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Preface

Recent advances in structural technology require greater accuracy, efficiency and
speed in the analysis of structural systems. It is therefore not surprising that new
methods have been developed for the analysis of structures with complex config-
urations and large number of elements.

The requirement of accuracy in analysis has been brought about by the need for
demonstrating structural safety. Consequently, accurate methods of analysis had to
be developed, since conventional methods, although perfectly satisfactory when
used on simple structures, have been found inadequate when applied to complex
and large-scale structures. Another reason why higher speed is required results from
the need to have optimal design, where analysis is repeated hundred or even
thousands of times.

This book can be considered as an application of discrete mathematics rather
than the more usual calculus-based methods of analysis of structures and finite
element methods. The subject of graph theory has become important in science and
engineering through its strong links with matrix algebra and computer science.
At first glance, it seems extraordinary that such abstract material should have quite
practical applications. However, as the author makes clear, the early relationship
between graph theory and skeletal structures and finite element models is now
obvious: the structure of the mathematics is well suited to the structure of the
physical problem. In fact, could there be any other way of dealing with this
structural problem? The engineer studying these applications of structural analysis
has either to apply the computer programs as a black box, or to become involved in
graph theory, matrix algebra and sparse matrix technology. This book is addressed
to those scientists and engineers, and their students, who wish to understand the
theory.

The methods of analysis in this book employ matrix algebra and graph theory,
which are ideally suited for modern computational mechanics. Although this text
deals primarily with analysis of structural engineering systems, it should be
recognised that these methods are also applicable to other types of systems such
as hydraulic and electrical networks.
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The author has been involved in various developments and applications of graph
theory in the last four decades. The present book contains part of this research
suitable for various aspects of matrix structural analysis and finite element methods,
with particular attention to the finite element force method.

In Chap. 1, the most important concepts and theorems of structures and theory of
graphs are briefly presented. Chapter 2 contains different efficient approaches for
determining the degree of static indeterminacy of structures and provides systematic
methods for studying the connectivity properties of structural models. In this chapter,
force method of analysis for skeletal structures is described mostly based on the
author’s algorithms. Chapter 3 provides simple and efficient methods for construction
of stiffness matrices. These methods are especially suitable for the formation of well-
conditioned stiffness matrices. In Chaps. 4 and 5, banded, variable banded and frontal
methods are investigated. Efficient methods are presented for both node and element
ordering. Many new graphs are introduced for transforming the connectivity proper-
ties of finite element models onto graph models. Chapters 6 and 7 include powerful
graph theory and algebraic graph theory methods for the force method of finite
element meshes of low order and high order, respectively. These new methods use
different graphs of the models and algebraic approaches. In Chap. 8, several
partitioning algorithms are developed for solution of multi-member systems, which
can be categorized as graph theory methods and algebraic graph theory approaches.
In Chap. 9, an efficient method is presented for the analysis of near-regular structures
which are obtained by addition or removal of some members to regular structural
models. In Chap. 10, energy formulation based on the force method is derived and a
new optimization algorithm called SCSS is applied to the analysis procedure. Then,
using the SCSS and prescribed stress ratios, structures are analyzed and designed. In
all the chapters, many examples are included to make the text easier to be understood.

I would like to take this opportunity to acknowledge a deep sense of gratitude to
a number of colleagues and friends who in different ways have helped in the
preparation of this book. Mr. J. C. de C. Henderson, formerly of Imperial College
of Science and Technology, first introduced me to the subject with most stimulating
discussions on various aspects of topology and combinatorial mathematics. Profes-
sor F. Ziegler and Prof. Ch. Bucher encouraged and supported me to write this
book. My special thanks are due to Mrs. Silvia Schilgerius, the senior editor of the
Applied Sciences of Springer, for her constructive comments, editing and unfailing
kindness in the course of the preparation of this book. My sincere appreciation is
extended to our Springer colleagues Ms. Beate Siek and Ms. G. Ramya Prakash.

I would like to thank my former Ph.D. and M.Sc. students, Dr. H. Rahami,
Dr. M. S. Massoudi, Dr. K. Koohestani, Dr. P. Sharafi, Mr. M. J. Tolou Kian,
Dr. A. Mokhtar-zadeh, Mr. G. R. Roosta, Ms. E. Ebrahimi, Mr. M. Ardalan, and
Mr. B. Ahmadi for using our joint papers and for their help in various stages of
writing this book. I would like to thank the publishers who permitted some of our
papers to be utilized in the preparation of this book, consisting of Springer-Verlag,
John Wiley and Sons, and Elsevier.

My warmest gratitude is due to my family and in particular my wife, Mrs.
Leopoldine Kaveh, for her continued support in the course of preparing this book.
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Chapter 1
Basic Definitions and Concepts of Structural
Mechanics and Theory of Graphs

1.1 Introduction

This chapter consists of two parts. In the first part, basic definitions, concepts and
theorems of structural mechanics are presented. These theorems are employed in
the following chapters and are very important for their understanding. For deter-
mination of the distribution of internal forces and displacements, under prescribed
external loading, a solution to the basic equations of the theory of structures should
be obtained, satisfying the boundary conditions. In the matrix methods of structural
analysis, one must also use these basic equations. In order to provide a ready
reference for the development of the general theory of matrix structural analysis,
the most important basic theorems are introduced in this chapter, and illustrated
through simple examples.

In the second part, basic concepts and definitions of graph theory are presented.
Since some of the readers may be unfamiliar with the theory of graphs, simple
examples are included to make it easier to understand the presented concepts.

1.1.1 Definitions

A structure can be defined as a body that resists external effects such as loads,
temperature changes, and support settlements, without undue deformation. Build-
ing frames, industrial building, bridges, halls, towers, dams, reservoirs, tanks,
retaining walls, channels, pavements are typical structures of interest to civil
engineers.

A structure can be considered as an assemblage of members and nodes. Struc-
tures with clearly defined members are known as skeletal structures. Planar and
space trusses, planar and space frames, single and double-layer grids are examples
of skeletal structures, Fig. 1.1.

A. Kaveh, Computational Structural Analysis and Finite Element Methods, 1
DOI 10.1007/978-3-319-02964-1_1, © Springer International Publishing Switzerland 2014
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Fig. 1.1 (continued)
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Fig. 1.1 Examples of skeletal structures. (a) A foot bridge truss (b) A planar frame. (c) A space
frame. (d) A space truss. (e) A single-layer grid. (f) A double-layer grid. (g) A single-layer dome.

(h) A double-layer barrel vault
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zzzr

Fig. 1.2 Examples of continua. (a) A plate. (b) A dam

Structure
Loading +——~ @ < Redesign
Structural Stress Structural
Analysis Analysis Design

Fig. 1.3 The cycle of analysis and design of a structure

Structures which must artificially be divided into members (elements) are called
continua. Concrete dams, plates, and pavements are examples of continua, Fig. 1.2.

The underlying principles for the analysis of other structures are more or less the
same. Airplane, missile and satellite structures are of interest to the aviation
engineer. The analysis and design of a ship is interesting for a naval architect. A
machine engineer should be able to design machine parts. However, in this book
only structures of interest to structural engineers are studied.

1.1.2 Structural Analysis and Design

Structural analysis is the determination of the response of a structure to external
effects such as loading, temperature changes and support settlements. Structural
design is the selection of a suitable arrangement of members, and a selection of
materials and member sections, to withstand the stress resultants (internal forces)
by a specified set of loads, and satisfy the stress and displacement constraints, and
other requirements specified by the utilized code of practice. The diagram shown in
Fig. 1.3 is a simple illustration for the cycle of structural analysis and design.

In optimal design of structures this cycle should be repeated hundred and
sometime thousands of times to reduce the weight or cost of the structure.

Structural theories may be classified from different points of view as follows:

Static versus dynamic;
Planar versus space;
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Linear versus non-linear;
Skeletal versus continua;
Statically determinate versus statically indeterminate.

In this book, static analyses of linear structures are mainly discussed for the

statically determinate and indeterminate cases. Here, both planar and space skeletal
structures and continua models are of interest.

1.2 General Concepts of Structural Analysis

1.2.1 Main Steps of Structural Analysis

A correct solution of a structure should satisfy the following requirements:

1.

2.
3.

Equilibrium: The external forces applied to a structure and the internal forces
induced in its members should be in equilibrium at each node.

Compatibility: The members should deform so that they all fit together.
Force-displacement relationship: The internal forces and deformations satisfy
the stress—strain relationships of the members.

For structural analysis two basic methods are in use:

Force method: In this method, some of the internal forces and/or reactions are

taken as primary unknowns, called redundants. Then the stress—strain relation-
ship is used to express the deformations of the members in terms of external and
redundant forces. Finally, by applying the compatibility conditions that the
deformed members must fit together, a set of linear equations yield the values
of the redundant forces. The stress resultants in the members are then calculated
and the displacements at the nodes in the direction of external forces are found.
This method is also known as the flexibility method and compatibility approach.

Displacement method: In this method, the displacements of the nodes necessary to

describe the deformed state of the structure are taken as unknowns. The deforma-
tions of the members are then calculated in terms of these displacements, and by
use of the stress—strain relationship, the internal forces are related to them. Finally,
by applying the equilibrium equations at each node, a set of linear equations is
obtained, the solution of which results in the unknown nodal displacements. This
method is also known as the stiffness method and equilibrium approach.

For choosing the most suitable method for a particular structure, the number of

unknowns is one of the main criteria. A comparison for the force and displacement
methods can be made, by calculating the degree of static indeterminacy and
kinematic indeterminacy. As an example, for the truss structure shown in
Fig. 1.4a, the number of redundants is 2 in the force method, while the number of
unknown displacements is 13 for the displacement approach. For the 3 x 3 planar
frame shown in Fig. 1.4b, the static indeterminacy and the kinematic indeterminacy
are 27 and 36, respectively. For the simple six-bar planar truss of Fig. 1.4c, the
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a b c

Fig. 1.4 Some simple structures. (a) A planar truss. (b) A planar frame. (c) A simple planar truss
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number of unknowns for the force and displacement methods is 4 and 2, respec-
tively. Efficient methods for calculating the indeterminacies are discussed in
Chap. 2. The number of unknowns is not the only consideration: another criterion
for choosing the most suitable method is the conditioning of the flexibility and
stiffness matrices, which are discussed in Kaveh [1, 2].

1.2.2 Member Forces and Displacements

A structure can be considered as an assembly of its members, subjected to external
effects. These effects will be considered as external loads applied at nodes, since
any other effect can be reduced to such equivalent nodal loads. The state of stress in
a member (internal forces) is defined by a vector,

t
rm={rroon.. .k}, (1.1)
and the associated member deformation (distortion) is designated by a vector,
t
un = {ufuyuy...uk ), (1.2)

where n is the number of force or displacement components of the kth member
(element), and t shows the transposition of the vector. Some simple examples of
typical elements, common in structural mechanics, are shown in Fig. 1.5.

The relationship between member forces and displacements can be written as:

rm = Kty or uy, = forg, (1.3)

where k,,, and f,, are called member stiffness and member flexibility matrices,
respectively. Obviously, k,, and f,,, are related as:

Kfm = L (1.4)

Flexibility matrices can be written only for members supported in a stable manner,
because rigid body motion of the undefined amplitude would otherwise result from
application of applied loads. These matrices can be written in as many ways as there
are stable and statically determinate support conditions.
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Fig. 1.5 Some simple elements. (a) Bar element. (b) Beam element. (c¢) Triangular plane stress
element. (d) Rectangular plane stress element. (e) Triangular plate bending element. (f) Rectan-
gular plate bending element

The stiffness and flexibility matrices can be derived using different approaches.
For simple members like bar elements and beam elements, methods based on the
principles of strength of materials or classical theory of structures will be sufficient.
However, for more complicated elements the principle of virtual work or alterna-
tively variational methods can be employed. In this section, only simple members
are studied, and further considerations will be presented in Chaps. 2, 6, and 7.

1.2.3 Member Flexibility and Stiffness Matrices

Consider a bar element as shown in Fig. 1.6 which carries only axial forces, and has
two components of member forces. From the equilibrium,

Ny +NR =0, (1.5)

then only one end force need be specified in order to determine the state of stress
throughout the member. The corresponding deformation of the member is simply
the elongation, and hence:

rh =NX, and ul =8X. (1.6)

m


http://dx.doi.org/10.1007/978-3-319-02964-1_2
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Fig. 1.6 Internal forces and deformation of a bar element
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Fig. 1.7 End forces and deflected shape of a beam element

From Hooke’s law NR = %6&, and therefore:

L EA
fm:ﬁ and km:T (17)

Now consider a prismatic beam of a planar frame with length L and bending
stiffness EI. The internal forces are shown in Fig. 1.7.

This element is assumed to be subjected to four end forces, as shown in Fig. 1.7a,
and the deflected shape and position is illustrated in Fig. 1.7b. Four end forces are
related by the following two equilibrium equations:

Va+ Vg =0, (1.8)
Mja + Mg + VgL =0. '

Therefore, only two end-force components should be specified as internal forces.
Some possible choices for r, are {Ma,Mg}, {Vg,Mg} and {VA,Ma}.

Using classical formulae, such as those of the strength of materials or slope-
deflection equations of the theory of structures, the force-displacement relation-
ships can be established. As an example, the flexibility matrix for a prismatic beam
supported as a cantilever is obtained using the differential equation of the elastic
deformation curve as follows:



1.2 General Concepts of Structural Analysis

dv_M,_ 1 V(L — x) + Mg]
— == —X .
dx2 EI, EL "B B

Integrating the above equation leads to,

dv 1 1.2
fzfv(L—7>M}C,
dx EIZ[B X %) HMex |4

and integrating again results in:

1

V=——
El,

{VB GLX2 - %x3) + %MBXZ} + Ci1x + Ca.
Using the boundary conditions at A as,

dv
[&} » =0 and [v],_, =0,

results in:

Ci=0and C, = 0.

Substituting these constants leads to:

_ 1o 2
vV = E—IZ |:VB (z Lx* —
dv 1

dx  EL,

1

3 1 2
EX ) +§MBX i|,

[VB (Lx _ %xz) + MBX} .
For x = L, the displacement and rotation of end B are obtained as,

VgL?  MgL? 46 VL2 N MgL
= an = — .
3EI, ' 2EI, BT EI, ' EL

op

using I, = I, the above relationships in matrix form become,

L L?

&1 [u] |[3EL  2EI|[y,
93 - u2 - L2 L MB ’

2FI El
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Fig. 1.8 Two sets of end a b
forces and displacements 3 2 )

for a beam element

or

fm

L? {ZL 3 ] (1.9)

T6EI| 3 6/L

Using a similar method, for a simply supported beam with two moments acting
at the two ends, we have:

L L
3BI  6EI| L -
£ = |2 b (1.10)
L L 6EI [ -1 2
GEI  3EI

If the axial forces are also included as member forces, then r, = [Ny Vg Mg]
and rl, = [Ny M4 Mg], as shown in Fig. 1.8. The above matrices become:

L - - L -
— — 0 0
EA 0 0 EA
0 LF L2 L L
fn = 381 2p1| and fn = 3EI 6EI (1.11)
0 L L L L
2EI  EI ~ 6EI  3EI
The corresponding stiffness matrices are:
“EA - -
— 0 0 EA 0 0
L L
12EI 6EI 4EI 2EI
kp=| O F 2| amdknp=|0 T T (1.12)
6El  4EI 2EI 4EI
0 -— — 0 — —
L L L L
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Fig. 1.9 Force- a b
displacement relationships.
(a) A non-linear
relationship. (b) A linear
relationship

It should be mentioned that both flexibility and stiffness matrices are symmetric,
on account of the Maxwell-Betti reciprocal work theorem proven in the next
section. More general methods for the derivation of member flexibility and stiffness
matrices will be studied in Chaps. 2, 3, 6, and 7.

1.3 Important Structural Theorems

1.3.1 Work and Energy

The work, dW, of a force r acting through a change in displacement du in the
direction of that force is the product rdu.

Consider a general load—displacement relationship as shown in Fig. 1.9a. The
area under this curve represents the work done, denoted by W. The area above this
curve is the complementary work designated by W*.

For a total displacement of uy, the total work is given by,

ug
W = J rdu, (1.13)
0

and the complementary work is:

I
AN J udr. (1.14)
0

For a linear case, as shown in Fig. 1.9b, we have:
W =W*. (1.15)

In this book, it is assumed that the loads are applied to a structure in a gradual
manner, and attention is limited to linear behaviour. Thus the load—displacement
relationship is as shown in Fig. 1.9b, and the relation can be expressed as,


http://dx.doi.org/10.1007/978-3-319-02964-1_2
http://dx.doi.org/10.1007/978-3-319-02964-1_3
http://dx.doi.org/10.1007/978-3-319-02964-1_6
http://dx.doi.org/10.1007/978-3-319-02964-1_7
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Fig. 1.10 Stress-strain a b
relationships. (a) A general S
stress-strain relationship. G
(b) Linear stress—strain
relationship U*
U* ﬁ
U
O € 0 €
r =ku, (1.16)

where K is a constant. The work in Fig. 1.9b can be written as:

1
W = Er,—ui. (117)

Forces and displacements at a point are both represented by vectors, and their
work is represented as a dot product. In matrix notations, however, the work can be
written as:

1
W = —rlu (1.18)
2
Using Eq. 1.3,
W:lu‘ktu:lutku (1.19)
2 2 ' '
Similarly, W* can be calculated as:
* 1 t
wr = irfr. (1.20)

Consider the stress—strain relationship as illustrated in Fig. 1.10a. The area under
this curve represents the density of the strain energy, and when integrated over the
volume of the member (or structure) results in the strain energy U. The area to the
left of the stress—strain curve is the density of the complementary strain energy, and
by integration over the member (or structure) the complementary energy U* is
obtained. For the linear stress—strain relationship as shown in Fig. 1.10b, U = U*.

Since the work done by external actions on an elastic system is equal to the strain
energy stored internally in the system (work-energy law), therefore:

W = Uand W* = U*. (1.21)
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1.3.2 Castigliano’s Theorems

Consider the force-displacement curve in Fig. 1.9a, and suppose an imaginary
displacement du; is imposed on the system. The work done, 8W, under the action
of r; in moving through du; is equal to:

oW = 1‘161.11. (122)

Using Eq. 1.21, and taking limit, leads to the first theorem of Castigliano as,
=— = 1, (1.23)

which can be stated as follows [3]:

The partial derivative of the strain energy with respect to a displacement, is equal to the
force applied at the point and along the considered displacement.

Similarly, if the system is subjected to an imaginary force Or; along the displace-
ment u;, then the complementary work done SW* is equal to,
SW* = uiSri = SU*, (124>

and in the limit, the second theorem of Castigliano is obtained as:

ou*

The partial derivative of the complementary strain energy with respect to a force is equal to
the displacement at the point where the force is applied and directed along the action of the
force.

For the linear case, U* = U and therefore Eq. 1.25 becomes as:
ou
— =u;. 1.26
o, ¢ (1.26)

1.3.3 Principle of Virtual Work

The principle of virtual work is a very powerful means for deducing the conditions
of compatibility and equilibrium [4], and it can be stated as follows:

The work done by a set of external forces P acting on a structure, in moving through the
associated displacements v, is equal to the work done by some other set of forces R, which
is statically equivalent to P, moving through associated displacements u, which is compat-
ible with v. Associated forces and displacements have the same lines of actions.
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Fig. 1.11 A planar truss

Fig. 1.12 Three different systems capable of supporting the dummy load

Using a statically admissible set of forces and the work equation, the compati-
bility relations between the deformations and displacements can be derived. Alter-
natively, employing a compatible set of displacements and the work equation, one
obtains the equations of equilibrium between the forces. These approaches are
elegant and practical.

Dummy Load Theorem. This theorem can be used to determine the conditions of
compatibility. Suppose that the deformed shape of each member of a structure is
known, then it is possible to find the deflection of the structure at any point by using
the principle of virtual work. For this purpose a dummy load (usually unit load) is
applied at the point and in the direction of required displacement, which is why it is
also known as the unit load method. The dummy load theorem can be stated as:

applied actual displacement
dummy » X ¢ of structure where external
load dummy load is applied

internal forces actual
= ¢ statically equivalent to X ¢ deformation
the applied dummy load of elements
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Fig. 1.13 Internal forces 11 12 13 14
equivalent to unit ’ o
dummy load
3 6
L 4 5 7 |8

It should be noted that the dummy load theorem is a condition on the geometry
of the structure. In fact, once the deformations of elements are known, one can draw
the deflected shape of the structure, and the results obtained for the deflections will
agree with those of the dummy load theorem.

Example 1. Consider a truss as shown in Fig. 1.11. It is desired to measure the
vertical deflection at node C, when the structure is subjected to a certain loading.

A unit load is applied at C, and a set of internal forces statically equivalent to the
unit load is chosen. However, for such equivalent internal forces, there exists a wide
choice of systems, since there are several numbers of structural possibilities which
can sustain the load at C. Three examples of such systems are shown in
Fig. 1.12a—c.

Obviously, system (a) will need more calculation because of being statically
indeterminate.

System (c) is used here, since it has a smaller number of members than (b), and
symmetry is also preserved. Internal forces of the members in this system shown in
Fig. 1.13 are:

r={-1/2v2/2-1/23/2/2/2/2-1/23/2/2-1/21/21/2-1/2-1 -1 -1 /2}t.

Measuring the elongation in members of this system containing 14 bars, and
using the dummy-load theorem, results in:

1 1 1 V2 1 V2 V21
E (O)+(1)(VC)+(5)(0):VC:7561+7€2+7§e3+734+7657536

+ﬁ 1 +1 +1 1 1
267 268 269 2610 2611 €2 —¢C13 2614-

Dummy Displacement Theorem. This method is usually used to find the applied
external forces when the internal forces are known. In order to obtain the external
force at a particular point, one subjects the structure to a unit displacement at that
point in the direction of the force and chooses any set of deformations compatible
with the unit displacement. Then from the principle of work, the dummy displace-
ment theorem can be stated as:
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a b

C C
P

Fig. 1.14 Element deformations equivalent to unit dummy displacement

dummy displacement applied actual
in the direction of unknowns X < external
actual external forces forces
deformation of elements actual
= < compatible with X ¢ internal
dummy displacement forces

This method is also known as the unit displacement method.

Example 2. For the truss studied in Example 1, it is required to find the magnitude
of P by measuring the internal forces in the members of the truss.

Again, many systems can be chosen; two of which are illustrated in Fig. 1.14a, b.
In these systems, the internal forces to be measured are shown in bold lines. Due to
the symmetry, in both cases only two measurements are needed. Applying the
dummy-displacement theorem to system (a) yields:

V2

Pd = rd% +r2d+r1d\/7§ = d(\/ir1 +r2)‘

1.3.4 Contragradient Principle

Consider two statically equivalent force systems R and P, related by a linear
transformation as:

R = BP, (1.27)

R is considered to have more entries than P, i.e. there are solutions to R for
which P is zero. Associated with R and P let there be two sets of displacements
v and u, respectively. These are compatible displacements and therefore the work
done in each system is the same, i.e.

P'u =R'v. (1.28)

From Eq. 1.27,
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R' =P'B". (1.29)
Therefore:
P'u = P'B'v. (1.30)
Since P is arbitrary, hence:
u=B'v. (1.31)

Equations 1.27 and 1.31 will be used in the formulation of the force method.

In a general structure, if member forces R are related to external nodal loads P,
similar to Eq. 1.27, then according to the contragradient principle [4], the member
distortions v and nodal displacement u will be related by an equation similar to
Eq. 1.31.

If two displacement systems u and v are related by a linear transformation as,

v = Cu, (1.32)

and R and P are statically equivalent forces, then equating the work done for
compatible displacements results in:

P'u = R'v = R'Cu. (1.33)
Again u is arbitrary and:
P=CR. (1.34)
Equations 1.32 and 1.34 are employed in the formulation of the displacement
method.
For a statically determinate structure,
P=B 'R, (1.35)
and therefore:

Cc'=B". (1.36)

1.3.5 Reciprocal Work Theorem

Consider a structure as shown in Fig. 1.15a subjected to a set of loads, {Py, P,, ..,
P..}. The same structure is considered under the action of a second set of loads {Q,
Qy, ..., Qu}, Fig. 1.15b. The reciprocal work theorem can be stated as:
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Fig. 1.15 A structure subjected to two sets of loads

The work done by {Py, P,, ..., P,,} through displacements {9, &, ..., 8,,} produced by
{Q1, Q2 ..., Qu}, is the same as the work done by {Qq, Q,, ..., Q,} through displacements
{Ay, Ay, ..., Ay} produced by {Py, Po, ..., P, }; ie.

m n
Z Pid; = Z Qj4;. (1.37)
i1 =

When single loads P and Q are considered, Eq. 1.37 reduces to,
PS; = QA;, (1.38)
and for the case where P = Q, one obtains:
& = A;. (1.39)

Equation 1.39 is known as Betti’s law, and can be stated as follows:

The deflection at point i due to a load at point j is the same as deflection at j when the same

load is applied at i.

The proof of the reciprocal work theorem is constructed by equating the strain
energy of the structure in two different loading sequences [5]. In the first sequence,
both sets of loads are applied simultaneously, while in the second sequence, loads
{Pq, Py, ..., P} are applied first, followed by the application of the second set of
loads {Qq, Qa, ..., Qu}.

1.4 Basic Concepts and Definitions of Graph Theory

Some of the uses of the theory of graphs in the context of civil engineering are as
follows: A graph can be a model of a structure, a hydraulic network, a traffic
network, a transportation system, a construction system, or a resource allocation
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system, for example. In this book, the theory of graphs is used as the model of a
skeletal structure, and it is employed also as a way of transforming the connectivity
properties of finite element meshes to those of graphs. Many such graphs are
previously defined in [6], and employed throughout the combinatorial optimisations
performed for optimal analysis of skeletal structures and finite element models.
This part of the chapter will also enable the readers to develop their own ideas and
methods in the light of the principles of graph theory. For further definitions and
proofs, the reader may refer to Harary [7], Berge [8], and West [9].

1.4.1 Basic Definitions

The performance of a structure depends not only on the characteristics of its
components, but also on their relative location. On the other hand, in a structure,
if the properties of one member are altered, the overall behaviour may be changed.
This indicates that the performance of a structure depends on the detailed charac-
teristics of its members. On the other hand, if the location of a member is altered,
the properties of the structure may again be different. Therefore, the connectivity
(topology) of the structure influences the performance of the whole structure and is
as important as the mechanical properties of its members. Hence, it is important to
represent a structure so that its topology can be understood clearly. The graph
model of a structure provides a powerful means for this purpose.

1.4.2 Definition of a Graph

A graph S consists of a non-empty set N(S) of elements called nodes (vertices or
points) and a set M(S) of elements called members (edges or arcs), together with a
relation of incidence which associates each member with a pair of nodes, called
its ends.

Two or more members joining the same pair of nodes are collectively known as a
multiple member, and a member joining a node to itself is called a loop. A graph
with no loops and multiple members is called a simple graph. If N(S) and M(S) are
countable sets, then the corresponding graph S is finite. In this book, only finite
graphs are needed, which are referred to as graphs.

The above definitions correspond to abstract graphs; however, a graph may be
visualised as a set of points connected by line segments in Euclidean space; the
nodes of a graph are identified with points, and its members are identified as line
segments without their end points. Such a configuration is known as a fopological
graph. These definitions are illustrated in Fig. 1.16.
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Fig. 1.16 Simple and a b
non-simple graphs. (a) A
simple graph. (b) A graph
with loop and multiple
members

Fig. 1.17 A graph, two of a

its subgraphs, their union,

intersection and ring sum. X>l < E
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1.4.3 Adjacency and Incidence

Two nodes of a graph are called adjacent if these nodes are the end nodes of a
member. A member is called incident with a node if this node is an end node of the
member. Two members are called incident if they have a common end node. The
degree (valency) of a node n; of a graph, denoted by deg(n;), is the number of
members incident with that node. Since each member has two end nodes, the sum of
node-degrees of a graph is twice the number of its members.

1.4.4 Graph Operations

A subgraph S; of S is a graph for which N(S;) C N(S) and M(S;) € M(S), and each
member of S; has the same ends as in S.

The union of subgraphs S;, S,, ..., Sg of S, denoted by Sk —

T

Si:SIUSZU

U Sy, is a subgraph of S with N(8) = 0 N(S;) and M(s") = U M(S,). The
intersection of two subgraphs S; and S; is similarly defined using intersections of
node-sets and member-sets of the two subgraphs. The intersection of two subgraphs
does not need to consist only of nodes, but it is usually considered to do so in the
substructuring technique of structural analysis. The ring sum of two subgraphs S; €9
S; is a subgraph that contains the nodes and members of S; and S; except those
elements common to S; and S;. These definitions are illustrated in Fig. 1.17.

Two graphs S and K are called homeomorphic if one can obtain K from S, by
suppressing or inserting nodes of degree 2 in the members.
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Fig. 1.18 A walk, a trail a

and a path in S. (a) A walk n4 4 Ng

win S. (b) A trail t in S.
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1.4.5 Walks, Trails and Paths

A walk w of S is a finite sequence w = {ng, my, ny,. .., my,, n,} whose terms are
alternately nodes n; and members m; of S for 1 <1i < p, and n;_; and n; are the two
ends of m;. A trail tin S is a walk in which no member of S appears more than once.
A path P is a trail in which no node appears more than once. The length of a path P;,
denoted by L(P;), is taken as the number of its members. P; is called the shortest
path between the two nodes ng and ny, if for any other path P; between these nodes,
L(P;) < L(Py). The distance between two nodes of a graph is defined as the number
of the members of a shortest path between these nodes.
As an example, in Fig. 1.18,

w=(n;, ms, ng, My, N5, My, Np, Mp, N3, M7, Ny, My, Ns)

is a walk between n; and ns in which member m,4 and nodes n4 and ns are repeated
twice.

t = (nh m3, N4, My, N5, Mg, Ny, mp, Nz, my, n4>
is a trail between n; and n4 in which node ns is repeated twice.
P = (n;, m3,n4, my, ns, ms,n3)

is a path of length 3 in which no node and no member is repeated.

The path (n;, mg, ns, ms, n3) is a shortest path of length 2 between the two nodes
n; and nz, where the length of each member is taken as unity.

Two nodes n; and n; are said to be connected in S if there exists a path between
these nodes. A graph S is called connected if all pairs of its nodes are connected. A
component of a graph S is a maximal connected subgraph, i.e. it is not a subgraph of
any other connected subgraph of S.
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Fig. 1.19 Cycles of S. a b
(a) A cycle of S.
(b) A hinged cycle of S

)

Fig. 1.21 Different trees, a cotree and a forest of S. (a) A graph S. (b) A tree of S. (¢) A spanning
tree of S. (d) An SRT rooted from ny. (e) The cotree of (¢). (f) A forest with two trees

1.4.6 Cycles and Cutsets

A cycle is a path (ng, my, ny, . . ., mp, n,) for whichng = n,and p > 1; i.e. acycle is
a closed path. Similarly, a closed trail (hinged cycle) and a closed walk can be
defined, Fig. 1.19.

A cutset is a collection of members whose removal from the graph increases the
number of its components. If a cutset results in two disjoint subgraphs S; and S,,
then it is called a prime cutset. Notice that no proper subsets of a cutset have this
property. A link is a member which has its ends in S; and S,. Each S; and S, may or
may not be connected. If both are connected, the cutset is called prime. If one of S;
or S, consists of a single node, the cutset is called a cocycle. These definitions are
illustrated in Fig. 1.20.
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1.4.7 Trees, Spanning Trees and Shortest Route Trees

A tree T of S is a connected subgraph of S which contains no cycle. A set of trees of
S forms a forest. Obviously a forest with k trees contains N(S) — k members. If a
tree contains all the nodes of S, it is called a spanning tree of S. Henceforth, for
simplicity it will be referred to as a tree.

A shortest route tree (SRT) rooted at a specified node ng of S, is a tree for which
the distance between every node n; of T and ng is a minimum. An SRT of a graph
can be generated by the following simple algorithm:

Algorithm. Label the selected root ng as “0” and the adjacent nodes as “1”. Record
the members incident to “0” as tree members. Repeat the process of labelling with
“2” the unnumbered ends of all the members incident with nodes labelled as “1”,
again recording the tree members. This process terminates when each node of S is
labelled and all the tree members are recorded. This algorithm has many applica-
tions in engineering, and it is called a breadth-first-search algorithm.

A graph is called acyclic if it has no cycle. A tree is a connected acyclic graph.
Any graph without cycles is a forest, thus the components of a forest are trees.

The above definitions are illustrated in Fig. 1.21.

It is easy to prove that, for a tree T,

M(T) = N(T) — 1, (1.40)

where M(T) and N(T) are the numbers of members and nodes of T, respectively.

The complement of T in S is called a cotree, denoted by T*. The members of T
are known as branches and those of T* are called chords. For a connected graph S,
the number of chords is given by:

M(T*) = M(S) — M(T). (1.41)

Since N(T) = N(S), hence,
M(T*) =M(S) — N(S) + 1, (1.42)
where M(S) and N(S) are the numbers of members and nodes of S, respectively.

Notice that for a set and its cardinality the same notation is used and the difference
should be obvious from the context.

1.4.8 Different Types of Graphs

In order to simplify the study of the properties of graphs, different types of graphs
have been defined. Some important ones are as follows:
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Fig. 1.22 Wheel graph W. (a) Star graph S¢. (b) Cycle graph Cs. (¢) Wheel graph W
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Fig. 1.23 Five complete graphs
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Fig. 1.24 Two bipartite graphs. (a) A bipartite graph. (b)A complete bipartite graph K; 4

Fig. 1.25 A simple graph and its line graph. (a) A graph S. (b) The line graph L(S) of S

A null graph is a graph that contains no members. Thus, Ny is a graph containing k
isolated nodes.

A cycle graph is a graph consisting of a single cycle. Therefore, Cy is a polygon
with k members.

A path graph is a graph consisting of a single path. Hence, Py is a path with k nodes
and (k—1) members.
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A wheel graph Wy is defined as the union of a star graph with k—1 members and a
cycle graph Cy_;, connected as shown in Fig. 1.22, for k = 6. Alternatively, a
wheel graph Wy can be obtained from the cycle graph Cy_; by adding a node O
and members (spokes) joining O to each node of Cy_;.

A complete graph is a graph in which every two distinct nodes are connected by
exactly one member, Fig. 1.23. A complete graph with N nodes is denoted by
Ky. It is easy to prove that a complete graph with N nodes has N(N—1)/2
members.

A graph is called bipartite if the corresponding node set can be split into two sets
N; and N; in such a way that each member of S joins a node of N; to a node of Nj.
This graph is denoted by B(S) = (N;, M, N,). A complete bipartite graph is a
bipartite graph in which each node N; is joined to each node of N, by exactly one
member. If the numbers of nodes in N; and N, are denoted by r and s, respectively,
then a complete bipartite graph is denoted by K,,. Examples of bipartite and
complete bipartite graphs are shown in Fig. 1.24.

A graph S is called regular if all of its nodes have the same degree. If this degree
is k, then S is k-regular graph. As an example, a triangle graph is 2-regular and a
cubic graph is 3-regular.

Consider the set M of members of a graph S as a family of 2-node subsets of N
(S). The line graph L(S) of S has its vertices in a one-to-one correspondence with
members of S, and two vertices are connected by an edge if the corresponding
members in S are incident. Thus the vertices of L(S) are the members of S, with two
vertices of L(S) being adjacent when the corresponding members of S are incident.
As an example, the line graph of Fig. 1.25a is illustrated in Fig. 1.25b.

For the original graph S, the terms nodes and members are used, and for the line
graph L(S), the terms vertices and edges are employed. In this book, many new
graphs are defined and employed for transforming the connectivity properties of the
original models to those of the induced new graphs.

1.5 Vector Spaces Associated with a Graph

A vector space can be associated with a graph by defining a vector, the field and the
binary operations as follows:

Any subset of the M(S) members of a graph S can be represented by a vector
x whose M(S) components are elements of the field of integer modulo 2, where
component x; = 1 when the ith member is an element of the subset, and x; = 0
otherwise. The sum of two subset vectors x and y is a vector z with entries defined
by z; = x; + y;, representing the symmetric difference of the original subsets. The
scalar product of x and y defined by Zx;y; is O or 1 according as the original subsets
have an even or an odd number of members in common. Although this vector space
can be constructed over an arbitrary field, for simplicity the field of integer modulo
2 is considered, in which 1 + 1 = 0.
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As an example, consider x = {0, 0,0, 1, 1, 1, 0}" and y=1{0,0,1,1,1,0,0}"
representing two subgraphs of S. Then, their symmetric difference is obtained as
z=1{0,0,1,0,0, 1, 0}, and the scalar product Zx;y; = 0 (mod 2), since these
subgraphs have two members in common.

Two important subspaces of the above vector space of a graph S are the cycle
subspace and cutset subspace, known as the cycle space and the cutset space of S.

1.5.1 Cycle Space

Let a cycle set of members of a graph be defined as a set of members which form a
cycle or form several cycles having no common member, but perhaps common
nodes. The null set is also defined as a cycle set. A vector representing a cycle set is
called a cycle set vector. It can be shown that the sum of two cycle set vectors of a
graph is also a cycle set vector. Thus, the cycle set vectors of a graph form a vector
space over the field of integer modulo 2. The dimension of a cycle space is given by:

nullity (S) = v(S) = by (S) = M(S) — N(S) + by(S), (1.43)

where b(S) and by(S) are the first and zero Betti numbers of S, respectively. As an
example, the nullity of the graph S in Fig. 1.16aisv(S) =9 — 6 + 1 = 4.

1.5.2 Cutset Space

Consider a cutset vector similar to that of a cycle vector. Let the null set be also
defined as a cutset. It can be shown that the sum of two cutset vectors of a graph is
also a cutset vector. Therefore the cutset vectors of a graph form a vector space, the
dimension of which is given by:

rank (S) = p(S) = N(S) — b(S). (1.44)

As an example, the rank of S in Fig. 1.16ais p(S) =6 — 1 = 5.

1.5.3 Orthogonality Property

Two vectors are called orthogonal if their scalar product is zero. It can be shown
that a vector is a cycle set (cutset) vector, if and only if it is orthogonal to every
vector of a cutset (cycle set) basis. Since the cycle set and cutset spaces of a graph S
containing M(S) members are both subspaces of the M(S)-dimensional space of all
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vectors which represent subsets of the members, therefore the cycle set and cutset
spaces are orthogonal components of each other.

1.5.4 Fundamental Cycle Bases

A maximal set of independent cycles of a graph is known as its cycle basis. The
cardinality of a cycle basis is the same as the first Betti number b;(S). A special
basis known as a fundamental cycle basis can easily be constructed corresponding
to a tree T of S. In a connected S, a chord of T together with T contains a cycle
known as a fundamental cycle of S. Moreover, the fundamental cycles obtained by
adding the chords to T, one at a time, are independent, because each cycle has a
member which is not in the others. Also, every cycle C; depends on the set of
fundamental cycles obtained by the above process, for C; is the symmetric differ-
ence of the cycles determined by the chords of T which lie in C;. Thus the cycle rank
(cyclomatic number, first Betti number, nullity) of graph S, which is the number of
cycles in a basis of the cycle space of S, is given by,

b (S) =M(S) —N(S) + 1, (1.45)
and if S contains by(S) components, then:
by (S) = M(S) — N(S) + bo(S). (1.46)

As an example, the selected tree and three fundamental cycles of S are illustrated
in Fig. 1.26.

1.5.5 Fundamental Cutset Bases

A basis can be constructed for the cutset space of a graph S. Consider the tree T and
its cotree T*. The subgraph of S consisting of T* and any member of T (branch)
contains exactly one cutset known as a fundamental cutset. The set of cutsets
obtained by adding branches of T to T*, one at a time, forms a basis for the cutset
space of S, known as a fundamental cutset basis of S. The cutset rank (rank of S) is
the number of cutsets in a basis for the cutset space of S, and it can be obtained by a
similar reasoning to that of the cycle basis as,

p(S) =N(S) -1, (1.47)

and for a graph with by(S) components:
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Fig. 1.26 A graph S and a fundamental cycle basis of S
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Fig. 1.27 A graph S and a fundamental cutset basis of S. (a) A graph S. (b) A tree T of S.
(¢) Cotree T* of T

p(S) = N(S) — by(S). (1.48)

A graph S and a fundamental cutset basis of S are shown in Fig. 1.27.

1.6 Matrices Associated with a Graph

Matrices play a dominant role in the theory of graphs and especially in applications
to structural analysis. Some of these matrices conveniently describe the connectiv-
ity properties of a graph and others provide useful information about the patterns of
the structural matrices, and some reveal additional information about transforma-
tions such as those of equilibrium and compatibility equations.

In this section various matrices are studied which reflect the properties of the
corresponding graphs. For simplicity, all graphs are assumed to be connected, since
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Fig. 1.28 A graph S

the generalisation to non-connected graphs is trivial and consists of considering the
direct sum of the matrices for their components.

1.6.1 Matrix Representation of a Graph

A graph can be represented in various forms. Some of these representations are of
theoretical importance, others are useful from the programming point of view when
applied to realistic problems. In this section six different representations of a graph
are described.

Node Adjacency Matrix. Let S be a graph with N nodes. The adjacency matrix
A is an N x N matrix in which the entry in row i and column j is 1 if node n; is
adjacent to nj, and is O otherwise. This matrix is symmetric, and the row sums of
A are the degrees of the nodes of S.

The adjacency matrix of the graph S, shown in Fig. 1.28,is a 5 x 5 matrix as:

It can be noted that A is a symmetric matrix of trace zero. The (i, j)th entry of A*
shows the number of walks of length 2 with n; and n; as end nodes. Similarly, the
entry in the (i, j) position of A* is equal to the number of walks of length k with n;
and n; as end nodes. The polynomial,

£(2) = det (IA — A), (1.49)

is called the characteristic polynomial of S. The collection of N(S) eigenvalues of
A is known as the spectrum of S. Since A is symmetric, the spectrum of S consists
of N(S) real numbers. The sum of eigenvalues of A is equal to zero.

Node-Member Incidence Matrix. Let S be a graph with M members and N
nodes. The node-member incidence matrix B is an N x M matrix in which the
entry in row i and column j is 1 if node n; is incident with member m;, and is
0 otherwise. As an example, the node-member incidence matrix of the graph in
Fig. 1.28 is a 5 x 7 matrix of the form:
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1101000
1010100

B=|0 110010 (1.50)
0001101
0000011

Obviously, the pattern of an incidence matrix depends on the particular way in
which its nodes and members are labelled. One incidence matrix can be obtained
from another by simply interchanging rows (corresponding to re-labelling the
nodes) and columns (corresponding to re-labelling the members).

The incidence matrix B and the adjacency matrix A of a graph S are related by,

BB =A+V, (1.51)
where V is a diagonal matrix of order N(S) whose typical entry v; is the valency of

the node n; of S for i =1, ..., N(S). For the example of Fig. 1.28, Eq. 1.51
becomes:

01110 3
10110 3

BB =|110 0 1|+ 3 (1.52)
1100 1 3
00110 2

The rows of B are dependent, and one row can arbitrarily be deleted to ensure the
independence of the rest of the rows. The node corresponding to the deleted row is
called a datum (reference) node. The matrix obtained after deleting a dependent
row is called an incidence matrix of S, and is denoted by B.

Although A and B are of great theoretical value, the storage requirements for
these matrices are high and proportional to N x N and M x N, respectively. In
fact, a large number of unnecessary zeros is stored in these matrices. In practice,
one can use different approaches to reduce the storage required, some of which are
described in the following.

Member List: This type of representation is a common approach in structural
mechanics. A member list consists of two rows (or columns) and M columns
(or rows). Each column (or row) contains the labels of the two end nodes of each
member, in which members are arranged sequentially. For example, the member
list of S in Fig. 1.28 is:
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m; mp ms my ImMs Mg My
1 1 2 1 2 3 4 .
ML — . (1.53)
2 3 3 4 4 5 5
It should be noted that a member list can also represent orientations on members.
The storage required for this representation is 2 x M. Some engineers prefer to add
a third row containing the member’s labels, for easy addressing. In this case, the
storage is increased to 3 x M.
A different way of preparing a member list is to use a vector containing the end
nodes of members sequentially; e.g. for the previous example this vector becomes:

(1,2;1,3;2,3;1,4;2,4;3,5;4,5). (1.54)
This is a compact description of a graph; however, it is impractical because of
the extra search required for its use in various algorithms.

Adjacency List. This list consists of N rows and D columns, where D is the
maximum degree of the nodes of S. The ith row contains the labels of the nodes
adjacent to node i of S. For the graph S shown in Fig. 1.28, the adjacency list is:

n (2 3 4
n|l 3 4
AL=n; |1 2 5 (1.55)
N4 1 2 5
N5 3 4 NxD

The storage needed for an adjacency list is N x D.

Compact Adjacency List. In this list, the rows of AL are continually arranged in a
row vector R, and an additional vector of pointers P is considered. For example, the
compact adjacency list of Fig. 1.28 can be written as:

R=(2,3,4,1,3,4,1,2,5,1,2,5,3,4), (1.56)
P=(1,4,7,10,13,15). '

P is a vector (py, p2, P3, - - -) Which helps to list the nodes adjacent to each node.
For node n;, one should start reading R at entry p; and finish at p;,;—1.

An additional restriction can be put on R, by ordering the nodes adjacent to each
node n; in ascending order of their degrees. This ordering can be of some advantage,
an example of which is nodal ordering for bandwidth optimisation. The storage
required for this list is 2M + N + 1.
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1.6.2 Cycle Bases Matrices

The cycle-member incidence matrix C of a graph S, has a row for each cycle or
hinged cycle and a column for each member. An entry c;; of C is 1 if cycle C;
contains member m;, and it is O otherwise. In contrast to the node adjacency and
node-member incidence matrices, the cycle-member incidence matrix does not
determine a graph up to isomorphism; i.e. two totally different graphs may have
the same cycle-member incidence matrix.

For a graph S, there exist 2018 g cycles or hinged cycles. Thus C is a
(2b‘(s> — 1) x M matrix. However, one does not need all the cycles of S, and the
elements of a cycle basis are sufficient. For a cycle basis, a cycle-member
incidence matrix becomes a b((S) x M matrix, denoted by C, known as the
cycle basis incidence matrix of S. As an example, matrix C for the graph
shown in Fig. 1.28, for the following cycle basis,

Ci = (m;, mp, m;3)
C; = (m;, my, ms)

C; = (mp, my, mg, my)

is given by:
C[{1 1100 0O
C=C|1 0 01 1 00 (1.57)
G|0O1 01 0 1 1

The cycle adjacency matrix D is a b;(S) x b(S) matrix, each entry d;; of which
is 1 if C; and C; have at least one member in common and it is O otherwise. This
matrix is related to the cycle-member incidence matrix by the following
relationship,

CC'=D+W, (1.58)
where W is a diagonal matrix with wy; being the length of the ith cycle, and its trace

being equal to the total length of the cycles of the basis.
For the above example:

01 1 300
cC'=|10 1|+]0 3 0. (1.59)
110 00 3

An important theorem can now be stated which is based on the orthogonality
property studied in Sect. 1.5.3.
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Theorem. Let S have an incidence matrix B and a cycle basis incidence matrix C.
Then:

CB' = 0(mod 2). (1.60)

A simple proof of this theorem can be found in Kaveh [10]. Notice that Eq. 1.60
holds due to the orthogonality property discussed in Sect. 1.5.3. In fact, the above
relation holds even if the cutsets or cycles do not form bases, or the matrices contain
additional cutsets and/or cycle vectors.

1.6.3 Special Patterns for Fundamental Cycle Bases

Matrix C for a fundamental cycle basis, with special labels for its tree members and
chords, finds a particular pattern. Let S have a tree T whose members are M
(T) = (my, my, ..., mp) and a cotree for which M(T*) = (mp41, Mpio, - . ., Myycs))-
Then there is a unique fundamental cycle C;in S — M(T*) + m;, p + 1 <1 < M(S),
and this set of cycles forms a basis for the cycle space of S. As an example, for the
graph S of Fig. 1.27a whose members are labelled as shown in Fig. 1.29, the
fundamental cycle basis consists of,

Cy = (m;, my, ms, mg),
Cy = (my, my, my, ms, mg, mo),

C; = (m3, mp, m;, my, ms, M, Mmy, M),

given by:
C|f1 00 1 1 0 01 0O
C=C {1 1 01 1 1 00 1 0| =]|[Cy|IL. (1.61)
G|l 11111 1|0 0 1 '
M(T) M(T*)
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1.6.4 Cutset Bases Matrices

The cutset-member incidence matrixC" for a graph S, has a row for each cutset of S
and a column for each member. An entry ¢;; of C is 1 if cutset C; contains member
m;, and it is O otherwise. This matrix, like C, does not determine a graph completely.

Independent rows of é* for a cutset basis, denoted by C*, form a matrix known
as a cutset basis incidence matrix, which is an(S) x M matrix, n(S) being the rank
of graph S. As an example, C* for the cutsets of Fig. 1.27 with members labelled as
in Fig. 1.30a, is given below:

c* (1.62)

I
S = O OO OO
SO OO~ OO
SO OO OO
SO = OO OO
—_ O O OO OO
S OO~ O OO
S OO OO~ O
——_—_0 O OO
— === = OO
— e e e e e

The cutset adjacency matrix D* is a n(S) x n(S) matrix defined analogously to
cycle adjacency matrix D.

1.6.5 Special Patterns for Fundamental Cutset Bases

For a fundamental cutset basis with appropriate labelling of the members in T and
T*, as illustrated in Fig. 1.30b, if the cutsets are taken in the order of their
generators (tree members), the matrix C* will have a particular pattern as:
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1 0 0 000 01 1 1
01 0 0 0 0 0|0 1 1
0O 01 0 0 0 0{0 0 1
C;=1000 100 ot 1 1]|=[1c). (1.63)
0O 0 0 01 0 0|1 1 1
00 0 0 0 1 0j0 1 1
000000 1/0 0 1]
From the orthogonality condition, CoCF' = 0; i.e.
) |
[Cr I]{C*,]O. (1.64)
Hence Cr + C}' =0(mod 2), and :
Cr=C:. (1.65)

Therefore, for a graph having C,, one can construct Cj and vice versa.

There exists a very simple basis for the cutset space of a graph which consists of
N—1 cocycles of S. As an example, for the graph of Fig. 1.28, considering ns as a
datum node, we have,

Cc* — , (1.66)

—_ o O
_— o = O
oS- O O
- O O O

1 0
0 1
1 1
0 0

O O = =

which is the same as the incidence matrix B of S. The simplicity of the displacement
method of structural analysis is due to the existence of such a simple basis.

1.7 Directed Graphs and Their Matrices

An oriented or directed graph is a graph in which each member is assigned an
orientation. A member is oriented from its initial node (fail) to its final node (head).
The initial node is said to be positively incident on the member, and the final node
negatively incident, as shown in Fig. 1.31a.

The choice of orientation of members of a graph is arbitrary; however, once it is
chosen, it must be retained. Cycles and cutsets can also be oriented as shown in
Fig. 1.31b.

As an example, m, is positively oriented in cycle C;, and m; is negatively
oriented in cutset C;*.

All the matrices B, B, C and C* can be defined as before, with the difference of
having +1, —1 and O as entries, according to whether the member is positively,
negatively or zero incident with a cutset or a cycle.
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Fig. 1.31 An oriented member, a directed graph, and a directed tree (with chords shown in dashed
lines)

As an example, for graph S in Fig. 1.31b, the matrix B with n; as the datum node
is formed:

ml[=1 0 1 0 1 0 0
w0 -1 0 0 -1 0 0

B=wlo 0o -1 0o o -1 1 (1.67)
|0 0 0 -1 0 0 -I

Consider a tree as shown in continuous lines, Fig. 1.31c. When the directions of
the cycles are taken as those of their corresponding chords (dashed lines), the
fundamental cycle basis incidence matrix can be written as:

G|l -1 0 O
C=C|1 0 1 O

100
01 0f. (1.68)
Ci|1 -1 1 —1/0 0 1

It should be noted that the tree members are numbered first, followed by the
chords of the cycles in the same sequence as their generation.
Obviously,

BC' = CB' = 0(mod 2), (1.69)

with a proof similar to that of the non-oriented case.
A cuset basis incidence matrix is similarly obtained as:

-1

1| (1.70)

SO~ OO

where the direction of a cutset is taken as the orientation of its generator (the
corresponding tree member).
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It can easily be proven that:
Cr=-C". (1.71)
For a directed graph, Eq. 1.51 becomes:
BB'=A-V, (1.72)
Similarly, Eq. 1.59 for the directed case becomes:
CC'=D-W. (1.73)
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Chapter 2
Optimal Force Method: Analysis of Skeletal
Structures

2.1 Introduction

This chapter starts with presenting simple and general methods for calculating the
degree of static indeterminacy of different types of skeletal structures, such as rigid-
jointed planar and space frames, pin-jointed planar trusses and ball-jointed space
trusses.

Then the progress made in the force method of structural analysis in recent years
is presented, and the state of art is summarized. Efficient methods are developed
leading to highly sparse flexibility matrices. The methods are mainly developed for
frame structures, however, extensions are made to general skeletal structures.

The force method of structural analysis, in which the member forces are used as
unknowns, is appealing to engineers, since the properties of members of a structure
most often depend on the member forces rather than joint displacements. This
method was used extensively until 1960. After this, the advent of the digital
computer and the amenability of the displacement method for computation
attracted most researchers. As a result, the force method and some of the advantages
it offers in optimisation and non-linear analysis, have been neglected.

Six different approaches are adopted for the force method of structural analysis,
which will be classified as follows:

. Topological force methods,

. Combinatorial force methods,

. Algebraic force methods,

. Mixed algebraic-combinatorial force methods,
. Integrated force method, and

. Metaheuristic based methods.

o Y O S

Topological methods have been developed by Henderson [1], Maunder [2] and
Kaveh [3]. Combinatorial force method is mainly developed by Kaveh [3] using
different graph theoretical algorithms. Algebraic topology is employed extensively in
the work of Langefors [4]. Algebraic methods have been developed by Denke [5],

A. Kaveh, Computational Structural Analysis and Finite Element Methods, 39
DOI 10.1007/978-3-319-02964-1_2, © Springer International Publishing Switzerland 2014
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Robinson [6], Topcu [7], and Kaneko et al. [8], and mixed algebraic-topological
methods have been used by Gilbert et al. [9], Coleman and Pothen [10]. The
integrated force method has been developed by Patnaik [11]. Meta-heuristic based
methods are also developed for the formation of null basis in the work of Kaveh and
Jahamshahi [12] and Kaveh and Daei [13].

2.2 Static Indeterminacy of Structures

Skeletal structures are the most common type of structures encountered in civil
engineering practice. These structures sustain the applied loads mainly by virtue of
their topology, i.e. the way members are connected to each other (connectivity).
Therefore, topology plays a vital role in their design. The first step in design of such
structures is to provide sufficient rigidity and make it reliable, but this depends in
part on the degrees of static indeterminacy of the structures. One way to calculate
the degree of static indeterminacy is to use classical formulae such as those given in
Timoshenko and Young [14]; however, the application of these usually provides
only a small part of the necessary topological properties. The methods presented in
this chapter provide powerful means for understanding the distribution of the
indeterminacy within a structure. The concepts presented are efficient in both the
optimal force method of structural analysis, as will be discussed in the second part
of this chapter.

In the analysis of skeletal structures, three different properties are encountered,
which are classified as topological, geometrical and material. Separate study of
these properties results in a considerable simplification in understanding the struc-
tural behaviour leading to methods for efficient analysis. This chapter is confined to
a study of those topological properties of skeletal structures needed to study force
and displacement methods. The number of equations to be solved in the two
methods may differ widely for the same structure. This number depends on the
size of the flexibility and the stiffness matrices. The orders of this matrix are the
same as the degree of static indeterminacy and the degree of kinematic indetermi-
nacy of a structure, respectively. Obviously, the method that leads to the required
results with the least amount of computational time and storage should be used for
the analysis of a given structure. Thus, the comparison of the degree of static
indeterminacy and the degree of kinematic indeterminacy may be the main criterion
for selecting the method of analysis.

The degree of kinematic indeterminacy of a structure, also known as its total
number of degrees of freedom, can easily be obtained by summing up the degrees of
freedom of its nodes. A node of planar and space trusses has two and three degrees
of freedom, respectively. For planar and space frames, these numbers are 3 and
6, respectively. Single-layer grids have also three degrees of freedom for each node.

For determining the degree of static indeterminacy of structures, numerous
formulae depending on the kinds of members or types of joints have been given,
e.g. Ref. [14]. The use of these classical formulae, in general, requires counting the
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number of members and joints, which becomes a tedious process for multi-member
and/or complex pattern structures; moreover, the count provides no additional
information about connectivity.

Henderson and Bickley [1] related the degree of static indeterminacy of a rigid-
jointed frame to the first Betti number of its graph model S. Generalising the Betti’s
number to a linear function and using an expansion process, Kaveh [15] developed
a general method for determining the degree of static indeterminacy and degree of
kinematic indeterminacy of different types of skeletal structures. Special methods
have also been developed to transform the topological properties of space structures
to those of their planar drawings, in order to simplify the calculation of their degrees
of static indeterminacy, Ref. [16].

It should be noted that various methods for determining the degree of static
indeterminacy of structures are a by-product of the general methods developed by
Kaveh [15]. The method of expansion and its control at each step, using the
intersection theorem presented in this chapter, provides a powerful tool for further
studies in the field of structural analysis.

2.2.1 Mathematical Model of a Skeletal Structure

The mathematical model of a structure is considered to be a finite, connected graph
S. There is a one-to-one correspondence between the elements of the structure and
the members (edges) of S. There is also a one-to-one correspondence between the
joints of the structure and the nodes of S, except for the support joints of some
models.

For frame structures, shown in Fig. 2.1(al) and (a2), two graph models can be
considered. For the first model, all the support joints are identified as a single node
called a ground node, as shown in Fig. 2.1(b1) and (b2). For the second model, all
the joints are connected by an artificial arbitrary spanning tree, termed ground tree,
Fig. 2.1(c1) and (c2).

Truss structures shown in Fig. 2.2(al) and (a2) are assumed to be supported in a
statically determinate fashion (Fig. 2.2(b1) and (b2)), and the effect of additional
supports can easily be included in calculating the degree of static indeterminacy
(DSI) of the corresponding structures. Alternatively artificial members can be
added as shown in Fig. 2.2(cl) and (c2) to model the components of the
corresponding supports. For a fixed support, two members and three members are
considered for planar and space trusses, respectively, and one member is used for
representing a roller.

The skeletal structures are considered to be in perfect condition; i.e. planar and
space trusses have pin and ball joints only. Obviously, the effect of extra constraints
or releases can be taken into account in determining their degrees of static indeter-
minacy and also in their analysis, Mauch and Fenves [17].
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a2 b2 c2

Fig. 2.1 Frame structures and their mathematical models. (al) A plane frame. (b1) First model
with a ground node. (c1) Second model with a ground tree. (a2) A space frame. (b2) First model
with a ground node. (¢2) Second model with a ground tree

al b1 ci
/75; _ Lr -

a2 b2 c2 ;
Fig. 2.2 Trusses and their graph models. (al) A plane truss. (bl) First model without added

members. (c1) Second model with replaced members. (a2) A space truss. (b2) First model without
added members. (c2) Second model with replaced members

2.2.2 Expansion Process for Determining the Degree
of Static Indeterminacy

The degree of kinematic indeterminacy of a structure is the number of independent
displacement components (translations and rotations) required for describing a
general state of deformation of the structure. The degree of kinematic indetermi-
nacy is also referred to as the total degrees of freedom of the structure. On the other
hand, the degree of static indeterminacy (redundancy) of a structure is the number
of independent force components (forces and moments) required for describing a
general equilibrium state of the structure. The DSI of a structure can be obtained by
subtracting the number of independent equilibrium equations from the number of
its unknown forces.
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2.2.2.1 Classical Formulae

Formulae for calculating the DSI of various skeletal structures can be found in
textbooks on structural mechanics, e.g. the DSI of a planar truss, denoted by y(S),
can be calculated from,

v(S) = M(S) — 2N(S) + 3, (2.1)

where S is supported in a statically determinate fashion (internal indeterminacy).
For extra supports (external indeterminacy), y(S) should be further increased by the
number of additional unknown reactions.

A similar formula holds for space trusses:

¥(S) = M(S) — 3N(S) +6. (2.2)
For planar and space frames, the classical formulae is given as,
¥(S) = aM(S) = N(S) + 1, (2:3)

where all supports are modelled as a datum (ground) node, and a = 3 or 6 for
planar and space frames, respectively.

All these formulae require counting a great number of members and nodes,
which makes their application impractical for multi-member and complex pattern
structures. These numbers provide only a limited amount of information about the
connectivity properties of structures. In order to obtain additional information, the
methods developed in the following sections will be utilised:

2.2.2.2 A Unifying Function

All the existing formulae for determining DSI have a common property, namely
their linearity with respect to M(S) and N(S). Therefore, a general unifying function
can be defined as,

¥(S) = aM(S) + bN(S) + cy,(S), (2.4)

where M(S), N(S) and yo(S) are the numbers of members, nodes and components
of S, respectively. The coefficients a, b and ¢ are integer numbers depending on
both the type of the corresponding structure and the property which the function is
expected to represent. For example, y(S) with appropriate values for a, b and ¢ may
describe the DSI of certain types of skeletal structures, Table 2.1. For a = 1,
b= —1 and ¢ = 1, y(S) becomes the first Betti number b;(S) of S, as described
in Sect. 1.5.1.
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Table 2.1 Coefficients of

. Type of structure a b c
y(S) for different types of
structures Plane truss +1 -2 +3
Space truss +1 -3 +6
Plane frame +3 -3 +3
Space frame +6 -6 +6

2.2.2.3 An Expansion Process

An expansion process, in its simplest form, has been used by Miiller-Breslau [18]
for re-forming structural models, such as simple planar and space trusses. In his
expansion process, the properties of typical subgraphs, selected in each step to be
joined to the previously expanded subgraph, guarantee the determinacy of the
simple truss. These subgraphs consist of two and three concurrent bars for planar
and space trusses, respectively.

The idea can be extended to other types of structure, and more general subgraphs
can be considered for addition at each step of the expansion process. A cycle, a
planar subgraph, and a subgraph with prescribed connectivity properties are exam-
ples of these, which will be employed in this book. For example, the planar truss of
Fig. 2.3a can be formed in four steps, joining a substructure S; with y(S;) = 1 as
shown in Fig. 2.3b, sequentially, as illustrated in Fig. 2.3c.

2.2.2.4 An Intersection Theorem

In a general expansion process, a subgraph S; may be joined to another subgraph S;
in an arbitrary manner. For example, y(S;) or y(S;) may have any arbitrary value and
the union S; U S; may be a connected or a disjoint subgraph. The intersection
Si U S; may also be connected or disjoint. It is important to find the properties of
S| U S, having the properties of S;, S, and S; N S,. The following theorem pro-
vides a correct calculation of the properties of S; U S;. In order to have the formula
in its general form, q subgraphs are considered in place of two subgraphs.

Theorem (Kaveh [15]). Let S be the union of q subgraphs Sy, S5, S3, ..., Sq with
the following functions being defined:
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= aM(S) + bN(S) + ¢y, (S),
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where A; =S " 'NS;andS' =S, US, U ... US,. Then:
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a b

c
S,=¢!
S'us,=§2
S2US,=§°
S'USs,=§*=§

Fig. 2.3 Process for the formation of a planar truss. (a) A planar truss. (b) Selected unit. (¢) The
process of expansionas $; =S' - $> - §* - $*=§
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For proof, the interested reader may refer to Kaveh [19].

Special Case. If S and each of its subgraphs considered for expansion (S; fori = 1,
.., q) are non-disjoint (connected), then Eq. 2.5 can be simplified as:

q
v(S) = > v(s) - DA, 26)

where ¥(A;) = aM(A;) + bN(A;) + ¢

For calculating the DSI of a multi-member structure, one normally selects a
repeated unit of the structure and joins these units sequentially in a connected form.
Therefore, Eq. 2.6 can be applied in place of Eq. 2.5 to obtain the overall property of
the structure.

2.2.2.5 A Method for Determining the DSI of Structures

Let S be the union of its repeated and/or simple pattern subgraphs S; i = 1, ..., q).
Calculate the DSI of each subgraph, using the appropriate coefficients from
Table 2.1. Now perform the union—intersection method with the following steps:
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Step 1: Join S; to S; to form S? = S; US,, and calculate the DSI of their
intersection A, = S; N S,. The value of y(S?) can be found using Eq. 2.5 or
Eq. 2.6, as appropriate.

Step 2: Join S; to S? to obtain S* = S? U S;, and determine the DSI of A5 = S* N
S;. Similarly to Step 1, calculate y(S?).

Step k: Subsequently join Sy, to Sk, calculating the DSI of Ay , | = S N S,
and evaluating the magnitude of y(S**").

Repeat Step k until the entire structural model S = ‘@lsi has been reformed and

its DSI determined.

In the above expansion process, the value of q depends on the properties of the
substructures (subgraphs) which are considered for reforming S. These subgraphs
have either simple patterns for which y(S;) can easily be calculated, or the DSIs of
which are already known.

In the process of expansion, if an intersection A; itself has a complex pattern,
further refinement is also possible; i.e. the intersection can be considered as the
union of simpler subgraphs.

