi-rate model are an interesting feature of
the process and require further study. However, the model could serve as a useful
basis for subsequent DBM modelling studies.
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Fig. 24.8 Validation of
multi-rate MISO STF model
for DO with radiation and
temperature as input
variables; dotted lines denote
observed values, continuous
red line denotes the
simulation and shaded areas
show the 0.95 confidence
limits; year 2000

24.4 Conclusions and Discussion

The aim of this section was to present the application of DBM methods developed
by Peter Young over the last 30 years to solute transport and water quality modelling
using case studies from Poland, the UK and Germany. Solute transport, represent-
ing a typical input-output process is illustrated using the Narew case study, where
an AMV model was compared with a physically-based OTIS model. A methodol-
ogy for coping with (slowly varying) unsteady flow was presented using the Murray
Burn case study. The approach is based on a numerical integration of impulse re-
sponses of an AMV model, which incorporates the parameterisation of the model’s
parameters on flow. The AMV approach is an attractive alternative to the more com-
plex, simultaneous distributed modeling of flow and transport in unsteady flow con-
ditions. It can easily be extended to incorporate the flow model, run in parallel with
the pollutant transport model. However, further work is necessary to verify the ap-
proach, ideally using observations of solute transport under varying flow conditions.
The water quality application of the DBM tools was illustrated using the River Elbe
case study. The MISO STF models were applied to simulate oxygen concentrations
at one cross-section of the river, using external variables, temperature and radiation
and water acidity index as a measure of biological feedback. We compared the in-
fluence of the internal (biological) input on model performance and the influence of
external factors. The model was extended by a multi-rate application of SRIV meth-
ods that give a better physical explanation but worse goodness of fit of the model
simulations for the validation case.

Acknowledgements I would like to thank my colleagues from GKSS, Germany, for further use
of the data from the River Elbe (among others, Ulrich Callies and Wilhelm Petersen). My collabo-
rators Marzena Osuch, Jaroslaw Napiorkowski and Pawel Rowinski (Institute of Geophysics, PAS,
Poland) and Steve Wallis (Heriot Watt University, Edinburgh, UK) are thanked for their help in the
River Narew and Murray Burn case studies.



24 Water Quality and Pollutant Transport 517

References

1. Beer, T., Young, P.C.: Longitudinal dispersion in natural streams. J. Environ. Eng. 109(5),
1049–1067 (1983)

2. Bencala, K.E., Walters, R.A.: Simulation of solute transport in a mountain pool-and riffle
stream: a transient storage model. Water Resour. Res. 19, 718–724 (1983)

3. Beven, K.J., Binley, A.: The future of distributed models: model calibration and uncertainty
prediction. Hydrol. Process. 6, 279–298 (1992)

4. Box, G.E.P., Jenkins, G.M.: Time Series Analysis: Forecasting and Control. Holden-Day, San
Francisco (1970)

5. Callies, U., Scharfe, M., Blöcker, G., Romanowicz, R., Young, P.C.: Normalisation involving
mechanistic models: benefits compared to purely statistical approaches. Technical report, SCA
Project IST 1999-11313, Deliverable 7 (2002)

6. Deng, Z.-Q., de Lima, J., Singh, V.P.: Transport rate-based model for overland flow and solute
transport: Parameter estimation and process simulation. J. Hydrol. 315, 220–235 (2005)

7. Fischer, H.B.: The mechanisms of dispersion in natural systems. J. Hydraul. Div. 93, 187–216
(1967)

8. Harvey, J.W., Wagner, B.J.: Quantifying hydrologic interactions between streams and their
sub-surface hyporheic zones. In: Streams and Ground Waters, pp. 200–221. Academic Press,
San Diego (2000)

9. Jakeman, A.J., Hornberger, G.M.: How much complexity is needed in a rainfall-runoff model?
Water Resour. Res. 29, 2637–2649 (1993)

10. Lees, M.J., Camacho, L.A., Chapra, S.C.: On the relationship of transient-storage and aggre-
gated dead zone models of longitudinal solute transport in streams. Water Resour. Res. 36,
213–224 (2000)

11. Osuch, M.: Modelowanie przepływu i migracji wybranych zanieczyszczeń na odcinku Nar-
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Chapter 25
Input-Output Analysis of Phloem Partitioning
Within Higher Plants

Peter E.H. Minchin

25.1 Introduction

All higher plants have two vasculature systems, xylem and the phloem. Xylem is
involved in transport of water, mineral ions, and metabolites especially root-derived
hormones from the roots to the shoot, which includes leaves, flowers, and fruit. The
phloem pathway between the mature photosynthesising leaves (or “source” leaves,
as they are the main source of all carbohydrate) to all parts of a plant (sinks) the store
of utilise this carbohydrate is the topic of this chapter. Phloem transport consists of
bulk flow of solution, driven by the large hydrostatic pressure gradient generated at
the source leaves through active transport of the carbohydrate into the flow pathway
and the concomitant osmotic flow of water [33], and carbohydrate unloading as the
sink. Water moves passively (i.e. no energy is involved) in and out of the phloem
pathway under to influence of osmosis. Within the phloem pathway the hydrostatic
pressure is in the order of 1 MPa (circa 10 atmospheres) [8], or greater: damaging
this tissue during preparation for microscopy, sap sampling, or any invasive mea-
surements leads to a surge of flow, resulting in immediate blockage. This results not
only in visual artefacts but also in problems in carrying out dynamic studies of its
function.

Carbohydrate is the major substrate for all plant growth, and its partitioning
between competing sinks (fruit, vegetative growth, storage) determines harvest
yield [7]. Increased harvest yield of modern crops is a direct consequence of in-
creased partitioning of available carbohydrate to the organs of agronomic impor-
tance, e.g. grain, and fruits. In a mature apple tree on a dwarfing rootstock, about
70 percent of a season’s growth is invested in the fruit, the harvested fraction. In
many other crops, this fraction is only 30 percent. A lot of effort involved in crop
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management, and hence production cost, goes into control of unwanted vegetative
vigour which is competing with the fruit for carbohydrate.

All plants can be considered as a network of sources (e.g. mature leaves) and
sinks (e.g. roots, new shoots, flowers/fruit) [9, 35] and one aspect of crop manage-
ment is to maximise growth, i.e. carbohydrate partitioning, to the part of economic
value, which may not be the natural growth pattern of the plant in the wild.

Qualitative rules have been worked out to describe partitioning within plants (e.g.
[34, 35]), but we do not understand the processes that control partitioning, and hence
have little quantitative description. Qualitatively we know that a sink is usually sup-
plied by a nearby source, such that roots are supplied by the lower leaves, the shoot
apex by the apical leaves, and a fruit by nearby leaves. This is consistent with the
concept of supply via the route of least resistance, although phloem flow resistance
has never been measured. There are many claims that this resistance is not a major
factor limiting growth (e.g. [10, 34]), while Thornley [32] has argued that all parti-
tioning models must start with the irreducible framework of transport and chemical
conversion.

Experiments involving altering the size and number of sinks, and sources, have
demonstrated that there is a hierarchy of supply: under limited supply, seeds have
the highest priority and storage has the lowest priority. In general, the priority order
is:

seeds> fleshy fruit parts = shoot apices = leaves> cambium> roots> storage.

A probable reason for lack of progress in the understanding of partitioning is that it
is difficult to measure and many techniques are destructive. Hence it has not been
possible to obtain detailed time sequences of partitioning before and after any exper-
imental treatment. Changes in dry weight are the simplest measure of partitioning,
but require destructive measurements using multiple plants: in addition, the statisti-
cal methods used to overcome plant-to-plant variation can hide small or short term
effects. Another confounding effect is that after a treatment, the modified plant will
adapt to its new source-sink configuration and so partitioning measurements imme-
diately (minutes) after a treatment reflect flow changes induced in the pre-treatment
system, while later measurements reflect the adapting or adapted system.

Much work has been done using the radioactive tracer 14CO2 applied to individ-
ual leaves. Typically, destructive measurement after tracer application has been the
norm except in the special case when the monitored sink is an immature leaf. An
immature leaf is thin enough for the radiation from imported 14C to be measured
in vivo (e.g. [6]), but the other sinks (roots) and the transport pathway cannot be si-
multaneously followed. Geiger’s laboratory produced the first detailed experimental
results on phloem function using this approach, much of it on sugar beet.

Non-destructive measurements enable both the initial and the later responses to
be observed on the same plant. The isotope 11C, applied as 11CO2, has been used as
a tracer that can be measured in vivo because its decay radiation is able to penetrate
many centimetres of plant tissue. The difficulty with this isotope of carbon is that
it has a very short half-life, just 20.4 minutes, so must be prepared on site using
a cyclotron or other nuclear particle accelerator [27, 28]. This isotope is now used
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extensively in positron emission tomography (PET) medical imaging but this is still
not readily available to plant scientists.

25.2 In Vivo Measurement of Phloem Flow

The short-lived property of 11C, does provide a number of advantages. With short-
lived tracers, the same plant can be used for many tracer loadings, because there
will be no tracer carry over between labellings, provided these are far enough apart.
This allows a plant to be used as its own control, overcoming problems of plant-to-
plant variability, that are introduced when measurements are destructive and several
plants need to be used to complete experiments. In addition, in vivo monitoring of
the tracer enables flow to be followed with a very fine time resolution. Typically
1-minute count times have been used. In vivo measurement enables dynamic stud-
ies: several tracer profiles can be collected from different points within a source-sink
network, allowing changes in the flow patterns to be followed. A typical setup to
monitor the movement of tracer pulses along a stem is shown in Fig. 25.1A, with
the observed temporal profiles resulting from a single pulse label of 11C shown in
Fig. 25.1B and C. Useful amounts of tracer last for 150 min (7 half-lives), before the
tracer amounts become low and noisy because of the Poisson statistics of nuclear
decay. The half-life corrected tracer curves, Fig. 25.1C, continually increase to the
end of the measurement because the detectors are observing a terminal sink, that is,
a sink that imports and cannot export tracer. Waiting until a pulse has completely de-
cayed before re-labelling allows decay correction for each pulse, but results in gaps
in the tracer data. More frequent labelling results in overlap of consecutive pulses
(Fig. 25.1D), resulting in a continuous flow of tracer through the system; however,
half-life correction is not possible as the tail of one pulse is overlaid with the early
part of the next. However, input-output analysis of a continuous string of pulses is
no more difficult than for a single pulse (see below) and allows one to follow the
time variation of the model parameters over as long a period as one continues the
tracer excitation. Experiments have been done involving up to 16 pulses in a single
day, applied at hourly intervals [3]. This can be continued for several days to follow
any adaptive responses.

Transport of labelled photosynthate from the site of fixation into various sinks has
provided some of the first insights into the short-term distribution of photosynthate.
The effects of experimental treatments designed to perturb this distribution provide
insight on possible mechanisms driving this flow. For example, during collection
of the data shown in Fig. 25.1D, the temperature of the segment of stem for which
detector 2 is an input and detector 3 an output was warmed from 25 to 35°C, while
the segments on either side (between detectors 1 and 2, and between 3 and 4) were
held constant at 25°C. Care was taken to ensure that each of the detectors was set up
with uniform sensitivity to tracer within their field of view. This ensured that once
tracer was within view, subsequent movement did not result in a change in observed
count rate. Then, change in tracer count rate within any field of view was a result of
tracer movement into the field of view or tracer decay.
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Fig. 25.1 (A) Schematic showing how movement of 11C-labelled photosynthate produced in a
mature leaf to the developing shoot apex of a bean is made. A mature source leaf is enclosed in a
clear chamber for tracer labelling. A pulse of 11CO2 is applied to this leaf and after a few minutes
this is flushed with air continuously pumped through the chamber to maintain leaf photosynthesis.
In this example, a segment of the stem was enclosed in a temperature-controlled chamber to allow
the effect of stem temperature to be measured. The fields of view of 4 radiation detectors are shown
by the brackets and labelled 1 . . .4, achieved by careful placement of lead radiation shielding.
(B) Typical temporal tracer profiles observed after a single pulse of 11CO2 was applied to the
mature leaf at time zero, corrected to give equal sensitivity to all the detectors. (C) Data from B
that have been corrected for isotope decay. (D) Three overlapping tracer pulses, where B and C
are just the first pulse, used to follow tracer movement over longer periods than a single pulse
allows. The vertical dotted line shows when the temperature of the 20-cm length of stem, with
input observed by detector 2 and output by detector 3, was raised from 25 to 35°C while the 1-cm
segments 1–2 and 3–4 were held at 25°C

Figure 25.2 is a schematic diagram showing how measurements of tracer distri-
bution from a single labelled leaf of a barley seedling to the two competing sinks
of a split root system were made. One radiation detector, labelled A in Fig. 25.2,
observed the tracer within the entire plant minus the labelled leaf, and so monitored
the amount of tracer mobilised out of the labelled leaf and available for distribution
between competing sinks. Detectors B and C monitored tracer accumulating within
each root-half. As in the example above, care was taken to ensure that each of these
detectors was set up such that they had uniform sensitivity to tracer within their
field of view. A possible route for tracer loss from a terminal sink was via respira-
tion, which would result in 11CO2 loss from the plant tissue. During the short life of
the 11C tracer, respiration of labelled photosynthate did occur, but only consumed a
small fraction of the tracer within a region [4]. With a longer lived tracer, respira-
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Fig. 25.2 Layout of radiation
detectors to monitor
partitioning between each
half of a split root barley
seedling. Detector D monitors
the labelled leaf, A the entire
plant except for the labelled
leaf, B and C one half of a
split root. Tracer labelling is
done to the tip of one leaf,
which is enclosed in a clear
plastic chamber, which before
and after labelling has air
continuously pumped through
it to maintain photosynthesis

tion would have become a significant route of loss, and so would xylem transport.
This is another advantage of working with a short-lived tracer, but clearly is a major
disadvantage if one is interested in pathways with time constants equal to several
half-lives of the tracer.

25.3 Quantitative Analysis of in Vivo Tracer Profiles

In the early 11C work (e.g. [11, 13, 16, 20, 21]), detectors observing a short seg-
ment of plant stem through a slit collimator were used to monitor input into a region
further downstream. This type of detection is typically referred to as a slit detector.
Given there is leakage from the phloem transport pathway, a slit detector is mea-
suring both the tracer within the phloem transport pathway as well as the locally
leaked and accumulated tracer, without distinction. Once it was realised that a slit
detector was not giving a good measure of input into the region below, we changed
to using integrating detectors to observe tracer movement into a terminal sink, as
described above [20, 21]. This mode of monitoring tracer is typically described as a
sink detector, as once tracer arrives into its field of view it cannot move out again.
With large segments of plant, it is not possible to achieve uniform sensitivity with
a single detector, so multiple detectors are often used, and the sensitivity-corrected
count rates added to produce the effect of a sink detection. With a sink detector,
the only way tracer can move into the field of view is via phloem transport across
the defining surface: any movement within the field of view, either through phloem
transport or unloading from the phloem transport pathway, will not result in any
change in observed count rate. Thus, a sink detector observes the total import into
the region of sensitivity, which is the integral of the input. This requires that any
attenuation of the monitored radiation by the sink tissue is small, or corrections can
be made for it.
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In the example illustrated in Fig. 25.2, detector A observes tracer input to the
whole plant, and detectors B and C each measure the inputs into a segment of the
split root, or equivalently the output from the more apical part of the plant. So,
representing the count rate seen by detector A (the input) as uk , and detector B (the
output) as yk at times k, the general input-output equation is:

yk = −a1yk−1 − a2yk−2 − · · · − anyk−n + b0uk + b1uk−1 + · · · + bmuk−m,
(25.1)

where a1 . . . an, b0 . . . bm are constants that need to be estimated from the data.
This equation describes the movement of tracer from the field of view of de-

tector A into that of detector B. To relate this to the movement of labelled pho-
tosynthate, the observed tracer levels need to be decay-corrected. However, use
of multiple overlapping pulses (e.g. Fig. 25.1D) to increase the observation time
beyond that possible with just one tracer pulse, means half-life correction of the
raw data is no longer possible. Dynamic modelling by using (25.1) offers a sim-
ple solution. Decay-correction of the data involves correcting the observed count
rates back to what they would have been at some standard time, usually the start
of the measurements. This can be achieved by multiplying the count rate observed
at time t by exp(λt), where λ is the isotope’s decay constant and related to the
isotope half life t1/2 by λ = loge(2)/t1/2. The isotope 11C has a half-life of 20.4
minutes, so for 11C λ = 0.033978/min. When (25.1) is fitted to decay-corrected
data, with a sampling time of T, then the common term exp(λkT ) can be cancelled,
giving

yk = −a∗1yk−1 − a∗2yk−2 − · · · − a∗nyk−n + b∗0uk + b∗1uk−1 + · · · + b∗muk−m,
(25.2)

with

a∗i = ai exp(λiT ); b∗i = bi exp(λiT ). (25.3)

That is, for each time k the raw tracer data are decay-corrected to this time and not
to the start of the experiment. Then (25.2) fits the observed data to the general input-
output equation (25.1) and half-life corrections are made to the estimated parameter
values according to (25.3).

Minchin and Thorpe [19] showed that the same input-output equation holds for
summed data, using the same model parameters. Hence the summed input and
summed output count rates, that is, with both detectors in ‘sink’ mode, enables the
dynamics of the unobservable tracer input and output to be obtained. From the time
of this work we work with summed data.

Radioactive decay follows Poisson statistics, so the variance in the mean value
of the observed decay rate at some specified time is the square root of the mean
count rate at that time. Hence observed count rates, and half-life corrected rates,
suffer from heteroscedasticity, i.e. a variable variance. The least squares method
of parameter estimation requires that the data have constant variance, and that the
dependent variable (yk in (25.1), (25.2)) is error free. With tracer data, neither of
these requirements is satisfied. Error associated with the dependent variable results
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in least squares estimations of the model parameter values being biased [14, 36].
A very neat and simple way to prevent the bias problem is to use the instrumen-
tal variable (IV) modification to the least squares algorithm. The requirements of
an IV are that it be highly correlated with the observed output yk and uncorre-
lated with the noise associated with yk . Young [36, 37] introduced the iterative
method where the least squares parameter estimates were initially used to calcu-
late an IV for a subsequent estimation and then the updated parameters were used
to calculate an improved IV with this loop continuing until the model parameters
converged. In practice, this usually requires 2–3 iterations. Young [36, 37] also in-
troduced recursive parameter estimation, where the parameters and their covariance
matrix at time k are calculated from the estimate at time k − 1 and the data at
time k.

Fitting of (25.1) or (25.2) to a data set involves both model identification and
parameter estimation, processes which in practice cannot be separated. Model iden-
tification involves testing various values of n andm, of (25.1) or (25.2), to find which
specific values best describe the data. Recursive IV fitting of data to the input-output
(25.1), or (25.2), has been found to be very robust [37, 38] in that convergence to a
set of parameter values is often possible when conventional block data fitting of the
same equation would result in problems in matrix inversion due to collinearity. The
second advantage of recursive estimation is that it provides a simple method to test
if the model parameters are time invariant. If the system under investigation is time
invariant, then it must be describable by a set of constant parameters. This can be
achieved by giving the recursive algorithm a bad memory for earlier data, so that at
a specific time the current parameter estimates are based only upon the more recent
data. This results in the early data having an exponentially reducing effect on the
current parameter estimates and can therefore drift, if the recent data require this. If
the model is badly chosen or the system is not time invariant, the parameter values
tend to wander. Young and his many collaborators have written extensively in this
area and have developed sophisticated algorithms, which will be briefly summarised
below.

Recursive estimation is used, with its extension to IV, as a means of eliminating
estimation bias. The resultant estimates are used to construct data filters for further
iterative estimation. As these filters are based upon the current estimates of the input-
output model parameters they result in improved estimates and reduced estimated
parameter variances of observed data. The simplified form of this approach, the
simplified refined IV algorithm (SRIV), is not quite as robust as the IV method but,
because it has lower parameter variances, is often preferred. Extensive simulation
work has found that the statistical nature of the noise is unimportant to IV and SRIV
estimation provided that the system input is independent of the noise, even when
the noise is highly structured [37]. Both the IV and SRIV approaches overcome
potential issues of heteroscedasticity: in our experience the model fits are very good,
with little sign of heteroscedasticity in the model errors.

The input-output model is a parsimonious description of changes in shape of
the tracer profile moving through the plant, independent of the actual shape of the
tracer profiles used in determining it. It embodies all the information about the sys-
tem that is available from the stimulating tracer profile, i.e. the input [25]. From
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this model, several physiologically meaningful parameters can be calculated, free
from any mechanistic assumptions, being based solely upon the data. For example,
the transfer function, derived from the input-output model, gives the distribution of
tracer transit times. The bulk flow transit time is given by the time delay in the trans-
fer function, while the average transit time can be calculated from the distribution
of transit times. The system gain is interpreted as the fraction of the decay-corrected
tracer that enters a field of view and eventually leaves. One minus the gain is then
the fraction of the decay-corrected tracer that enters a field of view and never leaves.
That is, the fraction lost between the input and output, which for transport along a
stem is the phloem leakage within this length. In Fig. 25.1, the system gain is the
fraction of labelled photosynthate that enters the field of view of the input detector
and eventually leaves the field of view of the output detector. With a bifurcating
transport system (e.g. Fig. 25.2), the system gain is the fraction of labelled photo-
synthate partitioned to the observed sink.

Input-output analysis of in vivo 11C-photosynthate transport within a plant has
provided the first, and only, direct measurement of phloem leakage [19], and the
most detailed measurements of phloem partitioning between competing sinks (e.g.
[5, 23, 24, 26, 30]), as well as statistically sound estimates of both the bulk flow and
average transit times, as well as the distribution of transit times.

25.4 Examples of 11C-Tracer Results

Input-output analysis has provided the first detailed information available about
phloem leakage in the long-distance transport pathway, sink function which has
lead into a mechanistic understanding of the control of partitioning. Examples of
the input-output analysis will now be presented: firstly, an example involving flow
along the stem of a climber bean plant, which resulted the only detailed information
available on phloem leakage within the long-distance transport pathway. Then, an
example of sink function based upon the measurement of import into a terminal sink
is described, and finally an example of in vivo measurement of phloem partitioning
between two competing sinks that led to the first mechanistic understanding of the
control of partitioning.

Schematic diagrams of the plant and radiation detector setups are given in the
figures, but do not include the lead or tungsten needed for radiation shielding of each
detector. This radiation shielding is needed to create a well defined field of view for
each detector. In the experimental setup, the plant is often buried in this shielding
and not only difficult to see but also to get adequate light to. In some experiments
mirrors have been needed to get light to the labelled leaf. Modern positron emission
tomography cameras (e.g. [12, 29]) do not require such shielding, as they provide
the spatial coordinates of each observed radiation event, enabling the selection of
the regions of interest after the measurements are made. This gives a great deal of
flexibility, but the volume within which sensitivity is uniform is limited, restricting
their use to small plants.
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Fig. 25.3 Measurement of leakage/reloading within the stem of bean. (A) Schematic diagram of
measurement configuration showing the leaf labelled with 11CO2, a chamber on the lower segment
of the stem, and the location of the input and output radiation detectors. (B) The observed input and
output tracer profiles are shown with the time the inhibitor was applied to the chamber as a vertical
dotted line, and below are the estimated input-output model parameters. Redrawn from [19] with
permission

25.4.1 Stem Leakage

Input-output analysis of 11C-labelled photosynthate transport through the stem of a
climber bean provided quantitative data on leakage and reloading along the transport
pathway [19]. Earlier mechanistic modelling of 11C-labeled photosynthate move-
ment through the stem of soybean [2] demonstrated net leakage along the transport
pathway and estimated a rate constant as well as the speed of bulk flow.

Using a single tracer pulse, and input-output analysis, we measured the net loss of
tracer within segment of a bean stem (Fig. 25.3). Application of a reagent known to
inhibit reloading, enabled calculation of the unloading rate: this being the difference
between the inhibited and uninhibited tracer loss. In this example [19] the unloading
flux was 6.0%/cm of the incoming flux, and reloading was 3.2%/cm of the incoming
flux, giving a net unloading of 2.8%/cm before the inhibitor was applied. This leaked
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Fig. 25.4 Estimated partitioning of 11C-photosynthate between the two halves of a split root bar-
ley seedling (see Fig. 25.2 for measurement setup). The vertical line shows the time when galactose
(final concentration of 50 mM) was added to the root solution of the treated root segment. From
[31], with permission

photosynthate would have been used in local growth and possibly laid down in short-
term storage. Short-term storage of carbohydrate has an important role in buffering
changes in source supply and sink utilisation [17, 18].

25.4.2 Sink Function

The flux of photosynthate into a sink depends upon the sink’s ability to utilise this
photosynthate. Treatments altering a sinks importing capacity gives information on
the importing mechanisms within the sink, but this requires in vivo measurement
of import so as to observe the ‘before’ and ‘after’ treatment flows. This is an appli-
cation to which 11C is well suited. Plant roots are a very convenient sink to study
because roots can be grown hydroponically, making it very easy to apply chemical
and physical treatments. In addition, a hydroponic root can be separated into two
fractions, allowing one fraction to be used as a control while treatments are applied
to the other (Fig. 25.2).

An example of experimentally altering the importing capacity of a sink is the
application of galactose. This is a naturally occurring plant sugar, which when ap-
plied to the roots of barley seedlings immediately induced a huge, but temporary,
increase in import of labelled photosynthate into the roots (Fig. 25.4). Root elon-
gation showed a similar response. No other sugars tested were able to similarly
enhance import [4]. Only the Poaceae (grasses) reacted this way: all other species
tested showed a decline in root import upon application of galactose. The specificity
of the large increase in phloem transport was explained by the unique biochemistry
of cell wall formation in Poaceae, where the applied galactose results in transient
starvation of glucose. This induced a large demand for phloem import [31].

25.4.3 Sink Competition

A plant has several sinks in competition for available photosynthate from a com-
mon source. For example in a barley seedling, the roots and the shoot compete for
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Fig. 25.5 Estimated
partitioning of 11C
photosynthate to each of the
root halves of a split root
barley seedling. The shoot
was shaded from the time
indicated by the dotted
vertical line. From [24], with
permission

available carbohydrate. Barley plants usually have 7 seminal roots, each originat-
ing at the base of the shoot and competing with one another. When the root is split
into 2 parts, say 4 and 3 seminal roots respectively, each part receives an amount of
photosynthate in proportion to the amount of the total root in each fraction. When
the shoot is shaded, so that there is a reduced supply of photosynthate, the fraction
of the available photosynthate supplied to the roots is reduced (Fig. 25.5) with the
ratio of partitioning fractions to each root part being unchanged. That is, each root
fraction experiences equal fractional change in photosynthate supply. This has been
described by the root fractions being equivalent sinks [22], in that they behave sim-
ilarly to a change in available photosynthate. This is not unexpected as each root
fraction have the same physiology.

