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Preface

Recent advances in structural technology require greater accuracy, efficiency and

speed in the analysis of structural systems. It is therefore not surprising that new

methods have been developed for the analysis of structures with complex config-

urations and large number of elements.

The requirement of accuracy in analysis has been brought about by the need for

demonstrating structural safety. Consequently, accurate methods of analysis had to

be developed, since conventional methods, although perfectly satisfactory when

used on simple structures, have been found inadequate when applied to complex

and large-scale structures. Another reason why higher speed is required results from

the need to have optimal design, where analysis is repeated hundred or even

thousands of times.

This book can be considered as an application of discrete mathematics rather

than the more usual calculus-based methods of analysis of structures and finite

element methods. The subject of graph theory has become important in science and

engineering through its strong links with matrix algebra and computer science.

At first glance, it seems extraordinary that such abstract material should have quite

practical applications. However, as the author makes clear, the early relationship

between graph theory and skeletal structures and finite element models is now

obvious: the structure of the mathematics is well suited to the structure of the

physical problem. In fact, could there be any other way of dealing with this

structural problem? The engineer studying these applications of structural analysis

has either to apply the computer programs as a black box, or to become involved in

graph theory, matrix algebra and sparse matrix technology. This book is addressed

to those scientists and engineers, and their students, who wish to understand the

theory.

The methods of analysis in this book employ matrix algebra and graph theory,

which are ideally suited for modern computational mechanics. Although this text

deals primarily with analysis of structural engineering systems, it should be

recognised that these methods are also applicable to other types of systems such

as hydraulic and electrical networks.
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The author has been involved in various developments and applications of graph

theory in the last four decades. The present book contains part of this research

suitable for various aspects of matrix structural analysis and finite element methods,

with particular attention to the finite element force method.

In Chap. 1, the most important concepts and theorems of structures and theory of

graphs are briefly presented. Chapter 2 contains different efficient approaches for

determining the degree of static indeterminacy of structures and provides systematic

methods for studying the connectivity properties of structural models. In this chapter,

force method of analysis for skeletal structures is described mostly based on the

author’s algorithms. Chapter 3 provides simple and efficient methods for construction

of stiffness matrices. These methods are especially suitable for the formation of well-

conditioned stiffness matrices. In Chaps. 4 and 5, banded, variable banded and frontal

methods are investigated. Efficient methods are presented for both node and element

ordering. Many new graphs are introduced for transforming the connectivity proper-

ties of finite element models onto graph models. Chapters 6 and 7 include powerful

graph theory and algebraic graph theory methods for the force method of finite

element meshes of low order and high order, respectively. These new methods use

different graphs of the models and algebraic approaches. In Chap. 8, several

partitioning algorithms are developed for solution of multi-member systems, which

can be categorized as graph theory methods and algebraic graph theory approaches.

In Chap. 9, an efficient method is presented for the analysis of near-regular structures

which are obtained by addition or removal of some members to regular structural

models. In Chap. 10, energy formulation based on the force method is derived and a

new optimization algorithm called SCSS is applied to the analysis procedure. Then,

using the SCSS and prescribed stress ratios, structures are analyzed and designed. In

all the chapters, many examples are included to make the text easier to be understood.
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Chapter 1

Basic Definitions and Concepts of Structural

Mechanics and Theory of Graphs

1.1 Introduction

This chapter consists of two parts. In the first part, basic definitions, concepts and

theorems of structural mechanics are presented. These theorems are employed in

the following chapters and are very important for their understanding. For deter-

mination of the distribution of internal forces and displacements, under prescribed

external loading, a solution to the basic equations of the theory of structures should

be obtained, satisfying the boundary conditions. In the matrix methods of structural

analysis, one must also use these basic equations. In order to provide a ready

reference for the development of the general theory of matrix structural analysis,

the most important basic theorems are introduced in this chapter, and illustrated

through simple examples.

In the second part, basic concepts and definitions of graph theory are presented.

Since some of the readers may be unfamiliar with the theory of graphs, simple

examples are included to make it easier to understand the presented concepts.

1.1.1 Definitions

A structure can be defined as a body that resists external effects such as loads,

temperature changes, and support settlements, without undue deformation. Build-

ing frames, industrial building, bridges, halls, towers, dams, reservoirs, tanks,

retaining walls, channels, pavements are typical structures of interest to civil

engineers.

A structure can be considered as an assemblage of members and nodes. Struc-

tures with clearly defined members are known as skeletal structures. Planar and
space trusses, planar and space frames, single and double-layer grids are examples

of skeletal structures, Fig. 1.1.

A. Kaveh, Computational Structural Analysis and Finite Element Methods,
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Fig. 1.1 (continued)
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g h

Fig. 1.1 Examples of skeletal structures. (a) A foot bridge truss (b) A planar frame. (c) A space

frame. (d) A space truss. (e) A single-layer grid. (f) A double-layer grid. (g) A single-layer dome.

(h) A double-layer barrel vault
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Structures which must artificially be divided into members (elements) are called

continua. Concrete dams, plates, and pavements are examples of continua, Fig. 1.2.

The underlying principles for the analysis of other structures are more or less the

same. Airplane, missile and satellite structures are of interest to the aviation

engineer. The analysis and design of a ship is interesting for a naval architect. A

machine engineer should be able to design machine parts. However, in this book

only structures of interest to structural engineers are studied.

1.1.2 Structural Analysis and Design

Structural analysis is the determination of the response of a structure to external

effects such as loading, temperature changes and support settlements. Structural
design is the selection of a suitable arrangement of members, and a selection of

materials and member sections, to withstand the stress resultants (internal forces)

by a specified set of loads, and satisfy the stress and displacement constraints, and

other requirements specified by the utilized code of practice. The diagram shown in

Fig. 1.3 is a simple illustration for the cycle of structural analysis and design.

In optimal design of structures this cycle should be repeated hundred and

sometime thousands of times to reduce the weight or cost of the structure.

Structural theories may be classified from different points of view as follows:

Static versus dynamic;

Planar versus space;

Structure

Structural
Analysis

Structural
Design

Loading Redesign

Stress 
Analysis

Fig. 1.3 The cycle of analysis and design of a structure

a b

Fig. 1.2 Examples of continua. (a) A plate. (b) A dam
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Linear versus non-linear;

Skeletal versus continua;

Statically determinate versus statically indeterminate.

In this book, static analyses of linear structures are mainly discussed for the

statically determinate and indeterminate cases. Here, both planar and space skeletal

structures and continua models are of interest.

1.2 General Concepts of Structural Analysis

1.2.1 Main Steps of Structural Analysis

A correct solution of a structure should satisfy the following requirements:

1. Equilibrium: The external forces applied to a structure and the internal forces

induced in its members should be in equilibrium at each node.

2. Compatibility: The members should deform so that they all fit together.

3. Force-displacement relationship: The internal forces and deformations satisfy

the stress–strain relationships of the members.

For structural analysis two basic methods are in use:

Force method: In this method, some of the internal forces and/or reactions are

taken as primary unknowns, called redundants. Then the stress–strain relation-

ship is used to express the deformations of the members in terms of external and

redundant forces. Finally, by applying the compatibility conditions that the

deformed members must fit together, a set of linear equations yield the values

of the redundant forces. The stress resultants in the members are then calculated

and the displacements at the nodes in the direction of external forces are found.

This method is also known as the flexibility method and compatibility approach.
Displacement method: In this method, the displacements of the nodes necessary to

describe the deformed state of the structure are taken as unknowns. The deforma-

tions of the members are then calculated in terms of these displacements, and by

use of the stress–strain relationship, the internal forces are related to them. Finally,

by applying the equilibrium equations at each node, a set of linear equations is

obtained, the solution of which results in the unknown nodal displacements. This

method is also known as the stiffness method and equilibrium approach.

For choosing the most suitable method for a particular structure, the number of

unknowns is one of the main criteria. A comparison for the force and displacement

methods can be made, by calculating the degree of static indeterminacy and

kinematic indeterminacy. As an example, for the truss structure shown in

Fig. 1.4a, the number of redundants is 2 in the force method, while the number of

unknown displacements is 13 for the displacement approach. For the 3 � 3 planar

frame shown in Fig. 1.4b, the static indeterminacy and the kinematic indeterminacy

are 27 and 36, respectively. For the simple six-bar planar truss of Fig. 1.4c, the

1.2 General Concepts of Structural Analysis 5



number of unknowns for the force and displacement methods is 4 and 2, respec-

tively. Efficient methods for calculating the indeterminacies are discussed in

Chap. 2. The number of unknowns is not the only consideration: another criterion

for choosing the most suitable method is the conditioning of the flexibility and

stiffness matrices, which are discussed in Kaveh [1, 2].

1.2.2 Member Forces and Displacements

A structure can be considered as an assembly of its members, subjected to external

effects. These effects will be considered as external loads applied at nodes, since

any other effect can be reduced to such equivalent nodal loads. The state of stress in

a member (internal forces) is defined by a vector,

rm ¼ rk1 rk2 rk3 . . . r
k
n

� �t
, ð1:1Þ

and the associated member deformation (distortion) is designated by a vector,

um ¼ uk
1 uk

2 uk
3 . . . u

k
n

� �t
, ð1:2Þ

where n is the number of force or displacement components of the kth member

(element), and t shows the transposition of the vector. Some simple examples of

typical elements, common in structural mechanics, are shown in Fig. 1.5.

The relationship between member forces and displacements can be written as:

rm ¼ kmum or um ¼ fmrm, ð1:3Þ

where km and fm are called member stiffness and member flexibility matrices,
respectively. Obviously, km and fm are related as:

kmfm ¼ I: ð1:4Þ

Flexibility matrices can be written only for members supported in a stable manner,

because rigid body motion of the undefined amplitude would otherwise result from

application of applied loads. These matrices can be written in as many ways as there

are stable and statically determinate support conditions.

a b c

Fig. 1.4 Some simple structures. (a) A planar truss. (b) A planar frame. (c) A simple planar truss
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The stiffness and flexibility matrices can be derived using different approaches.

For simple members like bar elements and beam elements, methods based on the

principles of strength of materials or classical theory of structures will be sufficient.

However, for more complicated elements the principle of virtual work or alterna-

tively variational methods can be employed. In this section, only simple members

are studied, and further considerations will be presented in Chaps. 2, 6, and 7.

1.2.3 Member Flexibility and Stiffness Matrices

Consider a bar element as shown in Fig. 1.6 which carries only axial forces, and has

two components of member forces. From the equilibrium,

NL
m þ NR

m ¼ 0, ð1:5Þ

then only one end force need be specified in order to determine the state of stress

throughout the member. The corresponding deformation of the member is simply

the elongation, and hence:

r1m ¼ NR
m, and u1m ¼ δR

m: ð1:6Þ

a b

c d

e f

Fig. 1.5 Some simple elements. (a) Bar element. (b) Beam element. (c) Triangular plane stress

element. (d) Rectangular plane stress element. (e) Triangular plate bending element. (f) Rectan-

gular plate bending element
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From Hooke’s law NR
m ¼ EA

L
δR
m, and therefore:

fm ¼ L

EA
and km ¼ EA

L
: ð1:7Þ

Now consider a prismatic beam of a planar frame with length L and bending

stiffness EI. The internal forces are shown in Fig. 1.7.

This element is assumed to be subjected to four end forces, as shown in Fig. 1.7a,

and the deflected shape and position is illustrated in Fig. 1.7b. Four end forces are

related by the following two equilibrium equations:

VA þ VB ¼ 0,

MA þMB þ VBL ¼ 0:
ð1:8Þ

Therefore, only two end-force components should be specified as internal forces.

Some possible choices for rm are {MA,MB}, {VB,MB} and {VA,MA}.

Using classical formulae, such as those of the strength of materials or slope-

deflection equations of the theory of structures, the force-displacement relation-

ships can be established. As an example, the flexibility matrix for a prismatic beam

supported as a cantilever is obtained using the differential equation of the elastic

deformation curve as follows:

M M

V V

A B

A B

zL, EI
A

A

B

Bdd

q
q

a b

Fig. 1.7 End forces and deflected shape of a beam element

L

N
R

L

L

N
R

m m

m+ d

Fig. 1.6 Internal forces and deformation of a bar element
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d2v

dx2
¼ Mz

EIz
¼ 1

EIz
VB L� xð Þ þMB½ �:

Integrating the above equation leads to,

dv

dx
¼ 1

EIz
VB Lx� 1

2
x2

� �
þMBx

h i
þ C1,

and integrating again results in:

v ¼ 1

EIz
VB

1

2
Lx2 � 1

6
x3

� �
þ 1

2
MBx

2
h i

þ C1xþ C2:

Using the boundary conditions at A as,

dv

dx

� �
x¼0

¼ 0 and v½ �x¼0 ¼ 0,

results in:

C1 ¼ 0 and C2 ¼ 0:

Substituting these constants leads to:

v ¼ 1

EIz
VB

1

2
Lx2 � 1

6
x3

� �
þ 1

2
MBx

2
h i

,

dv

dx
¼ 1

EIz
VB Lx� 1

2
x2

� �
þMBx

h i
:

For x ¼ L, the displacement and rotation of end B are obtained as,

δB ¼ VBL
3

3EIz
þMBL

2

2EIz
and θB ¼ VBL

2

2EIz
þMBL

EIz
,

using Iz ¼ I, the above relationships in matrix form become,

δB
θB

� �
¼ u1m

u2m

� �
¼

L3

3EI

L2

2EI

L2

2EI

L

EI

2
66664

3
77775

VB

MB

� �
,
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or

fm ¼ L2

6EI

2L 3

3 6=L

� �
: ð1:9Þ

Using a similar method, for a simply supported beam with two moments acting

at the two ends, we have:

fm ¼

L

3EI
� L

6EI

� L

6EI

L

3EI

2
6664

3
7775 ¼ L

6EI

2 �1

�1 2

� �
: ð1:10Þ

If the axial forces are also included as member forces, then rtm ¼ [NB VB MB]

and rtm ¼ [NB MA MB], as shown in Fig. 1.8. The above matrices become:

fm ¼

L

EA
0 0

0
L3

3EI

L2

2EI

0
L2

2EI

L

EI

2
666666664

3
777777775

and fm ¼

L

EA
0 0

0
L

3EI
� L

6EI

0 � L

6EI

L

3EI

2
666666664

3
777777775
: ð1:11Þ

The corresponding stiffness matrices are:

km ¼

EA

L
0 0

0
12EI

L3
� 6EI

L2

0 � 6EI

L2

4EI

L

2
666666664

3
777777775

and km ¼

EA

L
0 0

0
4EI

L

2EI

L

0
2EI

L

4EI

L

2
666666664

3
777777775
: ð1:12Þ

3
mr mrmr

mr

mr

mr 1

2 3

2

1

a bFig. 1.8 Two sets of end

forces and displacements

for a beam element
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It should be mentioned that both flexibility and stiffness matrices are symmetric,

on account of the Maxwell-Betti reciprocal work theorem proven in the next

section. More general methods for the derivation of member flexibility and stiffness

matrices will be studied in Chaps. 2, 3, 6, and 7.

1.3 Important Structural Theorems

1.3.1 Work and Energy

The work, δW, of a force r acting through a change in displacement du in the

direction of that force is the product rdu.

Consider a general load–displacement relationship as shown in Fig. 1.9a. The

area under this curve represents the work done, denoted by W. The area above this

curve is the complementary work designated by W*.

For a total displacement of u1, the total work is given by,

W ¼
ðu1
0

rdu, ð1:13Þ

and the complementary work is:

W� ¼
ð r1

0

udr: ð1:14Þ

For a linear case, as shown in Fig. 1.9b, we have:

W ¼ W�: ð1:15Þ

In this book, it is assumed that the loads are applied to a structure in a gradual

manner, and attention is limited to linear behaviour. Thus the load–displacement

relationship is as shown in Fig. 1.9b, and the relation can be expressed as,

r

u

W

W*

u

r

i

i

O

d

r

u

W
W

W*

W*

ui

dr

du

ri

O

d

a bFig. 1.9 Force-

displacement relationships.

(a) A non-linear

relationship. (b) A linear

relationship
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r ¼ ku, ð1:16Þ

where k is a constant. The work in Fig. 1.9b can be written as:

W ¼ 1

2
riui: ð1:17Þ

Forces and displacements at a point are both represented by vectors, and their

work is represented as a dot product. In matrix notations, however, the work can be

written as:

W ¼ 1

2
rtu: ð1:18Þ

Using Eq. 1.3,

W ¼ 1

2
utktu ¼ 1

2
utku: ð1:19Þ

Similarly, W* can be calculated as:

W� ¼ 1

2
rtfr: ð1:20Þ

Consider the stress–strain relationship as illustrated in Fig. 1.10a. The area under

this curve represents the density of the strain energy, and when integrated over the

volume of the member (or structure) results in the strain energy U. The area to the

left of the stress–strain curve is the density of the complementary strain energy, and

by integration over the member (or structure) the complementary energy U* is

obtained. For the linear stress–strain relationship as shown in Fig. 1.10b, U ¼ U*.

Since the work done by external actions on an elastic system is equal to the strain

energy stored internally in the system (work-energy law), therefore:

W ¼ U and W� ¼ U�: ð1:21Þ

U
U

U*
U*

OO

s

s

ee

a bFig. 1.10 Stress-strain

relationships. (a) A general

stress-strain relationship.

(b) Linear stress–strain

relationship
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1.3.2 Castigliano’s Theorems

Consider the force-displacement curve in Fig. 1.9a, and suppose an imaginary

displacement δui is imposed on the system. The work done, δW, under the action

of ri in moving through δui is equal to:

δW ¼ riδui: ð1:22Þ

Using Eq. 1.21, and taking limit, leads to the first theorem of Castigliano as,

∂U
∂qi

¼ ri, ð1:23Þ

which can be stated as follows [3]:

The partial derivative of the strain energy with respect to a displacement, is equal to the

force applied at the point and along the considered displacement.

Similarly, if the system is subjected to an imaginary force δri along the displace-
ment ui, then the complementary work done δW� is equal to,

δW� ¼ uiδri ¼ δU�, ð1:24Þ

and in the limit, the second theorem of Castigliano is obtained as:

∂U�

∂ri
¼ ui: ð1:25Þ

The partial derivative of the complementary strain energy with respect to a force is equal to

the displacement at the point where the force is applied and directed along the action of the

force.

For the linear case, U� ¼ U and therefore Eq. 1.25 becomes as:

∂U
∂ri

¼ ui: ð1:26Þ

1.3.3 Principle of Virtual Work

The principle of virtual work is a very powerful means for deducing the conditions

of compatibility and equilibrium [4], and it can be stated as follows:

The work done by a set of external forces P acting on a structure, in moving through the

associated displacements v, is equal to the work done by some other set of forces R, which

is statically equivalent to P, moving through associated displacements u, which is compat-

ible with v. Associated forces and displacements have the same lines of actions.
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Using a statically admissible set of forces and the work equation, the compati-

bility relations between the deformations and displacements can be derived. Alter-

natively, employing a compatible set of displacements and the work equation, one

obtains the equations of equilibrium between the forces. These approaches are

elegant and practical.

Dummy Load Theorem. This theorem can be used to determine the conditions of

compatibility. Suppose that the deformed shape of each member of a structure is

known, then it is possible to find the deflection of the structure at any point by using

the principle of virtual work. For this purpose a dummy load (usually unit load) is

applied at the point and in the direction of required displacement, which is why it is

also known as the unit load method. The dummy load theorem can be stated as:

applied

dummy

load

8<
:

9=
;�

actual displacement

of structure where external

dummy load is applied

8<
:

9=
;

¼
internal forces

statically equivalent to

the applied dummy load

8<
:

9=
;�

actual

deformation

of elements

8<
:

9=
;

4@a

a

P P P

C

Fig. 1.11 A planar truss

C
1

C
1

a b

1

c

Fig. 1.12 Three different systems capable of supporting the dummy load
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It should be noted that the dummy load theorem is a condition on the geometry

of the structure. In fact, once the deformations of elements are known, one can draw

the deflected shape of the structure, and the results obtained for the deflections will

agree with those of the dummy load theorem.

Example 1. Consider a truss as shown in Fig. 1.11. It is desired to measure the

vertical deflection at node C, when the structure is subjected to a certain loading.

A unit load is applied at C, and a set of internal forces statically equivalent to the

unit load is chosen. However, for such equivalent internal forces, there exists a wide

choice of systems, since there are several numbers of structural possibilities which

can sustain the load at C. Three examples of such systems are shown in

Fig. 1.12a–c.

Obviously, system (a) will need more calculation because of being statically

indeterminate.

System (c) is used here, since it has a smaller number of members than (b), and

symmetry is also preserved. Internal forces of the members in this system shown in

Fig. 1.13 are:

r¼ �1=2,
ffiffiffi
2

p
=2,�1=2,

ffiffiffi
2

p
=2,

ffiffiffi
2

p
=2,�1=2,

ffiffiffi
2

p
=2,�1=2,1=2,1=2,�1=2,�1,�1,�1=2

n ot

:

Measuring the elongation in members of this system containing 14 bars, and

using the dummy-load theorem, results in:

1

2

0
@

1
A 0ð Þþ 1ð Þ vcð Þþ 	1

2



0ð Þ ¼ vc ¼�1

2
e1þ

ffiffiffi
2

p

2
e2þ�1

2
e3þ

ffiffiffi
2

p

2
e4þ

ffiffiffi
2

p

2
e5� 1

2
e6

þ
ffiffiffi
2

p

2
e7� 1

2
e8þ 1

2
e9þ 1

2
e10� 1

2
e11� e12� e13� 1

2
e14:

Dummy Displacement Theorem. This method is usually used to find the applied

external forces when the internal forces are known. In order to obtain the external

force at a particular point, one subjects the structure to a unit displacement at that

point in the direction of the force and chooses any set of deformations compatible

with the unit displacement. Then from the principle of work, the dummy displace-

ment theorem can be stated as:

1

1
2

3
4 5

6
7 8

9 10

11 12 13 14Fig. 1.13 Internal forces

equivalent to unit

dummy load
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dummy displacement applied

in the direction of unknowns

actual external forces

8<
:

9=
;�

actual

external

forces

8<
:

9=
;

¼
deformation of elements

compatible with

dummy displacement

8<
:

9=
;�

actual

internal

forces

8<
:

9=
;

This method is also known as the unit displacement method.

Example 2. For the truss studied in Example 1, it is required to find the magnitude

of P by measuring the internal forces in the members of the truss.

Again, many systems can be chosen; two of which are illustrated in Fig. 1.14a, b.

In these systems, the internal forces to be measured are shown in bold lines. Due to

the symmetry, in both cases only two measurements are needed. Applying the

dummy-displacement theorem to system (a) yields:

Pd ¼ r1d

ffiffiffi
2

p

2
þ r2dþ r1d

ffiffiffi
2

p

2
¼ d

ffiffiffi
2

p
r1 þ r2

� �
:

1.3.4 Contragradient Principle

Consider two statically equivalent force systems R and P, related by a linear

transformation as:

R ¼ BP, ð1:27Þ

R is considered to have more entries than P, i.e. there are solutions to R for

which P is zero. Associated with R and P let there be two sets of displacements

v and u, respectively. These are compatible displacements and therefore the work

done in each system is the same, i.e.

Ptu ¼ Rtv: ð1:28Þ

From Eq. 1.27,

r

C
d d

C

r r
r

P

2

1 1

2

a b

Fig. 1.14 Element deformations equivalent to unit dummy displacement
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Rt ¼ PtBt: ð1:29Þ

Therefore:

Ptu ¼ PtBtv: ð1:30Þ

Since P is arbitrary, hence:

u ¼ Btv: ð1:31Þ

Equations 1.27 and 1.31 will be used in the formulation of the force method.

In a general structure, if member forces R are related to external nodal loads P,

similar to Eq. 1.27, then according to the contragradient principle [4], the member

distortions v and nodal displacement u will be related by an equation similar to

Eq. 1.31.

If two displacement systems u and v are related by a linear transformation as,

v ¼ Cu, ð1:32Þ

and R and P are statically equivalent forces, then equating the work done for

compatible displacements results in:

Ptu ¼ Rtv ¼ RtCu: ð1:33Þ

Again u is arbitrary and:

P ¼ CtR: ð1:34Þ

Equations 1.32 and 1.34 are employed in the formulation of the displacement

method.

For a statically determinate structure,

P ¼ B�1R, ð1:35Þ

and therefore:

Ct ¼ B�1: ð1:36Þ

1.3.5 Reciprocal Work Theorem

Consider a structure as shown in Fig. 1.15a subjected to a set of loads, {P1, P2, . . .,
Pm}. The same structure is considered under the action of a second set of loads {Q1,

Q2, . . ., Qn}, Fig. 1.15b. The reciprocal work theorem can be stated as:
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The work done by {P1, P2, . . ., Pm} through displacements {δ1, δ2, . . ., δm} produced by

{Q1, Q2, . . ., Qn}, is the same as the work done by {Q1, Q2, . . ., Qn} through displacements

{Δ1, Δ2, . . ., Δn} produced by {P1, P2, . . ., Pm}; i.e.

Xm
i¼1

Piδi ¼
Xn
j¼1

QjΔj: ð1:37Þ

When single loads P and Q are considered, Eq. 1.37 reduces to,

Pδi ¼ QΔj, ð1:38Þ

and for the case where P ¼ Q, one obtains:

δi ¼ Δj: ð1:39Þ

Equation 1.39 is known as Betti’s law, and can be stated as follows:

The deflection at point i due to a load at point j is the same as deflection at j when the same

load is applied at i.

The proof of the reciprocal work theorem is constructed by equating the strain

energy of the structure in two different loading sequences [5]. In the first sequence,

both sets of loads are applied simultaneously, while in the second sequence, loads

{P1, P2, . . ., Pm} are applied first, followed by the application of the second set of

loads {Q1, Q2, . . ., Qn}.

1.4 Basic Concepts and Definitions of Graph Theory

Some of the uses of the theory of graphs in the context of civil engineering are as

follows: A graph can be a model of a structure, a hydraulic network, a traffic

network, a transportation system, a construction system, or a resource allocation

D
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d
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P

P

Q
Q

Q

Q

1

2

m

1

2

2

1
1

2
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n
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m

a b

Fig. 1.15 A structure subjected to two sets of loads
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system, for example. In this book, the theory of graphs is used as the model of a

skeletal structure, and it is employed also as a way of transforming the connectivity

properties of finite element meshes to those of graphs. Many such graphs are

previously defined in [6], and employed throughout the combinatorial optimisations

performed for optimal analysis of skeletal structures and finite element models.

This part of the chapter will also enable the readers to develop their own ideas and

methods in the light of the principles of graph theory. For further definitions and

proofs, the reader may refer to Harary [7], Berge [8], and West [9].

1.4.1 Basic Definitions

The performance of a structure depends not only on the characteristics of its

components, but also on their relative location. On the other hand, in a structure,

if the properties of one member are altered, the overall behaviour may be changed.

This indicates that the performance of a structure depends on the detailed charac-

teristics of its members. On the other hand, if the location of a member is altered,

the properties of the structure may again be different. Therefore, the connectivity

(topology) of the structure influences the performance of the whole structure and is

as important as the mechanical properties of its members. Hence, it is important to

represent a structure so that its topology can be understood clearly. The graph

model of a structure provides a powerful means for this purpose.

1.4.2 Definition of a Graph

A graph S consists of a non-empty set N(S) of elements called nodes (vertices or
points) and a set M(S) of elements called members (edges or arcs), together with a

relation of incidence which associates each member with a pair of nodes, called

its ends.
Two or more members joining the same pair of nodes are collectively known as a

multiple member, and a member joining a node to itself is called a loop. A graph

with no loops and multiple members is called a simple graph. If N(S) and M(S) are

countable sets, then the corresponding graph S is finite. In this book, only finite

graphs are needed, which are referred to as graphs.
The above definitions correspond to abstract graphs; however, a graph may be

visualised as a set of points connected by line segments in Euclidean space; the

nodes of a graph are identified with points, and its members are identified as line

segments without their end points. Such a configuration is known as a topological
graph. These definitions are illustrated in Fig. 1.16.
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1.4.3 Adjacency and Incidence

Two nodes of a graph are called adjacent if these nodes are the end nodes of a

member. A member is called incident with a node if this node is an end node of the
member. Two members are called incident if they have a common end node. The

degree (valency) of a node ni of a graph, denoted by deg(ni), is the number of

members incident with that node. Since each member has two end nodes, the sum of

node-degrees of a graph is twice the number of its members.

1.4.4 Graph Operations

A subgraph Si of S is a graph for which N(Si) � N(S) and M(Si) � M(S), and each

member of Si has the same ends as in S.

The union of subgraphs S1, S2, . . ., Sk of S, denoted by Sk ¼ [k
i¼1

Si ¼ S1 [ S2 [
. . . [ Sk, is a subgraph of S with N(Sk) ¼ [k

i¼1
N(Si) and M(Sk) ¼ [k

i¼1
M(Si). The

intersection of two subgraphs Si and Sj is similarly defined using intersections of

node-sets and member-sets of the two subgraphs. The intersection of two subgraphs

does not need to consist only of nodes, but it is usually considered to do so in the

substructuring technique of structural analysis. The ring sum of two subgraphs Si
L

Sj is a subgraph that contains the nodes and members of Si and Sj except those

elements common to Si and Sj. These definitions are illustrated in Fig. 1.17.

Two graphs S and K are called homeomorphic if one can obtain K from S, by

suppressing or inserting nodes of degree 2 in the members.

a b c

d e f

Fig. 1.17 A graph, two of

its subgraphs, their union,

intersection and ring sum.

(a) S. (b) Si. (c) Sj. (d) Si [
Sj. (e) Si \ Sj. (f) Si

L
Sj

a bFig. 1.16 Simple and

non-simple graphs. (a) A

simple graph. (b) A graph

with loop and multiple

members
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1.4.5 Walks, Trails and Paths

A walk w of S is a finite sequence w ¼ {n0, m1, n1,. . ., mp, np} whose terms are

alternately nodes ni and members mi of S for 1 � i � p, and ni�1 and ni are the two

ends of mi. A trail t in S is a walk in which no member of S appears more than once.

A path P is a trail in which no node appears more than once. The length of a path Pi,
denoted by L(Pi), is taken as the number of its members. Pi is called the shortest
path between the two nodes n0 and np, if for any other path Pj between these nodes,
L(Pi) � L(Pj). The distance between two nodes of a graph is defined as the number

of the members of a shortest path between these nodes.

As an example, in Fig. 1.18,

w ¼ n1, m3, n4, m4, n5, m9, n2, m2, n3, m7, n4, m4, n5ð Þ

is a walk between n1 and n5 in which member m4 and nodes n4 and n5 are repeated

twice.

t ¼ n1, m3, n4, m4, n5, m9, n2, m2, n3, m7, n4ð Þ

is a trail between n1 and n4 in which node n5 is repeated twice.

P ¼ n1;m3; n4;m4; n5;m5; n3ð Þ

is a path of length 3 in which no node and no member is repeated.

The path (n1, m6, n5, m5, n3) is a shortest path of length 2 between the two nodes

n1 and n3, where the length of each member is taken as unity.

Two nodes ni and nj are said to be connected in S if there exists a path between

these nodes. A graph S is called connected if all pairs of its nodes are connected. A
component of a graph S is a maximal connected subgraph, i.e. it is not a subgraph of

any other connected subgraph of S.

1
2

4

56 7
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n

n n

n
n 3
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3

n4 n5

3n
2n

n1

n4 n5
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2n

n1

a

b c

Fig. 1.18 A walk, a trail

and a path in S. (a) A walk

w in S. (b) A trail t in S.

(c) A path P in S
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1.4.6 Cycles and Cutsets

A cycle is a path (n0, m1, n1, . . ., mp, np) for which n0 ¼ np and p � 1; i.e. a cycle is

a closed path. Similarly, a closed trail (hinged cycle) and a closed walk can be

defined, Fig. 1.19.

A cutset is a collection of members whose removal from the graph increases the

number of its components. If a cutset results in two disjoint subgraphs S1 and S2,

then it is called a prime cutset. Notice that no proper subsets of a cutset have this

property. A link is a member which has its ends in S1 and S2. Each S1 and S2 may or

may not be connected. If both are connected, the cutset is called prime. If one of S1
or S2 consists of a single node, the cutset is called a cocycle. These definitions are
illustrated in Fig. 1.20.

2 3

4 5

6

1 1 2

3 4

5
6 7

a b c

Fig. 1.20 Cutsets of S. (a) A cutset of S. (b) A prime cutest. (c) A cocycle of S

0n

a b c

d e f

Fig. 1.21 Different trees, a cotree and a forest of S. (a) A graph S. (b) A tree of S. (c) A spanning

tree of S. (d) An SRT rooted from n0. (e) The cotree of (c). (f) A forest with two trees

a bFig. 1.19 Cycles of S.

(a) A cycle of S.

(b) A hinged cycle of S
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1.4.7 Trees, Spanning Trees and Shortest Route Trees

A tree T of S is a connected subgraph of S which contains no cycle. A set of trees of

S forms a forest. Obviously a forest with k trees contains N(S) � k members. If a

tree contains all the nodes of S, it is called a spanning tree of S. Henceforth, for

simplicity it will be referred to as a tree.
A shortest route tree (SRT) rooted at a specified node n0 of S, is a tree for which

the distance between every node nj of T and n0 is a minimum. An SRT of a graph

can be generated by the following simple algorithm:

Algorithm. Label the selected root n0 as “0” and the adjacent nodes as “1”. Record

the members incident to “0” as tree members. Repeat the process of labelling with

“2” the unnumbered ends of all the members incident with nodes labelled as “1”,

again recording the tree members. This process terminates when each node of S is

labelled and all the tree members are recorded. This algorithm has many applica-

tions in engineering, and it is called a breadth-first-search algorithm.

A graph is called acyclic if it has no cycle. A tree is a connected acyclic graph.

Any graph without cycles is a forest, thus the components of a forest are trees.

The above definitions are illustrated in Fig. 1.21.

It is easy to prove that, for a tree T,

M Tð Þ ¼ N Tð Þ � 1, ð1:40Þ

where M(T) and N(T) are the numbers of members and nodes of T, respectively.

The complement of T in S is called a cotree, denoted by T*. The members of T

are known as branches and those of T* are called chords. For a connected graph S,

the number of chords is given by:

M T�ð Þ ¼ M Sð Þ �M Tð Þ: ð1:41Þ

Since N(T) ¼ N(S), hence,

M T�ð Þ ¼ M Sð Þ � N Sð Þ þ 1, ð1:42Þ

where M(S) and N(S) are the numbers of members and nodes of S, respectively.

Notice that for a set and its cardinality the same notation is used and the difference

should be obvious from the context.

1.4.8 Different Types of Graphs

In order to simplify the study of the properties of graphs, different types of graphs

have been defined. Some important ones are as follows:
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A null graph is a graph that contains no members. Thus, Nk is a graph containing k

isolated nodes.

A cycle graph is a graph consisting of a single cycle. Therefore, Ck is a polygon

with k members.

A path graph is a graph consisting of a single path. Hence, Pk is a path with k nodes
and (k�1) members.

a b c

Fig. 1.22 Wheel graph W6. (a) Star graph S6. (b) Cycle graph C5. (c) Wheel graph W6

K1 K2 K3 K4 K5

Fig. 1.23 Five complete graphs

N1 N2 N2N1

a b

Fig. 1.24 Two bipartite graphs. (a) A bipartite graph. (b)A complete bipartite graph K3, 4

a b

Fig. 1.25 A simple graph and its line graph. (a) A graph S. (b) The line graph L(S) of S

24 1 Basic Definitions and Concepts of Structural Mechanics and Theory of Graphs



A wheel graph Wk is defined as the union of a star graph with k�1 members and a

cycle graph Ck�1, connected as shown in Fig. 1.22, for k ¼ 6. Alternatively, a

wheel graph Wk can be obtained from the cycle graph Ck�1 by adding a node O

and members (spokes) joining O to each node of Ck�1.

A complete graph is a graph in which every two distinct nodes are connected by

exactly one member, Fig. 1.23. A complete graph with N nodes is denoted by

KN. It is easy to prove that a complete graph with N nodes has N(N�1)/2

members.

A graph is called bipartite if the corresponding node set can be split into two sets
N1 and N2 in such a way that each member of S joins a node of N1 to a node of N2.

This graph is denoted by B(S) ¼ (N1, M, N2). A complete bipartite graph is a

bipartite graph in which each node N1 is joined to each node of N2 by exactly one

member. If the numbers of nodes in N1 and N2 are denoted by r and s, respectively,

then a complete bipartite graph is denoted by Kr,s. Examples of bipartite and

complete bipartite graphs are shown in Fig. 1.24.

A graph S is called regular if all of its nodes have the same degree. If this degree

is k, then S is k-regular graph. As an example, a triangle graph is 2-regular and a

cubic graph is 3-regular.

Consider the set M of members of a graph S as a family of 2-node subsets of N

(S). The line graph L(S) of S has its vertices in a one-to-one correspondence with

members of S, and two vertices are connected by an edge if the corresponding

members in S are incident. Thus the vertices of L(S) are the members of S, with two

vertices of L(S) being adjacent when the corresponding members of S are incident.

As an example, the line graph of Fig. 1.25a is illustrated in Fig. 1.25b.

For the original graph S, the terms nodes and members are used, and for the line

graph L(S), the terms vertices and edges are employed. In this book, many new

graphs are defined and employed for transforming the connectivity properties of the

original models to those of the induced new graphs.

1.5 Vector Spaces Associated with a Graph

A vector space can be associated with a graph by defining a vector, the field and the

binary operations as follows:

Any subset of the M(S) members of a graph S can be represented by a vector

x whose M(S) components are elements of the field of integer modulo 2, where

component xi ¼ 1 when the ith member is an element of the subset, and xi ¼ 0

otherwise. The sum of two subset vectors x and y is a vector z with entries defined

by zi ¼ xi + yi, representing the symmetric difference of the original subsets. The

scalar product of x and y defined by Σxiyi is 0 or 1 according as the original subsets
have an even or an odd number of members in common. Although this vector space

can be constructed over an arbitrary field, for simplicity the field of integer modulo

2 is considered, in which 1 + 1 ¼ 0.
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As an example, consider x ¼ {0, 0, 0, 1, 1, 1, 0}t and y ¼ {0, 0, 1, 1, 1, 0, 0}t

representing two subgraphs of S. Then, their symmetric difference is obtained as

z ¼ {0, 0, 1, 0, 0, 1, 0}t, and the scalar product Σxiyi ¼ 0 (mod 2), since these

subgraphs have two members in common.

Two important subspaces of the above vector space of a graph S are the cycle

subspace and cutset subspace, known as the cycle space and the cutset space of S.

1.5.1 Cycle Space

Let a cycle set of members of a graph be defined as a set of members which form a

cycle or form several cycles having no common member, but perhaps common

nodes. The null set is also defined as a cycle set. A vector representing a cycle set is

called a cycle set vector. It can be shown that the sum of two cycle set vectors of a

graph is also a cycle set vector. Thus, the cycle set vectors of a graph form a vector

space over the field of integer modulo 2. The dimension of a cycle space is given by:

nullity Sð Þ ¼ ν Sð Þ ¼ b1 Sð Þ ¼ M Sð Þ � N Sð Þ þ b0 Sð Þ, ð1:43Þ

where b1(S) and b0(S) are the first and zero Betti numbers of S, respectively. As an

example, the nullity of the graph S in Fig. 1.16a is ν(S) ¼ 9 � 6 + 1 ¼ 4.

1.5.2 Cutset Space

Consider a cutset vector similar to that of a cycle vector. Let the null set be also

defined as a cutset. It can be shown that the sum of two cutset vectors of a graph is

also a cutset vector. Therefore the cutset vectors of a graph form a vector space, the

dimension of which is given by:

rank Sð Þ ¼ ρ Sð Þ ¼ N Sð Þ � b0 Sð Þ: ð1:44Þ

As an example, the rank of S in Fig. 1.16a is ρ(S) ¼ 6 � 1 ¼ 5.

1.5.3 Orthogonality Property

Two vectors are called orthogonal if their scalar product is zero. It can be shown

that a vector is a cycle set (cutset) vector, if and only if it is orthogonal to every

vector of a cutset (cycle set) basis. Since the cycle set and cutset spaces of a graph S

containing M(S) members are both subspaces of the M(S)-dimensional space of all
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vectors which represent subsets of the members, therefore the cycle set and cutset

spaces are orthogonal components of each other.

1.5.4 Fundamental Cycle Bases

A maximal set of independent cycles of a graph is known as its cycle basis. The
cardinality of a cycle basis is the same as the first Betti number b1(S). A special

basis known as a fundamental cycle basis can easily be constructed corresponding

to a tree T of S. In a connected S, a chord of T together with T contains a cycle

known as a fundamental cycle of S. Moreover, the fundamental cycles obtained by

adding the chords to T, one at a time, are independent, because each cycle has a

member which is not in the others. Also, every cycle Ci depends on the set of

fundamental cycles obtained by the above process, for Ci is the symmetric differ-

ence of the cycles determined by the chords of T which lie in Ci. Thus the cycle rank

(cyclomatic number, first Betti number, nullity) of graph S, which is the number of

cycles in a basis of the cycle space of S, is given by,

b1 Sð Þ ¼ M Sð Þ � N Sð Þ þ 1, ð1:45Þ

and if S contains b0(S) components, then:

b1 Sð Þ ¼ M Sð Þ � N Sð Þ þ b0 Sð Þ: ð1:46Þ

As an example, the selected tree and three fundamental cycles of S are illustrated

in Fig. 1.26.

1.5.5 Fundamental Cutset Bases

A basis can be constructed for the cutset space of a graph S. Consider the tree T and

its cotree T*. The subgraph of S consisting of T* and any member of T (branch)

contains exactly one cutset known as a fundamental cutset. The set of cutsets

obtained by adding branches of T to T*, one at a time, forms a basis for the cutset

space of S, known as a fundamental cutset basis of S. The cutset rank (rank of S) is
the number of cutsets in a basis for the cutset space of S, and it can be obtained by a

similar reasoning to that of the cycle basis as,

ρ Sð Þ ¼ N Sð Þ � 1, ð1:47Þ

and for a graph with b0(S) components:
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ρ Sð Þ ¼ N Sð Þ � b0 Sð Þ: ð1:48Þ

A graph S and a fundamental cutset basis of S are shown in Fig. 1.27.

1.6 Matrices Associated with a Graph

Matrices play a dominant role in the theory of graphs and especially in applications

to structural analysis. Some of these matrices conveniently describe the connectiv-

ity properties of a graph and others provide useful information about the patterns of

the structural matrices, and some reveal additional information about transforma-

tions such as those of equilibrium and compatibility equations.

In this section various matrices are studied which reflect the properties of the

corresponding graphs. For simplicity, all graphs are assumed to be connected, since

Fig. 1.26 A graph S and a fundamental cycle basis of S

a b c

Fig. 1.27 A graph S and a fundamental cutset basis of S. (a) A graph S. (b) A tree T of S.

(c) Cotree T* of T
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the generalisation to non-connected graphs is trivial and consists of considering the

direct sum of the matrices for their components.

1.6.1 Matrix Representation of a Graph

A graph can be represented in various forms. Some of these representations are of

theoretical importance, others are useful from the programming point of view when

applied to realistic problems. In this section six different representations of a graph

are described.

Node Adjacency Matrix. Let S be a graph with N nodes. The adjacency matrix
A is an N � N matrix in which the entry in row i and column j is 1 if node ni is

adjacent to nj, and is 0 otherwise. This matrix is symmetric, and the row sums of

A are the degrees of the nodes of S.

The adjacency matrix of the graph S, shown in Fig. 1.28, is a 5 � 5 matrix as:

It can be noted that A is a symmetric matrix of trace zero. The (i, j)th entry of A2

shows the number of walks of length 2 with ni and nj as end nodes. Similarly, the

entry in the (i, j) position of Ak is equal to the number of walks of length k with ni
and nj as end nodes. The polynomial,

f λð Þ ¼ det Iλ� Að Þ, ð1:49Þ

is called the characteristic polynomial of S. The collection of N(S) eigenvalues of

A is known as the spectrum of S. Since A is symmetric, the spectrum of S consists

of N(S) real numbers. The sum of eigenvalues of A is equal to zero.

Node-Member Incidence Matrix. Let S be a graph with M members and N

nodes. The node-member incidence matrix B is an N � M matrix in which the

entry in row i and column j is 1 if node ni is incident with member mj, and is

0 otherwise. As an example, the node-member incidence matrix of the graph in

Fig. 1.28 is a 5 � 7 matrix of the form:

1 2

3
4

5

6 7

3

5

1

2

4

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

01100
10011
10011
01101
01110

A .     (A-10)

Fig. 1.28 A graph S
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B ¼

1 1 0 1 0 0 0

1 0 1 0 1 0 0

0 1 1 0 0 1 0

0 0 0 1 1 0 1

0 0 0 0 0 1 1

2
66664

3
77775: ð1:50Þ

Obviously, the pattern of an incidence matrix depends on the particular way in

which its nodes and members are labelled. One incidence matrix can be obtained

from another by simply interchanging rows (corresponding to re-labelling the

nodes) and columns (corresponding to re-labelling the members).

The incidence matrix B and the adjacency matrix A of a graph S are related by,

BB
t ¼ Aþ V, ð1:51Þ

where V is a diagonal matrix of order N(S) whose typical entry vi is the valency of

the node ni of S for i ¼ 1, . . ., N(S). For the example of Fig. 1.28, Eq. 1.51

becomes:

BB
t ¼

0 1 1 1 0

1 0 1 1 0

1 1 0 0 1

1 1 0 0 1

0 0 1 1 0

2
66664

3
77775þ

3

3

3

3

2

2
66664

3
77775: ð1:52Þ

The rows ofB are dependent, and one row can arbitrarily be deleted to ensure the

independence of the rest of the rows. The node corresponding to the deleted row is

called a datum (reference) node. The matrix obtained after deleting a dependent

row is called an incidence matrix of S, and is denoted by B.

Although A and B are of great theoretical value, the storage requirements for

these matrices are high and proportional to N � N and M � N, respectively. In

fact, a large number of unnecessary zeros is stored in these matrices. In practice,

one can use different approaches to reduce the storage required, some of which are

described in the following.

Member List: This type of representation is a common approach in structural

mechanics. A member list consists of two rows (or columns) and M columns

(or rows). Each column (or row) contains the labels of the two end nodes of each

member, in which members are arranged sequentially. For example, the member

list of S in Fig. 1.28 is:

30 1 Basic Definitions and Concepts of Structural Mechanics and Theory of Graphs



m1 m2 m3 m4 m5 m6 m7

ML ¼ 1 1 2 1 2 3 4

2 3 3 4 4 5 5

� �
:

ð1:53Þ

It should be noted that a member list can also represent orientations on members.

The storage required for this representation is 2 � M. Some engineers prefer to add

a third row containing the member’s labels, for easy addressing. In this case, the

storage is increased to 3 � M.

A different way of preparing a member list is to use a vector containing the end

nodes of members sequentially; e.g. for the previous example this vector becomes:

1; 2; 1; 3; 2; 3; 1; 4; 2; 4; 3; 5; 4; 5ð Þ: ð1:54Þ

This is a compact description of a graph; however, it is impractical because of

the extra search required for its use in various algorithms.

Adjacency List. This list consists of N rows and D columns, where D is the

maximum degree of the nodes of S. The ith row contains the labels of the nodes

adjacent to node i of S. For the graph S shown in Fig. 1.28, the adjacency list is:

AL ¼

n1
n2
n3
n4
n5

2 3 4

1 3 4

1 2 5

1 2 5

3 4

2
66664

3
77775
N�D

ð1:55Þ

The storage needed for an adjacency list is N � D.

Compact Adjacency List. In this list, the rows ofAL are continually arranged in a

row vector R, and an additional vector of pointers P is considered. For example, the

compact adjacency list of Fig. 1.28 can be written as:

R ¼ 2; 3; 4; 1; 3; 4; 1; 2; 5; 1; 2; 5; 3; 4ð Þ,
P ¼ 1; 4; 7; 10; 13; 15ð Þ: ð1:56Þ

P is a vector (p1, p2, p3, . . .) which helps to list the nodes adjacent to each node.

For node ni, one should start reading R at entry pi and finish at pi+1�1.

An additional restriction can be put on R, by ordering the nodes adjacent to each

node ni in ascending order of their degrees. This ordering can be of some advantage,

an example of which is nodal ordering for bandwidth optimisation. The storage

required for this list is 2M + N + 1.
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1.6.2 Cycle Bases Matrices

The cycle-member incidence matrix C of a graph S, has a row for each cycle or

hinged cycle and a column for each member. An entry cij of C is 1 if cycle Ci

contains member mj, and it is 0 otherwise. In contrast to the node adjacency and

node-member incidence matrices, the cycle-member incidence matrix does not

determine a graph up to isomorphism; i.e. two totally different graphs may have

the same cycle-member incidence matrix.

For a graph S, there exist 2b1 Sð Þ � 1 cycles or hinged cycles. Thus C is a

(2b1 Sð Þ � 1) � M matrix. However, one does not need all the cycles of S, and the

elements of a cycle basis are sufficient. For a cycle basis, a cycle-member

incidence matrix becomes a b1(S) � M matrix, denoted by C, known as the

cycle basis incidence matrix of S. As an example, matrix C for the graph

shown in Fig. 1.28, for the following cycle basis,

C1 ¼ m1, m2, m3ð Þ
C2 ¼ m1, m4, m5ð Þ

C3 ¼ m2, m4, m6, m7ð Þ

is given by:

C ¼
C1

C2

C3

1 1 1 0 0 0 0

1 0 0 1 1 0 0

0 1 0 1 0 1 1

2
4

3
5: ð1:57Þ

The cycle adjacency matrix D is a b1(S) � b1(S) matrix, each entry dij of which

is 1 if Ci and Cj have at least one member in common and it is 0 otherwise. This

matrix is related to the cycle-member incidence matrix by the following

relationship,

CCt ¼ DþW, ð1:58Þ

whereW is a diagonal matrix with wii being the length of the ith cycle, and its trace
being equal to the total length of the cycles of the basis.

For the above example:

CCt ¼
0 1 1

1 0 1

1 1 0

2
4

3
5þ

3 0 0

0 3 0

0 0 3

2
4

3
5: ð1:59Þ

An important theorem can now be stated which is based on the orthogonality

property studied in Sect. 1.5.3.
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Theorem. Let S have an incidence matrix B and a cycle basis incidence matrix C.

Then:

CBt ¼ 0 mod 2ð Þ: ð1:60Þ

A simple proof of this theorem can be found in Kaveh [10]. Notice that Eq. 1.60

holds due to the orthogonality property discussed in Sect. 1.5.3. In fact, the above

relation holds even if the cutsets or cycles do not form bases, or the matrices contain

additional cutsets and/or cycle vectors.

1.6.3 Special Patterns for Fundamental Cycle Bases

Matrix C for a fundamental cycle basis, with special labels for its tree members and

chords, finds a particular pattern. Let S have a tree T whose members are M

(T) ¼ (m1, m2, . . ., mp) and a cotree for which M(T*) ¼ (mp+1, mp+2, . . ., mM(S)).

Then there is a unique fundamental cycle Ci in S � M(T*) + mi, p + 1 � i � M(S),

and this set of cycles forms a basis for the cycle space of S. As an example, for the

graph S of Fig. 1.27a whose members are labelled as shown in Fig. 1.29, the

fundamental cycle basis consists of,

C1 ¼ m1, m4, m5, m8ð Þ,
C2 ¼ m2, m1, m4, m5, m6, m9ð Þ,

C3 ¼ m3, m2, m1, m4, m5, m6, m7, m10ð Þ,

given by:

C ¼
C1

C2

C3

1 0 0 1 1 0 0

1 1 0 1 1 1 0

1 1 1 1 1 1 1

1 0 0

0 1 0

0 0 1

������
2
4

3
5 ¼ CT Ij½ �:

M Tð Þ M T�ð Þ
ð1:61Þ

1

2

3

4

5

6

7

8

9

10

C

C

C

2

3

1

Fig. 1.29 A graph with

oriented members and

cycles
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1.6.4 Cutset Bases Matrices

The cutset-member incidence matrixC
�
for a graph S, has a row for each cutset of S

and a column for each member. An entry c�ij ofC
�
is 1 if cutset C�

i contains member

mj, and it is 0 otherwise. This matrix, likeC, does not determine a graph completely.

Independent rows ofC
∗
for a cutset basis, denoted by C*, form a matrix known

as a cutset basis incidence matrix, which is a η(S) � Mmatrix, η(S) being the rank
of graph S. As an example, C* for the cutsets of Fig. 1.27 with members labelled as

in Fig. 1.30a, is given below:

C� ¼

0 0 1 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0 0 1

0 1 0 0 0 0 0 0 1 1

0 0 0 0 0 1 0 0 1 1

0 0 0 1 0 0 0 1 1 1

1 0 0 0 0 0 0 1 1 1

0 0 0 0 1 0 0 1 1 1

2
666666664

3
777777775
: ð1:62Þ

The cutset adjacency matrix D* is a η(S) � η(S) matrix defined analogously to

cycle adjacency matrix D.

1.6.5 Special Patterns for Fundamental Cutset Bases

For a fundamental cutset basis with appropriate labelling of the members in T and

T*, as illustrated in Fig. 1.30b, if the cutsets are taken in the order of their

generators (tree members), the matrix C* will have a particular pattern as:

1

2

3

4

5

6

7

8

9

10

4

2

1

3

6

5

7

a bFig. 1.30 A graph with

oriented members and a

cutset basis
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C�
0 ¼

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

1 1 1

0 1 1

0 0 1

1 1 1

1 1 1

0 1 1

0 0 1

��������������

2
666666664

3
777777775
¼ I C�

c

��� 
: ð1:63Þ

From the orthogonality condition, C0C
∗t
0 ¼ 0; i.e.

CT I½ � I

C∗t
c

� �
¼ 0: ð1:64Þ

Hence CT þ C∗t
c ¼ 0 mod 2ð Þ, and :

CT ¼ C�t
c : ð1:65Þ

Therefore, for a graph having C0, one can construct C∗
0 and vice versa.

There exists a very simple basis for the cutset space of a graph which consists of

N�1 cocycles of S. As an example, for the graph of Fig. 1.28, considering n5 as a

datum node, we have,

C∗ ¼
1 1 0 1 0 0 0

1 0 1 0 1 0 0

0 1 1 0 0 1 0

0 0 0 1 1 0 1

2
664

3
775, ð1:66Þ

which is the same as the incidence matrix B of S. The simplicity of the displacement

method of structural analysis is due to the existence of such a simple basis.

1.7 Directed Graphs and Their Matrices

An oriented or directed graph is a graph in which each member is assigned an

orientation. A member is oriented from its initial node (tail) to its final node (head).
The initial node is said to be positively incident on the member, and the final node

negatively incident, as shown in Fig. 1.31a.

The choice of orientation of members of a graph is arbitrary; however, once it is

chosen, it must be retained. Cycles and cutsets can also be oriented as shown in

Fig. 1.31b.

As an example, m4 is positively oriented in cycle Ci, and m7 is negatively

oriented in cutset C∗
i .

All the matrices B, B, C and C* can be defined as before, with the difference of

having +1, �1 and 0 as entries, according to whether the member is positively,

negatively or zero incident with a cutset or a cycle.
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As an example, for graph S in Fig. 1.31b, the matrix B with n1 as the datum node

is formed:

B ¼
n1
n2
n3
n4

�1 0 1 0 1 0 0

0 �1 0 0 �1 0 0

0 0 �1 0 0 �1 1

0 0 0 �1 0 0 �1

2
664

3
775: ð1:67Þ

Consider a tree as shown in continuous lines, Fig. 1.31c. When the directions of

the cycles are taken as those of their corresponding chords (dashed lines), the

fundamental cycle basis incidence matrix can be written as:

C ¼
C1

C2

C3

1 �1 0 0

1 0 1 0

1 �1 1 �1

1 0 0

0 1 0

0 0 1

������
2
4

3
5: ð1:68Þ

It should be noted that the tree members are numbered first, followed by the

chords of the cycles in the same sequence as their generation.

Obviously,

BCt ¼ CBt ¼ 0 mod 2ð Þ, ð1:69Þ

with a proof similar to that of the non-oriented case.

A cuset basis incidence matrix is similarly obtained as:

C� ¼
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

�1 1 �1

1 0 1

0 1 �1

0 0 1

��������

2
664

3
775,

C�
T C�

c

ð1:70Þ

where the direction of a cutset is taken as the orientation of its generator (the

corresponding tree member).

2

3 4

n

n

C

C
5

i

j

1

2 3

4

5 6

7

i

i

5 6

7

a b c

Fig. 1.31 An oriented member, a directed graph, and a directed tree (with chords shown in dashed
lines)
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It can easily be proven that:

CT ¼ �C�t
c : ð1:71Þ

For a directed graph, Eq. 1.51 becomes:

BBt ¼ A� V, ð1:72Þ

Similarly, Eq. 1.59 for the directed case becomes:

CCt ¼ D�W: ð1:73Þ
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Chapter 2

Optimal Force Method: Analysis of Skeletal

Structures

2.1 Introduction

This chapter starts with presenting simple and general methods for calculating the

degree of static indeterminacy of different types of skeletal structures, such as rigid-

jointed planar and space frames, pin-jointed planar trusses and ball-jointed space

trusses.

Then the progress made in the force method of structural analysis in recent years

is presented, and the state of art is summarized. Efficient methods are developed

leading to highly sparse flexibility matrices. The methods are mainly developed for

frame structures, however, extensions are made to general skeletal structures.

The force method of structural analysis, in which the member forces are used as

unknowns, is appealing to engineers, since the properties of members of a structure

most often depend on the member forces rather than joint displacements. This

method was used extensively until 1960. After this, the advent of the digital

computer and the amenability of the displacement method for computation

attracted most researchers. As a result, the force method and some of the advantages

it offers in optimisation and non-linear analysis, have been neglected.

Six different approaches are adopted for the force method of structural analysis,

which will be classified as follows:

1. Topological force methods,

2. Combinatorial force methods,

3. Algebraic force methods,

4. Mixed algebraic-combinatorial force methods,

5. Integrated force method, and

6. Metaheuristic based methods.

Topological methods have been developed by Henderson [1], Maunder [2] and

Kaveh [3]. Combinatorial force method is mainly developed by Kaveh [3] using

different graph theoretical algorithms. Algebraic topology is employed extensively in

the work of Langefors [4]. Algebraic methods have been developed by Denke [5],

A. Kaveh, Computational Structural Analysis and Finite Element Methods,
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Robinson [6], Topçu [7], and Kaneko et al. [8], and mixed algebraic-topological

methods have been used by Gilbert et al. [9], Coleman and Pothen [10]. The

integrated force method has been developed by Patnaik [11]. Meta-heuristic based

methods are also developed for the formation of null basis in the work of Kaveh and

Jahamshahi [12] and Kaveh and Daei [13].

2.2 Static Indeterminacy of Structures

Skeletal structures are the most common type of structures encountered in civil

engineering practice. These structures sustain the applied loads mainly by virtue of

their topology, i.e. the way members are connected to each other (connectivity).

Therefore, topology plays a vital role in their design. The first step in design of such

structures is to provide sufficient rigidity and make it reliable, but this depends in

part on the degrees of static indeterminacy of the structures. One way to calculate

the degree of static indeterminacy is to use classical formulae such as those given in

Timoshenko and Young [14]; however, the application of these usually provides

only a small part of the necessary topological properties. The methods presented in

this chapter provide powerful means for understanding the distribution of the

indeterminacy within a structure. The concepts presented are efficient in both the

optimal force method of structural analysis, as will be discussed in the second part

of this chapter.

In the analysis of skeletal structures, three different properties are encountered,

which are classified as topological, geometrical and material. Separate study of

these properties results in a considerable simplification in understanding the struc-

tural behaviour leading to methods for efficient analysis. This chapter is confined to

a study of those topological properties of skeletal structures needed to study force

and displacement methods. The number of equations to be solved in the two

methods may differ widely for the same structure. This number depends on the

size of the flexibility and the stiffness matrices. The orders of this matrix are the

same as the degree of static indeterminacy and the degree of kinematic indetermi-

nacy of a structure, respectively. Obviously, the method that leads to the required

results with the least amount of computational time and storage should be used for

the analysis of a given structure. Thus, the comparison of the degree of static

indeterminacy and the degree of kinematic indeterminacy may be the main criterion

for selecting the method of analysis.

The degree of kinematic indeterminacy of a structure, also known as its total

number of degrees of freedom, can easily be obtained by summing up the degrees of

freedom of its nodes. A node of planar and space trusses has two and three degrees

of freedom, respectively. For planar and space frames, these numbers are 3 and

6, respectively. Single-layer grids have also three degrees of freedom for each node.

For determining the degree of static indeterminacy of structures, numerous

formulae depending on the kinds of members or types of joints have been given,

e.g. Ref. [14]. The use of these classical formulae, in general, requires counting the
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number of members and joints, which becomes a tedious process for multi-member

and/or complex pattern structures; moreover, the count provides no additional

information about connectivity.

Henderson and Bickley [1] related the degree of static indeterminacy of a rigid-

jointed frame to the first Betti number of its graph model S. Generalising the Betti’s

number to a linear function and using an expansion process, Kaveh [15] developed

a general method for determining the degree of static indeterminacy and degree of

kinematic indeterminacy of different types of skeletal structures. Special methods

have also been developed to transform the topological properties of space structures

to those of their planar drawings, in order to simplify the calculation of their degrees

of static indeterminacy, Ref. [16].

It should be noted that various methods for determining the degree of static

indeterminacy of structures are a by-product of the general methods developed by

Kaveh [15]. The method of expansion and its control at each step, using the

intersection theorem presented in this chapter, provides a powerful tool for further

studies in the field of structural analysis.

2.2.1 Mathematical Model of a Skeletal Structure

The mathematical model of a structure is considered to be a finite, connected graph

S. There is a one-to-one correspondence between the elements of the structure and

the members (edges) of S. There is also a one-to-one correspondence between the

joints of the structure and the nodes of S, except for the support joints of some

models.

For frame structures, shown in Fig. 2.1(a1) and (a2), two graph models can be

considered. For the first model, all the support joints are identified as a single node

called a ground node, as shown in Fig. 2.1(b1) and (b2). For the second model, all

the joints are connected by an artificial arbitrary spanning tree, termed ground tree,
Fig. 2.1(c1) and (c2).

Truss structures shown in Fig. 2.2(a1) and (a2) are assumed to be supported in a

statically determinate fashion (Fig. 2.2(b1) and (b2)), and the effect of additional

supports can easily be included in calculating the degree of static indeterminacy

(DSI) of the corresponding structures. Alternatively artificial members can be

added as shown in Fig. 2.2(c1) and (c2) to model the components of the

corresponding supports. For a fixed support, two members and three members are

considered for planar and space trusses, respectively, and one member is used for

representing a roller.

The skeletal structures are considered to be in perfect condition; i.e. planar and

space trusses have pin and ball joints only. Obviously, the effect of extra constraints

or releases can be taken into account in determining their degrees of static indeter-

minacy and also in their analysis, Mauch and Fenves [17].

2.2 Static Indeterminacy of Structures 41



2.2.2 Expansion Process for Determining the Degree
of Static Indeterminacy

The degree of kinematic indeterminacy of a structure is the number of independent

displacement components (translations and rotations) required for describing a

general state of deformation of the structure. The degree of kinematic indetermi-

nacy is also referred to as the total degrees of freedom of the structure. On the other

hand, the degree of static indeterminacy (redundancy) of a structure is the number

of independent force components (forces and moments) required for describing a

general equilibrium state of the structure. The DSI of a structure can be obtained by

subtracting the number of independent equilibrium equations from the number of

its unknown forces.

a1

a2

b1

b2

c1

c2

Fig. 2.1 Frame structures and their mathematical models. (a1) A plane frame. (b1) First model

with a ground node. (c1) Second model with a ground tree. (a2) A space frame. (b2) First model

with a ground node. (c2) Second model with a ground tree

a1

a2

b1

b2

c1

c2

Fig. 2.2 Trusses and their graph models. (a1) A plane truss. (b1) First model without added

members. (c1) Second model with replaced members. (a2) A space truss. (b2) First model without

added members. (c2) Second model with replaced members

42 2 Optimal Force Method: Analysis of Skeletal Structures



2.2.2.1 Classical Formulae

Formulae for calculating the DSI of various skeletal structures can be found in

textbooks on structural mechanics, e.g. the DSI of a planar truss, denoted by γ(S),
can be calculated from,

γ Sð Þ ¼ M Sð Þ � 2N Sð Þ þ 3, ð2:1Þ

where S is supported in a statically determinate fashion (internal indeterminacy).

For extra supports (external indeterminacy), γ(S) should be further increased by the
number of additional unknown reactions.

A similar formula holds for space trusses:

γ Sð Þ ¼ M Sð Þ � 3N Sð Þ þ 6: ð2:2Þ

For planar and space frames, the classical formulae is given as,

γ Sð Þ ¼ α M Sð Þ � N Sð Þ þ 1½ �, ð2:3Þ

where all supports are modelled as a datum (ground) node, and α ¼ 3 or 6 for

planar and space frames, respectively.

All these formulae require counting a great number of members and nodes,

which makes their application impractical for multi-member and complex pattern

structures. These numbers provide only a limited amount of information about the

connectivity properties of structures. In order to obtain additional information, the

methods developed in the following sections will be utilised:

2.2.2.2 A Unifying Function

All the existing formulae for determining DSI have a common property, namely

their linearity with respect to M(S) and N(S). Therefore, a general unifying function

can be defined as,

γ Sð Þ ¼ aM Sð Þ þ bN Sð Þ þ cγ0 Sð Þ, ð2:4Þ

where M(S), N(S) and γ0(S) are the numbers of members, nodes and components

of S, respectively. The coefficients a, b and c are integer numbers depending on

both the type of the corresponding structure and the property which the function is

expected to represent. For example, γ(S) with appropriate values for a, b and c may

describe the DSI of certain types of skeletal structures, Table 2.1. For a ¼ 1,

b ¼ �1 and c ¼ 1, γ(S) becomes the first Betti number b1(S) of S, as described

in Sect. 1.5.1.

2.2 Static Indeterminacy of Structures 43



2.2.2.3 An Expansion Process

An expansion process, in its simplest form, has been used by Müller-Breslau [18]

for re-forming structural models, such as simple planar and space trusses. In his

expansion process, the properties of typical subgraphs, selected in each step to be

joined to the previously expanded subgraph, guarantee the determinacy of the

simple truss. These subgraphs consist of two and three concurrent bars for planar

and space trusses, respectively.

The idea can be extended to other types of structure, and more general subgraphs

can be considered for addition at each step of the expansion process. A cycle, a

planar subgraph, and a subgraph with prescribed connectivity properties are exam-

ples of these, which will be employed in this book. For example, the planar truss of

Fig. 2.3a can be formed in four steps, joining a substructure Si with γ(Si) ¼ 1 as

shown in Fig. 2.3b, sequentially, as illustrated in Fig. 2.3c.

2.2.2.4 An Intersection Theorem

In a general expansion process, a subgraph Si may be joined to another subgraph Sj
in an arbitrary manner. For example, γ(Si) or γ(Sj) may have any arbitrary value and

the union Si [ Sj may be a connected or a disjoint subgraph. The intersection

Si [ Sj may also be connected or disjoint. It is important to find the properties of

S1 [ S2 having the properties of S1, S2 and S1 \ S2. The following theorem pro-

vides a correct calculation of the properties of Si [ Sj. In order to have the formula

in its general form, q subgraphs are considered in place of two subgraphs.

Theorem (Kaveh [15]). Let S be the union of q subgraphs S1, S2, S3, . . ., Sq with
the following functions being defined:

γ Sð Þ ¼ aM Sð Þ þ bN Sð Þ þ cγ0 Sð Þ,
γ Sið Þ ¼ aM Sið Þ þ bN Sið Þ þ cγ0 Sið Þ i ¼ 1, 2, . . . , q,
γ Aið Þ ¼ aM Aið Þ þ bN Aið Þ þ cγ0 Aið Þ i ¼ 2, 3, . . . , q,

where Ai ¼ Si � 1 \ Si and Si ¼ S1 [ S2 [ . . . [ Si. Then:

Table 2.1 Coefficients of

γ(S) for different types of
structures

Type of structure a b c

Plane truss +1 �2 +3

Space truss +1 �3 +6

Plane frame +3 �3 +3

Space frame +6 �6 +6
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γ Sð Þ � cγ0 Sð Þ½ � ¼
Xq
i¼1

γ Sið Þ � cγ0 Sið Þ½ � �
Xq
i¼2

γ Aið Þ � cγ0 Aið Þ½ � ð2:5Þ

For proof, the interested reader may refer to Kaveh [19].

Special Case. If S and each of its subgraphs considered for expansion (Si for i ¼ 1,

. . ., q) are non-disjoint (connected), then Eq. 2.5 can be simplified as:

γ Sð Þ ¼
Xq
i¼1

γ Sið Þ �
Xq
i¼2

γ Aið Þ, ð2:6Þ

where γ Aið Þ ¼ aM Aið Þ þ bN Aið Þ þ c:
For calculating the DSI of a multi-member structure, one normally selects a

repeated unit of the structure and joins these units sequentially in a connected form.

Therefore, Eq. 2.6 can be applied in place of Eq. 2.5 to obtain the overall property of

the structure.

2.2.2.5 A Method for Determining the DSI of Structures

Let S be the union of its repeated and/or simple pattern subgraphs Si (i ¼ 1, . . ., q).
Calculate the DSI of each subgraph, using the appropriate coefficients from

Table 2.1. Now perform the union–intersection method with the following steps:

S1 = S1

S1ÈS2 = S2

S2ÈS3 = S3

S3ÈS4 = S4 = S

a b

c

Fig. 2.3 Process for the formation of a planar truss. (a) A planar truss. (b) Selected unit. (c) The

process of expansion as S1 ¼ S1 ! S2 ! S3 ! S4 ¼ S
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Step 1: Join S1 to S2 to form S2 ¼ S1 [ S2, and calculate the DSI of their

intersection A2 ¼ S1 \ S2. The value of γ(S2) can be found using Eq. 2.5 or

Eq. 2.6, as appropriate.

Step 2: Join S3 to S2 to obtain S3 ¼ S2 [ S3, and determine the DSI of A3 ¼ S2 \
S3. Similarly to Step 1, calculate γ(S3).

Step k: Subsequently join Sk+1 to Sk, calculating the DSI of Ak + 1 ¼ Sk \ Sk + 1

and evaluating the magnitude of γ(Sk+1).

Repeat Step k until the entire structural model S ¼ [q
i¼1

Si has been reformed and

its DSI determined.

In the above expansion process, the value of q depends on the properties of the

substructures (subgraphs) which are considered for reforming S. These subgraphs

have either simple patterns for which γ(Si) can easily be calculated, or the DSIs of

which are already known.

In the process of expansion, if an intersection Ai itself has a complex pattern,

further refinement is also possible; i.e. the intersection can be considered as the

union of simpler subgraphs.

2.3 Formulation of the Force Method

In this section, a matrix formulation using the basic tools of structural analysis—

equilibrium, compatibility and load–displacement relationships—is described. The

notations are chosen from those most commonly utilized in structural mechanics.

2.3.1 Equilibrium Equations

Consider a structure S with M members and N nodes, which is γ(S) times statically

indeterminate. Select γ(S) independent unknown forces as redundants. These

unknown forces can be selected from external reactions and/or internal forces of

the structure. Denote these redundants by:

q ¼ q1; q2; . . . ; qγ Sð Þ
n ot

: ð2:7Þ

Remove the constraints corresponding to redundants, in order to obtain the

corresponding statically determinate structure, known as the basic (released or

primary) structure of S. Obviously, a basic structure should be rigid. Consider the

joint loads as,
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p ¼ p1; p2; . . . ; pnf gt, ð2:8Þ

where n is the number of components for applied nodal loads.

Now the stress resultant distribution r, due to the given load p, for a linear

analysis by the force method can be written as,

r ¼ B0pþ B1q, ð2:9Þ

where B0 and B1 are rectangular matrices each having m rows, and n and

γ(S) columns, respectively, m being the number of independent components for

member forces. B0p is known as a particular solution, which satisfies equilibrium

with the imposed load, and B1q is a complementary solution, formed from a

maximal set of independent self-equilibrating stress systems (S.E.Ss), known as a

statical basis.

Example 1. Consider a planar truss, as shown in Fig. 2.4a, which is two times

statically indeterminate. EA is taken to be the same for all the members.

One member force and one component of a reaction may be taken as redundants.

Alternatively, two member forces can also be selected as unknowns, as shown in

Fig. 2.4b. Selecting the latter choice, the corresponding B0 and B1 matrices can now

be obtained by applying unit values of pi (i ¼ 1, 2) and qj (j ¼ 1, 2), respectively:

B t
0 ¼ �1 0 0 0

ffiffiffi
2

p
0 �1 0 0 0

�2 �1 þ1 0
ffiffiffi
2

p
0 �1

ffiffiffi
2

p
0 �1

� �
,

and

B t
1 ¼ �1=

ffiffiffi
2

p
0 �1=

ffiffiffi
2

p
0 þ1 þ1 �1=

ffiffiffi
2

p
0 0 0

0 �1=
ffiffiffi
2

p
0 �1=

ffiffiffi
2

p
0 0 �1=

ffiffiffi
2

p þ1 þ1 �1=
ffiffiffi
2

p
� �

:

The columns of B1 (rows of Bt
1) form a statical basis of S. The underlying

subgraph of a typical self-equilibrating stress system (for q2 ¼ 1) is shown in bold

lines, Fig. 2.4b.

Example 2. Consider a portal frame shown in Fig. 2.5a, which is three times

statically indeterminate.

This structure is made statically determinate by an imaginary cut at the middle of

its beam. The unit value of external load p1 and each of the bi-actions qi (i ¼ 1, 2, 3)

lead to the formation of B0 and B1 matrices, in which the two end bending moments

(Mi, Mj) of a member are taken as its member forces. Using the sign convention

introduced in Chap. 1, B0 and B1 matrices are formed as:

B t
0 ¼ þ4 0 0 0 0 0½ �,
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and

B t
1 ¼

þ4 0 0 0 0 �4

�2 þ2 �2 �2 þ2 �2

�1 þ1 �1 þ1 �1 þ1

2
4

3
5:

The columns of B1 form a statical basis of S, and the underlying subgraph of

each self-equilibrating stress system is a cycle, as illustrated in bold lines, Fig. 2.5b.

Notice that three self-equilibrating stress systems can be formed on each cycle of a

planar frame.

In both of the above examples, particular and complementary solutions are

obtained from the same basic structure. However, this is not a necessary require-

ment, as imagined by some authors. In fact a particular solution is any solution

satisfying equilibrium with the applied loads, and a complementary solution is any

maximal set of independent self-equilibrating systems. The latter is a basis of a

vector space over the field of real numbers, known as a complementary solution
space, Henderson and Maunder [20].

Using the same basic structure is equivalent to searching for a cycle basis of a

graph, but restricting the search to fundamental cycles only, which is convenient but

not efficient when the structure is complex or cycle bases with specific properties

are needed.

As an example, consider a three-storey frame as shown in Fig. 2.6a. A cut system

as shown in Fig. 2.6b corresponds to a statical basis, containing three self-

equilibrating stress systems formed on each element of the cycle basis shown in

Fig. 2.6b. However, the same particular solution can be employed with a statical

basis formed on the cycles of the basis shown in Fig. 2.6c.

q q1 2

L

1 2 3

456

8 9
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p

L L

p
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7

21a bFig. 2.4 A statically

indeterminate planar truss.

(a) A planar truss. (b) The

selected unknown forces

p=10kN

1

2

4

4m

4m1

2

3

3

q q

q q
qq3

1

2
3

1

2
a bFig. 2.5 A statically

indeterminate frame. (a) A

portal frame S. (b) The

basic structure of S
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A basic structure need not be selected as a determinate one. For a redundant

basic structure, one may obtain the necessary data either by analysing it first for the

loads p and bi-actions qi ¼ 1(i ¼ 1, 2, . . ., γ(S)), or by using existing information.

2.3.2 Member Flexibility Matrices

In the force method of analysis, the determination of the member flexibility matrix

is an important step. A number of alternative methods are available for the

formation of displacement-force relationships describing the flexibility properties

of the members. Four such approaches are:

1. Inversion of the force-displacement relationship;

2. Unit load method;

3. Castigliano’s theorem;

4. Solution of differential equations for member displacements.

In the following, the unit load method is briefly described for the formation of

the flexibility matrices:

Consider a general element with n member forces,

r tm ¼ r1; r2; . . . ; rnf g, ð2:10Þ

and member displacements:

u t
m ¼ u1; u2; . . . ; unf g: ð2:11Þ

A typical component of the displacement ui can be found using the unit load

method as:

ui ¼
ððð

V

σ t
i εdV, ð2:12Þ

where σi represents the matrix of statically equivalent stresses due to a unit load

in the direction of ri, and ε is the exact strain matrix due to all applied forces rm.

a b cFig. 2.6 A three-storey

frame with different cut

systems
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The unit loads can be used in turn for all the points where member force are applied,

and therefore,

um ¼
ððð

V

σtεdV, ð2:13Þ

where,

σ ¼ σ1σ2 . . .σnf gt: ð2:14Þ

For a linear system,

σ ¼ crm, ð2:15Þ

where c is the stress distribution due to unit forces rm.

The stress-strain relationship can be written as:

ε ¼ ϕσ ¼ ϕcrm: ð2:16Þ

Substituting in Eq. 2.13 leads to,

um ¼
ððð

V

σtϕcdVrm ð2:17Þ

or,

um ¼ fmrm, ð2:18Þ

where,

fm ¼
ððð

V

σtϕcdV, ð2:19Þ

represents the element flexibility matrix.

The evaluation ofσ representing the exact stress distribution due to the forces rm,
may not be possible, and hence an approximate relationship should be used. Usually

the matrix c is selected such that it will satisfy at least the equations of equilibrium.