2.3 Formulation of the Force Method

In this section, a matrix formulation using the basic tools of structural analysis—
equilibrium, compatibility and load—displacement relationships—is described. The
notations are chosen from those most commonly utilized in structural mechanics.

2.3.1 Equilibrium Equations

Consider a structure S with M members and N nodes, which is y(S) times statically
indeterminate. Select y(S) independent unknown forces as redundants. These
unknown forces can be selected from external reactions and/or internal forces of
the structure. Denote these redundants by:

t
q= {ql,qz,--.,qY<s>}~ (2.7)

Remove the constraints corresponding to redundants, in order to obtain the
corresponding statically determinate structure, known as the basic (released or
primary) structure of S. Obviously, a basic structure should be rigid. Consider the
joint loads as,
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P={pP1.Ps---Pn}" (2.8)

where n is the number of components for applied nodal loads.
Now the stress resultant distribution r, due to the given load p, for a linear
analysis by the force method can be written as,

r =Bop +Biq, (2.9)

where By and B; are rectangular matrices each having m rows, and n and
v(S) columns, respectively, m being the number of independent components for
member forces. Bop is known as a particular solution, which satisfies equilibrium
with the imposed load, and B,q is a complementary solution, formed from a
maximal set of independent self-equilibrating stress systems (S.E.Ss), known as a
statical basis.

Example 1. Consider a planar truss, as shown in Fig. 2.4a, which is two times
statically indeterminate. EA is taken to be the same for all the members.

One member force and one component of a reaction may be taken as redundants.
Alternatively, two member forces can also be selected as unknowns, as shown in
Fig. 2.4b. Selecting the latter choice, the corresponding B and B matrices can now
be obtained by applying unit values of p; (i = 1, 2) and g; j = 1, 2), respectively:

gi_|-1 0 0 0+v20 -1 0 0 0
-2 -1 410 v2 0 -1 V2 0 -1

and

Bt[—l/\/i 0 —1/V2 0 41 41 —-1/¥2 0 0 0 }
! 0 —1/vV2 0 —1/v/2 0 0 —1/vV2 +1 +1 —1/V2]

The columns of B; (rows of BY) form a statical basis of S. The underlying
subgraph of a typical self-equilibrating stress system (for q, = 1) is shown in bold
lines, Fig. 2.4b.

Example 2. Consider a portal frame shown in Fig. 2.5a, which is three times
statically indeterminate.

This structure is made statically determinate by an imaginary cut at the middle of
its beam. The unit value of external load p; and each of the bi-actions q; (i = 1, 2, 3)
lead to the formation of By and B matrices, in which the two end bending moments
(M;, M;) of a member are taken as its member forces. Using the sign convention
introduced in Chap. 1, By and B; matrices are formed as:

B{=[+4 0 0 0 0 0],
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Fig. 2.4 A statically a P, P, b
indeterminate planar truss.
(a) A planar truss. (b) The 1 6 3 5 4 4 1
selected unknown forces ) 6 8 9 T q; q,
7 10| L
T 2 2 3 Zl
=L —f— L —
Fig. 2.5 A statically a Q3
indeterminate frame. (a) A q q
. 2 2
portal frame S. (b) The p= IOkN (‘
basic structure of S
4m
—— 4m——|

and

+4 0 0 0 0 —4
Bi=|-2 42 -2 —2 42 -2
1 41 -1 +1 —1 +1

The columns of B, form a statical basis of S, and the underlying subgraph of
each self-equilibrating stress system is a cycle, as illustrated in bold lines, Fig. 2.5b.
Notice that three self-equilibrating stress systems can be formed on each cycle of a
planar frame.

In both of the above examples, particular and complementary solutions are
obtained from the same basic structure. However, this is not a necessary require-
ment, as imagined by some authors. In fact a particular solution is any solution
satisfying equilibrium with the applied loads, and a complementary solution is any
maximal set of independent self-equilibrating systems. The latter is a basis of a
vector space over the field of real numbers, known as a complementary solution
space, Henderson and Maunder [20].

Using the same basic structure is equivalent to searching for a cycle basis of a
graph, but restricting the search to fundamental cycles only, which is convenient but
not efficient when the structure is complex or cycle bases with specific properties
are needed.

As an example, consider a three-storey frame as shown in Fig. 2.6a. A cut system
as shown in Fig. 2.6b corresponds to a statical basis, containing three self-
equilibrating stress systems formed on each element of the cycle basis shown in
Fig. 2.6b. However, the same particular solution can be employed with a statical
basis formed on the cycles of the basis shown in Fig. 2.6c.
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Fig. 2.6 A three-storey a b

I L C ¢
frame with different cut H

systems T

A basic structure need not be selected as a determinate one. For a redundant
basic structure, one may obtain the necessary data either by analysing it first for the
loads p and bi-actions q; = 1(i = 1, 2, ..., y(S)), or by using existing information.

2.3.2 Member Flexibility Matrices

In the force method of analysis, the determination of the member flexibility matrix
is an important step. A number of alternative methods are available for the
formation of displacement-force relationships describing the flexibility properties
of the members. Four such approaches are:

. Inversion of the force-displacement relationship;

. Unit load method;

. Castigliano’s theorem;

. Solution of differential equations for member displacements.

AW N =

In the following, the unit load method is briefly described for the formation of
the flexibility matrices:
Consider a general element with n member forces,
ry = {10, 1}, (2.10)
and member displacements:

u' = {uj,u,...,u}. (2.11)

A typical component of the displacement u; can be found using the unit load
method as:

U = ”JVEi‘SdV, (2.12)

where G; represents the matrix of statically equivalent stresses due to a unit load
in the direction of r;, and ¢ is the exact strain matrix due to all applied forces r,.
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The unit loads can be used in turn for all the points where member force are applied,
and therefore,

Uy = J”VE‘SdV, (2.13)

where,
6 ={6/6,...5,}". (2.14)
For a linear system,
6 = Cry,, (2.13)

where c is the stress distribution due to unit forces ry,.
The stress-strain relationship can be written as:

e = ¢po = derp,. (2.16)

Substituting in Eq. 2.13 leads to,
u, = JH G'pedVry, (2.17)
v
or,

Uy, = forn, (2.18)

where,

fn = Jﬂvﬁtcbch, (2.19)

represents the element flexibility matrix.

The evaluation of 6 representing the exact stress distribution due to the forces ry,,
may not be possible, and hence an approximate relationship should be used. Usually
the matrix c is selected such that it will satisfy at least the equations of equilibrium.
Denoting this approximate matrix by ¢, and using ¢ = ¢:

fn = J”VE‘q)EdV. (2.20)

This equation will be used for the derivation of the flexibility matrices of some
finite elements in the proceeding sections.
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Fig. 2.7 A beam element y
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For a bar element of a space truss, however, the flexibility matrix can easily be
obtained using Hooke’s law as already discussed in Chap. 1. For a beam element ij
of a space frame, y and z axes are taken as the principal axes of the beams cross
sections, Fig. 2.7. The forces of end j are selected as a set of independent member
forces, and the element is considered to be supported at point i. The axial, torsional,
and flexural behaviour in respective planes are uncoupled, and therefore, one needs
only to consider the flexibility relationships for four separate members:

1. An axial force member (along x axis);
2. A pure torsional member (about x axis);
3. A beam bent about y axis;

4. A beam bent about z axis.

Direct adaptation of the flexibility relationships derived in Chap. 1, gives the
following 6 x 6 flexibility matrix,

L
EA
L3
0 3EI sym.
3
0 0 L_
3El
f,= 0 o 0 L , (2.21)
GJ
L? L
0 0 - 0 —
2EI, EI,
L? L
0 0 0 0 —
2EI, EIl,

where G is the shear modulus, I, and I, are the moments of inertia with respect to y
and z axes, respectively. J is the Saint-Venant torsion constant of the cross section.
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2.3.3 Explicit Method for Imposing Compatibility

The compatibility equations in the actual structure will now be derived. Using the
displacement-load relationship for each member, and collecting them in the diag-
onal of the unassembled flexibility matrix F,,,, one can write member distortions as:

u= le" = FmBop + Fmqu. (222)
In matrix form:
[u] = [Fu] [Bo By] m (223)

From the contragradient principle of Chap. 1,
Bt
SEHIO (224
1
Combining Eqs. 2.23 and 2.24 results in,

v = (B} e [7]. (2.25)

Ve
in which v, contains the displacements corresponding to the force components of p,

and v, denotes the relative displacements of the cuts for the basic structure.
Performing the multiplication,

M _ [B;,FmBo B:)FmBl] m (2.26)

Ve B/F.By BF.Bi||q
Defining:
Doo = BiFmBy, Dig = BjFBy, (2.27)
Dy; = B{F,,By, D;; = B{F,B, '
the expansion of Eq. 2.14 leads to:
vo = Doop + Do14q, (2.28)
and
ve = Diop +Duiq. (2.29)

Consider now the compatibility conditions as:

v, =0. (2.30)
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Equation 2.30 together with Eq. 2.29 leads to:
q = —-D;/'Dop = Fp. (2.31)
Substituting in Eq. 2.22 yields,
vo = [Dgo — Doy D7;'Dyo] p. (2.32)
and the stress resultant in a structure can be obtained as:
r = [By — B;D;/Dyo]p. (2.33)
2.3.4 Implicit Approach for Imposing Compatibility

A direct application of the work principle of Chap. 1, can also be used to impose the
compatibility conditions in an implicit form as follows:

Since the structure is considered to be linearly elastic, a linear relation exists
between the unknown forces q and the applied forces p; i.e.

q=Qp, (2.34)

where Q is a transformation matrix which is still unknown.
Equation 2.9 can now be written as:

r =Bop +B,Qp = (By + B,Q)p = Bp. (2.35)
Using the work theorem:
P'v =r'u = p'B'u. (2.36)

Now a set of suitable internal forces, r*, is considered which is statically
equivalent to the external loads. From work principle:

p'v=r"u, (2.37)
or
p'v = p'Bju. (2.38)

Comparison of the above two equations leads to:
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p'B'u = p'Bju. (2.39)
Substituting u = F,BP in the above equation:
p'B'F,,Bp = p'B_F,,Bp. (2.40)
This holds for any p, and therefore:
B'F,,B = B_F,,B. (2.41)

From Eq. 2.35 by transposition,

B' = B! + Q'B!, (2.42)
therefore,
(B + Q'B})F,B = B{F,,B, (2.43)
or
QB{F..(By + B,Q) =0, (2.44)
or
Q'(B!F,By + B!F,,B,Q) = 0. (2.45)

Using the notation introduced in Eq. 2.15 leads to,

Q'(Dy +D1;Q) =0, (2.46)
or
Diy+D;1Q=0. (2.47)
Therefore,
Q = -D;/'Dy,, (2.48)
and
q=—D;/Dyp, (2.49)

and Eq. 2.20 is obtained as in the previous approach.
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2.3.5 Structural Flexibility Matrices

The overall flexibility matrix of a structure can be expressed as:
v =Fp. (2.50)

Pre-multiplying the above equation by p', we have:

p'Fp = p'B;F.,Bp. (2.51)
Since p is arbitrary,
F = B{F,,B, (2.52)
or
F = B{F.,(Bo + B1Q), (2.53)
or
F = B{F.,Bo — B{F.,BD},'Do. (2.54)

Since F,,, is symmetric, it follows that:
Dl‘0 = BéFmBl = B(t)FI;Bl. (2.53)

Therefore, the overall flexibility matrix (known also as influence matrix) of the
structure is obtained as,

F = Dy — D{,D;;' Do, (2.56)

and D;; = BYF,,B; = G is also referred to as the flexibility matrix of the structure.
In this book, properties of G will be studied, since its pattern is the most important
factor in optimal analysis of the structure by the force method.

Equation 2.34 can now be used to calculate the nodal displacements.

2.3.6 Computational Procedure

The sequence of computational steps for the force method can be summarized as:

1. Construct B, and obtain BY,.
2. Construct By and obtain BY.
3. Form unassembled flexibility matrix F,,.
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. Form F,B, followed by F,,B;.

. Calculate Dy, D}, Do and Dy, sequentially.
Compute — Dy}

. Calculate Q = — Dl’llDlo.

. Form B;Q and find B = By + B;Q.

. Form D},Q and find Dy, + D}, Q.

. Compute the internal forces as r = Bp.

. Compute nodal displacements as vy = Fp.

— OO0 ® o LA

[ —

Example 3. In this example, the complete analysis of the truss of Example 1 will
be given.

By and B; matrices are already formed in Example 1 of Sect. 2.2.1. The
unassembled flexibility matrix can be constructed as:

1

Using the above matrix and the matrices from Example 1, leads to:

_ L [av2+3/2  1)2
D“_ﬁ[ 1/2 2ﬁ+2}’

and

D _L{2+2/ﬁ 2+2/ﬂ}
0 1/V2  243/V2)

Substituting in Eq. 2.25, results in:

HER RS (N s S se A1k

Taking p; = p, = P for simplicity, and solving the above equations gives:

q; = —1.43Pand q, = —1.17P.

Equation 2.3 is then used to calculate the member forces as:
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I'Z{l‘l Iy I3 I'4 I's5 I'g I'7 I'g T9g 1‘10}[
={—1.95P —0.17P 2.05P 0.83P 1.36P —1.44P —0.12P 0.24P —1.17P —0.17P}t.

Nodal displacements can be found using Eq. 2.25.

Example 4. In this example, the complete analysis of the frame in Example 2 is
given.

By and B; matrices are already formed in Example 2 of Sect. 2.2.1. The
unassembled flexibility matrix of the structure, using the sign convention intro-
duced in Chap. 1, is formed as:

2 -1
-1 2
L 2 -1
Fon=—
6EIL -1 2
2 -1
-1 2
Substituting in Eq. 2.21 leads to:
L 64 0 -24
Dp=—| 0 56 0 |,
El| 24 0 18
and
32
L
D]() = @ —24
-12

The inverse of D;; is computed as,

18/576 0 3/72
D/=—"| 0 576 0 |,
3/72 0 1/9

and Q can be obtained as:

-1/2
Q=-D;'Dy=|+3/7
0

Matrix B is now computed as,
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4 +4 -2 -1

ol Lo 3
B= 0 + 0 -2 41 +%/7,

0 0 +2 -1

0 —4 -2 +1

and finally by using Eq. 2.23 the member forces are obtained as:
r={+1143 4857 -8.57 -857 +8.57 +11.43}".

General Loading. When members are loaded in a general form, then it must be
replaced by an equivalent loading. Such a loading can be found as the superposition
of two cases; case 1 consists of the given loading but the ends of the member are
fixed. The fixed end forces (actions), denoted by FEA, can be found using tables
from books on strength of materials. Case 2 is the given structure subjected to the
reverse of the fixed end actions only. Obviously, the sum of the loads and reactions
of case 1 and case 2 will be the same effect as that of the given loading. This
superposition process is illustrated in the following example:

Example 5. A two-span beam is considered as shown in Fig. 2.8a. The fixed end
actions are provided in b, and the equivalent forces are illustrated in Fig. 2.8c. The
structure is twice indeterminate, and the primary structure is obtained by introduc-
ing two hinges as shown in d. The applied nodal forces and redundants are depicted
in Fig. 2.8e, f, respectively.

B, and B matrices are formed as,

-1 0
0 +1
0o -1y
0 0

and B, =

Fm:@ 2 -1

Substituting in Eq. 2.27 leads:

L (2 1
D) =—
a1 4]
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Fig. 2.8 A two-span beam with general loading. (a) A two-span beam. (b) Fixed end actions. (c)
The equivalent loading. (d) The selected primary structure. (e) Applied force on primary structure.
(f) Redundants on primary structure

and

L2 10
D“’@[l 2 1}'

The inverse of Dy, is computed as,

Dl_ll:__>< 1 2

1 6EI| 4 -1
7 L ’

and Q can be obtained as:
114 —1(12 1 0 1{7 2 -1
= — -1 = — — = — —
Q=-DiDo 7[—1 2“1 2 1] 7[0 3 2}

Now r is computed as,

-1.0 0 1 2/7 —1/7 0 0.285
oo o o =37 2 6 | _|0572

0 00 0 3/7 2/7 0 5428 |°

0 0 1 0 0 0 10.00

adding the fixed end reaction, the final member forces are obtained as:

r={16285 —15.428 15428 0.000}'.
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2.3.7 Optimal Force Method

For an efficient force method, the matrix G should be:

(a) Sparse;
(b) Well conditioned;
(c) Properly structured, i.e. narrowly banded.

In order to provide the properties (a) and (b) for G, the structure of B should be
carefully designed, since the pattern of F,, for a given discretization is unchanged;
i.e. a suitable statical basis should be selected. This problem is treated in different
forms by various methods. In the following, graph theoretical methods are
described for the formation of appropriate statical bases of different types of
skeletal structures. The property (c) above has a totally combinatorial nature and
is studied in Chaps. 5 and 6.

Pattern Equivalence. Matrix B, containing a statical basis, in partitioned form, is
pattern equivalent to C', where C is the cycle-member incidence matrix. Similarly,
B! F,,B, is pattern equivalent to CIC' or CC'. This correspondence transforms some
structural problems associated with the characterization of G = B{F,,B; into
combinatorial problems of dealing with CC".

As an example, if a sparse matrix G is required, this can be achieved by
increasing the sparsity of CC". Similarly for a banded G, instead of ordering the
elements of a statical basis (self-equilibrating stress systems), one can order the
corresponding cycles. This transformation has many advantages, such as:

1. The dimension of CC"is often smaller than that of G. For example, for a space
frame the dimension of CC' is six-fold and for a planar frame three-fold smaller
than that of G. Therefore, the optimisation process becomes much simpler when
combinatorial properties are used.

2. The entries of C and CC" are elements of Z, and therefore easier to operate on,
compared to B; and G which have real numbers as their entries.

3. The advances made in combinatorial mathematics and graph theory become
directly applicable to structural problems.

4. A correspondence between algebraic and graph theoretical methods becomes
established.

2.4 Force Method for the Analysis of Frame Structures

In this section, frame structures are considered in their perfect conditions; i.e. the
joints of a frame are assumed to be rigid, and connected to each other by elastic
members and supported by a rigid foundation.

For this type of skeletal structure, a statical basis can be generated on a cycle
basis of its graph model. The function representing the degree of static
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indeterminacy, y(S), of a rigid-jointed structure is directly related to the first Betti
number b,(S) of its graph model,

¥(S) = aby(S) = a[M(S) = N(S) + bo(S)], (2.57)

where a = 3 or 6 depending on whether the structure is either a planar or a space
frame.

For a frame structure, matrix B, can easily be generated using a shortest route
tree of its model, and B; can be formed by constructing 3 or 6 self-equilibrating
stress systems on each element of a cycle basis of S.

In order to obtain a flexibility matrix of maximal sparsity, special cycle bases
should be selected as defined in the next section. Methods for the formation of a
cycle basis can be divided into two groups, namely

(a) Topological methods, (b) graph theoretical approaches.

Topological methods useful for the formation of cycle bases by hand, were
developed by Henderson and Maunder [20] and a complete description of these
methods is presented in Kaveh [3]. Graph-theoretical methods suitable for com-
puter applications were developed by Kaveh [21].

2.4.1 Minimal and Optimal Cycle Bases

A matrix is called sparse if many of its entries are zero. The interest in sparsity
arises because its exploitation can lead to enormous computational saving, and
because many large matrices that occur in the analysis of practical structures, can be
made sparse if they are not already so. A matrix can therefore be considered sparse,
if there is an advantage in exploiting its zero entries.

The sparsity coefficient y of a matrix is defined to be its number of non-zero
entries. A cycle basis C = {Cy,C,,C;,...,Cy,s)} is called minimal, if it corre-
sponds to a minimum value of:

L(C) =) L(Cy). (2.58)

Obviously, x(C) = L(C) and a minimal cycle basis can be defined as a basis
which corresponds to minimum x(C). A cycle basis for which L(C) is near
minimum is called a subminimal cycle basis of S.

A cycle basis corresponding to maximal sparsity of the CC' is called an optimal
cycle basis of S. If x(CC") does not differ considerably from its minimum value,
then the corresponding basis is termed suboptimal.

The matrix intersection coefficient o;(C) of row i of cycle member incidence
matrix C is the number of row j such that:
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@je{i+l,i+2,...,bi(S)},
(b) C; N C; # ¢, i.e. there is at least one k such that the column k of both cycles C;
and C; (rows i and j) contain non-zero entries.

Now it can be shown that:

b (S)—1
1) =bi(S)+2 > ai(C). (2.59)

i=1

This relationship shows the correspondence of a cycle member incidence matrix
C and that of its cycle basis adjacency matrix. In order to minimize y(CC"), the
bi(S)—1
value of Z 6i(C) should be minimized, since b;(S) is a constant for a given
i=1

structure S, i.e. y-cycles with a minimum number of overlaps should be selected.

In the force method, an optimal cycle basis is needed corresponding to the
maximum sparsity of CC' matrix. However, because of the complexity of this
problem, most of the research has been concentrated on minimal cycle basis
selection, except those of Ref. [22], which minimize the overlaps of the cycles
rather than only their length.

2.4.2 Selection of Minimal and Subminimal Cycle Bases

Cycle bases of graphs have many applications in various fields of engineering. The
amount of work in these applications depends on the cycle basis chosen. A basis
with shorter cycles reduces the time and storage required for some applications;
i.e. it is ideal to select a minimal cycle basis, and for some other applications
minimal overlaps of cycles are needed; i.e. optimal cycle bases are preferred. In this
section, the formation of minimal and subminimal cycle bases is first discussed.
Then the possibility of selecting optimal and suboptimal cycle bases is investigated.

Minimal cycle bases were considered first by Stepanec [23] and improved by
Zykov [24]. Many practical algorithms for selecting subminimal cycle bases have
been developed by Kaveh [15].

In this section, the merits of the algorithms developed by different authors are
discussed; a method is given for selection of minimal cycle bases, and efficient
approaches are presented for the generation of subminimal cycle bases.

Formation of a Minimal Cycle on a Member. A minimal length cycle C; on a
member m;, called its generator, can be formed by using the shortest route tree
algorithm as follows:

Start the formation of two SRTs rooted at the two end nodes n, and n, of m;, and
terminate the process as soon as the SRTs intersect each other (not through m; itself)
at say n.. The shortest paths between n, and n, and n, and n, together with m;, form
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Fig. 2.9 A minimal cycle
on a member

a minimal cycle C; on m;. Using this algorithm, cycles of prescribed lengths can
also be generated.

As an example, C; is a minimal cycle on m; in Fig. 2.9. The SRTs are shown in
bold lines. The generation of SRTs is terminated as soon as n, has been found.

A minimal cycle on a member m; passing through a specified node ny can
similarly be generated. An SRT rooted at ny is formed and as soon as it hits the
end nodes of m;, the shortest paths are found by backtracking between ny and ny, and
n, and n.. These paths together with m; form the required cycle. As an example, a
minimal cycle on m; containing ny, is illustrated by dashed lines in Fig. 2.9.

Different Cycle Sets for Selecting a Cycle Basis. It is obvious that a general cycle
can be decomposed into its simple cycles. Therefore, it is natural to confine the
considered set to only simple cycles of S. Even such a cycle set, which forms a
subspace of the cycle space of the graph, has many elements and is therefore
uneconomical for practical purposes.

In order to overcome the above difficulty, Kaveh [15] used an expansion process,
selecting the smallest admissible (independent with additional restriction) cycles,
one at a time, until b;(S) cycles forming a basis had been obtained. In this approach,
a very limited number of cycles were checked for being an element of a basis. As an
example, the expansion process for selecting a cycle basis of S is illustrated in
Fig. 2.10.

Hubicka and Syslg [25] employed a similar approach, without the restriction of
selecting one cycle at each step of expansion. In their method, when a cycle has
been added to the previously selected cycles, increasing the first Betti number of the
expanded part by “p”, then p created cycles have been formed. As an example, in
this method, Steps 4 and 5 will be combined into a single step, and addition of cycle
5 will require immediate formation of the cycle 4. The above method is modified,
and an efficient algorithm is developed for the formation of cycle bases by Kaveh
and Roosta [26],

Finally, Horton [27] proved that the elements of a minimal cycle basis lie in
between a cycle set consisting of the minimal cycles on each member of S which
passes through each node of S, i.e. each member is taken in turn and all cycles of
minimal length on such a member passing through all the nodes of S are generated.
Obviously, M(S) x M(S) such cycles will be generated.

Independence Control. Each cycle of a graph can be considered as a column
vector of its cycle-member incidence matrix. An algebraic method such as the
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Fig. 2.10 A graph S and selected cycles

Gaussian elimination may then be used for checking the independence of a cycle
with respect to the previously selected sub-basis. However, although this method is
general and reduces the order dependency of the cycle selection algorithms, like
many other algebraic approaches its application requires a considerable amount of
storage space.

The most natural graph theoretical approach is to employ a spanning tree of S,
and form its fundamental cycles. This method is very simple; however, in general
its use leads to long cycles. The method can be improved by allowing the inclusion
of each used chord in the branch set of the selected tree. Further reduction in length
may be achieved by generating an SRT from a centre node of a graph, and the use of
its chords in ascending order of distance from the centre node, Kaveh [21].

A third method, which is also graph-theoretical, consists of using admissible
cycles. Consider the following expansion process, with S being a 2-connected
graph,

C=C'=-C=C—=...-c®=s,

where Ck:@lCi. A cycle Cyyy is called an admissible cycle, if for
crl=ctucC,

by (C1) = by (C* U Cy1) = by (CY) + 1. (2.60)

It can easily be proved that, the above admissibility condition is satisfied if any
of the following conditions hold:

1. Ak+1 = C"N Cy, 1 = D, where @ is an empty intersection;

2. by (Axt1) =1 — s, where r and s are the numbers of components of C*+and Ck,
respectively;

3. bi(Ax;1) = 0 when C* and C**' are connected (r = s).

In the above relations, by (A;) = M; — N; + 1, where M; and N; are the numbers
of members and nodes of A;, respectively.

As an example, the sequence of cycle selection in Fig. 2.11 will be as specified
by their numbers.
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Fig. 2.11 A cycle and its
bounded cycles
c Ci3
Kt
o Cir2
A different approach suggested by Hubicka and Syslg, in which,
by (C*1) = b, (C*) +p, (2.61)

is considered to be permissible. However, a completion is performed for p > 1. As
an example, when C; is added to Ck, its first Betti number is increased by 3 and
therefore, cycles C; and C, must also be selected at that stage, before further
expansion.

Having discussed the mathematical concepts involved in a cycle basis selection,
three different algorithms are now described.

Algorithm 1 (Kaveh [15])

Step 1: Select a pseudo-centre node of maximal degree O. Such a node can be
selected manually or automatically using the graph or algebraic graph theoretical
methods discussed in Chap. 5.

Step 2: Generate an SRT rooted at O, form the set of its chords and order them
according to their distance from O.

Step 3: Form one minimal cycle on each chord in turn, starting with the chord
nearest to the root node. A corresponding simple path is chosen which contains
members of the tree and the previously used chords, hence providing the
admissibility of the selected cycle.

This method selects subminimal cycle bases, using the chords of an SRT. The
nodes and members of the tree and consequently the cycles are partially ordered
according to their distance from O. This is the combinatorial version of the Turn
Back method to be discussed in the section on algebraic force methods.

Algorithm 2 (Kaveh [15])

Step 1: Select a centre or seudo-centre node of maximal degree O.

Step 2: Use any member incident with O as the generator of the first minimal cycle.
Take any member not used in C; and incident with O, and generate on it the
second minimal cycle. Continue this process until all the members incident with
O are used as the members of the selected cycles. The cycles selected so far are
admissible, since the intersection of each cycle with the previously selected
cycles is a simple path (or a single node) resulting in an increase of the first Betti
number by unity for each cycle.

Step 3: Choose a starting node O’, adjacent to O, which has the highest degree.
Repeat a step similar to Step 2, testing each selected cycle for admissibility.
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If the cycle formed on a generator my fails the test, then examine the other
minimal cycles on my if any such cycle exists. If no admissible minimal cycle
can be found on my, then,

Form admissible minimal cycles on the other members incident with O'. If my
does not belong to one of these subsequent cycles, then:

Search for an admissible minimal cycle on my, since the formation of cycles on
other previous members may now have altered the admissibility of this cycle. If
no such cycle can be found, leave m; unused. In this step more than one member
may be left unused.

Step 4: Repeat Step 3 using as starting nodes a node adjacent to O and/or O’, having
the highest degree. Continue the formation of cycles until all the nodes of S have
been tested for cycle selection. If all the members have not been used, select the
shortest admissible cycle available for an unused member as generator. Then test
the minimal cycles on the other unused members, in case the formation of the
longer cycle has altered the admissibility. Each time a minimal cycle is found to
be admissible, add to C' and test all the minimal cycles on the other unused
members again. Repeat this process, forming other shortest admissible cycles on
unused members as generators, until S is re-formed and a subminimal cycle basis
has been obtained.

Both of the above two algorithms are order-dependent, and various starting
nodes may alter the result. The following algorithm is more flexible and less
order-dependent, and in general leads to the formation of shorter cycle bases.

Algorithm 3 (Kaveh [21])

Step 1: Generate as many admissible cycles of length 3 as possible. Denote the
union of the selected cycles by C".

Step 2: Select an admissible cycle of length 4 on an unused member. Once such a
cycle C,,; is found, check the other unused members for possible admissible
cycles of length 3. Again select an admissible cycle of length 4 followed by the
formation of possible 3-sided cycles. This process is repeated until no admissible
cycles of length 3 and 4 can be formed. Denote the generated cycles by C™.

Step 3: Select an admissible cycle of length 5 on an unused member. Then check the
unused members for the formation of 3-sided admissible cycles. Repeat Step
2 until no cycle of length 3 or 4 can be generated. Repeat Step 3 until no cycle of
length 3, 4 or 5 can be found.

Step 4: Repeat similar steps to Step 3, considering higher-length cycles, until
b(S) admissible cycles forming a subminimal cycle basis are generated.

Remark. The cycle basis C formed by Algorithms 1-3 can further be improved by
exchanging the elements of the selected basis. In each step of this process, a shortest
cycle Cg independent of the cycles of C\C; is replaced by C; if L(C/i) < L(C)). This
process is repeated fori = 1, 2, ..., by(S).

This additional operation increases the computational time and storage, and its
use is recommended only when the formation of minimal cycle basis is required.
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Algorithm 4 (Horton [27])

Step 1: Find a minimum path P(n;, n;) between each pair of nodes n; and n;.

Step 2: For each node n, and member m; = (ny, n;), generate the cycle having m,
and ny as P(ny,n;) + P(ny,n;) + (n;,n;) and calculate its length. Degenerate cases
in which P(ny, n;) and P(ny, n;) have nodes other than ny in common, can be
omitted.

Step 3: Order the cycles by their weight (or length).

Step 4: Use the Greedy Algorithm, to find a minimal cycle basis from this set of
cycles. This algorithm is given in in Kaveh [15, 20].

A simplified version of the above Algorithm can be designed as follows:

Step 1: Form a spanning tree of S rooted from an arbitrary node, and select its
chords.

Step 2: Take the first chord and form N(S) — 2 minimal cycles, each being formed
on the specified chord containing a node of S (except the two end nodes of this
chord).

Step 3: Repeat Step 2 for the other chords, in turn, until [M(S) — N(S) + 1] x [N
(S) — 2] cycles are generated. Repeated and degenerate cycles should be
discarded.

Step 4: Order the cycles in ascending magnitude of their lengths.

Step 5: Using the above set of cycles, employ the Greedy Algorithm to form a
minimal cycle basis of S.

The main contribution of Horton’s Algorithm is the limit imposed on the
elements of the cycle-set used in the Greedy Algorithm. The use of matroids and
the Greedy Algorithm, has been suggested by Kaveh [15], and they have been
employed by Lawler [28] and Kolasinska [29].

2.4.3 Examples

Example 1. Consider a planar graph S, as shown in Fig. 2.12, for which b;(S)
= 18—11 + 1 = 8. Using Algorithm 3, the selected basis consists of four cycles of
length 3, three cycles of length 4 and one cycle of length 5, as follows:

Ci =(1,2,3),C, = (1,8,9),C3 = (2,6,3),Cs = (2,5,6),Cs = (1,4,5,2),
Co = (1,7,5,2),C; = (8,6,2,1),Cs = (10,8,6,3,11)

The total length of the selected basis is L(C) = 29, which is a counter example
for minimality of a mesh basis, since, for any such basis of S, L(C) > 29.

Example 2. In this example, S is the model of a space frame, considered as
S = ﬁjlsi, where a typical S; is depicted in Fig. 2.13a. For S; there are 12 members

joining eight corner nodes, and a central node joined to these corner nodes.
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Fig. 2.12 A planar graph S

Fig. 2.13 A space frame b
S. (a) A typical S; (i = 1,

..., 27). (b) S with some

omitted members

The model S is shown in Fig. 2.13b, in which some of the members are omitted for
clarity in the diagram. For this graph, b(S) = 270.

The selected cycle basis using any of the algorithms consists of 270 cycles of
length 3, forming a minimal cycle basis of S. For Algorithm 3, the use of different
starting nodes leads to a minimal cycle basis, showing the capability of this method.

Example 3. S is a planar graph with b;(S) =9, as shown in Fig. 2.14. The
application of Algorithm 3 results in the formation of a cycle of length 3 followed
by the selection of five cycles of length 4. Then member {1, 6} is used as the
generator of a six-sided cycle C; = (1,2,3,4,5,6,1). Member {2, 10} is then
employed to form a seven-sided cycle Cg = (2,11,12,13,14,15,10,2), followed
by the selection of a five-sided cycle Cy = (10,5,4,3,2,10). The selected cycle basis
has a total length of L(C) = 41, and is not a minimal cycle basis. A shorter cycle
basis can be found by Algorithm 4 consisting of one three-sided and five four-sided
cycles, together with the following cycles,

C; =(1,2,10,5,6,1),Cs = (2,3,4,5,10,2) and
Co = (2,11,12,13,14, 15, 10,2),
forming a basis with the total length of 40. However, the computation time and

storage for Algorithm 3 is far less than that of Algorithm 4, as compared in
Ref. [30].



2.4 Force Method for the Analysis of Frame Structures 69

Fig. 2.14 A planar graph S 8
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2.4.4 Optimal and Suboptimal Cycle Bases

In what follows, a direct method and an indirect approach, which often lead to the
formation of optimal cycle bases, are presented. Much work is needed before the
selection of an optimal cycle basis of a graph becomes feasible.

2.4.4.1 Suboptimal Cycle Bases; A Direct Approach

Definition 1. An elementary contraction of a graph S is obtained by replacing a
path containing all nodes of degree 2 with a new member. A graph S contracted to a
graph S’ is obtained by a sequence of elementary contractions. Since in each
elementary contraction k nodes and k members are reduced, the first Betti number
does not change in a contraction, i.e. b;(S) = b(S'). The graph S is called homeo-
morphic to §’, Fig. 2.15.

This operation is performed in order to reduce the size of the graph and also
because the number of members in an intersection of two cycles is unimportant; a
single member is enough to render C; N C; nonempty, and hence to produce a
non-zero entry in CC".

Definition 2. Consider a member m; of a graph S. On this member, p minimal
cycles of length q can be generated. P is called the incidence number and q is
defined as the cycle length number of m;. In fact, p and q are measures assigned to a
member to indicate its potential as a member in the elements of a cycle basis. In the
process of expansion for cycle selection, an artificial increase in p results in the
exclusion of this element from a minimal cycle, keeping the number of overlaps as
small as possible.

Space graphs need special treatment. For these graphs, when a member has
p = 1, then the next shortest length cycles with ' = q + 1(I being the next smallest
possible integer) are also considered. Denoting the number of such cycles by p/, the
incidence number and cycle length number for this type of member are taken as,



70 2 Optimal Force Method: Analysis of Skeletal Structures

Fig. 2.15 S and its a

contracted graph §'. (a)

S. (b) § b
o=p+1 and 15 = (a+pq)/(1+p), (2.62)

respectively. The end nodes of the considered member are j and k.

Definition 3. The weight of a cycle is defined as the sum of the incidence numbers
of its members.

Algorithm A

Step 1: Contract S into S’, and calculate the incidence number (IN) and cycle length
number (CLN) of all its members.

Step 2: Start with a member of the least CLN and generate a minimal weight cycle
on this member. For members with equal CLNs, the one with the smallest IN
should be selected. A member with these two properties will be referred to as “a
member of the least CLN with the smallest IN™.

Step 3: On the next unused member of the least CLN with the smallest IN, generate
an admissible minimal weight cycle. In the case when a cycle of minimal weight
is rejected due to inadmissibility, the next unused member should be considered.
This process is continued as far as the generation of admissible minimal weight
cycles is possible. After a member has been used as many times as its IN, before
each extra usage, increase the IN of such a member by unity.

Step 4: On an unused member of the least CLN, generate one admissible cycle of
the smallest weight. This cycle is not a minimal weight cycle, otherwise it would
have been selected at Step 3. Such a cycle is called a subminimal weight cycle.
Again, update the incidence numbers for each extra usage. Now repeat Step
3, since the formation of the new subminimal weight cycle may have altered the
admissibility condition of the other cycles, and selection of further minimal
weight cycles may now have become possible.

Step 5: Repeat Step 4, selecting admissible minimal and subminimal weight cycles,
until b;(S") of these cycles are generated.

Step 6: A reverse process to that of the contraction of Step 1, transforms the selected
cycles of §’ into those of S.

This algorithm leads to the formation of a suboptimal cycle basis, and for many
models encountered in practice, the selected bases have been optimal.
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2.4.4.2 Suboptimal Cycle Bases; an Indirect Approach

Definition 1. The weight of a member in the following algorithm is taken as the
sum of the degrees of its end nodes.

Algorithm B

Step 1: Order the members of S in ascending order of weight. In all the subsequent
steps use this ordered member set.

Step 2: Generate as many admissible cycles of length o as possible, where a is the
length of the shortest cycle of S. Denote the union of the selected cycles by C™.
When a is not specified, use the value o = 3.

Step 3: Select an admissible cycle of length a+1 on an unused member (use the
ordered member set). Once such a cycle C,,, is found, control the other unused
members for possible admissible cycles of length a. Again select an admissible
cycle of length a+1 followed by the formation of possible a-sided cycles. This
process is repeated until no admissible cycles of length a and a+1 can be found.
Denote the generated cycles by C".

Step 4: Select an admissible cycle C,,,; of length a+2 on an unused member. Then
check the unused members for the formation of a-sided cycles. Repeat Step
2 until no cycle of length o or a+1 can be generated. Repeat Step 3 until no
cycles of length a, a+1 or a+2 can be found.

Step 5: Take an unused member and generate an admissible cycle of minimal length
on this member. Repeat Steps 1, 2 and 3.

Step 6: Repeat steps similar to that of Step 4 until b;(S) admissible cycles, forming a
suboptimal cycle basis, are generated.

Using the ordered member set affects the selection process in two ways:

1. Generators are selected in ascending weight order, hence increasing the possi-
bility of forming cycles from the dense part of the graph. This increases the
chance of cycles with smaller overlaps being selected.

2. From cycles of equal length formed on a generator, the one with smallest total
weight (sum of the weights of the members of a cycle) is selected.

The cycle bases generated by this algorithm are suboptimal; however, the results
are inferior to those of the direct method A.

Remark. Once a cycle basis C is formed by Algorithm A or Algorithm B, it can
further be improved by exchanging the elements of C. In each step of this process, a
cycle Cy is controlled for the possibility of being exchanged by ring sum of Cy and a
combination of the cycles of C\Cy, in order to reduce the overlap of the cycles. The
process is repeated until no improvement can be achieved. This additional opera-
tion increases the computational time and storage, and should only be used when
the corresponding effort is justifiable, e.g. this may be the case when a non-linear
analysis or a design optimisation is performed using a fixed cycle basis.
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24.5 Examples

In this section, examples of planar and space frames are studied. The cycle bases
selected by Algorithms A and B are compared with those developed for generating
minimal cycle bases (Algorithms 1-4). Simple examples are chosen, in order to
illustrate clearly the process of the methods presented. The models, however, can be
extended to those containing a greater number of members and nodes of high
degree, to show the considerable improvements to the sparsity of matrix CC".

Example 1. Consider a space frame as shown in Fig. 2.16a with the corresponding
graph model S as illustrated in Fig. 2.16b. For this graph b;(S) =12, and therefore
12 independent cycles should be selected as a basis. Algorithm B selects a minimal
cycle basis containing the following cycles,

C = (17 2, 3)’C2 - (la 2, 5)’C3 - (17 374)7C4 - (la 5, 4)’ Cs = (27 3,6, 7)’

C6 = (374777 8)’ C7 = (4a Sa 87 9)’ C8 = (6777 87 9)’ C9 = (75 87 lla 12)’

Cio =(6,7,10,11),Cy2 = (9,8,12,13),Cy, = (10,11, 12,13)

which corresponds to:

x(C)=4x3+8x4=44,
and

x(CC') =12 +2 x 23 = 58.

Using Algorithm A leads to the formation of a similar basis, with the difference
that C;; = (6,9,10,13) is generated in place of Cg = (6, 7, 8, 9), corresponding to:

x(C) =4x3+8x4=44

X(C’C") — 1242 x20=52.

The CLNs and Ins of the members used in this algorithm are illustrated in
Fig. 2.16b.

Example 2. In this example, S is a space structure with b;(S) = 33, as shown in
Fig. 2.17a. Both Algorithms 3 and A select 33 cycles of length 4, i.e. a minimal
cycle basis with y(C) = 4 x 33 = 132 is obtained.

The basis selected by Algorithm 3 contains (in the worst case) all four-sided
cycles of S except those which are shaded in Fig. 2.17a, with x(CC") = 233.
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Fig. 2.16 A space frame, and CLNs and Ins of its members. (a) A space structure. (b) The graph
model S of the structure

Fig. 2.17 Minimal and suboptimal cycle bases of S. (a) A minimal cycle basis. (b) A suboptimal
cycle basis

Algorithm A selects all three-sided cycles of S except those shaded in Fig. 2.17b,
with ¥(CC") = 190. It will be noticed that, for structures containing nodes of higher
degrees, considerable improvement is obtained by the use of Algorithm A.

Example 3. Consider a space frame as shown in Fig. 2.18, for which b(S) = 10.
The minimal cycle basis selected by Algorithm 3 consists of the following cycles,

Ci =(1,2,3),C, = (4,5,6),C (7 8,9),Cs = (10,11, 12),
Cs = (1,2,5,4) =(2,3,6, ) = (4,5,8,7).Cs = (5,6,9,8),
Co = (7,8,11, 10), c10 =(8,9,12, 11),

corresponding to  y(C) =4 x3+6x4=36 and y(CC")=10+2
0+0+0+2+3+3+4+3+4]=10+2 x 19 =48.

However, the following non-minimal cycle basis has a higher y(C), and leads to
a more sparse CC' matrix. The selected cycles are as follows,
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Fig. 2.18 A space frame S

C =(1,2,3),C, = (1,2,5,4),C5 = (2,3,6,5),Cs = (1,3,6,4),
Cs = (4,5,8,7),C6 = (5,6,9,8),C7 = (4,6,9,7),Cs = (7,8,11, 10),
Co = (8,9,12,11),Cyo = (10,11, 12),

for which %(C’) =2 x 3 + 8 x 4 = 38 corresponding to %(C'C') = 10 + 2
T+2+3+1+2+3+1+2+2]=10+2 x 16 =42.

Therefore, the idea of having an optimal cycle basis in between minimal cycle
bases is incorrect.

Example 4. Consider the skeleton of a structure S, comprising of six flipped flags,
as shown in Fig. 2.19a, for which b,(S) = 6. After contraction, S’ is obtained as
illustrated in Fig. 2.19b. Obviously, this is a planar graph. The CLNs for the
members are 3 and IN for member (1, 2) is 6 and for the remaining members it is
equal to 1., Algorithm 3 selects a minimal cycle basis for S', consists of six 3-sided
cycles, corresponding to:

x(C)=6x3=18 and ¥(CC")=6+2[0+1+2+3+4+5]=6+2x15=36

However, the following non-minimal cycle basis has a higher y(S’), and leads to
a lower sparsity, x(C'C"):

Cl = (1733234)7C2 = (1,4,2,5),C3 = (17273)7C4 = (17276)»
Cs = (1,6,2,7),Cs = (1,7,2,8).

For this basis, x(C") = 4 x 4 + 2 x 3 = 22, corresponding to y(C'C") = 6 +2
[0+1+1+1+14+1]=6+2 x5 = 16. After the back transformation from S’
to S, we have y(C) =4 x 6 + 2 x 4 = 32, corresponding to (CC") = 6 + 2
O+1+1+1+1+1]=16.
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2.4.6 An Improved Turn Back Method for the Formation
of Cycle Bases

Fig. 2.19 A flipped flag a b
before and after contraction.
(@) S. (b) S

5

In this section, the combinatorial Turn-back method of Kaveh [15] is improved to
obtain shorter cycle bases. This method covers all the counter examples, known for
the minimality of the selected cycle bases.

Step 1: Generate an SRT rooted from an arbitrary node O. Identify its chords, and
order them according to their distance numbers from O.

Step 2: Select the shortest length cycle of the graph on a chord and add this chord
(generator) to the tree members. Repeat this process to all the chords, forming
cycles of the least length containing the tree members and the previously used
chords only. The selected cycles are all admissible, i.e. the addition of each cycle
increases the first Betti number of the expanded part of the graph by unity. Store
these cycles in C.

Step 3: Form all the new cycles of the same length on the remaining chords,
allowing the use of more than one unused chords in their formation.

Step 4: Control the cycles formed in Step 3 to find only one cycle having a
generator, which is in none of the other connected cycles formed in Step
3. When such a chord is found, add the corresponding cycle to C and include
its generator in the tree members. Repeat this control until no such a cycle can be
found.

Step 5: Select a cycle of the next higher length in the graph containing only one
chord. Add the selected cycle to C and its generator to the tree members.

Step 6: Control the cycles formed in Step 3 to find a cycle containing only one
unused chord. Add such a cycle to C and add its chord to the tree members.
Repeat this control until no cycle of this property can be found.

Step 7: Repeat Step 4.

Step 8: Repeat Steps 5 and 6 and continue this repetition with the same length until
no cycle in Step 5 can be found.

Step 9: Repeat Steps 3 to 8, until by (S) cycles forming a cycle basis is included in C.
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Fig. 2.20 Graph S and the 1 5 9 13 1
selected SRT o=
4 8 12 16 4
3 A 7 11 15 A 3
) 6 10 14 5
1 5 = 9 13 1

2.4.7 Examples

Example 1. A graph is considered in the form of the 1-skeleton of a torus-type
structure, Fig. 2.20. An SRT is selected, as shown in bold lines. The cycles selected
in Step 2 are given in the following:

C= {(17276>7 (17475)7 <17576)7 <l>2> 13)7(1747 16); (15 13, 16), (2a3a7)a
(2,6,7),(2,3,14),(2,13,14),(4,5,8), (4,15,16), (5,6, 10),
(5,97 10), (57879)7 (12, 13, 16)7 (117 12, 16), (11, 15, 16)}.

The execution of Step 3 results in the following cycles:

(3,7,8),(3,4,8),(7,11,12),(7,8,12),(8,9, 12), (9,13, 14), (9, 10, 14),
(10, 14, 15), (10, 11, 15), (9, 12, 13), (3, 14, 15), (3,4, 15).

Twelve cycles are generated, increasing the first Betti number by twelve. The
control of Step 4, leads to generators {10, 11} and {7, 11} corresponding to the
cycles (10, 11, 15) and (7, 11, 12), respectively. Thus no cycle is selected.

In Step 5, a cycle of length 4 containing an unused chord is formed. On {3, 4},
cycle (1, 2, 3, 4) is generated and added to C. Then in Step 6, the following cycles
are added to C:

(3,4,8) for {3,8},(3,7,8) for {7,8}, (3,4, 15) for {3,15}, (3, 14, 15) for {14, 15}.
In Step 7 no cycle is found, but in Step 8, the execution of Step 5 leads to cycle

(1,5,9, 13) on {9, 13}, and Step 6 leads to the following cycles completing C, and
forming a minimal cycle basis of S:
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Fig. 2.21 A space graph
and the selected SRT 1 6 11 16 21

- 26
10 15 20 25

5 30
9 14 19 24

4 29
8 13 18 23

3 28
7 12 17 22

2 27

1 6 1 16 21 26

(9,12,13) for {9,12}, (9,13, 14) for {9, 14}, (8,9, 12) for
{8,12},(7,8,12) for {7,12}, (7, 11, 12)for {7, 11}, (9, 10, 14) for {10, 14},
(10, 14,15) for {10, 15},and (10, 11, 15) for {10, 11}.

Example 2. A space graph is considered as illustrated in Fig. 2.21. An SRT is
selected as shown in bold lines. The application of Step 2, leads to the following
cycle set:

c={(1,2,6,7),(1,5,6,10),(2,3,7,8),(4,5,9,10),(6,7,11,12),(6,10,11,15),

(7,8,12,13),(9,10,14,15),(11,12,16,17),(11,15,16,20),(12,13,17,18),
(14,15,19,20),(21,22,26,27),(21,25,26,30),(22,23,27,28),(24,25,29,30) }.

In Step 3, the following cycles are generated:

(3,4,8,9), (8,9, 13, 14), (13, 14, 18, 19), (16, 17,21,22), (17, 18,22, 23),
(18,19,22,23),(18,19,23,24), (19,20,24,25), (16,20,21,25), (23,24,28,29).

These cycles contain 11 unused chords. The control of Step 4 shows that {3, 4}
and {28, 29} are included in one cycle, and therefore all the chords remain unused.
In the next step, a cycle of length 5 including an unused chord is generated and
added to C. Only with chord {3, 4}, the 5-sided cycle (1, 2, 3,4, 5) is generated, and
in Step 6 the following three-sided cycles are selected:
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a b =11

N N N

1 2

Fig. 2.22 S and two of its SR subtrees
(3,4,8,9),(8,9,13,14),and (13, 14, 18, 19).

Step 7 is carried out and cycle (23, 24, 28, 29) on {28, 29} is found, repetition of
this control leads to cycle (18, 19, 23, 24) on {23, 24}. In the next step, no cycle is
selected. The execution of Steps 3 and 4 in Step 9 results in no cycle.

The execution of Step 5 in Step 9, forms cycle (1, 6, 11, 16, 21, 26) on chord {16,
21}, and the execution of Step 6 leads to the following cycles,

(16,20,21,25) for {20,25}, (19,20,24,25) for {19,24}, (16,17,21,22) for
{17,22},and (17, 18,22, 23) for {18, 23}.

The selected cycles form a minimal cycle basis.

2.4.8 Formation of B, and B; Matrices

In order to generate the elements of a By matrix, a basic structure of S should be
selected. For this purpose a spanning forest consisting of NG(S) SRTs is used,
where NG(S) is the number of ground (support) nodes of S. As an example, for S
shown in Fig. 2.22a, two SR subtrees are generated, Fig. 2.22b.

The orientation assigned to each member of S is from the lower numbered node
to its higher numbered end. For each SR subtree, the orientation is given in the
direction of its growth from its support node.

MATRIX By: This is a 6M(S) x 6NL(S) matrix, where M(S) and NL(S) are the
numbers of members and loaded nodes of S, respectively. If all the free nodes are
loaded, then

NL(S) = N(S) — NG(S),

where NG(S) is the number of support nodes.
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For a member, the internal forces are represented by the components at the lower
numbered end. Obviously the components at the other end can be obtained by
considering the equilibrium of the member.

The coefficients of B can be obtained by considering the transformation of each
joint load to the ground node of the corresponding subtree. [By];; for member i and
node j is given by a 6 X 6 submatrix as,

1 0 0 0 0 0
0 1 0 0 0 0
[Bo]ij . 0 0 1 0 0 0 , (2.63)
0 —Az Ay 1 0 0
Az 0 —Ax 0 1 0
—Ay Ax O 0 0 1]

in which Ax, Ay and Az are the differences of the coordinates of node j with respect
to the lower numbered end of member i, in the selected global coordinate system,
and o is the orientation coefficient defined as:

+1 if member is positively oriented in the tree containing j,

aj; = < —1 if member is negatively oriented in the tree containing j,
0 if member is not in the tree containing node j.

The B, matrix can be obtained by assembling the [By];; submatrices as shown
schematically in the following:

B, e, (2.64)

6M(S)=6NL(S)

MATRIX B: This is a 6M(S) x 6b;(S) matrix, which can be formed using the
elements of a selected cycle basis. For a space structure, six self-equilibrating stress
systems can be formed on each cycle. Consider C; and take a member of this cycle
as its generator. Cut the generator in the neighbourhood of its beginning node and
apply six bi-actions as illustrated in Fig. 2.23.

The internal forces under the application of each bi-action are a self-equilibrating
stress system As for the matrix By, a submatrix [B,];; of B isa 6 x 6 submatrix, the
columns of which show the internal forces at the lower numbered end of member i
under the application of six bi-actions at the cut of the generator j,
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Fig. 2.23 A cycle and the
considered bi-action at a cut

<

] X
Z
M1 0 0 0 0 0]
0 1 0 0 0 0
B =g | LYY (2.65)
0 —4z4y 1 0 0
Az 0 —Ax O 1 0
A4y Ax 0 0 0 1]

in which Ax, Ay and Az are the differences of the coordinates X, y and z of the
beginning node of the generator j and the beginning node of the member i. The
orientation coefficient f3;; is defined as:

+1 if member i has the same orientation of the cycle generated on j,

Bij = { —1 if member i has the reverse orientation of the cycle generated on j,
0 if member is not in the cycle whose generator is j.

The pattern of B, containing [B,];; submatrices is shown in the following:

B, - [B1J; (2.66)

i %

] 6M(S)x6b(S)

Subroutines for the formation of By and B, matrices are included in the program
presented in Ref. [19].
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Fig. 2.24 A four by four

planar frame S

7
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and B} B, matrices for S. (a)
Pattern of B;. (b) Pattern of
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Fig. 2.26 A simple space

Fig. 2.25 Patterns of B;
frame S
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Fig. 2.27 Patterns of B, a b _
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Example 1. A four by four planar frame is considered as shown in Fig. 2.24.

The patterns of B; and B! B, formed on the elements of the cycle basis selected
by any of the methods of the previous section are depicted in Fig. 2.25,
corresponding to y(B;) = 241 and y(B|B;) = 388.

Example 2. A one-bay three-storey frame is considered as shown in Fig. 2.26.

The patterns of B; and B{B; matrices formed on the elements of the cycle basis
selected by any of the graph theoretical algorithms of the previous Section are
shown in Fig. 2.27, corresponding to y(B;) = 310 and y(B{B,) = 562.

Once By and B, are computed, the remaining steps of the analysis are the same as
those presented in Sect. 2.3.6. The interested reader may also refer to standard
textbooks such as those of McGuire and Gallagher [31], Przemieniecki [32], or
Pestel and Leckie [33] for further information.

2.5 Generalized Cycle Bases of a Graph

In this section, S is considered to be a connected graph. For y(S) = aM(S) +
bN(S) + cyo(S), the coefficients b and c are assumed to be integer multiples of
the coefficient a > 0. Only those coefficients given in Table 2.1 are of interest.
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Fig. 2.28 Examples of y-trees (a) y(S)=3M —3N+3. (b) y(S)=M — 2N + 3.
©yS)=M—-3N+6

Fig. 2.29 Structures satistying y(T) =0 which are not rigid. (a) y(S) =M — 2N + 3.
b)yS) =M -3N+6

2.5.1 Definitions

Definition 1. A subgraph S; is called an elementary subgraph if it does not contain
a subgraph S; C S; with y(S;) > 0. A connected rigid subgraph T of S containing all
the nodes of S is called a y-tree if y(T) = 0. For y(S;) = b,(S;), a y-tree becomes a
tree in graph theory.

Obviously a structure whose model is a y-tree is statically determinate when
v(S) describes the degree of static indeterminacy of the structure. The ensuing stress
resultants can uniquely be determined everywhere in the structure by equilibrium
only. Examples of y-trees are shown in Fig. 2.28.

Notice that y(T) = 0 does not guarantee the rigidity of a y-tree. For example, the
graphs models depicted in Fig. 2.29 both satisfy y(T) = 0; however, neither is rigid.

Definition 2. A member of S — T is called a y-chord of T. The collection of all
y-chords of a y-tree is called the y-cotree of S.

Definition 3. A removable subgraph S; of a graph S, is the elementary subgraph
for which y(S; — S;) = y(Sj), i.e. the removal of S; from S; does not alter its DSI. A
y-tree of S containing two chosen nodes, which has no removable subgraph is called
a y-path between these two nodes.

As an example, the graphs shown in Fig. 2.30 are y-paths between the specified
nodes ng and n,.

Definition 4. A connected rigid subgraph of S with y(Cy) = a, which has no
removable subgraph is termed a y-cycle of S. The total number of members of
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0

n
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ng ng

Fig. 2.30 Examples of y-paths. (@) y(S)=aM — N+ 1). (b) y(S)=M — 2N + 3.
©yS)=M-3N+6

a b c %;
Fig. 2.31 Examples of y-cycles. (a) y(S)=aM — N+ 1). (b) y(S)=M — 2N + 3.
©yS)=M—-3N+6

Fig. 2.32 A planar truss S, and the elements of a GCB of S. (a) A planar truss S. (b) A generalized
cycle basis of S

Cy, denoted by L(Cy), is called the length of C. Examples of y-cycles are shown in
Fig. 2.31.
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Definition 5. Let m; be a y-chord of T. Then T U m; contains a y-cycle C; which is
defined as a fundamental y-cycle of S with respect to T. Using the Intersection
Theorem of Sect. 2.2.2, it can easily be shown that,

y(TUm;) =0+ (a+2b+c)— (2b+c) =a,

indicating the existence of a y-cycle in T U m;. For a rigid T, the corresponding
fundamental y-cycle is also rigid, since the addition of an extra member between the
existing nodes of a graph cannot destroy the rigidity. A fundamental y-cycle can be
obtained by omitting all the removable subgraphs of T U m;.

Definition 6. A maximal set of independent y-cycles of S is defined as a general-
ized cycle basis (GCB) of S. A maximal set of independent fundamental y-cycles is
termed a fundamental generalized cycle basis of S. The dimension of such a basis is
given be n(S) = y(S)/a.

As an example, a generalized cycle basis of a planar truss is illustrated in
Fig. 2.32.

Definition 7. A generalized cycle basis-member incidence matrix C is an
n(S) X M matrix with entries — 1, 0 and +1, where ¢;; = 1 (or — 1) if y-cycle C;
contains positively (or negatively) oriented member mj, and c;; = 0 otherwise. The
generalized cycle adjacency matrix is defined as D which is an n(S) x 1n(S) matrix
when undirected y-cycles are considered; then the negative entries of C become
positive.

2.5.2 Minimal and Optimal Generalized Cycle Bases

A generalized cycle basis C = {C,,C,, ...,Cys)} is called minimal if it corresponds
to a minimum value of:

L(C) =) L(C). (2.67)

Obviously, x(C) = L(C) and a minimal GCB can be defined as a basis which
corresponds to minimum ¥(C). A GCB for which L(C) is near minimum is called a
subminimal GCB of S.

A GCB corresponding to maximal sparsity of the GCB adjacency matrix is
called an optimal generalized cycle basis of S. If x(CC") does not differ consider-
ably from its minimum value, then the corresponding basis is termed suboptimal.

The matrix intersection coefficient o;(C) of row i of GCB incidence matrix C is
the number of row j such that:
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Fig. 2.33 A planar truss S
and its associate graph A(S)

@jEfi+Li+2,..,0S)},
(b) C; N Cj # D, i.e. there is at least one k such that the column k of both y-cycles
C; and C; (rows i and j) contain non-zero entries.

Now it can be shown that:

n(s)-1
1(CC) =n(S)+2 Y 6(C). (2.68)

i=1

This relationship shows the correspondence of a GCB incidence matrix C and
that of its GCB adjacency matrix. In order to minimize y(CC"), the value of
n(s)—1

Z Gj(C) should be minimized, since n(S) is a constant for a given structure S,
i=1
i.e. y-cycles with a minimum number of overlaps should be selected.

2.6 Force Method for the Analysis of Pin-Jointed Planar
Trusses

The methods described in Sect. 2.5 are applicable to the selection of generalized
cycle bases for different types of skeletal structures. However, the use of these
algorithms for trusses engenders some problems, which are discussed in Ref.
[34]. In this section, two methods are developed for selecting suitable GCBs for
planar trusses. In both methods, special graphs are constructed for the original
graph model S of a truss, containing all the connectivity properties required for
selecting a suboptimal GCB of S.

2.6.1 Associate Graphs for Selection of a Suboptimal GCB

Let S be the model of a planar truss with triangulated panels, as shown in Fig. 2.33.
The associate graph of S, denoted by A(S), is a graph whose nodes are in a one-to-
one correspondence with triangular panels of S, and two nodes of A(S) are
connected by a member if the corresponding panels have a common member in S.
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Fig. 2.34 S with two
cut-outs and its A(S)

Fig. 2.35 Two different a b - —— —

types of cycles. (a) A type /.//‘X./
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Cj cycle. (b) A type Ciyg s

cycle ///
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If S has some cut-outs, as shown in Fig. 2.34, then its associate graph can still be
formed, provided that each cut-out is surrounded by triangulated panels.

For trusses containing adjacent cut-outs, a cut-out with cut-nodes in its bound-
ary, or any other form violating the above-mentioned condition, extra members can
be added to S. The effect of such members should then be included in the process of
generating its self-equilibrating stress systems.

Theorem A. For a fully triangulated truss (except for the exterior boundary), as in
Fig. 2.33, the dimension of a statical basis y(S) is equal to the number of its internal
nodes, which is the same as the first Betti number of its associate graph, i.e.

Y(S) = Ni(S) = bi[A(S)]. (2.69)
Proof. Let M’ and N’ be the numbers of members and nodes of A(S), respectively.
By definition,

!

N =R(S) -1,

and M' = Mi(S) = M(S) — M(S) = M(S) — Ne(S) = M(S) — IN(S) — Ni(S)1.
Thus:  bi[AS)] =M — N +1=M(S) — [NS) — Ni(S)] —R(S) +1 + 1
=2 — R(S) + M(S) — N(S) + Ni(S).
By Euler’s polyhedron formula, we have:

2 — R(S) + M(S) — N(S) = 0.

Therefore:
For trusses which are not fully triangulated, we have:
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A Cycle of A(S) and the Corresponding y-Cycle of S. In Fig. 2.35a, a triangu-
lated truss and its associate graph, which is a cycle, are shown for which

Y(Si) = Ni = 1 = by [A(S)].

Since C; of A(S) corresponds to one y-cycle of S, it is called a type I cycle,
denoted by C;. A y-cycle of S is shown by continuous lines, and its y-chords are
depicted in dashed lines.

Figure 2.35b shows a truss unit with one cut-out. In general, if a cut-out is an
m-gon, then the completion of the triangulation requires m—3 members. Instead, m
internal nodes will be created, increasing the DSI by m. Hence Eq. 2.68 yields,

Y(S)=m—(m—3)=3,

while: b;[A(S)] = 1.

However, in this case S contains three y-cycles. A y-path P and three y-chords
(dashed lines) are depicted in Fig. 2.35b. Obviously PUm; (i = 1, 2, 3) form three
y-cycles which correspond to a cycle of type Cyy; of A(S). Thus two types of cycles
C; and Cyyy should be recognized in A(S) and an appropriate number of y-cycles will
then be generated.

Algorithm AA

Step 1: Construct the associate graph A(S) of S.

Step 2: Select a mesh basis of A(S), using an appropriate cycle selection algorithm.
For fully triangulated S, Algorithms 1-3 generate cycle bases with three-sided
elements.

Step 3: Select the y-cycles of S corresponding to the cycles of A(S). One y- cycle for
each cycle of type Cj, and three y-cycles for each cycle of type Cyy should be
chosen.

Once a GCB is selected, on each y-cycle one self-equilibrating stress system can
easily be formed. Therefore, a statical basis with localized self-equilibrating stress
systems will be obtained.

Example. Let S be the graph model of a planar truss, as shown in Fig. 2.34, for
which y(S) = 12. For A(S), six cycles of length 6 of type C; and two cycles of
lengths 18 and 26 of type Cyy; are selected. Therefore, the total of 6 + 3 x 2 = 12
y-cycles of S are obtained. On each y-cycle one self-equilibrating stress system is
constructed, and a statical basis consisting of localized self-equilibrating stress
systems is thus obtained.
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2.6.2 Minimal GCB of a Graph

Theoretically a minimal GCB of a graph can be found using the Greedy Algorithm
developed for matroids. This will be discussed in Kaveh [15, 20] after matroids
have been introduced, and here only the algorithm is briefly outlined.

Consider the graph model of a structure, and select all of its y-cycles. Order the
selected y-cycles in ascending order of length. Denote these cycles by a set C. Then
perform the following steps:

Step 1: Choose a y-cycle C; of the smallest length, i.e. L(C;) < L(C;) forall C; € C

Step 2: Select the second y-cycle C, from C — {C;} which is independent of C; and
L(C,) < L(G)) for all y-cycles of C — {C;}.

Step k: Subsequently choose a y-cycle Cy from C — {Cy, C,, ..., C_;} which is
independent of C;, C,, ..., C_; and L(Cy) < L(C)) for all C; & C — {Cy,
Cy, .. ,C 1}

After n(S) steps, a minimal GCB will be selected by this process, a proof of
which can be found in Kaveh [19].

