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Preface

Much computer vision research focuses on the physics of vision or image formation,
as well as the analysis and understanding of natural scenes. The work here, on the
other hand, deals strictly with human artifacts: engineering drawings and maps.
Although electronic artifacts dominate our world today, there remain many legacy
documents which require automated analysis. For example, many times in the past
only paper drawings were acquired for vehicles and parts, and the only way to make
them accessible is to digitize and catalog them for current users. Given that these
documents can number in the thousands, this is too much to accomplish by hand.

As for maps, these too exist in profuse numbers, including historical documents,
which motivates their automated analysis. In addition, it is often useful to register
these with digital imagery, and the discovery of semantic features is essential for
this task.

The search for algorithms to automate such analysis has been underway since the
beginning of digital image processing, and progress has been steady in attaining the
level of performance of today’s systems. This book describes the state of the art in
engineering drawing and raster map analysis and provides a starting point for future
research in this area.

Salt Lake City, UT, USA Thomas C. Henderson
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like to thank my wife, Joëlle, who has had to put up with my many hours spent at
the computer rather than hiking and skiing with her!

vii





Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Engineering Drawing Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Raster Map Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Segmentation and Vectorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.1 Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 Vectorization.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.3 Connected Component Information .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3 Text and Graphics Analysis in Engineering Drawings. . . . . . . . . . . . . . . . . . . 33
3.1 Text/Graphics Segmentation .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.1.1 Form Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.1.2 Connected Component Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.1.3 Character Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4 A Structural Model for Engineering Drawings . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.1 Terminal Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.2 Higher-Level Structures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2.1 Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.2.2 Productions (Rewrite Rules) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.3 Goal Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.3.1 Bottom-up Formation of Goal Graphs. . . . . . . . . . . . . . . . . . . . . . 54
4.3.2 Top-down Goal Graph Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.4 Analysis Complexity Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.4.1 Symbolic Pruning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.4.2 Exploitation of Symbol Redundancy . . . . . . . . . . . . . . . . . . . . . . . 59

4.5 Empirical Pruning .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.6 A Simple Example: Dimension Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5 Non-deterministic Analysis Systems (NDAS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.1 An Agent Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

ix



x Contents

5.2 NDAS Organization .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.2.1 Internal Agent Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.2.2 External Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.3 Constraint Handling .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.4 Semantic Networks and Agents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.5 NDAS Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.5.1 Ideal Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.5.2 Image Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.5.3 Structural Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.5.4 Complete Image and Structural Analysis. . . . . . . . . . . . . . . . . . . 82
5.5.5 Complete NDAS Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.5.6 Complexity Reduction Performance .. . . . . . . . . . . . . . . . . . . . . . . 96
5.5.7 Higher Level Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.6 Explicit and Persistent Knowledge .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
5.6.1 Engineering Drawing Analysis with NDAS. . . . . . . . . . . . . . . . 117
5.6.2 Knowledge About Engineering Drawing Analysis . . . . . . . . 117

5.7 Proposed Method .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
5.7.1 Knowledge About Engineering Drawings.. . . . . . . . . . . . . . . . . 120

5.8 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6 Map Background and Form Separation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
6.1 Test Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

6.1.1 USGS Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
6.2 Background Segmentation .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

6.2.1 Map Surround Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
6.2.2 Map Embedded Background .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

7 Road and Road Intersection Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
7.1 Introduction.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

7.1.1 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
7.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
7.3 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

7.3.1 Overview .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
7.3.2 USGS Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
7.3.3 Gestalt Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
7.3.4 Low Level Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

7.4 Pre-processing Techniques.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
7.4.1 Histogram Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
7.4.2 Class Conditional Density with Mahalanobis Distance . . . 156
7.4.3 Knowledge-Based Classifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
7.4.4 k-Nearest Neighbors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

7.5 Tensor Voting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
7.5.1 Dynamic c Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
7.5.2 Dynamic σ Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

7.6 Post-processing Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
7.6.1 Global Thresholding and Thinning . . . . . . . . . . . . . . . . . . . . . . . . . 165



Contents xi

7.6.2 Local Thresholding and Thinning . . . . . . . . . . . . . . . . . . . . . . . . . . 165
7.6.3 Local Normal Maximum .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
7.6.4 Knowledge-Based Approach.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

7.7 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
7.7.1 Method .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
7.7.2 Data Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
7.7.3 Ground Truth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
7.7.4 Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
7.7.5 Tensor Voting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
7.7.6 Post-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
7.7.7 Best Combination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
7.7.8 Perfect Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
7.7.9 No Text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
7.7.10 Comments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

7.8 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

8 Other Semantic Feature Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
8.1 Introduction.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
8.2 Method .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
8.3 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

8.3.1 Test Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
8.4 Future Directions from this Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
8.5 Other Semantic Segmentation Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . 189

8.5.1 Water Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
8.5.2 Geo-political Boundary Segmentation . . . . . . . . . . . . . . . . . . . . . 191
8.5.3 Iso-Contour Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
8.5.4 Road Marker Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

8.6 Texture Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
8.6.1 Texture Knowledge-base . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
8.6.2 Texture Classification Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
8.6.3 Long-term Texture Classification Strategy . . . . . . . . . . . . . . . . . 195

A Rewrite Rules for Grammar G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

B MNDAS User Manual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
B.1 File and Code Organization .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

B.1.1 Introduction .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
B.1.2 MNDAS Organization.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
B.1.3 MNDAS Execution .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

B.2 Agents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
B.2.1 Overview .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
B.2.2 Logistical Agents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
B.2.3 Image Processing Agents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
B.2.4 Agent Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210



xii Contents

C Color Information from Legend of USGS Map . . . . . . . . . . . . . . . . . . . . . . . . . . 213
C.1 Primary Highways . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
C.2 Secondary Highways .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
C.3 Light Duty Road . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
C.4 Other Street . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
C.5 Other Street: Trail . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
C.6 Route Marker Interstate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
C.7 Route Marker US. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
C.8 Route Marker State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
C.9 Railroad: Standard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
C.10 Railroad: Narrow .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
C.11 Bridge .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
C.12 Overpass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
C.13 Tunnel: Road . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
C.14 Tunnel: Railroad. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
C.15 Builtup Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
C.16 National Boundary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
C.17 State Boundary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
C.18 County Boundary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
C.19 National/State Reservation Boundary .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
C.20 Landgrant Boundary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
C.21 US Public Lands Survey: Range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
C.22 US Public Lands Survey: Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
C.23 Range, Township: Section Line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
C.24 Range, Township: Protracted . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
C.25 Power Transmission Line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
C.26 Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
C.27 Distorted Surface: Strip Mine, Lava . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
C.28 Distorted Surface: Sand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
C.29 Contour: Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
C.30 Contour: Intermediate .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
C.31 Contour: Supplementary .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
C.32 Stream Lake: Perennial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
C.33 Area to be Submerged . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
C.34 Swamp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
C.35 Land Subject to Controlled Inundation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
C.36 Woodland .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
C.37 Scrub .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
C.38 Mangrove . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
C.39 Orchard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
C.40 Vineyard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239



Chapter 1
Introduction

The semantic analysis of human produced image artifacts is a difficult task. This
includes raster images of engineering (CAD) drawings and geographic maps.
Although these are very distinct problems, there are a number of common issues
which must be addressed albeit from different viewpoints. We hope to bring to light
alternative approaches to thinking about and solving these problems, and in that
way, allow more general abstract methods to emerge.

1.1 Engineering Drawing Analysis

The automatic semantic interpretation of engineering drawings is primarily a
document image analysis problem [119]; for a summary of this research area, see
[118]. To get an idea of the scale of the problem, it has been reported that about
250 million drawings are generated annually (see [62]). An important aspect of this
is performance analysis; for more see [80] where document image segmentation
algorithms are carefully compared. Related work includes that on interesting and
challenging research problems in document analysis, pattern recognition, image
processing and computer vision (see [60, 113, 120, 121, 138]).

Legacy engineering drawings such as that shown in Fig. 1.1 exist in profuse
numbers without the associated electronic CAD data; e.g., the U.S. Army has tens of
thousands of scanned engineering drawing images with little means of automatically
accessing and exploiting them. Typically, the goal is to use the information in these
drawings to make modifications of existing systems, or to make a new design
derived from the old; one may also be interested in producing a 3D model from
the 2D views given in the drawing. During the reverse engineering process, it may
be possible to take advantage of an existing part, as well as any available drawings;
oftentimes, an existing part will be broken or worn, and it is necessary to get correct
dimension specifications from the drawing as well. Our major goal in the work we
have performed is to segment the image as accurately as possible in order to permit
the most correct interpretation of the annotations in the digitized drawing.

T.C. Henderson, Analysis of Engineering Drawings and Raster Map Images,
DOI 10.1007/978-1-4419-8167-7 1, © Springer Science+Business Media New York 2014
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Fig. 1.1 A legacy engineering drawing

Although much progress has been made in specific areas of engineering drawing
analysis, such as vectorization, text/graphics segmentation, etc., there are still no
complete high performance analysis systems. Existing systems tend to be brittle in
some aspect when applied to real-world scanned images. The focus of most previous
work has been on straight-line vectorization [40, 83, 108], arc segmentation [109],
dimensioning analysis [29, 111], and graphics analysis [7, 74].

Engineering drawing analysis usually starts with a black and white (binary)
scanned image of the drawing under consideration (see Baird [13] for background
structure analysis). Note that scanned raster images of maps tend to be color images,
and require a somewhat different starting point. The image processing sequence is
shown in Fig. 1.2. The recovery of connected components is a solved problem (e.g.,
Matlab provides the bwlabel function), and we assume that connected components
are available in an image and distinctly numbered from 1 to max cc. We have seen
in Fig. 1.1 the type of engineering drawing image from the set we will analyze. The
left side of Fig. 1.3 shows a sub-image of the legend area of the drawing, and on
the right is shown the connected component corresponding to the line structure of
the legend form.

The vectorization of the components is the next important step in the process.
Many methods have been proposed for this, and generally include some form of
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Fig. 1.2 The engineering
drawing analysis process

Fig. 1.3 An example connected component

thinning or skeletonization. As pointed out by O’Gorman and Kasturi [92], this
requires that:

• the number of connected components remains the same,
• end locations of segments exist in the skeleton,
• the resulting skeletons be roughly centered in the component, and
• that extraneous spurs be minimized.

For example, consider the character “T” shown in Fig. 1.4. The Matlab function
bwmorph can be used to obtain the skeleton shown overlayed on the “T” in Fig. 1.4.
As can be seen, the standard skeleton operator usually produces spurs that run to
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Fig. 1.4 The skeleton
produced by Matlab’s
bwmorph function

rectangular corners. We will describe methods in later chapters which avoid this
problem. Another interesting approach suggested by Dori [30], is the Orthogonal
Zig-Zag Method. The main idea is to conceptually do a ray trace through the
foreground line drawing as if shining light and letting it reflect when it hits the
background. This is an excellent insight in that it leads to the application of a
continuous process to the digital analysis problem. This idea is exploited in our
method described in the next chapter. Shen et al. [106] introduced the Bending
Potential Ratio (BPR) as a measure to help prune spurious shoots off the skeleton.
Both local and global shape context are taken into consideration, and the resulting
skeleton is generally better located along the true medial axis and produces more
natural results. More recently, Mandal et al. [79] proposed a method which uses
straightness properties to classify primitives into horizontal, vertical, inclined, and
curved segments. An efficient way to do this is given, and experimental performance
results yield about an 85% recognition accuracy. Another interesting approach is
that of Xu [131] who used robot localization techniques to produce skeletons by
“driving” through the line segments.

Once a robust skeleton is found, the next step is to vectorize the sequence
of pixels into a set of polylines (also called polygonalization). Note that chain
codes may be produced, and these form the lowest level of vectorization possible.
Vectors, curved segments, etc. are produced from the skeletons, and this involves
line and curve fitting. Once these are available, various types of shape analysis tools
can be used to classify components into text characters, forms and graphics. For
example, Song et al. [110] introduced an object-oriented progressive simplification
vectorization scheme. This method attempts to use intrinsic characteristics to
recognize classes of graphic objects. The workflow of the method extracts entities
in the sequence: straight line segments (Bar Vectorization), arcs (Arc Vectorization),
curves (Curve Vectorization), symbols (Symbol Vectorization), and text (Text Vector-
ization). The authors provide performance results of around 93% recognition rates
on these categories.
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An interesting technique for graphics vectorization is given by Hilaire and
Tombre [53] which produces a skeletonization, and then segments it into primitives
which are most likely while preventing over-fragmentation. The segmentation is
based on the best fit of primitive arcs to segment points. It also has some special
rules to remove false primitives and produces good positions on branch points (also
called junction points). Overall, the method is quite robust and can be applied to a
wide range of types of graphical drawings. For more on geometric reconstruction
from engineering drawings, see [7,74]; however, we do not address this issue in this
book.

Liu and Dori [75] proposed a generic graphic object recognition approach
in which structural rules are checked during a flexible and adaptive component
grouping process. First, vectors are produced by their sparse pixel tracking method
[73]; this is a two-stage process, generating a coarse set of vectors, followed by
a more refined set. The analysis is guided by two main principles: (1) shape
preservation, and (2) efficiency. The graphic component recognition is achieved
through a hypothesize and test approach. An example image result is given in the
paper, and the authors state that their method was the top performer at a graphics
recognition competition, but no details are given. Liu et al. [75] further extended
their graphics recognition methods with an interactive approach. An instance of the
particular graphic object is given to the system by the user, and a structural model
for that object is learned in terms of geometric constraints. This structure is then
sought among segmented objects from an image.

Many techniques exist for character and symbol recognition in general docu-
ments, as well as in engineering drawings specifically (e.g., see [33, 35, 55, 78, 115,
122]; also note that Lu [78] proposed that non-text objects be separated first, and that
what remained be analyzed as possible text; this allows language generality—both
Western and Chinese characters recognized, and is robust to characters touching
graphics, font, orientation, and noise). One of the most influential papers on this
topic is that of Fletcher and Kasturi [35]. In that work, a number of constraints are
imposed:

• no more than a 5X scale difference can exist between different fonts,
• the spacing between lines must be greater than 1

4 the character height,
• characters do not touch,
• the area of the largest characters is less than 5X the average component area, and
• the gap between characters is small.

An algorithm is then given which can locate and separate text with three or more
characters; this involves:

• Find bounding box for each connected component.
• Apply an area/ratio filter. The paper uses two thresholds:

– T1 = 5(Amp,Aavg), where Amp is the number of components in the maximum
density area, and Aavg is the number of components in the average component
area.

– T2: the maximum elongation for text.
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• Classify as text all components with an area less than T1, a height
width ∈ [ 1

T2
,T2], and

both height and width less than
√

T1; others are classified as graphics.
• Group collinear components. The Hough transform is used for this, and text

spacing helps produce word hypotheses.

Although this approach scales well in applying the connected component size
filtering process, issues arise when dealing with drawings that have short character
sequences or that do not satisfy the constraints. In addition, small components (e.g.,
commas, periods, dashes, etc.) may confuse the statistics.

A subsequent paper by Tombre et al. [122] expands on the Fletcher-Kasturi
algorithm with a number of very useful extensions. First, they note that in engineer-
ing drawing and map analysis, an absolute threshold on character size can work well.
They propose a separate shape filtering mechanism which separates the components
into small (text), large (graphics), and a third category of components is introduced:
the set of small elongated components. This latter category can be either graphics
or text. A more flexible method for string detection is proposed which exploits a
best fitting rectangle and they also allow multiple hypotheses. Although the results
improve on the Fletcher-Kasturi method, there are difficulties with splitting words
apart and over merging multiple words. Other problems include:

• short strings are not detected,
• parallel strings produce false diagonal hypotheses, and
• punctuation signs, dots on the character “i” and other small parts of text are not

found.

Finally, they introduce a technique to handle text touching graphics; this can
exploit known form information (line locations or configurations) as well as a priori
knowledge of line widths. It is assumed that there are no isolated characters, and that
some characters of any string do not touch graphics. This allows an island growing
approach to be used. Known text elements can be extended, e.g., in rectangular
string extension directions. These additions lead to a retrieval rate improvement of
about 8% in the five test images.

Techniques from other areas of robotics and image analysis have been applied
to the character recognition problem. For example, Wang et al. [127] proposed
the use of the Voronoi triangulation method as a means of finding neighboring
components which comprise a text string. This is an excellent approach which
scales well, too. Henderson and Xu [51] demonstrated a robot navigation method
for character recognition. Basically, a virtual robot drives through the line drawing,
and the classification of a component depends on the route followed by the robot.

More general character string recognition techniques may also be applied to
engineering drawing analysis. Mori [88] gives many useful techniques for character
detection and recognition, and we use some similar techniques in the work presented
in later chapters. Nishida and Mori [91] propose a model-based split-and-merge
method which first merges local segments, then produces more global combinations;
they provide a set of strong performance results for handwritten character analysis.
Bayesian methods have been demonstrated as well; e.g., see Cho and Kim [23] for
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Fig. 1.5 Engineering drawing with dimension sets

an application to handwriting recognition; Barrat and Tabbone [14] showed good
results on graphical symbol recognition. Hidden Markov Models (e.g., see [67])
provide another method for character string analysis.

Most engineering drawings follow some standard (or regular) form in terms
of the layout of the drawing. Standards are usually established for a group of
drawings, and this allows for the application of form analysis techniques. General
form analysis does not require a priori knowledge of the form structure (e.g., see
Wang [125]), but if available, then such knowledge can be exploited (see [48]). Form
analysis requires that the image components be classified as boxes, line segment
and text components, and then these are analyzed to determine spatial relationships
between them. This sort of analysis is demonstrated in a later chapter in terms of
extracting the part names and numbers from a set of engineering drawings. Yu
[139], Veláquez et al. [124] and Cao et al. [16] all provide methods to separate
text characters which touch form or graphics lines.

Another important aspect of engineering drawing is dimension set analysis.
Figure 1.5 shows an example of dimension sets in an engineering drawing. Das and
Langrana [26] present an early approach for the extraction of dimension sets from
engineering drawings. Vectors are input to the system, and dimension set elements
are segmented; this includes dimension text, arrowheads, and line elements. These
results are then applied to reconstruct the geometry indicated by the drawing. The
method was applied to a set of drawings and various types of errors analyzed
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(e.g., arc and circle locations, dimension values, and coordinates of critical points).
The method makes some strong assumptions about the input; i.e., OCR supplies
correct information, all parts of a dimension set are recognized (there is no partial
recognition of a dimension set), and the vectorized input must be topologically
accurate. Dori and Velkovitch [32] present a dimension analysis method based
on the ANSI standard. Their text segmentation process includes selection of text
segments, growing of regions, connectivity handling, followed by the application
of knowledge of the standard. Recognition results are given on a set of hand-drawn
documents, and the results are in the 90% recognition range, after a verification step.
Su et al. [111] propose a robust method for dimension recognition which proceeds
by finding potential dimension frames (i.e., relevant line and text components), and
then verifies their spatial relations. They further provide a technique to reconstruct
the geometry described in the drawing. Testing on a set of thirty drawings yields
about 90% recognition rates. For other work on this topic, also see [29, 65, 128].

A number of systems have been developed for CAD engineering drawing
analysis (more general engineering drawing systems have also been proposed,
e.g., see [138]). Dori and Liu [34] propose the Machine Drawing Understanding
System (MDUS) as a complete scan to 3D geometry reconstruction method. In the
version at that time, the processing steps included: vectorization, text recognition,
arc segmentation, dimension analysis and hatch line detection. A C++ object
oriented system was developed which provided classes of graphical objects. The
recognition system followed the hypothesize and test paradigm. They used many of
their previously developed algorithms, e.g., the Sparse Pixel Vectorization method,
as well as a set of segmentation and classification techniques. A dynamic control
mechanism exploits the context of related graphical objects in order to achieve
higher classification correctness. Performance results are reported at 94% text, 75%
for hatched lines, and 100% for dashed lines (as demonstrated in the 1995 GREC
competition).

Ablameyko and Uchida [5] give an overview of current approaches to line
drawing entity recognition. This is a very useful summary of the literature in this
area. (Note that another useful text on this topic is the book by Ablameyko and
Pridmore [2]. The book is complementary to this one in that it covers binarization,
connected component analysis, and vectorization in engineering drawings, and also
covers the recognition of cartographic objects, and knowledge-based analysis of
drawings.) Engineering drawing entities of interest include: contour lines, symmetry
axes, hidden contour lines, cross-hatched areas, dimension sets, annotations and
circles. Their approach takes advantage of entity features (e.g., line thickness, gaps,
structure, and relations between primitive components. An important contribution
of the paper is the description of engineering drawing systems extant at the time.
Such systems are divided into top-down and bottom-up approaches. In addition
to the systems described earlier developed by Dori, Kasturi, Liu, Song, etc., the
paper discusses the CELESSTIN [123] and REDRAW [9] systems developed by
Tombre. These are rule-based systems based on drawing semantics. The ANON
system developed by Joseph and Pridmore [59] uses pre-defined schemata with
control rules for bi-directional (top-down and bottom-up) image analysis to identify
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graphical elements and symbols. Their system provided schemas for various types
of lines and curves (solid, dashed), cross hatching, text strings, leader lines, and
some cases of dimension sets. Moreover, their control system is specified by an
LR(1) grammar which defines strategies by which components may be recognized.
Of course, Ablameyko’s own work in this area [1, 3, 4] is also reviewed.

A more recent system has been propose by Ondrejcek et al. [93]. In their
prototype system called File2Learn, the goal is to discover and record relational
information about engineering drawings and 3D CAD models. Various types of
information are extracted, including file level information, drawing information
contained in the Title Block part of the drawing, and file relationship information.
Obtaining meta-data from the file system and the scanned image content allows the
creation of ontology elements which can then be used to interrogate the structure
and content of the engineering file set. The focus of their work is the recovery of
content based information. This is hindered by the low resolution of the scans, the
non-conformance to standard layouts of the title block, the variety of fonts as well
as hand-written characters, and noise in the scanned images. Although they use
commercial software (ABBYY FineReader 9.0) for the OCR aspect of this, there has
been some work on this; e.g., see Najman et al. [89]. Najman reports that with their
approach to form modeling for title blocks, they achieve about a 70% recovery rate
of title blocks, but they say little about the character recognition rates. Ondrejcek
reports about an 80% character recognition rate in their work. (For earlier work on
title block analysis, see [114].)

More ambitious work has attempted to produce high-level interpretations of
engineering drawings. For example, Lu et al. [77] describe a hierarchical knowledge
representation method to encode high-level relations between drawing entities, and
develop a system to produce such descriptions from scanned drawings. In their
case, the application is architectural drawings, however, there are some common
issues with mechanical CAD engineering drawing analysis. One aspect they raise is
the exploitation of implicit knowledge in the drawings. This includes the multiple
views of specific entities, abbreviations, references, inheritance (individual versus
system views), symmetries, and dimensions and other annotations. The system has
a knowledge representation part, and an interpretation subsystem which exploits the
knowledge. A set of descriptors is defined, and then the relational structure is
described using an Extended Backus Nauer Form. A set of experiments were
run on 271 architectural drawings, and they found that one major issue was that
of brittleness. Here that means that the knowledge representation did not allow
for imprecise drawings, missing entities or errors in the drawing. However, it
does represent an interesting approach. Another attempt at intelligent automatic
interpretation of CAD is represented in the work of Prabhu et al. [98]; their method
starts with IGES (or DXF) CADD models and discovers features of prismatic
(machined) parts.

As for the future direction of this type of research, the field has been widening
to include more web related querying. This requires new methods to interact with
the user as well as capabilities to analyze documents on the fly. Knowledge repre-
sentation takes on an indexing flavor, and the classical problems of vectorization,
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character recognition, and entity segmentation and interpretation become more
complicated. Performance analysis is also an important aspect [80]. For a recent
survey, see Llados [76].

1.2 Raster Map Analysis

The other major topic of this book is raster map image analysis. Digitized images of
maps are called raster maps, and there is a wealth of information contained in such
images. However, the extraction and interpretation of the semantic features in raster
maps pose significant technical challenges. Figure 1.6 shows a variety of maps and
indicates the wide possible range of representations and types of available formats.
Figure 1.6a provides a layout of parking lots available in the downtown area of Salt
Lake City, while Fig. 1.6b is part of a topographical map of the Salt Lake area.
Figure 1.6c shows a historical map of 1849 Texas, and finally, Fig. 1.6d shows the

Fig. 1.6 Examples of the wide variety of raster maps: (a) A parking map for downtown Salt Lake
city. (b) Part of a topographic map of the Salt Lake area. (c) A historic map of 1849 Texas. (d) A
map of the DC area
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Fig. 1.7 Registration and overlay of extracted semantic map data on an aerial image

DC area with a completely different style of semantic feature expression. Thus, it
may be possible that a specific application involves a coherent and homogeneous set
of maps (e.g., U.S. Geological Survey maps), but, in general, automatic map analysis
methods must be robust enough to handle a wide variety of colors, symbols, textures
and layouts.

Chiang [22] has recently described a powerful general approach to high-
level raster map analysis and a set of algorithms for the extraction of geospatial
information. His specific goals are to exploit roads and road intersections as a basis
to separate map layers. Such information can then be registered with other data
sources (e.g., aerial images or other maps) to allow further analysis (e.g., change
detection, localization, planning, etc.). For example, Fig. 1.7 shows the overlay of
extracted map features on an aerial image. Chiang’s approach to raster map analysis
is shown in Fig. 1.8. His overall goal is the robust segmentation of (1) text and (2)
roads, including road intersections and road vectors. Generally speaking, these are
the two most useful and informative aspects of a map. Chiang’s method proceeds by
first decomposing the map into text and road layers. This can be done automatically
for high-quality map images, or in a supervised fashion for low-quality images.
After this, the text is analyzed in terms of different fonts, sizes and orientations,
and semantically identified. The road layer is used to detect road intersections, and
this is followed by road vectorization. This approach is not tuned for specific map
types, and the results ranged from 99% F-measure on road intersection detection
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Fig. 1.8 Chiang’s raster map analysis process (taken with permission from [22])

in ViaMichelin maps to 69% F-measure on USGS maps (the latter being the main
type under study in this book). Also of note is their work on line and character
classification (see [132]).

Of course, semantic classes other than roads and text can be found in most maps.
Ageenko and Podlasov [6, 95] describe an approach to the basic segmentation
of semantic classes in maps. This includes what they term as (1) Basic: roads,
text and boundaries, (2) Elevation Lines: iso-contours, (3) Waters: solid bodies
and linear, and (4) Fields: polygons. They call their method Iterative Semantic
Layer Restoration (ISLR), and it is based on the color information and applies
mathematical morphological operators to reconstruct the semantic layers after a
simple first separation stage. Earlier methods, e.g., that of Khotanzad and Zink
[63, 64] studied the problem of basic color recovery based on a scanned image
with a wealth of colors; the problem here is that, for example, a USGS map
is posited as a small set of colors (eight to twelve or so), and a color scan
produces a much larger set of RGB combinations. The approach was to perform
eigenvalue line-fitting in the RGB space to recover the best map of scanned
colors onto USGS colors. Water and vegetation are segmented based on the color
histograms, and linear features are found using valley (in image surface terms)
tracking techniques exploiting the A∗ algorithm. Evaluation of the results is done
in terms of the presentation of processing results. Finally, Henderson et al. [46]
discuss machine learning approaches to the automatic classification of a wide range
of semantic classes (background, vegetation, roads, water, political boundaries, iso-
contours) in raster map images. They describe and compare the results of three
unsupervised classification algorithms: (1) k-means, (2) graph theoretic (GT), and
(3) expectation maximization (EM). These are applied to USGS raster map images,
and performance is measured in terms of the recall and precision as well as the
cluster quality on a set of map images for which the ground truth is available. Across
the six classes studied there, k-means achieved good clusters and an average of 78%
recall and 70% precision; GT clustering achieves good clusters and 83% recall with
74% precision. Finally, EM forms very good clusters and has an average 86% recall
and 71% precision. We describe this approach in greater detail in a later chapter.
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The recognition of text and symbols in raster map images poses many of the
same problems found in engineering drawing analysis. However, the variety and use
of text and symbols in raster maps are not as restricted as in engineering drawings.
That is, text of different sizes can be overlayed, in different colors, etc., and in
any orientation. Early work used mathematical morphology applied to regions of
the appropriate color; e.g., Yamada et al. [136, 137] developed a method called
the Multi-Angled Parallel method in this way and achieved about 92% accuracy in
recognition of elevation text. Kang et al. [61] introduce an interesting method for
segmenting distinct text strings using a 3-D graph where the x and y dimensions
correspond to the image row and column dimensions, and the z dimension is related
to the scale of the text characters:

zi =
Area(ci)Γ

Aavg

where ci is a connected component, zi is the z value of a connected component, Area
is the area of the enclosing circle of ci, Aavg and

Γ =
1

√ 1
n ∑n

i=1(Area(ci)− 1
n ∑n

k=1 Area(ck))2

is the average connected component area. They report good segmentation results
with this approach. Li et al. [69, 70] propose a sub-layer separation approach using
connected components in each payer, and they report a 98% recognition accuracy.
Levanchkine et al. [68] propose to perform text segmentation using various linear
combinations of the RGB layers followed by edge detection and gap filling. They
recover alphanumeric, point and linear features using what they call composite
images which are a reduced number of colors to which they apply a hierarchical
segmentation. A more standard text analysis is given by Pouderoux et al. [96]
which consists of a sequence of steps: (1) segmentation (threshold, erode, dilate),
(2) component analysis (based on density and size), (3) string analysis (connecting
and merging neighboring connected components), and (4) OCR (using standard
methods). This achieves about 96% precision and 92% recall on the tested map
images. Roy et al. [100] extract text and symbols by segmenting the map into layers
based on color; then for each layer, connected components features and skeleton
information is used to identify text and symbols across layers. The method is applied
with reasonable success to a set of Russian, Spanish and Bengali maps to give
some insight into how it works across alphabets and styles. Chiang and Knoblock
[134] give a particularly effective method (exploiting user-specified colors) which
also performs a connected component analysis with mathematical morphological
operators, and which is robust to character (and string) orientation, overlap, etc.

Given that road information plays a major role in some important applications
(e.g., conflation of maps and imagery, road definition for automobile systems,
etc.), there are some significant methods to achieve good quality road and road
intersection detection. As discussed earlier, Chiang has done much work in this
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area, and this is well-described in his dissertation [22]; also see [19]. Earlier
work by Itonaga et al. [58] used stochastic relaxation to find road labels for
pixels in a map image. This step was followed by thinning and then a piecewise
linear approximation to get precise road networks. The method was tested by
adding noise to perfect images, and for variance of about 0.4, a 90% accuracy
rate was observed. This work was done to enhance GPS systems for automobiles.
Chiang et al. [21,133,135] present a method to obtain road intersections, including
their position, connectivity (through roads) and the orientation of roads exiting
the intersection. The steps involved included the removal of background pixels,
followed by the separation of road lines. Next, road intersections are found using
road intersection templates combined with intersection blob detection. This greatly
reduces the position error in the location of intersections, as well as the orientation
error of intersecting roads. Linton [72] developed a road detection method based on
a 3-step process:

1. Pre-Processing Step

• Histogram Analysis
• Thinning
• Morphological Operations

2. Tensor Voting Framework

• Fill gaps
• Smooth curves
• Produce curve and junction maps

3. Post-Processing Step

• Local Maxima
• Thinning
• Thresholding
• Graph search algorithm

A k-nearest neighbor knowledge-based approach achieves 92% recall and 95%
precision on road extraction. We describe this in greater detail later.

Iso-contour segmentation and subsequent terrain surface reconstruction is the
final major semantic feature considered here. Of course, the surface reconstruction
from contours has been studied for a long time; e.g., Fuchs et al. [38] proposed a
method based on finding minimum cost cycles in a directed toroidal graph. Hormann
et al. [56] gave a new contour interpolation method which solves the bivariate
problem by using a univariate curve Hermite interpolation along gradient directions
of the surface (to get smooth transitions across the contours). It is quite efficient
and they give a number of examples. A very interesting and effective technique
for iso-contour extraction in raster maps is the method of Salvatore et al. [102]
which uses a global topology analysis of the layout of contour points by examining
the Delaunay triangulation of these points, as well as local geometry which must be
satisfied by iso-contours. Shin and Jung [107] give a fast method (about 3X speedup
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over other methods) for contour-based terrain model reconstruction. Triangle strips
are generated using the distance between corresponding vertex pairs on neighboring
contours. More recently, Pezeshk and Tutwiler [94] proposed an iso-contour line
extraction method using first a quantization of the image, and then contrast-limited
adaptive histogram equalization to reduce the effect of noise and semantic feature
overlap on contour recognition. Also, see Samet et al. [103].

This concludes our overview of engineering drawing analysis and raster map
analysis goals and methods. The following chapters provide greater depth on
methods we have developed to solve these problems.



Chapter 2
Segmentation and Vectorization

The segmentation and vectorization of line drawings is well studied1 (see Chap. 1
for related work), however, no analytic solution has been proposed to date, and
therefore, the existing methods are ad hoc and based on heuristics. Most methods
also need some amount of tweaking for the specific kind of drawings to be analyzed.
We present our approach to these problems here, and this development has been
done in the context of the semantic analysis of scanned images of mechanical CAD
engineering drawings.