The fraction partitioned to the root plus the fraction partitioned to the shoot must
sum to unity, so if the partitioning to the root is reduced by shading the shoot, we
deduce that the fraction of recently exported photosynthate supplied to the shoot
must increase. That is, partitioning of available photosynthate increases to the shoot
at the expense of the root. The root and shoot sinks are thus in-equivalent sinks,
in that they are not treated equally when the supply of photosynthate changes.
This probably reflects physiologically differences between the two sink types be-
cause of different mechanisms being involved, or possibly the same mechanisms
but different isoenzymes involved. This difference in root and shoot response to
changes in supply of available photosynthate results from the plant attempting to
maintain its physical shoot to root ratio [1]. When photosynthate supply is re-
duced by shading, the shoot activity has reduced relative to the root activity, so
the plant compensates by increasing photosynthate supply to the shoot to support
increased shoot growth, to offset reduced shoot activity. Once the shading is re-
moved (i.e. balance is regained), partitioning to the roots returns to its original
level. The corresponding phenomenon is seen when the roots are pruned: parti-
tioning to the shoot is temporally reduced in favour of the roots until increased
root growth returns the balance. This, and related work, led to the development of
a simple mechanistic model of sink competition [22], where the observed priority
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behaviour was an emergent property. This work demonstrated that photosynthate
partitioning is not solely a function of the sink, but a holistic property of the source,
the long-distance pathway, and the sink. Extension of this mechanistic model to
incorporate further, known, mechanistic complexity [15] did not significantly al-
ter the overall behaviour of the initial minimalist version, or the holistic nature of
partitioning.

25.5 Summary

Investigation into the function of phloem vasculature requires experiments to be car-
ried out on whole plants, as invasive techniques result in immediate blockage of the
transport system. Radioactive tracers provide a method of in vivo measurement of
vascular transport and changes in its function in response to experimental pertur-
bations, without inducing blockage. The most convenient radioactive tracer to label
photosynthate is 14C, as this has a long half-life, and so can be bought and used
when convenient, but it has very limited use for in vivo measurements, as the emit-
ted radiation can only penetrate about 50 microns of plant tissue. Another isotope of
carbon, 11C, is readily observed in vivo but its short-half life makes interpretation
of its tracer measurements more difficult, as it never reaches isotopic equilibrium
within the experimental plant. Mechanistic modelling has been very successful in
interpreting 11C data [2], and able to extract a transport speed and net pathway
leakage. Input-output analysis of 11C tracer profiles has enabled non-mechanistic
interpretation of changes in shape of a tracer profile as it moves through the phloem
system. This has enabled the separation of phloem loading, long distance trans-
port and phloem unloading processes, allowing each to be studied separately, which
was not possible using mechanistic approaches or with data collected by destructive
tracer measurements (for more detail see [16]). Input-output analysis has enabled
mechanistic-free estimates of the distribution of speeds involved (i.e. dispersion),
pathway leakage, and partitioning between competing sinks. The variable parameter
algorithm has been shown to be a very powerful tool in following changes in these
physiological parameters, either natural diurnal changes or those induced by experi-
mental treatments. Analyses that use an instrumental variable and data-filtering (e.g.
SRIV) algorithms have proven to be very robust and able to take care of potential
issues of parameter bias and heteroscedasticity. Applications of these methods have
resulted in the first mechanistic model describing sink interactions within plants,
and have shown that sink priority is an emergent property of this sink interaction
model.
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Chapter 26
Chaos Theory for Modeling Environmental
Systems: Philosophy and Pragmatism

Bellie Sivakumar

26.1 Introduction

There have been two dominant approaches for environmental systems modeling:
deterministic and stochastic. According to the deterministic approach, systems can
be described fairly accurately by deterministic mathematical equations based on
well-known scientific laws, provided sufficient detail can be included to explain
the underlying physical processes. According to the stochastic approach, systems
do not adhere to any deterministic principles and, thus, can be described only by
probability distributions based on probability concepts. Either approach has its own
merits for environmental modeling, having solid foundations in scientific princi-
ples/philosophies, verifiable assumptions for specific situations, and the ability to
provide reliable results. For instance, the deterministic approach has merits con-
sidering the ‘permanent’ nature of the Earth, ocean, and the atmosphere and the
‘cyclical’ nature of the associated processes, whereas the merits of the stochastic
approach lie in the facts that environmental phenomena exhibit ‘complex and ir-
regular’ structures and that we have only ‘limited ability to observe’ the detailed
variations.

In view of these, the question of whether the deterministic or the stochastic ap-
proach is better for environmental modeling is meaningless. Such a question is re-
ally a philosophical one that has no general answer, but it is better viewed as a
pragmatic one, which has an answer only in terms of specific situations [9]. These
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specific situations must be viewed in terms of the system, process, scale, and pur-
pose of interest. For some situations, both approaches may be equally appropriate;
for some other situations, the deterministic approach may be more appropriate; and
for still others, the stochastic approach. It is also reasonable to contend that the
two approaches are complementary to each other, since oftentimes both determinis-
tic and stochastic properties are intrinsic to environmental processes, though scale
plays a defining role. For example, there is significant determinism in river flow in
the form of seasonality and annual cycle, whereas stochasticity is brought by the
interactions of various mechanisms involved and by their different degrees of non-
linearity.

These observations seem to suggest that a coupled deterministic-stochastic ap-
proach, incorporating both the deterministic and the stochastic components, would
most likely yield better outcomes compared to when either approach adopted inde-
pendently. Although the need for this combinatorial approach was recognized more
than 40 years ago [67], there is not much evidence in the literature that points out to
any serious effort to this end. Recently, I have argued (e.g. [42]) that ‘chaos theory,’
with its three underpinning concepts of (1) nonlinear interdependence, (2) hidden
determinism and order, and (3) sensitivity to initial conditions, can bridge the gap
between our extreme views of determinism and stochasticity and also offer a bal-
anced and more realistic middle-ground perspective for modeling environmental
systems. The appropriateness of these concepts to environmental systems and the
potential role chaos theory can play in their modeling may be realized from the fol-
lowing situations: (1) nonlinear interactions are dominant among the components
and mechanisms in the hydrologic cycle; (2) determinism and order are prevalent
in daily temperature and annual river flow; and (3) contaminant transport in surface
and sub-surface waters is highly sensitive to the time at which the contaminants
were released. The first represents the ‘general’ nature of environmental processes,
whereas the second and third represent their ‘deterministic’ and ‘stochastic’ natures,
respectively.

The finding that ‘complex and random-looking’ behaviors are not necessarily
the outcomes of complex systems but can also be from simple nonlinear determin-
istic systems with sensitivity to initial conditions (i.e. chaos) has far reaching im-
plications in environmental modeling, since most outputs from such systems (e.g.
time series of rainfall, river flow, water quality) are typically ‘complex and random-
looking.’ One crucial implication of this finding is the need, first of all, to identify
the dynamic nature of the given system towards selecting an appropriate model-
ing approach, as opposed to the current practice of simply resorting to a particular
approach based on certain preconceived notion (determinism or stochasticity) that
may or may not be valid. This (i.e. identification of system’s dynamic nature), in
fact, has been an important objective of most chaos theory studies in environmental
systems. Although there is no question that chaos studies have offered important
insights about the dynamic nature of environmental systems and their modeling,
there continue to be skepticisms and criticisms on such studies on the basis of some
potential limitations in chaos concepts and methods (time series based) to real en-
vironmental systems (i.e. spatio-temporal) and the associated time series (e.g. small
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data size, presence of noise, large number of zeros). Some of these criticisms indeed
have merits, but others are simply a result of flawed lines of thinking (e.g. [42, 43]).

It should be obvious, nevertheless, that a fundamental understanding of chaos
theory is a pre-requisite for an honest assessment on the usefulness of the theory to
serve as a bridge between our deterministic and stochastic views for environmental
modeling. At the same time, it must also be noted that our knowledge of chaos the-
ory is very limited, which is not surprising considering that it is relatively new to
environmental science and engineering, especially when weighed against our long-
standing and far more established deterministic and stochastic theories. In view of
these, the objectives of this chapter are: (1) to detail the development of chaos theory
and identification methods; (2) to review the applications of chaos theory to envi-
ronmental systems; and (3) to highlight the need for a down-to-earth pragmatic view
of the philosophy of chaos theory for a more balanced and middle-ground approach
for environmental modeling. The rest of the chapter is organized as follows. First,
a brief history of the development of chaos theory is presented. Next, some basic
chaos identification methods are described, with examples of their applications to
synthetic time series. Then, applications of chaos theory to environmental systems
is reviewed, and progress and pitfalls are underlined. Finally, the need for pragma-
tism in chaos philosophy in environmental systems is highlighted, through analysis
of real environmental time series.

26.2 Chaos Theory: A Brief History

[The name] ‘chaos theory’ may be both enticing and confusing. It is enticing be-
cause it brings a fascinating and counterintuitive perspective on ‘complex’ systems,
i.e. revealing simplicity in complexity. It is confusing because of the unusual mean-
ing the word ‘chaos’ takes in modern scientific literature against its meaning in
traditional and common usage.

In common parlance, the word ‘chaos’ typically means a state lacking order or
predictability; in other words, chaos is synonymous to ‘randomness.’ In modern
dynamic systems science literature, however, chaos refers to ‘random-looking’ de-
terminism with sensitivity to initial conditions; therefore, chaos and randomness are
quite different. This latter definition has important implications for system modeling
and prediction: randomness is irreproducible and unpredictable, while chaos is re-
producible and predictable in the short term (due to determinism) but irreproducible
and unpredictable only in the long term (due to sensitivity to initial conditions).

The roots of chaos theory date back to about 1900, in the studies of Henri
Poincaré on the problem of the motion of three objects in mutual gravitational at-
traction, the so-called ‘three-body problem.’ Poincaré found that there can be orbits
which are non-periodic, and yet not forever increasing nor approaching a fixed point.
Despite this interesting finding, chaos theory remained in the background during the
entire first half of the twentieth century, perhaps due to lack of computational power.
However, the invention of high-speed computers in the 1950s changed this situation
for the better, as computers allowed experimentation with equations in a way that
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was impossible before, especially the process of repeated iteration of mathematical
formulas to study nonlinear dynamic systems.

Such experiments led to Edward Lorenz’s discovery, in 1963, of chaotic motion
on a ‘strange attractor’ [24]. Lorenz studied a simplified model of convection rolls
in the atmosphere to gain insight into the notorious unpredictability of the weather.
He found that the solutions to his equations never settled down to equilibrium or to a
periodic state; instead, they continued to oscillate in an irregular, aperiodic fashion.
Moreover, when the simulations were started from two slightly different initial con-
ditions, the resulting behaviors became totally different. The implication was that
the system was inherently unpredictable—tiny errors in measuring the current state
of the atmosphere would be amplified rapidly. But Lorenz also showed that there
was structure (in the chaos)—when plotted in three dimensions, the solutions to his
equations fell onto a butterfly-shaped set of points.

The 1970s witnessed the main developments in chaos theory. Ruelle and Tak-
ens [36] proposed a new theory for the onset of turbulence in fluids, based on ab-
stract consideration about ‘strange attractors.’ May [25] found examples of chaos
in iterated mappings arising in population biology, and stressed on the pedagogi-
cal importance of studying simple nonlinear systems, to counterbalance the often
misleading linear intuition fostered by traditional education. Study of other sim-
ple nonlinear mathematical models, such as the Henon map [14] and the Rössler
system [35], also revealed the hidden beauty of chaos. Beautiful ‘strange attractors’
that described the final states of these systems were produced and studied, and routes
that lead a dynamic system to chaos were discovered. Feigenbaum [8] discovered
that there are certain universal laws governing the transition from regular to chaotic
behavior; completely different systems can go chaotic in the same way. His work
established a link between chaos and phase transitions. The study of chaos then
moved to the laboratory. Ingenious experiments were set up and chaotic behavior
was studied in fluids, mechanical oscillators, and semiconductors (e.g. [22, 58, 60]).
The experiments elevated chaos theory from being just a mathematical curiosity and
established it as a physical reality.

The positive outcomes from these laboratory experiments encouraged search for
chaos outside the ‘controlled’ space—in Nature. However, the search also presented
an enormous challenge, as one had to deal with an ‘uncontrolled’ system whose
mathematical formulation was not always known accurately. Nevertheless, advances
in computational power and measurement technology facilitated development, in
the 1980s, of a new set of mathematical techniques for chaos identification and
prediction. Understandably, most of these techniques were based on (or designed
for) time series, with concepts of data reconstruction, dimensionality, entropy, and
predictability (e.g. [7, 12, 13, 27, 59, 66]).

Since their developments, the techniques have been employed for identification
and prediction of chaos in many real systems, including atmospheric, biological,
ecological, economic, engineering, environmental, financial, political, and social.
The studies are already too numerous to list, and also growing by the day. Examples
of notable books on chaos theory and its applications are those by Tsonis [62],
Strogatz [57], Abarbanel [1], and Kantz and Schreiber [18]. For a more general and
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non-mathematical description of chaos theory, the reader is referred to [10] and, to
some extent, [11].

26.3 Identification of Chaos

26.3.1 Limitations of Linear Tools

In the analysis of time series for identification of system properties, it is custom-
ary to use autocorrelation function (ACF) and power spectrum. The autocorrelation
function characterizes the dynamic properties of a time series through determination
of the degree of dependence present in the values. For a purely stochastic process,
the ACF fluctuates randomly about zero, indicating that the process at any certain
instance has no ‘memory’ of the past at all. For a periodic process, the ACF is also
periodic, indicating the strong relation between values that repeat over and over
again. For signals from a chaotic process, the ACF is expected to decay exponen-
tially with increasing lag, because the states are neither completely dependent nor
completely independent of each other. The power spectrum is particularly useful
for identifying the regularities/irregularities in a time series. For a purely stochastic
process, the power spectrum oscillates randomly about a constant value, indicating
that no frequency explains any more of the variance of the sequence than any other
frequency. For a periodic or quasi-periodic sequence, only peaks at certain frequen-
cies exist, measurement noise adds a continuous floor to the spectrum and, thus, in
the spectrum, signal and noise are readily distinguished. Chaotic signals may also
have sharp spectral lines but even in the absence of noise there will be continu-
ous part (broadband) of the spectrum, which is an immediate consequence of the
exponentially decaying autocorrelation function.

Although autocorrelation function and power spectrum provide compelling dis-
tinctions between stochastic and periodic (or quasi-periodic) signals, they are not
reliable for distinguishing between stochastic and chaotic signals. This is demon-
strated herein through their application to two artificially generated time series
(Fig. 26.1(a) and (b)) that look very much alike (both ‘complex’ and ‘random’)
but nevertheless are the outcomes of systems (equations) possessing significantly
different dynamic characteristics. The first series (Fig. 26.1(a)) is the outcome of a
pseudo random number generation function:

Xi = rand( ) (26.1)

which yields independent and identically distributed numbers (between 0 and 1).
The second (Fig. 26.1(b)) is the outcome of a fully deterministic two-dimensional
map [14]:

Xi+1 = a −X2
i + bYi; Yi+1 =Xi, (26.2)

which yields irregular solutions for many choices of a and b, but for a = 1.4 and
b= 0.3, a typical sequence of Xi is chaotic.
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Fig. 26.1 Random vs. chaotic data: (a) and (b) time series; (c) and (d) autocorrelation function;
and (e) and (f) power spectrum

Figure 26.1(c) and (d) shows the ACFs for these two series, while the power
spectra are presented in Fig. 26.1(e) and (f). It is clear that both tools fail to distin-
guish between the two series. The failure is not just qualitative, but also quantitative:
for both series, the time lag at which ACF first crosses zero is equal to 1 (no expo-
nential decay for the chaotic series) and the spectral exponent is equal to 0 (pure
randomness in the dynamics of both). Therefore, it is fair to say that linear tools
may not be sufficient for characterization of real systems, as such systems are in-
herently nonlinear and are often sensitively dependent on initial conditions. In what
follows, two simple nonlinear tools, namely phase space reconstruction and cor-
relation dimension, are explained and their superiority over the above linear tools
demonstrated.
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26.3.2 Phase Space Reconstruction

Phase space is essentially a graph, whose coordinates represent the variables neces-
sary to completely describe the state of the system at any moment (e.g. [27]). The
trajectories of the phase space diagram describe the evolution of the system from
some initial state and, hence, represent the history of the system. The ‘attractor’ of
these trajectories in the phase space provides at least important qualitative informa-
tion on the system properties.

Given a single-variable time series, Xi , where i = 1,2, . . . ,N , a multi-dimen-
sional phase space can be reconstructed as:

Yj = (Xj ,Xj+τ ,Xj+2τ , . . . ,Xj+(m−1)τ ), (26.3)

where j = 1,2, . . . ,N − (m − 1)τ ; m is the dimension of the vector Yj , called
embedding dimension; and τ is the delay time. A correct phase space reconstruction
in a dimension m allows interpretation of the system dynamics in the form of an m-
dimensional map, fT , as:

Yj+T = fT (Yj ), (26.4)

where Yj and Yj+T are vectors of dimension m, describing the state of the system
at times j (current state) and j + T (future state), respectively. With (26.4), the task
is basically to find an appropriate expression for fT (e.g. FT ) to predict the future.

To demonstrate its utility for system identification, Fig. 26.2(a) and (b) presents
the phase space plots for the above two series. These diagrams correspond to recon-
struction in two dimensions (m= 2) with delay time τ = 1, i.e. the projection of the
attractor on the plane {Xi,Xi+1}. For the first set, the points are scattered all over
the phase space (i.e. absence of an attractor), a clear indication of a ‘complex’ and
‘random’ nature of the underlying dynamics and potentially of a high-dimensional
system. On the other hand, the projection for the second set yields a very clear at-
tractor, indicating a ‘simple’ and ‘deterministic’ (yet non-repeating) nature of the
underlying dynamics and potentially of a low-dimensional system.

26.3.3 Correlation Dimension

The dimension of a time series is, in a way, a representation of the number of dom-
inant variables present in the evolution of the corresponding dynamic system. Cor-
relation dimension is a measure of the extent to which the presence of a data point
affects the position of the other points lying on the attractor in phase space. The
correlation dimension method uses the correlation integral (or function) for deter-
mining the dimension of the attractor and, hence, for distinguishing between low-
dimensional and high-dimensional systems.

Many algorithms have been formulated for the estimation of the correlation di-
mension of a time series, but the Grassberger-Procaccia algorithm [12] has been the
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Fig. 26.2 Random vs. chaotic data: (a) and (b) phase space; (c) and (d) correlation dimension

most popular. The algorithm uses the concept of phase space reconstruction for rep-
resenting the dynamics of the system from an available single-variable time series
(26.3). For an m-dimensional phase space, the correlation function, C(r), is given
by

C(r)= lim
N→∞

2

N(N − 1)

∑

i,j

H(r − |Yi − Yj |), 1 ≤ i < j ≤N, (26.5)

where H is the Heaviside step function, with H(u)= 1 for u > 0, and H(u)= 0 for
u ≤ 0, where u= r − ‖Yi − Yj‖, r is the vector norm (radius of sphere) centered
on Yi or Yj . If the time series is characterized by an attractor, then C(r) and r are
related according to:

C(r)≈ αrv, r→ ∞, N → ∞ (26.6)

where α is a constant and v is the correlation exponent or the slope of the LogC(r)
versus Log r plot. The slope is generally estimated by a least square fit of a straight
line over a certain range of r (scaling regime) or through estimation of local slopes
between r values.

The distinction between low-dimensional (and perhaps deterministic) and high-
dimensional (and perhaps stochastic) systems can be made using the v versus m
plot. If v saturates after a certain m and the saturation value is low, then the system
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is generally considered to exhibit low-dimensional deterministic dynamics. The sat-
uration value of v is defined as the correlation dimension (d) of the attractor, and
the nearest integer above this value is generally an indication of the number of vari-
ables dominantly governing the dynamics. On the other hand, if v increases without
bound with increase in m, the system under investigation is generally considered to
exhibit high-dimensional stochastic behavior.

To demonstrate the utility of the dimension concept, Fig. 26.2(c) presents the
correlation dimension results for the first set, whereas those for the second set are
shown in Fig. 26.2(d). In each case, embedding dimensions from 1 to 10 are used for
phase space reconstruction. It is clear that the first set is the outcome of an infinite-
dimensional system, i.e. absence of saturation in dimension, whereas the second set
is the outcome of a low-dimensional system [with a correlation dimension value
of 1.22].

26.3.4 Other Methods

Other chaos identification methods that have found widespread applications include
the nonlinear prediction method (e.g. [7]), the false nearest neighbor algorithm [19],
the Lyapunov exponent method [66], the Kolmogorov entropy method [13], and the
surrogate data method for detection of nonlinearity [61], among others.

The nonlinear prediction method is primarily used for prediction. However, iden-
tification of chaos can be made by assessing the prediction accuracy against the pa-
rameters involved in the prediction method (embedding dimension, lead time, and
neighbors). This is termed as the ‘inverse approach’ [3, 4]. In the prediction method,
the fT domain in (26.4) is sub-divided into many sub-sets (neighborhoods), each of
which identifies some approximations, FT , valid only in that sub-set. In this way, the
underlying system dynamics are represented step by step locally in the phase space.
The false nearest neighbor algorithm provides information on the minimum embed-
ding dimension of the phase space required for representing the system dynamics.
Lyapunov exponents are the average exponential rates of divergence or convergence
of nearby orbits in the phase space. Kolmogorov entropy is the mean rate of in-
formation created by the system. The surrogate data method involves generation of
substitute data in accordance to the probabilistic structure underlying the original
data and rejection of the null hypothesis that the original data have come from a
linear stochastic process.

26.4 Environmental Applications

‘Environmental systems’ generally refer to all living and non-living systems that
naturally occur on Earth. Consequently, they may encompass a wide range (de-
pending upon the context, nature, purpose, and scale of interest), and include at-
mospheric, biologic, ecologic, geographic, geologic, hydrologic, and any of their
combinations (e.g. biogeosciences; ecohydrology; hydrogeology). Chaos theory has
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found numerous applications in each and every one of these systems/sub-systems,
and any attempt to list all such studies is next to impossible. The focus herein is lim-
ited only to applications to hydrologic systems, including some river-related studies
that may also fall within the area of geomorphology. However, such studies are
equally applicable to, or at least can be interpreted for, other systems as well.

There already available in the literature are extensive review studies on chaos
theory applications to hydrologic systems (and geophysical systems at large), in-
cluding details of complexity, nonlinearity, and chaos, and their sources and roles
(e.g. [28, 29, 39, 42, 44]). A journal special issue exclusively focusing on the status
and future challenges in the study of nonlinear deterministic dynamics in hydrologic
systems has also been published [55]. Therefore, for reasons of overlaps/repetitions
and space constraints, details of chaos applications in hydrology are not reported
herein. Only a brief account of the general developments of chaos theory in hydrol-
ogy is presented.

Studies on chaos theory applications to hydrologic systems started in the late
1980s, and have been growing ever since. Very early applications focused mainly
on the identification and prediction of chaos in rainfall, river flow, and lake volume
time series (e.g. [2, 32, 34, 65]). Subsequently, chaos theory was applied for other
purposes, such as scaling and data disaggregation, missing data estimation, and re-
construction of system equations (e.g. [6, 40, 49, 77]), and other processes, such as
rainfall-runoff and sediment transport (e.g. [41, 45, 48]). They also addressed the
important issues perceived to influence the outcomes of chaos methods when ap-
plied to real hydrologic data, including data size, data noise, and zero values (e.g.
[30, 31, 40, 46, 47, 50, 52, 64]). Further, they compared chaos theory with others
(e.g. stochastic methods, neural networks) for prediction (e.g. [17, 23, 51, 52]).

During the last few years, studies have applied chaos theory to either advance
the earlier ones or address yet other hydrologic processes and problems, includ-
ing groundwater contamination, parameter estimation, and catchment classification
(e.g. [5, 15, 16, 33, 53, 54, 56]), while at the same time also continuing investiga-
tions into the potential problems with chaos identification methods (e.g. [20, 43]).
Recent and current applications include the assessment of rainfall dynamic behavior
under impacts of climate change (e.g. [21]).

26.5 Progress and Pitfalls

The above review makes it abundantly clear that there has been a noticeable progress
in the applications of chaos theory to environmental systems, despite the fact that the
theory is still in a fairly exploratory stage when compared to the far more established
deterministic and stochastic theories. The inroads we have made in recent years
in the areas of scaling, groundwater contamination, parameter estimation, catch-
ment classification, and climate change, are particularly significant, since these are
arguably among the most important topics in environmental studies at the current
time. Therefore, there is every reason to believe that chaos theory applications to
environmental systems will continue to grow.
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The review further brings to light some important merits of chaos theory in
the study of environmental systems. First, in the absence of knowledge of sys-
tem equations (deterministic theories require system equations), chaos theory of-
fers a more simplified view of environmental phenomena when compared to the
view offered by stochastic theories. Second, chaos theory has been found to pro-
vide better results than some other theories (stochastic theories, neural networks)
in environmental predictions, especially in the short-term, although this cannot be
generalized. Third, with its fundamental concepts of nonlinear interdependence,
hidden order and determinism, and sensitivity to initial conditions, chaos theory
can connect the deterministic and stochastic theories and serve as a more rea-
sonable middle-ground between these two dogmatic and extreme views of na-
ture.

There, however, also remain critical challenges. Among them, two general ones
are noteworthy: (1) improving our understanding of the largely less-understood
chaos concepts and methods for environmental applications; and (2) finding ways
to integrate the chaos concepts with one or more other scientific concepts towards
better environmental modeling and forecasting. The former is important to avoid
‘blind’ applications of chaos methods to real environmental systems, which are of-
ten constrained in terms of data quantity and quality; it will also help to more ac-
curately interpret the outcomes of such methods and eliminate ‘false’ claims. The
latter is important for taking advantage of the merits of different approaches for their
‘collective utility’ to solve environmental problems rather than their ‘individual bril-
liance’ as perceived.