2.6.3 Selection of a Subminimal GCB: Practical Methods

In practice, three main difficulties are encountered in an efficient implementation of
the Greedy Algorithm. These difficulties are briefly mentioned in the following:

1. Selection of some of the y-cycles for some y(S) functions.
2. Formation of all of the y-cycles of S.
3. Checking the independence of y-cycles.

In order to overcome the above difficulties, various methods are developed. The
bases selected by these approaches correspond to very sparse GCB adjacency
matrices, although these bases are not always minimal.

Method 1. This is a natural generalization of the method for finding a fundamental
cycle basis of a graph, and consists of the following steps:

Step 1: Select an arbitrary y-tree of S, and find its y-chords.
Step 2: Add one y-chord at a time to the selected y-tree to form fundamental
y-cycles of S with respect to the selected y-tree.

The main advantage of this method is the fact that the independence of y-cycles
is guaranteed by using a y-tree. However, the selected y-cycles are often quite long,
corresponding to highly populated CCB adjacency matrices.

Method 2. This is an improved version of Method 1, in which a special y-tree has
been employed and each y-chord is added to y-tree members after being used for
formation of a fundamental y-cycle.
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Step 1. Select the centre “O” of the given graph. Methods for selecting such a node
will be discussed in Chap. 5.

Step 2: Generate a shortest route y-tree rooted at the selected node O, and order its
y-chords according to their distance from O. The distance of a member is taken
as the sum of the shortest paths between its end nodes and O.

Step 3: Form a y-cycle on the y-chord of the smallest distance number, and add the
used y-chord to the tree members, i.e. form T U m;.

Step 4: Form the second y-cycle on the next nearest y-chord to O, by finding a
y-path in T U m; (not through m,). Then add the second used y-chord m, to T U
m; obtaining T U m; U my,.

Step 5: Subsequently form the kth y-cycle on the next unused y-chord nearest to O,
by finding a y-pathinthe T U m; U mp U ... U my _ ; (not through my). Such a
y-path together with m, forms a y-cycle.

Step 6: Repeat Step 5 until n(S) of y-cycles are selected.

Addition of the used y-chords to the y-tree members leads to a considerable
reduction in the length of the selected y-cycles, while maintaining the simplicity of
the independence check.

In this algorithm, the use of an SRT, orders the nodes and members of the graph.
Such an ordering leads to fairly banded member-node incidence matrices. Consid-
ering the columns corresponding to tree members as independent columns, a base is
effectively selected for the cycle matroid of the graph, Kaveh [34].

Method 3. This method uses an expansion process, at each step of which one
independent y-cycle is selected and added to the previously selected ones. The
independence is secured using an admissibility condition defined as follows.

A y-cycle Cy,; added to the previous selected y-cycles C* = C, UC, U ... U
Cy is called admissible if,

Y(C*UCr) =v(CY) +a, (2.70)

where “a” is the coefficient defined in Table 2.1. The algorithm can now be
described as follows.

Step 1: Select the first y-cycle of minimal length C;.

Step 2: Select the second y-cycle of minimal length C, which is independent of C;,
i.e. select the second admissible y-cycle of minimal length.

Step k: Subsequently, find the kth admissible y-cycle of minimal length. Continue
this process until n(S) independent y-cycles forming a subminimal GCB are
obtained.

A y-cycle of minimal length can be generated on an arbitrary member by
adding a y-path of minimal length between the two end nodes of the member (not
through the member itself). The main advantage of this algorithm is avoiding the
formation of all y-cycles of S and also the independence control, which becomes
feasible by graph theoretical methods.


http://dx.doi.org/10.1007/978-3-319-02964-1_5

2.7 Algebraic Force Methods of Analysis 91

The above methods are elaborated for specific y(S) functions in subsequent
sections, and examples are included to illustrate their simplicity and efficiency.

2.7 Algebraic Force Methods of Analysis

Combinatorial methods for the force method of structural analysis have been
presented in previous sections. These methods are very efficient for skeletal struc-
tures and in particular for rigid-jointed frames. For general structures, the underly-
ing graph of self-equilibrating stress systems will be discussed in Chaps. 6 and 7.
Algebraic methods can be formulated in a more general form to cover different
types of structures such as skeletal structures and finite element models. The main
drawbacks of pure algebraic methods are the larger storage requirements, and the
higher number of operations.

2.7.1 Algebraic Methods

Consider a discrete or discretized structure S, which is assumed to be statically
indeterminate. Let r denote the m-dimensional vector of generalized independent
element (member) forces, and p the n-vector of nodal loads. The equilibrium
conditions of the structure can then be expressed as,

Ar =p, (2.71)

where A is an n X m equilibrium matrix. The structure is assumed to be rigid, and
therefore, A has a full rank, i.e. t = m—n > 0, and rank A = n.
The member forces can be written as,

r= B()p + qu, (272)

where By is an m X n matrix such that ABis ann X n identity matrix, and B, is an
m X t matrix such that AB; is an n X t zero matrix. B, and B, always exist for a
structure and in fact many of them can be found for a structure. B, is called a self-
stress matrix as well as null basis matrix. Each column of B; is known as a null
vector. Notice that the null space, null basis and null vectors correspond to
complementary solution space, statical basis and self-equilibrating stress systems,
respectively, when S is taken as a general structure.
Minimizing the potential energy requires that r minimize the quadratic form,
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%rtFmr, (2.73)

subject to the constraint as in Eq. 2.71. F, is an m X m block diagonal element
flexibility matrix. Using Eq. 2.72, it can be seen that q must satisfy the following
equation.

(B{FmB)q = —B{F,,Bop, (2.74)

where B{F, B, = G is the overall flexibility matrix of the structure. Computing the
redundant forces q from Eq. 2.49, r can be found using Eq. 2.9. The structure of
G is again important and its sparsity, bandwidth and conditioning govern the
efficiency of the force method. For the sparsity of G one can search for a sparse
B, matrix, which is often referred to as the sparse null basis problem.

Many algorithms exist for computing a null basis B; of a matrix A. For the
moment let A be partitioned so that,

AP = [A}, A, (2.75)

where A; is n X n and non-singular, and P is a permutation matrix that may be
required in order to ensure that A is non-singular. One can write:

(2.76)

-1
B, :P[—All Az}

By simple multiplication it becomes obvious that:

—1
AB; = [A, Az]{_AII AZ} =0.

A permutation P that yields a non-singular A; matrix can be chosen purely
symbolically, but this says nothing about the possible numerical conditioning of A
and the resulting B;.

In order to control the numerical conditioning, pivoting must be employed.
There are many such methods based on various matrix factorizations, including
the Gauss-Jordan elimination, QR, LU, LQ and Turn-back method. Some of these
methods are briefly studied in the following:

Gauss-Jordan Elimination Method. In this approach one creates an n x n iden-
tity matrix I in the first columns of A by column changes and a sequence of n pivots.
This procedure can be expressed as,

GuGy_i ...G2G AP = [I,M], (2.77)
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where G; is the ith pivot matrix and P is an m X m column permutation matrix
(so P' = P) and I is an nxn identity matrix, and M is an n x t matrix. Denoting
Gnanl . G2G1 by G we have,
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or
which can be regarded as Gauss-Jordan factorization of A, and:
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Bozﬁ{ﬂ and Blzﬁ[_m (2.80)

Example 1. The four by four planar frame of Fig. 2.24 is reconsidered. The
patterns of B; and B{B; formed by the Gauss-Jordan elimination method are
depicted in Fig. 2.36, corresponding to y(B;) = 491 and y(B|B,) = 1342.

Example 2. The three-story frame of Fig. 2.24 is re-considered, and the Gauss-
Jordan elimination method is used. The patterns of B; and B{B; matrices formed
are shown in Fig. 2.37, corresponding to x(B;) = 483 and x(B\B;) = 1592.

LU Decomposition Method. Using the LU decomposition method, one obtains
the LU factorization of A as,

PA=LU and UP=[U},U,, (2.81)

P and P are again permutation matrices of ordern x nand m x m, respectively.
Now B and B, can be written as:

—1y —1 —1
Bozﬁ{Ulﬁ P] and BI:_{‘UII Uﬂ. (2.82)

Example 1. The four by four planar frame of Fig. 2.24 is re-considered. The
patterns of B; and B{B; formed by the LU factorization method are depicted in
Fig. 2.38. The sparsity for the corresponding matrices are y(B;) = 408 and
x(BiB;) = 1248.

Example 2. The three-storey frame of Fig. 2.24 is re-considered, and the LU
factorization method is used. The patterns of B, and B|B; matrices formed are
shown in Fig. 2.39, corresponding to x(B;) = 504 and y(B{B;) = 1530.

QR Decomposition Method. Using a QR factorization algorithm with column
pivoting yields,

AP = Q[R(,R;], (2.83)

where P is again a permutation matrix, and R; is an upper triangular matrix of order
n. B; can be obtained as:

1 (2.84)

_np-l
B, =P [ R, Rz} .
Turn-back LU Decomposition Method. Top¢u developed a method, the
so-called Turn-back LU procedure, which is based on LU factorization and often
results in highly sparse and banded B; matrices. Heath et al. [35] adopted this
method for use with QR factorization. Due to the efficiency of this method, a brief

description of their approach will be presented in the following.
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Write the matrix A = (a,a,,

...,a,) by columns. A start column is a column
such that the ranks of (a;, a,, .

... as_1)and (a;, ay, . . ., a5) are equal. Equivalently, a
is a start column if it is linearly dependent on lower-numbered columns. The
coefficients of this linear dependency give a null vector whose highest numbered

non-zero is in position s. It is easy to see that, the number of start columns is
m—n = t, the dimension of the null space of A.
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The start column can be found by performing a QR factorization of A, using
orthogonal transformations to annihilate the subdiagonal non-zeros. Suppose that in
carrying out the QR factorization we do not perform column interchanges but
simply skip over any columns that are already zero on and below the diagonal.
The result will then be a factorization of the form:

A=Q (2.85)

° il

The start columns are those columns where the upper triangular structure jogs to
the right; that is, a; is a start column if the highest non-zero position in column s of
R, is no larger than the highest non-zero position in earlier columns of R.

The Turn-back method finds one null vector for each start column ag, by “turning
back” from column s to find the smallest k for which columns ag, a_, ..., a,_j are
linearly dependent. The null vector has a non-zero only in position s-k throughs.
Thus if k is small for most of the start columns, then the null basis will have a small
profile. Notice that the turn-back operates on A, and not on R. The initial QR
factorization of A is used only to determine the start columns, and then discarded.

The null vector that Turn-back finds from start column as may not be non-zero in
position s. Therefore, Turn-back needs to have some way to guarantee that its null
vectors are linearly independent. This can be accomplished by forbidding the left-
most column of the dependency for each null vector from participating in any later
dependencies. Thus, if the null vector for start column ag has its first non-zero in
position s-k, every null vector for a start column to the right of a; will be zero in
position s-k.

Although the term “Turn-back” is introduced in Ref. [7], the basic idea had also
been used in Refs. [36]. Since this correspondence simplifies the understanding of
the Turn-back method, it is briefly described in the following.

For the Algorithm 1 of Sect. 2.3, the use of an SRT orders the nodes and
members of the graph simultaneously, resulting in a fairly banded member-node
incidence matrix B. Considering the columns of B corresponding to tree members
as independent columns, effectively a cycle is formed on each ordered chord (start
column) by turning back in B and establishing a minimal dependency, using the tree
members and previously used chords. The cycle basis selected by this process forms
a base for the cycle matroid of the graph, as it is described in Kaveh [37]. Therefore,
the idea used in Algorithm 1 and its generalization for the formation of a general-
ized cycle bases in Ref. [38] seems to constitute a similar idea to that of the
algebraic Turn-back method.

Example 1. The four by four planar frame of Fig. 2.24 is re-considered. The
patterns of B; and B'B; formed by the Turn-back LU factorization method are
depicted in Fig. 2.40, corresponding to y(B;) = 240 and y(B|B;) = 408.
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Example 2. The four by four planar frame of Fig. 2.24 is re-considered, and the
Turn-back LU factorization method is used. The patterns of B; and B} B, matrices
formed are shown in Fig. 2.41, corresponding to x(B;) = 476 and y(B|B;) = 984.

A comparative study of various force methods has been made in Ref. [30].
Many algorithms have been developed for selection of null bases, and the
interested reader may refer to Refs. [38, 39].
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Chapter 3
Optimal Displacement Method of Structural
Analysis

3.1 Introduction

In this chapter, the principles introduced in Chap. 1 are used for the formulation of
the general displacement method of structural analysis. Computational aspects are
discussed and many worked examples are included to illustrate the concepts and
principles being used. In order to show the generality of the methods introduced for
the formation of the element stiffness matrices, the stiffness matrix of a simple
finite element is also derived.

Special attention is paid to the graph theory aspects of the displacement method
for rigid jointed structures, where the pattern equivalence of structural and graph
theory matrices is used. The standard displacement method employs cocycle bases
of structural graph models; however, for general solutions a cutset basis of the
model should be employed. This becomes vital, when solutions leading to well
conditioned stiffness matrices are required. Methods for the selection of such cutset
bases are described in this chapter.

In the last half-century, considerable progress has been made in the matrix
analysis of structures; see for example, Argyris and Kelsey [1], Livesley [2],
McGuire and Gallagher [3], Przemieniecki [4], Zienkiewicz [5], and Kaveh [6,
7]. The topic has been generalized to finite elements, and extended to the stability,
non-linear and dynamic analysis of structures. This progress is due to the simplicity,
modularity and flexibility of matrix methods.

3.2 Formulation

In this section, a matrix formulation using the basic tools of structural analysis—
equilibrium of forces, compatibility of displacements, and force-displacement
relationships—is provided. The notations are chosen from those most often encoun-
tered versions in structural mechanics.

A. Kaveh, Computational Structural Analysis and Finite Element Methods, 101
DOI 10.1007/978-3-319-02964-1_3, © Springer International Publishing Switzerland 2014
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Fig. 3.1 The degrees of freedom of the joints for three structures. (a) A planar truss. (b) A planar
frame. (c) A space frame

3.2.1 Coordinate Systems Transformation

Consider a structure S with M members and N nodes; each node having o degrees of
freedom (DOF). The degree of kinematic indeterminacy (DKI) of S may then be
determined as,

n(S) =aN - p, (3.1)

where B is the number of constraints due to the support conditions. As an example,
n(S) for the planar truss S depicted in Fig. 3.1a is given by n(S) =7 x 2 — 3
= 11, for the plane frame illustrated in Fig. 3.1b, it is calculated as n(S) = 8 x 3
— 4 x 3 =12, and for the space frame shown in Fig. 3.1c, it is calculated as
nes) =12 x 6 — 6 x 6 = 36.

One can also calculate n(S) by simple addition of the degrees of freedom of the
joints of the structure, i.e. for the truss S, n(S) =2 +2+2+2+2+ 1= 11,and
for the planar frame n(S) =4 x 3 =12, and for the space frame
ns) =6 x 6 = 36.

For a structure, the stiffness matrices of the elements should be prepared in a
single coordinate system known as the global coordinate system, in order to be able
to perform the assembling process. However, the stiffness matrices of individual
members are usually written first in coordinate systems attached to the members,
known as local coordinate systems. Therefore a transformation is needed, before
the assembling process. Typical local and global coordinate systems are illustrated
in Fig. 3.2.

A global coordinate system can be selected arbitrarily, however, it may be
advantageous to select this system such that the structure falls in the first quadrant
of the plane, in order to have positive coordinates for the nodes of the structure. On
the other hand, a local coordinate system of a member is so chosen that it has one of
its axes along the member, the second axis lies in its plane of symmetry (if it has
one) and the third axis is chosen such that it results in a right handed coordinate
system.

The transformation from a local coordinate to a global coordinate system can be
performed as illustrated in Fig. 3.3, in which x, y, z is the global system and x5, y»,
7,, often denoted by Xyz, is the local system.
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Fig. 3.3 Transformation from local coordinate system to global coordinate system

For rotation about the y axis the relation between x;, y;, Z; and X, y, zZ can be
expressed as:

X1 cos. 0 sina X
y | = 0 1 0 y . (3.2)
71 —sinat 0 cosa z

Similarly, for rotation about the z; axis X», y», Z, and Xy, y, z; are related by,
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X3 cosp sinf O] [x
y, | = | —sinp cosp O |y, (3.3)
V) 0 O 1 VAl

and for rotation about the x, axis X3, y3, z3 and X, y,, Z, are related as:

X3 1 0 0 X2
y3| =10 cosy siny ||y, (3.4)
73 0 —siny cosy| |z

Combining the above transformations, results in:

(cosacosp) (sinf) (cosPsina)
T = | —(sinasin y 4 cosasinfcosy)  (cosPcosy)  (sinycosa — sinasinfcosy)
—(sinacos y — cosasinfsiny) (—cosfsiny) (cosacosy + sinasinpsiny)
(3.5)
X3 X
where : vs | =1T) |y (3.6)
73 z

The representation of a vector in the local coordinate system I' and the global
coordinate system I are related by:

F=TT. (3.7)
It can easily be proved that T is an orthogonal matrix, i.e.
(1]~ = (17" (3:8)

In the above transformation, y represents the tilt of the member, which is quite
often zero. Thus, T can be simplified as,

cosacosp  sinf}  sinacosf

T = | —cosasinp cosp —sinasinf | . (3.9)
—sina 0 cos

and for the two dimensional case and “a equal to zero”, T reduces to:

T — [cosﬁ sinﬁ} (3.10)

—sinf  cosp

Equation 3.9 can easily be written in terms of the coordinates of the two ends of a
vector. Considering Fig. 3.3b and using simple trigonometry, Eq. 3.9 becomes,



3.2 Formulation 105

xji/L in/L zji/L
T = | —xjiyj/L*L Lx*/L y;zi/L*L |, (3.11)
—Zji/L* 0 in/L*

where:

Xji =X =X Yi=Yj— Vi Zi=1Z —Z
%

L = (ijl +xj21>§and L= (ZJZ1 erjzi +Xj2i) . (3.12)

Notice that T transforms a 3-dimensional vector from a global to a local
coordinate system and T' performs the reverse transformation. However, if the
element forces or element displacements (distortions) consist of p vectors, the block
diagonal matrix with p submatrices should be used. As an example, for a beam
element of a space frame, with each node having six degrees of freedom, the
transformation matrix is a 12 x 12 matrix of the form:

T
T= . (3.13)
T

3.2.2 Element Stiffness Matrix Using Unit Displacement
Method

Consider a general element, as shown in Fig. 3.4, with n member forces,

'm = {1 rz...rn}t, (3.14)
and n member displacements:

U, = {uu. .} (3.13)

A typical force component r; can be found by using the unit displacement

method to be,
= J“ elodV, (3.16)
\%

where ¢; represents the matrix of compatible strains due to a unit displacement in
the direction of 1;, and o is the exact stress matrix due to the applied forces r,,. The
unit displacements can be used in turn for all the points where member forces are
applied, and therefore,
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Fig. 3.4 A general element
with its nodal loads and
nodal displacements

rl’l’ul’l

Iy = JJJ e'odV,
v

where:
— —~ o~ ~ Ot
e = {81 92...8,,}.
For a linear system the total strain,
t
e = {ex ey € ey ys 4, ) -

can be expressed as,

e=bu,

where b is the exact strain due to the unit displacement u

The stress-strain relationship can be written as,

¢ = ybu,
where:
[1—v v \%
\% 1 —v v
v % 1—v
_ E 1-2v
L= 0w —2v)
0
0

Substituting in Eq. 3.17 leads to,

I'2 ,Ll2

I3,U3

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)
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rn = J” £'ybdVuy,, (3.23)
\%

or

rm = KnUp, (3.24)

where:
Ky = J“ e'ybdV, (3.25)
\'%

represents the element stiffness matrix.

The evaluation of the matrix b, representing the exact strain distributions can
often be difficult, if not impossible. Hence in case there is no exact distribution, an
approximate relationship may be used. Usually the matrix b is selected such that it
will satisfy the equations of compatibility at least. Denoting this approximate

matrix by € and using £ = /b\ results in:
ki = J” by b dv. (3.26)
v

This equation will be used for the derivation of the stiffness matrices of a finite
element in Sect. 3.5.1.

As an example, consider a prismatic bar element shown in its local coordinate
system, in Fig. 3.5. According to the definition of such an element, only axial forces
are present.

From the theory of elasticity, the axial strain is expressed as:

Ouy
xx = strain = s 3.27
£ strain = — (3.27)

The displacement uy along the longitudinal axis of the bar can be expressed as:
u = Aix + Ap. (3.28)

From the boundary conditions:

Uy =1uy at x = L. (3.29)

Hence:

A] = L and Az =1uj. (330)

By substitution in Eq. 3.28:
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Fig. 3.5 A bar element in
its local coordinate system i

<

Uy
R e X
i ]
Z
uo= W g (3.31)
Now axial strain can be evaluated as:
ou, 1 1 u
o= 3= —u) =111 ][], (3:32)
The above strain distribution is exact, and
N 1
b=b=—-[-1 +1]. (3.33)

Since a bar element is one dimensional, ¢ is a 1 x 1 matrix defined as:

x =E. (3.34)
Substituting in Eq. 3.26 leads to:
L

1[—-1]E
km:J —{ 1}—[1 1]Adx, (3.35)

o L| 1 ]L

and
EA| 1 -1

K =T [_1 1 } (3.36)

This method will also be used for the derivation of the finite element stiffness
matrices in subsequent sections.
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3.2.3 Element Stiffness Matrix Using Castigliano’s Theorem

In this section, a different approach is described for the formation of element
stiffness matrices, using Castigliano’s theorem. Consider a general element as
shown in Fig. 3.4. Suppose that loads are applied at certain points (specified as
nodes) 1,2, ..., n. Let v; be the displacement of node i along the applied load p;. The
loads are applied in a pseudo-static manner increasing gradually from zero. Assum-

ing a linear behaviour, the work done by an external force p = {py, p2, - - -» Pn}
through the displacement v = {vy, v,, ..., v,} can be written as:
1
WZE(PlVl +Pava+ ... 4 PyVa)- (3.37)

According to the principle of the conservation of energy,
w=0, (3.38)

and therefore:

U=2(pvi +pava+ ...+ PpaVa)- (3.39)

N =

If a small variation is now given to v; while keeping the other displacement
components constant, then the variation of v with respect to v; can be written as:

ou 0 0 0
= p-—l—ﬁw—f- p?Vz—l--..-i- Pn

ov; 2|t Ov; ov; a_vivn' (3:40)

According to Castigliano’s theorem:

ou

=, 3.41
v, P (3.41)
Thus,
0 0 0
P = a—‘i%v1+a—li?vz+...+a—%fvn : (3.42)

or in a matrix form for alli = 1, ..., n, we have:
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(Op1 0Py Opy]
5V1 aVl 8V1
A\
ol e om o, | |y,
D P 2
Sl = |ova oV, ova || . (3.43)
Pn abl abz abn vn
ov, 0V, A

According to definition, the above coefficient matrix forms the stiffness matrix
of the elastic body defined by its n nodes as illustrated in Fig. 3.4.
A typical element of the stiffness matrix kj; is given by:

op;
kij = =—. 3.44
= 3 (3.44)
Using Castigliano’s first theorem:
o (ou 0°U
ki==—|=—) ==—=. 3.45
! aVi <an> aVian ( )
Similarly:
op; 0*U
ki=—==—=—. 3.46
! an an 8vi ( )

Since the order of differentiation should not affect the result for our problems,
we have:

kij = Kji» (3.47)

which is a proof of the symmetry of the stiffness matrices both for a structure and
for an element.

As an example, consider a prismatic bar element as shown in its local coordinate
system, Fig. 3.5. According to the definition of such an element, only axial forces
are present.

The strain energy of this bar can be calculated as:

1 E EA
U= EJ J J Cuendxdydz = = J J J £ dxdydz = TJ ez, dx. (3.48)

On the other hand:
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~ Ouy

SXX aX N

(3.49)

Using Eq. 3.31, by substituting in Eq. 3.48, the strain energy of the bar is
calculated to be:

_EA

U= [0 - 2md + 7. (3.50)
Hence
- _0'U_EA
T L
_ o*u EA
Ky = k4 = - 3.51
=k = oA T L (3:51)
o _OU_EA
“Tow L

Eij = 0 for all other components.
Therefore, the stiffness matrix of a bar element in the selected local coordinate
system is obtained, and:

i) 1 00 -1 0 0][m
) 0 00 0 00||m
Bl _EAl0O 00 0 0 0|
Bl L |-100 1 00| (3:52)
fs 0 00 0 0 0f|5s
s 0 00 0 0 0f|u

3.2.4 The Stiffness Matrix of a Structure

Let p and v represent the joint loads and joint displacements of a structure. Then the
force-displacement relationship for the structure can be expressed as,

p =Ky, (3.53)

where K is a aN x oN symmetric matrix, known as the stiffness matrix of the
structure. Expanding the ith equation of the above system, the force p; can be
expressed in terms of the displacements {vi,v,, ...,van} as:

p; = Kiivi + Kipva + ... +KjenVan- (354)



112 3 Optimal Displacement Method of Structural Analysis

A typical coefficient Kj; is the value of the force p; required to be applied at the
ith component of the structure in order to produce a displacement v; = 1 at j and
zero displacements at all the other components.

The member forces r can be related to nodal forces p by:

p = Br. (3.55)

Using the contragradient relationship, the joint displacements v can be related to
member distortions u by:

u=B'v. (3.56)

For each individual member of the structure, the member forces can be related to
member distortions by an element stiffness matrix k. A block diagonal matrix
containing these element stiffness matrices is known as the unassembled stiffness
matrix of the structure, denoted by k. Obviously:

r = ku. (3.57)
This equation together with Egs. 3.55 and 3.56 yields:
p = BkB'v. (3.58)
Therefore,
K = BkB', (3.59)

is obtained. The matrix K is singular since the boundary conditions of the structure
are not yet applied. For an appropriately supported structure, the deletion of the
rows and columns of K corresponding to the support constraints results in a positive
definite matrix, known as the reduced stiffness matrix of the structure.

A symmetric matrix S is called positive definite if x'Sx > 0 for every non-zero
vector X. As shown before, the stiffness matrix K of a structure is symmetric. This
matrix is also positive definite since,

ptV = (Kv)tv = VthV = VtKV = 2W, (360)

and W is always positive.

Let us illustrate the stiffness method by means of a simple example. Consider a
fixed end beam with a load P applied at its mid span. This beam is discretized as two
beam elements, as shown in Fig. 3.6a with two degrees of freedom for each node
(axial deformation is ignored for simplicity). The components of element forces and
element distortions are depicted in Fig. 3.6b and those of the entire structure are
illustrated in Fig. 3.6c.

For each element such as element 1, the stiffness matrix can be written as:
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Fig. 3.6 Illustration of the
analysis of a simple
structure. (a) A fixed ended
beam S. (b) Member forces
and member distortions. (¢)
Nodal forces and nodal
displacements of the entire
structure

113
a P
, O Ve |,
2 5 N
I L I L I
b
2,u2 LRI A1 5S Ig.Ug

N N

P !

LUy Isu T

P3V3 R
kig | | w
koa | | w2
, 3.61
kag | [ u3 (3.61)
kaa | | ua
Kis Kig | | V1
Kos Ky | | v2
Kss Kzg | | v3
3.62
Kss Ky | | va ( )
Kss Ksg | | Vs
Kes Koo | | Ve

Element stiffness matrices k; and k, can be easily constructed using the defini-
tion of kj;. For a beam element, ignoring its axial deformation, these terms are

shown in Fig. 3.7.

The structure has a uniform cross section and both elements have the same
length. Therefore, using the force displacement relationship from Chap. 1:


http://dx.doi.org/10.1007/978-3-319-02964-1_1
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Fig. 3.7 Stiffness koj
coefficients of a beam
element ignoring its axial A Ky k2 )
deformation u IZII ¥\ f\_‘_ L X
f \
N u2=1
ki k3 kpp k32
ky3
ko3 N
/FM:* I U3=
k3 k33

6/L> -3/L —6/L* —3/L
2BI | —3/L 2 3/L 1

ki =k, =—— 3.63
T TL | —6/L2 3/L 6/L*  3/L (363)
-3/L 1 3/L 2
The unassembled stiffness matrix is an 8 x 8 matrix of the form:
|k O
k= [ 0 kz]’ (3.64)
Now consider the equilibrium of the joints of the structure, resulting in,
pl =1 , p2 =1 , p3 :r3+r57 (365)
Py =T4+T6 , P5s =17 , Pg =Ts-
or in a matrix form we have,
]
pl 1 . . . . . . . Iy
p2 . 1 . . . . . . r3
ps| |- -1 -1 - 1
p4 - . . . 1 . l . . I‘S ’ (3 '66)
pS . . . . . . 1 . I‘6
p6 . . . . . . . 1 Iy
L 18 ]
and more compactly,
p = Br, (3.67)

where:
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is known as the equilibrium matrix.
Consider now the compatibility of displacements:

uy =Vy, Uy =Vp, Uz = U5 = V3,

(3.68)
Uy = Ug = V4, U7 = Vs, Ug = V.
In a matrix form we have,
T
up Vi
us V2
4 V3 (3.69)
Us V4
u6 . . . 1 . . VS
u7 . . . . 1 . V6
_u8 1 L . . . . . l 1
and in compact form:
u=Ev=B'v. (3.70)
where:
S -
1 -
1 -
-1
E = .. ,
1 -
1 -
L 1 -

is known as the compatibility matrix.

The reason for the matrix E being the transpose of the matrix B, has already been
discussed in the previous chapter, however, by using the principle of virtual work, a
simple proof can be obtained. Consider:

W = work done by external loads = %th,
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U = strain energy = su'r.

Then equating W and U, leads to E = B' and completes the proof. It should be
mentioned that this equality holds for a general structure, and it is the result of the
contragradient relationship introduced in Chap. 1.

The stiffness matrix of the entire structure is then obtained as:

6/L> -3/L —-6/L> -3/L 0 0
-3/L 2 3/L 1 0 0
_2Bl'| —6/L* 3/L 12/L* 0 —-6/L* -3/L
K=T -3/L 1 0 4 3/L 1 (3.71)
0 0 -6/L> 3/L 6/L> 3/L
0 0 -3/L 1 3/L 2

Applying the boundary conditions,
Vi =V, =Vs =V =0,

by deleting the rows and columns corresponding to zero displacements, leads to the
formation of the following reduced stiffness matrix:

ps| _ 2ELT12/L* 0][vs (3.72)
pa] L[ 0 4flv] '
Since p4 = 0 and p3 = — P, therefore v3 = gj—g = ;}1’5 .

3.2.5 Stiffness Matrix of a Structure; an Algorithmic
Approach

From the above simple example, it can be seen that the matrix B is a very sparse
Boolean matrix and the direct formation of BKB' using matrix multiplication
requires a considerable amount of storage. In the following, it is shown that one
can form BKB' with an assembling process (known also as planting), as follows:

Consider an element “a” of a structure, as shown in Fig. 3.8, for which the
element stiffness matrix can be written as,

_ | ki Kjj
e 373)

i and j are the two end nodes of member a. Pre and post multiplication in the form
of BKB' has the following effect on k,:


http://dx.doi.org/10.1007/978-3-319-02964-1_1
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Fig. 3.8 A structural 8 6
model S @
7 > 4
3 2 1
beeed 7777 7777
[0 07 [0 0]
00 00
00 00
IO[kukUHOOOIOOOO}:IO{OOOkHOkUOO (3:74)
00| |kikj/[00000T00]"|{00[[000Kk;O0Kk;00 *
01 01
00 00
10 0] 10 0]
1f[O OO 0 0 0 0 O]
210 0 0 0 0 0 0O
3]0 0 0 0 0 0 0O
410 0 0 ki O kj 0 O
5|0 00 O O O 00O
6|0 00 ki 0 kj 0 0
710 0 0 0 0 0 O O
810 0 0 0 0 O O 0}

The adjacency matrix of S is also an 8 x 8 matrix, and the effect of node 4 being
adjacent to node 6, is the existence of unit entries in the same locations as the
submatrices of the element “a”. One can build up the adjacency matrix of a graph by
the addition of the effect of one member at a time. In the same way, one can also
form the overall stiffness matrix of the structure by the addition of the contribution
of every member in succession. As an example, for the graph shown in Fig. 3.8, the
overall stiffness matrix has the following pattern:

1 23456 78
1_11_

2 1 -1

411 - (I T B (3.75)
5 1 111 -

6 T T B

7 1 1 11

8 | 11 1]
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Non-zero entries are shown by “1”. For a stiffness matrix each of these non-zero
entries is ann X 1 submatrix, where 1) is the degrees of freedom of each node of the
structure. As an example, for a planar truss n = 2, and for a space frame n = 6. The
formation of the stiffness matrix by the above process is known as the assembling or
planting of the stiffness matrix of a structure.

3.3 Transformation of Stiffness Matrices

Methods for the formation of element stiffness matrices have been presented in the
previous section. In the following the stiffness matrices for bar and beam elements
are transformed to global coordinate systems using the transformation described in
Sect. 3.2.1.

From Eq. 3.7, we have:

=3

=Tr, (3.76)
Tu. (3.77)

=l
|

From the definition of an element stiffness matrix in a local coordinate system:

r

ku. (3.78)
By substitution of Egs. 3.76 and 3.77 into the above equation:
r = T 'kTu = T'kTu. (3.79)
By definition of a stiffness matrix in a global coordinate system:
r = ku. (3.80)
Comparison of Egs. 3.79 and 3.80 results in:
k = T'KT. (3.81)

3.3.1 Stiffness Matrix of a Bar Element

Equation 3.52 provides the stiffness matrix of a bar element in its local coordinate
system. This matrix in the global system, as shown in Fig. 3.9, can be written as:

k[T TTW{T T}. (3.82)

Denoting T in Eq. 3.32 by,
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Fig. 3.9 A bar element of a
space truss

Ty T
T=|Ty Txn
T3 T3
k., can be written as,
T,
Ti1 T2 T3,
k:% TiTizs  TiTis T3,
L -T2, =TTz =TT
~TyTip -T;, —TnTs
~TuTiz —TpTs  -Th

119

sym.

2
Th
T11 T2
TiTis

where “sym.” denotes the symmetry of the matrix.
The entries of the above matrix can be found using the Tj; from Eq. 3.32. As an
example, the stiffness matrix of bar 1 in the planar truss shown in Fig. 3.10 can be

obtained as:

T — X21

1= T
(X%z +yh +2h,)

Ty = Ya1 _

(x}, + v + Z%z)%

Therefore:

1

-
S-S

(3.83)

. (3.84)

2
T12

TipTi3 T3

v2
2 b

o5
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Fig. 3.10 A planar truss
and the selected global
coordinate system

——L—2

05 -05 —05 05
_EA|-05 05 05 -05
TLv2|-05 05 05 -05

05 -05 —05 05

k;

3.3.2 Stiffness Matrix of a Beam Element

Consider a prismatic beam element as shown in Fig. 3.11. The element forces and
element distortions are defined by the following vectors,

r={r,n,m5,...,m},
and
u= {u17u2;u37 oo 7u12}t,

where 1 to r3 are the force components at end i and r4 to rg are moment components
at end i. Also r; to 19 are the force and r to 1y, are the moment components,
respectively at the end j, and u; (i = 1, ..., 12) are correspondingly the translations
and rotations at the ends i and j of the element.

Using one of the methods presented in Sect. 3.2.2, the stiffness matrix of the
beam element, in the local coordinate system defined in Fig. 3.11, can be obtained
from Eq. 3.83 as:

[ A 0 0 0 0 0 -A 0 0 0 0 0
0 121,/L2 0 0 0 6L, /L 0 0 —12L,/L? 0 0 6L,/L

0 0 121,/L? 0 —6l,/L 0 0 0 —121,/L? 0 —6I,/L 0

0 0 0 J2(1+v) 0 0o 0 0 0 =I2(1+v) 0 0

0 0 —6l, /L 0 41, 0 0 0 —6l, /L 0 21, 0

k_E| 0 6L/L 0 0 0 41, 0 -6L/L 0 0 0 21,

L|I-A 0 0 0 0 0 A 0 0 0 0 0
0 —121,/L2 0 0 0 —6L/L 0 12I,/L? 0 0 0 -6L/L

0 0 —121,/1? 0 6l,/L 0 0 0 121, /L? 0 6l,/L 0

0 0 0 =1/2(1+v) 0 0 0 0 0 J2(14v) 0 0

0 0 —6l, /L 0 21, 0 0 0 61, /L 0 41, 0

Lo 6L/L 0 0 0 2, 0 —6L/L 0 0 0 41,

(3.85)
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Fig. 3.11 A beam element y
in the local coordinate
system

Y

N

In this matrix, Iy, I, and J are the moments of inertia with respect to the y and Z
axes and J is the polar moment of inertia of the section. E specifies the elastic
modulus and v is the Poisson ratio. L denotes the length of the beam.

For the two-dimensional case, the columns and rows corresponding to the third
dimension can easily be deleted, to obtain the stiffness matrix of an element of a
planar frame.

The stiffness matrix in a global coordinate system can be written as:

T ' T
T
k= K] : (3.86)

For the two-dimensional case:

k= [T T}lm {T T}. (3.87)

The entries of k are as follows:
kip =THo +T3,0f
ko = T11Tiooy + Tar Tooaf koo = T2, + T3,
k3 =Triaf ki =Tpo; kiz=af
kgt = —T3 04 + T5 0% kgg = — T Topatf — T1aTyyo kaz = —Taj0f kyy = —Ta 05
ksi = =Ty Tooof =TTy ksy = —T5af = Thay ks = —Tpaf
ksq = To Tpotf + TiaTioy  kss = Ta,af + T2,

ke1 = Ta105 keo = Too0f kg3 = af kes = —T2105 kes = —Tro) kes = 015
(3.88)
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in which

EA , ©6El, , 4EI, , 12FE], , 2EI
o =—,0 = 2 , 0y = L , 0 = 3 ,and og = .

As an example, for element 1 of the planar frame, shown in Fig. 3.12, we have,
Ti1=0 Tip=1 Ty =-1 Tn=0,
and the stiffness matrix of the element is obtained as:

1.25
0 200 sym.
—0.75 0 6
—1.25 0 0.75 1.25
0 -200 O 0 200
—0.75 0 3 075 0 6

k, = 10°

3.4 Displacement Method of Analysis

Once the stiffness matrix of an element is obtained in the selected global coordinate
system, it can be planted in the specified and initialised overall stiffness matrix of
the structure K, using the process described in Sect. 3.2.5.

Example. Let S be a planar truss with an arbitrary nodal and element numbering,
as shown in Fig. 3.13. The entries of the transformation matrices of the members are
calculated using Eqs. 3.32 and 3.33 as follows:

Forbar 1: Ty =274 =10 =Tand T, =21 = —‘6270 =3,

7 2 2
Similarly,
for bar 2: Ty =1 Ty, = —@, and for bar 3: T;; =1, T, = 0.
Using the following relationship,
Fi; T%, T11;flz -T —T11;1"12 61);
le _EA Tllrl;lz T4 —T121T12 -Th 61X (3.89)
ij L —T11 —Tiui T2 Tll T11 T g
F; ~-TTn -T4, TiTi T2, 6jy

the stiffness matrices of the members are computed directly in the selected global
coordinate system.
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Fig. 3.12 A planar frame

Fig. 3.13 A planar truss
and the selected global
coordinate system
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- 4m
A=4x10"m?
243E
T y @ 1=30x10°m*
4m 1

E=2x 10" N/m?

Now the stiffness matrices can be formed using Eq. 5.62:

For bar 1: k; =E2

For bar 2: k, = E2&

For bar 3: k3 = %

0.25
0.433
—0.25
| —0.433
[ 0.25
—0.433
—0.25
| 0.433
[ 1

0
-1
0

0
0
0

sym.
0.75
—0.433  0.25
—-0.75 0.433 0.75
sym.
0.75
0.433 0.25
—-0.75 —-0.433 0.75
sym.
1
0 O

The overall stiffness matrix of the structure is an 8 x 8 matrix, which can easily
be formed by planting the three member stiffness matrices as follows:

[ 0.250
0.433
~0.250
K _ EA [ 0433
2| o

0
0
0

0433 —-0.250 —0.433 0 0 0 o0
0.750 —-0.433 —0.750 0 0 0 o0
—0.433  1.500 0 —-0.250 0433 -1.00 0
—0.750 0 1.500 0433 —-0.750 0 O
0 —0.250 0.433 0.250 —-0.433 0 o0
0 0433 —-0.750 —0.433 0.750 0 o0
0 —1.00 0 0 0 1.00 O
0 0 0 0 0 0 o0
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Partitioning K into 2 x 2 submatrices, it can easily be seen that it is pattern
equivalent to the node adjacency matrix of the graph model of the structure as
follows:

CxCx' =

S O % %
* X X% ¥
S ¥ % O
* O % O

This pattern equivalence simplifies certain problems in structural mechanics,
such as ordering the variables for bandwidth or profile reduction. Methods for
increasing the sparsity, using special cutset bases, and improving the conditioning
of structural matrices, are discussed in Refs. [6, 7].

3.4.1 Boundary Conditions

The matrix K is singular, since the boundary conditions have to be applied. Consider,
p = Ky,

and partition it for free and constraint degrees of freedom as:
Pe| _ | K Kie||ve 390
RN 599

This equation has a mixed nature; pr and v, have known values and p. and v; are
unknowns. Ky is known as the reduced stiffness matrix of the structure, which is
non-singular for a rigid structure.

For boundary conditions such as vc = 0, it is easy to delete the corresponding
rows and columns to obtain,

pr = Kyvy, (3.91)

from which v; can be obtained by solution of the above set of equations. In a
computer this can be done by multiplying the diagonal entries of K. by a large
number such as 10%°. An alternative approach is possible by equating the diagonal
entries of K. to unity and all the other entries of these rows and columns to zero. If
V. contains some specified values, p. will have corresponding v, values. A third
method, which is useful when a structure has more constraint degrees of freedom
(such as many supports), consists of the formation of element stiffness matrices
considering the corresponding constraints, i.e. to form the reduced stiffness matri-
ces of the elements in place of their complete matrices. This leads to some reduction
in storage, and is also at the expense of additional computational effort.
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As an example, the reduced stiffness matrix of the structure shown in Fig. 3.13
can be obtained from K, by deleting the rows and columns corresponding to the
three supports 1, 3 and 4:

200 _EATL5 0 ||ux
300 210 1.5[|uyl
Solving for the joint displacements, we have:

40 40

x = T ——— d = —
Y2x T 75pA A Uy T g

The member distortions can easily be extracted from the displacement vector,
and multiplication by the stiffness matrix of each member results in its member
forces in the global coordinate system. As an example, for member 3 we have:

o 1 40/1.5EA 13.33
ry| EA| 0 0 sym. 40/EA | _ 0
| 2 |-1 0 1 0 ~ | -1333
Ty 0 0 0 O 0 0

A transformation yields the member forces in the local coordinate systems,
ri={-23.99 2399}, r,={-10.659 10.65} andr; = {13.33 —13.33}".

3.4.2 General Loading

The joint load vector of a structure can be computed in two parts. The first part comes
from the external concentrated loads and/or moments, which are applied to the joints
defined as the nodes of S. The components of such loads are most easily specified in a
global coordinate system and can be entered into the joint load vector p.

The second part comes from the loads, which are applied to the spans of the
members. These loads are usually defined in the local coordinate system of a
member. For each member the fixed end actions (FEA) can be calculated using
existing classical formulae or tables. A simple computer program can be prepared
for this purpose. The fixed end actions should then be expressed in the global
coordinate system using the transformation matrix given by Eq. 3.11. The FEA
should then be reversed and applied to the end nodes of the members. These
components can be added to p to form the final joint load vector. After p has
been prepared and the boundary conditions imposed, the corresponding equations
should be solved to obtain the joint displacements of the structure. Member
distortions can then be extracted for each member in the reverse order to that
used in assembling the p vector.
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a P=6kN b
q=1.2kN/m 1.4kN.m 3kN.m

;I ] ¥

A 2 7 s 2

b 4m ——F—2m—}—2m—|

Fig. 3.14 A continuous beam and its equivalent loading

Example 1. A two span continuous beam is considered as shown in Fig. 3.14a. EI
is taken to be constant along the beam.

For continuous beams, the transformation matrix T from local coordinate to
global coordinate is identity, and therefore Kk, = ki, i.e. no transformation is
required. Ignoring the axial deformation and using Eq. 3.63, the stiffness matrices
of the elements are obtained as:

0.75 1.5 =075 1.5

K — K _ 64| 15 4 -1.5 2
=R -075 —-15 075 —15
1.5 2 -15 4

Assembling the overall stiffness matrix and imposing the boundary conditions,
the reduced stiffness matrix of the entire beam is obtained and the force-
displacement relationship for beam is written as:

50 Al

Solving the equations leads to:
0y _ 1 |4 =21 -14]_ [-0.025
07| 4482 8 3 ] | 0.0598 |

Member forces are calculated as:

\ 075 15 —075 15 0 2.4
Mi|_ el 15 4 —15 2 0 L] L
Vs, —-075 —-15 075 15 0 2.4
M, 15 2 —15 4 |[-00259 ~16
1.779
| 0772
| 3.021 |7
~3.256

and
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Vv, 075 15 —075 15 0 3
Mp| _ | 15 4 —15 2 || -0.0259 3
Vs —0.75 —15 075 —15 0 3
M; 15 2 —15 4 ||+0.0598 -3
3.814
3258
2.186
0

Example 2. A portal frame is considered as shown in Fig. 3.15. The members are
made of sections with A = 150 cm? and I,=2x 10*%cm®* and E = 2 x 10* kN/
cm?. Calculate the joint rotations and displacements.

The equivalent joint loads are illustrated in Fig. 3.16.

Employing Eq. 3.88, the stiffness matrices for the members are obtained as:

For member 1:

0.008
0 0.75 sym.

—-1.5 0 400

0.008 0 1.5 0.008 ’
0 -075 O 0 0.75

—-1.5 0 200 1.5 0 400

k, = 10*

and for member 2:

0.6
0 0.004 sym.
ol 0 0.96 320
ko =107 46 0 0 06

0 —-0.004 —-096 0 0.004
0 0.96 160 0 —-0.96 320

For member 3:

0.008
0 0.75 sym.

ol 15 0 400

ks =10 go00s 0 —15 0008
0 -075 0 0 075
1.5 0 200 —1.5 0 400

Assembling the stiffness matrices and imposing the boundary conditions results
in the following equations:
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Fig. 3.15 A portal frame
and its loading SkN @
=P 3 T
1.2kN/m =3 O (3)] 4m
= J|
e Sm —
Fig. 3.16 Equivalent joint 160kN.m
loads '/-\
7.4kN
YA
X
Ve e
7.4 0.608 &)
0 0 0.754 sym. &)
160 | 10* 1.5 0.96 720 0;
0 | —0.6 0 0 0.608 o3
0 0 —0.004 —-0.96 0 0.754 i
0 0 0.96 160 1.5 —-0.96 720 07

Solving these equations leads to:

8 =0.0659167, &; =2.617764E — 04, 0; = —8.983453E — 05,
85 = 0.0653377, 8] = —2.617704E — 04 and 0 = —1.16855E — 04.

The final member forces can be found using the stiffness of the members,
superimposed by the fixed end actions.

3.5 Stiffness Matrix of a Finite Element

In this section, a simple element is introduced from finite element methods, in order
to show the capability of the method presented in Sect. 3.2.2, for the formation of
element stiffness matrices.
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3.5.1 Stiffness Matrix of a Triangular Element

For plane stress and plane strain problems, the displacements of a node can be
specified by two components, and therefore for each node of the triangular element,
two degrees of freedom is considered, as shown in Fig. 3.17.

Element forces and displacements are defined by the following vectors:

m={rn n ... re} and uy="{u w ... ul} (3.92)

A triangular element has its boundary attached continuously to the surrounding
medium, and therefore no exact stiffness matrix can be derived. Therefore an
approximate solution should be sought.

The following displacement functions can be considered for the variation of the
displacements,

u=oXx+oy+oa; and v=oyx + asy + o, (3.93)

where o, 0y, . . ., 0g are arbitrary constants which can be found from the displace-
ments of the three nodes of the element. From the boundary conditions,

atnode i(xj,y;),u =u; and v =vj,
at nodej(xj7 ¥j),u=u; and v =vj, (3.94)

at node k(xx,y,),u = ux and v = vy,
the constants can be evaluated. Substituting in Eq. 3.93 yields:

w=1/2A [y (= x5) = x (¥ = ) Jr + =30 0= 20 = 3y = vl + 6 = x0) = iy = ) us

v =172 [y (x = x1) = x (¥ = ) ]2 + T = 30 =y = v+ [y = x0) = xa(y = v0)Jue }-

(3.95)
where:
2A = 2(area of the triangle) = Xyjy; — X;i¥yj» (3.96)
and
Xmn = Xm — Xp and Y. =Y, — Y, (3.97)

From Eq. 3.95, it is obvious that both u and v vary linearly along each edge of the
element, and they depend only on the displacements of the two nodes on a particular
edge. Therefore, the compatibility of displacements on two adjacent elements with
common boundary is satisfied.
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Fig. 3.17 A triangular
element

O - X

From the theory of elasticity, the nodal displacements u}n = {u,u,, ...,Ug} are
related to total strains e' = {exx,eyy,€22} by the following:
C ooy
0x
eXX av
€= |Cy| = Jy
Exy
ou N ov
dy 0Ox
uj
u
1 ¥k 0 ~Yxi Yii 0 u2
=55 0 0 0 —x; u3 (3.98)
—Xkj Yy Xki —Yki  TXji Vi Ui
Ue
This relationship can be written in matrix notation as,
e=bu, (3.99)
where:
~ 1 ¥ 0 ~Yki 0 Yii 0
b = ﬂ O —ij 0 Xki 0 —in (3100)
—Xkj Yk Xki —Yki  TXji Y

The above equation, indicates that for linearly varying displacement field, the
strains are constant, and by Hooke’s law it also leads to constant stresses. Substitut-
ing the total strain e in Eq. 3.96 gives the stress-displacement relationship,
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Oxx E Yij VY Y VXki Yii —VY¥i
Oyy | =5+ | VY —Xki V¥ Xki VYii —Xji R

_ 2
ny 2A(1 v ) —\kaj lek] q"in _qjyki —IPin \ijl U4

where v is the Poisson ratio and

The stiffness matrix is then calculated using Eq. 3.26, and for convenience is
presented in two separate parts as:

k =k, +k, (3.102)

where k,, represents the stiffness due to normal stresses and kg represents the
stiffnesses due to shearing stresses. Thus:

Y%z
—Vy3,X32 x%z sym.
k, — Et —Y32¥s1  VX32¥3 Y3 ,
AA(1 —v2) | Vy3Xsi —X32X31  —VY31X31 X3;
¥Y32¥21 —VX32Y2r  TY31¥Ya1 VX31Yy Y%1
—VY33X21 X32X21 Vy31Xa1  —X31X21  —VYp1X21 Xgl
and
X%z
—X32Y¥3; ygz Sym.
ks:L —X32X31  ¥32X31 X§1 ,
4A(14v) | X32y31  —YmnXar  —X31¥3 Y3
X32X21 —Y32X21  —X31X21  Y31X21 X%I
—X32Y21  YaYau X31¥21  —Y31Yar  —X21Y2 Y%1

(3.103)

Using the same method, the stiffness matrices for other elements can be derived.
Since there are many excellent books on finite element methods, no further studies
are made here, and the interested reader may refer to McGuire and Gallagher [3],
Przemieniecki [4], and Zienkiewicz [5], among many others. For the formation of
well-conditioned stiffness matrices the reader may refer to Kaveh [6, 7].
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3.6 Computational Aspects of the Matrix Displacement
Method

The main advantage of the displacement method is its simplicity for computer
programming. This is due to the existence of a simple kinematical basis formed on a
special cutset basis known as cocycle basis of the graph model S of the structure.
Such a basis does not correspond to the most sparse stiffness matrix; however, the
sparsity is generally so good that there is usually no need to look further. However,
if an optimal cutset basis of S is needed, the displacement method encounters all the
problems met by the force method, described in Chap. 3. The algorithm for the
displacement method is summarized below.

Algorithm

Step 1: Select a global coordinate system and number the nodes and members of the
structure. An appropriate nodal ordering algorithm will be discussed in Chap. 5.

Step 2: After initialization of all the vectors and matrices, read or generate the data
for the structure and its members.

Step 3: For each member of the structure:

(a) Compute L, L*, sina, sinf, siny, cosa, cosf3, cosy;

(b) Compute the rotation matrix T;

(c) Form the member stiffness matrix K in its local coordinate system:;

(d) Form the member stiffness matrix k in the selected global coordinate
system,

(e) Plant k in the overall stiffness matrix K of the structure.

Step 4: For each loaded member:

(a) Read the fixed end actions;

(b) Transform the fixed end actions to the global coordinate system and reverse
it to apply at joints;

(c) Store these joint loads in the specified overall joint load vector.

Step 5: For each loaded joint:

(a) Read the joint number and the applied joint loads;
(b) Store it in the overall joint load vector.

Step 6: Apply boundary conditions to the structural stiffness matrix K, to obtain the
reduced stiffness matrix K¢. Repeat the same for the overall joint load vector.

Step 7: Solve the corresponding equations to obtain the joint displacements.

Step 8: For each member:

(a) Extract the member distortions from the joint displacements;
(b) Rotate the member distortions to the local coordinate system;
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(c) Compute the member stiffness matrix;
(d) Compute the member forces and fixed end actions.

Step 9: Compute the joint displacements and the member forces.

The application of the above procedure is now illustrated by a simple example, so
that the reader can use it to fully understand the computational steps.

Example. Consider a planar truss, as shown in Fig. 3.18. Member 1 has a uniform
load of intensity 0.6 kN/m and at joint 2 a concentrated load of magnitude 1.05 kN
is applied. The cross-section areas for members are 2A and 1.8A, respectively.
The selected global coordinate system and the equivalent nodal forces are
illustrated in Fig. 3.19. The stiffness matrices are formed as:
for member 1:

0.64 048 —0.64 —0.48
2 048 036 —048 —0.36
ki=35EAl 064 —048 064 048

—-0.48 —-0.36 048 0.36

and for member 2:

0 0 0 0
18 0 +1 0 —1
ke=7EAly 0 0 o0
0 -1 0 +1

The overall stiffness matrix is then obtained as:

0256 0.192 -0256 -0.192 0 O

0.192 0.144 -0.192 -0.144 0 O

K — EA —-0.256 -0.192 025 0192 0 O
—-0.192 —-0.144 0.192 0.744 0 -0.6

0 0 0 0 0 O

0 0 0 -06 0 06

The fixed end actions are shown in Fig. 3.19b, and calculated for member 1 as:

0
1.5
0
1.5

FEA, =

These forces are reversed and transformed into the global coordinate system as:
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Fig. 3.18 A planar truss

with general loading 1.05kN

Fig. 3.19 The selected
coordinate system and the -

equivalent nodal loads Y
X
08 —-06 O 0 0 0.9
. |06 08 0 0 ||-15]_ |-12
TIEFEAD =170 0 08 —06 0o | |09
0 0 06 0.8 —1.5 —-1.2

Superimposing the concentrated force at node 2 yields the final vector of
external forces as:

p={09 —-12 -015 —-12 0 0}.

Substituting a large number such as 1.E + 30 for the diagonal entries
corresponding to the zero displacement boundary conditions,

0 1.LE+30 0.192 —-0.256 —0.192 0 0
0 0.192 1.E+30 —-0.192 -0.256 0 0
—0.15| _ EA —-0.256 —-0.192 0.256 0.192 0 0 v]
—-12 —-0.192 -0.256 0.192 0.714 0 —0.6 '
0 0 0 0 0 1.E+30 0
0 0 0 0 —0.6 0 1.LE+430
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Solving these equations results in:
1
=—{0 0 0845 —1.907 0 0}"

The member forces are now computed as:

1 0 -1 0][08 06 0 0 0 0
. _2[0 0 0 0[|-06 08 0 0 0 LS
'T50-1 0 1 0 0 0 08 06| 0845 0
0 0 0 0 0 0 —06 08]||-1.907 15
0.179
| 15
1 -0179 |
1.5
and
1 0 -1 0[O0 =1 0 0 0.845 0
po3]0 0 0 offt 0 0 0|-197| |0
275110 1 ollo o o —1|| o 0
0 0 0 0/|l0 0 1 0 0 0
1.091
B 0
~1.091 |
0
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Chapter 4
Ordering for Optimal Patterns of Structural
Matrices: Graph Theory Methods

4.1 Introduction

In this chapter, methods are presented for ordering to form special patterns for
sparse structural matrices. Such transformation reduces the storage and the number
of operations required for the solution, and leads to more accurate results. Graph
theory methods are presented for different approaches to reordering equations to
preserve their sparsity, leading to predefined patterns. Alternative, objective func-
tions are considered and heuristic algorithms are presented to achieve these objec-
tives. Three main methods for the solution of structural equations require the
optimisation of bandwidth, profile and frontwidth, especially for those encountered
in finite element analysis. Methods are presented for reducing the bandwidth of the
flexibility matrices. Bandwidth optimisation of rectangular matrices is presented for
its use in the formation of sparse flexibility matrices.

In this chapter entries of the stiffness and flexibility matrices are provided with
the most appropriate specified patterns for solution of the corresponding equations.
Realization of these patterns (or not) affects the formulation of the mathematical
models and efficiency of solution. Many patterns can be designed depending on the
solution scheme being used. Figure 4.1 shows some of the popular ones encoun-
tered in practice.

Pattern equivalence of the stiffness matrix of a structure and cutset basis
adjacency matrix C*C*" of its graph model, and pattern equivalence of the flexi-
bility matrix of a structure with that of a generalized cycle basis adjacency matrix
CC' of its graph model, reduce the size of the problem p-fold, p being the degrees of
freedom of the nodes of the model for the displacement method, and f = 1 to
6 depending on the type of structure being studied by the force method.

A. Kaveh, Computational Structural Analysis and Finite Element Methods, 137
DOI 10.1007/978-3-319-02964-1_4, © Springer International Publishing Switzerland 2014
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ga = SI=|
— SHES ==
Banded Profile Partitioned  Nested partitioned Block matrix
form form form form form

Fig. 4.1 Different matrix forms
4.2 Bandwidth Optimisation

The analysis of many problems in structural engineering involves the solution of a
set of linear equations of the form,

Ax = b, (4.1)

where A is a symmetric, positive definite and usually very sparse matrix. For large
structures encountered in practice, 30-50 % of the computer execution time may be
devoted to solving these equations. This figure may rise to about 80 % in non-linear,
dynamic or structural optimisation problems.

Different methods can be used for the solution of the system of equations, of
which the Gaussian elimination is the most popular among structural analysts, since
it is simple, accurate and practical, producing some very satisfactory error bounds.

In the forward course of elimination, new non-zero entries may be created, but
the back substitution does not lead to any new non-zero elements. It is beneficial to
minimize the total number of such non-zero elements created during the forward
course of the Gaussian elimination in order to reduce the round off errors and the
computer storage. Matrix A of Eq. 4.1 can be transformed by means of row and
column operations to a form which leads to the creation of a minimum number of
non-zero entries during the forward course of the elimination. This is equivalent to
the “a priori” determination of permutation matrices P and Q, such that:

PAQ = G. (4.2)

When A is symmetric and positive definite, it is advantageous to have G also
symmetric so that only the non-zero elements on and above the diagonal of G need
to be stored, and only about half as many arithmetic operations are needed in the
elimination. The diagonal elements of A and G are the same, only in different
positions. In order to preserve symmetry, P is taken as Q" so that Eq. 4.2 becomes:

Q'AQ = G. (4.3)

For transforming a symmetric matrix A into the forms depicted in Fig. 4.1,
various methods are available, some of which will be described in this chapter.
However, due to the simplicity of the banded form, most of the material presented
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will be confined to optimising the bandwidth of the structural matrices, and other
forms will only be introduced briefly.

In the Gaussian elimination method, the time required to solve the resulting
equations by the banded matrix technique is directly proportional to the square of
the bandwidth of A. As mentioned before, the solution of these equations forms a
large percentage of the total computational effort needed for the structural analysis.
Therefore it is not surprising that a lot of attention is being paid to the optimisation
of the bandwidth of these sparse matrices. A suitable ordering of the elements of a
kinematical basis for a structure reduces the bandwidth of A, hence decreasing the
solution time, storage and round-off errors. Similarly, ordering the elements of a
statical basis results in the reduction of the bandwidth of the corresponding flexi-
bility matrix of the structure.

Iterative methods using different criteria for the control of the process of
interchanging rows and columns of A are described by many authors, e.g. see
Rosen [1] and Grooms [2]. For these methods, in general, the required storage and
CPU time can be high, making them uneconomical.

The first direct method for bandwidth reduction was recognized by Harary [3] in
1967, who posed the following question:

For a graph S with N(S) nodes, how can labels 1, 2, ..., N(S) be assigned to nodes in order

to minimize the maximum absolute value of the difference between the labels of all pairs of
adjacent nodes?

For a graph labelled in such an optimum manner, the corresponding adjacency
matrix will have unit entries concentrated as closely as possible to its main
diagonal.

In structural engineering, Cuthill and McKee [4] developed the first graph-
theoretical approach for reducing the bandwidth of stiffness matrices. In their
work, a level structure was used which was called a “spanning tree” of a structure.
The author’s interest in bandwidth reduction was initially motivated by an interest
in generating and ordering the elements of cycle bases and generalized cycle bases
of a graph, as defined in Chap. 2, in order to reduce the bandwidth of the flexibility
matrices, Refs. [5, 6]. For this purpose a shortest route tree (SRT) has been used.
The application of this approach has been extended to the elements of a kinematical
basis (cutset basis) in order to reduce the bandwidth of stiffness matrices. Subse-
quently it has been noticed that there is a close relation between Cuthill-McKee’s
level structure and the author’s SRT. However, there is a difference between these
trees in that an SRT contains additional information about the connectivity prop-
erties of the corresponding structure.

Further improvements have been achieved by employing special types of SRTs
such as the longest and narrowest ones, Ref. [7]. Generation of a suitable SRT
depends on an appropriate choice of starting node. Kaveh [5] used an end node of an
arbitrary SRT, which was chosen from its last contour (level) having the least
valency. Gibbs et al. [8] employed a similar node and called it a pseudo-peripheral
node. Cheng [9] used an algebraic approach to select a single node or a set of nodes
as the root of an SRT. Kaveh employed two simultaneous SRTs for selecting a
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pseudo-peripheral node. A comparison of six different algorithms was made in Ref.
[10]. Algebraic graph theory has also been used for finding a starting node, Kaveh
[11] and Grimes et al. [12]. Paulino et al. [13] used another type of algebraic graph-
theoretical approach employing the Laplacian matrix of a graph for nodal ordering.

4.3 Preliminaries

A matrix A is called banded, when all its non-zero entries are confined within a
band, formed by diagonals parallel to the main diagonal. Therefore, A;; = 0 when
li—jl > b, and Ay k_p # 0 or Ay, kv 7 O for at least one value of k. b is the half-
bandwidth and 2b + 1 is known as the bandwidth of A. As an example, for

(4.4)

o
IR SGN
© W -
A~ o0 O -

the bandwidth of Ais2b + 1 =2x2 + 1 = 4.

A banded matrix can be stored in different ways. The diagonal storage of a
symmetric banded nxn matrix A is an nx(b + 1) matrix AN. The main diagonals
are stored in the last column, and lower co-diagonals are stored down-justified in
the remaining columns. As an example, AN for the above matrix is:

AN = (4.5)

S O O -
[enRNe RN e
oA W=

When A is a sparse matrix, this storage scheme is very convenient, since it
provides direct access, in the sense that there is a simple one-to-one correspondence
between the position of an entry in the matrix A(i, j) and its position in AN(, j —
i+b+1).

Obviously, the bandwidth depends on the order in which the rows and columns
of A are arranged. This is why iterative techniques seek a permutation of the rows
and a permutation of columns to make the resulting bandwidth small. For symmet-
ric matrices, identical permutations are needed for both the rows and the columns.
When a system of linear equations has a banded matrix of coefficients and the
system is solved by Gaussian elimination, with pivots being taken from the diag-
onals, all the operations are confined to the band and no new non-zero entries are
generated outside the band. Therefore, the Gaussian elimination can be carried out
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in place, since a memory location is already reserved for any new non-zeros that
might be introduced within the band.
For each row i of a symmetric matrix A define,

bi =1~ juin(i) (4.6)

where juin(i) is the minimum column index in row i for which A;; # 0. Therefore,
the first non-zero of row i lies b; positions to the left of the diagonal, and b is defined
as:

b = max(b;). (4.7)

In Chap. 4, it has been shown that the stiffness matrix K of a structure is pattern
equivalent to the cutset basis adjacency matrix C*C*', where C* is the cutset basis-
member incidence matrix of the structural model S. Similarly, the flexibility matrix
G is pattern equivalent to the cycle basis adjacency matrix CC', where C is the
cycle basis-member incidence matrix of S.

Reducing the bandwidths of C*C*' and CC" directly influences those of K and
G, respectively. Notice that the dimensions of C*C*"' and CC', for general space
structures, are sixfold smaller than those of K and G, and therefore simpler to
optimise.

For the displacement method of analysis, there exists a special cutset basis
whose elements correspond to stars of its nodes except for the ground node (cocycle
basis). The adjacency matrix of such a basis naturally is the same as that of the node
adjacency matrix of S, with the row and column corresponding the datum node
being omitted. In this chapter, such a special cutset basis will be considered, and the
nodes of S will be ordered such that the bandwidth of its node adjacency matrix is
reduced to the smallest possible amount.