2.1 Segmentation

We assume that a binary image of the drawing is available, and that the line
drawing part is the foreground (i.e., pixel value is 1, and usually displays as the
color white; note that in this book we will show the foreground pixels as black
in figures for better visual clarity). The processing sequence is shown in Fig. 2.1.
By segmentation, we mean to divide the skeleton of a connected component into
significant pieces that contribute to the intended stroke structure of the component.
The input is the image of an individual connected component (e.g., produced by
Matlab’s bwlabel), and the final result is a set of segments from the skeleton.
Figure 2.2 shows the set of segments from the image of the digit 3. Each segment
consists of a sequence of skeleton pixels (called the segment path) that starts and
ends with either an endpoint, branchpoint, or a virtual point of the component. In
the figure, the endpoints are shown with star shapes, while the single branchpoint
is shown as an annulus. Endpoints and branchpoints can be found from simple
computations on the neighborhood of a pixel (e.g., see Lam et al. [66]). Matlab’s
bwmorph function can be used to identify these types of points. However, note that
bwmorph can produce branchpoints that one would not always typically consider

1Some parts of this chapter are contributed by Chimiao Xu based on her MS thesis.

T.C. Henderson, Analysis of Engineering Drawings and Raster Map Images,
DOI 10.1007/978-1-4419-8167-7 2, © Springer Science+Business Media New York 2014

17



18 2 Segmentation and Vectorization

Fig. 2.1 The segmentation
process

Fig. 2.2 Segments of
digit “3”

to be branchpoints. Figure 2.3 shows on the left a set of branchpoints produced
by bwmorph and on the right our corrected version. In order to eliminate false
branchpoints, it suffices to check the following condition on each one: first find
the pixels which are three neighbors distant from the branch point—if this set forms
three or more distinct connected components, then the branchpoint is valid. Virtual
endpoints are needed when there is a single cycle (or pixel loop) as will be found in
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Fig. 2.3 False branchpoints
produced by bwmorph

Fig. 2.4 Inside a straight or
smoothly bending corridor.
The two minimal distance
directions to the background
are 180 degrees apart

the character “O” and there are no distinguishing points; the virtual endpoint is any
point of the cycle and is used as both endpoints of the segment path.

Before finding the segment paths, we first eliminate spurious points from the
skeleton and produce the reduced skeleton. To achieve this, we take advantage of
the following observation. Since the line drawings we analyze here are for the most
part composed of simple strokes, the vast majority of skeleton pixels will be situated
in one of the following contexts:

Context 1: Inside a straight or smoothly bending corridor (see Fig. 2.4). In this
context, there will be two directions with about the same range value, and these
will be the minimum of all range values in a 360 degree scan. These two minima
will be about 180 degrees apart. The sum of these two distances is the width of the
corridor. Finally, the line defined by the two minimal directions is perpendicular
to the direction of the corridor; the skeleton pixels should be running along the
middle of the corridor.

Context 2: Inside a right angle turn in the corridor (see Fig. 2.5). In a right angle
turn, the two minimal range directions are about 90 degrees apart. However, the
minimal sum of two opposite directions (180 degrees apart) gives the corridor
width and will usually be in the diagonal direction as shown in the figure.
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Fig. 2.5 Inside a right angle
turn in a corridor

Fig. 2.6 At the end of a
corridor

Fig. 2.7 The sub-pixel
resolution range scan

Context 3: The end of a corridor (see Fig. 2.6). At the end of a corridor, the
directions of minimal range to the background will no longer be in opposite
directions, but the medial axis will be the bisector of those two directions.
The minimal sum of opposite range values will generally be perpendicular to
the skeletal axis. This feature distinguishes the right angle turn from the end of
corridor and straight or smoothly bending corridor. Note that the end of a corridor
may taper together like a pencil point or be more like a the end of a rectangle.

In order to analyze these contexts, we have developed a few image analysis
tools. One very useful function is the virtual range finder, range scan. This
function determines the distance to the background from a given pixel, starting
at zero degrees, rotating in the positive direction (in a right-hand frame; i.e.,
counterclockwise) in δθ increments until 360 degrees. Our scans are usually in
one degree steps. Then in the direction of the scan, we step δx pixels (usually set
to 0.001) until a background pixel is reached. Figure 2.7 shows how this works.
A sub-pixel length step is made in the scan direction until the step location is in a
background pixel. The range map produced by this function is called the Pseudo-
Range Map (PRM). (Note that it is also possible to obtain a more exact range scan by
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Fig. 2.8 The non-uniform
nature of equal-angle
sampling in the PRM

intersecting the scan ray with the column and row lines that it crosses, and then give
the exact pixel boundary where the change from foreground to background occurs.)
The use of robot mapping techniques as a means to understand engineering drawings
was the topic of the Masters thesis of Xu [131] who showed that the foreground
image could be treated as a floor plan that a small mobile robot navigates in order
to segment the components into line segments, endpoints and branchpoints. It was
demonstrated there that accurate and robust segmentations could be achieved using
this approach which views drawn lines and symbols as hallways and rooms, and the
mobile agent is placed inside the component and located with sub-pixel accuracy.
The Pseudo-Range Map is used by the robot agent to survey the component. (See
also Henderson and Xu [51].)

An important issue is whether an equal angle scan should be performed, or a scan
that achieves an equal step distance on the boundary. Since the equal angle sample
is easier to implement, we have used that, however, in some cases it is better to
use the alternative approach since, for example, the center of mass will be highly
skewed when most of the scan points are at points near the agent, and far points are
sampled less frequently spatially. Figure 2.8 shows a set of scan points and how they
are distributed in space (they are plotted as points so that they are more visible). The
set of scan points also influences the computation of derived features, such as the



22 2 Segmentation and Vectorization

  10

  20

30

210

60

240

90

270

120

300

150

330

180 0

0 200 400
0

5

10

15

20

Scan Direction
R

an
ge

 (
in

 p
ix

el
s)

0 100 200
0

10

20

30

40

Line Orientation

S
um

 o
f 1

80
 D

eg
re

e 
R

an
ge

 V
al

ue
s

Fig. 2.9 Range scan inside a straight corridor
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Fig. 2.10 Range scan in a right turn of a corridor

normal at each scan point. As mentioned, another important issue is the resolution
of the step in the direction of the scan. The scan distance is found as follows:

• start at the given sub-pixel location
• move δx in the scan direction to a new point x
• stop once x lies in a background pixel.

If δx is too small, then this may be computationally expensive, whereas if it is too
large, then background pixels may be skipped over. We have found that δx = 0.001
provides good pseudo-range scans.

Let’s see how this helps determine the context of a skeleton pixel in a corridor.
Figure 2.9 shows (on the left) a polar plot of the range to the background for an in
corridor pixel; in the center is a plot by direction (0–360 degrees), and on the right is
the sum of the two opposite directions of the lines from 0 to 180 degrees. As can be
seen the two minimal directions are 90 degrees and 270 degrees (across the corridor)
and the minimum sum of opposite directions is at 90 degrees. Figure 2.10 shows the
same information for a right turn, and Fig. 2.11 shows the results for the end of a
corridor. To produce good skeletons, we proceed as follows. First, bwmorph is used
to produce a first set of skeleton pixels. Figure 2.12 shows the skeleton produced for
the digit four. As can be seen there are a few spurious paths. Figure 2.13 gives the
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Fig. 2.11 Range scan in the end of a corridor

Fig. 2.12 Skeleton produced
by bwmorph
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Fig. 2.13 Reduced skeleton
produced by pseudo-range
map techniques

reduced skeleton produced using the methods described above. Note that the figure
also shows the estimate of the corridor direction produced for each pixel. Figure 2.14
shows the skeletonization result on some images of the ten digits, while Fig. 2.15
shows the same for the first ten letters of the alphabet. Figure 2.16 shows the results
on the arrow part of a dimension set.

Xu studied two important aspects of the engineering drawing analysis problem:
point feature analysis and linear feature analysis. The PRM was used pixelwise to
identify:

1. endpoints: the terminal part of a line segment.
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Fig. 2.14 Skeleton produced
for digits

Fig. 2.15 Skeleton produced
for letters

2. interior corridor points: two directions of travel are possible, but not a corner.
3. corner points: two directions of travel possible, but at significantly different

angles.
4. multibranch points: more than two directions of travel possible.

Methods were developed to identify these four types of point features, and a decision
tree method was used to classify pixels. A set of attributes of the pixel and its PRM
were selected, and at each nonterminal node of the tree an attribute value is used
to pick a branch to follow, and each leaf node provides a point feature decision
(i.e., one of the four possible types). An information theoretic approach was used to
inform the construction of the decision tree (see [101]). Attributes used in building
the decision tree included:

• Attributes 1:7: Hu invariant moments [57] of the PRM.
• Attribute 8: Area of the PRM region.
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Fig. 2.16 Skeleton produced
for arrow of dimension set

• Attribute 9: Perimeter of the PRM region.
• Attribute 10: Sum of ranges of PRM.
• Attribute 11: Total distance of the points in the PRM perimeter to the point that

is used to compute the PRM.
• Attribute 12: Sum of the absolute distance of the rows and columns of the PRM

region points to the row and column of the point used to compute the PRM,
divided by the total number of points in the PRM region.

• Attribute 13: Number of branches on the PRM.
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Table 2.1 The recall and
precision results for the
non-PRM, PRM and decision
tree methods

F end F corr F corn F bra

Non-PRM 91.94 99.26 64.32 83.10
PRM 98.59 98.73 99.93 98.96 Recall
D-Tree 98.92 86.38 73.41 93.80

Non-PRM 45.62 100.00 43.12 40.13
PRM 52.14 100.00 41.10 49.98 Precision
D-Tree 33.38 100.00 34.16 35.65

The attributes with the most discriminatory power for each feature type were: (1)
endpoints: Attribute 11, (2) corridors: Attribute 2, (3) corners: Attribute 12, and (4)
branches: Attribute 11.

The overall system performance was evaluated in terms of the quality and
computational complexity demonstrated over various image datasets. Since noise
occurs in the images, there are extraneous as well as missing objects. In order to
objectively measure how well the proposed system analyzed digitized engineering
drawings, we compared the results over a dataset for which ground truth was
available. The following steps were taken:

• A testbed benchmark set of five images and ground truth were established.
• A non-PRM classifier was run on the images.
• A hand-made PRM classifier was run on the images.
• A decision tree classifier was developed using training data and run on the

dataset.

To measure the performance, we use recall to mean the ratio of correct features
found to the total number of relevant features, and precision to mean the ratio
of the number of correct features found to the total number of features found.
Table 2.1 gives the results of the performance analysis.Although the static PRM
feature classification method works well as far as recall is concerned, good precision
can only be achieved by applying a post-processing step.

Xu also developed methods for linear feature extraction. As described in Chap. 1,
much work has been done on this topic, and our method can be viewed as an
extension of the Zig-Zag method of Dori [30]. The mobile robot mapping approach
exploits the Generalized Voronoi Diagram (GVD) [12]. After constructing the GVD,
linear segments are found by using the differential GVD curvature.

In the free space of a plane with a set of obstacles, the Voronoi diagram (VD)
[24] is defined as a collection of line segments or convex polygons that partition
free space into n cells so that each cell contains one obstacle. Any point on the edge
of two neighboring cells is equidistant to the two particular obstacles in the two
neighboring cells. When the obstacles extend to any object, the VD is called the
generalized Voronoi diagram (GVD) for these objects. In the robotics path planning
community, the GVD is used as a roadmap through a planar set of obstacles. The
planar space is divided into free space, or a set of points through which the robot
may pass, and the obstacle points through which the robot may not pass. Roadmaps
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provide a structure completely describing the topology of the workspace, including:
accessibility, connectivity and departability. Robot motion planning consists of:

1. Find a way to get to the GVD.
2. Find a path along the GVD to the neighborhood of the goal point.
3. Find a way from the GVD to the goal point.

The GVD is more formally considered a deformation retract, defined in terms of
a continuous map from the free space of the GVD. In our problem domain, we are
only interested in the GVD points found in the corridors (i.e., curvilinear segments);
at segment ends, we want the points to go straight to the end of the line segment
rather than splitting and going to the corner points as occurs with the medial axis
transform.

The modified GVD (MGVD) points, or perhaps more appropriately, the center
line points, are characterized by being midway between two scan points that are
180 degrees separated in the range scan, are a minimally distant pair of 180
degree separated points, and have inward pointing normals. The fundamental idea
of the segmentation algorithm introduced by Xu is based on the fact that every
foreground pixel must belong to a linear segment or multiple segments if the pixel
is either a corner or branch point. The PRMs of most points in a given linear
segment share similar features captured by the PRMs. Such points are usually
interior corridor points. The algorithm takes the following steps to extract a MGVD
path as a linear segment.

1. Find an unexpanded interior corridor point P.
2. Compute P’s PRM and the longest forward direction FDIR.
3. Compute a MGVD path along FDIR and its opposite direction BDIR until it hits

the background pixel boundary.

The set of MGVD nearest neighbor points form a linear path through the segment.
Hence the linear segment to which P belongs has been extracted. By iterative
application of the above steps on a connected component foreground object,
the algorithm extracts all linear segments of the connected component. Performance
measures for the MGVD extraction method were developed and tested on several
engineering drawing images. Correspondence to ground truth segments is made
based on:

1. The distance between segment endpoints gpt1 and pt1, and distance between
the other segment endpoints gpt2 and pt2 must both be less than the segment’s
width.

2. The absolute difference between GDIR and DIR must be less than 5 degrees out
of 360.

• gpt1 and gpt2 are the two endpoints of a ground truth segment, and pt1 and
pt2 are the two endpoints of an extracted segment.

• GDIR is the ground truth segment’s direction, and DIR is the extracted
segment’s direction.
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The MGVD method was compared to a Hough-based method on eight test images,
and the average correctness result for MGVD was 99.63% whereas the Hough
method was at 82.98%.

In summary, Xu’s work explored the use of robot navigation and mapping
techniques in the analysis of engineering drawings. Contributions include:

• Definition and Analysis of the Pseudo Range Map (PSM): For each foreground
point (to sub-pixel accuracy), the distance to the background is computed for a
selected set of angles and to sub-pixel accuracy. The PRM has been shown to
provide a robust and stable basis for mapping analysis.

• Point Feature Analysis: Given the PRM at a specific location we have demon-
strated that the shape of the PRM permits classification of the location into one of
the categories: endpoint, corridor point, corner point or branch point. The correct
classification rates are very high compared to conventional techniques.

• Linear Feature Analysis: Given the ability to move an agent in the foreground,
we have demonstrated the extraction of an approximation to the Modified
Generalized Voronoi Diagram (MGVD) and can exploit the MGVD to segment
the drawing into 1D curves and straight line segments.

2.2 Vectorization

Once a set of segments is identified, the next step in the process is to produce a
higher-level approximation to the segments; recall that a segment consists of a set
of pixels running from an endpoint to an endpoint, or an endpoint to a branchpoint,
a branchpoint to a branchpoint, or a virtual endpoint to itself. For the application at
hand, we use a straightforward line fitting algorithm which tracks from one segment
endpoint to the other taking in new pixels until a fitting threshold is exceeded. After
a piecewise polyline is produced, the endpoints are adjusted for a better fit for the
two vectors to either side.

Figure 2.17 shows the vectors produced for the digits.

2.3 Connected Component Information

Although the segments and vectors are the core information about each connected
component, it is useful to put together more information about the component which
will make further analysis easier. This information includes:

• image: original image
• branchpoint image: specific branchpoint pixels
• skeleton: center line points through component
• segments: the segments as described above; for each segment:
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Fig. 2.17 Vectors produced
for digits

– path: row, col array from one endpoint to the other
– num rows: number of rows in the original image
– num cols: number of columns in the original image
– endpoints: endpoints of the segment; these are actual termination points

(i.e., not branchpoints or virtual points)
– branchpoints: branchpoints of the segment

• vectors: the vectors as described above; for each vector:

– points: row, col array of points in the vector
– num pts: number of points in the vector
– index 1: segment path index for first point of vector
– index 2: segment path index for last point of vector
– error: error for vector fit to segment
– endpoint 1: row, col of first point
– endpoint 2: row, col of second point
– theta: orientation of vector
– num rows: number of rows in original image
– num cols: number of cols in original image

• segment neighbors: s by s array of segment neighbors
• vector endpoint info: for each endpoint, first and second element are row, col of

endpoint, and third element is the number of vector neighbors
• vector neighbors: 2v× 2v array of vector endpoint neighbors
• cycles: cycles found in the component

– paths: list of vector endpoint sequence that defines the cycle

• vector tree: tree of vector connectivity; each node has:

– parent: index of parent node
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– index: vector endpoint index
– children: indexes of children nodes

• paths: endpoint to endpoint paths (starting vector is indexes 1 and 2)

– path: sequence of vector endpoint indexes from one endpoint to the other

These items are useful when trying to recognize characters, arrowheads, graph-
ics, etc. For example, the digits “0”, “4”, “6”, and “9” have one cycle (unless
it is broken due to noise or touching another component); moreover, the digit
“8” has three cycles: the upper and lower two circles as well as one around the
outer periphery. The path information allows one to more easily find, e.g., the
correct one path through the segments which are produced for the character “2”
(alternative paths may be created by spurs and noise). The exploitation of this
information will be further elucidated in following chapters.



Chapter 3
Text and Graphics Analysis in Engineering
Drawings

The meaning of an engineering drawing is expressed through text and graphics and
the relations between them. Chapter 1 provided a detailed summary of the major
approaches to their segmentation, and here we describe our own contributions on
some specific applications. The goal is the fully automatic segmentation of text
and graphics in an engineering drawing image, as well as its interpretation; that is,
characters represented as pixels must be interpreted as to which specific character
they represent. Of course, this is made difficult in that most engineering drawings
use a variety of fonts, sizes, and orientations for characters—indeed, some are
even hand-written. In addition, character segmentation is generally only part of a
larger process: for example, dimension set analysis. Since the names and numbers
extracted by the system are quite significant for manufacturing purposes, say in a
reverse engineering application, then more likely than not, hypotheses put forward
by the image analysis system will need to be corroborated by a human.

Consider the following problem scenario:

Problem 1: A dataset consisting of a large number of paper drawings (perhaps several
hundred) is the only extant record of the CAD development of a vehicle still in use and
which needs to be modified. The drawings have been scanned, and a collection of digital
images created—one for each drawing. The goal is to create a database for the drawings
which contains meta-data about each drawing (type of drawing, name of part, part number,
etc.), as well as the contents of the drawing (e.g., graphics, dimension sets, etc.).

To solve this problem, we break it up into several sub-tasks. Generally, there
are several drawing types, including general arrangement drawings, arrangement
drawings, assembly drawings, detail drawings, and fabrication drawings. The first
task is to determine which types of drawings exist in the dataset and their formats.
Sometimes, other types of information are provided; for example, in a study we
performed, files like that shown in Fig. 3.1 were included; these are best interpreted
using standard commercial off-the-shelf OCR software. More typical is the detail
drawing shown in Fig. 3.2. The solution requires the identification of the form (i.e.,
the specific layout of lines and text structure of the key), and this, in turn, is based on
the extraction of text and straight lines in specific areas of the drawing. For example,

T.C. Henderson, Analysis of Engineering Drawings and Raster Map Images,
DOI 10.1007/978-1-4419-8167-7 3, © Springer Science+Business Media New York 2014

33



34 3 Text and Graphics Analysis in Engineering Drawings

Fig. 3.1 A non-standard file in the dataset

in Fig. 3.2, the name of the drawing (the part name, in this case) is “RETAINER,
PACKING” and the Part No. is 8737863. To find the legend with the name and
part number requires the extraction of text and straight lines with specific relations
holding between them.

3.1 Text/Graphics Segmentation

The text/graphics segmentation process is shown in Fig. 3.3, and the various steps
can be performed automatically or on the basis of user input. For example, if the
input consists of gray-level images, then a threshold must either be specified or
discovered using histogram analysis combined with the fact that the foreground
comprises around 20% of the image pixels.
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Fig. 3.2 A detail drawing in the dataset

3.1.1 Form Analysis

Most engineering drawings follow some standard (or regular) form in terms of the
layout of the drawing. Standards are usually established for a group of drawings, and
this allows for the application of form analysis techniques. General form analysis
does not require a priori knowledge of the form structure (e.g., see Wang [125]),
but if available, then such knowledge can be exploited (see [48]). Form analysis
requires that the image components be classified as boxes, line segment and text
components, and then these are analyzed to determine spatial relationships between
them. Liang [71] proposes a technique for the analysis, extraction and classification
of a document layout structure as a set of bounding boxes of the constituent
connected components in the document. They extract a document layout structure
using a bottom-up approach while we use a top-down approach to extract boxes and
then the connected component structures lying in it. Also, see [126]; they propose
a framework to identify and classify a given form as an explicit, semi-explicit or
implicit style form depending on the presence of lines bounding the elements in the
form. Also see the discussion in Chap. 1 of the work done by Ondrejcek et al. [93].

Chhabra [20] describes a very similar system in function to that described here.
However, there are several significant differences. His work addressed telephone
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Fig. 3.3 Basic text/graphics segmentation

company forms and used a great deal of prior knowledge (pre-defined grammars
for the table entries). More preprocessing was performed (deskewing), complex
features are computed on the characters (we simply use a normalized version of
the character), and the neural net had to be trained on tens of thousands of sample
characters (we use just nine samples per character). Finally, no performance results
are stated for their work.

The relations between logical parts of a layout provide a way to describe a form.
Several form identification methods have been proposed in the past, including that
of Diana et al. [27] which was used in the analysis of documents from the French
social services department (les Allocations Familiales). A bottom-up approach that
segments text, lines, and boxes into components, recovers the relations between text
and boxes, and uses the known line structure to separate text from touching lines
was proposed by Wang and Shirai [125]. Good results on model-based analysis and
understanding of checks were demonstrated by Ha and Bunke [41]. Arai and Odaka
[10] showed results on fifty different types of forms with a box extraction technique
based on a background region analysis. Finally, semantic information extraction
from forms as well as efficient storage was described in work by Tang and Lin
[116].

For our analysis, a form model must be given (or perhaps learned) and is
expressed in terms of spatial relation constraints which define the structural model.
If boxes (i.e., rectangles) are square to the image frame, then the sides can be
numbered from 1 to 4, starting at the top and going clockwise. An example form
structure is shown in Fig. 3.4. Then a simple grammar for this layout could be:
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Box 1

Box 2

Box 3

Box 4

Box 5

Box 6

Fig. 3.4 An example form
layout

Rule 1: form := A + B + C
[side(A,3) intersects side(B,1)]
[side(A,3) intersects side(C,1)]
[side(B,2) intersects side(C,4)]

Rule 2: A := Box1

Rule 3: B := Box2 + Box3 + Box4
[side(Box2,3) = side(box3,1)]
[side(Box3,3) = side(box4,1)]

Rule 4: C := Box5 + Box6
[side(Box5,3) = side(box6,1)]

The terminal symbols are simple rectangles. The non-terminal symbol A represents
the top box; B represents the lower-left three boxes, and C represents the lower-
right two boxes. The square brackets in each rule define the constraints as predicates
on the rectangles. A more detailed discussion of results will be given later when the
complete document analysis system is described.

3.1.2 Connected Component Analysis

There are many algorithms to segment and label connected components in binary
images (e.g., Matlab provides bwlabel), where a connected component (CC)
consists of a set of connected pixels (i.e., there is a path through the set between any
two pixels in the set). Every pixel in a connected component is given the same value
as the connected component index from 1 to n, where there are n CCs. Depending
on the quality of the input image, it may be necessary to pre-process the image
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to reduce the effects of noise, blurring, etc. This must be done carefully since low
bandwidth filtering may cause distinct components to merge, and high-bandwidth
filtering may disconnect components.

Thus, connected components may include multiple semantic objects (e.g., a
character and a line segment) which will require a more sophisticated analysis. The
cleaner the initial segmentation in to CCs, the easier the text/graphics segmentation
will be. Another major difference between standard text document analysis and
engineering drawing text segmentation is the relatively small number of characters
in the latter. Therefore, it is necessary to be able to recognize isolated characters at
any orientation and scale. We assume for the present that characters occur as distinct
CCs.

The next step is to produce a set of basic comprehensive information about each
connected component. The set of information consists of the following:

• character semantics: which character is represented by the CC.
• character image: the binary input of the character; each CC is represented in an

image so that there are foreground pixels in the first and last rows and columns.
• bounding box: the corners of the smallest bounding sub-image in the original

image.
• PCA frame: the PCA frame is found for each set of foreground pixels.
• CC skeleton: this should be a medial axis like set of pixels.
• branch points: points in the skeleton where three paths diverge.
• endpoints: extreme points on a segment of the skeleton.
• segments: all points in the skeleton are either branch points, endpoints or regular

points (i.e., regular is neither end nor branch point); a segment is then either (1)
a linear sequence of skeleton points with a branch or endpoint at each end and
regular points in between or (2) a cycle consisting of only regular points.

• endpoint to endpoint paths: the set of all linear paths running from one endpoint
to another.

• cycles: the set of all unique cycles in the skeleton.
• vectorization: a vectorization of the skeleton.

This set of information informs the character analysis process. Let’s consider some
examples of this. Figure 3.5 shows a set of eight digits and upper case letters taken
from an engineering drawing, while Fig. 3.6 shows the skeletons, endpoints and
branch points for these CCs.

3.1.3 Character Analysis

Characters and symbols are human artifacts and should be variations on some ideal
set of intended strokes. However, such variations can make automatic recognition
difficult. For example, the letter “A” is shown in Fig. 3.7 in a number of fonts.
On the one hand, character recognition can be based on a principled or rule-based
approach, or on the other using a data-centric machine learning approach; we will
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Fig. 3.5 Set of connected
components from digits and
letters

Fig. 3.6 Skeletons, branch
and endpoints for set of
connected components

Fig. 3.7 Variety of different representations of letter “A”

demonstrate examples of both. It is also necessary to decide whether a single class is
to be assigned to each CC, or a probability density function across all possibilities.

It may be possible to filter the set of CCs to be considered for text analysis. A
histogram of the CC sizes allows them to be split into categories: (1) very small,
(2) mid-range, and (3) very large. The very small CCs are usually either noise,
punctuation, parts of a letter (e.g., the dot on an “i” or “j” or a disconnected piece of
a character), or annotation glyphs (e.g., the dots in a dotted line). The very large CCs
are generally either graphics or part of the form for the engineering drawing (i.e.,
the set of lines and boxes which separate out meta-information about the drawing).
Graphics are predominantly linear features (straight or curved), and forms consist of
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Fig. 3.8 Character analysis layout

rectangles aligned with the frame of the drawing. Characters and symbols are mostly
found in the mid-range size CCs. An important and distinct class is the set of simple
straight line segments (e.g., the digit “1”, the letter “l”, dashes “-”, slashes “/”, etc.).
These are typically three times longer in one dimension than the other. We call
these linear CCs. When segmenting text, their bounding boxes provide information
about neighboring characters in that they should mainly differ by a translation (of
course, the height and width may vary some, but most lower box sides will line up
along the bottom of the text). In our discussion of character segmentation here,
we consider the digits {0,1,2,3,4,5,6,7,8,9} and the upper case letters “A” to
“Z”. There are many character classification techniques as described previously, and
we compare some simple approaches which work well on the meta-data extraction
scenario posed at the start of the chapter.

A Rule-based Method We describe first a method which uses a set of decision
functions all applied to each CC, and each of which produces a value between 0
and 1 as to the likelihood of the CC being that specific character. If there are ties
and a unique decision is desired, then some sort of tie-breaking function must be
used. Alternatively, the results of each classifier may all be sent to a function which
uses that plus contextual information to make a final assessment. Figure 3.8 shows
the analysis flow. Note that the result may be either a discrete class or a probability
density function over all possibilities.

Consider now how the features of a character, e.g., the endpoints, branch points,
cycles, etc., can be used to construct a recognizer. The digit ‘2’ has the following
features:
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Fig. 3.9 Results of
rule-based digit recognition

• cycles: none
• branch points: none
• endpoints: two (of course, due to noise, etc. there may be extraneous endpoints,

and thus, branch points as well. The recognition process must be robust to these
possibilities)

• special features:

– Although there may be several endpoints, a ‘2’ will be characterized by the
fact that the longest endpoint to endpoint path will be from the upper left
one to the lower right one. Therefore, first find the longest such path (the CC
information contains the set of all such paths).

– The two endpoints of the longest path must satisfy the requirement that one
be in the upper left quadrant of the CC image, and the other be at the lower
right part.

– There must be a part of the character that covers most of the columns along
the bottom part of the image.

– The longest path should cover most of the pixels in the skeleton of the
character.

Matlab functions have been written for the digits, and Fig. 3.9 shows the digits
recognized in part of an engineering drawing. As can be seen, the method is
very effective when the style of the digits is restricted. There are some errors; for
example, the letter “D” is labeled “0”. If letter recognizers were implemented as
well, then the overall classifier would need to decide which of the two labels would
be more likely, or put forward multiple hypotheses. As we shall see later, the latter
approach allows a more robust analysis in keeping all reasonable hypotheses and
use higher-level context to make a final decision. This was proposed by David Marr
as the Principle of Least Commitment [81].

A Machine Learning Method As mentioned previously,1 many organizations
have a large inventory of printed CAD drawings for complex systems for which
no electronic CAD exists. A major goal is the automatic retrieval of important
information from the drawing so as to populate a database which can then be

1This material is taken from a project done jointly by Thomas C. Henderson, Anshul Joshi,
Srivishnu Satyavolu, and Wenyi Wang.
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used to query the design (for example, in a reverse engineering problem on legacy
equipment). A method is described to retrieve the information found in the legend
of an engineering drawing raster image. This proceeds as follows:

• Segment Legend: this consists of the segmentation of the set of boxes (the
legend form) that contain the information about the drawing; e.g., part name,
part number, designer, date, etc.

• Segment Text: the text strings must be segmented from within each box of the
legend.

• Segment Characters: individual characters must be segmented from the text
strings.

• Classify Characters: each character must be labeled as to its semantic class.

The method depends on a semantic approach to box extraction, followed by a
variation on standard string segmentation, and character classification is performed
using Radial Basis Functions, augmented by a logical decision method between
similar letters which are confused. The major goal is to take large sets of engineering
drawing images and populate a database with the information from the legends
of the drawings as automatically as possible. We describe the algorithms and the
experiments performed using this method.

We break the process into several sub-tasks. Generally, there are a variety
of possible engineering drawing types, including general arrangement drawings,
arrangement drawings, assembly drawings, detail drawings, and fabrication draw-
ings. The first task is to determine which types of drawings exist in the dataset
and their formats. A typical example is the detail drawing shown in Fig. 3.2. The
solution requires the identification of the form (i.e., the specific layout of lines and
text structure of the legend), and this, in turn, is based on the extraction of text and
straight lines in specific areas of the drawing. For example, in Fig. 3.2, the name
of the drawing (the part name, in this case) is “RETAINER, PACKING” and the
Part No. is 8737863. To find the legend with the name and part number requires
the extraction of text and straight lines with specific relations holding between them.
The drawing has a regular structure which can be exploited to find the legend (a set
of boxes in the lower right corner), as well as to interpret it.

Figure 3.10 shows the engineering drawing analysis process used here. First,
the boxes are recovered from the image. This is done by analyzing the vertical
and horizontal line segments. Once an initial set is extracted, then gaps are filled
where appropriate, and rectangular box structures are produced. If a set of sufficient
number (i.e., > 30) of boxes is found in the lower right corner of the image, then a
neighborhood connectivity graph is formed. A best match correspondence between
this graph and the template legend graph is determined. From this, the appropriate
boxes are selected in order to find the part name, part number and other information
of interest. This is done through the use of Radial Basis Functions which are
developed based on a set of characters selected from the engineering drawing
images.

A novel box segmentation algorithm has been developed, and its operations are
shown in Fig. 3.11. In the first step, the maximum horizontal and vertical traversable
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Fig. 3.10 The engineering drawing analysis sequence

Engineering Drawing

Horizontal and Vertical Line Segments

Merged Line Segments

Extended Segments

Intersection Points

Rectangular Boxes

Fig. 3.11 The box analysis
sequence

distance from each foreground pixel is found and used to select interest pixels.
The connected components of these are labeled, and appropriate neighbors are
merged; this means that their ends are nearby and that there is no perpendicular
cutting segment between them. Next, these segments are extended out from the
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Boxes

Box Neighbors Graph

Template Distinguished Regions

Template Coherent Regions

Template Graph Match

Fig. 3.12 The graph
template analysis sequence

endpoints as far as foreground pixels exist in the original image. To get the boxes,
the intersection points of the horizontal and vertical segments are located; then
each point is considered as an upper left corner point and appropriate other corners
sought. Occasionally there is a gap in a line segment which prevents the formation
of a box. We perform a post box scan for segments which mostly traverse a box and
make a new box for those.

The neighborhood relations are key to understanding the semantics of the boxes
as they define the legend; therefore, a graph structure is imposed on the boxes.
For each box, the neighbors (i.e., if there exist any neighboring pixels), as well
as their spatial layout (up, left, right or down) is determined. Figure 3.12 shows the
steps in the graph template matching algorithm. The distinguished template regions
are vertical regions with the same set of boxes comprising each column, whereas
the coherent template regions are those with a vertical edge through the height
of the box region. Figure 3.13 shows the results of this analysis applied to a test
image; the top image shows the boxes, the middle shows the distinguished template
regions, and the bottom image shows the final coherent template regions found.
These latter correspond to a semantic grouping of legend information. Figure 3.14
shows the graph structure recovered for this test image. Note that Box 30 has the
part name and Box 34 has the part number. These boxes are matched due to the
uniqueness of their spatial neighborhood layout. E.g., Box 30 has the following
graph information (taken from Matlab):

>> im53r_info.nodes(30)
ans =

nei: [22 27 28 29 31 33 34]
right: []

up: [22 29]
left: [22 27 28]
down: [28 31 33 34]

>>
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Boxes

Template Distinguished Regions

Template Coherent Regions

Fig. 3.13 Results of the graph template analysis of test image

As can be seen, Boxes 22 and 29 are above (i.e., have pixels above the minimum
row of Box 30), Boxes 22, 27, and 28 are to the left and Boxes 28, 31, 33 and 34
are down from it. At this point we merely use 1-hop neighbors, but for graphs with
similar nodes, multiple hops could be used to distinguish nodes.