Notwithstanding this progress and promise, one cannot ignore the potential lim-
itations in the applications of chaos theory to environmental systems. The limita-
tions are system-dependent and data-dependent, as is normally the case with any
other theory. Therefore, it is hard to point out here each and every instance of when,
where, how, and why they occur. However, some common system and data prop-
erties that are likely to give rise to problems in the applications of these methods
and interpretations of the outcomes (and vice-versa) may be more easily identified.
A few of such problems/inadequacies are highlighted next.

A significant majority of chaos studies in environmental systems are essentially
applications of methods based on reconstruction of single-variable time series, such
as the correlation dimension method. Although these methods provide useful infor-
mation, they are still, at best, crude ‘one-dimensional’ approximations to the com-
plex three- and four-dimensional spatio-temporal environmental problems. What is
also required, therefore, are methods that have more fundamental conceptualization
of environmental systems and processes. This would certainly offer avenues to es-
tablish important links that may exist between the data (observed at specific spatial
and temporal scales) and the system physics (occurring across all scales). A simi-
lar concern is also on the lack of explanation on the connection between the specific
parameters used in the chaos methods and the components of the environmental sys-
tem under study. For example, is the delay time in the embedding procedure related
to any system component, and how?

A fundamental assumption in the formulation of chaos identification methods is
that the time series is infinite and noise-free. This assumption has, in fact, been the
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basis for much of the criticisms on chaos studies in environmental systems, since
data from such systems are not only finite but also often short and are always con-
taminated with noise. A more specific argument is this. When the data size is smaller
than the minimum required (the minimum data size is often linked to embedding di-
mension or correlation dimension) or when the noise is higher than a certain level
(even as low as 2 percent), the methods may yield inaccurate estimation of the in-
variants. For example, the correlation dimension may be underestimated when data
size is small (e.g. [26]), while it may be overestimated when the noise level is high
(e.g. [38]). This means that the outcomes may indicate the presence of chaotic be-
havior when actually it is absent, and vice-versa.

Chaos identification methods are generally designed for data that are regularly
sampled, i.e. equal sampling interval. In certain situations, however, observations of
environmental systems/processes are (or can be) made only at irregular sampling in-
tervals. These situations may be necessitated by the measurement technology avail-
able, measurement cost, human resources, and other relevant factors. Therefore, ap-
plications of chaos methods to such data sets are fraught with difficulties, especially
since the essential first step of chaos analysis involves the delay embedding phase
space reconstruction procedure (e.g. [59]), wherein the delay time is often taken as
a suitable multiple of the sampling time.

Studies reveal that the presence of a large number of zeros in a time series could
significantly influence the outcomes of chaos identification methods, such as under-
estimation of the correlation dimension (e.g. [20, 40, 63]). This problem can turn
out to be very serious in environmental applications, since zero values are a com-
mon occurrence in environmental time series (e.g. rainfall, flow), especially at finer
resolutions. The fact that zero values are intrinsic to the system dynamics and, thus,
must not be removed in data analysis (possible exceptions may exist, such as in data
disaggregation; see [49]) makes the problem only more complicated. It is also im-
portant to recognize that this problem is not just limited to zeros but can be a much
wider one, since it is simply a question of ‘repetition’ of one or more values and
that such repetitions may occur in many different ways depending on the system
(e.g. minimum streamflow, average temperature, minimum/maximum water level in
a reservoir, daily suspended sediment load).

Many of the ideas and methods of chaos theory attempt to represent the ‘dimen-
sionality’ of the system (more specifically, time series) under consideration. This, in
turn, is used to identify the nature of system dynamics and to select an appropriate
type of model (chaotic or stochastic), among other purposes. The dimensionality of
the time series is also often linked to the ‘complexity’ of the system. However, the
definitions of ‘dimensionality’ and ‘complexity’ as well as the relationships between
them are often hazy, to put it mildly. This situation only complicates the interpreta-
tion of the outcomes of chaos identification methods.

26.6 Philosophy and Pragmatism

It is clear, from the discussion so far, that chaos theory is appropriate, and can even
be better than other theories, for modeling environmental systems, but at the same
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time also possesses some potential limitations. Consequently, while there have been
appreciations and more applications, there have been skepticisms and criticisms as
well (e.g. [20, 37]). Some of these skepticisms and criticisms indeed have merits,
but others are simply a result of flawed lines of thinking (see [39, 42, 43, 50, 52]
for details). In view of these, a careful discussion balancing the philosophy of chaos
theory and the pragmatism of its applications to environmental systems is neces-
sary. Comparisons of the limitations of chaos theory with those of the other theories
for environmental systems could also help put this discussion on an even stronger
footing.

Almost every environmental system/process exhibits unique characteristics. For
example, the characteristics of a mountainous terrain are entirely different from
those of a flat terrain, and so are the process generating mechanisms and the magni-
tudes of events. Further, in a general sense, environmental data possess some unique
properties when compared to data in some other fields. For example, rainfall and
streamflow in arid and semi-arid areas typically contain a significantly large pro-
portion of zeros, a property that is not commonly observed in most other natural
and physical systems. Consequently, some modeling approaches and techniques that
perform well for other systems may not be appropriate for environmental systems.
In view of this, the wise thing to do is to exercise utmost caution in applying chaos
theory (and other theories) to environmental systems and in interpreting the results.

Although there are some potential limitations in the applications of chaos meth-
ods to real systems, that alone should not preclude any and all chaos studies in envi-
ronmental systems. It is also important to note that almost all of such limitations are
equally applicable to most other modeling approaches/techniques for environmental
systems as well. Some examples are as follows: (1) many of the methods, including
stochastic time series ones, are still crude ‘one-dimensional’ approximations to the
complex three- and four-dimensional spatio-temporal environmental problems; (2)
stochastic methods generally require long environmental time series to yield reliable
results; (3) a log-normal analysis is not appropriate, or at least very challenging, for
environmental time series consisting of zero values; and (4) despite the sophistica-
tion, stochastic methods are still not able to establish links between data and system
physics, and many of the parameters in such methods have no relevance to the sys-
tem characteristics and physics at all.

In view of these observations, any strict adherence to the assumptions of chaos
identification methods (e.g. infinite and noise-free time series) may not be helpful
for studying environmental systems, just as the situation with respect to other ap-
proaches. What is needed instead is a more down-to-earth pragmatic view of chaos
studies, emphasizing the following: (1) understanding the potential limitations of
chaos identification methods; (2) careful consideration of the environmental sys-
tem, data, and problem for study; and (3) utmost caution in applications of chaos
methods and interpretation of the results. It must be noted that such a pragmatic
approach has indeed been advocated/followed in many, if not all, of the chaos stud-
ies in environmental systems, with clear indications of their positives and negatives
(e.g. [39, 42–44, 49, 52, 56]).

As mentioned earlier, chaos theory, with its underpinning concepts, can bridge
the gap between our extreme views of determinism and stochasticity and offer a
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balanced middle-ground perspective for modeling environmental systems. In what
follows, this point is studied from a different angle. The basic idea in this is that en-
vironmental systems can exhibit a whole range of behaviors, anywhere from purely
deterministic to purely stochastic, but oftentimes between these two extremes, i.e.
chaotic. This is supported through analysis of four river flow time series, represent-
ing different geographic regions, climatic conditions, catchment characteristics, and
scales. These four time series are: daily flows from the Mississippi River and from
the Kentucky River in the USA, and monthly flows from the Salmon River in the
USA and from the Göta River in Sweden. A brief account of these four series is
presented next, followed by their analysis and results.

The Mississippi River is one of the largest rivers in the world, and flow data are
measured at numerous locations. The present study considers a sub-basin station at
St. Louis, Missouri (USGS station No. 07010000), which is situated at 38°37′03′′
latitude and 90°10′58′′ longitude. The drainage area of this sub-basin that falls
within the Mississippi River basin is 251,230 km2. For the present analysis, daily
flow spanning a period of 20 years (January 1, 1961–December 31, 1980) are con-
sidered. The Kentucky River is a tributary of the Ohio River, and has a drainage area
of about 18,000 km2. For the present study, daily flow observed at the gaging sta-
tion near Winchester, Kentucky (USGS station No. 03284000) are considered. This
station is situated at 37°53′41′′ latitude and 84°15′44′′ longitude. The sub-basin has
a drainage area of 10,244 km2. Flow data observed over a period of 30 years (Jan-
uary 1, 1960–December 31, 1989) are analyzed. The Salmon River basin is situated
in the state of Idaho, at 44°59′13′′ latitude and 115°43′30′′ longitude. The drainage
area of this basin is 35,094 km2. For the present study, monthly flow over a period of
62 years (1932–1993) are considered. Consistent with the ‘water years’, the records
start in October 1931 and end in September 1993 and are average monthly values.
The Göta River basin is located in the south of Sweden between 55° and 60°N and
12.9° and 16°E. The drainage area is 50,132 km2. For this study, monthly flow over
a period of 131 years (January 1807–December 1937) are considered.

Figure 26.3(a) to (d) presents the time series plots of the four data sets. All the
four series exhibit highly ‘irregular and complex’ structures, and neither are they
helpful to make distinctions nor do they offer clues on the nature of the dynamics.
Therefore, it is not possible to construe whether the flow series are the outcomes
of deterministic dynamic systems or stochastic ones. However, these time series
plots reveal important information about some other characteristics, such as extreme
events (‘peaks’ and ‘dips’) and/or annual cycles.

Figure 26.4(a) to (d) shows the autocorrelation function plots for the four flow
series. The ACFs generally indicate slow decays with increasing lag (i.e. temporal
persistence), suggesting that the dynamic properties of the underlying systems are
certainly not stochastic. However, it is also difficult to construe that the dynamics
are deterministic. Although the ACFs reveal certain periodicity and/or annual cycle
(especially for the Salmon River), such do not provide any clues as to whether the
underlying dynamic properties are deterministic or stochastic in nature. The lag
times at which the ACF first crosses the zero line are found to be 198 and 95 for the
daily flow series from the Mississippi River and the Kentucky River, and 3 and 20
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Fig. 26.3 Time series: (a) daily flow from the Mississippi River at St. Louis, Missouri, USA;
(b) daily flow from the Kentucky River near Winchester, Kentucky, USA; (c) monthly flow from
the Salmon River in Idaho, USA; and (d) monthly flow from the Göta River in Sweden

Fig. 26.4 Autocorrelation functions for the river flow series in Fig. 26.3
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Fig. 26.5 Phase space diagrams for the river flow series in Fig. 26.3

for the monthly flow series from the Salmon River and the Göta River, respectively.
These values seem to suggest some seasonal patterns in the flow dynamics, but even
such an interpretation may be valid only for the first three rivers (six or three months,
as the case may be), since the time period for the Göta River is almost as long as
two years.

Figure 26.5(a) to (d) presents the two-dimensional phase space plots for the
four flow series. For the Mississippi River flow series, the phase space diagram
exhibits a clear attractor in a well-defined region, suggesting that the system dy-
namic properties are simple and certainly not stochastic. The phase space diagram
for the Kentucky River flow series also shows a reasonably clear attractor, though
not as clear as that for the Mississippi River flow series; this seems to suggest that
the underlying dynamics may be simple and are certainly not stochastic. The flow
series from the Salmon River also seems to exhibit a reasonably clear attractor,
although the region of attraction is much larger for the dynamics to be simple; how-
ever, it is also difficult to say that the dynamics are stochastic. The phase space
diagram for the Göta River flow series shows a clear attractor in a well-defined re-
gion, suggesting that the underlying dynamics are simple and certainly not stochas-
tic.

The phase space diagrams for the four river flow series generally indicate the
absence of stochastic nature in the underlying system dynamics. They also indicate
that the dynamics are ‘simple’ (or less complex) in all four cases, although the ‘ex-
tent of simplicity’ certainly varies, with the flow dynamics in the Mississippi River
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Fig. 26.6 Correlation dimension results for the river flow series in Fig. 26.3

and in the Göta River being simpler than the other two, and with the Salmon River
flow dynamics being the most complex of all. These results are indeed encourag-
ing, since they seem to suggest that simpler models may be sufficient, and may be
preferred to complex models. At the same time, however, they also do not offer any
convincing information to construe that the flow dynamics are deterministic; after
all, ‘simple’ does not (necessarily) mean ‘deterministic.’

Figure 26.6(a) to (d) shows the correlation dimension results for the four flow
series. Saturation in correlation exponent is observed for all the four series, sug-
gesting that the dynamics are certainly not stochastic. Further, the correlation di-
mension value is found to be small (less than 6) for all the series, suggesting the
low-dimensional, and simple to medium-complexity, nature of the underlying dy-
namics. Looking closely at the correlation dimension values, the Mississippi River
flow dynamics (d = 2.32) and the Salmon River flow dynamics (d = 2.82) seem
simpler than the others, each dominantly governed by just three variables. The Göta
River flow dynamics, on the other hand, seem to have the highest level of complex-
ity (d = 5.50), with the number of dominant governing variables being six. The flow
dynamics in the Kentucky River shows a level of complexity somewhere between
these two cases (with d = 4.22), with an indication that there are five dominantly
governing variables. For any of these four series, while the observation that only
a small number of variables dominantly govern the flow dynamics is encouraging
(from the viewpoint of model complexity), there is no definitive evidence to say that
the dynamics are indeed deterministic.
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Although the phase space reconstruction and correlation dimension results are
generally consistent with each other (i.e. absence of stochastic dynamics, simple-
to medium-complexity, no definitive evidence for determinism), there are some in-
consistencies as well. For example, the phase space reconstruction suggests that the
Salmon River flow series is the most complex among the four, but the correlation
dimension method indicates that the Göta River flow series has the highest level
of complexity. The observations of very low correlation dimension for the Salmon
River flow and the very clear attractor for the Göta River flow only raise further
questions on the ability of the phase space reconstruction and/or the correlation di-
mension method to provide definitive conclusions. All these point out that caution
needs to be exercised in employing these methods and interpreting the outcomes.
When such is done, these nonlinear tools can indeed provide important information
on the nature and complexity of the system dynamics, as presented earlier for the
synthetic series and also as indicated by the consistent results for the Mississippi
River flow series (the clearest attractor as well as the lowest correlation dimension,
among the four series).

Nevertheless, the results from the correlation dimension method also help answer
a major criticism on chaos studies in real environmental systems, i.e. data size. For
example, a correlation dimension value of 5.5 is observed for the Göta River flow
series with a data length of as few as 1572 values, which is significantly higher than
the correlation dimension of 2.32 for the Mississippi River flow series with a data
length of as many as 7305 values. These results clearly reveal that the crucial point
in regards to data size is whether the data series is long enough to capture the essen-
tial features of the underlying system dynamics, rather than any ill-conceived no-
tion of a relationship between data size and embedding (or correlation) dimension.
The present results thus further strengthen the conclusions made, through different
means, by earlier studies on the effect of data size (e.g. [39, 43, 50, 52]). It is also
relevant to note that none of the four series has zero values, thus also eliminating
the possibility of the correlation dimension to be underestimated; for instance, the
minimum flow value for Mississippi River is 980 (m3/s).

26.7 Closing Remarks

During the past two decades or so, chaos theory has been finding increasing appli-
cations in environmental systems. However, there have also been continuing skep-
ticisms and criticisms on such studies, on the basis of some potential limitations in
chaos identification and prediction methods. This chapter has attempted to offer a
balanced view between the philosophy of chaos theory on the one hand and the need
for pragmatism in its application to environmental systems on the other. A system-
atic procedure has been followed, involving: (1) investigation of the reliability of
chaos identification methods through their applications to two synthetic time series
whose characteristics are known a priori; (2) review of chaos studies in environmen-
tal systems, and the progress and pitfalls; and (3) application of chaos methods to
four real environmental (river flow) time series and interpretation of the results.
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The results for the four river flow time series, using both linear and nonlinear
tools, with necessary ‘foundations’ through analysis of synthetic deterministic and
stochastic time series to facilitate interpretations, reveal that the dynamic properties
of the systems underlying the flow series are neither deterministic nor stochastic.
Rather, the nature of the systems’ dynamic properties falls somewhere in between
these two extremes, and dominantly governed by three to six variables, depending
upon the system. With our knowledge that nonlinearity and sensitive dependence
are inherent characteristics of environmental processes and that river flow processes
possess, among others, correlation, seasonality, and annual cycle (depending upon
the river basin characteristics together with the space and time scales under consid-
eration), it is indeed reasonable to construe that the dynamic properties of the sys-
tems underlying the river flow series studied herein (and many others) are clearly a
combination of deterministic and stochastic.

In view of these observations, the general question of whether the determin-
istic approach or the stochastic approach is better for environmental modeling is
meaningless. Consequently, any theory that is based purely either on determinism
or on stochasticity is probably a misconception of the workings of environmental
processes, and only their combination would be appropriate. This is where chaos
theory could play a vital role, with its fundamental principles (nonlinear interde-
pendence, hidden determinism and order, and sensitivity to initial conditions) being
clearly relevant for environmental systems and processes and also providing a bal-
ancing middle-ground approach between the deterministic and the stochastic views.
Another important thing to note, especially from the viewpoint of model complex-
ity, is that the question is not whether environmental systems exhibit deterministic
dynamics or stochastic dynamics (since they are a combination) but whether a low-
dimensional model is sufficient or a high-dimensional model is required. As for the
four river flow time series studied herein, the correlation dimension analysis reveals
that significant portions of the dynamic complexities of the river systems arise as
a result of nonlinear interactions among three to six variables (that are most likely
interdependent), depending upon the system. This type of information could play a
crucial role in the formulation of a coupled deterministic-stochastic approach.

It is also relevant to note that there are other theories and concepts that may be
coupled or integrated with chaos theory to formulate a more general framework for
environmental modeling. One such concept is the data-based mechanistic (DBM)
modeling concept, introduced by Peter Young. Although the term ‘data-based mech-
anistic modeling’ was first used only in the 1990s [73], the basic concepts had been
developed over many years before that. For example, the concepts were first intro-
duced in the early 1970s [68] and applied within a hydrologic context with applica-
tion to river water quality modeling [71]. Since then, the DBM concepts have been
strengthened further and also applied to many different systems in diverse areas (e.g.
[69, 70]). The DBM concepts take into account many of the salient characteristics
of environmental systems and processes, including nonlinearity (e.g. [72]) and sim-
plicity in complexity (e.g. [74, 76]). The DBM approach may also offer, in its own
way, a unified view of environmental systems, through combining the deductive and
inductive philosophies of environmental modeling [75].
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In view of the strengths of chaos theory and the DBM concepts (commonalities
as well as differences), coupling the two seems to be a promising way to formulate
a much-needed general framework for environmental modeling. This, however, is
easier said than done. The fact that researchers on either side of the aisle are not
that familiar with the ideas of the other concept certainly complicates this thought.
There is also an understandable reluctance among the researchers to couple the two
concepts, or any two concepts for that matter. Part of this reluctance may have sci-
entific merits, but other non-scientific factors often play important roles too. It is
my hope that the future will witness serious efforts towards formulation of a gen-
eral framework for environmental modeling. I also hope that such a framework will
have, among others, DBM concepts as an important component, which would be a
fitting tribute to Peter Young, for all his contributions to the study of environmental
systems.
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Part IV
Control System Design



Chapter 27
Linear and Nonlinear Non-minimal State Space
Control System Design

C. James Taylor, Arun Chotai, and Wlodek Tych

27.1 Introduction

Control systems are classically analysed by means of continuous-time or discrete-
time Transfer Function (TF) models, represented in terms of either the Laplace
transform (s-operator) or the backward shift operator (z−1) respectively. Here,
closed-loop stability and satisfactory transient responses are obtained through
graphical techniques such as the Evans Root Locus method, which allow for the
specification of closed-loop pole-zero patterns [1]. Alternatively, a frequency do-
main approach is utilised involving Nyquist and Bode diagrams [2].

By contrast, modern control systems are usually derived from precise algorith-
mic computations, often involving numerical optimisation [3, 4]. Here, one very
important concept is the idea of state space, which originates from the state-variable
method of describing differential equations. While the TF model approach is con-
cerned only with input-output characteristics, the state space approach also provides
a description of the internal behaviour of the system. For mechanical systems, the
states are often defined to represent physical characteristics, such as the positions
and velocities of a moving body. Alternatively, the state space formulation is de-
rived from a TF model. In this regard, the practical examples mentioned below have
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utilised a Matlab compatible toolbox, CAPTAIN, for the identification and estima-
tion of suitable control models from experimental data [5]. This toolbox has evolved
from Professor Peter Young’s research on time series analysis, forecasting and con-
trol; see e.g. [6–8] among other citations below. Hence, in a book prepared in his
honour, it is a pleasure to acknowledge his tremendous contributions as a researcher
and teacher, and as a good friend to the present authors.

The state space formulation of control design is, perhaps, the most natural and
convenient approach for use with computers. It has the advantage over TF methods
of allowing unified treatment of both univariate and multivariable systems. The ap-
proach allows for the implementation of powerful state variable feedback control
designs, including pole assignment and optimal control. Traditionally, however, the
state space approach has one major difficulty: the state vector is not normally avail-
able for direct measurement. Therefore, much research effort has been applied to the
development of state observer techniques, notably including the Kalman Filter [9]
and Luenberger observer [10]. The observer is employed to generate a surrogate
state vector which converges asymptotically to the true state vector and so can be
used in the implementation of state variable feedback control [3, 4].

In this chapter, we re-examine an alternative approach, based on the definition
of a Non-Minimal State Space (NMSS) form, in which the dimension of the state
vector is dictated by the complete structure of the TF model. This contrasts with
minimal state space descriptions, which only account for the order of the denom-
inator and whose state variables, therefore, usually represent combinations of the
input and output signals. The non-minimal state vector is composed only of those
variables which can be directly measured and stored in the digital computer. In the
discrete-time case, these are the present and past sampled values of the output vari-
ables and the past sampled values of the input variables.

Various authors have considered NMSS models, including Young & Willems
[11], Young et al. [7], Hesketh [12], Taylor et al. [13], Gonzalez et al. [14] and
Gawthrop et al. [15]. However, of particular interest is the Proportional-Integral-
Plus (PIP) control algorithm pioneered by Professor Young and his colleagues, in-
cluding the present authors [7, 16–18]. Successful practical applications include
environmental systems [19–21], heavy construction machinery [22, 23] and nu-
clear decommissioning robots [24]. The present tutorial chapter focuses on PIP
design for single-input, single-output models, represented in both linear and non-
linear form. However, the basic approach is readily extended into multivariable and
model-predictive systems, hence the chapter also gives brief pointers to these areas.

27.2 System Identification

We aim to regulate the behaviour of a controlled output variable y(k), typically
a velocity, torque or some other measured variable, where the argument k indi-
cates that y(k) is sampled in time, with a constant sampling interval of  t time
units. At each sampling instant, the control algorithm updates the control input vari-
able u(k), representing the actuator. For example, permanent magnet DC motors are
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commonly used to provide motion for a wide variety of electromechanical devices,
including robotic manipulators, disk drives and machine tools. They convert direct
current (DC) electrical energy into rotational mechanical energy [4].

If the electrical time constant is at least an order of magnitude faster than the
mechanical time constant, then the behaviour of a DC motor can be approximated by
a first order, scalar difference equation, in which a1 and b1 are constant coefficients:
y(k) = −a1y(k − 1)+ b1u(k − 1). In this case, y(k) represents the sampled shaft
velocity and u(k) the applied voltage. The upper left subplot of Fig. 27.1 shows the
step response of this model using a1 = −0.9393 and b1 = 3.2102, compared with
experimental data for an illustrative motor, with t = 0.01 seconds. Substituting for
the backward shift operator z−1, yields the equivalent TF representation,

y(k)= b1z
−1

1 + a1z−1
u(k). (27.1)

Here, z−i is the basic discrete-time operator used in this chapter, defined as follows,
z−iy(k)= y(k − i). It is clear that z−i denotes a delay of i samples.

The construction industry generally uses hydraulic actuators for heavy lifting.
Here, the control problem is made difficult by a range of factors that include highly
varying loads, speeds and geometries. A commercial mini-tracked excavator and
a laboratory model have been used to investigate such issues at Lancaster Univer-
sity. In this regard, the laboratory excavator bucket dynamics are well approximated
by the model (27.1), in which y(k) represents the joint angle and u(k) the con-
trol input voltage, with a typical  t = 0.1 seconds [25]. The upper right subplot of
Fig. 27.1 compares experimental data for bucket position with the response of the
TF model (27.1) using a1 = −1 and b1 = 0.0498. By contrast, the slew (horizontal)
joint has a pure time delay of 0.2 seconds hence, with  t = 0.1 seconds, the model
becomes,

y(k)= b2z
−2

1 + a1z−1
u(k). (27.2)

Generalising yields the following nth order TF model, where ai and bi (i = 1,2, . . .)
are constant coefficients,

y(k)= b1z
−1 + b2z

−2 + · · · + bmz−m
1 + a1z−1 + a2z−2 + · · · + anz−n u(k). (27.3)

Any pure time delay of δ > 1 samples is accounted for by setting b1, . . . , bδ−1 = 0.
For example, n= 1, m= 2 and b1 = 0 yields equation (27.2), in which δ = 2 sam-
ples.

Finally, consider a second order model based on equation (27.3) with n=m= 2,
δ = 1 and illustrative numerical values for the coefficients,

y(k)= b1z
−1 + b2z

−2

1 + a1z−1 + a2z−2
u(k)= 0.5z−1 − 0.4z−2

1 − 0.8z−1 + 0.15z−2
u(k). (27.4)
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Fig. 27.1 Open-loop step
response. Top subplots: first
order TF model (thick trace)
fitted to laboratory data for
DC motor speed (left) and
excavator bucket angle
(right). Lower subplots:
response of the second order
TF model (27.4) to a unit step
input. All variables are
plotted against sample
number

The unit step response is shown by the lower left subplot of Fig. 27.1. Note that
the stability of a discrete-time TF model is usually analysed in the z-domain [3, 4].
Multiplying the denominator polynomial by z2 and setting this equal to zero yields
the characteristic equation z2 − 0.8z+ 0.15 = (z− 0.3)(z− 0.5)= 0. The system
is defined by two poles, i.e. p1 = 0.3 and p2 = 0.5, both lying inside the unit circle
on the real axis of the complex z-plane, hence the system (27.4) is stable. Such pole
positions are important when we consider closed-loop control later in the chapter.