Let A be the adjacency matrix of a graph S. Let i and j be the nodal numbers of
member k, and let o = i — jl. Then the bandwidth of A can be defined as:

b(A) = 2Max{oy : k = 1,2, ..., M(S)} + 1, (4.8)

where M(S) is the number of members of S. In order to minimize the bandwidth of
A, the value of b(A) should be minimized. The bandwidth of the stiffness matrix
K of a structure is related to that of A by:

b(k) = pb(A), (4.9)

where  is the number of degrees of freedom of a typical node of the structure.

Papademetrious [14] has shown that the bandwidth minimization problem is an
NP-complete problem. Therefore any approach to it is of interest primarily because
of its heuristic value.
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4.4 A Shortest Route Tree and Its Properties

The main tool for most of the ordering algorithms using graph-theoretical
approaches is the shortest route tree of its model or its associate model. A shortest
route tree rooted at a node O, called the starting node (root) of the tree, is denoted
by SRTg and has the following properties:

The path from any node to the root through the tree is a shortest path. An
algorithm for generating an SRT is given in Sect. 1.4.7 and therefore only its
properties relevant to nodal number are discussed here.

An SRT decomposes (partitions) the node set of S into subsets according to their
distance from the root. Each subset is called a contour (level) of the SRT, denoted
by C;. The contours of an SRT have the following properties:

Adj (Cl) CC_1UGCL, 1<i<m
Adj (C}) C Cs, (4.10)
Adj (Cp) C Cps-

The number of nodes in each contour is called the width of that contour, and the
largest width of the contours of an SRT is called the width of the SRT rooted at the
starting node O, denoted by w(SRTg). This number is known as the width number
of O. The number of contours of an SRT (except the starting node contour) is the
height of the tree denoted by h(SRTy). The longest SRT is the one with maximal
height and the narrowest SRT is the one with minimal width.

As an example, an SRT of S as shown in Fig. 4.2a, rooted at O, denoted by
SRTp, has the following identities:

W(Cl) = I,W(Cg) = 2,W(C3) = 3,W(C4) = 4,W(C5) = 5,W(C6) = 5,
w(C7) =4,w(Cs) = 3,w(Cy) = 2 and w(Cyp) = 4.

Hence w(SRTp) = 5 and h(SRTp) = 9.

For the same graph model, an SRT rooted at O’, as shown in Fig. 4.2b, leads to
W(SRTgp) = 9 and h(SRTp') = 4.

This simple example shows the importance of selecting an appropriate starting
node. This will be discussed in some detail in subsequent sections.

4.5 Nodal Ordering for Bandwidth Reduction

The following four-step algorithm is employed for nodal ordering of graphs leading
to banded node adjacency matrices. This method can directly be used for nodal
ordering of skeletal structures resulting in banded stiffness matrices.

1. Finding a suitable starting node;
2. Decomposing the node set of S into ordered subsets (contours);
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3. Selecting a connected path (transversal) containing one representative node from
each contour;
4. Ordering the nodes within each contour, to obtain the final nodal numbering of S.

All the above steps require the use of an SRT algorithm of Sect. 1.4.7, known as
breadth-first-search algorithm. Therefore, a nodal ordering process may be consid-
ered as a multiple application of the SRT algorithm.

The node set of S can be decomposed into ordered subsets by means of a
breadth-first-search algorithm. The quality of the results depends upon the choice
of an appropriate starting node, as the root of this tree. The results corresponding to
the ordering within each contour, however, also depend upon the use of a suitable
transversal containing one representative node from each contour.

Methods for finding suitable starting nodes have been developed by Cheng [15],
Kaveh [16, 17], Gibbs et al. [8], and Grimes et al. [12]. In the following, various
graph-theoretical methods are presented for finding good starting nodes and
selecting suitable transversals.

4.5.1 A Good Starting Node

The distance d(n;, n;j) between two nodes n; and n; is defined to be the length of the
shortest path between these nodes. The eccentricity of a node n; is defined as:

e(n;) = Max d(nj,m) forj=1,...,N(S). (4.11)
The diameter of S is defined as:
8(S) = Max e(n;)fori=1, ...,N(S). (4.12)

As an example, the eccentricity of n, in Fig. 4.3 is e(n,) = 3, and the diameter of
Sis &(S) = 4.
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Fig. 4.3 A graph S R A a R

A node n; of S is called peripheral if its eccentricity is the same as the diameter
of S, i.e. 8(S) = e(n;). If the eccentricity is close to the diameter, then n; is called a
pseudo-peripheral node or a good starting node.

In this section, three algorithms are described for selection of good starting node
or nodes for nodal numbering. Other algorithms have been developed, the detail of
which may be found in Kaveh [11].

Algorithm A

Step 1: Start from an arbitrary node of S. Construct an SRT on this node and take a
node of least valency from its last contour.

Step 2: Form a new SRT from the selected node, and record all the nodes of the last
contour of the selected SRT.

Step 3: Form SRTs rooted at each of the recorded nodes and choose the one that
corresponds to the narrowest SRT. The process of constructing an SRT is
terminated as soon as the width of one of its contours exceeds the width of the
previously selected SRT.

This algorithm is similar to Gibbs et al. [8] algorithm, where the starting node O
and another node of minimum valency from its last contour are selected as pseudo-
peripheral or diameteral nodes

Algorithm B

Step 1: Start with an arbitrary node, form an SRT on this node and take a node n; of
least valency from its last contour.

Step 2: Generate an SRT on n; and find all nodes contained in its even, first and last
contours.

Step 3: Generate an SRT on each node of these contours, and find the narrowest one.
The process of formation of an SRT is terminated as soon as the width of one of
its contours exceeds the width of the previously selected SRT. Denote the
selected node by n;.

Step 4: Check adjacent nodes to n; for possible reduction in width, to decide the
final starting node.

Algorithm C

Step 1: From an arbitrary node generate an SRT, and from its last contour select a
node X; of minimal valency. Observe the width of the selected SRT.

Step 2: Generate an SRT from X, and select X, of the least valency from its last
contour, and observe the width.
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Step 3: Generate two SRTs simultaneously rooted at X; and X, and find the node X;
which is the last node of S included in one of the SR subtrees. Once X3 is found,
terminate the process of forming SRTs. Generate an SRT from X3 and observe
its width. X; and X, are called the generators of X;.

Step 4: Repeat the process of Step 3, using the pairs (X, X3) and (X, X3) as the
generators to find X4 and Xs, respectively. Construct the corresponding SRTs
and observe their widths.

Step 5: Repeat the process of Step 3 for X; (i = 3, 4, ...) together with the
corresponding generator, until no further improvement in width is observed.
The narrowest SRT should be selected for nodal decomposition of S.

An example of the application of this algorithm is depicted in Fig. 4.4, where a
cross-shaped grid S is considered. Starting from an arbitrary node “O”, an SRT is
generated and X is obtained from its last contour. Generating a new SRT from X,
node X, is chosen from its last contour. Xj is the result of generating two simul-
taneous SRTs from X; and X,. Using (X;, X3) and (X, X3), nodes X, and X5 are
obtained, respectively. The widths of the selected SRTs rooted at X, X5, X3, X4 and
Xsare 8, 8, 8, 11, and 10, respectively. Therefore the process is terminated and X3 is
taken as a good starting node of S.

Algorithms A and B may search for a good starting node in a single direction of a
graph and do not meet nodes laying in other directions. Algorithm C has the feature
of overcoming such problem. In this method, the control of overall connectivity
properties of the graph becomes feasible. The following example will more clearly
illustrate this point.

4.5.2 Primary Nodal Decomposition

Once a good starting node is selected, an SRT is constructed and its contours {Cy,
C,, ..., C,} are obtained. These subsets are now ordered according to their
distances from the selected starting node. Obviously, many SRTs can be
constructed on a node. Although all lead to the same nodal decompositions,
different transversals will be obtained for different SRTs. Thus, in the generation
process, the nodes of each contour C; are considered in ascending order of their
valencies for selecting the nodes in C;,, in order to provide the conditions for the
possibility of generating a minimal (or optimal) transversal as defined in the next
section. Finding an optimal transversal before an SRT is fixed, seems to be a time-
consuming problem. However, for most of the models encountered in practice, an
optimal transversal lies between the minimal ones. In the following, an algorithm is
given for selecting a suboptimal transversal of an SRT.
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4.5.3 Transversal P of an SRT

A transversal of an SRT is defined as a connected path P containing one distinct
node N; from each contour C; of an SRT. A minimal transversal is the one for which

m
Z deg(N;) is minimum. An optimal transversal is the one leading to the best nodal
im1

numbering, i.e. a numbering corresponding to smallest bandwidth for the selected
decomposition. The weight of a node is defined as its degree.

Algorithm

Step 1: Take a node N,, of minimal weight from the last contour C, of the
selected SRT.

Step 2: Find N,,,_; from C,,_; which is connected to N, by a branch of the SRT.

Step 3: Repeat the process of Step 2 selecting nodes Ny, 5, N, 3, ..., Ny, as the
representative nodes of the contours C,, », Cp,,_3, ..., Cy, respectively.

The above algorithm is a backtracking process from a node of minimal weight in
the last contour C,,, that selects a transversal P = {Ny, N», ..., N, } which can now
be used for ordering the nodes of the contours of the corresponding SRT.

4.5.4 Nodal Ordering

Step 1: Number N; as “1”.
Step 2: N, is given number “2” and an SR subtree is generated from N,, numbering
the nodes of C, in the order of their occurrence in this SR subtree.
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Step 3: The process of Step 2 is repeated for numbering the nodes of C3, Cy, . . ., C,
sequentially using N3, Ny, . .., N;, as the starting nodes of SR subtrees, until all
the nodes of S are numbered.

Now the numbering can be reversed, in a way similar to that of the Reverse
Cuthill-McKee algorithm, for possible reduction of fill-ins in the process of Gauss-
ian elimination, which will be discussed in Sect. 4.7.

4.5.5 Example

The following simple example is chosen to illustrate the steps of the presented
approaches, but the applications are by no means limited to such simple cases.

Let S be the graph model of a truss structure, as shown in Fig. 4.5a. Using one of
the algorithms of Sect. 4.5.1, a good starting node A is found, and the corresponding
SRTs are depicted in Fig. 4.5b. A transversal is selected as shown in bold lines,
Fig. 4.5¢c. Then nodes are numbered contour by contour, employing the represen-
tative nodes as the starting nodes of SR subtrees, Fig. 4.5d.

In order to cast the concepts developed for nodal ordering in a mathematical
form, a connectivity coordinate system is defined for nodal numbering of
S. Separate study of planar and space graphs results in clarification of further
interesting points about nodal numbering of space structures, as described in
Kaveh [18].

4.6 Finite Element Nodal Ordering for Bandwidth
Optimisation

Extensions and applications of the nodal numbering algorithms to element ordering
are due to Kaveh [10], Everstine [19], Razzaque [20], Sloan [21], Burgess and
Lai [22].

For finite element nodal ordering, different methods are developed. The appli-
cation of a natural associate graph in a two-step approach, has been suggested by
Kaveh [23], and later by Fenves and Law [24]. A corner-node method is developed
by Kaveh [5], and Kaveh and Ramachandran [25]. The application of an element
clique graph is due to Sloan [9], and Livesley and Sabin [26]. Additional graphs for
transforming the information concerning the connectivity of the finite element
model (FEM) to those of different simple graphs, are introduced and employed in
efficient finite element nodal numbering by Kaveh and Roosta [27].

In this section, the connectivity properties of FE models are embedded in the
topological properties of nine different graphs. A nodal ordering is then performed
on these graphs, leading to the element ordering of the corresponding FEMs,
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Fig. 4.5 Graph model S and its nodal numbering. (a) Initial numbering of S. (b) The selected
SRT. (c) The selected transversal P. (d) Final nodal numbering of S

followed by their final nodal ordering. This process is summarised in the flow chart
of the following page.

For the sake of clarity, in this section, the nodes of the constructed graphs are
referred to as vertices.

The complexities of the presented methods are given for a logical comparison of
their efficiency. The efficiency of the methods are also tested by some
2-dimensional and 3-dimensional FE models. For these models, the computational
time and the bandwidth obtained are presented for comparison.

[ Finite Element Model |

\

| Graph Model |

.

[ECG [ SkG | StG [EWG[ PTG | TG [NAG] IG | RG | CRG |

| Graph Nodal Ordering |

.

| Finite Element Nodal Ordering |

Notations: Element Clique Graph (ECG); Skeleton Graph (SkG); Element Star Graph
(EStG); Element Wheel Graph (EWG); Partially Triangulated Graph (PTG); Triangulated
Graph (TG); Natural Associate Graph (NAG); Incidence Graph (IG); Representative Graph
(RG); Complete Representative Graph (CRG).
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4.6.1 Element Clique Graph Method (ECGM)

Definition. The element clique graph S of an FEM is a graph whose vertices are
the same as those of the FEM, and two vertices n; and n; of S are connected with a
member if n; and n; belong to the same element in the FEM. The element clique
graph of the FEM shown in Fig. 4.6a is illustrated in Fig. 4.6b.

This graph is particularly suitable for bandwidth optimisation, since in this graph
each vertex corresponds to a node of the FEM, and a single step is needed for direct
nodal numbering of the considered FEM.

Algorithm

Step 1: Construct the element clique graph S of the considered FEM.

Step 2: Use a nodal numbering algorithm available (e.g. the algorithm presented in
Sect. 4.5.4).

In this method, all the nodes of an element will be contained in at most two
adjacent contours of an SRT, hence the bandwidth becomes dependent on the width
of the SRT.

4.6.2 Skeleton Graph Method (SkGM)

Definition. The /-skeleton graph S of an FEM is a graph whose vertices are the
same as the nodes of the FEM, and its members are the edges of the FEM. Figure 4.7
illustrates the skeleton graph of the FEM shown in Fig. 4.6a.

Simultaneous application of the ECG and the skeleton graph provides very
efficient tools. As an example, consider the small FE as shown in Fig. 4.8. Suppose
an SRT is rooted from vertex 1 in the ECG of the FEM to find a good starting node
with minimum degree from its last contour. Vertices 17 and 19 are found. They are
the farthest from vertex 1 and have the same degree as 3 (in the ECG). However,
vertex 19 is better than vertex 17, since W(SRT o) < W(SRT,). Instead of gener-
ating two SRTs from vertices 17 and 19, one can choose 19 by generating SRT) in
the skeleton graph, because dsg(1, 19) > dsg(1, 17), where dsg(i, j) denotes the
distance between vertices i and j in the skeleton graph.
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Fig. 4.7 The skeleton
graph of the FEM of >
Fig. 4.6a

Fig. 4.8 A small finite
element model

Algorithm

Step 1: Construct the skeleton graph S of the considered FEM. For each element i of
the FEM connect two end nodes of each edge of element by a member. Such
nodes should be connected only once.

Step 2: Order the vertices of S using any nodal numbering algorithm available
(e.g. the algorithm presented in Sect. 4.5.4) thus obtaining a nodal ordering of S.

In order to generate the skeleton graph of An FEM, it is necessary to list the
nodes of each element in a suitable order. In this method the number of members of
S is less than that of the ECGM; however, in FEMs with triangular elements, these
members are the same. Therefore, this method takes less computer storage for
keeping the connectivity of S. Generating an SRT in a skeleton graph may lead to
allocation of the nodes of an element in three or more adjacent contours. Therefore
the width of the SRT being used, together with the number of contours containing
the nodes of an element of the FEM, specify the bandwidth.

4.6.3 Element Star Graph Method (EStGM)

Definition. The element star graph S of An FEM has two sets of vertices, namely
the main set containing the same nodes as those of the FEM and a virtual set
consisting of the virtual vertices associated in a one-to-one correspondence with the
elements of the FEM. The member set of S is constructed by connecting the virtual
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Fig. 4.9 The element star
graph of the FEM of
Fig. 4.6a

vertex of each element i to all the nodes of the element i. The element star graph of
the FEM shown in Fig. 4.6a is illustrated in Fig. 4.9. The virtual vertices are shown
by larger sized dots.

In the element star graph of An FEM, the distance between each pair of vertices
corresponding to two nodes of the FEM which share an element is equal to 2, while
in the ECG it is equal to 1. This difference does not cause the element star graph to
lose the previously discussed property of the ECG, which is the existence of more
than one pair of peripheral nodes in most of FEMs. Hence this graph model is
efficient for algorithms in which multiple roots are needed to be found. In this graph
the degree of each vertex corresponding to a node i of the FEM is the same as that of
the number of elements of the FEM incident to node i.

Algorithm

Step 1: Construct the element star graph S of the considered FEM. For each element
i, generate a virtual vertex labelling with i+x, and connect the nodes of i to the
vertex i+o, where o is the total number of nodes of the FEM.

Step 2: Order the main vertices of S using a nodal numbering algorithm available,
e.g. the method presented in Sect. 4.5.4. This step is similar to the previous
methods but virtual vertices need not be labelled in the process of numbering of
the nodes. The virtual vertices can easily be identified by their labels being above
o.

4.6.4 Element Wheel Graph Method (EWGM)

Definition. The element Wheel Graph S of An FEM is the union of the element star
graph and the skeleton graph of the FEM. The element wheel graph of the FEM
shown in Fig. 4.6a is illustrated in Fig. 4.10. The virtual vertices are shown by larger
sized dots.

Algorithm

Step 1: Construct the element wheel graph S of the considered FEM. This can be
done by generating the union of the element star graph and skeleton graph.

Step 2: Order the main vertices of S using a nodal numbering algorithm available,
e.g. the method presented in Sect. 4.5.4. This step should be carried out similarly
to that of Step 2 in ESGM.
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Fig. 4.10 The element
wheel graph of the FEM of
Fig. 4.6a

In order to generate the element wheel graph of an FEM, it is necessary to list the
nodes of each element in a suitable order. In this method M(S) is higher than that of
ESGM, and therefore it needs more computer storage than ESGM. The nodes of an
element of FEM are at most contained in three contours of the generalized SRT of
the element wheel graph.

4.6.5 Partially Triangulated Graph Method (PTGM)

Definition. The partially triangulated graph S of an FEM is a graph whose
vertices are the same as the nodes of the FEM and an artificial vertex assigned to
each element i is connected to all the original nodes of i. The selected nodes of the
elements are found by generating all SR subtrees from a good starting vertex in the
skeleton graph of the FEM and taking the first node of an element included in the
SRT during the process of the generation. As an example, for the FEM shown in
Fig. 4.6a, an SR subtree is routed from ny and shown in Fig. 4.11a, and the selected
nodes of the elements are shown by larger sized dots. The partially triangulated
graph of the FEM is shown in Fig. 4.11b.

In order to generate the partially triangulated graph of an FEM, the following
steps can be executed:

1. Generate the SG of the FEM;

2. Form an SRT rooted from an arbitrary node ny and select a node n; from the last
contour of SRT,o with the minimum degree;

3. Form an SRT rooted from n; and select a node n, in the last contour of SRT,;,
with minimum degree;

4. Form an SRT rooted from n, and take ng from ng, n; and n, whose corresponding

SRT has the least width;

. Calculate the distance between each vertex of the SG and ng;

. For each element i select a vertex which is the nearest node to ng;

7. Form the partially triangulated graph by connecting the vertex corresponding to
the selected node of each element i to the vertices corresponding to other nodes
of i; previously connected nodes should not be connected again.

A\ W



4.6 Finite Element Nodal Ordering for Bandwidth Optimisation 153
a b
Fig.4.11 The skeleton, an SR subtree and the partially triangulated graph of the FEM of Fig. 4.6a.

(a) The skeleton graph and an SR subtree of the FEM. (b) The partially triangulated graph of
the FEM

Algorithm

Step 1: Construct the partially triangulated graph S of the considered FEM.

Step 2: Order the vertices of S using a nodal numbering algorithm available, e.g. the
algorithm of Sect. 4.5.4.

For generating the partially triangulated graph of an FEM, it is necessary to list
the nodes of each element in a suitable order. In this method M(S) may or may not
be higher than that of SKGM. In the process of forming an SRT in a partially
triangulated graph, the nodes of an element may lie in one, two or three adjacent
contours.

4.6.6 Triangulated Graph Method (TGM)

Definition. The triangulated graph S of an FEM is the union of the partially
triangulated graph and the skeleton graph of the FEM. The triangulated graph of
the FEM shown in Fig. 4.6a is illustrated in Fig. 4.12. The selected vertices of the
elements are the same as those of Fig. 4.6a.

Algorithm

Step 1: Construct the triangulated graph S of the considered FEM. This step can be
carried out by generating the partially triangulated graph and the skeleton graph.

Step 2: Order the vertices of S using a nodal numbering algorithm.

In this method the number of members is higher than that of the PTGM. For an
SRT in a triangulated graph, the nodes of an element of an FEM are contained in at
most three adjacent contours.

4.6.7 Natural Associate Graph Method (NAGM)

Definition. The natural associate graph S of an FEM has its vertices in a one-to-
one correspondence with the elements of the FEM, and two vertices of S are
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Fig. 4.12 The triangulated
graph of the FEM of
Fig. 4.6a

connected by a member if the corresponding elements have a common boundary.
The natural associate graph of the FEM shown in Fig. 4.6a is illustrated in Fig. 4.13.
In order to generate the natural associate graph of an FEM, one of the following two
methods can be employed. The first is a direct scheme which takes high computer
time but low computer storage. In this case only the element-node list should be
provided. The second takes low computational time but uses larger memory. In this
case, the node-element list, together with the element-node list are provided as
input data.

Method 1. Check each pair of elements i and j of the FEM for a common
boundary. If i and j have such a boundary, then the vertices corresponding to i
and j should be connected by a member in the natural associate graph.

Method 2. Step 1: Generate the node-element list of the considered FEM.

Step 2: Take each pair of elements incident at a node, and note whether they have
more than one corner node in common.

Step 3: When two elements of equal or different dimensions have common corner
nodes equal to or more than the smallest dimension of the elements, then
the corresponding vertices in the natural associate graph are connected by a
member.

Algorithm

Step 1: Construct the natural associate graph S of the considered FEM.

Step 2: Order the vertices of S using a nodal numbering algorithm, to obtain an
ordering for the elements of the FEM.

Step 3: Order the nodes of the FEM, element by element, in the same sequence as
decided in Step 2. Within each element, priority is given to mid nodes, passive
and active nodes, respectively. A node is called passive if it has no incident new
element, otherwise it is active.

Step 3 of this method can be carried out using the following process:

I. Generate a matrix NE with a rows and € columns, in which its ith row contains
the labels of the elements containing node i, where € is the same as the
maximum number of elements incident to a specified node.
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Fig. 4.13 The natural
associate graph of the FEM
of Fig. 4.6a

II. For each element j (j = 1, ..., ) execute the following steps, in turn:

(a) If j has a mid node, label it first;

(b) Detect the active and passive nodes j using the matrix NE. It should be
noted that using NE makes the process fast; however, one can instead
check a node of j for incidence with a new element;

(c) Form a multiple root SR subtree from the active node of j;

(d) Label the passive nodes of j when they are selected in the multiple root
SR subtree;

(e) Label the active nodes of j which are adjacent to the previously labelled
nodes;

(f) Repeat Step (e) until all the active nodes of j are labelled.

In order to generate the natural associate graph of an FEM, it is necessary to list
the nodes of each element in a suitable order. In this algorithm M(S) has the least
value among the presented methods thus far; therefore it take less computer storage
for keeping the connectivity data of S.

4.6.8 Incidence Graph Method (IGM)

Definition. The incidence graph S of an FEM has its vertices in a one-to-one
correspondence with the elements of the FEM, and two vertices of S are connected
by a member, if the corresponding elements have a common node. Figure 4.14
shows the incidence graph of the FEM shown in Fig. 4.6a.

In order to generate the incidence graph of an FEM, one of the following two
methods can be employed. The first is a direct approach, which takes high compu-
tational time but low words of memory; for which only the element-node list should
be provided. The second scheme takes short computational time but high computer
storage; the node-element list together with the element-node list should be
provided.

Method 1. Check each pair of elements i and j of the FEM for a common node, and
if they have such a node, connect with a member to the corresponding vertices i and
j in the incidence graph.
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Fig. 4.14 The incidence
graph of the FEM of
Fig. 4.6a

Method 2. Step 1: Generate the node-element list of the considered FEM.
Step 2: Connect the representative vertices of each pair of elements, which contain
a common node.

Algorithm

Step 1: Construct the incidence graph S of the considered FEM.

Step 2: Order the vertices of S using a nodal numbering algorithm, to obtain an
ordering for the elements of the FEM.

Step 3: Order the nodes of the FEM, element by element, in the same sequence as
decided in Step 2. Within each element priority is given to mid nodes, passive
and active nodes, respectively.

4.6.9 Representative Graph Method (RGM)

Definition. Consider the skeleton graph of an FEM, and select an appropriate
starting vertex, using any available algorithm. The nearest corner node of each
element of the FEM is taken as the representative node of that element. The SR
subtree of the skeleton graph of the FEM containing all representative nodes of the
elements is called a representative graph S of the FEM. The representative graph of
the FEM shown in Fig. 4.6a is illustrated in Fig. 4.15.

In order to generate the representative graph of an FEM the following steps
should be executed:

Step 1: Execute Steps 1—4 of the algorithm for the formation of the PTG.

Step 2: Form a SR subtree step by step from ng until each element of the FEM has a
node whose corresponding vertex in SG is contained in the SR subtree. The first
selected vertex (in the SR subtree) corresponding to the nodes of each element i
should be taken as the representative node of i.

Algorithm

Step 1: Construct the representative graph of the FEM, and number its vertices,
resulting in the ordering of the elements of the considered FEM.

Step 2: Use Step 3 of the NAGM to number the nodes of the FEM.
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Fig. 4.15 The
representative graph of the
FEM in Fig. 4.6a

This method is the most efficient approach from the computational time and
storage points of view for most of the practical models.

4.6.10 Computational Results

The presented algorithms are implemented on a PC and many examples are
examined, some of which are included in this section. The bandwidth of D and
the relative computational time for the algorithms are provided.

Example 1. A planar FEM with three types of elements consisting of 4-node,
8-node and 12-node elements is considered as shown in Fig. 4.16. This model
contains 1,959 nodes and 2,250 elements. The combination of elements of this
model may not be practical; however, it is purposely chosen to illustrate the
generality of the methods in dealing with the presence of different elements of a
model. The results are presented in Table 4.1.

Example 2. A three-dimensional finite element model consisting of 480 (5812)
20-node cubic elements (each edge of elements has a mid side node) is considered,
having the total of 2,559 nodes. The results are depicted in Table 4.2.

Example 3. A planar FEM with two holes is considered as shown in Fig. 4.17. Six
FEMs with 1,000 elements are studied with elements having 4 nodes, 4 nodes and a
mid-node, 8 nodes, 8 nodes and a mid-node, 12 nodes, and 12 nodes and a
mid-node. These models contain 1,134, 2,134, 3,269, 4,204 and 6,404 nodes,
respectively. The results are depicted in Table 4.3.

Example 4. The finite element model of a buttress dam is considered, the section
of which is illustrated in Fig. 4.18, consisting of 480 nodes and 603 elements. This
model contains three layers of prismatic members and each element contains six
nodes. The results are depicted in Table 4.4. The patterns of the nodes adjacency
matrices are presented in Fig. 4.18.
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Fig. 416 A planar FEM B

Table 4.1 Results of Example 1

Method ECGM SKGM ESGM EWGM PTGM TRGM NAGM INGM REGM

b(D) 313 497 313 457 513 515 447 451 491
Time 29.77  27.02 2192  36.09 20.65  22.03 18.29 1471  9.72

Table 4.2 Results of Example 2

Method ECGM SKGM ESGM EWGM PTGM TRGM NAGM INGM REGM

b(D) 843 1,173 843 787 1,103 1,103 1,185 845 1,195
Time 18.62  7.08 4.93 8.12 7.47 7.85 38.67 7.75 4.93

Fig. 4.17 A planar FEM
with two holes

4.6.11 Discussions

The algorithms presented in this section transform the connectivity of FEMs into
the topological properties of different graphs. Then a nodal ordering algorithm
undertakes numbering the nodes of the graphs, leading to nodal numbering of the
FEMs. All the methods presented are low order polynomial time algorithms.
Analyses are considered for worst cases and compared. Such analysis is the most
logical way of comparing the algorithms, since most of the combinatorial optimi-
sation algorithms are configuration dependent. Each algorithm presented has
advantages and disadvantages which become manifest when the algorithm is
employed for models with different element types and connectivity properties. It
should be noted that the relative performance of the algorithms depends also on the
starting node selection algorithm and the nodal ordering algorithm being employed.
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Table 4.3 Results of Example 3

4 nodes + 8 nodes + 12 nodes +

Element 4 nodes  mid-node 8 nodes  mid-node 12 nodes  mid-node
ECGM b(D) 111 217 333 437 553 657

Time  4.12 7.25 14.32 19.55 30.49 37.90
SKGM b(D) 95 179 269 347 439 519

Time  4.29 7.14 14.93 20.32 33.23 39.71
EWGM b(D) 97 185 313 417 541 639

Time  7.31 10.60 17.13 20.82 26.04 29.94
PTGM b(D) 159 309 477 633 807 963

Time  4.29 6.59 10.60 12.97 16.70 19.45
TRGM b(D) 167 327 479 619 791 945

Time  4.17 6.98 11.15 13.90 17.74 21.09
NAGM b(D) 95 177 271 353 447 529

Time  4.22 6.87 10.28 12.31 16.03 18.84
INGM b(D) 113 225 341 455 569 687

Time  4.39 4.77 791 9.23 11.10 12.96
REGM b(D) 95 177 271 353 447 529

Time  2.70 4.18 6.48 8.07 10.05 12.24

Fig. 4.18 A planar FEM

Table 4.4 Results of Example 4

Method ECGM SKGM ESGM EWGM PTGM TRGM NAGM INGM REGM

b(D) 125 221 125 221 229 213 175 125 187
Time 1.70 1.32 1.70 242 1.76 1.76 6.43 4.45 1.54

Finally, it should be mentioned that the simultaneous use of two graphs out of the
nine graphs presented in this section for nodal ordering may lead to a combined
model more informative than individual models, Kaveh and Roosta [28].
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4.7 Finite Element Nodal Ordering for Profile
Optimisation

4.7.1 Introduction

When a banded matrix of high order has a wide band and a large number of zeros
inside it, the diagonal storage scheme may become wasteful. Then a profile
(variable band) scheme of Jennings [29], the so-called skyline scheme (Felippa
[30]), may be used.

Nodal numbering algorithms can also be applied to profile reduction. As men-
tioned before, after nodal numbering for bandwidth reduction, by reversing the
ordering, a numbering corresponding to a much smaller profile can be found. This
has been found by George [31] and proved by Liu and Sherman [32]. The method is
known as the Reverse Cuthill-McKee algorithm. For the Cuthill-McKee type of
ordering the bandwidth remains unchanged when the order is reversed; however,
the profile can never increase.

As an example, consider a nodal numbering for a graph as shown in Fig. 4.19a
with corresponding adjacency matrix A in Fig. 4.19b. Reversing the nodal numbers
as in Fig. 4.19c, leads to a matrix A’ as depicted in Fig. 4.19d, with a reduction of
the profile from 15 to 13.

There are many algorithms for profile and frontwidth reduction, which can be
categorized in different ways. In this section the general algorithm of Souza and
Murray [33] is adopted for nodal ordering of all the graph models presented in the
previous section, to reduce the profile of sparse matrices with symmetric structures.
This algorithm incorporates the algorithm for selection of peripheral nodes, the
re-sequencing scheme of Sloan [9], and the algorithm of Gibbs-King [26].

In order to proceed with main algorithms for profile reduction, some definitions
will now be stated in the following:

The profile of an nxn matrix A is defined as,

P=>"b, (4.13)

where the row bandwidth, b;, for row 1 is defined as the number of inclusive entries
from the first non-zero element in the row to the (i + 1)th entry. The efficiency of
any given ordering for the profile solution scheme is related to the number of active
equations during each step of the factorisation process. Formally, row j is defined
to be active during the elimination of column i if j>1 and there exists a;, = 0 with
k <i. Hence, at the ith stage of the factorisation, the number of active equations is
the number of rows of the profile, which intersect column i, ignoring those rows
already eliminated. Letting f; denote the number of equations which are active
during the elimination of the variable x;, it follows from the symmetric structures of
A that:
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Fig. 4.19 A Reverse Cuthill-McKee for nodal numbering. (a) A nodal numbering. (b) Matrix
A. (¢) Reverse of the nodal numbering of (a). (d) Matrix A’

P= Zfi = Zbi, (4.14)

i=1 i=1

where f; is commonly known as the wavefront or frontwidth. Assuming that N and
the average value of f; are reasonably large, it can be shown that a complete profile
or front factorisation requires approximately O(Nf?) operations, where F is the root-
mean-square wavefront, which is defined as:

1 N 0.5
F= (-S| . 4.15
N2 (4.15)

Everstine [19] has shown that P/N < F < W_.. < B, where W,,,, is the
maximum wavefront. Hence in order to minimize the storage requirement and
solution time, it is imperative to reduce the profile and root-mean-square wavefront,
respectively. As both P and F are related, any algorithm that seeks to minimize
either will inevitably tend to reduce the other as well. We will call an algorithm
efficient if in a reasonable computer time it results in significant profile reduction.

In the storage scheme due to Jennings, all elements which belong to the envelope
are stored row by row including zeros, in a one-dimensional array, say AN.
Diagonal elements are stored at the end of each row. The length of AN is equal
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to Profile (A) + n. An array of pointers IN, the entries of which are pointers to the
locations of the diagonal elements in AN, is also necessary. Thus, the elements of
row i, when i > 1, are in positions IN(i — 1) + 1 to IN(i). The only element of row
1 is Ay, stored in AN(1). The elements have consecutive, easily calculable column
indices.

For example, the matrix of Eq. 4.4, has a profile equal to 4, and its envelope
storage is

Postion =1 2 3 4 5 6 7 8 9
AN =[1 6 2 7 3 9 8 4 5]
IN =[1 3 5 8 9]

A variant of Jennings’ scheme is obtained when the transpose of the lower
envelope is stored. In this case elements are stored column-wise, and since the
columns of the matrix retain their length, the scheme is often termed skyline
storage. The profile of a matrix also changes if the rows and columns are permuted.

4.7.2 Graph Nodal Numbering for Profile Reduction

Graph models defined in the previous section are incorporated in a general algo-
rithm of Souza and Murray [27] to obtain ten approaches for profile reduction.

This algorithm is based on Sloan’s algorithm, using priorities to control the
selection of nodes from a priority queue. Some of its features are adapted in the
following algorithms.

The numbering and control of nodes in the priority queue are carried out through
the assignment of status, based on the numbering strategy of King [28], which
operates as follows:

Take a node of minimum valency and number it “1”. The set of nodes is now
divided into three subsets, A, B and C. The subset A consists of nodes already
numbered. The subset B is defined as B = Adj (A), i.e. consists of all nodes
adjacent to any node of A. The subset C contains the remaining nodes. Then, at
each step, number the node of subset B which causes the smallest number of nodes
of subset C to be transferred to subset B, and redefine A, B and C, accordingly.

As an example, consider a graph S with original nodal numbering as in
Fig. 4.20a.

Take node “5” as a starting node and number it as “1”. Then:

A = {5},B = {1,8} and C = {the remaining nodes}.

At this stage 1, 8 are the next candidates. If 1 is taken to A, then 2 will come to B;
and for 8, node 7 will join B. Therefore, arbitrarily, 1 is taken to A and numbered as
“2”. Now we have:
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Fig. 4.20 An example of a b
numbering by King’s 8 3
algorithm
5 1
6 7 4 7
4 8
1 2 3 2 5 6

A ={5,1},B = {8,2} and C = {the remaining nodes}.

From new candidates 8 and 2, naturally 8 will be selected because it brings only
7 to B, while 2 brings 3 and 6. Therefore 8 is numbered as 3. This process is
continued until the nodal numbering of Fig. 4.20b is obtained, which corresponds to
a profile equal to 14.

The nodes in the above strategy can be categorized more formally as follows:

Prior to the numbering all the nodes of a graph model G of the considered FEM
are assigned inactive status. When a node of G is inserted in the priority queue, it is
assigned preactive status. After a node is numbered, it is assigned postactive status.
Nodes which are adjacent to a postactive node and do not have postactive status are
defined as having active status, Fig. 4.21. King’s algorithm is generalized by Sloan
[21] through introducing a priority queue to control the order to be followed in the
numbering of the nodes. This algorithm consists of the following two phases:

Phase 1: Selection of pseudo-peripheral nodes
The pair of starting nodes is determined according to the following steps:

Step 1: Choose an arbitrary node v of minimum degree.

Step 2: Generate an SRT, = {C},C5, .. .,C}} rooted from v. Let S be the list of
the nodes of C} which is stored in order of increasing degree.

Step 3: Decompose S into subsets S; of cardinality | S;1,j = 1,2, ..., A, where A
is the maximum degree of any node of S, such that all nodes in S; have degree
j- Generate an SRT from each node y in S, for the first 1 <m; < A. If d
(SRT,) > d(SRT,), then set v = y and go to Step 2.

Step 4: Let u be the root of the longest SRT which has the smallest width. When
the algorithm terminates, v and u are end points of a pseudodiameter.

Phase 2: Numbering
The general algorithm for nodal numbering of an arbitrary graph associated
with an FEM consists of the following steps:

Step 1: The priority queue denoted by Q is initialised with a starting node s,
ie. Q; =s. Set n = 1, where n is the length of the queue. The node s is
assigned preactive status. Let k be the node count, which is initially set equal
to zero or equal to the last number being used, in the case of disconnected
graph models.

Step 2: Assign initial status and priorities to all the nodes.
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Step 3: Select the node u € Q which has the maximum priority. Let i be the index
of node u in the queue such that Q; = u.

Step 4: Update queue, priority and status. Delete u from Q by setting Q; = Q,,
and n «+— n — 1. Insert nodes in queue: for each node x adjacent to u, whose
status is inactive, set n «+— n + 1 and Q, = x. Assign node x preactive status
and update priorities.

Step 5: Increment the node count by setting k < k + 1 and label node u by label
(u) < k, where label(.) contains the new labels of the nodes of the graph
model. The node u is assigned postactive status.

Step 6: If n > 0, i.e. there are still nodes in the queue, then update priorities and
status and go back to Step 3.

Step 7: Exit; i.e. the new ordering is now completed and the number of each node
u is obtained as label(u).

4.7.3 Nodal Ordering with Element Clique Graph (NOECG)

In this method Sloan’s criteria and definition for profile reduction are adapted and
the general algorithm of the previous section together with the element clique graph
of the considered FEM are employed for ordering. In Sloan’s algorithm a quantity is
defined and used as the current degree. The initial priority for each node is set to:

P, = W; x d(e,v) — Wy x cd(v), (4.16)

where W and W, are integers (set to W; = 1 and W, = 2 in the original algorithm
of Sloan [21]), d(e, v) is the distance of node v from the end node e, and cd(v) is the
current degree of v.

In Step 4 of the general algorithm, if u has preactive status, then each node x
which is adjacent to it has its priority incremented according to px < px + W». This
is equivalent to decreasing the current degree of node x by unity.
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In Step 6, each node x which is adjacent to the node u has its priority and status
updated if it is preactive. Then it is assigned an active status and its priority is
increased by setting py < px + W». Each node y which is adjacent to x is examined
next, according to:

(i) If y is not postactive, its priority is incremented by setting py < px + Wo,

(i) Else, if y is inactive then it is assigned preactive status and increased in the
priority queue by setting n «— n + 1 and Q,, = y. The time complexity of this
method is O((xz) for the worst case.

4.7.4 Nodal Ordering with Skeleton Graph (NOSG)

The method for ordering the nodes of the skeleton graph of an FEM, to reduce the
profile differs in two ways from the method of NOECG (i.e. Sloan’s method):

1. The distance between each node of SG and s (not e) is considered.
2. The initial priorities of nodes are calculated in a different manner.

The steps of the algorithm are outlined in the following:

Step 1: Form an SRT from S and compute the distance d(s, v) between each node v
of the SG and the starting node s.

Step 2: Assign each node in the graph an inactive status and compute its initial
priority, py, according to

P, = —d(s,v) — 3 x deg(v), (4.17)

where deg(v) is the degree of node v.

Step 3: Initialise the priority queue Q with the starting node s, i.e. Q; = s. Set
n = 1, where n is the length of the queue. The node s is assigned preactive status.
Let k be the node count.

Step 4: While the priority queue is not empty, which is signified by n > 0, execute
Steps 5-8.

Step 5: Select node u €Q which has the maximum priority. Let i be the index of the
node u in the queue such that Q; = u.

Step 6: Delete node u from the priority queue by setting Q; = Q, and decreasing
according to n «— n — 1. If node u is not pre-active go to Step 7. Otherwise,
examine each node w which is adjacent to node u and increment its priority
according to p(w) = p(w) + 2. If node w is inactive, then insert it in the priority
queue with a pre-active status by setting n <— n + 1 and Q; = w.

Step 7: Label node u with its new number by incrementing the node count according
to kek + 1 and setting /abel(u) <k. Assign node u a postactive status.

Step 8: Examine each node w which is adjacent to node u. If node w is pre-active,
assign node w an active status, set p(w) = p(w) + 2 and examine each node x
which is adjacent to node w. If node x is not postactive, increment its priority to p
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(x) = p(x) + 2. If node x is inactive, insert it in the priority queue with a
pre-active status by setting n «<— n + 1 and Q, = x.

Once the above steps are carried out, the new label of each node v will be label
(v). The time complexity of this method is the same as that of the NOECG method,
for worst case. However, it is interesting to note that the NOSG must be executed
faster than the NOECG in average cases, since the value of n in the process of the
NOSG is mostly less than that of the process in the NOECG. This is because, for
FEMs containing elements with four or more nodes, the degree of nodes of the SG
is less than those of the ECG. These two methods need the same lists for nodal
ordering of the considered graph; however, one should note that the compact
adjacency list of the SG occupies usually less memory than that of the ECG.

4.7.5 Nodal Ordering with Element Star Graph (NOESG)

The profile reduction algorithm which employs the element star graph of an FEM is
the same as the method of NOECG with the following modifications being
imposed:

If a virtual node u (a node whose old label is more than 1) is selected for being
labelled, it should be labelled with its new number by A plus another node count
without incrementing according to k' <k’ +1 and setting label(u) = M k',

This modification enables the numbering of the elements of the main set to be
varied continuously from 1 to a.

4.7.6 Nodal Ordering with Element Wheel Graph (NOEWG)

The same method as that of Sect. 4.7.5 is employed for ordering the nodes of the
EWG of an FEM. The time complexity of the NOEWG is the same as that of the
NOESG for worst case. However, the NOESG will be executed faster than the
NOEWG in average cases, since the value of n in the process of the NOESG is, in
general, less than in the process of the NOEWG, since for all FEMs the degrees of
the nodes of the ESG are, in general, less than those of the EWG. These two
methods require the same lists to be provided for nodal ordering of the considered
graph model. However, the compact adjacency list of the ESG uses fewer words of
memory than that of the EWG.
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4.7.7 Nodal Ordering with Partially Triangulated Graph
(NOPTG)

Ordering the nodes of the partially triangulated graph of an FEM for profile
reduction does not require the selection of a pair of pseudo-peripheral nodes. The
same good starting node used for the formation of the PTG (the node found in the
SG for the formation of the PTG) can be used again in the NOPTG as the starting
nodes s. The following two steps together with Steps 3-8 of the NOSG presented in
Sect. 4.7.4 complete the process of the NOPTG.

Step 1: Form an SRT from the good starting node s used for the formation of the
PTG and compute the distance d(s, v) between each node v of the PTG and the
starting node s.

Step 2: Assign each node in the graph an inactive status and compute its initial
priority, p, according to

P, = —d(s,v) — 2 x (deg(v) + 1). (4.18)

The time complexity of this method is clearly the same as that of the NOECG
and NOSG methods for worst case. In the method NOPTG the same lists needed for
the previous four methods should be provided. However, some of these lists such as
the compact adjacency list do not take the same number of words of memory in
different graph models.

4.7.8 Nodal Ordering with Triangulated Graph (NOTG)

In order to number the nodes of the triangulated graph of an FEM for profile
reduction, it is not necessary to find a pair of pseudoperipheral nodes. The same
good starting node used for the formation of the TG is employed again in the NOTG
as the starting node s. The following steps together with Steps 2—-8 of the NOSG
method complete the process of NOTG.

Step 1: Form an SRT from the good starting node s used in the formation of the
TG and compute the distance d(s, v) between each node v of the TG and the starting
node s.

The time complexity of this method is the same as methods NOECG, NOSG and
NOPTG for the worst case.

The value of n in the process of the NOTG is mostly greater than those in the
process of the NOSG and NOPTG, since the degrees of the nodes of the TG are
mostly more than those of the PTG and the SG. Thus NOTG is executed more
slowly than NOSG and NOPTG in average cases. An advantage of NOTG, similar
to NOPTG, is that no pseudo-peripheral nodes are needed.
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4.7.9 Nodal Ordering with Natural Associate Graph
(NONAG)

The profile reduction algorithm which employs the natural associate graph of the
FEM consists of two phases. In the first phase, which is the same as NOECG, the
nodes of the NAG are ordered. In the second phase the nodes of the considered
FEM are ordered based on the new labels of the nodes of the NAG. This step
contains the following steps:

Step 1: For each node i of the graph model set n(label(i)) = i.
Step 2: For each element e corresponding to the node u, u = n(j),j = 1,2, ..., a,
label the unlabelled nodes of e, in turn.

This algorithm needs the same lists as the previous methods; however, the
number of nodes of the graph model is equal to A. Therefore it is very efficient
for FEMs containing higher order elements. In the second phase of this method, an
additional list with A integer words of memory is needed which is denoted by n(.) in
the steps of the process. However, this list can be created when most of the lists
needed for the first phase are not required, and can be erased from the working
memory.

4.7.10 Nodal Ordering with Incidence Graph (NOIG)

The profile heuristic which employs the IG of an FEM contains two parts as the
NONAG method. These phases are the same as those of NONAG, with IG being
employed in place of NAG.

Time and memory complexities of the NOIG are the same as those of NONAG.
However, the value of n is higher than that of the NONAG, since degrees of the IG
are more than those of the NAG. Therefore the NOIG should have slower execution
than NONAG in average cases.

4.7.11 Nodal Ordering with Representative Graph (NORG)

This method consists of two parts. The first part orders the nodes of the RG, i.e. the
representative nodes of the elements of the considered FEM. The second phase
orders the nodes of the considered FEM based on the new labels of the represen-
tative nodes of the elements of the FEM.

The first part contains the following steps:
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Step 1: Form an SRT from a good starting node s used for the formation of the RG
and compute the distance d(s, v) between each node v of the RG and the starting
node s.

Step 2: Assign each node in the graph an inactive status and compute its initial
priority py, according to,

P, = =3 x d(s,v) —g(v), (4.19)

where &(v) denotes the number of elements incident to node v.

Step 3: Initialise the priority queue Q with the starting node s used for the formation
of the RG, i.e. Q; = s. Setn = 1, where n is the length of the queue. The node s
is assigned preactive status. Let k be the node count.

Step 4: While the priority queue is not empty, signified by n > 0, execute Steps
5-8.

Step 5: Select node u €Q which has the maximum priority. Let i be the index of the
node u in the queue such that Q; = u.

Step 6: Delete node u from the priority queue by setting Q; = Q,, and decrementing
n according to n «<— n — 1. If node i is not pre-active, go to Step 7, otherwise
examine each node w which is adjacent to node u and increment its priority
according to p(w) = p(w) + 1. If node w is inactive, then insert it in the priority
queue with a pre-active status by settingn < n + 1 and Q, = w.

Step 7: Label node u with its new number by incrementing the node count according
to k « k + 1, and setting label(u) < k. Assign node u a postactive status.

Step 8: Examine each node w which is adjacent to node u. If node w is pre-active,
assign node w an active status, set p(w) = p(w) + 1 and examine each node x
which is adjacent to node w. If node x is not postactive, increment its priority to p
(x) = p(x) + 1. If node x is inactive, insert it in the priority queue with a
pre-active status by setting n «+— n + 1 and Q, = x.

When the above steps are completely performed, the new label of each node v is
label(v). In this method there is no need to find any pseudo-peripheral, and the same
good starting node used for generating the RG is employed again in the process of
numbering.

The second phase of the algorithm contains the following steps:

Step 1: For each node i of the graph model set n(label(i)) = i.

Step 2: Set k = 0. Check each element e containing node u,u = n(j),j = 1,2, ...,
o, in turn, if e does not contain a node v corresponding to n(l) and i < j, then set
k «—k + 1 and m(k) = e.

Step 3: Set label(i) = 0, wherei = 1,2, ..., a.

Step 4: Set I = 0. Check each node w of element e, e = m(j), j = 1,2, ..., a, in
turn, if label(w) = O then seti = 0 +1 and label(w) = 1.

The time complexity of the first part of this algorithm is O(a?) and the second
part uses O(A0?) operations. One can reduce the time complexity of the second
phase by using an additional list in Step 2 to show whether element e has been
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previously detected. This procedure uses O(AO) operations. The first phase of the
algorithm NORG needs the same lists as the previous methods of profile reduction.

4.7.11.1 Complete Representative Graph (CREG)

This graph is the same as the REG with additional members connecting each pair of
nodes in the CREG if their corresponding nodes in the FEM are contained in the
same element.

4.7.12 Nodal Ordering with Element Clique Representative
Graph (NOECRG)

The profile reduction of this method consists of two steps as in NONAG
and NOIG and NORG methods. The first process is the same as that of Sloan’s
algorithm (NOECG) and the second step is similar to the second step of the NORG
approach.

The time complexity and memory complexity of the NOECRG method are the
same as those of NORG, but the magnitude of n in the process of NOECRG is, in
general, far higher than that of the NORG, since the degrees of the nodes of ECRG
are generally much greater than those of RG. Therefore NOECRG should be slower
in execution than RG.

4.7.13 Computational Results

A program is developed to implement the algorithms, and many FEMs are studied.
Six examples are presented here. For each problem illustrated in Figs. 4.22, 4.23,
4.24, and 4.25, the results of executing the program are provided in Tables 4.5, 4.6,
4.7, 4.8, respectively. The numbers of nodes a and elements A for each FEM are
provided in the caption of the corresponding figure.

4.7.14 Discussions

The algorithms presented for the profile reduction of sparse matrices with symmet-
ric structures are analysed for the worst case to show their time and memory
complexities.
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The programs developed for these algorithms have been tested on very many
examples, and the following table is obtained which illustrates the average compu-
tational time (in seconds) of the methods (Table 4.9).

4.8 Element Ordering for Frontwidth Reduction

For the solution of sparse systems of simultaneous equations arising from the finite
element method, the frontal methodology due to Irons [34] and the profile method
described by George [31], as well as band-matrix techniques, are commonly used.
These methods exploit the sparsity of the coefficient matrices generated by the
finite element approximation. They differ, however, in one significant respect: the
band and profile methods first construct the coefficient matrix explicitly, while the
frontal method arranges for elimination of variables as it assembles the matrix.
The most suitable ordering of the equation is dependent on the type of equation
solving scheme adopted (i.e. whether a band, profile or frontal solver is used).
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Fig. 424 a=936and A =
1,640

Fig. 425 o =936and A =
1,640

Table 4.5 Results of the
finite element model of Fig.
4.22

Algorithm Profile Elapsed time
NOECG 3,207 0.22
NOSG 3,236 0.22
NOESG 3,367 0.44
NOEWG 3,465 0.66
NOPTG 3,194 0.28
NOTG 3,237 0.27
NONAG 3,365 0.71
NOIG 3,365 0.60
NORG 3,460 0.33
NOECRG 3,185 0.44
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Table 4.6 Results of the

finite element model of Fig.

4.23

Table 4.7 Results of the

finite element model of Fig.

4.24

Table 4.8 Results of the

finite element model of Fig.

4.25
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Algorithm Profile Elapsed time
NOECG 7,444 0.39
NOSG 8,436 0.39
NOESG 8,336 0.87
NOEWG 8,256 1.27
NOPTG 8,527 0.65
NOTG 8,514 0.66
NONAG 7,320 0.93
NOIG 7,204 1.32
NORG 9,388 0.66
NOECRG 7,818 0.88
Algorithm Profile Elapsed time
NOECG 12,248 0.72
NOSG 13,142 0.71
NOESG 13,016 1.37
NOEWG 13,049 2.03
NOPTG 13,282 1.16
NOTG 13,113 1.21
NONAG 12,631 1.54
NOIG 12,665 1.98
NORG 16,055 1.16
NOECRG 12,894 1.65
Algorithm Profile Elapsed time
NOECG 15,223 0.88
NOSG 16,217 0.93
NOESG 16,008 1.87
NOEWG 15,852 2.63
NOPTG 15,391 1.48
NOTG 16,204 1.60
NONAG 15,482 2.15
NOIG 15,345 2.69
NORG 17,474 1.42
NOECRG 15,343 2.09

In finite element analysis, in the case of one degree of freedom per node, performing
nodal ordering is equivalent to reordering the equations. In a more general problem
with f degrees of freedom per node, there are § coupled equations produced by each
node. In this case re-sequencing is usually performed on the nodal numbering to
reduce the bandwidth, profile or frontwidth, because the size of this problem is 3
times less than that for degree of freedom numbering.
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Table 4.9 Average

8 . Algorithm Average of the computational time

computational time for

different graphs NOECG 0.99
NOSG 0.77
NOESG 1.39
NOEWG 1.96
NOPTG 1.25
NOTG 1.32
NONAG 1.33
NOIG 1.45
NORG 1.17
NOECRG 1.90

An efficient graph-theoretical approach for element renumbering of finite ele-
ment meshes for frontwidth reduction of sparse matrices with symmetric structures
can be found in the work of Kaveh [35].

4.9 Element Ordering for Bandwidth Optimisation
of Flexibility Matrices

The elements of a generalized cycle basis (GCB), as defined in Chap. 3, must be
ordered to obtain a banded flexibility matrix G. This is similar to ordering the
elements of a cutset basis (nodal numbering) for reducing the bandwidth of the
stiffness matrix K. This problem can be transferred to a nodal ordering algorithm by
defining appropriate mathematical structures for the transformation of the connec-
tivity properties, Kaveh [11]. Two approaches for this problem are developed in the
following.

4.9.1 An Associate Graph

An associate graph A(B(S)) of a generalized cycle basis B(S) of S is a graph whose
nodes are in a one to one correspondence with the elements of B(S), and two nodes
are connected if two elements of B(S) have at least one common member. As an
example the associate graph of the mesh basis in Fig. 4.26a is depicted in Fig. 4.26b.

A weighted associate graph can similarly be defined. For this graph, the nodes
and members are assigned integer numbers. The weight of a node in A(B(S)) is
taken as the number of members of the corresponding cycle in S, and the weight of a
member my = (n;, n;) in A(B(S)) is taken as the number of members of C;NC;,
where C; and C; are the cycles of S corresponding to the nodes n; and n; of A(B(S)),
respectively.
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(0]

Fig. 4.26 A mesh basis and its associate graph. (a) A mesh basis B(S) of S. (b) The associate
graph of B(S)

4.9.2 Distance Number of an Element

The distance d; of a node n; of S from a selected node O is the length of the shortest
path connecting n; to O. The distance number of a cycle or a y-cycle or an element
Ck from O is defined as one of the following:

(a) The distance of the nearest node of Cy from O, denoted by d.

(b) The distance of the furthest node of Cy from O, denoted by df(.

(c) The mean value of df and d; i.e. | (1) (d 4 dy)|, where |l means the integer part
of the number.

(d) The sum of di' + | (})L(Cx)

, where L(Cy) is the length of C.
L(Cy)
(e) The mean value of the distance of the nodes of Cy; i.e. Z |d; /L(Cx)].

i=1

As an example, the values defined above for a cycle Cy are shown in bold lines in
Fig. 4.26a, and with respect to a reference node O are 5, 6, 5, 7 and 5, respectively.
For simplicity only the integer parts of the divisions are considered.

Any of the definitions (a)—(e) can be used as the distance number of a cycle, a
y-cycle or an element of a finite element model (FEM).

4.9.3 Element Ordering Algorithms

In the following, two algorithms are presented for ordering the elements of a cycle
basis, a GCB, an FEM or the substructures of a structure. However, for simplicity
we will refer to a GCB only.

Algorithm A

Step 1: Order the nodes of S with a nodal numbering algorithm.

Step 2: Use the same starting node as in Step 1 to form an SRT and find the distance
numbers of the elements of the GCB.
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Step 3: Assign these distance numbers to the nearest (furthest or any other appro-
priate intermediate) nodes of the elements of the GCB. In this process a node
may become the representative node of p elements. Then p independent distance
numbers will be assigned to the representative nodes.

Step 4: Order these nodes in ascending order of distance number. A node
representing p elements will receive p different (independent) numbers. For
equi-distant nodes the same sequence as the nodal numbering of Step 1 should
be used, to effect the connectivity properties of S.

Step 5: Order the elements of the GCB with the same numbers received by their
representative nodes. This provides an efficient ordering for the elements of
the GCB.

Algorithm B

Step 1: Construct the associate graph A(B(S)) of the GCB.

Step 2: Generate an SRT of S, starting from an appropriate node O, and find the
distance numbers of the elements of the GCB.

Step 3: Assign these numbers to the nodes of A(B(S)), and order its nodes by a
nodal numbering algorithm, with a starting node which corresponds to an
element containing O .

Step 4: Reorder the nodes of A(B(S)) in ascending order of their distance numbers
obtained in Step 2. For equi-distant nodes the same sequence as that obtained by
the nodal numbering algorithm of Step 3 should be used.

Step 5: Number the elements in the same order as that obtained for their represen-
tative nodes in A(B(S)). This leads to an efficient numbering of the elements of
the considered GCB.

Example. Let S be the model of a rigid-jointed planar frame. Suppose the selected
cycle basis consists of the boundaries of the bounded regions of S (a mesh basis),
Fig. 4.27a.

For Algorithm A, an SRT starting from O is generated, Fig. 4.27a, and the
distance numbers of the cycles corresponding to definitions (a) and (e) of Sect. 4.7.2
are calculated and assigned to the representative nodes of the cycles. The nearest
node of a cycle to O is taken as its representative node, Fig. 4.27b, c. These nodes
are then ordered, leading to an ordered cycle basis. The bandwidth of the cycle
adjacency matrices for these orderings are 15 and 13. The latter result can further be
reduced to 11 by imposing additional restrictions in the process of ordering. Since
the frame is planar, the bandwidths of the corresponding flexibility matrices will be
45 and 39, respectively.

Algorithm B is also applied to this example. The associate graph A(B(S)) of
the mesh basis is formed, Fig. 4.27d, and using definition (e) for distance number of
the elements, the order of the nodes of A(B(S)) is obtained. The numbering of the
cycles is shown in Fig. 4.27d, which corresponds to a bandwidth of 13 for its cycle
adjacency matrix, and 39 for its flexibility matrix.
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Fig. 4.27 S and ordering the elements of its cycle basis. (a) An SRT of S. (b) Cycle ordering by
definition (a). (¢) Cycle ordering by definition (e). (d) A(B(S)) and its nodal ordering

4.10 Bandwidth Reduction for Rectangular Matrices

In previous sections the bandwidth optimisation of square matrices has been
discussed. In structural analysis, it may also be desirable to reduce the bandwidth
of some sparse rectangular matrices. As an example, it may be beneficial to reduce
the bandwidth of the equilibrium equations of a structure, Kaneko et al. [36]. This
can be done by optimising the bandwidth of the corresponding cutset basis inci-
dence matrix L. Similarly for compatibility equations, one can optimise the band-
width of C.

In this section a K-total graph is defined and two algorithms are presented for the
bandwidth reduction of rectangular matrices.

4.10.1 Definitions

Let B be a rectangular matrix with m rows and n columns, whose entries are
denoted by b;;. For each row like i (except the first and the last row, where iy = 1
and iy = n, respectively), the integer part of the real number i(n/m) is defined as iq.
Therefore, the entry of B at position (i, ig) is considered as the ith diagonal entry.
For square matrices m = n and i = ig. The bandwidth of B is then defined as
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b(B) =m; + m; + 1, (4.20)
Where
m, = max{k — ig|bx # 0, k > ig},
1<i<n
and

m; = max{ig — k|bi #0, k <ig}.
1<i<n (4.21)

If B is a symmetric square matrix, then m, = m; and b(B) reduces to the
conventional definition of square matrices. A rectangular matrix is called banded
if b(B) is small compared to m.

Matrix B in block submatrix form has the same pattern as L, i.e. each non-zero
entry of L corresponds to a nxn submatrix in B, where 1) is the degree of freedom of
a node of the structure. Obviously, reduction of the bandwidth of L leads to a
banded matrix B.

The terms “nodes” and “members” have been used for a graph S, and now we use
“vertices” and “edges” for the elements of a K-fotal graph which is defined as
follows:

Associate one vertex with each member and each element of the selected cutset
basis or a cycle (y-cycle) basis of S. Connect two vertices with an edge if

(a) The corresponding members are incident,
(b) The corresponding cutsets (cycles or y-cycles) are adjacent,
(c) The corresponding member and cutset (cycle or y-cycle) are incident.

When a cutset or cycle is changed to a node of S, then the K-total graph becomes
a total graph as defined in graph theory (see Behzad [37]).

Examples of K-T(S) are shown in Figs. 4.28 and 4.29, when the cocycle basis
and cycle basis are considered, respectively. In these figures small squares are used
to represent members, and circles are employed to show the elements of the
considered basis.

4.10.2 Algorithms

Algorithm A

Construct the K-total graph of S and order its vertices. The corresponding sequence
leads to a favourable order of cutsets (nodes) and members of S, to reduce the
bandwidth of L, which is pattern equivalent to the coefficient matrix of the
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Fig. 4.28 Reduction of bandwidth for a cutset basis incidence matrix. (a) S and the considered
cocycle basis. (b) K-T(S) and its nodal ordering

a
7 4 2
9 6 3

Fig. 4.29 Reduction of bandwidth for a cycle basis incidence matrix. (a) S and the considered
cycle basis. (b) K-T(S) and its nodal ordering

equilibrium equations. A similar approach reduces the bandwidth of C, when
cycles (y-cycles) are considered in place of cutsets.

This algorithm will now be applied to the examples of Figs. 4.28 and 4.29, from
which the corresponding orders for the elements of the bases and members of S
are obtained.

Algorithm B

Order the nodes of S. Then order the unnumbered members of the stars of the nodes
in the selected sequence, to obtain a reasonably banded L matrix.

In general, Algorithm A leads to a better result than Algorithm B, at the expense of
additional computer time.

4.10.3 Examples

Consider a graph S as shown in Fig. 4.30 with the corresponding member and cutset
orders.
The cutset basis incidence matrix of S can be written as,
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Fig. 4.30 S with an

C;‘ C’i‘
arbitrarily ordered members 4 (
and cutsets x *

m; mpms My Mms

cr. . . 11

C+=Cy |1 1 . . b(L)=4+4+1=09,
CGl. 111
clt .1

Using the ordering obtained by K-T(S), the cutset basis incidence matrix becomes,

m; mpms My Mms

Cif1 1

C+=Cy|. 1 11 b(L)=2+2+1=5,
cGl. . .11
cgl. .1 .1

in which the non-zero entries are clustered to the diagonal of the matrix.

As a second example, consider S as shown in Fig. 4.31, in which the regional
cycles and members are arbitrarily numbered.

The cycle basis incidence matrix for S is given as:

m; mpy ms My M5 Mg M7 Mg Mg Mjg

|1 00 1 100 1O00O0
C=C,|0 01 001100 1.

G001 00 1 1 0 O0T1O0

For this matrix, b(C) = 7 + 8 + 1 = 16. With ordering the cycles and members

simultaneously, using Algorithm A, the following cycle basis incidence matrix is
obtained.

m; mp m3 my Ms Mg M7 Mg My Myg

Gt 110100000
C=GC|0 001 110100
CG;|00000O0T1 1 1 1

The bandwidth fir this matrix is obtained as b(C) =4 + 3 + 1 = 8.
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Fig. 4.31 S with arbitrarily 8 9 10
numbered members and

cycles 4 @5 @ 6 @ .

1 2 3

For the force method of frames, the coefficient matrix of the equilibrium
equations can be made banded through reducing the bandwidth of its member-
cycle incidence matrix. After an algebraic force method is employed, a repeated
application of the developed method makes the null basis matrix a banded one for
subsequent applications. Similarly, if a combinatorial approach is used, the band-
width reduction algorithm makes the cycle basis incidence matrix banded, leading
to a banded statical basis (null basis) matrix.

4.10.4 Bandwidth Reduction of Finite Element Models

The algorithms presented in the previous section can also be applied to finite
element models, for their analysis by the algebraic force method, Kaveh and
Mokhtar-zadeh [38]. For such models, the K-total graph of an FEM is defined as
follows:

Associate one vertex with each side and each element of the FEM, and connect
two vertices with an edge if any of the following conditions hold:

1. Sides are adjacent;
2. Elements are adjacent;
3. A side and an element are incident.

The Algorithm A can now be adapted to FEMs as follows:

Step 1: Generate the K-total graph of the finite element mesh S.

Step 2: Order the vertices of K-T(S) by any nodal ordering algorithm available.