The final step in the information retrieval from engineering drawing legends is to
segment the text and classify the characters. The specific goal here is to extract the
part numbers and part names. We use radial basis functions (Marsland’s formulation
[82]) to classify characters. These are a form of neural network which uses training
data as local neurons in the input space, and computes a distance function from the
input, followed by a perceptron layer which selects the character. A single class
identifier is used for each digit and uppercase letter (i.e., there are 36 classifiers
and the max response is selected as the class). Each character image is resized to
a standard 30x20 image; next the skeleton of the character is found, followed by a
dilation by 1. The resulting image is converted to a 1x600 vector which represents
the component. The RBF is first trained and then applied. The training was done
with 9 sample images of each character. In a leave-one-out train and test, we had
897 out of 900 (99.67%) correct for digits, and 6058 of 6084 (99.57%) for upper
case letters.
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Fig. 3.14 The neighborhood graph for the test image legend

Training

• Set RBF centers to selected sample points
• Calculate Gaussian distance

(g(x,w,σ) = exp

(− ‖ x−w ‖2

2σ2

)

• Train output weights by computing pseudo-inverse of the activations

Application simply involves passing an unknown vector through the network The
quality of the scanned images in our particular application guarantees that for the
most part, individual characters correspond to single connected components. Thus,
the overall algorithm takes the given box, finds the connected components in the
box, sorts them as to top-down line and left to right text structure.

This technique was developed using 16 engineering drawing images, like the
example shown in Fig. 3.2. Of the 262 letters in the part names, all were correctly
classified, except for a broken letter “N” that was classified as a “W”—thus
achieving over 99% accuracy. Figure 3.15 shows two bad characters: the mis-
classified “N” and a correctly classified broken “P”. We then tested the method on
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Fig. 3.15 Some bad
characters and the results

10 new images, and of those, one had been scanned with a wrinkle and failed (the
horizontal lines were not straight), but the classification accuracy on the remaining
nine images was 97%. The misclassified letters included “D” for “O” (2), “D” for
“S” (1), “L” for “E” (1), and “D” for “B”; (1). When applied to extracting the part
numbers, the algorithm achieved 100% accuracy on the training set, and 100 %
accuracy on the part numbers.

In this approach then: (1) a technique is proposed and demonstrated for matching
box structure graphs to a template, (2) the box structure is exploited to constrain
the text extraction from important boxes (e.g., part name, part number, etc.), (3) a
Radial Basis Function classifier (along with confounded letter recognition logic) is
developed which achieves 100% accuracy for digits in the part number and over
97% accuracy for letters in the part name.

Current areas of research consider the use of machine learning techniques to
automatically extract the box structure in a set of engineering drawings; in addition,
it may be possible to use standard drawing conventions where they have been
used. The application of the RBF method to lower case letter is also an interesting
problem; this is extremely difficult in many cases because the lower case letters are
run together and of low resolution. Finally, it may be possible to use constraint-
based techniques to achieve a more efficient subgraph isomorphism method; e.g.,
this could be based on previous work in this area (see [43, 87]).



Chapter 4
A Structural Model for Engineering Drawings

We1 have proposed a structural modeling approach combined with a nondeter-
ministic agent system to produce interpretations of scanned images of CAD
drawings [47–50, 113]. This allows a broad set of thresholds to be used during
the image analysis which in turn permits the efficient pruning of the resulting search
space by taking advantage of constraints from the model or specific application.
The nondeterministic agent system is described in a Chap. 5.

In order to organize the activity of the analysis agents, we have developed
an engineering drawing model comprised of structures typically found in such
drawings, and relations between those structures. This approach is based on
structural and syntactic shape methods (e.g., see [52]); however, our method is novel
in that it allows for the natural application of the NDAS agent system to recover the
desired structures from an image.

4.1 Terminal Structures

Terminal structures correspond to the terminal symbols of a shape grammar, and
include: text, box, pointer ray, pointer line, pointer arc, circle, line segment,
and graphic. Technically, these are defined as follows (the terminals and nontermi-
nals have been numbered – given in parentheses):

• (1) text: characters in the image (aligned and spatially close).
• (2) box: closed rectangular set of 4 line segments at 90 degrees in sequence.
• (3) pointer ray: line segment with arrow at one end (may be polyline of

degree 2).
• (4) pointer line: line segment with arrow at each end.
• (5) pointerarc ray: arc segment with arrow at one end.

1This chapter is contributed by Lavanya Swaminathan; it is Chap. 3 of her MS thesis.

T.C. Henderson, Analysis of Engineering Drawings and Raster Map Images,
DOI 10.1007/978-1-4419-8167-7 4, © Springer Science+Business Media New York 2014
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text

numbers

box

pointer_ray

pointer_line

pointer_arc

circle

line_segment

graphic

Some text for an image

21.306

Fig. 4.1 Examples of
terminal structures

• (6) pointerarc line: arc segment with arrow at each end.
• (7) circle: image segment which is a circle.
• (8) line segment: image segment which is a straight solid line.
• (9) graphic: set of image segments grouped together and classified as graphic

elements.
• (10 – 20) unused.

Terminal structures are discovered by specific analysis agents which examine
both the image and outputs from other agents. Figure 4.1 shows a labeled instance
of each terminal structure.

4.2 Higher-Level Structures

Higher-level structures correspond to the nonterminal symbols in a shape grammar,
and can be described by rewrite rules which define sub-structures which comprise
the new structure, and the relations that must exist between the sub-structures.
Loosely described, these are given as:

• (21) pointer ray1: enforces distinct instance of pointer ray.
• (22) pointer ray2: enforces distinct instance of pointer ray.



4.2 Higher-Level Structures 51

• (23) pointerarc ray1: enforces distinct instance of pointerarc ray.
• (24) pointerarc ray2: enforces distinct instance of pointerarc ray.
• (25) line segment1: enforces distinct instance of line segment.
• (26) line segment2: enforces distinct instance of line segment.
• (27) line segment3: enforces distinct instance of line segment.
• (28) text1: enforces distinct instance of text.
• (29) text2: enforces distinct instance of text.
• (30) symmetric pointer pair in: 2 collinear pointer rays with arrows at near

ends. These will point inward toward dimension lines.
• (31) symmetric pointer pair out: 2 collinear pointer rays with arrows at distant

ends. These will point outward toward dimension lines.
• (32) symmetric pointerarc pair in: 2 pointerarc rays with arrows at near ends.

These will point inward toward dimension lines.
• (33) symmetric pointerarc pair out: 2 pointerarc rays with arrows at distant

ends. These will point outward toward dimension lines.
• (34) dimension rays in: represents text and inward pointing rays of the dimension

construct.
• (35) dimension rays out: represents text and outward pointing rays of the

dimension construct.
• (36) dimension: text with a symmetric pointer pair.
• (37) dimension angle rays in: text and inward pointer rays of angle description.
• (38) dimension angle rays out: text and outward pointer rays of angle description.
• (39) dimension angle: either of (37) or (38).
• (40) dimension set: a dimension enclosed by a symmetric line pair or an

angle dimension enclosed by an asymmetric line pair.
• (41) angle set: pair of connected line segments with angle arrow between them.
• (42) pointer ray extn: a pointer ray extended by a line segment.
• (43) pointer line extn: a pointer line extended by a line segment.
• (44) pointerarc line extn: a pointerarc line extended by a line segment.
• (45) pointer line extn in circle: an extended pointer line embedded in a circle.
• (46) check sign: (

√
) : 2 line segments arranged as a check mark. These occur in

drawings to label various aspects.
• (47) check pair: check sign with text.
• (48) dimension description: a dimension set and corresponding graphic. Com-

plete dimension information, including the graphic being described.
• (49) text in box: text in a box.
• (50) text in box1: enforces distinct instance of text in box.
• (51) text in box2: enforces distinct instance of text in box.
• (52) text in box3: enforces distinct instance of text in box.
• (53) text in box4: enforces distinct instance of text in box.
• (54) one datum ref : 3 collinear and adjacent text in box.
• (55) two datum ref : 4 collinear and adjacent text in box.
• (56) datum ref : either of (54) or (55).
• (57) datum below text: a datum ref below text.



52 4 A Structural Model for Engineering Drawings

• (58) dashed lines: 3 collinear line segments specifying a cross-section in the
image.

• (59) dash line1: enforces distinct instance of dashed line.
• (60) dash line2: enforces distinct instance of dashed line.
• (61) circle center dim: 2 dashed lines perpendicular to one another intersecting

on the center of the circle they describe.
• (62) only graphics: only graphics after eliminating all components of dimen-

sion.
• (63) text comb: combination of 2 texts.
• (64) text final: enforces distinct instances of text or text comb.
• (65 – 80) unused.

4.2.1 Relations

In order to define these structures, a number of (mostly) geometrical relations must
be defined between sub-structures and determined to exist in an image:

• inBox(x,box): x is contained within a box.
• inCircle(x,circle): x is contained within a circle.
• touches(x,y): x and y are part of same image segment.
• adjacent(x,y): x and y are adjacent to each other.
• parallel(x,y): x and y have parallel axes.
• perpendicular(x,y): x and y have perpendicular axes.
• near(x,y): x and y within some distance.
• collinear(x,y): major axes of x and y on same line.
• length(x): length of x.
• angleBetween(x,y): angle between x and y.
• between(x,y,z): y is between x and z.
• horizontal(x): x is horizontal.
• unequal(x,y): x and y are not the same.
• bisect(x,y): x and y are line segments that bisect one another.
• above(x,y): y is above x.
• below(x,y): y is below x.
• touchesEnd(x,y): an end of x touches an end of y.

4.2.2 Productions (Rewrite Rules)

We now give a more technical definition of the structures and relations.

• terminal structures: these are defined in Sect. 4.1, and are found by the
respective agents when applied to the various images and outputs available from
other image analysis agents.
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• relations: geometrical relations between structures.

inBox(A,box)⇒ centroid(x)in box

inBox(A,box)≡ min(x,y)box ≤ min(x,y)A

∧max(x,y)A ≤ min(x,y)box

inCircle(A,circle)⇒ centroid(x)in circle

inCircle(A,circle)≡ min(x,y)circle ≤ min(x,y)A

∧max(x,y)A ≤ min(x,y)circle

touches(x,y)≡ segment(x) = segment(y)

parallel(x,y)≡ ∠x,y = 0± ε

perpendicular(x,y)≡ ∠x,y = π
2 ± ε

near(x,y)≡ distance(x,y)≤ ε

collinear(x,y)≡ distance(line(x), line(y))≤ ε

same length(x,y)≡ length(x) = length(y)± ε

between(x,y,z)≡ l = line(x,z)∧ pro j(b, l)between x,z

The rewrite rules describe how higher level structures are derived from lower level
ones. See Appendix A for the complete set of rewrite rules. Table 4.1 gives these
rewrite rules as a simple table by symbol number.

4.3 Goal Graphs

Just as for image analysis, the agents which determine structure in the drawing are
activated by the existence of certain triggering data. This is organized by way of
goal graphs, which are generated by using the grammatical description to formulate
a constrained search process. This works bottom-up by resolving the terminal
structures as parts of higher-level structures.

First, some definitions:

A ground structure is a structure arising from the analysis of the image.
An instance structure is a ground structure or the result of a satisfied goal graph
analysis.
A model structure is a structure arising from a rewrite rule.
A goal graph generator is an instance structure which gives rise to a goal structure.
A goal graph consists of the model structures and relations between them defined
by the right hand side of a rewrite rule.
A bound instance structure is an instance structure assigned to a model structure
in a goal graph.
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Table 4.1 Rewrite rules Rule LHS RHS values Rule LHS RHS values

1 21 3 2 22 3
3 23 5 4 24 5
5 25 8 6 26 8
7 27 8 8 28 1
9 29 1 10 64 1
11 63 28 29 12 64 63
13 30 21 22 14 31 21 22
15 32 23 24 16 33 23 24
17 34 30 64 18 35 31 64
19 36 35 20 36 34
21 37 32 64 22 38 33 64
23 39 38 24 39 37
25 40 25 26 36 26 41 25 26 39
27 42 8 3 28 43 8 4
29 44 8 6 30 40 25 26 44 64
31 45 43 7 32 46 25 26 27
33 47 46 64 34 48 64 42 8
35 49 1 2 36 50 49
37 51 49 38 52 49
39 53 50 51 52 40 54 53
41 55 64 54 42 48 8 42 55
43 48 64 45 8 44 48 45 55
45 56 25 26 27 46 57 56
47 58 56 48 59 57 58
49 60 9 40 50 48 40 60

A goal graph is satisfied if every model structure has a bound instance structure and
all relations are satisfied. Goal graphs can be formed in a bottom-up or a top-down
fashion as described below. Here we use only the bottom-up approach.

4.3.1 Bottom-up Formation of Goal Graphs

Algorithm Goal Graph Up:
On input: instance structures
On output: goal graphs
A1. Every instance structure gives rise to a goal graph for every rewrite rule in which
it appears in the right hand side.

A2. The goal graph generator is associated with its model structure counterpart in
the goal graph.
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A3. A right hand side analysis agent attempts to find assignments of other instance
structures to the remaining goal graph structures that satisfy all the relations of the
right hand side.

A4. If instance structures are found which can be assigned to model structures in the
goal graph and which satisfy the relations, then the left hand side model structure is
added as an instance structure, and the resulting satisfied goal graph is output.

4.3.2 Top-down Goal Graph Analysis

Once the bottom-up application of these rules has terminated, if there are any ground
structures which are not part of a description structure, then the following rules may
be applied.

Algorithm Goal Graph Top-Down:
On input: goal graphs not satisfied; ground structures
On output: satisfied goal graphs
B1. Every unsatisfied goal graph is assigned to a top-down search agent.

B2. A search is made to discover in the remaining instances any unbound ground
structure satisfying the right hand side relations with respect to the bound instance
structures.

A goal graph process is the application of Algorithm Goal Graph Up to a set of
ground structures from an image.

The coherence of a goal graph process is the average number of satisfied goal graphs
generated by each instance structure.

There are several ways to enforce coherence. In particular, a limit (called the
generation limit) can be placed on how many goal graphs an instance structure
can generate. This can be context independent or not. For example, the generator
limit may be a function of depth in the rewrite rules. This may also be controlled
by varying the thresholds on the relations; e.g., tighter constraints will yield fewer
interpretations.

4.4 Analysis Complexity Reduction

Given a strategy of generating as much of the search space as possible, it is necessary
to find ways to reduce the number of alternatives; however, this must be done in a
systematic and correct way. We have developed two strategies:
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• Symbolic Pruning: exploit the formal aspects of the grammar and the algebraic
relations to eliminate duplications and redundancies.

• Empirical Pruning: exploit the specific statistics and findings resulting from
samples taken from a given domain.

The next sections develop the framework for these two approaches.

4.4.1 Symbolic Pruning

Our goal is to determine the complexity of the total number of possible symbols
generated from a set of ground structures with respect to a specific grammar. Let G
be a grammar, and for the current context, let it represent the rewrite rules. We define
a production sequence as a correct application in some order of the rewrite rules
of G. Thus:

ps =
n

∏
j=1

i j

defines a production sequence, ps, where i j is the index of the jth production
(repeating an index is allowed).

Symbol redundancy of a vocabulary symbol, v, called SR(v), is the count of
the number of distinct production sequences that produce the symbol. This is the
same as the number of ways the ground structures can be mapped onto the terminal
symbols to produce the symbol v. For a terminal symbol, a, we have

SR(a) = |g|

where |g| is the number of ground structures of this terminal symbol.
In order to calculate SR(v) for a non-terminal symbol v, we introduce the

following notion. An 0-form rewrite rule is one with only terminal symbols on
the right hand side. An 0-form grammar is one with only 0-form rewrite rules.

Algorithm 0-form produces an 0-form grammar from a general grammar.

Algorithm 0-form

On input: a general grammar, G
On output: an 0-form grammar, G2
G1 <- G
G2 <- empty set

whenever there exists a rewrite rule, R, in G1 such
that lhs(R) is a non-terminal and there are only
terminals in the rhs(R), then:

Add R to G2
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For every R’ in G1 such that lhs(R) is in the
rhs(R’)
Replace each occurrence of lhs(R) in R’ with
rhs(R)
and call new rule R’’
Add R’’ to G1

Note that this applies to non-recursive grammars, but if there is a recursive rewrite
rule, then it can be easily flagged, and the user can set a maximum depth for it. For
example, any number of section lines can occur in a technical drawing so long as
they are parallel.

For a terminal symbol w and a rewrite rule R, define count(w,R) to be the number
of times that w appears on the right hand side of R. Then, for a rewrite rule in 0-form
and a non-terminal symbol, v, we have:

SR(v) = ∑
R

∏
w
[SR(w)(SR(w)− 1) . . .(SR(w)− count(w,R)+ 1)]

where R is in the rewrite rules, and the sum is taken over all rules with v in the left
hand side, and w is a distinct symbol in the right hand side of R. If any summand is
negative or zero, then it is not added in; if all summands are negative or zero, then v
cannot be produced.

Consider the following example grammar (disregarding specific relations between
symbols – assume that all are symmetric):

G = { PPS -> SLP1 + SLP2
SLP1 -> SLP
SLP2 -> SLP
SLP -> line1 + line2
line1 -> line_segment
line2 -> line_segment

}

The G1 set produced by Algorithm 0-form is:

G1 = { PPS -> SLP1 + SLP2
SLP1 -> SLP
SLP2 -> SLP
SLP -> line1 + line2
line1 -> line_segment
line2 -> line_segment
SLP -> line_segment + line2
SLP -> line_segment + line_segment
SLP1 -> line_segment + line_segment
SLP2 -> line_segment + line_segment
PPS -> line_segment + line_segment + SLP2
PPS -> SLP1 + line_segment + line_segment
PPS -> line_segment + line_segment
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+ line_segment + line_segment
}

The G2 set produced by Algorithm 0-form is:

G2 = { line1 -> line_segment
line2 -> line_segment
SLP -> line_segment + line_segment
SLP1 -> line_segment + line_segment
SLP2 -> line_segment + line_segment
PPS -> line_segment + line_segment

+ line_segment + line_segment
}

Consequently, we have the following results:

Suppose that SR(line_segment) = 4

then SR(line1) = 4
SR(line2) = 4
SR(SLP) = 12
SR(SLP1) = 12
SR(SLP2) = 12
SR(PPS) = 24

Note that the symbolic redundancy depends on the number of ground structures. For
example:

Suppose that SR(line_segment) = 2

then SR(line1) = 2
SR(line2) = 2
SR(SLP) = 2
SR(SLP1) = 2
SR(SLP2) = 2
SR(PPS) = 0 fails!

There are not enough ground structures to satisfy the need for four distinct terminal
symbols to produce nonterminal symbol PPS.

The symbol redundancy measure is a worst case estimate since for a specific set
of ground structures, the required relations between the terminal symbols may not
hold; this would prevent the generation of the nonterminal symbol. However, this
does give a useful measure of the complexity of the analysis to be performed (and, in
fact, makes it possible to know when there are too few ground structures to produce
a complete parse).



4.6 A Simple Example: Dimension Sets 59

4.4.2 Exploitation of Symbol Redundancy

The symbol redundancy measure of the number of ways in which a given symbol
can be produced allows an analysis to determine if any of the redundant production
sequences can be eliminated. There are two approaches to actually eliminate
redundancies:

• compile out one rewrite rule: start symbol, with relations between terminals;
eliminate combinations where only relations are symmetric; synthesize the
relations for this rewrite rule.

• allow only one production sequence from a symmetric relation equivalent set
when they differ only in the assignment of the same symbol in the right hand
side.

We describe a solution using the second approach. To do this requires the
following definition: two production sequences are symmetric relation equivalent
if they differ only in assignment of same symbol in right hand side of rewrite rule.
Likewise, a set of production sequences are symmetric relation equivalent if they
are all pairwise symmetric relation equivalent.

One approach to symbolic pruning then is to find sets of symmetric relation
equivalent production sequences and to allow only one during the structural
analysis. This is a parse time operation.

4.5 Empirical Pruning

While symbolic pruning results from the structural relations that exist in the
grammatical description of the shape, it is also possible to make use of parameters
(thresholds, angles, etc.) whose values depend on the specific technical drawings
being analyzed. We have implemented an interface that allows the user to look at
intermediate results from various agents and to assert which threshold or value is
the best. Once the user selects a value, or a range of values, this is noted, and the
other alternatives are not considered further (i.e., those results are discarded and no
agent will use them as inputs).

4.6 A Simple Example: Dimension Sets

Figure 4.2 shows a simple engineering drawing with four dimension sets.
A structural rewrite rule for this dimension set is:

dimension_set := ptr_ray1 + ptr_ray2 + text

where
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Fig. 4.2 Simple engineering drawing

collinear(ptr_ray1,ptr_ray2)
collinear(ptr_ray1,text)
collinear(ptr_ray2,text)
[between(ptr_ray1,text,ptr_ray2)]

The analysis described here was performed by a set of nondeterministic agents, and
in order to organize their activity, we have developed the engineering drawing model
comprised of structures typically found in such drawings, and relations between
those structures (this model is described above). This model is novel in that it
allows for the natural application of the NDAS agent system to recover the desired
structures from images.

The nonterminals used here include:

• dimension: text with a symmetric pointer pair
• dimension set: a dimension enclosed by a symmetric line pair or an an-

gle dimension enclosed by an asymmetric line pair.
• dimension description: a dimension set and corresponding graphic

We have applied this to the image shown in Fig. 4.2; all four dimension sets
were found. Table 4.2 gives the symbol redundancy for the vocabulary symbols
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Table 4.2 Rewrite rules Symbol Worst case After pruning

line segment 21 21
pointer ray 4 4
text 2 2
circle 1 1
box 1 1

pointer ray1 4 4
pointer ray2 4 4
line segment1 21 21
line segment2 21 21
line segment3 21 21
text1 2 2
text2 2 2
text comb 2 0
text final 4 2
symmetric pointer pair in 12 0
symmetric pointer pair out 12 2
dimension rays in 48 0
dimension rays out 48 2
dimension 96 2
dimension set 40320 2
pointer ray extn 84 0
check sign 420 0
check pair 1680 0
dimension description >100000 2
text in box 4 0
text in box1 4 0
text in box2 4 0
text in box3 4 0
text in box4 4 0
one datum ref 0 0
datum ref 0 0
datum below text 0 0
dashed lines 7980 3
dashed lines1 7980 3
dashed lines2 7980 3
circle center dim >100000 1

in our grammar for engineering drawings. Several examples were run with good
success and are reported in [113]. The results of these experiments are encouraging.
The structural analysis proceeds correctly, and the system explores much of the
interesting part of the search space. The percentage of dimension sets found is
16.6 % for noisy images to 100 % for clean images, and the pruning methods lead
to orders of magnitude reductions in the number of symbols considered during the
analysis.



Chapter 5
Non-deterministic Analysis Systems (NDAS)

As described1 in Chap. 1, traditional approaches to drawing analysis follow
the process sequence of digitization, noise removal, segmentation, vectorization,
recognition of text and graphics, extraction of dimension sets, and semantic analysis
using some form of rules. Typically, fixed thresholds are used for each step in
the process. As an example of how this process would work ideally, consider the
drawing shown in Fig. 4.2. The results of text extraction are shown in Fig. 5.1;
Figure 5.2 shows pointer rays from dimension sets; Fig. 5.3 shows pointer lines;
Fig. 5.4 shows the circles found in the drawing; Fig. 5.5 shows boxes; and Figs.
5.6–5.9 show the dimension sets in the drawing.

5.1 An Agent Architecture

Agents are independent software processes with the following properties:

1. autonomous (react to environment)
2. have state (beliefs, commitments, etc.)
3. persistent (process never terminates)
4. can communicate (send and receive messages related to effort)
5. perform some action (have abilities to analyze and create data).

For more complete accounts, see [112, 129].
An agent architecture is a software architecture for decision making with

intelligent (flexible) processes embedded within it. The agents may be proactive
or reactive, and should cooperate (including communicate) to achieve a goal.

We explore the use of nondeterministic agent systems (NDAS) to achieve a
more flexible system for technical drawing analysis. (see Appendix B for a set of
image analysis agents). They are called nondeterministic because the agents explore

1This chapter is contributed by Lavanya Swaminathan based on her MS thesis.

T.C. Henderson, Analysis of Engineering Drawings and Raster Map Images,
DOI 10.1007/978-1-4419-8167-7 5, © Springer Science+Business Media New York 2014
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Fig. 5.1 Text

Fig. 5.2 Pointer rays

alternative parts of the solution space simultaneously, and every agent works to
produce some result which may or may not contribute to the final result. (Note that
this is a form of speculative parallelism [17]; this can also be viewed as a distributed
blackboard system [130].) The final result derives from only a subset of the work
put in by all the agents. We explore nondeterminism in this problem domain since
deterministic systems usually make irrevocable decisions (e.g., threshold selection)
that eliminate possible solutions. The technical drawing problem domain contains
many factors that vary with the drawing: thresholds, text fonts and size, noise levels,
etc., and this variation makes it interesting to explore the possible solution space
dynamically and in a breadth-first way.
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Fig. 5.3 Pointer lines

Fig. 5.4 Circles

The issues that we have explored using the NDAS approach include:

• The analysis of technical drawing annotations: This includes the ability to rec-
ognize dimensioning, features and their annotations, tolerances, and references
to nomenclature.

• threshold sensitivity analysis: The clear determination of the relationship between
a change in threshold and its impact on the analysis process and result.

• precision, robustness and performance analysis: An engineering account of these
aspects of a system is extremely useful in making cost performance tradeoff
decisions. Most results in the literature do not define very carefully what it means
for a system to work nor what error is.
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Fig. 5.5 Boxes

Fig. 5.6 Dimension 1

Annotation models have been presented in the literature (e.g., see [25,28,31,42]),
and we have extended these ideas and developed a novel approach to high-level
modeling. We have also implemented the basic image analysis tools to extract
text, graphics, graphical primitives. These form the basis actions for the agent
architecture approach. The thesis of this work is that a structural analysis model may
be realized through a set of software agents acting independently and in parallel
to ultimately produce a coherent analysis. This has been demonstrated through
the design and analysis of the NDAS system and experimental results provided to
support the claims.
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Fig. 5.7 Dimension 2

Fig. 5.8 Dimension 3

In terms of NDAS, we have explored the:

1. organization
2. communication, and
3. higher-level modeling capabilities

NDAS system using the analysis of technical drawings as the application domain.
Figure 5.10 shows the organizational and operational view of the technical drawing
analysis agent system.

The ai,a j and ak’s are agents which look for certain kinds of objects in their field
of action, and when the appropriate conditions hold, the agent will act and produce
another set of objects. These objects may be desired data objects (e.g., a segmented
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Fig. 5.9 Dimension 4

Images MessagesData Files

Image

ai1 ai2
aik

aj1

ak1

ajn

akn

Instance Structures

Ground Structures

Structural Analysis

Intermediate
Image Analysis

Fig. 5.10 Nondeterministic agent system for technical drawing analysis

image) or a message to enlist new agents (e.g., to produce a better analysis). The
idea is that the agents work independently and in parallel and continue to work until
conditions cause them to become quiescent.

Such an approach allows for feedback loops as previously processed data may
reappear after modification by a higher-level process. This also allows a coarse to
fine improvement as more work of broader context is completed. Agents may also
monitor the activity of other agents and measure performance or provide data for
consumption by the (human) user. Of course, the user may participate as an agent
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as well! (Note that it is straightforward to define the agents so as to capture the
standard processing paradigm.) This approach is based on distributed agents and
files, and avoids centralized control or bottlenecks through centralized agents which
record and relay information.

A similar structure was proposed by Carriero and Gelernter [17] and called a
process trellis. It was a hierarchical graph of decision processes, from low-level to
high-level and with others in between. All processes executed continuously and con-
currently. This was an example of their specialist—parallel problem approach. The
big question was efficiency. The process trellis clearly allows massive parallelism
and scales well. Some differences with what we propose are that the trellis:

• has dataflow-like streams of input and output; pass data up and query down,
• there is a master and n worker processes, and
• the goal was a real-time algorithm for medical equipment control.

5.2 NDAS Organization

The nondeterministic agents are a collection of independent Unix processes. There
are two aspects of agent organization: internal and external.

5.2.1 Internal Agent Organization

Each agent is written as a C++ program, which watches its current executing
environment (directory) for the existence of certain files or processes and then takes
actions as specified by its internal code. This can be described by the following set
of actions:

1. Monitor: watch for the existence of files, processes, etc.
2. Action Program: Executable actions to take.
3. Wrapup: Cleanup files, check termination conditions, etc.

(For a particular internal agent architecture pseudo-code layout, see Appendix B.)

5.2.2 External Organization

The organization between agents includes how they announce their existence, if
necessary, file protocols, etc. In addition, this includes the variety of agents that
the user may wish to define; e.g., facilitation agents, performance analysis agents,
process control agents, image analysis agents, feature analysis agents, higher-level
model agents, etc.
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Communication between agents is also an issue of their organization. We have
them communicate through files; for example, each agent creates a file which
describes itself and its internal organization at a high level. These files are
created as ASCII text files. A message protocol has been defined. This includes
the medium (files), the syntax (NDAS Query Language—NQL), and semantics
(program actions).

At a minimum, each communication includes:

1. sender ID,
2. receiver ID (may be broadcast or single recipient),
3. language (ASCII or binary),
4. ontology (defines the meaning of the syntactic expressions), and
5. file name (where message can be found).
6. history (names of all the agents which have played some role in giving rise to

this message).

In general, an ontology is similar to a database schema and gives a specification
of the objects, concepts and relationships that exist in the domain of interest.
For NDAS, this has been defined by means of a semantic network. Concepts are
represented by objects and relations between objects; these objects for the technical
drawing analysis are called structures, and can be either structures (terminals)
derived from the image, or model structures (nonterminals) which arise in the
semantic model definition.

5.3 Constraint Handling

One of the aspects of engineering drawing analysis which requires an efficient
mechanism is the determination of relations between the various entities in and
extracted from an image. Pixels are related to text and graphics primitives, and
primitives have relations like near, or parallel, etc.

Agent interactions may also be defined through a goal graph; this helps define the
dependencies between agents and data, as well as allowing for higher-level agents
to assign parts of the problem or determine the coherence of the progress of the
independent agents. This new approach has been developed and is described in
Chap. 4.

5.4 Semantic Networks and Agents

Higher-level models involve descriptions of the semantics of the drawings, and
as such involve determining the relations between the primitives of the drawing
and their meanings. We use graph models (semantic nets), which are explored
through a grammatical paradigm. After the document is digitized, vectorized and
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Fig. 5.11 Example of a
dimension set

Fig. 5.12 Semantic net for dimension Rays Out

the connected components extracted, the result is a set of image primitives such
as segments, arcs, arrows and text blocks. Based upon the relationships that exist
between these primitives, a semantic net model is used to recognize important fea-
tures like dimensions, annotations, and legends in the document. This is described
in detail in Chap. 4. (Note: a semantic network may represent knowledge to be
used to perform the low-level image analysis as well.) The relational structure of
technical drawings and the analysis of digital images of such drawings are driven by
a semantic network. This constitutes the high-level model. The image is analyzed for
text, geometry (2D and perhaps 3D), regions, boundaries, and relations between the
extracted objects. As an example higher-level structure, consider a box description
which is comprised of a text structure and a box structure, where the text is inside
the box.

Figure 5.11 shows an instance of dimensioning taken from the scanned image
of an actual technical drawing. A sample semantic net describing the association
between various primitives is shown in Fig. 5.12.
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Fig. 5.13 Synthetic image
that is analyzed

Table 5.1 Ground Structures
and their count Ground structures Count

pointer ray (pr1,. . . . pr4) 4
circle (c1) 1
text (t1,. . . ,t4) 2
boxes (box1) 1
line segment (l1,. . . l21) 21

5.5 NDAS Experiments

We have tested the NDAS approach in a set of experiments in order to answer the
following questions:

1. How good is the NDAS technical drawing analysis in absolute terms?
2. How good is NDAS relative to other methods?
3. How well do the complexity reduction techniques work?

We have strong answers to questions (1) and (3), but the response to (2) is more
problematic.

5.5.1 Ideal Analysis

Figure 5.13 shows an engineering drawing which serves as our basic test image.
It has a set of terminal symbols (e.g., line segment, pointer rays, text, circle)
which form non-terminals of interest (e.g., dimension description). Table 5.1 gives
the ideal ground structures that are in the drawing and the possible number
of vocabulary symbols that can be derived from those ground structures. These
numbers will be used to evaluate the success of our methods in image analysis and
complexity reduction.

Ground structures correspond to the terminal symbols in the grammar and are
recovered by the image analysis agents. Figure 5.14 shows the drawing of Fig. 5.13
with ground structures labeled (only major line segments are labeled):
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Fig. 5.14 Synthetic image with ground structures analyzed

Table 5.2 One ground structure

Image Ideal results True positive False positive False negative

Figure 5.15 12 12 109 0
Figure 5.16 5 4 2 1
Figure 5.17 6 5 0 1
Figure 5.18 10 7 0 3
Figure 5.19 8 5 3 3
Figure 5.20 444 364 0 80
Figure 5.21 25 25 0 0
Figure 5.22 6 6 0 0

If we apply the rules of the grammar G (See Appendix A) to the ground structures
listed in Table 5.1, then the ideal count of vocabulary symbols is as listed in column
3 of Table 5.5. These counts provide the ground truth basis by which to evaluate the
NDAS analysis.