Denoting this approximate matrix by c, and using σ ¼ c:

fm ¼
ððð

V

ctϕcdV: ð2:20Þ

This equation will be used for the derivation of the flexibility matrices of some

finite elements in the proceeding sections.
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For a bar element of a space truss, however, the flexibility matrix can easily be

obtained using Hooke’s law as already discussed in Chap. 1. For a beam element ij

of a space frame, y and z axes are taken as the principal axes of the beams cross

sections, Fig. 2.7. The forces of end j are selected as a set of independent member

forces, and the element is considered to be supported at point i. The axial, torsional,

and flexural behaviour in respective planes are uncoupled, and therefore, one needs

only to consider the flexibility relationships for four separate members:

1. An axial force member (along x axis);

2. A pure torsional member (about x axis);

3. A beam bent about y axis;

4. A beam bent about z axis.

Direct adaptation of the flexibility relationships derived in Chap. 1, gives the

following 6 � 6 flexibility matrix,

fm ¼

L

EA

0
L3

3EIz
sym:

0 0
L3

3EIy

0 0 0
L

GJ

0 0 � L2

2EIy
0

L

EIy

0
L2

2EIz
0 0 0

L

EIz

2
6666666666666666666666664

3
7777777777777777777777775

, ð2:21Þ

where G is the shear modulus, Iy and Iz are the moments of inertia with respect to y

and z axes, respectively. J is the Saint-Venant torsion constant of the cross section.

x

y

z

1   1
2   2

3   3

4   4

6   6

5   5r  ,u

r  ,u
r  ,u r  ,u

r  ,u

r  ,u

i
j

Fig. 2.7 A beam element

and selected independent

member forces
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2.3.3 Explicit Method for Imposing Compatibility

The compatibility equations in the actual structure will now be derived. Using the

displacement-load relationship for each member, and collecting them in the diag-

onal of the unassembled flexibility matrix Fm, one can write member distortions as:

u ¼ Fmr ¼ FmB0pþ FmB1q: ð2:22Þ

In matrix form:

u½ � ¼ Fm½ � B0 B1½ � p

q

� �
: ð2:23Þ

From the contragradient principle of Chap. 1,

v½ � ¼ B t
0

B t
1

� �
u½ �: ð2:24Þ

Combining Eqs. 2.23 and 2.24 results in,

v0
vc

� �
¼ B t

0

B t
1

� �
Fm½ � B0 B1½ � p

q

� �
, ð2:25Þ

in which v0 contains the displacements corresponding to the force components of p,

and vc denotes the relative displacements of the cuts for the basic structure.

Performing the multiplication,

v0
vc

� �
¼ B t

0FmB0 B t
0FmB1

B t
1FmB0 B t

1FmB1

� �
p

q

� �
: ð2:26Þ

Defining:

D00 ¼ B t
0FmB0, D10 ¼ B t

0FmB1,

D01 ¼ B t
1FmB0, D11 ¼ B t

1FmB1,
ð2:27Þ

the expansion of Eq. 2.14 leads to:

v0 ¼ D00pþ D01q, ð2:28Þ

and
vc ¼ D10pþ D11q: ð2:29Þ

Consider now the compatibility conditions as:

vc ¼ 0: ð2:30Þ
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Equation 2.30 together with Eq. 2.29 leads to:

q ¼ �D�1
11 D10p ¼ Fp: ð2:31Þ

Substituting in Eq. 2.22 yields,

v0 ¼ D00 � D01D
�1
11 D10

� �
p, ð2:32Þ

and the stress resultant in a structure can be obtained as:

r ¼ B0 � B1D
�1
11 D10

� �
p: ð2:33Þ

2.3.4 Implicit Approach for Imposing Compatibility

A direct application of the work principle of Chap. 1, can also be used to impose the

compatibility conditions in an implicit form as follows:

Since the structure is considered to be linearly elastic, a linear relation exists

between the unknown forces q and the applied forces p; i.e.

q ¼ Qp, ð2:34Þ

where Q is a transformation matrix which is still unknown.

Equation 2.9 can now be written as:

r ¼ B0pþ B1Qp ¼ B0 þ B1Qð Þp ¼ Bp: ð2:35Þ

Using the work theorem:

Ptv ¼ rtu ¼ ptBtu: ð2:36Þ

Now a set of suitable internal forces, r*, is considered which is statically

equivalent to the external loads. From work principle:

ptv ¼ r�tu, ð2:37Þ

or

ptv ¼ ptB t
0u: ð2:38Þ

Comparison of the above two equations leads to:
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ptBtu ¼ ptB t
0u: ð2:39Þ

Substituting u ¼ FmBP in the above equation:

ptBtFmBp ¼ ptB t
0FmBp: ð2:40Þ

This holds for any p, and therefore:

BtFmB ¼ B t
0FmB: ð2:41Þ

From Eq. 2.35 by transposition,

Bt ¼ B t
0 þQtB t

1, ð2:42Þ

therefore,

B t
0 þQtB t

0

� �
FmB ¼ B t

0FmB, ð2:43Þ

or

QtB t
0Fm B0 þ B1Qð Þ ¼ 0, ð2:44Þ

or

Qt B t
1FmB0 þ B t

1FmB1Q
� � ¼ 0: ð2:45Þ

Using the notation introduced in Eq. 2.15 leads to,

Qt D10 þ D11Qð Þ ¼ 0, ð2:46Þ

or

D10 þ D11Q ¼ 0: ð2:47Þ

Therefore,

Q ¼ �D�1
11 D10, ð2:48Þ

and

q ¼ �D�1
11 D10p, ð2:49Þ

and Eq. 2.20 is obtained as in the previous approach.
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2.3.5 Structural Flexibility Matrices

The overall flexibility matrix of a structure can be expressed as:

v ¼ Fp: ð2:50Þ

Pre-multiplying the above equation by pt, we have:

ptFp ¼ ptB t
0FmBp: ð2:51Þ

Since p is arbitrary,

F ¼ B t
0FmB, ð2:52Þ

or

F ¼ B t
0Fm B0 þ B1Qð Þ, ð2:53Þ

or

F ¼ B t
0FmB0 � B t

0FmB1D
�1
11 D10: ð2:54Þ

Since Fm is symmetric, it follows that:

D t
10 ¼ B t

0FmB1 ¼ B t
0F

t
mB1: ð2:55Þ

Therefore, the overall flexibility matrix (known also as influence matrix) of the

structure is obtained as,

F ¼ D00 � D t
10D

�1
11 D10, ð2:56Þ

and D11 ¼ Bt
1FmB1 ¼ G is also referred to as the flexibility matrix of the structure.

In this book, properties of G will be studied, since its pattern is the most important

factor in optimal analysis of the structure by the force method.

Equation 2.34 can now be used to calculate the nodal displacements.

2.3.6 Computational Procedure

The sequence of computational steps for the force method can be summarized as:

1. Construct B0 and obtain Bt
0.

2. Construct B1 and obtain Bt
1.

3. Form unassembled flexibility matrix Fm.
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4. Form FmB0 followed by FmB1.

5. Calculate D00, D
t
10, D10 and D11, sequentially.

6. Compute � D�1
11 .

7. Calculate Q ¼ � D�1
11 D10.

8. Form B1Q and find B ¼ B0 + B1Q.

9. Form Dt
10Q and find D00 + Dt

10Q.

10. Compute the internal forces as r ¼ Bp.

11. Compute nodal displacements as v0 ¼ Fp.

Example 3. In this example, the complete analysis of the truss of Example 1 will

be given.

B0 and B1 matrices are already formed in Example 1 of Sect. 2.2.1. The

unassembled flexibility matrix can be constructed as:

Fm ¼ L

EA

1

1

1 0

1 ffiffiffi
2

p ffiffiffi
2

p
1

0
ffiffiffi
2

p ffiffiffi
2

p
1

2
666666666666664

3
777777777777775

:

Using the above matrix and the matrices from Example 1, leads to:

D11 ¼ L

EA

2
ffiffiffi
2

p þ 3=2 1=2
1=2 2

ffiffiffi
2

p þ 2

� �
,

and

D10 ¼ L

EA

2þ 2=
ffiffiffi
2

p
2þ 2=

ffiffiffi
2

p
1=

ffiffiffi
2

p
2þ 3=

ffiffiffi
2

p
� �

:

Substituting in Eq. 2.25, results in:

q1
q2

� �
¼ � 2

ffiffiffi
2

p þ 3=2 1=2
1=2 2

ffiffiffi
2

p þ 2

� ��1
2þ 2=

ffiffiffi
2

p
2þ 2=

ffiffiffi
2

p
1=

ffiffiffi
2

p
2þ 3=

ffiffiffi
2

p
� �

p1
p2

� �
:

Taking p1 ¼ p2 ¼ P for simplicity, and solving the above equations gives:

q1 ¼ �1:43P and q2 ¼ �1:17P:

Equation 2.3 is then used to calculate the member forces as:
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r¼ r1 r2 r3 r4 r5 r6 r7 r8 r9 r10f gt
¼ �1:95P �0:17P 2:05P 0:83P 1:36P �1:44P �0:12P 0:24P �1:17P �0:17Pf gt:

Nodal displacements can be found using Eq. 2.25.

Example 4. In this example, the complete analysis of the frame in Example 2 is

given.

B0 and B1 matrices are already formed in Example 2 of Sect. 2.2.1. The

unassembled flexibility matrix of the structure, using the sign convention intro-

duced in Chap. 1, is formed as:

Fm ¼ L

6EI

2 �1

�1 2

2 �1

�1 2

2 �1

�1 2

2
6666664

3
7777775
:

Substituting in Eq. 2.21 leads to:

D11 ¼ L

6EI

64 0 �24

0 56 0

�24 0 18

2
4

3
5,

and

D10 ¼ L

6EI

32

�24

�12

2
4

3
5:

The inverse of D11 is computed as,

D�1
11 ¼ 6EI

L

18=576 0 3=72
0 576 0

3=72 0 1=9

2
4

3
5,

and Q can be obtained as:

Q ¼ �D�1
11 D10 ¼

�1=2
þ3=7
0

2
4

3
5:

Matrix B is now computed as,
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B ¼

4

0

0

0

0

0

2
6666664

3
7777775
þ

þ4 �2 �1

0 þ2 þ1

0 �2 �1

0 �2 þ1

0 þ2 �1

�4 �2 þ1

2
6666664

3
7777775

�1=2
þ3=7
0

2
4

3
5,

and finally by using Eq. 2.23 the member forces are obtained as:

r ¼ þ11:43 þ8:57 �8:57 �8:57 þ8:57 þ11:43f gt:

General Loading. When members are loaded in a general form, then it must be

replaced by an equivalent loading. Such a loading can be found as the superposition

of two cases; case 1 consists of the given loading but the ends of the member are

fixed. The fixed end forces (actions), denoted by FEA, can be found using tables

from books on strength of materials. Case 2 is the given structure subjected to the

reverse of the fixed end actions only. Obviously, the sum of the loads and reactions

of case 1 and case 2 will be the same effect as that of the given loading. This

superposition process is illustrated in the following example:

Example 5. A two-span beam is considered as shown in Fig. 2.8a. The fixed end

actions are provided in b, and the equivalent forces are illustrated in Fig. 2.8c. The

structure is twice indeterminate, and the primary structure is obtained by introduc-

ing two hinges as shown in d. The applied nodal forces and redundants are depicted

in Fig. 2.8e, f, respectively.

B0 and B1 matrices are formed as,

B0 ¼
�1 0 0

0 þ1 0

0 0 0

0 0 þ1

2
664

3
775 and B1 ¼

�1 0

0 þ1

0 �1

0 0

2
664

3
775,

and the unassembled flexibility matrix of the structure is constructed as:

Fm ¼ L

6EI

2 �1

�1 2

2 �1

�1 2

2
664

3
775:

Substituting in Eq. 2.27 leads:

D11 ¼ L

6EI

2 1

1 4

� �
,
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and

D10 ¼ L

6EI

2 1 0

1 2 1

� �
:

The inverse of D11 is computed as,

D�1
11 ¼ � 1

7
� 6EI

L

4 �1

�1 2

� �
,

and Q can be obtained as:

Q ¼ �D�1
11 D10 ¼ � 1

7

4 �1

�1 2

� �
2 1 0

1 2 1

� �
¼ � 1

7

7 2 �1

0 3 2

� �
:

Now r is computed as,

r
0 ¼

�1 0 0

0 1 0

0 0 0

0 0 1

2
664

3
775þ

1 2=7 �1=7
0 �3=7 �2=7
0 3=7 2=7
0 0 0

2
664

3
775

0
BB@

1
CCA

0

6

10

2
4

3
5 ¼

0:285
0:572
5:428
10:00

2
664

3
775,

àdding the fixed end reaction, the final member forces are obtained as:

r ¼ 16:285 �15:428 15:428 0:000f gt:

2m4m 2m

20kN 16 6 10
12kN/m

6 10

6 10 q q
1 2

a b

c d

e f

Fig. 2.8 A two-span beam with general loading. (a) A two-span beam. (b) Fixed end actions. (c)

The equivalent loading. (d) The selected primary structure. (e) Applied force on primary structure.

(f) Redundants on primary structure
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2.3.7 Optimal Force Method

For an efficient force method, the matrix G should be:

(a) Sparse;

(b) Well conditioned;

(c) Properly structured, i.e. narrowly banded.

In order to provide the properties (a) and (b) for G, the structure of B1 should be

carefully designed, since the pattern of Fm for a given discretization is unchanged;

i.e. a suitable statical basis should be selected. This problem is treated in different

forms by various methods. In the following, graph theoretical methods are

described for the formation of appropriate statical bases of different types of

skeletal structures. The property (c) above has a totally combinatorial nature and

is studied in Chaps. 5 and 6.

Pattern Equivalence. Matrix B1 containing a statical basis, in partitioned form, is

pattern equivalent to Ct, where C is the cycle-member incidence matrix. Similarly,

Bt
1FmB1 is pattern equivalent toCIC

t orCCt. This correspondence transforms some

structural problems associated with the characterization of G ¼ Bt
1FmB1 into

combinatorial problems of dealing with CCt.

As an example, if a sparse matrix G is required, this can be achieved by

increasing the sparsity of CCt. Similarly for a banded G, instead of ordering the

elements of a statical basis (self-equilibrating stress systems), one can order the

corresponding cycles. This transformation has many advantages, such as:

1. The dimension of CCt is often smaller than that of G. For example, for a space

frame the dimension of CCt is six-fold and for a planar frame three-fold smaller

than that of G. Therefore, the optimisation process becomes much simpler when

combinatorial properties are used.

2. The entries of C and CCt are elements of Z2 and therefore easier to operate on,

compared to B1 and G which have real numbers as their entries.

3. The advances made in combinatorial mathematics and graph theory become

directly applicable to structural problems.

4. A correspondence between algebraic and graph theoretical methods becomes

established.

2.4 Force Method for the Analysis of Frame Structures

In this section, frame structures are considered in their perfect conditions; i.e. the

joints of a frame are assumed to be rigid, and connected to each other by elastic

members and supported by a rigid foundation.

For this type of skeletal structure, a statical basis can be generated on a cycle

basis of its graph model. The function representing the degree of static
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indeterminacy, γ(S), of a rigid-jointed structure is directly related to the first Betti

number b1(S) of its graph model,

γ Sð Þ ¼ αb1 Sð Þ ¼ α M Sð Þ � N Sð Þ þ b0 Sð Þ½ �, ð2:57Þ

where α ¼ 3 or 6 depending on whether the structure is either a planar or a space

frame.

For a frame structure, matrix B0 can easily be generated using a shortest route

tree of its model, and B1 can be formed by constructing 3 or 6 self-equilibrating

stress systems on each element of a cycle basis of S.

In order to obtain a flexibility matrix of maximal sparsity, special cycle bases

should be selected as defined in the next section. Methods for the formation of a

cycle basis can be divided into two groups, namely

(a) Topological methods, (b) graph theoretical approaches.

Topological methods useful for the formation of cycle bases by hand, were

developed by Henderson and Maunder [20] and a complete description of these

methods is presented in Kaveh [3]. Graph-theoretical methods suitable for com-

puter applications were developed by Kaveh [21].

2.4.1 Minimal and Optimal Cycle Bases

A matrix is called sparse if many of its entries are zero. The interest in sparsity

arises because its exploitation can lead to enormous computational saving, and

because many large matrices that occur in the analysis of practical structures, can be

made sparse if they are not already so. A matrix can therefore be considered sparse,

if there is an advantage in exploiting its zero entries.

The sparsity coefficient χ of a matrix is defined to be its number of non-zero

entries. A cycle basis C ¼ C1;C2;C3; . . . ;Cb1 Sð Þ
	 


is called minimal, if it corre-

sponds to a minimum value of:

L Cð Þ ¼
Xb1 Sð Þ

i¼1

L Cið Þ: ð2:58Þ

Obviously, χ(C) ¼ L(C) and a minimal cycle basis can be defined as a basis

which corresponds to minimum χ(C). A cycle basis for which L(C) is near

minimum is called a subminimal cycle basis of S.
A cycle basis corresponding to maximal sparsity of the CCt is called an optimal

cycle basis of S. If χ(CCt) does not differ considerably from its minimum value,

then the corresponding basis is termed suboptimal.
The matrix intersection coefficient σi(C) of row i of cycle member incidence

matrix C is the number of row j such that:
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(a) j ∈ {i + 1, i + 2, . . ., b1(S)},
(b) Ci \ Cj 6¼ ø, i.e. there is at least one k such that the column k of both cycles Ci

and Cj (rows i and j) contain non-zero entries.

Now it can be shown that:

χ Dð Þ ¼ b1 Sð Þ þ 2
Xb1 Sð Þ�1

i¼1

σi Cð Þ: ð2:59Þ

This relationship shows the correspondence of a cycle member incidence matrix

C and that of its cycle basis adjacency matrix. In order to minimize χ(CCt), the

value of
Xb1 Sð Þ�1

i¼1

σi Cð Þ should be minimized, since b1(S) is a constant for a given

structure S, i.e. γ-cycles with a minimum number of overlaps should be selected.

In the force method, an optimal cycle basis is needed corresponding to the

maximum sparsity of CCt matrix. However, because of the complexity of this

problem, most of the research has been concentrated on minimal cycle basis

selection, except those of Ref. [22], which minimize the overlaps of the cycles

rather than only their length.

2.4.2 Selection of Minimal and Subminimal Cycle Bases

Cycle bases of graphs have many applications in various fields of engineering. The

amount of work in these applications depends on the cycle basis chosen. A basis

with shorter cycles reduces the time and storage required for some applications;

i.e. it is ideal to select a minimal cycle basis, and for some other applications

minimal overlaps of cycles are needed; i.e. optimal cycle bases are preferred. In this

section, the formation of minimal and subminimal cycle bases is first discussed.

Then the possibility of selecting optimal and suboptimal cycle bases is investigated.

Minimal cycle bases were considered first by Stepanec [23] and improved by

Zykov [24]. Many practical algorithms for selecting subminimal cycle bases have

been developed by Kaveh [15].

In this section, the merits of the algorithms developed by different authors are

discussed; a method is given for selection of minimal cycle bases, and efficient

approaches are presented for the generation of subminimal cycle bases.

Formation of a Minimal Cycle on a Member. A minimal length cycle Ci on a

member mj, called its generator, can be formed by using the shortest route tree

algorithm as follows:

Start the formation of two SRTs rooted at the two end nodes ns and nt of mj, and

terminate the process as soon as the SRTs intersect each other (not through mj itself)

at say nc. The shortest paths between ns and nc, and nt and nc, together with mj, form
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a minimal cycle Ci on mj. Using this algorithm, cycles of prescribed lengths can

also be generated.

As an example, Ci is a minimal cycle on mj in Fig. 2.9. The SRTs are shown in

bold lines. The generation of SRTs is terminated as soon as nc has been found.

A minimal cycle on a member mj passing through a specified node nk can

similarly be generated. An SRT rooted at nk is formed and as soon as it hits the

end nodes of mj, the shortest paths are found by backtracking between nk and ns, and

nk and nt. These paths together with mj form the required cycle. As an example, a

minimal cycle on mj containing nk, is illustrated by dashed lines in Fig. 2.9.

Different Cycle Sets for Selecting a Cycle Basis. It is obvious that a general cycle

can be decomposed into its simple cycles. Therefore, it is natural to confine the

considered set to only simple cycles of S. Even such a cycle set, which forms a

subspace of the cycle space of the graph, has many elements and is therefore

uneconomical for practical purposes.

In order to overcome the above difficulty, Kaveh [15] used an expansion process,

selecting the smallest admissible (independent with additional restriction) cycles,

one at a time, until b1(S) cycles forming a basis had been obtained. In this approach,

a very limited number of cycles were checked for being an element of a basis. As an

example, the expansion process for selecting a cycle basis of S is illustrated in

Fig. 2.10.

Hubicka and Syslø [25] employed a similar approach, without the restriction of

selecting one cycle at each step of expansion. In their method, when a cycle has

been added to the previously selected cycles, increasing the first Betti number of the

expanded part by “p”, then p created cycles have been formed. As an example, in

this method, Steps 4 and 5 will be combined into a single step, and addition of cycle

5 will require immediate formation of the cycle 4. The above method is modified,

and an efficient algorithm is developed for the formation of cycle bases by Kaveh

and Roosta [26],

Finally, Horton [27] proved that the elements of a minimal cycle basis lie in

between a cycle set consisting of the minimal cycles on each member of S which

passes through each node of S, i.e. each member is taken in turn and all cycles of

minimal length on such a member passing through all the nodes of S are generated.

Obviously, M(S) � M(S) such cycles will be generated.

Independence Control. Each cycle of a graph can be considered as a column

vector of its cycle-member incidence matrix. An algebraic method such as the

Ci

nc

nk

ns ntmj

Fig. 2.9 A minimal cycle

on a member
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Gaussian elimination may then be used for checking the independence of a cycle

with respect to the previously selected sub-basis. However, although this method is

general and reduces the order dependency of the cycle selection algorithms, like

many other algebraic approaches its application requires a considerable amount of

storage space.

The most natural graph theoretical approach is to employ a spanning tree of S,

and form its fundamental cycles. This method is very simple; however, in general

its use leads to long cycles. The method can be improved by allowing the inclusion

of each used chord in the branch set of the selected tree. Further reduction in length

may be achieved by generating an SRT from a centre node of a graph, and the use of

its chords in ascending order of distance from the centre node, Kaveh [21].

A third method, which is also graph-theoretical, consists of using admissible

cycles. Consider the following expansion process, with S being a 2-connected

graph,

C1 ¼ C1 ! C2 ! C3 ! . . . ! Cb1 Sð Þ ¼ S,

where Ck ¼ [k
i¼1

Ci. A cycle Ck+1 is called an admissible cycle, if for

Ck + 1 ¼ Ck [ Ck + 1:

b1 Ckþ1
� � ¼ b1 Ck [ Ckþ1

� � ¼ b1 Ck
� �þ 1: ð2:60Þ

It can easily be proved that, the above admissibility condition is satisfied if any

of the following conditions hold:

1. Ak + 1 ¼ Ck \ Ck + 1 ¼ ∅, where ∅ is an empty intersection;

2. b1 Akþ1ð Þ ¼ r� s, where r and s are the numbers of components of Ck+1 and Ck,

respectively;

3. b1 Akþ1ð Þ ¼ 0 when Ck and Ck+1 are connected (r ¼ s).

In the above relations, b1 Aið Þ ¼ Mi � Ni þ 1, where Mi and Ni are the numbers

of members and nodes of Ai, respectively.

As an example, the sequence of cycle selection in Fig. 2.11 will be as specified

by their numbers.

1 1

2

3

1

2

4

3

1

2

4 5

3

1

2

Fig. 2.10 A graph S and selected cycles
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A different approach suggested by Hubicka and Syslø, in which,

b1 Ckþ1
� � ¼ b1 Ck

� �þ p, ð2:61Þ

is considered to be permissible. However, a completion is performed for p > 1. As

an example, when C3 is added to Ck, its first Betti number is increased by 3 and

therefore, cycles C1 and C2 must also be selected at that stage, before further

expansion.

Having discussed the mathematical concepts involved in a cycle basis selection,

three different algorithms are now described.

Algorithm 1 (Kaveh [15])

Step 1: Select a pseudo-centre node of maximal degree O. Such a node can be

selected manually or automatically using the graph or algebraic graph theoretical

methods discussed in Chap. 5.

Step 2: Generate an SRT rooted at O, form the set of its chords and order them

according to their distance from O.

Step 3: Form one minimal cycle on each chord in turn, starting with the chord

nearest to the root node. A corresponding simple path is chosen which contains

members of the tree and the previously used chords, hence providing the

admissibility of the selected cycle.

This method selects subminimal cycle bases, using the chords of an SRT. The

nodes and members of the tree and consequently the cycles are partially ordered

according to their distance from O. This is the combinatorial version of the Turn

Back method to be discussed in the section on algebraic force methods.

Algorithm 2 (Kaveh [15])

Step 1: Select a centre or seudo-centre node of maximal degree O.

Step 2: Use any member incident with O as the generator of the first minimal cycle.

Take any member not used in C1 and incident with O, and generate on it the

second minimal cycle. Continue this process until all the members incident with

O are used as the members of the selected cycles. The cycles selected so far are

admissible, since the intersection of each cycle with the previously selected

cycles is a simple path (or a single node) resulting in an increase of the first Betti

number by unity for each cycle.

Step 3: Choose a starting node O0, adjacent to O, which has the highest degree.

Repeat a step similar to Step 2, testing each selected cycle for admissibility.

Ck+3Ck+1

k
Ck+2

C

Fig. 2.11 A cycle and its

bounded cycles
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If the cycle formed on a generator mk fails the test, then examine the other

minimal cycles on mk if any such cycle exists. If no admissible minimal cycle

can be found on mk, then,

Form admissible minimal cycles on the other members incident with O0. If mk

does not belong to one of these subsequent cycles, then:

Search for an admissible minimal cycle on mk, since the formation of cycles on

other previous members may now have altered the admissibility of this cycle. If

no such cycle can be found, leave mk unused. In this step more than one member

may be left unused.

Step 4: Repeat Step 3 using as starting nodes a node adjacent to O and/or O0, having
the highest degree. Continue the formation of cycles until all the nodes of S have

been tested for cycle selection. If all the members have not been used, select the

shortest admissible cycle available for an unused member as generator. Then test

the minimal cycles on the other unused members, in case the formation of the

longer cycle has altered the admissibility. Each time a minimal cycle is found to

be admissible, add to Ci and test all the minimal cycles on the other unused

members again. Repeat this process, forming other shortest admissible cycles on

unused members as generators, until S is re-formed and a subminimal cycle basis

has been obtained.

Both of the above two algorithms are order-dependent, and various starting

nodes may alter the result. The following algorithm is more flexible and less

order-dependent, and in general leads to the formation of shorter cycle bases.

Algorithm 3 (Kaveh [21])

Step 1: Generate as many admissible cycles of length 3 as possible. Denote the

union of the selected cycles by Cn.

Step 2: Select an admissible cycle of length 4 on an unused member. Once such a

cycle Cn+1 is found, check the other unused members for possible admissible

cycles of length 3. Again select an admissible cycle of length 4 followed by the

formation of possible 3-sided cycles. This process is repeated until no admissible

cycles of length 3 and 4 can be formed. Denote the generated cycles by Cm.

Step 3: Select an admissible cycle of length 5 on an unused member. Then check the

unused members for the formation of 3-sided admissible cycles. Repeat Step

2 until no cycle of length 3 or 4 can be generated. Repeat Step 3 until no cycle of

length 3, 4 or 5 can be found.

Step 4: Repeat similar steps to Step 3, considering higher-length cycles, until

b1(S) admissible cycles forming a subminimal cycle basis are generated.

Remark. The cycle basis C formed by Algorithms 1–3 can further be improved by

exchanging the elements of the selected basis. In each step of this process, a shortest

cycle C
0
i independent of the cycles of C\Ci is replaced by Ci if L(C

0
i) < L(Ci). This

process is repeated for i ¼ 1, 2, . . ., b1(S).
This additional operation increases the computational time and storage, and its

use is recommended only when the formation of minimal cycle basis is required.
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Algorithm 4 (Horton [27])

Step 1: Find a minimum path P(ni, nj) between each pair of nodes ni and nj.

Step 2: For each node nk and member ml ¼ (ni, nj), generate the cycle having ml

and nk as P(nk,ni) + P(nk,nj) + (ni,nj) and calculate its length. Degenerate cases

in which P(nk, ni) and P(nk, nj) have nodes other than nk in common, can be

omitted.

Step 3: Order the cycles by their weight (or length).

Step 4: Use the Greedy Algorithm, to find a minimal cycle basis from this set of

cycles. This algorithm is given in in Kaveh [15, 20].

A simplified version of the above Algorithm can be designed as follows:

Step 1: Form a spanning tree of S rooted from an arbitrary node, and select its

chords.

Step 2: Take the first chord and form N(S) � 2 minimal cycles, each being formed

on the specified chord containing a node of S (except the two end nodes of this

chord).

Step 3: Repeat Step 2 for the other chords, in turn, until [M(S) � N(S) + 1] � [N

(S) � 2] cycles are generated. Repeated and degenerate cycles should be

discarded.

Step 4: Order the cycles in ascending magnitude of their lengths.

Step 5: Using the above set of cycles, employ the Greedy Algorithm to form a

minimal cycle basis of S.

The main contribution of Horton’s Algorithm is the limit imposed on the

elements of the cycle-set used in the Greedy Algorithm. The use of matroids and

the Greedy Algorithm, has been suggested by Kaveh [15], and they have been

employed by Lawler [28] and Kolasinska [29].

2.4.3 Examples

Example 1. Consider a planar graph S, as shown in Fig. 2.12, for which b1(S)

¼ 18�11 + 1 ¼ 8. Using Algorithm 3, the selected basis consists of four cycles of

length 3, three cycles of length 4 and one cycle of length 5, as follows:

C1 ¼ 1; 2; 3ð Þ, C2 ¼ 1; 8; 9ð Þ, C3 ¼ 2; 6; 3ð Þ, C4 ¼ 2; 5; 6ð Þ, C5 ¼ 1; 4; 5; 2ð Þ,
C6 ¼ 1; 7; 5; 2ð Þ, C7 ¼ 8; 6; 2; 1ð Þ, C8 ¼ 10; 8; 6; 3; 11ð Þ

The total length of the selected basis is L(C) ¼ 29, which is a counter example

for minimality of a mesh basis, since, for any such basis of S, L(C) > 29.

Example 2. In this example, S is the model of a space frame, considered as

S ¼ [27
i¼1

Si, where a typical Si is depicted in Fig. 2.13a. For Si there are 12 members

joining eight corner nodes, and a central node joined to these corner nodes.
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The model S is shown in Fig. 2.13b, in which some of the members are omitted for

clarity in the diagram. For this graph, b1(S) ¼ 270.

The selected cycle basis using any of the algorithms consists of 270 cycles of

length 3, forming a minimal cycle basis of S. For Algorithm 3, the use of different

starting nodes leads to a minimal cycle basis, showing the capability of this method.

Example 3. S is a planar graph with b1(S) ¼ 9, as shown in Fig. 2.14. The

application of Algorithm 3 results in the formation of a cycle of length 3 followed

by the selection of five cycles of length 4. Then member {1, 6} is used as the

generator of a six-sided cycle C7 ¼ (1,2,3,4,5,6,1). Member {2, 10} is then

employed to form a seven-sided cycle C8 ¼ (2,11,12,13,14,15,10,2), followed

by the selection of a five-sided cycle C9 ¼ (10,5,4,3,2,10). The selected cycle basis

has a total length of L(C) ¼ 41, and is not a minimal cycle basis. A shorter cycle

basis can be found by Algorithm 4 consisting of one three-sided and five four-sided

cycles, together with the following cycles,

C7 ¼ 1; 2; 10; 5; 6; 1ð Þ, C8 ¼ 2; 3; 4; 5; 10; 2ð Þ and

C9 ¼ 2; 11; 12; 13; 14; 15; 10; 2ð Þ,

forming a basis with the total length of 40. However, the computation time and

storage for Algorithm 3 is far less than that of Algorithm 4, as compared in

Ref. [30].
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Fig. 2.12 A planar graph S

a

bFig. 2.13 A space frame

S. (a) A typical Si (i ¼ 1,

. . ., 27). (b) S with some

omitted members
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2.4.4 Optimal and Suboptimal Cycle Bases

In what follows, a direct method and an indirect approach, which often lead to the

formation of optimal cycle bases, are presented. Much work is needed before the

selection of an optimal cycle basis of a graph becomes feasible.

2.4.4.1 Suboptimal Cycle Bases; A Direct Approach

Definition 1. An elementary contraction of a graph S is obtained by replacing a

path containing all nodes of degree 2 with a new member. A graph S contracted to a

graph S0 is obtained by a sequence of elementary contractions. Since in each

elementary contraction k nodes and k members are reduced, the first Betti number

does not change in a contraction, i.e. b1(S) ¼ b1(S
0). The graph S is called homeo-

morphic to S0, Fig. 2.15.
This operation is performed in order to reduce the size of the graph and also

because the number of members in an intersection of two cycles is unimportant; a

single member is enough to render Ci \ Cj nonempty, and hence to produce a

non-zero entry in CCt.

Definition 2. Consider a member mi of a graph S. On this member, p minimal

cycles of length q can be generated. P is called the incidence number and q is

defined as the cycle length number of mi. In fact, p and q are measures assigned to a

member to indicate its potential as a member in the elements of a cycle basis. In the

process of expansion for cycle selection, an artificial increase in p results in the

exclusion of this element from a minimal cycle, keeping the number of overlaps as

small as possible.

Space graphs need special treatment. For these graphs, when a member has

p ¼ 1, then the next shortest length cycles with q0 ¼ q + l (l being the next smallest

possible integer) are also considered. Denoting the number of such cycles by p0, the
incidence number and cycle length number for this type of member are taken as,
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Fig. 2.14 A planar graph S
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Ijk ¼ p
0 þ 1 and Icjk ¼ qþ p

0
q

0
� �

= 1þ p
0

� �
, ð2:62Þ

respectively. The end nodes of the considered member are j and k.

Definition 3. The weight of a cycle is defined as the sum of the incidence numbers

of its members.

Algorithm A

Step 1: Contract S into S0, and calculate the incidence number (IN) and cycle length

number (CLN) of all its members.

Step 2: Start with a member of the least CLN and generate a minimal weight cycle

on this member. For members with equal CLNs, the one with the smallest IN

should be selected. A member with these two properties will be referred to as “a

member of the least CLN with the smallest IN”.

Step 3: On the next unused member of the least CLN with the smallest IN, generate

an admissible minimal weight cycle. In the case when a cycle of minimal weight

is rejected due to inadmissibility, the next unused member should be considered.

This process is continued as far as the generation of admissible minimal weight

cycles is possible. After a member has been used as many times as its IN, before

each extra usage, increase the IN of such a member by unity.

Step 4: On an unused member of the least CLN, generate one admissible cycle of

the smallest weight. This cycle is not a minimal weight cycle, otherwise it would

have been selected at Step 3. Such a cycle is called a subminimal weight cycle.
Again, update the incidence numbers for each extra usage. Now repeat Step

3, since the formation of the new subminimal weight cycle may have altered the

admissibility condition of the other cycles, and selection of further minimal

weight cycles may now have become possible.

Step 5: Repeat Step 4, selecting admissible minimal and subminimal weight cycles,

until b1(S
0) of these cycles are generated.

Step 6: A reverse process to that of the contraction of Step 1, transforms the selected

cycles of S0 into those of S.

This algorithm leads to the formation of a suboptimal cycle basis, and for many

models encountered in practice, the selected bases have been optimal.

a
b

Fig. 2.15 S and its

contracted graph S0. (a)
S. (b) S0
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2.4.4.2 Suboptimal Cycle Bases; an Indirect Approach

Definition 1. The weight of a member in the following algorithm is taken as the

sum of the degrees of its end nodes.

Algorithm B

Step 1: Order the members of S in ascending order of weight. In all the subsequent

steps use this ordered member set.

Step 2: Generate as many admissible cycles of length α as possible, where α is the

length of the shortest cycle of S. Denote the union of the selected cycles by Cm.

When α is not specified, use the value α ¼ 3.

Step 3: Select an admissible cycle of length α+1 on an unused member (use the

ordered member set). Once such a cycle Cm+1 is found, control the other unused

members for possible admissible cycles of length α. Again select an admissible

cycle of length α+1 followed by the formation of possible α-sided cycles. This

process is repeated until no admissible cycles of length α and α+1 can be found.

Denote the generated cycles by Cn.

Step 4: Select an admissible cycle Cn+1 of length α+2 on an unused member. Then

check the unused members for the formation of α-sided cycles. Repeat Step

2 until no cycle of length α or α+1 can be generated. Repeat Step 3 until no

cycles of length α, α+1 or α+2 can be found.

Step 5: Take an unused member and generate an admissible cycle of minimal length

on this member. Repeat Steps 1, 2 and 3.

Step 6: Repeat steps similar to that of Step 4 until b1(S) admissible cycles, forming a

suboptimal cycle basis, are generated.

Using the ordered member set affects the selection process in two ways:

1. Generators are selected in ascending weight order, hence increasing the possi-

bility of forming cycles from the dense part of the graph. This increases the

chance of cycles with smaller overlaps being selected.

2. From cycles of equal length formed on a generator, the one with smallest total

weight (sum of the weights of the members of a cycle) is selected.

The cycle bases generated by this algorithm are suboptimal; however, the results

are inferior to those of the direct method A.

Remark. Once a cycle basis C is formed by Algorithm A or Algorithm B, it can

further be improved by exchanging the elements of C. In each step of this process, a

cycle Ck is controlled for the possibility of being exchanged by ring sum of Ck and a

combination of the cycles of C \Ck, in order to reduce the overlap of the cycles. The

process is repeated until no improvement can be achieved. This additional opera-

tion increases the computational time and storage, and should only be used when

the corresponding effort is justifiable, e.g. this may be the case when a non-linear

analysis or a design optimisation is performed using a fixed cycle basis.
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2.4.5 Examples

In this section, examples of planar and space frames are studied. The cycle bases

selected by Algorithms A and B are compared with those developed for generating

minimal cycle bases (Algorithms 1–4). Simple examples are chosen, in order to

illustrate clearly the process of the methods presented. The models, however, can be

extended to those containing a greater number of members and nodes of high

degree, to show the considerable improvements to the sparsity of matrix CCt.

Example 1. Consider a space frame as shown in Fig. 2.16a with the corresponding

graph model S as illustrated in Fig. 2.16b. For this graph b1(S) ¼12, and therefore

12 independent cycles should be selected as a basis. Algorithm B selects a minimal

cycle basis containing the following cycles,

C1 ¼ 1; 2; 3ð Þ, C2 ¼ 1; 2; 5ð Þ, C3 ¼ 1; 3; 4ð Þ, C4 ¼ 1; 5; 4ð Þ, C5 ¼ 2; 3; 6; 7ð Þ,
C6 ¼ 3; 4; 7; 8ð Þ, C7 ¼ 4; 5; 8; 9ð Þ, C8 ¼ 6; 7; 8; 9ð Þ, C9 ¼ 7; 8; 11; 12ð Þ,
C10 ¼ 6; 7; 10; 11ð Þ, C12 ¼ 9; 8; 12; 13ð Þ, C12 ¼ 10; 11; 12; 13ð Þ

which corresponds to:

χ Cð Þ ¼ 4� 3þ 8� 4 ¼ 44,

and

χ CCtð Þ ¼ 12þ 2� 23 ¼ 58:

Using Algorithm A leads to the formation of a similar basis, with the difference

that C
0
8 ¼ (6,9,10,13) is generated in place of C8 ¼ (6, 7, 8, 9), corresponding to:

χ C
0

� �
¼ 4� 3þ 8� 4 ¼ 44,

χ C
0
C

0 t
� �

¼ 12þ 2� 20 ¼ 52:

The CLNs and Ins of the members used in this algorithm are illustrated in

Fig. 2.16b.

Example 2. In this example, S is a space structure with b1(S) ¼ 33, as shown in

Fig. 2.17a. Both Algorithms 3 and A select 33 cycles of length 4, i.e. a minimal

cycle basis with χ(C) ¼ 4 � 33 ¼ 132 is obtained.

The basis selected by Algorithm 3 contains (in the worst case) all four-sided

cycles of S except those which are shaded in Fig. 2.17a, with χ(CCt) ¼ 233.
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Algorithm A selects all three-sided cycles of S except those shaded in Fig. 2.17b,

with χ(CCt) ¼ 190. It will be noticed that, for structures containing nodes of higher

degrees, considerable improvement is obtained by the use of Algorithm A.

Example 3. Consider a space frame as shown in Fig. 2.18, for which b1(S) ¼ 10.

The minimal cycle basis selected by Algorithm 3 consists of the following cycles,

C1 ¼ 1; 2; 3ð Þ, C2 ¼ 4; 5; 6ð Þ, C3 ¼ 7; 8; 9ð Þ, C4 ¼ 10; 11; 12ð Þ,
C5 ¼ 1; 2; 5; 4ð Þ, C6 ¼ 2; 3; 6; 5ð Þ, C7 ¼ 4; 5; 8; 7ð Þ, C8 ¼ 5; 6; 9; 8ð Þ,
C9 ¼ 7; 8; 11; 10ð Þ, C10 ¼ 8; 9; 12; 11ð Þ,

corresponding to χ(C) ¼ 4 � 3 + 6 � 4 ¼ 36 and χ(CCt) ¼ 10 + 2

[0 + 0 + 0 + 2 + 3 + 3 + 4 + 3 + 4] ¼ 10 + 2 � 19 ¼ 48.

However, the following non-minimal cycle basis has a higher χ(C), and leads to
a more sparse CCt matrix. The selected cycles are as follows,

1

2 3
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6

89

10 11

1213

2 , 4

3 , 3.67

3 , 4

3 , 4

3 , 4

3 , 4

5
7

a b

Fig. 2.16 A space frame, and CLNs and Ins of its members. (a) A space structure. (b) The graph

model S of the structure

a b

Fig. 2.17 Minimal and suboptimal cycle bases of S. (a) A minimal cycle basis. (b) A suboptimal

cycle basis
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C1 ¼ 1; 2; 3ð Þ, C2 ¼ 1; 2; 5; 4ð Þ, C3 ¼ 2; 3; 6; 5ð Þ, C4 ¼ 1; 3; 6; 4ð Þ,
C5 ¼ 4; 5; 8; 7ð Þ, C6 ¼ 5; 6; 9; 8ð Þ, C7 ¼ 4; 6; 9; 7ð Þ, C8 ¼ 7; 8; 11; 10ð Þ,
C9 ¼ 8; 9; 12; 11ð Þ, C10 ¼ 10; 11; 12ð Þ,

for which χ(C0) ¼ 2 � 3 + 8 � 4 ¼ 38 corresponding to χ(C0C0t) ¼ 10 + 2

[1 + 2 + 3 + 1 + 2 + 3 + 1 + 2 + 2] ¼ 10 + 2 � 16 ¼ 42.

Therefore, the idea of having an optimal cycle basis in between minimal cycle

bases is incorrect.

Example 4. Consider the skeleton of a structure S, comprising of six flipped flags,

as shown in Fig. 2.19a, for which b1(S) ¼ 6. After contraction, S0 is obtained as

illustrated in Fig. 2.19b. Obviously, this is a planar graph. The CLNs for the

members are 3 and IN for member (1, 2) is 6 and for the remaining members it is

equal to 1., Algorithm 3 selects a minimal cycle basis for S0, consists of six 3-sided
cycles, corresponding to:

χ Cð Þ ¼ 6� 3¼ 18 and χ CCtð Þ ¼ 6þ 2 0þ 1þ 2þ 3þ 4þ 5½ � ¼ 6þ 2� 15¼ 36

However, the following non-minimal cycle basis has a higher χ(S0), and leads to
a lower sparsity, χ(C0C0t):

C1 ¼ 1; 3; 2; 4ð Þ, C2 ¼ 1; 4; 2; 5ð Þ, C3 ¼ 1; 2; 3ð Þ, C4 ¼ 1; 2; 6ð Þ,
C5 ¼ 1; 6; 2; 7ð Þ, C6 ¼ 1; 7; 2; 8ð Þ:

For this basis, χ(C0) ¼ 4 � 4 + 2 � 3 ¼ 22, corresponding to χ(C0C0t) ¼ 6 + 2

[0 + 1 + 1 + 1 + 1 + 1] ¼ 6 + 2 � 5 ¼ 16. After the back transformation from S0

to S, we have χ(C) ¼ 4 � 6 + 2 � 4 ¼ 32, corresponding to χ(CCt) ¼ 6 + 2

[0 + 1 + 1 + 1 + 1 + 1] ¼ 16.
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Fig. 2.18 A space frame S
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2.4.6 An Improved Turn Back Method for the Formation
of Cycle Bases

In this section, the combinatorial Turn-back method of Kaveh [15] is improved to

obtain shorter cycle bases. This method covers all the counter examples, known for

the minimality of the selected cycle bases.

Step 1: Generate an SRT rooted from an arbitrary node O. Identify its chords, and

order them according to their distance numbers from O.

Step 2: Select the shortest length cycle of the graph on a chord and add this chord

(generator) to the tree members. Repeat this process to all the chords, forming

cycles of the least length containing the tree members and the previously used

chords only. The selected cycles are all admissible, i.e. the addition of each cycle

increases the first Betti number of the expanded part of the graph by unity. Store

these cycles in C.

Step 3: Form all the new cycles of the same length on the remaining chords,

allowing the use of more than one unused chords in their formation.

Step 4: Control the cycles formed in Step 3 to find only one cycle having a

generator, which is in none of the other connected cycles formed in Step

3. When such a chord is found, add the corresponding cycle to C and include

its generator in the tree members. Repeat this control until no such a cycle can be

found.

Step 5: Select a cycle of the next higher length in the graph containing only one

chord. Add the selected cycle to C and its generator to the tree members.

Step 6: Control the cycles formed in Step 3 to find a cycle containing only one

unused chord. Add such a cycle to C and add its chord to the tree members.

Repeat this control until no cycle of this property can be found.

Step 7: Repeat Step 4.

Step 8: Repeat Steps 5 and 6 and continue this repetition with the same length until

no cycle in Step 5 can be found.

Step 9: Repeat Steps 3 to 8, until b1(S) cycles forming a cycle basis is included in C.

1

2

345 6 7 8

a bFig. 2.19 A flipped flag

before and after contraction.

(a) S. (b) S0
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2.4.7 Examples

Example 1. A graph is considered in the form of the 1-skeleton of a torus-type

structure, Fig. 2.20. An SRT is selected, as shown in bold lines. The cycles selected

in Step 2 are given in the following:

C ¼ 1; 2; 6ð Þ; 1; 4; 5ð Þ; 1; 5; 6ð Þ; 1; 2; 13ð Þ; 1; 4; 16ð Þ; 1; 13; 16ð Þ; 2; 3; 7ð Þ;f
2; 6; 7ð Þ; 2; 3; 14ð Þ; 2; 13; 14ð Þ; 4; 5; 8ð Þ; 4; 15; 16ð Þ; 5; 6; 10ð Þ;
5; 9; 10ð Þ; 5; 8; 9ð Þ; 12; 13; 16ð Þ; 11; 12; 16ð Þ; 11; 15; 16ð Þg:

The execution of Step 3 results in the following cycles:

3; 7; 8ð Þ, 3; 4; 8ð Þ, 7; 11; 12ð Þ, 7; 8; 12ð Þ, 8; 9; 12ð Þ, 9; 13; 14ð Þ, 9; 10; 14ð Þ,
10; 14; 15ð Þ, 10; 11; 15ð Þ, 9; 12; 13ð Þ, 3; 14; 15ð Þ, 3; 4; 15ð Þ:

Twelve cycles are generated, increasing the first Betti number by twelve. The

control of Step 4, leads to generators {10, 11} and {7, 11} corresponding to the

cycles (10, 11, 15) and (7, 11, 12), respectively. Thus no cycle is selected.

In Step 5, a cycle of length 4 containing an unused chord is formed. On {3, 4},

cycle (1, 2, 3, 4) is generated and added to C. Then in Step 6, the following cycles

are added to C:

3; 4; 8ð Þ for 3; 8f g, 3; 7; 8ð Þ for 7; 8f g, 3; 4; 15ð Þ for 3; 15f g, 3; 14; 15ð Þ for 14; 15f g:

In Step 7 no cycle is found, but in Step 8, the execution of Step 5 leads to cycle

(1, 5, 9, 13) on {9, 13}, and Step 6 leads to the following cycles completing C, and

forming a minimal cycle basis of S:
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Fig. 2.20 Graph S and the

selected SRT
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9; 12; 13ð Þ for 9; 12f g, 9; 13; 14ð Þ for 9; 14f g, 8; 9; 12ð Þ for
8; 12f g, 7; 8; 12ð Þ for 7; 12f g, 7; 11; 12ð Þfor 7; 11f g, 9; 10; 14ð Þ for 10; 14f g,
10; 14; 15ð Þ for 10; 15f g, and 10; 11; 15ð Þ for 10; 11f g:

Example 2. A space graph is considered as illustrated in Fig. 2.21. An SRT is

selected as shown in bold lines. The application of Step 2, leads to the following

cycle set:

C¼ 1;2;6;7ð Þ; 1;5;6;10ð Þ; 2;3;7;8ð Þ; 4;5;9;10ð Þ; 6;7;11;12ð Þ; 6;10;11;15ð Þ;f
7;8;12;13ð Þ; 9;10;14;15ð Þ; 11;12;16;17ð Þ; 11;15;16;20ð Þ; 12;13;17;18ð Þ;
14;15;19;20ð Þ; 21;22;26;27ð Þ; 21;25;26;30ð Þ; 22;23;27;28ð Þ; 24;25;29;30ð Þg:

In Step 3, the following cycles are generated:

3; 4; 8; 9ð Þ, 8; 9; 13; 14ð Þ, 13; 14; 18; 19ð Þ, 16; 17; 21; 22ð Þ, 17; 18; 22; 23ð Þ,
18; 19; 22; 23ð Þ, 18; 19; 23; 24ð Þ, 19; 20; 24; 25ð Þ, 16; 20; 21; 25ð Þ, 23; 24; 28; 29ð Þ:

These cycles contain 11 unused chords. The control of Step 4 shows that {3, 4}

and {28, 29} are included in one cycle, and therefore all the chords remain unused.

In the next step, a cycle of length 5 including an unused chord is generated and

added to C. Only with chord {3, 4}, the 5-sided cycle (1, 2, 3, 4, 5) is generated, and

in Step 6 the following three-sided cycles are selected:
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Fig. 2.21 A space graph

and the selected SRT
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3; 4; 8; 9ð Þ, 8; 9; 13; 14ð Þ, and 13; 14; 18; 19ð Þ:

Step 7 is carried out and cycle (23, 24, 28, 29) on {28, 29} is found, repetition of

this control leads to cycle (18, 19, 23, 24) on {23, 24}. In the next step, no cycle is

selected. The execution of Steps 3 and 4 in Step 9 results in no cycle.

The execution of Step 5 in Step 9, forms cycle (1, 6, 11, 16, 21, 26) on chord {16,

21}, and the execution of Step 6 leads to the following cycles,

16; 20; 21; 25ð Þ for 20; 25f g, 19; 20; 24; 25ð Þ for 19; 24f g, 16; 17; 21; 22ð Þ for
17; 22f g, and 17; 18; 22; 23ð Þ for 18; 23f g:

The selected cycles form a minimal cycle basis.

2.4.8 Formation of B0 and B1 Matrices

In order to generate the elements of a B0 matrix, a basic structure of S should be

selected. For this purpose a spanning forest consisting of NG(S) SRTs is used,

where NG(S) is the number of ground (support) nodes of S. As an example, for S

shown in Fig. 2.22a, two SR subtrees are generated, Fig. 2.22b.

The orientation assigned to each member of S is from the lower numbered node

to its higher numbered end. For each SR subtree, the orientation is given in the

direction of its growth from its support node.

MATRIX B0: This is a 6M(S) � 6NL(S) matrix, where M(S) and NL(S) are the

numbers of members and loaded nodes of S, respectively. If all the free nodes are

loaded, then

NL Sð Þ ¼ N Sð Þ � NG Sð Þ,

where NG(S) is the number of support nodes.
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9 10
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j=1111a b

Fig. 2.22 S and two of its SR subtrees
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For a member, the internal forces are represented by the components at the lower

numbered end. Obviously the components at the other end can be obtained by

considering the equilibrium of the member.

The coefficients of B0 can be obtained by considering the transformation of each

joint load to the ground node of the corresponding subtree. [B0]ij for member i and

node j is given by a 6 � 6 submatrix as,

B0½ �ij ¼ αij

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 � Δz Δy 1 0 0

Δz 0 � Δx 0 1 0

�Δy Δx 0 0 0 1

2
66666666664

3
77777777775
, ð2:63Þ

in which Δx, Δy andΔz are the differences of the coordinates of node j with respect
to the lower numbered end of member i, in the selected global coordinate system,

and αij is the orientation coefficient defined as:

αij ¼
þ1 if member is positively oriented in the tree containing j,

�1 if member is negatively oriented in the tree containing j,

0 if member is not in the tree containing node j:

8<
:

The B0 matrix can be obtained by assembling the [B0]ij submatrices as shown

schematically in the following:

ð2:64Þ

MATRIX B1: This is a 6M(S) � 6b1(S) matrix, which can be formed using the

elements of a selected cycle basis. For a space structure, six self-equilibrating stress

systems can be formed on each cycle. Consider Cj and take a member of this cycle

as its generator. Cut the generator in the neighbourhood of its beginning node and

apply six bi-actions as illustrated in Fig. 2.23.

The internal forces under the application of each bi-action are a self-equilibrating

stress system As for the matrix B0, a submatrix [B1]ij of B1 is a 6 � 6 submatrix, the

columns of which show the internal forces at the lower numbered end of member i

under the application of six bi-actions at the cut of the generator j,
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B1½ �ij ¼ βij

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 � Δz Δy 1 0 0

Δz 0 � Δx 0 1 0

�Δy Δx 0 0 0 1

2
66666666664

3
77777777775
, ð2:65Þ

in which Δx, Δy and Δz are the differences of the coordinates x, y and z of the

beginning node of the generator j and the beginning node of the member i. The

orientation coefficient βij is defined as:

βij ¼
þ1 if member i has the same orientation of the cycle generated on j,

�1 if member i has the reverse orientation of the cycle generated on j,

0 if member is not in the cycle whose generator is j:

8<
:

The pattern of B1 containing [B1]ij submatrices is shown in the following:

ð2:66Þ

Subroutines for the formation of B0 and B1 matrices are included in the program

presented in Ref. [19].

x
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C

j

i

O

j

Fig. 2.23 A cycle and the

considered bi-action at a cut
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Fig. 2.24 A four by four

planar frame S

a bFig. 2.25 Patterns of B1

and Bt
1B1 matrices for S. (a)

Pattern of B1. (b) Pattern of

Bt
1B1

Fig. 2.26 A simple space

frame S
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Example 1. A four by four planar frame is considered as shown in Fig. 2.24.

The patterns of B1 and Bt
1B1 formed on the elements of the cycle basis selected

by any of the methods of the previous section are depicted in Fig. 2.25,

corresponding to χ(B1) ¼ 241 and χ(Bt
1B1) ¼ 388.

Example 2. A one-bay three-storey frame is considered as shown in Fig. 2.26.

The patterns of B1 and Bt
1B1 matrices formed on the elements of the cycle basis

selected by any of the graph theoretical algorithms of the previous Section are

shown in Fig. 2.27, corresponding to χ(B1) ¼ 310 and χ(Bt
1B1) ¼ 562.

Once B0 and B1 are computed, the remaining steps of the analysis are the same as

those presented in Sect. 2.3.6. The interested reader may also refer to standard

textbooks such as those of McGuire and Gallagher [31], Przemieniecki [32], or

Pestel and Leckie [33] for further information.

2.5 Generalized Cycle Bases of a Graph

In this section, S is considered to be a connected graph. For γ(S) ¼ aM(S) +

bN(S) + cγ0(S), the coefficients b and c are assumed to be integer multiples of

the coefficient a > 0. Only those coefficients given in Table 2.1 are of interest.

a bFig. 2.27 Patterns of B1

and Bt
1B1 matrices for S. (a)

Pattern of B1. (b) Pattern of

Bt
1B1

82 2 Optimal Force Method: Analysis of Skeletal Structures



2.5.1 Definitions

Definition 1. A subgraph Si is called an elementary subgraph if it does not contain

a subgraph S
0
i � Si with γ(S

0
i) > 0. A connected rigid subgraph T of S containing all

the nodes of S is called a γ-tree if γ(T) ¼ 0. For γ(Si) ¼ b1(Si), a γ-tree becomes a

tree in graph theory.

Obviously a structure whose model is a γ-tree is statically determinate when

γ(S) describes the degree of static indeterminacy of the structure. The ensuing stress

resultants can uniquely be determined everywhere in the structure by equilibrium

only. Examples of γ-trees are shown in Fig. 2.28.

Notice that γ(T) ¼ 0 does not guarantee the rigidity of a γ-tree. For example, the

graphs models depicted in Fig. 2.29 both satisfy γ(T) ¼ 0; however, neither is rigid.

Definition 2. A member of S � T is called a γ-chord of T. The collection of all

γ-chords of a γ-tree is called the γ-cotree of S.

Definition 3. A removable subgraph Sj of a graph Si, is the elementary subgraph

for which γ(Si � Sj) ¼ γ(Si), i.e. the removal of Sj from Si does not alter its DSI. A

γ-tree of S containing two chosen nodes, which has no removable subgraph is called

a γ-path between these two nodes.

As an example, the graphs shown in Fig. 2.30 are γ-paths between the specified

nodes ns and nt.

Definition 4. A connected rigid subgraph of S with γ(Ck) ¼ a, which has no

removable subgraph is termed a γ-cycle of S. The total number of members of

a b c

Fig. 2.28 Examples of γ-trees (a) γ(S) ¼ 3M � 3N + 3. (b) γ(S) ¼ M � 2N + 3.

(c) γ(S) ¼ M � 3N + 6

a b

Fig. 2.29 Structures satisfying γ(T) ¼ 0 which are not rigid. (a) γ(S) ¼ M � 2N + 3.

(b) γ(S) ¼ M � 3N + 6
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Ck, denoted by L(Ck), is called the length of Ck. Examples of γ-cycles are shown in
Fig. 2.31.

ns ns ns

nt

nt

nt

a b c

Fig. 2.30 Examples of γ-paths. (a) γ(S) ¼ α(M � N + 1). (b) γ(S) ¼ M � 2N + 3.

(c) γ(S) ¼ M � 3N + 6

a b c

Fig. 2.31 Examples of γ-cycles. (a) γ(S) ¼ α(M � N + 1). (b) γ(S) ¼ M � 2N + 3.

(c) γ(S) ¼ M � 3N + 6

a

b

Fig. 2.32 A planar truss S, and the elements of a GCB of S. (a) A planar truss S. (b) A generalized

cycle basis of S
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Definition 5. Let mi be a γ-chord of T. Then T [ mi contains a γ-cycle Ci which is

defined as a fundamental γ-cycle of S with respect to T. Using the Intersection

Theorem of Sect. 2.2.2, it can easily be shown that,

γ T [mið Þ ¼ 0þ aþ 2bþ cð Þ � 2bþ cð Þ ¼ a,

indicating the existence of a γ-cycle in T [ mi. For a rigid T, the corresponding

fundamental γ-cycle is also rigid, since the addition of an extra member between the

existing nodes of a graph cannot destroy the rigidity. A fundamental γ-cycle can be
obtained by omitting all the removable subgraphs of T [ mi.

Definition 6. A maximal set of independent γ-cycles of S is defined as a general-
ized cycle basis (GCB) of S. A maximal set of independent fundamental γ-cycles is
termed a fundamental generalized cycle basis of S. The dimension of such a basis is

given be η(S) ¼ γ(S)/a.
As an example, a generalized cycle basis of a planar truss is illustrated in

Fig. 2.32.

Definition 7. A generalized cycle basis-member incidence matrix C is an

η(S) � M matrix with entries � 1, 0 and +1, where cij ¼ 1 (or � 1) if γ-cycle Ci

contains positively (or negatively) oriented member mj, and cij ¼ 0 otherwise. The

generalized cycle adjacency matrix is defined as D which is an η(S) � η(S) matrix

when undirected γ-cycles are considered; then the negative entries of C become

positive.

2.5.2 Minimal and Optimal Generalized Cycle Bases

A generalized cycle basis C ¼ {C1,C2, . . .,Cη(S)} is calledminimal if it corresponds
to a minimum value of:

L Cð Þ ¼
Xη Sð Þ

i¼1

L Cið Þ: ð2:67Þ

Obviously, χ(C) ¼ L(C) and a minimal GCB can be defined as a basis which

corresponds to minimum χ(C). A GCB for which L(C) is near minimum is called a

subminimal GCB of S.

A GCB corresponding to maximal sparsity of the GCB adjacency matrix is

called an optimal generalized cycle basis of S. If χ(CCt) does not differ consider-

ably from its minimum value, then the corresponding basis is termed suboptimal.
The matrix intersection coefficient σi(C) of row i of GCB incidence matrix C is

the number of row j such that:
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(a) j ∈ {i + 1, i + 2, . . ., η(S)},
(b) Ci \ Cj 6¼ ∅, i.e. there is at least one k such that the column k of both γ-cycles

Ci and Cj (rows i and j) contain non-zero entries.

Now it can be shown that:

χ CCtð Þ ¼ η Sð Þ þ 2
Xη Sð Þ�1

i¼1

σj Cð Þ: ð2:68Þ

This relationship shows the correspondence of a GCB incidence matrix C and

that of its GCB adjacency matrix. In order to minimize χ(CCt), the value of

Xη Sð Þ�1

i¼1

σj Cð Þ should be minimized, since η(S) is a constant for a given structure S,

i.e. γ-cycles with a minimum number of overlaps should be selected.

2.6 Force Method for the Analysis of Pin-Jointed Planar

Trusses

The methods described in Sect. 2.5 are applicable to the selection of generalized

cycle bases for different types of skeletal structures. However, the use of these

algorithms for trusses engenders some problems, which are discussed in Ref.

[34]. In this section, two methods are developed for selecting suitable GCBs for

planar trusses. In both methods, special graphs are constructed for the original

graph model S of a truss, containing all the connectivity properties required for

selecting a suboptimal GCB of S.

2.6.1 Associate Graphs for Selection of a Suboptimal GCB

Let S be the model of a planar truss with triangulated panels, as shown in Fig. 2.33.

The associate graph of S, denoted by A(S), is a graph whose nodes are in a one-to-

one correspondence with triangular panels of S, and two nodes of A(S) are

connected by a member if the corresponding panels have a common member in S.

Fig. 2.33 A planar truss S

and its associate graph A(S)
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If S has some cut-outs, as shown in Fig. 2.34, then its associate graph can still be

formed, provided that each cut-out is surrounded by triangulated panels.

For trusses containing adjacent cut-outs, a cut-out with cut-nodes in its bound-

ary, or any other form violating the above-mentioned condition, extra members can

be added to S. The effect of such members should then be included in the process of

generating its self-equilibrating stress systems.

Theorem A. For a fully triangulated truss (except for the exterior boundary), as in

Fig. 2.33, the dimension of a statical basis γ(S) is equal to the number of its internal

nodes, which is the same as the first Betti number of its associate graph, i.e.

γ Sð Þ ¼ Ni Sð Þ ¼ b1 A Sð Þ½ �: ð2:69Þ

Proof. Let M0 and N0 be the numbers of members and nodes of A(S), respectively.

By definition,

N
0 ¼ R Sð Þ � 1,

and M0 ¼ Mi(S) ¼ M(S) � Me(S) ¼ M(S) � Ne(S) ¼ M(S) � [N(S) � Ni(S)].

Thus: b1[A(S)] ¼ M0 � N0 + 1 ¼ M(S) � [N(S) � Ni(S)] � R(S) + 1 + 1

¼ 2 � R(S) + M(S) � N(S) + Ni(S).

By Euler’s polyhedron formula, we have:

2� R Sð Þ þM Sð Þ � N Sð Þ ¼ 0:

Therefore:

For trusses which are not fully triangulated, we have:

Fig. 2.34 S with two

cut-outs and its A(S)

a bFig. 2.35 Two different

types of cycles. (a) A type

CI cycle. (b) A type CIII

cycle
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γ Sð Þ ¼ Ni Sð Þ �Mc Sð Þ:

A Cycle of A(S) and the Corresponding γ-Cycle of S. In Fig. 2.35a, a triangu-

lated truss and its associate graph, which is a cycle, are shown for which

γ Sið Þ ¼ Ni ¼ 1 ¼ b1 A Sð Þ½ �:

Since C1 of A(S) corresponds to one γ-cycle of S, it is called a type I cycle,
denoted by CI. A γ-cycle of S is shown by continuous lines, and its γ-chords are
depicted in dashed lines.

Figure 2.35b shows a truss unit with one cut-out. In general, if a cut-out is an

m-gon, then the completion of the triangulation requires m�3 members. Instead, m

internal nodes will be created, increasing the DSI by m. Hence Eq. 2.68 yields,

γ Sð Þ ¼ m� m� 3ð Þ ¼ 3,

while: b1[A(S)] ¼ 1.

However, in this case S contains three γ-cycles. A γ-path P and three γ-chords
(dashed lines) are depicted in Fig. 2.35b. Obviously P[mi (i ¼ 1, 2, 3) form three

γ-cycles which correspond to a cycle of type CIII of A(S). Thus two types of cycles

CI and CIII should be recognized in A(S) and an appropriate number of γ-cycles will
then be generated.

Algorithm AA

Step 1: Construct the associate graph A(S) of S.

Step 2: Select a mesh basis of A(S), using an appropriate cycle selection algorithm.

For fully triangulated S, Algorithms 1–3 generate cycle bases with three-sided

elements.

Step 3: Select the γ-cycles of S corresponding to the cycles of A(S). One γ- cycle for
each cycle of type CI, and three γ-cycles for each cycle of type CIII should be

chosen.

Once a GCB is selected, on each γ-cycle one self-equilibrating stress system can

easily be formed. Therefore, a statical basis with localized self-equilibrating stress

systems will be obtained.

Example. Let S be the graph model of a planar truss, as shown in Fig. 2.34, for

which γ(S) ¼ 12. For A(S), six cycles of length 6 of type CI and two cycles of

lengths 18 and 26 of type CIII are selected. Therefore, the total of 6 + 3 � 2 ¼ 12

γ-cycles of S are obtained. On each γ-cycle one self-equilibrating stress system is

constructed, and a statical basis consisting of localized self-equilibrating stress

systems is thus obtained.
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2.6.2 Minimal GCB of a Graph

Theoretically a minimal GCB of a graph can be found using the Greedy Algorithm

developed for matroids. This will be discussed in Kaveh [15, 20] after matroids

have been introduced, and here only the algorithm is briefly outlined.

Consider the graph model of a structure, and select all of its γ-cycles. Order the
selected γ-cycles in ascending order of length. Denote these cycles by a set C. Then
perform the following steps:

Step 1: Choose a γ-cycle C1 of the smallest length, i.e. L(C1) < L(Ci) for all Ci∈ C

Step 2: Select the second γ-cycle C2 from C � {C1} which is independent of C1 and

L(C2) � L(Ci) for all γ-cycles of C � {C1}.

Step k: Subsequently choose a γ-cycle Ck from C � {C1, C2, . . ., Ck�1} which is

independent of C1, C2, . . ., Ck�1 and L(Ck) � L(Ci) for all Ci ∈ C � {C1,

C2, . . .,Ck � 1}.

After η(S) steps, a minimal GCB will be selected by this process, a proof of

which can be found in Kaveh [19].

2.6.3 Selection of a Subminimal GCB: Practical Methods

In practice, three main difficulties are encountered in an efficient implementation of

the Greedy Algorithm. These difficulties are briefly mentioned in the following:

1. Selection of some of the γ-cycles for some γ(S) functions.
2. Formation of all of the γ-cycles of S.
3. Checking the independence of γ-cycles.

In order to overcome the above difficulties, various methods are developed. The

bases selected by these approaches correspond to very sparse GCB adjacency

matrices, although these bases are not always minimal.

Method 1. This is a natural generalization of the method for finding a fundamental

cycle basis of a graph, and consists of the following steps:

Step 1: Select an arbitrary γ-tree of S, and find its γ-chords.
Step 2: Add one γ-chord at a time to the selected γ-tree to form fundamental

γ-cycles of S with respect to the selected γ-tree.

The main advantage of this method is the fact that the independence of γ-cycles
is guaranteed by using a γ-tree. However, the selected γ-cycles are often quite long,
corresponding to highly populated CCB adjacency matrices.

Method 2. This is an improved version of Method 1, in which a special γ-tree has
been employed and each γ-chord is added to γ-tree members after being used for

formation of a fundamental γ-cycle.
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Step 1. Select the centre “O” of the given graph. Methods for selecting such a node

will be discussed in Chap. 5.

Step 2: Generate a shortest route γ-tree rooted at the selected node O, and order its

γ-chords according to their distance from O. The distance of a member is taken

as the sum of the shortest paths between its end nodes and O.

Step 3: Form a γ-cycle on the γ-chord of the smallest distance number, and add the

used γ-chord to the tree members, i.e. form T [ m1.

Step 4: Form the second γ-cycle on the next nearest γ-chord to O, by finding a

γ-path in T [ m1 (not through m2). Then add the second used γ-chord m2 to T [
m1 obtaining T [ m1 [ m2.

Step 5: Subsequently form the kth γ-cycle on the next unused γ-chord nearest to O,

by finding a γ-path in the T [ m1 [ m2 [ . . . [ mk � 1 (not through mk). Such a

γ-path together with mk forms a γ-cycle.
Step 6: Repeat Step 5 until η(S) of γ-cycles are selected.

Addition of the used γ-chords to the γ-tree members leads to a considerable

reduction in the length of the selected γ-cycles, while maintaining the simplicity of

the independence check.

In this algorithm, the use of an SRT, orders the nodes and members of the graph.

Such an ordering leads to fairly banded member-node incidence matrices. Consid-

ering the columns corresponding to tree members as independent columns, a base is

effectively selected for the cycle matroid of the graph, Kaveh [34].

Method 3. This method uses an expansion process, at each step of which one

independent γ-cycle is selected and added to the previously selected ones. The

independence is secured using an admissibility condition defined as follows.

A γ-cycle Ck+1 added to the previous selected γ-cycles Ck ¼ C1 [ C2 [ . . . [
Ck is called admissible if,

γ
�
Ck [ Ckþ1

� ¼ γ Ck
� �þ a, ð2:70Þ

where “a” is the coefficient defined in Table 2.1. The algorithm can now be

described as follows.

Step 1: Select the first γ-cycle of minimal length C1.

Step 2: Select the second γ-cycle of minimal length C2 which is independent of C1,

i.e. select the second admissible γ-cycle of minimal length.

Step k: Subsequently, find the kth admissible γ-cycle of minimal length. Continue

this process until η(S) independent γ-cycles forming a subminimal GCB are

obtained.

A γ-cycle of minimal length can be generated on an arbitrary member by

adding a γ-path of minimal length between the two end nodes of the member (not

through the member itself). The main advantage of this algorithm is avoiding the

formation of all γ-cycles of S and also the independence control, which becomes

feasible by graph theoretical methods.
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The above methods are elaborated for specific γ(S) functions in subsequent

sections, and examples are included to illustrate their simplicity and efficiency.

2.7 Algebraic Force Methods of Analysis

Combinatorial methods for the force method of structural analysis have been

presented in previous sections. These methods are very efficient for skeletal struc-

tures and in particular for rigid-jointed frames. For general structures, the underly-

ing graph of self-equilibrating stress systems will be discussed in Chaps. 6 and 7.

Algebraic methods can be formulated in a more general form to cover different

types of structures such as skeletal structures and finite element models. The main

drawbacks of pure algebraic methods are the larger storage requirements, and the

higher number of operations.

2.7.1 Algebraic Methods

Consider a discrete or discretized structure S, which is assumed to be statically

indeterminate. Let r denote the m-dimensional vector of generalized independent

element (member) forces, and p the n-vector of nodal loads. The equilibrium

conditions of the structure can then be expressed as,

Ar ¼ p, ð2:71Þ

where A is an n � m equilibrium matrix. The structure is assumed to be rigid, and

therefore, A has a full rank, i.e. t ¼ m�n > 0, and rank A ¼ n.

The member forces can be written as,

r ¼ B0pþ B1q, ð2:72Þ

where B0 is an m � n matrix such thatAB0 is an n � n identity matrix, and B1 is an

m � t matrix such that AB1 is an n � t zero matrix. B0 and B1 always exist for a

structure and in fact many of them can be found for a structure. B1 is called a self-
stress matrix as well as null basis matrix. Each column of B1 is known as a null
vector. Notice that the null space, null basis and null vectors correspond to

complementary solution space, statical basis and self-equilibrating stress systems,

respectively, when S is taken as a general structure.

Minimizing the potential energy requires that r minimize the quadratic form,
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1

2
rtFmr, ð2:73Þ

subject to the constraint as in Eq. 2.71. Fm is an m � m block diagonal element

flexibility matrix. Using Eq. 2.72, it can be seen that q must satisfy the following

equation.

B t
1FmB1

� �
q ¼ �B t

1FmB0p, ð2:74Þ

where Bt
1FmB1 ¼ G is the overall flexibility matrix of the structure. Computing the

redundant forces q from Eq. 2.49, r can be found using Eq. 2.9. The structure of

G is again important and its sparsity, bandwidth and conditioning govern the

efficiency of the force method. For the sparsity of G one can search for a sparse

B1 matrix, which is often referred to as the sparse null basis problem.

Many algorithms exist for computing a null basis B1 of a matrix A. For the

moment let A be partitioned so that,

AP ¼ A1;A2½ �, ð2:75Þ

where A1 is n � n and non-singular, and P is a permutation matrix that may be

required in order to ensure that A1 is non-singular. One can write:

B1 ¼ P
�A�1

1 A2

I

� �
: ð2:76Þ

By simple multiplication it becomes obvious that:

AB1 ¼ A1 A2½ � �A�1
1 A2

I

� �
¼ 0:

A permutation P that yields a non-singular A1 matrix can be chosen purely

symbolically, but this says nothing about the possible numerical conditioning of A1

and the resulting B1.

In order to control the numerical conditioning, pivoting must be employed.

There are many such methods based on various matrix factorizations, including

the Gauss-Jordan elimination, QR, LU, LQ and Turn-back method. Some of these

methods are briefly studied in the following:

Gauss-Jordan Elimination Method. In this approach one creates an n � n iden-

tity matrix I in the first columns ofA by column changes and a sequence of n pivots.

This procedure can be expressed as,

GnGn�1 . . .G2G1AP ¼ I;M½ �, ð2:77Þ
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where Gi is the ith pivot matrix and P is an m � m column permutation matrix

(so Pt ¼ P) and I is an n�n identity matrix, and M is an n � t matrix. Denoting

GnGn�1 . . . G2G1 by G we have,

a bFig. 2.36 Patterns of B1

and Bt
1B1 matrices for S

using Gauss-Jordan

elimination method,

Example 1. (a) Pattern of

B1. (b) Pattern of Bt
1B1

a bFig. 2.37 Patterns of B1

and Bt
1B1 matrices for S

using Gauss-Jordan

elimination method,

Example 2. (a) Pattern of

B1. (b) Pattern of Bt
1B1
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GAP ¼ I;M½ �, ð2:78Þ
or AP ¼ G�1 I;M½ � ¼ G�1,G�1M

� �
, ð2:79Þ

which can be regarded as Gauss-Jordan factorization of A, and:

a bFig. 2.38 Patterns of B1

and Bt
1B1 matrices for S

using LU decomposition

method, Example 1.

(a) Pattern of B1.

(b) Pattern of Bt
1B1

a bFig. 2.39 Patterns of B1

and Bt
1B1 matrices for S

using LU decomposition

method, Example 2.

(a) Pattern of B1.

(b) Pattern of Bt
1B1
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B0 ¼ P
G

0

� �
and B1 ¼ P

�M

I

� �
ð2:80Þ

Example 1. The four by four planar frame of Fig. 2.24 is reconsidered. The

patterns of B1 and Bt
1B1 formed by the Gauss-Jordan elimination method are

depicted in Fig. 2.36, corresponding to χ(B1) ¼ 491 and χ(Bt
1B1) ¼ 1342.

Example 2. The three-story frame of Fig. 2.24 is re-considered, and the Gauss-

Jordan elimination method is used. The patterns of B1 and Bt
1B1 matrices formed

are shown in Fig. 2.37, corresponding to χ(B1) ¼ 483 and χ(Bt
1B1) ¼ 1592.

LU Decomposition Method. Using the LU decomposition method, one obtains

the LU factorization of A as,

PA ¼ LU and UP ¼ U1;U2½ �, ð2:81Þ

P andP are again permutation matrices of order n � n and m � m, respectively.

Now B0 and B1 can be written as:

B0 ¼ P
U�1

1 L�1P

0

� �
and B1 ¼ P

�U�1
1 U2

I

� �
: ð2:82Þ

Example 1. The four by four planar frame of Fig. 2.24 is re-considered. The

patterns of B1 and Bt
1B1 formed by the LU factorization method are depicted in

Fig. 2.38. The sparsity for the corresponding matrices are χ(B1) ¼ 408 and

χ(Bt
1B1) ¼ 1248.

Example 2. The three-storey frame of Fig. 2.24 is re-considered, and the LU

factorization method is used. The patterns of B1 and Bt
1B1 matrices formed are

shown in Fig. 2.39, corresponding to χ(B1) ¼ 504 and χ(Bt
1B1) ¼ 1530.

QR Decomposition Method. Using a QR factorization algorithm with column

pivoting yields,

AP ¼ Q R1;R2½ �, ð2:83Þ

where P is again a permutation matrix, and R1 is an upper triangular matrix of order

n. B1 can be obtained as:

B1 ¼ P
�R�1

1 R2

I

� �
: ð2:84Þ

Turn-back LU Decomposition Method. Topçu developed a method, the

so-called Turn-back LU procedure, which is based on LU factorization and often

results in highly sparse and banded B1 matrices. Heath et al. [35] adopted this

method for use with QR factorization. Due to the efficiency of this method, a brief

description of their approach will be presented in the following.

2.7 Algebraic Force Methods of Analysis 95



Write the matrix A ¼ (a1,a2, . . .,an) by columns. A start column is a column

such that the ranks of (a1, a2, . . ., as�1) and (a1, a2, . . ., as) are equal. Equivalently, as
is a start column if it is linearly dependent on lower-numbered columns. The

coefficients of this linear dependency give a null vector whose highest numbered

non-zero is in position s. It is easy to see that, the number of start columns is

m�n ¼ t, the dimension of the null space of A.

a bFig. 2.40 Patterns of B1

and Bt
1B1 matrices for S

using Turn-back LU

decomposition method,

Example 1. (a) Pattern of

B1. (b) Pattern of Bt
1B1

a bFig. 2.41 Patterns of B1

and Bt
1B1 matrices for S

using Turn-back LU

decomposition method,

Example 2. (a) Pattern of

B1. (b) Pattern of Bt
1B1
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The start column can be found by performing a QR factorization of A, using

orthogonal transformations to annihilate the subdiagonal non-zeros. Suppose that in

carrying out the QR factorization we do not perform column interchanges but

simply skip over any columns that are already zero on and below the diagonal.

The result will then be a factorization of the form:

ð2:85Þ

The start columns are those columns where the upper triangular structure jogs to

the right; that is, as is a start column if the highest non-zero position in column s of

R, is no larger than the highest non-zero position in earlier columns of R.

The Turn-back method finds one null vector for each start column as, by “turning

back” from column s to find the smallest k for which columns as, as�1, . . ., as�k are

linearly dependent. The null vector has a non-zero only in position s-k throughs.