Step 3: Assign numbers the members of K-T(S) and to the elements of the consid-
ered FEM, in the order of their occurrence in the sequence selected in Step 2.

Example. Four groups of examples are considered as shown in Fig. 4.32(a—d). In
these figures, Q is the aspect ratio of the element numbers in two perpendicular
directions (x and y directions) which is taken as unity. The ratio of the length of
the elements side in x direction to that of the y direction, is taken as 1.2. S is
the refinement index of a group. In the group UT, 4, Q, are the aspect ratios of the
element numbers in the two sides of the general configuration with respect to the
central part of the model.

The sparsity of the self-stress and flexibility matrices of LQ and HQ groups is
illustrated in Fig. 4.33(a—d).
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Fig. 4.32 Test group examples. (a) Group RQ-Q-S (Q=1, S = 6). (b) Group LQ-Q-S (Q=1,
S = 3). (¢) Group UQ-Q,-Q; 5 (=8, = 1, S = 3). (d) Group HQ-Q-S (Q=1, S = 2)

4.11 Graph-Theoretical Interpretation of Gaussian
Elimination

In this section, a simple graph-theoretical interpretation of the Gaussian elimination
is presented, in order to establish a closer link between the matrix algebra on one
hand and graph-theoretical concepts on the other hand.

Let A be a symmetric sparse matrix of order N and let S be the corresponding
graph. Suppose that Gaussian elimination by columns is performed on A until the
factorization A = U'DU is obtained. At the beginning of the kth step all non-zeros
in columns 1, 2, .. ., k—1 below the diagonal have been eliminated. Multiples of the
kth row are then subtracted from all rows which have a non-zero in column k below
the diagonal. On performing this operation, new non-zero entries may be intro-
duced inrow k + 1, ..., N to the right of column k. Cancellations may also occur,
producing new zeros, but this is rare in practice and will be neglected. Consider the

active submatrix at the kth step (an active submatrix contains all elements Afjk) with
i, j > k). Let S* be the graph associated with the active submatrix. S is called an
elimination graph, Parter [39]. The nodes of this graph are N—k + 1 last numbered
nodes of S. S* contains all members connecting those nodes which were present

in S, and additional members corresponding to fill-ins produced during the k—1
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Fig. 4.33 Self-stress and a_
flexibility matrices.

(a) Self-stress matrix of
LQ-1-4. (b) Flexibility
matrix of LQ-1-4.

(¢) Self-stress matrix of
HQ-1-4. (d) Flexibility
matrix of HQ-1-4

Eq;

initial elimination steps. The sequence S = st Sz, S3, ... can be obtained using the
following rule:

To obtain S**' from S¥, delete node k and add all possible members between
nodes, which are adjacent to node k in S*.

As an example, consider a graph S and the corresponding adjacency matrix, as
shown in Fig. 4.34. Two steps of the Gaussian elimination and the corresponding
elimination graphs are also illustrated.

Eliminating the rest of the nodes, and considering a clique (a complete graph)
between the nodes adjacent to each eliminated node (when such members are not
present), matrix U is obtained. The structure of U + U" and the corresponding filled
graph are shown in Fig. 4.35.

There are algorithms which try to reduce the number of fill-ins caused by
elimination. The minimum degree algorithm of Tinney [40] is perhaps the best
method for such a reduction.
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Fig. 4.34 Tllustration of two steps of the Gaussian elimination. (a) S = S'. (b) Matrix A’. (c) S2.
(d) Matrix A2 (e) S°. (f) Matrix A*
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Fig. 4.35 The structure of U + U and the corresponding graph. (a) ST. (b) Matrix U + U
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Chapter 5

Ordering for Optimal Patterns of Structural
Matrices: Algebraic Graph Theory

and Meta-heuristic Based Methods

5.1 Introduction

There are different matrices associated with a graph, such as incidence matrix, the
adjacency matrix and the Laplacian matrix. One of the aims of algebraic graph
theory is to determine how properties of graphs are reflected in algebraic properties
of these matrices. The eigenvalues and eigenvectors of these matrices provide
valuable tools for combinatorial optimisation and in particular for ordering of
sparse symmetric matrices such as the stiffness and flexibility matrices of the
structures.

In this chapter, algebraic graph-theoretical methods are discussed for nodal
ordering for bandwidth reduction. Hybrid methods are also applied to nodal order-
ing, using graph theory and algebraic graph theory.

Though graph theoretical methods are highly efficient for ordering; however,
bandwidth minimization is a NP-complete problem. To tackle this problem par-
tially, meta-heuristic algorithms seem to good alternatives, though these do not lead
to absolute minimum either. Here, the recently developed meta-heuristic, known as
the charged system search, is applied to nodal ordering for bandwidth and profile
reduction. Meta-heuristic algorithms are rapidly developing and these can provide
powerful methods for ordering in the near future [1-3].

5.2 Adjacency Matrix of a Graph for Nodal Ordering

5.2.1 Basic Concepts and Definitions

There are several geographical papers dealing with the question of whether impor-
tant places or well connected sets of towns in a traffic network can be identified by
an inspection of certain eigenvalues and corresponding eigenvectors of the

A. Kaveh, Computational Structural Analysis and Finite Element Methods, 187
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adjacency matrix A of the underlying graph model. Gould [4] appears to be the first
important publication on this subject.

In structural analysis, Kaveh [5] used the first eigenvalue and eigenvector of
[A + I, for nodal ordering for bandwidth reduction. Grimes et al. [6] employed this
concept for finding pseudo-peripheral nodes of a graph. This algebraic graph-
theoretical method in studied in the following.

A node n; of S is called peripheral, if its eccentricity is the same as the diameter
of S, i.e. 8(S) = e(n;). If the eccentricity is close to the diameter, then n; is called a
pseudo-peripheral node or a good starting node.

Reordering the nodes of the graph model of a structure does not change the
properties of the stiffness matrix. This fact stays true for the properties of the graph
itself. Therefore, a natural question is: what can the theory of matrices and in
particular the eigenvalues of the matrices associated with graphs tell us about the
structure of the graph itself. In the following, we shall endeavour to find out to what
extent the eigenvalues of the adjacency matrix of a given graph, reflect the
properties of that graph.

Let A be the adjacency matrix of the graph S, which is a real symmetric (0, 1)
matrix, and the sum of entries of any row or column is equal to the valency of the
corresponding node. Denote the characteristic polynomial of A by ¢(S;x). Since
®(S;x) is uniquely determined by the graph S, it is referred to as the characteristic
polynomial of S and expressed as:

$(S;x) = det(xI — A) = Y “aix™. (5.1)

Since A is a real symmetric matrix, its eigenvalues (the roots of this polynomial)
must be real, and can be ordered A; > A, > A3 > ... > An. These eigenvalues are
called the eigenvalues of S, and the sequence of N eigenvalues is called the
spectrum of G.

The following important results are stated, however, the reader may refer to
Schwenk and Wilson [7] for further details and proofs.

1. The sum of the eigenvalues of a graph is equal to the trace of A, and
therefore zero.

2. If S is connected with N nodes, then 2cos (NLH) <M <N — 1. The lower

bound occurs only when S is a path graph, and the upper bound occurs when S
is a complete graph.

3. If S is a connected graph with m distinct eigenvalues and with diameter d, then
m > d.

The spectrum by no means specifies its graph uniquely, however, it does provide
a wealth of information about the graph and hence about the structure. Some
applications of such information will be given in this chapter and Chap. 8.
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Table 5.1 Simple examples

Graph Adjacency matrix Characteristic polynomial Eigenvalues
K, o 1 x2 -1 1, -1
|10
P; [0 0 1 X’ — 2x V2, — /2.0
0 0 1
L1 10
C, [0 1 0 1 xt — 4x? 2,-2,0,0
1 010
01 0 1
11 0 10

However, the writer strongly believes that in future many other applications in
structural mechanics will be found.
Table 5.1 shows some simple examples to verify the results stated.

Perron-Frobenius Theorem. If S is a connected graph with at least two nodes,
then:

(1) Its largest eigenvalue A is a simple root of ¢(S;x);
(i) Corresponding to the eigenvalue A, there is an eigenvector w; all of whose
entries are positive;
(iii) If A is any other eigenvalue of S, then — A; < A < Ay;
(iv) The deletion of any member of S decreases the largest eigenvalue.

The largest eigenvalue A, is often known as the spectral radius of S. Since the
eigenvectors corresponding to any eigenvalue other than A; must be orthogonal to
w,, we observe that the multiples of w; are the only eigenvectors all of whose
entries are positive.

Consider the node adjacency matrix A of S. Let,

Q=A+I (5.2)

where I is an N(S)xN(S) identity matrix. The eigenvalues of Q are one unit bigger
than those of A, and the eigenvectors of Q are exactly the same as those of A.
Matrix Q is real and symmetric, and it can easily be shown that all the entries of Q*
are positive; thus it is primitive and, according to the Perron-Frobenius theorem, A;
is real and positive and a simple root of the characteristic equation, A; > IAl for any
eigenvalue A # A, and A; has a unique corresponding eigenvector w; with all
entries positive.

As w; is the eigenvector corresponding to A;, therefore Qw; = Aw; fori = 1,.. .,
N(S). Multiplying the two sides by Q, one obtains QQw; = A,Qw; = Kizwi Repeat-
ing this process results in Q"w; = Aw;. Now consider any vector x not orthogonal
to wy as:
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X = oWy + Wy + ...+ aN(s) WN(s) ay # 0. (5.3)

Multiplying the two sides with Q" and using Qkw; = M‘wi fori=1,...,N(S),
leads to,

Qx = K}(alwl + Xé((Xsz +...+ 7\11\(1(5)(XN(S)WN(S), (5.4)
and as k — oo, we have,
k
Q*x /AN = oqywy + (Aa/A) oows + ...+ (An(s)/M) onys) Was) — awy,  (5.5)

since A is the eigenvalue of strictly largest modulus and (A;/A;) is less than unity
and approaches to zero when k — co. In other words, the ratios of the components
of Q*x approach the ratios of the components of w; as k increases.

Letv = {1,1, ...,1}', then the ith component of ka, is the number of walks of
length k beginning at an arbitrary node of S and ending at n;. If n; is a good starting
node (peripheral node), this number will be smaller. Thus, for k — oo, one should
obtain some average number, defined as the accessibility index by Gould [4]. This
number indicates how many walks go on average through a node. With a suitable
normalization, Qv converges to the largest eigenvector w; of Q, Straffing [8].

5.2.2 A Good Starting Node

Algorithm A

Step 1: Calculate the dominant eigenvector w; = {w,wo, .. .,WN(S)}t of matrix Q.

Step 2: Find Min w; in w,. The node corresponding to this entry is taken as a good
starting node of S.

For calculating the dominant eigenvector w; of Q, an iterative method is used,
which starts with v = {1, 1, ..., 1}' and calculates Qv. This vector is then
normalized and multiplied by Q. This process is repeated until the difference
between two consecutive eigenvalues, obtained from Qv = Av, is reduced to a
small value which, for example, can be taken as 1073,

5.2.3 Primary Nodal Decomposition

Once a good starting node is selected, an SRT is constructed and its contours {Cy,
C,, ..., C,} are obtained. These subsets are then ordered according to their
distances from the selected starting node. Obviously many SRTs can be constructed
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on a node. Although all lead to the same nodal decompositions, different trans-
versals will be obtained for different SRTs. Thus in the generation process, the
nodes of each contour C; are considered in ascending order of their entries in
eigenvector W for selecting the nodes in C;,, in order to provide the conditions
for the possibility of generating a minimal (or optimal) transversal as defined in the
next section.

5.2.4 Transversal P of an SRT

For selection of an optimal transversal, the weight of a node is defined as its value
w; in wy, when an algebraic graph-theoretical method is employed.

Algorithm B
Let Cy, C,, ..., C,, be the selected contours of the SRT, and correspondingly put
these subsets in w; into a similar order, i.e.

wi = {W(C1), W(C2), ... W(Cn)}, (5.6)

where W(C;) contains the entries of w; corresponding to the nodes of C;. Now

the algorithm can be described as follows:

Step 1: Label the root as N and assign w; of this node as its new weight, denoted by
Wi.

Step 2: Calculate the new weight W; of each node of C, by adding the w;’s from W
(Cy) to wy.

Step 3: Repeat the process of Step 2, calculating W; for each node of C3, Cy, . . ., Cy,.

Step 4: Take a node N, of minimal weight from the last contour C,, of the
selected SRT.

Step 5: Find N,,,_; from C,,,_;, which is connected to N, by a branch of the SRT.

Step 6: Repeat the process of Step 5, selecting N, >, N3, ..., Ny as the
representative nodes of the contours C,,_», Cp,,_3,. .., Cy.
The set P = {N;, N,, ..., Ny}, forms a suboptimal transversal of the

selected SRT.

5.2.5 Nodal Ordering

Step 1: Number N as “1”.
Step 2: N, is given number “2” and an SR subtree is generated from N,, numbering
the nodes of C, in the order of their occurrence in this SR subtree.
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Step 3: The process of Step 2 is repeated for numbering the nodes of C3, Cy, . . ., C,
sequentially using N3, Ny, . .., N;, as the starting nodes of SR subtrees, until all
the nodes of S are numbered.

Now the numbering can be reversed, in a way similar to that of the Reverse
Cuthill-McKee algorithm, for possible reduction of fill-ins in the process of Gaussian
elimination.

5.2.6 Example

S is the model of a grid with uniform valency distribution, as shown in Fig. 5.1a.
Using algorithm A, the following dominant eigenvector is obtained for matrix Q
of S, in which for simplicity only four digits are provided:

0.9540, 1.0000, 0.8786, 0.6183, 0.2875, 0.2875, 0.6183, 0.8786, 1.000, 0.9540
0.7432, 0.3972, 0.1180, 0.3011, 0.4791, 0.5951, 0.6160, 0.5298, 0.3344

{ 0.3344, 0.5298, 0.6161, 0.5951, 0.4791, 0.3011, 0.1180, 0.3972, 0.7432 }t
W = .

Thus node “7” is selected as a good starting node. An SRT is generated from this
node and using Algorithm B, a transversal P = {7, 14, 21, 28, 27, 26, 25, 24, 23,
22} is selected, which is shown in bold lines in Fig. 5.1a. Final nodal numbering is
illustrated in Fig. 5.1b.

5.3 Laplacian Matrix of a Graph for Nodal Ordering

5.3.1 Basic Concepts and Definitions

Another interesting matrix associated with a graph is the Laplacian matrix of S,
denoted by L(S).

Consider a directed graph S with an arbitrary nodal numbering and member
orientations. The adjacency matrix A(S), degree matrix D(S), node-member inci-
dence matrix C(S), and Laplacian matrix L(S) are defined as follows:

The adjacency matrix A(S) = [ajj]n « n of the labelled graph S is defined as:

1 if node n; is adjacent to nj,
aij = .
0 otherwise.

The degree matrix D(S) = [djj]n « n is the diagonal matrix of node degrees:



5.3 Laplacian Matrix of a Graph for Nodal Ordering 193

a b
22 23 24 25 26 27 28 28 26 23 19 15 11 7
16 17 18 19 20 21 24 20 16 12 8
15 27 4
3 9 10 11 12 13 14 25 21 17 13 9 5 )
1 2 3 4 5 6 7 22 18 14 10 6 3 1

Fig. 5.1 The graph model S and its nodal numbering. (a) Initial numbering and the selected
transversal. (b) Final numbering

& — deg(n;) ifi=j,
Y10 otherwise.

The Laplacian matrix L(S) = [l]n « n is defined as,

therefore, the components of L(S) are given as:

-1 ifny isadjacentton;,
lij = deg (nj) ifi = j,
0 otherwise.

The node-member incidence matrix C(G) = [cjjln x m for the arbitrarily ori-
ented graph is defined as:

+1 if m;points towardn;,

cij = { —1 if m;jpointsawayformn;,
0  otherwise.

Two distinct rows of C(S) have non-zero entries in the same column if and only
if a member joins the corresponding nodes. These entries are 1 and —1. It can be
shown that:

L =CC' (5.8)

It can also be shown that L is independent of the orientation of the members of

the graph.
Hall [9] considered the problem of finding the minimum of the weighted sum,

1
7= Ezi,j (Xi — xj)zaij, (59)

where a;; are the elements of the adjacency matrix A. The sum over all pairs of
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squared distances between nodes which are connected, and so the solution should
result in nodes with large numbers of inter-connection being clustered together.
The above equation can be rewritten as:

1 1 1 1
2 Zi,j (xi — 2X;Xj + Xj )aij =5 Zi’jxi aj > z:i’jb(]x]a1J + > Zi’jxj ajj
= E . AXizaij + E - XiXjay = x'Lx.
1,j ) 1,] J

(5.10)

where L is the Laplacian. Hall also supplied the condition that x'x = 1, i.e. the
distances are normalized. Using Lagrange multiplier, we have,

Z = x'Lx — Ax'x, (5.11)
and to minimize this expression, the derivative with respect to X is taken as,
Lx — Ax =0, (5.12)
or
Lx = \x, (5.13)

which is the eigenvalue equation. The smallest eigenvalue of L is A; = 0, and the
corresponding eigenvector y; has all its normalized components equal to 1. The
second eigenvalue A,, and the associated eigenvector y, have many interesting
properties, which will be used for nodal numbering in this chapter, and for domain
decomposition in Chap. 8.

In order to get a feeling of the magnitude of A, = a(S), known also as the
algebraic connectivity of a graph, some simple theorems are restated from the
results of Fiedler [10] in the following:

1. For a complete graph Ky with N nodes, a(Ky) = N.

2. If S; € S, (S and S,, have the same nodes), then a(S;) < «(S,).

3. Let S be a graph, let S; arise from S by removing k nodes from S and all adjacent
members, then

a(S1) > a(S) — k. (5.14)
4. For a non-complete graph S,

a(S) < v(S) <e(S), (5.15)
where v(S) and e(S) are the node connectivity and edge connectivity of S,
respectively. The node connectivity of a graph S is the smallest number of
nodes whose removal from S, along with members incident with at least one
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of the removed nodes, leaves either a disconnected graph or a graph with a single
node. The edge connectivity of S is the smallest number of edges whose removal
from S, leaves a disconnected graph or a graph with one node. As an example,
the node and edge connectivity of a complete graph Ky is equal to N—1.

5. For a graph with N(S) nodes

N
a(G) =2 < ﬁmin{deg(n); n € N(G)}. (5.16)
and the largest eigenvalue has the following bound:
N
AN > mmax{deg(n); n € N(S)}. (5.17)

6. Let U be the set of all real N-tuple x such that x'x = 1 and x'ex = 0. From the
theory of symmetric matrices, the following characterization for o(S) is
obtained,

«(S) = min{x'Lx|x € U}, (5.18)
where
exn={1,1,...,1}". (5.19)

7. The following theorem is interesting since it relates the properties of the
adjacency matrix A of a graph to those of its Laplacian matrix L. Such theorems
may establish firm relationships between the application of the largest eigen-
value and eigenvector of A for ordering to the second smallest eigenvector and
eigenvalue of the Laplacian matrix L of the graph for ordering and partitioning.

Theorem. Let S be a graph with adjacency matrix A and Laplacian matrix L. Let
D and d be the maximum and minimum node degrees of S, respectively. The second
largest eigenvalue p, of A and the second smallest eigenvalue A, of L are then
related as:

6—7\2 S Ha S A—)xz. (520)

Proof. ., is the second largest eigenvalue of A, and & — A, is the second largest
eigenvalue of 81 — L < A — (diag(deg(v)) — 8I), which differs from A only on the
diagonal, where the non-negative values deg(v)—d are subtracted. Consequently,
0 — A < Hp. In a similar way also the other inequality is obtained.

Lemma. If S is not a complete graph, then p, > 0 and A, < A.
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5.3.2 Nodal Numbering Algorithm

Based on the concepts presented in the previous section, the method can be
described as follows:

Step 1: Construct the Laplacian matrix L(S) of the given graph S.

Step 2: Compute the second eigenvalue A, of L and its corresponding eigenvector
y,. Different methods are available for such calculation. Paulino et al. [11] used
a special version of the subspace iteration method. However, the algorithm of
Lanczos described in the next chapter can also be efficiently applied; y, is also
known as Fiedler vector.

Step 3: Reorder the nodes of S in ascending order of the vector components in y5.

Similar to the previous algebraic method, this algorithm has the advantage of
using global information of the graph model. However, although it does not use the
pseudo-peripheral nodes and SRT and its transversal, its efficiency is very sensitive
to the initial ordering of the nodes of the model. Preconditioning by pre-ordering
can be utilised for improving the running time of the method, resulting on some
kind of dependency on graph-theoretical properties.

5.3.3 Example

Consider a graph with 12 nodes, as shown in Fig. 5.2a, with an arbitrary nodal
numbering.

The Laplacian matrix L(S) is constructed and its eigenvalue A, and eigenvector
y, are calculated as follows:

A = 1.1071,

| —0.0608, —0.2023,1.0000, — 0.5303,0.0658, — 0.4721,0.3099,0.3106, '
2 —0.2399,0.5829, — 0.3125, — 0.4514 '

Using y», the new labelling is obtained, as illustrated in Fig. 5.2b.
This method can also applied to finite element nodal numbering, using any of the
ten graphs defined in Chap. 5.

5.4 A Hybrid Method for Ordering

In this method, the advantages of both graph and algebraic graph methods are
incorporated into an algorithm for ordering. In the algebraic graph method, general
approaches are used to calculate the eigenvalues and eigenvectors, and the infor-
mation available from the connectivity of their graph models are ignored. This is
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3 7 2 6

b c
3 ’ 2 6 12 K 6 )
5 9 8 5
10 21 3
8 X M 4 10 7 . 1

Fig. 52 A graph G. (a) A simple finite element model. (b) Numbering before ordering.
(c) Numbering after ordering

why the computational time and complexity of these algorithms are not low enough
to compete with pure graph theory methods. In this section, graph parameters are
used to increase the efficiency of the algebraic graph theory approaches. Typical
graph parameters can be taken as the degrees of the nodes, the 1-weighted degrees
of the nodes, the distances of the nodes from two pseudo-peripheral nodes, and
2-weighted degrees of the nodes of the graph.

The algebraic graph theory method employed here is not the same as those
employed in a general eigenproblem, but rather a specific method is used in which
the valuable features of graph parameters are incorporated.

5.4.1 Development of the Method

Here, the graph parameters are considered as Ritz vectors, and the first eigenvector
of the complementary Laplacian matrix L. (Fiedler vector) is considered as a linear
combination of Ritz vectors. The coefficients for these vectors are in fact the
weights of the graph parameters, which are usually determined either by heuristic
approaches or by experience.

Consider the following vector,
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¢ = iWiVi, (5.21)

i=1

where 6 is an approximation to the Fiedler vector, v; (i = 1, ..., p) are the
normalized Ritz vectors representing the graph parameters, and w; (i = 1,..., p)
are the coefficients of the Ritz vectors (Ritz coordinates) which are unknowns, and
p is the number of parameters being employed. Equation 5.21 can be written as,

o =vw, (5.22)

where w is a px 1 vector and v is an Nxp matrix containing the Ritz vectors.
Consider the eigenproblem of the complementary Laplacian as:

Lcd = pd. (5.23)
Approximating ¢ by ¢ and multiplying by v', results in,
V'L.vw = pv'vw, (5.24)
or
Aw = pBw, (5.25)

where A = v'L.v and B = v'v. Both A and B are pxp matrices and therefore
Eq. 5.21 has much smaller dimension compared to Eq. 5.23; p is the approximate
eigenvalue of the original problem.

Solution of the reduced problem, with dimensions far less than the original one,
results in the first eigenvector w, and hence ¢. Nodal ordering is then performed
considering the relative entries of ¢ in an ascending order.

The present methods lead not only to a set of suitable coefficients for graph
parameters, but also provide efficient means for measuring the relative significance
of each considered graph parameter. These coefficients may also be incorporated in
the design of other specific graph-theoretical algorithms for ordering.

5.4.2 Numerical Results

Many examples are studied and the results for three models are presented in this
section. In the tables presented, Column 2 contains the results of the Pure Algebraic
Graph Method (PAGM) of Ref. [11].

For the first case, four vectors, representing Ritz vectors are considered.
For these vectors, v, contains the degrees of the nodes, v, comprises of the
1-weighted degrees of the nodes, and v; and v, are distances of the nodes from
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two pseudo-peripheral nodes. These nodes can be obtained using different algo-
rithms, Kaveh [5]. The results are provided in column 3 of the tables denoted by v*.

For the second case, five Ritz vectors are employed. The first four vectors are the
same as those of the previous case, and the fifth vector vs contains the 2-weighted
degrees of the nodes of the graph. The results are provided in column 4 of the tables
labelled as v°.

It should be noted that other vectors containing graph properties which influence
the ordering may be considered additional to the above five vectors. However, the
formation of such additional vectors may require some extra computational time,
reducing the efficiency of the algorithm.

Example 1. An FE mesh with one opening comprising of 1,248 nodes and 1,152
rectangular elements is considered as shown in Fig. 5.3. The results for different
methods and their computational time are illustrated in Table 5.2, for comparison of
their efficiency.

Example 2. An H-shaped FE mesh comprising of 2,096 nodes and 3,900 triangular
elements is considered as shown in Fig. 5.4. The results for different methods and
their computational time are illustrated in Table 5.3, for comparison of their
efficiency.

Example 3. A two dimensional FEM of a tunnel comprising of 6,888 nodes and
6,720 rectangular elements is considered as shown in Fig. 5.5. The results of using
different methods and their computational time are presented in Table 5.4.

Example 4. An FE mesh with four openings comprising of 748 nodes and 1,236
triangular elements is considered as shown in Fig. 5.6. The results for different
methods and their computational time are illustrated in Table 5.5, for comparison of
their efficiency.

Example 5. A three-dimensional finite element model of a nuzzle is considered, as
shown in Fig. 5.7. This model contains 4,000 rectangular shell elements. The results
for different methods and their computational time are illustrated in Table 5.6 in
order to compare their efficiency.

5.4.3 Discussions

The performance of the hybrid method, compares well with a pure algebraic graph
method, with a substantial reduction in the computational time. Naturally, addition
of extra graph parameters will increase the computational time required. Relative
values of the coefficients of the Ritz vectors show the importance of the
corresponding parameters in the ordering algorithm. For the examples presented
in the previous section, the coefficient corresponding to v3 and v, (the distances
from the pseudo-peripheral nodes) seem to be more important, since most of the
examples have a more or less uniform distribution of nodal degrees. Naturally for
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Fig. 5.3 A FE mesh with
one opening

Table 5.2 Results of PAGM v v
Example 1
B 46 43 45
P 34,848 36,243 36,189
F 28.07 29.44 29.25
Finax 35 39 39
Time (s) 1,400.3 2.8 2.9

Fig. 5.4 An H-shaped
FE mesh
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Table 5.3 Results of PAGM v v
Example 2
B 74 77 77
P 47,741 49,400 48,936
F 23.97 25.63 25.32
Finax 37 42 42
Time (s) Large 2.63 2.89
Fig. 5.5 A two
dimensional FEM of a
tunnel A
"
!
f
sy
Table 5.4 Results of PAGM v v
Example 3
B 455 331 332
P 731,694 733,738 733,738
F 112.99 112.93 112.93
Finax 164 175 175
Time (s) 10.6 27.6 28.9

models with non-uniform degree distributions, the significance of the other graph

parameters will also become apparent.

Though only nodal ordering is addressed in here, however, the application of the
present method can easily be extended to the element ordering. For this purpose the
natural associate graph or the incidence graph of a FE mesh, should be used in place

of the element clique graph.
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Fig. 5.6 A FEM with four
openings

Table 5.5 Results of
Example 4

Fig. 5.7 A three
dimensional FEM of a
nuzzle

Table 5.6 Results of
Example 5

5 Ordering for Optimal Patterns of Structural Matrices: Algebraic Graph. ..

PAGM vt v’
B 39 49 47
P 13,118 13,162 13,126
E 18.42 18.61 18.56
Fonax 29 29 29
Time (s) 1,677 1.2 1.3
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S
ST
PAGM v v

B 39 49 47

P 13,118 13,162 13,126

E 18.42 18.61 18.56

Fonax 29 29 29

Time (s) 1,677 1.2 1.3
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5.5 Ordering via Charged System Search Algorithm

Meta-heuristic algorithms can be used for nodal ordering to structure the stiffness
and flexibility matrices. Ant colony optimization is utilized for this purpose by
Kaveh and Sharafi [1, 2]. In this section the recently developed meta-heuristic
optimization method, known as charged system search (CSS) [12], is employed for
optimum nodal ordering to minimize bandwidth and profile of sparse matrices that
is based on [3]. This algorithm is presented in Appendix C. The bandwidth and
profile of some graph matrices, pattern equivalent to structural matrices, are
minimized using this approach.

5.5.1 Charged System Search

In this section, Charged system search (CSS) developed by Kaveh and Talatahari
[12] is brifiely described. This is a powerful meta-heuristic algorithm developed for
optimization and have found many applications is structural optimisation. Some
applications of this algorithm in structural mechanics are briefly discussed in
Chap. 10 of this book.

5.5.1.1 Background Definitions

In physics, the space surrounding an electric charge has a property known as the
electric field. This field exerts a force on other electrically charged objects. The
electric field surrounding a point charge is given by Coulomb’s law. Coulomb has
confirmed that the electric force between two small charged spheres is proportional
to the inverse square of their separation distance r;;. Therefore, this law provides the
magnitude of the electric force (Coulomb force) between the two point charges.
This force on a charge, g; at position r;, experiencing a field due to the presence of
another charge, g; at position r;, can be expressed as

ﬂ I — Tj
i [ —

F; = k. (5.26)

where k. is a constant known as the Coulomb constant; rj; is the separation of the
two charges (Halliday et al. [13]).

Consider an insulating solid sphere of radius “a” which has a uniform volume
charge density and carries a total charge of magnitude q;. The magnitude of the
electric force at a point outside the sphere is defined as Eq. 5.26, while this force can
be obtained using Gauss’s law at a point inside the sphere as


http://dx.doi.org/10.1007/978-3-319-02964-1_10
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qlq_] I — T

Fij - k r1_| Hrl — rJH

(5.27)

In order to calculate the electric force on a charge (q;) at a point (r;) due to a
group of point charges, the principle of superposition is applied to electric forces as

N
F= > F (5.28)
i=1, i

where N is the total number of charged particles and F;; is equal to

q; i — T
AL
Fyj = ql r—r (5.29)

kes7—— ifrj>a
5 [ =

if rjj <a

Therefore, the resulted electric force can be obtained as [12]

Ii —Tj h=1Lnh=0&r<a
J*kequ I'1J iy + IJ H {11 —0.i, =1 <:>ri; > a} (530)

5.5.1.2 Newtonian Mechanics Laws

Newtonian mechanics studies the motion of objects. In the study of motion, the
moving object is described as a particle regardless of its size. In general, a particle is
a point-like mass having infinitesimal size. The motion of a particle is completely
known if the particle’s position in space is known at all times. The displacement of
a particle is defined as its change in position. As it moves from an initial position rqq
to a final position 1.y, its displacement is given by

Ar = Thew — Told (531)

The slope of tangent line of the particle position represents the velocity of this
particle as

T, — T T, — T
V= new old __ [mew old (532)
thew — told At

The acceleration of the particle is defined as the change in the velocity divided
by the time interval At during which that change has occurred:
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Vnew — Vold
= 5.33
a X" (5.33)

The displacement of any object can now be obtained as a function of time as

1
Thew = E(X.Atz + Void-At 4 Toig (534)

Also according to Newton’s second law, we have
F=m.a (5.35)

where m is the mass of the objective. Substituting Eq. 5.35 in Eq. 5.34, we have
l1F ,
Inew = = — At 4 Voiq. At + 19 (536)
2m

5.5.1.3 The Rules of the Charged System Search

In this section, the recently developed optimization algorithm in [12] is briefly
presented utilizing the aforementioned physics laws, which is called Charged
System Search. In the CSS, each solution candidate X; containing a number of
decision variables (i.e. X; = {x;;}) is considered as a charged particle. The charged
particle is affected by the electrical fields of the other agents. The quantity of the
resultant force is determined by using the electrostatics laws, and the quality of the
movement is determined using the Newtonian mechanics laws. Thus an agent with
good results must exert a stronger force than the bad ones, so the amount of the
charge will be defined considering the objective function value, fit(i). In order to
introduce CSS, the following rules are introduced:

Rule 1: In CSS each CP has a magnitude of charge (q;) and as a result creates an
electrical field around its space. The magnitude of the charge is defined consid-
ering the quality of its solution, as follows:

fit(i) — fitpey

== " i=12,...,N 5.37
fitpest — fitworst ( )

i

where fitpes and fity,o are the so far best and the worst fitness of all particles; fit(i)
represents the objective function value or the fitness of the agent /; and N is the total
number of CPs. The separation distance rj; between two charged particles is defined
as follows:
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I = HX' _XJ'H (5.38)
D (X X5) /2 — Xes|| + £

where X; and X are the positions of the ith and jth CPs, X, is the position of the

best current CP, and ¢ is a small positive number to avoid singularities.

Rule 2: The initial positions of CPs are determined randomly in the search space
and the initial velocities of charged particles are assumed to be zero.

Rule 3: Electric forces between any two charged particles are attractive. Utilizing
this rule increases the exploitation ability of the algorithm. Though it is possible
to define repelling force between CPs as well, however, for our problems this
seems to be unnecessary. When a search space is a noisy domain, having a
complete search before converging to a result is necessary; in such conditions
the addition of the ability of repelling forces to the algorithm may improve its
performance.

Rule 4: Good CPs can attract the other agents and bad CPs repel the others,
proportional to their rank, that is

0 <¢j < +1 if the CP is above average

—1 < ¢ <0 if the CP is below average (5.39)

Cjj rank(CPj) N {

where cj; is a coefficient determining the type and the degree of influence of each
CP on the other agents, considering their fitness and apart from their charges. This
means that good agents are awarded the capability of attraction and bad ones are
given the repelling feature, which will improve the exploration and exploitation
abilities of the algorithm. On the one hand, when a good agent attracts a bad one, the
exploitation ability for the algorithm is provided. On the other hand, when a bad
agent repels a good CP, the exploration is provided.

Rule 5: The value of the resultant electrical force affecting a CP is determined

using Eq. 5.30, as

j=12,...,N
F_qJZ( rull+ ).cij.(xi—xj) <i1—1,i2—0<:>rij<a (5.40)
1J

i,i#j i1:0,i2:1<:>rij2a

where F is the resultant force acting on the jth CP, as illustrated in Fig. 5.8. In this

algorithm, each CP is considered to be a charged sphere with radius a having a

uniform volume charge density. Here a is set to unity.

Rule 6: The new position and velocity of each CP is determined considering
Egs. 5.32 and 5.36, as follows:

F.
Xj new = FiX (randj1 ko —L AP + randp Ky.Vj old. At + Xj,01d> (5.41)
my
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Fig. 5.'8 The resul'tant / » Radius of influence=a
electrical force acting 5 \ B L
on a CP [12] F

Xj.new — Xj.old

j,new j,0
v = Kinew ~ Xjo 5.42
J,new At ( )

where Fix(X) is a function which rounds each elements of X to the nearest
permissible discrete value; k, is the acceleration coefficient; k, is the velocity
coefficient to control the influence of the previous velocity; and rand;; and rand;,
are two random numbers uniformly distributed in the range of (0,1). m; is the mass
of the CPs which is equal to g; in this chapter. At is the time step and is set to one.
Figure 5.9 illustrates the movement of a CP to its new position using this rule.

The effect of the pervious velocity and the resultant force acting on a CP can
be decreased or increased based on the values of the k, and k,, respectively.
Excessive search in the early iterations may improve the exploration ability;
however, it must be deceased gradually, as described before. Since k, is the
parameter related to the attracting forces, selecting a large value for this parameter
may cause a fast convergence, and a small value can increase the computational
time. In fact k, is a control parameter of the exploitation. Therefore, choosing an
incremental function can improve the performance of the algorithm. Also, the
direction of the pervious velocity of a CP is not necessarily the same as the resultant
force. Thus, it can be concluded that the velocity coefficient k, controls the
exploration process and therefore a decreasing function can be selected. Thus,
k, and k, are defined as

ky = 0.5(1 — iter/itermax ), ko = 0.5(1 + iter/itermax) (5.43)

Rule 7: Charged memory (CM) is utilized to save a number of the best so far
solutions. Here, the size of the CM is taken as N/4. The vectors stored in the CM
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Fig. 5.9 Movement of a CP
to its new position [12]

’ randy k..Fi

ands. k. Vil

can have influence on the CPs. This may increase the computational cost, and
therefore it is assumed that the same number of the worst particles cannot attract
others.

Rule 8: The agents violating the limits of the variables are regenerated using the
harmony search-based handling approach as described in Ref. [12].

Rule 9: Maximum number of iterations is considered as the terminating criterion.

The general flowchart of the CSS algorithm is illustrated in Fig. 5.10.

5.5.2 The CSS Algorithm for Nodal Ordering

This algorithm attempts to find an optimal assignment for nodal ordering of a graph
to reduce the bandwidth or profile of the associated matrix employing a charged
system search algorithm. The basis of the algorithms for both bandwidth and profile
reduction are identical and it is based on reordering or assigning new labels to the
graph nodes to achieve the optimal bandwidth or profile. The only difference is in
defining the objective functions. That is, the main procedure of the CSS algorithm
for reordering is the same but the objective function for bandwidth reduction and
profile reduction are different.

For an nxn sparse matrix associated to graph G, each permutation of rows and
columns leads to a new reordering called the assigned set. If the initial numbering of
the graphis {1, 2, 3, ..., n}, each permutation of this set will be a new assigning list.
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Fig. 5.10 The general Initialization
flowchart of the CSS i TR == = —"7
algorithm [12] Initialize spu.gﬁlc.anfm of optimization problem and afgorfshm
parameters, imitialize the initial position of charged particles

with random positions and their associated velocities
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The aim is to find the optimal assigning list in order to reach the best bandwidth or
profile.

Each probable permutation of set {1, 2, 3, ..., n} is considered to be a potential
solution which is called an agent. In CSS these agents are regarded as CPs. In fact,
each solution candidate X; containing a number of decision variables X;j, is
considered to be a charged particle and each x;; presents the number assigned to
the node j in the original graph. Thus a solution candidate X; which represents the
position of CP;, contains n arrays x;;(j = 1, 2, ..., n) which stand for the assigned
numbers.
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The algorithm for nodal ordering follows the above mentioned nine general rules
of the CSS algorithms. As stated before, due to the nature of nodal ordering
problem, the discrete version of CSS, consisting of nine steps is utilised.

Step 1: The number of CPs, i.e. candidate agents, is determined. For nodal ordering
of sparse matrices this number is set to N = [fix(n/100) + 5] which means that
for each 100 nodes one additional CP is added and at least 5 CPs are needed for
any problems. Using larger number of CPs may result in more accurate results,
however it significantly increases the computational time. On the other hand,
using smaller number of CPs may leads to undesirable results. The considered
number of CPs is capable to keep the balance as a moderate level.

Step 2: The CPs are defined and settled in their initial positions. For this purpose a
random permutation of set {1, 2, 3, ..., n} is assigned to each agent as initial
candidate solutions. That is, the initial candidate solutions X; and as a result, their

positions {x(o)i,j} are randomly nominated. In other words, in this phase, N
candidate solution X;(i =1, 2, ..., N) which are located in their positions
presented by x(O)iJ are defined. (j =1, 2, ..., n). The initial velocity for all

CPs are considered to be zero. ((v(o)i,j =0Vij)

Step 3: The magnitude of charge for each CP is calculated using Rule 1. For this
purpose the objective functions for each agent must be calculated. As mentioned
before, this phase is the only distinction between bandwidth and profile reduc-
tion algorithm. The objective function for bandwidth reduction is obtained from
Eq. 4.8 while for profile reduction it is calculated from Eq. 4.12. In this step
when objective functions are calculated, they should be put in order and the best
and the worst ones and the best and the worst N/5 agents are saved. This will help
the algorithm to judge better in next steps. Then the magnitude of charge for
each CP, i.e. q;, is obtained through the Eq. 5.37.

Step 4: The separation distance between CPs are calculated. In the previous step,
the position of each CP is defined by a coordinate of n arrays. Having the X; for
all CPs, the separation distance between them are calculated using the Eq. 5.38.
It should be mentioned that in such discrete problems that X is an n-dimensional
array, the intention of calculating distance between every two CPs is to find how
far the two assumed nodes are in the n-dimensional space. In fact, the calcula-
tions of distance, velocity and acceleration are all made in a multidimensional
space.

Step 5: The type and the degree of influence of each CP on the other agents are
determined. For this reason, using the rank of the CPs obtained in step 3, a
number between +1 and —1, is assigned to each agent proportional to its rank.
That is, the number +1 is assigned to the best agent and —1 to the worst one and
so on. Such an assignment leads to improvement of the abilities of exploration
and exploitation simultaneously.

Step 6: The value of the resultant electrical force affecting a CP is determined using
the Eq. 5.40. Each Fj is an n-dimensional array and shows the tendency of agent j
toward other CPs.
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Step 7: New position and velocity of each CP is determined considering Eq. 5.41
and 5.42, respectively. In Eq. 5.41 the function Fix(X) shifts each x;; to its
nearest position. That is the nearest permissible digit assigns to each x;;. As
mentioned before, each new position determined by an n-dimensional array
shows the new renumbering of CPs i.e. the new numbers assigned to nodes.

Step 8: The agents violating the limits of the variables are regenerated using the
harmony search-based handling approach. Then the best so far solutions are
saved.

Step 9: Maximum number of iterations is considered as the terminating criterion

5.5.3 Numerical Examples

In this section, three examples are presented and the results are compared to those
of the other algorithm in Table 5.7. Then a comparison is made for convergence rate
of different algorithms for each example. For profile reduction, results are com-
pared to those of Sloan [14], King [15], and Kaveh and Sharafi [1-3]; and for
bandwidth minimization, the 4-step algorithm of the previous chapter, and an ACO
algorithm [1, 2] are used to perform the comparison.

The topological properties of the finite element models are transferred to the
connectivity properties of graphs, by the clique graphs [5]. This graph has the same
nodes as those of the corresponding finite element model, and the nodes of each
element are cliqued, avoiding the multiple edges for the entire graph.

All computations are performed on P9700 @2.40 GHz computer running
MATLAB R2009b. In order to ensure that the obtained solution from ACO is
global or near global optimum, many runs are performed in parallel. Since each run
is fully independent of the others, the program could be run in parallel so that the
total execution time practically became the same as required for a single run.

Example 1. Consider a finite element mesh (FEM) of a fan. The element clique
graph of this model contain 1,575 nodes as shown in Fig. 5.11. The performance of
the CSS algorithm and some other algorithms are tested on this model, and the
results are presented in Table 5.7.

Example 2. The FEM of a shear wall with 760 nodes and four openings is shown in
Fig. 5.12. Similar to the previous example, the performance of the CSS algorithm
and some other algorithms are tested on this model and the results are presented in
Table 5.7.

Example 3. An H-shape finite element mesh (FEM) with 4,949 nodes is consid-
ered, as shown in Fig. 5.13. The element clique graph of this model contain 4,949
nodes and 9,688 beam element (edges). The performance of the CSS algorithm and
some other algorithms are tested on this model, and the results are presented in
Table 5.7.
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Table 5.7 Comparison of the results

Example Type of ordering Initial value Algorithm Optimized value CPU time (s)
1 Profile minimization 144,351 Sloan 31,002 32.7
King 31,982 24.1
ACO 29,665 559
CSS 28,770 17.3
Bandwidth minimization 461 4-step 23 4.9
ACO 23 10.7
CSS 21 4.4
2 Profile minimization 37,584 Sloan 19,110 11.1
King 19,613 9.8
ACO 19,007 8.3
CSS 19,232 8.2
Bandwidth minimization 382 4-step 46 1.8
ACO 42 4.4
CSS 41 2.0
3 Profile minimization 345,437 Sloan 210,845 117.8
King 211,731 98.2
ACO 208,945 296.6
CSS 206,649 98.7
Bandwidth minimization 407 4-step 66 17.7
ACO 60 29.5
CSS 58 13,3
Fig. 5.11 Finite element sus
mesh of a fan represented H
by its clique graph p .:::’::O:':::“ o s
R
XL
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Fig. 5.12 The element
clique graph of a
rectangular FEM with
four opening

Fig. 5.13 An H-shaped
finite element grid
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Chapter 6
Optimal Force Method for FEMs: Low
Order Elements

6.1 Introduction

In this chapter force method finite element models comprising of low order
elements are presented.

In the first part an efficient method is developed for the formation of null bases of
triangular and rectangular plane stress and plane strain finite element models,
corresponding to highly sparse and banded flexibility matrices [1-3]. This is
achieved by associating a special graph to the finite element model, and selecting
subgraphs (y-cycles as defined in Chap. 2) for the formation of localized self stress
systems (null basis) [4].

In the second part, a graph theoretical method is presented for the formation of
sparse, banded and accurate null basis matrices for finite element models with
triangular and rectangular plate bending elements [5, 6].

In the third part, a similar approach is extended to 3D models with tetrahedron
elements [7].

In the fourth part, an efficient method is presented for the analysis of FEMs
composed of brick elements [8]. In this method, special graphs are associated with
the considered FEM and minimal subgraphs are selected using these graph models.
Localized self-equilibrating systems are constructed on these subgraphs, forming a
suitable statical basis of the FEM.

6.2 Force Method for Finite Element Models: Rectangular
and Triangular Plane Stress and Plane Strain Elements

In this section an efficient algorithm is presented for the formation of null bases for
the models consisting of rectangular and triangular plane stress and plane strain
finite element models, corresponding to highly sparse and banded flexibility matri-
ces. The bases obtained by this algorithm require low computational effort leading

A. Kaveh, Computational Structural Analysis and Finite Element Methods, 215
DOI 10.1007/978-3-319-02964-1_6, © Springer International Publishing Switzerland 2014


http://dx.doi.org/10.1007/978-3-319-02964-1_2

216 6 Optimal Force Method for FEMs: Low Order Elements

to highly sparse flexibility matrices with very small bandwidth. Thus using this
algorithm, optimal flexibility analysis of such FEMs becomes feasible.

Here, first an interface graph is defined for 2D finite element models and then
subgraphs corresponding to self stress systems are generated. By applying unit
bi-actions and solving the corresponding statically determinate substructures, some
null vectors are obtained. This is repeated for all the selected subgraphs to obtain
the null basis. The efficiency of the present method and is illustrated through simple
examples.

6.2.1 Member Flexibility Matrices

In the force method of analysis, the determination of the member flexibility matrix
is an important step. Methods for the formation of an element with n nodes is
already discussed in Sect. 3.2.2 and applied to bar and beam elements.

In this section, the force-displacement relationship is established for plane stress
and plain strain problems. Triangular and rectangular elements are considered with
constant and linearly varying stress fields, respectively.

Constant Stress Triangular Element. For this element, the nodal forces in global
coordinate system have 6 components, as shown in Fig. 6.1a. The element forces
are taken as natural forces acting along the sides of the triangle, as shown in
Fig. 6.1b.

The nodal forces and element forces are related by projection as,

Iix —li2 0 I3

Iy —my 0 m3; F,

| _ | e —In3 0 | 6.1)
Iy mpp;  —mp3 0 F

I3x 0 I3 —la :

I3y 0 mp3  —m3

where L; and mj; are the direction cosines of the side ij of the triangle.

The element forces are now related to stress resultants, Fig. 6.2. First F; is
considered as the only natural force acting on the element, and the internal stresses
are calculated as:

21
¥230x 1+ X320xy = %Fl (6.2a)

21
Y310+ X3100y =~ Fy (6.2b)
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Fig. 6.2 The stress fields and their equivalent nodal forces. (a) Stress fields (b) Equivalent nodal
forces

211112

Y310y + X310xy = Fy (6.2¢)

Solution of the Egs. (6.2a, b, ¢) is obtained as follows,
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213 2m? 2lj,m
12 12 1211112
ox = —F,0y =—=F;, and oy, =—F], 6.3
X ths b2y ths ! Xy ths ! ( )

where:

X = X — X o

Y . ! I for iL,j=1,2,3.
Yii =Yi—Y;

In the above relations, hj is the height of the triangle corresponding to corner
3. Permutation of the indices results in the stresses produced by F, and F5 and in
matrix form these equations can be collectively written as,

2 2 2
I L L
hs h; h,
Ox 2 2 2 F,
2 m m m
o, | == -2 2 IR/, (6.4)
t h3 hy h,
ny F3
mplip  mpslys malsg
h3 h; hy
or
¢ =CcF. (6.5)

The matrix ¢ represents statically equivalent stress system due to unit force F.
The flexibility matrix of the element can be written as:

fn = Jét(pEdV. (6.6)
\%
The integration is taken over the volume of the element, where,
1 1 —v 0
Q=g |V 1 0 , (6.7)
0 0 2(l+v)

is the matrix relating the stresses to strains, € = @o, in plane stress problems, and E
and v are the Young’s modulus and Poisson’s ratio, respectively. The force-
displacement relationship for a triangular element becomes,

u, = forn, (6.3)
where u,, and r,, are the element displacements and element forces, respectively.
The flexibility matrix of the element can now be written as,



6.2 Force Method for Finite Element Models: Rectangular and Triangular Plane. .. 219

o [A®©:,6:,0,)  B(6y) B(6))
fn=s| BO) A(61,0,,03) B(6;) |, (6.9)
B(61) B(63) A(6,,6;,03)

where t is the thickness of the element, and A and B are functions defined as
follows,

in 6; .. .
A(Oi, 0;, ek) = ﬁ, (i,j, k = permutation of 1,2,3), (6.10a)
; k
B(6;) = cosb;cotd; — vsing;, (i = 1,2,3), (6.10b)

where 0;, 0;, and Oy are the angles of the triangle.

Linear Stress Rectangular Element. For this element, the nodal forces in global
co-ordinate system have 8 components, as shown in Fig. 6.3a. The element forces
are taken as natural forces along the sides and one diagonal, as shown in Fig. 6.3b.
The nodal forces and element forces are related similar to triangular element as,

[11x ] (-1 - 0 0 0]
Iy 0 —-pQ -1 0 O F
I 10 0 0 0|
ny| [0 0 0 0 —1||.
| [0 0 0 -1 0 1123 ’ (6.11)
13y 0O 0 1 0 0 F“
T 0 Q@ 0 1 0 :
| Tay | L0 —BQ 0 O 1 |
b 1
where f=- and Q=——=
a vV 1+ ﬁz
For this element the plane stresses are written as,
Ox = C; +C2n
Oy = C3 + C4§ (612)
Oxy = C5
where cy, ¢y, .. .,C5 are constants and,

X y
=z d n=2
¢=2 and n=¢

a and b being the length and width of the element, respectively.
The stress fields and the corresponding nodal forces are shown in Fig. 6.3c.
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Fig. 6.3 A rectangular element. (a) Element forces. (b) Nodal forces. (¢) The stress fields and
their equivalent nodal forces
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(6.13)

The unassembled flexibility matrix of the structure can now be formed, by using
the above matrix for each element as block diagonal entries. This matrix is

incorporated in algebraic force method of the next section.

6.2.2 Graphs Associated with FEMs

In order to transfer the topological property of a finite element model to the
connectivity of a graph, ten different graphs are introduced in Ref. [9]. Here, the
natural associate graph is used and an additional new graph is defined.
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Fig. 6.4 A finite element model, the corresponding natural associate graph, and the interface
graph. (a) A FEM and its natural associate graph (b) Interface graph

Natural associate graph. The natural associate graph of a FEM is constructed as
follows:

1. Associate one node of the associate graph with an element of the FEM.
2. Two nodes of the associate graph are connected by a member if the
corresponding elements in the FEM have a common edge.

A FEM and the corresponding associate graph are shown in Fig. 6.4a.

Interface graph. The Interface graph of a FEM is constructed by the following
rules:

1. This graph contains all the nodes of the FEM.

2. For each edge of a finite element of the model, associate one independent
member. Thus, a typical overlap of two elements in FEM is represented by
double members in interface graph.

3. One diagonal member is associated with each rectangular element of the model.

Figure 6.4b shows the corresponding interface graph.

The member of the interface graph should be numbered according to the
numbering of the FEM. A typical numbering is shown in Fig. 6.5. For each
rectangular element like R, five members of the interface graph and for each
triangular element like T, three members of interface graph should be numbered
consequently. The numbering is performed according to the direction of the inde-
pendent element forces (Fig. 6.6a, b).

6.2.3 Pattern Corresponding to the Self Stress Systems

The nodal forces and independent element forces of a rectangular and triangular
element are defined as shown in Fig. 6.3. This is the same convention used by
Przemieniecki [10].
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Fig. 6.5 (a) A 2D finite element model; (b) The interface graph; (¢) Numbering for a typical
rectangular element R and a triangular element T
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Fig. 6.6 The nodal and element forces for a rectangular element and a triangular element (a) The
nodal and element forces for a rectangular element; (b) The nodal and element forces for a
triangular element

Considering Fig. 6.6a, in order to find the patterns corresponding to the self
stress systems, a rectangular is simulated as a planar truss formed as the 1-skeleton
of the rectangular element together with a diagonal member. This is possible since
the independent element forces F; to F5 are applied to the nodes and are along the
edges of the rectangular. Also, a FEM with plane strain and plane stress triangular
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elements can be viewed as a planar truss (Fig. 6.6b). The statical indeterminacy of
planar truss with m members and n nodes is given as y(S) = m — 2n + 3.

The patterns of the underlying subgraphs of self stress systems (null vectors) are
identified as follows:

6.2.3.1 Type I Self Stress System

Each double member of the interface graph is the underlying subgraph of a self
stress system. In other words, a double member consisting of members numbered as
i and j with (i < j), have two non-zero entries in the null basis matrix in the
corresponding rows i and j in which the entry in row i is —1 and the entry in row
j is +1. These double members are called type-1 y-cycles. The number of these
double members is equal to the number of members of the natural associate graph,
(see Kaveh [11] for the definition of a y-cycle).

Using these double members nearly 80 % of the columns of a null basis matrix
can easily be generated. For finding these double members one can use the
adjacency matrix or the node-member incident matrix of the interface graph.

6.2.3.2 Type II Self Stress System

There are other types of self stress systems in the FEM which are topologically
identical to the minimal self stress systems of corresponding planar trusses. The
underlying subgraphs of these systems are known as type II y-cycles, corresponding
to the regional cycles of the natural associate graph bounding a single node of the
FEM. In other words, if each multiple member from the interface graph is
substituted by a member or generators of the Type I self stress systems are removed
from Sy, and then the remaining subgraph is a graph, denoted by S.

In general the self stress systems built on S are called Type II self stress systems.
In fact these systems are y-cycles which correspond to minimal cycles of associate
graph of finite element model (see Refs. [11] for definition). A finite element model
with six elements is shown in Fig. 6.7a, and its associate graph is depicted in
Fig. 6.7b.

6.2.3.3 Type III Self Stress System

Each regional cycle bounding a cut-out in the FEM corresponds to a regional cycle
of the natural associate graph with 3° of statical indeterminacy, correspond to 3 self
stress systems.

For a FEM with n. cut-outs, apart from the self stress systems corresponding to
double members of the interface graph, b; (natural associate graph) — n. + 3n,
additional self stress systems should be generated. This is obvious since for each
y-cycle of S corresponding to non-cut out cycle of natural associate graph one self
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Fig. 6.7 A finite element model with six elements; the corresponding associate graph

stress system, and for each general subgraph corresponding to a cut out cycle of
natural associate graph, three independent self stress systems can be generated.
Such a general subgraph consists of three independent y-cycles. In the above
relations, b; (natural associate graph) is the first Betti number of the natural
associate graph of the FEM.

6.2.4 Selection of Optimal y-Cycles Corresponding to Type I1
Self Stress Systems

Thus far, it is found out that each y-cycle corresponds to a cycle of the associate
graph. Also each cycle with n nodes from A(S) such as c passes through n elements.
The subgraph s{(sf C Sy) which is relevant to these n elements and cycle c, is a base
for the selection of an optimal y-cycle. Such a subgraph may contain simple and
multiple members, where each multiple member with k members corresponds to the
overlap of k elements, and each simple member corresponds to the edge of a
boundary element. By imposing a special condition on such subgraphs sy, the
lists corresponding to optimal y-cycles can be obtained.

A finite element model with six elements and its associate graph are shown in
Fig. 6.8a. The corresponding s;{ which contains multiple and simple members is
illustrated in Fig. 6.8b, and the corresponding y-cycle is depicted in Fig. 6.8c.

In general, from each sf many y-cycles (self stress systems) can be extracted,
since each simple member of a multiple member can be present in the final graph,
while the presence of a simple member in the final graph is obvious.

Thus for obtaining an optimal self stress system, on each sy, two basic selections
should be performed which are as follows:

1. Selection of the generator or the last member of a self stress system, which is
required for independency of null vectors.

2. Selection of a list of members from the subgraph s; with maximum possible
number for the first member. This selection reduces the bandwidth of the null
basis matrix considerably.
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a b c

Fig. 6.8 (a) A finite element model with its associate graph; (b) The corresponding sf; (c¢) The
corresponding y-cycle

The mathematical representation of this selection can be expressed as
Minimize (j — i) (6.14)

where j is the generator’s member number and i is the least member number of
current y-cycle. In the following a simple and fast method is presented for these
selections.

6.2.5 Selection of Optimal Lists

First for each subgraph s; we have to delete all the nodes with degree 2 and the
members connected to such nodes (Fig. 6.8c) since the numeric values of these
members in the corresponding null vector are zero, and therefore they play no role
in the formation of a y-cycle. It should be mentioned that if these members are not
omitted then the process of finding a generator will be disturbed. Since each double
member corresponds a self stress system which has already been selected, then for
independency of a new null vector, each member of a double member which has
greater member number cannot be selected as the last member. Then between the
lower numbers of double members, the maximum number should be chosen as the
last member of the current y-cycle.

For finding a typical optimal list of members of a y-cycle two row matrices T,
and T, are considered as follows:

T1 = {di,dé,...,Sl,Sz,...,dil,Sj,...,di}
T, = {d},d,...,d7,....d¢}

In the above matrices, diz, di1 i=1, ..., k) are lower and higher member num-
bers of the double members, in which di1 < diz(i =1L...,kadsG=1,...,1
are simple members of the selected subgraph. The entries of row matrix, T,, (diz)
show the last members of previous self stress systems. Obviously, the maximum
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number of the entries of matrix, Ty, {dil, sjii=1,...,kj=1,..., 1), must be
selected as the last member (di) of this self stress system.

In order to increase the first member number and minimizing the difference
between the first member number and the generator of the current self stress system,
the following condition can be used.

if((d7 >d!) and (d/ <dj)) then d/ =df(i=1,....k) (6.15)

After using the above condition, the desired optimal list {dil, sii=1,..,k
j=1, ..., t) will be obtained.

After finding optimal lists corresponding to type II y-cycles, using relevant
equilibrium submatrix, numerical values for each null vector are calculated.

The list corresponding to the remaining subgraph will have DSI equal to 3. Three
null vectors corresponding to such cycles will be obtained directly from the
equilibrium submatrix which leads to suboptimal basis.

For type III y-cycles, finding an optimal list is a time consuming process and
considering the fact that the number of cut outs is low in the real structures, the use
of this process is not economical for improvement of the final null basis. Thus for
each cycle of this type, graph sj is decomposed and all members corresponding to
Type I and Type II self stress systems and all the nodes of degree 2 are removed.

Algorithm

Step 1: Generate the associate graph of finite element model and use an efficient
method for its node numbering. It is obvious that a good numbering of this graph
corresponds to a good numbering of the elements of a finite element model. This
numbering leads to a banded adjacency matrix of the graph and correspondingly
to a banded flexibility matrix. Since numbering the members of the interface
graphs correspond to the element numbering of the finite elements, therefore
such a numbering is the only parameter for controlling the bandwidth of the
flexibility matrix.

Step 2: Setup the equilibrium matrix of the finite elements model.

Step 3: Generate the interface graph and perform its numbering. The numbering of
this graph should be performed according to the element numbering of the
considered finite elements model. After this numbering, the interface graph
can easily be formed and its members can be numbered.

Step 4: Find the Type I self stress systems. All multiple members of interface graph
are identified and the values —1 and 1 are assigned to appropriate rows
(corresponding to the member numbers) and the corresponding null vectors
are created.

Step 5: Find the Type II self stress systems. Using the Type I and Type II minimal
cycles of the associate graph, the subgraphs s relevant subgraphs are identified
and their corresponding optimal lists are found.

Step 6: Calculate numerical values of the optimal lists. Using optimal lists selected
in Step 5, null vectors corresponding to the Type I and Type II cycles are
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calculated from the relevant equilibrium submatrix. For each generator, unit load
is applied at a cut in the generator and the internal forces are calculated to form a
null vector.

Step 7: Order the null vectors. At this step the constructed null vectors should be
ordered such that their generators form a list with an ascending order.

In the following the efficiency of this algorithm is demonstrated using numerical
examples and a comparison is made through the results of the present algorithm and
the LU factorization method. The comparisons are confined to those of sparsity,
condition number and computational time of the formation of the flexibility matri-
ces. It should be noted that all the algebraic methods use LU decomposition
approach for the formation of the null basis or controlling the independence of
the columns of the equilibrium matrix.

6.2.6 Numerical Examples

In this section examples with different topological properties are studied. The
models are assumed to be supported in a statically determinate fashion. The effect
of the presence of additional supports can separately be included for each special
case with no difficulty.

Example 1. A beam with one opening which is supported in a statically determi-
nate fashion is depicted in Fig. 6.9. This structure is also discretized using rectan-
gular and triangular finite elements. The properties of the model are:

Number of rectangular elements = 16, E = 2e + 8 kN/m2, v = 0.3
Number of Triangular elements = 16,t = 0.02m, n, = 1

Number of type I self stress systems = 44 (76 %), Number of nodes = 36
Number of type II self stress systems = 12, DSIt = 59 = (44 + 12 + 3)

Pattern of the equilibrium matrix, the null basis matrices and the corresponding
flexibility matrices for the present algorithm are illustrated in Figs. 6.10, 6.11, and
6.12, respectively.

Comparison of the results of the displacement method and the present force
method can be found in Ref. [4].

Example 2. A finite element model which is supported in a statically determinate
fashion is depicted in Fig. 6.13. This structure is also discretized using quadrilateral
and triangular finite elements. The properties of the model are:

Number of quadrilateral elements = 66, E = 2e + 8kN/m?2, v = 0.3
Number of Triangular elements = 44,t = 0.1 m

Number of type I self stress systems = 172, Number of nodes = 115
Number of type II self stress systems = 63, DSIt = 235 = (172 + 63)
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Fig. 6.9 A beam and the discretization of the selected part
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Fig. 6.10 Pattern of the equilibrium matrix

Pattern of the null basis matrix with 1,100 entries for the present method is
shown in Fig. 6.14. Pattern of the flexibility matrix using the present algorithms are
illustrated in Fig. 6.15.

Example 3. A circular disk, shown in Fig. 6.16, is analyzed using plane stress
triangular elements with the following properties:

Diameter = 4.4 m, thickness = 0.05 m, E = 2e + 8 kN/m?, v = 0.3,
Number of triangular elements = 312, Number of nodes = 169,

Number of members of the natural associate graph = 456 (type-1 S.E.Ss),
First Betti number of the natural associate graph = 145 (type-2 S.E.Ss),
DSI = 601 = (456 + 145).
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Fig. 6.13 A finite element
model with qudrilateral and
triangular elements

Fig. 6.14 Pattern of the 0
null bases matrix
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Patterns of the null basis matrices are shown in Fig. 6.17, and pattern of the
flexibility matrix using the present algorithm is illustrated in Fig. 6.18. For LU
factorization the null basis contains 11,014 entries, while the present method leads
to only 2,623 entries.

6.3 Finite Element Analysis Force Method: Triangular
and Rectangular Plate Bending Elements

In this section, an efficient algorithm is presented for the formation of null bases for
finite element models consisting of triangular and rectangular plate bending ele-
ments [5]. The null bases obtained by this algorithm are highly sparse and narrowly
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Fig. 6.16 (a) A circular disk with loading (b) its natural associate graph

banded and can be used for optimal finite element analysis by force method. In the
present method, using topological transformations the non-zero patterns of null
bases are identified and their numerical values are calculated by an algebraic
process. For this purpose, associate digraph and interface graph are utilized.
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6.3.1 Graphs Associated with Finite Element Models

An Associate Digraph: In this graph one node is associated with each element of
the FEM and two nodes are connected with a member if the elements have a
common edge. A typical member of the graph is directed from the node with
smaller number to the node with higher number. Except the node numbered as
1, all the other nodes have one or two negatively incident (one or two entering
members) members defined as the negative incidence number of the node (if the
nodes are badly numbered this number can be increased). Owing to the importance
of these numbers in recognizing the types of SESs, the negative incidence numbers
of the nodes of the graph should carefully be calculated. In Fig. 6.19, a rectangular
and a triangular FEM with element numbering and their corresponding associate
digraphs and negative incidence number of nodes are shown.

An Interface Graph. This graph can easily be constructed for triangular FEM
using the following two rules:

1. This graph contains all the nodes of the FEM.

2. With each edge of an element of FEM, two graph members are associated.
Therefore, in the interface of two elements, four members are present incident
with the two end nodes of the common edge.

For rectangular FEM the following additional rule should be used:

3. For each element a diagonal member is added in the interface graph. This
member can be added between the first and third nodes of the element. These
graphs for a rectangular and triangular FEM are shown in Fig. 6.20.