5.5.2 Image Analysis

The image analysis agents have been applied to various images from our technical
drawing image dataset. This dataset includes:

• images each containing instances of one ground structure
• images with combinations of ground structures, and
• images of general technical drawings with corresponding ground structures.

5.5.2.1 One Ground Structure Images

A summary of the results on images with one class of ground structure each
comparing performance of the image analysis system to ideal performance is given
in Table 5.2. These tests were run with a set of fixed thresholds. Figures 5.15–5.22
show the images and terminals obtained from them.
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Fig. 5.15 Linesegments
symbol instances

5.5.2.2 Combinations of Ground Structures

A summary of the results on combination of ground structures comparing perfor-
mance of the image analysis system to ideal performance is given in Table 5.3.
Figures 5.23 and 5.24 show the results.
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Fig. 5.16 PointerRays
symbol instances
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Fig. 5.17 PointerLines
symbol instances
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Fig. 5.18 ArcPointerRays symbol instances

Fig. 5.19 ArcPointerLines symbol instances
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Fig. 5.20 Text symbol instances

Fig. 5.21 Box symbol instances

5.5.2.3 General Technical Drawings

We describe the results of image processing algorithms on general technical
drawings of Figs. 5.25 and 5.26 in this section. Figures 5.27 and 5.28 show the
results. Table 5.4 gives a comparison of the performance of the image analysis
system to ideal performance in detecting the ground structures.
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Fig. 5.22 Circle symbol
instances

Table 5.3 Combination of ground structures

Ideal True False False
Image results positive positive negative

Figure 5.23 (Circles) 3 1 0 2
Figure 5.23 (PointerRays) 1 1 0 0
Figure 5.24 (Circles) 3 2 0 1
Figure 5.24 (PointerLines) 1 1 1 0

5.5.3 Structural Analysis

We have chosen to separate out the structural analysis and to first evaluate it
independently of the image analysis. (An overall analysis of the complete NDAS
system is given in Sect. 5.5.5). To determine how well the structural analysis is
performed, we have applied the structure-agent to the ideal sets of ground structures.
This allows us to determine the actual number of symbols produced. SR refers to
symbolic redundance and SP refers to symbolic pruning (see Sect. 4.4.1). Table 5.5
gives the symbolic redundancy for the vocabulary symbols in the grammar G (see
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Fig. 5.23 Combination of
ground structures 1
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Fig. 5.24 Combination of
ground structures 2
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Fig. 5.25 Technical
drawing 1

Fig. 5.26 Technical
drawing 2

Appendix A) given the ideal ground structures. Table 5.6 gives the comparison
between the system run with no pruning versus symbolic pruning.

The technical drawing in Fig. 5.25 has 2 ideal results as shown in Fig. 5.29. But
the table shows 4 true positives and 0 false positives. The 4 true positives are due
to repetition of the same result twice. Had symbolic pruning been applied, it would
have resulted in only 2 true positives.

The technical drawing in Fig. 5.26 has only 4 ideal results (Figs. 5.30, 5.31, 5.34
and 5.37). But our structural analysis gives 8 results. In addition to the 4 ideal
results, our analysis also detects four partially correct results (Figs. 5.32, 5.33, 5.35
and 5.36). These four dimension sets are detected with the same pointer rays,
line segments and graphics as the ideal ones but different texts. We term them
partially correct since they are subsets of the ideal results.

5.5.4 Complete Image and Structural Analysis

We describe the complete analysis of Figs. 5.25 and 5.26 using the best set of
thresholds for the image analysis and structural analysis agents thus producing
ground structures and other nonterminal structures.
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Fig. 5.27 Analysis of
technical drawing 1
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Fig. 5.28 Analysis of
technical drawing 2
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Table 5.4 General technical drawings

Image Ground structure Ideal results True positives False positives False negatives

Figure 5.27 PointerRays 4 4 4 0
Figure 5.27 PointerLines 0 0 2 0
Figure 5.27 Circles 1 1 5 0
Figure 5.27 Boxes 1 1 0 0
Figure 5.27 Text 2 2 0 0
Figure 5.28 PointerRays 7 6 4 1
Figure 5.28 Boxes 9 9 0 0
Figure 5.28 Text 11 9 1 2

Table 5.5 Symbolic redundancy for vocabulary symbols

Vocabulary symbol SR(worst case) SR(practice)+SP

line segment 21 21
pointer ray 4 4
text 2 2
circle 1 1
box 1 1

pointer ray1 4 4
pointer ray2 4 4
line segment1 21 21
line segment2 21 21
line segment3 21 21
text1 2 2
text2 2 2
text comb 2 0
text final 4 2
symmetric pointer pair in 12 0
symmetric pointer pair out 12 2
dimension rays in 48 0
dimension rays out 48 2
dimension 96 2
dimension set 40,320 2
pointer ray extn 84 0
check sign 420 0
check pair 1,680 0
dimension description >100,000 2
text in box 4 0
text in box1 4 0
text in box2 4 0
text in box3 4 0

(continued)
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Table 5.5 (continued)

Vocabulary symbol SR(worst case) SR(practice)+SP

text in box4 4 0
one datum ref 0 0
datum ref 0 0
datum below text 0 0
dashed lines 7,980 3
dash lines1 7,980 3
dash lines2 7,980 3
circle center dim >100,000 1

Table 5.6 Structural analysis

Ideal True False Partially
Image results positives positives correct %Detected %Missed

Figure 5.29 2 4 0 0 100 0
Figures 5.30–5.37 4 4 0 4 100 0

Fig. 5.29 Structural analysis of drawing 1

The analysis on Fig. 5.25 produces outputs shown in Figs. 5.38 and 5.39 which
match the structural analysis output in Fig. 5.29.

Figure 5.40 is close to Fig. 5.31, Fig. 5.41 is close to Fig. 5.37 and Fig. 5.42
is close to Fig. 5.34. Figure 5.43 is erroneous, and one of the ideal outputs
in the structural analysis (see Fig. 5.30) is not detected at all (Figs. 5.44–5.46).
The rest of them are termed as partially correct results. A comparison of the ideal
image analysis system with the above complete analysis by our system is given in
Table 5.7. CA refers to complete analysis.



5.5 NDAS Experiments 87

Fig. 5.30 Structural analysis
result 2(a)

Fig. 5.31 Structural analysis
result 2(b)

Fig. 5.32 Structural analysis
result 2(c)
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Fig. 5.33 Structural analysis
result 2(d)

Fig. 5.34 Structural analysis
result 2(e)

Fig. 5.35 Structural analysis
result 2(f)

Fig. 5.36 Structural analysis
result 2(g)

Fig. 5.37 Structural analysis
result 2(h)
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Fig. 5.38 Complete analysis
result 1(a)

Fig. 5.39 Complete analysis
result 1(b)

Fig. 5.40 Complete analysis
result 2(b)

Fig. 5.41 Complete analysis
result 2(d)
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Fig. 5.42 Complete analysis
result 2(g)

Fig. 5.43 Complete analysis
result 2(a)

Fig. 5.44 Complete analysis
result 2(c)
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Fig. 5.45 Complete analysis
result 2(e)

Fig. 5.46 Complete analysis
result 2(f)

Table 5.7 Structural analysis for complete NDAS run

Ideal True False Partially
Image results positives positives correct %Detected %Missed

CA 1 2 4 0 0 100 0
CA 2 4 6 2 6 75 0

5.5.5 Complete NDAS Analysis

The complete NDAS analysis consists of the application of both image analysis and
structural analysis agents with multiple sets of thresholds.

5.5.5.1 Image Analysis

The result of the image analysis agents run with different sets of thresholds on
Fig. 5.25 yields the cumulative result shown in Figs. 5.47–5.51. These results are
then used by the structural analysis agents.
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Fig. 5.47 Text

Fig. 5.48 Circles

Fig. 5.49 Pointer Rays

Fig. 5.50 Pointer Lines

Fig. 5.51 Rects

5.5.5.2 Output Reduction Methods

The result of every image-processing algorithm is subjected to further analysis by
other agents, and these agents use various thresholds to produce more outputs and so
on in an exponential manner. We have explored two ways of containing this growth.

1. As each result is produced, every agent casts a message to a Compare Agent
whose job is to compare the current output with already existing outputs (of
the same category) and broadcast a message asking other agents to neglect the
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Fig. 5.52 Original image

Fig. 5.53 Text detection 1

Fig. 5.54 Text detection 2

current output if either the output is erroneous (e.g., a matrix is empty, an image
file is all zero, etc.) or if the output has already been produced.
Thus, whenever an agent comes across such a message (denoting that a file
is to be ignored), the agent stores this filename in its state and thereby avoids
working on it. If it already started working on it, it doesn’t cast the usual output
message on completion. If it had finished working on it and already cast the
output message on completion, it broadcasts another message to all agents asking
them to ignore that output.

2. As and when results (of a category) are produced, the user may be asked to
eliminate a few outputs by viewing them (i.e., interactive empirical pruning).
This can reduce the number of outputs to a great extent.
For example, a text detection algorithm was applied to Fig. 5.52 with various
parameters. Four different outputs were produced among which Figs. 5.53 and
5.54 are good since they have no extraneous outputs. Instead of proceeding with
all the sets of outputs, user interaction can be used to establish good thresholds
and eliminate poor results thereby reducing the search space. Thus, the user
might pick either Figs. 5.53 and 5.54, or just Fig. 5.53 and eliminate the rest
(Figs. 5.55 and 5.56).
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Fig. 5.55 Text detection 3

Fig. 5.56 Text detection 4

Fig. 5.57 Pointer ray
detection 1

Fig. 5.58 Pointer ray
detection 2

Figures 5.57–5.59 are the three different outputs of a pointer ray detection
algorithm obtained by using two different sets of thresholds. All the pointer rays
in Fig. 5.58 match the ideal output while Figs. 5.57 and 5.59 contain extraneous
outputs in them. Hence, the user would benefit from choosing Fig. 5.58 and
eliminating the others.

Finally, the above two methods can be put together to decrease the search space
to a greater extent.
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Fig. 5.59 Pointer ray
detection 3

Fig. 5.60 False positive 1

Fig. 5.61 Fale positive 2

Fig. 5.62 True positive 1

5.5.5.3 False Positives Analysis

The structural analysis agents operate on the results of image analysis agents
shown in Sect. 5.5.5.1 to produce the highest level desired vocabulary symbol:
dimension description. Figures 5.60 and 5.61 show the false positives and Fig. 5.62
shows one of the true positives obtained by the structural analysis on the results
shown in Sect. 5.5.5.1.

The reason for false positives is the use of a set of thresholds. Since the best
threshold for each of the image/structural analysis agents is not known to us a
priori, it is difficult to achieve the highest true positive and lowest false positive
percentages using just one set of thresholds. Hence, it is imperative to use different
sets of thresholds. This results in many false positives. Empirical pruning reduces
false positives to an extent, but not completely. The solution lies in improving both
the image analysis algorithms and the rules of the grammar.
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Our system provides a window through which both good and bad results enter.
This helps later in the structural analysis phase to experiment with the full range of
outputs. Had we employed just a single set of thresholds, we wouldn’t know if all
the dimension descriptions would be detected.

5.5.5.4 False Negatives Analysis

False negatives can occur in two places in our NDAS system. They can occur
in the image analysis phase if certain terminals go undetected for any value of
threshold used in the analysis. The only way to prevent this is by improving the
image analysis algorithms. These errors are carried over to the structural analysis
phase and result in some dimension descriptions not being detected because, one or
more of the structures (terminals) comprising the dimension descriptions (or parts
of nonterminals in the dimension description) were undetected in the image analysis
phase.

False negatives can also occur if the rules are erroneous. Since we have had no
false negatives due to our grammar G, we have not experimented with better rules.

5.5.6 Complexity Reduction Performance

The results obtained in the analysis of technical drawings were achieved by allowing
multiple hypotheses to be generated in parallel and taking them all the way to
successful interpretations. NDAS explores a large percentage of the search space
and thus another goal of ours is to find ways to reduce the complexity of this search.

Section 4.4 describes the basis for our approach to achieve this. Here we present
the results of applying our methods to the technical drawing analysis problem.

5.5.6.1 Symbolic Pruning

Given the drawing in Fig. 5.25, running the complete NDAS analysis produces a lot
more symbols than those produced by the ideal analysis (Table 5.5). Table 5.8 shows
the comparison of SR (worst case) with SR (in practice) with symbolic pruning.

5.5.6.2 Empirical Pruning

Grammar G uses many constraint relations such as near, touches, parallel, etc., that
use parameters like ANGLE MAX and NEAR LEN. A specific threshold for these
parameters may or may not yield all the desired results. For example, if the distance
between the end of a pointer ray and a text in an image is 25 pixels, a value of
15 for the NEAR LEN parameter might not detect the pointer ray and text pair.
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Table 5.8 Symbolic redundancy for vocabulary symbols

Vocabulary symbol SR(worst case) SR(in practice) + SP

line segment 326 326
pointer ray 47 47
pointer line 2 0
text 7 7
circle 42 42
box 8 8

pointer ray1 47 47
pointer ray2 47 47
line segment1 326 326
line segment2 326 326
line segment3 326 326
text1 7 7
text2 7 7
text comb 42 2
text final 49 7
symmetric pointer pair in 2,162 0
symmetric pointer pair out 2,162 7
dimension rays in >100,000 0
dimension rays out >100,000 10
dimension >100,000 10
dimension set >100,000 20
pointer ray extn 15,322 1
pointer line extn 652 2
pointer line extn in circle 27,384 0
check sign >100,000 256
check pair >100,000 0
dimension description >100,000 12
text in box 392 0
text in box1 392 0
text in box2 392 0
text in box3 392 0
text in box4 392 0
one datum ref >100,000 0
two datum ref >100,000 0
datum ref >100,000 0
datum below text >100,000 0
dashed lines >100,000 13
dash lines1 >100,000 13
dash lines2 >100,000 13
circle center dim >100,000 12

Hence, there is a requirement of multiple thresholds for the parameters. This in turn
produces a large set of results and it becomes necessary to choose a set of thresholds
which satisfies two criteria. The more important of these criteria is given first:
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Fig. 5.63 Output of empirical pruning

Fig. 5.64 Empirical output 1

1. highest detected percentage (= lowest missed percentage),
2. lowest false negative percentage.

We give preference over lower misses to lower false positives because our
goal is to detect all the dimension descriptions possible without missing any,
even if the false positive percentage is high, rather than settling for fewer dimen-
sion descriptions detected with fewer false positives.

User intervention is sought to find the best threshold. This is achieved by making
the user view each result and reject the ones that are wrong.

Empirical pruning was applied on Fig. 5.25 with varying threshold values for
NEAR LEN. Figure 5.63 shows the percent detected, percent false positives and
percent missed results using thresholds of 15, 20 and 25. A threshold value of 20
produces the best result.

Empirical pruning also gives a chance for the user to decide which result is best.
For instance, Figs. 5.64 and 5.65 both depict the same dimension description but the
pointer ray in Fig. 5.64 is closer to the ideal output than the other. The user might
reject or accept the dimension description produced in Fig. 5.65 accordingly.
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Fig. 5.65 Empirical output 2

Fig. 5.66 Engineering
drawing 1

Fig. 5.67 Counts of detected, false positives and missed PointerRays vs threshold pairs

5.5.6.3 Threshold Sensitivity Analysis

During the image analysis stage of the NDAS system, different thresholds are used
for parameters to produce different sets of outputs since it is not known which
threshold will produce the best results on every image. In such a scenario, it is
imperative to understand which threshold gives good results. The image analysis
agent for determining pointer rays was run on Fig. 5.66, and the results were
compared to the ideal results. Figure 5.67 shows the graph of average count
of detected pointer rays, false positives and missed pointer rays taken over a
range of 186 outputs versus various threshold-pair values. The first threshold,
ANGLE MAX, gives the measure of maximum angle for parallelism, and the second,
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Fig. 5.68 Engineering
drawing 2

ARR HEAD SIZE, gives the measure of pointer head size. The ideal number of
pointer rays is six. It can be inferred that both the count of detected and false
positive pointer rays seem to decrease with increasing values of ANGLE MAX
but for the same value of ANGLE MAX, there is a greater count of detected,
lower count of false positives and lower count of missed pointer rays for a
threshold of ARR HEAD SIZE equal to 5 rather than 7 (with constant threshold of
ANGLE MAX). It would be best for the user to choose the threshold pair (5,5) for the
analysis even though the false positive count is the greatest for this threshold-pair
because this is the only combination of thresholds that gives the maximum detected
and minimum missed counts. The user could rely on the structural analysis phase to
eliminate the incorrect pointer rays (the false positives).

The image analysis agent for determining circles was run on Fig. 5.68, and the
results were compared to the ideal results. Figure 5.69 shows the graph of percent
detected versus various threshold-pairs used in the image analysis code. The first
parameter, NUM BINS, gives the number of bins in histograms used in the analysis
and the second, ANGLE MAX, gives the measure of maximum angle for parallelism.
It can be seen from the graph that the threshold of 5.0 for ANGLE MAX gives the
maximum %detected for both the values of NUM BINS. The user could choose the
threshold pair of (25,5.0), to yield greater correctness in circle detection.

5.5.6.4 Precision and Performance Analysis

In our context, precision and performance analysis are determined on the final
outcome after both image and structural analysis.

• Precision: Denotes how closely matched the dimension description outputs
(correct ones) produced by our agent-system are with respect to the ideal
dimension description. We study the closeness between the values of sub-
structures of the dimension description to the ideal ones in the image space.

The structural agent acting on various outputs has parameters (thresholds)
which control the precision of the final results. The two parameters that are
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Fig. 5.69 Percent detected vs. threshold pairs

populated with different thresholds on different runs are ANGLE MAX and
NEAR LEN. We employ thresholds of 10 degrees and 15 degrees for AN-
GLE MAX (i.e., the structures comprising the dimension descriptions may vary
from the ideal structures by a maximum of 15 degrees of angle parallelism). The
thresholds that we employ for NEAR LEN range from 15 to 25. Hence, the final
outputs may be said to vary from the ideal ones by up to a 25 pixel distance.
As described in Sect. 5.5.6.2, it is left to the user to decide whether or not
some results be termed as false positives depending upon how precise they are.
Figures 5.64 and 5.65 show such an output pair.

• Performance analysis: We propose three metrics for performance analysis:

1. Space: The total number of symbols produced by the analysis.
2. Time: The total time required to produce the analysis.
3. Detected, Missed and False Positives percentage : The percentage of detected,

missed and false positives of the structural analysis.

Figure 5.70 is the test image we presented in Chap. 4. The complete analysis
on this image yielded the results shown in Figs. 5.71–5.73. The fourth dimen-
sion description, is partially detected as shown in Fig. 5.74 (text inside the boxes
aren’t fully detected).

Table 5.9 shows the time taken by complete and reduction image analysis
on images in Figs. 5.25 and 5.70. By reduction analysis, we mean the analysis
incorporating the output reduction methods specified in Sect. 5.5.5.2. As can be
seen, employing the reduction methods greatly reduces the run time. The analysis
of all the drawings were done on an Athlon Processor with 1,499 MHz running
the Linux operating system.
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Fig. 5.70 Detailed engineering drawing

Fig. 5.71 Dimension 1

Figures 5.75 and 5.76 give the comparison of various factors on performance of
the system on complete and reduction analysis with and without symbolic and
empirical pruning on Figs. 5.25 and 5.70.
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Fig. 5.72 Dimension 2

Fig. 5.73 Dimension 3
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Fig. 5.74 Dimension 4

Table 5.9 Image analysis
type and time metric

Figure Analysis type Time taken

Figure 5.25 Complete image analysis 15 h
Figure 5.25 Reduction image analysis <2 h
Figure 5.70 Complete image analysis 49 h
Figure 5.70 Reduction image analysis <9 h

5.5.7 Higher Level Analysis

5.5.7.1 Difference Between Complete and Reduction Analysis

Our primary goal is to find all ideal dimension descriptions in the image (high
percent detected and low percent missed), and, if possible, to reduce the number
of spurious results (false positives).

Sometimes, the performance of reduction analysis in percent positives and
percent false positives might be higher than those of the complete analysis. But
this doesn’t increase the percent detected or decrease the percent missed results.
This is due to the fact that, as mentioned in Sect. 5.5.5.2, the second method of
reducing outputs from the image analysis is through user intervention. If the user
doesn’t choose the correct structures (terminals), it might give rise to poor percent
detected. Also, the reduction analysis in practice uses only a subset of the terminals
used by a complete analysis. So, the percent missed of reduction analysis can never
be lower than the percent missed of the complete analysis.
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Fig. 5.75 Analysis of Fig. 5.13

Fig. 5.76 Analysis of Fig. 5.77
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Fig. 5.77 Dimension 1(a)

As mentioned in Sect. 5.5.5.3, we prefer lower false negatives over lower false
positives. Hence, even if at any time the false positives of reduction analysis are
lower than the false positives of complete analysis, it is wise to choose the complete
analysis for the above reasons.

Even if complete analysis produces better true positives, it still has poor
performance with respect to reduction analysis in the time factor. The first method
described in Sect. 5.5.5.2, could still be used but the second method is error prone.
Hence, we need to find other better ways to decrease the time taken by the complete
analysis.

The other observations made from Figs. 5.75 and 5.76 are as follows:

1. The performance shown in Figs. 5.75 and 5.76 were measured using six
threshold pairs for ANGLE MAX and TOUCH LEN. It can be seen that there isn’t
much difference in run-time between the complete and reduction analysis using
multiple thresholds, unlike the run time difference in the image analysis stage
as shown in Table 5.9. This emphasizes the need for powerful output reduction
strategies in the image analysis stage.

2. In the analysis with empirical pruning, we applied the pruning only to the highest
level vocabulary symbol dimension description. Hence, the run time is close to
the run time without empirical pruning. Had the pruning been applied to the
lower level vocabulary symbols, out of the six different results (from six different
threshold pairs), five could have been ruled out much earlier which could have
decreased the run time considerably.

3. We haven’t measured the run-time using symbolic pruning (with/without em-
pirical pruning) as we developed the 0-form grammar of G only for a specific
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Fig. 5.78 Drawing 1

rule (the rule that produces symmetric pointer pair out) and not for others. As
shown, the number of symbols detected is reduced to half for this specific rule.
Many of the rules that interest us are symmetric in nature, and, thus it can be
safely presumed that the run time would decrease by a considerable amount.

4. If empirical pruning were coupled with symbolic pruning, the run time could be
decreased to as low as one-sixth of the complete analysis run time.

From the above observations, it can be concluded that complete analysis is
much preferred over reduction analysis. Within complete analysis, symbolic pruning
combined with empirical pruning would yield better performance in both increasing
the percent detected as well as decreasing the run-time of structural analysis.

5.5.7.2 More Analysis

The NDAS analysis was run on four more images and their results are presented in
this section. Since it was argued in the previous section that the complete analysis
is preferable to reduction analysis, the following analysis has not been done for the
reduction case (Figs. 5.78–5.98).
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Fig. 5.79 Dimension 1(b)

Fig. 5.80 Analysis of drawing 1

Fig. 5.81 Drawing 2
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Fig. 5.82 Dimension 2(a)

Fig. 5.83 Dimension 2(b)

Fig. 5.84 Dimension 2(c)

Most of the dimension descriptions went unrecognized since the rules to detect
them were not setup. The dimension descriptions involving the pointerarc lines
were not detected as the pointerarc line went undetected. Also, one of the
pointer lines embedded in the circle is slightly disconnected. Thus, it also was
not detected by the arrow detection algorithm.

All the dimension descriptions could be detected but the analysis also gave rise
to 50 % of damaged results. This is because, in many of the results, the text wasn’t
detected wholly.

The above drawing took the least analysis time of the whole lot since it is
relatively noise free and smoothly connected. Nevertheless, many of the dimen-
sion descriptions could not be detected because, either the rules were not supportive
or some of the pointer rays forming the dimension description were undetected
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Fig. 5.85 Analysis of drawing 2

Fig. 5.86 Drawing 3

by the image analysis agents. The reason for the former case was, many of the
dimensions in the image refer to objects in another view of the image. But the rules
present so far, don’t detect such relations.

Two of the dimension descriptions were not detected as they contain very small
arcs in them, and the rules written so far do not support arcs as terminals. The
dimension description containing the datum reference was detected with partial text
(hence, damaged).

5.6 Explicit and Persistent Knowledge

Domain knowledge permeates all aspects of the analysis, including the physical
processes operating on the paper drawing, e.g., printing, folding, staining, etc.,
the image analysis, e.g., the notions of points, lines, blobs, and the particularities
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Fig. 5.87 Dimension 3(a)

Fig. 5.88 Dimension 3(b)

of the algorithms that are implemented for their recovery, the structural layout
and interpretation semantics of the contents of the drawing, and eventually, the
broader context within which the drawing analysis will be exploited in the reverse
engineering setting. Here we discuss the nature of such knowledge, how it can
be made explicit (both for agents and humans), and how performance models
can be defined, calibrated, monitored and improved in terms of this knowledge.
A framework is proposed that allows the user or agents to: (1) explore the threshold
space for an optimal drawing analysis, (2) control acquisition of new data (e.g.,
view token generation as state estimation and select agent actions that optimize
information gain), (3) incorporate knowledge in abstract form and communicate
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Fig. 5.89 Dimension 3(c)

Fig. 5.90 Dimension 3(d)

abstractions between agents and users, and (4) inform software engineering and
system development with deep knowledge of the relationships between modules
and their parameters (at least in a statistical sense).

The reverse engineering of legacy systems is a difficult and complex problem, but
vital in certain domains. This usually involves a physical instance of the system, as
well as some paper drawings produced by hand or from mechanical CAD systems.
The goal may range from producing a replica, to changing some parameters, to a
major re-design. For example, Fig. 5.99 shows a gearbox that operated for many
years onboard a ship, and then failed. Developing reverse engineering techniques
from such a physical example and any available related engineering drawings is
our goal.
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Fig. 5.91 Analysis of drawing 3

Fig. 5.92 Drawing 4

Fig. 5.93 Dimension 4(a)
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Fig. 5.94 Dimension 4(b)

Fig. 5.95 Dimension 4(c)

Fig. 5.96 Dimension 4(d)
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Fig. 5.97 Dimension 4(e)

Fig. 5.98 Analysis of drawing 4

Fig. 5.99 Newport news
gearbox to be reverse
engineered
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Fig. 5.100 Reverse
engineering system

Fig. 5.101 Envisioned virtual interface to model surface, point cloud and drawing data

Figure 5.100 shows the overall reverse engineering system we are developing;
the goal is to take advantage of data about the system in all its forms: drawings,
3D scans, and CAD models as they are constructed, as well, and to allow the user
virtual access during the redesign process (see Fig. 5.101). The wider knowledge
involved includes manufacturing information and constraints, design analysis codes
(e.g., stress or aerodynamics), cost/performance models, etc.
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5.6.1 Engineering Drawing Analysis with NDAS

We have shown that a structural model may be realized through a set of software
agents acting independently and in parallel to ultimately achieve a coherent analysis
of CAD drawings [44, 48, 49, 113]. The high-level goals of the analysis are to:

• Understand legacy drawings.
• Acquire context of field and engineering data.
• Respond to external analysis, user input.
• Integrate drawing analysis in redesign.

NDAS allows multiple agents to produce the same type of data, for example, line
segments or text. Other agents which use these entities as inputs may choose from
any or all of the available sets of data to produce their own data. Moreover, even
a single agent can produce its output using multiple thresholds, or can be asked by
another agent to produce output with a given set of control parameters. This allows
people or more sophisticated agents to explore the entire parameter space of all the
agents involved in the analysis.

The mechanism to handle the combinatorial explosion of data is tied to the
structural definition of the engineering drawing, and uses syntactic analysis to
eliminate redundant comparisons. This symbolic redundancy calculation uses both
the syntax of structural re-write rules, as well as parsing constraints on the tokens
generated from the image analysis to achieve orders of magnitude reductions in
the possible combinations of tokens. However, NDAS to date has done little else
to incorporate or exploit the wealth of other knowledge involved in understanding
engineering drawings.

5.6.2 Knowledge About Engineering Drawing Analysis

Figure 5.102 shows the sequence of paper drawing creation and exploitation with
which we are concerned. We consider knowledge about physical processes, image
analysis and document interpretation.

5.6.2.1 Physical Processes

It is important to capture knowledge about all aspects of the physical processes
involved. For example, printing gives rise to certain errors that can influence
the image analysis and subsequent interpretation. During storage and usage, it is
possible to introduce lines by folding or creasing, or to obscure lines and text
by stains, writing or damage to the paper. Scanning is itself a physical process
subject to motion blur, lighting, scale and other perturbations. Good understanding
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Fig. 5.102 Engineering drawing analysis process

is necessary for robust and correct analysis, and a good synthesis model will allow
the controlled creation of test data with defects.

5.6.2.2 Image Analysis

Discrete geometry plays a large role in the analysis of engineering drawings, and
involves abstract notions, including:

• 0-dimensional objects: isolated points, corners, branch points, end points, etc.
and relations: distance, near, same kind, etc.

• 1-dimensional objects: line segments, straight segments, circles, boxes, etc. and
relations: collinear, parallel, perpendicular, neighbor, closed, etc.

• 2-dimensional objects: blobs (e.g., arrowheads) and relations: above, left of,
touches, occludes, etc.

Moreover, these notions cannot be implemented perfectly, and it is important to
know how the realizations differ from the ideal (e.g., what’s the threshold for
parallel?). Even more important is the relation of these notions and their recovered
approximations to the semantic tokens which form the basis for the structural
analysis.

5.6.2.3 Structural Analysis

The structure of the drawing is given by a set of tokens (e.g., line segments, text,
pointers, graphics, manufacturing symbols, etc.) and the relations that hold between
them. Thus, the production of the tokens is crucial, and interpretation problems
arise when tokens are missing, broken into parts, or falsely reported. The relations
between the tokens need to be clearly defined, as well as the amount of divergence
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from the ideal. Context of various sorts is also extremely important, and ranges
from geometric frame (which way is up?) to drawing type (detail drawing, assembly
description, manufacturing constraint requirements, etc.).

These various sets of knowledge are usually not made explicit, either during the
development of the system or for exploitation during an analysis. We are interested
in answering the following kinds of questions:

1. How can this knowledge be made explicit?
2. How can the differences between the ideal and the implementations be given?
3. Can some of the knowledge (ideal or performance) be learned by the agents?
4. How can people interact with this knowledge to understand why the system does

something or to change how the system does it?
5. How can the knowledge be exploited during the analysis of one image; over a set

of related images? over various projects? i.e., in order to gain and record more
insight on engineering drawing analysis in the long term.

It is essential to answer these questions so that the system can improve over time,
and be more effectively understood and exploited by its human operators.

5.7 Proposed Method

We propose the following approach to address this problem:

1. Give a specification for the ideal.
2. Give ways that implementation can differ from ideal.
3. Give a measure of the difference.
4. For every analysis, keep a record of the ideal referent, actual produced, difference

measure and analysis parameters.

For example, parallel segments should ideally have 0 degrees difference in angle.
A difference measure would be the actual difference in angle, or some monotoni-
cally increasing function (square, exponential, etc.). Various implementations would
carry different information; e.g., if parallel is computed from the two segment
angles, then an angle difference threshold would be kept; if parallel is determined by
whether the points defining the one segment are all the same distance from the other
segment, then the maximum and minimum distances would be kept. It is possible to
have agents for both parallel operators, and the system can decide (based on training
or operator feedback) which is better. This goes with our notion to develop a system
which allows many different analysis methods in parallel, and from this wealth of
data, chooses between them to construct the best interpretation possible.

This approach also fits well with statistical methods. For example, various infor-
mation measures can be defined and used to steer the analysis. Once we have estab-
lished mechanisms for knowledge expression and use, we will explore alternative
mechanisms for the exploitation of that knowledge (for example, Durrant-Whyte
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and colleagues [39] have developed methods to maximize information gain with
each observation action—this approach might give good results here).

5.7.1 Knowledge About Engineering Drawings

Let’s look in more detail at the knowledge that would be useful in this application.
As for engineering drawings per se, the useful information concerns:

• Layout: which way is up? down? Usually represented as semantic network or a
grammar.

• Symbols: alphabets, digits, special cases. Can be expressed with dictionary,
images, or networks.

• References: includes conventions for pointers, names, use of circles, etc., and can
be described with semantics net or as image features.

• Characters: language, numbers, measures; implemented as semantic net, feature
vectors or images.

• Real world semantics: manufacturing information, 3D, 2D projections, etc.;
typically given as semantic net.

As can be seen, most of this knowledge, if it exists, might be better expressed as
a semantic network or in vector or image form. We are currently investigating the
construction of a domain ontology , and hope to base it on the Standard Upper
Merged Ontology (or SUMO) [90]. In this way, we make the assumptions of the
agents explicit, and provide a SUO-KIF [36] interface to other users and systems.
However, it must be pointed out that our domain requires analogical forms of
knowledge as well, including: images, 3D data sets from Coordinate Measurement
Machines or laser scanners, etc. Some axiomatizations and ontologies for geometry
exist (e.g., see [11, 99, 117], but their usefulness in this context remains to be seen.

Image analysis has its own set of concerns, including:

• 1D segments,
• pixels (digitization),
• relations, and
• realization of geometry.

Algorithms include: thresholding foreground/background, thinning, segment ex-
traction, straight segment determination, geometric objects detection (e.g., boxes,
circles), pointer detection, and text detection. Each of these must deal with
thresholds, sensitivity analysis, quality estimates, complexity, and robustness with
respect to other algorithms.