Thus if k is small for most of the start columns, then the null basis will have a small

profile. Notice that the turn-back operates on A, and not on R. The initial QR

factorization of A is used only to determine the start columns, and then discarded.

The null vector that Turn-back finds from start column as may not be non-zero in

position s. Therefore, Turn-back needs to have some way to guarantee that its null

vectors are linearly independent. This can be accomplished by forbidding the left-

most column of the dependency for each null vector from participating in any later

dependencies. Thus, if the null vector for start column as has its first non-zero in

position s-k, every null vector for a start column to the right of as will be zero in

position s-k.

Although the term “Turn-back” is introduced in Ref. [7], the basic idea had also

been used in Refs. [36]. Since this correspondence simplifies the understanding of

the Turn-back method, it is briefly described in the following.

For the Algorithm 1 of Sect. 2.3, the use of an SRT orders the nodes and

members of the graph simultaneously, resulting in a fairly banded member-node

incidence matrix B. Considering the columns of B corresponding to tree members

as independent columns, effectively a cycle is formed on each ordered chord (start

column) by turning back in B and establishing a minimal dependency, using the tree

members and previously used chords. The cycle basis selected by this process forms

a base for the cycle matroid of the graph, as it is described in Kaveh [37]. Therefore,

the idea used in Algorithm 1 and its generalization for the formation of a general-

ized cycle bases in Ref. [38] seems to constitute a similar idea to that of the

algebraic Turn-back method.

Example 1. The four by four planar frame of Fig. 2.24 is re-considered. The

patterns of B1 and Bt
1B1 formed by the Turn-back LU factorization method are

depicted in Fig. 2.40, corresponding to χ(B1) ¼ 240 and χ(Bt
1B1) ¼ 408.
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Example 2. The four by four planar frame of Fig. 2.24 is re-considered, and the

Turn-back LU factorization method is used. The patterns of B1 and Bt
1B1 matrices

formed are shown in Fig. 2.41, corresponding to χ(B1) ¼ 476 and χ(Bt
1B1) ¼ 984.

A comparative study of various force methods has been made in Ref. [30].

Many algorithms have been developed for selection of null bases, and the

interested reader may refer to Refs. [38, 39].
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Chapter 3

Optimal Displacement Method of Structural

Analysis

3.1 Introduction

In this chapter, the principles introduced in Chap. 1 are used for the formulation of

the general displacement method of structural analysis. Computational aspects are

discussed and many worked examples are included to illustrate the concepts and

principles being used. In order to show the generality of the methods introduced for

the formation of the element stiffness matrices, the stiffness matrix of a simple

finite element is also derived.

Special attention is paid to the graph theory aspects of the displacement method

for rigid jointed structures, where the pattern equivalence of structural and graph

theory matrices is used. The standard displacement method employs cocycle bases

of structural graph models; however, for general solutions a cutset basis of the

model should be employed. This becomes vital, when solutions leading to well

conditioned stiffness matrices are required. Methods for the selection of such cutset

bases are described in this chapter.

In the last half-century, considerable progress has been made in the matrix

analysis of structures; see for example, Argyris and Kelsey [1], Livesley [2],

McGuire and Gallagher [3], Przemieniecki [4], Zienkiewicz [5], and Kaveh [6,

7]. The topic has been generalized to finite elements, and extended to the stability,

non-linear and dynamic analysis of structures. This progress is due to the simplicity,

modularity and flexibility of matrix methods.

3.2 Formulation

In this section, a matrix formulation using the basic tools of structural analysis—

equilibrium of forces, compatibility of displacements, and force-displacement

relationships—is provided. The notations are chosen from those most often encoun-

tered versions in structural mechanics.

A. Kaveh, Computational Structural Analysis and Finite Element Methods,
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3.2.1 Coordinate Systems Transformation

Consider a structure S with Mmembers and N nodes; each node having α degrees of
freedom (DOF). The degree of kinematic indeterminacy (DKI) of S may then be

determined as,

η Sð Þ ¼ αN� β, ð3:1Þ

where β is the number of constraints due to the support conditions. As an example,

η(S) for the planar truss S depicted in Fig. 3.1a is given by η(S) ¼ 7 � 2 � 3

¼ 11, for the plane frame illustrated in Fig. 3.1b, it is calculated as η(S) ¼ 8 � 3

� 4 � 3 ¼ 12, and for the space frame shown in Fig. 3.1c, it is calculated as

η(S) ¼ 12 � 6 � 6 � 6 ¼ 36.

One can also calculate η(S) by simple addition of the degrees of freedom of the

joints of the structure, i.e. for the truss S, η(S) ¼ 2 + 2 + 2 + 2 + 2 + 1 ¼ 11, and

for the planar frame η(S) ¼ 4 � 3 ¼ 12, and for the space frame

η(S) ¼ 6 � 6 ¼ 36.

For a structure, the stiffness matrices of the elements should be prepared in a

single coordinate system known as the global coordinate system, in order to be able
to perform the assembling process. However, the stiffness matrices of individual

members are usually written first in coordinate systems attached to the members,

known as local coordinate systems. Therefore a transformation is needed, before

the assembling process. Typical local and global coordinate systems are illustrated

in Fig. 3.2.

A global coordinate system can be selected arbitrarily, however, it may be

advantageous to select this system such that the structure falls in the first quadrant

of the plane, in order to have positive coordinates for the nodes of the structure. On

the other hand, a local coordinate system of a member is so chosen that it has one of

its axes along the member, the second axis lies in its plane of symmetry (if it has

one) and the third axis is chosen such that it results in a right handed coordinate

system.

The transformation from a local coordinate to a global coordinate system can be

performed as illustrated in Fig. 3.3, in which x, y, z is the global system and x2, y2,

z2, often denoted by xyz, is the local system.

2 2 2

2 2

6 6 6

6 66

0 0 0 0
0

0

0

0

0

0
3 3 3

1

3

0

a b c

Fig. 3.1 The degrees of freedom of the joints for three structures. (a) A planar truss. (b) A planar

frame. (c) A space frame
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For rotation about the y axis the relation between x1, y1, z1 and x, y, z can be

expressed as:

x1
y1
z1

2
4

3
5 ¼

cosα 0 sinα
0 1 0

�sinα 0 cosα

2
4

3
5 x

y

z

2
4

3
5: ð3:2Þ

Similarly, for rotation about the z1 axis x2, y2, z2 and x1, y1, z1 are related by,

x

y

O

x

x

y

y

Fig. 3.2 Local x, y and global coordinate x, y systems

x
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z

y

xz

1

1 1

a
a

x
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z

y

xz

1

1 1

xy

b

b

2 2

z2

a b

x

y

z

y

xz

1

1 1

xy2 2

z2

3

g

g

x

y

z3

3

x

y

z

L
y

x

z
i

j
ji

ji

ji

*L

c d

Fig. 3.3 Transformation from local coordinate system to global coordinate system
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x2
y2
z2

2
4

3
5 ¼

cosβ sinβ 0

�sinβ cosβ 0

0 0 1

2
4

3
5 x1

y1
z1

2
4

3
5 ð3:3Þ

and for rotation about the x2 axis x3, y3, z3 and x2, y2, z2 are related as:

x3
y3
z3

2
4

3
5 ¼

1 0 0

0 cosγ sinγ
0 �sinγ cosγ

2
4

3
5 x2

y2
z2

2
4

3
5 ð3:4Þ

Combining the above transformations, results in:

T ¼
cosαcosβð Þ sinβð Þ cosβsinαð Þ

� sinαsin γþ cosαsinβcosγð Þ cosβcosγð Þ sinγcosα� sinαsinβcosγð Þ
� sinαcos γ� cosαsinβsinγð Þ �cosβsinγð Þ cosαcosγþ sinαsinβsinγð Þ

2
4

3
5:

ð3:5Þ

where :
x3
y3
z3

2
4

3
5 ¼ T½ �

x

y

z

2
4

3
5: ð3:6Þ

The representation of a vector in the local coordinate system Γ and the global

coordinate system Γ are related by:

Γ ¼ T Γ: ð3:7Þ

It can easily be proved that T is an orthogonal matrix, i.e.

T½ ��1 ¼ T½ �t: ð3:8Þ

In the above transformation, γ represents the tilt of the member, which is quite

often zero. Thus, T can be simplified as,

T ¼
cosαcosβ sinβ sinαcosβ
�cosαsinβ cosβ �sinαsinβ
�sinα 0 cos α

2
4

3
5: ð3:9Þ

and for the two dimensional case and “α equal to zero”, T reduces to:

T ¼ cos β sinβ
�sinβ cosβ

� �
ð3:10Þ

Equation 3.9 can easily be written in terms of the coordinates of the two ends of a

vector. Considering Fig. 3.3b and using simple trigonometry, Eq. 3.9 becomes,
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T ¼
xji=L yji=L zji=L

�xjiyji=L � L L � =L yjizji=L � L
�zji=L� 0 xji=L�

2
4

3
5, ð3:11Þ

where:

xji ¼ xj � xi yji ¼ yj � yi zji ¼ zj � zi

L� ¼ z2ji þ x2ji

� �1
2

and L ¼ z2ji þ y2ji þ x2ji

� �1
2

: ð3:12Þ

Notice that T transforms a 3-dimensional vector from a global to a local

coordinate system and Tt performs the reverse transformation. However, if the

element forces or element displacements (distortions) consist of p vectors, the block

diagonal matrix with p submatrices should be used. As an example, for a beam

element of a space frame, with each node having six degrees of freedom, the

transformation matrix is a 12 � 12 matrix of the form:

T ¼
T

T

T

T

2
664

3
775: ð3:13Þ

3.2.2 Element Stiffness Matrix Using Unit Displacement
Method

Consider a general element, as shown in Fig. 3.4, with n member forces,

rm ¼ r1 r2 . . . rnf gt, ð3:14Þ

and n member displacements:

um ¼ u1 u2 . . . unf gt: ð3:15Þ

A typical force component ri can be found by using the unit displacement

method to be,

ri ¼
ð ð ð

V

ε
_t
iσdV, ð3:16Þ

where ε
_
i represents the matrix of compatible strains due to a unit displacement in

the direction of ri, and σ is the exact stress matrix due to the applied forces rm. The

unit displacements can be used in turn for all the points where member forces are

applied, and therefore,
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rm ¼
ð ð ð

V

ε
_tσdV, ð3:17Þ

where:

ε
_ ¼ ε

_
1 ε
_
2 . . . ε

_
n

n ot

: ð3:18Þ

For a linear system the total strain,

e ¼ exx eyy ezz exy eyz exz
� �t

: ð3:19Þ

can be expressed as,

e¼bu, ð3:20Þ

where b is the exact strain due to the unit displacement u.

The stress-strain relationship can be written as,

σ ¼ χbu, ð3:21Þ

where:

χ ¼ E

1þ vð Þ 1� 2vð Þ

1� v v v

v 1� v v

v v 1� v
1� 2v

2
0 0

0 1� 2v
2

0

0 0 1� 2v
2

2
6666666664

3
7777777775

ð3:22Þ

Substituting in Eq. 3.17 leads to,

r   ,un    n

i    i

1    1

2    2
3    3

4    4

r   ,u

r   ,u r   ,u
r   ,u

r   ,u

...

...
Fig. 3.4 A general element

with its nodal loads and

nodal displacements
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rm ¼
ð ð ð

V

ε_tχbdVum, ð3:23Þ

or

rm ¼ kmum, ð3:24Þ
where:

km ¼
ð ð ð

V

ε
_tχbdV, ð3:25Þ

represents the element stiffness matrix.

The evaluation of the matrix b, representing the exact strain distributions can

often be difficult, if not impossible. Hence in case there is no exact distribution, an

approximate relationship may be used. Usually the matrix b is selected such that it

will satisfy the equations of compatibility at least. Denoting this approximate

matrix by ε
_
and using ε_ ¼ b

_
results in:

km ¼
ð ð ð

V

b
_
tχ b

_

dV: ð3:26Þ

This equation will be used for the derivation of the stiffness matrices of a finite

element in Sect. 3.5.1.

As an example, consider a prismatic bar element shown in its local coordinate

system, in Fig. 3.5. According to the definition of such an element, only axial forces

are present.

From the theory of elasticity, the axial strain is expressed as:

εxx ¼ strain ¼ ∂ux
∂x

, ð3:27Þ

The displacement ux along the longitudinal axis of the bar can be expressed as:

ux ¼ A1xþ A2: ð3:28Þ

From the boundary conditions:

ux ¼ u1 at x ¼ 0,

ux ¼ u4 at x ¼ L: ð3:29Þ

Hence:

A1 ¼ u4 � u1

L
and A2 ¼ u1: ð3:30Þ

By substitution in Eq. 3.28:
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ux ¼ u4 � u1

L
xþ u1: ð3:31Þ

Now axial strain can be evaluated as:

εxx ¼ ∂ux
∂x

¼ 1

L
u2 � u1ð Þ ¼ 1

L
�1 þ1½ � u1

u2

� �
: ð3:32Þ

The above strain distribution is exact, and

b̂ ¼ b ¼ 1

L
�1 þ1½ �: ð3:33Þ

Since a bar element is one dimensional, χ is a 1 � 1 matrix defined as:

χ ¼ E: ð3:34Þ

Substituting in Eq. 3.26 leads to:

km ¼
ð L

0

1

L

�1

1

� �
E

L
�1 1½ �Adx, ð3:35Þ

and

km ¼ EA

L

1 �1

�1 1

� �
: ð3:36Þ

This method will also be used for the derivation of the finite element stiffness

matrices in subsequent sections.

x

y

z

r  ,u
r  ,u1    1

4    4

ji

Fig. 3.5 A bar element in

its local coordinate system
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3.2.3 Element Stiffness Matrix Using Castigliano’s Theorem

In this section, a different approach is described for the formation of element

stiffness matrices, using Castigliano’s theorem. Consider a general element as

shown in Fig. 3.4. Suppose that loads are applied at certain points (specified as

nodes) 1, 2, . . ., n. Let vi be the displacement of node i along the applied load pi. The

loads are applied in a pseudo-static manner increasing gradually from zero. Assum-

ing a linear behaviour, the work done by an external force p ¼ {p1, p2, . . ., pn}
through the displacement v ¼ {v1, v2, . . ., vn} can be written as:

W ¼ 1

2
p1v1 þ p2v2 þ . . .þ pnvnð Þ: ð3:37Þ

According to the principle of the conservation of energy,

W ¼ U, ð3:38Þ

and therefore:

U ¼ 1

2
p1v1 þ p2v2 þ . . .þ pnvnð Þ: ð3:39Þ

If a small variation is now given to vi while keeping the other displacement

components constant, then the variation of v with respect to vi can be written as:

∂U
∂vi

¼ 1

2
pi þ

∂p1
∂vi

v1 þ ∂p2
∂vi

v2 þ . . .þ ∂pn
∂vi

vn

� �
: ð3:40Þ

According to Castigliano’s theorem:

∂U
∂vi

¼ pi: ð3:41Þ

Thus,

pi ¼
∂p1
∂vi

v1 þ ∂p2
∂vi

v2 þ . . .þ ∂pn
∂vi

vn

� �
, ð3:42Þ

or in a matrix form for all i ¼ 1, . . ., n, we have:
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p1
p2
�
�
pn

2
66664

3
77775 ¼

∂p1
∂v1

∂p2
∂v1

� � ∂pn
∂v1

∂p1
∂v2

∂p2
∂v2

� � ∂pn
∂v2

� � � � �
� � � � �

∂p1
∂vn

∂p2
∂vn

� � ∂pn
∂vn

2
666666666664

3
777777777775

v1
v2
�
�
vn

2
66664

3
77775: ð3:43Þ

According to definition, the above coefficient matrix forms the stiffness matrix

of the elastic body defined by its n nodes as illustrated in Fig. 3.4.

A typical element of the stiffness matrix kij is given by:

kij ¼
∂pj
∂vi

: ð3:44Þ

Using Castigliano’s first theorem:

kij ¼ ∂
∂vi

∂U
∂vj

� 	
¼ ∂2

U

∂vi∂vj
: ð3:45Þ

Similarly:

kji ¼ ∂pi
∂vj

¼ ∂2
U

∂vj∂vi
: ð3:46Þ

Since the order of differentiation should not affect the result for our problems,

we have:

kij ¼ kji, ð3:47Þ

which is a proof of the symmetry of the stiffness matrices both for a structure and

for an element.

As an example, consider a prismatic bar element as shown in its local coordinate

system, Fig. 3.5. According to the definition of such an element, only axial forces

are present.

The strain energy of this bar can be calculated as:

U ¼ 1

2

ð ð ð
σxxεxxdxdydz ¼ E

2

ð ð ð
ε2xxdxdydz ¼

EA

2

ð
ε2xxdx: ð3:48Þ

On the other hand:
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εxx ¼ ∂ux
∂x

: ð3:49Þ

Using Eq. 3.31, by substituting in Eq. 3.48, the strain energy of the bar is

calculated to be:

U ¼ EA

2L
u24 � 2u4u1 þ u21

 �

: ð3:50Þ

Hence

k11 ¼ ∂2
U

∂u21
¼ EA

L
,

k14 ¼ k41 ¼ ∂2
U

∂u1∂u4
¼ �EA

L
, ð3:51Þ

k44 ¼ ∂2
U

∂u24
¼ EA

L
,

kij ¼ 0 for all other components.

Therefore, the stiffness matrix of a bar element in the selected local coordinate

system is obtained, and:

r1
r2
r3
r4
r5
r6

2
6666664

3
7777775
¼ EA

L

1 0 0 �1 0 0

0 0 0 0 0 0

0 0 0 0 0 0

�1 0 0 1 0 0

0 0 0 0 0 0

0 0 0 0 0 0

2
6666664

3
7777775

u1
u2
u3
u4
u5
u6

2
6666664

3
7777775
: ð3:52Þ

3.2.4 The Stiffness Matrix of a Structure

Let p and v represent the joint loads and joint displacements of a structure. Then the

force-displacement relationship for the structure can be expressed as,

p ¼ Kv, ð3:53Þ

where K is a αN � αN symmetric matrix, known as the stiffness matrix of the

structure. Expanding the ith equation of the above system, the force pi can be

expressed in terms of the displacements {v1,v2, . . .,vaN} as:

pi ¼ Ki1v1 þ Ki2v2 þ . . .þKiαNvαN: ð3:54Þ
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A typical coefficient Kij is the value of the force pi required to be applied at the

ith component of the structure in order to produce a displacement vj ¼ 1 at j and

zero displacements at all the other components.

The member forces r can be related to nodal forces p by:

p ¼ Br: ð3:55Þ

Using the contragradient relationship, the joint displacements v can be related to

member distortions u by:

u ¼ Btv: ð3:56Þ

For each individual member of the structure, the member forces can be related to

member distortions by an element stiffness matrix km. A block diagonal matrix

containing these element stiffness matrices is known as the unassembled stiffness
matrix of the structure, denoted by k. Obviously:

r ¼ ku: ð3:57Þ

This equation together with Eqs. 3.55 and 3.56 yields:

p ¼ BkBtv: ð3:58Þ

Therefore,

K ¼ BkBt, ð3:59Þ

is obtained. The matrix K is singular since the boundary conditions of the structure

are not yet applied. For an appropriately supported structure, the deletion of the

rows and columns ofK corresponding to the support constraints results in a positive

definite matrix, known as the reduced stiffness matrix of the structure.
A symmetric matrix S is called positive definite if xtSx > 0 for every non-zero

vector x. As shown before, the stiffness matrix K of a structure is symmetric. This

matrix is also positive definite since,

ptv ¼ Kvð Þtv ¼ vtKtv ¼ vtKv ¼ 2W, ð3:60Þ

and W is always positive.

Let us illustrate the stiffness method by means of a simple example. Consider a

fixed end beam with a load P applied at its mid span. This beam is discretized as two

beam elements, as shown in Fig. 3.6a with two degrees of freedom for each node

(axial deformation is ignored for simplicity). The components of element forces and

element distortions are depicted in Fig. 3.6b and those of the entire structure are

illustrated in Fig. 3.6c.

For each element such as element 1, the stiffness matrix can be written as:
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r1
r2
r3
r4

2
664

3
775 ¼

k11 k12 k13 k14
k21 k22 k23 k24
k31 k32 k33 k34
k41 k42 k43 k44

2
664

3
775

u1
u2
u3
u4

2
664

3
775, ð3:61Þ

and for the entire structure we have:

p1
p2
p3
p4
p5
p6

2
6666664

3
7777775
¼

K11 K12 K13 K14 K15 K16

K21 K22 K23 K24 K25 K26

K31 K32 K33 K34 K35 K36

K41 K42 K43 K44 K45 K46

K51 K52 K53 K54 K55 K56

K61 K62 K63 K64 K65 K66

2
6666664

3
7777775

v1
v2
v3
v4
v5
v6

2
6666664

3
7777775
: ð3:62Þ

Element stiffness matrices k1 and k2 can be easily constructed using the defini-

tion of kij. For a beam element, ignoring its axial deformation, these terms are

shown in Fig. 3.7.

The structure has a uniform cross section and both elements have the same

length. Therefore, using the force displacement relationship from Chap. 1:

L L

P

2
1 3

1 2

2r  ,u r  ,u r  ,u r  ,u

r  ,u r  ,u r  ,u r  ,u
1   1

1 2
8

3   3

4   4 6   6

p  ,v1   1

p  ,v p  ,v p  ,v

p  ,v p  ,v

2   2

5   5

1 2

a

b

c

8662 4

3 5 7 7

4

3

Fig. 3.6 Illustration of the

analysis of a simple

structure. (a) A fixed ended

beam S. (b) Member forces

and member distortions. (c)

Nodal forces and nodal

displacements of the entire

structure
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k1 ¼ k2 ¼ 2EI

L

6=L2 �3=L �6=L2 �3=L
�3=L 2 3=L 1

�6=L2 3=L 6=L2 3=L
�3=L 1 3=L 2

2
664

3
775: ð3:63Þ

The unassembled stiffness matrix is an 8 � 8 matrix of the form:

k ¼ k1 0

0 k2

� �
: ð3:64Þ

Now consider the equilibrium of the joints of the structure, resulting in,

p1 ¼ r1 , p2 ¼ r2 , p3 ¼ r3 þ r5,

p4 ¼ r4 þ r6 , p5 ¼ r7 , p6 ¼ r8:
ð3:65Þ

or in a matrix form we have,

p1
p2
p3
p4
p5
p6

2
6666664

3
7777775
¼

1 � � � � � � �
� 1 � � � � � �
� � 1 � 1 � � �
� � � 1 � 1 � �
� � � � � � 1 �
� � � � � � � 1

2
6666664

3
7777775

r1
r2
r3
r4
r5
r6
r7
r8

2
66666666664

3
77777777775
, ð3:66Þ

and more compactly,

p ¼ Br, ð3:67Þ

where:

u  =1

u  =1

u  =1

u  =1

k

k k k

k
k

k

k

k k k k

kkkk11 12

23

33

22

44

34

31

41

21

42

32

14

24

43

13

1

2

3
4

Fig. 3.7 Stiffness

coefficients of a beam

element ignoring its axial

deformation
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B ¼

1 � � � � � � �
� 1 � � � � � �
� � 1 � 1 � � �
� � � 1 � 1 � �
� � � � � � 1 �
� � � � � � � 1

2
6666664

3
7777775
,

is known as the equilibrium matrix.
Consider now the compatibility of displacements:

u1 ¼ v1, u2 ¼ v2, u3 ¼ u5 ¼ v3,

u4 ¼ u6 ¼ v4, u7 ¼ v5, u8 ¼ v6:
ð3:68Þ

In a matrix form we have,

u1
u2
u3
u4
u5
u6
u7
u8

2
66666666664

3
77777777775
¼

1 � � � � �
� 1 � � � �
� � 1 � � �
� � � 1 � �
� � 1 � � �
� � � 1 � �
� � � � 1 �
� � � � � 1

2
66666666664

3
77777777775

v1
v2
v3
v4
v5
v6

2
6666664

3
7777775
, ð3:69Þ

and in compact form:

u ¼ Ev ¼ Btv: ð3:70Þ

where:

E ¼

1 � � � � �
� 1 � � � �
� � 1 � � �
� � � 1 � �
� � 1 � � �
� � � 1 � �
� � � � 1 �
� � � � � 1

2
66666666664

3
77777777775
,

is known as the compatibility matrix.
The reason for the matrix E being the transpose of the matrix B, has already been

discussed in the previous chapter, however, by using the principle of virtual work, a

simple proof can be obtained. Consider:

W ¼ work done by external loads ¼ 1
2
vtp,
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U ¼ strain energy ¼ 1
2
utr.

Then equating W and U, leads to E ¼ Bt and completes the proof. It should be

mentioned that this equality holds for a general structure, and it is the result of the

contragradient relationship introduced in Chap. 1.

The stiffness matrix of the entire structure is then obtained as:

K ¼ 2EI

L

6=L2 �3=L �6=L2 �3=L 0 0

�3=L 2 3=L 1 0 0

�6=L2 3=L 12=L2 0 �6=L2 �3=L
�3=L 1 0 4 3=L 1

0 0 �6=L2 3=L 6=L2 3=L
0 0 �3=L 1 3=L 2

2
6666664

3
7777775
: ð3:71Þ

Applying the boundary conditions,

v1 ¼ v2 ¼ v5 ¼ v6 ¼ 0,

by deleting the rows and columns corresponding to zero displacements, leads to the

formation of the following reduced stiffness matrix:

p3
p4

� �
¼ 2EI

L

12=L2 0

0 4

� �
v3
v4

� �
: ð3:72Þ

Since p4 ¼ 0 and p3 ¼ � P, therefore v3 ¼ p3L
3

24EI
¼ �PL3

24EI
:

3.2.5 Stiffness Matrix of a Structure; an Algorithmic
Approach

From the above simple example, it can be seen that the matrix B is a very sparse

Boolean matrix and the direct formation of BkBt using matrix multiplication

requires a considerable amount of storage. In the following, it is shown that one

can form BkBt with an assembling process (known also as planting), as follows:
Consider an element “a” of a structure, as shown in Fig. 3.8, for which the

element stiffness matrix can be written as,

ka ¼ kii kij
kji kjj

� �
, ð3:73Þ

i and j are the two end nodes of member a. Pre and post multiplication in the form

of BkBt has the following effect on ka:
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0 0

0 0

0 0

I 0

0 0

0 I

0 0

0 0

2
66666666664

3
77777777775

kii kij
kji kjj

� �
0 0 0 I 0 0 0 0

0 0 0 0 0 I 0 0

� �
¼

0 0

0 0

0 0

I 0

0 0

0 I

0 0

0 0

2
66666666664

3
77777777775

0 0 0 kii 0 kij 0 0

0 0 0 kji 0 kjj 0 0

� �
ð3:74Þ

¼

1

2

3

4

5

6

7

8

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 kii 0 kij 0 0

0 0 0 0 0 0 0 0

0 0 0 kji 0 kjj 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

2
66666666664

3
77777777775

The adjacency matrix of S is also an 8 � 8 matrix, and the effect of node 4 being

adjacent to node 6, is the existence of unit entries in the same locations as the

submatrices of the element “a”. One can build up the adjacency matrix of a graph by

the addition of the effect of one member at a time. In the same way, one can also

form the overall stiffness matrix of the structure by the addition of the contribution

of every member in succession. As an example, for the graph shown in Fig. 3.8, the

overall stiffness matrix has the following pattern:

1 2 3 4 5 6 7 8
1

2

3

4

5

6

7

8

1 � � 1 � � � �
� 1 � � 1 � � �
� � 1 � � � 1 �
1 � � 1 1 1 � �
� 1 � 1 1 1 1 �
� � � 1 1 1 � 1

� � 1 � 1 � 1 1

� � � � � 1 1 1

2
66666666664

3
77777777775
:

ð3:75Þ

123

45

6

7

8

a

Fig. 3.8 A structural

model S
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Non-zero entries are shown by “1”. For a stiffness matrix each of these non-zero

entries is an η � η submatrix, where η is the degrees of freedom of each node of the

structure. As an example, for a planar truss η ¼ 2, and for a space frame η ¼ 6. The

formation of the stiffness matrix by the above process is known as the assembling or
planting of the stiffness matrix of a structure.

3.3 Transformation of Stiffness Matrices

Methods for the formation of element stiffness matrices have been presented in the

previous section. In the following the stiffness matrices for bar and beam elements

are transformed to global coordinate systems using the transformation described in

Sect. 3.2.1.

From Eq. 3.7, we have:

r ¼ Tr, ð3:76Þ
u ¼ Tu: ð3:77Þ

From the definition of an element stiffness matrix in a local coordinate system:

r ¼ ku: ð3:78Þ

By substitution of Eqs. 3.76 and 3.77 into the above equation:

r ¼ T�1kTu ¼ TtkTu: ð3:79Þ

By definition of a stiffness matrix in a global coordinate system:

r ¼ ku: ð3:80Þ

Comparison of Eqs. 3.79 and 3.80 results in:

k ¼ TtkT: ð3:81Þ

3.3.1 Stiffness Matrix of a Bar Element

Equation 3.52 provides the stiffness matrix of a bar element in its local coordinate

system. This matrix in the global system, as shown in Fig. 3.9, can be written as:

k ¼ T

T

� �t
k

 � T

T

� �
: ð3:82Þ

Denoting T in Eq. 3.32 by,
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T ¼
T11 T12 T13

T21 T22 T23

T31 T32 T33

2
4

3
5, ð3:83Þ

km can be written as,

k ¼ EA

L

T2
11

T11T12 T2
12 sym:

T11T13 T12T13 T2
13

�T2
11 �T11T12 �T11T13 T2

11

�T11T12 �T2
12 �T12T13 T11T12 T2

12

�T11T13 �T12T13 �T2
13 T11T13 T12T13 T2

13

2
6666664

3
7777775
, ð3:84Þ

where “sym.” denotes the symmetry of the matrix.

The entries of the above matrix can be found using the Tij from Eq. 3.32. As an

example, the stiffness matrix of bar 1 in the planar truss shown in Fig. 3.10 can be

obtained as:

T11 ¼ x21

x212 þ y212 þ z212
� 1

2

¼ 1ffiffiffi
2

p ¼
ffiffiffi
2

p

2
,

T12 ¼ y21

x212 þ y212 þ z212
� 1

2

¼ � 1ffiffiffi
2

p ¼ �
ffiffiffi
2

p

2
:

Therefore:

x

y

z

1    1

4    4
j

i r  ,u

r  ,u

r  ,u

r  ,u

r  ,u

r  ,u

2    2

3    3

5    5

6    6

O

Fig. 3.9 A bar element of a

space truss
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k1 ¼ EA

L
ffiffiffi
2

p
0:5 �0:5 �0:5 0:5
�0:5 0:5 0:5 �0:5
�0:5 0:5 0:5 �0:5
0:5 �0:5 �0:5 0:5

2
664

3
775:

3.3.2 Stiffness Matrix of a Beam Element

Consider a prismatic beam element as shown in Fig. 3.11. The element forces and

element distortions are defined by the following vectors,

r ¼ r1; r2; r3; . . . ; r12f gt,

and

u ¼ u1; u2; u3; . . . ; u12f gt,

where r1 to r3 are the force components at end i and r4 to r6 are moment components

at end i. Also r7 to r9 are the force and r10 to r12 are the moment components,

respectively at the end j, and ui (i ¼ 1, . . ., 12) are correspondingly the translations
and rotations at the ends i and j of the element.

Using one of the methods presented in Sect. 3.2.2, the stiffness matrix of the

beam element, in the local coordinate system defined in Fig. 3.11, can be obtained

from Eq. 3.83 as:

k¼E

L

A 0 0 0 0 0 �A 0 0 0 0 0

0 12Iz=L
2 0 0 0 6Iz=L 0 0 �12Iz=L

2 0 0 6Iz=L
0 0 12Iy=L

2 0 �6Iy=L 0 0 0 �12Iy=L
2 0 �6Iy=L 0

0 0 0 J=2 1þvð Þ 0 0 0 0 0 �J=2 1þvð Þ 0 0

0 0 �6Iy=L 0 4Iy 0 0 0 �6Iy=L 0 2Iy 0

0 6Iz=L 0 0 0 4Iz 0 �6Iz=L 0 0 0 2Iz
�A 0 0 0 0 0 A 0 0 0 0 0

0 �12Iz=L
2 0 0 0 �6Iz=L 0 12Iy=L

2 0 0 0 �6Iz=L
0 0 �12Iy=L

2 0 6Iy=L 0 0 0 12Iy=L
2 0 6Iy=L 0

0 0 0 �J=2 1þvð Þ 0 0 0 0 0 J=2 1þvð Þ 0 0

0 0 �6Iy=L 0 2Iy 0 0 0 6Iy=L 0 4Iy 0

0 6Iz=L 0 0 0 2Iz 0 �6Iz=L 0 0 0 4Iz

2
6666666666666666664

3
7777777777777777775

ð3:85Þ

x

y

1

2

3

1
2 L

L

Fig. 3.10 A planar truss

and the selected global

coordinate system
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In this matrix, Iy, Iz and J are the moments of inertia with respect to the y and z

axes and J is the polar moment of inertia of the section. E specifies the elastic

modulus and v is the Poisson ratio. L denotes the length of the beam.

For the two-dimensional case, the columns and rows corresponding to the third

dimension can easily be deleted, to obtain the stiffness matrix of an element of a

planar frame.

The stiffness matrix in a global coordinate system can be written as:

k ¼
T

T

T

T

2
664

3
775
t

k

 � T

T

T

T

2
664

3
775: ð3:86Þ

For the two-dimensional case:

k ¼ T

T

� �t
k

 � T

T

� �
: ð3:87Þ

The entries of k are as follows:

k11 ¼ T2
11α1 þT2

21α z
4

k21 ¼ T11T12α1 þT21T22α z
4 k22 ¼ T2

12α1 þT2
22α z

4

k31 ¼ T21α z
2 k32 ¼ T22α z

2 k33 ¼ α z
3

k41 ¼�T2
11α1 þT2

21α z
4 k42 ¼�T21T22α z

4 �T12T11α1 k43 ¼�T21α z
2 k44 ¼�T21α z

2

k51 ¼�T21T22α z
4 �T12T11α1 k52 ¼�T2

21α z
4 �T2

12α1 k53 ¼�T22α z
2

k54 ¼ T21T22α z
4 þT12T11α1 k55 ¼ T2

22α z
4 þT2

12α1

k61 ¼ T21α z
2 k62 ¼ T22α z

2 k63 ¼ α z
6 k64 ¼�T21α z

2 k65 ¼�T22α z
2 k66 ¼ α z

3 :

ð3:88Þ

x

y

z

ji

Fig. 3.11 A beam element

in the local coordinate

system
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in which

α1 ¼ EA

L
, α z

2 ¼ 6EIz

L2
, α z

3 ¼ 4EIz

L
, α z

4 ¼ 12EIz

L3
, and α z

6 ¼ 2EIz

L
:

As an example, for element 1 of the planar frame, shown in Fig. 3.12, we have,

T11 ¼ 0 T12 ¼ 1 T21 ¼ �1 T22 ¼ 0,

and the stiffness matrix of the element is obtained as:

k1 ¼ 106

1:25
0 200 sym:

�0:75 0 6

�1:25 0 0:75 1:25
0 �200 0 0 200

�0:75 0 3 0:75 0 6

2
6666664

3
7777775
:

3.4 Displacement Method of Analysis

Once the stiffness matrix of an element is obtained in the selected global coordinate

system, it can be planted in the specified and initialised overall stiffness matrix of

the structure K, using the process described in Sect. 3.2.5.

Example. Let S be a planar truss with an arbitrary nodal and element numbering,

as shown in Fig. 3.13. The entries of the transformation matrices of the members are

calculated using Eqs. 3.32 and 3.33 as follows:

For bar 1: T11 ¼ x2�x1
2

¼ 1�0
2

¼ 1
2
and T12 ¼ y2�y1

2
¼

ffiffi
3

p �0
2

¼
ffiffi
3

p
2
:

Similarly,

for bar 2: T11 ¼ 1
2
T12 ¼ �

ffiffi
3

p
2
, and for bar 3: T11 ¼1, T12 ¼ 0.

Using the following relationship,

Fx
i

F
y
i

Fx
j

Fx
j

2
664

3
775 ¼ EA

L

T2
11 T11T12 �T2

11 �T11T12

T11T12 T2
12 �T11T12 �T2

12

�T2
11 �T11T12 T2

11 T11T12

�T11T12 �T2
12 T11T12 T2

12

2
664

3
775

δx
i

δy
i

δx
j

δy
j

2
664

3
775 ð3:89Þ

the stiffness matrices of the members are computed directly in the selected global

coordinate system.
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Now the stiffness matrices can be formed using Eq. 5.62:

For bar 1: k1 ¼ EA
2

0:25 sym:
0:433 0:75
�0:25 �0:433 0:25
�0:433 �0:75 0:433 0:75

2
664

3
775:.

For bar 2: k2 ¼ EA
2

0:25 sym:
�0:433 0:75
�0:25 0:433 0:25
0:433 �0:75 �0:433 0:75

2
664

3
775:

For bar 3: k3 ¼ EA
2

1 sym:
0 0

�1 0 1

0 0 0 0

2
664

3
775:

The overall stiffness matrix of the structure is an 8 � 8 matrix, which can easily

be formed by planting the three member stiffness matrices as follows:

K¼ EA

2

0:250 0:433 �0:250 �0:433 0 0 0 0

0:433 0:750 �0:433 �0:750 0 0 0 0

�0:250 �0:433 1:500 0 �0:250 0:433 �1:00 0

�0:433 �0:750 0 1:500 0:433 �0:750 0 0

0 0 �0:250 0:433 0:250 �0:433 0 0

0 0 0:433 �0:750 �0:433 0:750 0 0

0 0 �1:00 0 0 0 1:00 0

0 0 0 0 0 0 0 0

2
66666666664

3
77777777775
:

1
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1

2

x

y
4m

4m
A = 4 ´ 10-3 m2

I = 30 ´ 10-6 m4

E = 2 ´ 1011 N/m2

Fig. 3.12 A planar frame
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20 kN
30 kNFig. 3.13 A planar truss

and the selected global

coordinate system
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Partitioning K into 2 � 2 submatrices, it can easily be seen that it is pattern

equivalent to the node adjacency matrix of the graph model of the structure as

follows:

C � C�t ¼
∗ ∗ 0 0

∗ ∗ ∗ ∗
0 ∗ ∗ 0

0 ∗ 0 ∗

2
664

3
775:

This pattern equivalence simplifies certain problems in structural mechanics,

such as ordering the variables for bandwidth or profile reduction. Methods for

increasing the sparsity, using special cutset bases, and improving the conditioning

of structural matrices, are discussed in Refs. [6, 7].

3.4.1 Boundary Conditions

The matrixK is singular, since the boundary conditions have to be applied. Consider,

p ¼ Kv,

and partition it for free and constraint degrees of freedom as:

pf
pc

� �
¼ Kff Kfc

Kcf Kcc

� �
vf
vc

� �
: ð3:90Þ

This equation has a mixed nature; pf and vc have known values and pc and vf are

unknowns. Kff is known as the reduced stiffness matrix of the structure, which is

non-singular for a rigid structure.

For boundary conditions such as vc ¼ 0, it is easy to delete the corresponding

rows and columns to obtain,

pf ¼ Kffvf , ð3:91Þ

from which vf can be obtained by solution of the above set of equations. In a

computer this can be done by multiplying the diagonal entries of Kcc by a large

number such as 1020. An alternative approach is possible by equating the diagonal

entries ofKcc to unity and all the other entries of these rows and columns to zero. If

vc contains some specified values, pc will have corresponding vc values. A third

method, which is useful when a structure has more constraint degrees of freedom

(such as many supports), consists of the formation of element stiffness matrices

considering the corresponding constraints, i.e. to form the reduced stiffness matri-

ces of the elements in place of their complete matrices. This leads to some reduction

in storage, and is also at the expense of additional computational effort.
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As an example, the reduced stiffness matrix of the structure shown in Fig. 3.13

can be obtained from K, by deleting the rows and columns corresponding to the

three supports 1, 3 and 4:

20

30

� �
¼ EA

2

1:5 0

0 1:5

� �
u2x
u2y

� �
:

Solving for the joint displacements, we have:

u2x ¼ 40

1:5EA
and u2y ¼ 40

EA
:

The member distortions can easily be extracted from the displacement vector,

and multiplication by the stiffness matrix of each member results in its member

forces in the global coordinate system. As an example, for member 3 we have:

r2x
r2y
r4x
r4y

2
664

3
775 ¼ EA

2

1

0 0 sym:
�1 0 1

0 0 0 0

2
664

3
775

40=1:5EA
40=EA

0

0

2
664

3
775 ¼

13:33
0

�13:33
0

2
664

3
775:

A transformation yields the member forces in the local coordinate systems,

r1 ¼ �23:99 23:99f gt, r2 ¼ �10:659 10:65f gt and r3 ¼ 13:33 �13:33f gt.

3.4.2 General Loading

The joint load vector of a structure can be computed in two parts. The first part comes

from the external concentrated loads and/or moments, which are applied to the joints

defined as the nodes of S. The components of such loads are most easily specified in a

global coordinate system and can be entered into the joint load vector p.

The second part comes from the loads, which are applied to the spans of the

members. These loads are usually defined in the local coordinate system of a

member. For each member the fixed end actions (FEA) can be calculated using

existing classical formulae or tables. A simple computer program can be prepared

for this purpose. The fixed end actions should then be expressed in the global

coordinate system using the transformation matrix given by Eq. 3.11. The FEA

should then be reversed and applied to the end nodes of the members. These

components can be added to p to form the final joint load vector. After p has

been prepared and the boundary conditions imposed, the corresponding equations

should be solved to obtain the joint displacements of the structure. Member

distortions can then be extracted for each member in the reverse order to that

used in assembling the p vector.
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Example 1. A two span continuous beam is considered as shown in Fig. 3.14a. EI

is taken to be constant along the beam.

For continuous beams, the transformation matrix T from local coordinate to

global coordinate is identity, and therefore km ¼ km, i.e. no transformation is

required. Ignoring the axial deformation and using Eq. 3.63, the stiffness matrices

of the elements are obtained as:

k1 ¼ k2 ¼ 64

4

0:75 1:5 �0:75 1:5
1:5 4 �1:5 2

�0:75 �1:5 0:75 �1:5
1:5 2 �1:5 4

2
664

3
775:

Assembling the overall stiffness matrix and imposing the boundary conditions,

the reduced stiffness matrix of the entire beam is obtained and the force-

displacement relationship for beam is written as:

�1:40
3

� �
¼ 16

8 2

2 4

� �
θ z
2

θ z
3

� �
:

Solving the equations leads to:

θ z
2

θ z
3

� �
¼ 1

448

4 �2

�2 8

� � �1:4
3

� �
¼ �0:0259

0:0598

� �
:

Member forces are calculated as:

V1

M1

V2

M2

2
664

3
775 ¼ 16

0:75 1:5 �0:75 1:5
1:5 4 �1:5 2

�0:75 �1:5 0:75 �1:5
1:5 2 �1:5 4

2
664

3
775

0

0

0

�0:0259

2
664

3
775þ

2:4
1:6
2:4
�1:6

2
664

3
775

¼
1:779
0:772
3:021
�3:256

2
664

3
775,

and

q=1.2kN/m
P=6kN 1.4kN.m 3kN.m

2m4m 2m

a b

Fig. 3.14 A continuous beam and its equivalent loading
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V2

M2

V3

M3

2
664

3
775 ¼ 16

0:75 1:5 �0:75 1:5
1:5 4 �1:5 2

�0:75 �1:5 0:75 �1:5
1:5 2 �1:5 4

2
664

3
775

0

�0:0259
0

þ0:0598

2
664

3
775þ

3

3

3

�3

2
664

3
775

¼
3:814
3:258
2:186
0

2
664

3
775:

Example 2. A portal frame is considered as shown in Fig. 3.15. The members are

made of sections with A ¼ 150 cm2 and Iz ¼ 2 � 104cm4 and E ¼ 2 � 104 kN/

cm2. Calculate the joint rotations and displacements.

The equivalent joint loads are illustrated in Fig. 3.16.

Employing Eq. 3.88, the stiffness matrices for the members are obtained as:

For member 1:

k1 ¼ 104

0:008
0 0:75 sym:

�1:5 0 400

0:008 0 1:5 0:008
0 �0:75 0 0 0:75

�1:5 0 200 1:5 0 400

2
6666664

3
7777775
,

and for member 2:

k2 ¼ 104

0:6
0 0:004 sym:
0 0:96 320

�0:6 0 0 0:6
0 �0:004 �0:96 0 0:004
0 0:96 160 0 �0:96 320

2
6666664

3
7777775

For member 3:

k3 ¼ 104

0:008
0 0:75 sym:
1:5 0 400

�0:008 0 �1:5 0:008
0 �0:75 0 0 0:75
1:5 0 200 �1:5 0 400

2
6666664

3
7777775

Assembling the stiffness matrices and imposing the boundary conditions results

in the following equations:
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7:4
0

160

0

0

0

2
6666664

3
7777775
¼ 104

0:608
0 0:754 sym:
1:5 0:96 720

�0:6 0 0 0:608
0 �0:004 �0:96 0 0:754
0 0:96 160 1:5 �0:96 720

2
6666664

3
7777775

δx
2

δy
2

θ z
2

δx
3

δy
3

θ z
3

2
6666664

3
7777775

Solving these equations leads to:

δx
2 ¼ 0:0659167, δy

2 ¼ 2:617764E � 04, θ z
2 ¼ �8:983453E� 05,

δx
3 ¼ 0:0653377, δy

3 ¼ �2:617704E� 04 and θ z
3 ¼ �1:16855E� 04:

The final member forces can be found using the stiffness of the members,

superimposed by the fixed end actions.

3.5 Stiffness Matrix of a Finite Element

In this section, a simple element is introduced from finite element methods, in order

to show the capability of the method presented in Sect. 3.2.2, for the formation of

element stiffness matrices.

4m

5m

1

2 3

4

5kN

1.2kN/m 1

2

3

Fig. 3.15 A portal frame

and its loading

7.4kN

160kN.m

x

y

Fig. 3.16 Equivalent joint

loads
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3.5.1 Stiffness Matrix of a Triangular Element

For plane stress and plane strain problems, the displacements of a node can be

specified by two components, and therefore for each node of the triangular element,

two degrees of freedom is considered, as shown in Fig. 3.17.

Element forces and displacements are defined by the following vectors:

rm ¼ r1 r2 . . . r6 gt and um ¼ u1 u2 . . . u6 gt:
�� ð3:92Þ

A triangular element has its boundary attached continuously to the surrounding

medium, and therefore no exact stiffness matrix can be derived. Therefore an

approximate solution should be sought.

The following displacement functions can be considered for the variation of the

displacements,

u ¼ α1xþ α2yþ α3 and v ¼ α4xþ α5yþ α6, ð3:93Þ

where α1, α2, . . ., α6 are arbitrary constants which can be found from the displace-

ments of the three nodes of the element. From the boundary conditions,

at node i xi; yið Þ, u ¼ ui and v ¼ vi,

at node j xj; yj

� �
, u ¼ uj and v ¼ vj,

at node k xk; ykð Þ, u ¼ uk and v ¼ vk,

ð3:94Þ

the constants can be evaluated. Substituting in Eq. 3.93 yields:

u ¼ 1=2A ykj x� xj
� � xkj y� yj

� �h i
u1 þ �yki x� xkð Þ � xki y� ykð Þ½ �u3 þ yji x� xið Þ � xji y� yið Þ

h i
u5

n o
,

v ¼ 1=2A ykj x� xj
� � xkj y� yj

� �h i
u2 þ �yki x� xkð Þ � xki y� ykð Þ½ �u4 þ yji x� xið Þ � xji y� yið Þ

h i
u6

n o
:

ð3:95Þ

where:

2A ¼ 2 area of the triangleð Þ ¼ xkjyji � xjiykj, ð3:96Þ

and

xmn ¼ xm � xn and ymn ¼ ym � yn: ð3:97Þ

From Eq. 3.95, it is obvious that both u and v vary linearly along each edge of the

element, and they depend only on the displacements of the two nodes on a particular

edge. Therefore, the compatibility of displacements on two adjacent elements with

common boundary is satisfied.
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From the theory of elasticity, the nodal displacements utm ¼ {u1,u2, . . .,u6} are

related to total strains et ¼ {exx,eyy,ezz} by the following:

e ¼
exx
eyy
exy

2
4

3
5 ¼

∂u
∂x

∂v
∂y

∂u
∂y

þ ∂v
∂x

2
6666666664

3
7777777775

¼ 1

2A

ykj 0 �yki 0 yji 0

0 �xkj 0 xki 0 �xji
�xkj ykj xki �yki �xji yji

2
4

3
5

u1
u2
u3
u4
u5
u6

2
6666664

3
7777775
: ð3:98Þ

This relationship can be written in matrix notation as,

e ¼ b
_

u, ð3:99Þ

where:

b
_
¼ 1

2A

ykj 0 �yki 0 yji 0

0 �xkj 0 xki 0 �xji
�xkj ykj xki �yki �xji yji

2
4

3
5: ð3:100Þ

The above equation, indicates that for linearly varying displacement field, the

strains are constant, and by Hooke’s law it also leads to constant stresses. Substitut-

ing the total strain e in Eq. 3.96 gives the stress-displacement relationship,

x

y

O

1

2

3

v2

u2

u3

u1

v3
v1

Fig. 3.17 A triangular

element
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σxx
σyy
σxy

2
4

3
5 ¼ E

2A 1� v2ð Þ
ykj �vykj �yki vxki yji �vyji
vykj �xkj �vyki xki vyji �xji

�Ψxkj Ψykj Ψxki �Ψyki �Ψxji Ψyji

2
4

3
5

u1
u2
u3
u4
u5
u6

2
6666664

3
7777775
,

ð3:101Þ

where v is the Poisson ratio and

Ψ ¼ 1� v

2
:

The stiffness matrix is then calculated using Eq. 3.26, and for convenience is

presented in two separate parts as:

k ¼ kn þ ks, ð3:102Þ

where kn represents the stiffness due to normal stresses and ks represents the

stiffnesses due to shearing stresses. Thus:

kn ¼ Et

4A 1� v2ð Þ

y232
�vy32x32 x232 sym:
�y32y31 vx32y31 y231
vy32x31 �x32x31 �vy31x31 x231
y32y21 �vx32y21 �y31y21 vx31y21 y221

�vy32x21 x32x21 vy31x21 �x31x21 �vy21x21 x221

2
6666664

3
7777775
,

and

ks ¼ Et

4A 1þ vð Þ

x232
�x32y32 y232 sym:
�x32x31 y32x31 x231
x32y31 �y32x21 �x31y31 y231
x32x21 �y32x21 �x31x21 y31x21 x221
�x32y21 y32y21 x31y21 �y31y21 �x21y21 y221

2
6666664

3
7777775
:

ð3:103Þ

Using the same method, the stiffness matrices for other elements can be derived.

Since there are many excellent books on finite element methods, no further studies

are made here, and the interested reader may refer to McGuire and Gallagher [3],

Przemieniecki [4], and Zienkiewicz [5], among many others. For the formation of

well-conditioned stiffness matrices the reader may refer to Kaveh [6, 7].
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3.6 Computational Aspects of the Matrix Displacement

Method

The main advantage of the displacement method is its simplicity for computer

programming. This is due to the existence of a simple kinematical basis formed on a

special cutset basis known as cocycle basis of the graph model S of the structure.

Such a basis does not correspond to the most sparse stiffness matrix; however, the

sparsity is generally so good that there is usually no need to look further. However,

if an optimal cutset basis of S is needed, the displacement method encounters all the

problems met by the force method, described in Chap. 3. The algorithm for the

displacement method is summarized below.

Algorithm

Step 1: Select a global coordinate system and number the nodes and members of the

structure. An appropriate nodal ordering algorithm will be discussed in Chap. 5.

Step 2: After initialization of all the vectors and matrices, read or generate the data

for the structure and its members.

Step 3: For each member of the structure:

(a) Compute L, L*, sinα, sinβ, sinγ, cosα, cosβ, cosγ;
(b) Compute the rotation matrix T;

(c) Form the member stiffness matrix k in its local coordinate system;

(d) Form the member stiffness matrix k in the selected global coordinate

system;

(e) Plant k in the overall stiffness matrix K of the structure.

Step 4: For each loaded member:

(a) Read the fixed end actions;

(b) Transform the fixed end actions to the global coordinate system and reverse

it to apply at joints;

(c) Store these joint loads in the specified overall joint load vector.

Step 5: For each loaded joint:

(a) Read the joint number and the applied joint loads;

(b) Store it in the overall joint load vector.

Step 6: Apply boundary conditions to the structural stiffness matrixK, to obtain the

reduced stiffness matrix Kff. Repeat the same for the overall joint load vector.

Step 7: Solve the corresponding equations to obtain the joint displacements.

Step 8: For each member:

(a) Extract the member distortions from the joint displacements;

(b) Rotate the member distortions to the local coordinate system;
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(c) Compute the member stiffness matrix;

(d) Compute the member forces and fixed end actions.

Step 9: Compute the joint displacements and the member forces.

The application of the above procedure is now illustrated by a simple example, so

that the reader can use it to fully understand the computational steps.

Example. Consider a planar truss, as shown in Fig. 3.18. Member 1 has a uniform

load of intensity 0.6 kN/m and at joint 2 a concentrated load of magnitude 1.05 kN

is applied. The cross-section areas for members are 2A and 1.8A, respectively.

The selected global coordinate system and the equivalent nodal forces are

illustrated in Fig. 3.19. The stiffness matrices are formed as:

for member 1:

k1 ¼ 2

5
EA

0:64 0:48 �0:64 �0:48
0:48 0:36 �0:48 �0:36
�0:64 �0:48 0:64 0:48
�0:48 �0:36 0:48 0:36

2
664

3
775:

and for member 2:

k2 ¼ 1:8

3
EA

0 0 0 0

0 þ1 0 �1

0 0 0 0

0 �1 0 þ1

2
664

3
775:

The overall stiffness matrix is then obtained as:

K ¼ EA

0:256 0:192 �0:256 �0:192 0 0

0:192 0:144 �0:192 �0:144 0 0

�0:256 �0:192 0:256 0:192 0 0

�0:192 �0:144 0:192 0:744 0 �0:6
0 0 0 0 0 0

0 0 0 �0:6 0 0:6

2
6666664

3
7777775
:

The fixed end actions are shown in Fig. 3.19b, and calculated for member 1 as:

FEA1 ¼
0

1:5
0

1:5

2
664

3
775:

These forces are reversed and transformed into the global coordinate system as:
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T t
1 �FEA1ð Þ ¼

0:8 �0:6 0 0

0:6 0:8 0 0

0 0 0:8 �0:6
0 0 0:6 0:8

2
664

3
775

0

�1:5
0

�1:5

2
664

3
775 ¼

0:9
�1:2
0:9
�1:2

2
664

3
775:

Superimposing the concentrated force at node 2 yields the final vector of

external forces as:

p ¼ 0:9 �1:2 �0:15 �1:2 0 0f gt:

Substituting a large number such as 1.E + 30 for the diagonal entries

corresponding to the zero displacement boundary conditions,

0

0

�0:15
�1:2
0

0

2
6666664

3
7777775
¼ EA

1:Eþ 30 0:192 �0:256 �0:192 0 0

0:192 1:Eþ 30 �0:192 �0:256 0 0

�0:256 �0:192 0:256 0:192 0 0

�0:192 �0:256 0:192 0:714 0 �0:6
0 0 0 0 1:Eþ 30 0

0 0 0 �0:6 0 1:Eþ 30

2
6666664

3
7777775
v½ �:

4m

1

2

3

1 2 3m

1.05kN

0.6kN/m

Fig. 3.18 A planar truss

with general loading

x

y

Fig. 3.19 The selected

coordinate system and the

equivalent nodal loads
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Solving these equations results in:

v ¼ 1

EA
0 0 0:845 �1:907 0 0f gt:

The member forces are now computed as:

r1 ¼ 2

5

1 0 �1 0

0 0 0 0

�1 0 1 0

0 0 0 0

2
664

3
775

0:8 0:6 0 0

�0:6 0:8 0 0

0 0 0:8 0:6
0 0 �0:6 0:8

2
664

3
775

0

0

0:845
�1:907

2
664

3
775þ

0

1:5
0

1:5

2
664

3
775

¼
0:179
1:5

�0:179
1:5

2
664

3
775,

and

r2 ¼ 3

5

1 0 �1 0

0 0 0 0

�1 0 1 0

0 0 0 0

2
664

3
775

0 �1 0 0

1 0 0 0

0 0 0 �1

0 0 1 0

2
664

3
775

0:845
�1:907

0

0

2
664

3
775þ

0

0

0

0

2
664

3
775

¼
1:091
0

�1:091
0

2
664

3
775:
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Chapter 4

Ordering for Optimal Patterns of Structural

Matrices: Graph Theory Methods

4.1 Introduction

In this chapter, methods are presented for ordering to form special patterns for

sparse structural matrices. Such transformation reduces the storage and the number

of operations required for the solution, and leads to more accurate results. Graph

theory methods are presented for different approaches to reordering equations to

preserve their sparsity, leading to predefined patterns. Alternative, objective func-

tions are considered and heuristic algorithms are presented to achieve these objec-

tives. Three main methods for the solution of structural equations require the

optimisation of bandwidth, profile and frontwidth, especially for those encountered

in finite element analysis. Methods are presented for reducing the bandwidth of the

flexibility matrices. Bandwidth optimisation of rectangular matrices is presented for

its use in the formation of sparse flexibility matrices.

In this chapter entries of the stiffness and flexibility matrices are provided with

the most appropriate specified patterns for solution of the corresponding equations.

Realization of these patterns (or not) affects the formulation of the mathematical

models and efficiency of solution. Many patterns can be designed depending on the

solution scheme being used. Figure 4.1 shows some of the popular ones encoun-

tered in practice.

Pattern equivalence of the stiffness matrix of a structure and cutset basis

adjacency matrix C*C*t of its graph model, and pattern equivalence of the flexi-

bility matrix of a structure with that of a generalized cycle basis adjacency matrix

CCt of its graph model, reduce the size of the problem β-fold, β being the degrees of
freedom of the nodes of the model for the displacement method, and β ¼ 1 to

6 depending on the type of structure being studied by the force method.

A. Kaveh, Computational Structural Analysis and Finite Element Methods,
DOI 10.1007/978-3-319-02964-1_4, © Springer International Publishing Switzerland 2014

137



4.2 Bandwidth Optimisation

The analysis of many problems in structural engineering involves the solution of a

set of linear equations of the form,

Ax ¼ b, ð4:1Þ

where A is a symmetric, positive definite and usually very sparse matrix. For large

structures encountered in practice, 30–50 % of the computer execution time may be

devoted to solving these equations. This figure may rise to about 80 % in non-linear,

dynamic or structural optimisation problems.

Different methods can be used for the solution of the system of equations, of

which the Gaussian elimination is the most popular among structural analysts, since

it is simple, accurate and practical, producing some very satisfactory error bounds.

In the forward course of elimination, new non-zero entries may be created, but

the back substitution does not lead to any new non-zero elements. It is beneficial to

minimize the total number of such non-zero elements created during the forward

course of the Gaussian elimination in order to reduce the round off errors and the

computer storage. Matrix A of Eq. 4.1 can be transformed by means of row and

column operations to a form which leads to the creation of a minimum number of

non-zero entries during the forward course of the elimination. This is equivalent to

the “a priori” determination of permutation matrices P and Q, such that:

PAQ ¼ G: ð4:2Þ

When A is symmetric and positive definite, it is advantageous to have G also

symmetric so that only the non-zero elements on and above the diagonal of G need

to be stored, and only about half as many arithmetic operations are needed in the

elimination. The diagonal elements of A and G are the same, only in different

positions. In order to preserve symmetry, P is taken as Qt so that Eq. 4.2 becomes:

QtAQ ¼ G: ð4:3Þ

For transforming a symmetric matrix A into the forms depicted in Fig. 4.1,

various methods are available, some of which will be described in this chapter.

However, due to the simplicity of the banded form, most of the material presented

Banded Profile Partitioned Nested partitioned Block matrix
form form form form form

Fig. 4.1 Different matrix forms
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will be confined to optimising the bandwidth of the structural matrices, and other

forms will only be introduced briefly.

In the Gaussian elimination method, the time required to solve the resulting

equations by the banded matrix technique is directly proportional to the square of

the bandwidth of A. As mentioned before, the solution of these equations forms a

large percentage of the total computational effort needed for the structural analysis.

Therefore it is not surprising that a lot of attention is being paid to the optimisation

of the bandwidth of these sparse matrices. A suitable ordering of the elements of a

kinematical basis for a structure reduces the bandwidth of A, hence decreasing the

solution time, storage and round-off errors. Similarly, ordering the elements of a

statical basis results in the reduction of the bandwidth of the corresponding flexi-

bility matrix of the structure.

Iterative methods using different criteria for the control of the process of

interchanging rows and columns of A are described by many authors, e.g. see

Rosen [1] and Grooms [2]. For these methods, in general, the required storage and

CPU time can be high, making them uneconomical.

The first direct method for bandwidth reduction was recognized by Harary [3] in

1967, who posed the following question:

For a graph S with N(S) nodes, how can labels 1, 2, . . ., N(S) be assigned to nodes in order

to minimize the maximum absolute value of the difference between the labels of all pairs of

adjacent nodes?

For a graph labelled in such an optimum manner, the corresponding adjacency

matrix will have unit entries concentrated as closely as possible to its main

diagonal.

In structural engineering, Cuthill and McKee [4] developed the first graph-

theoretical approach for reducing the bandwidth of stiffness matrices. In their

work, a level structure was used which was called a “spanning tree” of a structure.

The author’s interest in bandwidth reduction was initially motivated by an interest

in generating and ordering the elements of cycle bases and generalized cycle bases

of a graph, as defined in Chap. 2, in order to reduce the bandwidth of the flexibility

matrices, Refs. [5, 6]. For this purpose a shortest route tree (SRT) has been used.

The application of this approach has been extended to the elements of a kinematical

basis (cutset basis) in order to reduce the bandwidth of stiffness matrices. Subse-

quently it has been noticed that there is a close relation between Cuthill-McKee’s

level structure and the author’s SRT. However, there is a difference between these

trees in that an SRT contains additional information about the connectivity prop-

erties of the corresponding structure.

Further improvements have been achieved by employing special types of SRTs

such as the longest and narrowest ones, Ref. [7]. Generation of a suitable SRT

depends on an appropriate choice of starting node. Kaveh [5] used an end node of an

arbitrary SRT, which was chosen from its last contour (level) having the least

valency. Gibbs et al. [8] employed a similar node and called it a pseudo-peripheral

node. Cheng [9] used an algebraic approach to select a single node or a set of nodes

as the root of an SRT. Kaveh employed two simultaneous SRTs for selecting a
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pseudo-peripheral node. A comparison of six different algorithms was made in Ref.

[10]. Algebraic graph theory has also been used for finding a starting node, Kaveh

[11] and Grimes et al. [12]. Paulino et al. [13] used another type of algebraic graph-

theoretical approach employing the Laplacian matrix of a graph for nodal ordering.

4.3 Preliminaries

A matrix A is called banded, when all its non-zero entries are confined within a

band, formed by diagonals parallel to the main diagonal. Therefore, Aij ¼ 0 when

|i�j| > b, and Ak, k�b 6¼ 0 or Ak, k+b 6¼ 0 for at least one value of k. b is the half-

bandwidth and 2b + 1 is known as the bandwidth of A. As an example, for

A ¼

1 6 : : :
6 2 7 9 :
: 7 3 8 :
: 8 9 4 :
: : : : 5

2
66664

3
77775, ð4:4Þ

the bandwidth of A is 2b + 1 ¼ 2�2 + 1 ¼ 4.

A banded matrix can be stored in different ways. The diagonal storage of a

symmetric banded n�n matrix A is an n�(b + 1) matrix AN. The main diagonals

are stored in the last column, and lower co-diagonals are stored down-justified in

the remaining columns. As an example, AN for the above matrix is:

AN ¼

� � 1

� 6 2

0 7 3

9 8 4

0 0 5

2
66664

3
77775: ð4:5Þ

When A is a sparse matrix, this storage scheme is very convenient, since it

provides direct access, in the sense that there is a simple one-to-one correspondence

between the position of an entry in the matrix A(i, j) and its position in AN(i, j �
i + b + 1).

Obviously, the bandwidth depends on the order in which the rows and columns

of A are arranged. This is why iterative techniques seek a permutation of the rows

and a permutation of columns to make the resulting bandwidth small. For symmet-

ric matrices, identical permutations are needed for both the rows and the columns.

When a system of linear equations has a banded matrix of coefficients and the

system is solved by Gaussian elimination, with pivots being taken from the diag-

onals, all the operations are confined to the band and no new non-zero entries are

generated outside the band. Therefore, the Gaussian elimination can be carried out
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in place, since a memory location is already reserved for any new non-zeros that

might be introduced within the band.

For each row i of a symmetric matrix A define,

bi ¼ i� jmin ið Þ, ð4:6Þ

where jmin(i) is the minimum column index in row i for which Aij 6¼ 0. Therefore,

the first non-zero of row i lies bi positions to the left of the diagonal, and b is defined

as:

b ¼ max bið Þ: ð4:7Þ

In Chap. 4, it has been shown that the stiffness matrix K of a structure is pattern

equivalent to the cutset basis adjacency matrix C*C*t, where C* is the cutset basis-

member incidence matrix of the structural model S. Similarly, the flexibility matrix

G is pattern equivalent to the cycle basis adjacency matrix CCt, where C is the

cycle basis-member incidence matrix of S.

Reducing the bandwidths of C*C*t and CCt directly influences those of K and

G, respectively. Notice that the dimensions of C*C*t and CCt, for general space

structures, are sixfold smaller than those of K and G, and therefore simpler to

optimise.

For the displacement method of analysis, there exists a special cutset basis

whose elements correspond to stars of its nodes except for the ground node (cocycle

basis). The adjacency matrix of such a basis naturally is the same as that of the node

adjacency matrix of S, with the row and column corresponding the datum node

being omitted. In this chapter, such a special cutset basis will be considered, and the

nodes of S will be ordered such that the bandwidth of its node adjacency matrix is

reduced to the smallest possible amount.

Let A be the adjacency matrix of a graph S. Let i and j be the nodal numbers of

member k, and let αk ¼ |i � j|. Then the bandwidth of A can be defined as:

b Að Þ ¼ 2Max αk : k ¼ 1, 2, . . . , M Sð Þf g þ 1, ð4:8Þ

where M(S) is the number of members of S. In order to minimize the bandwidth of

A, the value of b(A) should be minimized. The bandwidth of the stiffness matrix

K of a structure is related to that of A by:

b kð Þ ¼ βb Að Þ, ð4:9Þ

where β is the number of degrees of freedom of a typical node of the structure.

Papademetrious [14] has shown that the bandwidth minimization problem is an

NP-complete problem. Therefore any approach to it is of interest primarily because

of its heuristic value.
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4.4 A Shortest Route Tree and Its Properties

The main tool for most of the ordering algorithms using graph-theoretical

approaches is the shortest route tree of its model or its associate model. A shortest

route tree rooted at a node O, called the starting node (root) of the tree, is denoted
by SRTO and has the following properties:

The path from any node to the root through the tree is a shortest path. An

algorithm for generating an SRT is given in Sect. 1.4.7 and therefore only its

properties relevant to nodal number are discussed here.

An SRT decomposes (partitions) the node set of S into subsets according to their

distance from the root. Each subset is called a contour (level) of the SRT, denoted
by Ci. The contours of an SRT have the following properties:

Adj Cið Þ � Ci�1 [ Ciþ1, 1 < i < m

Adj C1ð Þ � C2,

Adj Cmð Þ � Cm�1:
ð4:10Þ

The number of nodes in each contour is called the width of that contour, and the

largest width of the contours of an SRT is called the width of the SRT rooted at the

starting node O, denoted by w(SRTO). This number is known as the width number
of O. The number of contours of an SRT (except the starting node contour) is the

height of the tree denoted by h(SRTO). The longest SRT is the one with maximal

height and the narrowest SRT is the one with minimal width.

As an example, an SRT of S as shown in Fig. 4.2a, rooted at O, denoted by

SRTO, has the following identities:

w C1ð Þ ¼ 1, w C2ð Þ ¼ 2, w C3ð Þ ¼ 3, w C4ð Þ ¼ 4, w C5ð Þ ¼ 5, w C6ð Þ ¼ 5,

w C7ð Þ ¼ 4, w C8ð Þ ¼ 3, w C9ð Þ ¼ 2 and w C10ð Þ ¼ 4:

Hence w(SRTO) ¼ 5 and h(SRTO) ¼ 9.

For the same graph model, an SRT rooted at O’, as shown in Fig. 4.2b, leads to

w(SRTO’) ¼ 9 and h(SRTO’) ¼ 4.

This simple example shows the importance of selecting an appropriate starting

node. This will be discussed in some detail in subsequent sections.

4.5 Nodal Ordering for Bandwidth Reduction

The following four-step algorithm is employed for nodal ordering of graphs leading

to banded node adjacency matrices. This method can directly be used for nodal

ordering of skeletal structures resulting in banded stiffness matrices.

1. Finding a suitable starting node;

2. Decomposing the node set of S into ordered subsets (contours);
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3. Selecting a connected path (transversal) containing one representative node from

each contour;

4. Ordering the nodes within each contour, to obtain the final nodal numbering of S.

All the above steps require the use of an SRT algorithm of Sect. 1.4.7, known as

breadth-first-search algorithm. Therefore, a nodal ordering process may be consid-

ered as a multiple application of the SRT algorithm.

The node set of S can be decomposed into ordered subsets by means of a

breadth-first-search algorithm. The quality of the results depends upon the choice

of an appropriate starting node, as the root of this tree. The results corresponding to

the ordering within each contour, however, also depend upon the use of a suitable

transversal containing one representative node from each contour.

Methods for finding suitable starting nodes have been developed by Cheng [15],

Kaveh [16, 17], Gibbs et al. [8], and Grimes et al. [12]. In the following, various

graph-theoretical methods are presented for finding good starting nodes and

selecting suitable transversals.

4.5.1 A Good Starting Node

The distance d(ni, nj) between two nodes ni and nj is defined to be the length of the

shortest path between these nodes. The eccentricity of a node ni is defined as:

e nið Þ ¼ Max d ni; nj
� �

for j ¼ 1, . . . , N Sð Þ: ð4:11Þ

The diameter of S is defined as:

δ Sð Þ ¼ Max e nið Þ for i ¼ 1, . . . , N Sð Þ: ð4:12Þ

As an example, the eccentricity of n2 in Fig. 4.3 is e(n2) ¼ 3, and the diameter of

S is δ(S) ¼ 4.

O

O'

a bFig. 4.2 A graph S and two

of its SRTs. (a) An SRT

rooted at O. (b) An SRT

rooted at O0
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A node ni of S is called peripheral if its eccentricity is the same as the diameter

of S, i.e. δ(S) ¼ e(ni). If the eccentricity is close to the diameter, then ni is called a

pseudo-peripheral node or a good starting node.
In this section, three algorithms are described for selection of good starting node

or nodes for nodal numbering. Other algorithms have been developed, the detail of

which may be found in Kaveh [11].

Algorithm A

Step 1: Start from an arbitrary node of S. Construct an SRT on this node and take a

node of least valency from its last contour.

Step 2: Form a new SRT from the selected node, and record all the nodes of the last

contour of the selected SRT.

Step 3: Form SRTs rooted at each of the recorded nodes and choose the one that

corresponds to the narrowest SRT. The process of constructing an SRT is

terminated as soon as the width of one of its contours exceeds the width of the

previously selected SRT.

This algorithm is similar to Gibbs et al. [8] algorithm, where the starting node O

and another node of minimum valency from its last contour are selected as pseudo-
peripheral or diameteral nodes

Algorithm B

Step 1: Start with an arbitrary node, form an SRT on this node and take a node ni of

least valency from its last contour.

Step 2: Generate an SRT on ni and find all nodes contained in its even, first and last

contours.

Step 3: Generate an SRT on each node of these contours, and find the narrowest one.

The process of formation of an SRT is terminated as soon as the width of one of

its contours exceeds the width of the previously selected SRT. Denote the

selected node by nj.

Step 4: Check adjacent nodes to nj for possible reduction in width, to decide the

final starting node.

Algorithm C

Step 1: From an arbitrary node generate an SRT, and from its last contour select a

node X1 of minimal valency. Observe the width of the selected SRT.

Step 2: Generate an SRT from X1 and select X2 of the least valency from its last

contour, and observe the width.

n2

Fig. 4.3 A graph S
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Step 3: Generate two SRTs simultaneously rooted at X1 and X2 and find the node X3

which is the last node of S included in one of the SR subtrees. Once X3 is found,

terminate the process of forming SRTs. Generate an SRT from X3 and observe

its width. X1 and X2 are called the generators of X3.

Step 4: Repeat the process of Step 3, using the pairs (X1, X3) and (X2, X3) as the

generators to find X4 and X5, respectively. Construct the corresponding SRTs

and observe their widths.

Step 5: Repeat the process of Step 3 for Xi (i ¼ 3, 4, . . .) together with the

corresponding generator, until no further improvement in width is observed.

The narrowest SRT should be selected for nodal decomposition of S.

An example of the application of this algorithm is depicted in Fig. 4.4, where a

cross-shaped grid S is considered. Starting from an arbitrary node “O”, an SRT is

generated and X1 is obtained from its last contour. Generating a new SRT from X1,

node X2 is chosen from its last contour. X3 is the result of generating two simul-

taneous SRTs from X1 and X2. Using (X1, X3) and (X2, X3), nodes X4 and X5 are

obtained, respectively. The widths of the selected SRTs rooted at X1, X2, X3, X4 and

X5 are 8, 8, 8, 11, and 10, respectively. Therefore the process is terminated and X3 is

taken as a good starting node of S.

Algorithms A and B may search for a good starting node in a single direction of a

graph and do not meet nodes laying in other directions. Algorithm C has the feature

of overcoming such problem. In this method, the control of overall connectivity

properties of the graph becomes feasible. The following example will more clearly

illustrate this point.

4.5.2 Primary Nodal Decomposition

Once a good starting node is selected, an SRT is constructed and its contours {C1,

C2, . . ., Cm} are obtained. These subsets are now ordered according to their

distances from the selected starting node. Obviously, many SRTs can be

constructed on a node. Although all lead to the same nodal decompositions,

different transversals will be obtained for different SRTs. Thus, in the generation

process, the nodes of each contour Ci are considered in ascending order of their

valencies for selecting the nodes in Ci+1, in order to provide the conditions for the

possibility of generating a minimal (or optimal) transversal as defined in the next

section. Finding an optimal transversal before an SRT is fixed, seems to be a time-

consuming problem. However, for most of the models encountered in practice, an

optimal transversal lies between the minimal ones. In the following, an algorithm is

given for selecting a suboptimal transversal of an SRT.
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4.5.3 Transversal P of an SRT

A transversal of an SRT is defined as a connected path P containing one distinct

node Ni from each contour Ci of an SRT. Aminimal transversal is the one for whichXm
i¼1

deg Nið Þ is minimum. An optimal transversal is the one leading to the best nodal

numbering, i.e. a numbering corresponding to smallest bandwidth for the selected

decomposition. The weight of a node is defined as its degree.

Algorithm

Step 1: Take a node Nm of minimal weight from the last contour Cm of the

selected SRT.

Step 2: Find Nm�1 from Cm�1 which is connected to Nm by a branch of the SRT.

Step 3: Repeat the process of Step 2 selecting nodes Nm�2, Nm�3, . . ., N1, as the

representative nodes of the contours Cm�2, Cm�3, . . ., C1, respectively.

The above algorithm is a backtracking process from a node of minimal weight in

the last contour Cm, that selects a transversal P ¼ {N1, N2, . . ., Nm} which can now

be used for ordering the nodes of the contours of the corresponding SRT.

4.5.4 Nodal Ordering

Step 1: Number N1 as “1”.

Step 2: N2 is given number “2” and an SR subtree is generated from N2, numbering

the nodes of C2 in the order of their occurrence in this SR subtree.

O

X

X

X X

X

1

2

3

4

5

Fig. 4.4 A cross-shaped

grid and the selected Xi

(i ¼ 1, . . ., 5) by
Algorithm C
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Step 3: The process of Step 2 is repeated for numbering the nodes of C3, C4, . . ., Cm,

sequentially using N3, N4, . . ., Nm as the starting nodes of SR subtrees, until all

the nodes of S are numbered.

Now the numbering can be reversed, in a way similar to that of the Reverse

Cuthill-McKee algorithm, for possible reduction of fill-ins in the process of Gauss-

ian elimination, which will be discussed in Sect. 4.7.

4.5.5 Example

The following simple example is chosen to illustrate the steps of the presented

approaches, but the applications are by no means limited to such simple cases.

Let S be the graph model of a truss structure, as shown in Fig. 4.5a. Using one of

the algorithms of Sect. 4.5.1, a good starting node A is found, and the corresponding

SRTs are depicted in Fig. 4.5b. A transversal is selected as shown in bold lines,

Fig. 4.5c. Then nodes are numbered contour by contour, employing the represen-

tative nodes as the starting nodes of SR subtrees, Fig. 4.5d.

In order to cast the concepts developed for nodal ordering in a mathematical

form, a connectivity coordinate system is defined for nodal numbering of

S. Separate study of planar and space graphs results in clarification of further

interesting points about nodal numbering of space structures, as described in

Kaveh [18].

4.6 Finite Element Nodal Ordering for Bandwidth

Optimisation

Extensions and applications of the nodal numbering algorithms to element ordering

are due to Kaveh [10], Everstine [19], Razzaque [20], Sloan [21], Burgess and

Lai [22].

For finite element nodal ordering, different methods are developed. The appli-

cation of a natural associate graph in a two-step approach, has been suggested by

Kaveh [23], and later by Fenves and Law [24]. A corner-node method is developed

by Kaveh [5], and Kaveh and Ramachandran [25]. The application of an element

clique graph is due to Sloan [9], and Livesley and Sabin [26]. Additional graphs for

transforming the information concerning the connectivity of the finite element

model (FEM) to those of different simple graphs, are introduced and employed in

efficient finite element nodal numbering by Kaveh and Roosta [27].

In this section, the connectivity properties of FE models are embedded in the

topological properties of nine different graphs. A nodal ordering is then performed

on these graphs, leading to the element ordering of the corresponding FEMs,
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followed by their final nodal ordering. This process is summarised in the flow chart

of the following page.

For the sake of clarity, in this section, the nodes of the constructed graphs are

referred to as vertices.
The complexities of the presented methods are given for a logical comparison of

their efficiency. The efficiency of the methods are also tested by some

2-dimensional and 3-dimensional FE models. For these models, the computational

time and the bandwidth obtained are presented for comparison.