The member numbering of the interface graph should be performed according to
the numbering of the FEM, taking into account the primary nodal numbering of
considered element in the model. Thus for each triangular element six, and for
rectangular element nine members of the interface graph will be numbered sequen-
tially. In Fig. 6.20, such a numbering is shown for a typical element (a).

6.3.2 Subgraphs Corresponding to Self-Equilibrating
Systems

6.3.2.1 Definitions of Independent Elements Forces

For the generation of equilibrium matrix A of a FEM, a system of independent force
systems should be defined and also their relations with the element nodal forces
should be established. The system of independent element forces for a rectangular
finite element contains four symmetric moments (F;,F3,F5,F;) and four
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® ®

Fig. 6.19 A rectangular and a triangular FEM with their associate digraphs and nodes incidence
numbers

Fig. 6.20 A rectangular and a triangular FEM with their interface graphs and their numbering for
a typical element (a)

anti-symmetric moments (F,,F4,Fg,Fg) and a set of four forces (Fo), which are
applied at four corners of the element. These forces are related to the nodal forces
(S; ~ S12) by a 12 x 9 transformation matrix. A comprehensive study of these
forces and their corresponding transformation matrix can be found in [12].
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Fig. 6.21 Nodal forces for
a triangular finite element

The system of independent element forces for a triangular finite element can be
defined as three symmetric moments (F;,F3,Fs) and three anti-symmetric moments
(F2,F4,F).

These forces can be related to element nodal forces (S; ~ So) using Eq. 6.16. The
nodal forces are shown in Fig. 6.21, and the defined element forces for a triangular
finite element are illustrated in Fig. 6.22. The interface graph defined in the
preceding section is formed based on the way these element forces are considered
and members of this graph have one-to-one correspondence with the element
forces.

S=TF (6.16)
_ 5 5
. 0 L_12 0 0 0 — L—13
S, mp;  mp 0 0 —m3; M3
S5 —li2 —1122 0 g I31 —l3; El
2
ol I I T = 1
Sg —mp; mp My M3 0 0 Fy
S7 112 —112 —123 —122'; 0 (2) 1125
Sg 0 0 0o —-— 0 = 6
So Los Lis
S 0 0 —mp3 M3 M3 Mg
| O 0 I»3 s —l3 —lap

In the transformation matrix T, L;; is the length and 1;;, my; are direction cosines
of the edge ij, which have the following definitions according to nodal coordinates:
Xj — X Yi— ¥

mij =
L Lj;

lij =

Considering the above definitions, the degree of statical indeterminacy (DSI) for
a rectangular and triangular plate bending FEM with determinate support condi-
tions is as follows:
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Fig. 6.22 Independent element forces for a triangular finite element

DSI =9m —3n+3 (For rectangular FEM) (6.17)
DSI = 6m —3n+3 (For triangular FEM) (6.18)

where m is the total number of finite elements and n is the total number of nodes
of FEM.

6.3.2.2 Self-Equilibrating Systems of Type I

Every set consisting of four members of interface graph, corresponding to two
elements of the FEM with common edges, is called a self-equilibrating system of
Type L

The corresponding subgraph contains two SESs. Therefore, the set of four
members corresponding to the common edges of the two elements i and j(i < j),
has two members m; and nj(m < n), and r; and s; (r < s). The two SESs obtained
from this set are (m,r) with (—1, 1) and (n,s) with (1, 1). On the other hand, a null
vector with non-zero entries (—1, 1) in rows (m,r) and another null vector with
non-zero entries (1, 1) at rows (n,s) are formed. Obviously, the number of such
minimal SESs is twice the number of the members of associate digraph, since each
member of this graph passes from interface of two elements. Nearly, two-third of
null vectors for a rectangular or triangular FEM are of this type, corresponding to
high sparsity for the null basis matrix.

6.3.2.3 Self-Equilibrating Systems of Type II

For each two adjacent finite element (two adjacent node in the associate digraph)
suchasrand j (r < j) in which j have negative incidence 1, another type of SES can
be constructed which is called as the self-equilibrating system of Type II. In
Fig. 6.23a, two adjacent rectangular and triangular finite element as well as their
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Fig. 6.23 (a) Two adjacent elements, (b) Related interface graphs, (¢) Subgraphs of Type II SESs

associate digraphs are shown. Their corresponding interface graphs are also shown
in Fig. 6.23b. The DSI of interface graph is 3 and thus correspond to three null
vectors. Two null vectors are previously formed using four members in the inter-
face of two elements. Therefore, in order to form the third SES, the generator of two
type I SESs, should be removed from interface subgraph. Thus the DSI of
remaining subgraph equals one and an independent null vector can simply be
extracted.

It should be noted that the remaining subgraph corresponding to rectangular
elements have still six ineffective members (hidden members in Fig. 6.23c) which
can analytically be shown that always lead to zero entries in related null vector.
Thus the subgraphs corresponding to Type II SESs, of rectangular and triangular
finite elements have always ten members. In Fig. 6.23, the interface graph and the
subgraphs corresponding to Type II SESs are shown for two rectangular and
triangular adjacent elements.

For each node with a negative incidence two, a self equilibrating system of Type
II can also be extracted. For each element k with negative incidence two which is
adjacent to two elements i and j with k > i, j, pairs (i, k) or (j, k) can be used for the
formation of a SES. Though both choices are valid, for maximum reduction in
bandwidth of null basis matrix, the pair (max(i,j), k) should be selected.

6.3.2.4 Self-Equilibrating Systems of Type I1I

There are two elements i and j with k > i, j in the adjacency of an element such as k
with negative incidence two. Using these three elements and from their related
interface graph, a subgraph corresponding to another minimal SES can be
decomposed which is defined as the self equilibrating system of Type III. The
interface graph related to these three elements has DST = 6 and corresponds to six
null vectors. Therefore, in order to maintain the independency of null vectors, one
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independent SES should be extracted from this graph. In this subgraph, there exist
four and one member corresponding to te generators of Type I and II SESs,
respectively, which using them five null vectors were previously formed. Thus
the remaining subgraph after removing these members will be one degree statically
indeterminate (DSI = 1) and corresponds to an independent null vector.

This process can be used without any changes for rectangular and triangular
FEM. However, in rectangular finite elements the remaining subgraphs have always
some ineffective members. In Fig. 6.24, these subgraphs are shown for triangular
and rectangular FEMs.

6.3.2.5 Self-Equilibrating Systems of Type IV

In the previous sections, three types of SESs were defined. These systems are
sufficient for formation of null bases of finite element models without openings.
However, if a FEM contains one or more openings, then another type of SESs can
be identified which is called the self equilibrating system of Type IV, Fig. 6.25. In
fact, from each opening in the FEM three independent SESs can be extracted. The
subgraphs corresponding to these SESs have usually more members than the
previous systems and also their related null vectors have more non-zero entries.
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Fig. 6.25 A FEM with an
opening and related cycle
from the associate digraph

Every cycle of the associate digraph, if their related elements have no common
in one node, corresponds to an opening. Since, every cycle has the same number of
members as its nodes; therefore a cycle with m members passes through m finite
elements of the FEM. As m triangular and rectangular finite elements surrounding
an opening have m and 2m nodes respectively, therefore using Eqs. 6.17 and 6.18
the DSI of their related interface subgraphs will be 3m + 3. However, in these
subgraphs 3m self equilibrating systems consisting 2m SESs of Type I and m SESs
of Types II and III are previously selected. Then simply by removing the generators
of these SESs from interface subgraph corresponding to an opening, a subgraph
with DSI = 3 will be remained which corresponds to three null vectors. These three
null vectors can simply be calculated using the remaining members of the interface
graph as the columns of the related equilibrium submatrix and by utilizing an
algebraic procedure. The null vectors related to openings which are calculated by
the above process are subminimal. Finally, using the present procedures all minimal
and subminimal SESs are simply calculated and the null basis matrix is generated.
Due to the nature of present method, the calculated null bases are highly sparse and
narrowly banded. However, for further reduction in bandwidth of null basis matrix
(without any changes in sparsity) for each SES, an optimal list should be selected.

Algorithm

This algorithm consists of the following steps:

Step 1. In this step the associate digraph of the considered FEM is formed. In order
to have a banded null basis, the nodes of this graph should be numbered by any
efficient nodal ordering algorithms. Obviously, the effect of final numbering
should be considered in FEM and rectangular equilibrium matrix. However, the
ordering of the elements of FEM (nodes of associate digraph) is sufficient for
formation of a banded null basis and there is no need for nodal ordering of FEM.

Step 2. The rectangular equilibrium matrix of the FEM is formed in this step.

Step 3. Formation of the interface graph of the FEM and the numbering their
members according to nodal and element numbering of FEM is performed n
this step.

Step 4. In this step the SESs of Type I are formed and the corresponding null vectors
are obtained.
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Fig. 6.26 A triangular FEM with numbering

Step 5. Formation of the SESs of Type II and calculation of the corresponding null
vectors by using an algebraic process (such as LU factorization) on the related
submatrices is performed in this step.

Step 6. Formation of the SESs of Type III, Numerical values of null vectors are
found by a similar process in Step 5.

Step 7. The SESs of Type IV are formed and calculation of the numerical values of
related null vectors is carried out if the model contains one or more openings,
similar to Steps 5 and 6.

Step 8. The calculated null vectors are combined and ordered in a matrix in such a
way that their generators make an ascending ordered list.

6.3.3 Numerical Examples

In this section three examples from triangular and rectangular FEM are studied. All
of the models are assumed to be supported in a statically determinate fashion. The
effect of indeterminate support conditions can separately be included with no
difficulty [13]. However, the null basis matrices for each model are calculated
using the present algorithm and LU factorization methods and the results are
compared through computational time, sparsity, pattern of matrices and accuracy.

Example 1. In this example (Fig. 6.26), the null basis matrix (B;) for a triangular
FEM with statically determinate support conditions is calculated and the sparsity,
computational time and two norms of AB; matrix, namely Frobenious and infinite
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Fig. 6.27 Pattern of the null basis matrix: (a) LU factorization, (b) present method

Table 6.1 Comparison of the sparsity, computational time and accuracy of the present algorithm
versus the LU factorization

. Time
Number of non-zero entries (nz) LU Time [|AB; |50 [|AB; ||
LU factorization 10,187 1.0000 7.39e—13 5.57e—12
Present algorithm 1,873 0.7885 2.95e—14 1.86e—14

norms are compared with LU factorization method, Fig. 6.27 (Table 6.1). The FEM
properties are as follows:

Number of triangular elements = 98, Number of nodes = 64, DSI = 399,
Thickness = 0.1 m, E = 2e + 8 kN/m?, v = 0.3.

Example 2. In Fig. 6.28, a rectangular 1.6 m x 0.8 m plate which is discretized as
120 rectangular finite elements is shown. Patterns of the calculated null basis matrix
using two methods are shown in Fig. 6.29. Also the results of the comparison are
presented in Table 6.2. The properties of the model are as follows:

Number of rectangular finite elements = 128, Number of nodes = 153,
DSI = 696, Thickness = 0.05 m, E = 2e + 8 kN/mz, v=0.3.

Example 3. In this example, a circular plate (with diameter 4) which is clamped at
its center (determinate support condition) is studied, Fig. 6.30. Pattern of the null
basis matrix for two methods and the comparison of results are shown in Fig. 6.31
and Table 6.3, respectively. The properties of the model are as follows:
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Fig. 6.28 The FEM of a rectangular plate and its numbering
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Fig. 6.29 Pattern of the null basis matrix: (a) LU factorization, (b) present method

Table 6.2 Comparison of the sparsity, computational time and accuracy of the present algorithm
versus the LU factorization

Time
Number of non- tri —_ AB AB, ||
umber of non-zero entries (nz) LU Time [|AB |50 [|AB,|]
LU factorization 24,663 1.0000 3.76e—12 2.62e—11

Present algorithm 1,856 0.6539 1.74e—14  7.10e—15
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Fig. 6.30 The FEM of a circular plate
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Fig. 6.31 Pattern of the null basis matrix: (a) LU method, (b) the present method

Table 6.3 Comparison of the sparsity, computational time and accuracy of the present algorithm

versus the LU factorization

Time

Ni f non- i —_— AB,||5. AB/||
umber of non-zero entries (nz) LU Time [|AB |50 [|AB,|]
LU factorization 398,389 1.0000 4.15e—11 6.65e—10
Present algorithm 17,350 0.1852 7.51e—14 1.95¢e—14
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Number of triangular finite elements = 800, Number of nodes = 441,
DSI = 3,480, Thickness = 0.2 m, E = 2e + 7 kN/m?, v = 0.2.

The results of examples clearly reveal the efficiency of the present method in
reduction of non-zero entries and bandwidth. In Example 3, the difference of the
computational time for two methods has been considerable which means that the
complexity of present method is lower than LU method, and this difference
becomes even more when the DSI is increased. The values of norms also indicate
the higher accuracy of the present algorithm.

Finally, the results show that, the present method can be used as an efficient tool
for null basis calculation of plate bending FEM and optimal finite element force
method because in all aspects of comparisons, (sparsity, computational time and
accuracy) the present algorithm has considerable priority versus the LU method and
thus versus other algebraic algorithms which LU factorization is one of the primary
steps of those methods.

6.4 Force Method for Three Dimensional Finite Element
Analysis

In this section an efficient method is presented for the formation of null bases of
finite element models comprised of tetrahedron elements, corresponding to highly
sparse and banded flexibility matrices [7]. This is achieved by associating special
graphs to the finite element model and selecting appropriate subgraphs and forming
the self stress systems on these subgraphs.

6.4.1 Graphs Associated with Finite Element Model

Here, the natural associate graph and the interface graph are utilized as defined in
the following:

The interface graph S;. This graph can be constructed using the following two
rules:

a. There is 1-1 correspondence between the nodes of the interface graph and the
nodes of the FEM.

b. For each edge of the tetrahedron, one independent member is associated. There-
fore, if k tetrahedrons have a common edge, then the corresponding member of
the interface graph will consists of K members (multiple members). A FEM and
the corresponding interface graph are shown in Fig. 6.32a, b, respectively.

The members of the interface graph should be numbered according to the FEM.
For each tetrahedron element like a, six members of the interface graph should be
numbered consequently. The numbering is performed according to the direction of
the independent element forces. A typical numbering is shown in Fig. 6.32c.
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Fig. 6.32 (a) A 3D finite element model; (b) The interface graph; (¢) Numbering for the skeleton
of a typical tetrahedron a
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Fig. 6.33 The nodal and element forces of a tetrahedron element

6.4.2 The Pattern Corresponding to the Self Stress Systems

The nodal forces and independent element forces of a tetrahedron is defined as
shown in Fig. 6.33. This is the same convention as that of the Przemieniecki [10].
Considering Fig. 6.32, in order to find the patterns corresponding to the self
stress systems, the skeleton of tetrahedra are simulated as a space truss. This is
possible since the independent element forces F; to Fg¢ are applied in the nodes and
are along the edges of the tetrahedron, Fig. 6.33. The statical indeterminacy of a
space truss with m members and n nodes is given as y(S) = m — 3n + 6, therefore
the Degree of Statical Indeteminacy (DSI) of the entire FEM, supported in a
statically determinate fashion, can be calculated with same relationship as:

DSIt = 6M — 3N + 6 (6.19)

where M is the number of tetrahedron elements and N is the total number of nodes
of the FEM.
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With the above simulation, the patterns of the self stress systems can be
identified as follows:

6.4.2.1 Type I Self Stress Systems

Each k-multiple member of the interface graph is a subgraph on which k — 1 self
stress systems can be generated. In other words, on a k-multiple member numbered
as (i1,j2,13, - . .,my _ 1,ny) with the condition (i < j <1 < ... <m < n),k — I self
stress systems each formed on two single members can be constructed.

Each k(k — 1)/2 combination of double members from the above list is valid
for a self stress system but obviously, for maximum reduction in bandwidth
of the final null basis, k — 1 pairs of duplicate members should be selected as
1,J), G,D, ..., (m,n). Each pair (i,j) with (i < j), corresponds to a null vector
with their nonzero entries are located in rows i and j, and their numeric values
are —1, 1, respectively. The member with bigger member number (j) is called the
generator. Each pairs forms the underlying subgraph of a Type I self stress system.

For finite elements models with tetrahedron elements, more than 85 % of total
self stress systems are of Type 1. Thus a large percent of the minimal null vectors
can be formed only by the determination of member numbers of these pairs. It
should be noted that in the process of the formation of the interface graph, these
pairs and their numbers can simply be identified.

6.4.2.2 Type II Self Stress Systems

There are other types of self stress systems which are topologically identical to the
minimal self stress systems of the corresponding space truss. In the other words, if a
k-multiple member from the interface graph is substituted by a member, or if the
generators of the Type I self stress systems are removed from Sy, then the remaining
subgraph is a graph, denoted by S. In general the self stress systems built on S are
called Type II self stress systems.

In general, the self stress systems which can be selected from subgraph S are
called Type II systems. In fact these systems are y-cycles, which correspond to the
cycles of minimal lengths of the associate graph of the finite element model. A
connected rigid subgraph Cy of S with y(Cy) = 1, which has no removable sub-
graph, is termed a y-cycle of S, Ref. [11]. A removable subgraph S; of a graph S;, is
the elementary subgraph for which y(§; — S;) = (Sy).

The associate graph of tetrahedron finite element models, denoted by A(S), is a
graph in which to each tetrahedron element one node is associated and two such
nodes are connected together by a member if their corresponding elements having a
common face (3 common nodes). A finite element model with 24 tetrahedron
elements is shown in Fig. 6.34a, its associate graph, which is the 1-skeleton of a
polyhedron, is depicted in Fig. 6.34b.
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Fig. 6.34 A finite element a
model with 24 tetrahedron

elements and the

corresponding associate

graph

Corresponding to the regional cycle basis of a planer graph (the set of cycles
which are the boundaries of the internal regions [11]), in general, two types of
minimal cycles can be extracted from the associate graph of a finite element model.
These cycles are as follows.

6.4.2.3 Type I Minimal Cycles

In these cycles all the corresponding finite elements have two common nodes. Each
cycle in this type passes through M finite elements for which its corresponding
interface graph has N = M + 2 nodes, and (3M — 1) Type I self stress systems can
be extracted. Therefore, by using Eq. 6.8, the degree of statical indeterminacy of
equivalent y-cycle is 1. Thus each Type I cycle corresponds to one null vector.

6.4.2.4 Type II Minimal Cycles

A minimal cycle which surrounds an opening (in the form of a hole through a
structure), is called Type II minimal cycle. Such a cycle passes through M finite
elements and its corresponding interface graph has N = M nodes, and 3M Type 1
self stress systems can be extracted. Again by using Eq. 6.8, the DSI of equivalent
y-cycle is 6. Thus each Type II cycle corresponds to six null vectors.



248 6 Optimal Force Method for FEMs: Low Order Elements

So

Fig. 6.35 A typical subgraph S

6.4.3 Relationship Between y(S) and b1(A(S))

The goal of this section, which has theoretical importance, is to derive a relationship
between the degree of statical indeterminacy of the 1-skeleton of a FE model S and
the first Betti number of the associate graph of the model without openings
(analogous to 2-dimensional fully triangulated trusses [11]). For this purpose an
expansion is employed.

6.4.3.1 Number of Nodes of the Associate Graph

Consider a tetrahedron element. The 1-skeleton S corresponding to this element has
six members and its associate graph is only a single node. Second tetrahedron
element results in the addition of a typical subgraph Sy as shown in Fig. 6.35. Each
time by adding this subgraph to the previous graph leads to addition of three
members to the main graph S and one node to its associate graph.

The associate graph which is formed using this process is a tree and therefore its
number of nodes can simply be calculated as:

. M(S) -3

N = (6.20)

where M(S) and N’ are the number of members and nodes of the 1-skeleton of the
model S and its associate graph A(S), respectively. Obviously N’ is also equal to the
number of tetrahedron elements.

Addition of one node and three members in each stage of expansion is the basic
condition for validity of Eq. 6.20. Obviously, in this case the 1-skeleton can be
viewed as a space truss having DSI equal 0. Some stages of the expansion process is
shown in Figs. 6.36a—c. If the subgraph S is joined to the previous 1-skeleton in a
manner that only one new member is added to S without addition of a new node
(equivalent to the addition of a new tetrahedron element, one new node to A(S) and
formation of a cycle in A(S)), then the DSI of corresponding space truss will
be increased by unity, Fig. 6.36d. In such a case, Eq. 6.9 is not valid and must be
modified using a new parameter. Clearly, the DSI of the space truss, y(S), should be
considered as this new parameter.

Considering the above mentioned point, Eq. 6.20 is modified as
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Fig. 6.36 The process of expansion for the formation of a y-cycle with DSI equal to unity

, M(S) +2y(S) -3

N = 6.21
- (621)
Substitution y(S) = M(S) — 3N(S) + 6 in Eq. 6.21 leads to

N’ = M(S) — 2N(S) + 3 (6.22)

In fact, the number of nodes of the associate graph is equal to the DSI of the
1-skeleton S, when S is viewed as a two dimensional truss!

6.4.3.2 The Number of Members of the Associate Graph

Similar to the previous section, the number of members of the associate graph can
also be determined. However, if the expansion process is in a manner that leads to
an associate graph which is a tree, its number of members can be simply calculated
using the property of a tree, i.e.

M=N -1 (6.23)

or

(6.24)

Here again, if joining a subgraph S, leads to the addition of only one member to
the graph S (this case corresponds to the addition of two members and one node to
A(S), and one unit increase in the DSI of space truss), then Eq. 6.24 can simply be
modified using y(S) as
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o M)+ zy(S) -6

(6.25)

or
M =2M(S) — 5N(S) + 8 (6.26)

Now it is possible to relate the number of independent cycles of the associate
graph to the number of nodes and members of the 1-skeleton S. The dimension of
the cycle space, or the first Betti number of the associate graph, can be calculated
using

b (A(S) =M —N +1 (6.27)

By substitution of M’ and N’ from Eqs. 6.11 and 6.26, the relation for b;(A(S)) is
obtained in terms of M(S) and N(S) as

bi(A(S)) = M(S) — 3N(S) + 6 (6.28)

and this is the relationship for the DSI of a three dimensional truss.

The right hand of the above formula is identical to the DSI of a space truss.
Examining further models with tetrahedron finite elements and their corresponding
associate graphs, it becomes obvious that the relationship presented in earlier
sections are valid for all the cases where A(S) is not the 1-skeleton of a polyhedron.
If A(S) is the 1-skeleton of a polyhedron (Fig. 6.34b), then internal nodes will be
created in the finite element model or graph S (a node is called internal if it is not
positioned on the surface of the FEM). This case corresponds to situations where in
the process of expansion, adding one tetrahedron element leads to the addition of
three members and one node for the graph A(S). For such cases, the present
relationship must be modified considering the contribution of the number of
internal nodes as:

N' = M(S) — 2N(S) + 3 + Ni(S) (6.29)
M = 2M(S) — 5N(S) + 8 + 3Ni(S) (6.30)
b1 (A(S)) = M(S) — 3N(S) + 6 + 2Ni(S) (6.31)
or
bi(A(S)) =¥(S) 4 2Ni(S) (6.32)

In which N;(S) is the total number of internal nodes in the 1-skeleton S of the
finite element model.

The above equations are general relationships for finding the number of nodes,
members and the dimension of the cycle space of an associate graph. Equation 6.32
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Fig. 6.37 (a) Finite element model with its associate graph; (b) corresponding s;
(c) corresponding y-cycle

shows that, if no internal node is created, then the dimension of the cycle space of
the associate graph is equal to the DSI of the corresponding space truss, and
therefore for each cycle, an independent null vector can be formed. If there is one
or more internal nodes in the model, then the dimension of the cycle space of A
(S) is greater than of the DSI of S and thus all the null vectors corresponding to
cycles cannot be used in formation of the final null basis. In this case, 2N;(S) of
vectors must be selected and ignored. Some of the null vectors will have the same
generators. In Sect. 6.4.2 a method is presented for the selection of these vectors. It
should be noted that, in 2-dimensional trusses and plane stress and strain finite
elements, the dimension of the cycle space of A(S) is always equal to the DSI of the
1-skeleton S.

6.4.4 Selection of Optimal y-Cycles Corresponding to Type I1
Self Stress Systems

Thus far, it is found out that each y-cycle corresponds to a minimal cycle of the
associate graph. Also each minimal cycle with n nodes from A(S) such as ¢ passes
through n tetrahedron elements. The subgraph s7(sf C Sy) which is relevant to these
n elements and cycle c, is a base for the selection of an optimal y-cycle. Such a
subgraph may contain simple and multiple members, where each multiple member
with k members corresponds to the overlap of k tetrahedron elements, and each
simple member corresponds to the edge of a element in the boundary of the model.
By applying a special condition to such subgraphs, lists corresponding to optimal
y-cycles can be obtained.

A finite element model with four tetrahedron elements and its associate graph are
shown in Fig. 6.37a. The corresponding s{ which contains multiple and simple
members is illustrated in Fig. 6.37b, and the corresponding y-cycle is depicted in
Fig. 6.37c.

In general, from each sf many y-cycles (self stress systems) can be extracted,
since each simple member of sf is included in a y-cycle, and all the members of a
multiple member can be used in the formation of final self stress system. Thus for
obtaining an optimal self stress system, on each s, two basic selections should be
performed:
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Table 6.4 Lists
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1. Selection of the generator or the last member of a self stress system, which is
required for the null vectors to be independent.

2. Selection of a list of members from graph s; with maximum possible number for
the first member. Such a selection can reduce the bandwidth of the null basis
matrix considerably.

The mathematical representation of this selection can be written as
Minimize (j — i) (6.33)

where j is the generator’s member number and 7 is the least member number of the
current y-cycle. In the following a simple and fast method is presented for these
selections.

6.4.5 Selection of Optimal Lists

In Table 6.4, members of a graph s; which are relevant to a Type I minimal cycle of
A(S) are shown. In this table d;, (i = 1, ..., k) are the member numbers of multiple
members, where di1 < d12 <...<d,and s; G =1, ..., t) are the member num-
bers of simple members. All d" with (m # 1) are already used as the generators of
Type 1 self stress systems. Therefore, it is obvious that the max {d],s;} = dj,
i=1,...,k j=1, ..., t)ymustbe selected as the generator of the current y-cycle.

For maximizing the difference between the first member number and the gener-
ator of the current y-cycle, the following condition can be used:

find(max(dij))’dij <dl then df =max(@/) (i=1,....kj=2..n)
(6.34)

Equation 6.34 means that, in each multiple member the largest dJi, G=2,...,n
which is also less than the generator’s member number (di), should be substituted
with d! for all the indices of i. After using the above process, the remained list, {d} s;},
i=1,..,k,j=1, ..., t)is the desired optimal list which corresponds to subgraph
of the current optimal self stress system.

After finding optimal lists corresponding to Type I minimal cycles, using
relevant equilibrium submatrix, numerical values for each null vector are calcu-
lated. For Type II minimal cycles, finding an optimal list is a time consuming
process and considering the fact that the number of openings is low in the real
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Table 6.5 Schematic view of " 0 0 0
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structures, the use of this process is not economical for improvement of the final
null basis. Thus for each cycle of this type, graph s; is decomposed and all members
corresponding to Type I self stress systems are removed. The remaining subgraph
has the DSI equal to 6, and then 6 null vectors can be calculated from relevant
equilibrium submatrix. Obviously, these null vectors will be suboptimal.

At this stage, considering the number of Type I self stress systems previously
selected, decision for performing the rest of the process should be taken. Suppose ¢,
Type I self stress systems are identified previously. Then t, = DSIt — t; Type II
self stress systems should be selected. Therefore, if we have t, = b{(A(S)) + 5n.
(with n, being the total number of openings) meaning that there is no internal node
in the model, then all y — cycles corresponding to cycles of A(S) should be
involved in the formation of final null basis. Otherwise, t, < b;(A(S)) + 5n.
means that there are one or more internal nodes. This case corresponds to the
generation of null vectors with identical generator numbers. These vectors can
usually be grouped in triplex sets and some of them should be deleted. It should be
noted that all vectors which have unique generators are valid and independent. In
the following, an algebraic procedure is presented for the formation of a desired list
of vectors.

In Table 6.5, a schematic view for the patterns of three null vectors with identical
generator is illustrated. These vectors correspond to three minimal cycles of A
(S) which according to the process presented in Sect. 4.1, their corresponding
optimal lists have identical generator as vg.

According to Eq. 6.22, it is obvious that if vg # 0, then for the generator vg, the
second vector will be the desired vector from these three sets (rows). In such a case,
after the selection of one optimal vector, one cannot simply delete the remaining
vectors. For this purpose the following two controls should be performed.

a. Numerical cancellation control
Each vector for which the numerical value of its generator is equal to zero has
in fact another generator (closer nonzero entry to the generator). If there is no
such a vector with identical generator among all the previously selected vectors,
then this vector should be selected as a new and independent null vector.
b. New generator control
All combinations of m vectors (m is usually equal 3) for possibility of the
formation of vectors with new generator should be calculated. These combina-
tions should be found in a manner that the common generator member of vectors
is removed. Here again, from newly created vectors, those with new generators
should be selected as valid and independent null vectors. As an example, in
Table 6.5, the combination of the first and third rows leads to a new vector with
new generator vs. If there is no such a vector with this new generator among all
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the previously selected null vectors, then this new vector should be selected as a
valid and independent null vector with the generator as v.

Finally, using the above mentioned two conditions, t, valid and independent
vectors are identified and totally DSIt null vectors will be left. Since this process
is performed on all vectors with identical generators, therefore all the desired
vectors are obtained automatically and there is no need to additional information
about the number of internal nodes. In the following an efficient algorithm is
presented for finding the null basis of tetrahedron finite element models.

Algorithm

Step 1: Generate the associate graph of finite element model and use an efficient
method for its node numbering, Kaveh [11]. It is obvious that a suitable
numbering of this graph corresponds to good numbering of elements of finite
element model. This numbering leads to a banded adjacency matrix of the graph
and correspondingly to a banded flexibility matrix.

Step 2: Setup the equilibrium matrix of finite elements model.

Step.3 Generate the interface graph and perform its numbering. The numbering of
this graph should be performed according to the element numbering of the
considered finite elements model.

Step 4: Find the Type I self stress systems. All multiple members of interface graph
are identified and the values —1 and 1 are assigned to appropriate rows
(corresponding to the member numbers). At the end of this step ¢#; minimal
null vectors are created.

Step 5: Find the Type II self stress systems. Using the Type I and Type II minimal
cycles of the associate graph, relevant subgraphs are identified and their
corresponding optimal lists are constructed.

Step 6: Calculate numerical values of the optimal lists. Using optimal lists selected
in Step 5, null vectors corresponding to the Type I and Type II minimal cycles
are calculated from the relevant equilibrium submatrix.

Step 7: Order the null vectors. At this step the constructed null vectors should be
ordered such that their generators form a list with an ascending order.

In the following the efficiency of this algorithm is demonstrated using two
numerical examples and a comparison is made through the results of the present
algorithm and the LU factorization method. The comparisons are confined to those
of sparsity, condition number and computational time of the formation of the
flexibility matrices.

6.4.6 Numerical Examples

In this section two examples with different topological properties are studied. The
models are assumed to be supported in a statically determinate fashion. The effect
of the presence of additional supports can separately be included for each special
case with no difficulty, Kaveh and Fazli [13]. The patterns of the null basis matrix
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Fig. 6.38 A thick beam-type structure and the associate graph of the selected part

B, and the flexibility matrix G are formed for two examples, and the number
nonzero entries of these matrices are denoted by nz.

Example 1. A thick beam-type structure supported in a statically determinate
fashion is depicted in Fig. 6.38. This structure is discretized using tetrahedron finite
elements. The properties of the model are as follows:

Number of tetrahedron elements = 480, Number of nodes = 205
Elastic modulus E = 2e + 7 kN/m?, Poisson’s ratio v = 0.2

Number of Type I self stress systems = 2,032 (89.5 %)

First Betti number of the associate graph = 317 (independent cycles)
Number of Type II self stress systems = 239

Number of internal nodes (N;) = 39, DSI; = 2,271 = (2,032 + 239).

The sparsity of the final null basis obtained by the present algorithm is approx-
imately 12 % of LU method, as shown in Fig. 6.39. The conditioning numbers, the
oo norms and the Frobenius norms of AB; are given for the present method and LU
factorization approach, where A is the equilibrium matrix. The computational time
is lower than 50 % for the present algorithm. The flexibility matrix shown in
Fig. 6.40 is quite banded (Table 6.6).

In the above table, Apax/Amin is the condition number, and |||/, |||/, are the oo
norm and Frobenius norm of AB;, respectively.

Example 2. A thick flat plate with 3D tetrahedra in a single layer is considered which
is supported in a statically determinate fashion as depicted in Fig. 6.41. The 1-skeleton
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Fig. 6.39 Patterns of B{(2,880 x 2,271) and the number of nonzero entries, nz, of null basis;
(a) Present algorithm; (b) LU factorization
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Fig. 6.40 Pattern of the flexibility matrix G(2,271 x 2,271) and the number of its nonzero entries
obtained by the present algorithm

Table 6.6 Comparison of the condition number of G, the norms and the computational time

Time/LU time Amax/Mmin |AB, | |AB1[fro
LU 1.00 1.67e+5 5.73e—12 1.29e—12
Present Algorithm 0.48 3.74e+5 0.00 0.00
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10 m

T Associate graph of

Fig. 6.41 A double layer grid, and the associate graph of the selected part of the grid

of this model is similar to a double layer space structure. The associate graph of this
model is also shown in Fig. 6.41. The properties of the model are as follows:

Number of tetrahedron elements = 904, Number of nodes = 402
Elastic modulus E = 2e + 7 kN/mz, Poisson’s ratio v = 0.2

Number of Type I self stress systems = 3,719 (88.0 %)

First Betti number of the associate graph = 505 (independent cycles)
Number of Type II self stress systems = 505

Number of internal nodes (N;) = 0, DSI; = 4,224 = (3,719 + 505)

Here again, the sparsity of final null basis obtained by the present algorithm is
approximately 10.5 % of LU method, as depicted in Fig. 6.42, while its computa-
tional time is nearly 11 % and also the condition number of G is improved,
Table 6.7. The flexibility matrix G is also well structured as shown in Fig. 6.43.

In this chapter low order elements were presented. Higher order element will be
discussed in subsequent chapter.

6.5 Efficient Finite Element Analysis Using
Graph-Theoretical Force Method: Brick Element

In this section, an efficient graph theoretical method is presented for FEA of models
composed of 3D brick elements. For this purpose first independent force systems
and flexibility matrix of the element are presented, followed by the formation of the
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Fig. 6.42 Patterns of B(5,424 x 4,224) and the number of nonzero entries, nz, of null basis;
(a) present algorithm; (b) LU factorization

Table 6.7 Comparison of the condition number of G, the norms and the computational time

Time/LU time Amax/Amin |AB o | AB ||tro
LU 1.00 1.34e+6 1.64e—10 1.83e—11
Present Algorithm 0.11 1.68e+5 1.94e—15 1.18e—14

minimal subgraphs of the graph models of the considered FEMs. Then the self-
equilibrating systems are constructed on these subgraphs forming a statical basis of
the FEM corresponding to highly sparse and banded flexibility matrix.

6.5.1 Definition of the Independent Element Forces

In displacement method we use three forces at each node of the element, while in
the force method, as shown in Fig. 6.44, it is preferable to select twelve edge force
systems plus six diagonal force systems on six faces of the brick element between
the second and third nodes of the current face. These element forces can be related
to nodal forces using Eq. 6.35 as

S =TF (6.35)

where 1;; is the length and m;;, nj;, p;; are the direction cosines of the line between
nodes i and j.
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Fig. 6.44 Nodal and element force systems of a brick element

6.5.2 Flexibility Matrix of an Element

Formulation of a discrete element equivalent to the actual continuous structure is
the first step in matrix structural analysis. For a linear system it can be assumed that
the stresses ¢.are related to the forces F by linear equation as

6 =cF (6.36)

The matrix ¢ represents statically equivalent stresses system due to the unit force F.
The flexibility matrix of an element can be written as
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£, = J dgedV (6.37)
\'

The integration is taken over the volume of the element, where @ is the matrix
relating the stresses to strains € = @6 in three dimensional problems. The primary
step in achieving the flexibility matrix of an element is determining the matrix €. It
is obvious that the ith column of ¢ represents the resultant stresses due to unit
element force Fj in force method and also stresses due to nodal forces S is equal to
the ith column of T utilizing displacement method. Hence we can form matrix ¢
using stiffness properties of the brick element using the displacement method. Now
the flexibility matrix of the element in the force method is formed from Eq. 6.37
using Gauss numerical integration method with eight Gauss points.

6.5.3 Graphs Associated with Finite Element Model

Here, topological properties of the FEM are transferred into the connectivity of its
interface graph and natural associate graph.

6.5.3.1 Interface Graph

Interface graph of a FEM, denoted by IG(FEM), is constructed by the following
rules:

1. Nodes of the IG(FEM) correspond to the nodes of FEM.

2. For each edge of a break element, one new member is added to the IG(FEM).

3. For each face of a break element, one new diagonal member is added to the IG
(FEM). This member is located between second and third nodes of the current
face of the element.

In fact there is one to one to one correspondence between element forces and
member of the IG(FEM). The members of the interface graph are numbered
according to the element numbers of the FEM. In this way for each element,
corresponding members in interface graph are numbered consequently and then
members of the next element are numbered. A FEM and the corresponding inter-
face graph and the schematic numbering of the members corresponding to nth
element in the interface graph are illustrated in Fig. 6.45.

6.5.3.2 Natural Associate Graph

The natural associate graph represented by NAG(FEM) is constructed by the
following rules:
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Fig. 6.45 (a) Finite element model (b) Interface graph of the FEM (c¢) Schematic numbering of
the nth element

1. Nodes of the NAG(FEM) correspond to the elements of FEM.
2. For each pair of elements in FEM having four common nodes, one member is
added between the corresponding two nodes in NAG(FEM).

NAG(FEM) can be constructed using the following procedure: One of the
preliminary steps in FEA is defining the elements with their connected nodes. In
this way the element connectivity matrix is constructed which contains the element-
node incidence relationships. In the process of constructing the element connectiv-
ity matrix, another matrix which contains node-element incidence properties can be
formed. This matrix is named the node connectivity matrix. Now using the element
connectivity and the node connectivity matrices leads to an algorithm with com-
plexity O(n) for an efficient generation of NAG.

In order to recognize the adjacent elements to the ntk element which have
common four nodes or one common face, first the connected nodes to the nth
element are identified from the element connectivity matrix. In the subsequent step
using the node connectivity matrix, elements which have at least one common node
with the nth element are identified. Now it is convenient to seek for the adjacent
elements in this reduced search space. A FEM and its corresponding NAG are
illustrated in Fig. 6.46.
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Fig. 6.46 Finite element model and Finite element model with natural associate graph

Fig. 6.47 Space truss B,
model equivalent to a brick T T
element

6.5.4 Topological Interpretation of Static Indeterminacy

6.5.4.1 Degree of Static Indeterminacy of the FEM

Each bi-action element force in a brick element can be considered as bi-action
element forces in a bar element. In this way, the force system of the brick element
will be equivalent to the force system of the corresponding space truss as indicated
in Fig. 6.47.

Thus calculating the degree of static indeterminacy (DSI) and forming the self
equilibrating systems of the FEM are replaced by the DSI and self equilibrating
systems of the equivalent truss model. In this way using the DSI of a space truss
with n nodes and m members as DSI = m — 3n + 6, the degree of indeterminacy
of a FEM is obtained as.

DSI = 18E — 3N + 6 (6.38)

where E is the number of brick elements and N is the total number of the nodes of
the FEM.

6.5.4.2 Pattern of Type I Self-Equilibrating Systems

For each k multiple member in equivalent truss model of FEM, there are k unknown
forces and one equilibrium equation in the member’s direction. Thus DSI of the
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substructure is equal to k — 1 and k — 1 self equilibrating systems can be gener-
ated on each k multiple member of interface graph of the FEM. In this way, first
each k multiple members are arranged in ascending order as (m;, m,, ms,. .., my_1,
my). where (m; < mp, < m3 < ... < m_; < my). Each selection of two members
from this list is valid to construct a type I self-equilibrating system, but in order to
achieve a better bandwidth reduction; selection of adjacent members from the
defined list is preferable. Therefore k — 1 duplicate members are selected as (m;,
my), (my, m3),. . ., (my_, my). Each pair (m;, m;) with i < j represents the numbers
of corresponding self-equilibrating system. The member with bigger number is
selected as the generator of the current SES and also as a redundant force. The null
vectors corresponding to the type I SESs have two non-zero entries in rows i and j
equal to —1 and 1, respectively.

Therefore by generating type I SESs, about three fourths of null basis is formed
with maximum sparsity. These SESs are generated easily in the process of
constructing natural associate graph of the FEM.

6.5.4.3 Relationship Between y(S) and NAG(FEM)

By reducing the generators of the type I SESs from IG(FEM), the remaining
subgraph is called graph S, with its associate graph A(S) being equivalent to
NAG(FEM). In order to generate other types of the SESs, a relationship between
the DSI of the equivalent truss of graph S and the natural associate graph of the
FEM should be established. For achieving this aim an expansion process is
employed.

Consider a brick element, as illustrated in Fig. 6.48a. The corresponding graph S
is denoted by S; and NAG(FEM) is a single node. The equivalent structure is
determinate. The graph S corresponding to two brick elements, denoted by S,, is
constructed by adding the subgraph S,' (Fig. 6.49a) to the graph S; as indicated in
Fig. 6.48b, and also one node and one member is added to NAG(FEM) with the DSI
becoming one. Consequently by adding subgraph S,' to the previous graph, it adds
one node and member to the NAG(FEM) and it is growing as a tree and the DSI
increases by unity.

In some stages of the expansion process adding subgraph Sy* (Fig. 6.49b) to the
previous graph S from two faces, as shown in Fig. 6.48d, is equivalent to adding one
node and two members to the NAG(FEM) and a cycle is formed in the NAG(FEM).
In this case, the DSI of corresponding truss is increased by three.

Considering the above points, the number of the nodes and members of the NAG
(FEM) can be calculated as

N M(S) +2y(S) - 3
15

(6.39)
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S1 S2 S3 S4

M(S 1)=18 M(S 2) =31 M(S 3) =44 M(S 4) =53
N'=1,M=0 N'=2,M'= N'=3,M=2 N'=4,M=4
DSI=0 DSI=1 DSI=2 DSI=5

a b c d

Fig. 6.48 The expansion process for the formation of a y-cycle without internal node

Fig. 6.49 A typical S, subgraphs. (a) Sy', (b) S¢*

o M)+ 1378((5) —18

(6.40)

Now, the relation between the DSI of the equivalent truss of the graph S and the
independent cycles of the natural associate graph of FEM can be established. The
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first Betti number of the natural associate graph of the FEM, states the number of
independent cycles of this graph which is expressed as

b (NAG(FEM)) =M —N + 1 (6.41)
Adding M’ to both sides of the Eq. 6.41 leads to
b (NAG(FEM)) + M =2M —N +1 (6.42)
Substituting Eqgs. 6.39, 6.40, 6.41, and 6.42 results in
¥(S) = b; (NAG(FEM)) + M (6.43)

According to this equation, the DSI of the equivalent truss of the graph S can be
expressed as the sum of the number of members and the first Betti number of NAG
(FEM) that corresponds to type II and type III self-equilibrating systems.

The graph S corresponding to the eight brick elements denoted by Sg is
constructed by adding one node and six members to the graph S5 as illustrated in
Fig. 6.50. This process adds one node, three members and three minimal cycles to
the NAG(FEM), and also the DSI of the equivalent graph increases by three.

When the FEM or corresponding graph S has an internal node and the NAG
(FEM) becomes a polyhedral, then Egs. 6.39 and 6.40 will be modified as

, M(S) +2y(S) + 3Ni(S) — 3
N = 15

(6.44)
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Fig. 6.51 Pattern of a Type II self-equilibrating system

M = M(S) + 17y(S) + 33N;(S) — 18
B 30

(6.45)

Therefore the relation between the DSI of equivalent truss of graph S and the first
Betti number of the NAG(FEM) is modified as

v(S) = b; (NAG(FEM)) + M’ — 2N;(FEM) (6.46)

Comparing Egs. 6.43 and 6.46 demonstrates that the FEM has no internal node the
DSI of the equivalent truss of graph S is equal to the sum of the number of members
and first Betti number of NAG(FEM), however, when the FEM has one or more
internal nodes, 2N (FEM) self-equilibrating systems are not independent and must
be ignored.

6.5.4.4 Pattern of Type II Self-Equilibrating Systems

As mentioned, type II self-equilibrating systems as indicated in Fig. 6.51 are
topologically identical to the subgraph of graph S which corresponds to the two
connected nodes of the natural associate graph of the FEM.

The most important point in type II self-equilibrating systems is to select an
appropriate generator. Because by eliminating these generators from graph S, the
sub-structure of type III SESs and primary structure of the structure S must be
stable. To achieve this, the following rule for appropriate selection of generators of
type II SESs is suggested.

In this way avoiding instability of the subsequent type of the SESs, the following
procedure is applied, as indicated in Fig. 6.52. For a type II SESs (in any coordinate
system such as Cartesian, cylindrical or spherical) generators of the type II SESs in
directions 1, 2 and 3 are the chosen members which are numbered as 8, 11, and 23.

6.5.4.5 Pattern of Type III Self-Equilibrating Systems

According to the expansion process in models without opening, sub-structures
which are topologically identical to the minimal cycles of the natural associate
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Fig. 6.53 Minimal cycles of the natural associate graph of the FEM

graph of FEM contains some type II and one type III self-equilibrating systems as
indicated in Figs. 6.53a and 6.54.

6.5.4.6 Type I Minimal Cycles

These minimal cycles of the natural associate graph of the FEM pass through F
elements which have two common nodes and one edge. Corresponding interface
graph of these elements have N = 4E + 2 nodes. Therefore using Eq. 6.37 the DSI
of the related sub-structure is equal to 6. Obviously 5E — 1 and E type I and type
II self-equilibrating systems can be extracted from the mentioned sub-structure.
The DSI of the remaining sub-structure is 1. Thus each type I minimal cycle of the
natural associate graph of the FEM contains a type III self-equilibrating system and
one null vector.

Avoiding instability of the primary structure S, the procedure indicated in
Fig. 6.55 is applied to selection of the generators of the type III SESs. For a type
IIT SESs (in any coordinate system such as Cartesian, cylindrical or spherical)
generators of SESs perpendicular to the directions 1, 2 and 3 are chosen members
which are numbered as 70, 51 and 17, respectively.



6.5 Efficient Finite Element Analysis Using Graph-Theoretical Force Method:. . . 269

Fig. 6.54 Selected generators of the type III SESs

6.5.4.7 Type II Minimal Cycles

For models with openings, each independent cycle of the natural associate graph
which surrounds an opening of the FEM is called type II minimal cycle of the
natural associate graph. Considering that this cycle passes through E elements and
its corresponding interface graph has N = 4F nodes. Using Eq. 6.37, the DSI of the
related sub-structure is equal to 6F + 6. Obviously 5F and E type I and type II self-
equilibrating systems can be extracted from the mentioned sub-structure. Therefore
the DSI of the remaining sub-structure is 6. Thus each type II minimal cycle of the
natural associate graph of the FEM contains six self-equilibrating systems of type
IIT and six corresponding null vectors. These null vectors can easily be generated on
the corresponding sub-structure utilizing an algebraic method.
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Fig. 6.55 Eight elements
and the corresponding
hexahedron natural
associate graph
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6.5.5 Models Including Internal Node

For N; internal node in the FEM, 2N; self-equilibrating systems are not independent
from others and then should be selected and ignored. Since each type III SESs
include some type I and type II SESs, therefore ignoring each type I and type 11
SESs causes the corresponding type III SESs not to be valid. Therefore for any
internal node, two type III SESs should be selected and ignored. The following
procedure should be applied to select dependent SESs.

Considering graph S5 its equivalent truss is twelve times statically indetermi-
nate. As it can be seen from Fig. 6.50a, b adding one node and six members
consisting of three edge members and three diagonal ones, to graph S; forms
graph Sg. Then the DSI of the equivalent truss is increased by three. Considering
the equivalent truss of graph S; and by eliminating the restraints corresponding to
the generators of SESs, the primary structure which is determinate and stable is
obtained. Also corresponding primary structure of graph Sg is obtained by elimi-
nating the generators of SESs of graph S; plus the above mentioned three diagonal
members, form graph Sg.

Eight elements correspond to each internal node and the natural associate graph
corresponding to these elements is a hexahedron. At the beginning, from each
hexahedron as illustrated in Fig. 6.55, node 8 is considered as the last node which
makes up the hexahedron. These nodes must be distinct from each others.

From each hexahedron three type III SESs corresponding to three minimal
cycles of NAG(FEM) which pass through the selected node, are ignored and also
the mentioned three diagonal members used as generator of three type II SESs
corresponding to three members of NAG(FEM) which pass through the selected
node. In Figs. 6.55 and 6.56, the red members represent the modified type II SESs.
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Fig. 6.56 A finite element
model and the
corresponding natural
associate graph

6.5.6 Selection of an Optimal List Corresponding to Minimal
Self-Equilibrating Stress Systems

The main goal of this section is the selection of a member list for each self-
equilibrating systems which has the nearest member numbers to the generator of
the system.

Minimize (Abs(i — j)) (6.47)

where j is the number of the generator member, and i are the number of members of
the self-equilibrating system.
Consider d; (i=1,2,...,k; m=1,2,...,n), representing the member
numbers of the multiple members where di1 < d12 <...<d!,and s;; G=1,2,
..., t) representing the member numbers of the simple members. Since di" with
m # 1 is used as generator of type I of SESs, as illustrated in Figs. 6.52 and 6.53,
the generator of type II and type III of SESs must be selected from {dil,sj}. For
maximum bandwidth reduction, from each multiple member one member is
selected which has the nearest number to the generator’s number of the self-
equilibrating system. In order to achieve this goal, Eq. 6.48 should be applied.

find (a ) Abs (d] - df) = Min (abs (] - d) ) (6.48)
then
d=d (=12 ....kj=12,...,n) (6.49)

where, dé is the generator of the self-equilibrating system.

Algorithm. Step 1: Number the nodes of the FEM. Nodal numbering does not
affect the pattern of the flexibility matrix of the FEM.
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Step 2: Define the brick elements through its eight nodes. Use an efficient method
for element numbering, for having small bandwidth for the null basis matrix B
and the flexibility matrix.

Step 3: Generate the natural associate graph of the FEM.

Step 4: Generate the interface graph of the FEM in manner that its member
numbering is according to the element numbering of the FEM. In this way for
each element, corresponding members in interface graph are numbered
consequently.

Step 5: Construct the equilibrium matrix of the FEM.

Step 6: Set up the type I self-equilibrating systems and calculate the corresponding
null vectors which have two nonzero entries in the rows corresponding to the
member numbers.

Step 7: Set up the type II self-equilibrating systems and calculate the corresponding
null vectors form the relevant equilibrium sub-matrix.

Step 8: Set up the type III self-equilibrating systems and calculate the
corresponding null vectors form the relevant equilibrium sub-matrix.

Step 9: Construct the statical basis (null basis) of the FEM by arranging the null
vectors in the null basis in the ascending manner utilizing the highest member
number of the corresponding self-equilibrating systems.

The efficiency of this algorithm is shown through two examples by comparing
the required computational times for the construction of the null basis matrices, also
non-zero patterns and condition numbers of the flexibility matrices. In this com-
parison (a) Present method (b) Turn-back method (c) Gauss-Jordan elimination
method are considered.

6.5.7 Numerical Examples

In this section two FEMs are considered, one of these models is assumed to be
supported in statically indeterminate fashion and the other supported in a determi-
nate fashion. Null basis and flexibility matrices are formed and the required
computational times, and the condition numbers are calculated. In the following
examples, nz represents the number of non-zero entries and A, /Amin 1S the ratio of
the extreme eigenvalues taken as the condition number of a matrix.

Example 1. A thick arch type structure, having internal radius of 8 m, discretized
by brick elements. The corresponding FEM is supported in a statically indetermi-
nate fashion as illustrated in Fig. 6.57. The mechanical and topological properties of
the model are as follow:

Poisson’s ratio = 0.2; Elastic modulus £ = 2E + 10 N/mz; Density p = 2,400 kg/m3 ;
Number of nodes = 165; Number of internal nodes (N;) = 27;

Number of elements = 80;

Number of members of the natural associate graph = 172;



6.5 Efficient Finite Element Analysis Using Graph-Theoretical Force Method:. . . 273
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Fig. 6.57 A thick arch type structure discretized by brick elements
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Fig. 6.58 Pattern of the equilibrium matrix of the FEM for Example 1

First Betti number of the natural associate graph (independent cycles) = 93;
Number of Type I self-stress systems = 740 (77.8 %);

Number of Type II self-stress systems = 172 (18.1 %);

Number of Type III self-stress systems = 93 — 2 x 27 = 39 (4.1 %);
DSIiniernar = 9515 DSIgxiernar = 215 DSl = 972;

The pattern of the equilibrium matrix of the FEM is displayed in Fig. 6.58. The
nodes and elements of the FEM are numbered in a way to produce a banded
equilibrium matrix. This characteristic facilitates the Turn-back method to form a
null basis with less required computational time and more banded form.

The null basis of the FEM can be constructed using a mixed algebraic-graph
theoretical and pure algebraic methods. In mixed methods, graph theoretical
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Table 6.8 Definition of the element forces

Force system Location (nodes) Force system Location (nodes)
1 1,3 10 3,7
2 34 11 4.8
3 2,4 12 2,6
4 1,2 13 35
5 5,7 14 4,7
6 7,8 15 4.6
7 6,8 16 2,5
8 5,6 17 23
9 1,5 18 6,7

Table 6.9 Member list corresponding to the type II or type III self-equilibrating systems

d} dé S S5 d}; d} S; d,i
a4 & & @ ¥
d% : :
dy; d}

approach is utilized to form columns of the null basis which are related to the
internal indeterminacies where algebraic procedures form the columns
corresponding to the external indeterminacies.

In this case, graph theoretical approach is employed together with the Turn-back
method (Tables 6.8 and 6.9). As displayed in Fig. 6.59 and Table 6.10, applying the
mixed graph theoretical with Turn-back method lead to a highly sparse and banded
null basis; however it requires some additional computational time than using the
mixed graph theoretical with QR decomposition method.

Pure algebraic methods are also used to form the null basis of the equilibrium
matrix of the FEM. From Fig. 6.59 and Table 7.3 it can be observed that each pure
algebraic method has better performance when they are used together with the
present graph theoretical method (Fig. 6.60).

Example 2. An arch type structure with an internal radius of 8 m, discretized by
brick elements. As shown in Fig. 6.61, this structure has two openings and is
supported in a statically determinate fashion. Properties of the model are as follow:

Mechanical Properties
Poisson’s ratio = 0.2; Elastic modulus £ = 2E + 10 N/mz; Density p = 2,400 kg/m3;

Topological Properties

Number of nodes = 108; Number of internal nodes (N;) = 0; Number of
elements = 38;

Number of members of the natural associate graph = 59

First Betti number of the natural associate graph (independent cycles) = 22;
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Fig. 6.59 Pattern of the null basis B; matrices corresponding to Example 1 utilizing: (a) Graph
theoretical-Turn back method (b) Graph theoretical-QR method (¢) Turn-back method (d) Gauss
Jordan elimination method

Number of Type I self-stress systems = 275 (75.1 %);

Number of Type II self-stress systems = 59 (16.1 %);

Number of Type III self-stress systems = 20 + 2 x 6 = 32 (8.8 %);
DSIIntcmal = 366; DSIExtemal =0; DSITotal = 366;
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Table 6.10 Comparison of the optimality characteristics of the null basis matrices By and the
flexibility matrices G for the FEM of Example 1

Null basis B, Flexibility matrix G

Time .

(sec) . Time Amax nz entries
Time A nz entries

Present method “min Present method

Graph theoretical-  2.464 1.000 2.475e  1.000
Turn back +07
method
Graph theoretical-  0.824 0.334 4.699¢  1.692
QR method +08
Turn back method 70.358  28.554 2.776e  1.622
+07
Gauss Jordan 25921 10.520 5.655¢  7.279
elimination +06
method

200

400
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800 |
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0 200 400 600 800 a 200 400 600 800
nz = 89954 nz = 403689

Fig. 6.60 Pattern of the flexibility matrices G corresponding to Example 1 utilizing: (a) Graph
theoretical-Turn back method (b) Graph theoretical-QR method (¢) Turn-back method (d) Gauss
Jordan elimination method
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Fig. 6.61 An arch type
structure containing two
openings, discretized by
brick elements
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Fig. 6.62 Pattern of the null basis B, matrices corresponding to Example 2 utilizing: (a) Graph
theoretical method (b) Turn-back method (¢) Gauss Jordan elimination method
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nz = 17366 nz=19158 nz=57232

Fig. 6.63 Pattern of the flexibility matrices G corresponding to Example 2 utilizing (a) Graph
theoretic method (b) Turn-back method (c¢) Gauss Jordan elimination method

Table 6.11 Comparison of the optimality characteristics of the null basis matrices B; and the
flexibility matrices G for the FEM of Example 2

Null basis B, Flexibility matrix G
Time .
Time Amax nz entries
(sec) Time A nz entries
Present method “‘min Present method
Graph theoretical 0.171 1.000 2.860e 1.000
method +4
Turn back method  16.816  98.339 1.033¢  1.103
+4
Gauss-Jordan elimi- 6.394  37.392 1.814e 3.296
nation +5
method

The pattern of the null basis and flexibility matrices are illustrated in Figs. 6.62
and 6.63 and it can be easily seen that present graph theoretical method and Turn-
back method lead to banded null basis and flexibility matrices. Table 6.11
containing the optimality characteristics of the applied methods reveals that the
presented method requires acceptable computational time for constructing the null
basis of the FEM.

As mentioned, the present method leads to a highly sparse and banded flexibility
matrix requiring a low computational time with an acceptable condition number.

These examples are also analyzed by the standard displacement method and the
integrated force method. Figure 6.64 illustrates the pattern of the reduced stiffness
matrix, and its optimality characteristics are provided in Table 6.12. It can be seen
that for these examples, the displacement method analyzes the model with less
unknowns than the presented graph theoretical force method, and the reduced
stiffness matrix K, has less non-zero entries than the flexibility matrix G.
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Fig. 6.64 Pattern of the reduced stiffness matrix K, corresponding to (a) Example 1 (b) Example 2

Table 6.12 Optimality characteristics of the stiffness matrix K,

Amax nz entries
Aanin Nz entries proent  method
Example 1 1.793e+4 0.428
Example 2 2.667e+5 0.797
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Chapter 7
Optimal Force Method for FEMS: Higher
Order Elements

7.1 Introduction

In this chapter force method for the analysis of finite element models comprising of
higher order elements are studied.

In the first part, an efficient graph theoretical force method is presented for the
analysis of FEMs comprising of higher order triangular elements, corresponding to
highly sparse and banded flexibility matrices [1]. This is achieved by associating
special graphs to a finite element model, and selecting subgraphs for the formation
of localized self stress systems.

In second part, a method is described for the formation of null bases for FEMs
comprised of higher order rectangular plane stress and plane strain elements
(serendipity family elements) leading to highly sparse and banded flexibility matri-
ces for optimal finite element analysis by force method [2].

In the third part, an competent method is described for the formation of null
bases of finite element models (FEMs) consisting of hexahedron elements,
corresponding to highly sparse and banded flexibility matrices. This is achieved
by associating special graphs with the FEM and selecting appropriate subgraphs
and forming the self-equilibrating systems on these subgraphs [3].

7.2 Finite Element Analysis of Models Comprised
of Higher Order Triangular Elements

This part introduces an efficient method for the finite element analysis of models
comprised of higher order triangular elements. The presented method is based on
the force method and benefits graph theoretical transformations. For this purpose,
minimal subgraphs of predefined special patterns are selected. Self-equilibrating
systems (S.E.Ss) are then constructed on these subgraphs leading to sparse and

A. Kaveh, Computational Structural Analysis and Finite Element Methods, 281
DOI 10.1007/978-3-319-02964-1_7, © Springer International Publishing Switzerland 2014
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banded null basis. Finally, well-structured flexibility matrices are formed for
efficient finite element analysis.

7.2.1 Definition of the Element Force System

Defining appropriate structural elements is the first step of structural analysis.
Based on the analysis approaches, structural elements are formulated in different
manners. In case of higher order triangular elements (in-plane forces), in displace-
ment method two forces are employed at each node of the element, while in force
method the following force system is utilized.

Considering an O(n) element first, 3n sets of edge bi-action forces are described
between adjacent side nodes. Then n(n — 1)/2 bi-action forces are added between
adjacent nodes parallel to side 23. The same forces are added parallel to side 13.
Finally n — 1 bi-action forces are added in the same manner, parallel and in the
closest position to side 12. Force systems corresponding to the second, third and
fourth order elements are shown in Fig. 7.1a—. These independent element forces
denoted by F are related to nodal forces S using Eq. 7.1.

S =TF (7.1)

7.2.2 Flexibility Matrix of the Element

The flexibility matrices of higher order triangular elements can simply be formed
using the stiffness matrices of such elements.

fo = (T)'(K;) ', (7.2)

where the subscript r indicates that, corresponding orders of matrices to dependent
forces are reduced.

7.2.3 Graphs Associated with Finite Element Model

In order to benefit topology in finite element analysis, first some topological trans-
formations of FEM are needed. In this relation ten different graphs are presented in
Ref. [4]. Here natural associate graph and interface graph are used that are defined
in the following:
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Fig. 7.1 Element force systems of higher order triangular elements

7.2.3.1 Natural Associate Graph

The natural associate graph of a FEM is represented by NAG(FEM). This graph
reveals elements adjacency properties and as illustrated in Fig. 7.2a is constructed
by following rules:

1. Each node of NAG(FEM) corresponds to each element of the FEM.
2. Two nodes of NAG(FEM) are connected with a member if two corresponding
O(n) elements have n + 1 common nodes on a common edge.

Natural associate graph can easily be generated using the following procedure:
Connected nodes with a considered element are identified using element con-
nectivity matrix.

1. Connected elements with these nodes are identified using node connectivity
matrix.
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Fig. 7.2 Natural associate graph and interface graph of the corresponding FEM comprised of
fourth order elements

2. All identified elements in step 2, at least have one common node with the
considered element in step 1. Now among these identified elements the one
which has n + 1 common nodes with the considered element, is desirable.

7.2.3.2 Interface Graph

The interface graph of a FEM is represented by IG(FEM). This graph corresponds
to the force system of the FEM, and as indicated in Fig. 7.2b it is constructed by the
following rules:

1. Each node of IG(FEM) corresponds to the each node of the FEM.

2. Members of the IG(FEM) correspond to the force system of FEM between their
adjacent nodes.

3. Each support condition is considered as a member of IG(FEM).

Members of the interface graph corresponding to the element forces are num-
bered according to element numbering. Meantime corresponding members to
support conditions are numbered before members of their connected elements.

7.2.4 Topological Interpretation of Static Indeterminacies

7.2.4.1 Degree of Static Indeterminacy of the FEM

As mentioned in Sect. 3.1, the introduced element force system is comprised of a
number of bi-action forces. In accordance with Przemieniecki [5] each bi-action
force can be considered as force system of a bar element, hence force system of the
equivalent truss element can be employed instead of the force system of the original
element. Therefore, the DSI of the FEM and self-equilibrating systems can be
conveniently explored.
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Each higher order triangular element has n* + 3n — 1 bi-action forces, and
hence the DSI of a FEM which is comprised of E elements and contains N nodes
is obtained as

DSI = (n* +3n—1)E — 2N + 3 (7.3)

Following self-equilibrating systems are found. Then null vectors which express the
equilibrium conditions of the self-equilibrating systems are generated.

7.2.4.2 Pattern of the Type I Self-Equilibrating Systems

The interface graph of a FEM contains double members at the interface of two
elements (Fig. 7.2b). Each double member of the interface graph correspond to a
Type I self-equilibrating system. The self-equilibrating system consisting of two
members numbered as i and j (j > 1). The member with bigger number is selected
as the generator of the self-equilibrating system and is considered as the redundant
force of the FEM. Typical null vector corresponding to a Type I self-equilibrating
system contains two nonzero entries in ith and jth rows equal to —1 and 1, respectively.

The above mentioned double members can conveniently be identified while
natural associate graph is being generated.

7.2.4.3 Identification of Other Self-Equilibrating Systems Using
an Expansion Process

This section adopts a method to identify other self-equilibrating systems and locate
other redundant forces. Consider a graph S the same as the interface graph of the
FEM with generators of Type I self-equilibrating systems being removed.

7.2.4.4 Models Excluding Openings

Consider a general triangular element as shown in Fig. 7.3a. The corresponding
graph § contains Ng = (n + 1)(n + 2)/2 nodes and Mg = (n + 1)(n +2) — 3
members, thus the equivalent truss is determinate. The NAG(FEM) is an isolated
node. When another element is added (Fig. 7.3b, c), each time Ng — n — 1 nodes
and Mg — n members are added to the corresponding graph S, thus the indetermi-
nacy is increased by n — 1. The NAG(FEM) grows with a node and member. This
is true while The NAG(FEM) is growing like a tree (with no cycle).