Finally, knowledge about goals may influence agent actions; here are some goals
that the system may be asked to achieve:

• Find part name.
• Find label information.
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• Extract references to other parts.
• Get dimension information for specific part features.
• Determine manufacturing constraints.
• Determine safety or other special descriptions in the text.

These various forms of knowledge should not be static, but should be adjustable over
time, as more experience is gained. For example, the use of pointers in drawings can
be quite creative, and these need to be cataloged and accounted for. At a minimum,
threshold exploration should be possible and recorded.

Another issue is what needs to be communicated between agents (and/or users)
which includes at least the following:

• the goal,
• the results of an agent; this includes the info produced, info about the production

of the info, and some quality of result measures, and
• feedback to an agent; for example, this data resulted in no solution or parallel

constraint needs to be tighter or your results are not necessary for this goal;
this last feedback would lead to greater efficiency if agents know when they are
unnecessary.

For example, the circle agent uses simple 1D segments (a set of pixels) as input
and checks if the set of pixels forms a circle. However, this agent is not necessary
for the analysis of the title block of a drawing; it is essential, however, for full
drawing analysis. The result of the analysis is a list of point sets determined to
constitute circles, and for each circle gives the center and radius, the segments or
pixels involved, a quality measure of the circle, and the resources used to produce
the circle (e.g., data files used, space and time complexity, etc.). It may also be
necessary to include information about why the thresholds and parameters were
selected. As an example of feedback that the circle agent may want to provide,
suppose that it uses straight line segments to detect circles (i.e., a set of straight line
segments form a circle if they are connected end to end and their points do not lie
too far from a circle); if the straight segments are fit too coarsely, they may not form
a circle, when in fact the pixel data would permit a circle. Thus, the circle agent may
want to ask the segment agent to re-fit the data with a tighter linear fit threshold.

As a starting point, we have investigated the knowledge about thresholds and
their interplay between entities produced, consumed, and the semantic tokens gen-
erated. Figure 5.103 shows the image analysis part of NDAS. Threshold utilization
is indicated by the circled numbers. The meanings of the thresholds can be given as
follows:

• Circle 1:

We term the image analysis knowledge given in Fig. 5.103 as superficial
knowledge, since it concerns only the external relations between the agents and
their products. Thus, information about the organization of modules, which use the
data from which others, their production information, the quality measures on the
data, the amount and trends of data production, and the system activity all fall under
this term (Table 5.10).
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Fig. 5.103 The image analysis agents and the flow of data between them

Table 5.10 Image analysis agent thresholds and parameters and their impact
on Fig. 5.103

Circle no. Thresholds/parameters

1 Foreground/background
2 Pixel curvature parameters
3 Circle fit parameters
4 Line fit parameters
5 Collinear; line fit parameters
6 Endpoint distances; segment lengths; collinear
7 Segment length, separation threshold, parallel, perpendicular

duplicate threshold

Circle no. Related impact

1 Extra/missing pixels; connectivity of segments
2 Corner detection, straight segment endpoints
3 Circle detection, reference detection
4 Number and quality of segments
5 Large-scale object detection
6 Pointer ray detection, dimension analysis, references
7 Box detection; document block analysis; text analysis
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Fig. 5.104 Four variations of a thinning operation

Fig. 5.105 Graphs of connectivity between end points (e1,e2,. . . ), and branch points (b1,b2,. . . )
of thinned objects from Fig. 5.104. (Between every pair of nodes is a, not necessarily straight, line
segment.)

Opposed to that is deep knowledge, which concerns the inner workings and
decision rationales for implementations, threshold settings, etc. This then includes
an ideal description of the process, an explanation set of how the implementation
differs from the ideal, a characterization of the likelihood of the variances from the
ideal, and the relation of the variations to further processing, including semantic
token (terminal symbol) creation and semantic analysis.

To clarify these ideas, consider the image thinning process. There is a mathe-
matical notion of a valid thinning operator on point sets, but implementations may
vary from this ideal for many reasons and with different implications. Consider the
four versions of the thinned partial segment in Fig. 5.104.Which of these is produced
may significantly impact later analysis; e.g., abstractions based on end point, branch
point and straight line segment relations can be radically different. Figure 5.105
shows a set of relation graphs for the thinned objects above. As can be seen, the
number of line segments, the position of their endpoints and the geometric relations
between them (distance, parallel, etc.) can all be greatly affected by these differences
in the thinning. Thus, what might be viewed as a local or minor algorithm issue,
may lead to a radical change in performance (including increase in complexity if
lots of small segments are generated) if there is no knowledge of how one process
impacts other processes through shared analysis objects. It is of great interest to
understand these relationships, and to declare them when the system is designed
and implemented, but even if that is not possible or accurate (the developers may
not understand the impact!), it would be good to allow the system to determine
some of this knowledge as various algorithms are executed with different parameter
values.

In terms of the thinning operation, we might proceed as follows:

Ideal definition of thinning One example of this is the medial axis transform [15].
This is the set of points such that a circle centered at the point touches the boundary
of the object in at least two distinct places.
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Algorithm difference from ideal the algorithm may approximate the ideal defi-
nition in order to reduce computational complexity and because the ideal notions
don’t apply perfectly to digital geometry. The following differences may occur:

1. Ends of segments may be fragmented.
2. Corner regions of segment may be fragmented.
3. Medial axis may be displaced from actual corner location.

Measures of difference Several possibilities exist to measure the three differences
listed above. There are two levels of measure, however. First, it is of interest to
measure individual errors in terms of the number of extra segments produced, or
the distance a thinned set is displaced from a point of interest in the original point
set. In addition, it is useful to have some statistics over the whole population. For
example, this might be either (1) a likelihood on the number of extra fragments
expressed as a mean and variance or in other forms, or as a function of the original
segments, the features of the segment or those of the thinned segment. For example,
if the thinned segment is perfectly straight, then it is most likely that it perfectly
represents the ideal.

Model Calibration This approach also affords the opportunity to generate con-
trolled test data and to obtain very good estimates of how well the model works.
This would work as follows. A CAD model is developed for some artifact. This is
then printed, possibly submitted to various degradations, and then scanned. Since
the actual CAD model is available, it is possible to know the perfect set of pixels
that should have been printed and then scanned. Once the thinned objects are
determined, they can be compared to the perfect set of thinned objects, etc. We call
this model calibration, as it can be used to determine how well the process model
measures the true state of affairs.

5.8 Examples

We have performed many experiments with the image analysis part of NDAS.
Figure 5.106 shows part of a typical scanned engineering drawing, and the thinned
image in Fig. 5.107. One thing to notice is how the arrowheads in the original
image have been changed into line segments. Also, the corners of boxes have been
displaced several pixels from where they should ideally be located. Figure 5.108
shows the boxes detected in the image, so it can be seen that it is still possible
to find them, however, this may cost a great deal in computational or algorithmic
complexity, or the algorithms may in fact be tuned for one image and not work very
well on another. This is the kind of knowledge we would like to gain and record for
better exploitation of the system. A change in thresholds of two pixels in length, and
parallel segment overlap of 10 % more, results in missed boxes.

Now consider in detail the kind of information to be gathered and characterized
about the thinning algorithm. (Note: the ground truth locations of corner points for
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Fig. 5.106 Part of a typical scanned engineering drawing

Fig. 5.107 Thinned version of image in Fig. 5.106

the boxes in the image have been given by hand.) We would like to model the impact
of the algorithm on:

1. True corner existence.
2. Segment recovery (particularly, endpoint location).
3. Box detection and localization.

For the image in Fig. 5.106, the histogram in Fig. 5.109 shows the ideal corner
points distance from the thinned pixel set. The segment endpoint distance histogram
is given in Fig. 5.110. This data is for ideal segments such that there exists a segment
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Fig. 5.108 Boxes found in thinned image

Fig. 5.109 Histogram of ideal corner point displacement in thinned image

produced by the image analysis whose endpoints are within ten pixels of the ideal
segment. (The number of missing segments is eight; i.e., eight ideal segments have
no counterpart in the segments extracted from the image.) Figure 5.111 gives the
histogram for the distance of ideal box point corners from detected data.
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Fig. 5.110 Histogram of ideal box segment endpoint distances from detected

Fig. 5.111 Histogram of ideal box corner distances from detected
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Fig. 5.112 Smart agents network system

All the ideal boxes were found, and the error is very low. The data shows that the
box detector algorithm is insensitive to endpoint displacement in the thinning and
segment detection algorithms. Moreover, even a missing segment does not preclude
the detection of a box, so long as there is a reasonably long segment found on each
side. This depends, of course, on the thresholds in the box detector agent. (Also,
note that the box agent discovers boxes in the image that are not included in the
ideal set; e.g., the upper part of a letter “B” in the text.)

We have to this point tried to convey a sense of the kinds of knowledge that
interest us, and how they can be used in engineering drawing analysis. We now give
a high-level summary of our proposed theoretical framework and enumerate some
advantages that may result from this approach.

Figure 5.112 shows a set of agents, Ai, each of which produces various outputs
using a set of parameters and thresholds, Ti, and each having an associated model
(or set of models), Pi(Xi|Ti), describing the agent’s variance from the ideal in
terms of some appropriate measure. Knowledge of three sorts (physical, image
analysis, and structural interpretation) is available and informs the agents’ actions
and understanding of each others results. Higher-level control processes may exploit
this in several ways:

1. Explore the threshold space for global optima (see feedback loop in Fig. 5.112).
2. Control acquisition of new data (e.g., view token generation as state estimation

and select agent action that optimizes information gain).
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3. Incorporate knowledge in abstract form and communicate abstractions between
agents and users.

4. Inform the software engineering and system development with deep knowledge
of the relationships between modules and their parameters (at least in a statistical
sense).

The current status of the project (called the Smart Agent Network System
or SANS) is that the core image and structural analysis components have been
developed and applied to engineering drawing analysis to gain experience and
insight into crucial agents and parameters. We are now exploring the representation
of this domain knowledge in specific nomenclatures. We are also investigating
state estimation frameworks to provide a more incremental analysis based on
observations provided by the system, and the associated information measures (see
[18] for an introduction to the area). Notice that each program execution can be
viewed itself as a measurement on the image, and the set of measurements will be
used by a control process to achieve the best interpretation of the drawing.

A larger issue is the use of other types of information in the reverse engineering
scenario; e.g., 3D scanner data, photos, manufacturing information, etc. These ana-
logical forms of data must be integrated into the re-design as well, and this should
be done so as to allow rapid iteration, and fast exploration of the design space.



Chapter 6
Map Background and Form Separation

Our goal is the extraction of semantic content from raster map images which may
then be exploited in a variety of ways; e.g., the analysis of aerial imagery. The major
map features that we want to extract include: roads and road intersections, texture,
text, and miscellaneous symbols. Where appropriate these may be vectorized,
and the image coordinates may be recorded as well. Meta-data may be provided
including the type of map (e.g., USGS), any specific color encoding of features
(e.g., USGS maps may use from 6 to 13 specific colors), geo-spatial information,
and names of features may be known and sought in the image (e.g., rivers, lakes,
roads, towns, etc.).

The specific goals in the next few chapters are to describe methods to segment:

• Background

– Use of knowledge for color use in known map types.
– Use of color probes: interactive and neighborhood analysis.
– Machine learning methods trained on scanned maps and other sources.

• Roads and Road Intersections

– Road extraction.
– Road type determination.
– Vectorization.
– Sub-pixel road tracking.
– Double line roads.
– Road name and/or number.
– Intersection recognition.
– Geo-reference for intersections.

• Texture

– Knowledge-base for constraints on texture appearance based on map type.
– Long-term analysis to discover map textures and populate databases (e.g., 2D

statistics, etc.).

T.C. Henderson, Analysis of Engineering Drawings and Raster Map Images,
DOI 10.1007/978-1-4419-8167-7 6, © Springer Science+Business Media New York 2014
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• Miscellaneous Features

– Highway markers.

· Interstate markers.
· US Highway markers.
· State Highway markers.

– Other (e.g., noise pixel sets).

6.1 Test Data

The algorithms can eventually apply to a wide range of map types: USGS DRG,
NGA, and other miscellaneous types. The dataset that we use is described below.
Tests are run with a variety of possible measures: (1) time cost per pixel, (2) true
positive rate, (3) false positive rate, (4) false negative rate, and (5) the overall quality
of the segmentation and interpretation.

6.1.1 USGS Maps

6.1.1.1 NGA Maps

The number of colors in a USGS map is limited to a few specific colors. These
are described in Appendix C, and this information is exploited in the analysis of
the USGA maps. Note that the number of colors used may differ from map to map
(from 6 to 13 colors, including black).

6.2 Background Segmentation

The background of a map image consists of two major types:

• Map Surround Area: The areas surrounding the map proper, but not part of the
map. This includes the legend, and border regions.

• Map Embedded Background: This is the underlying background of the actual
map (typically WHITE pixels). This includes pixels that do not belong to any
class found in the legend.
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Directory File Name Num Colors Num Rows Num Cols

maps-early madison.tif 9 5,750 6,951
maps-early franklin.tif 9 4,672 5,725
Redstone Arsenal O34086E5.TIF 11 5,563 6,916
Redstone Arsenal O34086E6.TIF 9 5,563 6,909
Redstone Arsenal O34086F5.TIF 9 5,571 6,912
Redstone Arsenal O34086F6.TIF 9 5,572 6,910
Redstone Arsenal O34086F7.TIF 9 5,555 6,897
Redstone Arsenal O34086G7.TIF 11 5,571 6,919
Salt Lake City q1120 drg24 12 4,369 5,731
Salt Lake City q1121 drg24 12 4,361 5,726
Salt Lake City q1122 drg24 248 8,705 11,438
Salt Lake City q1219 drg24 12 4,386 5,738
Salt Lake City q1220 drg24 12 4,377 5,731
Salt Lake City q1318 drg24 12 4,402 5,744
Salt Lake City q1319 drg24 12 4,394 5,738
Salt Lake City q1320 drg24 12 4,385 5,738
Salt Lake City SaltLakeCityDrgMap.tif 12 10,100 7,600
USGS DRG F34086A1.TIF 5 10,599 6,003
USGS DRG F34086E1.TIF 5 10,579 5,971
USGS DRG mrg4619.tif 12 4,930 5,631
USGS DRG nashville east.tif 12 4,650 5,719
USGS DRG wilsondrg.tif 12 22,844 20,268

Directory File Name Num Colors Num Rows Num Cols

NGA Maps nimadata1018367581.tif NA 1,682 1,486
NGA Maps nimadata1018367594.tif NA 3,363 2,965
NGA Maps nimadata1021996034.tif NA 5,605 5,940
NGA Maps nimadata1024940339.tif NA 1,122 1,486
NGA Maps nimadata1024940385.tif NA 2,242 2,965

6.2.1 Map Surround Background

Raster map images may or may not contain a Map Surround Background. Therefore,
it is necessary to first determine if this exists. The main feature of the Map Surround
Background is large areas of pure WHITE (index value equals 1 in the image; see
Appendix C). If such areas are found, then the map proper must be segmented from
the image for further analysis. In addition, the Map Surround Background can be
analyzed for its semantic content. This includes the legend area and its contents, as
well as any text or markings around the border of the map.

Figures 6.1 and 6.2 show maps with surrounding background. Figure 6.3 shows
a typical map with no surround background.
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Fig. 6.1 Representative map with surround

6.2.1.1 Map Surround Background Segmentation

Several methods were tested to perform Map Surround Background segmentation.
One approach is to make use of the connected components of the WHITE pixels.
This has some strong aspects (e.g., usually produces very accurate results), but has
some serious drawbacks: it is very slow and has major problems if the surrounding
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Fig. 6.2 Another representative map with surround

Fig. 6.3 Representative map with no surround

background connects into the map proper. The method used here is to project the
sum of the WHITE pixels in the horizontal and vertical directions and detect a
large drop in the function values going from each end; this is described in more
detail below. Other approaches were also considered (e.g., finding the map corners,
or finding the black border of the map), but the projection method works very well
so these other alternatives were not explored in much detail.
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Connected Component Method (CC Method) The CC based map segmentation
worked well on the 3 tests, but took hours to run. The basic idea was to calculate the
area of the rectangle enclosing each CC, and take the CC with the largest area as the
map area.

The more efficient version takes the middle ten columns of the image, and the
middle ten rows of the image, and determines the most prevalent CC. Then this CC
is extracted from the image. This works well and is very fast. Interior regions that
are not part of the map CC are filled in with Matlab imfill function.

Tests were run on:

• maps with significant surround: e.g., O34086E5.
• maps with no surround: e.g., q1120 drg24.

There are some problems: if the CC is not completely connected around the
boundary, then the surround background will extend into the map area. This is
overcome by looking for pixels in the map area such that their immediate row+1
neighbor down one pixel is background and there exist non-background pixels
somewhere lower down the column. This is filled in. Once this is done, than a
final round of imfill is used to fill in any interior holes. However, this is very slow
computationally.

Projection Method The projection method consists of the following steps:

• Compute the number of WHITE pixels in each column; call this fV .
• Compute the number of WHITE pixels in each row; call this fH .
• Track in fV from column 1 in increasing column value and determine if there is

a large drop in WHITE pixel count. If so, mark that as the left map boundary.
• Track in fV from the last column in decreasing column value, and determine if

there is a large drop in WHITE pixel count. If so, mark that as the right map
boundary. (Note that in both these tracking steps, it is necessary to get past any
legend area that may look similar to the map border.)

• Rotate the map image 90o and repeat the above 2 steps to find the top and bottom
boundaries.

• If the projection of WHITE indicates that there is a surround, then use the
projections to find the left, right, top and bottom limits of the surround; form
the map area this way and return.

• Else make the map area fill the image area, and surround area empty.

Figure 6.4 shows the extracted map area (in white) and surround (in black) for
the map shown in Fig. 6.1 (O34086E5). Tests were conducted on a large number of
images, and the results were excellent.
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Fig. 6.4 Extracted central
map area from map with
surround (O34086E5)

6.2.2 Map Embedded Background

For general maps, the background pixels need to be determined from an analysis
of the color usage in the image. For USGS maps, the Map Embedded Background
is generally comprised of the color WHITE. In the extraction of many features
(other than vegetation), it is also useful to consider the color GREEN (index value
equals 5) as background. Figure 6.5 shows a subwindow of F34086A1 and the
Fig. 6.6 shows its foreground pixels.
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Fig. 6.5 Subimage of F34086A1
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Fig. 6.6 Foreground of subimage of F34086A1



Chapter 7
Road and Road Intersection Extraction

7.1 Introduction

Beginning1 in 1879 the United States Geological Survey (USGS) began surveying
land in the United States. Since then they have developed over 55,000 1: 24,000-
scale topographic maps covering the 48 coterminous states in a standard, det-
ailed manner. The result is a wealth of data contained in physical documents.
Unfortunately many of these documents over the years have begun to deteriorate.

Advances in digital information technology of the twenty-first century have
brought about the conversion of these older physical documents, into digitized
representations (see Fig. 7.1). The knowledge available in these maps is important
and therefore it is critical to be able to recover the semantic content (roads, iso-
contours, road intersections) of these into meaningful, accurate representations.
New methods are developed here in order to extract higher order semantic content.

Work on extracting these features has already started; however, parsing the
document to extract semantic content has proven difficult. The documents them-
selves have been scanned and color corrected, with the result that the digitization
of older maps has introduced noise and error in the digital versions. Overlapping
features and gaps in the data cause existing GIS extraction tools to fail. Along with
these issues, the amount of descriptive information and variety of symbols have
compounded the problem.

To overcome this a framework is developed which implements a robust set of
organizing rules used in graphic design and psychology derived from fundamental
principles of Gestalt perception. Gestalt principles are derived from the Law of
Prägnanz which defines a philosophical method for segmenting objects and an
explanation of human perception. The Gestalt principles include the law of closure,
similarity, proximity, symmetry, continuity and common fate. Of these laws we

1This chapter is contributed by Trevor Linton based on his MS thesis.
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Fig. 7.1 USGS sub-image sample map

attempt to implement similarity, proximity and continuity using various image
processing techniques.

The principles of similarity, proximity and continuity are important as they allow
the consideration of different perspectives in reconstructing features from noisy
data. For a curve segment with gaps, an algorithm implementing the principle of
continuity helps correct these errors. In addition, an algorithm which adheres to the
principle of similarity such as a histogram model analysis can be very effective at
creating rough estimates of features.

Such a method requires the extraction of lower level features such as curves,
lines, regions, boundaries, outliers, symbols and junctions as the basis for anal-
ysis. The extraction of complete and accurate representations of lower order
features helps to derive higher order semantic features such as interstate and
state highways, rivers, etc. We describe methods for extracting low level features
from raster images containing geographical map data, and for obtaining robust
segmentations of semantic features in the map.

The road framework is broken up into a pre-processing stage, tensor voting and
a post-processing stage shown in Fig. 7.2. Using methods such as histogram model
analysis, dilation, erosion and thinning has proved adequate at creating an initial
estimate of lower level features in the maps. Using tensor voting afterwards we can
then fill in and clean the image by reinforcing Gestalt principles.
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Fig. 7.2 Overview of the road framework

The resulting output of the tensor voting system is further processed in order to
create objects that can be classified and used in order to extract higher order features.
Connected components, thresholding, thinning, and local maxima are used in this
post-processing phase and are compared and contrasted for their effectiveness. The
combined efforts of this process allow us to achieve noise reduction, fitting, junction
analysis, gap filling and region boundary extraction.

Tools and models developed in the framework are also computationally effective
with respect to their memory and CPU time footprint and performance. This allows
useful exploitation in actual data analysis settings.

7.1.1 Goals

The goals of this work arise from the requirements of real life use of extracted
content. The primary use of the results from this research is to register the semantic
content with other GIS (Geographic Information Systems) software. In order to
achieve this, we must determine the primary needs of GIS software in order to
exploit the results. The primary features considered are roads and road intersections;
however, this method can be expanded to other linear features with different
histogram models.

The detection and localization of intersections provide a clean quantitative
framework for the analysis of performance and is highly useful; e.g., to register
maps with aerial images. Using more complicated objects such as curve segments
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requires more extensive analysis with ground truth data.

Recall =
| relevant∩ retrieved |

| relevant |

Precision =
| relevant∩ retrieved |

| retrieved | (7.1)

Goals are set and performance evaluation for road intersection detection is
performed quantitatively through the recall and precision measures defined in
Eq. (7.1) (relevant is the set of relevant pixels in the image, while retrieved is the
set of pixels returned by the algorithm). Any two corresponding intersection points
are matched if they are within a specified distance (in pixels) of each other in the
raster map. Quantitative analysis of linear curve segments is done by comparing the
linear curve segments to ground truth images. In situations of gap filling or fitting
an optimal curve, manually generated ground truth is used as a comparison for the
missing data.

Production use of the framework must also consider runtime performance and
memory or CPU-time footprints and constrain solutions to algorithms that can be
run in a realistic amount of time. The tensor voting method specifically can run
in a completely parallel fashion and thus constant time (if enough resources are
available).

The major goals here are:

• To develop road segmentation algorithms for raster maps that perform at the level
of 95% recall and 95% precision for roads in a quantitative analysis.

• To develop road intersection detection algorithms for raster maps that perform
at the level of 99% recall and 90% precision for intersections in a quantitative
analysis.

7.2 Related Work

Work on extracting semantic content from raster maps has faced many challenges.
Maps are scanned under an extremely high resolution TIFF format. A lot of work
has been done on color correction and accurate conversion of the scanned data into
an indexed color palette; removing color distortions due to scanning was once a
topic of research but now has been adequately addressed [63, 94].

With high resolution images and reasonably accurate color in map images, the
subject of research is now the extraction of semantic data. Recent algorithms in
the subject of topographical feature extraction typically use a system of thinning to
produce vector representations of linear features, followed by the application of the
A* algorithm to connect components along with some sort of preference and simple
pattern matching, geometric analysis or histogram analysis to determine features in
the raster map image.
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The framework described utilizes a method called tensor voting proposed by
Medioni [84, 85]. The method is useful for de-noising and reconstructing linear
features from a sparse data set. The implementation of tensor voting is based on the
description in [84].

The method used for implementing tensor voting in the USGS maps is similar to
that described by Shao et al. [105]. The method proposed for implementing tensor
voting and systems for pre-processing and post-processing involves thresholding,
thinning and de-noising the output of the curve map from the tensor voting system.

Chiang et al. [135] describe a method for extracting roads, filling gaps in roads
and identifying intersections. The method extracts pixels thought to be roads using
parallel line tracing techniques as well as simply extracting layers of color which
correspond to road. The road data is then dilated, eroded and thinned to fill in
gaps. The result of this is a 1 pixel wide (unit width) road that was examined for
intersections by looking for pixels with three or more adjacent connected pixels.
This method for filling gaps may not work for larger gaps as well as situations where
gaps curve. The accuracy due to thinning may not keep the original road boundaries
intact. Their results from USGS topographic maps for intersections had a precision
of 84% with a recall of 75% and a positional accuracy of 80%. A similar method of
thinning is used in the pre-processing steps but further processing is needed in order
to fill gaps and obtain better performance.

Khotanzad and Zink [64] propose a method for contour extraction which first
removes any colors not part of the feature set to be examined. Linear features are
extracted using valley seeking algorithms, then the A* algorithm is used to connect
valleys together and form linear features or close gaps. While this method has been
studied in depth, A* is not as effective at following a curve due to its tendency to
prefer proximity over continuity which leads to connections that are not correct.
Another concern is the time and space complexities of A*, although these might
be overcome with optimization, thinning techniques and the right heuristic function
built into the A* algorithm. The results of this method on the sample images in
the paper were qualitatively excellent, but quantitatively had incorrectly classified
1.5% of the non-contour lines as contour lines, and 2.4% of contour lines were
misclassified as other features. While this method is effective, its results on roads
rather than contours is still unknown and it is not used to perform intersection
detection.

Ahn et al. [8] give a method of color separation, noise elimination using erosion
and dilation, and thinning and vectorization. This method was used on Korean
topographical maps and seemed effective; however no quantitative results were
given. The method also seems to be unable to overcome severe noise and gaps in
linear features.

The pre-processing techniques described here utilizing histogram models to find
feature estimates are based on work published by Henderson et al. [46]. The models
formed are capable of finding good estimates of features that can be later used for
tensor voting and post-processing methods.

Pouderoux and Spinello [96] propose a method to reinforce and fill gaps in
contour lines using the Gestalt principle of good continuation. The method is based
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on a gradient orientation field generated by the contour lines and uses the tangent
at the ends of the gap to approximate the best curve between the two points without
crossing another linear feature. The framework described uses similar principles
to our method although we use tensor voting to enforce good continuation rather
than a gradient orientation field. An example was given in the paper; however, no
quantitative results were published.

Pezeshk and Tutwiler [94] give a system of histogram equalization (HE, AHE
and CLAHE) to color correct USGS images and enhance features in the image. They
did not publish quantitative results for this method; however, enhancing a feature
through blurring, dilation and subsequently a form of histogram equalization may
prove useful for enhancing a feature prior to extraction.

Miyoshi et al. [86] provide a review of methods for extracting buildings utilizing
geometric features. Extraction was achieved by thinning line segments and using
a vector-chaining procedure to produce various types of connected, branching and
non-connected vectors. Features of the vectors were used to identify buildings and
other features in the image. For example, a connected loop of a certain size would be
classified as a building while any non-connecting loop or loops which were too
large or did not contain sides with a straight line were not considered buildings.
The results of this method correctly identified 87.3% of village buildings, 83.3%
of urban buildings and 89.4% of residential buildings. False positive identifications
were respectively 5.2%, 3.3% and 9.7%.

Using methods of this type may be effective; however, the data input used in these
examples were well formed scanned drawings. The USGS data set used in this thesis
contains various amounts of noise and gaps in the data; making preprocessing steps
useful to extract lower order features.

The analysis of technical and engineering drawings using distributed agent based
systems has been shown beneficial. Swaminathan [113] and Henderson [48–50]
examined this technique using various image processing techniques combined with
an agent based system and a hierarchy of grammars to examine if communication
of networks of agents could better correct for errors and identify both syntactic and
semantic symbols in drawings (see Chap. 5). The use of agents showed a significant
ability to account for unknown semantics in engineering drawings.

A similar method of thinning and vectoring were described by San, Yatim et al.
[104]. Connecting components of contour lines was done using radial symmetry in
the contour lines and closest extremity. The initial problem with this approach is the
lack of smooth curves between disconnected components.

Zheng et al. describe a method [140] for extracting roads out of satellite images.
The method uses colors to extract specific road types and make an initial estimate
of the feature. The tensor voting framework was then used on the binary image
to produce a curve map. The tensor voting framework curve map was thresholded
and then thinned in order to make a unit width vector of the road. The results
were qualitatively good however no quantitative results were published. The method
used here is similar; however, the pre-processing and post-processing techniques are
different. The method described by Zheng et al. was applied to satellite images while
the method described here is applied to USGS maps.
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Poullis et al. [97] used a similar method of tensor voting on satellite image data,
but combined it with other images such as aerial photographs to more accurately
segment the image. No quantitative results were reported.

Hinz and Baumgartner [54] describe a method of identifying roads in aerial
images by first segmenting the image into urban and rural areas, removing shadows,
occlusion and building outlines. The result is then segmented using histogram model
analysis, thresholding and then modeling techniques. The result of this method is
75% recall and 95% precision for roads.

Li et al. [69] published a method for extracting labels, roads and graphics from
USGS maps. The method traces roads until text is found and wraps it in a bound
box extracting the text then filling in the gap for the next road. This method was
effective at finding well defined roads and text, but failed on curved roads and noisy
data.

Podlasovet al. [95] give a method of restoration of binary semantic layers of map
images. In the paper they proposed a method for restoring raster image maps from
artifacts caused by color separation. However, their method was typically used on
maps which are in a RGB or CMYK color space, whereas we work on images with
color indexed palettes that are well defined.

Ageenko and Podlasov [6] propose a novel method for removing noise and
reducing error in features. The method to extract a feature begins by taking a union
of overlapping features and then dilating the feature of interest and using the unioned
features as a mask to reduce the affects of over-dilation. The results of the method
were taken over NLS Map Series for the water and field features. The results reduced
the error rate in the features by 12.72% to 14.14% for water and fields, respectively.

Chaing et al. [21] give methods for extracting roads and intersections using
a wide variety of image processing techniques from thinning, erosion, dilation
and histogram analysis. The use of double-line format detection or parallel-pattern
tracing was used to identify roads via a geometric analysis of the structure in the
map. A knowledge based logical process was followed to extract the roads and
intersections once the pre-processing steps were finished. The method described
has a precision of 82% and a recall of 60% for USGS Topographic maps.

Previous work with tensor voting and post-processing methods has been described
by Henderson and Linton [45]. The methods introduced there form the basis for the
work described here. The preliminary results published in that paper are 93% recall
and 66% precision for road intersections.

7.3 Approach

7.3.1 Overview

To extract features from USGS maps, a system is built utilizing Gestalt principles
of similarity, continuity and proximity. The system is separated into three parts: a
pre-processing phase, tensor voting and a post-processing phase. The pre-processing
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Table 7.1 USGS index to RGB values

Indexed pixel
value Color R value G value B value

0 Black 0 0 0
1 White 255 255 255
2 Blue 0 151 164
3 Red 203 0 23
4 Brown 131 66 37
5 Green 201 234 157
6 Purple 137 51 128
7 Yellow 255 234 0
8 Light Blue 167 226 226
9 Light Red 255 184 184
10 Light Purple 218 179 214
11 Light Gray 209 209 209
12 Light Brown 207 164 142

phase cleans up initial noise, finds rough estimates of features utilizing histogram
models and reduces features to smaller unit width through thinning. The tensor
voting phase reduces noise, bridges gaps and reinforces curves in a manner which
preserves continuation over proximity. The post-processing phase takes the resulting
output from the tensor voting system, thresholds the data and then uses a variety of
techniques discussed here to accurately extract unit width vector features.

The result of this process is a binary unit width segmentation of the specific
linear feature of interest. Processing on these segments then allows us to extract
further details such as intersections (junctions) within the linear features.

7.3.2 USGS Maps

United States Geographical Survey maps are large (average of 9495 by 5552 pixels
and 15 megabytes) TIFF 8-bit color indexed raster images. Care is taken to make
sure the maps are read in and not converted to any other color-space or format.
Casting the raster map into a different color-space could result in inaccurate colors
due to interpolation. Converting the map into a lossy image format may result in
compression artifacts and inaccurate colors and geometrical features.

The maps contain a range of features including (but not limited to) contour lines,
geopolitical boundaries, symbols, roads, train tracks, labels, lakes, rivers, highways
and freeways. While most maps only contain a small number of colors, features are
identified through mixed color combinations giving a distinct texture to a feature.
Human defined symbols like text and road markers can be found by exploiting their
distinct color and shape (Table 7.1).
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Fig. 7.3 USGS Sub-image of a city

Cities are generally identified with smaller clusters of roads and a text label
identifying the name of the region such as in Fig. 7.3. Contour lines are generally
identified with a brown color and are condensed curves (Fig. 7.4) describing
topographical information and height of the area. Symbols in maps such as in
Fig. 7.5 identify contextual information for roads, cities and other geopolitical
information. Large areas with a dotted blue and white pattern identify water such
as in Fig. 7.6. We limit ourselves to the extraction of roads, usually red and black
depending on the type of roads, which are generally straight intersecting lines are
shown in Figs. 7.3 and 7.7.