Finite Element Model

Graph Model

ECG SkG StG EWG PTG TG NAG IG RG CRG

Graph Nodal Ordering

Finite Element Nodal Ordering

Notations: Element Clique Graph (ECG); Skeleton Graph (SkG); Element Star Graph 
(EStG); Element Wheel Graph (EWG); Partially Triangulated Graph (PTG); Triangulated 
Graph (TG); Natural Associate Graph (NAG); Incidence Graph (IG); Representative Graph 
(RG); Complete Representative Graph (CRG).
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Fig. 4.5 Graph model S and its nodal numbering. (a) Initial numbering of S. (b) The selected

SRT. (c) The selected transversal P. (d) Final nodal numbering of S
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4.6.1 Element Clique Graph Method (ECGM)

Definition. The element clique graph S of an FEM is a graph whose vertices are

the same as those of the FEM, and two vertices ni and nj of S are connected with a

member if ni and nj belong to the same element in the FEM. The element clique

graph of the FEM shown in Fig. 4.6a is illustrated in Fig. 4.6b.

This graph is particularly suitable for bandwidth optimisation, since in this graph

each vertex corresponds to a node of the FEM, and a single step is needed for direct

nodal numbering of the considered FEM.

Algorithm

Step 1: Construct the element clique graph S of the considered FEM.

Step 2: Use a nodal numbering algorithm available (e.g. the algorithm presented in

Sect. 4.5.4).

In this method, all the nodes of an element will be contained in at most two

adjacent contours of an SRT, hence the bandwidth becomes dependent on the width

of the SRT.

4.6.2 Skeleton Graph Method (SkGM)

Definition. The 1-skeleton graph S of an FEM is a graph whose vertices are the

same as the nodes of the FEM, and its members are the edges of the FEM. Figure 4.7

illustrates the skeleton graph of the FEM shown in Fig. 4.6a.

Simultaneous application of the ECG and the skeleton graph provides very

efficient tools. As an example, consider the small FE as shown in Fig. 4.8. Suppose

an SRT is rooted from vertex 1 in the ECG of the FEM to find a good starting node

with minimum degree from its last contour. Vertices 17 and 19 are found. They are

the farthest from vertex 1 and have the same degree as 3 (in the ECG). However,

vertex 19 is better than vertex 17, since W(SRT19) < W(SRT17). Instead of gener-

ating two SRTs from vertices 17 and 19, one can choose 19 by generating SRT1 in

the skeleton graph, because dSG(1, 19) > dSG(1, 17), where dSG(i, j) denotes the

distance between vertices i and j in the skeleton graph.

a bFig. 4.6 An FEM and its

element clique graph.

(a) An FEM. (b) The

element clique graph

of the FEM
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Algorithm

Step 1: Construct the skeleton graph S of the considered FEM. For each element i of

the FEM connect two end nodes of each edge of element by a member. Such

nodes should be connected only once.

Step 2: Order the vertices of S using any nodal numbering algorithm available

(e.g. the algorithm presented in Sect. 4.5.4) thus obtaining a nodal ordering of S.

In order to generate the skeleton graph of An FEM, it is necessary to list the

nodes of each element in a suitable order. In this method the number of members of

S is less than that of the ECGM; however, in FEMs with triangular elements, these

members are the same. Therefore, this method takes less computer storage for

keeping the connectivity of S. Generating an SRT in a skeleton graph may lead to

allocation of the nodes of an element in three or more adjacent contours. Therefore

the width of the SRT being used, together with the number of contours containing

the nodes of an element of the FEM, specify the bandwidth.

4.6.3 Element Star Graph Method (EStGM)

Definition. The element star graph S of An FEM has two sets of vertices, namely

the main set containing the same nodes as those of the FEM and a virtual set

consisting of the virtual vertices associated in a one-to-one correspondence with the

elements of the FEM. The member set of S is constructed by connecting the virtual

Fig. 4.7 The skeleton

graph of the FEM of

Fig. 4.6a
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9Fig. 4.8 A small finite

element model
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vertex of each element i to all the nodes of the element i. The element star graph of

the FEM shown in Fig. 4.6a is illustrated in Fig. 4.9. The virtual vertices are shown

by larger sized dots.

In the element star graph of An FEM, the distance between each pair of vertices

corresponding to two nodes of the FEM which share an element is equal to 2, while

in the ECG it is equal to 1. This difference does not cause the element star graph to

lose the previously discussed property of the ECG, which is the existence of more

than one pair of peripheral nodes in most of FEMs. Hence this graph model is

efficient for algorithms in which multiple roots are needed to be found. In this graph

the degree of each vertex corresponding to a node i of the FEM is the same as that of

the number of elements of the FEM incident to node i.

Algorithm

Step 1: Construct the element star graph S of the considered FEM. For each element

i, generate a virtual vertex labelling with i+α, and connect the nodes of i to the

vertex i+α, where α is the total number of nodes of the FEM.

Step 2: Order the main vertices of S using a nodal numbering algorithm available,

e.g. the method presented in Sect. 4.5.4. This step is similar to the previous

methods but virtual vertices need not be labelled in the process of numbering of

the nodes. The virtual vertices can easily be identified by their labels being above

α.

4.6.4 Element Wheel Graph Method (EWGM)

Definition. The element Wheel Graph S of An FEM is the union of the element star

graph and the skeleton graph of the FEM. The element wheel graph of the FEM

shown in Fig. 4.6a is illustrated in Fig. 4.10. The virtual vertices are shown by larger

sized dots.

Algorithm

Step 1: Construct the element wheel graph S of the considered FEM. This can be

done by generating the union of the element star graph and skeleton graph.

Step 2: Order the main vertices of S using a nodal numbering algorithm available,

e.g. the method presented in Sect. 4.5.4. This step should be carried out similarly

to that of Step 2 in ESGM.

Fig. 4.9 The element star

graph of the FEM of

Fig. 4.6a
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In order to generate the element wheel graph of an FEM, it is necessary to list the

nodes of each element in a suitable order. In this method M(S) is higher than that of

ESGM, and therefore it needs more computer storage than ESGM. The nodes of an

element of FEM are at most contained in three contours of the generalized SRT of

the element wheel graph.

4.6.5 Partially Triangulated Graph Method (PTGM)

Definition. The partially triangulated graph S of an FEM is a graph whose

vertices are the same as the nodes of the FEM and an artificial vertex assigned to

each element i is connected to all the original nodes of i. The selected nodes of the

elements are found by generating all SR subtrees from a good starting vertex in the

skeleton graph of the FEM and taking the first node of an element included in the

SRT during the process of the generation. As an example, for the FEM shown in

Fig. 4.6a, an SR subtree is routed from n0 and shown in Fig. 4.11a, and the selected

nodes of the elements are shown by larger sized dots. The partially triangulated

graph of the FEM is shown in Fig. 4.11b.

In order to generate the partially triangulated graph of an FEM, the following

steps can be executed:

1. Generate the SG of the FEM;

2. Form an SRT rooted from an arbitrary node n0 and select a node n1 from the last

contour of SRTn0 with the minimum degree;

3. Form an SRT rooted from n1 and select a node n2 in the last contour of SRTn1,

with minimum degree;

4. Form an SRT rooted from n2 and take ns from n0, n1 and n2 whose corresponding

SRT has the least width;

5. Calculate the distance between each vertex of the SG and ns;

6. For each element i select a vertex which is the nearest node to ns;

7. Form the partially triangulated graph by connecting the vertex corresponding to

the selected node of each element i to the vertices corresponding to other nodes

of i; previously connected nodes should not be connected again.

Fig. 4.10 The element

wheel graph of the FEM of

Fig. 4.6a
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Algorithm

Step 1: Construct the partially triangulated graph S of the considered FEM.

Step 2: Order the vertices of S using a nodal numbering algorithm available, e.g. the

algorithm of Sect. 4.5.4.

For generating the partially triangulated graph of an FEM, it is necessary to list

the nodes of each element in a suitable order. In this method M(S) may or may not

be higher than that of SKGM. In the process of forming an SRT in a partially

triangulated graph, the nodes of an element may lie in one, two or three adjacent

contours.

4.6.6 Triangulated Graph Method (TGM)

Definition. The triangulated graph S of an FEM is the union of the partially

triangulated graph and the skeleton graph of the FEM. The triangulated graph of

the FEM shown in Fig. 4.6a is illustrated in Fig. 4.12. The selected vertices of the

elements are the same as those of Fig. 4.6a.

Algorithm

Step 1: Construct the triangulated graph S of the considered FEM. This step can be

carried out by generating the partially triangulated graph and the skeleton graph.

Step 2: Order the vertices of S using a nodal numbering algorithm.

In this method the number of members is higher than that of the PTGM. For an

SRT in a triangulated graph, the nodes of an element of an FEM are contained in at

most three adjacent contours.

4.6.7 Natural Associate Graph Method (NAGM)

Definition. The natural associate graph S of an FEM has its vertices in a one-to-

one correspondence with the elements of the FEM, and two vertices of S are

a b

Fig. 4.11 The skeleton, an SR subtree and the partially triangulated graph of the FEM of Fig. 4.6a.

(a) The skeleton graph and an SR subtree of the FEM. (b) The partially triangulated graph of

the FEM
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connected by a member if the corresponding elements have a common boundary.

The natural associate graph of the FEM shown in Fig. 4.6a is illustrated in Fig. 4.13.

In order to generate the natural associate graph of an FEM, one of the following two

methods can be employed. The first is a direct scheme which takes high computer

time but low computer storage. In this case only the element-node list should be

provided. The second takes low computational time but uses larger memory. In this

case, the node-element list, together with the element-node list are provided as

input data.

Method 1. Check each pair of elements i and j of the FEM for a common

boundary. If i and j have such a boundary, then the vertices corresponding to i

and j should be connected by a member in the natural associate graph.

Method 2. Step 1: Generate the node-element list of the considered FEM.

Step 2: Take each pair of elements incident at a node, and note whether they have

more than one corner node in common.

Step 3: When two elements of equal or different dimensions have common corner

nodes equal to or more than the smallest dimension of the elements, then

the corresponding vertices in the natural associate graph are connected by a

member.

Algorithm

Step 1: Construct the natural associate graph S of the considered FEM.

Step 2: Order the vertices of S using a nodal numbering algorithm, to obtain an

ordering for the elements of the FEM.

Step 3: Order the nodes of the FEM, element by element, in the same sequence as

decided in Step 2. Within each element, priority is given to mid nodes, passive

and active nodes, respectively. A node is called passive if it has no incident new
element, otherwise it is active.

Step 3 of this method can be carried out using the following process:

I. Generate a matrixNEwith a rows and ε columns, in which its ith row contains

the labels of the elements containing node i, where ε is the same as the

maximum number of elements incident to a specified node.

Fig. 4.12 The triangulated

graph of the FEM of

Fig. 4.6a
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II. For each element j ( j ¼ 1, . . ., l ) execute the following steps, in turn:

(a) If j has a mid node, label it first;

(b) Detect the active and passive nodes j using the matrix NE. It should be

noted that using NE makes the process fast; however, one can instead

check a node of j for incidence with a new element;

(c) Form a multiple root SR subtree from the active node of j;

(d) Label the passive nodes of j when they are selected in the multiple root

SR subtree;

(e) Label the active nodes of j which are adjacent to the previously labelled

nodes;

(f) Repeat Step (e) until all the active nodes of j are labelled.

In order to generate the natural associate graph of an FEM, it is necessary to list

the nodes of each element in a suitable order. In this algorithm M(S) has the least

value among the presented methods thus far; therefore it take less computer storage

for keeping the connectivity data of S.

4.6.8 Incidence Graph Method (IGM)

Definition. The incidence graph S of an FEM has its vertices in a one-to-one

correspondence with the elements of the FEM, and two vertices of S are connected

by a member, if the corresponding elements have a common node. Figure 4.14

shows the incidence graph of the FEM shown in Fig. 4.6a.

In order to generate the incidence graph of an FEM, one of the following two

methods can be employed. The first is a direct approach, which takes high compu-

tational time but low words of memory; for which only the element-node list should

be provided. The second scheme takes short computational time but high computer

storage; the node-element list together with the element-node list should be

provided.

Method 1. Check each pair of elements i and j of the FEM for a common node, and

if they have such a node, connect with a member to the corresponding vertices i and

j in the incidence graph.

Fig. 4.13 The natural

associate graph of the FEM

of Fig. 4.6a
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Method 2. Step 1: Generate the node-element list of the considered FEM.

Step 2: Connect the representative vertices of each pair of elements, which contain

a common node.

Algorithm

Step 1: Construct the incidence graph S of the considered FEM.

Step 2: Order the vertices of S using a nodal numbering algorithm, to obtain an

ordering for the elements of the FEM.

Step 3: Order the nodes of the FEM, element by element, in the same sequence as

decided in Step 2. Within each element priority is given to mid nodes, passive

and active nodes, respectively.

4.6.9 Representative Graph Method (RGM)

Definition. Consider the skeleton graph of an FEM, and select an appropriate

starting vertex, using any available algorithm. The nearest corner node of each

element of the FEM is taken as the representative node of that element. The SR

subtree of the skeleton graph of the FEM containing all representative nodes of the

elements is called a representative graph S of the FEM. The representative graph of

the FEM shown in Fig. 4.6a is illustrated in Fig. 4.15.

In order to generate the representative graph of an FEM the following steps

should be executed:

Step 1: Execute Steps 1–4 of the algorithm for the formation of the PTG.

Step 2: Form a SR subtree step by step from ns until each element of the FEM has a

node whose corresponding vertex in SG is contained in the SR subtree. The first

selected vertex (in the SR subtree) corresponding to the nodes of each element i

should be taken as the representative node of i.

Algorithm

Step 1: Construct the representative graph of the FEM, and number its vertices,

resulting in the ordering of the elements of the considered FEM.

Step 2: Use Step 3 of the NAGM to number the nodes of the FEM.

Fig. 4.14 The incidence

graph of the FEM of

Fig. 4.6a
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This method is the most efficient approach from the computational time and

storage points of view for most of the practical models.

4.6.10 Computational Results

The presented algorithms are implemented on a PC and many examples are

examined, some of which are included in this section. The bandwidth of D and

the relative computational time for the algorithms are provided.

Example 1. A planar FEM with three types of elements consisting of 4-node,

8-node and 12-node elements is considered as shown in Fig. 4.16. This model

contains 1,959 nodes and 2,250 elements. The combination of elements of this

model may not be practical; however, it is purposely chosen to illustrate the

generality of the methods in dealing with the presence of different elements of a

model. The results are presented in Table 4.1.

Example 2. A three-dimensional finite element model consisting of 480 (5812)

20-node cubic elements (each edge of elements has a mid side node) is considered,

having the total of 2,559 nodes. The results are depicted in Table 4.2.

Example 3. A planar FEM with two holes is considered as shown in Fig. 4.17. Six

FEMs with 1,000 elements are studied with elements having 4 nodes, 4 nodes and a

mid-node, 8 nodes, 8 nodes and a mid-node, 12 nodes, and 12 nodes and a

mid-node. These models contain 1,134, 2,134, 3,269, 4,204 and 6,404 nodes,

respectively. The results are depicted in Table 4.3.

Example 4. The finite element model of a buttress dam is considered, the section

of which is illustrated in Fig. 4.18, consisting of 480 nodes and 603 elements. This

model contains three layers of prismatic members and each element contains six

nodes. The results are depicted in Table 4.4. The patterns of the nodes adjacency

matrices are presented in Fig. 4.18.

Fig. 4.15 The

representative graph of the

FEM in Fig. 4.6a
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4.6.11 Discussions

The algorithms presented in this section transform the connectivity of FEMs into

the topological properties of different graphs. Then a nodal ordering algorithm

undertakes numbering the nodes of the graphs, leading to nodal numbering of the

FEMs. All the methods presented are low order polynomial time algorithms.

Analyses are considered for worst cases and compared. Such analysis is the most

logical way of comparing the algorithms, since most of the combinatorial optimi-

sation algorithms are configuration dependent. Each algorithm presented has

advantages and disadvantages which become manifest when the algorithm is

employed for models with different element types and connectivity properties. It

should be noted that the relative performance of the algorithms depends also on the

starting node selection algorithm and the nodal ordering algorithm being employed.

Fig. 4.16 A planar FEM

Table 4.1 Results of Example 1

Method ECGM SKGM ESGM EWGM PTGM TRGM NAGM INGM REGM

b(D) 313 497 313 457 513 515 447 451 491

Time 29.77 27.02 21.92 36.09 20.65 22.03 18.29 14.71 9.72

Table 4.2 Results of Example 2

Method ECGM SKGM ESGM EWGM PTGM TRGM NAGM INGM REGM

b(D) 843 1,173 843 787 1,103 1,103 1,185 845 1,195

Time 18.62 7.08 4.93 8.12 7.47 7.85 38.67 7.75 4.93

Fig. 4.17 A planar FEM

with two holes
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Finally, it should be mentioned that the simultaneous use of two graphs out of the

nine graphs presented in this section for nodal ordering may lead to a combined

model more informative than individual models, Kaveh and Roosta [28].

Table 4.3 Results of Example 3

Element 4 nodes

4 nodes +

mid-node 8 nodes

8 nodes +

mid-node 12 nodes

12 nodes +

mid-node

ECGM b(D) 111 217 333 437 553 657

Time 4.12 7.25 14.32 19.55 30.49 37.90

SKGM b(D) 95 179 269 347 439 519

Time 4.29 7.14 14.93 20.32 33.23 39.71

EWGM b(D) 97 185 313 417 541 639

Time 7.31 10.60 17.13 20.82 26.04 29.94

PTGM b(D) 159 309 477 633 807 963

Time 4.29 6.59 10.60 12.97 16.70 19.45

TRGM b(D) 167 327 479 619 791 945

Time 4.17 6.98 11.15 13.90 17.74 21.09

NAGM b(D) 95 177 271 353 447 529

Time 4.22 6.87 10.28 12.31 16.03 18.84

INGM b(D) 113 225 341 455 569 687

Time 4.39 4.77 7.91 9.23 11.10 12.96

REGM b(D) 95 177 271 353 447 529

Time 2.70 4.18 6.48 8.07 10.05 12.24

Fig. 4.18 A planar FEM

Table 4.4 Results of Example 4

Method ECGM SKGM ESGM EWGM PTGM TRGM NAGM INGM REGM

b(D) 125 221 125 221 229 213 175 125 187

Time 1.70 1.32 1.70 2.42 1.76 1.76 6.43 4.45 1.54
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4.7 Finite Element Nodal Ordering for Profile

Optimisation

4.7.1 Introduction

When a banded matrix of high order has a wide band and a large number of zeros

inside it, the diagonal storage scheme may become wasteful. Then a profile
(variable band) scheme of Jennings [29], the so-called skyline scheme (Felippa

[30]), may be used.

Nodal numbering algorithms can also be applied to profile reduction. As men-

tioned before, after nodal numbering for bandwidth reduction, by reversing the

ordering, a numbering corresponding to a much smaller profile can be found. This

has been found by George [31] and proved by Liu and Sherman [32]. The method is

known as the Reverse Cuthill-McKee algorithm. For the Cuthill-McKee type of

ordering the bandwidth remains unchanged when the order is reversed; however,

the profile can never increase.

As an example, consider a nodal numbering for a graph as shown in Fig. 4.19a

with corresponding adjacency matrix A in Fig. 4.19b. Reversing the nodal numbers

as in Fig. 4.19c, leads to a matrix A0 as depicted in Fig. 4.19d, with a reduction of

the profile from 15 to 13.

There are many algorithms for profile and frontwidth reduction, which can be

categorized in different ways. In this section the general algorithm of Souza and

Murray [33] is adopted for nodal ordering of all the graph models presented in the

previous section, to reduce the profile of sparse matrices with symmetric structures.

This algorithm incorporates the algorithm for selection of peripheral nodes, the

re-sequencing scheme of Sloan [9], and the algorithm of Gibbs-King [26].

In order to proceed with main algorithms for profile reduction, some definitions

will now be stated in the following:

The profile of an n�n matrix A is defined as,

P ¼
XN
i¼1

bi, ð4:13Þ

where the row bandwidth, bi, for row i is defined as the number of inclusive entries

from the first non-zero element in the row to the (i + 1)th entry. The efficiency of

any given ordering for the profile solution scheme is related to the number of active

equations during each step of the factorisation process. Formally, row j is defined

to be active during the elimination of column i if j�i and there exists aik ¼ 0 with

k � i. Hence, at the ith stage of the factorisation, the number of active equations is

the number of rows of the profile, which intersect column i, ignoring those rows

already eliminated. Letting fi denote the number of equations which are active

during the elimination of the variable xi, it follows from the symmetric structures of

A that:
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P ¼
XN
i¼1

fi ¼
XN
i¼1

bi, ð4:14Þ

where fi is commonly known as the wavefront or frontwidth. Assuming that N and

the average value of fi are reasonably large, it can be shown that a complete profile

or front factorisation requires approximately O(Nf2) operations, where F is the root-

mean-square wavefront, which is defined as:

F ¼ 1

N

XN
i¼1

f2i

 !0:5

: ð4:15Þ

Everstine [19] has shown that P/N � F � Wmax � B, where Wmax is the

maximum wavefront. Hence in order to minimize the storage requirement and

solution time, it is imperative to reduce the profile and root-mean-square wavefront,

respectively. As both P and F are related, any algorithm that seeks to minimize

either will inevitably tend to reduce the other as well. We will call an algorithm

efficient if in a reasonable computer time it results in significant profile reduction.

In the storage scheme due to Jennings, all elements which belong to the envelope

are stored row by row including zeros, in a one-dimensional array, say AN.

Diagonal elements are stored at the end of each row. The length of AN is equal
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Fig. 4.19 A Reverse Cuthill-McKee for nodal numbering. (a) A nodal numbering. (b) Matrix

A. (c) Reverse of the nodal numbering of (a). (d) Matrix A0
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to Profile (A) + n. An array of pointers IN, the entries of which are pointers to the

locations of the diagonal elements in AN, is also necessary. Thus, the elements of

row i, when i > 1, are in positions IN(i � 1) + 1 to IN(i). The only element of row

1 is A11, stored in AN(1). The elements have consecutive, easily calculable column

indices.

For example, the matrix of Eq. 4.4, has a profile equal to 4, and its envelope

storage is

Postion ¼ 1 2 3 4 5 6 7 8 9

AN ¼ 1 6 2 7 3 9 8 4 5½ �
IN ¼ 1 3 5 8 9½ �

A variant of Jennings’ scheme is obtained when the transpose of the lower

envelope is stored. In this case elements are stored column-wise, and since the

columns of the matrix retain their length, the scheme is often termed skyline
storage. The profile of a matrix also changes if the rows and columns are permuted.

4.7.2 Graph Nodal Numbering for Profile Reduction

Graph models defined in the previous section are incorporated in a general algo-

rithm of Souza and Murray [27] to obtain ten approaches for profile reduction.

This algorithm is based on Sloan’s algorithm, using priorities to control the

selection of nodes from a priority queue. Some of its features are adapted in the

following algorithms.

The numbering and control of nodes in the priority queue are carried out through

the assignment of status, based on the numbering strategy of King [28], which

operates as follows:

Take a node of minimum valency and number it “1”. The set of nodes is now

divided into three subsets, A, B and C. The subset A consists of nodes already

numbered. The subset B is defined as B ¼ Adj (A), i.e. consists of all nodes

adjacent to any node of A. The subset C contains the remaining nodes. Then, at

each step, number the node of subset B which causes the smallest number of nodes

of subset C to be transferred to subset B, and redefine A, B and C, accordingly.

As an example, consider a graph S with original nodal numbering as in

Fig. 4.20a.

Take node “5” as a starting node and number it as “1”. Then:

A ¼ 5f g, B ¼ 1; 8f g and C ¼ the remaining nodesf g:

At this stage 1, 8 are the next candidates. If 1 is taken to A, then 2 will come to B;

and for 8, node 7 will join B. Therefore, arbitrarily, 1 is taken to A and numbered as

“2”. Now we have:
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A ¼ 5; 1f g, B ¼ 8; 2f g and C ¼ the remaining nodesf g:

From new candidates 8 and 2, naturally 8 will be selected because it brings only

7 to B, while 2 brings 3 and 6. Therefore 8 is numbered as 3. This process is

continued until the nodal numbering of Fig. 4.20b is obtained, which corresponds to

a profile equal to 14.

The nodes in the above strategy can be categorized more formally as follows:

Prior to the numbering all the nodes of a graph model G of the considered FEM

are assigned inactive status. When a node of G is inserted in the priority queue, it is

assigned preactive status. After a node is numbered, it is assigned postactive status.
Nodes which are adjacent to a postactive node and do not have postactive status are

defined as having active status, Fig. 4.21. King’s algorithm is generalized by Sloan

[21] through introducing a priority queue to control the order to be followed in the

numbering of the nodes. This algorithm consists of the following two phases:

Phase 1: Selection of pseudo-peripheral nodes
The pair of starting nodes is determined according to the following steps:

Step 1: Choose an arbitrary node v of minimum degree.

Step 2: Generate an SRTv ¼ {Cv
1,C

v
2, . . .,C

v
d} rooted from v. Let S be the list of

the nodes of Cv
d which is stored in order of increasing degree.

Step 3: Decompose S into subsets Sj of cardinality | Sj |, j ¼ 1, 2, . . ., Δ, where Δ
is the maximum degree of any node of S, such that all nodes in Sj have degree

j. Generate an SRT from each node y in S, for the first 1 � mj � Δ. If d
(SRTy) > d(SRTv), then set v ¼ y and go to Step 2.

Step 4: Let u be the root of the longest SRT which has the smallest width. When

the algorithm terminates, v and u are end points of a pseudodiameter.

Phase 2: Numbering
The general algorithm for nodal numbering of an arbitrary graph associated

with an FEM consists of the following steps:

Step 1: The priority queue denoted by Q is initialised with a starting node s,

i.e. Q1 ¼ s. Set n ¼ 1, where n is the length of the queue. The node s is

assigned preactive status. Let k be the node count, which is initially set equal

to zero or equal to the last number being used, in the case of disconnected

graph models.

Step 2: Assign initial status and priorities to all the nodes.

1
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a bFig. 4.20 An example of

numbering by King’s

algorithm
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Step 3: Select the node u∈Qwhich has the maximum priority. Let i be the index

of node u in the queue such that Qi ¼ u.

Step 4: Update queue, priority and status. Delete u from Q by setting Qi ¼ Qn

and n n � 1. Insert nodes in queue: for each node x adjacent to u, whose

status is inactive, set n n + 1 and Qn ¼ x. Assign node x preactive status

and update priorities.

Step 5: Increment the node count by setting k k + 1 and label node u by label
(u)  k, where label(.) contains the new labels of the nodes of the graph

model. The node u is assigned postactive status.

Step 6: If n > 0, i.e. there are still nodes in the queue, then update priorities and

status and go back to Step 3.

Step 7: Exit; i.e. the new ordering is now completed and the number of each node

u is obtained as label(u).

4.7.3 Nodal Ordering with Element Clique Graph (NOECG)

In this method Sloan’s criteria and definition for profile reduction are adapted and

the general algorithm of the previous section together with the element clique graph

of the considered FEM are employed for ordering. In Sloan’s algorithm a quantity is

defined and used as the current degree. The initial priority for each node is set to:

Pv ¼W1 � d e; vð Þ �W2 � cd vð Þ, ð4:16Þ

where W1 and W2 are integers (set to W1 ¼ 1 and W2 ¼ 2 in the original algorithm

of Sloan [21]), d(e, v) is the distance of node v from the end node e, and cd(v) is the

current degree of v.

In Step 4 of the general algorithm, if u has preactive status, then each node x

which is adjacent to it has its priority incremented according to px px + W2. This

is equivalent to decreasing the current degree of node x by unity.

inactive

active

preactive

postactive

1

2

x

y z

Fig. 4.21 Nodes in

different status
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In Step 6, each node x which is adjacent to the node u has its priority and status

updated if it is preactive. Then it is assigned an active status and its priority is

increased by setting px px + W2. Each node y which is adjacent to x is examined

next, according to:

(i) If y is not postactive, its priority is incremented by setting py px + W2,

(ii) Else, if y is inactive then it is assigned preactive status and increased in the

priority queue by setting n  n + 1 and Qn ¼ y. The time complexity of this

method is O(α2) for the worst case.

4.7.4 Nodal Ordering with Skeleton Graph (NOSG)

The method for ordering the nodes of the skeleton graph of an FEM, to reduce the

profile differs in two ways from the method of NOECG (i.e. Sloan’s method):

1. The distance between each node of SG and s (not e) is considered.

2. The initial priorities of nodes are calculated in a different manner.

The steps of the algorithm are outlined in the following:

Step 1: Form an SRT from S and compute the distance d(s, v) between each node v

of the SG and the starting node s.

Step 2: Assign each node in the graph an inactive status and compute its initial

priority, pv, according to

Pv ¼ �d s; vð Þ � 3� deg vð Þ, ð4:17Þ

where deg(v) is the degree of node v.

Step 3: Initialise the priority queue Q with the starting node s, i.e. Q1 ¼ s. Set

n ¼ 1, where n is the length of the queue. The node s is assigned preactive status.

Let k be the node count.

Step 4: While the priority queue is not empty, which is signified by n > 0, execute

Steps 5–8.

Step 5: Select node u∈Q which has the maximum priority. Let i be the index of the

node u in the queue such that Qi ¼ u.

Step 6: Delete node u from the priority queue by setting Qi ¼ Qn and decreasing

according to n  n � 1. If node u is not pre-active go to Step 7. Otherwise,

examine each node w which is adjacent to node u and increment its priority

according to p(w) ¼ p(w) + 2. If node w is inactive, then insert it in the priority

queue with a pre-active status by setting n n + 1 and Qi ¼ w.

Step 7: Label node u with its new number by incrementing the node count according

to k k + 1 and setting label(u) k. Assign node u a postactive status.

Step 8: Examine each node w which is adjacent to node u. If node w is pre-active,

assign node w an active status, set p(w) ¼ p(w) + 2 and examine each node x

which is adjacent to node w. If node x is not postactive, increment its priority to p
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(x) ¼ p(x) + 2. If node x is inactive, insert it in the priority queue with a

pre-active status by setting n n + 1 and Qn ¼ x.

Once the above steps are carried out, the new label of each node v will be label
(v). The time complexity of this method is the same as that of the NOECG method,

for worst case. However, it is interesting to note that the NOSG must be executed

faster than the NOECG in average cases, since the value of n in the process of the

NOSG is mostly less than that of the process in the NOECG. This is because, for

FEMs containing elements with four or more nodes, the degree of nodes of the SG

is less than those of the ECG. These two methods need the same lists for nodal

ordering of the considered graph; however, one should note that the compact

adjacency list of the SG occupies usually less memory than that of the ECG.

4.7.5 Nodal Ordering with Element Star Graph (NOESG)

The profile reduction algorithm which employs the element star graph of an FEM is

the same as the method of NOECG with the following modifications being

imposed:

If a virtual node u (a node whose old label is more than λ) is selected for being

labelled, it should be labelled with its new number by λ plus another node count

without incrementing according to k0  k0 +1 and setting label(u) ¼ λ+ k0.
This modification enables the numbering of the elements of the main set to be

varied continuously from 1 to α.

4.7.6 Nodal Ordering with Element Wheel Graph (NOEWG)

The same method as that of Sect. 4.7.5 is employed for ordering the nodes of the

EWG of an FEM. The time complexity of the NOEWG is the same as that of the

NOESG for worst case. However, the NOESG will be executed faster than the

NOEWG in average cases, since the value of n in the process of the NOESG is, in

general, less than in the process of the NOEWG, since for all FEMs the degrees of

the nodes of the ESG are, in general, less than those of the EWG. These two

methods require the same lists to be provided for nodal ordering of the considered

graph model. However, the compact adjacency list of the ESG uses fewer words of

memory than that of the EWG.
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4.7.7 Nodal Ordering with Partially Triangulated Graph
(NOPTG)

Ordering the nodes of the partially triangulated graph of an FEM for profile

reduction does not require the selection of a pair of pseudo-peripheral nodes. The

same good starting node used for the formation of the PTG (the node found in the

SG for the formation of the PTG) can be used again in the NOPTG as the starting

nodes s. The following two steps together with Steps 3–8 of the NOSG presented in

Sect. 4.7.4 complete the process of the NOPTG.

Step 1: Form an SRT from the good starting node s used for the formation of the

PTG and compute the distance d(s, v) between each node v of the PTG and the

starting node s.

Step 2: Assign each node in the graph an inactive status and compute its initial

priority, pv according to

Pv ¼ �d s; vð Þ � 2� deg vð Þ þ 1ð Þ: ð4:18Þ

The time complexity of this method is clearly the same as that of the NOECG

and NOSG methods for worst case. In the method NOPTG the same lists needed for

the previous four methods should be provided. However, some of these lists such as

the compact adjacency list do not take the same number of words of memory in

different graph models.

4.7.8 Nodal Ordering with Triangulated Graph (NOTG)

In order to number the nodes of the triangulated graph of an FEM for profile

reduction, it is not necessary to find a pair of pseudoperipheral nodes. The same

good starting node used for the formation of the TG is employed again in the NOTG

as the starting node s. The following steps together with Steps 2–8 of the NOSG

method complete the process of NOTG.

Step 1: Form an SRT from the good starting node s used in the formation of the

TG and compute the distance d(s, v) between each node v of the TG and the starting

node s.

The time complexity of this method is the same as methods NOECG, NOSG and

NOPTG for the worst case.

The value of n in the process of the NOTG is mostly greater than those in the

process of the NOSG and NOPTG, since the degrees of the nodes of the TG are

mostly more than those of the PTG and the SG. Thus NOTG is executed more

slowly than NOSG and NOPTG in average cases. An advantage of NOTG, similar

to NOPTG, is that no pseudo-peripheral nodes are needed.
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4.7.9 Nodal Ordering with Natural Associate Graph
(NONAG)

The profile reduction algorithm which employs the natural associate graph of the

FEM consists of two phases. In the first phase, which is the same as NOECG, the

nodes of the NAG are ordered. In the second phase the nodes of the considered

FEM are ordered based on the new labels of the nodes of the NAG. This step

contains the following steps:

Step 1: For each node i of the graph model set n(label(i)) ¼ i.

Step 2: For each element e corresponding to the node u, u ¼ n(j), j ¼ 1, 2, . . ., a,
label the unlabelled nodes of e, in turn.

This algorithm needs the same lists as the previous methods; however, the

number of nodes of the graph model is equal to λ. Therefore it is very efficient

for FEMs containing higher order elements. In the second phase of this method, an

additional list with λ integer words of memory is needed which is denoted by n(.) in

the steps of the process. However, this list can be created when most of the lists

needed for the first phase are not required, and can be erased from the working

memory.

4.7.10 Nodal Ordering with Incidence Graph (NOIG)

The profile heuristic which employs the IG of an FEM contains two parts as the

NONAG method. These phases are the same as those of NONAG, with IG being

employed in place of NAG.

Time and memory complexities of the NOIG are the same as those of NONAG.

However, the value of n is higher than that of the NONAG, since degrees of the IG

are more than those of the NAG. Therefore the NOIG should have slower execution

than NONAG in average cases.

4.7.11 Nodal Ordering with Representative Graph (NORG)

This method consists of two parts. The first part orders the nodes of the RG, i.e. the

representative nodes of the elements of the considered FEM. The second phase

orders the nodes of the considered FEM based on the new labels of the represen-

tative nodes of the elements of the FEM.

The first part contains the following steps:
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Step 1: Form an SRT from a good starting node s used for the formation of the RG

and compute the distance d(s, v) between each node v of the RG and the starting

node s.

Step 2: Assign each node in the graph an inactive status and compute its initial

priority pv, according to,

Pv ¼ �3� d s; vð Þ � ε vð Þ, ð4:19Þ

where ε(v) denotes the number of elements incident to node v.

Step 3: Initialise the priority queue Q with the starting node s used for the formation

of the RG, i.e. Q1 ¼ s. Set n ¼ 1, where n is the length of the queue. The node s

is assigned preactive status. Let k be the node count.

Step 4: While the priority queue is not empty, signified by n > 0, execute Steps

5–8.

Step 5: Select node u∈Q which has the maximum priority. Let i be the index of the

node u in the queue such that Qi ¼ u.

Step 6: Delete node u from the priority queue by setting Qi ¼ Qn and decrementing

n according to n  n � 1. If node i is not pre-active, go to Step 7, otherwise

examine each node w which is adjacent to node u and increment its priority

according to p(w) ¼ p(w) + 1. If node w is inactive, then insert it in the priority

queue with a pre-active status by setting n n + 1 and Qn ¼ w.

Step 7: Label node u with its new number by incrementing the node count according

to k k + 1, and setting label(u) k. Assign node u a postactive status.

Step 8: Examine each node w which is adjacent to node u. If node w is pre-active,

assign node w an active status, set p(w) ¼ p(w) + 1 and examine each node x

which is adjacent to node w. If node x is not postactive, increment its priority to p

(x) ¼ p(x) + 1. If node x is inactive, insert it in the priority queue with a

pre-active status by setting n n + 1 and Qn ¼ x.

When the above steps are completely performed, the new label of each node v is

label(v). In this method there is no need to find any pseudo-peripheral, and the same

good starting node used for generating the RG is employed again in the process of

numbering.

The second phase of the algorithm contains the following steps:

Step 1: For each node i of the graph model set n(label(i)) ¼ i.

Step 2: Set k ¼ 0. Check each element e containing node u, u ¼ n(j), j ¼ 1, 2, . . .,
α, in turn, if e does not contain a node v corresponding to n(l) and i < j, then set

k k + 1 and m(k) ¼ e.

Step 3: Set label(i) ¼ 0, where i ¼ 1, 2, . . ., α.
Step 4: Set l ¼ 0. Check each node w of element e, e ¼ m(j), j ¼ 1, 2, . . ., α, in

turn, if label(w) ¼ 0 then set i ¼ 0 +1 and label(w) ¼ 1.

The time complexity of the first part of this algorithm is O(α2) and the second

part uses O(λθ2) operations. One can reduce the time complexity of the second

phase by using an additional list in Step 2 to show whether element e has been
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previously detected. This procedure uses O(λθ) operations. The first phase of the

algorithm NORG needs the same lists as the previous methods of profile reduction.

4.7.11.1 Complete Representative Graph (CREG)

This graph is the same as the REG with additional members connecting each pair of

nodes in the CREG if their corresponding nodes in the FEM are contained in the

same element.

4.7.12 Nodal Ordering with Element Clique Representative
Graph (NOECRG)

The profile reduction of this method consists of two steps as in NONAG

and NOIG and NORG methods. The first process is the same as that of Sloan’s

algorithm (NOECG) and the second step is similar to the second step of the NORG

approach.

The time complexity and memory complexity of the NOECRG method are the

same as those of NORG, but the magnitude of n in the process of NOECRG is, in

general, far higher than that of the NORG, since the degrees of the nodes of ECRG

are generally much greater than those of RG. Therefore NOECRG should be slower

in execution than RG.

4.7.13 Computational Results

A program is developed to implement the algorithms, and many FEMs are studied.

Six examples are presented here. For each problem illustrated in Figs. 4.22, 4.23,

4.24, and 4.25, the results of executing the program are provided in Tables 4.5, 4.6,

4.7, 4.8, respectively. The numbers of nodes α and elements λ for each FEM are

provided in the caption of the corresponding figure.

4.7.14 Discussions

The algorithms presented for the profile reduction of sparse matrices with symmet-

ric structures are analysed for the worst case to show their time and memory

complexities.
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The programs developed for these algorithms have been tested on very many

examples, and the following table is obtained which illustrates the average compu-

tational time (in seconds) of the methods (Table 4.9).

4.8 Element Ordering for Frontwidth Reduction

For the solution of sparse systems of simultaneous equations arising from the finite

element method, the frontal methodology due to Irons [34] and the profile method

described by George [31], as well as band-matrix techniques, are commonly used.

These methods exploit the sparsity of the coefficient matrices generated by the

finite element approximation. They differ, however, in one significant respect: the

band and profile methods first construct the coefficient matrix explicitly, while the

frontal method arranges for elimination of variables as it assembles the matrix.

The most suitable ordering of the equation is dependent on the type of equation

solving scheme adopted (i.e. whether a band, profile or frontal solver is used).

Fig. 4.22 α ¼ 240 and

λ ¼ 499

Fig. 4.23 α ¼ 748 and λ ¼
1,236
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Fig. 4.24 α ¼ 936 and λ ¼
1,640

Fig. 4.25 α ¼ 936 and λ ¼
1,640

Table 4.5 Results of the

finite element model of Fig.

4.22

Algorithm Profile Elapsed time

NOECG 3,207 0.22

NOSG 3,236 0.22

NOESG 3,367 0.44

NOEWG 3,465 0.66

NOPTG 3,194 0.28

NOTG 3,237 0.27

NONAG 3,365 0.71

NOIG 3,365 0.60

NORG 3,460 0.33

NOECRG 3,185 0.44
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In finite element analysis, in the case of one degree of freedom per node, performing

nodal ordering is equivalent to reordering the equations. In a more general problem

with β degrees of freedom per node, there are β coupled equations produced by each
node. In this case re-sequencing is usually performed on the nodal numbering to

reduce the bandwidth, profile or frontwidth, because the size of this problem is β
times less than that for degree of freedom numbering.

Table 4.6 Results of the

finite element model of Fig.

4.23

Algorithm Profile Elapsed time

NOECG 7,444 0.39

NOSG 8,436 0.39

NOESG 8,336 0.87

NOEWG 8,256 1.27

NOPTG 8,527 0.65

NOTG 8,514 0.66

NONAG 7,320 0.93

NOIG 7,204 1.32

NORG 9,388 0.66

NOECRG 7,818 0.88

Table 4.7 Results of the

finite element model of Fig.

4.24

Algorithm Profile Elapsed time

NOECG 12,248 0.72

NOSG 13,142 0.71

NOESG 13,016 1.37

NOEWG 13,049 2.03

NOPTG 13,282 1.16

NOTG 13,113 1.21

NONAG 12,631 1.54

NOIG 12,665 1.98

NORG 16,055 1.16

NOECRG 12,894 1.65

Table 4.8 Results of the

finite element model of Fig.

4.25

Algorithm Profile Elapsed time

NOECG 15,223 0.88

NOSG 16,217 0.93

NOESG 16,008 1.87

NOEWG 15,852 2.63

NOPTG 15,391 1.48

NOTG 16,204 1.60

NONAG 15,482 2.15

NOIG 15,345 2.69

NORG 17,474 1.42

NOECRG 15,343 2.09
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An efficient graph-theoretical approach for element renumbering of finite ele-

ment meshes for frontwidth reduction of sparse matrices with symmetric structures

can be found in the work of Kaveh [35].

4.9 Element Ordering for Bandwidth Optimisation

of Flexibility Matrices

The elements of a generalized cycle basis (GCB), as defined in Chap. 3, must be

ordered to obtain a banded flexibility matrix G. This is similar to ordering the

elements of a cutset basis (nodal numbering) for reducing the bandwidth of the

stiffness matrixK. This problem can be transferred to a nodal ordering algorithm by

defining appropriate mathematical structures for the transformation of the connec-

tivity properties, Kaveh [11]. Two approaches for this problem are developed in the

following.

4.9.1 An Associate Graph

An associate graph A(B(S)) of a generalized cycle basis B(S) of S is a graph whose

nodes are in a one to one correspondence with the elements of B(S), and two nodes

are connected if two elements of B(S) have at least one common member. As an

example the associate graph of the mesh basis in Fig. 4.26a is depicted in Fig. 4.26b.

A weighted associate graph can similarly be defined. For this graph, the nodes

and members are assigned integer numbers. The weight of a node in A(B(S)) is

taken as the number of members of the corresponding cycle in S, and the weight of a

member mk ¼ (ni, nj) in A(B(S)) is taken as the number of members of Ci\Cj,

where Ci and Cj are the cycles of S corresponding to the nodes ni and nj of A(B(S)),

respectively.

Table 4.9 Average

computational time for

different graphs

Algorithm Average of the computational time

NOECG 0.99

NOSG 0.77

NOESG 1.39

NOEWG 1.96

NOPTG 1.25

NOTG 1.32

NONAG 1.33

NOIG 1.45

NORG 1.17

NOECRG 1.90
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4.9.2 Distance Number of an Element

The distance di of a node ni of S from a selected node O is the length of the shortest

path connecting ni to O. The distance number of a cycle or a γ-cycle or an element

Ck from O is defined as one of the following:

(a) The distance of the nearest node of Ck from O, denoted by dnk.

(b) The distance of the furthest node of Ck from O, denoted by dfk.

(c) The mean value of dnk and d
f
k; i.e.

1
2

� �
dn
k þ df

k

� ��� ��, where |.| means the integer part

of the number.

(d) The sum of dn
k þ 1

2

� �
L Ckð Þ

�� ��, where L(Ck) is the length of Ck.

(e) The mean value of the distance of the nodes of Ck; i.e.
XL Ckð Þ

i¼1
di=L Ckð Þj j:

As an example, the values defined above for a cycle Ck are shown in bold lines in

Fig. 4.26a, and with respect to a reference node O are 5, 6, 5, 7 and 5, respectively.

For simplicity only the integer parts of the divisions are considered.

Any of the definitions (a)–(e) can be used as the distance number of a cycle, a

γ-cycle or an element of a finite element model (FEM).

4.9.3 Element Ordering Algorithms

In the following, two algorithms are presented for ordering the elements of a cycle

basis, a GCB, an FEM or the substructures of a structure. However, for simplicity

we will refer to a GCB only.

Algorithm A

Step 1: Order the nodes of S with a nodal numbering algorithm.

Step 2: Use the same starting node as in Step 1 to form an SRT and find the distance

numbers of the elements of the GCB.

C

O

k

a b

Fig. 4.26 A mesh basis and its associate graph. (a) A mesh basis B(S) of S. (b) The associate

graph of B(S)
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Step 3: Assign these distance numbers to the nearest (furthest or any other appro-

priate intermediate) nodes of the elements of the GCB. In this process a node

may become the representative node of p elements. Then p independent distance

numbers will be assigned to the representative nodes.

Step 4: Order these nodes in ascending order of distance number. A node

representing p elements will receive p different (independent) numbers. For

equi-distant nodes the same sequence as the nodal numbering of Step 1 should

be used, to effect the connectivity properties of S.

Step 5: Order the elements of the GCB with the same numbers received by their

representative nodes. This provides an efficient ordering for the elements of

the GCB.

Algorithm B

Step 1: Construct the associate graph A(B(S)) of the GCB.

Step 2: Generate an SRT of S, starting from an appropriate node O, and find the

distance numbers of the elements of the GCB.

Step 3: Assign these numbers to the nodes of A(B(S)), and order its nodes by a

nodal numbering algorithm, with a starting node which corresponds to an

element containing O .

Step 4: Reorder the nodes of A(B(S)) in ascending order of their distance numbers

obtained in Step 2. For equi-distant nodes the same sequence as that obtained by

the nodal numbering algorithm of Step 3 should be used.

Step 5: Number the elements in the same order as that obtained for their represen-

tative nodes in A(B(S)). This leads to an efficient numbering of the elements of

the considered GCB.

Example. Let S be the model of a rigid-jointed planar frame. Suppose the selected

cycle basis consists of the boundaries of the bounded regions of S (a mesh basis),

Fig. 4.27a.

For Algorithm A, an SRT starting from O is generated, Fig. 4.27a, and the

distance numbers of the cycles corresponding to definitions (a) and (e) of Sect. 4.7.2

are calculated and assigned to the representative nodes of the cycles. The nearest

node of a cycle to O is taken as its representative node, Fig. 4.27b, c. These nodes

are then ordered, leading to an ordered cycle basis. The bandwidth of the cycle

adjacency matrices for these orderings are 15 and 13. The latter result can further be

reduced to 11 by imposing additional restrictions in the process of ordering. Since

the frame is planar, the bandwidths of the corresponding flexibility matrices will be

45 and 39, respectively.

Algorithm B is also applied to this example. The associate graph A(B(S)) of

the mesh basis is formed, Fig. 4.27d, and using definition (e) for distance number of

the elements, the order of the nodes of A(B(S)) is obtained. The numbering of the

cycles is shown in Fig. 4.27d, which corresponds to a bandwidth of 13 for its cycle

adjacency matrix, and 39 for its flexibility matrix.
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4.10 Bandwidth Reduction for Rectangular Matrices

In previous sections the bandwidth optimisation of square matrices has been

discussed. In structural analysis, it may also be desirable to reduce the bandwidth

of some sparse rectangular matrices. As an example, it may be beneficial to reduce

the bandwidth of the equilibrium equations of a structure, Kaneko et al. [36]. This

can be done by optimising the bandwidth of the corresponding cutset basis inci-

dence matrix L. Similarly for compatibility equations, one can optimise the band-

width of C.

In this section a K-total graph is defined and two algorithms are presented for the

bandwidth reduction of rectangular matrices.

4.10.1 Definitions

Let B be a rectangular matrix with m rows and n columns, whose entries are

denoted by bij. For each row like i (except the first and the last row, where id ¼ 1

and id ¼ n, respectively), the integer part of the real number i(n/m) is defined as id.

Therefore, the entry of B at position (i, id) is considered as the ith diagonal entry.

For square matrices m ¼ n and i ¼ id. The bandwidth of B is then defined as
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Fig. 4.27 S and ordering the elements of its cycle basis. (a) An SRT of S. (b) Cycle ordering by

definition (a). (c) Cycle ordering by definition (e). (d) A(B(S)) and its nodal ordering
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b Bð Þ ¼ mr þm1 þ 1, ð4:20Þ

Where

mr ¼ max k� id bik 6¼ 0, kj > idf g,
1 � i � n

and

ml ¼ max id � k bik 6¼ 0, kj < idf g:
1 � i � n

ð4:21Þ

If B is a symmetric square matrix, then mr ¼ ml and b(B) reduces to the

conventional definition of square matrices. A rectangular matrix is called banded
if b(B) is small compared to m.

Matrix B in block submatrix form has the same pattern as L, i.e. each non-zero

entry of L corresponds to a η�η submatrix in B, where η is the degree of freedom of

a node of the structure. Obviously, reduction of the bandwidth of L leads to a

banded matrix B.

The terms “nodes” and “members” have been used for a graph S, and now we use

“vertices” and “edges” for the elements of a K-total graph which is defined as

follows:

Associate one vertex with each member and each element of the selected cutset

basis or a cycle (γ-cycle) basis of S. Connect two vertices with an edge if

(a) The corresponding members are incident,

(b) The corresponding cutsets (cycles or γ-cycles) are adjacent,
(c) The corresponding member and cutset (cycle or γ-cycle) are incident.

When a cutset or cycle is changed to a node of S, then the K-total graph becomes

a total graph as defined in graph theory (see Behzad [37]).

Examples of K-T(S) are shown in Figs. 4.28 and 4.29, when the cocycle basis

and cycle basis are considered, respectively. In these figures small squares are used

to represent members, and circles are employed to show the elements of the

considered basis.

4.10.2 Algorithms

Algorithm A

Construct the K-total graph of S and order its vertices. The corresponding sequence

leads to a favourable order of cutsets (nodes) and members of S, to reduce the

bandwidth of L, which is pattern equivalent to the coefficient matrix of the
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equilibrium equations. A similar approach reduces the bandwidth of C, when

cycles (γ-cycles) are considered in place of cutsets.

This algorithm will now be applied to the examples of Figs. 4.28 and 4.29, from

which the corresponding orders for the elements of the bases and members of S

are obtained.

Algorithm B

Order the nodes of S. Then order the unnumbered members of the stars of the nodes

in the selected sequence, to obtain a reasonably banded L matrix.

In general, Algorithm A leads to a better result than Algorithm B, at the expense of

additional computer time.

4.10.3 Examples

Consider a graph S as shown in Fig. 4.30 with the corresponding member and cutset

orders.

The cutset basis incidence matrix of S can be written as,

1

2
3

4 5

6

7
8

9

C* C*

C* C*

12

34

a b

Fig. 4.28 Reduction of bandwidth for a cutset basis incidence matrix. (a) S and the considered

cocycle basis. (b) K-T(S) and its nodal ordering
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Fig. 4.29 Reduction of bandwidth for a cycle basis incidence matrix. (a) S and the considered

cycle basis. (b) K-T(S) and its nodal ordering
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C	 ¼

m1 m2 m3 m4 m5

C	1
C	2
C	3
C	4

: : : 1 1

1 1 : : :

: 1 1 1 :

1 : 1 : :

2
6664

3
7775

b Lð Þ ¼ 4þ 4þ 1 ¼ 9 ,

Using the ordering obtained by K-T(S), the cutset basis incidence matrix becomes,

C	 ¼

m1 m2 m3 m4 m5

C	1
C	2
C	3
C	4

1 1 : : :

: 1 1 1 :

: : : 1 1

: : 1 : 1

2
6664

3
7775

b Lð Þ ¼ 2þ 2þ 1 ¼ 5 ,

in which the non-zero entries are clustered to the diagonal of the matrix.

As a second example, consider S as shown in Fig. 4.31, in which the regional

cycles and members are arbitrarily numbered.

The cycle basis incidence matrix for S is given as:

m1 m2 m3 m4 m5 m6 m7 m8 m9 m10

C ¼
C1

C2

C3

1 0 0 1 1 0 0 1 0 0

0 0 1 0 0 1 1 0 0 1

0 1 0 0 1 1 0 0 1 0

2
4

3
5:

For this matrix, b(C) ¼ 7 + 8 + 1 ¼ 16. With ordering the cycles and members

simultaneously, using Algorithm A, the following cycle basis incidence matrix is

obtained.

m1 m2 m3 m4 m5 m6 m7 m8 m9 m10

C ¼
C1

C2

C3

1 1 1 0 1 0 0 0 0 0

0 0 0 1 1 1 0 1 0 0

0 0 0 0 0 0 1 1 1 1

2
4

3
5:

The bandwidth fir this matrix is obtained as b(C) ¼ 4 + 3 + 1 ¼ 8.

C* C*

C* C*

1

2

3

4

1

2 3

4

5

Fig. 4.30 S with an

arbitrarily ordered members

and cutsets
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For the force method of frames, the coefficient matrix of the equilibrium

equations can be made banded through reducing the bandwidth of its member-

cycle incidence matrix. After an algebraic force method is employed, a repeated

application of the developed method makes the null basis matrix a banded one for

subsequent applications. Similarly, if a combinatorial approach is used, the band-

width reduction algorithm makes the cycle basis incidence matrix banded, leading

to a banded statical basis (null basis) matrix.

4.10.4 Bandwidth Reduction of Finite Element Models

The algorithms presented in the previous section can also be applied to finite

element models, for their analysis by the algebraic force method, Kaveh and

Mokhtar-zadeh [38]. For such models, the K-total graph of an FEM is defined as

follows:

Associate one vertex with each side and each element of the FEM, and connect

two vertices with an edge if any of the following conditions hold:

1. Sides are adjacent;

2. Elements are adjacent;

3. A side and an element are incident.

The Algorithm A can now be adapted to FEMs as follows:

Step 1: Generate the K-total graph of the finite element mesh S.

Step 2: Order the vertices of K-T(S) by any nodal ordering algorithm available.

Step 3:Assign numbers the members of K-T(S) and to the elements of the consid-

ered FEM, in the order of their occurrence in the sequence selected in Step 2.

Example. Four groups of examples are considered as shown in Fig. 4.32(a–d). In

these figures, Ω is the aspect ratio of the element numbers in two perpendicular

directions (x and y directions) which is taken as unity. The ratio of the length of

the elements side in x direction to that of the y direction, is taken as 1.2. S is

the refinement index of a group. In the group UT, Ω1, Ω2 are the aspect ratios of the

element numbers in the two sides of the general configuration with respect to the

central part of the model.

The sparsity of the self-stress and flexibility matrices of LQ and HQ groups is

illustrated in Fig. 4.33(a–d).

1 2 3

4 5 6 7

8 9 10

C C C1 23

Fig. 4.31 S with arbitrarily

numbered members and

cycles
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4.11 Graph-Theoretical Interpretation of Gaussian

Elimination

In this section, a simple graph-theoretical interpretation of the Gaussian elimination

is presented, in order to establish a closer link between the matrix algebra on one

hand and graph-theoretical concepts on the other hand.

Let A be a symmetric sparse matrix of order N and let S be the corresponding

graph. Suppose that Gaussian elimination by columns is performed on A until the

factorization A ¼ UtDU is obtained. At the beginning of the kth step all non-zeros

in columns 1, 2, . . ., k�1 below the diagonal have been eliminated. Multiples of the

kth row are then subtracted from all rows which have a non-zero in column k below

the diagonal. On performing this operation, new non-zero entries may be intro-

duced in row k + 1, . . ., N to the right of column k. Cancellations may also occur,

producing new zeros, but this is rare in practice and will be neglected. Consider the

active submatrix at the kth step (an active submatrix contains all elements A
ðkÞ
ij with

i, j � k). Let Sk be the graph associated with the active submatrix. Sk is called an
elimination graph, Parter [39]. The nodes of this graph are N�k + 1 last numbered

nodes of S. Sk contains all members connecting those nodes which were present

in S, and additional members corresponding to fill-ins produced during the k�1

6@a

6@
b

3@
b

6@a

3@
b

3@
b

3@b 3@b 3@b 2@a2@a2@a

3@
b 2@

b
2@

b
2@

b

a

c

b

d

Fig. 4.32 Test group examples. (a) Group RQ-Ω-S (Ω¼1, S ¼ 6). (b) Group LQ-Ω-S (Ω¼1,
S ¼ 3). (c) Group UQ-Ω1-Ω2-S (Ω1¼Ω2 ¼ 1, S ¼ 3). (d) Group HQ-Ω-S (Ω¼1, S ¼ 2)
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initial elimination steps. The sequence S ¼ S1, S2, S3, . . . can be obtained using the
following rule:

To obtain Sk+1 from Sk, delete node k and add all possible members between

nodes, which are adjacent to node k in Sk.

As an example, consider a graph S and the corresponding adjacency matrix, as

shown in Fig. 4.34. Two steps of the Gaussian elimination and the corresponding

elimination graphs are also illustrated.

Eliminating the rest of the nodes, and considering a clique (a complete graph)

between the nodes adjacent to each eliminated node (when such members are not

present), matrix U is obtained. The structure of U + Ut and the corresponding filled

graph are shown in Fig. 4.35.

There are algorithms which try to reduce the number of fill-ins caused by

elimination. The minimum degree algorithm of Tinney [40] is perhaps the best

method for such a reduction.

Fig. 4.33 Self-stress and

flexibility matrices.

(a) Self-stress matrix of

LQ-1-4. (b) Flexibility

matrix of LQ-1-4.

(c) Self-stress matrix of

HQ-1-4. (d) Flexibility

matrix of HQ-1-4
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Fig. 4.34 Illustration of two steps of the Gaussian elimination. (a) S ¼ S1. (b) Matrix A1. (c) S2.

(d) Matrix A2. (e) S3. (f) Matrix A3
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Chapter 5

Ordering for Optimal Patterns of Structural

Matrices: Algebraic Graph Theory

and Meta-heuristic Based Methods

5.1 Introduction

There are different matrices associated with a graph, such as incidence matrix, the

adjacency matrix and the Laplacian matrix. One of the aims of algebraic graph

theory is to determine how properties of graphs are reflected in algebraic properties

of these matrices. The eigenvalues and eigenvectors of these matrices provide

valuable tools for combinatorial optimisation and in particular for ordering of

sparse symmetric matrices such as the stiffness and flexibility matrices of the

structures.

In this chapter, algebraic graph-theoretical methods are discussed for nodal

ordering for bandwidth reduction. Hybrid methods are also applied to nodal order-

ing, using graph theory and algebraic graph theory.

Though graph theoretical methods are highly efficient for ordering; however,

bandwidth minimization is a NP-complete problem. To tackle this problem par-

tially, meta-heuristic algorithms seem to good alternatives, though these do not lead

to absolute minimum either. Here, the recently developed meta-heuristic, known as

the charged system search, is applied to nodal ordering for bandwidth and profile

reduction. Meta-heuristic algorithms are rapidly developing and these can provide

powerful methods for ordering in the near future [1–3].

5.2 Adjacency Matrix of a Graph for Nodal Ordering

5.2.1 Basic Concepts and Definitions

There are several geographical papers dealing with the question of whether impor-

tant places or well connected sets of towns in a traffic network can be identified by

an inspection of certain eigenvalues and corresponding eigenvectors of the

A. Kaveh, Computational Structural Analysis and Finite Element Methods,
DOI 10.1007/978-3-319-02964-1_5, © Springer International Publishing Switzerland 2014
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adjacency matrix A of the underlying graph model. Gould [4] appears to be the first

important publication on this subject.

In structural analysis, Kaveh [5] used the first eigenvalue and eigenvector of

[A + I], for nodal ordering for bandwidth reduction. Grimes et al. [6] employed this

concept for finding pseudo-peripheral nodes of a graph. This algebraic graph-

theoretical method in studied in the following.

A node ni of S is called peripheral, if its eccentricity is the same as the diameter

of S, i.e. δ(S) ¼ e(ni). If the eccentricity is close to the diameter, then ni is called a

pseudo-peripheral node or a good starting node.
Reordering the nodes of the graph model of a structure does not change the

properties of the stiffness matrix. This fact stays true for the properties of the graph

itself. Therefore, a natural question is: what can the theory of matrices and in

particular the eigenvalues of the matrices associated with graphs tell us about the

structure of the graph itself. In the following, we shall endeavour to find out to what

extent the eigenvalues of the adjacency matrix of a given graph, reflect the

properties of that graph.

Let A be the adjacency matrix of the graph S, which is a real symmetric (0, 1)

matrix, and the sum of entries of any row or column is equal to the valency of the

corresponding node. Denote the characteristic polynomial of A by ϕ(S;x). Since
ϕ(S;x) is uniquely determined by the graph S, it is referred to as the characteristic
polynomial of S and expressed as:

ϕ S; xð Þ ¼ det xI� Að Þ ¼
XN
i¼0

aix
N�i: ð5:1Þ

Since A is a real symmetric matrix, its eigenvalues (the roots of this polynomial)

must be real, and can be ordered λ1 � λ2 � λ3 � . . . � λN. These eigenvalues are
called the eigenvalues of S, and the sequence of N eigenvalues is called the

spectrum of G.

The following important results are stated, however, the reader may refer to

Schwenk and Wilson [7] for further details and proofs.

1. The sum of the eigenvalues of a graph is equal to the trace of A, and

therefore zero.

2. If S is connected with N nodes, then 2 cos π
Nþ1

� �
� λ1 � N� 1. The lower

bound occurs only when S is a path graph, and the upper bound occurs when S

is a complete graph.

3. If S is a connected graph with m distinct eigenvalues and with diameter d, then

m > d.

The spectrum by no means specifies its graph uniquely, however, it does provide

a wealth of information about the graph and hence about the structure. Some

applications of such information will be given in this chapter and Chap. 8.
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However, the writer strongly believes that in future many other applications in

structural mechanics will be found.

Table 5.1 shows some simple examples to verify the results stated.

Perron-Frobenius Theorem. If S is a connected graph with at least two nodes,

then:

(i) Its largest eigenvalue λ1 is a simple root of ϕ(S;x);
(ii) Corresponding to the eigenvalue λ1, there is an eigenvector w1 all of whose

entries are positive;

(iii) If λ is any other eigenvalue of S, then � λ1 � λ � λ1;
(iv) The deletion of any member of S decreases the largest eigenvalue.

The largest eigenvalue λ1 is often known as the spectral radius of S. Since the

eigenvectors corresponding to any eigenvalue other than λ1 must be orthogonal to

w1, we observe that the multiples of w1 are the only eigenvectors all of whose

entries are positive.

Consider the node adjacency matrix A of S. Let,

Q ¼ Aþ I, ð5:2Þ

where I is an N(S)�N(S) identity matrix. The eigenvalues of Q are one unit bigger

than those of A, and the eigenvectors of Q are exactly the same as those of A.

Matrix Q is real and symmetric, and it can easily be shown that all the entries ofQk

are positive; thus it is primitive and, according to the Perron-Frobenius theorem, λ1
is real and positive and a simple root of the characteristic equation, λ1 > |λ| for any
eigenvalue λ 6¼ λ1, and λ1 has a unique corresponding eigenvector w1 with all

entries positive.

Aswi is the eigenvector corresponding to λi, thereforeQwi ¼ λiwi for i ¼ 1, . . .,

N(S). Multiplying the two sides by Q, one obtains QQwi ¼ λiQwi ¼ λ2iwi Repeat-

ing this process results in Qkwi ¼ λkiwi. Now consider any vector x not orthogonal

to w1 as:

Table 5.1 Simple examples

Graph Adjacency matrix Characteristic polynomial Eigenvalues

K2 0 1

1 0

� �
x2 � 1 1, �1

P3 0 0 1

0 0 1

1 1 0

2
4

3
5 x3 � 2x

ffiffiffi
2

p
, � ffiffiffi

2
p

, 0

C4 0 1 0 1

1 0 1 0

0 1 0 1

1 0 1 0

2
664

3
775

x4 � 4x2 2,�2, 0, 0
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x ¼ α1w1 þ α2w2 þ . . .þ αN Sð ÞwN Sð Þ α1 6¼ 0: ð5:3Þ

Multiplying the two sides with Qk, and using Qkwi ¼ λkiwi for i ¼ 1, . . ., N(S),
leads to,

Qkx ¼ λk
1α1w1 þ λk

2α2w2 þ . . .þ λk
N Sð ÞαN Sð ÞwN Sð Þ, ð5:4Þ

and as k ! ∞, we have,

Qkx=λk
1 ¼ α1w1 þ λ2=λ1ð Þkα2w2 þ . . .þ λN Sð Þ=λ1

� �kαN Sð ÞwN Sð Þ ! α1w1, ð5:5Þ

since λ1 is the eigenvalue of strictly largest modulus and (λi/λ1) is less than unity

and approaches to zero when k ! ∞. In other words, the ratios of the components

of Qkx approach the ratios of the components of w1 as k increases.

Let v ¼ {1,1, . . .,1}t, then the ith component of Qkv, is the number of walks of

length k beginning at an arbitrary node of S and ending at ni. If ni is a good starting

node (peripheral node), this number will be smaller. Thus, for k ! ∞, one should
obtain some average number, defined as the accessibility index by Gould [4]. This

number indicates how many walks go on average through a node. With a suitable

normalization, Qkv converges to the largest eigenvector w1 of Q, Straffing [8].

5.2.2 A Good Starting Node

Algorithm A

Step 1: Calculate the dominant eigenvector w1 ¼ {w1,w2, . . .,wN(S)}
t of matrix Q.

Step 2: Find Min wi in w1. The node corresponding to this entry is taken as a good

starting node of S.

For calculating the dominant eigenvector w1 of Q, an iterative method is used,

which starts with v ¼ {1, 1, . . ., 1}t and calculates Qv. This vector is then

normalized and multiplied by Q. This process is repeated until the difference

between two consecutive eigenvalues, obtained from Qv ¼ λv, is reduced to a

small value which, for example, can be taken as 10�3.

5.2.3 Primary Nodal Decomposition

Once a good starting node is selected, an SRT is constructed and its contours {C1,

C2, . . ., Cm} are obtained. These subsets are then ordered according to their

distances from the selected starting node. Obviously many SRTs can be constructed
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on a node. Although all lead to the same nodal decompositions, different trans-

versals will be obtained for different SRTs. Thus in the generation process, the

nodes of each contour Ci are considered in ascending order of their entries in

eigenvector W1 for selecting the nodes in Ci+1, in order to provide the conditions

for the possibility of generating a minimal (or optimal) transversal as defined in the

next section.

5.2.4 Transversal P of an SRT

For selection of an optimal transversal, the weight of a node is defined as its value

wi in w1, when an algebraic graph-theoretical method is employed.

Algorithm B

Let C1, C2, . . ., Cm be the selected contours of the SRT, and correspondingly put

these subsets in w1 into a similar order, i.e.

w1 ¼ W C1ð Þ,W C2ð Þ, . . . ,W Cmð Þf g, ð5:6Þ

where W(Ci) contains the entries of w1 corresponding to the nodes of Ci. Now

the algorithm can be described as follows:

Step 1: Label the root as N1 and assign wi of this node as its new weight, denoted by

w1.

Step 2: Calculate the new weight wi of each node of C2 by adding the wi’s from W

(C2) to w1.

Step 3: Repeat the process of Step 2, calculatingwi for each node of C3, C4, . . ., Cm.

Step 4: Take a node Nm of minimal weight from the last contour Cm of the

selected SRT.

Step 5: Find Nm�1 from Cm�1, which is connected to Nm by a branch of the SRT.

Step 6: Repeat the process of Step 5, selecting Nm�2, Nm�3, . . ., N1 as the

representative nodes of the contours Cm�2, Cm�3,. . ., C1.

The set P ¼ {N1, N2, . . ., Nm}, forms a suboptimal transversal of the

selected SRT.

5.2.5 Nodal Ordering

Step 1: Number N1 as “1”.

Step 2: N2 is given number “2” and an SR subtree is generated from N2, numbering

the nodes of C2 in the order of their occurrence in this SR subtree.
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Step 3: The process of Step 2 is repeated for numbering the nodes of C3, C4, . . ., Cm,

sequentially using N3, N4, . . ., Nm as the starting nodes of SR subtrees, until all

the nodes of S are numbered.

Now the numbering can be reversed, in a way similar to that of the Reverse

Cuthill-McKee algorithm, for possible reduction of fill-ins in the process of Gaussian

elimination.

5.2.6 Example

S is the model of a grid with uniform valency distribution, as shown in Fig. 5.1a.

Using algorithm A, the following dominant eigenvector is obtained for matrix Q

of S, in which for simplicity only four digits are provided:

w1 ¼
0:3344, 0:5298, 0:6161, 0:5951, 0:4791, 0:3011, 0:1180, 0:3972, 0:7432

0:9540, 1:0000, 0:8786, 0:6183, 0:2875, 0:2875, 0:6183, 0:8786, 1:000, 0:9540
0:7432, 0:3972, 0:1180, 0:3011, 0:4791, 0:5951, 0:6160, 0:5298, 0:3344

8<
:

9=
;

t

:

Thus node “7” is selected as a good starting node. An SRT is generated from this

node and using Algorithm B, a transversal P ¼ {7, 14, 21, 28, 27, 26, 25, 24, 23,

22} is selected, which is shown in bold lines in Fig. 5.1a. Final nodal numbering is

illustrated in Fig. 5.1b.

5.3 Laplacian Matrix of a Graph for Nodal Ordering

5.3.1 Basic Concepts and Definitions

Another interesting matrix associated with a graph is the Laplacian matrix of S,

denoted by L(S).

Consider a directed graph S with an arbitrary nodal numbering and member

orientations. The adjacency matrix A(S), degree matrix D(S), node-member inci-

dence matrix C(S), and Laplacian matrix L(S) are defined as follows:

The adjacency matrix A(S) ¼ [aij]N � N of the labelled graph S is defined as:

aij ¼ 1 if node n1 is adjacent to nj,

0 otherwise:

	

The degree matrix D(S) ¼ [dij]N � N is the diagonal matrix of node degrees:
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dij ¼ deg nið Þ if i ¼ j,

0 otherwise:

	

The Laplacian matrix L(S) ¼ [lij]N � N is defined as,

L Sð Þ ¼ D Sð Þ � A Sð Þ; ð5:7Þ

therefore, the components of L(S) are given as:

lij ¼
�1 if n1 isadjacent tonj,

deg nj
� �

if i ¼ j,

0 otherwise:

8<
:

The node-member incidence matrix C(G) ¼ [cij]N � M for the arbitrarily ori-

ented graph is defined as:

cij ¼
þ1 if mj points towardni,

�1 if mj points awayformni,

0 otherwise:

8<
:

Two distinct rows of C(S) have non-zero entries in the same column if and only

if a member joins the corresponding nodes. These entries are 1 and �1. It can be

shown that:

L ¼ CCt ð5:8Þ

It can also be shown that L is independent of the orientation of the members of

the graph.

Hall [9] considered the problem of finding the minimum of the weighted sum,

Z ¼ 1

2

X
i, j

xi � xj
� �2

aij, ð5:9Þ

where aij are the elements of the adjacency matrix A. The sum over all pairs of
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Fig. 5.1 The graph model S and its nodal numbering. (a) Initial numbering and the selected

transversal. (b) Final numbering
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squared distances between nodes which are connected, and so the solution should

result in nodes with large numbers of inter-connection being clustered together.

The above equation can be rewritten as:

1

2

X
i, j

x2i � 2xixj þ x2j

� �
aij ¼ 1

2

X
i, j
x2i aij �

1

2

X
i, j
2xixjaij þ 1

2

X
i, j
x2j aij

¼
X

i, j
x2i aij þ

X
i, j
xixjaij ¼ xtLx:

ð5:10Þ

where L is the Laplacian. Hall also supplied the condition that xtx ¼ 1, i.e. the

distances are normalized. Using Lagrange multiplier, we have,

Z ¼ xtLx� λxtx, ð5:11Þ

and to minimize this expression, the derivative with respect to X is taken as,

Lx� λx ¼ 0, ð5:12Þ

or

Lx ¼ λx, ð5:13Þ

which is the eigenvalue equation. The smallest eigenvalue of L is λ1 ¼ 0, and the

corresponding eigenvector y1 has all its normalized components equal to 1. The

second eigenvalue λ2, and the associated eigenvector y2 have many interesting

properties, which will be used for nodal numbering in this chapter, and for domain

decomposition in Chap. 8.

In order to get a feeling of the magnitude of λ2 ¼ α(S), known also as the

algebraic connectivity of a graph, some simple theorems are restated from the

results of Fiedler [10] in the following:

1. For a complete graph KN with N nodes, α(KN) ¼ N.

2. If S1 � S2 (S1 and S2, have the same nodes), then α(S1) � α(S2).
3. Let S be a graph, let S1 arise from S by removing k nodes from S and all adjacent

members, then

α S1ð Þ � α Sð Þ � k: ð5:14Þ

4. For a non-complete graph S,

α Sð Þ � v Sð Þ � e Sð Þ, ð5:15Þ

where v(S) and e(S) are the node connectivity and edge connectivity of S,

respectively. The node connectivity of a graph S is the smallest number of

nodes whose removal from S, along with members incident with at least one
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of the removed nodes, leaves either a disconnected graph or a graph with a single

node. The edge connectivity of S is the smallest number of edges whose removal

from S, leaves a disconnected graph or a graph with one node. As an example,

the node and edge connectivity of a complete graph KN is equal to N�1.

5. For a graph with N(S) nodes

α Gð Þ ¼ λ2 � N

N� 1
min deg nð Þ; n ∈ N Gð Þf g: ð5:16Þ

and the largest eigenvalue has the following bound:

λN � N

N� 1
max deg nð Þ; n ∈ N Sð Þf g: ð5:17Þ

6. Let U be the set of all real N-tuple x such that xtx ¼ 1 and xteN ¼ 0. From the

theory of symmetric matrices, the following characterization for α(S) is

obtained,

α Sð Þ ¼ min xtLx x ∈ Ujf g, ð5:18Þ

where

eN ¼ 1; 1; . . . ; 1f gt: ð5:19Þ

7. The following theorem is interesting since it relates the properties of the

adjacency matrix A of a graph to those of its Laplacian matrix L. Such theorems

may establish firm relationships between the application of the largest eigen-

value and eigenvector of A for ordering to the second smallest eigenvector and

eigenvalue of the Laplacian matrix L of the graph for ordering and partitioning.

Theorem. Let S be a graph with adjacency matrix A and Laplacian matrix L. Let

D and d be the maximum and minimum node degrees of S, respectively. The second

largest eigenvalue μ2 of A and the second smallest eigenvalue λ2 of L are then

related as:

δ� λ2 � μ2 � Δ� λ2: ð5:20Þ

Proof. μ2 is the second largest eigenvalue of A, and δ � λ2 is the second largest

eigenvalue of δI � L � A � (diag(deg(v)) � δI), which differs from A only on the

diagonal, where the non-negative values deg(v)�δ are subtracted. Consequently,

δ � λ2 � μ2. In a similar way also the other inequality is obtained.

Lemma. If S is not a complete graph, then μ2 � 0 and λ2 � Δ.
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5.3.2 Nodal Numbering Algorithm

Based on the concepts presented in the previous section, the method can be

described as follows:

Step 1: Construct the Laplacian matrix L(S) of the given graph S.

Step 2: Compute the second eigenvalue λ2 of L and its corresponding eigenvector

y2. Different methods are available for such calculation. Paulino et al. [11] used

a special version of the subspace iteration method. However, the algorithm of

Lanczos described in the next chapter can also be efficiently applied; y2 is also

known as Fiedler vector.

Step 3: Reorder the nodes of S in ascending order of the vector components in y2.

Similar to the previous algebraic method, this algorithm has the advantage of

using global information of the graph model. However, although it does not use the

pseudo-peripheral nodes and SRT and its transversal, its efficiency is very sensitive

to the initial ordering of the nodes of the model. Preconditioning by pre-ordering

can be utilised for improving the running time of the method, resulting on some

kind of dependency on graph-theoretical properties.

5.3.3 Example

Consider a graph with 12 nodes, as shown in Fig. 5.2a, with an arbitrary nodal

numbering.

The Laplacian matrix L(S) is constructed and its eigenvalue λ2 and eigenvector

y2 are calculated as follows:

λ2 ¼ 1:1071,

y2 ¼
�0:0608, � 0:2023,1:0000, � 0:5303,0:0658, � 0:4721,0:3099,0:3106,

�0:2399,0:5829, � 0:3125, � 0:4514

	 
t

:

Using y2, the new labelling is obtained, as illustrated in Fig. 5.2b.

This method can also applied to finite element nodal numbering, using any of the

ten graphs defined in Chap. 5.

5.4 A Hybrid Method for Ordering

In this method, the advantages of both graph and algebraic graph methods are

incorporated into an algorithm for ordering. In the algebraic graph method, general

approaches are used to calculate the eigenvalues and eigenvectors, and the infor-

mation available from the connectivity of their graph models are ignored. This is
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why the computational time and complexity of these algorithms are not low enough

to compete with pure graph theory methods. In this section, graph parameters are

used to increase the efficiency of the algebraic graph theory approaches. Typical

graph parameters can be taken as the degrees of the nodes, the 1-weighted degrees

of the nodes, the distances of the nodes from two pseudo-peripheral nodes, and

2-weighted degrees of the nodes of the graph.

The algebraic graph theory method employed here is not the same as those

employed in a general eigenproblem, but rather a specific method is used in which

the valuable features of graph parameters are incorporated.

5.4.1 Development of the Method

Here, the graph parameters are considered as Ritz vectors, and the first eigenvector

of the complementary Laplacian matrix Lc (Fiedler vector) is considered as a linear

combination of Ritz vectors. The coefficients for these vectors are in fact the

weights of the graph parameters, which are usually determined either by heuristic

approaches or by experience.