For practical control system design, (27.3) is usually identified from measured
input-output data, collected either from planned experiments or during the normal
operation of the plant. In the present chapter, such analysis utilises the instrumental
variable methods pioneered by Professor Young [6], since they have proven robust
for the examples considered here. An appropriate model structure also needs to be
identified, i.e. the order of the polynomials (n,m) and the pure time delay δ. In
this regard, the two main statistical measures utilised in CAPTAIN are the coeffi-
cient of determination R2

T and the Young Identification Criterion (YIC). Since the
present chapter focuses on control system design, details of these system identifica-
tion methods are omitted: refer to the citations above.

27.3 Minimal and Non-minimal State Space Models

This section illustrates the difference between minimal and non-minimal state vari-
able feedback. For brevity, generic forms are omitted, with the discussion focusing
instead on an illustrative worked example. In this regard, consider the following
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state space representation of the second order model (27.4),

⎡

⎣
y(k)

y(k − 1)
u(k − 1)

⎤

⎦ =
⎡

⎣
−a1 −a2 b2

1 0 0
0 0 0

⎤

⎦

⎡

⎣
y(k − 1)
y(k − 2)
u(k − 2)

⎤

⎦+
⎡

⎣
b1
0
1

⎤

⎦u(k − 1), (27.5)

y(k) = [1 0 0
]

x(k). (27.6)

Here, (27.5) and (27.6) are termed the state and observation equation respectively.
Examination of the difference equation obtained from the TF model (27.4),

y(k)= −a1y(k − 1)− a2y(k − 2)+ b1u(k − 1)+ b2u(k − 2) (27.7)

verifies that the equation pair {(27.5), (27.6)}, holds as one particular representation
of the system. In fact, this is an example of a non-minimal state space (NMSS)
model, since there are three state variables, i.e. the order of the state vector is greater
than the order of the TF model. In fact, the (regulator) NMSS representation of the
general TF model (27.3) has n+m− 1 states, as follows,

x(k)T = [y(k) y(k − 1) . . . y(k − n+ 1) u(k − 1) u(k − 2) . . . u(k −m+ 1)
]
.

(27.8)

Section 27.4.2 develops the (servomechanism) NMSS model in full. Such non-
minimal models contrast with the following minimal representations of the examplar
TF model (27.4), which are based on the definition of n state variables, here denoted
x1(k) and x2(k). The controllable canonical form is,

[
x1(k)

x2(k)

]
=
[−a1 −a2

1 0

][
x1(k − 1)
x2(k − 1)

]
+
[

1
0

]
u(k − 1), (27.9)

y(k) = [b1 b2
]

x(k) (27.10)

and the observable canonical form,
[
x1(k)

x2(k)

]
=
[−a1 1
−a2 0

][
x1(k − 1),
x2(k − 1)

]
+
[
b1
b2

]
u(k − 1), (27.11)

y(k) = [1 0
]

x(k). (27.12)

The state space representations developed above, namely the equation pairs {(27.5),
(27.6)}, {(27.9), (27.10)} and {(27.11), (27.12)}, all describe the same essential
input-output relationship specified by the TF model (27.4) and equivalent difference
equation (27.7).

The advantage of the controllable canonical form is that it is straightforward to
construct and yields a convenient structure for the computation of a pole assign-
ment control algorithm (Sect. 27.3.1). Here, it can be verified that the state vector
is implicitly formed from the delayed and filtered output variable, where the filter is
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defined by the numerator polynomial of the TF model. For (27.9),

x1(k) = y(k − 1)/
(
b1z

−1 + b2z
−2); x2(k)= y(k − 2)/

(
b1z

−1 + b2z
−2).
(27.13)

The observable canonical form is so called because it is a particularly convenient
state space model to employ when formulating either a deterministic observer or a
stochastic Kalman Filter [4]. Straightforward algebra shows that, for (27.11),

x1(k)= y(k); x2(k)= −a2y(k − 1)+ b2u(k − 1). (27.14)

By contrast, the non-minimal state vector in (27.5) is composed explicitly from the
sampled values of the input and output variables, and does not include the param-
eters. For the present example, the states are y(k), y(k − 1) and u(k − 1). The
characteristic equation for this NMSS model is determined from det |λI − A| = 0,
where A is the 3 × 3 state transition matrix in (27.5). Substituting for the numerical
values (27.4) and evaluating the determinant yields λ(λ2 − 0.8λ+ 0.15), hence the
eigenvalues are λ= 0.5, 0.3 and 0. Two of these are equivalent to those of the mini-
mal state space model and are also the poles of the TF model (27.4). The eigenvalue
at the origin owes its existence to the additional state u(k − 1).

27.3.1 State Variable Feedback and Pole Assignment

The minimal state variable feedback control law associated with either the control-
lable {(27.9), (27.10)} or observable {(27.11), (27.12)} forms is,

u(k)= −l1x1(k)− l2x2(k)+ kdyd(k), (27.15)

where yd(k) is the command input, while the control gains l1, l2 and kd are chosen
by the designer to ensure a satisfactory response. For the purposes of this example,
the command is introduced as a straightforward open-loop element with gain kd , as
shown in Fig. 27.2. For the controllable canonical form, using (27.13) and (27.15),

u(k)= −l1y∗(k − 1)− l2y∗(k − 2)+ kdyd(k), (27.16)

where y∗(k) = y(k)/(b̂1z
−1 + b̂2z

−2) in which b̂1 and b̂2 are the estimated pa-
rameters associated with the numerator polynomial of the control model. We have
introduced this notation to emphasize the inevitable mismatch between the true sys-
tem (or plant) and the estimated TF model used for control system design. Hence,
putting together the control algorithm (27.16) and system representation (27.4), the
block diagram of the closed-loop control system with potential model mismatch is
illustrated by Fig. 27.2. However, at the control design stage, we assume zero plant-
model mismatch, i.e. b̂1 = b1 and b̂2 = b2. In this case, block diagram or algebraic
reduction of Fig. 27.2 yields the following closed-loop TF,

y(k)= kd(b1z
−1 + b2z

−2)

1 + (a1 + l1)z−1 + (a2 + l2)z−2
yd(k). (27.17)
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Fig. 27.2 Unity gain (minimal) regulator based on the controllable canonical form

The denominator of a TF defines its stability and transient dynamic behaviour.
Therefore, we consider the characteristic polynomial as follows,

1 + (a1 + l1) z−1 + (a2 + l2) z−2. (27.18)

When using the controllable canonical form, it is a trivial matter to obtain a desired
characteristic polynomial D(z−1). For example, if we require,

D(z−1)= 1 + d1z
−1 + d2z

−2, (27.19)

where d1 and d2 are chosen by the designer, (27.18) and (27.19) yields l1 = d1 − a1
and l2 = d2 − a2. The characteristic equation D(z−1) = 0 is equivalent to D(z) =
z2 + d1z+ d2 = 0. Since the roots of D(z)= 0 are known as the closed-loop poles,
the approach is called state variable feedback pole assignment. Finally, kd is selected
independently to obtain unity steady state gain (Sect. 27.3.2).

Considering now the NMSS case, based on the three state variables in (27.5), the
state variable feedback control law is,

u(k)= −f0y(k)− f1y(k − 1)− g1u(k − 1)+ kdyd(k), (27.20)

where f0, f1 and g1 are the state feedback control gains and kd is the command input
gain. Hence, the unity gain NMSS regulator in block diagram form is illustrated
by Fig. 27.3. Block diagram or algebraic reduction of Fig. 27.3 yields,

y(k)/yd(k)

= kd(b1z
−1 + b2z

−2)

1 + (a1 + g1 + b1f0)z−1 + (a2 + a1g1 + b2f0 + b1f1)z−2 + (a2g1 + b2f1)z−3
.

(27.21)

The closed-loop characteristic polynomial is third order, one more than for minimal
design. Initially, this may appear to be a weakness of the NMSS solution, since
we have to design for third order closed-loop dynamic behaviour. However, this
argument is fundamentally flawed, because the problem of model mismatch has not
yet been considered. In fact, evaluation of the closed-loop TF for the minimal design
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Fig. 27.3 Unity gain NMSS regulator

in Fig. 27.2, this time with b̂1 
= b1 and b̂2 
= b2, shows that

y(k)/yd(k)

=
kd(b1z

−1 + ( b1b̂2

b̂1
+ b2)z

−2 + b2b̂2

b̂1
z−3)

1 + ( b̂2

b̂1
+ a1 + l1b1

b̂1
)z−1 + ( a1b̂2

b̂1
+ a2 + l1b2

b̂1
+ l2b1

b̂1
)z−2 + ( a2b̂2

b̂1
+ l2b2

b̂1
)z−3

.

(27.22)

The minimal closed-loop system is also third order! Note that the NMSS solu-
tion is the rather simpler TF already quoted: the parameter estimates do not appear
in (27.21), since the model is not utilised in the NMSS controller of Fig. 27.3. This
result is clearly significant in practical terms because there will always be mismatch
between the estimated model and the real world.

27.3.2 Numerical Example with Model Mismatch

Assigning the closed-loop poles to real values of, say 0.7 and 0.8, the desired char-
acteristic polynomial is,

D(z−1)= (1 − 0.7z−1)(1 − 0.8z−1)= 1 − 1.5z−1 + 0.56z−2. (27.23)

Using the numerical values (27.4), equating like coefficients from (27.18)
and (27.23), yields l1 = −0.7 and l2 = 0.41. Assuming no model mismatch, (27.22)
reduces to,

y(k)

yd(k)
= kd(0.5z−1 − 0.8z−2 + 0.32z−3)

1 − 2.3z−1 + 1.76z−2 − 0.448z−3
= kd(0.5z−1 − 0.4z−2)

1 − 1.5z−1 + 0.56z−2
. (27.24)

The poles of the left hand side TF are 0.8, 0.8 and 0.7. Cancelling one of the zeros
(i.e. roots of the numerator polynomial) with a pole, yields the second order system
shown on the right hand side. The steady state gain (obtained by setting z−1 = 1) is
kd/0.6, hence kd = 0.6 yields unity gain when there is no model mismatch.
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Table 27.1 Comparison of NMSS and minimal state variable feedback control with model mis-
match. Design and Poles refer to the user selected and model mismatch closed-loop pole positions
respectively. Zeros refers to the closed-loop zeros with model mismatch

Design Poles Zeros

Minimal NMSS Minimal NMSS Minimal NMSS

0.8 0.8 1.1573 0.8573 0.8000 0.7238

0.7 0.7 0.6632 0.6777 0.7238 –

– 0 0.5545 0 – –

Fig. 27.4 Monte Carlo Simulation using the unity gain controllable canonical form (left) and
NMSS (right) regulators. The closed-loop unit step response is plotted against sample number

We will constrain the NMSS solution to the same closed-loop as (27.24). This is
achieved by assigning two of its poles to 0.7 and 0.8 (as in the minimal case) and the
additional pole to zero, i.e. the origin of the complex z-plane. Equating the denomi-
nator coefficients of (27.21) and (27.23) yields g1 = −0.8, f0 = 0.2 and f1 = −0.3.
In this case, the NMSS and the minimal controllers produce identical closed-loop
responses, with the output asymptotically approaching the command level at steady
state. However, consider the effect of the following (arbitrary) mismatched values
for the system parameters,

a1 = −0.84; a2 = 0.1425; b1 = 0.525; b2 = −0.38. (27.25)

The new closed-loop poles and zeros shown in Table 27.1, are obtained by substi-
tuting the gains and mismatched system parameters into (27.21) and (27.22). The
control model coefficients b̂1 = 0.5 and b̂2 = −0.4 are unchanged. In this case, the
pole-zero cancellation of the minimal solution does not occur and the system is third
order. Furthermore, one of the poles is outside the unit circle, so that the minimal
solution is unstable! By contrast, the NMSS poles are all within the unit circle.

Finally, Fig. 27.4 shows an evaluation of these algorithms using Monte Carlo
simulation. The minimal solution is much less robust than the NMSS equivalent,
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with numerous unstable realisations. For more information about evaluating robust-
ness using Monte Carlo simulation, with the model uncertainty estimated from ex-
perimental data, see e.g. references [20, 21].

27.3.3 Transformations and Constrained NMSS Control

Let us now consider the observable canonical representation {(27.11), (27.12)}.
Utilising the control algorithm (27.15) and substituting for the state vector (27.14)
yields,

u(k)= −l1y(k)+ 1.5l2y(k − 1)− 0.4l2u(k − 1)+ kdyd(k). (27.26)

The non-minimal (27.20) and minimal (27.26) algorithms take the same structural
form, although in the NMSS case there is an additional independent control gain.

The following transformation constrains the NMSS solution into exactly the
same control law as the (observable) minimal design [17],

[
f0 f1 g1

]= [l1 l2]

[
1 0 0
0 −a2 b2

]
. (27.27)

Equation (27.27) is equivalent to assigning the (m − 1) extra poles in the NMSS
case to the origin. Reference [17] develops a similar transformation for the gener-
alised model (27.3), and shows how to constrain the NMSS solution using either
pole assignment or linear quadratic optimal control. However, assigning the extra
poles to the origin is not necessarily the best solution: one advantage of the NMSS
approach is that these extra poles can be assigned to desirable locations anywhere
on the complex z-plane. This is a particularly useful feature in the optimal control
case [26].

Furthermore, minimal models cannot automatically handle the case whenm> n,
whereas the NMSS form has no problems in this regard. For this tutorial example,
we have deliberately selected a TF model where n = m = 2 and δ = 1. However,
examination of equations {(27.9), (27.10)} and {(27.11), (27.12)} shows that the
minimal formulation of the problem can only deal with cases whenm> n by chang-
ing the state vector to dimension m and setting the trailing denominator parameters
an+1, an+2, . . . , am to zero. Of course, such an approach is implicitly non-minimal
anyway, hence it makes rather more sense to utilise the general NMSS model from
the start.

In conclusion, NMSS design provides a flexible and logical approach to state
variable feedback because the state space model is built in the simplest possible
way and yet provides the greatest degrees of freedom in the final design. Unfor-
tunately, the regulator control systems considered so far do not necessarily track
the command input when there is model uncertainty. This problem is illustrated
in Fig. 27.4, in which the command input for each realisation is unity. In the follow-
ing section, therefore, the NMSS model is augmented by an integral-of-error state
variable, in order to provide the required Type 1 servomechanism performance.
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Fig. 27.5 Proportional-Integral control of a first order TF model

27.4 Linear Proportional-Integral-Plus Control

An important feedback algorithm widely used in industrial control systems is the
Proportional-Integral-Derivative (PID) controller. An early citation is Challender et
al. [27] but the algorithm remains the focus of much practical and theoretical devel-
opment into the current decade. Let us consider, however, a special case of the PID
controller: the ‘two-term’ Proportional-Integral (PI) control algorithm. One partic-
ular PI control structure, applied to the TF model (27.1), is illustrated in Fig. 27.5.
Examination of Fig. 27.5 shows that the PI control algorithm is,

u(k)= kI

1 − z−1 (yd(k)− y(k))− f0y(k). (27.28)

Substituting for z−1 and rearranging yields the difference equation form of the al-
gorithm, suitable for implementation on a digital computer,

u(k)= u(k − 1)+ kI (yd(k)− y(k))− f0 (y(k)− y(k − 1)) . (27.29)

The closed-loop TF determined from Fig. 27.5 is,

y(k)= kI b1

1 + (f0b1 + a1 − 1 + kI b1)z−1 + (−a1 − f0b1)z−2
yd(k). (27.30)

The steady state gain of the closed-loop system is unity. Hence, if the closed-loop
system is stable, the output will converge asymptotically to a constant command
input. If f0 and kI are selected so that the closed-loop poles lie at the origin of
the complex z-plane, i.e. p1 = p2 = 0, then we obtain the deadbeat response illus-
trated by Fig. 27.6 (left). Here, the output signal y(k) follows a step change in the
command input after just one sampling instant, the fastest theoretical response of a
discrete-time control system. By contrast, the response shown in Fig. 27.6 (right)
is obtained by selecting f0 and kI so that the closed-loop poles form a complex
conjugate pair with p1 = 0.6 + 0.3j and p2 = 0.6 − 0.3j .

The latter of these two controllers yields a slower speed of response and de-
liberately incorporates a small temporary overshoot of the command level, which
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Fig. 27.6 Proportional-Integral control of a first order TF model showing a deadbeat response
(left) and a response using complex poles (right)

is sometimes desirable in practice e.g. it is more likely that the desired steady state
level is quickly achieved despite practical limitations in the system, such as mechan-
ical friction effects. In practical applications, it is also more robust to uncertainty in
the model parameters and generates a less severe control input signal than deadbeat
design. The associated characteristic polynomial of the closed-loop system is,

D(z)= (z− 0.6 + 0.3j) (z− 0.6 − 0.3j)= z2 − 1.2z+ 0.45. (27.31)

Following a similar approach to Sect. 27.3.1, the control gains are determined by
equating (27.31) with the denominator of (27.30), in either the z or z−1 domain. To
illustrate, consider again the TF model (27.1) with a1 = −0.9393 and b1 = 3.2102,
representing the speed of a DC motor. The simultaneous equations are straightfor-
wardly solved to obtain f0 = 0.1524 and kI = 0.0779. The characteristic polyno-
mial for a deadbeat response isD(z)= (z−0)(z−0)= z2 which, for the DC motor
example, yields f0 = 0.2926 and kI = 0.3115. Using these two sets of control gains,
the PI controller yields the responses illustrated by Fig. 27.6.

Now consider the ‘servomechanism’ NMSS form associated with the model for a
DC motor (27.1). Here, x(k)= [y(k) z(k)]T where z(k) represents the discrete-time
integral (summation) of the error between the output y(k) and the command input
yd(k), an integral-of-error state variable: z(k)= z(k − 1)+ yd(k)− y(k) or,

z(k)= 1

1 − z−1
(yd(k)− y(k)), (27.32)

where the TF will be recognised as a discrete-time integrator. Using the model (27.1),
z(k)= z(k − 1)+ yd(k)+ a1y(k − 1)− b1u(k − 1), hence the NMSS model is,

[
y(k)

z(k)

]
=
[−a1 0
a1 1

][
y(k − 1)
z(k − 1)

]
+
[
b1

−b1

]
u(k − 1)+

[
0
1

]
yd(k), (27.33)

y(k) = [1 0
][y(k)
z(k)

]
. (27.34)
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The state variable feedback control algorithm associated with this model is called
the Proportional-Integral-Plus or PIP controller. Here,

u(k)= −kx(k)= − [f0 −kI
]
[
y(k)

z(k)

]
= −f0y(k)+ kI z(k), (27.35)

where k = [f0 −kI ] is the control gain vector. Using (27.32) and (27.35), the con-
trol law for this system is given by (27.28) and Fig. 27.5. In other words, for the
simplest TF model (27.1), the PIP formulation is equivalent to a digital PI control
system. Nevertheless, one advantage of the PIP approach is already clear: although
the control algorithm retains the straightforward implementation structure of classi-
cal PI control, it has been derived within the framework of state variable feedback
design. Hence, the vagaries of manual tuning can now be replaced by state variable
feedback techniques such as optimal or robust design, as discussed later.

27.4.1 Linear PIP Control of Laboratory Excavator

Returning to the laboratory excavator mentioned in Sect. 27.2, the model (27.1) with
a1 = −1 and b1 = 0.0498 is identified from experimental data. Here, y(k) represents
the bucket joint angle, while u(k) is a scaled voltage. Solving the pole assignment
problem for p1 = 0.8139 + 0.1539j and p2 = 0.8139 − 0.1539j , yields f0 = 6.303
and kI = 1.171. These closed-loop poles have been obtained using linear quadratic
optimal design, as described later. The response to a time varying command input
is illustrated by Fig. 27.7. Here, yd(k) has been determined as part of the high-level
control objectives for this device, namely digging a trench in the sandpit [25].

In fact, the excavator arm consists of four hydraulically actuated joints, also in-
cluding the ‘boom’, ‘dipper’ and ‘slew’ angles. In this case, statistical identification

Fig. 27.7 PIP control of laboratory excavator bucket angle [28]. Left subplots: joint angle in de-
grees (thick traces) and command input (thin traces). Right subplots: control input signals (scaled
voltage). The upper subplots show experimental data and the lower subplots show the equivalent
simulated response based on the TF model (27.1). Sampling interval  t = 0.1 seconds
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from experimental data, utilising a uniform sampling rate of t = 0.1 seconds, sug-
gests that a first order model provides an approximate representation of all four
joints, with m = δ = 1 for the dipper and bucket, while m = δ = 2 for the boom
and slew. In other words, the boom and slew joint dynamics are well represented
by (27.2), whilst the dipper and bucket are modelled using (27.1).

For the case that δ = 2, but still utilising the PI controller shown in Fig. 27.5, it
can be shown that the closed-loop system is third order. With only two control gains,
the pole assignment problem cannot be solved, i.e. the designer cannot arbitrarily
assign the closed-loop poles. Similar results emerge for PI control of second or
higher order systems. Therefore, in order to design for the general TF model (27.3),
the following subsection utilises the generalised NMSS model introduced earlier.

27.4.2 Linear PIP Control of the Generalised TF Model

The NMSS servomechanism representation of the generalised TF model (27.3) is,

x(k)= Fx(k − 1)+ gu(k − 1)+ dyd(k); y(k)= hx(k) (27.36)

in which,

F =

⎡

⎢⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢⎢
⎣

−a1 −a2 . . . −an−1 −an b2 b3 . . . bm−1 bm 0
1 0 . . . 0 0 0 0 . . . 0 0 0
...

...
. . .

...
...

...
...

. . .
...

...
...

0 0 . . . 1 0 0 0 . . . 0 0 0
0 0 . . . 0 0 0 0 . . . 0 0 0
0 0 . . . 0 0 1 0 . . . 0 0 0
...

...
. . .

...
...

...
...

. . .
...

...
...

0 0 . . . 0 0 0 0 . . . 1 0 0
a1 a2 . . . an−1 an −b2 −b3 . . . −bm−1 −bm 1

⎤

⎥⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥⎥
⎦

while g = [b1 0 . . . 0 1 0 . . . 0 −b1]T , d = [0 . . . 0 1]T and h = [1 0 . . . 0]. Finally,
the n+m dimensional non-minimal state vector x(k) is,

x(k)= [y(k) y(k − 1) . . . y(k − n+ 1) u(k − 1) . . . u(k −m+ 1) z(k)
]T
.

(27.37)
The PIP control law takes a similar form to (27.35), here with the n+m dimensional
gain vector, k = [f0 f1 . . . fn−1 g1 . . . gm−1 −kI ]. In block-diagram terms, the
controller can be implemented as shown in Fig. 27.8, where it is clear that it can be
considered as one particular extension of the PI controller, in which the PI action is,
in general, enhanced by the higher order forward path and feedback compensators,

G1(z
−1)= g1z

−1 + · · · + gm−1z
−(m−1);

F1(z
−1)= f1z

−1 + · · · + fn−1z
−(n−1).

(27.38)
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Fig. 27.8 Proportional-Integral-Plus (PIP) control

However, because it exploits a state space framework, PIP control allows for
well-known state variable feedback design strategies, such as optimisation in terms
of a Linear-Quadratic (LQ) cost function,

J = 1

2

∞∑

i=0

{x(i)Qx(i)+ ru2(i)} (27.39)

where Q is a n + m symmetric matrix and r is a scalar weight. Here, the con-
trol gains are obtained from the steady state solution of the discrete-time matrix
Riccati equation [3, 4]. Risk sensitive and stochastic solutions can be similarly de-
veloped [17, 29]. Due to the special structure of the non-minimal state vector, the
elements of the LQ weighting matrices have particularly simple interpretation. In
fact, good performance is often obtained by straightforward manual tuning of the
diagonal terms associated with the input and output signals, as is the case for the
excavator. Alternatively, the PIP control system is ideal for incorporation within a
multi-objective optimisation framework, where satisfactory compromise can be ob-
tained between conflicting objectives such as robustness, overshoot, rise times and
multivariable decoupling [16, 30].

To illustrate this control framework, consider the servomechanism NMSS state
equation for the first order model with two samples time delay (27.2),
⎡

⎣
y(k)

u(k − 1)
z(k)

⎤

⎦ =
⎡

⎣
−a1 b2 0

0 0 0
a1 −b2 1

⎤

⎦

⎡

⎣
y(k − 1)
u(k − 2)
z(k − 1)

⎤

⎦+
⎡

⎣
0
1
0

⎤

⎦u(k − 1)+
⎡

⎣
0
0
1

⎤

⎦yd(k).

(27.40)

In this case, b1 = 0,G1(z
−1)= g1z

−1 and F1(z
−1) is not required. The closed-loop

system is third order and there are three control gains (f0, g1 and kI ), hence the pole
assignment problem can be solved.
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The regulator NMSS state equation for the second order model (27.4) is given
by (27.5), whilst the servomechanism NMSS version is,

⎡

⎢⎢
⎣

y(k)

y(k − 1)
u(k − 1)
z(k)

⎤

⎥⎥
⎦ =

⎡

⎢⎢
⎣

−a1 −a2 b2 0
1 0 0 0
0 0 0 0
a1 a2 −b2 1

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

y(k − 1)
y(k − 2)
u(k − 2)
z(k − 1)

⎤

⎥⎥
⎦+

⎡

⎢⎢
⎣

b1
0
1

−b1

⎤

⎥⎥
⎦u(k − 1).

(27.41)

Here, the control polynomials in Fig. 27.8 are F1(z
−1) = f1z

−1 and G1(z
−1) =

g1z
−1. The closed-loop system is fourth order and there are four control gains. It

becomes rather inefficient to calculate the pole assignment solution ‘by-hand’ for
such higher order systems, but there are a number of algorithmic approaches avail-
able [7], another advantage of using a state space formulation.

27.5 Nonlinear Proportional-Integral-Plus Control

Any inherent nonlinearities encountered in PIP control systems are usually ad-
dressed by simulation-based adjustment of the pole positions or LQ weighting ma-
trices. However, recent research has instead utilized a quasi-linear State Dependent
Parameter (SDP) model structure, in which the parameters are functionally depen-
dent on other variables in the system. Numerous articles have described an approach
for the identification of such models: see e.g. [5, 8] and the references therein.