Roads can be defined by a variety of textured colors. Some maps include a pink or
black double lined roads with specific markers for direction. Others include thicker
black and red lines to describe freeways, thinner to describe highways and solid
thin black lines to describe regular roads, urban or rural. Train tracks and other
railways may be described by a black line with stylized cross ties.

Features may overlap in the map making gap filling a necessity in order to
accurately extract and represent roads, contour lines, etc. Gaps may be exceedingly
large which represents a challenge in accurately estimating a curve or line correctly.
A larger problem arises when two distinct features having similar textures overlap.
This can make correctly segmenting features increasingly difficult.

Text is largely ignored in this analysis as document analysis has defined methods
for extracting text within maps. The process of extracting text is made simpler as
the need to accurately represent the original shape of the text (as is necessary with
other features such as roads) is not required.
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Fig. 7.4 USGS sub-image of topographical contours

Fig. 7.5 USGS example of a symbol in a map
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Fig. 7.6 USGS sub-image of rivers and lakes

Fig. 7.7 USGS sub-image of roads and freeways
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Fig. 7.8 Demonstration of
the law of similarity

7.3.3 Gestalt Principles

Gestalt psychology or gestaltism is a theory of the brain’s self-organizing capability
with respect to visual recognition of figures and shapes. Within Gestalt psychology
the Law of Prägnanz states that we experience visual phenomena as regular,
orderly, symmetric, and simple. In an attempt to refine the Law of Prägnanz, Gestalt
psychologists have created the Gestalt principles which help organize visual infor-
mation. These principles include the law of closure, similarity, proximity, symmetry,
continuity and common fate. In an attempt to achieve image segmentation, some of
these laws or principles are used in our framework in order to draw out features.

• Similarity: The grouping of similar elements into a whole element or grouping
based on shape and texture to complete a regular figure or region. As can be seen
in Fig. 7.8 the dark circles and outlined circles produce separate segmentations
in the image.

• Proximity: The amount of space between objects and pixels is a tool for grouping
items together and determining boundaries, regions and features. As can be
seen in Fig. 7.9 the spacing between the lines of circles on the left cause a
segmentation.

• Continuity: Patterns which repeat are followed by the mind, even in the event
the pattern is missing in places, the mind will still fill in gaps and conjure up
the complete pattern in the mind. The principle of continuity is demonstrated in
Fig. 7.10.

• Closure: The mind is drawn towards regularity removing outliers and perceives
items with a complete and regular figure. The principle of closure is illustrated in
Fig. 7.10.

These principles are represented in the methods used here. The law of similarity
is exploited through the use of histogram models. The histogram models match
various textures and group them together to get rough estimates of features. The laws
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Fig. 7.9 Demonstration of
the law of proximity

Fig. 7.10 Demonstration of
the laws of closure and
continuity

of proximity and continuity are represented through the tensor voting system.
The tensor voting system enforces good continuity and proximity when filling gaps
and optimally finding curves. The law of closure is expressed through the tensor
voting system and the post processing methods.

7.3.4 Low Level Features

In order to extract semantic features low level features must first be analyzed. Low
level features include lines, curves, color histograms, junctions, regions and end
points. The four main low level features to be exploited are:

• Linear nature of the pixel (lines, curves).
• Color histogram of local window at each point.
• Pixel regions.
• End points.

There are a few constraints on the output of lower order features:

1. Each feature must be independent from others. For example two crossing roads
should be separated into the two road segments and an intersection as low level
features.

2. Segments or objects must be unit width and connected.
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Fig. 7.11 Initial image (left), initial estimate of features (middle), cleaned up initial estimate
(right)

3. Gaps must be filled with the closest approximated curve and in a manner which
preserves continuity, not proximity.

4. Features must be semantically smooth and preserve the original feature in the
raster image.

7.4 Pre-processing Techniques

To properly prepare the raster maps for analysis by the tensor voting framework,
a series of pre-processing steps is necessary to remove noise and approximate
feature classes. The process begins by assigning initial feature labels using a variety
of techniques. This segmentation produces a binary image. The results are then
cleaned by removing outliers and isolated elements. The data is then run through
a skeletonization process as seen in Fig. 7.11. Once properly cleaned the results are
then used in the tensor voting framework.

7.4.1 Histogram Models

USGS maps have a well-defined structure which we can exploit. Using the Gestalt
principles of similarity, initial assignments can be made on the various types of roads
in the map by examining histogram models representing a class. In order to make
initial assignments of pixels, the specified features’ histogram model is created as
a set of sample histograms representative of the class. The samples are taken from
areas in the maps where each feature is shown in Fig. 7.12. Each class has the same
number of histogram samples in order to prevent bias to any one class. Tables 7.2–
7.5 are common road types and their corresponding histogram models.

Most features in the system are linear and can be analyzed with a histogram
model as their geometric structure is less important than color texture; this makes
histogram models effective. However some features such as route markers have a
geometric shape which makes it necessary to employ some other detection system
for them.
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Fig. 7.12 Example of USGS
symbols legend

Table 7.2 Primary highways Indexed pixel value Color Number in sub-image

0 Black 1030
1 White 2,925
2 Blue 7
3 Red 456
4 Brown 352
5–12 Green 0

Several different methods are used to create initial assignments of features.
A process of using mean, standard deviation and other statistical methods called the
class conditional density with Mahalanobis distance is shown using the histogram
models described earlier. A knowledge based classifier uses information known
about the various features to identify and classify them. This method seems to
work well at producing sharp and clean assignments with minimal dilation or
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Table 7.3 Secondary
highways

Indexed pixel value Color Number in sub-image

0 Black 533
1 White 3,300
2 Blue 1
3 Red 366
4 Brown 305
5–12 Green 0

Table 7.4 Light duty road Indexed pixel value Color Number in sub-image

0 Black 807
1 White 2,404
2 Blue 111
3 Red 0
4 Brown 12
5–12 Green 20

Table 7.5 Other street Indexed pixel value Color Number in sub-image

0 Black 163
1 White 1,060
2 Blue 45
3 Red 0
4 Brown 8
5–12 Green 0

bleeding. The last process considered here is the k-nearest neighbors method using
the histogram example as the model described earlier. The methods described here
are compared qualitatively with respect to the map shown in Fig. 7.13.

7.4.2 Class Conditional Density with Mahalanobis Distance

The class conditional density (CCD)with Mahalanobis distance classifier is a
statistical method to classify each pixel in the image. The class model is the mean
of the histogram examples defined by Eq. (7.2) and the variance of each class of
histograms defined by Eq. (7.3). The Mahalanobis distance is defined by Eq. (7.4).
Eq. (7.4) is calculated for each k and the k with the minimal value is the assigned
class. The result of this method on a 500 by 500 pixel region is shown in Fig. 7.14.

μk =
1

Nk

Nk

∑
i=1

xk,i (7.2)
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Fig. 7.13 Original image used in comparing the various pre-processing methods below. Original
(top left), forest (top middle), contours (top right), geopolitical symbols (bottom left), water (bottom
middle), roads (bottom right)

Fig. 7.14 Roads classified by
CCD with Mahalanobis
distance

Σk =
1

Nk − 1

Nk

∑
i=1

(xk,i − μk)(xk,i − μk)
T (7.3)

δ (x; μk,Σk) =
1
2

√
(x− μk)

T Σ−1
k (x− μk) (7.4)



158 7 Road and Road Intersection Extraction

Fig. 7.15 Roads classified by
knowledge-based system

7.4.3 Knowledge-Based Classifier

To classify features in the image, a knowledge based approach can be used in which
the user specifies a predicate which characterizes class membership. The approach
is based on a normalized histogram of an area around the pixel that will be classified.
The process uses the normalized histogram bins to determine the class. The results
of a road classification are shown in Fig. 7.15.

To classify roads the bins of the histogram are analyzed and roads are further
sub-classified into light duty and primary roads. The light duty roads are identified
if the color black is the largest color in the histogram, there is blue in the histogram,
there is less or equal amounts of red than blue, and there is less brown than blue.
Primary roads are classified if black is the most numerous color in the histogram,
the color blue is less than or equal to red, blue is less than or equal to brown, there
is some red in the histogram, and there is some brown.

7.4.4 k-Nearest Neighbors

The k-Nearest Neighbors process begins by taking a training set of examples
(histograms at selected pixels and their respective classes) and treating these as
vectors, producing an n-dimension vector where n is the number of bins in the
histogram. The histogram from the window surrounding the point of interest is
then represented in the vector space and the k closest neighbors to it are found.
The distance is calculated by the Euclidean distance defined by Eq. (7.5) where p
is the point of interest and q is the point of the histogram model and the index i
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Fig. 7.16 Roads classified by
k-nearest neighbors

represents the bin. The assignment is then determined by finding the class out of
the k neighbors that is most frequent. An example of roads classified by k-nearest
neighbors is shown in Fig. 7.16.

D =

√
n

∑
i=1

(pi − qi)2 (7.5)

7.5 Tensor Voting

Each pixel classified as road during the pre-processing step gives rise to a curve
estimate through that pixel; this curve is then used to cast votes at other pixels where
the curve should pass. A non-road pixel will thus accumulate votes for the various
curves that could pass through it, with straight continuations favored over those
sharply changing direction. Thus, a closer curve may have less influence than a
more distant one for which the pixel provides straight continuation. Linear features
that are in close proximity but have little continuation may still be connected if no
other ideal curve can be found.

Tensor voting is a powerful image processing tool that helps clean images, fill
gaps and reinforce curves based on Gestalt principles of closure and continuity.
The tensor voting system takes in a binary input image and outputs a junction and
curve map (see example shown in Fig. 7.17). The curve map gives the likelihood
of the presence of a curve passing through each pixel. Likewise the junction map
expresses the likelihood of a junction at a pixel. The curve and junction maps are
valued from 0 to 1. The tensor voting system takes two parameters, σ and c. While
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Fig. 7.17 Synthetic image (left), calculated curve map (middle), and junction map (right). Darker
means higher likelihood of feature

Fig. 7.18 Visualization of a tensor in two dimensions. The left is a representation of a junction
(ball) tensor and the right a representation of a curve (stick) tensor

c can be derived from σ for optimal balance, it can also be varied to give preference
to either continuation or proximity as desired.

Equation (7.6) defines a tensor and is in the form of a second order, symmetric,
non-negative definite tensor. The tensor here is a 2x2 matrix and a mathematical
representation of the structure type, direction and saliency. The structure type is
either a junction or curve and is measured by the difference between λ1 and λ2 as
shown in Fig. 7.18. If λ1 is significantly larger than λ2 the point where the tensor
is located is thought to be a part of a curve. If the differences between the two λ ’s is
small, the tensor is thought of as a junction. (Note Medioni referred to the structure
types as stick tensors and ball tensors, respectively.) The direction is the alignment
of the tensor in the direction of the preferred tangent (or in other words the preferred
direction of the curve at that point, where ê1 is the preferred tangent and ê2 is the
normal.) The saliency is the confidence that this feature exists and is measured by
the magnitude of λ1.

T = λ1ê1êT
1 +λ2ê2êT

2 (7.6)

The tensor voting process begins by building a sparse tensor field. The sparse
tensor field is a PxN array (the same size as the input) with an initial estimate of
each tensor at each point defined in the input. The estimates are built using principal
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component analysis using the direction or estimated tangent as ê1 and its normal
as ê2. The values of λ1 and λ2 are set to one for the initial estimate. Estimates
can also be built using a variety of other techniques such as ball voting defined by
Medioni or a Canny edge detection algorithm.

Once a sparse tensor field is generated, a voting field is created for each point
defined in the sparse tensor field. The voting field is an MxM field where the size
(M) is defined by solving for Wsize in Eq. (7.7). The voting field contains a tensor
at each point in the field. The direction of the tensors in the voting field are defined
by Eq. (7.8) where θ is the angle from the location of the tensor in the field to the
origin (center) of the field defined along the x-axis and l is the distance from the
origin to the tensor. The attenuation of the tensors in the voting field is defined by
Eq. (7.9) where θ is as defined before, s is the arc length, and k is the curvature. The
voting field is aligned with the tangent of the tensor in the sparse tensor field and
positioned to be centered above it. Once the voting field is generated and aligned
with the tensor in the sparse field, the tensors in the voting field and sparse field are
added together to produce a dense tensor field.

Wsize =
√
−σ2 ∗ ln(0.01) (7.7)

s =
θ l

sin(θ )

k =
2sin(θ )

l

SSO(l,θ ) = DF(s,k,θ )
[−sin(2θ )

cos(2θ )

][−sin(2θ ) cos(2θ )
]

(7.8)

DF(s,k,θ ) =
(

e
− s2+ck2

σ2

)
(7.9)

The dense tensor field can then be decomposed in order to determine where
curves and junctions exist. The field also describes the direction of any curves
through the ê1 value. For each tensor in the dense tensor field the curve map and
junction map can be found by considering:

• If λ1−λ2 > 0, then this demonstrates the likelihood of the point being on a curve.
The saliency of a stick component being larger than that of the ball component
indicates a certainty of the orientation, therefore the tensor most likely belongs
to a curve.

• If λ1 ≈ λ2 > 0, then this demonstrates the likelihood of the point being a junction
or irrelevant. If the λ1 is approximately the same size as λ2 no orientation is
likely and therefore the point can either be considered irrelevant or a junction.
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Fig. 7.19 2D and 3D view of a voting field’s ideal attenuation as defined by Eq. (7.10)

The intensity of λ1 and λ2 shows the certainty that it’s a junction; higher values
indicate a junction while low values indicate an irrelevant point.

As noted the tensor voting field depends on two parameters σ and c. The σ
parameter defines the size of the attenuation field. The parameter c defines the shape
of the attenuation field, smaller values of c result in an attenuation field that is more
circular or in other words considers proximity as much as it does continuation when
calculating curves. When the value of c is large, the attenuation field is more stick
shaped, preferring continuation heavily over proximity when determining curves.
The ideal value of c (one which prefers an optimal balance of continuation vs.
proximity as defined by Medioni) can also depend directly on σ and is determined
by Eq. (7.10) and shown in Fig. 7.19. Figure 7.20 shows the difference between
small and large c values and how it affects the voting field’s attenuation.

c =
−16ln(0.1)(σ − 1)

π2 (7.10)

Choosing appropriate parameters for the tensor voting framework is of consider-
able importance for producing good results. The size of the voting field affects how
well the tensor voting framework performs. Although relatively insensitive to size
parameters, error can be introduced by too large or too small of a voting field. Too
large a field can ruin subtle details and features. Too small a field does not adequately
remove noise or fill gaps in the raster image. To ensure we have a proper field size
and continuation vs. proximity, methods must be developed to approximate an ideal
σ and c for each point in the sparse tensor field prior to voting.
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Fig. 7.20 2D view of a voting field’s attenuation, left c = 107 vs. right c = 0.1

7.5.1 Dynamic c Values

As shown in Fig. 7.20, we can vary the c values in order to prefer continuation vs.
proximity. This can be valuable if we have an insight into what type of feature we
are trying to reinforce. By adjusting the c values to make the value higher on long
straight roads we can better fill in gaps (even very large gaps). By making the c
values small for roads in towns we can better account for the influence of proximal
road segments and preserve smaller features.

Dynamically adjusting the c values is done by taking a histogram of the tangent
direction in the tensors surrounding a point. The window size of the histogram is
based on the value of σ and found by solving for Wsize in Eq. (7.7). If the mass of
the histogram is contained in a small number of bins then c is made higher. If the
mass of the histogram is spread out over all the bins and fairly equal, then the c
approximates the ideal c value as defined in Eq. (7.10).

7.5.2 Dynamic σ Values

The parameter σ adjusts the size of the attenuation field. Larger attenuation fields
reinforce features with more extent while smaller attenuation fields are necessary
to preserve features with smaller details. To adjust the σ dynamically, a count of
the features within a window is made in order to determine an estimate of the ideal
size of the attenuation field that will preserve smaller features and will reinforce
extended ones.

If there is a large number of curves or intersections within the window, then
the voting field size may be adjusted smaller in order to reinforce fine details and
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Fig. 7.21 Initial image (left), curve map (middle), junction map (right)

adequately remove noise. However if the ratio of features to the window size is small
it can be assumed that there is a limited number of larger features in the window and
thus a larger attenuation field may be used.

7.6 Post-processing Techniques

The output of the tensor voting system is a pair of real valued curve and junction
maps. From this information the system must derive a binary raster map of the
curves (roads) found, then combine this information with the junction map to
determine the junctions (road intersections). This is complicated by the fact that
within the curve and junction maps, the likelihood of a feature is relative to its
surrounding likeliness. For instance, a curve being filled in by the tensor voting
system will have a much lower value within the curve map than a curve which
exists in the pre-processed image. Therefore, we must take a smart approach to
interpreting the data from these systems.

As seen in Fig. 7.21 the junction map and curve map require robust methods
to extract information from these raster images. Several different methods are used
to extract the features. A process of thresholding and thinning has proved useful,
however it misses weak curves in the curve map and isn’t very effective on junction
maps. The process of using a local maximum algorithm that looks at a window,
uses the tensors to determine the normal direction to the curve and then finds the
local maximum along the normal has proved useful, but fails at curve pixels closer
to junction points. The process of a local maximum is mostly useful for finding
junctions. Above all, the most effective algorithm is the process of using connected
components and knowledge of the features to find curves and junctions.
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Fig. 7.22 Threshold applied image (left), thinned and cleaned image (right)

7.6.1 Global Thresholding and Thinning

The process of thresholding and thinning as a post processing technique begins
by calculating an optimal thresholding value from the histogram of the curve and
junction maps. To do this an iterative selection method is used. The method begins
by finding the maximum value. The histogram is then split into to parts based on
the half the maximum value. The mean of the intensities in the two halves are then
calculated, and the average of the two means produces a new threshold. The process
is then repeated with the new value until the threshold converges.

The result of the thresholding can be seen in Fig. 7.22 (left). The binary image
can then be cleaned and thinned in order to produce a unit width vector feature
space (as seen in Fig. 7.22 (right)). Thresholding and thinning still have particular
problems making it unsuitable for our needs. Thresholding can remove lines and
curves in the feature space which are (relatively) pronounced but in context of the
entire image very weak. Thinning (along with skeletonization) can also introduce
artifacts as seen in Fig. 7.22 (right); e.g. the thinned image typically has looped
nodules and light noise still apparent in the final image.

Even though thresholding and thinning doesn’t usually provide a perfect solution,
it does produce reasonable features and is very efficient in terms of memory
requirements.

7.6.2 Local Thresholding and Thinning

The process of local thresholding works similar to global thresholding; however,
the method uses a window of 40 by 40 pixel area rather than the entire image.
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Fig. 7.23 Curve map processed by local thresholding and cleaning. Threshold applied image
(left), thinned and cleaned image (right)

This process helps preserve features where they may be removed by a global
thresholding method. The results of the local thresholding can be seen in Fig. 7.23.

Local thresholding has similar problems to global. Artifacts are still apparent in
the thinned image and some features are removed creating gaps in the data. Local
thresholding also introduces noise to an image that must be resolved.

7.6.3 Local Normal Maximum

Finding the local maximum in the curve map may allow us to figure out the best
curve while using the surrounding context of each pixel to determine whether or
not the curve passes there. This is important since the likelihood of many reinforced
features may not be very high relative to the global curve map, but significantly
higher then their neighbors. The process of taking the maximum in the normal
direction first identifies the normal axis for each tensor point in the image. Once
this is done, the likelihoods are checked along the sides of the current pixel to see if
it is in fact a maximum.

The results of this process can be seen in Fig. 7.24. While the process does a fairly
good job at identifying curves, it has two major problems. First for pixels close to
junctions, good curve pixels may not be the local maximum due to interference from
other nearby curves. This causes disconnected curves in the output.

The other problem with this approach is that small differences in the likelihood
that are caused by noise get profoundly exaggerated by this process since its goal is
to look for relative maxima in likelihood. While this could be solved by thresholding
the image (granted less than what would be needed in thresholding the image for
thinning) it eliminates smaller roads and less defined features we want to preserve.



7.6 Post-processing Techniques 167

Fig. 7.24 Results of looking
for the local maxima over the
normal

Due to the drawbacks described, this algorithm it is not effective for our needs.
It is effective, however, in finding junctions by looking for local maxima in a local
area.

7.6.4 Knowledge-Based Approach

An effective method to find the best paths in the curve map is a connected
component approach. The method begins by producing a binary version of the curve
map using local thresholding. The resulting raster image is then thinned. While
this produces artifacts, noise and raises issues similar to thresholding and thinning
described above, the method then uses a connected component and knowledge based
algorithm to remove noise and clean the image. This eliminates most of the artifacts
in the image.

The thinned image is broken up by its intersections and then processed by
running a connected components analysis. Once the image has been broken up into
connected components, end points are found as follows. To find end points a 3x3
image window is taken around each defined pixel and run against a look up table
of end points. Each segment from the connected component analysis is examined
to see if it lies on an endpoint. If it does and the line does not cross a border of
the image and it is smaller then 15 pixels (a number derived from the maximum
size found in noise produced by the process) then it is removed. The results of this
process can be seen in Fig. 7.25. Any segments found in the connected component
analysis not connected to the border of the image are also removed. A combination
of logical decisions based on the connected components can decide whether certain
components should be removed and considered noise.
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Fig. 7.25 Results from
thresholding, thinning and
knowledge-based approach
using connected component
analysis

7.7 Experiments

7.7.1 Method

To determine the performance of the tensor voting, pre-processing and post-
processing methods, a framework for evaluating recall and precision is necessary.
To evaluate each method a set of one hundred 200x200 pixel image samples
are taken from various USGS maps. The maps are then processed through the
framework and examined against a ground truth for both the roads and intersections.

Experiments are selected to quantitatively answer questions related to perfor-
mance. Considerations beyond which method performed best are evaluated, and the
goals for these experiments are as follows:

• Determine adequate parameters for pre-processing, post-processing methods and
tensor voting.

• Identify weaknesses and strengths of each method.
• Determine the best performing pre-processing method.
• Determine the best performing post-processing method.
• Quantify the contributions of tensor voting.
• Characterize classification distortion of the pre-processing, tensor voting and

post-processing methods on perfect inputs.
• Determine the impact of misclassification of text as roads.

The results for each experiment are given with a recall and precision metric for
both roads and intersections. Recall and precision are defined by Eq. (7.1). relevant
is the set of pixels which belong to the class and retrieved is the set of pixels which
are classified as being in the class. Recall measures the system’s capability to find



7.7 Experiments 169

features while precision characterizes whether it was able to find only those features;
both are measured on a scale from 0 to 1 where 1 (for both recall and precision)
is best. A pixel classified by an algorithm is said to correspond to a feature in
the ground truth set if the two are within a specified Euclidean distance (usually
5 pixels).

7.7.2 Data Selection

Data selection is a key aspect of creating accurate and replicable results. To properly
select a data set to use in the evaluation, the following constraints are considered:

• The data set must be a large enough to adequately represent features.
• One sub-image of the data must not be biased by the selector.
• One sub-image may not overlap another.
• A sub-image may not be a portion of the map which contains map borders,

margins or the legend.

To meet the constraints of data selection a system was built in order to select
adequate data sets from two USGS maps (F34086A1.TIF and F34086E1.TIF).
The system began by randomly selecting 100 sub-images from the maps, each with
are 200x200 pixels. The system was constrained to only select regions which were
inside the boundaries of the map so that items such as the legend and meta-data
would not be included in the test samples. The system then went through each map
in the sample set and checked for duplicates. The same number of images were
selected from both test maps.

7.7.3 Ground Truth

Ground truth defines a baseline of what would qualify as a correct answer for
both roads and intersections. Once the data selection system finishes the ground
truth is generated manually. Each image generated by the data selection process is
examined and a binary raster map (e.g., see Fig. 7.26) is made from it by identifying
where the roads exist. Similarly the intersections are manually identified and stored
in a structured data set. To identify roads the user refers to the legend to make
distinctions between geopolitical lines, water, contour lines and roads of all types.

To ensure the ground truth is accurate, the masks are generated twice and the
difference between the two is used to identify problems. The ground truth pairs
which contained significant differences (above 5%) are re-examined. Neither the
original raster map nor the ground truth images were modified so as not to affect the
results or bias them for the system. All features defined as roads in the ground truth
are marked by a 3x3 pixel line.
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Fig. 7.26 Sample ground truth (left) and original image (right) from F34086A1 map

7.7.4 Pre-processing

The three pre-processing methods examined are k-Nearest Neighbors, Class Condi-
tional Density Classifier and the Knowledge-based Classifier. The only parameter
investigated and varied out of these methods is k in k-Nearest Neighbors. The
window size of both k-Nearest Neighbors and Class Conditional Density Classifier
was examined in a qualitative manner to determine the best window size (3x3). To
determine the best pre-processing method, an appropriate value must be selected
for the parameter k. To find the best value for k, k-Nearest Neighbors is run on the
ground truth images over a range of acceptable values to determine which value
produces the highest recall and precision. The recall and precision measurements
are only calculated on the output of k-Nearest Neighbors and no post-processing
methods nor tensor voting system is used. Tests run on k from 1 to 20 show little
(less than 1%) difference in the recall and precision of the system. The highest
value was shown to be at 10 which produced an average road recall of 100%,
average road precision of 87%, average intersection recall of 49% and average
intersection precision of 11%.

Table 7.6 shows quantitatively that the Knowledge Classifier performed the best
(adding together road recall, road precision, intersection recall and intersection
precision) and produced similar recall to the other pre-processing techniques but
much better precision. The Class Conditional Density Classifier seemed to over-
classify items which were more prevalent in the histogram models yet ignore
smaller features, the effect of this is shown in Fig. 7.27. While this issue could
possibly be resolved by using different histogram models the results for the CCD on
various models yielded only small differences in its recall and precision. k-Nearest
Neighbors did fairly well but still had more noise than the Knowledge Based
Classifier.
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Table 7.6 Comparison of
pre-processing methods
without tensor voting or
post-processing method

Method RR RP IR IP

k-nearest neighbors 100% 87% 49% 11%
Class conditional classifier 100% 86% 46% 9%
Knowledge classifier 99% 92% 51% 17%
Naı̈ve (selecting black) 100% 86% 53% 13%

(RR, road recall; RP, road precision; IR, intersection recall; IP,
intersection precision)

Fig. 7.27 Class conditional density example, original image (left) with roads identified (right)

The Knowledge-based Classifier did better than any other method; however, it
had difficulties finding smaller dirt and utility roads in the image and introduced
enough noise to lower its precision. The naı̈ve approach of selecting all black
did considerably well coming performing slightly better than k-Nearest Neighbors
and the Class Conditional Density Classifier. This was mainly because most road
textures end up being primarily black, in addition to this all pre-processing method
results go through an open and close morphological operation which tends to fill the
majority of the minor gaps and filter out noise in the naı̈ve method.

7.7.5 Tensor Voting

The Tensor Voting system is examined to find its contributions to the overall recall
and precision of the framework. To do this an appropriate value for the parameter
σ must be found. To find the best value the Tensor Voting system is run on
the ground truth images with a range of σ ’s. Because the Tensor Voting system
requires a pre-processing method and post-processing method in order to function,
the naı̈ve pre-processing method (selecting all black) and the Knowledge-based
Approach post-processing method are used. These were selected because they do
not require parameters and do not need to be tuned for best performance; therefore,
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Fig. 7.28 Affect of varying the sigma parameter of the tensor voting system on recall and precision

we can accurately determine the affect of various σ ’s on the Tensor Voting system.
Figure 7.28 shows the affect of varying the σ parameter on recall and precision.

The results from this test show that the best value for σ is between 10 and 16
with little difference in the performance between these ranges. The value 13 was
used as the parameter for σ for all further tests.

To determine the Tensor Voting system’s contribution to the overall performance,
the framework is run on the ground truth tests with tensor voting and without. The
framework is run for all combinations of pre-processing and post-processing meth-
ods to determine the contribution of Tensor Voting for each combination. Table 7.7
shows the results of recall and precision for all combinations of pre-processing and
post processing methods with Tensor Voting. Table 7.8 shows the results of recall
and precision for all combinations of pre-processing and post processing methods
without Tensor Voting.

From the data in Tables 7.7 and 7.8 one can determine that certain pre-
processing and post-processing method actually perform better without tensor
voting. Specifically the global and local thresholds actually perform better simply
because they receive a binary output from the pre-processing method, which is very
easy to threshold. When used with Tensor Voting the global and local thresholds
must threshold a gray-scale image to a binary image, therefore it’s somewhat
expected that the results would be better for the local thresholding and global
thresholding without tensor voting. The same can be said for the naı̈ve method.

However, the Knowledge-based Approach benefitted from using the Tensor
Voting system, simply because of its effectiveness in using the output of the Tensor
Voting system to accurately identify features. On average the road recall for the
Knowledge-based Approach increased by 10%, but the road precision dropped
by 2%. The largest benefit is the intersection recall increased by 22%, and the
intersection precision increased by 20%.
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Table 7.7 Comparison of pre-processing (column) and post-processing (row) meth-
ods with tensor voting

k-nearest neighbors Class conditional classifier

Knowledge-based 92% / 95% / 82% / 80% 81% / 98% / 66% / 90%
Local thresh 99% / 77% / 85% / 26% 98% / 77% / 85% / 26%
Global thresh 98% / 75% / 82% / 21% 98% / 75% / 82% / 21%
Local max 77% / 40% / 78% / 75% 73% / 31% / 71% / 73%
Naı̈ve 100% / 27% / 52% / 5% 100% / 28% / 52% / 5%

Knowledge classifier Naı̈ve (selecting black)

Knowledge-based 77% / 98% / 65% / 86% 86% / 96% / 73% / 80%
Local thresh 98% / 87% / 84% / 29% 99% / 79% / 86% / 30%
Global thresh 97% / 84% / 83% / 22% 99% / 78% / 83% / 25%
Local max 77% / 43% / 77% / 73% 71% / 33% / 70% / 71%
Naı̈ve 100% / 31% / 52% / 6% 100% / 26% / 52% / 4%

(Each cell contains the percentage for (Road Recall / Road Precision /
Intersection Recall / Intersection Precision)

Table 7.8 Comparison of pre-processing (column) and post-processing (row)
methods without tensor voting

k-Nearest neighbors Class conditional classifier

Knowledge-based 82% / 97% / 60% / 60% 80% / 98% / 57% / 83%
Local thresh 99% / 77% / 88% / 26% 98% / 77% / 89% / 33%
Global thresh 99% / 77% / 88% / 26% 98% / 77% / 89% / 33%
Local max NA / NA / NA / NA NA / NA / NA / NA
Naı̈ve 100% / 87% / 49% / 11% 100% / 86% / 46% / 9%

Knowledge classifier Naı̈ve (selecting black)

Knowledge-based 77% / 98% / 50% / 86% 79% / 98% / 57% / 85%
Local thresh 97% / 92% / 87% / 38% 100% / 81% / 70% / 14%
Global thresh 97% / 92% / 87% / 38% 100% / 81% / 70% / 14%
Local max NA / NA / NA / NA NA / NA / NA / NA
Naı̈ve 99% / 92% / 51% / 17% 100% / 86% / 53% / 13%

(Each cell contains the percentage for (Road Recall / Road Precision /
Intersection Recall / Intersection Precision)

7.7.6 Post-processing

The four post-processing methods examined are the Knowledge Based Approach,
Local Thresholding, Global Thresholding and Local Normal Maxima. The only
parameter which can be varied out of these methods is the window size of the
Local Thresholding. To determine the best post-processing method, an appropriate
value must be selected for the window size. To find the best value for it, the Local
Thresholding method is run on the ground truth images over a range of acceptable
values to determine which value produces the highest recall and precision. Since
the post-processing techniques require some sort of pre-processing technique and
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Fig. 7.29 Affect of varying the window size of the local thresholding method on recall and
precision

Table 7.9 Comparison of post-processing methods with tensor voting and a
naı̈ve (selecting all black) pre-processing method

Method RR RP IR IP

Knowledge-based 86% 96% 73% 80%
Local thresh 99% 79% 86% 30%
Global thresh 99% 78% 83% 25%
Local max 71% 33% 70% 71%
Naı̈ve 100% 26% 52% 4%

(RR, road recall; RP, road precision; IR, intersection recall; IP, intersection
precision)

require tensor voting, both are used; however, the naı̈ve (selecting all black) is
used for the pre-processing method. The tensor voting uses the best value for its σ
parameter as previously determined. The results of this test can be seen in Fig. 7.29.
The best value for the window size is determined to be between 10 and 14.

Qualitatively the Knowledge-based System performed the best, and Table 7.9
shows quantitatively that the Knowledge-based Approach performed the best. Local
thresholding along with global thresholding can produce higher numbers in recall
but lower in precision. This is because liberal thresholding lowers the precision, but
conservative thresholding lowers recall. The local maximum had a very low recall
and precision; this is expected due to the inability of the local maximum to find all
the features.
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Table 7.10 Comparison of pre-processing (column) and post-processing (row)
methods with tensor voting

k-Nearest neighbors Class conditional classifier

Knowledge-based 92 % / 95% / 82% / 80% 81% / 98% / 66% / 90%
Local thresh 99% / 77% / 85% / 26% 98% / 77% / 85% / 26%
Global thresh 98% / 75% / 82% / 21% 98% / 75% / 82% / 21%
Local max 77% / 40% / 78% / 75% 73% / 31% / 71% / 73%
Naı̈ve 100% / 27% / 52% / 5% 100% / 28% / 52% / 5%

Knowledge classifier Naı̈ve (selecting black)

Knowledge-based 77% / 98% / 65% / 86% 86% / 96% / 73% / 80%
Local thresh 98% / 87% / 84% / 29% 99% / 79% / 86% / 30%
Global thresh 97% / 84% / 83% / 22% 99% / 78% / 83% / 25%
Local max 77% / 43% / 77% / 73% 71% / 33% / 70% / 71%
Naı̈ve 100% / 31% / 52% / 6% 100% / 26% / 52% / 4%

(Each cell contains the percentage for (road recall / road precision / intersec-
tion recall / intersection precision)

7.7.7 Best Combination

To determine the best combination of pre-processing and post-processing methods
they are combined and run over the ground truth set to see which combination
produces the best results. The four pre-processing methods: k-Nearest Neighbors,
Class Conditional Density Classifier, Knowledge Based Classifier and the naı̈ve
method (selecting all black) are each run against the five post-processing methods:
Knowledge Based Approach, Local Thresholding, Global Thresholding, Local
Maxima and the naı̈ve method (selecting everything above 0 as a curve). This yields
80 results, (20 combinations and 4 results for each combination).