Consider the following vector,

1

2
3

4

5

6
7

8

8 1 11 4

10 12

3 7 2 6

95

8 1 11 4

10 12

3 7 2 6

95 58

10 1

11

9

4

12

3

7

26

a

b c

Fig. 5.2 A graph G. (a) A simple finite element model. (b) Numbering before ordering.

(c) Numbering after ordering
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ϕ ¼
Xp
i¼1

wivi, ð5:21Þ

where ϕ is an approximation to the Fiedler vector, vi (i ¼ 1, . . ., p) are the

normalized Ritz vectors representing the graph parameters, and wi (i ¼ 1,. . ., p)
are the coefficients of the Ritz vectors (Ritz coordinates) which are unknowns, and

p is the number of parameters being employed. Equation 5.21 can be written as,

ϕ ¼ vw, ð5:22Þ

where w is a p�1 vector and v is an N�p matrix containing the Ritz vectors.

Consider the eigenproblem of the complementary Laplacian as:

Lcϕ ¼ ρϕ: ð5:23Þ

Approximating ϕ by ϕ and multiplying by vt, results in,

vtLcvw ¼ ρvtvw, ð5:24Þ

or

Aw ¼ ρBw, ð5:25Þ

where A ¼ vtLcv and B ¼ vtv. Both A and B are p�p matrices and therefore

Eq. 5.21 has much smaller dimension compared to Eq. 5.23; ρ is the approximate

eigenvalue of the original problem.

Solution of the reduced problem, with dimensions far less than the original one,

results in the first eigenvector w1 and hence ϕ. Nodal ordering is then performed

considering the relative entries of ϕ in an ascending order.

The present methods lead not only to a set of suitable coefficients for graph

parameters, but also provide efficient means for measuring the relative significance

of each considered graph parameter. These coefficients may also be incorporated in

the design of other specific graph-theoretical algorithms for ordering.

5.4.2 Numerical Results

Many examples are studied and the results for three models are presented in this

section. In the tables presented, Column 2 contains the results of the Pure Algebraic

Graph Method (PAGM) of Ref. [11].

For the first case, four vectors, representing Ritz vectors are considered.

For these vectors, v1 contains the degrees of the nodes, v2 comprises of the

1-weighted degrees of the nodes, and v3 and v4 are distances of the nodes from
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two pseudo-peripheral nodes. These nodes can be obtained using different algo-

rithms, Kaveh [5]. The results are provided in column 3 of the tables denoted by v4.

For the second case, five Ritz vectors are employed. The first four vectors are the

same as those of the previous case, and the fifth vector v5 contains the 2-weighted

degrees of the nodes of the graph. The results are provided in column 4 of the tables

labelled as v5.

It should be noted that other vectors containing graph properties which influence

the ordering may be considered additional to the above five vectors. However, the

formation of such additional vectors may require some extra computational time,

reducing the efficiency of the algorithm.

Example 1. An FE mesh with one opening comprising of 1,248 nodes and 1,152

rectangular elements is considered as shown in Fig. 5.3. The results for different

methods and their computational time are illustrated in Table 5.2, for comparison of

their efficiency.

Example 2. An H-shaped FE mesh comprising of 2,096 nodes and 3,900 triangular

elements is considered as shown in Fig. 5.4. The results for different methods and

their computational time are illustrated in Table 5.3, for comparison of their

efficiency.

Example 3. A two dimensional FEM of a tunnel comprising of 6,888 nodes and

6,720 rectangular elements is considered as shown in Fig. 5.5. The results of using

different methods and their computational time are presented in Table 5.4.

Example 4. An FE mesh with four openings comprising of 748 nodes and 1,236

triangular elements is considered as shown in Fig. 5.6. The results for different

methods and their computational time are illustrated in Table 5.5, for comparison of

their efficiency.

Example 5. A three-dimensional finite element model of a nuzzle is considered, as

shown in Fig. 5.7. This model contains 4,000 rectangular shell elements. The results

for different methods and their computational time are illustrated in Table 5.6 in

order to compare their efficiency.

5.4.3 Discussions

The performance of the hybrid method, compares well with a pure algebraic graph

method, with a substantial reduction in the computational time. Naturally, addition

of extra graph parameters will increase the computational time required. Relative

values of the coefficients of the Ritz vectors show the importance of the

corresponding parameters in the ordering algorithm. For the examples presented

in the previous section, the coefficient corresponding to v3 and v4 (the distances

from the pseudo-peripheral nodes) seem to be more important, since most of the

examples have a more or less uniform distribution of nodal degrees. Naturally for
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Fig. 5.3 A FE mesh with

one opening

Table 5.2 Results of

Example 1
PAGM v4 v5

B 46 43 45

P 34,848 36,243 36,189

eF 28.07 29.44 29.25

Fmax 35 39 39

Time (s) 1,400.3 2.8 2.9

Fig. 5.4 An H-shaped

FE mesh
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models with non-uniform degree distributions, the significance of the other graph

parameters will also become apparent.

Though only nodal ordering is addressed in here, however, the application of the

present method can easily be extended to the element ordering. For this purpose the

natural associate graph or the incidence graph of a FE mesh, should be used in place

of the element clique graph.

Table 5.3 Results of

Example 2
PAGM v4 v5

B 74 77 77

P 47,741 49,400 48,936

eF 23.97 25.63 25.32

Fmax 37 42 42

Time (s) Large 2.63 2.89

Fig. 5.5 A two

dimensional FEM of a

tunnel

Table 5.4 Results of

Example 3
PAGM v4 v5

B 455 331 332

P 731,694 733,738 733,738

eF 112.99 112.93 112.93

Fmax 164 175 175

Time (s) 10.6 27.6 28.9
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Fig. 5.6 A FEM with four

openings

Table 5.5 Results of

Example 4
PAGM v4 v5

B 39 49 47

P 13,118 13,162 13,126

eF 18.42 18.61 18.56

Fmax 29 29 29

Time (s) 1,677 1.2 1.3

Fig. 5.7 A three

dimensional FEM of a

nuzzle

Table 5.6 Results of

Example 5
PAGM v4 v5

B 39 49 47

P 13,118 13,162 13,126

eF 18.42 18.61 18.56

Fmax 29 29 29

Time (s) 1,677 1.2 1.3
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5.5 Ordering via Charged System Search Algorithm

Meta-heuristic algorithms can be used for nodal ordering to structure the stiffness

and flexibility matrices. Ant colony optimization is utilized for this purpose by

Kaveh and Sharafi [1, 2]. In this section the recently developed meta-heuristic

optimization method, known as charged system search (CSS) [12], is employed for

optimum nodal ordering to minimize bandwidth and profile of sparse matrices that

is based on [3]. This algorithm is presented in Appendix C. The bandwidth and

profile of some graph matrices, pattern equivalent to structural matrices, are

minimized using this approach.

5.5.1 Charged System Search

In this section, Charged system search (CSS) developed by Kaveh and Talatahari

[12] is brifiely described. This is a powerful meta-heuristic algorithm developed for

optimization and have found many applications is structural optimisation. Some

applications of this algorithm in structural mechanics are briefly discussed in

Chap. 10 of this book.

5.5.1.1 Background Definitions

In physics, the space surrounding an electric charge has a property known as the

electric field. This field exerts a force on other electrically charged objects. The

electric field surrounding a point charge is given by Coulomb’s law. Coulomb has

confirmed that the electric force between two small charged spheres is proportional

to the inverse square of their separation distance rij. Therefore, this law provides the

magnitude of the electric force (Coulomb force) between the two point charges.

This force on a charge, qj at position ri, experiencing a field due to the presence of

another charge, qj at position ri, can be expressed as

Fij ¼ ke
qiqj

rij2
ri � rj

ri � rj
�� �� ð5:26Þ

where ke is a constant known as the Coulomb constant; rij is the separation of the

two charges (Halliday et al. [13]).

Consider an insulating solid sphere of radius “a” which has a uniform volume

charge density and carries a total charge of magnitude qi. The magnitude of the

electric force at a point outside the sphere is defined as Eq. 5.26, while this force can

be obtained using Gauss’s law at a point inside the sphere as
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Fij ¼ ke
qiqj

a3
rij

ri � rj

ri � rj
�� �� ð5:27Þ

In order to calculate the electric force on a charge (qj) at a point (rj) due to a

group of point charges, the principle of superposition is applied to electric forces as

Fj ¼
XN

i¼1, i 6¼j

Fij ð5:28Þ

where N is the total number of charged particles and Fij is equal to

Fij ¼
ke

qi
a3

rij
ri � rj

ri � rj
�� �� if rij < a

ke
qi
r2ij

ri � rj

ri � rj
�� �� if rij � a

8>>><
>>>:

ð5:29Þ

Therefore, the resulted electric force can be obtained as [12]

Fj ¼ keqj

X qi
a3

rij:i1 þ qi
r2ij
:i2

 !
ri � rj

ri � rj
�� �� i1 ¼ 1, i2 ¼ 0 , rij < a

i1 ¼ 0, i2 ¼ 1 , rij � a

	 

ð5:30Þ

5.5.1.2 Newtonian Mechanics Laws

Newtonian mechanics studies the motion of objects. In the study of motion, the

moving object is described as a particle regardless of its size. In general, a particle is

a point-like mass having infinitesimal size. The motion of a particle is completely

known if the particle’s position in space is known at all times. The displacement of

a particle is defined as its change in position. As it moves from an initial position rold
to a final position rnew, its displacement is given by

Δr ¼ rnew � rold ð5:31Þ

The slope of tangent line of the particle position represents the velocity of this

particle as

v ¼ rnew � rold

tnew � told
¼ rnew � rold

Δt
ð5:32Þ

The acceleration of the particle is defined as the change in the velocity divided

by the time interval Δt during which that change has occurred:
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α ¼ vnew � vold

Δt
ð5:33Þ

The displacement of any object can now be obtained as a function of time as

rnew ¼ 1

2
α:Δt2 þ vold:Δtþ rold ð5:34Þ

Also according to Newton’s second law, we have

F ¼ m:α ð5:35Þ

where m is the mass of the objective. Substituting Eq. 5.35 in Eq. 5.34, we have

rnew ¼ 1

2

F

m
:Δt2 þ vold:Δtþ rold ð5:36Þ

5.5.1.3 The Rules of the Charged System Search

In this section, the recently developed optimization algorithm in [12] is briefly

presented utilizing the aforementioned physics laws, which is called Charged

System Search. In the CSS, each solution candidate Xi containing a number of

decision variables (i.e. Xi ¼ {xi,j}) is considered as a charged particle. The charged

particle is affected by the electrical fields of the other agents. The quantity of the

resultant force is determined by using the electrostatics laws, and the quality of the

movement is determined using the Newtonian mechanics laws. Thus an agent with

good results must exert a stronger force than the bad ones, so the amount of the

charge will be defined considering the objective function value, fit(i). In order to

introduce CSS, the following rules are introduced:

Rule 1: In CSS each CP has a magnitude of charge (qi) and as a result creates an

electrical field around its space. The magnitude of the charge is defined consid-

ering the quality of its solution, as follows:

qi ¼
fit ið Þ � fitbest

fitbest � fitworst
i ¼ 1, 2, . . . , N ð5:37Þ

where fitbest and fitworst are the so far best and the worst fitness of all particles; fit(i)

represents the objective function value or the fitness of the agent i; and N is the total

number of CPs. The separation distance rij between two charged particles is defined

as follows:
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rij ¼
Xi � Xj

�� ��
Xi þ Xj

� �
=2� Xbest

�� ��þ ε
ð5:38Þ

where Xi and Xj are the positions of the ith and jth CPs, Xbest is the position of the

best current CP, and ε is a small positive number to avoid singularities.

Rule 2: The initial positions of CPs are determined randomly in the search space

and the initial velocities of charged particles are assumed to be zero.

Rule 3: Electric forces between any two charged particles are attractive. Utilizing

this rule increases the exploitation ability of the algorithm. Though it is possible

to define repelling force between CPs as well, however, for our problems this

seems to be unnecessary. When a search space is a noisy domain, having a

complete search before converging to a result is necessary; in such conditions

the addition of the ability of repelling forces to the algorithm may improve its

performance.

Rule 4: Good CPs can attract the other agents and bad CPs repel the others,

proportional to their rank, that is

cij / rank CPj
� � ^ 0 < cij � þ1 if the CP is above average

�1 � cij < 0 if the CP is below average

	
ð5:39Þ

where cij is a coefficient determining the type and the degree of influence of each

CP on the other agents, considering their fitness and apart from their charges. This

means that good agents are awarded the capability of attraction and bad ones are

given the repelling feature, which will improve the exploration and exploitation

abilities of the algorithm. On the one hand, when a good agent attracts a bad one, the

exploitation ability for the algorithm is provided. On the other hand, when a bad

agent repels a good CP, the exploration is provided.

Rule 5: The value of the resultant electrical force affecting a CP is determined

using Eq. 5.30, as

Fj ¼ qj

X
i, i6¼j

qi
a3

rij:i1 þ qi
r2ij
:i2

 !
:cij: Xi � Xj

� � j ¼ 1, 2, . . . , N
i1 ¼ 1, i2 ¼ 0 , rij < a

i1 ¼ 0, i2 ¼ 1 , rij � a

*
ð5:40Þ

where Fj is the resultant force acting on the jth CP, as illustrated in Fig. 5.8. In this

algorithm, each CP is considered to be a charged sphere with radius a having a

uniform volume charge density. Here a is set to unity.

Rule 6: The new position and velocity of each CP is determined considering

Eqs. 5.32 and 5.36, as follows:

xj, new ¼ Fix randj1:ka:
Fj

mj

:Δt2 þ randj2:kv:vj,old:Δtþ xj,old

� 
ð5:41Þ
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vj,new ¼ xj,new � xj,old

Δt
ð5:42Þ

where Fix(X) is a function which rounds each elements of X to the nearest

permissible discrete value; ka is the acceleration coefficient; kv is the velocity

coefficient to control the influence of the previous velocity; and randj1 and randj2
are two random numbers uniformly distributed in the range of (0,1). mj is the mass

of the CPs which is equal to qj in this chapter. Δt is the time step and is set to one.

Figure 5.9 illustrates the movement of a CP to its new position using this rule.

The effect of the pervious velocity and the resultant force acting on a CP can

be decreased or increased based on the values of the kv and ka, respectively.

Excessive search in the early iterations may improve the exploration ability;

however, it must be deceased gradually, as described before. Since ka is the

parameter related to the attracting forces, selecting a large value for this parameter

may cause a fast convergence, and a small value can increase the computational

time. In fact ka is a control parameter of the exploitation. Therefore, choosing an

incremental function can improve the performance of the algorithm. Also, the

direction of the pervious velocity of a CP is not necessarily the same as the resultant

force. Thus, it can be concluded that the velocity coefficient kv controls the

exploration process and therefore a decreasing function can be selected. Thus,

kv and ka are defined as

kv ¼ 0:5 1� iter=itermaxð Þ, ka ¼ 0:5 1þ iter=itermaxð Þ ð5:43Þ

Rule 7: Charged memory (CM) is utilized to save a number of the best so far

solutions. Here, the size of the CM is taken as N/4. The vectors stored in the CM

Fig. 5.8 The resultant

electrical force acting

on a CP [12]
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can have influence on the CPs. This may increase the computational cost, and

therefore it is assumed that the same number of the worst particles cannot attract

others.

Rule 8: The agents violating the limits of the variables are regenerated using the

harmony search-based handling approach as described in Ref. [12].

Rule 9: Maximum number of iterations is considered as the terminating criterion.

The general flowchart of the CSS algorithm is illustrated in Fig. 5.10.

5.5.2 The CSS Algorithm for Nodal Ordering

This algorithm attempts to find an optimal assignment for nodal ordering of a graph

to reduce the bandwidth or profile of the associated matrix employing a charged

system search algorithm. The basis of the algorithms for both bandwidth and profile

reduction are identical and it is based on reordering or assigning new labels to the

graph nodes to achieve the optimal bandwidth or profile. The only difference is in

defining the objective functions. That is, the main procedure of the CSS algorithm

for reordering is the same but the objective function for bandwidth reduction and

profile reduction are different.

For an n�n sparse matrix associated to graph G, each permutation of rows and

columns leads to a new reordering called the assigned set. If the initial numbering of

the graph is {1, 2, 3, . . ., n}, each permutation of this set will be a new assigning list.

Fig. 5.9 Movement of a CP

to its new position [12]
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The aim is to find the optimal assigning list in order to reach the best bandwidth or

profile.

Each probable permutation of set {1, 2, 3, . . ., n} is considered to be a potential

solution which is called an agent. In CSS these agents are regarded as CPs. In fact,

each solution candidate Xi containing a number of decision variables xi,j, is

considered to be a charged particle and each xi,j presents the number assigned to

the node j in the original graph. Thus a solution candidate Xi which represents the

position of CPi, contains n arrays xij(j ¼ 1, 2, . . ., n) which stand for the assigned

numbers.

Fig. 5.10 The general

flowchart of the CSS

algorithm [12]
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The algorithm for nodal ordering follows the above mentioned nine general rules

of the CSS algorithms. As stated before, due to the nature of nodal ordering

problem, the discrete version of CSS, consisting of nine steps is utilised.

Step 1: The number of CPs, i.e. candidate agents, is determined. For nodal ordering

of sparse matrices this number is set to N ¼ [fix(n/100) + 5] which means that

for each 100 nodes one additional CP is added and at least 5 CPs are needed for

any problems. Using larger number of CPs may result in more accurate results,

however it significantly increases the computational time. On the other hand,

using smaller number of CPs may leads to undesirable results. The considered

number of CPs is capable to keep the balance as a moderate level.

Step 2: The CPs are defined and settled in their initial positions. For this purpose a

random permutation of set {1, 2, 3, . . ., n} is assigned to each agent as initial

candidate solutions. That is, the initial candidate solutions Xi and as a result, their

positions {x(0)i,j} are randomly nominated. In other words, in this phase, N

candidate solution Xi(i ¼ 1, 2, . . ., N) which are located in their positions

presented by x(0)i,j are defined. (j ¼ 1, 2, . . ., n). The initial velocity for all

CPs are considered to be zero. ((v(0)i,j ¼ 0 8 ij)

Step 3: The magnitude of charge for each CP is calculated using Rule 1. For this

purpose the objective functions for each agent must be calculated. As mentioned

before, this phase is the only distinction between bandwidth and profile reduc-

tion algorithm. The objective function for bandwidth reduction is obtained from

Eq. 4.8 while for profile reduction it is calculated from Eq. 4.12. In this step

when objective functions are calculated, they should be put in order and the best

and the worst ones and the best and the worst N/5 agents are saved. This will help

the algorithm to judge better in next steps. Then the magnitude of charge for

each CP, i.e. qi, is obtained through the Eq. 5.37.

Step 4: The separation distance between CPs are calculated. In the previous step,

the position of each CP is defined by a coordinate of n arrays. Having the Xi for

all CPs, the separation distance between them are calculated using the Eq. 5.38.

It should be mentioned that in such discrete problems that Xi is an n-dimensional

array, the intention of calculating distance between every two CPs is to find how

far the two assumed nodes are in the n-dimensional space. In fact, the calcula-

tions of distance, velocity and acceleration are all made in a multidimensional

space.

Step 5: The type and the degree of influence of each CP on the other agents are

determined. For this reason, using the rank of the CPs obtained in step 3, a

number between +1 and �1, is assigned to each agent proportional to its rank.

That is, the number +1 is assigned to the best agent and �1 to the worst one and

so on. Such an assignment leads to improvement of the abilities of exploration

and exploitation simultaneously.

Step 6: The value of the resultant electrical force affecting a CP is determined using

the Eq. 5.40. Each Fj is an n-dimensional array and shows the tendency of agent j

toward other CPs.
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Step 7: New position and velocity of each CP is determined considering Eq. 5.41

and 5.42, respectively. In Eq. 5.41 the function Fix(X) shifts each xi,j to its

nearest position. That is the nearest permissible digit assigns to each xi,j. As

mentioned before, each new position determined by an n-dimensional array

shows the new renumbering of CPs i.e. the new numbers assigned to nodes.

Step 8: The agents violating the limits of the variables are regenerated using the

harmony search-based handling approach. Then the best so far solutions are

saved.

Step 9: Maximum number of iterations is considered as the terminating criterion

5.5.3 Numerical Examples

In this section, three examples are presented and the results are compared to those

of the other algorithm in Table 5.7. Then a comparison is made for convergence rate

of different algorithms for each example. For profile reduction, results are com-

pared to those of Sloan [14], King [15], and Kaveh and Sharafi [1–3]; and for

bandwidth minimization, the 4-step algorithm of the previous chapter, and an ACO

algorithm [1, 2] are used to perform the comparison.

The topological properties of the finite element models are transferred to the

connectivity properties of graphs, by the clique graphs [5]. This graph has the same

nodes as those of the corresponding finite element model, and the nodes of each

element are cliqued, avoiding the multiple edges for the entire graph.

All computations are performed on P9700 @2.40 GHz computer running

MATLAB R2009b. In order to ensure that the obtained solution from ACO is

global or near global optimum, many runs are performed in parallel. Since each run

is fully independent of the others, the program could be run in parallel so that the

total execution time practically became the same as required for a single run.

Example 1. Consider a finite element mesh (FEM) of a fan. The element clique

graph of this model contain 1,575 nodes as shown in Fig. 5.11. The performance of

the CSS algorithm and some other algorithms are tested on this model, and the

results are presented in Table 5.7.

Example 2. The FEM of a shear wall with 760 nodes and four openings is shown in

Fig. 5.12. Similar to the previous example, the performance of the CSS algorithm

and some other algorithms are tested on this model and the results are presented in

Table 5.7.

Example 3. An H-shape finite element mesh (FEM) with 4,949 nodes is consid-

ered, as shown in Fig. 5.13. The element clique graph of this model contain 4,949

nodes and 9,688 beam element (edges). The performance of the CSS algorithm and

some other algorithms are tested on this model, and the results are presented in

Table 5.7.
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Fig. 5.11 Finite element

mesh of a fan represented

by its clique graph

Table 5.7 Comparison of the results

Example Type of ordering Initial value Algorithm Optimized value CPU time (s)

1 Profile minimization 144,351 Sloan 31,002 32.7

King 31,982 24.1

ACO 29,665 55.9

CSS 28,770 17.3

Bandwidth minimization 461 4-step 23 4.9

ACO 23 10.7

CSS 21 4.4

2 Profile minimization 37,584 Sloan 19,110 11.1

King 19,613 9.8

ACO 19,007 8.3

CSS 19,232 8.2

Bandwidth minimization 382 4-step 46 1.8

ACO 42 4.4

CSS 41 2.0

3 Profile minimization 345,437 Sloan 210,845 117.8

King 211,731 98.2

ACO 208,945 296.6

CSS 206,649 98.7

Bandwidth minimization 407 4-step 66 17.7

ACO 60 29.5

CSS 58 13,3
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Chapter 6

Optimal Force Method for FEMs: Low

Order Elements

6.1 Introduction

In this chapter force method finite element models comprising of low order

elements are presented.

In the first part an efficient method is developed for the formation of null bases of

triangular and rectangular plane stress and plane strain finite element models,

corresponding to highly sparse and banded flexibility matrices [1–3]. This is

achieved by associating a special graph to the finite element model, and selecting

subgraphs (γ-cycles as defined in Chap. 2) for the formation of localized self stress

systems (null basis) [4].

In the second part, a graph theoretical method is presented for the formation of

sparse, banded and accurate null basis matrices for finite element models with

triangular and rectangular plate bending elements [5, 6].

In the third part, a similar approach is extended to 3D models with tetrahedron

elements [7].

In the fourth part, an efficient method is presented for the analysis of FEMs

composed of brick elements [8]. In this method, special graphs are associated with

the considered FEM and minimal subgraphs are selected using these graph models.

Localized self-equilibrating systems are constructed on these subgraphs, forming a

suitable statical basis of the FEM.

6.2 Force Method for Finite Element Models: Rectangular

and Triangular Plane Stress and Plane Strain Elements

In this section an efficient algorithm is presented for the formation of null bases for

the models consisting of rectangular and triangular plane stress and plane strain

finite element models, corresponding to highly sparse and banded flexibility matri-

ces. The bases obtained by this algorithm require low computational effort leading
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to highly sparse flexibility matrices with very small bandwidth. Thus using this

algorithm, optimal flexibility analysis of such FEMs becomes feasible.

Here, first an interface graph is defined for 2D finite element models and then

subgraphs corresponding to self stress systems are generated. By applying unit

bi-actions and solving the corresponding statically determinate substructures, some

null vectors are obtained. This is repeated for all the selected subgraphs to obtain

the null basis. The efficiency of the present method and is illustrated through simple

examples.

6.2.1 Member Flexibility Matrices

In the force method of analysis, the determination of the member flexibility matrix

is an important step. Methods for the formation of an element with n nodes is

already discussed in Sect. 3.2.2 and applied to bar and beam elements.

In this section, the force-displacement relationship is established for plane stress

and plain strain problems. Triangular and rectangular elements are considered with

constant and linearly varying stress fields, respectively.

Constant Stress Triangular Element. For this element, the nodal forces in global

coordinate system have 6 components, as shown in Fig. 6.1a. The element forces

are taken as natural forces acting along the sides of the triangle, as shown in

Fig. 6.1b.

The nodal forces and element forces are related by projection as,

r1x
r1y
r2x
r2y
r3x
r3y

2
6666664

3
7777775
¼

�l12 0 l31
�m12 0 m31

l12 �l23 0

m12 �m23 0

0 l23 �l31
0 m23 �m31

2
6666664

3
7777775

F1
F2
F3

2
4

3
5, ð6:1Þ

where lij and mij are the direction cosines of the side ij of the triangle.

The element forces are now related to stress resultants, Fig. 6.2. First F1 is

considered as the only natural force acting on the element, and the internal stresses

are calculated as:

y23σx þ x32σxy ¼ 2l12

t
F1 ð6:2aÞ

�y31σx þ x31σxy ¼ 2l12

t
F1 ð6:2bÞ

216 6 Optimal Force Method for FEMs: Low Order Elements

http://dx.doi.org/10.1007/978-3-319-02964-1_3


y31σy þ x31σxy ¼ 2m12

t
F1 ð6:2cÞ

Solution of the Eqs. (6.2a, b , c) is obtained as follows,
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Fig. 6.1 A triangular element. (a) Element forces. (b) Nodal forces
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Fig. 6.2 The stress fields and their equivalent nodal forces. (a) Stress fields (b) Equivalent nodal

forces
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σx ¼ 2l212
th3

F1, σy ¼ 2m2
12

th3
F1, and σxy ¼ 2l12m12

th3
F1, ð6:3Þ

where:

xij ¼ xi � xj
yij ¼ yi � yj

�
for i, j ¼ 1, 2, 3:

In the above relations, h3 is the height of the triangle corresponding to corner

3. Permutation of the indices results in the stresses produced by F2 and F3 and in

matrix form these equations can be collectively written as,

σx
σy
σxy

2
4

3
5 ¼ 2

t

l212
h3

l223
h1

l231
h2

m2
12

h3

m2
23

h1

m2
31

h2

m12l12

h3

m23l23

h1

m31l31

h2

2
6666666664

3
7777777775

F1
F2
F3

2
4

3
5, ð6:4Þ

or

σ ¼ cF: ð6:5Þ

The matrix c represents statically equivalent stress system due to unit force F.

The flexibility matrix of the element can be written as:

fm ¼
ð
V

ctφcdV: ð6:6Þ

The integration is taken over the volume of the element, where,

φ ¼ 1

E

1 �ν 0

�ν 1 0

0 0 2 1þ νð Þ

2
4

3
5, ð6:7Þ

is the matrix relating the stresses to strains, ε ¼ φσ, in plane stress problems, and E

and ν are the Young’s modulus and Poisson’s ratio, respectively. The force-

displacement relationship for a triangular element becomes,

um ¼ fmrm, ð6:8Þ

where um and rm are the element displacements and element forces, respectively.

The flexibility matrix of the element can now be written as,
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fm ¼ 2

Et

A θ3; θ2; θ1ð Þ B θ2ð Þ B θ1ð Þ
B θ2ð Þ A θ1; θ2; θ3ð Þ B θ3ð Þ
B θ1ð Þ B θ3ð Þ A θ2; θ1; θ3ð Þ

2
4

3
5, ð6:9Þ

where t is the thickness of the element, and A and B are functions defined as

follows,

A θi; θj; θk
� � ¼ sin θi

sin θj sin θk
, i, j, k ¼ permutation of 1, 2, 3ð Þ, ð6:10aÞ

B θið Þ ¼ cosθicotθi � νsinθi, i ¼ 1, 2, 3ð Þ, ð6:10bÞ

where θi, θj, and θk are the angles of the triangle.

Linear Stress Rectangular Element. For this element, the nodal forces in global

co-ordinate system have 8 components, as shown in Fig. 6.3a. The element forces

are taken as natural forces along the sides and one diagonal, as shown in Fig. 6.3b.

The nodal forces and element forces are related similar to triangular element as,

r1x
r1y
r2x
r2y
r3x
r3y
r4x
r4y

2
66666666664

3
77777777775
¼

�1 �Ω 0 0 0

0 �βΩ �1 0 0

1 0 0 0 0

0 0 0 0 �1

0 0 0 �1 0

0 0 1 0 0

0 Ω 0 1 0

0 �βΩ 0 0 1

2
66666666664

3
77777777775

F1
F2
F3
F4
F5

2
66664

3
77775, ð6:11Þ

where β ¼ b

a
and Ω ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ β2
p

For this element the plane stresses are written as,

σx ¼ c1 þ c2η
σy ¼ c3 þ c4ξ
σxy ¼ c5

8<
: ð6:12Þ

where c1, c2, . . .,c5 are constants and,

ξ ¼ x

a
and η ¼ y

b

a and b being the length and width of the element, respectively.

The stress fields and the corresponding nodal forces are shown in Fig. 6.3c.
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fm ¼ 1

Et

4β
�ν 4=β sym:

β2 � νffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ β2

p 1� νβ2ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ β2

p 1þ β2

β

�2β �ν
β2 � νffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ β2

p 4β

�ν �2=β
1� νβ2

β
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ β2

p �ν 4=β

2
666666666666664

3
777777777777775

: ð6:13Þ

The unassembled flexibility matrix of the structure can now be formed, by using

the above matrix for each element as block diagonal entries. This matrix is

incorporated in algebraic force method of the next section.

6.2.2 Graphs Associated with FEMs

In order to transfer the topological property of a finite element model to the

connectivity of a graph, ten different graphs are introduced in Ref. [9]. Here, the

natural associate graph is used and an additional new graph is defined.

Fig. 6.3 A rectangular element. (a) Element forces. (b) Nodal forces. (c) The stress fields and

their equivalent nodal forces
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Natural associate graph. The natural associate graph of a FEM is constructed as

follows:

1. Associate one node of the associate graph with an element of the FEM.

2. Two nodes of the associate graph are connected by a member if the

corresponding elements in the FEM have a common edge.

A FEM and the corresponding associate graph are shown in Fig. 6.4a.

Interface graph. The Interface graph of a FEM is constructed by the following

rules:

1. This graph contains all the nodes of the FEM.

2. For each edge of a finite element of the model, associate one independent

member. Thus, a typical overlap of two elements in FEM is represented by

double members in interface graph.

3. One diagonal member is associated with each rectangular element of the model.

Figure 6.4b shows the corresponding interface graph.

The member of the interface graph should be numbered according to the

numbering of the FEM. A typical numbering is shown in Fig. 6.5. For each

rectangular element like R, five members of the interface graph and for each

triangular element like T, three members of interface graph should be numbered

consequently. The numbering is performed according to the direction of the inde-

pendent element forces (Fig. 6.6a, b).

6.2.3 Pattern Corresponding to the Self Stress Systems

The nodal forces and independent element forces of a rectangular and triangular

element are defined as shown in Fig. 6.3. This is the same convention used by

Przemieniecki [10].

Fig. 6.4 A finite element model, the corresponding natural associate graph, and the interface

graph. (a) A FEM and its natural associate graph (b) Interface graph

6.2 Force Method for Finite Element Models: Rectangular and Triangular Plane. . . 221



Considering Fig. 6.6a, in order to find the patterns corresponding to the self

stress systems, a rectangular is simulated as a planar truss formed as the 1-skeleton

of the rectangular element together with a diagonal member. This is possible since

the independent element forces F1 to F5 are applied to the nodes and are along the

edges of the rectangular. Also, a FEM with plane strain and plane stress triangular

Fig. 6.5 (a) A 2D finite element model; (b) The interface graph; (c) Numbering for a typical

rectangular element R and a triangular element T

a

b

Fig. 6.6 The nodal and element forces for a rectangular element and a triangular element (a) The

nodal and element forces for a rectangular element; (b) The nodal and element forces for a

triangular element
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elements can be viewed as a planar truss (Fig. 6.6b). The statical indeterminacy of

planar truss with m members and n nodes is given as γ(S) ¼ m � 2n + 3.

The patterns of the underlying subgraphs of self stress systems (null vectors) are

identified as follows:

6.2.3.1 Type I Self Stress System

Each double member of the interface graph is the underlying subgraph of a self

stress system. In other words, a double member consisting of members numbered as

i and j with (i < j), have two non-zero entries in the null basis matrix in the

corresponding rows i and j in which the entry in row i is �1 and the entry in row

j is +1. These double members are called type-1 γ-cycles. The number of these

double members is equal to the number of members of the natural associate graph,

(see Kaveh [11] for the definition of a γ-cycle).
Using these double members nearly 80 % of the columns of a null basis matrix

can easily be generated. For finding these double members one can use the

adjacency matrix or the node-member incident matrix of the interface graph.

6.2.3.2 Type II Self Stress System

There are other types of self stress systems in the FEM which are topologically

identical to the minimal self stress systems of corresponding planar trusses. The

underlying subgraphs of these systems are known as type II γ-cycles, corresponding
to the regional cycles of the natural associate graph bounding a single node of the

FEM. In other words, if each multiple member from the interface graph is

substituted by a member or generators of the Type I self stress systems are removed

from SI, and then the remaining subgraph is a graph, denoted by S.

In general the self stress systems built on S are called Type II self stress systems.

In fact these systems are γ-cycles which correspond to minimal cycles of associate

graph of finite element model (see Refs. [11] for definition). A finite element model

with six elements is shown in Fig. 6.7a, and its associate graph is depicted in

Fig. 6.7b.

6.2.3.3 Type III Self Stress System

Each regional cycle bounding a cut-out in the FEM corresponds to a regional cycle

of the natural associate graph with 3� of statical indeterminacy, correspond to 3 self

stress systems.

For a FEM with nc cut-outs, apart from the self stress systems corresponding to

double members of the interface graph, b1 (natural associate graph) � nc + 3nc
additional self stress systems should be generated. This is obvious since for each

γ-cycle of S corresponding to non-cut out cycle of natural associate graph one self
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stress system, and for each general subgraph corresponding to a cut out cycle of

natural associate graph, three independent self stress systems can be generated.

Such a general subgraph consists of three independent γ-cycles. In the above

relations, b1 (natural associate graph) is the first Betti number of the natural

associate graph of the FEM.

6.2.4 Selection of Optimal γ-Cycles Corresponding to Type II
Self Stress Systems

Thus far, it is found out that each γ-cycle corresponds to a cycle of the associate

graph. Also each cycle with n nodes from A(S) such as c passes through n elements.

The subgraph scI (s
c
I � SI) which is relevant to these n elements and cycle c, is a base

for the selection of an optimal γ-cycle. Such a subgraph may contain simple and

multiple members, where each multiple member with k members corresponds to the

overlap of k elements, and each simple member corresponds to the edge of a

boundary element. By imposing a special condition on such subgraphs scI , the

lists corresponding to optimal γ-cycles can be obtained.

A finite element model with six elements and its associate graph are shown in

Fig. 6.8a. The corresponding scI which contains multiple and simple members is

illustrated in Fig. 6.8b, and the corresponding γ-cycle is depicted in Fig. 6.8c.

In general, from each scI many γ-cycles (self stress systems) can be extracted,

since each simple member of a multiple member can be present in the final graph,

while the presence of a simple member in the final graph is obvious.

Thus for obtaining an optimal self stress system, on each scI , two basic selections

should be performed which are as follows:

1. Selection of the generator or the last member of a self stress system, which is

required for independency of null vectors.

2. Selection of a list of members from the subgraph scI with maximum possible

number for the first member. This selection reduces the bandwidth of the null

basis matrix considerably.

Fig. 6.7 A finite element model with six elements; the corresponding associate graph
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The mathematical representation of this selection can be expressed as

Minimize j� ið Þ ð6:14Þ

where j is the generator’s member number and i is the least member number of

current γ-cycle. In the following a simple and fast method is presented for these

selections.

6.2.5 Selection of Optimal Lists

First for each subgraph scI we have to delete all the nodes with degree 2 and the

members connected to such nodes (Fig. 6.8c) since the numeric values of these

members in the corresponding null vector are zero, and therefore they play no role

in the formation of a γ-cycle. It should be mentioned that if these members are not

omitted then the process of finding a generator will be disturbed. Since each double

member corresponds a self stress system which has already been selected, then for

independency of a new null vector, each member of a double member which has

greater member number cannot be selected as the last member. Then between the

lower numbers of double members, the maximum number should be chosen as the

last member of the current γ-cycle.
For finding a typical optimal list of members of a γ-cycle two row matrices T1

and T2 are considered as follows:

T1 ¼ d11; d
1
2; . . . ; s1; s2; . . . ; d

1
i ; sj; . . . ; d

1
k

� �
T2 ¼ d21; d

2
2; . . . ; d

2
i ; . . . ; d

2
k

� �

In the above matrices, d2i , d
1
i (i ¼ 1, . . ., k) are lower and higher member num-

bers of the double members, in which d1i < d2i (i ¼ 1, . . ., k) and sj(j ¼ 1, . . ., t)

are simple members of the selected subgraph. The entries of row matrix, T2, (d
2
i )

show the last members of previous self stress systems. Obviously, the maximum

Fig. 6.8 (a) A finite element model with its associate graph; (b) The corresponding scI ; (c) The

corresponding γ-cycle

6.2 Force Method for Finite Element Models: Rectangular and Triangular Plane. . . 225



number of the entries of matrix, T1, {d
1
i , sj}(i ¼ 1, . . ., k; j ¼ 1, . . ., t), must be

selected as the last member (d1L) of this self stress system.

In order to increase the first member number and minimizing the difference

between the first member number and the generator of the current self stress system,

the following condition can be used.

if d2i > d1i
� �

and d1i < d1L
� �� �

then d1i ¼ d2i i ¼ 1, . . . , kð Þ ð6:15Þ

After using the above condition, the desired optimal list {d1i , sj}(i ¼ 1, . . ., k;
j ¼ 1, . . ., t) will be obtained.

After finding optimal lists corresponding to type II γ-cycles, using relevant

equilibrium submatrix, numerical values for each null vector are calculated.

The list corresponding to the remaining subgraph will have DSI equal to 3. Three

null vectors corresponding to such cycles will be obtained directly from the

equilibrium submatrix which leads to suboptimal basis.

For type III γ-cycles, finding an optimal list is a time consuming process and

considering the fact that the number of cut outs is low in the real structures, the use

of this process is not economical for improvement of the final null basis. Thus for

each cycle of this type, graph scI is decomposed and all members corresponding to

Type I and Type II self stress systems and all the nodes of degree 2 are removed.

Algorithm

Step 1: Generate the associate graph of finite element model and use an efficient

method for its node numbering. It is obvious that a good numbering of this graph

corresponds to a good numbering of the elements of a finite element model. This

numbering leads to a banded adjacency matrix of the graph and correspondingly

to a banded flexibility matrix. Since numbering the members of the interface

graphs correspond to the element numbering of the finite elements, therefore

such a numbering is the only parameter for controlling the bandwidth of the

flexibility matrix.

Step 2: Setup the equilibrium matrix of the finite elements model.

Step 3: Generate the interface graph and perform its numbering. The numbering of

this graph should be performed according to the element numbering of the

considered finite elements model. After this numbering, the interface graph

can easily be formed and its members can be numbered.

Step 4: Find the Type I self stress systems. All multiple members of interface graph

are identified and the values �1 and 1 are assigned to appropriate rows

(corresponding to the member numbers) and the corresponding null vectors

are created.

Step 5: Find the Type II self stress systems. Using the Type I and Type II minimal

cycles of the associate graph, the subgraphs scI relevant subgraphs are identified

and their corresponding optimal lists are found.

Step 6: Calculate numerical values of the optimal lists. Using optimal lists selected

in Step 5, null vectors corresponding to the Type I and Type II cycles are
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calculated from the relevant equilibrium submatrix. For each generator, unit load

is applied at a cut in the generator and the internal forces are calculated to form a

null vector.

Step 7: Order the null vectors. At this step the constructed null vectors should be

ordered such that their generators form a list with an ascending order.

In the following the efficiency of this algorithm is demonstrated using numerical

examples and a comparison is made through the results of the present algorithm and

the LU factorization method. The comparisons are confined to those of sparsity,

condition number and computational time of the formation of the flexibility matri-

ces. It should be noted that all the algebraic methods use LU decomposition

approach for the formation of the null basis or controlling the independence of

the columns of the equilibrium matrix.

6.2.6 Numerical Examples

In this section examples with different topological properties are studied. The

models are assumed to be supported in a statically determinate fashion. The effect

of the presence of additional supports can separately be included for each special

case with no difficulty.

Example 1. A beam with one opening which is supported in a statically determi-

nate fashion is depicted in Fig. 6.9. This structure is also discretized using rectan-

gular and triangular finite elements. The properties of the model are:

Number of rectangular elements ¼ 16, E ¼ 2e + 8 kN/m2, ν ¼ 0.3

Number of Triangular elements ¼ 16, t ¼ 0.02 m, nc ¼ 1

Number of type I self stress systems ¼ 44 (76 %), Number of nodes ¼ 36

Number of type II self stress systems ¼ 12, DSIT ¼ 59 ¼ (44 + 12 + 3)

Pattern of the equilibrium matrix, the null basis matrices and the corresponding

flexibility matrices for the present algorithm are illustrated in Figs. 6.10, 6.11, and

6.12, respectively.

Comparison of the results of the displacement method and the present force

method can be found in Ref. [4].

Example 2. A finite element model which is supported in a statically determinate

fashion is depicted in Fig. 6.13. This structure is also discretized using quadrilateral

and triangular finite elements. The properties of the model are:

Number of quadrilateral elements ¼ 66, E ¼ 2e + 8kN/m2, ν ¼ 0.3

Number of Triangular elements ¼ 44, t ¼ 0.1 m

Number of type I self stress systems ¼ 172, Number of nodes ¼ 115

Number of type II self stress systems ¼ 63, DSIT ¼ 235 ¼ (172 + 63)
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Pattern of the null basis matrix with 1,100 entries for the present method is

shown in Fig. 6.14. Pattern of the flexibility matrix using the present algorithms are

illustrated in Fig. 6.15.

Example 3. A circular disk, shown in Fig. 6.16, is analyzed using plane stress

triangular elements with the following properties:

Diameter ¼ 4.4 m, thickness ¼ 0.05 m, E ¼ 2e + 8 kN/m2, ν ¼ 0.3,

Number of triangular elements ¼ 312, Number of nodes ¼ 169,

Number of members of the natural associate graph ¼ 456 (type-1 S.E.Ss),

First Betti number of the natural associate graph ¼ 145 (type-2 S.E.Ss),

DSI ¼ 601 ¼ (456 + 145).

Fig. 6.9 A beam and the discretization of the selected part
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Fig. 6.10 Pattern of the equilibrium matrix
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Fig. 6.11 Pattern of the

null bases matrix
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Fig. 6.12 Pattern of the

flexibility matrix
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Patterns of the null basis matrices are shown in Fig. 6.17, and pattern of the

flexibility matrix using the present algorithm is illustrated in Fig. 6.18. For LU

factorization the null basis contains 11,014 entries, while the present method leads

to only 2,623 entries.

6.3 Finite Element Analysis Force Method: Triangular

and Rectangular Plate Bending Elements

In this section, an efficient algorithm is presented for the formation of null bases for

finite element models consisting of triangular and rectangular plate bending ele-

ments [5]. The null bases obtained by this algorithm are highly sparse and narrowly

Fig. 6.13 A finite element

model with qudrilateral and

triangular elements
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Fig. 6.14 Pattern of the

null bases matrix
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banded and can be used for optimal finite element analysis by force method. In the

present method, using topological transformations the non-zero patterns of null

bases are identified and their numerical values are calculated by an algebraic

process. For this purpose, associate digraph and interface graph are utilized.
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Fig. 6.15 Pattern of the flexibility matrix
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Fig. 6.16 (a) A circular disk with loading (b) its natural associate graph
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Fig. 6.17 Patterns of the null basis matrices; (a) The present approach (b) LU factorization

approach
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Fig. 6.18 Pattern of the flexibility matrix using the presented method
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6.3.1 Graphs Associated with Finite Element Models

An Associate Digraph: In this graph one node is associated with each element of

the FEM and two nodes are connected with a member if the elements have a

common edge. A typical member of the graph is directed from the node with

smaller number to the node with higher number. Except the node numbered as

1, all the other nodes have one or two negatively incident (one or two entering

members) members defined as the negative incidence number of the node (if the

nodes are badly numbered this number can be increased). Owing to the importance

of these numbers in recognizing the types of SESs, the negative incidence numbers

of the nodes of the graph should carefully be calculated. In Fig. 6.19, a rectangular

and a triangular FEM with element numbering and their corresponding associate

digraphs and negative incidence number of nodes are shown.

An Interface Graph. This graph can easily be constructed for triangular FEM

using the following two rules:

1. This graph contains all the nodes of the FEM.

2. With each edge of an element of FEM, two graph members are associated.

Therefore, in the interface of two elements, four members are present incident

with the two end nodes of the common edge.

For rectangular FEM the following additional rule should be used:

3. For each element a diagonal member is added in the interface graph. This

member can be added between the first and third nodes of the element. These

graphs for a rectangular and triangular FEM are shown in Fig. 6.20.

The member numbering of the interface graph should be performed according to

the numbering of the FEM, taking into account the primary nodal numbering of

considered element in the model. Thus for each triangular element six, and for

rectangular element nine members of the interface graph will be numbered sequen-

tially. In Fig. 6.20, such a numbering is shown for a typical element (a).

6.3.2 Subgraphs Corresponding to Self-Equilibrating
Systems

6.3.2.1 Definitions of Independent Elements Forces

For the generation of equilibrium matrixA of a FEM, a system of independent force

systems should be defined and also their relations with the element nodal forces

should be established. The system of independent element forces for a rectangular

finite element contains four symmetric moments (F1,F3,F5,F7) and four
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anti-symmetric moments (F2,F4,F6,F8) and a set of four forces (F9), which are

applied at four corners of the element. These forces are related to the nodal forces

(S1 ~ S12) by a 12 � 9 transformation matrix. A comprehensive study of these

forces and their corresponding transformation matrix can be found in [12].

Fig. 6.19 A rectangular and a triangular FEM with their associate digraphs and nodes incidence

numbers

Fig. 6.20 A rectangular and a triangular FEM with their interface graphs and their numbering for

a typical element (a)
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The system of independent element forces for a triangular finite element can be

defined as three symmetric moments (F1,F3,F5) and three anti-symmetric moments

(F2,F4,F6).

These forces can be related to element nodal forces (S1 ~ S9) using Eq. 6.16. The

nodal forces are shown in Fig. 6.21, and the defined element forces for a triangular

finite element are illustrated in Fig. 6.22. The interface graph defined in the

preceding section is formed based on the way these element forces are considered

and members of this graph have one-to-one correspondence with the element

forces.

S ¼ TF ð6:16Þ
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In the transformation matrix T, Lij is the length and lij, mij are direction cosines

of the edge ij, which have the following definitions according to nodal coordinates:

lij ¼ xj � xi

Lij

mij ¼
yj � yi

Lij

Considering the above definitions, the degree of statical indeterminacy (DSI) for

a rectangular and triangular plate bending FEM with determinate support condi-

tions is as follows:

Fig. 6.21 Nodal forces for

a triangular finite element
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DSI ¼ 9m� 3nþ 3 For rectangular FEMð Þ ð6:17Þ
DSI ¼ 6m� 3nþ 3 For triangular FEMð Þ ð6:18Þ

where m is the total number of finite elements and n is the total number of nodes

of FEM.

6.3.2.2 Self-Equilibrating Systems of Type I

Every set consisting of four members of interface graph, corresponding to two

elements of the FEM with common edges, is called a self-equilibrating system of

Type I.

The corresponding subgraph contains two SESs. Therefore, the set of four

members corresponding to the common edges of the two elements i and j(i < j),

has two members mi and ni(m < n), and rj and sj (r < s). The two SESs obtained

from this set are (m,r) with (�1, 1) and (n,s) with (1, 1). On the other hand, a null

vector with non-zero entries (�1, 1) in rows (m,r) and another null vector with

non-zero entries (1, 1) at rows (n,s) are formed. Obviously, the number of such

minimal SESs is twice the number of the members of associate digraph, since each

member of this graph passes from interface of two elements. Nearly, two-third of

null vectors for a rectangular or triangular FEM are of this type, corresponding to

high sparsity for the null basis matrix.

6.3.2.3 Self-Equilibrating Systems of Type II

For each two adjacent finite element (two adjacent node in the associate digraph)

such as r and j (r < j) in which j have negative incidence 1, another type of SES can

be constructed which is called as the self-equilibrating system of Type II. In

Fig. 6.23a, two adjacent rectangular and triangular finite element as well as their

Fig. 6.22 Independent element forces for a triangular finite element
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associate digraphs are shown. Their corresponding interface graphs are also shown

in Fig. 6.23b. The DSI of interface graph is 3 and thus correspond to three null

vectors. Two null vectors are previously formed using four members in the inter-

face of two elements. Therefore, in order to form the third SES, the generator of two

type I SESs, should be removed from interface subgraph. Thus the DSI of

remaining subgraph equals one and an independent null vector can simply be

extracted.

It should be noted that the remaining subgraph corresponding to rectangular

elements have still six ineffective members (hidden members in Fig. 6.23c) which

can analytically be shown that always lead to zero entries in related null vector.

Thus the subgraphs corresponding to Type II SESs, of rectangular and triangular

finite elements have always ten members. In Fig. 6.23, the interface graph and the

subgraphs corresponding to Type II SESs are shown for two rectangular and

triangular adjacent elements.

For each node with a negative incidence two, a self equilibrating system of Type

II can also be extracted. For each element k with negative incidence two which is

adjacent to two elements i and j with k > i, j, pairs (i, k) or (j, k) can be used for the

formation of a SES. Though both choices are valid, for maximum reduction in

bandwidth of null basis matrix, the pair (max(i,j), k) should be selected.

6.3.2.4 Self-Equilibrating Systems of Type III

There are two elements i and j with k > i, j in the adjacency of an element such as k

with negative incidence two. Using these three elements and from their related

interface graph, a subgraph corresponding to another minimal SES can be

decomposed which is defined as the self equilibrating system of Type III. The

interface graph related to these three elements has DSI ¼ 6 and corresponds to six

null vectors. Therefore, in order to maintain the independency of null vectors, one

a b c

Fig. 6.23 (a) Two adjacent elements, (b) Related interface graphs, (c) Subgraphs of Type II SESs
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independent SES should be extracted from this graph. In this subgraph, there exist

four and one member corresponding to te generators of Type I and II SESs,

respectively, which using them five null vectors were previously formed. Thus

the remaining subgraph after removing these members will be one degree statically

indeterminate (DSI ¼ 1) and corresponds to an independent null vector.

This process can be used without any changes for rectangular and triangular

FEM. However, in rectangular finite elements the remaining subgraphs have always

some ineffective members. In Fig. 6.24, these subgraphs are shown for triangular

and rectangular FEMs.

6.3.2.5 Self-Equilibrating Systems of Type IV

In the previous sections, three types of SESs were defined. These systems are

sufficient for formation of null bases of finite element models without openings.

However, if a FEM contains one or more openings, then another type of SESs can

be identified which is called the self equilibrating system of Type IV, Fig. 6.25. In

fact, from each opening in the FEM three independent SESs can be extracted. The

subgraphs corresponding to these SESs have usually more members than the

previous systems and also their related null vectors have more non-zero entries.

Fig. 6.24 Triangular and rectangular FEM and the corresponding Type III SESs
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Every cycle of the associate digraph, if their related elements have no common

in one node, corresponds to an opening. Since, every cycle has the same number of

members as its nodes; therefore a cycle with m members passes through m finite

elements of the FEM. As m triangular and rectangular finite elements surrounding

an opening have m and 2m nodes respectively, therefore using Eqs. 6.17 and 6.18

the DSI of their related interface subgraphs will be 3m + 3. However, in these

subgraphs 3m self equilibrating systems consisting 2m SESs of Type I andm SESs

of Types II and III are previously selected. Then simply by removing the generators

of these SESs from interface subgraph corresponding to an opening, a subgraph

with DSI ¼ 3 will be remained which corresponds to three null vectors. These three

null vectors can simply be calculated using the remaining members of the interface

graph as the columns of the related equilibrium submatrix and by utilizing an

algebraic procedure. The null vectors related to openings which are calculated by

the above process are subminimal. Finally, using the present procedures all minimal

and subminimal SESs are simply calculated and the null basis matrix is generated.

Due to the nature of present method, the calculated null bases are highly sparse and

narrowly banded. However, for further reduction in bandwidth of null basis matrix

(without any changes in sparsity) for each SES, an optimal list should be selected.

Algorithm

This algorithm consists of the following steps:

Step 1. In this step the associate digraph of the considered FEM is formed. In order

to have a banded null basis, the nodes of this graph should be numbered by any

efficient nodal ordering algorithms. Obviously, the effect of final numbering

should be considered in FEM and rectangular equilibrium matrix. However, the

ordering of the elements of FEM (nodes of associate digraph) is sufficient for

formation of a banded null basis and there is no need for nodal ordering of FEM.

Step 2. The rectangular equilibrium matrix of the FEM is formed in this step.

Step 3. Formation of the interface graph of the FEM and the numbering their

members according to nodal and element numbering of FEM is performed n

this step.

Step 4. In this step the SESs of Type I are formed and the corresponding null vectors

are obtained.

Fig. 6.25 A FEM with an

opening and related cycle

from the associate digraph
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Step 5. Formation of the SESs of Type II and calculation of the corresponding null

vectors by using an algebraic process (such as LU factorization) on the related

submatrices is performed in this step.

Step 6. Formation of the SESs of Type III, Numerical values of null vectors are

found by a similar process in Step 5.

Step 7. The SESs of Type IV are formed and calculation of the numerical values of

related null vectors is carried out if the model contains one or more openings,

similar to Steps 5 and 6.

Step 8. The calculated null vectors are combined and ordered in a matrix in such a

way that their generators make an ascending ordered list.

6.3.3 Numerical Examples

In this section three examples from triangular and rectangular FEM are studied. All

of the models are assumed to be supported in a statically determinate fashion. The

effect of indeterminate support conditions can separately be included with no

difficulty [13]. However, the null basis matrices for each model are calculated

using the present algorithm and LU factorization methods and the results are

compared through computational time, sparsity, pattern of matrices and accuracy.

Example 1. In this example (Fig. 6.26), the null basis matrix (B1) for a triangular

FEM with statically determinate support conditions is calculated and the sparsity,

computational time and two norms of AB1 matrix, namely Frobenious and infinite

Fig. 6.26 A triangular FEM with numbering
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norms are compared with LU factorization method, Fig. 6.27 (Table 6.1). The FEM

properties are as follows:

Number of triangular elements ¼ 98, Number of nodes ¼ 64, DSI ¼ 399,

Thickness ¼ 0.1 m, E ¼ 2e + 8 kN/m2, ν ¼ 0.3.

Example 2. In Fig. 6.28, a rectangular 1.6 m � 0.8 m plate which is discretized as

120 rectangular finite elements is shown. Patterns of the calculated null basis matrix

using two methods are shown in Fig. 6.29. Also the results of the comparison are

presented in Table 6.2. The properties of the model are as follows:

Number of rectangular finite elements ¼ 128, Number of nodes ¼ 153,

DSI ¼ 696, Thickness ¼ 0.05 m, E ¼ 2e + 8 kN/m2, ν ¼ 0.3.

Example 3. In this example, a circular plate (with diameter 4) which is clamped at

its center (determinate support condition) is studied, Fig. 6.30. Pattern of the null

basis matrix for two methods and the comparison of results are shown in Fig. 6.31

and Table 6.3, respectively. The properties of the model are as follows:
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Fig. 6.27 Pattern of the null basis matrix: (a) LU factorization, (b) present method

Table 6.1 Comparison of the sparsity, computational time and accuracy of the present algorithm

versus the LU factorization

Number of non-zero entries (nz)
Time

LU Time
kAB1kfro kAB1k∞

LU factorization 10,187 1.0000 7.39e�13 5.57e�12

Present algorithm 1,873 0.7885 2.95e�14 1.86e�14
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Fig. 6.28 The FEM of a rectangular plate and its numbering
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Fig. 6.29 Pattern of the null basis matrix: (a) LU factorization, (b) present method

Table 6.2 Comparison of the sparsity, computational time and accuracy of the present algorithm

versus the LU factorization

Number of non-zero entries (nz)
Time

LU Time
kAB1kfro kAB1k∞

LU factorization 24,663 1.0000 3.76e�12 2.62e�11

Present algorithm 1,856 0.6539 1.74e�14 7.10e�15
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Fig. 6.30 The FEM of a circular plate
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Fig. 6.31 Pattern of the null basis matrix: (a) LU method, (b) the present method

Table 6.3 Comparison of the sparsity, computational time and accuracy of the present algorithm

versus the LU factorization

Number of non-zero entries (nz)
Time

LU Time
kAB1kfro kAB1k∞

LU factorization 398,389 1.0000 4.15e�11 6.65e�10

Present algorithm 17,350 0.1852 7.51e�14 1.95e�14
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Number of triangular finite elements ¼ 800, Number of nodes ¼ 441,

DSI ¼ 3,480, Thickness ¼ 0.2 m, E ¼ 2e + 7 kN/m2, ν ¼ 0.2.

The results of examples clearly reveal the efficiency of the present method in

reduction of non-zero entries and bandwidth. In Example 3, the difference of the

computational time for two methods has been considerable which means that the

complexity of present method is lower than LU method, and this difference

becomes even more when the DSI is increased. The values of norms also indicate

the higher accuracy of the present algorithm.

Finally, the results show that, the present method can be used as an efficient tool

for null basis calculation of plate bending FEM and optimal finite element force

method because in all aspects of comparisons, (sparsity, computational time and

accuracy) the present algorithm has considerable priority versus the LUmethod and

thus versus other algebraic algorithms which LU factorization is one of the primary

steps of those methods.

6.4 Force Method for Three Dimensional Finite Element

Analysis

In this section an efficient method is presented for the formation of null bases of

finite element models comprised of tetrahedron elements, corresponding to highly

sparse and banded flexibility matrices [7]. This is achieved by associating special

graphs to the finite element model and selecting appropriate subgraphs and forming

the self stress systems on these subgraphs.

6.4.1 Graphs Associated with Finite Element Model

Here, the natural associate graph and the interface graph are utilized as defined in

the following:

The interface graph SI. This graph can be constructed using the following two

rules:

a. There is 1–1 correspondence between the nodes of the interface graph and the

nodes of the FEM.

b. For each edge of the tetrahedron, one independent member is associated. There-

fore, if k tetrahedrons have a common edge, then the corresponding member of

the interface graph will consists of k members (multiple members). A FEM and

the corresponding interface graph are shown in Fig. 6.32a, b, respectively.

The members of the interface graph should be numbered according to the FEM.

For each tetrahedron element like a, six members of the interface graph should be

numbered consequently. The numbering is performed according to the direction of

the independent element forces. A typical numbering is shown in Fig. 6.32c.
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6.4.2 The Pattern Corresponding to the Self Stress Systems

The nodal forces and independent element forces of a tetrahedron is defined as

shown in Fig. 6.33. This is the same convention as that of the Przemieniecki [10].

Considering Fig. 6.32, in order to find the patterns corresponding to the self

stress systems, the skeleton of tetrahedra are simulated as a space truss. This is

possible since the independent element forces F1 to F6 are applied in the nodes and

are along the edges of the tetrahedron, Fig. 6.33. The statical indeterminacy of a

space truss with m members and n nodes is given as γ(S) ¼ m � 3n + 6, therefore

the Degree of Statical Indeteminacy (DSI) of the entire FEM, supported in a

statically determinate fashion, can be calculated with same relationship as:

DSIT ¼ 6M� 3Nþ 6 ð6:19Þ

where M is the number of tetrahedron elements and N is the total number of nodes

of the FEM.

a b

Fig. 6.33 The nodal and element forces of a tetrahedron element

a b c

Fig. 6.32 (a) A 3D finite element model; (b) The interface graph; (c) Numbering for the skeleton

of a typical tetrahedron a
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With the above simulation, the patterns of the self stress systems can be

identified as follows:

6.4.2.1 Type I Self Stress Systems

Each k-multiple member of the interface graph is a subgraph on which k � 1 self

stress systems can be generated. In other words, on a k-multiple member numbered

as (i1,j2,l3, . . .,mk � 1,nk) with the condition (i < j < l < . . . < m < n), k � 1 self

stress systems each formed on two single members can be constructed.

Each k(k � 1)/2 combination of double members from the above list is valid

for a self stress system but obviously, for maximum reduction in bandwidth

of the final null basis, k � 1 pairs of duplicate members should be selected as

(i,j), (j,l), . . ., (m,n). Each pair (i,j) with (i < j), corresponds to a null vector

with their nonzero entries are located in rows i and j, and their numeric values

are �1, 1, respectively. The member with bigger member number (j) is called the

generator. Each pairs forms the underlying subgraph of a Type I self stress system.

For finite elements models with tetrahedron elements, more than 85 % of total

self stress systems are of Type I. Thus a large percent of the minimal null vectors

can be formed only by the determination of member numbers of these pairs. It

should be noted that in the process of the formation of the interface graph, these

pairs and their numbers can simply be identified.

6.4.2.2 Type II Self Stress Systems

There are other types of self stress systems which are topologically identical to the

minimal self stress systems of the corresponding space truss. In the other words, if a

k-multiple member from the interface graph is substituted by a member, or if the

generators of the Type I self stress systems are removed from SI, then the remaining

subgraph is a graph, denoted by S. In general the self stress systems built on S are

called Type II self stress systems.

In general, the self stress systems which can be selected from subgraph S are

called Type II systems. In fact these systems are γ-cycles, which correspond to the

cycles of minimal lengths of the associate graph of the finite element model. A

connected rigid subgraph Ck of S with γ(Ck) ¼ 1, which has no removable sub-

graph, is termed a γ-cycle of S, Ref. [11]. A removable subgraph Sj of a graph Si, is
the elementary subgraph for which γ(Si � Sj) ¼ γ(Si).

The associate graph of tetrahedron finite element models, denoted by A(S), is a

graph in which to each tetrahedron element one node is associated and two such

nodes are connected together by a member if their corresponding elements having a

common face (3 common nodes). A finite element model with 24 tetrahedron

elements is shown in Fig. 6.34a, its associate graph, which is the 1-skeleton of a

polyhedron, is depicted in Fig. 6.34b.
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Corresponding to the regional cycle basis of a planer graph (the set of cycles

which are the boundaries of the internal regions [11]), in general, two types of

minimal cycles can be extracted from the associate graph of a finite element model.

These cycles are as follows.

6.4.2.3 Type I Minimal Cycles

In these cycles all the corresponding finite elements have two common nodes. Each

cycle in this type passes through M finite elements for which its corresponding

interface graph has N ¼ M + 2 nodes, and (3M � 1) Type I self stress systems can

be extracted. Therefore, by using Eq. 6.8, the degree of statical indeterminacy of

equivalent γ-cycle is 1. Thus each Type I cycle corresponds to one null vector.

6.4.2.4 Type II Minimal Cycles

A minimal cycle which surrounds an opening (in the form of a hole through a

structure), is called Type II minimal cycle. Such a cycle passes through M finite

elements and its corresponding interface graph has N ¼ M nodes, and 3M Type I

self stress systems can be extracted. Again by using Eq. 6.8, the DSI of equivalent

γ-cycle is 6. Thus each Type II cycle corresponds to six null vectors.

a

b

Fig. 6.34 A finite element

model with 24 tetrahedron

elements and the

corresponding associate

graph
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6.4.3 Relationship Between γ(S) and b1(A(S))

The goal of this section, which has theoretical importance, is to derive a relationship

between the degree of statical indeterminacy of the 1-skeleton of a FE model S and
the first Betti number of the associate graph of the model without openings

(analogous to 2-dimensional fully triangulated trusses [11]). For this purpose an

expansion is employed.

6.4.3.1 Number of Nodes of the Associate Graph

Consider a tetrahedron element. The 1-skeleton S corresponding to this element has

six members and its associate graph is only a single node. Second tetrahedron

element results in the addition of a typical subgraph S0 as shown in Fig. 6.35. Each

time by adding this subgraph to the previous graph leads to addition of three

members to the main graph S and one node to its associate graph.

The associate graph which is formed using this process is a tree and therefore its

number of nodes can simply be calculated as:

N
0 ¼ M Sð Þ � 3

3
ð6:20Þ

where M(S) and N0 are the number of members and nodes of the 1-skeleton of the

model S and its associate graph A(S), respectively. Obviously N0 is also equal to the
number of tetrahedron elements.

Addition of one node and three members in each stage of expansion is the basic

condition for validity of Eq. 6.20. Obviously, in this case the 1-skeleton can be

viewed as a space truss having DSI equal 0. Some stages of the expansion process is

shown in Figs. 6.36a–c. If the subgraph S0 is joined to the previous 1-skeleton in a

manner that only one new member is added to S without addition of a new node

(equivalent to the addition of a new tetrahedron element, one new node to A(S) and

formation of a cycle in A(S)), then the DSI of corresponding space truss will

be increased by unity, Fig. 6.36d. In such a case, Eq. 6.9 is not valid and must be

modified using a new parameter. Clearly, the DSI of the space truss, γ(S), should be
considered as this new parameter.

Considering the above mentioned point, Eq. 6.20 is modified as

Fig. 6.35 A typical subgraph S0
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N
0 ¼ M Sð Þ þ 2γ Sð Þ � 3

3
ð6:21Þ

Substitution γ(S) ¼ M(S) � 3N(S) + 6 in Eq. 6.21 leads to

N
0 ¼ M Sð Þ � 2N Sð Þ þ 3 ð6:22Þ

In fact, the number of nodes of the associate graph is equal to the DSI of the

1-skeleton S, when S is viewed as a two dimensional truss!

6.4.3.2 The Number of Members of the Associate Graph

Similar to the previous section, the number of members of the associate graph can

also be determined. However, if the expansion process is in a manner that leads to

an associate graph which is a tree, its number of members can be simply calculated

using the property of a tree, i.e.

M
0 ¼ N

0 � 1 ð6:23Þ

or

M
0 ¼ M Sð Þ � 6

3
ð6:24Þ

Here again, if joining a subgraph S0 leads to the addition of only one member to

the graph S (this case corresponds to the addition of two members and one node to

A(S), and one unit increase in the DSI of space truss), then Eq. 6.24 can simply be

modified using γ(S) as

0DSI
0'M,1'N

6)S(M
S

=
==

=

0DSI
1'M,2'N

9)S(M
SSS 01

=
==

=
= U

0DSI
2'M,3'N

12)S(M
SSS 012

=
==

=
= U

1DSI
4'M,4'N

13)S(M
SSS 023

=
==

=
= U

a b c d

Fig. 6.36 The process of expansion for the formation of a γ-cycle with DSI equal to unity
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M
0 ¼ M Sð Þ þ 5γ Sð Þ � 6

3
ð6:25Þ

or

M
0 ¼ 2M Sð Þ � 5N Sð Þ þ 8 ð6:26Þ

Now it is possible to relate the number of independent cycles of the associate

graph to the number of nodes and members of the 1-skeleton S. The dimension of

the cycle space, or the first Betti number of the associate graph, can be calculated

using

b1 A Sð Þð Þ ¼ M
0 � N

0 þ 1 ð6:27Þ

By substitution ofM0 and N0 from Eqs. 6.11 and 6.26, the relation for b1(A(S)) is

obtained in terms of M(S) and N(S) as

b1 A Sð Þð Þ ¼ M Sð Þ � 3N Sð Þ þ 6 ð6:28Þ

and this is the relationship for the DSI of a three dimensional truss.

The right hand of the above formula is identical to the DSI of a space truss.

Examining further models with tetrahedron finite elements and their corresponding

associate graphs, it becomes obvious that the relationship presented in earlier

sections are valid for all the cases where A(S) is not the 1-skeleton of a polyhedron.

If A(S) is the 1-skeleton of a polyhedron (Fig. 6.34b), then internal nodes will be

created in the finite element model or graph S (a node is called internal if it is not
positioned on the surface of the FEM). This case corresponds to situations where in

the process of expansion, adding one tetrahedron element leads to the addition of

three members and one node for the graph A(S). For such cases, the present

relationship must be modified considering the contribution of the number of

internal nodes as:

N
0 ¼ M Sð Þ � 2N Sð Þ þ 3þ Ni Sð Þ ð6:29Þ

M
0 ¼ 2M Sð Þ � 5N Sð Þ þ 8þ 3Ni Sð Þ ð6:30Þ

b1 A Sð Þð Þ ¼ M Sð Þ � 3N Sð Þ þ 6þ 2Ni Sð Þ ð6:31Þ

or

b1 A Sð Þð Þ ¼ γ Sð Þ þ 2Ni Sð Þ ð6:32Þ

In which Ni(S) is the total number of internal nodes in the 1-skeleton S of the

finite element model.

The above equations are general relationships for finding the number of nodes,

members and the dimension of the cycle space of an associate graph. Equation 6.32
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shows that, if no internal node is created, then the dimension of the cycle space of

the associate graph is equal to the DSI of the corresponding space truss, and

therefore for each cycle, an independent null vector can be formed. If there is one

or more internal nodes in the model, then the dimension of the cycle space of A

(S) is greater than of the DSI of S and thus all the null vectors corresponding to

cycles cannot be used in formation of the final null basis. In this case, 2Ni(S) of

vectors must be selected and ignored. Some of the null vectors will have the same

generators. In Sect. 6.4.2 a method is presented for the selection of these vectors. It

should be noted that, in 2-dimensional trusses and plane stress and strain finite

elements, the dimension of the cycle space of A(S) is always equal to the DSI of the

1-skeleton S.

6.4.4 Selection of Optimal γ-Cycles Corresponding to Type II
Self Stress Systems

Thus far, it is found out that each γ-cycle corresponds to a minimal cycle of the

associate graph. Also each minimal cycle with n nodes from A(S) such as c passes
through n tetrahedron elements. The subgraph scI (s

c
I � SI) which is relevant to these

n elements and cycle c, is a base for the selection of an optimal γ-cycle. Such a

subgraph may contain simple and multiple members, where each multiple member

with k members corresponds to the overlap of k tetrahedron elements, and each

simple member corresponds to the edge of a element in the boundary of the model.

By applying a special condition to such subgraphs, lists corresponding to optimal

γ-cycles can be obtained.

A finite element model with four tetrahedron elements and its associate graph are

shown in Fig. 6.37a. The corresponding scI which contains multiple and simple

members is illustrated in Fig. 6.37b, and the corresponding γ-cycle is depicted in

Fig. 6.37c.

In general, from each scI many γ-cycles (self stress systems) can be extracted,

since each simple member of scI is included in a γ-cycle, and all the members of a

multiple member can be used in the formation of final self stress system. Thus for

obtaining an optimal self stress system, on each scI , two basic selections should be

performed:

a b c

Fig. 6.37 (a) Finite element model with its associate graph; (b) corresponding scI ;
(c) corresponding γ-cycle
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1. Selection of the generator or the last member of a self stress system, which is

required for the null vectors to be independent.

2. Selection of a list of members from graph scI with maximum possible number for

the first member. Such a selection can reduce the bandwidth of the null basis

matrix considerably.

The mathematical representation of this selection can be written as

Minimize j� ið Þ ð6:33Þ

where j is the generator’s member number and i is the least member number of the

current γ-cycle. In the following a simple and fast method is presented for these

selections.

6.4.5 Selection of Optimal Lists

In Table 6.4, members of a graph scI which are relevant to a Type I minimal cycle of

A(S) are shown. In this table di, (i ¼ 1, . . ., k) are the member numbers of multiple

members, where d1i < d2i < . . . < dni , and sj; (j ¼ 1, . . ., t) are the member num-

bers of simple members. All dmi with (m 6¼ 1) are already used as the generators of

Type I self stress systems. Therefore, it is obvious that the max {d1i ,sj} ¼ d1L,

(i ¼ 1, . . ., k, j ¼ 1, . . ., t) must be selected as the generator of the current γ-cycle.
For maximizing the difference between the first member number and the gener-

ator of the current γ-cycle, the following condition can be used:

find max d
j
i

� 	� 	
d
j
i < d1L




 then d1i ¼ max d j
i

� 	
i ¼ 1, . . . , k, j ¼ 2, . . . , nð Þ

ð6:34Þ

Equation 6.34 means that, in each multiple member the largest d
j
i, (j ¼ 2, . . ., n)

which is also less than the generator’s member number (d1L), should be substituted

with d1i for all the indices of i. After using the above process, the remained list, {d1i ,sj},

(i ¼ 1, . . ., k, j ¼ 1, . . ., t) is the desired optimal list which corresponds to subgraph

of the current optimal self stress system.

After finding optimal lists corresponding to Type I minimal cycles, using

relevant equilibrium submatrix, numerical values for each null vector are calcu-

lated. For Type II minimal cycles, finding an optimal list is a time consuming

process and considering the fact that the number of openings is low in the real

Table 6.4 Lists

corresponding to graph scI
d11 d12 . . . s1 s2 . . . d1i sj . . . d1k

d21 d22 . . . . . . d2i . . . d2k
d32

dni
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structures, the use of this process is not economical for improvement of the final

null basis. Thus for each cycle of this type, graph scI is decomposed and all members

corresponding to Type I self stress systems are removed. The remaining subgraph

has the DSI equal to 6, and then 6 null vectors can be calculated from relevant

equilibrium submatrix. Obviously, these null vectors will be suboptimal.

At this stage, considering the number of Type I self stress systems previously

selected, decision for performing the rest of the process should be taken. Suppose t1
Type I self stress systems are identified previously. Then t2 ¼ DSIT � t1 Type II

self stress systems should be selected. Therefore, if we have t2 ¼ b1(A(S)) + 5nc
(with nc being the total number of openings) meaning that there is no internal node

in the model, then all γ � cycles corresponding to cycles of A(S) should be

involved in the formation of final null basis. Otherwise, t2 < b1(A(S)) + 5nc
means that there are one or more internal nodes. This case corresponds to the

generation of null vectors with identical generator numbers. These vectors can

usually be grouped in triplex sets and some of them should be deleted. It should be

noted that all vectors which have unique generators are valid and independent. In

the following, an algebraic procedure is presented for the formation of a desired list

of vectors.

In Table 6.5, a schematic view for the patterns of three null vectors with identical

generator is illustrated. These vectors correspond to three minimal cycles of A

(S) which according to the process presented in Sect. 4.1, their corresponding

optimal lists have identical generator as v8.
According to Eq. 6.22, it is obvious that if v8 6¼ 0, then for the generator v8, the

second vector will be the desired vector from these three sets (rows). In such a case,

after the selection of one optimal vector, one cannot simply delete the remaining

vectors. For this purpose the following two controls should be performed.

a. Numerical cancellation control

Each vector for which the numerical value of its generator is equal to zero has

in fact another generator (closer nonzero entry to the generator). If there is no

such a vector with identical generator among all the previously selected vectors,

then this vector should be selected as a new and independent null vector.

b. New generator control

All combinations of m vectors (m is usually equal 3) for possibility of the

formation of vectors with new generator should be calculated. These combina-

tions should be found in a manner that the common generator member of vectors

is removed. Here again, from newly created vectors, those with new generators

should be selected as valid and independent null vectors. As an example, in

Table 6.5, the combination of the first and third rows leads to a new vector with

new generator v7. If there is no such a vector with this new generator among all

Table 6.5 Schematic view of

three null vectors with

identical generator

v1 v2 0 0 0 v6 v7 v8

0 0 v3 v4 0 0 v7 v8
v1 0 v3 0 v5 0 0 v8
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the previously selected null vectors, then this new vector should be selected as a

valid and independent null vector with the generator as v7.

Finally, using the above mentioned two conditions, t2 valid and independent

vectors are identified and totally DSIT null vectors will be left. Since this process

is performed on all vectors with identical generators, therefore all the desired

vectors are obtained automatically and there is no need to additional information

about the number of internal nodes. In the following an efficient algorithm is

presented for finding the null basis of tetrahedron finite element models.

Algorithm

Step 1: Generate the associate graph of finite element model and use an efficient

method for its node numbering, Kaveh [11]. It is obvious that a suitable

numbering of this graph corresponds to good numbering of elements of finite

element model. This numbering leads to a banded adjacency matrix of the graph

and correspondingly to a banded flexibility matrix.

Step 2: Setup the equilibrium matrix of finite elements model.

Step.3 Generate the interface graph and perform its numbering. The numbering of

this graph should be performed according to the element numbering of the

considered finite elements model.

Step 4: Find the Type I self stress systems. All multiple members of interface graph

are identified and the values �1 and 1 are assigned to appropriate rows

(corresponding to the member numbers). At the end of this step t1 minimal

null vectors are created.

Step 5: Find the Type II self stress systems. Using the Type I and Type II minimal

cycles of the associate graph, relevant subgraphs are identified and their

corresponding optimal lists are constructed.

Step 6: Calculate numerical values of the optimal lists. Using optimal lists selected

in Step 5, null vectors corresponding to the Type I and Type II minimal cycles

are calculated from the relevant equilibrium submatrix.

Step 7: Order the null vectors. At this step the constructed null vectors should be

ordered such that their generators form a list with an ascending order.

In the following the efficiency of this algorithm is demonstrated using two

numerical examples and a comparison is made through the results of the present

algorithm and the LU factorization method. The comparisons are confined to those

of sparsity, condition number and computational time of the formation of the

flexibility matrices.

6.4.6 Numerical Examples

In this section two examples with different topological properties are studied. The

models are assumed to be supported in a statically determinate fashion. The effect

of the presence of additional supports can separately be included for each special

case with no difficulty, Kaveh and Fazli [13]. The patterns of the null basis matrix
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B1 and the flexibility matrix G are formed for two examples, and the number

nonzero entries of these matrices are denoted by nz.