In some steps of the expansion process adding an element grows NAG(FEM) by
a node and two members, and a cycle is formed in the natural associate graph, as
illustrated in Fig. 7.3d. In this situation (Ng — 2n — 1) nodes and (Mg — 2n)
members are added to the corresponding graph S, hence the indeterminacy is
increased by 2(n — 1) + 1.
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Fig. 7.3 Expansion process in FEMs comprising of O(n) elements and without opening

Based on the above mentioned remarks it can clearly be seen that each member
and cycle of natural associate graph corresponds to n — 1 and one degrees of
indeterminacy, respectively. This conclusion is theoretically validated as follows.
Considering the above points, the number of nodes and members of the natural
associate graph are derived as

+ M(S) + Mgy(S) — Mg

M= (7.4)
+ M(S)+7y(S) -1
N = (Mg — 1) (73)

Now the first Betti number is epmloyed to calculate the number of independent
cycles of the natural associate graph of the FEM

b (NAG(FEM)) =M —N +1 (7.6)

By substituting Eqgs. 7.4 and 7.5 in Eq. 7.6, the degree of static indeterminacy of the
equivalent truuss is obtained using the natural associate graph of the FEM:

v(S) = by (NAG(FEM)) + (n — )M’ (7.7)

This equation shows that the subgraphs of S which correspond to memebers of
NAG(FEM), represent n — 1 degree of indeterminacy and n — 1 self-equilibrating
systems can be constructed which are called Type II self-equilibrating systems.
Meantime subgraphs of S which correspond to independent cycles of NAG(FEM),
represent one degree of indeterminacy and one self-equilibrating system, called
Type III self-equilibrating systems, can be formed.
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7.2.5 Models Including Opening

In this section, an expansion process is employed in the process of expanding a
cycle which surounds an opening, to identiy new degrees of indeterminacy and
corresponding the new self-equilibrating systems.

Consider the finite element model of Fig. 7.4a. Adding an element in manner
shown in Fig. 7.4b, adds Ng — n — 2 nodes and Mg — n members to the
corresponding graph S, thus increasing the indeterminacy of equivalent truss by
m—1)+2.

When the final element is added as shown in Fig. 7.4c, Ng — 2n — 1 nodes and
Mg — 2n members are added to the corresponding graph S leading to an increase of
DSIby 2(n — 1) + 1.

In the step which is shown in Fig. 7.4b if the Type II self-equilibrating systems
are ignored, two new self-equilibrating systems can be recognized and considering
Fig. 7.4c there is one new self-equilibrating system. As pointed out, the truss
corresponding to a mininal cycle of NAG(FEM) that surrounds an opening, con-
tains three self-equilibrating systems. These self-equilibrating systems are classi-
fied in Type III self-equilibrating systems. Here, Eq. 7.7 is modified by adding the
term 2n... Each cycle of NAG(FEM) which surrounds an opening is considered as an
independent cycle by the first Betti number as

¥(S) = bi(NAG(FEM)) + (n — 1)M + 2n, (7.8)

where n. is the number of openings in FEM.

7.2.5.1 Pattern of Type II Self-Equilibrating Systems

Subgraphs of the graph S which correspond to members of the NAG(FEM) are the
underlying subgraphs of Type II self-equilibrating systems. If n is considered as the
order of elements, n — 1 Type II self-equilibrating systems can be constructed on
each subgraph.

Consider a triangular element; the second element can be attached from each
three sides. Depending on the side to which the second element is attached,
generators of Type II self-equilibrating systems are selected in different ways.
Figure 7.5a shows a second order element indicated by bold nodes which is
connected to three elements from three sides. In each case the corresponding
generator is identified by dashed red line. The same is shown in Fig. 7.5b, ¢
considering third and fourth order elements. Meantime as it can be noticed from
Fig. 7.5, the pattern of the generators can conveniently be expanded for elements
with higher orders.
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Fig. 7.5 Appropriate generators of Type II self-equilibrating systems from models comprised of
second, third and fourth order elements
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7.2.5.2 Pattern of Type III Self-Equilibrating Systems

Subgraphs of the graph S which correspond to minimal cycles of the NAG(FEM)
are underlying subgraphs of Type III self-equilibrating systems. These minimal
cycles can be categorized into two classes.

7.2.5.3 Type I Minimal Cycles

These cycles pass through elements which all have one certain node in common. As
discussed in expansion process, subgraphs of graph S corresponding to Type I
minimal cycles lead to one Type III self-equilibrating system. Figure 7.6a—c rep-
resent the underlying subgraphs and generators of Type III self-equilibrating
systems corresponding to second, third and fourth order elements. The generators
are indicated by dashed red lines.

Meantime Fig. 7.6 implies that the pattern of the generators can conveniently be
expanded for the elements with higher orders.

7.2.5.4 Type II Minimal Cycles

These cycles pass through elements which surround an opening. According to the
expansion process, subgraphs of the graph S corresponding to Type II minimal
cycles contain three self-equilibrating systems of Type III. Consider Fig. 7.4b, in
this situation, based on expansion process two Type III self-equilibrating systems
are formed hence the two corresponding generators can simply be selected from
members of the last added element.

The last Type III self-equilibrating systems is formed when the Type II minimal
cycle is completed (Fig. 7.4c). Here again the corresponding generator is simply
selected from the members of the added element.

7.2.5.5 Self-Equilibrating Systems Corresponding to the External
Indeterminacies

These self-equilibrating systems are formed in relation with the external degrees of
indeterminacy. For this purpose, each indeterminate restraint forces is considered as
a redundant force. Here unlike the internal redundant forces, the external ones are
not bi-action forces. Thus the corresponding self-equilibrating systems will require
simple support conditions. A typical self-equilibrating system regarding to an
external indeterminacy shown in Fig. 7.7b is formed based on a tree of NAG
(FEM) which connects the external redundant force to a close simple support
configurations. However, it is essential that these self-equilibrating systems remain
independent from each other. After selecting two ends of the tree, it is desirable the
above mentioned tree to pass through elements with close numbers.
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Fig. 7.6 Appropriate generators of Type III self-equilibrating systems from models comprised of
second, third and fourth order elements

|_H _. l

Fig. 7.7 A self-equilibrating system corresponding to an indeterminate support condition

7.2.6 Selection of an Optimal List Corresponding to Minimal
Self-Equilibrating Stress Systems

Consider a general self-equilibrating system of Type II or Type III. According to
the above procedure SESs consist of single members like s; and double members d!
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Table 7.1 Member list of a typical Type II or Type III self-equilibrating system

d{ dé S Sy g dil i d11<
a2 d3 d? d2

which have a twin member as d?. It is clear that replacing each d! member with its
twin member does not affect the topology of the corresponding SES, Table 7.1.
Thus except the generators which are unique and necessary for the independency of
the SESs, other double members can be replaced by their twin members.

Here, considering the bandwidth reduction of the null basis, the following
procedure is utilized to select members with closer numbers to the generator
number.

Ifabs(g —dj) <abs(g—d/) then df — d (7.9)
where, g is the generator number.

Algorithm

Step 1: Define and number the nodes of the FEM.

Step 2: Define the triangular elements and use an efficient numbering method to
reduce the bandwidth of the null basis and flexibility matrice.

Step 3: Generate the natural associate graph of the FEM based on the adjacency of
the elements.

Step 4: Generate the interface graph of the FEM in a manner that its members are
numbered according to the element numbering of the FEM.

Step 5: Select the Type I self-equilibrating systems and form the corresponding null
vectors.

Step 6: Set up the Type II and Type III self-equilibrating systems, and form the
corresponding null vectors consisting of the members’ forces when the genera-
tor’s force is equal to unity.

Step 7: Finally assemble the null basis (static basis) of the FEM by arranging the
null vectors in the ascending order of the highest member number of the self-
equilibrating systems.

The above algorithm is implemented in MATLAB and is used to analyze three
structures, and the efficiency of the present method is illustrated through these
examples.

7.2.7 Numerical Examples

In this section three examples are studied. In each case, first the structure is
idealized using second order triangular elements. The null basis matrices are
constructed utilizing the present method and two algebraic procedures, namely
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the Gauss-Jordan elimination method and QR factorization. Then the results are
contrasted through normalized computational time for the formation of the null
basis matrices and nonzero pattern and condition numbers of the flexibility matri-
ces. In the following examples, nz represents the number of non-zero entries and,
the ratio of the extreme eigenvalues, Ayax/Amin, 1S taken as the condition number of
the matrices.

In the second step, each example is idealized using second, third and fourth order
elements. Then the properties of the flexibility matrices obtained from the present
method are compared to those of the corresponding stiffness matrices. For this
purpose condition s and the number of unknowns, namely the DSI for the force
method and the DKI degree of kinematic indeterminacy for the displacement
method are utilized.

Example 1. Consider a beam structure with determinate support conditions. The
beam is bent under a uniformly distributed load of intensity q = 10 kN/m. The
structure is idealized using plain stress triangular elements. As indicated in Fig. 7.8,
three types of elements are generated using second, to fourth order elements. All
models have the same nodes with the following mechanical properties:

Thickness = 0.01 m, E = 2e + 8 kN/m?, v = 0.3. Topological properties of the
models are collected in Table 7.2.

Figure 7.9 displays pattern of the null basis matrices employing the present
method and two other algebraic procedures for the model comprising of second
order elements. In this relation Table 7.3 contains other optimality characteristics of
the force method procedures. It is clear that the graph theoretical method forms the
most well-structured null basis in smallest computational time.

Figure 7.10 shows the pattern of the flexibility matrices for the models compris-
ing of the second to fourth order elements. It is noticeable that as the order of
elements increases the DSI of the model decreases. Meanwhile, with identical
number of nodes for the models, the DKI stays the same, as illustrated in
Fig. 7.11. Table 7.4 contains the ratio of the DKI/DSI.

Finally, for a model with second order elements, the average o, stresses at
nodes of Path 1 are compared through the results of the present force method and
displacement method in [1].

Example 2. A beam structure which depicted in Fig. 7.12 is bent under a uni-
formly distributed load of intensity q = 10 kN/m. The structure is analyzed three
times using second, third and fourth order elements. Plane stress elements are
considered with the following mechanical properties: thickness = 0.01 m, E = 2
e + 8 kN/m?, v = 0.3. Topological properties of the models are collected in
Table 7.5.

Figure 7.13 and Table 7.6 reveal the optimality characteristics of the present
graph theoretical and the two algebraic force methods. The present method leads to
a sparse and banded null basis using the smallest computational time. QR factor-
ization method forms a null basis in reasonable computational time and leads to a
well-conditioned flexibility matrix but the flexibility matrix is not well-structured
at all.
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Fig. 7.8 FEM of the beam of Example 1

Table 7.2 Topological properties for the FEM of Example 1

FEM Self-equilibrating systems Force system
Element type Nodes Elements Type 1 Type 11 Type 111 Int. DSI
Second order 481 216 600 300 85 1,944 985
Third order 481 96 384 256 33 1,632 673
Fourth order 481 54 276 207 16 1,458 499

Comparing Figs. 7.14 and 7.15 shows that, by using higher order triangular
elements there will be fewer compatibility conditions than equilibrium equations.
Thus utilizing the graph theoretical force method can be attractive and economical.
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Fig. 7.9 Pattern of the null basis By corresponding to Example 1 with second order elements and
utilizing (a) Graph theoretical method (b) Gauss Jordan elimination method (¢) QR decomposition
method

Table 7.3 Comparison of the optimality characteristics of the null basis matrices By and flexi-
bility matrices G for the FEM of Example 1

Null basis B Flexibility matrix G
Time nz entries Amax
Time Present method Nz entries Present method Mnin
Graph theoretical method 1.00 1.00 1.21e+4
Gauss Jordan elimination  106.48 17.01 3.08e+4
method
QR factorization method 3.06 43.27 8.22e+3

Table 7.7 contains the ratios of the DKI/DSI and also condition numbers of the
stiffness matrices.

Example 3. A cross section of a retaining wall is idealized using triangular
elements, as illustrated in Fig. 7.16. The model is analyzed three times using
second, third and fourth order elements. Here plane strain elements are utilized
with the following mechanical properties:

Thickness = 1 m, E = 2e + 7 kN/m?, v = 0.2. Topological properties of the
models are collected in Table 7.8.

Optimality characteristics of the employed force methods can be seen in
Fig. 7.17 and Table 7.16. The patterns of the flexibility matrices utilizing present
method are illustrated in Fig. 7.18. The difference between nonzero numbers of the



7.2  Finite Element Analysis of Models Comprised of Higher Order Triangular Elements 295

0 200 400 600 800 0 150 300 450 600 0 100 200 300 400
nz=22419 nz=20431 nz=19123

Fig. 7.10 Pattern of the flexibility matrices G corresponding to Example 1, considering (a) second
order (b) third order (c¢) fourth order elements
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Fig. 7.11 Pattern of the reduced stiffness matrices K, corresponding to Example 1 considering (a)
second order (b) third order (c) fourth order elements

Table 7.4 Optimality

Manax DKI
characteristics of the reduced Element type Rmin DST
;tlffnesls rrllatrlces K, for Second order 6.22¢+4 0.97

xampre 2. Third order 9.45e+4 1.42
Fourth order 1.59¢+5 1.92
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—
o

6x2cm

—

; 14x3cm i

Fig. 7.12 Beam structure of Example 2
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Table 7.5 Topological properties for the FEM of Example 2

FEM Self-equilibrating systems Force system
Element type Nodes Elements Type 1 Type 11 Type 111 Int. DSI
Second order 350 144 368 184 47 1,296 599
Third order 742 144 552 368 47 2,448 967
Fourth order 1,278 144 736 552 47 3,888 1,335
a, \‘ i , b , o —
200 1 Wy | 200 | 200
i
4
400 | \’ ] 400 | 400
600 : 1 600t 600 |

800 \\. 1 800 +

1000 | 1 4000 1000

1200 ‘i 1200 1200

0 200 400 599 0 200 400 599 0O 150 300 450 599
nz = 4258 nz = 44784 nz = 412679

Fig. 7.13 Pattern of the null basis B, corresponding to Example 2 with second order elements and
utilizing (a) Graph theoretical method (b) Gauss Jordan elimination method (¢) QR decomposition
method

Table 7.6 Comparison of the optimality characteristics of the null basis matrices By and flexi-
bility matrices G for the FEM of Example 2

Null basis B, Flexibility matrix G
Time nz entries Amax
Timep ocent method N2 ©NMIES pocon method min
Graph theoretical method 1.00 1.00 4.24e+4
Gauss Jordan elimination  60.33 11.50 1.27e+5
method
QR factorization method 1.67 26.21 1.66e+3

matrices is due to the use of different SESs for external redundant forces
(Table 7.9).

The patterns of reduced stiffness matrices and the corresponding condition
numbers are provided in Fig. 7.19 and Table 7.10, respectively.
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Fig. 7.14 Pattern of the flexibility matrices G corresponding to Example 2 considering (a) second
order (b) third order (c¢) fourth order elements
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Fig. 7.15 Pattern of the reduced stiffness matrices K, corresponding to Example 2 considering
(a) second order (b) third order (c) fourth order elements

Table 7.7 Optimality

Amax DKI
characteristics of the Aanin DSI
reduced stiffness matrices Second order 5.94e+4 1.16
K, for Example 2 Third order 2.08e+5 1.53

Fourth order 6.25e+5 1.91

7.3 Finite Element Analysis of Models Comprised
of Higher Order Rectangular Elements

In this section, an efficient method is developed for the formation of null bases of
finite element models (FEMs) consisting of rectangular plane stress and plane strain
serendipity family elements, corresponding to highly sparse and banded flexibility
matrices. This is achieved by associating special graphs with the FEM and selecting
appropriate subgraphs and forming the self-equilibrating systems (SESs) on these
subgraphs. The efficiency of the present method is illustrated through three examples.
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Fig. 7.16 A section of the 21

retaining wall of Example 3 l
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Table 7.8 Topological properties for the FEM of Example 3

FEM Self-equilibrating systems Force system
Element type  Nodes  Elements Typel Typell Typelll Int. Ext. DSI
Second order 150 63 166 83 21 567 34 301
Third order 319 63 249 166 21 1,071 50 483
Fourth order 551 63 332 249 21 1,701 66 665

7.3.1 Definition of Element Force System

For the generation of the equilibrium matrix A of a FEM, a set of independent
forces system should be defined and also their relations with the element nodal
forces should be established.

In displacement method we have two forces at each node of the element. For an
element with N nodes, 2 x N nodal forces can be defined. Using three equilibrium
equations, 2N — 3 independent forces will remain. In other words, there are
2N — 3 independent element forces in an element with N nodes. The nodal forces
and element forces systems are shown in Fig. 7.20 for rectangular plane stress and
plane strain serendipity family elements with various numbers of boundary nodes.
For the higher order elements, the element forces system can be obtained with the
same procedure.

These element forces can be related to the nodal forces for a rectangular element
by a 2N) x (2N — 3) transformation matrix using Eq. 7.10 as
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Fig.7.17 Pattern of the null basis By corresponding to Example 3 with second order elements and
utilizing (a) Graph theoretical method (b) Gauss Jordan elimination method (¢) QR decomposition
method
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Fig. 7.18 Pattern of the flexibility matrices G corresponding to Example 3 considering (a) second
order (b) third order (c) fourth order elements

Table 7.9 Comparison of the optimality characteristics of the null basis matrices By and flexibility
matrices G for the FEM of Example 3

Null basis B; Flexibility matrix G
Time nz entries Mmax
Time Present method "7 ©NMIES procent  method xmiﬂ
Graph theoretical method 1.00 1.00 5.02e+5
Gauss Jordan elimination ~ 48.17 5.54 1.19e+5
method

QR factorization method 1.62 13.07 4.80e+3
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Fig. 7.19 Pattern of the reduced stiffness matrices K, corresponding to Example 3 considering
(a) second order (b) third order (c) fourth order elements

Table 7.10 Optimality

characteristics of the reduced M %
stiffness matrices K, for Amin DSI
Example 3
Second order 4.35e+3 0.88
Third order 1.31e+4 1.21
Fourth order 3.6le+4 1.55
S=TF (7.10)
Transformation matrix can be formed simply as
(n;,n) = endnodesof element forceF;
For i=1:N
For j=1:2N-3
If i==n; TQRi—1, j)=my,and T(2i,j) = ngn,
If i==n, T(2i—1,j) =myy and T(2i,j) = np,n,
End
End
Where Xx; and y; are the Cartesian coordinates of node i, m;; = X‘I_—XJ , njj= y‘l;yJ are
i i

the direction cosines and l;; is the length of the line between nodes i and j.

7.3.2 Flexibility Matrix of the Element

In this case flexibility matrices of higher order triangular elements can simply be
formed using the stiffness matrices of such elements.
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Fig. 7.20 A set of rectangular serendipity family elements

fo = (T)'(K,) "', (7.11)

where the subscript r indicates that, corresponding orders of matrices to dependent
forces are reduced.

7.3.3 Graphs Associated with Finite Element Model

In order to transfer the topological property of a finite element model to the
connectivity of a graph ten different graphs are previously introduced in Chap. 4.
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Here natural associate graph and interface graph are used that are defined in the
following:

7.3.3.1 Natural Associate Graph

The natural associate graph represented by NAG(FEM) is constructed by the
following rules:

1. Nodes of the NAG(FEM) correspond to the elements of FEM.
2. For each pair of elements in FEM having (N + 4)/4 common nodes, one member
is added between the corresponding two nodes in NAG(FEM).

NAG can be constructed using the following procedure: One of the preliminary
steps in FEM is defining the elements with their connected nodes. In this way the
element connectivity matrix is constructed which contains the element-node inci-
dence relationships. In the process of constructing the element connectivity matrix,
another matrix which contains node-element incidence properties can be formed.
This matrix is named the node connectivity matrix. Now using the element con-
nectivity and the node connectivity matrices leads to an algorithm with complexity
O(n) for an efficient generation of NAG.

In order to recognize the adjacent elements to the nth element which have
(N + 4)/4 common nodes or one common face, first the connected nodes to the
nth element are identified from the element connectivity matrix. In the subsequent
step using the node connectivity matrix, elements which have at least one common
node with the nth element are identified. Now it is convenient to seek for the
adjacent elements in this reduced search space. A FEM and its corresponding NAG
are illustrated in Fig. 7.21.

7.3.3.2 An Interface Graph

The interface graph of a finite element model denoted by IG (FEM) can easily be
constructed for rectangular FEM using the following rules:

1. This graph contains all the nodes of the FEM.

2. With the all edges of an element of FEM, N graph members are associated.
Therefore, in the interface of two elements, 2-multiple members are presented.

3. For each element with N nodes, 2N — 3 members should be considered in the
interface graph. Thus, N — 3 = (2N — 3) — N) diagonal members should be
added. This graph for a quadratic and cubic FEM is shown in Fig. 7.22.

The member numbering of the interface graph should be performed according to
the numbering of the FEM, taking into account the primary nodal numbering of a
considered element in the model. Thus, for each rectangular element 2N — 3
members of the interface graph will be numbered sequentially according to the
patterns which were illustrated in Fig. 7.20.
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Fig. 7.21 A quadratic rectangular FEM with its natural associate graph (bold lines) for a circular
plate

Fig. 7.22 A quadratic, cubic and quartic rectangular FEM with their interface graphs

7.3.4 Topological Interpretation of Static Indeterminacies

7.3.4.1 Degree of Static Indeterminacy of the FEM

Considering Fig. 7.20, in order to find the patterns corresponding to the self-
equilibrating systems, a rectangular element is simulated as a planar truss formed
as the 1-skeleton of the rectangular element together with some diagonal members.
This is possible since the independent element forces applied at in the nodes and are
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along the edges of the rectangular element. The statical indeterminacy of a planar
truss with m members and n nodes is given as y(S) = m — 2n + 3; therefore, the
degree of statical indeterminacy (DSI) of the entire model supported in a statically
determinate manner can be calculated with the same relationship as

DSI=(2N-3)xM—-2n+3 (7.12)

Where M is the total number of elements, N is the number of nodes within an
element and n is the total number of nodes of the FEM.

Following self-equilibrating systems are found. Then null vectors which express
the equilibrium conditions of the self-equilibrating systems are generated.

7.3.4.2 Type I Self-Equilibrating Systems

Each multiple member of the interface graph is a subgraph on which one self-
equilibrating system can be generated. In other words, on a 2-multiple member
numbered as (i, j) with the condition (i < j), one self-equilibrating system can be
constructed (extracted).

Each pair such as (i, j) for which (i < j) corresponds to a null vector with their
non-zero entries being located in rows i and j, and their numeric values are (—1, 1),
respectively. The member with bigger member number (j) is called the generator.
These pairs are called Type I self-equilibrating systems.

For a FEM we have% x M’ self-equilibrating systems of Type I, where M’ is the
number of members of the associate graph of the model.

7.3.4.3 Type II Self-Equilibrating Systems

There are other types of self-equilibrating systems which are extracted from two
adjacent elements of FEM. In other words, for two adjacent elements with N nodes,
the DSI can be calculated as:

DSIZ(ZN—3)XM—2H+3
N+4 (713)
:>DSI:(2N—3)><2—2>< ZN—T +3= N-7 :

% self-equilibrating systems were generated as Type I systems. Thus the number

of remaining self-equilibrating systems is
N N
4

N
TypeII:E—l——:

7= (7.14)

In other words, Y — 1 SESs should be extracted from two adjacent elements. This
number is equal to the number of internal nodes of the remaining subgraph after
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Fig.7.23 (a) Subgraph corresponding to SESs of Type II, (b) Pattern of Type II self-equilibrating
systems in horizontal direction

deleting the generators of SESs of Type I. For example, the remaining subgraphs for
two adjacent cubic elements are shown in Fig. 7.23a in two directions. In this figure,
the diagonal members are curved for better illustration. After deleting the genera-
tors corresponding to Type I SESs, the null vectors should be calculated from the
remaining subgraph. These null vectors can easily be generated on the
corresponding sub-structure utilizing an algebraic method. For instance, results
SESs in horizontal direction are shown in Fig. 7.23b.
In a FEM, the total number of Type II SESs can be calculated as:

, (N
Type Il =M x <Z_ 1) (7.15)

where M’ is the number of members of the associate graph of the model and N is the
number of nodes of an element.

The most important point in Type II self-equilibrating systems is to select an
appropriate generator. In fact by eliminating these generators from graph S, the



306 7 Optimal Force Method for FEMS: Higher Order Elements

sub-structure of Type III SESs and the primary structure of the structure S must
remain stable.

7.3.4.4 Type III Self-Equilibrating Systems

Sub-structures which are topologically identical to the minimal cycles of the natural
associate graph of FEM contains some Type I, II and one Type III self-equilibrating
systems.

Type I Minimal Cycles of NAG(S)

These minimal cycles of the natural associate graph of the FEM pass through four

elements which have one common node. Corresponding interface graph of these
elements have n nodes and m edges for a FEM with N-node elements.

m =4 x (2N — 3) (7.16)
n:4N—4x<¥)+1:3x(N—l) (7.17)

Subsequently, the DSI of the interface graph is

DSI =m — 2n + 3
=DSI=4x(2N—-3)—2x(3x (N—1))+3=2N-3 (7.18)

The N, (Nz%XM/ :§><4), SESs are Type I and there are N — 4,
(N—4=M x (§—1) =4 x (¥~ 1)), SESs of Type IL

DSI — (Typel&IT) = (2N — 3) — (N + (N — 4)) = 1 (7.19)

Therefore, one independent SES should be extracted. This SES with eight
members can be formed for any types of rectangular elements around the common
node as is indicated bold in Fig. 7.24.

Type II Minimal Cycles of NAG(S)

Each minimal cycle that surrounds an opening is called the Type II minimal cycle.
Such a cycle passes through M/, (M’ > 8), finite elements and its corresponding
interface graph has (% — ) x M nodes and M’ x (2N — 3) members. The DSI of
subgraph is
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Fig. 7.24 The SES of Type
III corresponding to the
common node of four
rectangular elements

L
'
Commen node
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DSI =M X(ZN—3)—2X <4—1) XM +3

! N
= DSI=M x <5— 1> +3 (7.20)

that ¥ x M SESs of Type I and Type Il = M x (} — 1) SESs of Type II can be
extracted.

(N » N, (N
DSI—-Typel & Typell=M x (21> — [M XZJFM X (41)} +3=3 (7.21)

Therefore, each Type II minimal cycle corresponds to three null vectors which
are calculated utilizing an algebraic method.

7.3.5 Selection of Generators for SESs of Type 11
and Type 111

The most important point in Type II and Type III self-equilibrating systems is to
select appropriate generators. This is by eliminating these generators from graph S,
the sub-structure of primary structure of the structure S must remain stable. To
achieve this, the following rule for appropriate selection of generators of Type II
SESs is suggested.

For quadratic and rectangular element the generators of SESs Type II and Type
IIT are illustrated in Figs. 7.25 and 7.26, respectively. It should be noted that the
generators corresponding to Type I were chosen previously. In addition, the gen-
erators corresponding to an opening are the last non-zero entries of its columns
which are not common with the previously selected generators.
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Fig. 7.25 Selected generators of the Type II SES
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Fig. 7.26 Selected generators of the Type III SES

7.3.6 Algorithm

Step 1: Generate the associate graph of the FEM and use an efficient method for its
nodal numbering see Chaps. 4 and 5. It is obvious that good numbering of this
graph corresponds to good numbering of elements of the FEM. This numbering
leads to a banded adjacency matrix of the graph and correspondingly to a banded
flexibility matrix. Since the numbering of the members of the interface graphs
corresponds to the element numbering of the finite elements, such a numbering is
the only parameter for controlling the bandwidth of the flexibility matrix.

Step 2: Set up the equilibrium matrix of the FEM.

Step 3: Generate the interface graph and perform its numbering. The numbering of
this graph should be performed according to the element numbering of the
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considered FEM. After this numbering the interface graph can easily be formed
and its members can be numbered.

Step 4: Find the Type I self-equilibrating systems. All multiple members of the
interface graph are identified and the values —1 and 1 are assigned to appropriate
rows (corresponding to the member numbers) and the corresponding minimal
null vectors are created.

Step 5: Find the Type II self-equilibrating systems. The %— 1 SESs of Type II
should be extracted from two adjacent elements.

Step 6: Find the Type III self-equilibrating systems. For each minimal cycle of
natural associate graph of FEM with four members (one common node), one
SES and with eight or more members (Opening), three SESs should be extracted.

Step 7: Order the null vectors. At this step the constructed null vectors should be
ordered such that their last non-zero entries form a list with an ascending order.

7.3.7 Numerical Examples

In this section three FEMs are considered, one of these models is assumed to be
supported in statically indeterminate fashion and the other two supported in a
determinate fashion. The effect of the presence of additional supports can sepa-
rately be included for each special case with no difficulty. The equilibrium matrices
are formed. Null bases and the flexibility matrices are constructed and the required
computational times, and the condition numbers are calculated. In all the following
examples, nnz represents the number of non-zero entries and Ay, ax/Amin 1S the ratio
of the extreme eigenvalues taken as the condition number of a matrix. The com-
parison between present algorithm and algebraic force method is shown in
Table 7.11 for all three examples. Finally the present method is validated through
comparison of resulting stresses using the present graph-theoretical force method
and the displacement method.

Example 1. The lining of a tunnel is considered supported in a statically determi-
nate manner, and its applied load is depicted in Fig. 7.27. This structure is
discretized using rectangular 8-node finite elements. The properties of the model
are as follows:

Poisson’s ratio = 0.3; Elastic modulus E = 2e + 7 kN/mz; Thickness t = 1.00 m
Number of rectangular 8-node elements = 100

Number of nodes = 405

DSI =100 x 13 — 2 x 405 + 3 = 493

Number of Type I self-equilibrating systems = 296 (60 %)

Number of Type II self-equilibrating systems = 148 (30 %)

Number of Type III self-equilibrating systems = 49 (10 %)
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Table 7.11 The comparison between present algorithm and algebraic force method for all three
examples

Condition number

ax

(flexibility matrices) Aamin Norms maxIA x Byl
LU Present LU
Example W Present method factorization method  factorization
Tunnel lining  1.21 47.65 1.63e+5 1.08e—15 4.04e—14
Circulate beam 0.45 9.38e+5 8.73e+7 5.5le—14 1.76e—13
Retaining wall  0.84 2.68e+4 4.28e+7 7.43e—12 2.67e—13
(8-node)
Retaining wall  0.78 3.59%e+5 8.0le+7 1.22e—14 1.90e—13
(12-node)

4o

Fig. 7.27 A lining of a tunnel, the discretization and loading of the structure

The interface and natural associate graphs of the FEM model are illustrated in
Fig. 7.28. The pattern of the equilibrium matrix is shown in Fig. 7.29. The sparsity
of the final null basis obtained by the present method is approximately 6.7 % of that
of QR method and 6.07 % of the LU method as depicted in Fig. 7.30. The flexibility
matrix, G, is also well-structured as shown in Fig. 7.31. The results are verified by
standard displacement method in Table 7.12.

Example 2. A circular plate and its applied load are shown in Fig. 7.32. The
internal and external diameters are 1.00 and 5.00 m, respectively. This structure is
discretized using 12-node rectangular finite elements. The properties of the model
are as follows:
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Fig. 7.28 Interface and natural associate graphs of Example 1. (a) Interface graph, (b) natural
associate graph

E00 - I 1 1 1 I 1 "

/] 200 400 &00 S00 1000 1200
nz = 5192

Fig. 7.29 Pattern of the equilibrium matrix for Example 1
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1000

1200

0 100 200 300 400
nz = 64949

0 100 200 300 400
nz = 3944

Fig. 7.30 Patterns and number of non-zero entries of the null bases of Example 1: (a) present
algorithm, (b) QR factorization and (c) LU factorization

Fig. 7.31 Patterns of 4

the flexibility matrix »
G = B\F,,B; for Example o
1 using the proposed .
method

st w0081

Poisson’s ratio = 0.3; Elastic modulus E = 2e + 7 kN/mz; Thickness t = 1.00 m
Number of rectangular 12-node elements = 384

Number of nodes = 2,064

DSI =384 x 21 — 2 x 2064 + 3 = 3939

Number of Type I self-equilibrating systems = 2,160 (=55 %)

Number of Type II self-equilibrating systems = 1,440 (=36 %)

Number of Type III self-equilibrating systems = 336 (internal nodes) + 3 (an opening) = 339
(~8.5 %)




7.3 Finite Element Analysis of Models Comprised of Higher Order. . . 313

Table 7.12 Comparison of the displacement method and the present force method for Example 1

Element stresses

Method Displacement method The present force method
Element Orx Oyy Oy Ox Oyy Oy
kN/cm® kN/cm’

1 —0.1806 —0.7815 0.2763 —0.1806 —0.7815 0.2763
10 —0.0918 —0.7379 —0.2186 —0.0918 —0.7379 —0.2186
20 —0.3097 —0.6082 —0.4040 —0.3097 —0.6082 —0.4040
30 —0.6168 —0.3721 —0.4470 —0.6168 —0.3721 —0.4470
40 —0.8943 —0.1416 —0.3060 —0.8943 —0.1416 —0.3060
50 —1.0196 —0.0346 —0.0306 —1.0196 —0.0346 —0.0306
60 —0.9346 —0.1073 0.2586 —0.9346 —0.1073 0.2586
70 —0.6790 -0.3214 0.4333 —0.6790 —0.3214 0.4333
80 —0.3672 —0.5666 0.4265 —0.3672 —0.5666 0.4265
90 —0.1244 —0.7240 0.2627 —0.1244 —0.7240 0.2627
100 —0.1361 —0.7739 0.3446 —0.1361 —0.7739 0.3446

Fig. 7.32 A circulate plate

with an opening
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The interface and natural associate graph of the FEM model is illustrated in
Figs. 7.33 and 7.21. The pattern of the equilibrium matrix is shown in Fig. 7.34. The
sparsity of the final null basis obtained by the present method is approximately
0.46 % of the QR method and 1.9 % of the LU approach as depicted in Fig. 7.35.



314 7 Optimal Force Method for FEMS: Higher Order Elements

Fig. 7.33 The interface
graph of Example 2

Fig. 7.34 Pattern of the ’ i i i i i i

equilibrium matrix for 300 m

Example 2

o 1000 2000 1000 m‘m 3000 8000 000 5000
nz = 32160

The flexibility matrix is also well-structured as shown in Fig. 7.36. The results are
verified by the standard displacement method in Table 7.13.

Example 3. The FEM of a dam which is supported in a statically indeterminate
fashion is depicted in Fig. 7.37. This structure is discretized using 8-node and
12-node rectangular finite elements separately. It should be noted that the number
of support elements depends on the choice of 8 or 12 nodes per finite element. The
properties of the models are:
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o 1000 2000 3000 o 1000 2000 3000
iz = 7263609 nz = 1764976

Fig. 7.35 Patterns and the number of non-zero entries of the null bases of Example 2: (a) present
algorithm, (b) QR factorization and (c) LU factorization

L 500 1000 1500 00 2500 3000 3500
nz = 163113

Fig. 7.36 Patterns of flexibility matrix G = B!{F,,B, for Example 2 using the proposed method

Poisson’s ratio = 0.3; Elastic modulus E = 2e + 7 kN/m?; Thickness t = 1.00 m
Case 1: Number of rectangular 8-node elements = 192, Number of nodes = 681
Case 2: Number of rectangular 12-node elements = 192, Number of nodes = 1,117
DSIg _ pode = 192 x 13 — 2 x 681 + 82 =1, 216

DSIi5 — node = 192 x 21 — 2 x 1117 + 122 = 1, 920

Number of Type I self-equilibrating systems, Case 1 = 664 (58.5 %)

Number of Type II self-equilibrating systems, Case 1 = 332 (29 %)

Number of Type III self-equilibrating systems, Case 1 = 141 (12.5 %)

Number of Type I self-equilibrating systems, Case 2 = 996 (55 %)

Number of Type II self-equilibrating systems, Case 2 = 664 (36.8 %)

Number of Type III self-equilibrating systems, Case 2 = 141 (8.2 %)
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Table 7.13 Comparison of the displacement method and the present force method for Example 2

Element stresses

Method Displacement method The present force method
Element Oyx Oyy Oy Ox Oyy Oy
kN/cm? kN/cm?

337 —2.6962 —2.8935 0.0188 —2.6962 —2.8935 0.0188
340 —2.7314 —2.8329 0.0701 —2.7314 —2.8329 0.0701
343 —2.7879 —2.7646 0.0793 —2.7879 —2.7646 0.0793
346 —2.8348 —2.7121 0.0464 —2.8348 —2.7121 0.0464
349 —2.8483 —2.6972 —0.0098 —2.8483 —2.6972 —0.0098
352 —2.8220 —2.7262 —0.0612 —2.8220 —2.7262 —0.0612
255 —2.7686 —2.7870 —0.0813 —2.7686 —2.7870 —0.0813
358 —2.7158 —2.8547 —0.0572 —2.7158 —2.8547 —0.0572
361 —2.6939 —2.9112 0.0059 —2.6939 —2.9112 0.0059
364 —2.7288 —2.9929 0.1074 —2.7288 —2.9929 0.1074
367 —0.8483 —2.4765 —0.0155 —0.8483 —2.4765 —0.0155
370 —2.4803 —2.7025 —0.0552 —2.4803 —2.7025 —0.0552
373 —2.5319 —2.7105 0.0084 —2.5319 —2.7105 0.0084
376 —2.3806 —2.6839 0.0927 —2.3806 —2.6839 0.0927
379 —2.6693 —2.7841 —0.4591 —2.6693 —2.7841 —0.4591
382 —2.7092 —2.9526 —0.0679 —2.7092 —2.9526 —0.0679

The interface and natural associate graphs of the FEM model are illustrated in
Fig. 7.38 for FEM with 8-node elements. The interface graph for other cases can
simply be obtained. The final null basis obtained for both cases by the present
method are depicted in Figs. 7.39 and 7.40. The flexibility matrix is also well-
structured as shown in Fig. 7.41. The results are verified by the standard displace-
ment method in Table 7.14.

7.4 Efficient Finite Element Analysis Using Graph-
Theoretical Force Method: Hexa-Hedron Elements

Formation of a suitable null basis for equilibrium matrix is the main problem of
finite elements analysis via force method. For an optimal analysis, the selected null
basis matrices should be sparse and banded corresponding to sparse, banded and
well-conditioned flexibility matrices. In this section, an efficient method is devel-
oped for the formation of null bases of finite element models (FEMs) consisting of
hexahedron elements, corresponding to highly sparse and banded flexibility matri-
ces. This is achieved by associating special graphs with the FEM and selecting
appropriate subgraphs and forming the self-equilibrating systems (SESs) on these
subgraphs.
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Fig. 7.37 A retaining wall and the corresponding rectangular meshes

7.4.1 Independent Element Forces and Flexibility Matrix
of Hexahedron Elements

In the force method the efficiency of this analysis depends on the required time for
the formation of the matrix. G = B'F,,B; and its characteristics, i.e. sparsity and
bandedness together with its conditioning. For the formation of a well-structured
matrix G, one should select a well-structured B; matrix.
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For the generation of the equilibrium matrix A of a FEM, a system of indepen-
dent force systems should be defined and also their relations with the element nodal
forces should be established.

In displacement method we have three forces at each node of the element.
For an element with N nodes, 3 x N nodal forces can be defined. Using six
equilibrium equations, 3N — 6 independent forces will be remained. In other
words, there are 3N — 6 independent element forces in an element with
N nodes. The nodal forces and element forces systems are shown in Fig. 7.42
for hexahedron elements with various numbers of boundary nodes. For the
higher order elements, the element forces system can be obtained with the
same procedure.

These element forces F can be related to the nodal forces S for a N-node element
by a (3N) x (3N — 6) transformation matrix using Eq. 7.22 as

S =TF (7.22)

Transformation matrix can be formed simply as
where x;, y; and z; are the Cartesian coordinates of node i, my = (x; — X/l
n;; = (y; — yp/lij, and p; = (z; — z;j)/ly;, are the direction cosines and l; is the
length of the line between nodes i and j.

Formulation of a discrete element equivalent to the actual continuous structure is
the first step in matrix structural analysis. For a linear system it can be assumed that
the stresses ¢ .are related to the forces F by linear equation as

6 =cF (7.24)

The matrix ¢ represents a statically equivalent stress system due to the unit force
F. The flexibility matrix of an element can be written as

fm = J c'gcdVv (7.25)
\%

The integration is taken over the volume of the element, where ¢ is the matrix
relating the stresses to strains € = @6 in three dimensional problems. The primary
step in the formation of the flexibility matrix of an element is determining the
matrix . It is obvious that the ith column of ¢ represents the resultant stresses due to
unit element force F; in the force method and also stresses due to nodal forces S is
equal to the ith column of T utilizing the displacement method. Hence, we can form
matrix € using the stiffness properties of the hexahedron element using the
displacement method. Now the flexibility matrix of the element in the force method
is formed from Eq. 7.25 using Gauss numerical integration method with sixty four
Gauss points (4 x 4 x 4 Gauss Points Integration).
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Fig. 7.38 Interface graph and natural associate graph for both cases of Example 3, (a) Interface graph
for 8-node element, (b) Interface graph for 12-node element and (c) Associate graph for both cases

a
0 0 c 0
500 \ 500 500
1000 1000 1000
1500 1500 1500
2000 2000 2000
2500 2500 2500
0 500 1000 0 500 1000 0 500 1000
nz = 395546 nz = 168436

nz = 9598
Fig. 7.39 Patterns and number of non-zero entries of null bases of Example 3 (8-node element)
(a) present algorithm, (b) QR factorization and (¢) LU factorization
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a b ¢
0 0 0
500 500 500
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1500 1500 1500
2000 2000 2000
2500 2500 2500
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0 500 1000 1500 0 500 1000 1500 0 500 1000 1500
nz = 54573 nz= 1778710 nz = 445490

Fig. 7.40 Patterns and number of non-zero entries of null bases of Example 3 (12-node element):
(a) present algorithm, (b) QR factorization and (c) LU factorization
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Fig. 7.41 Patterns of flexibility matrix G = B{F,B; of Example 3, (a) 8-node element,
(b) 12-node element

7.4.2 Graphs Associated with Finite Element Models

7.4.2.1 An Interface Graph

The interface graph of a finite element model denoted by IG (FEM) can easily be
constructed for hexahedron FEM using the following rules:

1. This graph contains all the nodes of the FEM.
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Element Nodes Size of T Nodal forces Element forces Element shape
number
Linear N=8 24%18 Soi =1 8y::85 1" Figa =[F..Fy]'
Quadratic | N=20 60x 54 Sepa =1 S-S ' Fopa=lF..Fy]'
Cubic N=32 9690 Ssea =F S8 Fogg = F..Fy ]’
Quartic | N=44 132x126 S5, =[5..80]" Faea ={F.Fal'

Fig. 7.42 A set of hexahedron elements

2. With each edge of an element of FEM, (N + 4)/12 graph elements are
associated.

3. For each element with N nodes, 3N — 6 members should be considered in the
interface graph. Thus, 2N — 10 = (3 N — 6) — (N + 4) diagonal members
should be added.

Therefore, in the interface of two elements (common side), 4 X % + M
multiple members are present. The member numbering of the interface graph should
be performed according to the numbering of the FEM, taking into account the primary
nodal numbering of a consider element in the model. Thus, for each hexahedron
element 3N — 6 edges of the interface graph will be numbered sequentially according
to the patterns which were illustrated in Fig. 7.43. In this figure, quartic element
numbering was neglected and just the element forces are displayed. Numbering of

this type can be easily obtained according to the pattern of other elements.

7.4.2.2 Natural Associate Graph

The natural associate graph represented by NAG(FEM) is constructed by the
following rules:

1. Nodes of the NAG(FEM) correspond to the elements of FEM.

@common nodes (N = the number

of nodes of an element), one member is added between the corresponding two
nodes in NAG(FEM).

2. For each pair of elements in FEM having
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F " F
P A7

Fig. 7.43 Nodal numbering and element forces for hexahedron elements; (a) linear, (b) quadratic,
(c) cubic and (d) quartic

NAG(FEM) can be constructed using the following procedure: One of the
preliminary steps in FEA is defining the elements with their connected nodes. In
this way the element connectivity matrix is constructed which contains the element-
node incidence relationships. In the process of constructing the element connectiv-
ity matrix, another matrix which contains node-element incidence properties can be
formed. This matrix is named the node connectivity matrix. Now using the element
connectivity and the node connectivity matrices leads to an algorithm with com-
plexity O(n) for an efficient generation of NAG.

In order to recognize the adjacent elements to the nth element which have

common % nodes or one common face, first the connected nodes to the nth

element are identified from the element connectivity matrix. In the subsequent step
using the node connectivity matrix, elements which have at least one common node
with the nth element are identified. Now it is convenient to seek for the adjacent
elements in this reduced search space. A FEM and its corresponding NAG are
illustrated in Fig. 7.44.
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Fig. 7.44 Finite element
model (black part) with
natural associate graph
(blue part)

7.4.3

¢/

o
&
o
X

K/

RIS
ZESRELIOBDIN
A A Vi
SIS RS>
LIS, SIS
LRI S 4}4‘@.’@""4
EREERRERRSSS

;
&
o
S
&
¥

\

Negative Incidence Number

Negative incidence number (NIN) is necessary for each node of NAG(FEM). This
number can be found as following:

After generation of natural associate graph of the FEM, use an efficient method
for its nodal numbering. A typical edge of the graph connects smaller number to the
node with higher number. Negative incidence number of each node is the number of
its adjacent nodes with smaller nodal number. Except the node numbered as 1, all
the other nodes have one, two or three negatively incident edges defined as the
negative incidence number of the node. Owing to the importance of these numbers
in recognizing the types of SESs, the negative incidence numbers of the nodes of
the graph should carefully be calculated. In Fig. 7.45, a hexahedron FEM with
element numbering, its corresponding associate graph and negative incidence
number of nodes are shown. The nodes should be numbered such that the incidence
numbers do not become large. Any simple nodal ordering will lead to a logical

ordering.

7.4.4 Pattern Corresponding to Self-Equilibrating Systems

Considering Fig. 7.43, in order to find the patterns corresponding to the self-
equilibrating systems, a hexahedron element is simulated as a spatial truss formed
as the 1-skeleton of the hexahedron element together with some diagonal members.
This is possible since the independent element forces are applied in the nodes and
are along the edges of the element. In Fig. 7.46, an IG(FEM) with four quadratic
elements is shown which is simulated as a spatial truss containing some multiple

members.

The statical indeterminacy of a spatial truss with m members and n nodes is
given as y(S) = m — 3n + 6; therefore, the degree of statical indeterminacy (DSI)
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Fig. 7.45 Finite element model (black part) with natural associate graph (blue part); (a) nodal
numbering of NAG; (b) negative incidence numbers of NAG
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Fig. 7.46 An IG(FEM) with four quadratic elements is shown which is simulated as a spatial truss
of the entire model supported in a statically determinate manner can be calculated
with the same relationship as

DSI = (3N —6) x M —3n + 6 (7.26)

where M is the total number of finite elements, N is the number of nodes of one
element and # is the total number of nodes of the FEM.
With the above simulation, the patterns of the self-equilibrating systems can be

identified as follows:

7.4.4.1 Type I Self-Equilibrating Systems

For each k multiple member in equivalent truss model of FEM, there are k unknown
forces and one equilibrium equation in the member’s direction. Thus DSI of the
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substructure is equal to k — 1 and k — 1 self-equilibrating systems can be gener-
ated on each k multiple member of interface graph of the FEM. In this way, first
each k multiple members are arranged in ascending order as (m;, m,, ms,. .., my_1,
my). where (m; < mp, < m3 < ... < m_; < my). Each selection of two members
from this list is valid to construct a Type I self-equilibrating system, but in order to
achieve a better bandwidth reduction; selection of adjacent members from the
defined list is preferable. Therefore k — 1 duplicate members are selected as (m;,
my), (my, m3),. . ., (my_, my). Each pair (m;, m;) with i < j represents the numbers
of corresponding self-equilibrating system. The member with bigger number is
selected as the generator of the current SES and also as a redundant force. The null
vectors corresponding to the Type I SESs have two non-zero entries in rows i and j
equal to —1 and 1, respectively.

For FEMs with hexahedron elements, more than 75 % of the total self-stress
systems are of Type 1. Thus, a large percent of the minimal null vectors can be
formed only by the determination of member numbers of these pairs. It should be
noted that in the process of the formation of the interface graph, these pairs and their
numbers can simply be identified.

7.4.4.2 Type II Self-Equilibrating Systems
There are other types of self-equilibrating systems which are extracted from two

adjacent elements of FEM. In other words, for two adjacent elements with N nodes,
the DSI can be calculated as:

DSI=(3N—-6)xM—-3n+6

2N+ 38

. DSI=(3N-6)x2—-3x (2N — J+6= N-2 (7.27)
2N - 10 2N +8 4N -2 .
6 + 6 = 6 self-equilibrating
—— N—— S~——

diagonalmembers  othermembers  numberof members

of one side of one side of common side of
two adjacent elements

systems were generated as Type I systems. Thus the number of remaining self-
equilibrating systems is

4N -2 2N - 10
TypeII—(N—2)—< )—

: . (7.28)

In other words, 210 SESs should be extracted from two adjacent elements. For

example, the remaining subgraphs for two adjacent quadratic elements are shown in
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Fig. 7.47 Subgraph corresponding to SESs of Type II

Fig. 7.47. After deleting the generators corresponding to Type I SESs, the null
vectors should be calculated from the remaining subgraph. These null vectors can
easily be generated on the corresponding sub-structure utilizing an algebraic
method.

Apart from the aforementioned about generating the SESs of Type II, if there is
at least a negative incidence number higher than one in a FEM, another important
point should be considered which is explained below:

Some of the calculated SESs of Type II are not independent of the others. For
example, for a FEM with four quadratic elements M’ is equal to four, where M’ is
the number of members of the associate graph of the model. The number of SESs of
Type Il is 18 instead of 20 = 4 x 5. In other words, two SESs are dependent and
should not be selected. For determining the independent SESs, an appropriate
approach is proposed. In this approach, independent SESs will be recognized
utilizing negative incidence number of elements.

The SESs of Type II are extracted from two adjacent elements in a FEM which
are the same as members of NAG(FEM). If a member of NAG(FEM) connects two
elements M; and M; where i < j, the number of independent SESs of Type II which
can be extracted from the subgraph corresponding to these two adjacent elements is
equal to:

(7.29)

d(N, 8
Type II = <(x — NIN; x mo()>

Where NIN; is the negative incidence number of j™ element and « is 1,6,8 and
13 for linear, quadratic, cubic and quartic elements, respectively. For linear ele-
ment, a SES Type II can be generated on each two adjacent elements on a FEM [6].
For other types of element, after deleting the generators corresponding to Type I
SESs, the main diagonal member (longer diagonal member) of the j™ element
which is located in the common side with other adjacent elements with smaller
number than j, the null vectors should be calculated from the remaining subgraph.

The most important point in Type II self-equilibrating systems is to select an
appropriate generator. In fact by eliminating these generators and the generators
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corresponding to Type I SESs from IG(FEM), the sub-structure of Type III SESs
and the primary structure of the IG(FEM) must remain stable.

7.4.4.3 Type III Self-Equilibrating Systems

Sub-structures which are topologically identical to the minimal cycles of the natural
associate graph of FEM contain some Type I, Type II and one or six Type III self-
equilibrating systems.

(a) Type I minimal cycles of NAG(FEM)

These minimal cycles of the natural associate graph of the FEM pass through

- . N+16 N+16 N-+4
four elements which have —-+ 1 =559 common nodes or ~5°—1 =54

common edges. Corresponding interface graph of these elements have n nodes
and m edges for a FEM with N node elements.

m =4 x (3N — 6) (7.30)
IN+8\ N+16 1IN—-16
n_4N—4><( . >+ R (7.31)

Subsequently, the DSI of the interface graph is

1IN - 16

DSI=m —3n+6=DSI=4x (3N —6) =3 x ——+6
15N
:57—6 (7.32)

The 4 x “NT‘Z — 418 — 3IN-20 SESs are Type I and there are 4, 18, 32 and 46 SESs

of Type II for linear, quadratic, cubic and quartic elements, respectively.

N=28= DSI— (Type I & II) =1
N =20= DSI— (Type I & II) =1
1

DSI — (Typel&Il) = (7.33)

N=32=DSI— (Type I & II) =
N =44 = DSI — (Type 1 & 1I)

Therefore, one independent SES should be extracted. This SES with thirteen
members can be formed for any types of hexahedron elements around the common
edge as is indicated bold in Fig. 7.48.

It should be noted that in a FEM, all of the SESs of Type III which are extracted
from any four elements around one common edge, are not independent with all
previous selected SESs. Independent ones should be selected utilizing NINs of
elements. For this purpose, NIN of four elements with common edge should not be
more than 2. In Fig. 7.45, a FEM with eight elements is shown. The independent
SESs of Type III should be selected utilizing these three sets of elements:
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Fig. 7.48 The SES of Type
III corresponding to the
common edge of four
elements

Fig. 7.49 A FEM with an
opening and its NAG

{El E2 E3 E4},{El E2 E5 E6}and{El1 E3 E5 E7}. In other
words, E8 should not be in selections, because the NIN of ES8 is 3.

(b) Type Il minimal cycles of NAG(FEM)

Each minimal cycle that surrounds an opening is called the Type II minimal
cycle (Fig. 7.49). Such a cycle passes through M’ (M’ > 8) finite elements and its

corresponding interface graph has (N — %) x M nodes and M’ x (3N — 6)
members. The DSI of subgraph is

2N + 8

DHBTXGN®3X<N >th+6§D$

=M x (N=2)+6 (7.34)

4N -2

6
N —’

number of members

of common side of

two adjacent elements
(Eq. 7.28) can be extracted.

and M x

SESs of Type Iand M x (2=12) SESs of Type II
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DSI — (Typel&Il) =M x (N —2) +6

;4N -2 / 2N — 1
—M><N6 +M><<N70)}

6
=6 (7.35)

Therefore, each Type II minimal cycle corresponds to six null vectors which are
calculated utilizing an algebraic method.

7.4.5 Selection of Generators for SESs of Type 11
and Type 111

The most important point in Type II and Type III self-equilibrating systems is to
select appropriate generators, because by eliminating these generators from IG
(FEM), the sub-structure of primary structure of the IG(FEM) must remain stable.
To achieve this, the following rule for appropriate selection of generators of Type 11
SESs is suggested.

For quadratic hexahedron element the generators of SESs Type II and III are
illustrated in Tables 7.15 and 7.16, respectively. Directions 1, 2 and 3 are shown in
Fig.7.50. In these Tables, N, 4 indicates the ﬂ’h node of element @ and NIN(d); is the
negative incidence number of element j in direction d. In other words, NIN(d); is
one if j has an adjacent element /i where i < j in direction d. It should be noted that
the generators corresponding to Type I were chosen previously. In addition, the
generators corresponding to an opening are the last six non-zero entries of its
columns which are not common with the previously selected generators. For
other element types, generators corresponding to Type II and Type III can be
obtained following aforementioned patterns.

Algorithm. Step 1: Generate the associate graph of the FEM and use an efficient
method for its nodal numbering [4]. It is obvious that good numbering of this
graph corresponds to good numbering of elements of the FEM. This numbering
leads to a banded adjacency matrix of the graph and correspondingly to a banded
flexibility matrix. Since numbering the members of the interface graphs corre-
sponds to the element numbering of the finite elements, such a numbering is the
only parameter for controlling the bandwidth of the flexibility matrix. Negative
incidence number of the NAG(FEM) should be calculated in this step.

Step 2: Set up the equilibrium matrix of the FEM.

Step 3: Generate the interface graph and perform its numbering. The numbering of
this graph should be performed according to the element numbering of the
considered FEM. After this numbering the interface graph can easily be formed
and its members can be numbered.

Step 4: Find the Type I self-equilibrating systems. All multiple members of the
interface graph are identified and the values —1 and 1 are assigned to appropriate
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Table 7.15 Generators of Type II SESs in directions 1,2 and 3 (k < i < j)

NIN, Pattern and direction of elements i and j Selected generators
dirl or N, =N, S4x(i—1)+[13,2536,46,51]
NIN; =1 dir2 or Ny =N, 54x(i-1)+[12,31,40,45,50]
dird or N;s =N, S4x(i-1)+[22,27,30,38,41]
NIN(2), =1 & NIN(3), =0 ‘o‘ S4x(i-1)+[13,36,46,51]
dirl "
or
Nia =Ny,
NIN(2); =0 & NIN(3), =1 54x(i—1)+[13,25,36,51]
NIN(1); =1 & NIN(3), =0 bo‘ Sx(i-1)+[12,31,45,50]
dir2 .’
NIN; =2 or
Nig=Ny,
NIN(1), =0 & NIN(3), =1 54x(i-1)+[12,31,40,50
NIN(1); =1& NIN(2), =0 S4x(i-1)+[22,27,30,38)]
dir3
or
Nis=Nj, h"
NIN(1); =0 & NIN(2), =1 h’ Sdx(i—1)+[22,30,38,41]
dirl or N;; =N, Sdx(i-1)+[13,36,51]
NIN; =3 dir2 or N;y=N; S4x(i-1)+[12,31,50}
dird or Nis=N,, S4x(i-1)+/[22,30,38)

rows (corresponding to the
null vectors are created.

Step 5: Find the Type II self-equilibrating systems. The

member numbers) and the corresponding minimal

(ZNgIO) SESs of Type II should

be extracted from two adjacent elements and independent ones should be selected
among these SESs utilizing the approach which is explained in Sect. 5.2. Calculate
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Table 7.16 Generators of Type III SESs in planes 1-2,2-3 and 1-3 (i < j < k < [)

Four elements with common edges Selected generators
Niz =N 00
Plane 12 N =Ny .0’ S4x(i=1)+[4]
Nig=Nys
For a=[ijkl], 6 NIN, #3
e R
Plane2-3  N,;¢=N;; n S4x(i-1)+[24]
Nys=Np, h'
For a=[ijkl],NIN, #3
Plane 1-3 N;g=Ngs ﬂ Sdx(i-1)+[20]
Nis=Npy ‘ﬂ

For a=[i,j.k1],NIN, #3

Fig. 7.50 Typical view of an element with corner nodes and determining directions 1, 2 and 3

the corresponding null vectors from the relevant equilibrium sub-matrix in
this step.
Step 6: Find the Type III self-equilibrating systems. For each minimal cycle of

natural associate graph of FEM with four members (% common nodes or %
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common edges and NIN; < 3 for j = 1, 2, 3, 4), one SES and with eight or
more members (opening) six SESs should be extracted. Calculate the
corresponding null vectors from the relevant equilibrium sub-matrix.

Step 7: Order the null vectors. At this step the constructed null vectors should be
ordered such that their last non-zero entries form a list with an ascending order.

7.4.6 Numerical Examples

In this section two FEMs are considered, which are assumed to be supported in
statically indeterminate fashion. The translations of each support node are fixed in
all three directions. The equilibrium matrices are formed. Null bases and the
flexibility matrices are constructed and the required computational times, and the
condition numbers are calculated. In all the following examples, nz represents
the number of non-zero entries and Ay .x/Amin 1S the ratio of the extreme eigenvalues
taken as the condition number of a matrix. The comparison between present
algorithm and algebraic force method will be shown in the conclusion section.

Example 1. An arch wall structure which is supported in a statically indeterminate
fashion is illustrated in Fig. 7.51. This structure is discretized using 20-node
hexahedron elements. The properties of the model are as follows:

Poisson’s ratio = 0.2; Elastic modulus E = 2E + 10 N/m>; Density p = 2,400 kg/m3;
Internal radius = 8.0 m;

Number of 20-node hexahedron elements = 80

Number of nodes = 557

DSlinternat = 80 X 54 — 3 x 557 + 6 = 2655; DSIgxerma = 15 X 3 — 6 = 39
Number of Type I self-equilibrating systems = 1,996 (75.0 %)

Number of Type II self-equilibrating systems = 620 (23.3 %)

Number of Type III self-equilibrating systems = 39 (1.7 %)

The pattern of the equilibrium matrix is shown in Fig. 7.52. The sparsity of the
final null basis obtained by the present method is approximately 22.41 % of the LU
method as depicted in Fig. 7.53. The flexibility matrix G is also well-structured as
shown in Figs. 7.54 and 7.55.

It should be added that the total DSI for the force method of this structure is
2,655 + 39 = 2,694, while the DOFs for the displacement method is
557 x 3 = 1,671, indicating less number of equations for the latter approach.
However, since in the force method nearly 75 % of the null vectors are found by
simple graph theoretical approach, one should compare 1,671 with approximately
25 % of 2,694 = 673, showing the superiority of the force method.

Example 2. A dome with an opening which is supported in a statically indetermi-
nate fashion is illustrated in Fig. 7.56. The internal and external diameters are 5.00
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Fig. 7.51 An arch wall structure which is supported in a statically indeterminate fashion
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Fig. 7.52 Pattern of the equilibrium matrix for Example 1

and 5.50 m, respectively. This structure is discretized using 20-node hexahedron
elements. The properties of the model are as follows:

Poisson’s ratio = 0.2; Elastic modulus E = 2E + 10 N/mz; Density p = 2,400 kg/m3;
Number of 20-node hexahedron elements = 84,

Number of nodes = 648

DSIinternal = 84 x 54 — 3 x 648 + 6 = 2598; DSIgxierna = 60 X 3 — 6 = 174
Number of Type II self-equilibrating systems = 636 (24.4 %)

Number of Type III self-equilibrating systems = 72 (four elements with common edges) + 6
(an opening) = 78 (3.0 %)
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Fig. 7.53 Patterns and
number of non-zero entries
of the null bases of Example
1: (a) present algorithm, (b)
LU factorization

Fig. 7.54 Patterns of the
flexibility matrix

G = B!F,,B, for Example
1: (a) present algorithm, (b)
LU factorization

Fig. 7.55 Patterns of the
flexibility matrix

G = BF,,B, for Example
1: (a) present algorithm, (b)
LU factorization
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Fig. 7.57 Pattern of the equilibrium matrix for Example 2

The pattern of the equilibrium matrix is shown in Fig. 7.57. The sparsity of the
final null basis obtained by the present method is approximately 28.1 % of the LU
approach as depicted in Fig. 7.16. The flexibility matrix is also well-structured as
shown in Figs. 7.58 and 7.59.
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Fig. 7.58 Patterns and the number of non-zero entries of the null bases of Example 2: (a) present

algorithm, (b) LU factorization
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Fig. 7.59 Patterns of flexibility matrix G = B{F,,B; for Example 2: (a) present algorithm,

(b) LU factorization

Finally, it is hoped that the extension of elements for the force method continues
similar to those of the displacement method, to enable these dual approaches to be
efficiently utilized in the analysis of large-scale finite element models.
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Chapter 8
Decomposition for Parallel Computing:
Graph Theory Methods

8.1 Introduction

In the last decade, parallel processing has come to be widely used in the analysis of
large-scale structures. This chapter is devoted to the optimal decomposition of
structural models using graph theory approaches. First, efficient graph theory
methods are presented for the optimal decomposition of space structures. The
subdomaining approaches are then presented for partitioning of finite element
models. A substructuring technique for the force method of structural analysis is
discussed.

Several partitioning algorithms are developed for solution of multi-member
systems, which can be categorised as graph theory methods and algebraic graph
theory approaches.

For the graph theory method, Farhat [1] proposed an automatic finite element
domain decomposer, which is based on a Greedy type algorithm and seeks to
decompose an FEM into balanced domains, sharing a minimum number of common
nodal points. In order to avoid domain splitting, Al-Nasra and Nguyen [2] incor-
porated geometrical information of the FEM into an automatic decomposition
algorithm similar to the one proposed by Farhat [1]. The Sparpak uses nested
dissection due to George and Liu [3], which uses a level tree for dissecting a
model. Kaveh and Roosta [4] employed different expansion processes for
decomposing space structures and finite element meshes.

Applications of the methods of this chapter are by no means confined to
structural systems; these methods can equally be applied to other large-scale
problems like the analysis of hydraulic systems and electrical networks.

A. Kaveh, Computational Structural Analysis and Finite Element Methods, 341
DOI 10.1007/978-3-319-02964-1_8, © Springer International Publishing Switzerland 2014
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8.2 Earlier Works on Partitioning

8.2.1 Nested Dissection

The term “nested dissection” was introduced by George [5], following a suggestion
of Birkhoff. Its roots lie in finite element substructuring, and it is closely related to
the tearing and interconnecting method of Kron [6].

The central concept for nested dissection is the removal of a set of nodes from
the graph (separator) of a symmetric matrix (or the model of a structure) that leaves
the remaining graph in two or more disconnected parts. In nested dissection, these
parts are themselves further divided by the removal of sets of nodes, with the
dissection nested to any depth.

If the variables of each subgraph are grouped together, by ordering the nodes of
their nodes contiguously followed by numbering the nodes, in the separator, then
the following block form will be obtained:

A 0 Ap
0 A»n Anl|. (8.1)
Az Az Az

The blocks A;; and A,, may themselves be ordered to such a form by using
dissection sets. This way every level defines a nested dissection order.

The significance of the above partitioning of the matrix is twofold: first, the zero
blocks are preserved in the factorisation, thereby limiting fill; second, factorisation
of the matrices A;; and A,, can proceed independently, thereby enabling parallel
execution on separate processors.

When a complicated design is assembled from simpler substructures, it makes
sense to exploit these natural substructures. The resulting ordering is likely to be
good, simply because, when each variable is eliminated, only the other variables of
its substructures are involved.