Table 7.10 shows the results of the test. k-Nearest Neighbors as a pre-processing
method and Knowledge-based Approach as a post-processing method performed
the best with a road recall of 92%, road precision of 95%, intersection recall of 82%
and intersection precision of 80%. For a 95% confidence interval the road recall was
[92.47%,94.75%]± 0.14%, the road precision was [94.13%,96.33%]± 0.10%, the
intersection recall was [78.91%,85.51%] ± 3.29% and the intersection precision
was [76.31%,82.99%] ± 2.89%.

7.7.8 Perfect Data

To determine the affects of post-processing method and the tensor voting system on
perfect data the framework was run on the set of ground truth as input. Table 7.11
demonstrates the results of each method run on the ground truth, against the ground
truth. The pre-processing methods were not compared or used in the perfect data
analysis since the ground truth images are already labeled with the roads, since
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Table 7.11 Comparison of post-processing techniques with tensor voting on
perfect data

Method RR RP IR IP

Knowledge-based 94% 100% 80% 86%
Local Thresh 100% 98% 86% 46%
Global Thresh 100% 96% 83% 36%
Local Max 80% 77% 75% 72%
Naı̈ve 100% 37% 52% 8%

(RR, road recall; RP, road precision; IR, intersection recall; IP, intersection
precision)

pre-processing methods use histogram models to determine initial estimates of
labels they are not used.

The results show better recall and precision than any other method or combi-
nation of methods that are examined here. The precision of some methods are
considerably low due to minor road noise which is introduced by the post-processing
methods that created significant intersection precision problems. The naı̈ve, global
and local thresholding have this problem; however, the knowledge based approach
did considerably better at not introducing any noise.

7.7.9 No Text

Extraction of roads is complicated by features in the raster image which have the
same texture as roads. Text identifying meta-data in the map has similar (if not the
same) texture as roads, and to extract these a method which relies on structure rather
than texture is necessary. To compute the effect of text on the ground truth, the text
was manually removed from each sample image and re-run on the ground truth.
Table 7.12 shows the results (Recall and Precision) of the samples once text has
been manually removed.

Overall, removing the text from the map data increased the recall by 1% for roads
and 2.5% for intersections, the precision wasn’t significantly affected (less than 1%
difference). The best combination was still k-Nearest Neighbors and Knowledge-
based Approach for the pre-processing and post-processing systems. The road recall
was 94%, the road precision was 95%, the intersection recall was 83% and the
intersection precision was 80%.

7.7.10 Comments

The quantitative examination of pre-processing and post-processing systems showed
k-nearest neighbors and the knowledge-based approach to be the best combination
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Table 7.12 Comparison of pre-processing and post-processing methods run on
ground truth images without text

k-Nearest neighbors Class conditional classifier

Graph search 94% / 95% / 83% / 80% 83% / 77% / 71% / 80%
Local thresh 99% / 76% / 85% / 26% 99 % / 76% / 85% / 26%
Global thresh 99% / 75% / 81% / 21% 98% / 75% / 83% / 22%
Local max 77% / 40% / 78% / 75% 73% / 31% / 71% / 73%
Naı̈ve 100% / 26% / 52% / 5% 100% / 27% / 52% / 5%

Knowledge classifier Naı̈ve (selecting black)

Graph search 80% / 85% / 68% / 80% 89% / 96% / 78% / 84%
Local thresh 98% / 87% / 84% / 29% 99% / 79% / 87% / 31%
Global thresh 98% / 84% / 83% / 23% 98% / 77% / 84% / 25%
Local max 77% / 42% / 78% / 73% 72% / 33% / 71% / 71%
Naı̈ve 100% / 30% / 52% / 5% 100% / 25% / 52% / 5%

(road recall / road precision / Int. recall / Int. precision)

found. The text in the raster maps had a significant impact on precision especially on
intersections but did not change the results of recall dramatically. Interestingly, the
Knowledge-based Classifier as a pre-processing method was found to be the best
pre-processing method when no post-processing method or tensor voting system
was used. However, when run in combination with others it didn’t perform as well as
other pre-processing methods. The reasons behind this are somewhat complicated,
the Knowledge-based Classifier produced a larger amount of sparse noise in the
images than any other method which caused the tensor voting system and some post-
processing systems to inaccurately identify curves. While both the Class Condition
Classifier and k-Nearest Neighbors both were almost as effective but performed
worse in the independent pre-processing analysis, neither introduced the same type
of noise (it was more dense rather then sparse) which affects the tensor voting
system in a way which instead of removing the noise, actually exaggerates it.

Dynamically adjusting the σ and c parameters for the tensor voting produced
insignificant results. The σ was varied from 4 to 20 by a dynamic σ system
described previously, the results of dynamically adjusting the σ however were
somewhat irrelevant to the overall performance only affecting the average recall
and precision by ± 1% . Dynamically adjusting the c value for the tensor voting
actually produced worse performance. The average decline in performance over all
methods was 18.3%. This was due to slight variations in the tangent direction for
each tensor in the field. If a slight variation occurs while the c prefers a stick vote it
tends to produce misaligned roads and lines between points in the final curve map
produced.
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Fig. 7.30 Sample of
intersecting roads that are too
close

7.8 Conclusions and Future Work

A method of k-nearest neighbors, tensor voting and the knowledge based approach
produced the best results for both roads and intersections. k-nearest neighbors
showed a unique ability to overcome noise, variances in texture for features and
to produce smooth results for the tensor voting system. The tensor voting system
showed significant capabilities for filling gaps, removing noise and finding accurate
junctions in the output raster image. The knowledge based approach was most
effective at producing unit width binary raster map from the output curve of the
tensor voting system.

The runtime performance of the system was decent, the real time to run the tensor
voting on a 200x200 area was 22 seconds on average on a Pentium Dual Core 2.9ghz
processor running Matlab. The total runtime of the system was 60.1 seconds for
a 200x200 area. It should be mentioned that the implementation of this was not
optimized and significant runtime performances could be made through different
languages and optimizations.

The largest problems with extracting features was preserving features close
together within the raster map. Nearly every method investigated was unable to
properly segment features when they became closely grouped with the exception of
the knowledge-based classifier which qualitatively did the best job at this. Another
significant problem was roads which intersect and are at a small angle to each other
or have fairly thick lines that must be thinned. Figure 7.30 shows a road in the
lower right hand corner which intersects with another at a small angle and has
thick overlapping lines. When this occurs instead of forming one intersection the
tensor voting system curves the two roads together prematurely and produces two
intersections. The output of the tensor voting system is shown in Fig. 7.31 which
demonstrates how the intersection is broken in two.

Text is also a significant challenge to overcome in the raster maps. The text
can appear in any orientation, can have different font types, seems to be bolder in
some parts then others, overlaps existing features, has the same texture as features
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Fig. 7.31 Sample of the
output from tensor voting and
post-processing method for
intersecting roads that are too
close

in the raster and has various sizes. In order to over come this, either a method
using structural analysis is necessary, or a test recognition and removal step should
precede road analysis.



Chapter 8
Other Semantic Feature Segmentation

The automatic classification of semantic classes1 (background, vegetation, roads,
water, political boundaries, iso-contours) in raster map images still poses significant
challenges. We describe and compare the results of three unsupervised classification
algorithms: (1) k-means, (2) graph theoretic (GT), and (3) expectation maximization
(EM). These are applied to USGS raster map images, and performance is measured
in terms of the recall and precision as well as the cluster quality on a set of map
images for which the ground truth is available. Across the six classes studied here,
k-means achieves good clusters and an average of 78% recall and 70% precision;
GT clustering achieves good clusters and 83% recall with 74% precision. Finally,
EM forms very good clusters and has an average 86% recall and 71% precision.

8.1 Introduction

Digital maps contain a wealth of information which can be used for a variety of
applications, including the analysis of cultural features, topographical terrain shape,
land use classes, transportation networks, or maps can be registered (conflated)
with aerial images in order to localize and identify photo imagery structures.
Unfortunately, raster map images are typically encoded in such a way that semantic
features are difficult to extract due to noise, error or overlapping features. Semantic
features of interest include roads, road intersections, water regions, vegetation,
political boundaries, and iso-elevation contours. This is still a difficult problem,
although various techniques have been proposed in the past [6, 95, 132]. We have
worked on road segmentation and road intersection detection [45, 72].

1This chapter is a modified version of “Automatic Segmentation of Semantic Classes in Raster
Map Image,” [46] contributed by Thomas C. Henderson, Trevor Linton, Sergey Potupchik and
Andrei Ostanin.

T.C. Henderson, Analysis of Engineering Drawings and Raster Map Images,
DOI 10.1007/978-1-4419-8167-7 8, © Springer Science+Business Media New York 2014
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Fig. 8.1 Example USGS map sub-image (200x200)

Our goal is to achieve a semantic segmentation of an arbitrary raster map image
through the use of unsupervised classification algorithms. An example USGS map
sub-image is shown in Fig. 8.1. We are interested in six basic classes:

• Background
• Vegetation
• Roads
• Water
• Political Lines
• Iso-contours

Figure 8.2 shows the ground truth for these classes for the map in Fig. 8.1.

8.2 Method

The ground truth was determined using a knowledge-based analysis of a set of sub-
images (200x200 pixels) taken from ten USGS map images. These maps use six
colors (black, white, blue, red, brown, green), and are given as indexed images
(i.e., the colors have indexes 0,1,2,3,4,5). The classification analysis process is
shown in Fig. 8.3. The index histogram is based on a w×w window at each pixel.
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Fig. 8.2 Ground truth classes from example image

Fig. 8.3 Segmentation analysis process

The cluster centers are the representative histogram for a class, and the covariance
matrix gives the variation between the colors for that class. These models are found
by using a subset of n samples from the index histogram image. The number of
classes may be pre-defined (as with k-means) or determined automatically by the
method (e.g., GT). Thus, the parameters of study across the three algorithms are w,
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the histogram window size, n, the number of samples used to construct the model,
and k, the number of classes sought.

The quality measures for the class models are defined in terms of:

• the cluster inter-center distances where, in general, a greater value is better, and
• the distances of points in the cluster from the center where a smaller value is

better.

As for the quality of the classification result, recall and precision are defined as:

recall =
| relevant ∩ retrieved |

| relevant |

precision =
| relevant ∩ retrieved |

| retrieved |

where relevant is the set of ground truth pixels in a class and retrieved is the set
of pixels segmented into that class by the algorithm. The general layout of the
classification process is:

Algorithm: Classification Test Process

for each test image
for each w in Window_sizes

for each n in Sample_sizes
for each k in Number_of_classes

Obtain class centers (means and covariances)
Compute class quality
Compute recall and precision

end
end

end
end

Compute statistics over all test images

The algorithms under study include k-means, GT and EM. k-means initially selects k
random centers, then alternates between assigning points (i.e., histogram vectors) to
the nearest center and calculating the centers as the means of the points in the cluster.
The graph theoretic method forms an affinity measure between all sample points
(e.g., exp−|p1−p2|), then obtains the eigenvalues and eigenvectors of that matrix;
finally, the eigenvectors serve to classify pixels in each class. The EM algorithm
alternates between the expectation calculation step and the maximization step to
determine the set of classes. See [37] for more details on these three methods.

The centers and covariances are found for each classification algorithm by
computing the mean of the sample points segmented into a class, and the covariance
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of those points. Although these are produced directly by k-means and EM, this is
done after the fact for GT based on the set of points in the sample.

The map image is classified by simply labeling each pixel according to the
closest center to the pixel’s index color histogram. Note that the method cannot
know which, if any, of its discovered classes correspond to ground truth classes.
Therefore, we determine the recall and precision by mapping each discovered class
to the nearest (Euclidean distance) ground truth class mean histogram vector.

8.3 Data

Here we give the results of the Algorithm Classification Test on the three algorithms.
The possible values for the parameters were:

• k-means:

w ∈ {1,3,5}

n ∈ {1000,2000,3000}

k ∈ {6,8,10}

• Expectation Maximization (EM)

w ∈ {1,3,5}

n ∈ {1000,2000,3000}

k ∈ {6,8,10}

• Graph Theoretic

w ∈ {1,3,5}

n ∈ {25,50,75}

s ∈ {0.1,10,20}

These w values correspond to a single pixel (w = 1) up to a window that almost
always includes background with any linear feature. The values of n range from
about 25% of linear features in an average 200 × 200 sub-image, up to the full
number of linear features in a typical sub-image. Of course, there is no guarantee
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Table 8.1 k-means ranked parameter combinations (first three values per row), followed
by average recall (over all classes all images), average precision, and sum of average recall
and precision

w n k Mean recall Mean precision Recall + precision

1 2,000 8 0.78 0.70 1.48
1 3,000 10 0.78 0.70 1.48
1 2,000 10 0.77 0.70 1.47
1 1,000 10 0.78 0.69 1.47
1 3,000 6 0.79 0.67 1.46
1 1,000 6 0.80 0.66 1.46
1 3,000 8 0.78 0.68 1.46
1 2,000 6 0.80 0.66 1.46
1 1,000 8 0.77 0.68 1.45
3 1,000 10 0.59 0.54 1.13
3 2,000 10 0.58 0.53 1.12
3 2,000 8 0.59 0.52 1.11
3 3,000 10 0.58 0.53 1.11
3 1,000 8 0.59 0.52 1.11
3 3,000 6 0.60 0.49 1.09
3 1,000 6 0.60 0.49 1.09
3 2,000 6 0.60 0.49 1.09
3 3,000 8 0.58 0.51 1.09
5 2,000 10 0.49 0.45 0.93
5 3,000 6 0.52 0.42 0.93
5 1,000 10 0.49 0.45 0.93
5 2,000 8 0.49 0.44 0.93
5 3,000 10 0.48 0.44 0.93
5 1,000 6 0.50 0.42 0.92
5 1,000 8 0.49 0.43 0.92
5 2,000 6 0.50 0.41 0.91
5 3,000 8 0.48 0.42 0.91

that pixels in a linear feature will be selected as samples. The number of classes of
interest is six; however, not all classes may be present in a sub-image; moreover,
pixels at the boundary of two classes actually represent a different class (e.g.,
vegetation-water boundary). Finally, the s value is a distance scaling measure in
the graph theoretic method which controls the scale of the affinity.

There are 27 combinations of w, n, and k/s values. Tables 8.1–8.3 give the
parameters of the top performing combinations and the recall and precision values
averaged over all classes and all images. Figure 8.1 shows an example raster map
image of size 200× 200, while Fig. 8.2 shows the ground truth for this image.
Figure 8.4 shows the classes found by k-means; Fig. 8.5 shows the graph theoretic
classes, and Fig. 8.6 shows the EM classes.
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Table 8.2 Graph theoretic ranked parameter combinations (first three values per row),
followed by average recall (over all classes all images), average precision, and sum of
average recall and precision

w n s Mean recall Mean precision Recall + precision

1 50.0000 0.1000 0.8282 0.7414 1.5697
1 25.0000 0.1000 0.8282 0.7414 1.5696
1 75.0000 0.1000 0.8282 0.7414 1.5696
3 25.0000 0.1000 0.8203 0.6895 1.5098
3 50.0000 0.1000 0.7786 0.6798 1.4585
3 75.0000 0.1000 0.7511 0.6765 1.4276
1 75.0000 20.0000 1.0000 0.2662 1.2662
5 25.0000 0.1000 0.6680 0.5798 1.2478
1 75.0000 10.0000 1.0000 0.2330 1.2330
5 25.0000 10.0000 0.6439 0.5890 1.2329
5 75.0000 10.0000 0.6375 0.5921 1.2295
1 50.0000 20.0000 1.0000 0.2228 1.2228
5 50.0000 10.0000 0.6343 0.5821 1.2164
1 50.0000 10.0000 1.0000 0.1998 1.1998
3 75.0000 20.0000 1.0000 0.1908 1.1908
1 25.0000 10.0000 1.0000 0.1897 1.1897
1 25.0000 20.0000 1.0000 0.1803 1.1803
3 50.0000 20.0000 1.0000 0.1793 1.1793
3 25.0000 20.0000 1.0000 0.1788 1.1788
5 50.0000 0.1000 0.6006 0.5613 1.1619
5 50.0000 20.0000 0.5122 0.6280 1.1402
5 75.0000 20.0000 0.4758 0.6354 1.1112
3 75.0000 10.0000 0.4547 0.6468 1.1016
5 75.0000 0.1000 0.5483 0.5504 1.0987
3 50.0000 10.0000 0.4402 0.6480 1.0881
3 25.0000 10.0000 0.4144 0.6662 1.0807
5 25.0000 20.0000 0.4384 0.6330 1.0713

8.3.1 Test Images

Figure 8.7 shows the ten test images used in the study.

8.4 Future Directions from this Work

The results show that the three clustering methods perform well for unsupervised
raster map image classification. Moreover, the optimal parameters all have the
window size set to 1× 1 (a single pixel). However, the models developed do a little
better than simply classifying each pixel based on its color which achieves recall of
80% and precision of 72% for a sum of 1.52; this is worse than graph theoretical
and EM, but better than k means.
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Table 8.3 Expectation maximization (EM) ranked parameter combinations (first three
values per row), followed by average recall (over all classes all images), average precision,
and sum of average recall and precision

w n k Mean recall Mean precision Recall + precision

1 3,000 8 0.8644 0.7054 1.5697
1 2,000 8 0.8681 0.6850 1.5532
1 3,000 10 0.8515 0.7011 1.5526
1 1,000 10 0.8482 0.7023 1.5505
1 2,000 10 0.8503 0.7001 1.5504
1 1,000 8 0.8549 0.6897 1.5446
1 1,000 6 0.8710 0.6719 1.5429
1 2,000 6 0.8784 0.6637 1.5421
1 3,000 6 0.8764 0.6628 1.5392
3 2,000 8 0.9550 0.2114 1.1664
3 3,000 10 0.9519 0.2123 1.1642
3 2,000 10 0.9518 0.2120 1.1638
3 1,000 8 0.9540 0.2093 1.1633
3 3,000 8 0.9568 0.2063 1.1630
3 1,000 6 0.9577 0.2034 1.1611
3 1,000 10 0.9509 0.2081 1.1589
3 3,000 6 0.9599 0.1986 1.1584
3 2,000 6 0.9599 0.1948 1.1547
5 1,000 6 1.0000 0.0171 1.0171
5 1,000 8 1.0000 0.0171 1.0171
5 2,000 6 1.0000 0.0171 1.0171
5 3,000 6 1.0000 0.0171 1.0171
5 3,000 8 1.0000 0.0171 1.0171
5 2,000 8 0.9716 0.0176 0.9892
5 3,000 10 0.9541 0.0187 0.9728
5 1,000 10 0.9455 0.0186 0.9641
5 2,000 10 0.9408 0.0188 0.9596

The fact that a small number of samples can be used is also good; the graph
theoretic method must calculate the eigenvalues of an n× n affinity matrix, and
thus, the lower n, the better.

Of course, these are relatively simple raster map images with only six colors.
It is necessary to study these methods on map images with more colors. This will
increase the length of the histogram vectors unless some form of color clustering is
performed first to reduce the number of color classes. This may require conversion to
a color representation with a reasonable distance metric between colors (i.e., where
various types of blue are close in the metric space).

Another issue worthy of study is a more informed method to select samples.
It may be worthwhile to ensure that samples represent the variety of classes in the
image (as opposed to the standard sampling goal of proportional representation of
the sampled population). It may be possible to use edge detection to distinguish class
boundary pixels or texture parameters to determine classes expressed as textures.
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Fig. 8.4 k-means segmentation results

Of course, edge and texture information may be included in the feature vector (in
addition to the color histogram).

Finally, all these classification methods have a variety of possibilities in algo-
rithm implementation. Initialization methods, re-starting empty classes, thresholds,
and distance measures all offer a number of options which should be studied.

8.5 Other Semantic Segmentation Approaches

8.5.1 Water Segmentation

Linear waterways (e.g., rivers, creeks, canals, etc.) are mainly comprised of BLUE
pixels (index equals 2 in USGS raster images). However, many other linear features
overlay water in the map (e.g., iso-contours). In addition, names of waterways,
lakes, etc. are also BLUE, and must be distinguished from waterways proper. (Text
is handled separately.) Finally, BLUE pixels may be found in other features, like
primary highways, various textures, and even as noise pixels.
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Fig. 8.5 GT segmentation results

Water Segmentation Algorithms

The segmentation of linear water features is performed as follows:

• If the BLUE or WHITE pixels constitute the majority in a (5x5) window, and
the pixel is BLUE, then the pixel is classified as water.

• A median filter is run over the water image.
• For every BLUE pixel in the original map image, if there are water pixels in its

5x5 neighborhood in the water image, then it, too, is classified as water.
• Every connected component of water pixels is encoded as a water segment if

there are more than 10 pixels in the component.

This produces a segment for most linear blue features in the map image.
Figure 8.8 shows a sub-image from the image O34086E5 (rows 1820:2728, cols
879:1875); Fig. 8.9 shows the extracted linear water features.

An algorithm has been developed to find single width pixel paths through these
segments as well.

Still remaining to be done is:

• segment vectorization
• determination of major branch points in linear water segments
• water feature segmentation (e.g., lake, marsh, river textures)
• blue word segmentation and interpretation.
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Fig. 8.6 EM segmentation results

Water Classification Results

The process described above has been applied to the set of test images, and the
results are excellent.

8.5.2 Geo-political Boundary Segmentation

As described in Appendix C, there are several possible types of geo-political
boundaries. Here we describe the segmentation boundaries which extend across the
entire map. Geo-political lines are expected to run horizontally or vertically across
the entire image (although this is not always the case). The basic algorithm at this
point is:

• Find vertical and horizontal lines that have large extent.
• Adjust these lines.
• Fill in missing segments.

Figure 8.10 shows a subimage of image F34086A1 (rows 3000:3700 and cols
3000:3700), and Fig. 8.11 shows the geo-political lines segmented from it. We are
currently working on extending the algorithm to work on a broader class of images.
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Fig. 8.7 Ten test images

8.5.3 Iso-Contour Segmentation

Iso-contours indicate constant level elevation in the map. Several types exist—see
Appendix C. These are usually comprised of BROWN pixels (index equals 4 in
USGS color set).

Iso-Contour Segmentation Algorithms

Currently, the iso-contour segmentation consists of simply extracting the BROWN
pixels. Figure 8.12 shows a sub-window of image F34086A1, and Fig. 8.13 shows
the extracted iso-contours.

8.5.4 Road Marker Segmentation

Road markers in USGS maps are:
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Fig. 8.8 Subimage from image O34086E5

Fig. 8.9 Water features

• State Highway Markers: These are round or elliptical shaped (see Fig. 8.14).
• US Highway Markers: The form of this marker is shown in Fig. 8.15.
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Fig. 8.10 Subimage for extraction of geo-political lines

• Interstate Highway Markers: The form of this marker is shown in Fig. 8.16

Figure 8.17 shows a subimage of a map with the three types of markers.
These are segmented using the Hough shape transform. Figure 8.18 shows the

results on the previous image.

8.6 Texture Segmentation

Texture is used in the map to denote various classifications of land use and
topography.

8.6.1 Texture Knowledge-base

The texture knowledge-base characterizes all known textures in terms of:

• Samples
• Classification Techniques
• Contextual Information.
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Fig. 8.11 Geo-political boundaries

8.6.2 Texture Classification Methods

Currently, textures are segmented by means of a set of sample textures. Texture
features are computed on these samples, and a simple distance measure is used as a
classifier.

8.6.3 Long-term Texture Classification Strategy

The long-term classification strategy in terms of adding new textures as needed,
involves a semi-automated procedure:

• User designates texture regions of interest in map images in the training set of
images.

• System trains automatically to obtain a classifier.
• System returns classification result.
• If accepted by user, the new texture is added to the Texture Knowledge-base.
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Fig. 8.12 Subwindow of F34086A1

Fig. 8.13 Iso-contours
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Fig. 8.14 State highway road
marker

Fig. 8.15 US highway road
marker

Fig. 8.16 Interstate highway
road marker
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Fig. 8.17 Subimage of map with all types of road markers

Fig. 8.18 Segmented road
markers



Appendix A
Rewrite Rules for Grammar G

Rule 1
pointer ray1 := pointer ray
Rule 2
pointer ray2 := pointer ray
Rule 3
pointerarc ray1 := pointerarc ray
Rule 4
pointerarc ray2 := pointer ray
Rule 5
line segment1 := line segment
Rule 6
line segment2 := line segment
Rule 7
line segment3 := line segment
Rule 8
text1 := text
Rule 9
text2 := text
Rule 10
text comb := text1 + text2
where

near(text1,text2)
Rule 11
text final := text
Rule 12
text final := text comb
Rule 13
symmetric pointer pair in := pointer ray1 + pointer ray2

T.C. Henderson, Analysis of Engineering Drawings and Raster Map Images,
DOI 10.1007/978-1-4419-8167-7, © Springer Science+Business Media New York 2014
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where
collinear(pointer ray1,pointer ray2)
between(tail(pointer ray1),head(pointer ray1),head(pointer ray2))
between(tail(pointer ray2),head(pointer ray2),head(pointer ray1))

Rule 14
symmetric pointer pair out := pointer ray1 + pointer ray2
where

collinear(pointer ray1 , pointer ray2)
between(head(pointer ray1),tail(pointer ray1),tail(pointer ray2))
between(head(pointer ray2),tail(pointer ray2),tail(pointer ray1))

Rule 15
symmetric pointerarc pair in := pointerarc ray1 + pointerarc ray2
where

between(tail(pointerarc ray1),head(pointerarc ray1), head(pointerarc ray2))
between(tail(pointerarc ray2),head(pointerarc ray2),head(pointerarc ray1))

Rule 16
symmetric pointerarc pair out := pointerarc ray1 + pointerarc ray2
where

between(head(pointerarc ray1),tail(pointerarc ray1),tail(pointerarc ray2))
between( head(pointerarc ray2),tail(pointerarc ray2),tail(pointerarc ray1))

Rule 17
dimension rays in := symmetric pointer pair in + text final
where

near(text final,head(ray1(symmetric pointer pair in)))
near(text final,head(ray2(symmetric pointer pair in)))

Rule 18
dimension rays out := symmetric pointer pair out + text final
where

near(text final,tail(ray1(symmetric pointer pair out)))
near(text final,tail(ray2(symmetric pointer pair out)))

Rule 19
dimension := dimension rays out
Rule 20
dimension := dimension rays in
Rule 21
dimension angle rays in := symmetric pointerarc pair in + text final
where

near(text final,head(ray1(symmetric pointerarc pair in)))
near(text final,head(ray2(symmetric pointerarc pair in)))

Rule 22
dimension angle rays out := symmetric pointerarc pair out + text final
where

near(text final,tail(ray1(symmetric pointerarc pair out)))
near(text final,tail(ray2(symmetric pointerarc pair out)))
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Rule 23
dimension angle := dimension angle rays out
Rule 24
dimension angle := dimension angle rays in
Rule 25
dimension set := line segment1 + line segment2 + dimension
where

touches(line segment1,head(ray1(dimension)))
touches(line segment2,head(ray2(dimension)))
perpendicular(line segment1, ray1(dimension))
perpendicular(line segment2, ray2(dimension))
[between(ray1(dimension),line segment1,ray2(dimension))]∧
[between(line segment1,ray1(dimension),line segment2)] ∨
[between(line segment1,ray1(dimension),ray2(dimension))]∧
[between(ray1(dimension),ray2(dimension),line segment2)]

Rule 26
angle set := line segment1 + line segment2 + dimension angle
where

touches(line segment1,head(ray1(dimension angle)))
touches(line segment2,head(ray2(dimension angle)))
[between(head(ray1(dimension angle)),

line segment1,head(ray2(dimension angle)))] ∧
[between(head(ray1(dimension angle)),

line segment2,head(ray2(dimension angle)))] ∨
[between(ray1(dimension angle),

line segment2,ray2(dimension angle))] ∧
[between(line segment1, ray1(dimension angle),line segment2)]

Rule 27
pointer ray extn := line segment + pointer ray
where

!parallel(line segment,pointer ray)
horizontal(line segment)
length(line segment) < 0.5*length(pointer ray)
touches(tail(pointer ray),line segment)

Rule 28
pointer line extn := line segment + pointer line
where

length(line segment) >MIN DIST
collinear(line segment,pointer line)
touchesEnd(end1(pointer line),line segment
!touches(end2(pointer line),line segment)
length(pointer line) + length(line segment) ==

length(pointer line + line segment)
Rule 29
pointerarc line extn := line segment + pointerarc line
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where
touches(tail(pointerarc line),line segment)
angleBetween(tail(pointerarc line),line segment) < 30

Rule 30
dimension set := line segment1 + line segment2 +
pointerarc line extn + text final
where

unequal(line segment1,line segment2)
touches(line segment1,line segment2)
!parallel(line segment1,line segment2)
touches(line segment1,head(ray1(dimension)))
touches(line segment2,tail(ray1(dimension)))
near(text final,ray2(dimension))
below(ray2(dimension),line segment2)
below(ray2(dimension),line segment2)

Rule 31
pointer line extn in circle := pointer line extn + circle
where

inCircle(ray1(pointer line extn),circle)
!inCircle(ray2(pointer line extn),circle)

Rule 32
check sign := line segment1 + line segment2
where

unequal(line segment1,line segment2,line segment3)
length(line segment3) ≥length(line segment1)
length(line segment3) ≥length(line segment2)
length(line segment1) ≥MIN LENGTH
length(line segment2) ≥MIN LENGTH
length(line segment1) <0.5*length(line segment2)
!parallel(line segment1,line segment2)
!parallel(line segment2,line segment3)
!parallel(line segment1,line segment3)
touchesEnd(line segment1,line segment2)
touchesMiddle(line segment1,line segment3)
touchesMiddle(line segment2,line segment3)

Rule 33
check pair := check sign + text final
where

near(text final,ray2(check sign))
above(text final,ray2(check sign))

Rule 34
dimension description := text final + pointer ray extn + circle
where

near(text final,tail(poiner ray extn))
touches(circle,head(pointer ray extn))
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!collinear(line segment,head(pointer ray extn))
intersectInMiddle(line segment,head(pointer ray extn))
between(text final,pointer ray extn,circle)

Rule 35
text in box := text + box
where

inBox(text,box)
Rule 36
text in box1 = text in box
Rule 37
text in box2 = text in box
Rule 38
text in box3 = text in box
Rule 39
one datum ref := text in box1 + text in box2 + text in box3
where

unequal(text in box1,text in box2)
unequal(text in box1,text in box3)
unequal(text in box2,text in box3)
between(text in box1,text in box2,text in box3)
touchesEnd(text in box1,text in box2)
touchesEnd(text in box2,text in box3)
collinear(text in box1,text in box2)
collinear(text in box2,text in box3)

Rule 40
datum ref := one datum ref
Rule 41
datum below text := text final + datum ref
where

near(text final,one datum ref )
below(text final,one datum ref )

Rule 42
dimension description := line segment + pointer ray extn + datum below text
where

length(line segment) >MIN LENGTH
!equal(line segment,pointer ray extn)
!parallel(line segment,ray1(pointer ray extn))
length(line segment) >MIN LENGTH
between(line segment,pointer ray extn,datum below text)
touches(head(ray1(pointer ray extn)),line segment)
touchesInMiddle(ray1(pointer ray extn),line segment)
near(tail(ray2(pointer ray extn)),side(datum below text))

Rule 43
dimension description := text final + pointer line extn in circle + line segment
where
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horizontal(line segment)
touchesEnd(line segment,tail(ray2(pointer line extn in circle)))
near(text final,line segment)

Rule 44
dimension description := pointer line extn in circle + datum below text
where

near(tail(ray2(pointer line extn in circle)),datum below text)
Rule 45
dashed lines := line segment1 + line segment2 + line segment3
where

length(line segment1) ≥MIN LENGTH
length(line segment3) ≥MIN LENGTH
unequal(line segment1,line segment2)
unequal(line segment2,line segment3)
unequal(line segment1,line segment3)
collinear(line segment1,line segment2)
collinear(line segment2,line segment3)
between(line segment1,line segment2,line segment3)
near(line segment1,head(line segment2))
near(line segment3,tail(line segment2))
length(line segment2) < 0.5*length(line segment1)
length(line segment2) < 0.5*length(line segment3)
length(line segment1) + length(line segment2) +

length(line segment3) >length(line segment1 + line segment3)
Rule 46
dash line1 := dashed lines
Rule 47
dash line2 := dashed lines
Rule 48
circle center dim := dash line1 + dash line2
where

unequal(dash line1,dash line2)
perpendicular(dash line1,dash line2)
divide(ray2(dash line1),ray2(dash line2))
bisect(ray2(dash line1),ray2(dash line2))

Rule 49
only graphics := graphics + dimension
where

graphics != dimension
Rule 50
dimension description := dimension set + only graphics
where

[near(head(dimension set), end1(only graphics))
∧ near(tail(dimension set), end2(only graphics))]



Appendix B
MNDAS User Manual

Thomas C. Henderson and Chimiao Xu

B.1 File and Code Organization

B.1.1 Introduction

The Matlab NonDeterministic Agent System (MNDAS) is an image analysis system
that produces interpretations of images of engineering drawings. For example,
Fig. B.1 shows a digitized CAD drawing image. The major goals of MNDAS are:

• to extract low level image features

– line segments
– arrows
– text
– boxes
– circles

• to extract higher-level annotation structures:

– dimensions
– title block
– materials list
– revisions list.