Initial research utilised the SDP model and conventional linear methods to update
a PIP control law at each sampling instant, as suggested by Young [31]. To illustrate,
analysis of data for the laboratory excavator dipper joint reveals limitations in the
linear model (27.1). In particular, SDP identification suggests that a1 and b1 can be
expressed as functions of the applied voltage [25],

a1(k) = 0.52 × 10−6u2
k−2 − 1; b1(k)= −0.048 × 10−3uk−1 + 0.0293,

(27.42)

where the a1(k) and b1(k) notation is introduced to represent the time varying nature
of the parameters. Typical implementation results are illustrated in Fig. 27.9, where
the SDP-PIP controller is obtained by solving the LQ problem (27.39) at each sam-
ple. Here, the SDP-PIP response closely follows the theoretical design response,
whilst the fixed gain linear PIP controller is slower (because of model mismatch).

Such an approach relates closely to State Dependent Riccati Equation (SDRE)
methods; see e.g. [32] and the references therein. Unfortunately, while some theo-
retical advances have been made regarding the asymptotic stability of the approach,
the conditions obtained can be difficult to check and/or fulfill. By contrast, the fol-
lowing subsection describes a new pole assignment algorithm, based on the NMSS
model, that avoids these difficulties and ensures closed-loop stability.



27 Linear and Nonlinear Non-minimal State Space Control System Design 575

Fig. 27.9 PIP control of laboratory excavator dipper angle [28]. Left: command input in degrees
(sequence of step changes), theoretical response (dashed), nonlinear SDP-PIP (thick) and linear
PIP (thin). Right: scaled input voltages. Sampling interval  t = 0.1 seconds

27.5.1 Nonlinear Pole Assignment: Background

Consider the following nth order SDP model,

y(k)= −a1(k)y(k − 1)− · · · − an(k)y(k − n)+ b(k)u(k − δ) (27.43)

where δ ≥ 1 is the time delay, while ai(k) and b(k) are state dependent parameters.
Although this model represents a subset of the entire class of SDP models, it has
proven particularly useful in practical applications [25]. The states are typically de-
rived from the input (such as (27.42) for the excavator) and output signals, but could
also be a function of other measured variables. The NMSS model is,

x(k + 1)= F(k)x(k)+ g(k)u(k)+ dyd(k + 1); y(k)= hx(k) (27.44)

where the n+ δ non-minimal state vector is,

x(k)= [y(k) . . . y(k − n+ 1) u(k − 1) . . . u(k − δ + 1) z(k)
]T
. (27.45)

Following a similar approach to Sect. 27.4.2, the state transition matrix and other
vectors are straightforward to define [18, 25]. The control law is,

u(k)= −c(k)x(k), (27.46)

where c(k)= [f0(k) . . . fn−1(k) g1(k) . . . gδ−1(k) −kI (k)] is the state dependent
control gain vector. Applying the control algorithm (27.46) to the open-loop NMSS
model (27.44), yields the closed-loop control system,

x(k + 1)= A(k)x(k)+ dyd(k + 1); y(k)= hx(k), (27.47)

where A(k) = F(k) − g(k)c(k). To develop a nonlinear pole assignment algo-
rithm, define a n+ δ square matrix D with user specified (arbitrary) eigenvalues pi
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(i = 1, . . . , n+ δ). An example of D is given in Sect. 27.5.2 below. The eigenvalues
of D are equivalent to the roots of the closed-loop characteristic polynomial,

D(z−1)= 1 + d1z
−1 + · · · + dn+δz−(n+δ), (27.48)

where di are design coefficients. Taylor et al. [24, 33] develop an algorithm for deter-
mining c(k) such that, for an externally specified command yd(k), equations (27.47)
yield a closed-loop output response defined by equation (27.48). With δ > 1, as
for the boom and slew joints of the laboratory excavator, g(k) = g is time in-
variant. In this case, a transformation of the state vector (27.45) is required, i.e.
x̄(k)= T(k)x(k) where T(k) is a n+ δ square matrix. The general form of T(k) is
omitted for brevity but an example is given in Sect. 27.5.2 below. The transformed
open-loop model is,

T(k + 1)x(k + 1)= F(k)T(k)x(k)+ gu(k)+ dyd(k + 1);
y(k)= hT(k)x(k).

Substituting from (27.46) and rearranging yields,

x(k + 1)= T−1(k + 1) (F(k)− gc(k))T(k)x(k)+ T−1(k + 1)yd(k + 1). (27.49)

Equating the closed-loop state transition matrix above with D yields,

T−1(k + 1)F(k)T(k)− D = T−1(k + 1)gc(k)T(k). (27.50)

With a suitable transformation, the first n and last δ − 1 rows of (27.50) consist of
zeros [24, 33]. By equating the (n+ 1)th row of (27.50), and solving the resultant
set of n+δ simultaneous equations off-line, c(k) is obtained for implementation on-
line. This approach yields the same control gains as those developed algebraically
in another recent article [18]. However, the present discussion has obtained the con-
troller directly from the NMSS model, facilitating more straightforward stability
analysis, as illustrated below.

27.5.2 Nonlinear Pole Assignment: Worked Example

Consider a first order SDP model based on (27.43) with δ = 3 samples time delay,
i.e. y(k) = −a1(k)y(k − 1)+ b(k)u(k − 3). The fourth order NMSS form (27.44)
is defined by g = [0 1 0 0]T , d = [0 0 0 1]T , h = [1 0 0 0]T and,

x(k)=

⎡

⎢⎢
⎣

y(k)

u(k − 1)
u(k − 2)
z(k)

⎤

⎥⎥
⎦ ; F(k)=

⎡

⎢⎢
⎣

−a1(k + 1) 0 b(k + 1) 0
0 0 0 0
0 1 0 0

a1(k + 1) 0 −b(k+ 1) 1

⎤

⎥⎥
⎦ . (27.51)
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The transformation and design transition matrices are,

T(k)=

⎡

⎢⎢⎢⎢
⎣

1 0 0 0

0 1
b(k+2)

a1(k+2)
b(k+2) 0

a1(k+1)
b(k+1) 0 1

b(k+1) 0

0 0 0 1

⎤

⎥⎥⎥⎥
⎦

;

D =

⎡

⎢⎢
⎣

0 0 1 0
d4 −1 − d1 (−1 − d1 − d2) d̃

0 1 0 0
0 0 −1 1

⎤

⎥⎥
⎦

(27.52)

where d̃ = 1 + d1 + d2 + d3 + d4. Substituting these into (27.50) and equating
yields,

f0(k) = −a1(k + 1)(1 + d1 + d2 − a1(k + 2)[1 + d1 − a1(k + 3)])− d4

b(k + 3)
, (27.53)

g1(k) = b(k + 2)(1 + d1 − a1(k + 3))

b(k + 3)
, (27.54)

g2(k) = b(k + 1)(1 + d1 + d2 − a1(k + 2)[1 + d1 − a1(k + 3)])
b(k + 3)

, (27.55)

kI (k) = 1 + d1 + d2 + d3 + d4

b(k + 3)
. (27.56)

Examination of the time indices above shows that the algorithm requires a for-
ward shift of the parameters. In this regard, it is important to recall their state
dependent form. For many engineering devices, such as the laboratory excavator,
these parameters are functions of the delayed input and output signals, hence a
forward shift does not usually cause problems, i.e. a prediction of the SDP is not
required.

To analyse the closed-loop response, the state variable feedback controller based
on these gains is substituted into the open-loop model. Here, it can be verified that
the transition matrix in (27.47) is A(k + 1) = T(k + 1)DT−1(k), where T(k) and
D are defined by (27.52). Hence, pre-multiplying the state equations in (27.47)
by T−1(k + 1) yields x̃(k + 1) = Dx̃(k) + T−1(k + 1)dyd(k + 1), where x̃(k) =
T−1(k)x(k). Noting that T−1(k + 1)d = d, successive substitutions yields,

x̃(k)= D4x̃(k − 4)+ D3dyd(k − 3)+ D2dyd(k − 2)+ Ddyd(k − 1)+ D0dyd(k).

Note from the characteristic polynomial (27.48) and the Cayley-Hamilton theorem
that D4 +d1D3 +d2D2 +d3D+d4I = 0, i.e. a matrix of zeros. Hence, taking x̃(k)+
d1x̃(k − 1)+ d2x̃(k − 2)+ d3x̃(k − 3)+ d4x̃(k − 4) and re-arranging yields,
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x̃(k) = −d1x̃(k − 1)− d2x̃(k − 2)− d3x̃(k − 3)− d4x̃(k − 4)

+ (D3 + d1D2 + d2D + d3I
)
dyd(k − 3)+ (D2 + d1D + d2I

)
dyd(k − 2)

+ (D + d1I)dyd(k − 1)+ dyd(k) (27.57)

from which the time response of each state can be determined for given yd(k). Fur-
thermore, since the observation equation is y(k)= hx̃(k)= hT−1(k)x(k)= hx(k),
the transformation does not affect the first element of the state vector and it is a
trivial matter to obtain the output response from (27.57). In this regard, note that
hId = 0, hDd = 0, hD2d = 0 and hD3d = 1 + d1 + d2 + d3 + d4, hence,

y(k)= −d1y(k−1)−d2y(k−2)−d3y(k−3)−d4y(k−4)+ d̃yd(k−3). (27.58)

Expressed as a discrete-time TF, this has the desired characteristic polyno-
mial (27.48), time invariant scalar numerator and a time delay of δ = 3 samples,
as required. In other words, the nonlinear terms are eliminated in the closed-loop
and so the nature of the state dependency does not influence the theoretical re-
sponse. Naturally this result assumes zero model mismatch, the same assumption
as for linear pole assignment design. The robustness to model mismatch and distur-
bances is the subject of current research by the authors. However, simulation and
experimental results support the practical utility of the approach [18, 24].

Finally, using the open-loop state equation (27.44) and following a similar sub-
stitution approach to Kuo [3], yields the controllability matrix for this example,

S(k)= [g, F(k + 2)g, F(k + 2)F(k + 1)g, F(k + 2)F(k + 1)F(k)g
]
, (27.59)

which is non-singular if and only if b(k) 
= 0,∀k. Although discussion of control-
lability is beyond the scope of the present chapter, it is sufficient to note that the
nonlinear pole assignment problem can always be solved if b(k) 
= 0.

27.6 Extensions and Interpretations

This section briefly reviews a number of other extensions to basic NMSS design.

1. Continuous-time design. This chapter is limited to the discrete-time domain.
However, models of physical systems are often derived as differential equations
on the basis of natural laws; and they are characterized by parameters that can
have a prescribed physical meaning. In order to move from such a differential
equation model to its discrete-time equivalent, it is necessary to utilise some
method of transformation. The resultant model and its associated parameter val-
ues are functions of the sampling interval. By contrast, continuous-time mod-
els are defined by a unique set of parameters and may be adapted for irregular
sampling periods. Hence, it is logical to also consider delta-operator [16] and
continuous-time [15, 34] versions of the NMSS approach.
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2. Multivariable control. The general state space formulation of PIP control facil-
itates straightforward extension to the multivariable case [16, 19, 26]. Here, the
system is characterized by multiple control inputs that affect the state and output
variables in a potentially complicated and cross-coupled manner. Multivariable
PIP design must take account of this natural cross-coupling and generate control
inputs which ameliorate any unsatisfactory aspects of the system behaviour that
arise from it. In this regard, the multi-objective optimisation framework men-
tioned in Sect. 27.4.2 has proven extremely valuable in practice.

3. Model Predictive Control. PIP control can be constrained to yield exactly the
same algorithm as both Generalised Predictive Control (GPC) and minimal state,
Linear Quadratic Gaussian (LQG) design methods [17]. In the more general
Model Predictive Control (MPC) case, a number of recent articles have also
utilised NMSS models; e.g. [14, 30, 35]. In contrast to basic PIP control, this
approach has the advantage of explicitly handling system constraints at the de-
sign stage. Reference [30], for example, describes a framework for performance
tuning of MPC using goal-attainment methods. Here, simulation experiments
again suggest that NMSS models offer better design flexibility in some cases and
hence can yield improved performance in comparison to minimal MPC.

27.7 Conclusion

This chapter has used worked examples to re-visit some of the most fundamental
results in the theory of non-minimum state space (NMSS) control system design.
NMSS design does not need any form of state reconstruction, since it always in-
volves full state feedback based solely on measured input and output signals. In
fact, the NMSS form appears to be the most obvious and straightforward way to
represent a transfer function in state space terms. Minimal models represent the
same system in a less intuitive manner, requiring each state to be formed from vari-
ous, often rather abstract, combinations of the input and output signals. The NMSS
approach has the further advantage in that it can inherently handle high order nu-
merator polynomials and long time delays.

Nonetheless, the chapter has shown how the NMSS model can be transformed
into a minimal form, while the associated control law can be constrained to yield the
same closed-loop system as minimal design when there is no model mismatch. Even
in this constrained form, however, non-minimal design can be more robust than
state variable feedback based on some minimal models. By contrast, the observable
canonical form yields a control system with a similar structure to the NMSS based
controller. When we assign the additional poles in the NMSS case to the origin,
these control algorithms are exactly the same. However, it is apparent from both
simulation and practical case studies, that we would not normally wish to constrain
NMSS design in this way. Rather, it is advantageous to utilise the additional poles
in the NMSS case to provide extra flexibility and design freedom.

The discussion above has focused on single-input, single-output models, where
the NMSS representation is used to develop Proportional-Integral-Plus (PIP) con-
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trol systems. The approach is readily extended to stochastic, risk sensitive, model-
predictive, multivariable and nonlinear systems. For example, recent research has
utilised NMSS models with state dependent parameters. Practical examples of this
nonlinear approach have included environmental control in buildings, construction
robotics and nuclear decommissioning [18, 24, 25]. As discussed in Sect. 27.5, the
control gains are updated at each sampling instant on the basis of the latest param-
eter values. Alternatively, in the pole assignment case, algebraic solutions can be
derived off-line to yield a nonlinear PIP control algorithm that is relatively straight-
forward to implement on a digital computer, using a standard hardware-software
arrangement. The references listed below provide much more detail about all these
methods, including a wide range of practical and theoretical results.
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Chapter 28
Simulation Model Emulation in Control System
Design

C.X. Lu, N.W. Rees, and Peter C. Young

28.1 Introduction

In Dominant Mode Analysis (DMA) [13], the data-based modeling tools employed
for the analysis of real data are used to identify and estimate a reduced order ‘em-
ulation’ of the high order simulation model, based on data obtained from planned
experiments carried out on the simulation model with a fixed set of ‘nominal’ param-
eters. Although this nominal emulation model reproduces the dynamic behaviour of
its high order progenitor with very high accuracy, it does not allow for the emula-
tion of the simulation model if the parameters of the latter are changed from these
nominal values. In order to address this limitation, the present chapter considers
how the DMA can be extended to develop a more complete Dynamic Emulation
Model (DEM; also called a ‘meta-model’) that maps the relationship between the
two models in a more complete manner.

Emulation modeling of this type is discussed fully in [23, 24] (see also Chap. 16
in this book) and it is illustrated diagrammatically in Fig. 28.1. The complete dy-
namic emulation model behaves like the high order simulation model and so it can
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Fig. 28.1 The process of dynamic emulation model synthesis (note that the example referred to
in this diagram is the third order emulation of a 17th order general equilibrium econometric model
estimated for the Euro Area)

usefully replace it in certain applications. For example, it can assist in (or even re-
place) conventional sensitivity analysis, which is normally required to investigate
which of the many parameters that characterize the high order simulation model
are most important in defining the model’s dynamic behaviour. And it can take the
place of the simulation model in applications such as real-time flood forecasting [2]
or control systems analysis and design. It is the use of emulation modeling in this
latter context that we consider in the present chapter. However, while complete dy-
namic emulation modeling has been applied recently in economics [24] and hydrol-
ogy [19, 23], the illustrative automatic control application described in the present
chapter has been limited so far to the use of a nominal emulation model. In this
sense, the example represents the first stage of a larger project, with the prospect of
extending the nominal emulation and control system design described here to a com-
plete DEM and control system design in the future. In fact, the results obtained in
this example are useful in their own right, demonstrating significant improvements
introduced by the present nominal DEM and multivariable control system design
and suggesting that the implementation using full DEM and associated scheduled
adaptive control should be straightforward.

28.2 Dominant Mode Analysis

It has been known for many years that the response of a high order, linear dynamic
model is almost always dominated by a relatively few modes of dynamic behaviour,
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with many of the eigenvalues having little effect on the output response. This is
illustrated well by the ‘dispersion analysis’ of [5]. Although quite different theoret-
ically, this can be compared with principal component analysis, since it reveals the
percentage of the output response that is explained by each dynamic mode of the
model, as defined by its associated eigenvalue.

As Liaw shows, the part of the model defined by these dominant modes can be
extracted and used as a reduced order model. However, a reduced order model of the
same order can also be estimated using dominant mode analysis, but the dominant
modes are not constrained to be exactly the same as those obtained analytically
using Liaw’s approach. In effect, the DMA leads to a reduced order model that
captures not only the analytical dominant mode behaviour, but also some of the
less dominant modal characteristics. In this way, for any given reduced order model
order, the unconstrained DMA model will tend to explain the output response much
better than the constrained Liaw model.

In the case of reduced order linearized models, the DMA methodology involves
experiments in which the complex, physically-based simulation model is perturbed
about some defined equilibrium or operating point, using an input signal (or signals)
that will reveal all the dominant behavioural modes. A low order, normally multi-
input, TF model is then identified and estimated from the resulting set of simulated
input-output data using the RIV/RIVC model identification algorithms [12, 16]. As
might be expected from dynamic systems theory, a low order linear model obtained
in this manner reproduces the quasi-linear behaviour of the original nonlinear model
about the operating point almost exactly for small perturbations. Perhaps more sur-
prisingly, however, the dominant mode model can often also mimic the larger pertur-
bation response (see e.g. [21, 22] and the later practical application). It is important
to note that, in the case of general nonlinear systems, it is not possible to ensure
that the experiments and associated DMA will reveal all of the complex simula-
tion model response characteristics. In the absence of any theory in this connection
(which would be very difficult in the case of general nonlinear models), all that can
be done is to ensure that the experimentation on the simulation model is as compre-
hensive as possible over the user-defined parameter ranges. This implies the need
for the planning of the dynamic simulation experiments that are required for the
DMA. One advantage in the emulation context, however, is that the complex model
is known exactly, so that designing such planned experiments to include optimal in-
put perturbations (see e.g. [4]) may be possible. For the practical example presented
later, however, no attempt has been made yet to optimize the inputs.

Finally, it should be noted that, if a reduced order, linearized model representation
is not sufficiently effective in explaining the high order, nonlinear model behaviour,
then a nonlinear description is essential. In this situation, the linear TF identification
considered in the present chapter can be replaced by nonlinear State-Dependent
Parameter (SDP) transfer function modeling [14, 15, 20]. These references provide
a number of simulated examples (e.g. the chaotic logistic growth equation and the
cosine map) and real examples (e.g. signals from the giant axon of a squid and
the limit cycle behaviour of blowfly populations) that include systems exhibiting
complex limit cycling and chaotic behaviour. In addition, SDP relations can exhibit
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sharp discontinuities, thresholds, harsh limits and even hysteresis: for example, [17]
identify a hydrological DBM model where hysteresis associated with the effects of
snow-melt is identified by SDP analysis. It is clear, therefore, that if the high order
model response had these various kinds of nonlinear dynamic characteristics, then
it is likely that such SDP models would be required for emulation.

The major difference between other approaches and the procedure described
in the present chapter is the method of approximating the large dynamic simula-
tion model. In our DMA approach, this approximation is based on the same model
form used by most large simulation models: namely differential equations or their
discrete-time equivalents. As a result, the reduced order model produced by DMA
is likely to be more parametrically efficient than these other approximations since it
provides an explicit dynamical representation in terms of the time constants, natural
frequencies and steady state gains that characterize many large dynamic simulation
models.

28.3 Emulation Modeling and Control of a Multivariable Power
Plant System

A large Simulink model of the multivariable power plant system including its con-
trollers has been developed by the two UNSW authors and is shown in Fig. 28.2, us-
ing a core nonlinear drum model known as the Åström-Bell model [1]. The Simulink
modules represent important sections of the power plant, including the fuel system,
feedwater system, boiler, superheater, throttle valve, turbine, reheater and genera-
tor. The open loop boiler system is unstable so it is necessary to have three major
individual PID control loops for power output (MW controller), boiler drum level
(Level Controller) and throttle pressure (Pressure Controller) introduced to stabilize
and operate the system. For such a highly coupled, 3 × 3 multivariable, nonlinear
system, as shown in Fig. 28.3, the control performance in many power plants is not
adequate using the standard SISO PID arrangement [9]. In particular, a large water
level variation known as ‘shrink and swell’ in the boiler drum during normal load
change operation may trip the power plant [7]. Multivariable control strategy is a
natural solution [10]. And since a typical linear modeling synthesis of a power plant
boiler would generate a model of 14 to 20 or higher orders [8], it is not realistic to
use such a model for control design and a good lower order emulation model of the
system is an obvious alternative.

28.3.1 Dynamic Emulation Modeling

It is the system shown in Fig. 28.3 that is the object of the emulation analysis,
where the overall power plant system block diagram is represented by three setpoints
u1 u2 u3 and three outputs y1 y2 y3; and where the three PID controllers are part of
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Fig. 28.3 Power plant
system major inputs/outputs:
the system has 3 setpoints
u1 u2 u3 and 3 outputs
y1 y2 y3, the system
dynamics including 3 PID
controllers all in G(s)

the process dynamics G(s). This system is perturbed by the normalized unity step
command inputs shown as black, blue and red dashed lines in Figs. 28.4, 28.5, 28.6.
The resulting measured responses from the large simulation model are shown dotted
in each of these figures but these are obscured by the low order, nominal emulation
model responses, plotted as a full black line, which almost perfectly match the high
order simulation model responses, as required.

Although the large simulation model is nonlinear, model structure identification
shows that a linear model is able to explain the perturbational responses well, as we
see in Figs. 28.4–28.6. This linear emulation model is a third order, continuous-time,
multiple MISO form, with a common denominator polynomial for each MISO sub-
model. The third order structure and associated parameters of these sub-models are
identified and estimated by the hybrid continuous-time RIVC algorithm, using the
simpler SRIVC option of the rivcbjid (structure identification) and rivcbj (parameter
estimation) routines in the CAPTAIN Toolbox1 for Matlab™. This simpler option
applies because there is no noise on the large model simulation data except that
induced by the extremely small residual that normally results from this kind of DMA
exercise. The first sub-model for the MW power output, given below, illustrates the
nature of the emulation model: the other two sub-models are of a similar form.

y1(t)= B11(s)

A1(s)
u1(t)+ B12(s)

A1(s)
u2(t)+ B13(s)

A1(s)
u3(t), (28.1)

where

A1(s) = s3 + 0.059921s2 + 0.00042915s + 2.712 × 10−6,

B11(s) = 0.048289s2 + 0.00036434s + 2.7192 × 10−6,

B12(s) = 0.00018577s2 + 4.2822 × 10−7s − 2.0187 × 10−10,

B13(s) = 0.0013011s2 + 5.8307 × 10−5s − 2.854 × 10−9.

The validation of the full multivariable model, as formed by the three MISO sub-
models, is carried out by applying three smoothed random input commands con-
currently. Figure 28.7 shows the results for y1. As can be seen, the emulation for

1See http://www.es.lancs.ac.uk/cres/captain/.

http://www.es.lancs.ac.uk/cres/captain/
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Fig. 28.4 Perturbation inputs, system response and emulation results: channel 1

Fig. 28.5 Perturbation inputs, system response and emulation results: channel 2

this variable is almost perfect and the other two channels that are not shown have
equally good fits, so providing confidence that model is a sensible basis for control
system design.

28.3.2 Multivariable LQ-PIP Control System Design

The combined three MISO sub-models constitute the full, continuous-time, multi-
variable emulation model of the boiler system. One advantage of this model is that
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Fig. 28.6 Perturbation inputs, system response and emulation results: channel 3

Fig. 28.7 Emulation validation: y1 with concurrent inputs on all 3 channels

it can be converted into discrete-time models at different sampling intervals  t , so
that the effect of the sampling interval on digital control can be evaluated quite eas-
ily. These discrete-time MISO models are in a form that can be used immediately
for multivariable Proportional Integral Plus (PIP) control system design: see, for
example, [11] and the prior references therein. In this regard, the PIP routines in the
CAPTAIN Toolbox are first used to convert the model into the multivariable Non-
Minimal State Space (NMSS) model form required for the subsequent three channel,
multivariable PIP control system design. The initial control system design studies
have been based on the ‘forward-path’ (FP-PIP) implementation of the PIP multi-
variable controller using the Linear-Quadratic (LQ-PIP) design option, as shown
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Fig. 28.8 PIP control forward-path form (FP-PIP) (see e.g. [11] and the prior references therein)

Fig. 28.9 FP-PIP control implementation schematic

in Fig. 28.8. This controller is then implemented as shown in Fig. 28.9 to trim the
setpoints.

28.3.3 Multivariable LQ-PIP Control Results

The power plant control simulation setting is shown in Fig. 28.10, where the FP-PIP
controller is being integrated into the original nonlinear simulator. This simulator is
then subjected to the following operating scenario from its nominal 300 MW (60%
load) steady state conditions:

1. The MW setpoint is ramped up by 100 MW at 3000 s to 400 MW and again at
4500 s to full load 500 MW, all at the rate of 10 MW/min.

2. The setpoint is then ramped down by 150 MW at 6500 s and again at 8000 s;
and finally ramped down another 100 MW at 9500 s to reduce the MW output to
100 MW, all at the rate of 10 MW/min.
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Fig. 28.11 Rees-Lu boiler simulation model: Best PID simulation results. MW output—red, set-
point—yellow; drum level output—green, setpoint—magenta; boiler pressure output—blue, set-
point—light blue

3. A sliding pressure setpoint change, which is a function of the MW setpoint values
in order to optimise the efficiency of the boiler/turbine from the nonlinear steam
thermodynamic property.

4. The drum level setpoint is always set at a constant level.

Figures 28.11 and 28.12 compare the setpoint tracking performance, in the
above scenario tests, of the standard three channel PID controlled system, shown
in Fig. 28.11, and the multivariable PIP closed loop control, shown in Fig. 28.12,
where the y-axis is the % of changes based on 300 MW and the x-axis is the time in
seconds. In particular, Fig. 28.11 shows the best performance that could be obtained
by tuning the three channel PID controlled system responses: we see that the MW
response (red) is very good, as required by the network management (otherwise
the performance would be unacceptable). On the other hand, the other two outputs,
boiler pressure (blue) and the drum level (green), have large variations caused by the
load changes. At each point where the MW is required to rise, the pressure (blue)
has a large, delayed drop behind the sliding pressure setpoint change (light blue);
and it is similarly delayed in the opposite direction when MW is going down. Fi-
nally, the drum level (green) develops ‘shrink and swell’ at the load changing times
(see earlier discussion), as the controller is unable to maintain the setpoints.