Example 1. A thick beam-type structure supported in a statically determinate

fashion is depicted in Fig. 6.38. This structure is discretized using tetrahedron finite

elements. The properties of the model are as follows:

Number of tetrahedron elements ¼ 480, Number of nodes ¼ 205

Elastic modulus E ¼ 2e + 7 kN/m2, Poisson’s ratio ν ¼ 0.2

Number of Type I self stress systems ¼ 2,032 (89.5 %)

First Betti number of the associate graph ¼ 317 (independent cycles)

Number of Type II self stress systems ¼ 239

Number of internal nodes (Ni) ¼ 39, DSIT ¼ 2,271 ¼ (2,032 + 239).

The sparsity of the final null basis obtained by the present algorithm is approx-

imately 12 % of LU method, as shown in Fig. 6.39. The conditioning numbers, the

∞ norms and the Frobenius norms of AB1 are given for the present method and LU

factorization approach, where A is the equilibrium matrix. The computational time

is lower than 50 % for the present algorithm. The flexibility matrix shown in

Fig. 6.40 is quite banded (Table 6.6).

In the above table, λmax/λmin is the condition number, and kk∞, kkfro are the ∞
norm and Frobenius norm of AB1, respectively.

Example 2. A thick flat plate with 3D tetrahedra in a single layer is considered which

is supported in a statically determinate fashion as depicted in Fig. 6.41. The 1-skeleton

Fig. 6.38 A thick beam-type structure and the associate graph of the selected part
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Fig. 6.39 Patterns of B1(2,880 � 2,271) and the number of nonzero entries, nz, of null basis;

(a) Present algorithm; (b) LU factorization
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Fig. 6.40 Pattern of the flexibility matrixG(2,271 � 2,271) and the number of its nonzero entries

obtained by the present algorithm

Table 6.6 Comparison of the condition number of G, the norms and the computational time

Time/LU time λmax/λmin kAB1k∞ kAB1kfro
LU 1.00 1.67e+5 5.73e�12 1.29e�12

Present Algorithm 0.48 3.74e+5 0.00 0.00
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of this model is similar to a double layer space structure. The associate graph of this

model is also shown in Fig. 6.41. The properties of the model are as follows:

Number of tetrahedron elements ¼ 904, Number of nodes ¼ 402

Elastic modulus E ¼ 2e + 7 kN/m2, Poisson’s ratio ν ¼ 0.2

Number of Type I self stress systems ¼ 3,719 (88.0 %)

First Betti number of the associate graph ¼ 505 (independent cycles)

Number of Type II self stress systems ¼ 505

Number of internal nodes (Ni) ¼ 0, DSIT ¼ 4,224 ¼ (3,719 + 505)

Here again, the sparsity of final null basis obtained by the present algorithm is

approximately 10.5 % of LU method, as depicted in Fig. 6.42, while its computa-

tional time is nearly 11 % and also the condition number of G is improved,

Table 6.7. The flexibility matrix G is also well structured as shown in Fig. 6.43.

In this chapter low order elements were presented. Higher order element will be

discussed in subsequent chapter.

6.5 Efficient Finite Element Analysis Using

Graph-Theoretical Force Method: Brick Element

In this section, an efficient graph theoretical method is presented for FEA of models

composed of 3D brick elements. For this purpose first independent force systems

and flexibility matrix of the element are presented, followed by the formation of the

Fig. 6.41 A double layer grid, and the associate graph of the selected part of the grid
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minimal subgraphs of the graph models of the considered FEMs. Then the self-

equilibrating systems are constructed on these subgraphs forming a statical basis of

the FEM corresponding to highly sparse and banded flexibility matrix.

6.5.1 Definition of the Independent Element Forces

In displacement method we use three forces at each node of the element, while in

the force method, as shown in Fig. 6.44, it is preferable to select twelve edge force

systems plus six diagonal force systems on six faces of the brick element between

the second and third nodes of the current face. These element forces can be related

to nodal forces using Eq. 6.35 as

S ¼ TF ð6:35Þ

where lij is the length and mij, nij, pij are the direction cosines of the line between

nodes i and j.
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Fig. 6.42 Patterns of B1(5,424 � 4,224) and the number of nonzero entries, nz, of null basis;

(a) present algorithm; (b) LU factorization

Table 6.7 Comparison of the condition number of G, the norms and the computational time

Time/LU time λmax/λmin kAB1k∞ kAB1kfro
LU 1.00 1.34e+6 1.64e�10 1.83e�11

Present Algorithm 0.11 1.68e+5 1.94e�15 1.18e�14
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6.5.2 Flexibility Matrix of an Element

Formulation of a discrete element equivalent to the actual continuous structure is

the first step in matrix structural analysis. For a linear system it can be assumed that

the stresses σ.are related to the forces F by linear equation as

σ ¼ cF ð6:36Þ

The matrix c represents statically equivalent stresses system due to the unit force F.

The flexibility matrix of an element can be written as
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3000

3500

4000

nz = 98238

Fig. 6.43 Pattern of the

flexibility matrix G

(4,224 � 4,224) and the

number of its nonzero

entries obtained by the

present algorithm

Fig. 6.44 Nodal and element force systems of a brick element
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fm ¼
ð
V

ctφcdV ð6:37Þ

The integration is taken over the volume of the element, where φ is the matrix

relating the stresses to strains ε = φσ in three dimensional problems. The primary

step in achieving the flexibility matrix of an element is determining the matrix c. It

is obvious that the ith column of c represents the resultant stresses due to unit

element force Fi in force method and also stresses due to nodal forces S is equal to

the ith column of T utilizing displacement method. Hence we can form matrix c

using stiffness properties of the brick element using the displacement method. Now

the flexibility matrix of the element in the force method is formed from Eq. 6.37

using Gauss numerical integration method with eight Gauss points.

6.5.3 Graphs Associated with Finite Element Model

Here, topological properties of the FEM are transferred into the connectivity of its

interface graph and natural associate graph.

6.5.3.1 Interface Graph

Interface graph of a FEM, denoted by IG(FEM), is constructed by the following

rules:

1. Nodes of the IG(FEM) correspond to the nodes of FEM.

2. For each edge of a break element, one new member is added to the IG(FEM).

3. For each face of a break element, one new diagonal member is added to the IG

(FEM). This member is located between second and third nodes of the current

face of the element.

In fact there is one to one to one correspondence between element forces and

member of the IG(FEM). The members of the interface graph are numbered

according to the element numbers of the FEM. In this way for each element,

corresponding members in interface graph are numbered consequently and then

members of the next element are numbered. A FEM and the corresponding inter-

face graph and the schematic numbering of the members corresponding to nth
element in the interface graph are illustrated in Fig. 6.45.

6.5.3.2 Natural Associate Graph

The natural associate graph represented by NAG(FEM) is constructed by the

following rules:
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1. Nodes of the NAG(FEM) correspond to the elements of FEM.

2. For each pair of elements in FEM having four common nodes, one member is

added between the corresponding two nodes in NAG(FEM).

NAG(FEM) can be constructed using the following procedure: One of the

preliminary steps in FEA is defining the elements with their connected nodes. In

this way the element connectivity matrix is constructed which contains the element-

node incidence relationships. In the process of constructing the element connectiv-

ity matrix, another matrix which contains node-element incidence properties can be

formed. This matrix is named the node connectivity matrix. Now using the element

connectivity and the node connectivity matrices leads to an algorithm with com-

plexity O(n) for an efficient generation of NAG.

In order to recognize the adjacent elements to the nth element which have

common four nodes or one common face, first the connected nodes to the nth
element are identified from the element connectivity matrix. In the subsequent step

using the node connectivity matrix, elements which have at least one common node

with the nth element are identified. Now it is convenient to seek for the adjacent

elements in this reduced search space. A FEM and its corresponding NAG are

illustrated in Fig. 6.46.

Fig. 6.45 (a) Finite element model (b) Interface graph of the FEM (c) Schematic numbering of

the nth element
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6.5.4 Topological Interpretation of Static Indeterminacy

6.5.4.1 Degree of Static Indeterminacy of the FEM

Each bi-action element force in a brick element can be considered as bi-action

element forces in a bar element. In this way, the force system of the brick element

will be equivalent to the force system of the corresponding space truss as indicated

in Fig. 6.47.

Thus calculating the degree of static indeterminacy (DSI) and forming the self

equilibrating systems of the FEM are replaced by the DSI and self equilibrating

systems of the equivalent truss model. In this way using the DSI of a space truss

with n nodes and m members as DSI ¼ m � 3n + 6, the degree of indeterminacy

of a FEM is obtained as.

DSI ¼ 18E� 3N þ 6 ð6:38Þ

where E is the number of brick elements and N is the total number of the nodes of

the FEM.

6.5.4.2 Pattern of Type I Self-Equilibrating Systems

For each k multiple member in equivalent truss model of FEM, there are k unknown

forces and one equilibrium equation in the member’s direction. Thus DSI of the

Fig. 6.47 Space truss

model equivalent to a brick

element

Fig. 6.46 Finite element model and Finite element model with natural associate graph
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substructure is equal to k � 1 and k � 1 self equilibrating systems can be gener-

ated on each k multiple member of interface graph of the FEM. In this way, first

each k multiple members are arranged in ascending order as (m1, m2, m3,. . ., mk�1,

mk). where (m1 < m2 < m3 < . . . < mk�1 < mk). Each selection of two members

from this list is valid to construct a type I self-equilibrating system, but in order to

achieve a better bandwidth reduction; selection of adjacent members from the

defined list is preferable. Therefore k � 1 duplicate members are selected as (m1,

m2), (m2, m3),. . ., (mk�1, mk). Each pair (mi, mj) with i < j represents the numbers

of corresponding self-equilibrating system. The member with bigger number is

selected as the generator of the current SES and also as a redundant force. The null

vectors corresponding to the type I SESs have two non-zero entries in rows i and j

equal to �1 and 1, respectively.

Therefore by generating type I SESs, about three fourths of null basis is formed

with maximum sparsity. These SESs are generated easily in the process of

constructing natural associate graph of the FEM.

6.5.4.3 Relationship Between γ(S) and NAG(FEM)

By reducing the generators of the type I SESs from IG(FEM), the remaining

subgraph is called graph S, with its associate graph A(S) being equivalent to

NAG(FEM). In order to generate other types of the SESs, a relationship between

the DSI of the equivalent truss of graph S and the natural associate graph of the

FEM should be established. For achieving this aim an expansion process is

employed.

Consider a brick element, as illustrated in Fig. 6.48a. The corresponding graph S

is denoted by S1 and NAG(FEM) is a single node. The equivalent structure is

determinate. The graph S corresponding to two brick elements, denoted by S2, is

constructed by adding the subgraph S0
1 (Fig. 6.49a) to the graph S1 as indicated in

Fig. 6.48b, and also one node and one member is added to NAG(FEM) with the DSI

becoming one. Consequently by adding subgraph S0
1 to the previous graph, it adds

one node and member to the NAG(FEM) and it is growing as a tree and the DSI

increases by unity.

In some stages of the expansion process adding subgraph S0
2 (Fig. 6.49b) to the

previous graph S from two faces, as shown in Fig. 6.48d, is equivalent to adding one

node and two members to the NAG(FEM) and a cycle is formed in the NAG(FEM).

In this case, the DSI of corresponding truss is increased by three.

Considering the above points, the number of the nodes and members of the NAG

(FEM) can be calculated as

N
0 ¼ M Sð Þ þ 2γ Sð Þ � 3

15
ð6:39Þ
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M
0 ¼ M Sð Þ þ 17γ Sð Þ � 18

30
ð6:40Þ

Now, the relation between the DSI of the equivalent truss of the graph S and the

independent cycles of the natural associate graph of FEM can be established. The

Fig. 6.49 A typical S0 subgraphs. (a) S0
1, (b) S0

2

S 1 S 2 S 3 S 4

M(S 1) = 18 M(S 2) = 31 M(S 3) = 44 M(S 4) = 53

N' = 1, M' = 0 N' = 2, M' = 1 N' = 3, M' = 2 N' = 4, M' = 4

DSI = 0 DSI = 1 DSI = 2 DSI = 5

a b c d

Fig. 6.48 The expansion process for the formation of a γ-cycle without internal node
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first Betti number of the natural associate graph of the FEM, states the number of

independent cycles of this graph which is expressed as

b1 NAG FEMð Þð Þ ¼ M
0 � N

0 þ 1 ð6:41Þ

Adding M0 to both sides of the Eq. 6.41 leads to

b1 NAG FEMð Þð Þ þM
0 ¼ 2M

0 � N
0 þ 1 ð6:42Þ

Substituting Eqs. 6.39, 6.40, 6.41, and 6.42 results in

γ Sð Þ ¼ b1 NAG FEMð Þð Þ þM
0 ð6:43Þ

According to this equation, the DSI of the equivalent truss of the graph S can be

expressed as the sum of the number of members and the first Betti number of NAG

(FEM) that corresponds to type II and type III self-equilibrating systems.

The graph S corresponding to the eight brick elements denoted by S8 is

constructed by adding one node and six members to the graph S7 as illustrated in

Fig. 6.50. This process adds one node, three members and three minimal cycles to

the NAG(FEM), and also the DSI of the equivalent graph increases by three.

When the FEM or corresponding graph S has an internal node and the NAG

(FEM) becomes a polyhedral, then Eqs. 6.39 and 6.40 will be modified as

N
0 ¼ M Sð Þ þ 2γ Sð Þ þ 3Ni Sð Þ � 3

15
ð6:44Þ

S7 S8
M(S7) = 84 M(S8) = 90
N' = 7, M' = 9 N' = 8, M' = 12
DSI = 12 DSI = 15

a b

Fig. 6.50 The expansion process for the formation of a γ-cycle with internal node
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M
0 ¼ M Sð Þ þ 17γ Sð Þ þ 33Ni Sð Þ � 18

30
ð6:45Þ

Therefore the relation between the DSI of equivalent truss of graph S and the first

Betti number of the NAG(FEM) is modified as

γ Sð Þ ¼ b1 NAG FEMð Þð Þ þM
0 � 2Ni FEMð Þ ð6:46Þ

Comparing Eqs. 6.43 and 6.46 demonstrates that the FEM has no internal node the

DSI of the equivalent truss of graph S is equal to the sum of the number of members

and first Betti number of NAG(FEM), however, when the FEM has one or more

internal nodes, 2Ni(FEM) self-equilibrating systems are not independent and must

be ignored.

6.5.4.4 Pattern of Type II Self-Equilibrating Systems

As mentioned, type II self-equilibrating systems as indicated in Fig. 6.51 are

topologically identical to the subgraph of graph S which corresponds to the two

connected nodes of the natural associate graph of the FEM.

The most important point in type II self-equilibrating systems is to select an

appropriate generator. Because by eliminating these generators from graph S, the
sub-structure of type III SESs and primary structure of the structure S must be

stable. To achieve this, the following rule for appropriate selection of generators of

type II SESs is suggested.

In this way avoiding instability of the subsequent type of the SESs, the following

procedure is applied, as indicated in Fig. 6.52. For a type II SESs (in any coordinate

system such as Cartesian, cylindrical or spherical) generators of the type II SESs in

directions 1, 2 and 3 are the chosen members which are numbered as 8, 11, and 23.

6.5.4.5 Pattern of Type III Self-Equilibrating Systems

According to the expansion process in models without opening, sub-structures

which are topologically identical to the minimal cycles of the natural associate

Fig. 6.51 Pattern of a Type II self-equilibrating system
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graph of FEM contains some type II and one type III self-equilibrating systems as

indicated in Figs. 6.53a and 6.54.

6.5.4.6 Type I Minimal Cycles

These minimal cycles of the natural associate graph of the FEM pass through E
elements which have two common nodes and one edge. Corresponding interface

graph of these elements have N = 4E + 2 nodes. Therefore using Eq. 6.37 the DSI

of the related sub-structure is equal to 6E. Obviously 5E � 1 and E type I and type

II self-equilibrating systems can be extracted from the mentioned sub-structure.

The DSI of the remaining sub-structure is 1. Thus each type I minimal cycle of the

natural associate graph of the FEM contains a type III self-equilibrating system and

one null vector.

Avoiding instability of the primary structure S, the procedure indicated in

Fig. 6.55 is applied to selection of the generators of the type III SESs. For a type

III SESs (in any coordinate system such as Cartesian, cylindrical or spherical)

generators of SESs perpendicular to the directions 1, 2 and 3 are chosen members

which are numbered as 70, 51 and 17, respectively.

Fig. 6.52 Selected generators of the type II SES

Fig. 6.53 Minimal cycles of the natural associate graph of the FEM
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6.5.4.7 Type II Minimal Cycles

For models with openings, each independent cycle of the natural associate graph

which surrounds an opening of the FEM is called type II minimal cycle of the

natural associate graph. Considering that this cycle passes through E elements and

its corresponding interface graph has N = 4E nodes. Using Eq. 6.37, the DSI of the

related sub-structure is equal to 6E + 6. Obviously 5E and E type I and type II self-

equilibrating systems can be extracted from the mentioned sub-structure. Therefore

the DSI of the remaining sub-structure is 6. Thus each type II minimal cycle of the

natural associate graph of the FEM contains six self-equilibrating systems of type

III and six corresponding null vectors. These null vectors can easily be generated on

the corresponding sub-structure utilizing an algebraic method.

Fig. 6.54 Selected generators of the type III SESs

6.5 Efficient Finite Element Analysis Using Graph-Theoretical Force Method:. . . 269



6.5.5 Models Including Internal Node

For Ni internal node in the FEM, 2Ni self-equilibrating systems are not independent

from others and then should be selected and ignored. Since each type III SESs

include some type I and type II SESs, therefore ignoring each type I and type II

SESs causes the corresponding type III SESs not to be valid. Therefore for any

internal node, two type III SESs should be selected and ignored. The following

procedure should be applied to select dependent SESs.

Considering graph S7 its equivalent truss is twelve times statically indetermi-

nate. As it can be seen from Fig. 6.50a, b adding one node and six members

consisting of three edge members and three diagonal ones, to graph S7 forms

graph S8. Then the DSI of the equivalent truss is increased by three. Considering

the equivalent truss of graph S7 and by eliminating the restraints corresponding to

the generators of SESs, the primary structure which is determinate and stable is

obtained. Also corresponding primary structure of graph S8 is obtained by elimi-

nating the generators of SESs of graph S7 plus the above mentioned three diagonal

members, form graph S8.
Eight elements correspond to each internal node and the natural associate graph

corresponding to these elements is a hexahedron. At the beginning, from each

hexahedron as illustrated in Fig. 6.55, node 8 is considered as the last node which

makes up the hexahedron. These nodes must be distinct from each others.

From each hexahedron three type III SESs corresponding to three minimal

cycles of NAG(FEM) which pass through the selected node, are ignored and also

the mentioned three diagonal members used as generator of three type II SESs

corresponding to three members of NAG(FEM) which pass through the selected

node. In Figs. 6.55 and 6.56, the red members represent the modified type II SESs.

Fig. 6.55 Eight elements

and the corresponding

hexahedron natural

associate graph
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6.5.6 Selection of an Optimal List Corresponding to Minimal
Self-Equilibrating Stress Systems

The main goal of this section is the selection of a member list for each self-

equilibrating systems which has the nearest member numbers to the generator of

the system.

Minimize Abs i� jð Þð Þ ð6:47Þ

where j is the number of the generator member, and i are the number of members of

the self-equilibrating system.

Consider dmi ; (i ¼ 1, 2, . . ., k; m ¼ 1, 2, . . ., n), representing the member

numbers of the multiple members where d1i < d2i < . . . < dni , and sj; (j ¼ 1, 2,

. . ., t) representing the member numbers of the simple members. Since dmi with

m 6¼ 1 is used as generator of type I of SESs, as illustrated in Figs. 6.52 and 6.53,

the generator of type II and type III of SESs must be selected from {d1i ,sj}. For

maximum bandwidth reduction, from each multiple member one member is

selected which has the nearest number to the generator’s number of the self-

equilibrating system. In order to achieve this goal, Eq. 6.48 should be applied.

find d
j
i

� 	
Absj d

j
i � d1G

� 	
¼ Min abs d

j
i � d1G

� 	� 	
ð6:48Þ

then

d1i ¼ d
j
i i ¼ 1, 2, . . . , k; j ¼ 1, 2, . . . , nð Þ ð6:49Þ

where, d1G is the generator of the self-equilibrating system.

Algorithm. Step 1: Number the nodes of the FEM. Nodal numbering does not

affect the pattern of the flexibility matrix of the FEM.

Fig. 6.56 A finite element

model and the

corresponding natural

associate graph
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Step 2: Define the brick elements through its eight nodes. Use an efficient method

for element numbering, for having small bandwidth for the null basis matrix B1

and the flexibility matrix.

Step 3: Generate the natural associate graph of the FEM.

Step 4: Generate the interface graph of the FEM in manner that its member

numbering is according to the element numbering of the FEM. In this way for

each element, corresponding members in interface graph are numbered

consequently.

Step 5: Construct the equilibrium matrix of the FEM.

Step 6: Set up the type I self-equilibrating systems and calculate the corresponding

null vectors which have two nonzero entries in the rows corresponding to the

member numbers.

Step 7: Set up the type II self-equilibrating systems and calculate the corresponding

null vectors form the relevant equilibrium sub-matrix.

Step 8: Set up the type III self-equilibrating systems and calculate the

corresponding null vectors form the relevant equilibrium sub-matrix.

Step 9: Construct the statical basis (null basis) of the FEM by arranging the null

vectors in the null basis in the ascending manner utilizing the highest member

number of the corresponding self-equilibrating systems.

The efficiency of this algorithm is shown through two examples by comparing

the required computational times for the construction of the null basis matrices, also

non-zero patterns and condition numbers of the flexibility matrices. In this com-

parison (a) Present method (b) Turn-back method (c) Gauss-Jordan elimination

method are considered.

6.5.7 Numerical Examples

In this section two FEMs are considered, one of these models is assumed to be

supported in statically indeterminate fashion and the other supported in a determi-

nate fashion. Null basis and flexibility matrices are formed and the required

computational times, and the condition numbers are calculated. In the following

examples, nz represents the number of non-zero entries and λmax/λmin is the ratio of

the extreme eigenvalues taken as the condition number of a matrix.

Example 1. A thick arch type structure, having internal radius of 8 m, discretized

by brick elements. The corresponding FEM is supported in a statically indetermi-

nate fashion as illustrated in Fig. 6.57. The mechanical and topological properties of

the model are as follow:

Poisson’s ratio ¼ 0.2; Elastic modulus E ¼ 2E + 10 N/m2; Density ρ ¼ 2,400 kg/m3;

Number of nodes ¼ 165; Number of internal nodes (Ni) ¼ 27;

Number of elements ¼ 80;

Number of members of the natural associate graph ¼ 172;
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First Betti number of the natural associate graph (independent cycles) ¼ 93;

Number of Type I self-stress systems ¼ 740 (77.8 %);

Number of Type II self-stress systems ¼ 172 (18.1 %);

Number of Type III self-stress systems ¼ 93 � 2 � 27 ¼ 39 (4.1 %);

DSIInternal ¼ 951; DSIExternal ¼ 21; DSITotal ¼ 972;

The pattern of the equilibrium matrix of the FEM is displayed in Fig. 6.58. The

nodes and elements of the FEM are numbered in a way to produce a banded

equilibrium matrix. This characteristic facilitates the Turn-back method to form a

null basis with less required computational time and more banded form.

The null basis of the FEM can be constructed using a mixed algebraic-graph

theoretical and pure algebraic methods. In mixed methods, graph theoretical

Fig. 6.57 A thick arch type structure discretized by brick elements

Fig. 6.58 Pattern of the equilibrium matrix of the FEM for Example 1
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approach is utilized to form columns of the null basis which are related to the

internal indeterminacies where algebraic procedures form the columns

corresponding to the external indeterminacies.

In this case, graph theoretical approach is employed together with the Turn-back

method (Tables 6.8 and 6.9). As displayed in Fig. 6.59 and Table 6.10, applying the

mixed graph theoretical with Turn-back method lead to a highly sparse and banded

null basis; however it requires some additional computational time than using the

mixed graph theoretical with QR decomposition method.

Pure algebraic methods are also used to form the null basis of the equilibrium

matrix of the FEM. From Fig. 6.59 and Table 7.3 it can be observed that each pure

algebraic method has better performance when they are used together with the

present graph theoretical method (Fig. 6.60).

Example 2. An arch type structure with an internal radius of 8 m, discretized by

brick elements. As shown in Fig. 6.61, this structure has two openings and is

supported in a statically determinate fashion. Properties of the model are as follow:

Mechanical Properties
Poisson’s ratio ¼ 0.2; Elastic modulus E ¼ 2E + 10 N/m2; Density ρ ¼ 2,400 kg/m3;

Topological Properties
Number of nodes ¼ 108; Number of internal nodes (Ni) ¼ 0; Number of

elements ¼ 38;

Number of members of the natural associate graph ¼ 59

First Betti number of the natural associate graph (independent cycles) ¼ 22;

Table 6.8 Definition of the element forces

Force system Location (nodes) Force system Location (nodes)

1 1,3 10 3,7

2 3,4 11 4,8

3 2,4 12 2,6

4 1,2 13 3,5

5 5,7 14 4,7

6 7,8 15 4,6

7 6,8 16 2,5

8 5,6 17 2,3

9 1,5 18 6,7

Table 6.9 Member list corresponding to the type II or type III self-equilibrating systems

d11 d12 . . . S1 S2 . . . d1G . . . d1i . . . Sj . . . d1k
d11 d22 d2G d2i d2k

d32 ⋮ ⋮
dnG dni
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Number of Type I self-stress systems ¼ 275 (75.1 %);

Number of Type II self-stress systems ¼ 59 (16.1 %);

Number of Type III self-stress systems ¼ 20 + 2 � 6 ¼ 32 (8.8 %);

DSIInternal ¼ 366; DSIExternal ¼ 0; DSITotal ¼ 366;

Fig. 6.59 Pattern of the null basis B1 matrices corresponding to Example 1 utilizing: (a) Graph

theoretical-Turn back method (b) Graph theoretical-QR method (c) Turn-back method (d) Gauss

Jordan elimination method
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Table 6.10 Comparison of the optimality characteristics of the null basis matrices B1 and the

flexibility matrices G for the FEM of Example 1

Null basis B1 Flexibility matrix G

Time

(sec) Time
Time

Present method

λmax
λmin

nz entries
nz entries

Present method

Graph theoretical-

Turn back

method

2.464 1.000 2.475e

+07

1.000

Graph theoretical-

QR method

0.824 0.334 4.699e

+08

1.692

Turn back method 70.358 28.554 2.776e

+07

1.622

Gauss Jordan

elimination

method

25.921 10.520 5.655e

+06

7.279

Fig. 6.60 Pattern of the flexibility matrices G corresponding to Example 1 utilizing: (a) Graph

theoretical-Turn back method (b) Graph theoretical-QR method (c) Turn-back method (d) Gauss

Jordan elimination method
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Fig. 6.61 An arch type

structure containing two

openings, discretized by

brick elements

Fig. 6.62 Pattern of the null basis B1 matrices corresponding to Example 2 utilizing: (a) Graph

theoretical method (b) Turn-back method (c) Gauss Jordan elimination method
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The pattern of the null basis and flexibility matrices are illustrated in Figs. 6.62

and 6.63 and it can be easily seen that present graph theoretical method and Turn-

back method lead to banded null basis and flexibility matrices. Table 6.11

containing the optimality characteristics of the applied methods reveals that the

presented method requires acceptable computational time for constructing the null

basis of the FEM.

As mentioned, the present method leads to a highly sparse and banded flexibility

matrix requiring a low computational time with an acceptable condition number.

These examples are also analyzed by the standard displacement method and the

integrated force method. Figure 6.64 illustrates the pattern of the reduced stiffness

matrix, and its optimality characteristics are provided in Table 6.12. It can be seen

that for these examples, the displacement method analyzes the model with less

unknowns than the presented graph theoretical force method, and the reduced

stiffness matrix Kr has less non-zero entries than the flexibility matrix G.

Fig. 6.63 Pattern of the flexibility matrices G corresponding to Example 2 utilizing (a) Graph

theoretic method (b) Turn-back method (c) Gauss Jordan elimination method

Table 6.11 Comparison of the optimality characteristics of the null basis matrices B1 and the

flexibility matrices G for the FEM of Example 2

Null basis B1 Flexibility matrix G

Time

(sec) Time
Time

Present method

λmax
λmin

nz entries
nz entries

Present method

Graph theoretical

method

0.171 1.000 2.860e

+4

1.000

Turn back method 16.816 98.339 1.033e

+4

1.103

Gauss-Jordan elimi-

nation

method

6.394 37.392 1.814e

+5

3.296
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Chapter 7

Optimal Force Method for FEMS: Higher

Order Elements

7.1 Introduction

In this chapter force method for the analysis of finite element models comprising of

higher order elements are studied.

In the first part, an efficient graph theoretical force method is presented for the

analysis of FEMs comprising of higher order triangular elements, corresponding to

highly sparse and banded flexibility matrices [1]. This is achieved by associating

special graphs to a finite element model, and selecting subgraphs for the formation

of localized self stress systems.

In second part, a method is described for the formation of null bases for FEMs

comprised of higher order rectangular plane stress and plane strain elements

(serendipity family elements) leading to highly sparse and banded flexibility matri-

ces for optimal finite element analysis by force method [2].

In the third part, an competent method is described for the formation of null

bases of finite element models (FEMs) consisting of hexahedron elements,

corresponding to highly sparse and banded flexibility matrices. This is achieved

by associating special graphs with the FEM and selecting appropriate subgraphs

and forming the self-equilibrating systems on these subgraphs [3].

7.2 Finite Element Analysis of Models Comprised

of Higher Order Triangular Elements

This part introduces an efficient method for the finite element analysis of models

comprised of higher order triangular elements. The presented method is based on

the force method and benefits graph theoretical transformations. For this purpose,

minimal subgraphs of predefined special patterns are selected. Self-equilibrating

systems (S.E.Ss) are then constructed on these subgraphs leading to sparse and

A. Kaveh, Computational Structural Analysis and Finite Element Methods,
DOI 10.1007/978-3-319-02964-1_7, © Springer International Publishing Switzerland 2014
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banded null basis. Finally, well-structured flexibility matrices are formed for

efficient finite element analysis.

7.2.1 Definition of the Element Force System

Defining appropriate structural elements is the first step of structural analysis.

Based on the analysis approaches, structural elements are formulated in different

manners. In case of higher order triangular elements (in-plane forces), in displace-

ment method two forces are employed at each node of the element, while in force

method the following force system is utilized.

Considering an O(n) element first, 3n sets of edge bi-action forces are described

between adjacent side nodes. Then n(n � 1)/2 bi-action forces are added between

adjacent nodes parallel to side 23. The same forces are added parallel to side 13.

Finally n � 1 bi-action forces are added in the same manner, parallel and in the

closest position to side 12. Force systems corresponding to the second, third and

fourth order elements are shown in Fig. 7.1a–c. These independent element forces

denoted by F are related to nodal forces S using Eq. 7.1.

S ¼ TF ð7:1Þ

7.2.2 Flexibility Matrix of the Element

The flexibility matrices of higher order triangular elements can simply be formed

using the stiffness matrices of such elements.

fm ¼ Trð Þt Krð Þ�1
Tr ð7:2Þ

where the subscript r indicates that, corresponding orders of matrices to dependent

forces are reduced.

7.2.3 Graphs Associated with Finite Element Model

In order to benefit topology in finite element analysis, first some topological trans-

formations of FEM are needed. In this relation ten different graphs are presented in

Ref. [4]. Here natural associate graph and interface graph are used that are defined

in the following:
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7.2.3.1 Natural Associate Graph

The natural associate graph of a FEM is represented by NAG(FEM). This graph

reveals elements adjacency properties and as illustrated in Fig. 7.2a is constructed

by following rules:

1. Each node of NAG(FEM) corresponds to each element of the FEM.

2. Two nodes of NAG(FEM) are connected with a member if two corresponding

O(n) elements have n + 1 common nodes on a common edge.

Natural associate graph can easily be generated using the following procedure:

Connected nodes with a considered element are identified using element con-

nectivity matrix.

1. Connected elements with these nodes are identified using node connectivity

matrix.

a

c

b

Fig. 7.1 Element force systems of higher order triangular elements
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2. All identified elements in step 2, at least have one common node with the

considered element in step 1. Now among these identified elements the one

which has n + 1 common nodes with the considered element, is desirable.

7.2.3.2 Interface Graph

The interface graph of a FEM is represented by IG(FEM). This graph corresponds

to the force system of the FEM, and as indicated in Fig. 7.2b it is constructed by the

following rules:

1. Each node of IG(FEM) corresponds to the each node of the FEM.

2. Members of the IG(FEM) correspond to the force system of FEM between their

adjacent nodes.

3. Each support condition is considered as a member of IG(FEM).

Members of the interface graph corresponding to the element forces are num-

bered according to element numbering. Meantime corresponding members to

support conditions are numbered before members of their connected elements.

7.2.4 Topological Interpretation of Static Indeterminacies

7.2.4.1 Degree of Static Indeterminacy of the FEM

As mentioned in Sect. 3.1, the introduced element force system is comprised of a

number of bi-action forces. In accordance with Przemieniecki [5] each bi-action

force can be considered as force system of a bar element, hence force system of the

equivalent truss element can be employed instead of the force system of the original

element. Therefore, the DSI of the FEM and self-equilibrating systems can be

conveniently explored.

a b

Fig. 7.2 Natural associate graph and interface graph of the corresponding FEM comprised of

fourth order elements
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Each higher order triangular element has n2 + 3n � 1 bi-action forces, and

hence the DSI of a FEM which is comprised of E elements and contains N nodes

is obtained as

DSI ¼ n2 þ3n� 1
� �

E � 2N þ 3 ð7:3Þ

Following self-equilibrating systems are found. Then null vectors which express the

equilibrium conditions of the self-equilibrating systems are generated.

7.2.4.2 Pattern of the Type I Self-Equilibrating Systems

The interface graph of a FEM contains double members at the interface of two

elements (Fig. 7.2b). Each double member of the interface graph correspond to a

Type I self-equilibrating system. The self-equilibrating system consisting of two

members numbered as i and j (j > i). The member with bigger number is selected

as the generator of the self-equilibrating system and is considered as the redundant

force of the FEM. Typical null vector corresponding to a Type I self-equilibrating

system contains two nonzero entries in ith and jth rows equal to�1 and 1, respectively.

The above mentioned double members can conveniently be identified while

natural associate graph is being generated.

7.2.4.3 Identification of Other Self-Equilibrating Systems Using

an Expansion Process

This section adopts a method to identify other self-equilibrating systems and locate

other redundant forces. Consider a graph S the same as the interface graph of the

FEM with generators of Type I self-equilibrating systems being removed.

7.2.4.4 Models Excluding Openings

Consider a general triangular element as shown in Fig. 7.3a. The corresponding

graph S contains NE ¼ (n + 1)(n + 2)/2 nodes and ME ¼ (n + 1)(n + 2) � 3

members, thus the equivalent truss is determinate. The NAG(FEM) is an isolated

node. When another element is added (Fig. 7.3b, c), each time NE � n � 1 nodes

and ME � n members are added to the corresponding graph S, thus the indetermi-

nacy is increased by n � 1. The NAG(FEM) grows with a node and member. This

is true while The NAG(FEM) is growing like a tree (with no cycle).

In some steps of the expansion process adding an element grows NAG(FEM) by

a node and two members, and a cycle is formed in the natural associate graph, as

illustrated in Fig. 7.3d. In this situation (NE � 2n � 1) nodes and (ME � 2n)

members are added to the corresponding graph S, hence the indeterminacy is

increased by 2(n � 1) + 1.
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Based on the above mentioned remarks it can clearly be seen that each member

and cycle of natural associate graph corresponds to n � 1 and one degrees of

indeterminacy, respectively. This conclusion is theoretically validated as follows.

Considering the above points, the number of nodes and members of the natural

associate graph are derived as

M
0 ¼ M Sð Þ þMEγ Sð Þ �ME

n ME � 1ð Þ ð7:4Þ

N
0 ¼ M Sð Þ þ γ Sð Þ � 1

ME � 1ð Þ ð7:5Þ

Now the first Betti number is epmloyed to calculate the number of independent

cycles of the natural associate graph of the FEM

b1 NAG FEMð Þð Þ ¼ M
0 � N

0 þ 1 ð7:6Þ

By substituting Eqs. 7.4 and 7.5 in Eq. 7.6, the degree of static indeterminacy of the

equivalent truuss is obtained using the natural associate graph of the FEM:

γ Sð Þ ¼ b1 NAG FEMð Þð Þ þ n� 1ð ÞM0 ð7:7Þ

This equation shows that the subgraphs of S which correspond to memebers of

NAG(FEM), represent n � 1 degree of indeterminacy and n � 1 self-equilibrating

systems can be constructed which are called Type II self-equilibrating systems.

Meantime subgraphs of S which correspond to independent cycles of NAG(FEM),

represent one degree of indeterminacy and one self-equilibrating system, called

Type III self-equilibrating systems, can be formed.

Sc1 Sc2 Sc3 Sc4

N(Sc1) = NE N(Sc2) = 2NE-n-1 N(Sc3) = 3NE-2n-2 N(Sc4) = 4NE-4n-3
M(Sc1) = ME M(Sc2) = 2ME-n M(Sc3) = 3ME-2n M(Sc4) = 4ME-4n
N' = 1, M' = 
0

N' = 2, M' = 1 N' = 3, M' = 2 N' = 4, M' = 4

γ (Sc1)= 0 γ (Sc2)= n-1 γ (Sc3) = 2(n-1) γ (Sc4) = 4(n-1)+1

a b c d

Fig. 7.3 Expansion process in FEMs comprising of O(n) elements and without opening
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7.2.5 Models Including Opening

In this section, an expansion process is employed in the process of expanding a

cycle which surounds an opening, to identiy new degrees of indeterminacy and

corresponding the new self-equilibrating systems.

Consider the finite element model of Fig. 7.4a. Adding an element in manner

shown in Fig. 7.4b, adds NE � n � 2 nodes and ME � n members to the

corresponding graph S, thus increasing the indeterminacy of equivalent truss by

(n � 1) + 2.

When the final element is added as shown in Fig. 7.4c, NE � 2n � 1 nodes and

ME � 2n members are added to the corresponding graph S leading to an increase of

DSI by 2(n � 1) + 1.

In the step which is shown in Fig. 7.4b if the Type II self-equilibrating systems

are ignored, two new self-equilibrating systems can be recognized and considering

Fig. 7.4c there is one new self-equilibrating system. As pointed out, the truss

corresponding to a mininal cycle of NAG(FEM) that surrounds an opening, con-

tains three self-equilibrating systems. These self-equilibrating systems are classi-

fied in Type III self-equilibrating systems. Here, Eq. 7.7 is modified by adding the

term 2nc. Each cycle of NAG(FEM) which surrounds an opening is considered as an

independent cycle by the first Betti number as

γ Sð Þ ¼ b1 NAG FEMð Þð Þ þ n � 1ð ÞM0 þ 2nc ð7:8Þ

where nc is the number of openings in FEM.

7.2.5.1 Pattern of Type II Self-Equilibrating Systems

Subgraphs of the graph S which correspond to members of the NAG(FEM) are the

underlying subgraphs of Type II self-equilibrating systems. If n is considered as the
order of elements, n � 1 Type II self-equilibrating systems can be constructed on

each subgraph.

Consider a triangular element; the second element can be attached from each

three sides. Depending on the side to which the second element is attached,

generators of Type II self-equilibrating systems are selected in different ways.

Figure 7.5a shows a second order element indicated by bold nodes which is

connected to three elements from three sides. In each case the corresponding

generator is identified by dashed red line. The same is shown in Fig. 7.5b, c

considering third and fourth order elements. Meantime as it can be noticed from

Fig. 7.5, the pattern of the generators can conveniently be expanded for elements

with higher orders.
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So1 So2 So3

N(So1) = No1 N(So2) = No1+ NE-n-2 N(So3) = No1+ 2NE-3n-3

M(So1) = M o1 M(So2) = M o1+ ME-n M(So3)  = M o1+ 2ME-3n

N' = N'o1, M' = M'o1 N' = N'o1+1, M' = M'o1+1 N' = N'o1+2, M' = 
M'o1+3

DSI = DSI o1 DSI = DSI o1+(n-1)+2 DSI = DSI o1+3(n-1)+3

a b c

Fig. 7.4 Expansion process in FEMs comprising of O(n) elements, containing an opening

a

c

b

Fig. 7.5 Appropriate generators of Type II self-equilibrating systems from models comprised of

second, third and fourth order elements
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7.2.5.2 Pattern of Type III Self-Equilibrating Systems

Subgraphs of the graph S which correspond to minimal cycles of the NAG(FEM)

are underlying subgraphs of Type III self-equilibrating systems. These minimal

cycles can be categorized into two classes.

7.2.5.3 Type I Minimal Cycles

These cycles pass through elements which all have one certain node in common. As

discussed in expansion process, subgraphs of graph S corresponding to Type I

minimal cycles lead to one Type III self-equilibrating system. Figure 7.6a–c rep-

resent the underlying subgraphs and generators of Type III self-equilibrating

systems corresponding to second, third and fourth order elements. The generators

are indicated by dashed red lines.

Meantime Fig. 7.6 implies that the pattern of the generators can conveniently be

expanded for the elements with higher orders.

7.2.5.4 Type II Minimal Cycles

These cycles pass through elements which surround an opening. According to the

expansion process, subgraphs of the graph S corresponding to Type II minimal

cycles contain three self-equilibrating systems of Type III. Consider Fig. 7.4b, in

this situation, based on expansion process two Type III self-equilibrating systems

are formed hence the two corresponding generators can simply be selected from

members of the last added element.

The last Type III self-equilibrating systems is formed when the Type II minimal

cycle is completed (Fig. 7.4c). Here again the corresponding generator is simply

selected from the members of the added element.

7.2.5.5 Self-Equilibrating Systems Corresponding to the External

Indeterminacies

These self-equilibrating systems are formed in relation with the external degrees of

indeterminacy. For this purpose, each indeterminate restraint forces is considered as

a redundant force. Here unlike the internal redundant forces, the external ones are

not bi-action forces. Thus the corresponding self-equilibrating systems will require

simple support conditions. A typical self-equilibrating system regarding to an

external indeterminacy shown in Fig. 7.7b is formed based on a tree of NAG

(FEM) which connects the external redundant force to a close simple support

configurations. However, it is essential that these self-equilibrating systems remain

independent from each other. After selecting two ends of the tree, it is desirable the

above mentioned tree to pass through elements with close numbers.
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7.2.6 Selection of an Optimal List Corresponding to Minimal
Self-Equilibrating Stress Systems

Consider a general self-equilibrating system of Type II or Type III. According to

the above procedure SESs consist of single members like sj and double members d1i

a b

c

Fig. 7.6 Appropriate generators of Type III self-equilibrating systems from models comprised of

second, third and fourth order elements

a b

Fig. 7.7 A self-equilibrating system corresponding to an indeterminate support condition
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which have a twin member as d2i . It is clear that replacing each d1i member with its

twin member does not affect the topology of the corresponding SES, Table 7.1.

Thus except the generators which are unique and necessary for the independency of

the SESs, other double members can be replaced by their twin members.

Here, considering the bandwidth reduction of the null basis, the following

procedure is utilized to select members with closer numbers to the generator

number.

If abs g� d2i
� �

< abs g� d1i
� �

then d2i ! d1i ð7:9Þ

where, g is the generator number.

Algorithm

Step 1: Define and number the nodes of the FEM.

Step 2: Define the triangular elements and use an efficient numbering method to

reduce the bandwidth of the null basis and flexibility matrice.

Step 3: Generate the natural associate graph of the FEM based on the adjacency of

the elements.

Step 4: Generate the interface graph of the FEM in a manner that its members are

numbered according to the element numbering of the FEM.

Step 5: Select the Type I self-equilibrating systems and form the corresponding null

vectors.

Step 6: Set up the Type II and Type III self-equilibrating systems, and form the

corresponding null vectors consisting of the members’ forces when the genera-

tor’s force is equal to unity.

Step 7: Finally assemble the null basis (static basis) of the FEM by arranging the

null vectors in the ascending order of the highest member number of the self-

equilibrating systems.

The above algorithm is implemented in MATLAB and is used to analyze three

structures, and the efficiency of the present method is illustrated through these

examples.

7.2.7 Numerical Examples

In this section three examples are studied. In each case, first the structure is

idealized using second order triangular elements. The null basis matrices are

constructed utilizing the present method and two algebraic procedures, namely

Table 7.1 Member list of a typical Type II or Type III self-equilibrating system

d11 d12 . . . s1 s2 . . . g . . . d1i . . . sj . . . d1k
d21 d22 d2i d2k
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the Gauss-Jordan elimination method and QR factorization. Then the results are

contrasted through normalized computational time for the formation of the null

basis matrices and nonzero pattern and condition numbers of the flexibility matri-

ces. In the following examples, nz represents the number of non-zero entries and,

the ratio of the extreme eigenvalues, λmax/λmin, is taken as the condition number of

the matrices.

In the second step, each example is idealized using second, third and fourth order

elements. Then the properties of the flexibility matrices obtained from the present

method are compared to those of the corresponding stiffness matrices. For this

purpose condition s and the number of unknowns, namely the DSI for the force

method and the DKI degree of kinematic indeterminacy for the displacement

method are utilized.

Example 1. Consider a beam structure with determinate support conditions. The

beam is bent under a uniformly distributed load of intensity q ¼ 10 kN/m. The

structure is idealized using plain stress triangular elements. As indicated in Fig. 7.8,

three types of elements are generated using second, to fourth order elements. All

models have the same nodes with the following mechanical properties:

Thickness ¼ 0.01 m, E ¼ 2e + 8 kN/m2, ν ¼ 0.3. Topological properties of the

models are collected in Table 7.2.

Figure 7.9 displays pattern of the null basis matrices employing the present

method and two other algebraic procedures for the model comprising of second

order elements. In this relation Table 7.3 contains other optimality characteristics of

the force method procedures. It is clear that the graph theoretical method forms the

most well-structured null basis in smallest computational time.

Figure 7.10 shows the pattern of the flexibility matrices for the models compris-

ing of the second to fourth order elements. It is noticeable that as the order of

elements increases the DSI of the model decreases. Meanwhile, with identical

number of nodes for the models, the DKI stays the same, as illustrated in

Fig. 7.11. Table 7.4 contains the ratio of the DKI/DSI.

Finally, for a model with second order elements, the average σxx stresses at

nodes of Path 1 are compared through the results of the present force method and

displacement method in [1].

Example 2. A beam structure which depicted in Fig. 7.12 is bent under a uni-

formly distributed load of intensity q ¼ 10 kN/m. The structure is analyzed three

times using second, third and fourth order elements. Plane stress elements are

considered with the following mechanical properties: thickness ¼ 0.01 m, E ¼ 2

e + 8 kN/m2, ν ¼ 0.3. Topological properties of the models are collected in

Table 7.5.

Figure 7.13 and Table 7.6 reveal the optimality characteristics of the present

graph theoretical and the two algebraic force methods. The present method leads to

a sparse and banded null basis using the smallest computational time. QR factor-

ization method forms a null basis in reasonable computational time and leads to a

well-conditioned flexibility matrix but the flexibility matrix is not well-structured

at all.
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Comparing Figs. 7.14 and 7.15 shows that, by using higher order triangular

elements there will be fewer compatibility conditions than equilibrium equations.

Thus utilizing the graph theoretical force method can be attractive and economical.

a

b

c

Fig. 7.8 FEM of the beam of Example 1

Table 7.2 Topological properties for the FEM of Example 1

Element type

FEM Self-equilibrating systems Force system

Nodes Elements Type I Type II Type III Int. DSI

Second order 481 216 600 300 85 1,944 985

Third order 481 96 384 256 33 1,632 673

Fourth order 481 54 276 207 16 1,458 499
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Table 7.7 contains the ratios of the DKI/DSI and also condition numbers of the

stiffness matrices.

Example 3. A cross section of a retaining wall is idealized using triangular

elements, as illustrated in Fig. 7.16. The model is analyzed three times using

second, third and fourth order elements. Here plane strain elements are utilized

with the following mechanical properties:

Thickness ¼ 1 m, E ¼ 2e + 7 kN/m2, ν ¼ 0.2. Topological properties of the

models are collected in Table 7.8.

Optimality characteristics of the employed force methods can be seen in

Fig. 7.17 and Table 7.16. The patterns of the flexibility matrices utilizing present

method are illustrated in Fig. 7.18. The difference between nonzero numbers of the

Fig. 7.9 Pattern of the null basis B1 corresponding to Example 1 with second order elements and

utilizing (a) Graph theoretical method (b) Gauss Jordan elimination method (c)QR decomposition

method

Table 7.3 Comparison of the optimality characteristics of the null basis matrices B1 and flexi-

bility matrices G for the FEM of Example 1

Null basis B1 Flexibility matrix G

Time

Time Present method

nz entries
nz entries

Present method

λmax

λmin

Graph theoretical method 1.00 1.00 1.21e+4

Gauss Jordan elimination

method

106.48 17.01 3.08e+4

QR factorization method 3.06 43.27 8.22e+3
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a b c

Fig. 7.10 Pattern of the flexibility matrices G corresponding to Example 1, considering (a) second

order (b) third order (c) fourth order elements

0 200 400 600 800

0

200

400

600

800

nz = 13251

0 200 400 600 800

0

200

400

600

800

nz = 29987

0 200 400 600 800

0

200

400

600

800

nz = 41403

a b c

Fig. 7.11 Pattern of the reduced stiffness matrices Kr corresponding to Example 1 considering (a)

second order (b) third order (c) fourth order elements

Table 7.4 Optimality

characteristics of the reduced

stiffness matrices Kr for

Example 1.

Element type λmax

λmin

DKI
DSI

Second order 6.22e+4 0.97

Third order 9.45e+4 1.42

Fourth order 1.59e+5 1.92

Fig. 7.12 Beam structure of Example 2
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matrices is due to the use of different SESs for external redundant forces

(Table 7.9).

The patterns of reduced stiffness matrices and the corresponding condition

numbers are provided in Fig. 7.19 and Table 7.10, respectively.

Table 7.5 Topological properties for the FEM of Example 2

Element type

FEM Self-equilibrating systems Force system

Nodes Elements Type I Type II Type III Int. DSI

Second order 350 144 368 184 47 1,296 599

Third order 742 144 552 368 47 2,448 967

Fourth order 1,278 144 736 552 47 3,888 1,335

Fig. 7.13 Pattern of the null basis B1 corresponding to Example 2 with second order elements and

utilizing (a) Graph theoretical method (b) Gauss Jordan elimination method (c)QR decomposition

method

Table 7.6 Comparison of the optimality characteristics of the null basis matrices B1 and flexi-

bility matrices G for the FEM of Example 2

Null basis B1 Flexibility matrix G

Time
Time

Present method

nz entries
nz entries

Present method

λmax
λmin

Graph theoretical method 1.00 1.00 4.24e+4

Gauss Jordan elimination

method

60.33 11.50 1.27e+5

QR factorization method 1.67 26.21 1.66e+3
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7.3 Finite Element Analysis of Models Comprised

of Higher Order Rectangular Elements

In this section, an efficient method is developed for the formation of null bases of

finite element models (FEMs) consisting of rectangular plane stress and plane strain

serendipity family elements, corresponding to highly sparse and banded flexibility

matrices. This is achieved by associating special graphs with the FEM and selecting

appropriate subgraphs and forming the self-equilibrating systems (SESs) on these

subgraphs. The efficiency of the present method is illustrated through three examples.
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a b c

Fig. 7.14 Pattern of the flexibility matrices G corresponding to Example 2 considering (a) second

order (b) third order (c) fourth order elements
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Fig. 7.15 Pattern of the reduced stiffness matrices Kr corresponding to Example 2 considering

(a) second order (b) third order (c) fourth order elements

Table 7.7 Optimality

characteristics of the

reduced stiffness matrices

Kr for Example 2

λmax

λmin

DKI
DSI

Second order 5.94e+4 1.16

Third order 2.08e+5 1.53

Fourth order 6.25e+5 1.91
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7.3.1 Definition of Element Force System

For the generation of the equilibrium matrix A of a FEM, a set of independent

forces system should be defined and also their relations with the element nodal

forces should be established.

In displacement method we have two forces at each node of the element. For an

element with N nodes, 2 � N nodal forces can be defined. Using three equilibrium

equations, 2N � 3 independent forces will remain. In other words, there are

2N � 3 independent element forces in an element with N nodes. The nodal forces

and element forces systems are shown in Fig. 7.20 for rectangular plane stress and

plane strain serendipity family elements with various numbers of boundary nodes.

For the higher order elements, the element forces system can be obtained with the

same procedure.

These element forces can be related to the nodal forces for a rectangular element

by a (2N) � (2N � 3) transformation matrix using Eq. 7.10 as

Fig. 7.16 A section of the

retaining wall of Example 3

Table 7.8 Topological properties for the FEM of Example 3

Element type

FEM Self-equilibrating systems Force system

Nodes Elements Type I Type II Type III Int. Ext. DSI

Second order 150 63 166 83 21 567 34 301

Third order 319 63 249 166 21 1,071 50 483

Fourth order 551 63 332 249 21 1,701 66 665
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Fig. 7.17 Pattern of the null basis B1 corresponding to Example 3 with second order elements and

utilizing (a) Graph theoretical method (b) Gauss Jordan elimination method (c)QR decomposition

method
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Fig. 7.18 Pattern of the flexibility matrices G corresponding to Example 3 considering (a) second

order (b) third order (c) fourth order elements

Table 7.9 Comparison of the optimality characteristics of the null basis matrices B1 and flexibility

matrices G for the FEM of Example 3

Null basis B1 Flexibility matrix G

Time
Time

Present method

nz entries
nz entries

Present method

λmax
λmin

Graph theoretical method 1.00 1.00 5.02e+5

Gauss Jordan elimination

method

48.17 5.54 1.19e+5

QR factorization method 1.62 13.07 4.80e+3
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S ¼ TF ð7:10Þ

Transformation matrix can be formed simply as

n1; n2ð Þ¼ endnodesof element forceFj
For i ¼ 1 :N

For j ¼ 1 : 2N� 3
If i ¼¼ n1 T 2i� 1, jð Þ ¼ mn1n2 and T 2i, jð Þ ¼ nn1n2
If i ¼¼ n2 T 2i� 1, jð Þ ¼ mn2n1 and T 2i, jð Þ ¼ nn2n1

End

End

Where xi and yi are the Cartesian coordinates of node i, mij ¼ xi�xj
lij

, nij ¼ yi�yj
lij

are

the direction cosines and lij is the length of the line between nodes i and j.

7.3.2 Flexibility Matrix of the Element

In this case flexibility matrices of higher order triangular elements can simply be

formed using the stiffness matrices of such elements.
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Fig. 7.19 Pattern of the reduced stiffness matrices Kr corresponding to Example 3 considering

(a) second order (b) third order (c) fourth order elements

Table 7.10 Optimality

characteristics of the reduced

stiffness matrices Kr for

Example 3

λmax

λmin

DKI

DSI

Second order 4.35e+3 0.88

Third order 1.31e+4 1.21

Fourth order 3.61e+4 1.55
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fm ¼ Trð Þt Krð Þ�1
Tr ð7:11Þ

where the subscript r indicates that, corresponding orders of matrices to dependent

forces are reduced.

7.3.3 Graphs Associated with Finite Element Model

In order to transfer the topological property of a finite element model to the

connectivity of a graph ten different graphs are previously introduced in Chap. 4.

Fig. 7.20 A set of rectangular serendipity family elements
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Here natural associate graph and interface graph are used that are defined in the

following:

7.3.3.1 Natural Associate Graph

The natural associate graph represented by NAG(FEM) is constructed by the

following rules:

1. Nodes of the NAG(FEM) correspond to the elements of FEM.

2. For each pair of elements in FEM having (N + 4)/4 common nodes, one member

is added between the corresponding two nodes in NAG(FEM).

NAG can be constructed using the following procedure: One of the preliminary

steps in FEM is defining the elements with their connected nodes. In this way the

element connectivity matrix is constructed which contains the element-node inci-

dence relationships. In the process of constructing the element connectivity matrix,

another matrix which contains node-element incidence properties can be formed.

This matrix is named the node connectivity matrix. Now using the element con-

nectivity and the node connectivity matrices leads to an algorithm with complexity

O(n) for an efficient generation of NAG.

In order to recognize the adjacent elements to the nth element which have

(N + 4)/4 common nodes or one common face, first the connected nodes to the

nth element are identified from the element connectivity matrix. In the subsequent

step using the node connectivity matrix, elements which have at least one common

node with the nth element are identified. Now it is convenient to seek for the

adjacent elements in this reduced search space. A FEM and its corresponding NAG

are illustrated in Fig. 7.21.

7.3.3.2 An Interface Graph

The interface graph of a finite element model denoted by IG (FEM) can easily be

constructed for rectangular FEM using the following rules:

1. This graph contains all the nodes of the FEM.

2. With the all edges of an element of FEM, N graph members are associated.

Therefore, in the interface of two elements, 2-multiple members are presented.

3. For each element with N nodes, 2N � 3 members should be considered in the

interface graph. Thus, N � 3 ¼ (2N � 3) � N) diagonal members should be

added. This graph for a quadratic and cubic FEM is shown in Fig. 7.22.

The member numbering of the interface graph should be performed according to

the numbering of the FEM, taking into account the primary nodal numbering of a

considered element in the model. Thus, for each rectangular element 2N � 3

members of the interface graph will be numbered sequentially according to the

patterns which were illustrated in Fig. 7.20.
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7.3.4 Topological Interpretation of Static Indeterminacies

7.3.4.1 Degree of Static Indeterminacy of the FEM

Considering Fig. 7.20, in order to find the patterns corresponding to the self-

equilibrating systems, a rectangular element is simulated as a planar truss formed

as the 1-skeleton of the rectangular element together with some diagonal members.

This is possible since the independent element forces applied at in the nodes and are

Fig. 7.21 A quadratic rectangular FEM with its natural associate graph (bold lines) for a circular

plate

Fig. 7.22 A quadratic, cubic and quartic rectangular FEM with their interface graphs
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along the edges of the rectangular element. The statical indeterminacy of a planar

truss with m members and n nodes is given as γ(S) ¼ m � 2n + 3; therefore, the

degree of statical indeterminacy (DSI) of the entire model supported in a statically

determinate manner can be calculated with the same relationship as

DSI ¼ 2N� 3ð Þ �M� 2nþ 3 ð7:12Þ

Where M is the total number of elements, N is the number of nodes within an

element and n is the total number of nodes of the FEM.

Following self-equilibrating systems are found. Then null vectors which express

the equilibrium conditions of the self-equilibrating systems are generated.

7.3.4.2 Type I Self-Equilibrating Systems

Each multiple member of the interface graph is a subgraph on which one self-

equilibrating system can be generated. In other words, on a 2-multiple member

numbered as (i, j) with the condition (i < j), one self-equilibrating system can be

constructed (extracted).

Each pair such as (i, j) for which (i < j) corresponds to a null vector with their

non-zero entries being located in rows i and j, and their numeric values are (�1, 1),

respectively. The member with bigger member number (j) is called the generator.

These pairs are called Type I self-equilibrating systems.

For a FEM we have N
4
�M0 self-equilibrating systems of Type I, whereM0 is the

number of members of the associate graph of the model.

7.3.4.3 Type II Self-Equilibrating Systems

There are other types of self-equilibrating systems which are extracted from two

adjacent elements of FEM. In other words, for two adjacent elements with N nodes,

the DSI can be calculated as:

DSI ¼ 2N� 3ð Þ �M� 2nþ 3

) DSI ¼ 2N� 3ð Þ � 2� 2�
�
2N� Nþ 4

4

�
þ 3 ¼ N� 7 ð7:13Þ

N
4
self-equilibrating systems were generated as Type I systems. Thus the number

of remaining self-equilibrating systems is

Type II ¼ N

2
� 1� N

4
¼ N

4
� 1 ð7:14Þ

In other words, N
4
� 1SESs should be extracted from two adjacent elements. This

number is equal to the number of internal nodes of the remaining subgraph after
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deleting the generators of SESs of Type I. For example, the remaining subgraphs for

two adjacent cubic elements are shown in Fig. 7.23a in two directions. In this figure,

the diagonal members are curved for better illustration. After deleting the genera-

tors corresponding to Type I SESs, the null vectors should be calculated from the

remaining subgraph. These null vectors can easily be generated on the

corresponding sub-structure utilizing an algebraic method. For instance, results

SESs in horizontal direction are shown in Fig. 7.23b.

In a FEM, the total number of Type II SESs can be calculated as:

Type II ¼ M
0 � N

4
� 1

� �
ð7:15Þ

where M0 is the number of members of the associate graph of the model and N is the

number of nodes of an element.

The most important point in Type II self-equilibrating systems is to select an

appropriate generator. In fact by eliminating these generators from graph S, the

Fig. 7.23 (a) Subgraph corresponding to SESs of Type II, (b) Pattern of Type II self-equilibrating

systems in horizontal direction
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sub-structure of Type III SESs and the primary structure of the structure S must

remain stable.

7.3.4.4 Type III Self-Equilibrating Systems

Sub-structures which are topologically identical to the minimal cycles of the natural

associate graph of FEM contains some Type I, II and one Type III self-equilibrating

systems.

Type I Minimal Cycles of NAG(S)

These minimal cycles of the natural associate graph of the FEM pass through four

elements which have one common node. Corresponding interface graph of these

elements have n nodes and m edges for a FEM with N-node elements.

m ¼ 4� 2N� 3ð Þ ð7:16Þ

n ¼ 4N� 4� Nþ 4

4

� �
þ 1 ¼ 3� N� 1ð Þ ð7:17Þ

Subsequently, the DSI of the interface graph is

DSI ¼ m� 2nþ 3

) DSI ¼ 4� 2N� 3ð Þ � 2� 3� N� 1ð Þð Þ þ 3 ¼ 2N� 3 ð7:18Þ

The N, N ¼ N
4
�M

0 ¼ N
4
� 4

� �
, SESs are Type I and there are N � 4,

N� 4 ¼ M
0 � N

4
� 1

� � ¼ 4� N
4
� 1

� �� �
, SESs of Type II.

DSI� TypeI&IIð Þ ¼ 2N� 3ð Þ � Nþ N� 4ð Þð Þ ¼ 1 ð7:19Þ

Therefore, one independent SES should be extracted. This SES with eight

members can be formed for any types of rectangular elements around the common

node as is indicated bold in Fig. 7.24.

Type II Minimal Cycles of NAG(S)

Each minimal cycle that surrounds an opening is called the Type II minimal cycle.

Such a cycle passes through M0, (M0 � 8), finite elements and its corresponding

interface graph has 3N
4
� 1

� ��M
0
nodes and M0 � (2N � 3) members. The DSI of

subgraph is
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DSI ¼ M
0 � 2N� 3ð Þ � 2� 3N

4
� 1

� �
�M

0 þ 3

) DSI ¼ M
0 � N

2
� 1

� �
þ 3 ð7:20Þ

that N
4
�M

0
SESs of Type I and Type II ¼ M

0 � N
4
� 1

� �
SESs of Type II can be

extracted.

DSI�TypeI & TypeII¼M
0 � N

2
�1

� �
� M

0 �N

4
þM

0 � N

4
�1

� �� �
þ3¼3 ð7:21Þ

Therefore, each Type II minimal cycle corresponds to three null vectors which

are calculated utilizing an algebraic method.

7.3.5 Selection of Generators for SESs of Type II
and Type III

The most important point in Type II and Type III self-equilibrating systems is to

select appropriate generators. This is by eliminating these generators from graph S,

the sub-structure of primary structure of the structure S must remain stable. To

achieve this, the following rule for appropriate selection of generators of Type II

SESs is suggested.

For quadratic and rectangular element the generators of SESs Type II and Type

III are illustrated in Figs. 7.25 and 7.26, respectively. It should be noted that the

generators corresponding to Type I were chosen previously. In addition, the gen-

erators corresponding to an opening are the last non-zero entries of its columns

which are not common with the previously selected generators.

Fig. 7.24 The SES of Type

III corresponding to the

common node of four

rectangular elements
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7.3.6 Algorithm

Step 1: Generate the associate graph of the FEM and use an efficient method for its

nodal numbering see Chaps. 4 and 5. It is obvious that good numbering of this

graph corresponds to good numbering of elements of the FEM. This numbering

leads to a banded adjacency matrix of the graph and correspondingly to a banded

flexibility matrix. Since the numbering of the members of the interface graphs

corresponds to the element numbering of the finite elements, such a numbering is

the only parameter for controlling the bandwidth of the flexibility matrix.

Step 2: Set up the equilibrium matrix of the FEM.
Step 3: Generate the interface graph and perform its numbering. The numbering of

this graph should be performed according to the element numbering of the

Fig. 7.25 Selected generators of the Type II SES

Fig. 7.26 Selected generators of the Type III SES
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considered FEM. After this numbering the interface graph can easily be formed

and its members can be numbered.

Step 4: Find the Type I self-equilibrating systems. All multiple members of the

interface graph are identified and the values�1 and 1 are assigned to appropriate

rows (corresponding to the member numbers) and the corresponding minimal

null vectors are created.

Step 5: Find the Type II self-equilibrating systems. The N
4
� 1 SESs of Type II

should be extracted from two adjacent elements.

Step 6: Find the Type III self-equilibrating systems. For each minimal cycle of

natural associate graph of FEM with four members (one common node), one

SES and with eight or more members (Opening), three SESs should be extracted.

Step 7: Order the null vectors. At this step the constructed null vectors should be

ordered such that their last non-zero entries form a list with an ascending order.

7.3.7 Numerical Examples

In this section three FEMs are considered, one of these models is assumed to be

supported in statically indeterminate fashion and the other two supported in a

determinate fashion. The effect of the presence of additional supports can sepa-

rately be included for each special case with no difficulty. The equilibrium matrices

are formed. Null bases and the flexibility matrices are constructed and the required

computational times, and the condition numbers are calculated. In all the following

examples, nnz represents the number of non-zero entries and λmax/λmin is the ratio

of the extreme eigenvalues taken as the condition number of a matrix. The com-

parison between present algorithm and algebraic force method is shown in

Table 7.11 for all three examples. Finally the present method is validated through

comparison of resulting stresses using the present graph-theoretical force method

and the displacement method.

Example 1. The lining of a tunnel is considered supported in a statically determi-

nate manner, and its applied load is depicted in Fig. 7.27. This structure is

discretized using rectangular 8-node finite elements. The properties of the model

are as follows:

Poisson’s ratio ¼ 0.3; Elastic modulus E ¼ 2e + 7 kN/m2; Thickness t ¼ 1.00 m

Number of rectangular 8-node elements ¼ 100

Number of nodes ¼ 405

DSI ¼ 100 � 13 � 2 � 405 + 3 ¼ 493

Number of Type I self-equilibrating systems ¼ 296 (60 %)

Number of Type II self-equilibrating systems ¼ 148 (30 %)

Number of Type III self-equilibrating systems ¼ 49 (10 %)
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The interface and natural associate graphs of the FEM model are illustrated in

Fig. 7.28. The pattern of the equilibrium matrix is shown in Fig. 7.29. The sparsity

of the final null basis obtained by the present method is approximately 6.7 % of that

of QR method and 6.07 % of the LU method as depicted in Fig. 7.30. The flexibility

matrix, G, is also well-structured as shown in Fig. 7.31. The results are verified by

standard displacement method in Table 7.12.

Example 2. A circular plate and its applied load are shown in Fig. 7.32. The

internal and external diameters are 1.00 and 5.00 m, respectively. This structure is

discretized using 12-node rectangular finite elements. The properties of the model

are as follows:

Table 7.11 The comparison between present algorithm and algebraic force method for all three

examples

Example Computational time
LU time

Condition number

(flexibility matrices)
λmax

λmin Norms max|A � B1|

Present method

LU

factorization

Present

method

LU

factorization

Tunnel lining 1.21 47.65 1.63e+5 1.08e�15 4.04e�14

Circulate beam 0.45 9.38e+5 8.73e+7 5.51e�14 1.76e�13

Retaining wall

(8-node)

0.84 2.68e+4 4.28e+7 7.43e�12 2.67e�13

Retaining wall

(12-node)

0.78 3.59e+5 8.01e+7 1.22e�14 1.90e�13

Fig. 7.27 A lining of a tunnel, the discretization and loading of the structure
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Fig. 7.28 Interface and natural associate graphs of Example 1. (a) Interface graph, (b) natural

associate graph

Fig. 7.29 Pattern of the equilibrium matrix for Example 1
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Poisson’s ratio ¼ 0.3; Elastic modulus E ¼ 2e + 7 kN/m2; Thickness t ¼ 1.00 m

Number of rectangular 12-node elements ¼ 384

Number of nodes ¼ 2,064

DSI ¼ 384 � 21 � 2 � 2064 + 3 ¼ 3939

Number of Type I self-equilibrating systems ¼ 2,160 (�55 %)

Number of Type II self-equilibrating systems ¼ 1,440 (�36 %)

Number of Type III self-equilibrating systems ¼ 336 (internal nodes) + 3 (an opening) ¼ 339

(�8.5 %)

Fig. 7.30 Patterns and number of non-zero entries of the null bases of Example 1: (a) present

algorithm, (b) QR factorization and (c) LU factorization

Fig. 7.31 Patterns of

the flexibility matrix

G ¼ Bt
1FmB1 for Example

1 using the proposed

method
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The interface and natural associate graph of the FEM model is illustrated in

Figs. 7.33 and 7.21. The pattern of the equilibrium matrix is shown in Fig. 7.34. The

sparsity of the final null basis obtained by the present method is approximately

0.46 % of the QR method and 1.9 % of the LU approach as depicted in Fig. 7.35.

Table 7.12 Comparison of the displacement method and the present force method for Example 1

Element stresses

Method Displacement method The present force method

Element σxx σyy σxy σxx σyy σxy

kN/cm2 kN/cm2

1 �0.1806 �0.7815 0.2763 �0.1806 �0.7815 0.2763

10 �0.0918 �0.7379 �0.2186 �0.0918 �0.7379 �0.2186

20 �0.3097 �0.6082 �0.4040 �0.3097 �0.6082 �0.4040

30 �0.6168 �0.3721 �0.4470 �0.6168 �0.3721 �0.4470

40 �0.8943 �0.1416 �0.3060 �0.8943 �0.1416 �0.3060

50 �1.0196 �0.0346 �0.0306 �1.0196 �0.0346 �0.0306

60 �0.9346 �0.1073 0.2586 �0.9346 �0.1073 0.2586

70 �0.6790 �0.3214 0.4333 �0.6790 �0.3214 0.4333

80 �0.3672 �0.5666 0.4265 �0.3672 �0.5666 0.4265

90 �0.1244 �0.7240 0.2627 �0.1244 �0.7240 0.2627

100 �0.1361 �0.7739 0.3446 �0.1361 �0.7739 0.3446

Fig. 7.32 A circulate plate

with an opening
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The flexibility matrix is also well-structured as shown in Fig. 7.36. The results are

verified by the standard displacement method in Table 7.13.

Example 3. The FEM of a dam which is supported in a statically indeterminate

fashion is depicted in Fig. 7.37. This structure is discretized using 8-node and

12-node rectangular finite elements separately. It should be noted that the number

of support elements depends on the choice of 8 or 12 nodes per finite element. The

properties of the models are:

Fig. 7.33 The interface

graph of Example 2

Fig. 7.34 Pattern of the

equilibrium matrix for

Example 2
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Poisson’s ratio ¼ 0.3; Elastic modulus E ¼ 2e + 7 kN/m2; Thickness t ¼ 1.00 m

Case 1: Number of rectangular 8-node elements ¼ 192, Number of nodes ¼ 681

Case 2: Number of rectangular 12-node elements ¼ 192, Number of nodes ¼ 1,117

DSI8 � node ¼ 192 � 13 � 2 � 681 + 82 ¼ 1, 216

DSI12 � node ¼ 192 � 21 � 2 � 1117 + 122 ¼ 1, 920

Number of Type I self-equilibrating systems, Case 1 ¼ 664 (58.5 %)

Number of Type II self-equilibrating systems, Case 1 ¼ 332 (29 %)

Number of Type III self-equilibrating systems, Case 1 ¼ 141 (12.5 %)

Number of Type I self-equilibrating systems, Case 2 ¼ 996 (55 %)

Number of Type II self-equilibrating systems, Case 2 ¼ 664 (36.8 %)

Number of Type III self-equilibrating systems, Case 2 ¼ 141 (8.2 %)

Fig. 7.35 Patterns and the number of non-zero entries of the null bases of Example 2: (a) present

algorithm, (b) QR factorization and (c) LU factorization

Fig. 7.36 Patterns of flexibility matrix G ¼ Bt
1FmB1 for Example 2 using the proposed method
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The interface and natural associate graphs of the FEM model are illustrated in

Fig. 7.38 for FEM with 8-node elements. The interface graph for other cases can

simply be obtained. The final null basis obtained for both cases by the present

method are depicted in Figs. 7.39 and 7.40. The flexibility matrix is also well-

structured as shown in Fig. 7.41. The results are verified by the standard displace-

ment method in Table 7.14.

7.4 Efficient Finite Element Analysis Using Graph-

Theoretical Force Method: Hexa-Hedron Elements

Formation of a suitable null basis for equilibrium matrix is the main problem of

finite elements analysis via force method. For an optimal analysis, the selected null

basis matrices should be sparse and banded corresponding to sparse, banded and

well-conditioned flexibility matrices. In this section, an efficient method is devel-

oped for the formation of null bases of finite element models (FEMs) consisting of

hexahedron elements, corresponding to highly sparse and banded flexibility matri-

ces. This is achieved by associating special graphs with the FEM and selecting

appropriate subgraphs and forming the self-equilibrating systems (SESs) on these

subgraphs.

Table 7.13 Comparison of the displacement method and the present force method for Example 2

Element stresses

Method Displacement method The present force method

Element σxx σyy σxy σxx σyy σxy

kN/cm2 kN/cm2

337 �2.6962 �2.8935 0.0188 �2.6962 �2.8935 0.0188

340 �2.7314 �2.8329 0.0701 �2.7314 �2.8329 0.0701

343 �2.7879 �2.7646 0.0793 �2.7879 �2.7646 0.0793

346 �2.8348 �2.7121 0.0464 �2.8348 �2.7121 0.0464

349 �2.8483 �2.6972 �0.0098 �2.8483 �2.6972 �0.0098

352 �2.8220 �2.7262 �0.0612 �2.8220 �2.7262 �0.0612

255 �2.7686 �2.7870 �0.0813 �2.7686 �2.7870 �0.0813

358 �2.7158 �2.8547 �0.0572 �2.7158 �2.8547 �0.0572

361 �2.6939 �2.9112 0.0059 �2.6939 �2.9112 0.0059

364 �2.7288 �2.9929 0.1074 �2.7288 �2.9929 0.1074

367 �0.8483 �2.4765 �0.0155 �0.8483 �2.4765 �0.0155

370 �2.4803 �2.7025 �0.0552 �2.4803 �2.7025 �0.0552

373 �2.5319 �2.7105 0.0084 �2.5319 �2.7105 0.0084

376 �2.3806 �2.6839 0.0927 �2.3806 �2.6839 0.0927

379 �2.6693 �2.7841 �0.4591 �2.6693 �2.7841 �0.4591

382 �2.7092 �2.9526 �0.0679 �2.7092 �2.9526 �0.0679
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7.4.1 Independent Element Forces and Flexibility Matrix
of Hexahedron Elements

In the force method the efficiency of this analysis depends on the required time for

the formation of the matrix. G ¼ Bt
1FmB1 and its characteristics, i.e. sparsity and

bandedness together with its conditioning. For the formation of a well-structured

matrix G, one should select a well-structured B1 matrix.

Fig. 7.37 A retaining wall and the corresponding rectangular meshes
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For the generation of the equilibrium matrix A of a FEM, a system of indepen-

dent force systems should be defined and also their relations with the element nodal

forces should be established.

In displacement method we have three forces at each node of the element.

For an element with N nodes, 3 � N nodal forces can be defined. Using six

equilibrium equations, 3N � 6 independent forces will be remained. In other

words, there are 3N � 6 independent element forces in an element with

N nodes. The nodal forces and element forces systems are shown in Fig. 7.42

for hexahedron elements with various numbers of boundary nodes. For the

higher order elements, the element forces system can be obtained with the

same procedure.

These element forces F can be related to the nodal forces S for a N-node element

by a (3N) � (3N � 6) transformation matrix using Eq. 7.22 as

S ¼ TF ð7:22Þ

Transformation matrix can be formed simply as

where xi, yi and zi are the Cartesian coordinates of node i, mij ¼ (xi � xj)/lij,

nij ¼ (yi � yj)/lij, and pij ¼ (zi � zj)/lij, are the direction cosines and lij is the

length of the line between nodes i and j.

Formulation of a discrete element equivalent to the actual continuous structure is

the first step in matrix structural analysis. For a linear system it can be assumed that

the stresses σ .are related to the forces F by linear equation as

σ ¼ cF ð7:24Þ

The matrix c represents a statically equivalent stress system due to the unit force

F. The flexibility matrix of an element can be written as

fm ¼
ð
V

ctφcdV ð7:25Þ

The integration is taken over the volume of the element, where φ is the matrix

relating the stresses to strains ε ¼ φσ in three dimensional problems. The primary

step in the formation of the flexibility matrix of an element is determining the

matrix c. It is obvious that the ith column of c represents the resultant stresses due to

unit element force Fi in the force method and also stresses due to nodal forces S is

equal to the ith column of T utilizing the displacement method. Hence, we can form

matrix c using the stiffness properties of the hexahedron element using the

displacement method. Now the flexibility matrix of the element in the force method

is formed from Eq. 7.25 using Gauss numerical integration method with sixty four

Gauss points (4 � 4 � 4 Gauss Points Integration).
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Fig. 7.38 Interface graph and natural associate graph for both cases ofExample 3, (a) Interface graph

for 8-node element, (b) Interface graph for 12-node element and (c) Associate graph for both cases

Fig. 7.39 Patterns and number of non-zero entries of null bases of Example 3 (8-node element):

(a) present algorithm, (b) QR factorization and (c) LU factorization
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7.4.2 Graphs Associated with Finite Element Models

7.4.2.1 An Interface Graph

The interface graph of a finite element model denoted by IG (FEM) can easily be

constructed for hexahedron FEM using the following rules:

1. This graph contains all the nodes of the FEM.

Fig. 7.41 Patterns of flexibility matrix G ¼ Bt
1FmB1 of Example 3, (a) 8-node element,

(b) 12-node element

Fig. 7.40 Patterns and number of non-zero entries of null bases of Example 3 (12-node element):

(a) present algorithm, (b) QR factorization and (c) LU factorization
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2. With each edge of an element of FEM, (N + 4)/12 graph elements are

associated.

3. For each element with N nodes, 3N � 6 members should be considered in the

interface graph. Thus, 2N � 10 ¼ (3 N � 6) � (N + 4) diagonal members

should be added.