More details on how these algorithms work can be found in [44, 48, 50, 113].

B.1.2 MNDAS Organization

MNDAS is a collection of Matlab functions. These must be organized as follows:

• Matlab function files are placed in a directory; e.g., let’s call it: MNDAS main.
• a sub-directory must be created in MNDAS main; it must be called: playpen.

T.C. Henderson, Analysis of Engineering Drawings and Raster Map Images,
DOI 10.1007/978-1-4419-8167-7, © Springer Science+Business Media New York 2014
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Fig. B.1 Example digital image of an engineering drawing

• In the Matlab function: MNDAS driver, the global variable: DIR NAME must be
set to the full path name of the playpen directory.

Example:
We create a directory:

<˜> iam : cd tmp
<˜/tmp> iam : mkdir MNDAS_main
<˜/tmp> iam : cd MNDAS_main/
<˜/tmp/MNDAS_main> iam : pwd

/home/tch/tmp/MNDAS_main

In that directory, we create the playpen directory:

<˜/tmp/MNDAS_main> iam : mkdir playpen
<˜/tmp/MNDAS_main> iam : cd playpen/
<˜/tmp/MNDAS_main/playpen> iam : pwd
/home/tch/tmp/MNDAS_main/playpen
<˜/tmp/MNDAS_main/playpen> iam :
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Then, we move back into the MNDAS main directory:

<˜/tmp/MNDAS_main/playpen> iam : cd ..
<˜/tmp/MNDAS_main> iam :

Finally, we copy the Matlab MNDAS into the MNDAS main directory:

<˜/tmp/MNDAS_main> iam : copy <name of directory with
files>/* .

B.1.3 MNDAS Execution

To run MNDAS, it is necessary to start Matlab in the MNDAS main directory:

<˜/tmp/MNDAS_main> iam : matlab &

Then in the Matlab command window, call the MNDAS driver function:

>> MNDAS_driver

This starts the execution of the bf MNDAS system which will run until either:

1. a file with the name: FC DONE is created in the playpen directory, or
2. the Matlab process is terminated.

In order to analyze an image, it is necessary to copy it into the playpen directory.
For example:

copy /home/tch/tmp/drawing.tif /home/tch/tmp/
MNDAS_main/playpen

Once the file is there the MNDAS functions will automatically work on it.
NOTE: The image file must be a TIF image with extension .tif in order for
MNDAS to recognize it as an image.

B.2 Agents

B.2.1 Overview

The MNDAS framework provides a modular structure by allowing agents to be
added independently of others to the greatest extent possible. However, it is still
necessary for agents to understand how knowledge is communicated. The agent
execution is organized as follows shown in Fig. B.2.
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MNDAS_Driver

* Sets up globals
* Invokes MNDAS_exec

MNDAS_exec

* Loops forever
* Invokes agents in
   random order (but
   each called in loop)

Agentk 

Fig. B.2 General agent architecture

Agents are divided into categories with an associated set of numbers:

• Logistics: agents 1–100,
• Image Analysis: agents 101–500,
• Structural Analysis: agents 501–700,
• Miscellaneous: agents 701–1,000,

Table B.1 gives a brief description of each agent.

Table B.1 Agent
descriptions

Number Description

1 Halt system if file FC done exists
2 Provides GUI

101 Convert TIF image to base image
102 Thin binary image
105 Find branch points
104 Produce line mask image
105 Find straight line segments
120 Find circles
121 Find boxes
122 Find arrows
123 Find text
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B.2.2 Logistical Agents

Agent1: Terminate

Watches for the existence of a file named “FC done” and if it finds it, MNDAS will
halt operation.

Agent2: GUI

Provides interactive MNDAS GUI.

B.2.3 Image Processing Agents

Agent101: Convert TIF to MNDAS Base Image

Takes an arbitrary input image and, if necessary, produces a one-channel image in
which the lines are darker than the background.

Agent102: Thin

Thins a binary image.

Agent103: Branch Points

Finds branch points in a binary image.

Agent104: Line Mask

Produces line mask image.

Agent105: Line Segments

Finds straight line segments in image.
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Agent120: Circles

Finds circles.

Agent121: Boxes

Finds boxes.

Agent122: Arrows

Finds arrows.

Agent123: Text

Finds text.

B.2.4 Agent Communication

Upon completion of its work, an agent will create a data structure that contains
information about the processing that has been performed. The agent then uses the
Matlab save command to write the variable out to a file. The convention for file
names is:

<filename> := a<agent_number>f<file_number>.mat
<agent_number> := current agent’s number
<file_number> := integer count of files written

by this agent

E.g., agent103 will produce files: a103f1.mat, a103f2.mat, a103f3.mat, etc. in that
order as it works on new inputs.

Inside each file is a variable with the name: a variables. Multiple items may
be stored in this variable, and this is done as a vector. Each element of the vector
variable has four fields:

• data type (int): type of variable
• sub type (int): usage of variable
• role type (int): role of variable
• value (data type specifies type): value
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The data type is specified by one of the following:

DT_IMAGE = 1;
DT_STRING = 2;
DT_FLOAT = 3;
DT_TIF_IMAGE = 4;
DT_SEGS = 5;
DT_POINTS = 6;
DT_CIRLCES = 7;
DT_BOXES = 8;
DT_PTR_RAYS = 9;
DT_TEXT = 10;

The sub type is one of:

ST_THRESHOLD = 1;
ST_RAW_IMAGE = 2;
ST_INIT_IMAGE = 3;
ST_THIN_IMAGE = 4;
ST_BRANCH_IMAGE = 5;
ST_NONBRANCH_IMAGE = 6;
ST_SEGS_IMAGE = 7;
ST_SEGS_LIST = 8;
ST_POINTS_LIST = 9;
ST_STRAIGHT_SEGS_LIST = 10;
ST_CIRCLES_LIST = 11;
ST_BOXES_LIST = 12;
ST_PTR_RAY_LIST = 13;
ST_TEXT_LIST = 14;
ST_MASK_IMAGE = 15;

Finally, the role type is on e of:

RT_IN = 1;
RT_OUT = 2;
RT_PARAMETER = 3;

An agent looks at files in the playpen directory, and for each unread file, the agent
checks if the data type of the output variable matches the input type of the agent, it
will process the data to produce a new result. Agents keep track of which files have
been processed so as not to duplicate work.



Appendix C
Color Information from Legend of USGS Map

USGS maps have a well-defined structure which is exploited here to extract
semantic contents. Figure C.1 shows the legend of USGS map F34086E1.TIF,
pixels:

map(4001 : end− 200,9541 : end)

The elements of the legend are described in terms of their location in the map
image, and their constituent (non-white) pixel values. Note that the pixel values in
a USGS image are coded as follows (a 5-color map uses black and the indexes 1
through 5):

Indexed Pixel Value Color R Value G Value B Value
0 Black 0 0 0
1 White 255 255 255
2 Blue 0 151 164
3 Red 203 0 23
4 Brown 131 66 37
5 Green 201 234 157
6 Purple 137 51 128
7 Yellow 255 234 0
8 Light Blue 167 226 226
9 Light Red 255 184 184

10 Light Purple 218 179 214
11 Light Gray 209 209 209
12 Light Brown 207 164 142

T.C. Henderson, Analysis of Engineering Drawings and Raster Map Images,
DOI 10.1007/978-1-4419-8167-7, © Springer Science+Business Media New York 2014
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Fig. C.1 Legend of a USGS
map

C.1 Primary Highways

Location in legend image: legend(213 : 230,718 : 982)
Number of pixels of given color in feature.



C.4 Other Street 215

Indexed Pixel Value Color Number in Subimage
0 Black 1030
1 White 2925
2 Blue 7
3 Red 456
4 Brown 352

5–12 Green 0

C.2 Secondary Highways

Location in legend image: legend(254 : 270,719 : 983)
Number of pixels of given color in feature.

Indexed Pixel Value Color Number in Subimage
0 Black 533
1 White 3300
2 Blue 1
3 Red 366
4 Brown 305

5–12 Green 0

C.3 Light Duty Road

Location in legend image: legend(300 : 312,724 : 981)
Number of pixels of given color in feature.

Indexed Pixel Value Color Number in Subimage
0 Black 807
1 White 2404
2 Blue 111
3 Red 0
4 Brown 12
5 Green 20

6–12 0

C.4 Other Street

Location in legend image: legend(344 : 354,722 : 837)
Number of pixels of given color in feature.
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Indexed Pixel Value Color Number in Subimage
0 Black 163
1 White 1060
2 Blue 45
3 Red 0
4 Brown 8

5–12 0

C.5 Other Street: Trail

Location in legend image: legend(345 : 353,867 : 979)
Number of pixels of given color in feature.

Indexed Pixel Value Color Number in Subimage
0 Black 137
1 White 846
2 Blue 24
3 Red 0
4 Brown 10

5–12 Green 0

C.6 Route Marker Interstate

Location in legend image: legend(362 : 410,722 : 777)
Number of pixels of given color in feature.

Indexed Pixel Value Color Number in Subimage
0 Black 0
1 White 2478
2 Blue 0
3 Red 159
4 Brown 107

5–12 Green 0

C.7 Route Marker US

Location in legend image: legend(360 : 409,825 : 879)
Number of pixels of given color in feature.



C.10 Railroad: Narrow 217

Indexed Pixel Value Color Number in Subimage
0 Black 0
1 White 2520
2 Blue 0
3 Red 147
4 Brown 83

5–12 Green 0

C.8 Route Marker State

Location in legend image: legend(362 : 409,932 : 982)
Number of pixels of given color in feature.

Indexed Pixel Value Color Number in Subimage
0 Black 0
1 White 2233
2 Blue 0
3 Red 139
4 Brown 76

5–12 Green 0

C.9 Railroad: Standard

Location in legend image: legend(423 : 435,721 : 837)
Number of pixels of given color in feature.

Indexed Pixel Value Color Number in Subimage
0 Black 238
1 White 1249
2 Blue 16
3 Red 0
4 Brown 18

5–12 Green 0

C.10 Railroad: Narrow

Location in legend image: legend(421 : 435,867 : 980)
Number of pixels of given color in feature.
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Indexed Pixel Value Color Number in Subimage
0 Black 243
1 White 1422
2 Blue 21
3 Red 0
4 Brown 24

5–12 Green 0

C.11 Bridge

Location in legend image: legend(439 : 472,721 : 808)
Number of pixels of given color in feature.

Indexed Pixel Value Color Number in Subimage
0 Black 308
1 White 2250
2 Blue 272
3 Red 92
4 Brown 70

5–12 Green 0

C.12 Overpass

Location in legend image: legend(438 : 480,858 : 881)
Number of pixels of given color in feature.

Indexed Pixel Value Color Number in Subimage
0 Black 119
1 White 747
2 Blue 2
3 Red 120
4 Brown 44

5–12 Green 0

C.13 Tunnel: Road

Location in legend image: legend(496 : 514,728 : 850)
Number of pixels of given color in feature.



C.15 Builtup Area 219

Indexed Pixel Value Color Number in Subimage
0 Black 356
1 White 1894
2 Blue 48
3 Red 0
4 Brown 18
5 Green 21

6–12 0

C.14 Tunnel: Railroad

Location in legend image: legend(490 : 511,865 : 982)
Number of pixels of given color in feature.

Indexed Pixel Value Color Number in Subimage
0 Black 282
1 White 2277
2 Blue 24
3 Red 0
4 Brown 13

5–12 0

The locations of the next features are given in terms of a subimage of the legend
(see Fig. C.2):

map(4500 : 5500,9541 : end)

C.15 Builtup Area

Location in legend image: legend(21 : 64,720 : 852)
Number of pixels of given color in feature.

Indexed Pixel Value Color Number in Subimage
0 Black 1439
1 White 3774
2 Blue 337
3 Red 0
4 Brown 302

5–12 0
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Fig. C.2 Sub-legend of a
USGS map

C.16 National Boundary

Location in legend image: legend(127 : 145,721 : 981)
Number of pixels of given color in feature.

Indexed Pixel Value Color Number in Subimage
0 Black 784
1 White 4100
2 Blue 45
3 Red 0
4 Brown 30

5–12 0

C.17 State Boundary

Location in legend image: legend(169 : 184,726 : 981)
Number of pixels of given color in feature.



C.20 Landgrant Boundary 221

Indexed Pixel Value Color Number in Subimage
0 Black 656
1 White 3333
2 Blue 59
3 Red 0
4 Brown 48

5–12 0

C.18 County Boundary

Location in legend image: legend(213 : 226,726 : 982)
Number of pixels of given color in feature.

Indexed Pixel Value Color Number in Subimage
0 Black 650
1 White 2830
2 Blue 70
3 Red 0
4 Brown 48

5–12 0

C.19 National/State Reservation Boundary

Location in legend image: legend(253 : 267,724 : 981)
Number of pixels of given color in feature.

Indexed Pixel Value Color Number in Subimage
0 Black 457
1 White 3362
2 Blue 31
3 Red 0
4 Brown 20

5–12 0

C.20 Landgrant Boundary

Location in legend image: legend(297 : 309,724 : 982)
Number of pixels of given color in feature.
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Indexed Pixel Value Color Number in Subimage
0 Black 0
1 White 3164
2 Blue 0
3 Red 104
4 Brown 99

5–12 0

C.21 US Public Lands Survey: Range

Location in legend image: legend(337 : 352,720 : 840)
Number of pixels of given color in feature.

Indexed Pixel Value Color Number in Subimage
0 Black 0
1 White 1640
2 Blue 0
3 Red 215
4 Brown 81

5–12 0

C.22 US Public Lands Survey: Section

Location in legend image: legend(337 : 354,870 : 984)
Number of pixels of given color in feature.

Indexed Pixel Value Color Number in Subimage
0 Black 0
1 White 1933
2 Blue 0
3 Red 74
4 Brown 63

5–12 0

C.23 Range, Township: Section Line

Location in legend image: legend(379 : 396,724 : 844)
Number of pixels of given color in feature.



C.26 Pipeline 223

Indexed Pixel Value Color Number in Subimage
0 Black 0
1 White 1959
2 Blue 0
3 Red 142
4 Brown 77

5–12 0

C.24 Range, Township: Protracted

Location in legend image: legend(379 : 394,870 : 984)
Number of pixels of given color in feature.

Indexed Pixel Value Color Number in Subimage
0 Black 0
1 White 1737
2 Blue 0
3 Red 51
4 Brown 52

5–12 0

C.25 Power Transmission Line

Location in legend image: legend(423 : 435,723 : 841)
Number of pixels of given color in feature.

Indexed Pixel Value Color Number in Subimage
0 Black 246
1 White 1251
2 Blue 26
3 Red 0
4 Brown 24

5–12 0

C.26 Pipeline

Location in legend image: legend(421 : 433,865 : 981)
Number of pixels of given color in feature.
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Indexed Pixel Value Color Number in Subimage
0 Black 178
1 White 1304
2 Blue 11
3 Red 0
4 Brown 28

5–12 0

C.27 Distorted Surface: Strip Mine, Lava

Location in legend image: legend(686 : 720,729 : 844)
Number of pixels of given color in feature.

Indexed Pixel Value Color Number in Subimage
0 Black 4
1 White 3161
2 Blue 0
3 Red 0
4 Brown 895

5–12 0

C.28 Distorted Surface: Sand

Location in legend image: legend(687 : 722,894 : 985)
Number of pixels of given color in feature.

Indexed Pixel Value Color Number in Subimage
0 Black 3
1 White 2941
2 Blue 0
3 Red 0
4 Brown 368

5–12 0

C.29 Contour: Index

Location in legend image: legend(729 : 764,726 : 819). Must set (11 : end,74 :
end) to 1 since there’s some extra line.



C.31 Contour: Supplementary 225

Number of pixels of given color in feature.

Indexed Pixel Value Color Number in Subimage
0 Black 7
1 White 3542
2 Blue 0
3 Red 0
4 Brown 211

5–12 0

C.30 Contour: Intermediate

Location in legend image: legend(725 : 759,796 : 892). Must set (1 : 14,1 : 20) to
1 since there’s some extra line.
Number of pixels of given color in feature.

Indexed Pixel Value Color Number in Subimage
0 Black 3
1 White 3253
2 Blue 0
3 Red 0
4 Brown 139

5–12 0

C.31 Contour: Supplementary

Location in legend image: legend(723 : 761,894 : 982)
Number of pixels of given color in feature.

Indexed Pixel Value Color Number in Subimage
0 Black 0
1 White 3343
2 Blue 0
3 Red 0
4 Brown 128

5–12 0
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C.32 Stream Lake: Perennial

Location in legend image: legend(807 : 848,730 : 846)
Number of pixels of given color in feature.

Indexed Pixel Value Color Number in Subimage
0 Black 28
1 White 3949
2 Blue 937
3 Red 0
4 Brown 0

5–12 0

C.33 Area to be Submerged

Location in legend image: legend(890 : 927,730 : 844)
Number of pixels of given color in feature.

Indexed Pixel Value Color Number in Subimage
0 Black 65
1 White 2604
2 Blue 1701
3 Red 0
4 Brown 0

5–12 0

C.34 Swamp

Location in legend image: legend(887 : 923,874 : 985)
Number of pixels of given color in feature.

Indexed Pixel Value Color Number in Subimage
0 Black 79
1 White 1776
2 Blue 432
3 Red 0
4 Brown 4
5 Green 1853

6–12 0
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C.35 Land Subject to Controlled Inundation

Location in legend image: legend(933 : 969,732 : 844)
Number of pixels of given color in feature.

Indexed Pixel Value Color Number in Subimage
0 Black 32
1 White 3027
2 Blue 1121
3 Red 0
4 Brown 1

5–12 0

C.36 Woodland

Location in legend image: legend(930 : 969,870 : 987)
Number of pixels of given color in feature.

Indexed Pixel Value Color Number in Subimage
0 Black 0
1 White 1277
2 Blue 0
3 Red 0
4 Brown 0
5 Green 3443

6–12 0

The locations of the next features are given in terms of a subimage of the legend
(see Fig. C.3):

map(5300 : end− 200,9541 : end)

Fig. C.3 Sub-legend of a
USGS map



228 C Color Information from Legend of USGS Map

C.37 Scrub

Location in legend image: legend(177 : 212,726 : 845)
Number of pixels of given color in feature.

Indexed Pixel Value Color Number in Subimage
0 Black 0
1 White 2714
2 Blue 0
3 Red 0
4 Brown 1
5 Green 1605

6–12 0

C.38 Mangrove

Location in legend image: legend(176 : 212,871 : 985)
Number of pixels of given color in feature.

Indexed Pixel Value Color Number in Subimage
0 Black 135
1 White 1107
2 Blue 818
3 Red 0
4 Brown 7
5 Green 2188

6–12 0

C.39 Orchard

Location in legend image: legend(219 : 252,728 : 845)
Number of pixels of given color in feature.



C.40 Vineyard 229

Indexed Pixel Value Color Number in Subimage
0 Black 0
1 White 2304
2 Blue 0
3 Red 0
4 Brown 0
5 Green 1706

6–12 0

C.40 Vineyard

Location in legend image: legend(216 : 252,869 : 983)
Number of pixels of given color in feature.

Indexed Pixel Value Color Number in Subimage
0 Black 0
1 White 1806
2 Blue 0
3 Red 0
4 Brown 0
5 Green 2449

6–12 0
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124. A. Veláquez and S. Levachkine. Text/Graphics Separation and Recognition in Raster-scanned
Color Cartographic Maps. In Proceedings of the 2003 Workshop on Graphics Recognition,
Barcelona, Spain, July 2003.

125. D. Wang and S.N. Srihari. Analysis of Form Images. International Journal of Pattern
Recognition and Artificial Intelligence, 8(5):1031–1051, 1994.

126. Q. Wang, J. Shi, and D.D. Feng. A Uniform Framework of Representation and Structure
Reconstruction for Generic Form Image. In Proceedings 7th International Conference on
Signal Processing (ICSP), pages 1052–1055, August 2004.

127. Y. Wang, I.T. Phillips, and R.M. Haralick. Using Area Voronoi Tessellation to Segment
Characters Connected to Graphics. In Proceedings of the 2001 Workshop on Graphics
Recognition, Kingston, Canada, September 2001.

128. Y. Wang, L. Tang, and Z. Tang. A New Method to Recognize Dimension Sets and its
Application in Architectural Drawings. In Proceedings of the 5th International Conference
on Computer Aided Design and Computer Graphics, Shenzhen, China, December 1997.

129. G. Weiss. Multi-Agent Systems. MIT Press, Cambridge, MA, 1999.
130. P. Winston. Artificial Intelligence. Addison-Wesley, Reading, MA, 1984.
131. C. Xu. The Analysis of Engineering Drawings using Robot Mapping Techniques. Master’s

thesis, University of Utah, Salt Lake City, Utah, August 2006.
132. Y.-Y.Chiang and C.A. Knoblock. Classification of Line and Character Pixels on Raster

Maps using Discrete Cosine Transformation Coefficients and Support Vector Machines. In
Proceedings Intl Conference on Pattern Recognition, Washington, DC, USA, August 2006.
IEEE Computer Society.

133. Y.-Y.Chiang and C.A. Knoblock. Automatic Extraction of Road Intersection Position, Con-
nectivity and Orientations from Raster Maps. In Proceedings Intl Conference on Advances in
Geographic Information Systems, November 2008.

134. Y.-Y.Chiang and C.A. Knoblock. An Approach for Recognizing Text Labels in Raster Maps.
In Proceedings Intl Conference Pattern Recognition, August 2010.

135. Y.-Y.Chiang, C.A. Knoblock, and C.-C. Chen. Automatic Extraction of Road Intersections
from Raster Maps. In Proceedings Intl Conference on GIS, Bremen, Germany, Novem-
ber 2005.

136. H. Yamada. Paper-based Map Processing. In H. Bunke and P.S.P. Wang, editors, Handbook
of Character Recognition and Document Image Analysis, pages 503–528, Singapore, 1997.
World Scientific Pub Co.

137. H. Yamada, K. Yamamoto, T. Saito, and K. Hosokawa. Recognition of Elevation Value in
Topographic Maps by Multi-Angled Parallelism. International Journal of Pattern Recognition
and Artificial Intelligence, 8(5):1149–1170, 1994.

138. Y. Yu, A. Samal, and S.C. Seth. A System for Recognizing a Large Class of Engineer-
ing Drawings. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(8):
868–890, 1997.

139. Y.H. Yu, A. Samal, and S.C. Seth. Isolating Symbols from Connection Lines in a Class of
Engineering Drawings. Pattern Recognition, 27(3):391–404, March 1994.

140. S. Zheng, J. Liu, W. Shi, and G. Shu. Road Central Contour Extraction from High Resolution
Satellite Image using Tensor Voting Framework. In Proceedings of the 5th Intl Conference on
Machine Learning and Cybernetics, pages 3248–3253, Guangzhou, China, August 2006.



Index

Symbols
k-means, 185
k-nearest neighbors, 158
0-form Algorithm, 57
0-form grammar, 56
0-form rewrite rule, 56

A
agent architecture, 63
analysis complexity reduction, 55

B
background segmentation, 132
bound instance structure, 53
box analysis sequence, 42
branchpoint, 17
bwlabel, 17
bwmorph, 3, 17

C
character analysis, 38
character recognition, 5
Chiang’s raster map analysis process, 11
class conditional density, 156
coherence of goal graph process, 55
connected component, 17
connected component analysis, 37
connected component information, 29
connected component method, 135
connected components, 2
constraint handling, 70
corner points, 25

D
dimension set, 59
dimension set analysis, 7

E
empirical pruning, 56, 59, 96
endpoint, 17
endpoints, 24
engineering drawing analysis, 1
engineering drawing analysis process, 2
engineering drawing analysis sequence, 42
engineering drawing knowledge, 117
expectation maximization, 185
explicit knowledge, 110
external agent organization, 69

F
form analysis, 33, 35
form model, 36

G
generalized Voronoi diagram, 27
geo-political boundary segmentation, 191
geometrical relations, 52, 53
Gestalt closure, 152
Gestalt continuity, 152
Gestalt principles, 152
Gestalt proximity, 152
Gestalt similarity, 152
global thresholding, 165
goal graph, 53, 70

T.C. Henderson, Analysis of Engineering Drawings and Raster Map Images,
DOI 10.1007/978-1-4419-8167-7, © Springer Science+Business Media New York 2014

239



240 Index

goal graph generator, 53
goal graph process, 55
Goal Graph Top-Down Algorithm, 55
Goal Graph Up Algorithm, 54
goal graphs, 53
graph template analysis, 44
graph template analysis sequence, 44
graph theoretic, 185
ground structure, 53

H
higher-level analysis, 104
histogram models, 154

I
image analysis agent process, 121
instance structure, 53
interior corridor points, 25
internal agent organization, 69
iso-contour segmentation, 192

K
knowledge-based approach, 167
knowledge-based classifier, 158

L
linear connected components, 40
linear feature analysis, 29
local normal maximum, 166
local thresholding, 165
low level features, 153

M
machine learning character recognition, 41
map background separation, 131
map embedded background, 132
map surround area, 132
map surround background, 133
model calibration, 124
model structure, 53
modified generalized Voronoi diagram, 28
multibranch points, 25

N
non-deterministic agent system, 63

O
ontology, 120
output reduction methods, 92

P
performance analysis, 100
persistent knowledge, 110
point feature analysis, 29
post-processing, 173
post-processing techniques, 164
pre-processing techniques, 154
precision, 27, 144
precision analysis, 100
production sequence, 56
production systems, 52
projection method, 136
pseudo-range map, 20

R
range scan, 20
raster map analysis, 10
recall, 27, 144
reduced skeleton, 19
reverse engineering, 112
reverse engineering process, 116
rewrite rules, 52
road marker segmentation, 192
road segmentation, 13
rule-based character recognition, 40

S
satisfied goal graph, 54
segment path, 17
segmentation, 17
segmentation analysis process, 182
semantic classes, 12
semantic feature segmentation, 181
semantic networks, 70
shape grammar, 49
smart agent network process, 129
structural analysis, 79
structural modeling, 49
symbol redundancy, 56
symbolic pruing, 56
symbolic pruning, 96
symmetric relation equivalent, 59

T
tensor voting, 159, 171
terminal structures, 49, 52



Index 241

terminal symbol count, 57
text/graphics segmentation, 34
texture segmentation, 194
threshold sensitivity analysis, 99
top-down goal analysis, 55

U
USGS maps, 148
USGS RGB indexes, 148

V
vectorization, 2, 4, 29
virtual point, 17

W
water segmentation, 189

Z
zig-zag method, 27


	Preface
	Acknowledgments
	Contents
	Chapter1 Introduction
	1.1 Engineering Drawing Analysis
	1.2 Raster Map Analysis

	Chapter2 Segmentation and Vectorization
	2.1 Segmentation
	2.2 Vectorization
	2.3 Connected Component Information

	Chapter3 Text and Graphics Analysis in Engineering Drawings
	3.1 Text/Graphics Segmentation
	3.1.1 Form Analysis
	3.1.2 Connected Component Analysis
	3.1.3 Character Analysis


	Chapter4 A Structural Model for Engineering Drawings
	4.1 Terminal Structures
	4.2 Higher-Level Structures
	4.2.1 Relations
	4.2.2 Productions (Rewrite Rules)

	4.3 Goal Graphs
	4.3.1 Bottom-up Formation of Goal Graphs
	4.3.2 Top-down Goal Graph Analysis

	4.4 Analysis Complexity Reduction
	4.4.1 Symbolic Pruning
	4.4.2 Exploitation of Symbol Redundancy

	4.5 Empirical Pruning
	4.6 A Simple Example: Dimension Sets

	Chapter5 Non-deterministic Analysis Systems (NDAS)
	5.1 An Agent Architecture
	5.2 NDAS Organization
	5.2.1 Internal Agent Organization
	5.2.2 External Organization

	5.3 Constraint Handling
	5.4 Semantic Networks and Agents
	5.5 NDAS Experiments
	5.5.1 Ideal Analysis
	5.5.2 Image Analysis
	5.5.2.1 One Ground Structure Images
	5.5.2.2 Combinations of Ground Structures
	5.5.2.3 General Technical Drawings

	5.5.3 Structural Analysis
	5.5.4 Complete Image and Structural Analysis
	5.5.5 Complete NDAS Analysis
	5.5.5.1 Image Analysis
	5.5.5.2 Output Reduction Methods
	5.5.5.3 False Positives Analysis
	5.5.5.4 False Negatives Analysis

	5.5.6 Complexity Reduction Performance
	5.5.6.1 Symbolic Pruning
	5.5.6.2 Empirical Pruning
	5.5.6.3 Threshold Sensitivity Analysis
	5.5.6.4 Precision and Performance Analysis

	5.5.7 Higher Level Analysis
	5.5.7.1 Difference Between Complete and Reduction Analysis
	5.5.7.2 More Analysis


	5.6 Explicit and Persistent Knowledge
	5.6.1 Engineering Drawing Analysis with NDAS
	5.6.2 Knowledge About Engineering Drawing Analysis
	5.6.2.1 Physical Processes
	5.6.2.2 Image Analysis
	5.6.2.3 Structural Analysis


	5.7 Proposed Method
	5.7.1 Knowledge About Engineering Drawings

	5.8 Examples

	Chapter6 Map Background and Form Separation
	6.1 Test Data
	6.1.1 USGS Maps
	6.1.1.1 NGA Maps


	6.2 Background Segmentation
	6.2.1 Map Surround Background
	6.2.1.1 Map Surround Background Segmentation

	6.2.2 Map Embedded Background


	Chapter7 Road and Road Intersection Extraction
	7.1 Introduction
	7.1.1 Goals

	7.2 Related Work
	7.3 Approach
	7.3.1 Overview
	7.3.2 USGS Maps
	7.3.3 Gestalt Principles
	7.3.4 Low Level Features

	7.4 Pre-processing Techniques
	7.4.1 Histogram Models
	7.4.2 Class Conditional Density with Mahalanobis Distance
	7.4.3 Knowledge-Based Classifier
	7.4.4 k-Nearest Neighbors

	7.5 Tensor Voting
	7.5.1 Dynamic c Values
	7.5.2 Dynamic σ Values

	7.6 Post-processing Techniques
	7.6.1 Global Thresholding and Thinning
	7.6.2 Local Thresholding and Thinning
	7.6.3 Local Normal Maximum
	7.6.4 Knowledge-Based Approach

	7.7 Experiments
	7.7.1 Method
	7.7.2 Data Selection
	7.7.3 Ground Truth
	7.7.4 Pre-processing
	7.7.5 Tensor Voting
	7.7.6 Post-processing
	7.7.7 Best Combination
	7.7.8 Perfect Data
	7.7.9 No Text
	7.7.10 Comments

	7.8 Conclusions and Future Work

	Chapter8 Other Semantic Feature Segmentation
	8.1 Introduction
	8.2 Method
	8.3 Data
	8.3.1 Test Images

	8.4 Future Directions from this Work
	8.5 Other Semantic Segmentation Approaches
	8.5.1 Water Segmentation
	8.5.2 Geo-political Boundary Segmentation
	8.5.3 Iso-Contour Segmentation
	8.5.4 Road Marker Segmentation

	8.6 Texture Segmentation
	8.6.1 Texture Knowledge-base
	8.6.2 Texture Classification Methods
	8.6.3 Long-term Texture Classification Strategy


	AppendixA Rewrite Rules for Grammar G
	AppendixB MNDAS User Manual
	B.1 File and Code Organization
	B.1.1 Introduction
	B.1.2 MNDAS Organization
	B.1.3 MNDAS Execution

	B.2 Agents
	B.2.1 Overview
	B.2.2 Logistical Agents
	B.2.3 Image Processing Agents
	B.2.4 Agent Communication


	AppendixC Color Information from Legend of USGS Map
	C.1 Primary Highways
	C.2 Secondary Highways
	C.3 Light Duty Road
	C.4 Other Street
	C.5 Other Street: Trail
	C.6 Route Marker Interstate
	C.7 Route Marker US
	C.8 Route Marker State
	C.9 Railroad: Standard
	C.10 Railroad: Narrow
	C.11 Bridge
	C.12 Overpass
	C.13 Tunnel: Road
	C.14 Tunnel: Railroad
	C.15 Builtup Area
	C.16 National Boundary
	C.17 State Boundary
	C.18 County Boundary
	C.19 National/State Reservation Boundary
	C.20 Landgrant Boundary
	C.21 US Public Lands Survey: Range
	C.22 US Public Lands Survey: Section
	C.23 Range, Township: Section Line
	C.24 Range, Township: Protracted
	C.25 Power Transmission Line
	C.26 Pipeline
	C.27 Distorted Surface: Strip Mine, Lava
	C.28 Distorted Surface: Sand
	C.29 Contour: Index
	C.30 Contour: Intermediate
	C.31 Contour: Supplementary
	C.32 Stream Lake: Perennial
	C.33 Area to be Submerged
	C.34 Swamp
	C.35 Land Subject to Controlled Inundation
	C.36 Woodland
	C.37 Scrub
	C.38 Mangrove
	C.39 Orchard
	C.40 Vineyard

	Bibliography
	Index