The PID control results can be compared with the PIP closed loop control re-
sults shown in Fig. 28.12, under the same scenario, where the initial tuning on the
diagonal elements of the weighting matrix for the LQ-PIP (see e.g. [11]) are:

wy =
⎡

⎣
2900

1
500

⎤

⎦ ; wu =
⎡

⎣
125

1
1

⎤

⎦ ; wz =
⎡

⎣
16
1
1

⎤

⎦ .

These weights have been tuned from the default diagonal weighting values using a
systematic, on-line tuning method developed by the first author [6] to minimise the
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Fig. 28.12 Rees-Lu boiler simulation model: Initial multivariable FP-PIP simulation results. MW
output—red, setpoint—yellow; drum level output—green, setpoint—magenta; boiler pressure out-
put—blue, setpoint—light blue

Fig. 28.13 Multivariable PIP control trim signals to PID controllers: u1 (for MW)—light blue; u2
(for drum level)—yellow; and u3 (for pressure)—magenta

error cost indices. The resulting improvement in performance is large when com-
pared with the PID results: the boiler pressure (blue) is much tighter and, more
importantly, the ‘shrink and swell’ of the drum water level (green) is well under
control; while MW (red) follows the load change profile almost perfectly.

The multivariable PIP controller’s outputs, which are the ‘trim adjustments’
added to the power plant coordinated setpoints of the existing PID controllers, are
shown in Fig. 28.13.

The PIP controller’s improvement in performance is obvious.

1. At the points where MW is ramped up, the pressure loop (light blue) is pre-fired
to prevent the delayed drag, which compresses the drum level swell through cou-
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pling; at the same time, MW (magenta) has been turned down to avoid overshoot
caused by pressure rise; and, finally, the drum level has been trimmed down to
control the swell.

2. At the points where MW is ramped down, the PIP control adjustments do the
opposite in order to maintain the tight control.

28.3.4 Note

These are the first stage results obtained with only manipulation of the purely diag-
onal weightings associated with the quadratic cost function used in LQ-PIP control
system design analysis for this study. No attempt has been made, so far, to utilize the
decoupling power of the off-diagonal elements associated with the integral-of-error
state variables in the NMSS model [3], nor investigate whether Delta-operator PIP
control system design [3, 18] might offer some advantages. Such possibilities are
being investigated in the continuing research and development programme.

28.4 Conclusions

This chapter has presented the concept of large simulation model emulation and out-
lined the methodological tools developed by the third author and his colleagues at
Lancaster for identifying and estimating both ‘nominal’ and ‘complete’ emulation
models and how these can be applied to a real industrial control problem investigated
by the first and the second authors at the University of New South Wales, Sydney,
Australia. It has shown how the large, nonlinear, power boiler system simulation
model developed by the first two authors can be emulated by a linear, multivari-
able, third order, nominal emulation model. This emulation model reproduces the
multivariable response of the simulation model very well indeed and can be used
for multivariable control system design. This is illustrated by the initial design of a
multivariable LQ-PIP control system and its successful implementation as an ‘outer-
loop’ control system that considerably improves the multivariable performance of
the ‘inner-loop’ PID controlled boiler system.

Surprisingly, although this LQ-PIP control system design is based on the nom-
inal linear, third order emulation model, it is able to maintain good control over a
wide range of load changes. Although it is noticeable that the PIP control perfor-
mance of the drum water level is not as good at low load range (below 200 MW to
100 MW) as the range above it, this performance would be perfectly adequate in
practice. However, it is well known in power plant control that there is a significant
characteristic change at the lowest loads, so that the conventional PID controllers
need to be switched into a different controller structure: see [7].

The development of a complete dynamic emulation model for the power plant
model is under way. This involves varying the internal parameters of the large sim-
ulation model in order to obtain a series of plant input-output data on which to base
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the full emulation model analysis. It is hoped that a LQ-PIP controller based on
such a complete dynamic emulation model can be operative over a whole range of
the nonlinear power plant simulator, thus eliminating the need to switch the inner-
loop PID control structure at low loads.
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Chapter 29
Predictive Control of a Three-Phase
Regenerative PWM Converter

Dae Keun Yoo, Liuping Wang, and Peter Gawthrop

29.1 Introduction

One of the key components in a renewable energy system is a three phase regener-
ative PWM (Pulse-Width-Modulation) converter that will perform both AC to DC
and DC to AC conversions. In AC to DC conversion, the converter draws currents
from the main electrical grid, to supply the power to a load. When the system is op-
erating in a regenerative mode (i.e. DC to AC conversion), the converter injects the
current into the main electrical grid, from a DC power source, such as the renewable
energy generator.

For the proper and safe operation of the converter, a control system must satisfy
the following two main control objectives. First, DC-link bus voltage has to be kept
at the pre-defined voltage level under various loads. Depending on the applications,
a load may range from a simple resistive type load (i.e. constant load current), to
a more generic load, such as multiple motor drives with a common DC bus. The
second control objective is to operate the converter in unity power factor. By main-
taining the operation at the unity power factor, power losses (i.e. reactive power)
are minimized while drawing and regenerating the power from the grid. In the lit-
erature, the most widely adopted control structure is the cascaded synchronous PI
control [2, 5, 8] which typically employs outer and inner control loops for voltage
and currents respectively.
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Departing from the cascaded PI control and single-loop system configuration, in
this paper, the interactions between the plant dynamics are taken into consideration
by using the model predictive control (MPC) technology [9, 12]. Although the pre-
dictive based controller is not an entirely new concept for this type of converters [7],
MPC is becoming an attractive solution to control the power converter of this type.
A recent work by [10], showed a concept, refer to as a finite state predictive con-
trol, where the optimal control solution is chosen through model prediction and cost
function minimization by considering the finite switching combination. In this work,
setting in the environment of continuous-time control system, a linearized model of
the converter (known as state averaged model) is used to predict the response of
the model, and based on the model prediction, the design objective is to find the
derivative of the control input u̇(t) that minimizes the quadratic cost function. The
structural and design differences between the current work and the work by [10]
are that the predictive controller is designed using a continuous-time model and the
discretization occurs at the implementation stage, and the model used for prediction
is embedded with two integrators. The continuous-time design framework permits
a fast sampling rate without the complication of model becoming ill-conditioned,
hence produces a better dynamic closed-loop performance. With the integrators em-
bedded in the design model, the derivatives of the control signals are optimized,
leading to the simplified implementation procedures. Moreover, the proposed model
predictive controller, DC bus voltage and iq current are controlled directly by com-
puting the optimum switching inputs that minimizes the error function between the
predicted and measured DC bus voltage and iq current. Furthermore, it is illustrated
in this paper that the original cost function is modified by including a prescribed
degree of stability factor in the design to improve the transient response.

29.2 Process Description and Plant Model

A typical three phase regenerative PWM converter is shown in Fig. 29.1. A three
phase source (Ea,Eb,Ec) (i.e. main electrical grid) is connected to line inductorsLs
with a equivalent series resistance, shown as R. The line reactor is the integral part
of the rectifier, which provides a boosting feature of DC-link bus voltage, as well as
suppressing the harmonics in the input AC currents. Followed by the line inductors
are the six bi-directional switches, which have the ability to conduct current from
the main three phase grid to DC-link bus when the device is used as a rectifier, and
convert the DC voltage to AC currents when it is used as an inverter. These switches
are made of semi-conductor devices, which can only operate in either ON or OFF
states. Thus, a PWM module is often employed to produce the desired switching
outputs. Finally, a DC-link capacitor (Cdc) is connected between the positive and
negative of the DC bus, which acts as a voltage source to a load.

In this work, several assumptions are made about the operation of the converter.
First, it is assumed that all switches are ideal and operate in a continuous conduction
mode (CCM), and the grid voltage is symmetric and balanced with the following
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Fig. 29.1 A three phase PWM rectifier

mathematical description,

Ea = Em cos(ωt), (29.1)

Eb = Em cos

(
ωt − 2π

3

)
, (29.2)

Ec = Em cos

(
ωt + 2π

3

)
, (29.3)

where ω= 2πf , f is 50 Hz. Furthermore, the system is assumed to be a three wire
system, thus the sum of the three phase currents is equal to zero according to KCL,

ia + ib + ic = 0. (29.4)

Based on the assumptions, the dynamic behaviour of the converter is described
by the non-linear state-space model, [11],
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, (29.5)

where Ls is the inductance (mH ), R is the resistance (Ω), Cdc is the capacitance
(μF). Sa, Sb and Sc are the sinusoidal functions satisfying the following equations,

Sa = m

2
cos(ωt −ψ)+ 1

2
, (29.6)

Sb = m

2
cos

(
ωt −ψ − 2π

3

)
+ 1

2
, (29.7)
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Sc = m

2
cos

(
ωt −ψ + 2π

3

)
+ 1

2
, (29.8)

wherem is the magnitude of the modulation and ω is the same as before. It is clearly
seen from (29.5) that the dynamic system is nonlinear and time varying.

In order to create a control scheme that is simple and robust, it is necessary to
transform the above (nonlinear and time-variant) model into a synchronous frame
axis so to take advantage of linear time-invariant system. This transformation,
namely synchronous frame transformation, is obtained by applying the transforma-
tion matrix given below,

T =
[

cos(ωt) cos(ωt − 2π
3 ) cos(ωt − 4π

3 )

− sin(ωt) − sin(ωt − 2π
3 ) − sin(ωt − 4π

3 )

]

. (29.9)

As a result, the dynamic equations of the converter in synchronous frame axis
are expressed as,

Ls
did

dt
= −Rid +ωLsiq + ed − vd,

Ls
diq

dt
= −vq −Riq −ωLsid, (29.10)

Cdc
dvd

dt
= 3

4
(Sdid + Sqiq)− iL,

where ed is a grid source voltage, id , iq are the input currents and vd , vq denotes
control inputs, which are defined as below,

vd = Sd ∗ (vdc/2), (29.11)

vq = Sq ∗ (vdc/2), (29.12)

Sd and Sq are switching functions. Note that with the switching functions Sd and
Sq as control variables, (29.10) become a set of bilinear equations. Further simpli-
fication of the model is obtained via linearization of the bilinear model at operating
conditions, and the resulted linear time-invariant model is shown as
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where Sdo, Sqo,Vdco, ido and iqo represents steady state equivalent solutions.
Specifically, supposing that at steady state operating condition, the converter main-
tains a target DC bus voltage with unity power factor, in other words both the mag-
nitude of iqo and vq are assumed to be zero, then the steady state values of the
parameters in the linear model are selected as iqo = 0, vq = 0, Vdco = Vref . For
switching functions Sdo, Sqo are computed as [6],

Sdo = 2(ed −Rid)
Vdco

, (29.14)

Sqo = −2ωLsid
Vdco

. (29.15)

Furthermore, the sum of switching functions must satisfy the following limit to
avoid saturation.

S2
d + S2

q =
[

3

4
cos(30◦)

]2

= 4

3
. (29.16)

As it was also pointed out in, [6], there is also an upper limit in a load current,
which is,

IL = 3e2
d

8RVdc
. (29.17)

By choosing the load current to satisfy the inequality (29.17) constraints in IL,
a steady state solution of id can be obtained as follows.

id = 1

2

[
ed

R
±
√(

ed

R

)2

− 8VdcoIL

3R

]
. (29.18)

29.3 Model Predictive Control Design

The objective of the model predictive control system is to regulate the DC bus volt-
age at a desired value specified by the applications while maintaining unity power
factor. With this objective, the outputs of the regenerative power supply are chosen
to be the voltage of the DC bus Vdc and the current iq . When the system has a unity
power factor, iq = 0, which is the set-point signal for this output.

The model used in the design of the model predictive controller is

Ẋm(t) = AmXm(t)+Bmu(t), (29.19)

y(t) = CmXm(t), (29.20)
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where Am,Bm and Xm are defined as

Am =
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]
, Xm =
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⎤

⎦ , u=
[
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Sq

]
.

In the operation of the converter, there are low frequency disturbances and har-
monic distortion, thus integrators are needed in the controller. To embed the inte-
grator, two auxiliary variables are chosen as

z(t) = ẋm(t),
y(t) = Cmxm(t),

and based on them, a new state variable vector is defined as x(t)= [z(t)T y(t)T ]T .
With these auxiliary variables, in conjunction with the original plant model, the
augmented state space model is defined as:

[
ż(t)

ẏ(t)

]
=

A
︷ ︸︸ ︷[
Am oTm
Cm oq×q

][
z(t)

y(t)

]
+

B
︷ ︸︸ ︷[
Bm
oq×m

]
u̇(t), (29.21)

y(t) = [om Iq×q
]

︸ ︷︷ ︸
C

[
z(t)

y(t)

]
, (29.22)

where Iq×q is the identity matrix with dimensions 2×2; oq×q is a 2×2 zero matrix,
oq×m is a 2 × 2 zero matrix, and om is a 2 × 3 zero matrix.

29.3.1 Prediction and Optimization

In the core of model predictive control algorithm, the prediction of future states
is constructed within a moving horizon window, followed by selection of a cost
function and optimization of the cost function to obtain the future control trajectory.
Following the same framework of continuous-time predictive control [12], for 0 ≤
τ ≤ Tp (Tp is the prediction horizon), the derivative of control signal u̇(τ ) with two
inputs is expressed as

u̇(τ )= [ u̇1(τ ) u̇2(τ )
]T
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and the input matrix B is partitioned as

B = [B1 B2
]
,

where B1 and B2 are the first and second columns of the B matrix. With this formu-
lation, each input signal is described with a Laguerre function expansion. Namely,
by choosing two continuous-time Laguerre function vectors L1(τ ) and L2(τ ) with
dimensions N1 and N2, the derivative of the control signal u̇(τ ) is represented by

u̇(τ )=
[
LT1 (τ ) oTL2

oTL1 LT2 (τ )

][
η1
η2

]
,

where oL1 and oL2 are the zero column vectors with the same dimensions as L1(τ )

and L2(τ ). In addition, both L1(τ ) and L2(τ ) satisfy the differential equation as
below, with their own scaling factors and number of terms (p and N parameters)

L̇(τ )=ApL(τ) (29.23)

where

Ap =

⎡

⎢⎢⎢
⎣

−p 0 . . . 0
−2p −p . . . 0
...

...
. . . 0

−2p . . . −2p −p

⎤

⎥⎥⎥
⎦

and L(0) is the N × 1 vector with each element equal to
√

2p.
Assume that at the current time, say ti , the state variable vector x(ti) is measured.

Then at the future time τ , τ > 0, the predicted state vector, denoted by x(ti + τ | ti )
is described by the following equation

x(ti + τ | ti )= eAτ x(ti)+
∫ τ

0
eA(τ−γ )

[
B1L

T
1 (γ ) B2L

T
2 (γ )

]
dγ

[
η1
η2

]
.

To simplify the notation, let the convolution integral be denoted as

φ(τ)T =
∫ τ

0
eA(τ−γ )

[
B1L

T
1 (γ ) B2L

T
2 (γ )

]
dγ,

where φ(τ)T can be easily computed by solving a set of linear algebraic equations
(see [12]). With ηT = [ηT1 ηT2 ], the prediction of future states is expressed as

x(ti + τ | ti )= eAτ x(ti)+ φ(τ)T η. (29.24)

In general terms, the cost function used in predictive control has the form

J =
∫ Tp

0
x(ti + τ | ti )T Qx(ti + τ | ti ) dτ + ηT RLη, (29.25)
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where Q and RL are symmetric positive definite and positive semi-definite matri-
ces, written as Q> 0 and RL ≥ 0 respectively. By substituting the predicted state
variables into the cost function, this cost function becomes

J = ηTΩη+ 2ηT Ψ x(ti)+ constant, (29.26)

where the quantities of Ω and Ψ are

Ω =
{∫ Tp

0
φ(τ)Qφ(τ)T dτ +RL

}
; Ψ =

∫ Tp

0
φ(τ)QeAτ dτ.

Consider now the unconstrained minimization with respect to the parameter vec-
tor η of the general cost function (29.26) in the absence of hard constraints. Then
the minimizing η is the least squares solution

η= −Ω−1Ψx(ti). (29.27)

By the principle of receding horizon control, the optimal control u̇(t) for the
unconstrained problem at time ti is

u̇(ti )=
[
LT1 (0) oTL2

oTL1 LT2 (0)

][
η1
η2

]
. (29.28)

With the derivative of the control signal computed, the actual control signal is
written as

u(ti)= u(ti − t)+ u̇(ti ) t, (29.29)

where  t is the sampling interval.

29.4 Predictive Control with a Prescribed Degree of Stability

This section investigates issues associated with tuning the performance of the pro-
posed predictive controller. The outcome is the modification of the predictive control
system with a prescribed degree of stability to achieve desired closed-loop perfor-
mance.

The class of commonly used cost functions in the design of model predictive
control is associated with the errors between the output of the converter y(t) and the
reference signal r(t) and it has the form [3, 4],

J =
∫ Tp

0
{(r(ti )− y(ti + τ | ti ))T (r(ti )− y(ti + τ | ti ))+ u̇(τ )T Ru̇(τ )}dτ.

This selection of cost function provides a simple solution to the choice of design
parameters in the model predictive controller, where the Q matrix in the general
cost function (29.25) is selected as Q = CT C. In the absence of constraints, it is
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known [12] that if exponential data weighting is employed then the predictive con-
troller converges to the corresponding linear quadratic regulator with sufficiently
large prediction horizon Tp and large N1 and N2 (where the last two parameters are
the numbers of terms included in the Laguerre function expansion). Therefore, the
closed-loop poles of the predictive control system will follow the stable branches of
the dual root-locus, dictated by the choice of the weight coefficient rw (R = rwI ).

det

(
I + 1

rw

G(s)G(−s)
s(−s)

)
= 0, (29.30)

where G(s) = Cm(sIn1 − Am)−1Bm is the Laplace transfer function of the con-
verter. The stable branches of the dual root-locus provide limited options for the de-
sired closed-loop eigenvalues in the design. In order to overcome the performance
limitation, consider the general cost function

J =
∫ Tp

0

[
x(ti + τ | ti )T Qx(ti + τ | ti )+ u̇(τ )T R(̇τ )

]
dτ, (29.31)

where Q ≥ 0, R > 0. With this general form cost function, the resulting closed-
loop poles of the predictive control system will not necessarily obey the root-locus
rule given above. In the application of regenerative PWM converter the matrix Q
is 5 × 5, containing 25 elements. It is very difficult and time consuming to select
the individual element inQ to achieve desired closed-loop performance, because not
only the individual elements themselves affect the closed-loop performance, but also
their combinations are important to the effect. Furthermore, the formulation of the
predictive control problem has led to an augmented system state matrix (A) that has
2 poles on the origin of the complex plane. As a result, the predictive control system
is numerically ill-conditioned. Therefore, there is a need to improve the numerical
conditioning and develop a systematic way to tune its closed-loop performance.

One approach to predictive control with a prescribed degree of stability has
been developed in [12] where the resulting design also overcomes the numerical
ill-conditioning problem. It is essential to use a stable model in the predictive com-
putation and the strategy here is to select an exponential weighting α and A−αI in
this computation, where α > 0 for the regenerative power supply. In the case where
the plant is unstable with all its eigenvalues lying to the left of the line s = −ε line
in the complex plane, where ε > 0, α > ε is required.

Once the exponential weighting factor α is selected, the eigenvalues of the matrix
A− αI are fixed. Since this matrix is stable for an appropriate choice of α, the pre-
diction of the state variables is numerically well conditioned and prediction horizon
Tp is selected sufficiently large to capture the transformed state variable response.
In general, if the eigenvalues of A− αI were further away from the imaginary axis
in the complex plane, then a smaller Tp can be used.

The use of exponential data weighting alters the original closed-loop perfor-
mance as specified by the cost function weighting matrices Q and R, and in order
to compensate for this variation, the Q matrix is replaced by

Qα =Q+ 2αP, (29.32)
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where P is the solution of the Riccati equation

PA+AT P − PBR−1BT P +Q= 0. (29.33)

To achieve a prescribed degree of stability β , the P matrix is found as the solution
of the Riccati equation, [1]

P(A+ βI)+ (A+ βI)T P − PBR−1BT P +Q= 0 (29.34)

and Qα from

Qα =Q+ 2(α + β)P. (29.35)

29.5 Experimental Results

29.5.1 Experimental Set-Up

The test-bed shown in Fig. 29.2 has been developed for this work to validate the pro-
posed control design in the real hardware environment. As shown in this figure, the
three phase regenerative PWM converter laboratory set-up consists of a step-down
transformer (see mark (2)) that is used to reduce the line voltage from the main grid
voltage (see mark (1)) of 415 V to 30 V. From the transformer, there are three line
reactors (see mark (3)) connected between the converter and the transformer. The
converter (see mark (4)) is made up of largely three components: a soft-start circuit,
a number of sensors and a switching module. The soft-start circuit mainly provides
a starting mechanism to limit the in-rush current when the DC-link capacitor is fully
discharged at the start. The sensors include AC current sensors and DC bus voltage
sensors. The switching module consists of six IGBT devices including freewheeling
diode. The real-time model predictive controller is developed using xPC target (see
mark 5), and finally a DC-link load is connected to the system (see mark 6).

The overall control software and PWM switching output is executed in xPC
target (shown as (5) in figure). xPC target is Simulink’s real-time toolbox which
allows easy and seamless transition from a Simulink model to a real-time exe-
cutable code. The system parameters used in the experimental set-up are Vac = 30 V,
Ls = 8.9 mH, Rdc = 20 − 60 $, Cdc = 296 µF, and the reference DC link bus volt-
age is set to 65 V. The other parameters such as R, p and N are chosen according
to the guidelines given in [12].

29.5.2 Comparison Study with and Without Prescribed Degree
of Stability

To illustrate the significance of the prescribed degree of stability used in the design
of model predictive control, a comparison study is done between the case where the
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Fig. 29.2 Experimental
set-up

Fig. 29.3 Comparison of DC
bus voltage response to a step
load change with β = 0 and
β = 30

prescribed degree of stability β = 0 and the case where β = 30. With the value of
β = 30, all closed-loop eigenvalues of the predictive control system lie on the left
of −1 line on the complex plane. In the experimental results shown in Fig. 29.3,
a step load change of DC link resistance from 20 $ to 40 $ occurs at around 46
second, and the transient responses of the DC bus voltage are compared. It is seen
from this figure that it took about 0.1 second for the DC bus voltage to return to
the reference signal when β = 30, whilst when β = 0 it took at least more than 3
seconds for DC bus voltage to get to the vicinity of the reference signal. The results
clearly show that the transient response of DC bus voltage to a step load change is
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Fig. 29.4 DC bus voltage
response to a step input in
rectification mode

Fig. 29.5 Response of Sd
and Sq in rectification mode

greatly improved for the case of β = 30. From hereafter, the experimental results
are obtained with the prescribed degree of stability (β = 30).

29.5.3 Experimental Results for Rectification Mode

The control objective is keep the DC bus voltage at 65 V, and iq current at zero for
unity power factor. In the experimental testing, prior to the rectification mode, the
converter is operating as a diode rectifier where the switching functions of IGBT are
disabled and the current is only conducting through the freewheeling diode of IGBT.
At the time (around t = 33.3 second) when the rectification mode is switched on,
the predictive controller is activated to boost the DC bus voltage from 35 V to 65 V.
Figures 29.4, 29.5, 29.6, 29.7 show that the closed-loop responses of the outputs
Vdc(t) and iq(t), as well as the state variable id (t). It is seen from these figures
that it took about 0.1 second for both output signals (Vdc(t) and iq(t)) and the
state id to complete the closed-loop transient responses. In the rectification mode,
Fig. 29.7 also shows that while drawing an extra current from the grid, iq is well
maintained around zero which results in zero phase shift between phase voltage and
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Fig. 29.6 Phase voltage and
current in rectification mode

Fig. 29.7 Id and Iq current
in rectification mode

phase current (i.e. unity power factor) and id is increased to a new steady-state value
according to the required DC bus voltage level. To confirm the reality of unity power
factor, Fig. 29.6 shows phase A voltage and current in rectification mode, which
indeed indicates the zero phase shifting between the phase voltage and current.

29.5.4 Experimental Results for Regeneration Mode

The control objective is to keep the DC bus voltage at 65 V, and iq current at zero
for unity power factor. Prior to the regeneration mode, the converter is operating
in rectification mode. At around 70 second, as shown in Fig. 29.8, an extra current
is injected in the DC bus, which resulted in initial overshoot of DC bus voltage
and the predictive controller regulates the DC bus voltage around 65 V. Figure 29.9
shows the closed-loop responses of id and iq in regeneration mode. It is seen that
the steady-state value of id is negative that indicates that the current flow is reversed
compared to the rectification mode. In this case the extra current injected into DC
bus is converted to AC currents which feeds back into main grid. For unity power
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Fig. 29.8 DC bus voltage in
regeneration mode

Fig. 29.9 Responses of id
and iq in regeneration mode

factor operation, iq is still maintained around zero. This is evident via the plots of
phase A voltage and current in regeneration mode as shown in Fig. 29.10, where it
is seen that the phase A voltage and its current have 180° of phase shift.

29.5.5 Experimental Results for Disturbance Rejection

The control objective is keep the DC bus voltage at 65 V, and iq current at zero
for unity power factor, while load disturbance occurs. A series of step changes in
the load are simulated by inserting or removing an extra DC load resistance in the
circuit. At around 43.7 sec in Fig. 29.11, the DC link resistance is changed from
20 $ to 40 $, corresponding to the case where the load current is decreased from
3.2 A to 1.6 A, where as in Fig. 29.12, around 50.2 sec, the resistance is changed
from 40 $ to 20 $. In both figures, it shows the closed-loop response of the DC
bus voltage where it is seen that the predictive controller rejects the disturbance in
about 0.1 second. Furthermore, the closed-loop responses of the id and iq currents
are also shown, where it is seen that the iq current is kept well around zero while
the steady-state value of id changes according to the load requirements.
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Fig. 29.10 Phase A voltage
and current in regeneration
mode

Fig. 29.11 DC bus voltage,
id and iq response to a step
load change of Rdc from
20 $ to 40 $

Fig. 29.12 DC bus voltage,
id and iq response to a step
load change of Rdc from
40 $ to 20 $
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29.6 Conclusions

This paper has investigated the design and implementation of a continuous-time
model predictive control system for a regenerative power supply. In particular, the
proposed approach included a prescribed degree of stability in the algorithm that
overcomes the performance limitation caused by the existing right-half-plant zero in
the system, also provided an effective tuning parameter for the desired closed-loop
performance. Experimental results show that the design algorithm and implementa-
tion are successful.