Therefore, in the interface of two elements (common side), 4� Nþ4ð Þ
12

þ 2N�10ð Þ
6

multiple members are present. The member numbering of the interface graph should

be performed according to the numbering of the FEM, taking into account the primary

nodal numbering of a consider element in the model. Thus, for each hexahedron

element 3N � 6 edges of the interface graph will be numbered sequentially according

to the patterns which were illustrated in Fig. 7.43. In this figure, quartic element

numbering was neglected and just the element forces are displayed. Numbering of

this type can be easily obtained according to the pattern of other elements.

7.4.2.2 Natural Associate Graph

The natural associate graph represented by NAG(FEM) is constructed by the

following rules:

1. Nodes of the NAG(FEM) correspond to the elements of FEM.

2. For each pair of elements in FEM having
2Nþ8ð Þ
6

common nodes (N ¼ the number

of nodes of an element), one member is added between the corresponding two

nodes in NAG(FEM).

Fig. 7.42 A set of hexahedron elements
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NAG(FEM) can be constructed using the following procedure: One of the

preliminary steps in FEA is defining the elements with their connected nodes. In

this way the element connectivity matrix is constructed which contains the element-

node incidence relationships. In the process of constructing the element connectiv-

ity matrix, another matrix which contains node-element incidence properties can be

formed. This matrix is named the node connectivity matrix. Now using the element

connectivity and the node connectivity matrices leads to an algorithm with com-

plexity O(n) for an efficient generation of NAG.

In order to recognize the adjacent elements to the nth element which have

common
2Nþ8ð Þ
6

nodes or one common face, first the connected nodes to the nth

element are identified from the element connectivity matrix. In the subsequent step

using the node connectivity matrix, elements which have at least one common node

with the nth element are identified. Now it is convenient to seek for the adjacent

elements in this reduced search space. A FEM and its corresponding NAG are

illustrated in Fig. 7.44.

Fig. 7.43 Nodal numbering and element forces for hexahedron elements; (a) linear, (b) quadratic,

(c) cubic and (d) quartic
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7.4.3 Negative Incidence Number

Negative incidence number (NIN) is necessary for each node of NAG(FEM). This

number can be found as following:

After generation of natural associate graph of the FEM, use an efficient method

for its nodal numbering. A typical edge of the graph connects smaller number to the

node with higher number. Negative incidence number of each node is the number of

its adjacent nodes with smaller nodal number. Except the node numbered as 1, all

the other nodes have one, two or three negatively incident edges defined as the

negative incidence number of the node. Owing to the importance of these numbers

in recognizing the types of SESs, the negative incidence numbers of the nodes of

the graph should carefully be calculated. In Fig. 7.45, a hexahedron FEM with

element numbering, its corresponding associate graph and negative incidence

number of nodes are shown. The nodes should be numbered such that the incidence

numbers do not become large. Any simple nodal ordering will lead to a logical

ordering.

7.4.4 Pattern Corresponding to Self-Equilibrating Systems

Considering Fig. 7.43, in order to find the patterns corresponding to the self-

equilibrating systems, a hexahedron element is simulated as a spatial truss formed

as the 1-skeleton of the hexahedron element together with some diagonal members.

This is possible since the independent element forces are applied in the nodes and

are along the edges of the element. In Fig. 7.46, an IG(FEM) with four quadratic

elements is shown which is simulated as a spatial truss containing some multiple

members.

The statical indeterminacy of a spatial truss with m members and n nodes is

given as γ(S) ¼ m � 3n + 6; therefore, the degree of statical indeterminacy (DSI)

Fig. 7.44 Finite element

model (black part) with

natural associate graph

(blue part)
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of the entire model supported in a statically determinate manner can be calculated

with the same relationship as

DSI ¼ 3N� 6ð Þ �M� 3nþ 6 ð7:26Þ

where M is the total number of finite elements, N is the number of nodes of one

element and n is the total number of nodes of the FEM.

With the above simulation, the patterns of the self-equilibrating systems can be

identified as follows:

7.4.4.1 Type I Self-Equilibrating Systems

For each k multiple member in equivalent truss model of FEM, there are k unknown

forces and one equilibrium equation in the member’s direction. Thus DSI of the

Fig. 7.45 Finite element model (black part) with natural associate graph (blue part); (a) nodal

numbering of NAG; (b) negative incidence numbers of NAG

Fig. 7.46 An IG(FEM) with four quadratic elements is shown which is simulated as a spatial truss
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substructure is equal to k � 1 and k � 1 self-equilibrating systems can be gener-

ated on each k multiple member of interface graph of the FEM. In this way, first

each k multiple members are arranged in ascending order as (m1, m2, m3,. . ., mk�1,

mk). where (m1 < m2 < m3 < . . . < mk�1 < mk). Each selection of two members

from this list is valid to construct a Type I self-equilibrating system, but in order to

achieve a better bandwidth reduction; selection of adjacent members from the

defined list is preferable. Therefore k � 1 duplicate members are selected as (m1,

m2), (m2, m3),. . ., (mk�1, mk). Each pair (mi, mj) with i < j represents the numbers

of corresponding self-equilibrating system. The member with bigger number is

selected as the generator of the current SES and also as a redundant force. The null

vectors corresponding to the Type I SESs have two non-zero entries in rows i and j

equal to �1 and 1, respectively.

For FEMs with hexahedron elements, more than 75 % of the total self-stress

systems are of Type I. Thus, a large percent of the minimal null vectors can be

formed only by the determination of member numbers of these pairs. It should be

noted that in the process of the formation of the interface graph, these pairs and their

numbers can simply be identified.

7.4.4.2 Type II Self-Equilibrating Systems

There are other types of self-equilibrating systems which are extracted from two

adjacent elements of FEM. In other words, for two adjacent elements with N nodes,

the DSI can be calculated as:

DSI ¼ 3N� 6ð Þ �M� 3nþ 6

) DSI ¼ 3N� 6ð Þ � 2� 3� �
2N� 2Nþ 8

6

�þ 6 ¼ N� 2 ð7:27Þ

2N� 10

6|fflfflfflffl{zfflfflfflffl}
diagonalmembers

of oneside

þ 2Nþ 8

6|fflfflffl{zfflfflffl}
othermembers

of oneside

¼ 4N� 2

6|fflfflffl{zfflfflffl}
numberofmembers

of commonsideof

twoadjacent elements

self-equilibrating

systems were generated as Type I systems. Thus the number of remaining self-

equilibrating systems is

Type II ¼ N� 2ð Þ � 4N� 2

6

� �
¼ 2N� 10

6
ð7:28Þ

In other words, 2N�10
6

SESs should be extracted from two adjacent elements. For

example, the remaining subgraphs for two adjacent quadratic elements are shown in
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Fig. 7.47. After deleting the generators corresponding to Type I SESs, the null

vectors should be calculated from the remaining subgraph. These null vectors can

easily be generated on the corresponding sub-structure utilizing an algebraic

method.

Apart from the aforementioned about generating the SESs of Type II, if there is

at least a negative incidence number higher than one in a FEM, another important

point should be considered which is explained below:

Some of the calculated SESs of Type II are not independent of the others. For

example, for a FEM with four quadratic elements M0 is equal to four, where M0 is
the number of members of the associate graph of the model. The number of SESs of

Type II is 18 instead of 20 ¼ 4 � 5. In other words, two SESs are dependent and

should not be selected. For determining the independent SESs, an appropriate

approach is proposed. In this approach, independent SESs will be recognized

utilizing negative incidence number of elements.

The SESs of Type II are extracted from two adjacent elements in a FEM which

are the same as members of NAG(FEM). If a member of NAG(FEM) connects two

elements Mi and Mj where i < j, the number of independent SESs of Type II which

can be extracted from the subgraph corresponding to these two adjacent elements is

equal to:

Type II ¼ α� NINj �mod N; 8ð Þ
4

� �
ð7:29Þ

Where NINj is the negative incidence number of jth element and α is 1,6,8 and

13 for linear, quadratic, cubic and quartic elements, respectively. For linear ele-

ment, a SES Type II can be generated on each two adjacent elements on a FEM [6].

For other types of element, after deleting the generators corresponding to Type I

SESs, the main diagonal member (longer diagonal member) of the jth element

which is located in the common side with other adjacent elements with smaller

number than j, the null vectors should be calculated from the remaining subgraph.

The most important point in Type II self-equilibrating systems is to select an

appropriate generator. In fact by eliminating these generators and the generators

Fig. 7.47 Subgraph corresponding to SESs of Type II
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corresponding to Type I SESs from IG(FEM), the sub-structure of Type III SESs

and the primary structure of the IG(FEM) must remain stable.

7.4.4.3 Type III Self-Equilibrating Systems

Sub-structures which are topologically identical to the minimal cycles of the natural

associate graph of FEM contain some Type I, Type II and one or six Type III self-

equilibrating systems.

(a) Type I minimal cycles of NAG(FEM)

These minimal cycles of the natural associate graph of the FEM pass through

four elements which have
2Nþ8

6

4
þ 1 ¼ Nþ16

12
common nodes or Nþ16

12
� 1 ¼ Nþ4

12

common edges. Corresponding interface graph of these elements have n nodes

and m edges for a FEM with N node elements.

m ¼ 4� 3N� 6ð Þ ð7:30Þ

n ¼ 4N� 4� 2Nþ 8

6

� �
þ Nþ 16

12
¼ 11N� 16

4
ð7:31Þ

Subsequently, the DSI of the interface graph is

DSI ¼ m� 3nþ 6 ) DSI ¼ 4� 3N� 6ð Þ � 3� 11N� 16

4
þ 6

¼ 15N

4
� 6 ð7:32Þ

The 4� 4N�2
6

� 2Nþ8
24

¼ 31N�20
12

SESs are Type I and there are 4, 18, 32 and 46 SESs

of Type II for linear, quadratic, cubic and quartic elements, respectively.

DSI� TypeI&IIð Þ ¼
N ¼ 8 ) DSI� Type I & IIð Þ ¼ 1

N ¼ 20 ) DSI� Type I & IIð Þ ¼ 1

N ¼ 32 ) DSI� Type I & IIð Þ ¼ 1

N ¼ 44 ) DSI� Type I & IIð Þ ¼ 1

8>><
>>:

ð7:33Þ

Therefore, one independent SES should be extracted. This SES with thirteen

members can be formed for any types of hexahedron elements around the common

edge as is indicated bold in Fig. 7.48.

It should be noted that in a FEM, all of the SESs of Type III which are extracted

from any four elements around one common edge, are not independent with all

previous selected SESs. Independent ones should be selected utilizing NINs of

elements. For this purpose, NIN of four elements with common edge should not be

more than 2. In Fig. 7.45, a FEM with eight elements is shown. The independent

SESs of Type III should be selected utilizing these three sets of elements:
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E1 E2 E3 E4f g, E1 E2 E5 E6f gand E1 E3 E5 E7f g: In other

words, E8 should not be in selections, because the NIN of E8 is 3.

(b) Type II minimal cycles of NAG(FEM)

Each minimal cycle that surrounds an opening is called the Type II minimal

cycle (Fig. 7.49). Such a cycle passes through M0 (M0 � 8) finite elements and its

corresponding interface graph has N� 2Nþ8
6

� ��M
0
nodes and M0 � (3N � 6)

members. The DSI of subgraph is

DSI ¼ M
0 � 3N� 6ð Þ � 3� N� 2Nþ 8

6

� �
�M

0 þ 6 ) DSI

¼ M
0 � N� 2ð Þ þ 6 ð7:34Þ

and M
0 � 4N� 2

6|fflfflffl{zfflfflffl}
numberofmembers

of commonsideof

twoadjacent elements

SESs of Type I and M
0 � 2N�10

6

� �
SESs of Type II

(Eq. 7.28) can be extracted.

Fig. 7.48 The SES of Type

III corresponding to the

common edge of four

elements

Fig. 7.49 A FEM with an

opening and its NAG
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DSI� Type I&IIð Þ ¼ M
0 � N� 2ð Þ þ 6

� M
0 � 4N� 2

6
þM

0 � 2N� 10

6

� �� �

¼ 6 ð7:35Þ

Therefore, each Type II minimal cycle corresponds to six null vectors which are

calculated utilizing an algebraic method.

7.4.5 Selection of Generators for SESs of Type II
and Type III

The most important point in Type II and Type III self-equilibrating systems is to

select appropriate generators, because by eliminating these generators from IG

(FEM), the sub-structure of primary structure of the IG(FEM) must remain stable.

To achieve this, the following rule for appropriate selection of generators of Type II

SESs is suggested.

For quadratic hexahedron element the generators of SESs Type II and III are

illustrated in Tables 7.15 and 7.16, respectively. Directions 1, 2 and 3 are shown in

Fig. 7.50. In these Tables, Nα,β indicates the β
th node of element α and NIN(d )j is the

negative incidence number of element j in direction d. In other words, NIN(d)j is
one if j has an adjacent element i where i < j in direction d. It should be noted that

the generators corresponding to Type I were chosen previously. In addition, the

generators corresponding to an opening are the last six non-zero entries of its

columns which are not common with the previously selected generators. For

other element types, generators corresponding to Type II and Type III can be

obtained following aforementioned patterns.

Algorithm. Step 1: Generate the associate graph of the FEM and use an efficient

method for its nodal numbering [4]. It is obvious that good numbering of this

graph corresponds to good numbering of elements of the FEM. This numbering

leads to a banded adjacency matrix of the graph and correspondingly to a banded

flexibility matrix. Since numbering the members of the interface graphs corre-

sponds to the element numbering of the finite elements, such a numbering is the

only parameter for controlling the bandwidth of the flexibility matrix. Negative

incidence number of the NAG(FEM) should be calculated in this step.

Step 2: Set up the equilibrium matrix of the FEM.
Step 3: Generate the interface graph and perform its numbering. The numbering of

this graph should be performed according to the element numbering of the

considered FEM. After this numbering the interface graph can easily be formed

and its members can be numbered.

Step 4: Find the Type I self-equilibrating systems. All multiple members of the

interface graph are identified and the values�1 and 1 are assigned to appropriate
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rows (corresponding to the member numbers) and the corresponding minimal

null vectors are created.

Step 5: Find the Type II self-equilibrating systems. The 2N�10ð Þ
6

SESs of Type II should

be extracted from two adjacent elements and independent ones should be selected

among these SESs utilizing the approach which is explained in Sect. 5.2. Calculate

Table 7.15 Generators of Type II SESs in directions 1, 2 and 3 (k < i < j)
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the corresponding null vectors from the relevant equilibrium sub-matrix in

this step.

Step 6: Find the Type III self-equilibrating systems. For each minimal cycle of

natural associate graph of FEM with four members (Nþ16
12

common nodes or Nþ4
12

Table 7.16 Generators of Type III SESs in planes 1-2, 2-3 and 1-3 (i < j < k < l )

Fig. 7.50 Typical view of an element with corner nodes and determining directions 1, 2 and 3
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common edges and NINj < 3 for j ¼ 1, 2, 3, 4), one SES and with eight or

more members (opening) six SESs should be extracted. Calculate the

corresponding null vectors from the relevant equilibrium sub-matrix.

Step 7: Order the null vectors. At this step the constructed null vectors should be

ordered such that their last non-zero entries form a list with an ascending order.

7.4.6 Numerical Examples

In this section two FEMs are considered, which are assumed to be supported in

statically indeterminate fashion. The translations of each support node are fixed in

all three directions. The equilibrium matrices are formed. Null bases and the

flexibility matrices are constructed and the required computational times, and the

condition numbers are calculated. In all the following examples, nz represents

the number of non-zero entries and λmax/λmin is the ratio of the extreme eigenvalues

taken as the condition number of a matrix. The comparison between present

algorithm and algebraic force method will be shown in the conclusion section.

Example 1. An arch wall structure which is supported in a statically indeterminate

fashion is illustrated in Fig. 7.51. This structure is discretized using 20-node

hexahedron elements. The properties of the model are as follows:

Poisson’s ratio ¼ 0.2; Elastic modulus E ¼ 2E + 10 N/m2; Density ρ ¼ 2,400 kg/m3;

Internal radius ¼ 8.0 m;

Number of 20-node hexahedron elements ¼ 80

Number of nodes ¼ 557

DSIInternal ¼ 80 � 54 � 3 � 557 + 6 ¼ 2655; DSIExternal ¼ 15 � 3 � 6 ¼ 39

Number of Type I self-equilibrating systems ¼ 1,996 (75.0 %)

Number of Type II self-equilibrating systems ¼ 620 (23.3 %)

Number of Type III self-equilibrating systems ¼ 39 (1.7 %)

The pattern of the equilibrium matrix is shown in Fig. 7.52. The sparsity of the

final null basis obtained by the present method is approximately 22.41 % of the LU

method as depicted in Fig. 7.53. The flexibility matrix G is also well-structured as

shown in Figs. 7.54 and 7.55.

It should be added that the total DSI for the force method of this structure is

2,655 + 39 ¼ 2,694, while the DOFs for the displacement method is

557 � 3 ¼ 1,671, indicating less number of equations for the latter approach.

However, since in the force method nearly 75 % of the null vectors are found by

simple graph theoretical approach, one should compare 1,671 with approximately

25 % of 2,694 ¼ 673, showing the superiority of the force method.

Example 2. A dome with an opening which is supported in a statically indetermi-

nate fashion is illustrated in Fig. 7.56. The internal and external diameters are 5.00
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and 5.50 m, respectively. This structure is discretized using 20-node hexahedron

elements. The properties of the model are as follows:

Poisson’s ratio ¼ 0.2; Elastic modulus E ¼ 2E + 10 N/m2; Density ρ ¼ 2,400 kg/m3;

Number of 20-node hexahedron elements ¼ 84,

Number of nodes ¼ 648

DSIInternal ¼ 84 � 54 � 3 � 648 + 6 ¼ 2598; DSIExternal ¼ 60 � 3 � 6 ¼ 174

Number of Type II self-equilibrating systems ¼ 636 (24.4 %)

Number of Type III self-equilibrating systems ¼ 72 (four elements with common edges) + 6

(an opening) ¼ 78 (3.0 %)

Fig. 7.51 An arch wall structure which is supported in a statically indeterminate fashion
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Fig. 7.52 Pattern of the equilibrium matrix for Example 1
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of the null bases of Example

1: (a) present algorithm, (b)

LU factorization
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1FmB1 for Example
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LU factorization
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The pattern of the equilibrium matrix is shown in Fig. 7.57. The sparsity of the

final null basis obtained by the present method is approximately 28.1 % of the LU

approach as depicted in Fig. 7.16. The flexibility matrix is also well-structured as

shown in Figs. 7.58 and 7.59.

Fig. 7.56 A dome with an opening: 3D view, bottom view and a section
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Fig. 7.57 Pattern of the equilibrium matrix for Example 2
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Finally, it is hoped that the extension of elements for the force method continues

similar to those of the displacement method, to enable these dual approaches to be

efficiently utilized in the analysis of large-scale finite element models.
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Chapter 8

Decomposition for Parallel Computing:

Graph Theory Methods

8.1 Introduction

In the last decade, parallel processing has come to be widely used in the analysis of

large-scale structures. This chapter is devoted to the optimal decomposition of

structural models using graph theory approaches. First, efficient graph theory

methods are presented for the optimal decomposition of space structures. The

subdomaining approaches are then presented for partitioning of finite element

models. A substructuring technique for the force method of structural analysis is

discussed.

Several partitioning algorithms are developed for solution of multi-member

systems, which can be categorised as graph theory methods and algebraic graph

theory approaches.

For the graph theory method, Farhat [1] proposed an automatic finite element

domain decomposer, which is based on a Greedy type algorithm and seeks to

decompose an FEM into balanced domains, sharing a minimum number of common

nodal points. In order to avoid domain splitting, Al-Nasra and Nguyen [2] incor-

porated geometrical information of the FEM into an automatic decomposition

algorithm similar to the one proposed by Farhat [1]. The Sparpak uses nested

dissection due to George and Liu [3], which uses a level tree for dissecting a

model. Kaveh and Roosta [4] employed different expansion processes for

decomposing space structures and finite element meshes.

Applications of the methods of this chapter are by no means confined to

structural systems; these methods can equally be applied to other large-scale

problems like the analysis of hydraulic systems and electrical networks.
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8.2 Earlier Works on Partitioning

8.2.1 Nested Dissection

The term “nested dissection” was introduced by George [5], following a suggestion

of Birkhoff. Its roots lie in finite element substructuring, and it is closely related to

the tearing and interconnecting method of Kron [6].

The central concept for nested dissection is the removal of a set of nodes from

the graph (separator) of a symmetric matrix (or the model of a structure) that leaves

the remaining graph in two or more disconnected parts. In nested dissection, these

parts are themselves further divided by the removal of sets of nodes, with the

dissection nested to any depth.

If the variables of each subgraph are grouped together, by ordering the nodes of

their nodes contiguously followed by numbering the nodes, in the separator, then

the following block form will be obtained:

A11 0 A13

0 A22 A23

A31 A32 A33

2
4

3
5: ð8:1Þ

The blocks A11 and A22 may themselves be ordered to such a form by using

dissection sets. This way every level defines a nested dissection order.

The significance of the above partitioning of the matrix is twofold: first, the zero

blocks are preserved in the factorisation, thereby limiting fill; second, factorisation

of the matrices A11 and A22 can proceed independently, thereby enabling parallel

execution on separate processors.

When a complicated design is assembled from simpler substructures, it makes

sense to exploit these natural substructures. The resulting ordering is likely to be

good, simply because, when each variable is eliminated, only the other variables of

its substructures are involved.

8.2.2 A Modified Level-Tree Separator Algorithm

The separator routine in Sparspak, FNDSEP, finds a pseudo-peripheral node in the

graph and generates a level structure from it. It then chooses the median level in the

level structure as the node separator. However, this choice may separate the graph

into widely disparate parts. In a modification made by Pothen et al. [7], the node

separator is selected to the smallest level k, such that the first k levels together

contain more than half of the nodes. A node separator is obtained by removing from

the nodes in level k those nodes that are not adjacent to any node in level k � 1, and

therefore these are added to the part containing the nodes in the first k � 1 levels.

The other part has nodes in levels k + 1 and higher. Although such a method is
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simple; however, the spectral bisection method computes a smaller node separator

than the Sparspak algorithm.

8.3 Substructuring for Parallel Analysis of Skeletal

Structures

8.3.1 Introduction

In many engineering applications, particularly in the analysis and design of large

systems, it is convenient to allocate the design of certain components (substruc-

tures) to individual design groups. The study of each substructure is carried out

more or less independently, and the dependencies between the substructures are

resolved after the study of individual substructures is completed. The dependencies

among the components may of course require redesign of some of the substructures,

so the above procedure may be iterated several times.

As an example, suppose for a structural model, we choose a set of nodes I and

their incident members which, if removed, disconnect it into two substructures. If

the variables associated with each substructure are numbered consecutively,

followed by the variables associated with I, then the partitioning of the stiffness

matrix A will be as that of Eq. 8.1.

The Cholesky factor L of A, correspondingly, will be partitioned as,

L ¼
L11 0 0

0 L22 0

W t
13 W t

23 L33

2
4

3
5, ð8:2Þ

where

A11 ¼ L11L
t
11,A22 ¼ L22L

t
22,W13 ¼ L t

11A13, W23 ¼ L22L
t
23,

and

L t
33L33 ¼ A33 � A t

13A
�1
11 A23 � A t

23A
�1
22 A23: ð8:3Þ

Therefore, A11 and A22 correspond to each substructure, and the matrices A13

and A23 represent the “glue” which relates the substructures through the nodes of I.

Since the factors of A11 and A22 are independent, they can be computed in either

order, or in parallel if two processors are available. Finally, in some design

applications, several substructures may be identical, for example, have the same

configuration and properties, and each substructure may be regarded as a super-

element, which is constructed once and used repeatedly in the design of several

structures. In the above example, A11 and A22 could be identical.
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8.3.2 Substructuring Displacement Method

For the analysis of skeletal structures and for the finite element method, using the

displacement approach, an appropriate formulation such as the Galerkian method

reduces to solving the following matrix equation,

Kv ¼ p, ð8:4Þ

where K is the global stiffness matrix, and v and p are the nodal displacement and

nodal force vectors, respectively. To distribute the computation after decomposing

the model into q subdomains, each subdomain can be treated as a super element and

mapped onto the processors. Various methods for decomposition will be presented

in this chapter. The global stiffness matrix and nodal force vector are equivalent to

the assembly of its components for q subdomains:

K ¼
Xq
j¼1

kj and p ¼
Xq
j¼1

pj: ð8:5Þ

Equation 8.4 can be written in the following partitioned form:

Kii Kib

Kbi Kbb

� �
vi
vb

� �
¼ pi

pb

� �
: ð8:6Þ

In the above equation, a boundary node is defined as a node which is part of more

than one subdomain and degrees of freedom at the boundary nodes are treated as

boundary degrees of freedom. The vectors vi and vb are displacements, and pi and

pb are forces, corresponding to internal and boundary nodes, respectively.

Each subdomain requires solution of an equation, similar to Eq. 8.4:

k½ �j d½ �j ¼ p½ �j: ð8:7Þ

For the full domain, Eq. 8.7 can be written in partitioned form as:

kii kib
kbi kbb

� �
vi
vb

� �
¼ pi

pb

� �
: ð8:8Þ

Using static condensation for eliminating the interior degrees of freedom of each

subdomain, the effective stiffnesses and load vectors on the interface boundaries are

obtained.

For internal nodes we have,

kii½ � vi½ � þ kib½ � vb½ � ¼ pi½ �, ð8:9Þ

or
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vi½ � ¼ kii½ ��1
pi½ � � kib½ � vb½ �f g: ð8:10Þ

Substituting in Eq. 8.8 leads to,

kbi½ � kii½ ��1
pi½ � � kib½ � vb½ �f g þ kbb½ � vb½ � ¼ pb½ �, ð8:11Þ

or

k�½ � vb½ � ¼ pb½ � � kib½ ��1
kii½ � pi½ �, ð8:12Þ

where

k�½ � ¼ kbb½ � � kbi½ � kii½ ��1
kib½ �

n o
, ð8:13Þ

is the condensed super element stiffness matrix and

p�½ � ¼ pb½ � � kbi½ � kii½ ��1
pi½ �, ð8:14Þ

is the modified load vector. A summation of the interface conditions for the

subdomains leads to the formation of the global interface stiffness matrix K* and

the global interface load vector p* as follows:

K� ¼
Xq
j¼1

k�j and p� ¼
Xq
j¼1

p�j : ð8:15Þ

K is symmetric and positive definite, and K* has the same properties. The

following interface system can now be solved:

K�½ � vb½ � ¼ p�½ �: ð8:16Þ

Once vb is found, the internal degrees of freedom for a subdomain can be

evaluated employing Eq. 8.10.

A natural route to parallelism now is to provide it through domain decomposi-

tion by distributing the substructures onto the processors available. Several

approaches can be used to solve Eq. 8.4. In the following, three broad classifications

are briefly discussed:
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8.3.3 Methods of Substructuring

8.3.3.1 Direct Methods

A substructuring method can be used to obtain the condensed stiffness matrix on

each subdomain in parallel on the different processors. In order to create matrixK*,

it is necessary to condense the stiffness matrix of each substructure (subdomain),

i.e. from Eq. 8.13 the product [kbi][kii]
� 1[kib] should be calculated. The explicit

formation of [kii]
� 1[kib] requires NBDOF triangular system resolutions, where

MbDOF is the number of subdomain boundary degrees of freedom (DOF). This

step can be considered as follows:

Each internal DOF makes its contribution to the stiffness of each boundary DOF,

such that the behaviour of the condensed boundary is equivalent to the behaviour of

the entire domain. This step can be executed step by step, so that only the internal

DOF connected to the boundary DOF updates the boundary stiffness matrix. This

requires the internal DOF to appear at the bottom of the internal stiffness matrix kii,

so that they are modified by the elimination of all other internal DOF.

A frontal method can be used, which has the advantage of allowing very flexible

strategies concerning the sequence of elimination of equations. When this method is

applied to subdomain condensation, it is necessary to assemble the boundary DOF

in the frontal matrix, and to retain them until all the internal DOF have been

eliminated. At the end of the frontal elimination process, the frontal matrix is

exactly the condensed matrix [kbi][kii]
� 1[kib].

The interface system of equations is then solved employing a direct approach

(e.g. skyline method) on a single machine. Although the direct methods are simple

and terminate in a fixed number of steps, the interface solution dominates the

overall computational cost when the interface system is large, thus limiting the

overall efficiency. In such a case, however, a distributed algorithm can be used for

factorisation of the direct method to overcome this difficulty.

8.3.3.2 Iterative Methods

A different method to avoid the explicit inverse of kii in Eq. 8.13 is the use of an

iterative approach. Among the iterative solutions, the conjugate gradient method is

a promising candidate, because of its inherent parallelism and its rate of conver-

gence. The theory of the conjugate gradient method is well known [8]. One iteration

of this method for solving a system of equations Kv ¼ p is given as:

uf g ¼ K½ � ff g, ð8:17aÞ
α ¼ rf gt rf g= ff gt uf g, ð8:17bÞ
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vnewf g ¼ vf g þ α ff g, ð8:17cÞ
rnewf g ¼ rf g þ α uf g, ð8:17dÞ

λ ¼ rnewf gt rnewf g= rf gt rf g, ð8:17eÞ
fnewf g ¼ rnewf g þ λ ff g: ð8:17fÞ

Before each iteration, the vectors {v}, {f} and {r} are set to {vnew}, {fnew} and

{rnew}, respectively.

The vectors are initialised as,

rf g ¼ pf g � K½ � v0f g, ð8:18aÞ

And

ff g ¼ rf g, ð8:18bÞ

where {v0} is usually taken as null, unless some approximation to the solution is

known. Iteration is terminated when the residual is small. One criterion for handling

the iteration is,

rk k= pk k < ε, ð8:19Þ

where ε is the tolerance specified for the problem.

In structural analysis, the vector r is the potential gradient and is identical to the

residual force vector, (p � Kv) in the linear case. The vector f is the gradient

direction to generate the displacement vector v. For discussion and further details,

the reader may refer to Law [9].

Preconditioned Conjugate Gradient (PCG) methods form a large class of the

many iterative methods that have been suggested to reduce the cost of forming

condensed stiffness matrices. A saving in total time may be achieved, since the

predominant matrix-vector product at each iteration is computed in parallel. For

further detailed discussion, the interested reader may refer to Keyes and Gropp [10].

8.3.3.3 Hybrid Methods

These methods use a combination of the direct and iterative methods. For instance,

the components of the condensed matrix k* may be obtained for the substructures

using the direct method, and the resulting interface can be solved using an iterative

approach.

A comparative study of direct, iterative and hybrid methods is made by Chadha

and Baugh [11].

In the following sections, algorithms are presented for partitioning of the nodes

of structural graph models, which can be incorporated in any program available for
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the analysis of skeletal structures. Domain decomposition algorithms are presented

in Chap. 8.

8.3.4 Main Algorithm for Substructuring

Let S be the graph model of a structure. The following algorithm decomposes S into

q subgraphs with equal or near equal number of nodes (support nodes are not

counted) having the least number of interface nodes:

Step 1: Delete all the support nodes with their incident members, and denote the

remaining subgraphs by Sr.

Step 2: Determine the distance between each pair of nodes of Sr, and evaluate the

eccentricities of its nodes.

Step 3: Sort the remaining nodes (RN) in ascending order of their eccentricities.

Step 4: Select the first node of RN as the representative node of the subgraph S1 to

be determined and find a second node as the representative node of subgraph S2
with a maximum distance from S1.

Step 5: Find the third representative node with the maximum least distance from S1
and S2, and denote it with S3.

Step 6: Subsequently, select a representative node of subgraph Sk for which the

least distance from S1, S2, . . . ,Sk � 1 is maximum. Repeat this process until q

representative nodes of the subgraphs to be selected are found.

Step 7: For each subgraph Sj (j ¼ 1, . . . ,q), add an unselected node ni of RN, if it is
adjacent only to Sj and its least distance from all nodes of other subgraphs is

maximum.

Step 8: Continue the process of Step 7, without the restriction of transforming one

node to each subgraph Sj, until no further node can be transferred. The remaining

nodes in RN are interface nodes.

Step 9: Transfer the support nodes to the nearest subgraph.

Once the nodes for each subgraph Sj are found, the incidence members can easily

be specified.

The algorithm is recursively applied to the selected substructures, decomposing

each substructure into smaller ones, resulting in a further refinement.

8.3.5 Examples

Example 1. A double-layer grid supported at four corner nodes is considered and

partitioned into q ¼ 2, 4 substructures, Fig. 8.1. The corresponding node adjacency

matrices (pattern of their stiffness matrices) are illustrated in Fig. 8.2a, b. For the

case q ¼ 2, the selected substructures are further refined with q0 ¼ 2 and 3, and the

corresponding matrices are shown in Fig. 8.3a, b.
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Example 2. A dome-type space structure supported at six nodes is considered and

partitioned into q ¼ 2, 3, 4 and 5 substructures, Fig. 8.4.

The corresponding node adjacency matrices are illustrated in Fig. 8.5a–d. For

the case q ¼ 2, the selected substructures are further refined with q0 ¼ 2 and 3, and

the corresponding matrices are shown in Fig. 8.6a, b.

Once the subgraphs and the interface nodes are specified, ordering the nodes of

each subgraph reduces the bandwidth of each block, and appropriate numbering of

the interface nodes, results in banded bordered for the entire matrix.

Fig. 8.1 A double-layer grid S

Fig. 8.2 Patterns of the adjacency matrices for different values of q. (a) q ¼ 2. (b) q ¼ 4
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8.3.6 Simplified Algorithm for Substructuring

In the following, a simplified algorithm is presented which requires less storage and

computer time than the main algorithm, at the expense of selecting subgraphs with a

slightly higher number of interface nodes for some structural models. In this

approach, the number of distances to be considered and compared for finding the

nodes of substructures is far less than when the main algorithm is used, where the

distances between each pair of nodes of S are required. This simplified algorithm

consists of the following steps:

Step 1: Form an SRT rooted from an arbitrary node, in order to find a representative

node of S1 with maximum distance from the root. The selected node is also

denoted by S1.

Fig. 8.3 Patterns of the adjacency matrices for q ¼ 2 and q0 ¼ 2 and 3. (a) q ¼ 2 and q0 ¼ 2. (b)

q ¼ 2 and q0 ¼ 3

Fig. 8.4 A dome-type space structure

350 8 Decomposition for Parallel Computing: Graph Theory Methods



Fig. 8.5 Patterns of the adjacency matrices for different values of q. (a) q ¼ 2. (b) q ¼ 3. (c)

q ¼ 4. (d) q ¼ 5

Fig. 8.6 Patterns of the adjacency matrices for q ¼ 2 and different values of q0. (a) q ¼ 2 and

q0 ¼ 2. (b) q ¼ 2 and q0 ¼ 3
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Step 2: Form an SRT rooted from S1, to calculate the distance between each node of

S and S1, and find the representative node S2 in a maximum distance from S1.

Step 3: Form an SRT rooted from S2, to calculate the distance between each node of

S and S2 and find the representative node S3 in a maximum least distance from

the selected nodes. Repeat this process until q representative nodes S1, S2, . . . ,
Sq, forming a transversal , are selected.

Step 4: For each subgraph Si, find a node adjacent to the previously formed Si only,

with maximum least distance from other representative nodes, in turn.

Step 5: Continue the process of Step 4, without the restriction of transforming one

node to each subgraph Si, until no further node can be transferred.

8.3.7 Greedy Type Algorithm

In this algorithm, the weight of a node is taken as the number of elements incident

with that node. The interior boundary of a subdomain Di is defined as the subset of

its boundary that will interface with another subdomain Di. The total number of

elements in a given mesh is denoted by M(FEM).

Step 1: Start with a node and add incident elements one by one having the least

current weight. The current weight is taken as the number of unselected elements

at that stage incident with that node. Continue this process until M(FEM)/q

elements are selected as D1.

Step 2: Select an interior node of D1, and repeat Step 1 to form D2.

Step k: Repeat Step 2 for k ¼ 3, 4, . . . , q with an interior node of Dk � 1 and form

subdomain Dk.

This process is a Greedy type algorithm, which selects one element of minimal

current weight at a time and completes a domain when N(FEM)/q (+1 if remainder

6¼ 0) elements are selected for the formation of that subdomain. The current weight

of an element is updated when an incident element is joined to the expanding

subdomain.

8.4 Domain Decomposition for Finite Element Analysis

In this section, efficient algorithms are developed for automatic partitioning of

unstructured meshes for the parallel solution of problems in the finite element

method. These algorithms partitions a domain into subdomains with approximately

equal loads and good aspect ratios, while the interface nodes are confined to the

smallest possible. Examples are included to illustrate the performance and effi-

ciency of the presented algorithms.
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8.4.1 Introduction

Domain decomposition is attractive in finite element computations on parallel

architectures, because it allows individual subdomain operations to be performed

concurrently on separate processors and serial solutions on a sequential computer to

overcome limitation of core storage capacity. Given a number of available pro-

cessors q, an arbitrary finite element model (FEM) is decomposed into q

subdomains, where formation of element matrices, assembly of global matrices,

partial factorisation of the stiffness matrix and state determination or evaluation of

generalised stresses can be carried out independently of similar computations for

the other subdomains, and hence can be performed in parallel.

In parallel processing of subdomains, the time to complete a task will be the time

to compute the longest subtask. An algorithm for domain decomposition will be

efficient if it yields subdomains that require an equal amount of execution time. In

other words, the algorithm has to achieve a load balance among the processors. In

general, this will be particularly ensured if each subdomain contains an equal

number of elements or an equal total number of degrees of freedom. However,

for some numerical techniques based on domain decomposition, a balanced number

of elements or total degrees of freedom among the subdomains does not imply

balancing of the subdomain calculations themselves. The use of a frontal

subdomain solver provides a relevant example. In this case, the computing load

within a domain is not only a function of the number of elements within the

subdomain, but also the element numbering. Thus, the optimal number of elements

is a priori unknown and can vary significantly from one subdomain to another.

In order to reduce the cost of synchronisation and message passing between the

processors in a parallel architecture, the amount of interface nodes should be

minimised, because the parallel solution for the generalised displacements usually

requires explicit synchronisation on a shared-memory multiprocessor and message

passing on local-memory ones. In a domain decomposition method, another sig-

nificant mesh partitioning factor which should be considered is the subdomain

aspect ratio. This ratio has a vital impact on the convergence rate of the iterative

approaches for the finite element tearing and interconnecting method.

The above features suggest that an automatic finite element domain decomposer

should meet four basic requirements in order to be efficient:

1. It should be able to handle irregular geometry and arbitrary discretisation in

order to be general purpose.

2. It must yield a set of balanced subdomains in order to ensure that the overall

computational load be as evenly distributed as possible among the processor.

3. It should minimise the amount of interface nodes in order to reduce the cost of

synchronisation and/or message passing between the processors.

4. It must result in subdomains with proper aspect ratios, in order to improve the

convergence rate of the domain decomposition based iterative method.
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Methods of subdomaining are well documented in the literature, see for example

Farhat and Wilson [12], Farhat [1], Dorr [13] Malone [14], Farhat and Roux [15],

Farhat and Lesoinne [16], Topping and Khan [17], Topping and Sziveri [18],

Vanderstraeten and Keunings [19], and Kaveh and Roosta [4]. Several automatic

domain decomposition methods that address the load balance and minimum

interprocessor computation problems have already been reported in the literature.

In general, these algorithms can be grouped into two categories: engineering based

and graph theory based methods. For engineering based approaches, one can refer

to those of Ref. [20], and for graph theory based methods the algorithms of Ref. [21]

can be referred to.

In this section, two efficient algorithms are presented to decompose one- to

three-dimensional finite element models of arbitrary shapes. The first method is a

graph based method and uses a general expansion process. The second is an

engineering based approach. In these algorithms the resulted subdomains generally

have good aspect ratios, especially when the elements have this property originally.

8.4.2 A Graph Based Method for Subdomaining

In this algorithm, first the associate or incidence graph model G of the FEM is

generated. Then a good starting node R1 of G is selected. R1 is taken as the first node

of the first subgraph G1. Next G1 is expanded from R1. The process of expansion is

continued such that the equality of the total degrees of freedoms of subdomains is

provided. G2 is formed similar to G1, but it is expanded from R2, which is an

unselected node in a maximum distance from R1. R2 should contain no node of G1.

The process of expansion is executed in a manner that provides the connectedness

of the subgraph being formed (if it is possible). A similar approach is employed and

G3, . . . , Gq are generated, and the subdomains of the FEM corresponding to the

selected subgraphs of G are identified. The steps of the algorithm are as follows:

Step 1: Use the associate or incidence graph G of the considered FEM and form an

SRT rooted from an arbitrary node of G, in order to find a node R1 with

maximum distance from the root.

Step 2: Generate subgraph Gi (i ¼ 1 to q) as follows:

(a) Form an SRT rooted from Ri in order to calculate the distance between each

node of G and Ri (Ri is taken as the first selected node of Gi), and find an

unselected node Ri + 1 with maximum distance from Ri.

(b) Find all the unselected boundary nodes of Gi, and denote them by UBN.

(c) Associate an integer with each node ni of UBN which is the same as its

distance from Ri plus the number of unselected nodes adjacent to ni minus

the number of selected nodes adjacent to ni. Then detect the node with

minimum integer and add it to Gi.

(d) If the total degrees of freedom of the corresponding subdomain is less than

[TDOF + W0(q � 1)]/q, then repeat the above steps from Step (b);

354 8 Decomposition for Parallel Computing: Graph Theory Methods



otherwise, execute Step 2 to generate subgraph Gi + 1. TDOF is the total

degrees of freedom of the FEM and W0 is the total degrees of freedom for

the nodes of the corresponding subdomain which are also contained in

unselected elements.

In the above algorithm, only the connectivity of the nodes of G is considered,

and no labels for edges of G, list or matrices of edges are needed. Therefore, the

formation of SRTs of G and data keeping will be more simple and efficient. Since

valencies of the nodes of an associate or incidence graph of an FEM are not

generally very different, the adjacency list is an efficient means of keeping

the connectivity data of G. The adjacency list of a graph G is a matrix containing

N(G) rows and Δ columns, where Δ is the maximum degree of the nodes of G. The

ith row contains the labels of the nodes adjacent to the node i.

Step 1 is carried out to select a good starting node in the generated associate or

incidence graph G. Using the adjacency list of G, Step (a) can be performed as

follows; however, any other type of list may also be used:

1. Select all the nodes of the Rith row of the adjacency list of G. The distance

between these nodes and the root is equal to unity.

2. Select all the unselected nodes of the rows j (j is an element of the set of the

selected nodes in the previous step). The distance of these nodes from the root is

one more.

3. Repeat Step 2 until all nodes are selected.

The last instruction of Step (a) is carried out to select the first node of the next

subgraph. This node should not be included in the previously generated subgraphs

(i.e. it should be an unselected node). In Step (b), UBN contains unselected nodes

which are adjacent to selected nodes of Gi. In order to extend Gi, a node of UBN

will be added to Gi in every execution of Step (c). In this step an integer will be

associated with each node of UBN which defines the best possible node, having the

following properties:

1. It is near to the root.

2. It does not make the next UBN very large.

3. It is connected to Gi with more nodes, which leads to a desirable configuration

for Gi.

This integer is equal to the distance from Ri plus the valency of the node minus

the number of selected adjacent nodes multiplied by 2. The value of [TDOF +

W0(q � 1)]/q is not needed to be calculated in every execution of Step (d). Since

every subdomain should have at least TDOF/q degrees of freedom, W0 can be

calculated when the degrees of freedom of a subdomain becomes more than TDOF/

q. Additional value, W0(q � 1)/q, is considered, since the degrees of freedom of the

interface nodes of subdomains are calculated in two or more subdomains and the

degrees of freedom of the subdomains should be equal or nearly equal.

In this algorithm, a disconnected subdomain may be generated. This happens

when no node can be found in Step (b). In such a case, an unselected node with
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minimum distance should be added to the considered subgraph. In order to avoid

such situations, one should avoid decomposing a small FEM into many

subdomains. However, the following modifications can always be used:

1. Formation of a single SRT from an arbitrary node to find a good starting node,

may not lead to the best node; however, the existing good starting node algo-

rithms can be used to select a better node.

2. If a subgraph Gi contains two components G
0
i and G

0 0
i , one can exchange nodes of

G
0
i or G

0 0
i with the adjacent subgraphs to provide connectedness for Gi.

3. Use a non-deterministic heuristic of combinatorial optimisation such as Simu-

lated Annealing to improve the initial partitioning to avoid the formation of

multiconnected subdomains.

8.4.3 Renumbering of Decomposed Finite Element Models

Once the subdomains and interface nodes are specified, the nodes and/or elements

of each subdomain and the interface nodes can be renumbered for bandwidth,

profile or frontwidth reduction, depending on whether a band, profile or frontal

solver is exploited, respectively. The process of renumbering includes the following

steps:

(I) Renumber the internal nodes/elements of the subdomains M1, . . . , Mq using an

available algorithm.

(II) Select an interface node connected to M1 which is contained in a minimum

number of elements as the starting node, and number the interface nodes using

a nodal ordering algorithm. In the process of renumbering, when possible,

priority is given to the nodes connected to lower numbered subdomains.

It should be noted that, for a specified solver such as a frontal solver, the resulted

subdomains and interface nodes should also satisfy additional conditions. For

example in a frontal solver, a necessary condition for the applied domain decom-

position approach to be feasible is that the number of degrees of freedom lying on

the interface of any subdomain be smaller than the frontwidth associated with the

direct (one domain) approach. However, such conditions cannot always be satisfied

using the existing decomposition heuristics, because they generally depend on the

shape and the connectivity of FEMs, see Lesoinne et al. [22].

8.4.4 Computational Results of the Graph Based Method

Example 1. A finite element model is considered with λ ¼ 606, α ¼ 1961; each

element has 4 corner nodes and 4 mid-side nodes, and each node has 2 degrees of
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freedom and is decomposed into 2, . . . ,6 subdomains, as shown in Fig. 8.7a–d for

q ¼ 4 and 6, where λ and α denote the numbers of elements and nodes, respec-

tively. The degrees of freedom of the selected subdomains and interface nodes for

q ¼ 2, . . . ,6 are illustrated in Table 8.1, when associate and incidence graphs are

used.

Example 2. An L-shaped finite element model is considered with λ ¼ 2,400,

α ¼ 1,281, and each node has degrees of freedom equal to 2. The model is

decomposed into 6 and 12 subdomains, as shown in Fig. 8.8a–d. The degrees of

freedom of the subdomains and interface nodes using associate and incidence

graphs are illustrated in Table 8.2.

Example 3. A finite element model is considered with λ ¼ 528, α ¼ 307, and

each node has 2 degrees of freedom. The model is decomposed into 2, 3 and

4 subdomains, and the decomposed models for q ¼ 4 are shown in Fig. 8.9a–b.

The degrees of freedom of the subdomains and interface nodes using associate and

incidence graphs are illustrated in Table 8.3. The patterns of the node adjacency

matrices employing the associate graph for the model, after ordering, are shown in

Fig. 8.10a–c.

Fig. 8.7 A finite element model and its decompositions. (a) q ¼ 4 using the associate graph. (b)

q ¼ 6 using the associate graph. (c) q ¼ 4 using the incidence graph. (d) q ¼ 6 using the

incidence graph
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Table 8.1 Results of

Example 1
q Type of graph DOFs of subdomains; interface nodes

2 Associate 2002, 1994; 74

Incidence 2016, 2008; 102

3 Associate 1370, 1360, 1352; 160

Incidence 1352, 1370, 1352; 150

4 Associate 1048, 1052, 1060, 1044; 280

Incidence 1022, 1030, 1030, 1022; 182

5 Associate 856, 860, 868, 852, 842; 352

Incidence 828, 844, 848, 826, 816; 240

6 Associate 724, 730, 744, 748, 672, 706; 394

Incidence 700, 728, 714, 692, 692, 694; 296

Fig. 8.8 An L-shaped finite element model and its decompositions. (a) q ¼ 6 using the associate

graph. (b) q ¼ 12 using the associate graph. (c) q ¼ 6 using the incidence graph. (d) q ¼ 12 using

the incidence graph
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8.4.5 Discussions on the Graph Based Method

This algorithm has low time complexity and is simple to program and leads to

efficient partitioning of a finite element model into subdomains with the required

properties; therefore it can also be considered as a good educational approach. The

finite element model that should be partitioned can contain meshes with different

dimensions, types and sizes. Although the problem of aspect ratios of the

subdomains is not dealt with explicitly in this section, the algorithm has the feature

of expansion in all directions, leading to good aspect ratios.

Table 8.2 Results of Example 2

q Type of graph DOFs of subdomains; interface nodes

8 Associate 462,462,462,462,462,462; 210

Incidence 462,462,462,462,462,462; 216

12 Associate 244,244,248,248,246,246,242,252,246,232,236,232; 342

Incidence 252,252,250,250,268,268,246,268,260,232,234,242; 440

Fig. 8.9 A finite element model and its decompositions. (a) q ¼ 4 using the associate graph.

(b) q ¼ 4 using the incidence graph

Table 8.3 Results of

Example 3
q Type of graph DOFs of subdomains; interface nodes

2 Associate 324,324;34

Incidence 322,322;30

3 Associate 224,216,218;42

Incidence 222,222,220;50

4 Associate 170,164,170,168;58

Incidence 176,164,170,170;66
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8.4.6 Engineering Based Method for Subdomaining

Definitions. A level structure L(r) of a finite element model rooted from an

element r (as the root), is defined as a partitioning of the set of elements into levels

l1(r), l2(r), . . . , ld(r) such that:

1. l1(r) ¼ {r}.

2. All elements adjacent to elements in level li(r) (1 < i < d) are in levels li � 1(r),

li(r) and li + 1(r).

3. All elements adjacent to elements in level ldi(r) are in levels ld � 1(r) and ld(r).

The overall level structure may be expressed as the set L(r) ¼ {l1(r), l2(r), . . .,
ld(r)}, where d is the depth of the level structure and is simply the total number of

levels, and two elements are adjacent if they share a common node.

The element adjacency list of a finite element mesh contains the lists of elements

adjacent to each element. The element-node list of an FEM contains the lists of

nodes of each element and is generally employed as an input for data connectivity

of finite element models. Following Webb and Froncioni [23], the node-element list
contains the lists of elements containing each node of the finite element mesh.

Fig. 8.10 The patterns of the ordered node adjacency matrices
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A genre structure is a level structure in which each level is divided into one or

more genres, and the index of each genre, as defined below, simply shows the

pseudo-distance between the root and its elements. The overall genre structure

rooted from an element r may be expressed as the set G(r) ¼ {g0(r), g1(r), g2(r), . . . ,
gs(r)}, in which the pseudo-distance between r and the elements of genre gi(r) is

equal to i. The index vector IVr(i) of a genre structure rooted from an element r is an

(n + 1)-dimensional vector whose ith array (i ¼ 0, . . ., n) defines the total number

of elements of gi (j ¼ 0, . . . , i), i.e.

IVr ið Þ ¼
Xi

j¼0

gi rð Þj j: ð8:20Þ

Thus, the cardinality of genre i (0 < i � n) is simply equal to IVr(i) � IVr(i

� 1), and the cardinality of g0(r) is equal to 1. The following scheme (in pseudo

code) should be used to form a genre structure from an arbitrary starting element r,

to generate its index vector and to find the pseudo-distances pd(r,ei) between the

root r and all elements ei(i ¼ 1, . . . , λ, where λ denotes the number of elements) of

the considered finite element model. In this scheme, D ∈ {1,2,3} denotes the

highest dimension of the elements in the model, and CCN(gi(r),e) denotes the set

of common corner nodes between the elements of genre gi(r), and the element e.

1. Set g0(r) ¼ {r},IVr(0) ¼ 1, pd(r,r) ¼ 0 and mask r.
2. Set i ¼ 1, a ¼ 0 and b ¼ 0.
3. for j ¼ D to 1 step 1

for k ¼ a to b
(I) put each unmasked element e with |CCN(gk(r),

e)| � j into gi(r).
(II) if |g1 (r) 6¼ 0| then set IVr(i) ¼ IVr(i � 1) + |g1

(r)|, pd(r,e) ¼ i(e ∈ gi(r)), i ¼ i + 1 and mask the ele-
ments of gi(r).

end for
end for

4. If Ivr(i � 1) < λ then set a ¼ b + 1, b ¼ i and repeat
Step 3.

8.4.7 Genre Structure Algorithm

Step 1: Form a genre structure rooted from an arbitrary element, and select an

element e1s from its last genre.

Step 2: Calculate the pseudo-distance between e1s and each element, and select an

element e2s with maximum pseudo-distance from e1s .
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Step 3: Calculate the pseudo-distance between e2s and each element. If q ¼ 2, then

go to Step 5.

Step 4: Find an unselected element eis (i ¼ 3,4, . . . ,q) contained in genres gj1(e
1
s ),

gj2(e
2
s ), gj3(e

3
s ), . . ., gji � 1(e

i�1
s ), such that the least value of IVr(jk � 1) be

maximum, where jk > 0, k ¼ 1, . . ., i � 1, then calculate the pseudo-distances

between eis and the elements.

Step 5: For each selected element ejs (j ¼ 1, . . . , q) and each element ek (k ¼ 1, . . . ,

λ), assign an integer in (ejs,ek) as follows,

in e js; ek
� � ¼ λþmpd ejs; ek

� �� pd e js; ek
� �

, ð8:21Þ

where

mpd ejs; ek
� � ¼ min pd eis; ek

� �
1 � 1 � q, 1 6¼ jj� �

:

Step 6: Let ejs be the first element of the subdomain Mi, calculate the weight of

Mi and mask eis, where i ¼ 1, . . ., q.
Step 7: Find an expandable subdomain Mi with minimum weight, add an unmasked

element ek with maximum non-zero priority number Pi ¼ CN � in (eis,ek) to Mi,

update the weight Mi and mask ek, where if |CCN(Mj,ek)| � 3 then CN ¼ |CCN

(Mi,ek)|, else CN ¼ 3. If there is no element to be added to Mi, this subdomain is

not expandable and should be masked. If there are several elements with the

maximum priority number Pi, then select the one with the minimum sum of

integers corresponding to eis (i ¼ 1, . . ., q). Repeat this step until all the elements

are masked.

In this algorithm, the weight of a subdomain Mi can be taken as an arbitrary

single number such as the number of the elements of Mi, the total degrees of

freedom of the nodes of Mj, a function of the number and labels of the elements

of Mi, and so on. However, here the total degrees of freedom of the nodes of a

subdomain, is considered as the weight of the subdomain.

Obviously, in this method only the corner nodes of a finite element mesh should

be provided; i.e. mid-side nodes and interior nodes are not needed. This increases

the efficiency of the algorithm and results in saving computer storage space for

finite element models with high order elements.

An important problem which should be contemplated in a domain decomposi-

tion method is the connectedness of the elements of a single subdomain. In this

algorithm, multicomponent subdomains are avoided. Since the integers which are

calculated in Step 5 are more than zero, hence the priority number Pi of an element

ei corresponding to the subdomain Mi will be zero if |CCN(Mi,ei)| ¼ 0, i.e. the

element is not connected to Mi with a corner node. As stated in Step 7, an element

with priority number Pi ¼ 0 cannot be added to Mi. This provides the connected-

ness of Mi (i ¼ 1, . . . , q); however, it leads to differences between the weights of

the subdomains, because when a subdomain cannot be expanded and is masked, the
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other unmasked subdomains are still expanded. This problem has been nearly

remedied in the present algorithm by Steps 2 and 4. In these steps, the first elements

of the subdomains are selected in such a manner that there are enough elements to

be added to them for further expansion of the subdomains. For complete balanced

loads for subdomains, one can let elements with zero priority numbers be also

added to a subdomain, in which case multicomponent subdomains will be gener-

ated. However, there are several non-deterministic heuristics used in combinatorial

optimisation such as Simulated Annealing, Stochastic Evolution and Tabu Search

which can be used for better load balancing of subdomains and reduction in the

number of interface nodes, see for example Reference 13. These combinatorial

optimisation methods are normally included in an FEM decomposition algorithm as

follows:

Step I: Invoke a direct partitioning scheme to produce an initial decomposition of

reasonable quality.

Step II: Use an optimisation procedure to improve the initial partitioning.

The second step generally needs high computer time, hence this algorithm is

designed for careful partitioning of the finite element meshes in order to avoid

(as far as possible) the use of optimisation procedures for general cases. However,

this method can be applied as a direct method in Step I. This will be efficient, since

the more the load balancing of subdomains and the less the number of interface

nodes produced by a direct partitioning scheme, the less cost for the applied

optimisation method.

The Step 1 of the algorithm presented in this section is carried out to find a good

starting element e1s for the first subdomains M1. Step 2 is executed in order to

calculate the pseudo-distance between e1s and each element, and to find an element

e2s as the good starting element of the second subdomain M2. It should be noted that,

when q > 2, it is needed to know the index of genres containing a specified element

because it is needed for the selection of the starting elements of subdomains Mi

(i ¼ 3, . . . , q). Step 3 should be carried out to calculate the pseudo-distance

between e2s and each element of the considered finite element mesh. Also in this

step, the index of genres containing a specified element should be defined for q > 2.

Step 4 is executed in order to find good starting elements for subdomains Mi (i ¼ 3,

. . . , q). The condition contained in this step is included in order to provide the

starting elements of subdomains to be unobtrusive when the process of expansion is

performed in Step 7. This condition increases the probability that a subdomain will

remain expandable while the other subdomains are being expanded. Step 5 is

carried out in order to calculate an integer for each selected (starting) element

and each element of the finite element mesh. This integer is always more than zero

since λ is always more than or equal to a pseudo-distance between two elements,

and a pseudo-distance is always equal to or more than zero. The integers calculated

in this step affect the priority number of elements in two ways when the process of

expansion is performed: (1) the elements which are added to a subdomain have

lower priority numbers for other subdomains, (2) the elements of a subdomain do
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not have flange positions in relation to the region of the subdomain (loosely

speaking). These effects make the number of boundary interior nodes of a

subdomain low and its aspect ratio a desired value. The less the differences between

the geometrical dimensions of a subdomain with a given area/volume, the smaller

the boundary and the better aspect ratio of the subdomain. However, this remark is

true when the elements have originally good aspect ratios. For more details about

the aspect ratio of a subdomain, see the recent paper of Farhat et al. [24] in which

their final choice has been to compute the aspect ratio AR of a subdomain Mi as

follows:

AR Mið Þ ¼ c2 � Surface Mið Þ
Surface of circumscribed circle

two dimensional problemsð Þ

AR Mið Þ ¼ c3� Volume Mið Þ
Volume of circumscribed sphere

three dimensional problemsð Þ
ð8:22Þ

where c2 and c3 are scaling constants designed such that 0 < AR � 1.

Step 6 is executed in order to initialise the subdomains Mi (i ¼ 1, . . ., q) and
their weights and to mask their first (starting) elements. The elements of a

subdomain are masked only in order to forbid their repeated selection. Step

7 contains the expansion process of the algorithm. In every execution of this step,

an element with maximum priority number corresponding to a subdomain Mi is

added to Mi, where Mi is the subdomain with current minimum weight. This way of

expansion leads to equal loads for subdomains such that the subdomains remain

expandable, and this condition is provided in the process of selecting eis (i ¼ 1, . . . ,
q) and giving a priority number to an element corresponding to the subdomain

being formed. The priority number defined in this step is simply designed to give

more priority to an element connected to a subdomain Mk with more corner nodes

in comparison with an element connected to Mk with less corner nodes having the

same integers.

8.4.8 Example

Consider the simple finite element mesh, as shown in Fig. 8.11a, with each node

having 2 degrees of freedom, and suppose it to be decomposed into three

subdomains. The steps of the present algorithm are performed as follows:

Step 1: A genre structure is rooted from an arbitrary element such as the element 15.

The elements of each genre are recognised with the index of the genre as

illustrated in Fig. 8.11b. The last genre, g8(15), contains the element 6; hence

e1s ¼ 6.
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Step 2: G(6) is formed to calculate the pseudo-distance between the element 6 and

other elements. The elements of each genre are assigned with the index of the

genre; this index is same as the pseudo-distances between the root and the

elements of the genre. In Fig. 8.11c the pseudo-distance between the root

(element 6) and other elements are depicted; the element 19 belongs to the last

genre of G(6), having the highest pseudo-distance from the root, and thus

e2s ¼ 19.
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Fig. 8.11 Illustration of the steps for the example. (a) A simple two-dimensional FEM. (b) Genres

of G(15). (c) Genres of G(6). (d) Genres of G(19). (e) Genres of G(23). (f) Integers of the elements.

(g) Decomposition of the FEM for q ¼ 3
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Step 3: G(19) is generated, and the pseudo-distances between the root and the

elements are shown in Fig. 8.11d. Since q > 2, therefore Step 4 should be

executed.

Step 4: Two elements 2 and 23 satisfy the condition of this step, since

2∈g10 6ð Þ and g7 19ð Þ
IV6 9ð Þ ¼ 16, IV19 6ð Þ ¼ 11

23∈g7 6ð Þ and g10 19ð Þ
IV6 6ð Þ ¼ 11, IV19 9ð Þ ¼ 16,

and

min IV6 ið Þ, IV19 jð Þf g < 11,

where

0 � i, j � 16 and i; jð Þ 6¼ 9; 6ð Þ and 6; 9ð Þ:

Element 2 or 23 can be selected for e3s arbitrarily; suppose e3s ¼ 23. Fig-

ure 8.11e shows the pseudo-distances between e3s and the other elements.

Step 5. For each element, three integers are assigned corresponding to e3s , e
2
s and e

3
s .

These integers are respectively illustrated in Fig. 8.11f for each element.

Step 6: Execution of this step leads to M1 ¼ {6}, M2 ¼ {19} and M3 ¼ {23}. The

weights of M1, M2 and M3 are the same and equal to 8, and their elements are

masked.

Step 7. This step is carried out λ � q ¼ 21 times, and in each execution one

element with maximum priority number is added to a subdomain with current

minimum weight as follows:

All subdomains have the same weight; hence the subdomain M1 is selected

arbitrarily to be expanded. The elements with non-zero priority numbers which are

connected to M1 are 5, 11 and 12, and their priority numbers are 2 � 29, 1 � 25

and 2 � 27, respectively. Thus element 5 is added to M1 and is masked. The weight

of M1 is now equal to 12. The subdomains M2 and M3 have minimum current

weight. The subdomain M2 is selected arbitrarily to be expanded. The elements

13, 14 and 20 are connected to M2, and their priority numbers are 2 � 34, 1 � 29

and 2 � 29, respectively. Hence the element 13 is added to M2 and is masked. The

current weight of M2 is now equal to 12. The subdomain M3 has the least current

weight. The elements 16, 17, 18, 22 and 24 are connected to M3, and their priority

numbers are 1 � 27, 2 � 27, 1 � 25, 2 � 29 and 2 � 29, respectively. The

priority numbers of the elements 22 and 24 are maximum; however, element

24 is added to M3 because the sum of its integers is less than that of the element

22. The element 24 is masked. The weight of the subdomain M3 is now equal to 12.

The repetitions of this step lead to the decomposition as illustrated in Fig. 8.11g.
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8.4.9 Computational Results of the Engineering Based
Method

Two examples are studied in this section, using the direct method for the formation

of their element adjacency list.

Example 1. A multiconnected finite element mesh is shown in Fig. 8.12a, and

decomposed into 2, 3, 4, 8 and 16 subdomains as illustrated in Fig. 8.12b–f. In this

example, each node has 2 degrees of freedom. Computational time is provided in

Table 8.4.

Example 2. A multiconnected H-shaped finite element mesh with each node

having 2 degrees of freedom is shown in Fig. 8.13a, and decomposed into 2, 4,

5, 8, 16 and 32 subdomains as illustrated in Fig. 8.13b–g. Computational time is

provided in Table 8.5.

8.4.10 Discussions

The algorithm developed in this section is designed as a pre-processor for concur-

rent finite element computations. It may also serve as an automatic decomposer for

serial solutions on a sequential computer, to overcome limited core storage capac-

ity. This algorithm has low time complexity and leads to efficient partitioning of a

finite element mesh into subdomains with required properties. A finite element

mesh to be partitioned, may contain various meshes with different dimensions,

types and sizes. The algorithm uses a simultaneous expansion process which is an

improved version of the algorithm presented in the previous section for

substructuring. In this algorithm the method for selecting the first (representative)

element for each subdomain is improved, and the better priority numbers for

elements to be added to the expanding subdomains are defined in order to form

subdomains with more appropriate properties.

This algorithm is designed to have properties required for an efficient decom-

position and leads to subdomains with the following properties:

1. Low computer space and time requirements. In the present algorithm only the

corner nodes are needed to be given, and this leads to a large space saving in

FEMs with high order elements. The time complexity of the algorithm is

independent of the number of nodes for the considered FEM, and the critical

step of the algorithm takes O(λ2θ) operations in worst-case.

2. General in use. The algorithm can be employed to decompose unstructured

FEMs without any restriction, and an arbitrary parameter can be considered as

the loads of the subdomains.

3. Balance loads for subdomains. Selection of the starting elements of subdomains

and the expansion process are performed in a manner which leads to an efficient
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Table 8.4 Computational time

q 2 3 4 8 16

Time (sec.) 29.00 29.28 29.44 30.59 33.39

Fig. 8.12 Decompositions of the multiconnected finite element mesh. (a) A multiconnected FEM

with 1,152 elements and 1,248 nodes. (b) q ¼ 2. (c) q ¼ 3. (d) q ¼ 4. (e) q ¼ 8. (f) q ¼ 16
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Fig. 8.13 Decompositions

of a multiconnected

H-shaped finite element

mesh. (a) A multiconnected

H-shaped FEM with 1,340

elements and 1,042 nodes.

(b) q ¼ 2. (c) q ¼ 4. (d)

q ¼ 5. (e) q ¼ 8. (f)

q ¼ 16. (g) q ¼ 32
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balancing of loads. However, in order to decrease the differences between the

loads of subdomains, the following steps are included which should be executed

in place of Steps 1–4 of the original algorithm:

(a) Find the pseudo-distance between each element and all the element of the

finite element mesh.

(b) Find q elements e1s , e
2
s , . . ., e

q
s , provided that eis (i ¼ 1, . . ., q), which is

contained in genres gj1(e
1
s ), gj1(e

2
s ), . . ., gj1(e

q
s ), is selected in such a way that

the least value of IV(jk � 1) is maximum where jk 6¼ 0 (k ¼ 1, . . ., q).

However, this takes more operations than those of Steps 1–4.

4. Close to minimum number of interface nodes. In this algorithm, the number of

interface nodes is kept to the least possible by selecting the elements to be added

to a subdomain which have not high priority numbers for the other subdomains,

and have a proper position in relation to the previously selected elements of the

subdomains.

5. Good aspect ratios for subdomains. When the elements of the considered finite

element mesh have aspect ratios with proper values, the algorithm leads to a

decomposition with subdomains having reasonable aspect ratios. This is because

the subdomains are expanded in all directions, which makes the denominators of

the equations introduced by Farhat et al. [24] to be increased.

8.5 Substructuring: Force Method

The force method can be employed in parallel analysis of structures. In this section,

the formulation of substructuring is provided, and an algorithm is presented for such

analysis. The computational process is illustrated using simple examples.

In this section, the notations and formulations presented in Chap. 3 will be used.

8.5.1 Algorithm for the Force Method Substructuring

Once a structural model has been decomposed using any of the methods presented

in the previous sections, the following approach can be used for the analysis

employing the force method:

Table 8.5 Computational time

q 2 4 5 8 16 32

Time (sec.) 33.95 31.75 32.90 37.14 40.70 52.79
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In order to support a substructure in a statically determinate fashion, cuts are

introduced at members incident with the interface nodes contained in the

corresponding substructure, except at one arbitrary node where the substructure is

connected to the previous one.

For a given substructure Si, let the external forces be denoted by pi, and

redundant forces by qi. Then the substructure Si can be analysed for the internal

forces in the substructure (not coupling redundants) qi in the aforementioned

manner, i.e.

v0i
v1i

� �
¼ D00 D01

D10 D11

� �
i

pi
qi

� �
: ð8:23Þ

For continuity within the substructure:

qi ¼ � D�1
11 D10

� �
i
pi: ð8:24Þ

Deflections corresponding to the nodal force are,

v0i ¼ D00 � D t
10D

�1
11 D10

� �
i
pi, ð8:25Þ

that is

v0i ¼ Fipi, ð8:26Þ

where Fi is the flexibility transformation matrix for the ith substructure. Internal

forces are obtained as,

ri ¼ B0 � B1D
�1
11 D10

� �
i
pi, ð8:27Þ

or

ri ¼ Bipi ð8:28Þ

and

Bi ¼ B0 � B1D
�1
11 D10

� �
i
, ð8:29Þ

where Bi is the force transformation matrix in the redundant substructure. The

matrices Fi and Bi are formed for each substructure, in turn.

For the complete structure S composed of q substructures (S1,S2, . . ., Sq), the
force vector pi acting on a substructure “s” is given by,
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psi ¼ ae be½ � pe
qc

� �
, ð8:30Þ

where qc are the coupling redundants. On a particular substructure, there will be

three different types of forces: pee is the external force vector, pec is the coupling

redundant forces vector, and peb contains the statically determinate connection

forces.

For the entire structure, the following matrices Aee and Bec are defined:

At ¼ ae 1ð Þ; ae 2ð Þ; . . . ; ae qð Þ
� �

, ð8:31Þ

and

Bt ¼ be 1ð Þ; be 2ð Þ; . . . ; be qð Þ
� �

: ð8:32Þ

Then:

ps ¼

ps 1ð Þ
ps 2ð Þ
. . .
. . .
ps qð Þ

2
66664

3
77775 ¼ Aee Bec½ � pc

qc

� �
: ð8:33Þ

The forces ps can be partitioned according to three types of forces pei, peb, and

pec as mentioned before. Then:

pei
peb
pec

2
4

3
5 ¼

aei 0

aeb beb
aec bec

2
4

3
5 pe

qc

� �
: ð8:34Þ

It is obvious that, whereas qc may produce peb and pec forces, it does not produce

pei forces.

The flexibility matrix of the entire structure corresponding to pe and qc can be

formed using Eqs. 8.25 and 8.33 as:

fee fec
fce fcc

� �
¼ A t

ee

A t
ec

� � Fe 1ð Þ
. . .

Fe qð Þ

2
4

3
5 Aee Bec½ �, ð8:35Þ

and
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ve
vc

� �
¼ fee fec

fce fcc

� �
pe
pc

� �
: ð8:36Þ

For continuity across the cut sections of the structure,

vc ¼ 0, ð8:37Þ

hence:

qc ¼ �f�1
cc fcepe ð8:38Þ

Deflections of the structure are then given as,

ve ¼ fee � fecf
�1
cc fce

� �
pe, ð8:39Þ

making the complete analysis of the structure feasible.

8.5.2 Examples

Example 1. A single-bay four-storey frame is considered, as shown in Fig. 8.14.

The forces are depicted in Fig. 8.14a, and the nodal and element orderings are given

in Fig. 8.14.b. For this frame, I ¼ 41,623.14 cm4 (for all members) and E ¼ 2.1

� 105 N/m2.

The model is decomposed into two substructures as illustrated in Fig. 8.15. The

analysis is performed and the bending moments are obtained as provided in

Table 8.6.

Example 2. A three-bay pitched-roof frame together with material properties and

dimensions are shown in Fig. 8.16.
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a bFig. 8.14 A singlebay four-

storey frame with geometric

and connectivity properties
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This model is partitioned into two substructures, as illustrated in Fig. 8.17, where

different groups of loads on each substructure are shown. For all the members,

I ¼ 0.2 m4 and E ¼ 2.1 � 105 N/m2. The bending moments for members of this

frame are presented in Table 8.7.

The substructuring analysis, using the force method for frame structures, can be

generalised to the analysis of other types of structures when the algebraic force

method is employed, Plemmons and White [25]. In this method, appropriate

partitioning of the incidence matrices of the structural graph models is performed,

44.4kN

44.4kN44.4kN

44.4kN

Fb FcFc

FcbF

a bFig. 8.15 Decomposition

of the structural model

Table 8.6 Bending moments

of Example 1
Nodes End nodes of members Bending moments(kN.m)

1 1–3 �219.17

3–1 78.93

3 3–4 185.07

3–5 �106.14

5–3 0.34

5 5–6 2.94

5–7 7.34

7–5 96.2

7 7–8 112.7

7–9 �16.48

9 9–7 58.04

9–10 58.04

10 10–9 58.04

10–8 �58.04

8–10 �16.48

8 8–7 112.7

8–6 �96.2

6–8 �52.84

6 6–5 170.28

6–4 �117.43

4–6 �78.93

4 4–3 185.07

4–2 �106.14

2 2–4 �219.17
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leading to well structured equilibrium equations. It is proved that sparse null bases

can then be constructed in parallel, using the proposed decomposition. The perfor-

mance of the method is illustrated by some examples from skeletal structures.

4m

8m

3@12m

10kN

10kN

10kN10kN

Fig. 8.16 A three bay pitched-roof frame

Ft tF

10kN

10kN

10kN

Substructure I Substructure II

Fig. 8.17 Decomposition of the structural model

Table 8.7 Bending moments

of Example 2
Nodes End nodes of members Bending moments(kN.m)

1 1–5 �72

5 5–1 �30

5–6 30

6 6–5 3

6–7 3

7–6 26

7 7–8 65

7–2 �91

2 2–7 �116

8 8–7 45

8–8 45

9–8 28

9 9–10 3.03

9–3 60

3 3–9 40.02

10 10–9 52

10–11 52

11 11–10 79
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Chapter 9

Analysis of Regular Structures Using Graph

Products

9.1 Introduction

In this chapter, an efficient method is presented for the analysis of non-regular

structures which are obtained by addition or removal of some members to regular

structural models. Here a near-regular structure is divided into two sets, namely

“the regular part of the structure” and “the excessive members”. Regular part refers

to the structure for which the inverse of the stiffness matrix can be obtained by the

previously developed simplified methods, and excessive members refer to those

which cause the non-regularity of the regular structure [1].

9.2 Definitions of Different Graph Products

Many structures have regular patterns and can be viewed as the Cartesian product,

strong Cartesian product, or direct product of a number of simple graphs. These

subgraphs, used in the formation of the entire model, are called the generators of
that model. Graph products were developed in the past 50 years (see e.g. Imrich and

Klavzar [2]) for mathematical aspects, and Kaveh [3] for extensive applications.

9.2.1 Boolean Operation on Graphs

In order to explain the products of graphs, let us consider a graph S as a subset of all

unordered pairs of its nodes. The node set and member set of S are denoted by

N(S) and M(S), respectively. The nodes of S are labelled as v1,v2, . . . , vM, and the

resulting graph is a labelled graph. Two distinct adjacent nodes, vi and vj, form a

member, denoted by vivj ∈ M(S).

A. Kaveh, Computational Structural Analysis and Finite Element Methods,
DOI 10.1007/978-3-319-02964-1_9, © Springer International Publishing Switzerland 2014
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A Boolean operation on an ordered pair of disjoint labelled graphs K and H

results in a labelled graph S, which has N(K) � N(H) as its nodes. The set M(S) of

members of S is expressed in terms of the members in M(K) and M(H), differently

for each Boolean operations. Three different operations are discussed in this

chapter, corresponding to Cartesian product, strong Cartesian product and direct

product of two graphs.

9.2.2 Cartesian Product of Two Graphs

Many structures have regular patterns and can be viewed as the Cartesian product of

a number of simple graphs. These subgraphs, which are used in the formation of a

model, are called the generators of that model.

The simplest Boolean operation on a graph is the Cartesian product K � H

introduced by Sabidussi [4]. The Cartesian product is a Boolean operation S ¼ K

� H, in which, for any two nodes u ¼ (u1,u2) and v ¼ (v1,v2) in N(K) � N(H), the

member uv is in M(S) whenever

u1 ¼ v1 and u2v2∈M Hð Þ, ð9:1aÞ

or

u2 ¼ v2 and u1v1∈M Kð Þ: ð9:1bÞ

As an example, the Cartesian product of K ¼ P2 and H ¼ P3 is shown in

Fig. 9.1.

In this product, the two nodes (u1,v2) and (v1,v2) are joined by a member, since

the condition (9.1b) is satisfied.

The Cartesian product of two graphs K and H can be constructed by taking one

copy of H for each node of K and joining copies of H corresponding to adjacent

nodes of K by matching of size N(H).

The graphs K and H will be referred to as the generators of S. The Cartesian

product operation is symmetric, i.e. K � H ffi H � K. For other useful graph

operations, the reader may refer to the work by Gross and Yellen [5].

Examples. In the first example, the Cartesian product C7 � P5 of the path graph

with five nodes denoted by P5 and a cycle graph shown by C7 is illustrated in

Fig. 9.2.

Two representations of the Cartesian product C3 � P4 are illustrated in Fig. 9.3.

The Cartesian product Pm1 � Pm2 � Pm3 of three paths forms a three-

dimensional mesh. As the second example, the Cartesian product of P6 � P4 � P5,

resulting in a 5 � 3 � 4 mesh, is shown in Fig. 9.4.

A graph can be the product of more than two specific graphs, such as paths and

cycles. As the third example, the product of three graphs, P2 � K3 � P4, is shown
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K=P H=P

(v   ,u   )1 2 (v   ,v   )

(u   ,w   )(u   ,v   )(u   ,u   )
u

v

u v w

1

1
1 1 1

11

2 2

2 2 2

2 2

2 3

=
2

(v   ,w  )

S

a bFig. 9.1 The Cartesian

product of two simple

graphs

Fig. 9.2 Representation of

C7 � P5

a

b

Fig. 9.3 Two different

representations of C3 � P4

Fig. 9.4 Representation of

a 5 � 3 � 4 mesh
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in Fig. 9.5. The product of a general graph and a path, S � P4, is illustrated in

Fig. 9.6.

9.2.3 Strong Cartesian Product of Two Graphs

This is another Boolean operation, known as the strong Cartesian product. The
strong Cartesian product is a Boolean operation S ¼ K⊠H in which, for any two

distinct nodes u ¼ (u1,u2) and v ¼ (v1,v2) in N(K) � N(H), the member uv is in M

(S) if:

u1 ¼ v1 and u2v2∈M Hð Þ, ð9:2aÞ

or

u2 ¼ v2 and u1v1∈M Kð Þ, ð9:2bÞ

or

P K

P

2 3

4

a bFig. 9.5 The Cartesian

product of three graphs

P2 � K3 � P4. (a)

Generators. (b) Product

4S P

a bFig. 9.6 The Cartesian

product of S by P4. (a)

Generators. (b) Product
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u1v1∈M Kð Þ and u2v2∈M Hð Þ: ð9:2cÞ

As an example, the strong Cartesian product of K ¼ P2 and H ¼ P3 is shown in

Fig. 9.7.

In this example, the nodes (u1,u2) and (v1,v2) are joined, since the condition

(9.2c) is satisfied.