References

1. Anderson, B.D.O., Moore, J.M.: Linear Optimal Control. Prentice-Hall, Hemel Hempstead
(1971)

2. Blasko, V., Kaura, V.: A new mathematical model and control of a three-phase ac-dc voltage
source converter. IEEE Trans. Power Electron. 12(1) (1997)

3. Clarke, D.W., Mohtadi, C., Tuffs, P.S.: Generalized predictive control. Part 1: The basic algo-
rithm. Part 2: Extensions and interpretations. Automatica 23, 137–160 (1987)

4. Cutler, C.R., Ramaker, B.L.: Dynamic matrix control-a computer control algorithm. Presented
at the Meeting of the American Institute of Chemical Engineers, Houston, Texas (1979)

5. Kazmierkowski, M.P., Malesani, L.: Current control techniques for three-phase voltage-source
pwm converters: survey. IEEE Trans. Indust. Electron. 45(5) (1998)

6. Komurcugil, H., Kukrer, O.: Lyapunov-based control for three-phase pwm ac/dc voltage-
source converters. IEEE Trans. Power Electron. 13(5) (1998)

7. Kouro, S.: Model predictive control-a simple and powerful method to control power convert-
ers. IEEE Trans. Indust. Electron. 56(6) (2009)

8. Liserre, M., Aquilla, A., Blaabjerg, F.: An overview of three-phase voltage source active rec-
tifiers interfacing the utility. In: IEEE Bologna Power Tech. Conference (2003)

9. Maciejowski, J.: Predictive Control with Constraints. Prentice Hall, New York (2000)
10. Kennel, R., Quevedo, D., Cortes, P., Kazmierkowski, M.P., Rodriguez, J.: Predictive control

in power electronics and drives. IEEE Trans. Indust. Electron. 55(12) (2008)
11. Dewan, S.B., Wu, R., Slemon, G.: Analysis of an ac-to-dc voltage source converter using

PWM with phase and amplitude control. IEEE Trans. Indust. Appl. 27(2) (1991)
12. Wang, L.: Model Predictive Control System Design and Implementation Using MATLAB.

Springer, Berlin (2009)



Chapter 30
SSpace: A Flexible and General State Space
Toolbox for MATLAB

Diego J. Pedregal and C. James Taylor

30.1 Introduction

Numerous publications by the present authors, often in collaboration with Professor
Peter C. Young, have made an extensive use of state space models in a wide range
of contexts; e.g. [7, 13, 14, 16–20, 22–24, 27]. These articles demonstrate the ver-
satility and generality of the state space framework. Although now considered as
a ‘classical’ tool (especially in engineering and economics), the approach is in re-
markably good health as an area of active research, judging by the enormous number
of journal articles and books. With regard to software tools, there are also numerous
options, with some packages for state space modelling freely downloadable over the
Internet and many others available commercially.

The initial idea of building the SSpace toolbox was born many years ago, during
a postdoctoral visit to Lancaster University by the first author, under the direction
of Professor Young. At this time, the CAPTAIN toolbox for MATLAB was being
developed by Professor Young and colleagues, including the present authors [23].
It became clear that a very general and flexible tool for state space systems could
support the research activities of the authors, and time has proven this to be true. In
this regard, the genesis of the present SSpace toolbox was for personal research
use. However, it has subsequently been developed into a more formal and systematic
tool, hence it is now being offered to the wider modelling community.
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SSpace is implemented within the MATLAB software environment, hence in-
teraction with other toolboxes is straightforward. It consists of a relatively small
number of functions and so provides a user-friendly but exhaustive analysis of time
series data. In particular, the state space model is provided in a very general form,
with specific structures addressed in a flexible and intuitive manner. Almost any
state space model may be implemented by appropriate user coding, but a growing
number of templates are offered, in order to make routine tasks easier.

Section 30.2 reviews the general state space framework on which SSpace is
based. This is followed in Sects. 30.3 and 30.4 by an overview of the toolbox and
an explanation of how specific models are implemented. Section 30.5 provides a
number of worked examples, of varying degrees of complexity, with the conclusions
in Sect. 30.6.

30.2 General State Space Framework

In order to reduce a priori constraints, the following very general state and observa-
tion equations form the core of SSpace:

State equations: xt+1 = �txt + �tut + Etwt

Observation equations: zt = Htxt + Dtut + Ctvt
(30.1)

where zt and ut are them×1 and k×1 vectors of output and input data, respectively
(we assume that T observations are available of each of these variables); wt and vt
are vectors of zero mean Gaussian noise, with dimension v × 1 and h × 1, and
covariance matrices Qt and Rt , respectively; and xt is the N × 1 dimensional state
vector, in which the initial state is independent of the noise. The remaining elements
in (30.1) are system matrices with appropriate dimensions, i.e.,

�t :N ×N; �t :N × k;
Et :N × v; Ht :m×N;
Dt :m× k; Ct :m× h.

Salient properties of the model (30.1) include: (i) all the elements are matrices
or vectors, hence it is capable of representing Single-Input, Single-Output (SISO),
Multiple-Input, Single-Output (MISO) and MIMO dynamic systems; (ii) all the el-
ements are potentially time-varying, even the noise covariance matrices; and (iii)
state and observation noise is correlated through the matrix St =E(vtwTt ).

With the assumption of Gaussian stochastic disturbances, the estimation problem
consists of finding the first and second order moments (i.e. mean and covariance)
of the state vector, conditional on all the data in a sample. The tools that allow us
to perform this operation within a stochastic state space framework, are the Kalman
Filter (KF) and Fixed Interval Smoothing (FIS) algorithms [2, 11].
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For a data set of T samples, the KF runs forwards in time to yield a ‘filtered’
estimate of the state vector at every sample t . FIS is applied after this filtering pass
and runs backwards in time, to generate a ‘smoothed’ estimate of the state vector
which, at every sample t , is based on all T samples of the data. In SSpace, the
formulation of these algorithms derives from: [4, 6, 8–10, 19, 26]. In particular, the
forward recursions (KF) are:

Ft = Ht P̂t |t−1ĤTt + CtRtCTt ,

Gt = �t P̂t |t−1ĤTt + EtStCTt ,

Kt = GtF−1
t , (30.2)

x̂t+1|t = [�t − KtHt ]x̂t |t−1 + Ktzt + [�tut − KtDtut ],
P̂t+1|t = �t P̂t |t−1�

T
t − KtGTt + EtQtETt .

The backward recursions (FIS) are:

x̂Tt |N = x̂t |t−1 + P̂Tt |t−1rt−1,

P̂Tt |N = P̂t |t−1 − P̂Tt |t−1Rt−1P̂Tt |t−1,

rt−1 = HTt F−1
t vt + �̄

T

t rt with rN = 0, (30.3)

Rt−1 = HTt F−1
t Ht + �̄

T

t Rt�̄t with RN = 0,

�̄t = �t − KtHt .

The application of the recursive KF/FIS algorithms requires knowledge of all the
system matrices, together with the noise covariance matrices. Depending on the
particular structure of the model, there will be a number of elements that are known
a priori (usually zeros and ones). Normally, however, there will also be some un-
known elements. This hyper-parameter estimation problem is approached using
time domain Maximum Likelihood (ML) optimisation. Assuming that all the dis-
turbances are normally distributed, the log-likelihood function is computed using
the KF via ‘prediction error decomposition’ [8, 21]. In this case:

logL= −mT
2

log 2π − 1

2

T∑

t=1

log |Ft | − 1

2

T∑

t=1

vTt F−1
t vt . (30.4)

When maximising (30.4), the problem of defining initial conditions for the state
vector and its covariance matrix needs to be resolved. The most popular solution in
the literature is to define diffuse priors, e.g. zero values for the initial state vector and
large values for the diagonal elements of its covariance matrix. This is the default
initialization in SSpace, although other initial conditions may be chosen.
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30.3 SSpace Overview

We believe that the key strength of SSpace is the flexibility with which models are
specified. In this regard, unique features include:

• models are formulated by user-coded MATLAB functions, allowing full flexi-
bility to both specify the model and to introduce bespoke requirements, such as
imposing constraints on certain parameters;

• it is possible to define system matrices as strings, opening up the possibility of
using some types of nonlinear model with standard state space tools;

• variance intervention [12] may be introduced for any model type.

Furthermore:

• analysis is performed with relatively few functions, hence the user needs to recall
just a few function names;

• missing observations are treated automatically by signaling them with the usual
MATLAB NaN variable (Not-a-Number);

• because of the common MATLAB environment, SSpace can be utilised to
support other toolboxes, such as CAPTAIN and ECOTOOL, in which power-
ful graphical and statistical interfaces are implemented for a range of predefined
model types [15, 23].

Table 30.1 shows a simplified list of functions, similar to that obtained by the com-
mand help SSpace. In general, help information is displayed by entering the
function name without any input and output arguments. The main functions are
in the first block of Table 30.1. Here, fis provides the Fixed Interval Smoother;
SSestim is used for Maximum Likelihood model estimation; SSpaceini is
an editable file that controls the global operation of the toolbox (optimisation
convergence criteria, the appearance of tabular results, warning messages, etc.);
SSpacedemos activates the tutorials and demos. The second set of functions listed
in Table 30.1 allow for the conversion of predefined model types into state space
form, whilst the third block lists various support functions for building new models
(see Sect. 30.4 for details).

The general state space form in (30.1) can be directly exploited with SampleSS.
In addition, combinations of models are possible with the help of SampleCAT,
opening up a wide range of possibilities, in which the imagination of the user is
the only limit. Clearly, this flexibility yields dangers for ill-advised users. SSpace
allows the user to specify a model structure that is not identifiable, or that has other
complications. The open-ended SSpace approach is, therefore, both a strength and
(for inexperienced users) a possible weakness.

Furthermore, coding a new model in state space form can be rather cumber-
some, hence a number of predefined models are already included in SSpace. Most
of these have been developed under the influence of Professor Young and are avail-
able in other packages, such as CAPTAIN [23]. The authors gratefully acknowledge
Professor Young’s numerous research contributions and publications in this area. To
illustrate, some of these models are briefly described in the following paragraphs.
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Table 30.1 Simplified table of contents for the SSpace Toolbox

Main functions

fis Fixed Interval Smoother for SS systems

SSestim Estimation of general SS models

SSpaceini File that controls general options of SSpace toolbox

SSpacedemos Run SSpace demos

Predefined models

SampleSS State Space general system

SampleCAT Concatenation of State Space systems

SampleDAR Dynamic AutoRegression

SampleLR Linear Regression (static)

SampleDLR Dynamic Linear Regression

SampleDHR Dynamic Harmonic Regression

SampleBSM Basic Structural Model

SampleTF Transfer Function

SampleVARMAX Vector AutoRegressive Moving Average with eXogenous variables

Building new models

catsystem Concatenation into a single model

components Estimate components for BSM and DHR models

constrain Transform any vector in a vector of values between given limits

varmatrix Builds a semidefinite positive matrix from a vector of values

confband Confidence bands of forecasts

vdif Differentiation of a vector of variables

corrmatrix Builds correlation matrix from covariance matrix

evalfun Evaluates objective function at a given point

SampleDAR provides a template to deal with scalar dynamic autoregressions of
order p, in which the parameters may be modelled as simple or integrated random
walks, i.e. the state and observation equations in (30.1) become:

zt = a1,t zt−1 + · · · + ap,t zt−p + vt ;
ai,t = wi,t

(1 −B) or ai,t = wi,t

(1 −B)2 . (30.5)

SampleLR is a template to deal with scalar multivariate linear regressions. It is used
either independently or in multivariate models by block concatenation. Since there
are no dynamics in this model, the state equation is redundant and the formulation
utilises only the observation equation in (30.1), i.e. zt = Dtut + vt . By contrast,
SampleDLR is a combination of the two previous models: time varying parameters
are included, but in a scalar static linear regression, i.e. dynamic linear regression,

zt = a1,tut + · · · + ak,tuk,t + vt ;
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ai,t = wi,t

(1 −B) or ai,t = wi,t

(1 −B)2 . (30.6)

SampleDHR is a template for multivariate dynamic harmonic regression [27],

zt = Tt + SEt + vt

= Tt +
P/2∑

t=1

[
ρiAi,t cos(2πit/P )+ ρiBi,t sin(2πit/P )

]+ vt , (30.7)

Tk,t = wk,t

(1 −B) or Tk,t = wk,t

(1 −B)2 or Tk,t = wk,t

(1 −B) + wk,t

(1 −B)2 ,

aj,i,t = wj,i,t

(1 −B) or aj,i,t = wj,i,t

(1 −B)2 , (30.8)

bj,i,t =
w∗
j,i,t

(1 −B) or bj,i,t =
w∗
j,i,t

(1 −B)2 ,

where P is the number of observations per year associated with the seasonal com-
ponent; Tt is a vector of trend components, whose generic element Tk,t is modelled
as a random walk, integrated random walk or local linear trend (listed from left to
right above) and is independent of the rest of components; ρi are damping factors;
Ai,t and Bi,t are vectors of time parameters associated to the i-th harmonic, whose
generic elements aj,i,t and bj,i,t behave as either simple or integrated random walks.

Another option for seasonal models is SampleBSM, which is a template for
the multivariate basic structural model of Harvey [8]. SampleTF is a template for
multivariate transfer function models, with polynomials represented by the back-
ward shift operator (arbitrary orders). Finally, SampleVARMAX is a template for
VARMA models with eXogenous inputs, for which special cases include: the scalar
ARIMA model, linear regression, ARX, VARX and VARMA, among others.

30.4 Model Implementations in SSpace

Assuming that a separate identification stage has been undertaken and posterior vali-
dation is carried out on the innovations, model implementation using SSpace com-
prises of four steps:

1. Specify the model in state space form.
2. Create a function that translates this model into MATLAB code. The function

SampleSS may be used as a template for entering new models from scratch.
Alternatively, one of the predefined models Sample* is used (Sect. 30.3).

3. Estimate unknown parameters (SSestim).
4. Determine optimal estimates of the states and innovations (fis).
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We will illustrate these steps with the following random walk plus noise model,
which is useful when the signal is considered as a moving mean with noise:

zt = wt

(1 −B) + vt ; var(wt )=Q; var(vt )=R, (30.9)

whereQ and R are unknown parameters representing the (positive) noise variances.

30.4.1 Specify Model (Step 1)

One state space representation for (30.9) is:

State equation: xt+1 = xt +wt,
Observation equation: zt = xt + vt .

(30.10)

Comparison with the general system (30.1) provides the required values of the sys-
tem matrices, i.e. �t = Et = Ht = Ct = 1 , while �t and Dt do not exist because
the model has no inputs and so are represented as empty [] matrices in SSpace.

30.4.2 Translate Model into MATLAB Code (Step 2)

The function SampleSS is edited and saved with a new filename, example1. All
the system matrices are defined with obvious reserved words (Phi to represent Φ),
whilst Inter and PInter are additional variables to define variance interven-
tions (Sect. 30.4.4). For system matrices varying in time, three dimensional matri-
ces should be used, in which the third dimension is time. Additional MATLAB code
may be included as required (and there are typically two or more input arguments),
but nothing should be removed from the standard template.

Listing 30.1 shows the SampleSS template and Listing 30.2 the modified ver-
sion. Here, the input argument p is a vector of parameters, i.e.Q and R. By default,
both state and observation noises are considered independent. Furthermore, the first
element in the vector p has been assigned to the matrix Q, while the second is as-
signed to R. Since both must be positive values, the system matrices are defined as
powers of 10. An alternative and equivalent definition is: Q=varmatrix(p(1)).
For brevity in this chapter, the formating has been minimised in the various listings:
the original SSpace templates are based on more conveniently spaced code.

30.4.3 Estimate Unknown Parameters (Step 3)

For application to an arbitrary data set, the unknown parameters are estimated using
SSestim, following the syntax in Listing 30.3. Here, the variables p and covpar
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Listing 30.1: Standard template SampleSS associated with (30.1)
function [Phi, Gam, E, H, D, C, Q, R, S, ...
Inter, PInter]= SampleSS(p)

Phi=[]; Gam=[]; E=[]; H=[]; D=[]; C=[];
Q=[]; R=[];
S=zeros(size(E, 2), size(R, 2)); Inter=[]; PInter=[];

Listing 30.2: SampleSS adapted for (30.10)
function [Phi, Gam, E, H, D, C, Q, R, S, ...
Inter, PInter]= example1(p)

Phi=1; Gam=[]; E=1; H=1; D=[]; C=1;
Q=10.^p(1); R=10.^p(2);
S=zeros(size(E, 2), size(R, 2)); Inter=[]; PInter=[];

Listing 30.3: Calling syntax for SSestim function
[p, covpar]= SSestim(z, u, model, p0, ...)

INPUTS:
z: Output data (m x T or T x m)
u: Input data (Nu x T or T x Nu)
model: Cell or string {mfun, x0, P0}

mfun is a string with the Matlab function
name defining the model

x0 is the initial state vector
P0 is the initial covariance of states

p0: Vector of starting values for parameters in
the search (np x 1)

...: Additional inputs to model

OUTPUTS:
p: Optimal values of parameters (np x 1)
covpar: Covariance of parameters (np x np)

contain the optimal parameter estimates and their covariance matrix, respectively.
Input models may also be defined as a cell array of the form {mfun, x0, P0},
where mfun is the function name (example1). In this case, the initial state vector
and its covariance matrix conditions for filtering are given by x0 and P0. If no initial
conditions are specified, a diffuse prior is assumed.
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Listing 30.4: Calling syntax for fis function
[inn,zhat,xhat,Pz,Px]=fis(z,u,model,p,SMOOTH,...)

INPUTS:
z: Output data (m x T or T x m)
u: Input data (Nu x T or T x Nu)
model: Cell or string {mfun, x0, P0}

mfun is a string with the Matlab function
name defining the model

x0 is the initial state vector
P0 is the initial covariance of states

p: Vector of model parameters (np x 1)
SMOOTH: Smoothing (1) versus Filtering (0)
...: Additional inputs to model

OUTPUTS:
inn: Matrix of innovations (m x T)
zhat: Matrix of filtered or smoothed fit values
xhat: Matrix of filtered or smoothed states
Pz: Matrix of covariance matrices of

innovations (m x m x T)
Px: Matrix of covariance matrices of states

(Ns x Ns x T)

30.4.4 Estimate the States, Innovations, etc. (Step 4)

Once the parameters have been estimated, fis is used to obtain the optimal esti-
mates of the state vector and its covariance matrix, see Listing 30.4. Additional op-
erations such as interpolation, forecasting and signal extraction are also performed
using this function. Forecasts are generated by simply adding NaN values at the end
of the output series. The function calling syntax is very similar to SSestim.

Application of the model (30.9) to annual flow readings for the Nile river at
Aswan from 1871 to 1970 initially yields the results illustrated by the top panel
of Fig. 30.1. An interesting challenge for this time series, is to evaluate whether the
construction of the Aswan in 1899 (observation 29) leads to a significant decline in
the river flow [5, 23]. When a variance intervention is considered, the model clearly
detects a mean break in 1899, as shown by the lower panel. This is achieved by
revising the last line of Listing 30.2 with Inter=29; PInter= 1e4 and saving
the file as example2. The associated script to generate the graphs are shown in
Listing 30.5, which assumes that the data are pre-loaded into variable z.
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Fig. 30.1 Analysis of Nile river data based on Listing 30.5

Listing 30.5: Script to model Nile river data and generate Fig. 30.1
t= (1871 : 1970)’;
[p, covp]= SSestim(z, [], ’example1’);
[inn, zhat, xhat, Pz]= fis(z, [], ’example1’, p);
plot(t, [z zhat’ confband(zhat, Pz, 1)])

[p, covp]= SSestim(z, [], ’example2’);
[inn, zhat, xhat, Pz]= fis(z, [], ’example2’, p);
plot(t, [z zhat’ confband(zhat, Pz, 1)])

30.5 Examples

This section highlights the versatility of SSpace and is intended as a tutorial intro-
duction. The results may be replicated by copying the code into MATLAB.

30.5.1 Univariate Unobserved Components Models

Earlier research by the first author and Professor Young has included the develop-
ment of a class of Unobserved Components Models that has now been successfully
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Fig. 30.2 Analysis of air passengers series based on Listings 30.8 and 30.9

applied in a range of scientific disciplines, across the environmental sciences, en-
gineering and economics. The univariate Dynamic Harmonic Regression (DHR)
quoted in (30.7) is an important element of these developments. Hence, the first
example shows how to implement the DHR model in SSpace using the template
SampleDHR, applied to the well known air passengers series [1]. These data are
illustrated by the thin trace on the top left panel of Fig. 30.2.

The template SampleDHR in Listing 30.6 defines basic parameters for the trend,
seasonal and irregular components. Listing 30.7 provides a similar template for a
monthly time series with a local linear trend model. Other components, like linear
regression, transfer functions, or ARMA terms may be added by system combina-
tions (Sect. 30.5.5). The least intuitive part of this code is probably the trend model,
hence the expanded help for this in SampleDHR. In particular, the only parameters
that have to be defined are the number of outputs m in the model and the covariance
matrix Qt of the state trend noise. In this regard, the default model is a local linear
trend but an integrated random walk may be specified instead using Et= [O; I]
and Qt= varmatrix().

Listing 30.8 is a nonstandard DHR model structure that has been developed for
the purposes of this example. It consists of a model estimated on the original time
series (no log transformation is taken) with parameters that behave as integrated
random walks, in order to model the increasing amplitude. We assume the existence
of a business cycle of about four years, but the exact period is estimated jointly with
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Listing 30.6: SampleDHR function
function [Phi, Gam, E, H, D, C, Q, R, S, ...
Inter, PInter]= SampleDHR(p, T)

% SS trend model
% x(t+1)= Phit * x(t) + Et * w(t)
% z(t) = Ht * x(t)
% Qt= COV(w(t));
% m is the number of outputs
m= []; I= eye(m); O= zeros(m);
Phit = [I I;O I]; Ht = [I O]; Et = [I O; O I];
Qt = blkdiag(varmatrix(), varmatrix());

% Seasonal/cyclical DHR components
Periods = []; Rho = []; Qs = repmat(varmatrix(), , );

% RW (h=1) or IRW (h=2) parameters
h = [];

% Covariance matrix of irregular component
R = varmatrix();

the rest of the parameters. The reader may need to spend some time considering
Listing 30.8 in order to discover all the elements of the model—a full explanation is
omitted here for brevity. Finally, Listing 30.9 is a script to use the SSpace toolbox
with this function, in which the air passengers data is pre-loaded as the variable
name airpas. The results are illustrated in Fig. 30.2.

30.5.2 Multivariate Unobserved Components Models

The DHR models in the previous example are readily extended to the multivari-
ate case. Here, components across time series may be correlated by means of the
noise covariance matrices, but are independent of the remaining components, e.g.
the trends are correlated among themselves, but are independent of seasonal com-
ponents, and so on. In this regard, the template SampleDHR shown in Listing 30.6
above is straightforwardly updated, as shown by Listing 30.10 for a vector of three
quarterly time series. In this case, m=3 and any variance elements in the model
are now covariance matrices of dimension 3. These are assumed to be symmetrical
and positive semidefinite, hence only 6 different coefficients have to be estimated
(varmatrix provides a parameterisation of an unconstrained vector of parameters
into a covariance matrix); Periods and Rho are the block matrices used in (30.7).
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Listing 30.7: SampleDHR adapted for a monthly time series with local linear
trend
function [Phi, Gam, E, H, D, C, Q, R, S, ...
Inter, PInter]= airpasdhr1(p, N)

% SS trend model
% x(t+1)= Phit * x(t) + Et * w(t)
% z(t) = Ht * x(t)
% Qt= COV(w(t));
% m is the number of outputs
m= 1; I= eye(m); O= zeros(m);
Phit = [I I;O I]; Ht = [I O]; Et = [I O; O I];
Qt = blkdiag(varmatrix(p(1)), varmatrix(p(2)));

% Seasonal/cyclical DHR components
Periods=[12 6 4 3 2.4 2]; Qs =repmat(10.^p(3),1,6);
Rho = [1 1 1 1 1 1];

% RW (h=1) or IRW (h=2) parameters
h = 1;

% Covariance matrix of irregular component
R = 10.^p(4);

The model in Listing 30.10 is estimated on the log transform of the quarterly UK
energy consumption data (coal, coal + other and gas) from the first quarter of 1960
to the last quarter of 1986 [8]. Listing 30.11 generates the component estimates
shown in Fig. 30.3. In addition to the graphical output, correlations among compo-
nents are shown in Table 30.2. Such a decomposition allows the user to analyze the
correlation among time series in component terms: here, high correlations appear
in the trends and trend slopes; one high negative correlation appears in the seasonal
components; and small correlations are detected on the irregulars.

30.5.3 Time Aggregation

There are numerous situations in which data are collected at different sampling in-
tervals, sometimes because of the nature of the data or sometimes because of prob-
lems in taking the measurements. It can also be useful to investigate the relationship
between two or more variables that are measured at different sampling intervals. In
such cases, one solution is to use ‘time aggregation’, an approach that fits naturally
into a state space framework. If the missing data can be replaced by missing obser-
vations, the problem is easy to solve using NaN variables. The more interesting case,
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Listing 30.8: SampleDHR adapted for air passengers data
function [Phi, Gam, E, H, D, C, Q, R, S, ...
Inter, PInter]= airpasdhr2(p, N)

% SS trend model
% x(t+1)= Phit * x(t) + Et * w(t)
% z(t) = Ht * x(t)
% Qt= COV(w(t));
% m is the number of outputs
m= 1; I= eye(m); O= zeros(m);
Phit = [I I;O I]; Ht = [I O]; Et = [I O; O I];
Qt = blkdiag(varmatrix(p(1)), varmatrix(p(2)));

% Seasonal/cyclical DHR components
Periods = [constrain(p(5), [34 50]) 12 6 4 3 2.4 2];
Rho = [constrain(p(6), [0 1]) 1 1 1 1 1 1];
Qs = [10.^p(7) repmat(10.^p(3), 1, 6)];

% RW (h=1) or IRW (h=2) parameters
h = 2;

% Covariance matrix of irregular component
R = 10.\^{p}(4);

Listing 30.9: Script to model air passengers data and generate Fig. 30.2
z= airpas/100;
p0= [-1;-1;-1;-1;2;5;-1];
model= ’airpasdhr2’;
p= SSestim(z(1 : 132), [], model, p0, 132);
C= components([z(1 : 132); nan(12, 1)], [], model, p,

1, [], [], [], 144);
plot([z C(:, 1:2)]); plot(t, C(:, 3))
plot(t, C(:, 4)); plot(t, C(:, 5))
plot([z(133:end) C(133:end, 1)])

is when missing observations have to add up (or have to be combined in some way)
to match the values available at the end of a period. For example, accidents might
be recorded at different time intervals. The total for one year could be the addition
of either twelve months or four quarters, depending on data availability.
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Listing 30.10: SampleDHR adapted for a vector of three quarterly time series
function [Phi, Gam, E, H, D, C, Q, R, S, ...
Inter, PInter]= energydhr(p, N)

% SS trend model
m= 3; I= eye(m); O= zeros(m);
Phit = [I I;O I]; Ht = [I O]; Et = [I O; O I];
Qt = blkdiag(varmatrix(p(1:6)), varmatrix(p(7:12)));

% Seasonal/cyclical DHR components
Periods = repmat([4 2], 3, 1);
Rho=ones(3,2); Qs=repmat(varmatrix(p(13:18)),1,2);

% RW (h=1) or IRW (h=2) parameters
h = 1;

% Covariance matrix of irregular component
R = varmatrix(p(19:24));

Listing 30.11: Script for estimation of a multivariate DHR model
t= (1960 : 0.25 : 1986.75)’;
p= SSestim(z, [], ’energydhr’, [], 108);
[inn, zhat, xhat, Pz]=...
fis(z, [], ’energydhr’, p, 1, 108);

C= components(z, [], ’energydhr’, p, ...
[], [], [], [], 108);

plot(t, [z permute(C(:, 2,1:3), [1 3 2])])
plot(t, permute(C(:, 3, 1:3), [1 3 2])
plot(t, permute(C(:, 4, 1:3), [1 3 2])

Table 30.2 Correlation
among components of UK
energy data

Variables Trends Slopes Seasonal Irregular

coal vs. coal+other −0.687 0.994 −0.168 0.344

coal vs. gas −0.930 −0.929 −0.044 0.340

coal+other vs. gas 0.901 −0.963 −0.977 0.059

In order to simplify the exposition, we will consider (30.1) with constant system
matrices and without inputs for the shortest time interval:

xt+1 = �xt + Ewt ; zt = Hxt + Cvt . (30.11)
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Fig. 30.3 Analysis of UK energy data based on Listings 30.10 and 30.11

The observation equations are now incorporated into the transition equations:

[
zt+1
xt+1

]
=
[

0 H�

0 �

][
zt
xt

]
+
[

C HE
0 E

][
v∗
t

wt

]
; zt =

[
I 0
]
[

zt
xt

]
, (30.12)

with v∗
t = vt+1. This constraint is not a problem when the transition and observation

noise terms are uncorrelated. By defining a cumulator variable [8] we can tell the
system when the data points are available. The cumulator variable takes into account
the position of the data and the fact that all the time series are flow variables, namely:
Ct = 0 for t equal to the next observation following any available data point; and
Ct = 1 otherwise. The final system, including the time aggregation, is (30.12) with
the transition matrix replaced by:

[
Ct ⊗ I H�

0 �

]
. (30.13)

Extensions to handle models with inputs are straightforward. The procedure is quite
general, in the sense that the initial state space can be any type of model.

Consider fatal occupational accidents in Spain between December 1998 and
March 2009, illustrated by the left panel of Fig. 30.4 [3]. The data have been
recorded at highly irregular time intervals: annually at the beginning, but irregularly
afterwards, including quarterly, bi-monthly and increasing to monthly by the end of
the series. Listing 30.12 shows the time aggregated model, in which maccidents
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Fig. 30.4 Analysis of occupational accidents using Listings 30.12 and 30.13

Listing 30.12: Time aggregation model for occupational accidents
function [Phi, Gam, E, H, D, C, Q, R, S, ...
Inter, PInter]= accidents(p, z)

[Phi1, Gam1, E1, H1, D1, C1, Q1, R1, S1]= ...
maccidents(p);

Ns= size(Phi1, 1); N= length(z);
Phi= repmat([1 H1*Phi1; zeros(Ns, 1) Phi1], [1 1 N]);
Phi(1, 1, find(~isnan(z)))= 0;
E= [C1 H1*E1; zeros(Ns, 1) E1];
H= [1 zeros(1, Ns)]; C= 0; R= 0;
Q= blkdiag(R1, Q1); S= zeros(size(E, 2), size(R, 1));
Gam= []; D= []; Inter= []; PInter= [];

is another state space system specified for monthly observations. It is not shown
here because of space constraints, but takes the form of a basic structural model de-
veloped from SampleBSM. The transition matrix Phi is now time varying, hence
it is a three dimensional matrix. Listing 30.13 shows how to use this model, whilst
the right hand panel of Fig. 30.4 illustrates the fitted values at the monthly time
intervals.

30.5.4 Nonlinear Systems

This example illustrates how string system matrices may be used in SSpace, in
order to develop unusual models. The case analyzed here is the quarterly rate of
change of the US GNP from the first quarter of 1947 until the last quarter of 1990,
as illustrated by Fig. 30.5 [25]. There are more values above zero than below, with
zero being a value what marks the difference between an expansion or a recession
of the economy. This observation suggests that different models may be applicable
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Listing 30.13: Script to model occupational accidents in Spain and to generate
Fig. 30.4
t= (1998 : 1/12 : 2009.2)’;
p= SSestim(z, [], ’accidents’, [], z);
[inn, zhat, xhat, Pz]= ...
fis(z, [], ’accidents’, p, 1, z);

Trend= xhat(2, :)’;
Seasonal= sum(xhat(4:2:end, :))’;
plot(t, [z Trend])
plot(t, [z Trend Trend+Seasonal])

Fig. 30.5 Quarterly rate of change of US GNP

to the time series when the data are above or below zero. For the purposes of this
example, a Threshold AR (TAR) nonlinear model of order two is selected:

zt =
[
c1 φ

1
1 φ

1
2

]
⎛

⎝
1
zt−1
zt−2

⎞

⎠+ v1,t , zt−2 > 0, (30.14)

zt =
[
c2 φ

2
1 φ

2
2

]
⎛

⎝
1
zt−1
zt−2

⎞

⎠+ v2,t , zt−2 ≤ 0. (30.15)
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Listing 30.14: SampleSS template adapted for estimation of a TAR(2) model
function [Phi, Gam, E, H, D, C, Q, R, S, ...
Inter, PInter]= gnptar(p)

Phi= 0; Gam= [0 0 0]; E= 0; H= [0]; C= 1; Q= 0;
D= ’D= p(1:3)’’; if t>2, if z(t-2)>0, ...
D= p(5:7)’’; end, end’;

R= ’R=10.\^{p}(4); if t>2, if z(t-2)<=0, ...
R=10.\^{p}(8); end, end’;

S= zeros(size(E, 2), size(R, 1));
Phider= []; Hder= []; Inter= []; PInter= [];

Listing 30.15: Script to model US GNP data
data= lag(z, [0 1 2]);
u= [ones(174, 1) data(:, 2 : 3)];
[p, covp, inn]= SSestim(data(:, 1), u, ’gnptar’);

Table 30.3 AR(2) constant
parameter estimates and
TAR(2) estimates in two
regimes

Variables AR(2) TAR(2)
Regime 1

TAR(2)
Regime 2

Constant 0.0077 −0.0030 0.0037

First delay −0.2858 0.4412 0.3134

Second delay −0.1893 −0.6972 0.2024

Residual variance ×104 0.9766 0.7623 1.4538

The SampleSS template is modified as shown in Listing 30.14. The important
point here, is the definition of matrices D and R as strings, in which the particular
values at each sample depend on the output variable. The code necessary to estimate
this model on the GNP data is given by Listing 30.15. Note that there are three
inputs to the model: a column of ones and two columns representing the delayed
output variable. Finally, Table 30.3 highlights the differences in parameter estimates
between the two regimes, and also with respect to the standard linear AR(2) model.
These results support the choice of the TAR(2) model.

30.5.5 System Combinations

Using the state space framework, several different models can be conveniently con-
catenated into a single model. Typical examples include: Transfer Function with
colored noise; Unobserved Components with added linear terms, affecting the in-
puts by means of Transfer Functions or a linear regression; and Unobserved Com-
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Listing 30.16: SampleCAT template for state space system concatenation
function [Phi, Gam, E, H, D, C, Q, R, S, ...
Inter, PInter]= SampleCAT(p)

[Phi1, Gam1, E1, H1, D1, C1, Q1, R1, S1]= Afnc(p());
[Phi2, Gam2, E2, H2, D2, C2, Q2, R2, S2]= Bfnc(p());
[Phik, Gamk, Ek, Hk, Dk, Ck, Qk, Rk, Sk]= kfnc(p());
[Phi, Gam, E, H, D, C, Q, R, S]= ...
catsystem({Phi1,Gam1,E1,H1,D1,C1,Q1,R1,S1},...

{Phi2,Gam2,E2,H2,D2,C2,Q2,R2,S2},...
{Phik,Gamk,Ek,Hk,Dk,Ck,Qk,Rk,Sk});

Inter= []; PInter= [];

ponents with coloured noise. Concatenation of the transition equations requires a
block concatenation approach. If the output variables are different for each model,
the observation equations also have to be concatenated block-wise. By contrast, if
the output variables are common (the usual case), the overall matrices Ht and Dt
are obtained by horizontal concatenation, leaving the overall Ct associated with
only one of the models.
SSpace allows concatenation with the help of the catsystem function

or by using the SampleCAT template, shown in Listing 30.16. The power of
catsystem resides in the fact that it works with time varying systems. Note that
Afnc, Bfnc etc. represent any state space system defined by other MATLAB func-
tions. To avoid the proliferation of m-files, it is convenient to define these functions
immediately below SampleCAT and saved in the same file.

30.6 Conclusions

This chapter has presented a new MATLAB toolbox for generic analysis of State
Space models, called SSpace. The toolbox is available from the authors on request.
It is intended for a wide audience, including professional practitioners, researchers
and students, indeed anyone involved in the analysis of time series, forecasting or
signal processing. SSpace is composed of a relatively small number of power-
ful functions. These provide the tools for general state space estimation, including:
specification of models, maximum likelihood estimation, filtering and smoothing.
Particular models may be explicitly implemented using MATLAB code written by
the user. However, many templates for common model types are already included in
the toolbox. In this chapter, the toolbox has been demonstrated in action for several
case studies, including some classical examples and other less familiar ones.

The toolbox has a number of salient features. Firstly, it is user-oriented, in that
just a few MATLAB functions are sufficient for an exhaustive analysis of time series.
Secondly, the state space system used is rather general. In particular, all the system
matrices are time varying, correlation between observed and transition noises are
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allowed, variance interventions and string system matrices are possible, and block
concatenation of state space models is straightforward. Finally, the manner in which
particular models are specified is exceptionally flexible, since each model is an in-
dependent MATLAB function. This approach allows for a number of interesting
possibilities. For example, alternative parameterizations of a model are possible, as
are the imposition of linear or nonlinear constraints on parameters. These properties
should make the toolbox particularly interesting for those in need of non-standard
models, for which commercial software is not necessarily available.
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Indicator, 232, 234, 235, 238–240, 244, 246,

248
Indices, 454, 455, 465–467, 469
Inductive approach, 323
Inductive data-based modelling, 339
Inductive inference, 338
Infiltration, 455, 456, 460
Innovations representation, 78, 81
Input-output analysis, 521, 527
Instrumental variable, 6, 525
Integrator-delay model, 436–440
Interception, 460, 466
Interval analysis, 62
Interval vectors, 62
Inverse approach, 541
Isaac Newton, see Newton
Iterative Learning Control (ILC), 294

K
Kalamn filter (KF), 156, 174, 192, 195, 196,

198, 200, 205, 275, 326, 616, 617
Karl Popper, 322
Kentucky River, 546
Kolmogorov entropy, 541

L
Lack of model identifiability, 77, 91
Laguerre function, 605, 607
Lake ecology, 77
Lake volume, 542
Land management, 449, 450, 453–456,

458–461, 465, 466, 468–470,
474–476
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Land use, 449, 450, 453–455, 457–460,
465–467, 469–471, 474, 475

Large model emulation, 324
Large simulation models, 323
Large-scale control, 404
Lateral thinking, 81
Lead time, 341
Leakage, 523, 526, 527
Least squares, 4, 430, 440, 524
Leave-one-out, 254
Level to level forecasting, 359
Lewis, 87, 90, 92, 93
Lewis, American philosopher, 72
Liaw, 585
Likelihood ratio, 161
Linear dynamic model, 584
Linear in the input, 52
Linear in the parameters, 52
Linear quadratic regulator, 411
Linear-in-the-parameters models, 261
Linear-quadratic, 573
Linear-quadratic (LQ-PIP), 590
Lloyd’s algorithm, 104
LMS algorithm, 118
Local identifiability, 51, 58
Lumped parameter, 328
Lumped parameter differential equations, 325
Lumped parameter ODE approximation, 338
Lyapunov exponents, 541

M
Macro-parameters, 60
Macropore, 453, 456
Mapping, 332
Mapping surface, 332
Maximin optimality, 61
Maximum likelihood, 200
MC, 510
MC analysis, 509
MCS randomization, 332
Mean square errors, 431
Mean travel time, 506, 507
Meta-model, 171, 455, 458, 459, 465, 476, 583
Meta-modelling, 324, 454, 458, 470, 471,

474–476
Metric modelling, 450
Metric models, 450, 453
Micro-parameters, 60
Minimum distortion filtering, 97, 103
MISO, 515
MISO STF, 512, 514, 516
MISO sub-models, 588
Missing data estimation, 542
Mississippi River, 546

Model calibration, 75
Model calibration and verification, 70
Model evaluation, 72
Model identification, 525
Model order reduction, 324
Model predictive control (MPC), 414, 600,

603, 604, 606, 608
Model predictive controller, 603
Model selection, 230–232, 239
Model structure, 331, 435, 436, 439
Model structure and order, 325
Model structure identification, 69–72, 75,

80–82, 86, 88–90, 92, 93
Model validation, 325
Molecular graphics, 93
Monod kinetics, 77
Monte Carlo, 451, 452, 456, 458
Monte Carlo (MC) based techniques, 505
Monte Carlo simulation (MCS), 324
Moving average, 162
MPC, 600
Müller’s theorems, 62
Multi input single output (MISO) STF, 511
Multi-objective optimization, 386
Multi-rate, 516
Multi-rate STF model, 514, 515
Multi-rate STF procedure, 503
Multi-scale experiment, 456
Multi-scale experimental, 455
Multi-state dependency, 223
Multi-state dependent parameter (MSDP), 193
Multi-variable dependency, 213
Multiple co-linearity, 201
Multiple-input-single-output (MISO) STF, 501
Multistep algorithm, 14
Multivariable control, 586
Multivariable power plant system, 586
Multivariable proportional integral plus (PIP)

control, 590
Murray Burn (UK), 503, 507–510, 516
Muskingum-Cunge, 343

N
Nash-Cascade hydrological model, 325
Nash-Sutcliffe, 468
Nash-Sutcliffe efficiency (NSE), 473
Natural philosophy, 321
Newton, see Issac Newton
Noise model parameterization, 15
Noise variance ratio (NVR) matrix, 346
Nominal emulation, 333
Nominal emulation analysis, 331, 332
Non-conservative, 329
Non-conservative solutes, 380
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Non-linear, 229–236, 238–241, 244–248
Non-linearities, 244
Non-linearity, 229–232, 235, 240, 245, 247,

248
Non-linearity in run-off generation, 342
Non-minimal state space, 560, 563
Non-Minimal State Space (NMSS) model, 590
Non-stationarity, 458
Non-uniform sampling, 100
Non-uniform sampling period, 97
Nonlinear filtering, 101
Nonlinear in the input, 52
Nonlinear in the parameters, 52
Nonlinear interdependence, 534
Nonlinear pole assignment, 575
Nonlinear prediction method, 541
NSE, 474, 475
NSF’s environmental observatory, 75
NSF’s EOs, 72
Numerical dispersion, 338
Nutrient removal, 327

O
Objective function, 387
Observable canonical form, 563
OE, 303, 304, 438
OE model, 301, 303, 305, 311
On-line suboptimal controllers, 385, 393
One-dimensional transport with inflow and

storage model (OTIS), 504
Operator, 166
Optimal accuracy, 12
Optimal control, 405
Optimal control problem, 386, 392
Optimal cost-to-go function, 394
Optimal RIV estimation, 326
Order identification criteria, 331
Orthogonal decomposition, 254
OTIS, 507, 508, 516
OTIS model, 338
OTIS simulation model, 330
Outliers, 231, 232, 235, 239, 240, 244, 248
Output error (OE), 299, 437
Over-parameterised, 337
Overflow regulation, 405
Overland flow, 456, 457, 459, 465
Overly-parameterised, 323

P
Parameter covariance matrix, 345
Parameter estimation, 525, 542
Parameter mapping, 333, 334
Parameters as stochastic processes, 76
Parametric mapping, 325

Parametric state space, 196
Pareto optimal, 386, 398
Parsimonious DBM models, 338
Parsimonious description, 525
Parsimonious model, 323
Partial differential ADE model, 338
Partial differential equation (PDE) model, 328
Partial differential equations, 452
Partial directed coherence, 137–139, 147, 148,

150
Partial spectral coherence, 136–138
Particle filter, 106
Particle filtering, 103, 105
Partitioning, 486, 520
PDM, 467–469, 474, 475
Peat, 455, 460, 462, 476
Peatland, 462–465
Periodic process, 537
Phase space, 539
Phase space reconstruction, 539
Phloem, 519
Phloem transport, 519
Physical catchment descriptors, 492
Physically-based model, 456
Physics-based modelling, 452, 455, 460, 461,

470
Physics-based model, 449, 453–456, 460, 461,

463, 474–476
Physics-based upscaling, 476
Physiologically meaningful parameters, 526
PI controller, 441, 442
PID control loops, 586
Piecewise cubic Hermite data interpolation

(PCHIP), 354
Planned experimentation, 323, 325
Plynlimon, 469, 470
Pole assignment, 564
Pole-zero cancellation, 337
Policy search, 384, 392
Pollutant transport, 501
Pollutant transport and dispersion, 324
Pollutant transport modelling, 502
Pollution incident prediction tool, 380
Polynomial equations, 57
Pontbren, 455, 456, 458, 459, 461, 463, 465,

468, 470–472, 475, 476
Poorly identifiable, 323
Popper, 93
Potassium bromide, 327
Power demand, 219, 220, 222–224, 226
Power spectrum, 537
Predecessors, 197
Prediction error, 428, 438
Prediction error decomposition, 617
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Prediction variance, 341
Predictive control, 599, 600, 605–607, 609
Predictive controller, 600, 606
Predictive validation, 326, 338
Prescribed degree of stability, 600, 606–608,

610, 614
Prior knowledge, 263
Probability distributed moisture (PDM) model,

467
Probability distribution function, 324
Proportional-integral-derivative, 569
Proportional-integral-plus, 569

Q
Quantum physics, 86

R
Radial basis function network, 351
Radioactive tracers, 530
Rainfall, 342, 542
Rainfall radar, 342
Rainfall to level forecasting, 358
Rainfall-runoff, 542
Random number generation function, 537
Randomness, 535
Real-time river basin operation, 404
Recursive estimation, 70, 75, 80, 81, 503, 525
Recursive IV, 525
Recursive least squares (RLS), 315
Recursive parameter estimation, 525
Recursive prediction error (RPE) algorithm,

80, 82, 84, 93
Recursive updating, 326
Reduced order model, 325, 585
Reductionist, 323
Refined instrumental variable (RIV)

estimation, 325
Regenerative PWM converter, 607
Regionalisation, 461, 465, 466, 470, 474
Regionalised, 466, 469, 476
Regionalised index BFIHOST , 465
Regionalised indices, 466, 476
Regression, 450
Reinforcement learning, 385, 396
Release, 486
Reservoir, 385, 391, 392, 397, 398
Reservoir operation, 383
Residence time, 329, 506, 507
Residuals, 157
Response mapping, 325
Rhodamine WT, 327
Richards’ equation, 453, 456
RIVC, 333
Rivcbjid identification in CAPTAIN, 334

Rivcbjid routine, 331
River basin management, 404
River basin modeling, 403
River Cam, 74, 76
River Eden (Cumbria UK), 343
River Elbe, 503, 511, 516
River Elbe, Czech Republic, 374
River flow, 542
River Murray, 405
River Narew, 508
River Narew (North Poland), 503
River Rhine, 370
River water quality, 77
River water quality modeling, 70
RLS, 315, 316
Robert Boyle, 322
Robert Hooke, 322
Robustness, 110
Rössler system, 536
RPE, 89, 90
RPE algorithm, 87, 88, 90, 91, 93
RRMTSD, 458, 459

S
Saint Venant equations, 427–435, 438, 439,

441, 444
Saint-Venant, 404
Salmon River, 546
Sampling, 97, 99
Sampling importance resampling, 106
Sandoz incident on the River Rhine, 367
Saturation, 246, 248
Scaling, 542
Scientific discovery, basic, 72, 93
Scientific visualization, 71, 78, 80, 82, 87, 90,

93
SDADZ, 331
SDARX, 194, 195
SDR (state dependent regression), 173, 174,

178, 184
Seasonal differencing, 162
Seasonal regressors, 161
Seasonality, 153
Sediment transport, 542
Selecting, 240
Selection, 230–233, 235, 237–241, 245, 246,

248
Semi-distributed AD (SDADZ) model, 330
Semi-distributed model, 458, 465
Sensitivity analysis, 172, 177, 324
Sensitivity to initial conditions, 534
Serendipity, 82, 86, 92
Set inversion, 64
Set-valued policies, 389
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Shelter belts, 459
Shimizu and Aiyoshi’s relaxation algorithm,

61
Short memory algorithm, 117
Short-term forecasts, 211
Shuffled complex evolution, 459
Similarity, 484
Simplified, refined, instrumental variable

(SRIV), 506
Simplified refined IV algorithm, 525
Singularity, 201
Sink competition, 528
SIVIA, 64
Smoothing splines ANOVA, 178, 179
Snowmelt, 342
Soil compaction, 456
Soil degradation, 454, 468, 469
Soil properties, 456, 458
Soil structural degradation, 467
Solute pollutant transport, 504
Solute transport, 502, 503, 508
Solute transport and dispersion, 338
Sorting sequence, 205
Spectral exponent, 538
Spectrum, 157
Spline, 332
SRIV, 507, 509, 512, 513, 515, 516
SRIVC, 588
Stand-alone parameter mapping, 325
Stanford watershed model, 449, 451
State dependent parameter (SDP), 192, 194,

211–214, 223, 224, 585
State dependent parameter (SDP) estimation,

348
State space, 155, 559, 615, 616
State space model, 330
State variable feedback, 560, 564
State-dependent non-linearity, 348
Stationary, 161
Statistical diagnostics, 326
Statistical identification and estimation, 331
Steady state gain, 506, 507
STF, 503, 513
Stochastic analysis, 452
Stochastic approach, 533
Stochastic dynamic programming, 383, 387
Stochastic gradient, 61
Stochastic model, 324
Stochastic modelling, 470
Stochastic process, 537
Stochastic state space, 196, 200
Stochastic transfer function (STF), 501, 505
Stocking density, 453, 466–468
Storage, 486

Strange attractor, 536
Structural distinguishability, 57
Structural error, 74, 75, 79, 90, 93
Structural error/uncertainty, 76
Structural uncertainty, 74
Structurally identifiability, 51
Stysteme hydrologique europeen (SHE), 449
Subsoil compaction, 467
Successors, 197
Summed data, 524
Surrogate data method, 541
System gain, 526
System identification, 424, 427, 430, 440, 444
System identification and control, 193
Systeme hydrologique europeen (SHE) model,

453

T
Takagi-Sugeno fuzzy inference method, 356
Taylor expansion, 195
Temperature, 521
Testing identifiability

Laplace transform approach, 52
local state isomorphism approach, 55
similarity transformation approach, 53

TF emulation models, 331
TF model, 585
TF model identification and estimation, 332
The National Narew Park, 508
The repeating weighted boosting search, 256
Theory-based model, 91
Thomas Kuhn, 322
Three phase regenerative PWM

(pulse-width-modulation) converter,
599, 600, 608

Time aggregation, 627
Time constant, 329
Time delays, 437
Time lag, 538
Time series, 537
Time-delay model, 431–433, 436, 439–442,

444
Tracer experiment, 327, 331, 503
Transfer function, 526
Transient storage ADE model, 328
Transient storage equation, 337
Transient storage model, 331
Transport, 521
Transport and dispersion in large rivers, 367
Tree shelter belts, 458, 459, 476
Trends, 153
Tunable RBF network, 255
2-DWSDP model, 213, 216, 218, 219, 224
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U
Uncertain, 454
Uncertainties, 458, 465
Uncertainty, 342, 452, 454, 456–459, 461, 464,

465, 468, 469, 471
Unconstrained minimization, 63
Ungauged, 450, 451, 453, 466, 470
Ungrazed drained, 458
Unit hydrograph, 451
Unit hydrograph modelling, 344
Unit root, 160
Unobserved components models, 624, 626
Unscented Kalman filter, 102
Updating, 156
Upper River Narew, 507
Upscale, 458, 460
Upscaling, 461, 462
US National Science Foundation (NSF), 71
User choices, 8, 12

V
Validation, 332, 334, 335, 463, 464
Variance ratio, 156
Vector quantization, 103
Ventricular fibrillation, 273
Visualization, 81, 82, 87–89
Voronoi cells, 104

W
Wage, 232, 241, 242, 244, 247
Water pollution modelling, 503
Water quality, 324, 501
Water quality modelling, 511
Water quality models, 503
Water quality processes, 502
Wavelet, 214–216, 218
Weak convergence method, 126
Wetland area, 327, 331
Wiener processes, 99
William Whewell, 322
Woodland, 455, 456, 459, 472
Woodland buffer strip, 455, 458
World’s most complex dynamic systems, 86

X
X12-ARIMA, 153

Y
YIC, 331
Young information criterion (YIC), 345
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