Examples. In the first example, the strong Cartesian product P7⊠P5 of a path graph

with seven nodes, denoted by P7 and the path graph P5 is illustrated in Fig. 9.8.

As the second example, the strong Cartesian product C7⊠P4 is shown in Fig. 9.9.

9.2.4 Direct Product of Two Graphs

This is another Boolean operation, known as the direct product, introduced by

Weichsel [6], who called it the Kronecker Product. The direct product is a Boolean
operation S ¼ K*H, in which, for any two nodes u ¼ (u1,u2) and v ¼ (v1,v2) in N

(K) � N(H), the member uv is in M(S) if:

u1v1∈M Kð Þ and u2v2∈M Hð Þ: ð9:3Þ

As an example, the direct product of K ¼ P2 and H ¼ P3 is shown in Fig. 9.10.

Here, the two nodes (u1,u2) and (v1,v2) are joined, since the condition (9.3) is

satisfied.

Examples. The direct product P7*P5 of the path graph P7 and path graph P5 is

illustrated in Fig. 9.11.

As the second example, the direct product C7*P4 is shown in Fig. 9.12.

K=P H=P

(v   ,u   )1 2 (v   ,v   )

(u   ,w   )(u   ,v   )(u   ,u   )
u

v

u v w

1

1
1 1 1

11

2 2

2 2 2

2 2

2 3

=
2

(v   ,w  )

S

a bFig. 9.7 The strong

Cartesian product of two

simple graphs. (a)

Generators. (b) S ¼ K⊠H
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Fig. 9.8 Strong product

representation of P7⊠P5

Fig. 9.9 Strong product

representation of C7⊠P4

K=P H=P

(v   ,u   )1 2 (v   ,v   )

(u   ,w   )(u   ,v   )(u   ,u   )
u

v

u v w

1

1
1 1 1

11

2 2

2 2 2

2 2

2 3

=
2

(v   ,w  )

S

*

a bFig. 9.10 The direct

product of two simple

graphs

Fig. 9.11 Direct product

representation of P7*P5
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9.3 Analysis of Near-Regular Structures Using Force

Method

Different simple and efficient methods for the analysis of structures are provided in

Kaveh [3]. In the analysis of some near-regular structures one can solve the regular

part independently and then superimpose the effect of the additional part. For such

models, the matrices corresponding to regular part have canonical forms and their

eigensolution or inversion can easily be performed [1]. The effect of member

changing the regular to a near-regular structure can then be added. In this method,

linear behaviour is assumed for the structures.

Here we use the force method, and instead of selecting a statically determinate

basic structure (standard method) we employ the regular part of the structure as the

basic structure [7].

A new algebraic method is introduced for the force method of analysis for

efficient analysis of large near-regular structures.

In this part, we use the force method, however, instead of selecting a statically

determinate basic structure we employ the regular part of the structure as the basic

structure. Those additional elements are considered as redundant elements. This

method is applied to truss and frame structures. In the present approach we can have

missing elements instead of additional elements.

In order to demonstrate this problem, consider the truss shown in Fig. 9.13a. This

structure consists of a regular part P4⊠P10 as shown in Fig. 9.13b and has become a

near-regular because of having additional 10 bars. The main aim is to decompose

these two parts in order to arrive at the analysis of the near-regular structure using

the results of the analysis of the regular part. In Fig. 9.13c the positions of the

excessive members are highlighted, where the regular part is shown in broken lines.

It should be mentioned that for some regular structures the stiffness matrices can

be formed in special block forms, known as the canonical forms, Kaveh [3]. Here

we assume that only the members cause irregularity and no additional nodes are

Fig. 9.12 Direct product

representation of C7*P4
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present except those of the regular part, i.e. the nodes of the two ends of each

excessive members are in the regular part of the structure.

At the beginning, methods suggested are presented for the formation of the

matrices required in the force method. Obviously one can also obtain these matrices

by other approaches.

The present method consists of two groups of structures as described in the

following:

The first group is related to the analysis of those structures in which the

excessive members have caused the irregularity. The second group is about those

structures which require addition of some members to alter the near-regular struc-

ture to a regular one. In this case, by assuming pairs of members with two identical

Fig. 9.13 (a) An irregular truss. (b) The regular part as the strong Cartesian product P4⊠P10. (c)

The excessive members being highlighted [1]
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modulus of elasticity having positive and negative signs are added to those places

where we need to have members to make the near-regular structure into regular one.

In this case, the members with negative sign will be treated as the excessive

members.

In the above force method, the internal forces of the excessive members will be

considered as redundants, and the corresponding forces will be applied at the

regular part of the structure as external loads to incorporate the effect of such

members. Thus the regular part will be the main structure to be analyzed. This

means we analyze the near-regular structure by considering the regular part and

adding the effect of the internal forces of the complementary members as external

loads.

Here we assume that the removal of the excessive members will leave the

structure geometrically stable, and considering the topology of the regular struc-

tures this assumption is quite logical.

In each remaining section first the formulation will be presented, and then

through a simple example the process of analysis will be described in a step by

step manner. Then by some practical examples, the efficiency of the method will be

demonstrated.

First the formation of the flexibility matrix is described. It should be mentioned

that this matrix can be formed using any other available method.

9.3.1 Formulation of the Flexibility Matrix

In this section a method is presented for the formation of the matrix B in the

following form:

B ¼ B0 B1½ � ð9:4Þ

where the ith column of B0 is a vector of internal force of the structure under a unit

value of a load applied at the ith DOF of the structure (Pi ¼ 1), and the ith column

of B1 is a vector containing the internal forces of the structure under the unit load

applied at the position of the ith redundant of the (Xi ¼ 1) structure.

According to the above definitions for the formation a matrix B we are looking

for a method by means of which having the externally applied loads of the structure

we find the internal forces of the members. In the following a method is presented

for this problem using the equilibrium matrix, though one can also find this

employing the existing traditional method.

In order to calculate the internal forces of the regular structure under the external

loading we proceed as the following:

In the global coordinate system we have
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SΔ ¼ P ) Δ ¼ S�1P ð9:5Þ

where S� 1 is the inverse of the stiffness matrix of the DOFs of the regular part of

the structure. Using the theorems previously developed for the block matrices, S� 1

can be formed using the blocks constituting S. This matrix can be obtained using

some concepts of graph products or employing concepts from group theory.

According to the definition of equilibrium matrices of the members of the

structure and Eq. 9.5, in general, the following form can be written for the

deformation of the local coordinate systems of the members of the regular structure:

δ ¼ AtΔ ¼ AtS�1P ð9:6Þ

where A is the equilibrium matrix of the regular structure. Considering the equi-

librium equations in the local coordinate system and Eq. 9.6, in general the vector of

internal forces of the members of the regular structure under the action of an

imaginary external unit load can be obtained as:

Q0 ¼ sδ ¼ s AtS�1P
� � ¼ sAtS�1

� �
P ð9:7Þ

Here s is the block diagonal matrix containing the stiffness of the members of the

regular part of the structure. Therefore the vector of internal forces of a regular

structure can be obtained having the external forces in the following form:

Q0 ¼ RP ; R ¼ sAtS�1 ð9:8Þ

If X contains the internal forces of the excessive members in the global

coordinate system and P is the external force vector of the structure, then the

internal forces of the members of the regular structure when part of it is near-

regular, can be obtained as:

Q1 ¼ RPþ RX ð9:9Þ

Thus for the analysis of near-regular structure discussed in here, Q1 is the vector

of internal forces of the regular structure. The vectors P andX can be expressed as:

X ¼ NX ; P ¼ IP ð9:10Þ

I is a unit matrix and N is a matrix for transforming the local coordinate system

to the global coordinate system. X is the internal force vector of excessive

members.

Here the method for the formation of A and N is explained. If AT is the

equilibrium matrix of a near-regular structure, then by partitioning according to

the numbers of internal forces of the excessive members, the matrices A and N can

be formed as:
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AT ¼ A
��N� � ð9:11Þ

where A is the equilibrium matrix of the regular structure. In Eqs. 9.9 and 9.10 by

taking the common factor and extracting the vector of the assumed forces we have:

Q1 ¼ R I N½ � P

X

� �
ð9:12Þ

In general case the internal forces of the near-regular structure will be as follows:

Q ¼ Q1

X

� �
ð9:13Þ

Therefore adding X to Eq. 9.12 the matrix Q can be written as

ú
û

ù
ê
ë

é
ú
û

ù
ê
ë

é
=ú

û

ù
ê
ë

é
=

X
P

IZ
RNR

X
Q

Q 1 ð9:14Þ

Now the matrices B0 and B1 can be formed by partitioning the above matrix

according to the numbering of the internal forces of the excessive members of the

structure in the following form:

B0 ¼ R

Z

� �
; B1 ¼ RN

I

� �
ð9:15Þ

In the above equations Z is a matrix of zeros with dimension t � k and I is a unit

matrix of dimension t � t. The matrices B0 and B1 have dimensions (e + t) � k

and (e + t) � t, respectively. t is the total number of internal forces of the excessive

members, k is the DOFs of the near-regular structure in global coordinate system

and e is the number of internal forces of the regular structure.

In this method we need to form the matrix AT and in the subsequent section a

simple method will be presented for this formation.

The formation of the matrix B can be summarized as follows:

Step 1: Form the matrices S� 1 and s for the regular structure.

Step 2: Form the matrixAT for all the members of the structure consisting of regular

and excessive members.

Step 3: Partition AT using Eq. 9.11 and form the matrices A and N.

Step 4: Calculate the matrix R using Eq. 9.8.

Step 5: Calculate the matrices B0 and B1 using Eq. 9.15.
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9.3.2 A Simple Method for the Formation of the Matrix AT

A general method for the formation of the equilibrium matrix consists of writing

equilibrium of the forces at the nodes of the structure. For a quick calculation of the

matrix AT one can assemble the rotation matrices of the members of the near-

regular structure. Then it can be partitioned using the relationship presented in the

previous section. In the following the approach for positioning the rotation matrices

of the members in each column of the equilibrium matrix is illustrated. For the

formation of the equilibrium matrix AT of the near-regular matrix we perform the

following process:

If we consider i as the nodal DOFs of the assumed member j in the local

coordinate system, and r are the nodal DOFs of the assumed member j in the global

coordinate system, then the columns corresponding to i in the matrix AT will be as

follows:

AT r; ið Þ ¼ T t
j ð9:16Þ

The remaining rows of these columns are zero. We repeat this process for all the

members of the near-regular structure. Tj is the modified rotation matrix of the jth

member. This matrix can be represented as follows:

Space truss member

[ ] [ ]gba=-= CosCosCos, 111j TTTT

Planar frame member
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ð9:17Þ

sj is the jth block of the stiffness matrix s. Here, α, β and γ are the angles with the
x, y and z axis, respectively.

Similar to Eq. 9.11 the above matrix can be transformed to A and N by

partitioning and numbering the internal forces of the excessive members which

are separated from the structure.
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Algorithm

The algorithm can be summarized as:

Step 1: Formation of the matrices Tj for members of the near-regular structure.

Step 2: Formation of the equilibrium matrix AT by assembling the rotation matrices

of the near-regular matrix using Eq. 9.16.

Step 3: Formation of the matrices A and N by partitioning of the matrix AT.

9.4 Analysis of Regular Structures with Excessive

Members

In this section the analysis of those structures for which the irregularity is produced

by excessive members is studied. Here the force method is used for the analysis,

with the only difference that instead of removing member to obtain a statically

determinate structure, members are removed to transform the structure into a

regular one. Here the relationships required for the force method are presented.

Base on the concepts of the force method, the internal forces of the members of the

near-regular structure can be expressed as:

Q½ � ¼ B½ � P

X

� �
ð9:18Þ

After the formation of the matrix B which was described in Sect. 9.2, one can

calculate the internal forces of the excessive members using the following

relationships:

D2 ¼ B1
tFB1 ; D1 ¼ B1

tFB0 ð9:19Þ
X ¼ �D2

�1D1P ð9:20Þ

Here F is a block matrix of dimension (e + t) � (e + t) and contains all the

flexibility matrices of the members of the near-regular structure. The matrixD1 is of

dimension t � k and the matrix D2 is of dimension t � t. This means that for

calculating the internal forces of the excessive members, only the inverse of a

matrix of dimension t is needed.

At the end, the forces ofX are added to the external force vector P denoted by P∗

which is defined as the equivalent external load of the regular structure. According

to this, the displacements of the structure can be obtained by the inverse of the

stiffness matrix of the regular structure as follows:

P∗ ¼ Pþ NX ð9:21Þ
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Δ ¼ S�1P∗ ð9:22Þ

where S� 1 is the inverse of the stiffness matrix of the DOFs of the regular structure

and can be obtained using the existing methods, Kaveh [3]. The vector Δ contains

the displacements of the near-regular structure.

The matrix N is the transformation matrix of the internal forces in excessive

members from local to global coordinate systems.

9.4.1 Summary of the Algorithm

Step 1: Numbering the DOFs, nodes and members of the near-regular structure and

formation of the external force vector P.

Step 2: Formation of the matrices S� 1 and s .

Step 3: Formation of the equilibrium matrix of the near-regular structure using

Eq. 9.16.

Step 4: Calculation of the B0 and B1 matrices using Eq. 9.15.

Step 5: Formation of the flexibility matrix F in a block diagonal form for all the

members of the near-regular structure.

Step 6: Calculation of the matrices D1 and D2 using Eq. 9.19.

Step 7: Calculation of the vector X using Eq. 9.20.

Step 8: Calculation of the equivalent external load of the regular structure using

Eq. 9.21.

Step 9: Calculation of the nodal displacements of the near-regular structure using

Eq. 9.21.

The above explanations are further explained through the following simple

example.

9.4.2 Investigation of a Simple Example

For the 10-bar truss shown in Fig. 9.14, deleting member 10, the structures become

regular. Here using the force method, the internal force of the member 10 is

calculated and as an additional force it is added to the external forces. Then the

regular structure is analyzed with the new loads.

It should be noted that in the standard force method the basic structure is selected

for a redundant structure is often statically determinate. For the structure of this

example we have four statical indeterminacy and four redundants should be chosen.

However, in our approach the basic structure is selected as a regular structure which

is not necessarily statically determinate.

In this example, EA is assumed to be unit for all the members and the external

load vector is as follows:
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P ¼ 10 0 0 20 0 0½ �t

One of the methods for the formation of the equilibrium matrix is to use the

equilibrium equations of forces at the nodes and formation of the matrix of the

coefficients of the forces. In this example the equilibrium matrix of the near-regular

structure is calculated using this approach. The obtained equilibrium matrix is

partitioned into A and N using Eq. 9.11.

The force equilibrium equations will be as follows:

P1 ¼ �Q2 �
ffiffiffi
2

p
=2Q4 , P2 ¼ Q1 þ

ffiffiffi
2

p
=2Q4

P3 ¼ Q2 þ
ffiffiffi
2

p
=2Q3 � Q6 �

ffiffiffi
2

p
=2Q8 , P4 ¼

ffiffiffi
2

p
=2Q3 þ Q5 þ

ffiffiffi
2

p
=2Q8

P5 ¼ Q6 þ
ffiffiffi
2

p
=2Q7 þ 2=

ffiffiffi
5

p
Q10 , P6 ¼

ffiffiffi
2

p
=2Q7 þ Q9 þ 1=

ffiffiffi
5

p
Q10

The relation between the equilibrium matrix A and the vector of external and

internal forces of the structure can be written as:

P ¼ AQ ð9:23Þ

In this way the matrix A and the partitioning considering the excessive member

10 will be as follows:

[ ]

ú
ú
ú
ú
ú
ú
ú
ú

û

ù

ê
ê
ê
ê
ê
ê
ê
ê

ë

é

--

--

==

4472.0107071.0000000
9844.0007071.0100000
007071.000107071.000
007071.001007071.010
0000007071.0001
0000007071.0010

T NAA

Thus the matrix N will be as

N ¼ 0 0 0 0 0:9844 0:4472½ �t

The stiffness matrix of the regular structure by elimination of the member

10 will become:

Fig. 9.14 A 10-bar truss

transformable to a regular

structure
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S ¼

0:6767 �0:1767 �0:5 0 0 0

�0:1767 0:6767 0 0 0 0

�0:5 0 1:3535 0 �0:5 0

0 0 0 0:8535 0 0

0 0 �0:5 0 0:6767 0:1767
0 0 0 0 0:1767 0:6767

2
6666664

3
7777775

Replacing two columns 5 and 6 with columns 3 and 4, and also their

corresponding rows, This matrix will get Form III pattern and calculating its

eigenvalues leads to the formation of S�1. Here, s is a block diagonal matrix having

the stiffness of the members of the regular structure. Since the structure is a truss,

therefore this matrix becomes a diagonal one.

s ¼ diag 0:5; 0:5; 0:3535; 0:3535; 0:5; 0:5; 0:3535; 0:3535; 0:5f g

In this relation diag represents a block diagonal matrix.

Substituting the above matrices in Eq. 9.15 leads to the formation of B0 and B1

matrices.

B0 ¼

0:3535 0:8311 0:1846 0 0:1464 �0:0382
�0:6464 �0:1688 0:1846 0 0:1464 �0:0382
0:3535 0:0923 0:4459 0:2928 0:3535 �0:0923
�0:5 0:2387 �0:2612 0 �0:2071 0:0540
0 0 0 0:5857 0 0

�0:1464 �0:0382 �0:1847 0 0:6464 �0:1688
0:2071 0:0540 0:2612 0 0:5 0:2387
�0:3535 0:0923 �0:4459 0:2928 �0:3535 0:0923
�0:1464 �0:0382 �0:1847 0 �0:3535 0:8311

0 0 0 0 0 0

2
666666666666664

3
777777777777775

B1 ¼ �0:1138 �0:1138 �0:2749 0:1610 0 �0:5026 �0:5540 0:2749 �0:0557 1½ �t

The flexibility matrix of the near-regular structure F in general is a block

diagonal matrix. Since the considered structure is a truss, thus this matrix has

numerical values in its diagonal.

F ¼ diag 2, 2, 2
ffiffiffi
2

p
, 2

ffiffiffi
2

p
, 2, 2, 2

ffiffiffi
2

p
, 2

ffiffiffi
2

p
, 2, 2

ffiffiffi
5

pn o

Using Eq. 9.19 the matrices D1 and D2 are formed as follows:

D1 ¼ �0:8719 �0:2277 �1:0997 0 �2:1050 �0:1109½ �;
D2 ¼ 6:4045½ �

Now employing Eq. 9.20, the internal forces of the excessive members are

calculated as:

392 9 Analysis of Regular Structures Using Graph Products



X ¼ �D2
�1D1P

¼ � 1

6:4045
� �0:8719

1

. . . 0
4

. . .

h i
: 10 0 0 20 0 0½ �t ¼ �1:3624

Substituting the values of X in Eq. 9.21, the vector P∗ can be obtained. Now

according to Eq. 9.22, multiplying this vector with S� 1, the displacement vector of

the nodal forces of the near-regular structure can be obtained.

P∗ ¼ 10; 0; 0; 20; 1:2177; 0:6089f gt

Δ ¼ 25:8839 6:7609 12:6449 23:4314 8:3473 �3:0400f gt

It should be noted that the aim of this example was the explanation of the method

by means of a simple example and for showing the capabilities of the presented

method is not sufficient. The reduction in dimensions of the matrices achieved by

the present method and the speed of calculation will be illustrated in Sect. 9.5.

9.5 Analysis of Regular Structures with Some Missing

Members

In this section we consider those structures which need addition of some members

to become a regular one. Obviously the method presented in the previous section

can not be applied directly for these structures. However, for transforming this case

to the previous one, a pair of members with equal modulus of elasticity having

different signs, are added where we have lack of members for regularity. In the next

step the members with negative modulus of elasticity are considered as excessive

members and separated from the structure. The remaining process of the analysis is

the same as the previous case. The internal forces of the members with negative

modulus of elasticity are calculated and added to the external forces. Then the

regular structure with the external loads together with the internal forces of the

excessive members which are applied as the additional external forces, is analyzed.

In the following a simple example is considered for further explanation.

9.5.1 Investigation of an Illustrative Simple Example

In this section a simple example is used to describe the process of the algorithm. In a

4-bar structure shown in Fig. 9.15a, it is obvious that if we add a member between

the nodes 2 and 3, the structure will be transformed into Form II and one can easily

calculate its inverse. Now we add two members 5 and 6 of identical properties have

modulus of elasticity of different signs between the two nodes 2 and 3. This is
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logical assumption because the property of one member can be nullified by the

other member.

Member 6 has negative modulus of elasticity and we consider it as a member

separation of which transforms the structure into a regular one as shown in

Fig. 9.15c. The structure obtained in this way is equivalent to the basic structure

of the force method. From here onward all the previous steps can be employed.

Figure 9.15d shows the excessive bar with negative modulus of elasticity which is

separated from the truss shown in Fig. 9.15b.

The external force vector will be as follows:

P ¼ 0 0 0 �10½ �t

For the formation of the equilibrium matrix of the structure shown in Fig. 9.15b,

one can either use the equations corresponding to the equilibrium of the forces at

the nodes, or alternatively use Eq. 9.16.

Fig. 9.15 (a) An irregular structure. (b) The irregular structure with a pair of members being

added. (c) Representation of the internal forces in the regular structure. (d) The added member

with negative modulus
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ú
ú
ú

û

ù

ê
ê
ê
ê

ë

é
--

=

4472.04472.00100
8944.08944.00010
004472.0100
008944.0001

TA

The matrices A and N can be obtained by partitioning the above matrix

according to Eq. 9.11 and numbering the internal force of the separated member.

A ¼
1 0 0 0:8944 0

0 0 �1 �0:4472 0

0 1 0 0 0:8944
0 0 1 0 0:4472

2
664

3
775 ; N ¼

0

0

0:8944
0:4472

2
664

3
775

The matrix S�1 corresponding to the regular structure shown in Fig. 9.15c, and

the matrix s are as follows:

S�1 ¼
1:5935 2:0508 �0:4065 1:9491
2:0508 9:8338 �1:9491 9:3465
�0:4065 �1:9491 1:5935 �2:0508
1:9491 9:3465 �2:0508 9:8338

2
664

3
775

s ¼ diag 0:5 0:5 1 0:4472 0:4472f g

It can be seen that the matrix S can be transformed into Form II by multiplying

the row and column 2 by �1. Using the above matrices and Eq. 9.8, the matrix R is

obtained as:

R ¼

0:7967 1:0254 �0:2032 0:9745
�0:2032 �0:9745 0:7967 �1:0254
�0:1016 �0:4873 �0:1016 0:4872
0:2272 �1:1464 0:2272 �1:0896
0:2272 1:0896 0:2272 1:1464

2
66664

3
77775

Using Eq. 9.15, the matrices B0 and B1 are obtained as:

B0 ¼

0:7967 1:0254 �0:2032 0:9745
�0:2032 �0:9745 0:7967 �1:0254
�1:1016 �0:4873 �0:1016 0:4872
0:2272 �1:1464 0:2272 �1:0896
0:2272 1:0896 0:2272 1:1464

0 0 0 0

2
6666664

3
7777775
; B1 ¼

0:2540
0:2540
0:1270
�0:2840
0:7159

1

2
6666664

3
7777775

The flexibility matrix F for the truss shown in Fig. 9.15b will be as follows:
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F ¼ diag 2 2 1 2:2360 2:2360 �2:2360f g

Using Eq. 9.19 the following matrices are obtained:

D1 ¼ 0:5081 2:4364 0:5081 2:5635½ �; D2 ¼ �0:6351½ �

The matrix X is calculated from Eq. 9.20 as

X ¼ �D2
�1:D1P ¼
1

0:6351
� 0:5081 2:4364 0:5081 2:5635½ �: 0 0 0 �10½ �t ¼ �40:3607

Adding X to the vector of external loads according to Eq. 9.21 and multiplying

the matrix S�1 employing Eq. 9.22 we will have:

P∗ ¼ 0 0 �36:0997 �28:0498½ �t
Δ ¼ �40 �191:803 0 �201:803½ �t

Finally, using X and Eq. 9.14 one can find the internal forces of the structure

shown in Fig. 9.15b as follows:

Q ¼ �20 0 �10 22:3607 �40:3607 �40:3607½ �t

One can recognize the equality of the internal forces of the entries 5 and 6.

9.6 Practical Examples

Here four examples are presented. The first two examples correspond to Sect. 9.3

and the third example belongs to Sect. 9.4. The fourth example corresponds to the

combination of the methods presented in Sects. 9.3 and 9.4. The latter example is

chosen as a frame structure to showing the applicability of the presented method to

other skeletal structures other than trusses.

Example 1. A truss with 47 members is considered in the form of a single layer

rotational dome, having two members 26 and 27 making the truss a near-regular

one, Fig. 9.16. If we remove these two members then the remaining regular

structure can easily be solved using the method of Kaveh and Rahami [8]. The

value of EA ¼ 1 N is assumed to be identical for all the members and the force

P2z ¼ 10 N and P8y ¼ 20 N are applied at nodes 2 and 8, in z direction and

y direction, respectively.
For solution of this problem the members 26 and 27 are considered as excessive

members. For the above near-regular structure the equilibrium matrix AT has

dimension 30 � 47 and by partitioning using Eq. 9.11, the matrices A and N with
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dimensions 30 � 45 and 30 � 2 are obtained. The matrix S of the regular structure
with dimension 30 � 30 is formed by deleting the excessive members, shown in

Fig. 9.17a, as follows:

S ¼
X5
i¼1

Pi � Aið Þ

In this relation the matrices Ai and Pi are the submatrices constituting the

matrix S.

Using the method presented in Kaveh and Rahami [8] the inverse of the matrix

S is formed by using the eigenvalues and eigenvectors of five 6 � 6 matrices.

Fig. 9.16 The space dome of the Example 1 with 47 members

Fig. 9.17 (a) The regular structure obtained by deleting the excessive members. (b) The deformed

shape of the structure of Example 1
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s is a diagonal matrix of dimension 45 � 45 containing the stiffness matrices of

the members of the regular structure and F is a diagonal matrix of dimension

47 � 47 consisting of the flexibility matrices of the near-regular structure . There-

fore the matrices B0 and B1 of dimension 47 � 30 and 47 � 2 can be obtained

using the Eq. 9.15.

The matrices D1 and D2 of dimension 2 � 30 and 2 � 2 obtained by using

Eq. 9.19 as follows:

D1 ¼ . . .
1

5:6163
3

. . . �30:9438
14

. . .
30

. . . �62:3208 . . . �29:6975 . . .

" #

D2 ¼ 426:7122 �156:126
�156:126 267:2256

� �

The vector of the internal forces of the excessive members X can be calculated

from Eq. 9.20 as:

X¼�inv
426:7122 �156:126

�156:126 267:2256

� �
 �
...
1

5:6163
3

... �30:9438
14

...
30

... �62:3208 ... �29:6975 ...

" #

0
1

... 10
3

... 20
14

... 0
30

h it
X¼ �1:9283,0:7148f gt

The matrix of the internal forces of the near-regular structure can be obtained by

substituting X in Eq. 9.14 as follows:

Q ¼ 8:7095
1

0:1002
2

�0:6626
3

�2:1497
4

. . . �0:6706
44

0:4741
45

�1:9283
46

0:7148
47

h it

We substitute X in Eq. 9.21, and substitute the vector of the equivalent external

forces of the regular structure in Eq. 9.22. The vector of the displacements for the

near-regular structure can then be obtained using the inverse of the stiffness matrix

of the regular structure.

Δ ¼ �70:6421
1

�47:0104
2

399:9523
3

117:5682
4

. . . �9:5185
27

110:8598
28

56:1357
29

90:5555
30

h it

The deformed shape of the structure is shown in Fig. 9.17b.

If we solve the structure by a conventional method we have to find the inverse of

a matrix of dimension 30 � 30, while the present approach requires the inverse of

5 matrices of dimension 6 � 6 and the inverse of the matrixD1 of dimension 2 � 2.

Example 2. A communication space tower studied in Kaveh and Rahami [8], is

considered in here. This model can be expressed as the product two graphs. In

practice the towers have horizontal belts employed in different heights. These belts

make their model irregular. In here we want to analyze those towers which have
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belts at the central core of the structure (Fig. 9.18). If we consider these members as

additional ones, we will obtain a regular structure. Such a regular structure can be

generated by rotation of one of its faces. Using the force method the internal forces

of the excessive members will be calculated and together with other external loads

will be applied to the regular structure.

This tower has 84 nodes and 330 members. The load applied to the structure is

P ¼ 1 kN applied in all DOFs of the 4 upper nodes of the tower. The value of

EA ¼ 100 N for all members is considered to be identical.

The structure has 80 free nodes and 330 members and 10 members belong to the

belt of the structure.

Fig. 9.18 A communication space tower with five pairs of excessive members being shown at the

central core of the structure
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Forming the equilibrium matrix of the near-regular structure which is of dimen-

sion 240 � 330, and its partitioning by employing Eq. 9.11, the matrices A and N of

dimensions 240 � 320 and 240 � 10 can be obtained.

The stiffness matrix S of the regular structure is of 240 � 240 and has the

following form:

S ¼
X4
i¼1

Pi � Aið Þ

Using the method presented in Kaveh and Rahami [8], the inverse of the stiffness

matrix of the regular structure can be obtained using the eigenvalues and eigenvec-

tors of four 60 � 60 matrices. In this example, since the structure is truss, s is a

diagonal matrix of dimension 320 � 320 containing the stiffness matrices of the

members of the regular structure. Having the above mentioned matrices and using

Eq. 9.15 one can easily form the B0 and B1 matrices which are of dimension

330 � 240 and 330 � 10. For this structure, the flexibility matrix F of the near-

regular structure has dimension 330 � 330. Having the matrices B0, B1 and F, the

matrices D1 and D2 of dimensions 10 � 320 and 10 � 10 are obtained from

Eq. 9.19. Here D2 is as follows:

D2 ¼

0:2999 �0:1033 0:2226 �0:2225 0:3121 �0:3121 0:4017 �0:4017 0:4912 �0:4912
�0:1033 0:2999 �0:2225 0:2226 �0:3121 0:3121 �0:4017 0:4017 �04912 0:4912
0:2226 �0:2225 2:9468 �2:7704 5:5850 �5:5850 8:3715 �8:3715 11:1580 �11:1581
�0:2225 0:2226 �2:7704 2:9468 �5:5850 5:5850 �8:3715 8:3715 �11:158 11:1581
0:3121 �0:3121 5:5850 �5:5850 15:3371 �15:1836 25:2968 �25:296 35:3849 �35:385
�0:3121 0:3121 �5:5850 5:5850 �15:183 15:3371 �25:296 25:2968 �35:385 35:3849
0:4017 �0:4017 8:3715 �8:3715 25:2968 �25:2968 48:2162 �48:085 71:7608 �71:760
�0:4017 0:4017 �8:3715 8:3715 �25:296 25:2968 �48:0854 48:2162 �71:760 71:7608
0:4912 �0:4912 11:1580 �11:158 35:3849 �35:385 71:7608 �71:760 116:622 �116:514
�0:4912 0:4912 �11:158 11:1580 �35:385 35:3849 �71:760 71:7608 �116:514 116:622

2
666666666666664

3
777777777777775

In this way and using Eq. 9.20, the vector of internal forces of the excessive

members can be obtained as

X¼ �84:7178, � 84:7178, � 85:0153, � 85:0153, � 106:172, � 106:172, � 133:071, � 133:071, � 163:915, � 163:915f gt

Adding X to the external load vector using Eq. 9.21 and applying the load to the

regular structure in Eq. 9.22, the vector displacements for the near-regular structure

is obtained. The nodal displacements in some DOFs are as follows:

Δ ¼ . . .1 9513:052
61

. . . 31468:4
121

. . . 65318:71
181

. . .240

h it

The deformed shape of the structure is shown in Fig. 9.19.
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For solution of this structure using a conventional stiffness method we have to

find the inverse of 240 � 240, while the present approach requires the inverse of

four matrices of dimension 60 � 60 and the inverse of the matrix D1 of dimension

10 � 10 to complete the analysis of the near-regular structure.

Fig. 9.19 A

communication

transmission tower together

with its deformation
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Example 3. Consider a 43-bar truss structure shown in Fig. 9.20a. This structure

becomes a cyclically symmetric structure by addition of two members between the

nodes 12 and 14, and nodes 11 and 13.

A pair of members with identical geometry and equal modulus of elasticity

having different signs, are added where we have lack of members for regularity. In

the next step the members with negative modulus of elasticity are considered as

excessive members are separated from the structure. The external forces consist of

P2z ¼ P8y ¼ 10 N. For all the member we consider EA ¼ 1 N.

Forming the equilibrium matrix AT of the near-regular structure according to

Eq. 9.16, which is of dimension 30 � 47, and its partitioning by employing

Eq. 9.11, the matrices A and N of dimensions 30 � 45 and 30 � 2 are obtained.

It should be noted that the matrix AT corresponds to the near-regular structure

which has both members of positive and negative modulus of elasticity.

Fig. 9.20 (a) Two and three dimensional representations of the 43-bar structure. (b) The

corresponding regular structure [1]
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N ¼ 0
1

. . . 0:0248
19

0:8650 0:5010 0 0 0 0 0 0
27

. . . 0
30

0 . . . 0 0 0 �0:1375 0:8347 0:5332 0:1375 �0:8347 �0:5332 . . . 0

" #t

The matrix S corresponding to Fig. 9.20b can be expressed as

S ¼
X5
i¼1

Pi � Aið Þ

Thus as we observed in Example 1, the inverse of the stiffness matrix which is of

dimension 30 � 30 can be calculated by evaluating the eigenvalues and eigenvec-

tors of five matrices of dimension 6 � 6. The diagonal matrix s is of dimension

45 � 45 containing the stiffness matrices of the members of the structure shown in

Fig. 9.20b. The diagonal matrix F is of dimension 47 � 47 containing the flexibil-

ity matrices of the members of the regular structure together with the excessive

members.

Using Eq. 9.15 one can easily form the B0 and B1 matrices which are of

dimension 47 � 30 and 47 � 2. Having the matrices B0, B1 and F, the matrices

D1 and D2 of dimensions 2 � 30 and 2 � 2 are obtained from Eq. 9.19. Here D2 is

as follows:

D2 ¼ �19:4620 1:8186
1:8186 �10:7629

� �

Equation 9.20 can be employed to find the vector X as:

X ¼ �D2
�1D1P

¼ � �19:4620 1:8186
1:8186 �10:7629

� ��1

. . . 0:3207
3

. . . 1:3854
14

. . .
. . . �0:0640 . . . �0:3018 . . .

" #
0
1

. . . 10
3

. . . 10
14

. . . 0
30

h it

X ¼ 0:8584
�0:1949

� �

Using Eq. 9.21 the equivalent external forces of the regular structure are

obtained, and using the inverse of S one can easily find the nodal displacements

of the near-regular structure by Eq. 9.22.

P∗ ¼ 0
1

. . . 10
3

. . . 10
14

. . . 0:0213
19

0:7426 0:4301 0:0268 �0:1627 �0:1039 �0:0268 0:1627 0:1039
27

. . . 0
30

h it

Δ ¼ �105:512
1

�134:943
2

380:134 51:383 . . . �18:489 50:4185 �75:205
29

116:529
30

h it

The internal forces of the regular structure and the excessive members can be

found using Eq. 9.14 as
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Q ¼ 6:8906
1

�0:9281
2

1:7904
3

�0:950
5

�5:60
6

. . . �0:0003
43

0:8584
44

�0:1949
45

0:8584
46

�0:1949
47

h it

As it can be seen, the internal forces in members 44, 46 and 45, 47 which are the

added pairs of members are the same as the entries of X.

For solution of this near-regular structure using a conventional stiffness method

we have to find the inverse of 30 � 30, while the present approach requires the

inverse of 5 matrices of dimension 6 � 6 and the inverse a matrix of dimension

2 � 2 to complete the analysis of the near-regular structure .

Example 4. A 24-story 3D frame is shown in Fig. 9.21a, with 49 columns and

84 beam in each story. The dimensions of all the beams and columns are assumed to

be identical in all the stories. In each face of the building 8 bracing elements are

added to increase the stiffness of the structure. Naturally these elements make the

model irregular. Here using the presented method, the bracing elements are

decomposed from the structure the analysis is performed for two separate parts,

namely the regular bending frame and the excessive bracing elements.

Fig. 9.21 (a) A 24-story irregular frame with bracing. (b) The regular part of the irregular frame

with fictitious columns of positive modulus of elasticity being added. (c) The bracing part

consisting of 32 bracing elements and 49 fictitious bending elements with negative modulus of

elasticity being added as shown at the top of the structure [1]
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If the top part of the structure is fixed similar to the bottom part, then the bending

frame structure can be easily analyzed using the method presented in [3]. Therefore

here we consider pairs of bending elements with positive and negative modulus of

elasticity at end part of the structure, similar to the columns of the other stories, as

illustrated in Fig. 9.21b. The columns are connected to the top part of the structure

and fixed at the other ends. The elements with negative modulus of elasticity are

considered as excessive members and are separated from the structure. Therefore

the excessive members consist of 32 bracing elements and 49 bending elements

with negative modulus of elasticity. These elements are highlighted in Fig. 9.21c. In

this way, the regular structure consists of a 24 story frame together with additional

bending elements with positive modulus of elasticity as illustrated in Fig. 9.21b.

The required parameters for the analysis are as k ¼ 7, 056, t ¼ 326, and

e ¼ 19, 446. Using Eqs. 9.16 and 9.17 and employing the rotation and stiffness

matrices of the elements in their local coordinate systems, the matrix AT of

dimension 7056 � 19772 can be constructed. For the formation of the stiffness

matrices of the elements, the local coordinate systems should be selected such that

the form given in Eq. 9.17 is formed. For each bending elements, six internal forces,

and for bracing elements only one axial force are assumed. It should be noted that

the fictitious elements with � modulus of elasticity contribute in the formation of

this matrix.

By partitioning the matrix AT we obtain two matrices A and N having dimen-

sions 7056 � 19446 and 7056 � 326, respectively. Since the regular part contains

3,241 bending elements, thus the unassembled stiffness matrix s is of dimension

19446 � 19446. The assembled matrix S of the regular part has dimension

7056 � 7056. Utilizing the method of Ref. [3], the inverse of this matrix can easily

be obtained calculating the eigenvalues of 24 matrices of dimension 294 � 294.

In this way forming the inverse of the stiffness matrix and using Eq. 9.8, the

matrix R of dimension 19446 � 7056 can be obtained. Having this matrix the

matrices B0 and B1 of dimensions 19772 � 7056 and 19772 � 326 will be formed

using Eq. 9.15. The flexibility matrix F contains the flexibility of all the elements of

the near-regular structure (bending elements, bracing elements, and pair of fictitious

elements with + and � signs). This matrix is a block matrix such that for the

bending members blocks are 6 � 6 and for the bracing members the blocks are

1 � 1. Thus the dimension of F is 19772 � 19772.

With help of Eq. 9.19 the matrices D1 and D2 of dimensions 326 � 7056 and

326 � 326 are obtained, respectively. Using Eq. 9.20 and finding the inverse of D2

leads to the vector of unknown X of dimension 326 � 1. Substituting this in

Eq. 9.21, the equivalent external force vector of the regular part of the structure is

obtained. Multiplying the inverse of the stiffness matrix of the regular part, the

displacement vector of the near-regular structure of dimension 7056 � 1 is

obtained.

It can be observed that the analysis of the problem with the help of this method

for frame structures is the same as that of the trusses which were discussed in the

previous examples, with the only difference that the rotation and stiffness matrices
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for the bending elements in the local coordinate systems should be defined

according to the Eq. 9.17.

In this problem instead of inverting the stiffness matrix of dimension

7056 � 7056 in direct analysis of the near-regular structure, one needs to find the

inverse of the matrix D2 of dimension 326 � 326, and calculate the eigenvalues of

24 matrices of dimension 294 � 294. This shows the efficiency of the present

method. Obviously increasing the number of stories this efficiency will become

more apparent. In other words in this method a matrix of dimension 7056 is

decomposed into 24 matrices of dimension 294.
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Chapter 10

Simultaneous Analysis, Design

and Optimization of Structures Using Force

Method and Supervised Charged System

Search

10.1 Introduction

Developing methods with higher computation efficiency is a crucial subject in

advanced engineering problems of multi-physics nature. For instance, analyzing

structures with larger number of members requires larger memory size and longer

computation time. In addition, this costly computation has to be repeated many

times, typically over 5,000 times, because the cross section size of the members is

not determined in the early stages of designing such structures. Therefore, reducing

the size of structural matrices and eliminating the unduly repetitions in the design

and analysis procedures can lead to a considerable reduction in the computation

efficiency [1, 2]. In this chapter, this goal is achieved utilizing meta-heuristics

algorithms which minimize the energy function indirectly. Besides, design proce-

dure and minimizing the weight of the structure is added to the analysis procedure.

One of the most reliable meta-heuristic methods recently developed is Charged

System Search (CSS) [3, 4], that is used in here. In this chapter, supervisor agents

are considered to increase the exploration ability of the CSS algorithm. This method

is called supervised CSS abbreviated as SCSS. Also a new formulation of the

penalty function is made to improve the performance of the supervised CSS.

Designing structures with minimum weight can be achieved by using minimum

energy methods, and members with pre-defined stress ratios [5], instead of the

direct solution of classic equations. This results in avoiding not only the repetitive

computations in the design and analysis, but also avoiding the computation of the

solution of equations with large matrices. For this purposed, one needs to formulate

the equations based on the minimum energy principle, and employ them in an

efficient optimization algorithm. Combining the SCSS algorithm and the force

method provides a suitable means for this purpose. The former is a suitable

optimization algorithm and the latter can be used to derive the energy equations.

In the first part of this chapter, supervisor agents are introduced. In the second

part energy formulation based on the force method is derived and the supervised

SCSS algorithm is applied to the analysis procedure. In the third part, using the
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SCSS and prescribed stress ratios, structures are analyzed and designed, and finally

in the last part weight minimization is performed by imposing the analysis proce-

dure as a constraint to the SCSS. In recent years the CSS has been applied

successfully to many engineering optimization problems. For optimal design of

structures, CSS has performed very well and improved all of the resulted design

parameters and weights achieved by the other algorithms. Large-scale structures are

analyzed and designed in this chapter in order to show the accuracy of the method

when applied to different kinds of structures.

10.2 Supervised Charged System Search Algorithm

In the CSS algorithm, each vector of variables is an agent that moves through the

search space and finds the minimal solutions [3, 4]. Throughout the search process,

an agent might go to a coordinate in the search space that already has been searched

by the same agent or another. If this coordinates have a good fitness, it will be saved

in the Charged Memory [3] but if this coordinate does not have a good fitness, it will

not be saved anywhere. Therefore, this step of the search process becomes redun-

dant. This unnecessary step adversely affects the exploration ability of the algo-

rithm. In this chapter, the supervisor agents are introduced to improve the

exploration ability of the CSS algorithm. The supervisor agent is an independent

agent of constant values that repels the agent if its coordinate has a bad fitness or

attracts the agents if its coordinate has a good fitness. This procedure is repeated in

all of the iterations and gives an overall view of the search space. The number of

supervisor agents is selected at the beginning of the algorithm, and then their

constant coordinates in the search space are determined as follows:

xsj, i ¼
i� 1ð Þ xmax, j � xmin, j

� �
NOSA� 1

þ xmin, j ð10:1Þ

where NOSA is the number of supervisor agents, and xsj,i is the jth variable of the

ith supervisor agent; xmin,j and xmax,j are the minimum and the maximum limits of

the jth variable. The kind of the force for these agents is determined as

p ¼ log
fit

fiti

� �
ð10:2Þ

where p is the same as the parameter in the original version of the CSS [3], fiti is

equal to the fitness value of the ith supervisor agent and fit is the average value of the

fitness of the normal agents. Calculating other properties of the supervisor agents

such as force and radius are similar to the standard CSS algorithm [3]. Supervisor

agents do not move from their coordinate determined from Eq. 10.1, yet they apply

additional forces on the normal agents. By doing so, they determine the fitness
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values of their fixed coordinate and its neighborhood, resulting in a better explora-

tion ability of the CSS algorithm.

10.3 Analysis by Force Method and Charged System

Search

In the presented approach, force method is applied to analyze structures. Since this

method leads to less number of unknowns, it is preferred to displacement method.

In the force method, the redundant forces are unknowns, whereas in the displace-

ment method, the nodal displacements are unknowns. In this method [1, 2, 5], the

energy relationships of the structure that satisfies the compatibility, force-

displacement and equilibrium conditions are derived, and then, minimized using

the SCSS. Suppose {p} ¼ {p1,p2,. . .,pn}
t is the vector of nodal forces, {q} ¼ {q1,

q2,. . .,qn}
t is the vector of redundant forces, and {r} ¼ {s1,s2,. . .,sm}

t comprises of

the internal forces of the members. Equilibrium condition results in the following

equation [1, 2]:

r ¼ B0pþ B1q ¼ B0 B1½ � p

q

� �
ð10:3Þ

In addition, the complementary energy function is:

Uc ¼ 1

2
rtFmr ð10:4Þ

where [Fm] is the unassembled flexibility matrix of the structure. According to the

Castigliano’s principle, a group of the redundant forces that minimize the comple-

mentary energy function is the exact solution that satisfies compatibility condition.

By substituting {r} from Eq. 10.3 in Eq. 10.4, the following equation obtained:

Uc ¼ 1

2
pt qt½ � H½ � p

q

� �
ð10:5Þ

where H½ � ¼ B0 B1½ �t½Fm� B0 B1½ �. Decomposing matrix [H] into four

submatrices leads to:

Uc ¼ 1

2
pf gt Hpp

� �
pf g þ pf gt Hpq

� �
qf g þ qf gt Hqp

� �
pf g þ qf gt Hqq

� �
pf g� 	
ð10:6Þ

In the classical method, the derivative of Uc in terms of {q} is calculated and is

equated to zero leading to:
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qf g ¼ � Hqq

� ��1
Hqp

� �
pf g ð10:7Þ

Since [H] is symmetric, [Hqp]
t ¼ [Hpq], Ref. [5].

Accordingly, in the classical method the inverse of [Hqq] needs to be calculated.

This is a difficult task, and requires extensive computer memory, especially in the

case of large scale structures. Therefore, finding {q} that minimizes the comple-

mentary energy without calculating the inverse of [Hqp] reduces the computation

time and computer memory. The first term of Eq. 10.6 is constant and the second

and third terms are equal. It can be shown that the third and fourth terms of Uc are

symmetric. Therefore

Fu ¼ qf gt Hqp

� �
pf g ð10:8Þ

is the equation that should be minimized [5].

Enhanced Charged System Search [4] is used to minimize Eq. 10.8. In this part,

the force method analysis is applied to different types of structures to illustrate the

performance of the method.

Case Study 1. The first example is an 11-member truss with three degrees of

statical indeterminacy, as shown in Fig. 10.1. Consequently, the energy function

includes three variables.

The classical method that calculates the exact and minimum amount of Uc leads

to 419.8475, whereas, using the present approach with CSS, Uc ¼ 419.8476 is

obtained and {q} is calculated as:

qf g ¼ 4:6394� 3:7629 8:1900f gt

The optimization history is shown in Fig. 10.2. The number of agents is selected

as 20.

Case Study 2. The second example is an unbraced planar frame with constant EI

having 36� of statical indeterminacy, as shown in Fig. 10.3. In this example, the

axial force, shear and moment in the first node of the beams are considered as the

redundant forces. As a result, the energy function includes 36 variables. Note that

only the bending energy is considered as the energy of the frame. Loading condition

is considered as:

1. A load �10 kN in the y-direction at nodes 8–11,

2. A load 10 kN in the x-direction at nodes 8–11,

3. A bending moment 10 kN.m in the x-y surface at nodes 8–11.

The exact calculation of Uc leads to 1,234.8; while it is Uc ¼ 1,249.2 utilizing

the CSS algorithm. Figure 10.4 shows the variation of FU versus the number of

iterations. As shown above, there is a very close agreement between the exact and

the calculated value for the energy function, verifying the accuracy of the algo-

rithm. In this case, the redundant forces are obtained as follows:
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{q} ¼ {1.1275,5.3155,14.0096,2.4854,4.8316,12.0549,4.0405,4.2845, 10.7913,

�3.0551,1.2459,2.9740,�4.0016,1.3874,3.2303,5.5762,1.4122,1.3221,0.0660,

0.2315,0.4707,0.1680,0.2155,0.4678,0.4265,0.1987,0.2503,�0.1444,0.0425,

�0.0728, 0.0540,0.0052,0.0351,0.0373,0.0847, 0.0901}t

Case Study 3. In the third example, a 40-element grilling system is considered to

illustrate the accuracy of the force method and CSS in analyzing space frames.

Geometry, nodal loads and basic structure are shown in Fig. 10.5. Torsion and shear

in z direction, and moment around the axis with a greater moment of inertia in each

member are considered as redundant forces.

Both the torsion and bending energies are considered as energy function in this

structure. G, I and E are constant for members and the Poisson’s ratio (υ) is

considered 0.3. The cross-sections of members are considered to be 272 W-section

as given in LRFD-AISC. Using the least square regression, the polar moment of

inertia (J) is expressed as a function of the moment of inertia (I):

Fig. 10.1 A simple truss and the selected basic structure (Case Study 1): (a) A planar truss. (b)

The selected basic structure

Fig. 10.2 Variation of FU versus the number of iterations in the 11-member truss (Case Study 1)
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Fig. 10.3 An unbraced planar frame (Case Study 2)

Fig. 10.4 Variation of FU versus the number of iterations in the unbraced planar frame analysis

(Case Study 2)
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J ¼ 1:04I ð10:9Þ

Also

E ¼ 2G 1þ υð Þ ð10:10Þ

By substituting Eqs. 10.9 and 10.10 in [Fm], the energy function is derived. The

exact calculation of energy using the classical method leads to 170,840, whereas,

using the present approach Uc ¼ 177,460 is obtained. The redundant forces, {q},

are shown in Table 10.1.

Case Study 4. The Last example of this part is a 26-story tower with 246� of statical
indeterminacy selected from Ref. [6], as shown in Fig. 10.6a, b. The energy

function has 246 unknowns. The cross section and module of elasticity for all of

the elements are considered constant and equal. Geometry and basic structure is

shown in Fig. 10.6c.

The loading on the structure consists of:

1. The vertical load at each node in the first section is equal to �3 kips

(�13.344 kN)

2. The vertical load at each node in the second section is equal to �6 kips

(�26.688 kN)

3. The vertical load at each node in the third section is equal to �9 kips

(�40.032 kN)

Fig. 10.5 A 40-element grillage (Case Study 3). (a) Geometry. (b) Node and element ordering. (c)

Basic structure
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4. The horizontal load at each node on the right side in the x direction is equal to�1

kips (�4.448 kN)

5. The horizontal load at each node on the left side in the x direction is equal to 1.5

kips (6.672 kN)

6. The horizontal load at each node on the front side in the y direction is equal to

�1 kips (�4.448 kN)

7. The horizontal load at each node on the back side in the y direction is equal to

1 kips (4.448 kN)

In this example, the exact calculation of the energy function leads to

1.8008 � 107, and it is obtained as 1.8252 � 107 using the force method and

CSS that is very close to the exact value.

10.4 Procedure of Structural Design Using Force Method

and the CSS

In this section, design and optimization procedures are added to the analysis

presented in the previous section. There are two major approaches to formulate

the objective function in the simultaneous analysis and design of an optimal

structure:

1. Using the pre-selected stress ratio.

2. Minimizing the structure weight.

Table 10.1 The calculated

redundant forces of

40-element grilling system

(Case Study 3) � 104

q1 �0.914 q19 �0.0084 q37 �0.0312 q55 0.7119

q2 0.2167 q20 �1.8335 q38 �5.1336 q56 �4.0377

q3 �3.9005 q21 0.7346 q39 �0.0287 q57 �0.2541

q4 �0.6323 q22 �1.0314 q40 0.5316 q58 0.0398

q5 0.314 q23 3.6083 q41 �1.9493 q59 �6.1707

q6 �0.3381 q24 0.0769 q42 0.0136 q60 2.1362

q7 0.1307 q25 �0.0497 q43 �0.0397 q61 0.1051

q8 �0.0469 q26 0.0678 q44 0.0061 q62 �3.0445

q9 2.8322 q27 5.0685 q45 4.5725 q63 1.9832

q10 0.4806 q28 1.0572 q46 �0.2432 q64 �0.0718

q11 �0.3335 q29 �0.1714 q47 �1.6436 q65 0.2401

q12 2.1219 q30 5.5207 q48 0.296 q66 1.3579

q13 �0.7939 q31 0.4753 q49 1.2002 q67 0.0941

q14 0.2277 q32 �4.0345 q50 �5.6626 q68 �2.4965

q15 3.3177 q33 0.0442 q51 0.1194 q69 �0.2361

q16 0.1725 q34 �0.3564 q52 1.1286 q70 �0.8848

q17 �1.4645 q35 �3.7443 q53 �5.547 q71 �3.9475

q18 �0.8168 q36 0.055 q54 �0.17 q72 0.2642
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10.4.1 Pre-selected Stress Ratio

In this approach [5], a preselected stress ratio is assumed for each member, and then

the complementary energy is minimized as the objective function. If the cross

sections Ai (i ¼ 1,. . .,m) are known, then the analysis can be performed using a

meta-heuristics method such as CSS, described in the Sect. 3.

Fig. 10.6 A 26-story tower. (a) Geometry and grouping. (b) Top view. (c) Basic structure (Case

Studies 4 and 10)
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However, usually the cross sectional areas are not determined at the beginning of

the design procedure. This problem leads to a new formulation of the complemen-

tary energy that eliminates Ai (i ¼ 1,. . .,m) from the energy function [5].

Each agent in the CSS is a vector of redundant forces. Moreover, according to

Eq. 10.3, the internal forces of members, {r}, is obtained from the selected agents.

The ratio between the stress in each member (σi) and its corresponding allowable

stress (σa) is defined as C:

C ¼ σi
σa

ð10:11Þ

whereσi ¼ ri
Ai
. By substituting σi in Eq. 10.11, the cross section area of each member

is obtained in terms of the internal force ri, stress ratioC, and the allowable stress σa

Ai ¼ ri

Cσa
ð10:12Þ

Consequently, one can express the unassembled flexibility matrix of each

member as a function of L, E, q and C as follows:

Fm ¼ L

EA
¼ 1

Ef r;L;Cð Þ ¼ g q;C;L;Eð Þ ð10:13Þ

Substituting Fm in Eq. 10.4, leads to the elimination of Ai from the formulation

of the complimentary energy:

MinUc ¼ 1

2E
p q½ �t B0 B1½ �t g q;C;Lð Þ½ � B0 B1½ � p q½ � ð10:14Þ

Pre-selected stress ratio is a parameter controlling the weight of the structure and

stress constraint, simultaneously. Therefore, by minimizing the energy function in

the analysis procedure, weight optimization and stress constraints satisfaction are

fulfilled.

Case Study 5. As an example consider the truss shown in Fig. 10.7. This truss is

designed with the constraints explained in Table 10.2 and using Eq. 10.14 as the

objective function. In this example, two cases are considered. In case I, the stress

ratios of the members is different, whereas in case II, it is assumed to be constant for

all the members. For the sake of simplicity, the cross-sections are selected as hollow

squares, as shown in Fig. 10.8. In this example, a population of 20 agents is

considered in the CSS algorithm. The magnitude of Ai is determined considering

the selected values of Ci. Enhanced CSS with supervisor agent is utilized in the

simultaneous analysis and design of this structure and the results are shown in

Tables 10.3 and 10.4. The convergence history is shown in Fig. 10.9. To verify the

efficiency of the present method and combining the CSS algorithm and force
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method in minimizing the structural weight, the design parameters and redundant

forces obtained from CSS, are compared to those computed using the Genetic

Algorithm (GA), reported by Kaveh and Rahami [5]. The comparison results are

shown in Tables 10.3 and 10.4 for Case I and Case II, respectively.

In this example, the exact calculation of the energy function leads to

6.5989 � 105, and it is obtained as 6.6056 � 105 using the force method and

CSS for case I. Besides, the exact calculation of the energy function leads to

7.5368140 � 105, and it is obtained as 7.5368147 � 105 using the force method

and CSS for case II. The close agreement between these values verifies the accuracy

of the calculated redundant forces shown in Tables 10.3 and 10.4 for case I and case

II, respectively. Also variation of FU versus the iteration is shown in Fig. 10.9.

10.4.1.1 Fully Stress Design (FSD) for Statically Indeterminate

Structures

In this part, the presented CSS and force method is applied to an Optimally Criteria

Method (OCM), namely Fully Stress Design (FSD). FSD leads to a correct optimal

weight for statically determinate structures under a single load condition. In the

FSD all the members are supposed to be subjected to their maximal allowable

stresses [5]. Achieving such a design for an indeterminate structure with fixed

geometry is not always possible. Even by changing the geometry, a FSD may not

be achieved. Here a formulation presented by Kaveh and Rahami [5] is used to

indirect analysis in the process of optimization. This formulation can be applied to

all types of structures, however, a truss with the following strain energy is

considered:

Uc ¼
X P2L

EA
¼

X γP2LA

γEA2
¼ 1

γE

X
σ2i wi ð10:15Þ

It should noted that for constant E and γ, the minimum weight can be achieved

only when the stresses in all the members are identical. Therefore, in Eq. 10.15, the

term corresponding with the stresses, i.e. σ2i , may be moved out of the summation.

On the other hand, in the design procedure, one can consider the fully stress

Fig. 10.7 A simple truss with pre-selected stress ratios (Case Study 5). (a) Geometry. (b) Basic

structure
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Table 10.2 Design data for the 11-bar planar truss (Case Study 5)

Design variables

Redundant and size variables q1; q2; q 3; A1; A2; A3; A4; A5; A6; A7; A8; A9; A10; A11

Material and section property

Young’s modulus is assumed to be constant

Density of the material: ρ ¼ 0.00277 kg/cm3 ¼ 0.1 lb/in3

A ¼ 0:4h2, r ¼ ffiffiffiffiffiffiffiffiffiffi
0:4A

p
, thicknesst ¼ 0:1h:

Constraint data

Stress ratios

Case 1: C ¼ {0.9, 0.8, 0.85, 0.8, 0.9, 0.85, 0.95, 0.9, 0.8, 0.9, 0.95}

Case 2: ci ¼ 1; i ¼ 1, . . ., 11

For tensile members

Fa � 0.6 Fy and λi � 300

For compressive members

λi � 200

Fa ¼
1� λi

2C2c

� �
Fy

h i
5
3
þ 3λi

8Cc
� λ3

i

8C3c

� � for λi � Cc

Fa ¼ 12π2E
23λ2i

for λi � Cc

Stress constraints

σi < 234.43 MPa; i ¼1, . . ., 11

Fig. 10.8 A hollow square

cross-section (Case Study 5)

Table 10.3 Optimal design comparison for the 11-bar truss (Case Study 5) (case 1)

Weight (N)

2,136.25

Size variable(cm2)

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11

11.55 13.36 41.20 4.44 4.44 42.51 6.94 9.15 61.02 9.71 17.51

Redundant variables �103 (N)

q1 q2 q3
123.04 �5.04 244.69
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constraint instead of minimum weight. This is because the minimum weight

corresponds to a structure for that all the members are subjected to their maximum

allowable stress.

Case Study 6. As an example, consider the structure shown in the Fig. 10.10,

selected from Ref. [7]. The design and member size constraints are reported in

Table 10.5. Redundant forces in this example are selected as internal forces in

members 1 and 9. Twenty agents are selected in the CSS algorithm.

Table 10.4 Optimal design comparison for the 11-bar truss (Case Study 5) (case 2)

Weight (N)

1,914.84

Size variable (cm2)

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11

11.55 13.36 41.20 4.44 4.44 42.51 6.94 9.15 61.02 9.71 17.51

Redundant variables �103 (N)

q1 q2 q3
94.04 �0.0000541 198.66

Fig. 10.9 Variation of FU versus the iteration in the design procedure for the 11-member truss

(Case Study 5)
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10.5 Minimum Weight

In the second approach of simultaneous design and analysis of structures, the

objective function is the weight of the structure, and the equilibrium, compatibility,

and force/displacement conditions are the constraints. In summary, all these three

conditions are called analysis criteria for simplicity. Other constraint such as stress,

displacement, dynamical properties, and etc. can also be imposed to the fitness

function. Penalty function is the most common approach to satisfying the con-

straints. The penalty function imposes a penalty to the fitness value of the solution,

if the constraint is not satisfied:

f ¼ Aþ αB ð10:16Þ

In Eq. 10.16, f is the fitness value, A is the objective function and B is the penalty

Fig. 10.10 A 10-bar truss

example (Case Studies

6 and 7, Ref. [7])

Table 10.5 Design data for the 10-bar planar truss (Case Study 6)

Loading

Node Px: kips (kN) Py: kips (kN) Pz: kips (kN)

2 0 �100(�444.8) 0

4 0 100(�444.8) 0

Design variables

Variables: q1; q2 (and A1;A2;A3;A4;A5;A6;A7;A8;A9;A10 in case 3)

Material property and constraint data

Young’s modulus: E ¼ 1e7 psi ¼ 6.895e7MPa

Density of the material: ρ ¼ 0.1 lb/in3 ¼ 0.00277 kg/cm3

For all members: Ai � 0.1 in2; i ¼ 1, . . ., 10

Stress constraints

(a) FSD

Case 1: |σi| � 25 ksi(172.375 MPa); i ¼1, . . ., 10

Case 2: |σi| � 25 ksi; i ¼ 1, . . ., 8, 10 and |σ9 | � 50 ksi (344.75 MPa)

(b) Weight minimization

Case 3: |σi| � 25 ksi; i ¼ 1, . . ., 8, 10 and |σ9| � 50 ksi (344.75 MPa)
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function and α is often selected as a big number. According to this equation, when B

goes to zero and A goes to its minimum value, f goes to the minimum value of the

fitness. However, since the minimum complementary energy is not zero, this form

of penalty function cannot be used. In this case, W is minimum while the

corresponding Uc is not minimum, i.e. the structure is not analyzed yet. Also a

small value of α does not guarantee the minimum value of the B. On the other hand,

in a structure that is in equilibrium and compatibility state, sum of the complemen-

tary energy Uc and the strain energy U is zero. Therefore, instead of the comple-

mentary energy, the sum of the complementary energy and the strain energy is used

as the analysis criteria and is imposed to CSS as a constraint. The strain energy is a

function of nodal displacements as follows:

df g ¼ B0½ �t Fm½ � B0½ � pf g þ B1½ � qf gð Þ ð10:17Þ

and

U ¼ 1

2
df gt K½ � df g � df gt Ff g ð10:18Þ

where [K] is the stiffness matrix and {F} is the nodal force vector. For equilibrium,

U is negative and U + Uc is equal to zero. This formulation is used for the 10-bar

truss example (Case Study 6) of Case III. Table 10.6 shows the results. Twenty

agents are selected in the CSS algorithm. Also the resulting minimum weight is

compared to the one obtained by Kaveh and Rahami in [5], and Kaveh and Hassani

in [8] for the same example. The result of comparison is shown in Table 10.7.

Similar to the other cases, CSS with supervisor agents have shown a better

performance. Kaveh and Rahami in [5] used a different formulation to impose the

analysis criteria as a constraint. In this method, using the derivative of Uc in

Eq. 10.6 with respect to {q} leads to:

∂Uc

∂q
¼ Hqp

� �
pf g þ Hqq

� �
qf g ¼ 0 ð10:19Þ

Equation 10.19 indicates that the complementary energy of the structure is equal

to its minimum value in the compatibility condition. Thus {q} should be selected

such that Eq. 10.19 holds. The left hand of this equation is a zero vector and it

should be changed to a scalar. The best way is calculation of the norm, because the

norm of a vector is equal to zero when all the entries is equal to zero. Here, we use

the equilibrium itself. For this purpose we can write

F q;Að Þ ¼ W Að Þ 1þ αnorm Hqp

� �
pf g þ Hqq

� �
qf g� 	� 	 ð10:20Þ

Having {q} and {A}, the magnitude of F can be calculated from Eq. 10.20 and its

minimum for a large value of α corresponds to minimumW. Other constraints such

as stress constraints, displacement constraints or dynamical properties constraints
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can be applied to Eq. 10.20 after normalizing and selecting a penalty coefficient.

Therefore, the final formulation will be as follow:

Find!q,A;A∈ Sd or Scf g
MinF q;Að Þ¼

Xne

i¼1
Ailiρi 1þαnorm Hqp

� �
pf gþ Hqq

� �
qf g� 	� 	þXnc

m¼1

max 0,gm Að Þð Þ

ð10:21Þ

where Sd and Sc are the discrete and continuous sections, respectively.

gm(A) corresponds to violation of the constraints. Because of indirect analysis,

internal forces in earlier iterations are not reliable. In other words, since the

redundant forces are not exact, the calculated constraints are not exact either, and

cannot be relied on. Reliability criteria can be norm([Hqp]{p} + [Hqq]{q}).

Accordingly, the design constraints penalty function can be altered to:

F q;Að Þ¼
Xne

i¼1
Ailiρi 1þαnorm Hqp

� �
pf gþ Hqq

� �
qf g� 	� 	þXnc

m¼1

max 0,gm Að Þð ÞRðnormÞ

ð10:22Þ

where R(norm) is a function of norm([Hqp]{p} + [Hqq]{q}). This function can be

considered as follows:

R normð Þ ¼ log 10þ NORMð Þ ð10:23Þ

where NORM is equal to norm([Hqp]{p} + [Hqq]{q}). In all of the examples

studied in the following, Eq. 10.22 has been used in the CSS algorithm.

Table 10.6 Results of the 10-bar planar truss (Case Study 6) (case 1–3)

Case 1 (FSD)

A ¼ {7.94 0.10 8.05 3.91 0.10 0.10 5.73 5.57 5.54 0.11}in2, W ¼ 1,591.8 lb

Case 2 (FSD)

A ¼ {7.77 0.24 8.25 3.79 0.1011 0.22 5.97 5.41 3.67 0.31}in2, W ¼ 1,591.8 lb

Case 3 (weight minimization)

A ¼ {7.77 0.24 8.25 3.79 0.1011 0.22 5.97 5.41 3.67 0.31}in2, W ¼ 1,516.2 lb

Table 10.7 Optimal design

comparision for the 10-bar

truss (Case Study 6)
Method (GA) [5] (ACO) [8]

Kaveh and

Ahmadi [25]

Best weight (case 1) lb 1,593.5 1,593.5 1,591.8

Best weight (case 2) lb 1,723.5 1,723.5 1,724.6

Best weight (case 3) lb 1,519.2 1,519.2 1,516.2
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Case Study 7: A 10-bar Planar Truss. The 10-bar truss as shown in Fig. 10.10 is

considered for optimal design. Table 10.8 contains the necessary data. As seen

displacement constraint is added to the design procedure. Two cases are considered,

the first is optimal design using discrete sections and the second corresponds to

continuous sections. Equation 10.22 is used as the objective function in the CSS,

where a population of 20 CPs is used. In both cases, A and q are variables. In

discrete case a code is utilized that moves the section between two available

sections to one of them based of a probabilistic function. Results are obtained in

Tables 10.9 and 10.10 for discrete and continuous sections, respectively.

Case Study 8: A 25-bar Space Truss. Geometry, nodal ordering and grouping of

members are sown in Fig. 10.11 and Table 10.11, respectively. Table 10.12 con-

tains the necessary data for design. Table 10.13 contains the results and shows the

efficiency of this method and combining the CSS and force method compared to the

other algorithms.

In this example, the calculated maximum displacement in case 1 and case

2, using exact displacement method, are equal to 0.3482 in and 0.3503 in. and

those of the present method are 0.3496 in and 0.3498 in. respectively. There is

another set of areas for case 2 as A ¼ {0.10, 0.10, 3.7598, 0.10, 1.8932, 0.7755,

0.1408, 3.8460} and the corresponding weight is equal to 468.1998. Maximum

displacement of this set of areas leads to 0.3497 in.

Table 10.8 Design data for the 10-bar planar truss (Case Study 7)

Material property and constraint data

Young’s modulus: E ¼ 1e7 psi ¼ 6.895e7MPa

Density of the material: ρ ¼ 0.1 lb/in3 ¼ 0.00277 kg/cm3

Stress constraints

|σi| � 25 ksi(172.375 MPa); i ¼1, . . ., 10

Nodal displacement constraint in all directions of the co-ordinate system

|Δi| � 2 in (5.08 cm); i ¼ 1, . . ., 4

List of the available profiles

Case 1: (Discrete sections)

Ai ¼ {1.62, 1.80, 1.99, 2.13, 2.38, 2.62, 2.63, 2.88, 2.93, 3.09, 3.13, 3.38, 3.47, 3.55, 3.63, 3.84,
3.87, 3.88, 4.18, 4.22, 4.49, 4.59, 4.80, 4.97, 5.12, 5.74, 7.22, 7.97, 11.5, 13.5, 13.9, 14.2, 15.5,
16.0, 16.9, 18.8, 19.9, 22.0, 22.9, 26.5, 30.0, 33.5} in2

Ai ¼ {10.4516, 11.6129, 12.8387, 13.7419, 15.3548, 16.9032, 16.9677, 18.5806, 18.9032,
19.9354, 20.1935, 21.8064, 22.3871, 22.9032, 23.4193, 24.7741, 24.9677, 25.0322, 26.9677,
27.2258, 28.9677, 29.6128, 30.9677, 32.0645, 33.0322, 37.0322, 46.5806, 51.4193, 74.1934,
87.0966, 89.6772, 91.6127, 99.9998, 103.2256, 109.0320, 121.2901, 128.3868, 141.9352,
147.7416, 170.9674, 193.5480, 216.1286} cm2

Case 2: (Continuous sections)

0.1 � Ai � 35 in2 (225.8960) cm2; i ¼ 1, . . ., 10
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Fig. 10.11 Geometry of a

25-bar space truss (Case

Study 8)

Table 10.11 Member

grouping
Group number Members

1 1–2

2 1–4,2–3,1–5,2–6

3 2–5,2–4,1–3,2–6

4 3–6,4–5

5 3–4,5–6

6 3–10,6–7,4–9,5–8

7 3–8,4–7,6–9,5–10

8 3–7,4–8,5–9,6–10

Table 10.12 Design data for a 25-bar space truss (Case Study 8)

Design variables

Size variables A1;A2;A3;A4;A5;A6;A7;A8; q1; q2 q3; q4; q5; q6; q7
Material property and constraint data

Young’s modulus: E ¼ 1e7 psi

Density of the material: ρ ¼ 0.1 lb/in3 ¼ 0.00277 kg/cm3

Stress constraints

|σi| � 40 ksi (275.8 MPa); i ¼ 1, . . ., 25

Displacement constraint in the directions of X and Y in the co-ordinate system

|Δi| � 0.35 in (0.8890 cm); i ¼ 1, 2

List of the available profiles

Case 1: (Discrete sections)

Ai ¼ {0.1, 0.5 � I (I ¼ 1,2,. . .,76), 39.81, 40} in2

Ai ¼ {0.6452, 3.2258 � I (I ¼ 1, 2, . . ., 76), 256.8382, 258.0640} cm2

Case 2: (Continuous sections)

Ai �0.1 in2 (0.6452)

Loading data

Node Px: kips (kN) Py: kips (kN) Pz: kips (kN)

1 �10 (44.48) �10 (44.48) �10 (44.48)

2 0 �10 (44.48) �10 (44.48)

3 0.5 (2.224) 0 0

6 0.5 (2.224) 0 0
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Case Study 9: A 120-bar Dome. A 120-bar dome structure is considered in this

example. This structure has 9� of statical indeterminacy. The necessary data for

design, and constraints are shown in Table 10.14. Optimal design comparison for

the 26-story tower is obtained in Table 10.15. Geometry, ordering and member

grouping structure are shown in Fig. 10.12. Loading condition is considered as:

1. A vertical load at node 1 equal to �13.49 kips (�60 kN)

2. Vertical loads at node 2 through 14 equal to �6.744 kips (�30 kN)

3. Vertical loads at the rest of the nodes equal to �2.248 kips (�10 kN)

Redundant forces are considered as the reactions at nodes 39, 43 and 47.

For the present approach the maximum stress ratio is equal to 0.9552 and the

maximum displacement using the exact displacement method is equal 0.17335 in,

and the maximum displacement using the present method is calculated as

0.17339 in.

In this example, when the displacement method is utilized as an analysis

procedure, the unknowns change from redundant forces to nodal displacements.

Then number of unknowns drastically increase from 9 redundant forces to

111 nodal displacements. This imposes a highly computational cost on the optimi-

zation procedure. Equation 10.24 will be used to analysis using displacement

method.

Table 10.14 Design data for a 120-bar space dome (Case Study 9)

Design variables

Vaariables: A1;A2;A3;A4;A5;A6;A7; q1; q2; q3; q4; q5; q6; q7; q8; q9
Material property and constraint data

Young’s modulus: E ¼ 30,450 ksi ¼ 210,000 MPa

Density of the material: ρ ¼ 0.288 lb/in3 ¼7971.810 kg/cm3

For all members: 0.775 � Ai � 20 in2; i ¼1, . . ., 120

Constraints

λi ¼ li
r r ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:4� A
p

Stress constraints

For tensile members

Fa � 0.6 Fy and λi � 300

For compressive members

λi � 200

Fa ¼ 1� λi
2C2

c

� �
Fy

h i
= 5

3
þ 3λi

8Cc
� λ3i

8C3
c

� �
for λi � Cc

Fa ¼ 12π2E
23λ2i

for λi � Cc

σi < 58.0 ksi (400 MPa); i ¼1, . . ., 120

Displacement constraint in the directions of X, Y anc Z in all unsupported nodes

|Δi| � 0.1969in
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norm K½ � Xf g � Ff gð Þ ¼ 0 ð10:24Þ

where K is considered as the stiffness matrices of the structure. X is considered as

the nodal displacement vector and F is the nodal forces vector.

Case Study 10: A 26-story Tower. The main aim of the present method is to avoid

the computation of the inverse of the large-scale structures matrices. This method

must be applied to the large-scale structures to show the superiority of the present

Fig. 10.12 A 120-bar dome (Case Study 9)
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Table 10.16 Design data and constraints of 26-story truss (Case Study 10)

Design variables

Variables A1;A2;A3;. . .;A59; q1; q2;. . .; q246
Material property and constraint data

Young’s modulus: E ¼ 1e7 psi

Density of the material: ρ ¼ 0.1 lb/in3 ¼ 0.00277 kg/cm3

Stress constraints

|σi| � 25 ksi(172.375 MPa); i ¼1, . . ., 942

Displacement constraint in the directions of X and Y in the co-ordinate system

|Δi| � 15 in (about 1/250 of the total height of the tower) for the four nodes of the top level in the x,
y and z directions

List of the available profiles

Case 1: Ai �1 in2 (6.452) cm2 Ai <200 in2 (1,290.32) cm2

Table 10.17 Design comparison for the 26-story truss (Case Study 10)

Variable

(in2)

Erbatur and Hasançebi

[23]

Rahami

et al. [24]

Kaveh and Talatahari

[6]

Kaveh and

Ahmadi [25]

A1 1 2.7859 0.962 1.0376

A2 1 1.3572 2.557 2.0424

A3 3 5.0362 1.65 1.6003

A4 1 2.2398 0.402 1.0113

A5 1 1.2226 0.657 1.0033

A6 17 14.9575 18.309 2.5260

A7 3 2.9568 0.346 1.0001

A8 7 10.9038 3.076 1.0981

A9 20 14.4177 2.235 2.4705

A10 1 3.709 3.813 1.0222

A11 8 5.7076 0.856 1.2531

A12 7 4.9264 1.138 1.0024

A13 19 14.1751 3.374 1.8253

A14 2 1.9043 0.573 1.0463

A15 5 2.8101 19.53 1.6020

A16 1 1 1.512 1.0760

A17 22 18.807 2.667 2.2508

A18 3 2.6151 0.478 1.0177

A19 9 12.5328 17.873 3.4032

A20 1 1.1314 0.335 1.0012

A21 34 30.5122 2.78 5.3252

A22 3 3.346 0.43 1.0003

A23 19 17.045 3.048 4.4083

A24 27 18.0785 5.112 10.7550

A25 42 39.2717 19.352 5.0916

A26 1 2.6062 0.476 1.0029

A27 12 9.8303 2.887 5.5097

A28 16 13.1126 19.5 7.9683

A29 19 13.6897 4.772 4.4314

A30 14 16.9776 5.063 5.3373

(continued)
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method. For this purpose, a 26-story tower as shown in Fig. 10.6 is considered.

Loading condition is defined in Case Study 4. Design data and constraints are

maintained in the Table 10.16. This structure has 246� of statical indeterminacy.

The member grouping has 59 groups as shown in Fig. 10.6. The simultaneous

analysis, design and optimization of this structure have 305 variables. A population

of 100 CPs is considered in the CSS algorithm. Equation 10.22 is taken as the

objective function in the CSS algorithm with supervisor agents. Optimal design

comparison for the 26-story tower is provided in Table 10.17.

In this example, the exact maximum nodal displacement calculated for the four

top nodes, using the displacement method, is 14.3442 in. The present method leads

to 14.7688 in. The maximum stress ratio is equal to 94.90 %. According to the

above table the efficiency of the CSS and especially the present method in analysis,

design and optimization of large-scale structures in comparison to other methods

become apparent.

Table 10.17 (continued)

Variable

(in2)

Erbatur and Hasançebi

[23]

Rahami

et al. [24]

Kaveh and Talatahari

[6]

Kaveh and

Ahmadi [25]

A31 42 37.6006 15.175 6.7094

A32 4 3.0602 1.176 1.6518

A33 4 5.5106 0.839 3.1108

A34 4 1.8014 1.394 1.0434

A35 1 1.1568 0.153 1.2485

A36 1 1.2423 0.247 1.0746

A37 62 62.7741 18.673 6.8163

A38 3 3.3276 0.696 1.2514

A39 2 4.2369 1.395 5.4658

A40 4 1.7202 0.422 1.1308

A41 1 1.0148 0.417 1.3079

A42 2 5.6428 0.679 1.0063

A43 77 78.0094 19.584 9.9490

A44 3 3.2206 0.533 1.1061

A45 2 3.5934 1.64 7.3345

A46 3 4.7668 0.618 2.3035

A47 2 1.1531 0.531 2.3722

A48 3 2.1698 1.374 1.0706

A49 100 99.6406 19.656 13.9159

A50 4 4.1469 0.888 2.7680

A51 1 2.16 4.456 5.2249

A52 4 4.1499 0.386 1.0024

A53 6 11.207 10.398 11.7689

A54 3 11.0904 18.834 12.1676

A55 49 35.9499 18.147 19.9929

A56 1 2.1937 3.28 9.2241

A57 62 66.1705 2.972 1.0313

A58 1 3.3402 4.927 8.1362

A59 3 4.0525 0.288 1.0025

Weight (lb) 143,436 142,295.75 47,370.8412 47,108.4972
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