8.2.2 A Modified Level-Tree Separator Algorithm

The separator routine in Sparspak, FNDSEP, finds a pseudo-peripheral node in the
graph and generates a level structure from it. It then chooses the median level in the
level structure as the node separator. However, this choice may separate the graph
into widely disparate parts. In a modification made by Pothen et al. [7], the node
separator is selected to the smallest level k, such that the first k levels together
contain more than half of the nodes. A node separator is obtained by removing from
the nodes in level k those nodes that are not adjacent to any node in level k — 1, and
therefore these are added to the part containing the nodes in the first k — 1 levels.
The other part has nodes in levels k + 1 and higher. Although such a method is
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simple; however, the spectral bisection method computes a smaller node separator
than the Sparspak algorithm.

8.3 Substructuring for Parallel Analysis of Skeletal
Structures

8.3.1 Introduction

In many engineering applications, particularly in the analysis and design of large
systems, it is convenient to allocate the design of certain components (substruc-
tures) to individual design groups. The study of each substructure is carried out
more or less independently, and the dependencies between the substructures are
resolved after the study of individual substructures is completed. The dependencies
among the components may of course require redesign of some of the substructures,
so the above procedure may be iterated several times.

As an example, suppose for a structural model, we choose a set of nodes I and
their incident members which, if removed, disconnect it into two substructures. If
the variables associated with each substructure are numbered consecutively,
followed by the variables associated with I, then the partitioning of the stiffness
matrix A will be as that of Eq. 8.1.

The Cholesky factor L of A, correspondingly, will be partitioned as,

Ly 0 0
L=| 0 L, o] (8.2)
Wi; Wy L
where
Ay =LLj, Ap = LpLs,, Wi3 =LA, Was = LpL,,
and

LiLas = Az — AL A Ay — AL AL Ass. (8.3)

Therefore, Ay and A,, correspond to each substructure, and the matrices A3
and A,; represent the “glue” which relates the substructures through the nodes of 1.

Since the factors of A;; and A,, are independent, they can be computed in either
order, or in parallel if two processors are available. Finally, in some design
applications, several substructures may be identical, for example, have the same
configuration and properties, and each substructure may be regarded as a super-
element, which is constructed once and used repeatedly in the design of several
structures. In the above example, A;; and A,, could be identical.
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8.3.2 Substructuring Displacement Method

For the analysis of skeletal structures and for the finite element method, using the
displacement approach, an appropriate formulation such as the Galerkian method
reduces to solving the following matrix equation,

Kv = p, (8.4)

where K is the global stiffness matrix, and v and p are the nodal displacement and
nodal force vectors, respectively. To distribute the computation after decomposing
the model into q subdomains, each subdomain can be treated as a super element and
mapped onto the processors. Various methods for decomposition will be presented
in this chapter. The global stiffness matrix and nodal force vector are equivalent to
the assembly of its components for q subdomains:

9 q
Kz;‘kj andpzz;pj. (8.5)
J= J=

Equation 8.4 can be written in the following partitioned form:

FERIME 5o

In the above equation, a boundary node is defined as a node which is part of more
than one subdomain and degrees of freedom at the boundary nodes are treated as
boundary degrees of freedom. The vectors v; and vy, are displacements, and p; and
py are forces, corresponding to internal and boundary nodes, respectively.

Each subdomain requires solution of an equation, similar to Eq. 8.4:

[k]j [d]j = [p]j' (8.7)

For the full domain, Eq. 8.7 can be written in partitioned form as:

MR o5

Using static condensation for eliminating the interior degrees of freedom of each
subdomain, the effective stiffnesses and load vectors on the interface boundaries are
obtained.

For internal nodes we have,

(ki) [vi] + [Kin] [vo] = [pi], (8.9)

or
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vi] = k] ' {[pi] — [kiv][Vs]}- (8.10)

Substituting in Eq. 8.8 leads to,

k] [kii] ' {[pi] — [kin] [Vo]} + ko] [Ve] = [Py)- (8.11)
K*][ve] = [py] — [kin] ' [kii] [P (8.12)

where
k*] = [kep) — {[kbi][kii]il[kib]}, (8.13)

is the condensed super element stiffness matrix and

0] = [py] — kil kii] ' [P, (8.14)

is the modified load vector. A summation of the interface conditions for the
subdomains leads to the formation of the global interface stiffness matrix K* and
the global interface load vector p* as follows:

q q
K* = Z;kj* and p* = Z:p;. (8.15)
J= =

K is symmetric and positive definite, and K* has the same properties. The
following interface system can now be solved:

[K*][ve] = [p"]. (8.16)

Once v, is found, the internal degrees of freedom for a subdomain can be
evaluated employing Eq. 8.10.

A natural route to parallelism now is to provide it through domain decomposi-
tion by distributing the substructures onto the processors available. Several
approaches can be used to solve Eq. 8.4. In the following, three broad classifications
are briefly discussed:
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8.3.3 Methods of Substructuring

8.3.3.1 Direct Methods

A substructuring method can be used to obtain the condensed stiffness matrix on
each subdomain in parallel on the different processors. In order to create matrix K*,
it is necessary to condense the stiffness matrix of each substructure (subdomain),
i.e. from Eq. 8.13 the product [ky;][k;;]™ k;;,] should be calculated. The explicit
formation of [Kkj]™ l[kib] requires NBpog triangular system resolutions, where
Mbpor is the number of subdomain boundary degrees of freedom (DOF). This
step can be considered as follows:

Each internal DOF makes its contribution to the stiffness of each boundary DOF,
such that the behaviour of the condensed boundary is equivalent to the behaviour of
the entire domain. This step can be executed step by step, so that only the internal
DOF connected to the boundary DOF updates the boundary stiffness matrix. This
requires the internal DOF to appear at the bottom of the internal stiffness matrix k;;,
so that they are modified by the elimination of all other internal DOF.

A frontal method can be used, which has the advantage of allowing very flexible
strategies concerning the sequence of elimination of equations. When this method is
applied to subdomain condensation, it is necessary to assemble the boundary DOF
in the frontal matrix, and to retain them until all the internal DOF have been
eliminated. At the end of the frontal elimination process, the frontal matrix is
exactly the condensed matrix [Ky;l[Kk;] ™ 1[kib].

The interface system of equations is then solved employing a direct approach
(e.g. skyline method) on a single machine. Although the direct methods are simple
and terminate in a fixed number of steps, the interface solution dominates the
overall computational cost when the interface system is large, thus limiting the
overall efficiency. In such a case, however, a distributed algorithm can be used for
factorisation of the direct method to overcome this difficulty.

8.3.3.2 Iterative Methods

A different method to avoid the explicit inverse of k;; in Eq. 8.13 is the use of an
iterative approach. Among the iterative solutions, the conjugate gradient method is
a promising candidate, because of its inherent parallelism and its rate of conver-
gence. The theory of the conjugate gradient method is well known [8]. One iteration
of this method for solving a system of equations Kv = p is given as:

{u} = [K]{f}. (8.172)
a = {r}'{r}/{f}'{u}, (8.17b)
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{Vnew} = {v} + a{f}, (8.17c
{roew} = {r} + afu}, (

= {Foew } {Tnew} /{r} {r} (8.17¢
{Faew} = {Faew} + M}, (

Before each iteration, the vectors {v}, {f} and {r} are set to {V,ew}, {frew} and
{ruew}, respectively.
The vectors are initialised as,

{r} = {p} — [K|{vo}, (8.18a)

And
{f} ={r}, (8.18b)

where {vg} is usually taken as null, unless some approximation to the solution is
known. Iteration is terminated when the residual is small. One criterion for handling
the iteration is,

Irll/lipll <, (8.19)

where ¢ is the tolerance specified for the problem.

In structural analysis, the vector r is the potential gradient and is identical to the
residual force vector, (p — Kv) in the linear case. The vector f is the gradient
direction to generate the displacement vector v. For discussion and further details,
the reader may refer to Law [9].

Preconditioned Conjugate Gradient (PCG) methods form a large class of the
many iterative methods that have been suggested to reduce the cost of forming
condensed stiffness matrices. A saving in total time may be achieved, since the
predominant matrix-vector product at each iteration is computed in parallel. For
further detailed discussion, the interested reader may refer to Keyes and Gropp [10].

8.3.3.3 Hybrid Methods

These methods use a combination of the direct and iterative methods. For instance,
the components of the condensed matrix k* may be obtained for the substructures
using the direct method, and the resulting interface can be solved using an iterative
approach.

A comparative study of direct, iterative and hybrid methods is made by Chadha
and Baugh [11].

In the following sections, algorithms are presented for partitioning of the nodes
of structural graph models, which can be incorporated in any program available for
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the analysis of skeletal structures. Domain decomposition algorithms are presented
in Chap. 8.

8.3.4 Main Algorithm for Substructuring

Let S be the graph model of a structure. The following algorithm decomposes S into
q subgraphs with equal or near equal number of nodes (support nodes are not
counted) having the least number of interface nodes:

Step 1: Delete all the support nodes with their incident members, and denote the
remaining subgraphs by S..

Step 2: Determine the distance between each pair of nodes of S,, and evaluate the
eccentricities of its nodes.

Step 3: Sort the remaining nodes (RN) in ascending order of their eccentricities.

Step 4: Select the first node of RN as the representative node of the subgraph S; to
be determined and find a second node as the representative node of subgraph S,
with a maximum distance from S;.

Step 5: Find the third representative node with the maximum least distance from S,
and S,, and denote it with Ss.

Step 6: Subsequently, select a representative node of subgraph Sy for which the
least distance from Sy, Sy, ... Sk _ ; is maximum. Repeat this process until q
representative nodes of the subgraphs to be selected are found.

Step 7: For each subgraph S; (j = 1, ... ,q), add an unselected node n; of RN, if it is
adjacent only to S; and its least distance from all nodes of other subgraphs is
maximum.

Step 8: Continue the process of Step 7, without the restriction of transforming one
node to each subgraph S;, until no further node can be transferred. The remaining
nodes in RN are interface nodes.

Step 9: Transfer the support nodes to the nearest subgraph.

Once the nodes for each subgraph S; are found, the incidence members can easily
be specified.

The algorithm is recursively applied to the selected substructures, decomposing
each substructure into smaller ones, resulting in a further refinement.

8.3.5 Examples

Example 1. A double-layer grid supported at four corner nodes is considered and
partitioned into q = 2, 4 substructures, Fig. 8.1. The corresponding node adjacency
matrices (pattern of their stiffness matrices) are illustrated in Fig. 8.2a, b. For the
case q = 2, the selected substructures are further refined with ¢ = 2 and 3, and the
corresponding matrices are shown in Fig. 8.3a, b.
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Fig. 8.1 A double-layer grid S

L

Fig. 8.2 Patterns of the adjacency matrices for different values of q. (a) q = 2. (b) q = 4

Example 2. A dome-type space structure supported at six nodes is considered and
partitioned into q = 2, 3, 4 and 5 substructures, Fig. 8.4.

The corresponding node adjacency matrices are illustrated in Fig. 8.5a—d. For
the case q = 2, the selected substructures are further refined with ' = 2 and 3, and
the corresponding matrices are shown in Fig. 8.6a, b.

Once the subgraphs and the interface nodes are specified, ordering the nodes of
each subgraph reduces the bandwidth of each block, and appropriate numbering of
the interface nodes, results in banded bordered for the entire matrix.
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b

Fig. 8.3 Patterns of the adjacency matrices forq = 2andq’ = 2and 3. (a)q = 2and q' = 2. (b)
q=2andq =3

Fig. 8.4 A dome-type space structure

8.3.6 Simplified Algorithm for Substructuring

In the following, a simplified algorithm is presented which requires less storage and
computer time than the main algorithm, at the expense of selecting subgraphs with a
slightly higher number of interface nodes for some structural models. In this
approach, the number of distances to be considered and compared for finding the
nodes of substructures is far less than when the main algorithm is used, where the
distances between each pair of nodes of S are required. This simplified algorithm
consists of the following steps:

Step 1: Form an SRT rooted from an arbitrary node, in order to find a representative
node of S; with maximum distance from the root. The selected node is also
denoted by S;.
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b

Fig. 8.5 Patterns of the adjacency matrices for different values of q. (a) q = 2. (b) g = 3. (¢)
q=4()q=>5

1

Fig. 8.6 Patterns of the adjacency matrices for ¢ = 2 and different values of q'. (a) ¢ = 2 and
qd=2.()g=2andq =3
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Step 2: Form an SRT rooted from Sy, to calculate the distance between each node of
S and S, and find the representative node S, in a maximum distance from S;.

Step 3: Form an SRT rooted from S,, to calculate the distance between each node of
S and S, and find the representative node S; in a maximum least distance from
the selected nodes. Repeat this process until q representative nodes Sy, S,, ...,
Sy, forming a transversal , are selected.

Step 4: For each subgraph S;, find a node adjacent to the previously formed S; only,
with maximum least distance from other representative nodes, in turn.

Step 5: Continue the process of Step 4, without the restriction of transforming one
node to each subgraph S;, until no further node can be transferred.

8.3.7 Greedy Type Algorithm

In this algorithm, the weight of a node is taken as the number of elements incident
with that node. The interior boundary of a subdomain D; is defined as the subset of
its boundary that will interface with another subdomain D;. The total number of
elements in a given mesh is denoted by M(FEM).

Step 1: Start with a node and add incident elements one by one having the least
current weight. The current weight is taken as the number of unselected elements
at that stage incident with that node. Continue this process until M(FEM)/q
elements are selected as D;.

Step 2: Select an interior node of Dy, and repeat Step 1 to form D,.

Step k: Repeat Step 2 for k = 3, 4, ..., q with an interior node of Dy _ ; and form
subdomain Dy.

This process is a Greedy type algorithm, which selects one element of minimal
current weight at a time and completes a domain when N(FEM)/q (+1 if remainder
# 0) elements are selected for the formation of that subdomain. The current weight
of an element is updated when an incident element is joined to the expanding
subdomain.

8.4 Domain Decomposition for Finite Element Analysis

In this section, efficient algorithms are developed for automatic partitioning of
unstructured meshes for the parallel solution of problems in the finite element
method. These algorithms partitions a domain into subdomains with approximately
equal loads and good aspect ratios, while the interface nodes are confined to the
smallest possible. Examples are included to illustrate the performance and effi-
ciency of the presented algorithms.
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8.4.1 |Introduction

Domain decomposition is attractive in finite element computations on parallel
architectures, because it allows individual subdomain operations to be performed
concurrently on separate processors and serial solutions on a sequential computer to
overcome limitation of core storage capacity. Given a number of available pro-
cessors ¢, an arbitrary finite element model (FEM) is decomposed into q
subdomains, where formation of element matrices, assembly of global matrices,
partial factorisation of the stiffness matrix and state determination or evaluation of
generalised stresses can be carried out independently of similar computations for
the other subdomains, and hence can be performed in parallel.

In parallel processing of subdomains, the time to complete a task will be the time
to compute the longest subtask. An algorithm for domain decomposition will be
efficient if it yields subdomains that require an equal amount of execution time. In
other words, the algorithm has to achieve a load balance among the processors. In
general, this will be particularly ensured if each subdomain contains an equal
number of elements or an equal total number of degrees of freedom. However,
for some numerical techniques based on domain decomposition, a balanced number
of elements or total degrees of freedom among the subdomains does not imply
balancing of the subdomain calculations themselves. The use of a frontal
subdomain solver provides a relevant example. In this case, the computing load
within a domain is not only a function of the number of elements within the
subdomain, but also the element numbering. Thus, the optimal number of elements
is a priori unknown and can vary significantly from one subdomain to another.

In order to reduce the cost of synchronisation and message passing between the
processors in a parallel architecture, the amount of interface nodes should be
minimised, because the parallel solution for the generalised displacements usually
requires explicit synchronisation on a shared-memory multiprocessor and message
passing on local-memory ones. In a domain decomposition method, another sig-
nificant mesh partitioning factor which should be considered is the subdomain
aspect ratio. This ratio has a vital impact on the convergence rate of the iterative
approaches for the finite element tearing and interconnecting method.

The above features suggest that an automatic finite element domain decomposer
should meet four basic requirements in order to be efficient:

1. It should be able to handle irregular geometry and arbitrary discretisation in
order to be general purpose.

2. It must yield a set of balanced subdomains in order to ensure that the overall
computational load be as evenly distributed as possible among the processor.

3. It should minimise the amount of interface nodes in order to reduce the cost of
synchronisation and/or message passing between the processors.

4. It must result in subdomains with proper aspect ratios, in order to improve the
convergence rate of the domain decomposition based iterative method.
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Methods of subdomaining are well documented in the literature, see for example
Farhat and Wilson [12], Farhat [1], Dorr [13] Malone [14], Farhat and Roux [15],
Farhat and Lesoinne [16], Topping and Khan [17], Topping and Sziveri [18],
Vanderstraeten and Keunings [19], and Kaveh and Roosta [4]. Several automatic
domain decomposition methods that address the load balance and minimum
interprocessor computation problems have already been reported in the literature.
In general, these algorithms can be grouped into two categories: engineering based
and graph theory based methods. For engineering based approaches, one can refer
to those of Ref. [20], and for graph theory based methods the algorithms of Ref. [21]
can be referred to.

In this section, two efficient algorithms are presented to decompose one- to
three-dimensional finite element models of arbitrary shapes. The first method is a
graph based method and uses a general expansion process. The second is an
engineering based approach. In these algorithms the resulted subdomains generally
have good aspect ratios, especially when the elements have this property originally.

8.4.2 A Graph Based Method for Subdomaining

In this algorithm, first the associate or incidence graph model G of the FEM is
generated. Then a good starting node R, of G is selected. R is taken as the first node
of the first subgraph G;. Next G, is expanded from R;. The process of expansion is
continued such that the equality of the total degrees of freedoms of subdomains is
provided. G, is formed similar to G, but it is expanded from R,, which is an
unselected node in a maximum distance from R;. R, should contain no node of G;.
The process of expansion is executed in a manner that provides the connectedness
of the subgraph being formed (if it is possible). A similar approach is employed and
Gs, ..., Gq are generated, and the subdomains of the FEM corresponding to the
selected subgraphs of G are identified. The steps of the algorithm are as follows:

Step 1: Use the associate or incidence graph G of the considered FEM and form an
SRT rooted from an arbitrary node of G, in order to find a node R; with
maximum distance from the root.

Step 2: Generate subgraph G; (i = 1 to q) as follows:

(a) Form an SRT rooted from R; in order to calculate the distance between each
node of G and R; (R; is taken as the first selected node of G;), and find an
unselected node R; . | with maximum distance from R;.

(b) Find all the unselected boundary nodes of G;, and denote them by UBN.

(c) Associate an integer with each node n; of UBN which is the same as its
distance from R; plus the number of unselected nodes adjacent to n; minus
the number of selected nodes adjacent to n;. Then detect the node with
minimum integer and add it to G;.

(d) If the total degrees of freedom of the corresponding subdomain is less than
[TDOF + Wy(q — 1)]/q, then repeat the above steps from Step (b);
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otherwise, execute Step 2 to generate subgraph G; . ;. TDOF is the total
degrees of freedom of the FEM and W is the total degrees of freedom for
the nodes of the corresponding subdomain which are also contained in
unselected elements.

In the above algorithm, only the connectivity of the nodes of G is considered,
and no labels for edges of G, list or matrices of edges are needed. Therefore, the
formation of SRTs of G and data keeping will be more simple and efficient. Since
valencies of the nodes of an associate or incidence graph of an FEM are not
generally very different, the adjacency list is an efficient means of keeping
the connectivity data of G. The adjacency list of a graph G is a matrix containing
N(G) rows and A columns, where A is the maximum degree of the nodes of G. The
ith row contains the labels of the nodes adjacent to the node i.

Step 1 is carried out to select a good starting node in the generated associate or
incidence graph G. Using the adjacency list of G, Step (a) can be performed as
follows; however, any other type of list may also be used:

1. Select all the nodes of the R;th row of the adjacency list of G. The distance
between these nodes and the root is equal to unity.

2. Select all the unselected nodes of the rows j (j is an element of the set of the
selected nodes in the previous step). The distance of these nodes from the root is
one more.

3. Repeat Step 2 until all nodes are selected.

The last instruction of Step (a) is carried out to select the first node of the next
subgraph. This node should not be included in the previously generated subgraphs
(i.e. it should be an unselected node). In Step (b), UBN contains unselected nodes
which are adjacent to selected nodes of G;. In order to extend G;, a node of UBN
will be added to G; in every execution of Step (c). In this step an integer will be
associated with each node of UBN which defines the best possible node, having the
following properties:

1. It is near to the root.

2. It does not make the next UBN very large.

3. It is connected to G; with more nodes, which leads to a desirable configuration
for Gi.

This integer is equal to the distance from R; plus the valency of the node minus
the number of selected adjacent nodes multiplied by 2. The value of [TDOF +
Wo(q — 1)]/q is not needed to be calculated in every execution of Step (d). Since
every subdomain should have at least TDOF/q degrees of freedom, W can be
calculated when the degrees of freedom of a subdomain becomes more than TDOF/
g. Additional value, Wy(q — 1)/q, is considered, since the degrees of freedom of the
interface nodes of subdomains are calculated in two or more subdomains and the
degrees of freedom of the subdomains should be equal or nearly equal.

In this algorithm, a disconnected subdomain may be generated. This happens
when no node can be found in Step (b). In such a case, an unselected node with
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minimum distance should be added to the considered subgraph. In order to avoid
such situations, one should avoid decomposing a small FEM into many
subdomains. However, the following modifications can always be used:

1. Formation of a single SRT from an arbitrary node to find a good starting node,
may not lead to the best node; however, the existing good starting node algo-
rithms can be used to select a better node.

2. If a subgraph G; contains two components G; and G; , one can exchange nodes of
G; or G;’ with the adjacent subgraphs to provide connectedness for G;.

3. Use a non-deterministic heuristic of combinatorial optimisation such as Simu-
lated Annealing to improve the initial partitioning to avoid the formation of
multiconnected subdomains.

8.4.3 Renumbering of Decomposed Finite Element Models

Once the subdomains and interface nodes are specified, the nodes and/or elements
of each subdomain and the interface nodes can be renumbered for bandwidth,
profile or frontwidth reduction, depending on whether a band, profile or frontal
solver is exploited, respectively. The process of renumbering includes the following
steps:

() Renumber the internal nodes/elements of the subdomains My, . .., M using an
available algorithm.

(IT) Select an interface node connected to M; which is contained in a minimum
number of elements as the starting node, and number the interface nodes using
a nodal ordering algorithm. In the process of renumbering, when possible,
priority is given to the nodes connected to lower numbered subdomains.

It should be noted that, for a specified solver such as a frontal solver, the resulted
subdomains and interface nodes should also satisfy additional conditions. For
example in a frontal solver, a necessary condition for the applied domain decom-
position approach to be feasible is that the number of degrees of freedom lying on
the interface of any subdomain be smaller than the frontwidth associated with the
direct (one domain) approach. However, such conditions cannot always be satisfied
using the existing decomposition heuristics, because they generally depend on the
shape and the connectivity of FEMs, see Lesoinne et al. [22].

8.4.4 Computational Results of the Graph Based Method

Example 1. A finite element model is considered with A = 606, a = 1961; each
element has 4 corner nodes and 4 mid-side nodes, and each node has 2 degrees of
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Fig. 8.7 A finite element model and its decompositions. (a) q = 4 using the associate graph. (b)
q = 6 using the associate graph. (¢) q = 4 using the incidence graph. (d) q = 6 using the
incidence graph

freedom and is decomposed into 2, ... ,6 subdomains, as shown in Fig. 8.7a—d for
q = 4 and 6, where A and o denote the numbers of elements and nodes, respec-
tively. The degrees of freedom of the selected subdomains and interface nodes for
q = 2, ... .6 are illustrated in Table 8.1, when associate and incidence graphs are
used.

Example 2. An L-shaped finite element model is considered with A = 2,400,
o = 1,281, and each node has degrees of freedom equal to 2. The model is
decomposed into 6 and 12 subdomains, as shown in Fig. 8.8a—d. The degrees of
freedom of the subdomains and interface nodes using associate and incidence
graphs are illustrated in Table 8.2.

Example 3. A finite element model is considered with A = 528, a = 307, and
each node has 2 degrees of freedom. The model is decomposed into 2, 3 and
4 subdomains, and the decomposed models for q = 4 are shown in Fig. 8.9a-b.
The degrees of freedom of the subdomains and interface nodes using associate and
incidence graphs are illustrated in Table 8.3. The patterns of the node adjacency
matrices employing the associate graph for the model, after ordering, are shown in
Fig. 8.10a—c.
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Table 8.1 Results of

q Type of graph DOFs of subdomains; interface nodes
Example 1 -

2 Associate 2002, 1994; 74
Incidence 2016, 2008; 102

3 Associate 1370, 1360, 1352; 160
Incidence 1352, 1370, 1352; 150

4 Associate 1048, 1052, 1060, 1044; 280
Incidence 1022, 1030, 1030, 1022; 182

5 Associate 856, 860, 868, 852, 842; 352
Incidence 828, 844, 848, 826, 816; 240

6 Associate 724, 730, 744, 748, 672, 706; 394
Incidence 700, 728, 714, 692, 692, 694; 296

oty .
;;:Ef‘,,,ﬁ%

e
g

b

g

5
ity
yrak!
B

!
ket
A
Fata’

Fig. 8.8 An L-shaped finite element model and its decompositions. (a) ¢ = 6 using the associate
graph. (b) ¢ = 12 using the associate graph. (¢) q = 6 using the incidence graph. (d) q = 12 using
the incidence graph
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Table 8.2 Results of Example 2

q Type of graph DOFs of subdomains; interface nodes

8 Associate 462,462,462,462,462,462; 210
Incidence 462,462,462,462,462,462; 216

12 Associate 244,244,248,248,246,246,242,252,246,232,236,232; 342
Incidence 252,252,250,250,268,268,246,268,260,232,234,242; 440

Fig. 8.9 A finite element model and its decompositions. (a) q = 4 using the associate graph.
(b) q = 4 using the incidence graph

Table 8.3 Results of

q Type of graph DOFs of subdomains; interface nodes
Example 3 -
2 Associate 324,324;34
Incidence 322,322;30
3 Associate 224,216,218;42
Incidence 222,222.220;50
4 Associate 170,164,170,168;58
Incidence 176,164,170,170;66

8.4.5 Discussions on the Graph Based Method

This algorithm has low time complexity and is simple to program and leads to
efficient partitioning of a finite element model into subdomains with the required
properties; therefore it can also be considered as a good educational approach. The
finite element model that should be partitioned can contain meshes with different
dimensions, types and sizes. Although the problem of aspect ratios of the
subdomains is not dealt with explicitly in this section, the algorithm has the feature
of expansion in all directions, leading to good aspect ratios.
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e

Fig. 8.10 The patterns of the ordered node adjacency matrices

8.4.6 Engineering Based Method for Subdomaining

Definitions. A level structure L(r) of a finite element model rooted from an
element r (as the root), is defined as a partitioning of the set of elements into levels
1;(r), Ir(r), ..., 14(r) such that:

1. 1;(r) = {r}.

2. All elements adjacent to elements in level 1;(r) (1 < i < d) are in levels I; _ (1),
Li(r) and ; 4 1(r).

3. All elements adjacent to elements in level l;(r) are in levels 14 _ 1(r) and 14(r).

The overall level structure may be expressed as the set L(r) = {I;(r), (1), ...,
l4(r) }, where d is the depth of the level structure and is simply the total number of
levels, and two elements are adjacent if they share a common node.

The element adjacency list of a finite element mesh contains the lists of elements
adjacent to each element. The element-node list of an FEM contains the lists of
nodes of each element and is generally employed as an input for data connectivity
of finite element models. Following Webb and Froncioni [23], the node-element list
contains the lists of elements containing each node of the finite element mesh.
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A genre structure is a level structure in which each level is divided into one or
more genres, and the index of each genre, as defined below, simply shows the
pseudo-distance between the root and its elements. The overall genre structure
rooted from an element r may be expressed as the set G(r) = {go(r), g(1), g>(1), .. .,
g4(r)}, in which the pseudo-distance between r and the elements of genre g;(r) is
equal to i. The index vector IV (i) of a genre structure rooted from an element r is an

(n + 1)-dimensional vector whose ith array (i = O, . . ., n) defines the total number
of elements of g; j =0, ..., 1), i.e.
Vi(i) = > | g ()] (8.20)
=0

Thus, the cardinality of genre i (0 < i < n) is simply equal to IV,(i) — IV,
— 1), and the cardinality of go(r) is equal to 1. The following scheme (in pseudo
code) should be used to form a genre structure from an arbitrary starting element r,
to generate its index vector and to find the pseudo-distances pd(r,e;) between the
root r and all elements e;(i = 1, ..., A, where A denotes the number of elements) of
the considered finite element model. In this scheme, D € {1,2,3} denotes the
highest dimension of the elements in the model, and CCN(g;(r),e) denotes the set
of common corner nodes between the elements of genre g;(r), and the element e.

1. Set gglr) = {r},IV.(0) =1, pd(r,r) = 0 andmask r.
2.8eti=1,a=0andb=0.
3. forj=Dtolstepl

fork=atob

(I) put each unmasked element e with |CCN(gk(r),
e)| > Jjintog;i(r).

(II) if |g; (r) # 0] thenset IV, (i) = IV, (i — 1) + |o;
(r) |, pd(r,e) =i(e Eg;(r)), 1 =1+ 1 and mask the ele-
ments of g; (r) .

end for

end for
4. If Iv, (i —1) <A then set a=Db+ 1, b=1 and repeat
Step 3.

8.4.7 Genre Structure Algorithm

Step 1: Form a genre structure rooted from an arbitrary element, and select an
element e! from its last genre.

Step 2: Calculate the pseudo-distance between e! and each element, and select an
1

s

element e? with maximum pseudo-distance from e
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Step 3: Calculate the pseudo-distance between eg and each element. If q = 2, then
go to Step 5.

Step 4: Find an unselected element eiS (i=34,....,9) contained in genres gjl(e;),
g_ﬂ(eg), gj3(ez), con i l(efjl), such that the least value of IV, (jx — 1) be
maximum, where j, > 0,k = 1, ..., 1 — 1, then calculate the pseudo-distances
between el and the elements.

Step 5: For each selected element ejs G=1,...,q9andeachelemente,(k = 1,...,
M), assign an integer in (ejs,ek) as follows,

in(el, ex) = A + mpd(el,ex) — pd(el, ex), (8.21)
where
mpd(eg,ek) = min {pd(esi,ek)|1 <1<gq1#j}

Step 6: Let eJS be the first element of the subdomain M;, calculate the weight of
M; and mask e;, wherei =1, ..., q.

Step 7: Find an expandable subdomain M; with minimum weight, add an unmasked
element e, with maximum non-zero priority number P; = CN X in (eis,ek) to M;,
update the weight M; and mask e, where if ICCN(M;j,ei)! < 3 then CN = ICCN
(M;,e)l, else CN = 3. If there is no element to be added to M;, this subdomain is
not expandable and should be masked. If there are several elements with the
maximum priority number P;, then select the one with the minimum sum of
integers corresponding to eiS (i =1,...,q). Repeat this step until all the elements
are masked.

In this algorithm, the weight of a subdomain M; can be taken as an arbitrary
single number such as the number of the elements of M;, the total degrees of
freedom of the nodes of M;, a function of the number and labels of the elements
of M;, and so on. However, here the total degrees of freedom of the nodes of a
subdomain, is considered as the weight of the subdomain.

Obviously, in this method only the corner nodes of a finite element mesh should
be provided; i.e. mid-side nodes and interior nodes are not needed. This increases
the efficiency of the algorithm and results in saving computer storage space for
finite element models with high order elements.

An important problem which should be contemplated in a domain decomposi-
tion method is the connectedness of the elements of a single subdomain. In this
algorithm, multicomponent subdomains are avoided. Since the integers which are
calculated in Step 5 are more than zero, hence the priority number P; of an element
e; corresponding to the subdomain M; will be zero if ICCN(M;,e))l = 0, i.e. the
element is not connected to M; with a corner node. As stated in Step 7, an element
with priority number P; = 0 cannot be added to M;. This provides the connected-
ness of M; i = 1, ..., q); however, it leads to differences between the weights of
the subdomains, because when a subdomain cannot be expanded and is masked, the
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other unmasked subdomains are still expanded. This problem has been nearly
remedied in the present algorithm by Steps 2 and 4. In these steps, the first elements
of the subdomains are selected in such a manner that there are enough elements to
be added to them for further expansion of the subdomains. For complete balanced
loads for subdomains, one can let elements with zero priority numbers be also
added to a subdomain, in which case multicomponent subdomains will be gener-
ated. However, there are several non-deterministic heuristics used in combinatorial
optimisation such as Simulated Annealing, Stochastic Evolution and Tabu Search
which can be used for better load balancing of subdomains and reduction in the
number of interface nodes, see for example Reference 13. These combinatorial
optimisation methods are normally included in an FEM decomposition algorithm as
follows:

Step I: Invoke a direct partitioning scheme to produce an initial decomposition of
reasonable quality.
Step II: Use an optimisation procedure to improve the initial partitioning.

The second step generally needs high computer time, hence this algorithm is
designed for careful partitioning of the finite element meshes in order to avoid
(as far as possible) the use of optimisation procedures for general cases. However,
this method can be applied as a direct method in Step 1. This will be efficient, since
the more the load balancing of subdomains and the less the number of interface
nodes produced by a direct partitioning scheme, the less cost for the applied
optimisation method.

The Step 1 of the algorithm presented in this section is carried out to find a good
starting element e! for the first subdomains M,. Step 2 is executed in order to
calculate the pseudo-distance between e: and each element, and to find an element
ef as the good starting element of the second subdomain M,. It should be noted that,
when q > 2, it is needed to know the index of genres containing a specified element
because it is needed for the selection of the starting elements of subdomains M;
i=3, ..., q). Step 3 should be carried out to calculate the pseudo-distance
between e? and each element of the considered finite element mesh. Also in this
step, the index of genres containing a specified element should be defined for q > 2.
Step 4 is executed in order to find good starting elements for subdomains M; (i = 3,

., q). The condition contained in this step is included in order to provide the
starting elements of subdomains to be unobtrusive when the process of expansion is
performed in Step 7. This condition increases the probability that a subdomain will
remain expandable while the other subdomains are being expanded. Step 5 is
carried out in order to calculate an integer for each selected (starting) element
and each element of the finite element mesh. This integer is always more than zero
since A is always more than or equal to a pseudo-distance between two elements,
and a pseudo-distance is always equal to or more than zero. The integers calculated
in this step affect the priority number of elements in two ways when the process of
expansion is performed: (1) the elements which are added to a subdomain have
lower priority numbers for other subdomains, (2) the elements of a subdomain do
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not have flange positions in relation to the region of the subdomain (loosely
speaking). These effects make the number of boundary interior nodes of a
subdomain low and its aspect ratio a desired value. The less the differences between
the geometrical dimensions of a subdomain with a given area/volume, the smaller
the boundary and the better aspect ratio of the subdomain. However, this remark is
true when the elements have originally good aspect ratios. For more details about
the aspect ratio of a subdomain, see the recent paper of Farhat et al. [24] in which
their final choice has been to compute the aspect ratio AR of a subdomain M; as
follows:

Surface (M;) . .
AR(M;) = two d 1 probl
(M) = e2 % Surface of circumscribed circle ( Wo dimensionat pro ems)
Vol M;
AR(M;) = c3 olume (M;) (three dimensional problems)

X
Volume of circumscribed sphere
(8.22)

where ¢, and c3 are scaling constants designed such that 0 < AR < 1.

Step 6 is executed in order to initialise the subdomains M; i = 1, ..., q) and
their weights and to mask their first (starting) elements. The elements of a
subdomain are masked only in order to forbid their repeated selection. Step
7 contains the expansion process of the algorithm. In every execution of this step,
an element with maximum priority number corresponding to a subdomain M; is
added to M;, where M,; is the subdomain with current minimum weight. This way of
expansion leads to equal loads for subdomains such that the subdomains remain
expandable, and this condition is provided in the process of selecting e; i=1,...,
q) and giving a priority number to an element corresponding to the subdomain
being formed. The priority number defined in this step is simply designed to give
more priority to an element connected to a subdomain My with more corner nodes
in comparison with an element connected to My with less corner nodes having the
same integers.

8.4.8 Example

Consider the simple finite element mesh, as shown in Fig. 8.11a, with each node
having 2 degrees of freedom, and suppose it to be decomposed into three
subdomains. The steps of the present algorithm are performed as follows:

Step 1: A genre structure is rooted from an arbitrary element such as the element 15.
The elements of each genre are recognised with the index of the genre as
illustrated in Fig. 8.11b. The last genre, gg(15), contains the element 6; hence

1
e, = 6.
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a b
1 2 3 4 5 6 5 4 3 4 5 8
7 8 9 |10 | 11 12 4 2 1 2 4 7
13 |14 |15 |16 17 | 18 3 1 0 1 3 6
19 [ 20 | 21 [ 22|23 | 24 4 2 1 2 4 7
c d
14 | 10 6 3 1 0 6 7 8 9 | 13 | 17
15 | 11 7| 4 2 1 3 4 5 8 | 12| 16
16 | 12 8 5 4 3 1 2 4 7] 11 1s
17 |13 ] 9 3 7 6 0 1 3 6 | 10 | 14
e f
13 9 3 7 6 7 12,31 ;;.26 22.21 5322 %2,12 ?;7
12 8 5 4 3 4 12.33 ;3.28 %i,24 22_20 53,14 Z‘)
B EE G EERERERE
10 6 3 1 0 1 Z434 };28 éfl%ll ;;_19 ;;,14 ;3.11

Fig. 8.11 Illustration of the steps for the example. (a) A simple two-dimensional FEM. (b) Genres
of G(15). (¢) Genres of G(6). (d) Genres of G(19). (e) Genres of G(23). (f) Integers of the elements.
(g) Decomposition of the FEM for q = 3

Step 2: G(6) is formed to calculate the pseudo-distance between the element 6 and
other elements. The elements of each genre are assigned with the index of the
genre; this index is same as the pseudo-distances between the root and the
elements of the genre. In Fig. 8.11c the pseudo-distance between the root
(element 6) and other elements are depicted; the element 19 belongs to the last
genre of G(6), having the highest pseudo-distance from the root, and thus
e? = 19.

S
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Step 3: G(19) is generated, and the pseudo-distances between the root and the
elements are shown in Fig. 8.11d. Since q > 2, therefore Step 4 should be
executed.

Step 4: Two elements 2 and 23 satisfy the condition of this step, since

2€g,0(6) and g5(19)
IVs(9) = 16,1V 9(6) = 11

23€g,(6) and g,((19)
IVs(6) = 11,1V 9(9) = 16,

and
min{IVe(i),IVi9(j)} < 11,
where
0<1i,j<l16and(i,j) # (9,6) and (6,9).

Element 2 or 23 can be selected for e’ arbitrarily; suppose > = 23. Fig-
ure 8.11e shows the pseudo-distances between e’ and the other elements.

Step 5. For each element, three integers are assigned corresponding to eg’, eg and e;’.
These integers are respectively illustrated in Fig. 8.11f for each element.

Step 6: Execution of this step leads to M; = {6}, M, = {19} and M3 = {23}. The
weights of M, M, and M; are the same and equal to 8, and their elements are
masked.

Step 7. This step is carried out A — q = 21 times, and in each execution one
element with maximum priority number is added to a subdomain with current

minimum weight as follows:

All subdomains have the same weight; hence the subdomain M; is selected
arbitrarily to be expanded. The elements with non-zero priority numbers which are
connected to M; are 5, 11 and 12, and their priority numbers are 2 x 29, 1 x 25
and 2 x 27, respectively. Thus element 5 is added to M, and is masked. The weight
of M, is now equal to 12. The subdomains M, and M3 have minimum current
weight. The subdomain M, is selected arbitrarily to be expanded. The elements
13, 14 and 20 are connected to M,, and their priority numbers are 2 x 34, 1 x 29
and 2 x 29, respectively. Hence the element 13 is added to M, and is masked. The
current weight of M, is now equal to 12. The subdomain Mj; has the least current
weight. The elements 16, 17, 18, 22 and 24 are connected to M3, and their priority
numbers are 1 x 27, 2 x 27, 1 x 25, 2 x 29 and 2 X 29, respectively. The
priority numbers of the elements 22 and 24 are maximum; however, element
24 is added to M3 because the sum of its integers is less than that of the element
22. The element 24 is masked. The weight of the subdomain M3 is now equal to 12.
The repetitions of this step lead to the decomposition as illustrated in Fig. 8.11g.
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8.4.9 Computational Results of the Engineering Based
Method

Two examples are studied in this section, using the direct method for the formation
of their element adjacency list.

Example 1. A multiconnected finite element mesh is shown in Fig. 8.12a, and
decomposed into 2, 3, 4, 8 and 16 subdomains as illustrated in Fig. 8.12b—f. In this
example, each node has 2 degrees of freedom. Computational time is provided in
Table 8.4.

Example 2. A multiconnected H-shaped finite element mesh with each node
having 2 degrees of freedom is shown in Fig. 8.13a, and decomposed into 2, 4,
5, 8, 16 and 32 subdomains as illustrated in Fig. 8.13b—g. Computational time is
provided in Table 8.5.

8.4.10 Discussions

The algorithm developed in this section is designed as a pre-processor for concur-
rent finite element computations. It may also serve as an automatic decomposer for
serial solutions on a sequential computer, to overcome limited core storage capac-
ity. This algorithm has low time complexity and leads to efficient partitioning of a
finite element mesh into subdomains with required properties. A finite element
mesh to be partitioned, may contain various meshes with different dimensions,
types and sizes. The algorithm uses a simultaneous expansion process which is an
improved version of the algorithm presented in the previous section for
substructuring. In this algorithm the method for selecting the first (representative)
element for each subdomain is improved, and the better priority numbers for
elements to be added to the expanding subdomains are defined in order to form
subdomains with more appropriate properties.

This algorithm is designed to have properties required for an efficient decom-
position and leads to subdomains with the following properties:

1. Low computer space and time requirements. In the present algorithm only the
corner nodes are needed to be given, and this leads to a large space saving in
FEMs with high order elements. The time complexity of the algorithm is
independent of the number of nodes for the considered FEM, and the critical
step of the algorithm takes O(A’0) operations in worst-case.

2. General in use. The algorithm can be employed to decompose unstructured
FEMs without any restriction, and an arbitrary parameter can be considered as
the loads of the subdomains.

3. Balance loads for subdomains. Selection of the starting elements of subdomains
and the expansion process are performed in a manner which leads to an efficient
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Fig. 8.12 Decompositions of the multiconnected finite element mesh. (a) A multiconnected FEM
with 1,152 elements and 1,248 nodes. (b)q =2.(¢)q=3.(d)q=4.(e)q=8.(f)q=16

Table 8.4 Computational time

q 2 3 4 8 16
Time (sec.) 29.00 29.28 29.44 30.59 33.39
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Fig. 8.13 Decompositions a
of a multiconnected =
H-shaped finite element =
mesh. (a) A multiconnected }
H-shaped FEM with 1,340
elements and 1,042 nodes.
(b)gq=2.(c)q=4.(d)
q=>5.(e)q=238.(f
q=16.(g)q=32
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Table 8.5 Computational time

q 2 4 5 8 16 32
Time (sec.) 33.95 31.75 32.90 37.14 40.70 52.79

balancing of loads. However, in order to decrease the differences between the
loads of subdomains, the following steps are included which should be executed
in place of Steps 14 of the original algorithm:

(a) Find the pseudo-distance between each element and all the element of the
finite element mesh.

(b) Find q elements ei, ef, ..., e}, provided that e; i=1, ... q), which is
contained in genres gjl(esl), gjl(eg), ... gj1(ed), is selected in such a way that
the least value of IV(jy — 1) is maximum where j, Z0 (k =1, ..., q).

However, this takes more operations than those of Steps 1-4.

4. Close to minimum number of interface nodes. In this algorithm, the number of
interface nodes is kept to the least possible by selecting the elements to be added
to a subdomain which have not high priority numbers for the other subdomains,
and have a proper position in relation to the previously selected elements of the
subdomains.

5. Good aspect ratios for subdomains. When the elements of the considered finite
element mesh have aspect ratios with proper values, the algorithm leads to a
decomposition with subdomains having reasonable aspect ratios. This is because
the subdomains are expanded in all directions, which makes the denominators of
the equations introduced by Farhat et al. [24] to be increased.

8.5 Substructuring: Force Method

The force method can be employed in parallel analysis of structures. In this section,
the formulation of substructuring is provided, and an algorithm is presented for such
analysis. The computational process is illustrated using simple examples.

In this section, the notations and formulations presented in Chap. 3 will be used.

8.5.1 Algorithm for the Force Method Substructuring

Once a structural model has been decomposed using any of the methods presented
in the previous sections, the following approach can be used for the analysis
employing the force method:
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In order to support a substructure in a statically determinate fashion, cuts are
introduced at members incident with the interface nodes contained in the
corresponding substructure, except at one arbitrary node where the substructure is
connected to the previous one.

For a given substructure S;, let the external forces be denoted by p;, and
redundant forces by q;. Then the substructure S; can be analysed for the internal
forces in the substructure (not coupling redundants) q; in the aforementioned

manner, i.e.
Vo Doy Doy pi
= . 8.23
[Vn] |:D10 Dll:|,- [Qi (8.23)

For continuity within the substructure:
q = —(DﬁlDlo)iPi. (8.24)
Deflections corresponding to the nodal force are,
voi = (Doo — D{D1' Dio),p;. (8.25)
that is
vo; = Fip;, (8.26)

where F; is the flexibility transformation matrix for the ith substructure. Internal
forces are obtained as,

ri = (Bo — BiD{ Dyo).p;, (8.27)
or
r; = Bip; (8.28)
and

B = (B) — B;D;/Dy) (8.29)

i’
where B; is the force transformation matrix in the redundant substructure. The
matrices F; and B; are formed for each substructure, in turn.

For the complete structure S composed of q substructures (S;,S,, ..., Sq), the

[T

force vector p; acting on a substructure “s” is given by,
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Pi =[a b.] [EJ (8.30)

where (. are the coupling redundants. On a particular substructure, there will be
three different types of forces: pe. is the external force vector, p.. is the coupling
redundant forces vector, and p., contains the statically determinate connection
forces.

For the entire structure, the following matrices A.. and B, are defined:

Al = {ac(), 2e2), - 2e(g) ) (8.31)
and
B' = {be(1),be(2), - - -, be(q) }- (8.32)
Then:
Ps(1)
Ps(2) p
po=1 - | =[Ae Bec]{qﬁ. (8.33)
Ps(q)

The forces p; can be partitioned according to three types of forces pei, Pen, and
Pec as mentioned before. Then:

Pei Aej 0 p
Peb | = | Qeb beb |:qe:| . (834)
Pec : T 9 ¢

It is obvious that, whereas . may produce p.p, and p. forces, it does not produce
p.; forces.

The flexibility matrix of the entire structure corresponding to p. and q. can be
formed using Eqgs. 8.25 and 8.33 as:

F,
f f At e(l)
NN ol R (CSIE S

and
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Fig. 8.14 A singlebay four- a b
storey frame with geometric 44.4KN 9 @ 10
and connectivity properties @
44 4kN 7 ) 8
g
2 9@ @
o
44 4kN ® 5 6
44.4kN 3 ® 4
@ @
1 2
7777 7777 7777 7777
— 7.64m —
Ve — fee fec Pe (8 36)
Ve fce fcc pc
For continuity across the cut sections of the structure,
ve =0, (8.37)
hence:
-1
q. = _fcc fcepe (838)
Deflections of the structure are then given as,
-1
Ve = (Fee — fecf o fee ) Pes (8.39)

making the complete analysis of the structure feasible.

8.5.2 Examples

Example 1. A single-bay four-storey frame is considered, as shown in Fig. 8.14.
The forces are depicted in Fig. 8.14a, and the nodal and element orderings are given
in Fig. 8.14.b. For this frame, I = 41,623.14 cm?* (for all members) and E = 2.1

x 10° N/m>.

The model is decomposed into two substructures as illustrated in Fig. 8.15. The
analysis is performed and the bending moments are obtained as provided in

Table 8.6.

Example 2. A three-bay pitched-roof frame together with material properties and

dimensions are shown in Fig. 8.16.
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Fig. 8.15 Decomposition a b
of the structural model Fy F,

44.4kN

44.4kN —DLD 44.4kN
44.4KN ﬁ D

Fy F,
7777 7777
Table 8.6 Bending moments Nodes End nodes of members Bending moments(kN.m)
of Example 1
1 1-3 —-219.17
3-1 78.93
3 34 185.07
3-5 —106.14
5-3 0.34
5 5-6 2.94
5-7 7.34
7-5 96.2
7 7-8 112.7
7-9 —16.48
9 9-7 58.04
9-10 58.04
10 10-9 58.04
10-8 —58.04
8-10 —16.48
8 8-7 112.7
8-6 —96.2
6-8 —52.84
6 6-5 170.28
64 —117.43
4-6 —78.93
4 4-3 185.07
4-2 —106.14
2 2-4 —219.17

This model is partitioned into two substructures, as illustrated in Fig. 8.17, where
different groups of loads on each substructure are shown. For all the members,
I=02m*and E = 2.1 x 10° N/m”. The bending moments for members of this
frame are presented in Table 8.7.

The substructuring analysis, using the force method for frame structures, can be
generalised to the analysis of other types of structures when the algebraic force
method is employed, Plemmons and White [25]. In this method, appropriate
partitioning of the incidence matrices of the structural graph models is performed,
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10kN 10kN 10kN
-
10kN i“»m
8m
| 3@12m |

Fig. 8.16 A three bay pitched-roof frame

10kN 10kN
08
10kN Fy Fy
Substructure I Substructure 11
Fig. 8.17 Decomposition of the structural model
Table 8.7 Bending moments Nodes End nodes of members Bending moments(kN.m)
of Example 2
1 1-5 -72
5 5-1 -30
5-6 30
6 6-5 3
6-7 3
7-6 26
7 7-8 65
7-2 —91
2 2-7 —116
8 8-7 45
8-8 45
9-8 28
9 9-10 3.03
9-3 60
3 3-9 40.02
10 10-9 52
10-11 52
11 11-10 79

leading to well structured equilibrium equations. It is proved that sparse null bases
can then be constructed in parallel, using the proposed decomposition. The perfor-
mance of the method is illustrated by some examples from skeletal structures.
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Chapter 9
Analysis of Regular Structures Using Graph
Products

9.1 Introduction

In this chapter, an efficient method is presented for the analysis of non-regular
structures which are obtained by addition or removal of some members to regular
structural models. Here a near-regular structure is divided into two sets, namely
“the regular part of the structure” and “the excessive members”. Regular part refers
to the structure for which the inverse of the stiffness matrix can be obtained by the
previously developed simplified methods, and excessive members refer to those
which cause the non-regularity of the regular structure [1].

9.2 Definitions of Different Graph Products

Many structures have regular patterns and can be viewed as the Cartesian product,
strong Cartesian product, or direct product of a number of simple graphs. These
subgraphs, used in the formation of the entire model, are called the generators of
that model. Graph products were developed in the past 50 years (see e.g. Imrich and
Klavzar [2]) for mathematical aspects, and Kaveh [3] for extensive applications.

9.2.1 Boolean Operation on Graphs

In order to explain the products of graphs, let us consider a graph S as a subset of all
unordered pairs of its nodes. The node set and member set of S are denoted by
N(S) and M(S), respectively. The nodes of S are labelled as vy,v», ..., Vi, and the
resulting graph is a labelled graph. Two distinct adjacent nodes, v; and v;, form a
member, denoted by viv; € M(S).

A. Kaveh, Computational Structural Analysis and Finite Element Methods, 377
DOI 10.1007/978-3-319-02964-1_9, © Springer International Publishing Switzerland 2014
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A Boolean operation on an ordered pair of disjoint labelled graphs K and H
results in a labelled graph S, which has N(K) x N(H) as its nodes. The set M(S) of
members of S is expressed in terms of the members in M(K) and M(H), differently
for each Boolean operations. Three different operations are discussed in this
chapter, corresponding to Cartesian product, strong Cartesian product and direct
product of two graphs.

9.2.2 Cartesian Product of Two Graphs

Many structures have regular patterns and can be viewed as the Cartesian product of
a number of simple graphs. These subgraphs, which are used in the formation of a
model, are called the generators of that model.

The simplest Boolean operation on a graph is the Cartesian product K x H
introduced by Sabidussi [4]. The Cartesian product is a Boolean operation S = K
x H, in which, for any two nodes u = (u;,u,) and v = (v1,v,) in N(K) x N(H), the
member uv is in M(S) whenever

u; = v; and w,v,EM(H), (9.1a)
or
u = v, and uyviEM(K). (9.1b)

As an example, the Cartesian product of K = P, and H = P5 is shown in
Fig. 9.1.

In this product, the two nodes (u;,v,) and (v4,v,) are joined by a member, since
the condition (9.1b) is satisfied.

The Cartesian product of two graphs K and H can be constructed by taking one
copy of H for each node of K and joining copies of H corresponding to adjacent
nodes of K by matching of size N(H).

The graphs K and H will be referred to as the generators of S. The Cartesian
product operation is symmetric, i.e. K x H = H x K. For other useful graph
operations, the reader may refer to the work by Gross and Yellen [5].

Examples. In the first example, the Cartesian product C; x Ps of the path graph
with five nodes denoted by Ps and a cycle graph shown by C; is illustrated in
Fig. 9.2.

Two representations of the Cartesian product C;3 x P, are illustrated in Fig. 9.3.

The Cartesian product P.; X Py, X P35 of three paths forms a three-
dimensional mesh. As the second example, the Cartesian product of Pg x P4 X Ps,
resulting in a5 x 3 x 4 mesh, is shown in Fig. 9.4.

A graph can be the product of more than two specific graphs, such as paths and
cycles. As the third example, the product of three graphs, P, x K3 x Py, is shown
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Fig. 9.1 The Cartesian a
product of two simple viuy) (Vpvp) (viwy)
graphs v
X =
ul U2 V2 W2
(uy ,u2) (111 Vo) (up,wyp)
K=P, H=P3 S

Fig. 9.2 Representation of
C7 X P5
Fig. 9.3 Two different a

representations of C3 x Py

Fig. 9.4 Representation of
a5 x 3 x 4 mesh
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Fig. 9.5 The Cartesian a b

product of three graphs

Pz X K'; X P4. (a) P4

Generators. (b) Product
[ 7 7
P, K

Fig. 9.6 The Cartesian a

product of S by P,. (a)
Generators. (b) Product

in Fig. 9.5. The product of a general graph and a path, S X Py, is illustrated in
Fig. 9.6.

9.2.3 Strong Cartesian Product of Two Graphs

This is another Boolean operation, known as the strong Cartesian product. The
strong Cartesian product is a Boolean operation S = KXH in which, for any two
distinct nodes u = (uy,u;) and v = (vy,v,) in N(K) x N(H), the member uv is in M
(S) if:

u; = vy and wv,EM(H), (9.2a)
or
u; = vy and uv,EM(K), (9.2b)

or
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Fig. 9.7 The strong b
Cartesian product of two vy up) (Vvp)  (viwp)
simple graphs. (a) Vi
Generators. (b) S = KKH
-
Lll UZ V2 W2
(ug ,u2) (ul Vo) (ug,wy)
K=P, H=P; S
ulvleM(K) and UZVQEM(H). (92C)

As an example, the strong Cartesian product of K = P, and H = P; is shown in
Fig. 9.7.

In this example, the nodes (u;,u;) and (vy,v,) are joined, since the condition
(9.2¢) is satisfied.

Examples. In the first example, the strong Cartesian product P;XP5 of a path graph
with seven nodes, denoted by P; and the path graph Ps is illustrated in Fig. 9.8.
As the second example, the strong Cartesian product C;XP, is shown in Fig. 9.9.

9.2.4 Direct Product of Two Graphs

This is another Boolean operation, known as the direct product, introduced by
Weichsel [6], who called it the Kronecker Product. The direct product is a Boolean
operation S = K*H, in which, for any two nodes u = (u;,u,) and v = (v{,v,) in N
(K) x N(H), the member uv is in M(S) if:

uIVIEM(K) and U2V26M(H>. (93)

As an example, the direct product of K = P, and H = P3 is shown in Fig. 9.10.
Here, the two nodes (uy,u,) and (vy,v,) are joined, since the condition (9.3) is
satisfied.

Examples. The direct product P;*Ps of the path graph P; and path graph Ps is
illustrated in Fig. 9.11.
As the second example, the direct product C;*P, is shown in Fig. 9.12.



Fig. 9.8 Strong product

g.9.9 Strong product

Fig. 9.10 The direct

(up,u2) (up,vp) (ug,wy

Fig. 9.11 Direct p:
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Fig. 9.12 Direct product
representation of C;*P,

9.3 Analysis of Near-Regular Structures Using Force
Method

Different simple and efficient methods for the analysis of structures are provided in
Kaveh [3]. In the analysis of some near-regular structures one can solve the regular
part independently and then superimpose the effect of the additional part. For such
models, the matrices corresponding to regular part have canonical forms and their
eigensolution or inversion can easily be performed [1]. The effect of member
changing the regular to a near-regular structure can then be added. In this method,
linear behaviour is assumed for the structures.

Here we use the force method, and instead of selecting a statically determinate
basic structure (standard method) we employ the regular part of the structure as the
basic structure [7].

A new algebraic method is introduced for the force method of analysis for
efficient analysis of large near-regular structures.

In this part, we use the force method, however, instead of selecting a statically
determinate basic structure we employ the regular part of the structure as the basic
structure. Those additional elements are considered as redundant elements. This
method is applied to truss and frame structures. In the present approach we can have
missing elements instead of additional elements.

In order to demonstrate this problem, consider the truss shown in Fig. 9.13a. This
structure consists of a regular part P,&XP; as shown in Fig. 9.13b and has become a
near-regular because of having additional 10 bars. The main aim is to decompose
these two parts in order to arrive at the analysis of the near-regular structure using
the results of the analysis of the regular part. In Fig. 9.13c the positions of the
excessive members are highlighted, where the regular part is shown in broken lines.

It should be mentioned that for some regular structures the stiffness matrices can
be formed in special block forms, known as the canonical forms, Kaveh [3]. Here
we assume that only the members cause irregularity and no additional nodes are
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\v4
»

\v4
Al

Fig. 9.13 (a) An irregular truss. (b) The regular part as the strong Cartesian product P4&P;(. (c)
The excessive members being highlighted [1]

present except those of the regular part, i.e. the nodes of the two ends of each
excessive members are in the regular part of the structure.

At the beginning, methods suggested are presented for the formation of the
matrices required in the force method. Obviously one can also obtain these matrices
by other approaches.

The present method consists of two groups of structures as described in the
following:

The first group is related to the analysis of those structures in which the
excessive members have caused the irregularity. The second group is about those
structures which require addition of some members to alter the near-regular struc-
ture to a regular one. In this case, by assuming pairs of members with two identical
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modulus of elasticity having positive and negative signs are added to those places
where we need to have members to make the near-regular structure into regular one.
In this case, the members with negative sign will be treated as the excessive
members.

In the above force method, the internal forces of the excessive members will be
considered as redundants, and the corresponding forces will be applied at the
regular part of the structure as external loads to incorporate the effect of such
members. Thus the regular part will be the main structure to be analyzed. This
means we analyze the near-regular structure by considering the regular part and
adding the effect of the internal forces of the complementary members as external
loads.

Here we assume that the removal of the excessive members will leave the
structure geometrically stable, and considering the topology of the regular struc-
tures this assumption is quite logical.

In each remaining section first the formulation will be presented, and then
through a simple example the process of analysis will be described in a step by
step manner. Then by some practical examples, the efficiency of the method will be
demonstrated.

First the formation of the flexibility matrix is described. It should be mentioned
that this matrix can be formed using any other available method.

9.3.1 Formulation of the Flexibility Matrix

In this section a method is presented for the formation of the matrix B in the
following form:

B=[B, B] (9.4)

where the ith column of By is a vector of internal force of the structure under a unit
value of a load applied at the ith DOF of the structure (P; = 1), and the ith column
of B, is a vector containing the internal forces of the structure under the unit load
applied at the position of the ith redundant of the (X; = 1) structure.

According to the above definitions for the formation a matrix B we are looking
for a method by means of which having the externally applied loads of the structure
we find the internal forces of the members. In the following a method is presented
for this problem using the equilibrium matrix, though one can also find this
employing the existing traditional method.

In order to calculate the internal forces of the regular structure under the external
loading we proceed as the following:

In the global coordinate system we have
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SA=P = A=S"'P (9.5)

where S™ ! is the inverse of the stiffness matrix of the DOFs of the regular part of
the structure. Using the theorems previously developed for the block matrices, S~ '
can be formed using the blocks constituting S. This matrix can be obtained using
some concepts of graph products or employing concepts from group theory.
According to the definition of equilibrium matrices of the members of the
structure and Eq. 9.5, in general, the following form can be written for the
deformation of the local coordinate systems of the members of the regular structure:

d=AA=A'S'P (9.6)

where A is the equilibrium matrix of the regular structure. Considering the equi-
librium equations in the local coordinate system and Eq. 9.6, in general the vector of
internal forces of the members of the regular structure under the action of an
imaginary external unit load can be obtained as:

Q, =58 =s(A'S7'P) = (sA'ST")P (9.7)

Here s is the block diagonal matrix containing the stiffness of the members of the
regular part of the structure. Therefore the vector of internal forces of a regular
structure can be obtained having the external forces in the following form:

Q,=RP ; R=sA'S"' (9.8)

If X contains the internal forces of the excessive members in the global
coordinate system and P is the external force vector of the structure, then the
internal forces of the members of the regular structure when part of it is near-
regular, can be obtained as:

Q, =RP +RX (9.9)

Thus for the analysis of near-regular structure discussed in here, Q is the vector
of internal forces of the regular structure. The vectors P and X can be expressed as:

X=NX ; P=IP (9.10)

I'is a unit matrix and N is a matrix for transforming the local coordinate system
to the global coordinate system. X is the internal force vector of excessive
members.

Here the method for the formation of A and N is explained. If At is the
equilibrium matrix of a near-regular structure, then by partitioning according to
the numbers of internal forces of the excessive members, the matrices A and N can
be formed as:
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At = [A|N] (9.11)

where A is the equilibrium matrix of the regular structure. In Egs. 9.9 and 9.10 by
taking the common factor and extracting the vector of the assumed forces we have:

Q, =R[I N] {P} (9.12)
X
In general case the internal forces of the near-regular structure will be as follows:
_ |
Q= [ X (9.13)
Therefore adding X to Eq. 9.12 the matrix Q can be written as

[Q] [R|RNTP
o[ 018
Now the matrices By and B; can be formed by partitioning the above matrix

according to the numbering of the internal forces of the excessive members of the
structure in the following form:

B, = PZ{} . B, = [RIN] (9.15)

In the above equations Z is a matrix of zeros with dimensiont x k and I is a unit
matrix of dimension t x t. The matrices By and B; have dimensions (e + t) X k
and (e + t) X t, respectively. t is the total number of internal forces of the excessive
members, k is the DOFs of the near-regular structure in global coordinate system
and e is the number of internal forces of the regular structure.

In this method we need to form the matrix At and in the subsequent section a
simple method will be presented for this formation.

The formation of the matrix B can be summarized as follows:

Step 1: Form the matrices S~ ' and s for the regular structure.

Step 2: Form the matrix A for all the members of the structure consisting of regular
and excessive members.

Step 3: Partition At using Eq. 9.11 and form the matrices A and N.

Step 4: Calculate the matrix R using Eq. 9.8.

Step 5: Calculate the matrices By and B, using Eq. 9.15.
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9.3.2 A Simple Method for the Formation of the Matrix Ar

A general method for the formation of the equilibrium matrix consists of writing
equilibrium of the forces at the nodes of the structure. For a quick calculation of the
matrix At one can assemble the rotation matrices of the members of the near-
regular structure. Then it can be partitioned using the relationship presented in the
previous section. In the following the approach for positioning the rotation matrices
of the members in each column of the equilibrium matrix is illustrated. For the
formation of the equilibrium matrix At of the near-regular matrix we perform the
following process:

If we consider i as the nodal DOFs of the assumed member j in the local
coordinate system, and r are the nodal DOFs of the assumed member j in the global
coordinate system, then the columns corresponding to i in the matrix At will be as
follows:

Ar(ri) = Tjt (9.16)

The remaining rows of these columns are zero. We repeat this process for all the
members of the near-regular structure. Tj is the modified rotation matrix of the jth
member. This matrix can be represented as follows:

Space truss member

Tj:[Tl \—Tl] , T, :[Cosoc Cosp Cosy]

Planar frame member

(9.17)
-1 S| S2
Tj:[Tl ] . Ty=ss,T, Sj:{ }
S2 18
Cosa. Sina. 0 —Cosac  —Sinae 0
T, =|-Sina Cosaa 0| , T, =| Sina —Cosa O
0 0 1 0 0 1

s; is the jth block of the stiffness matrix s. Here, «,  and y are the angles with the
X, y and z axis, respectively.

Similar to Eq. 9.11 the above matrix can be transformed to A and N by
partitioning and numbering the internal forces of the excessive members which
are separated from the structure.
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Algorithm

The algorithm can be summarized as:

Step 1: Formation of the matrices T; for members of the near-regular structure.

Step 2: Formation of the equilibrium matrix At by assembling the rotation matrices
of the near-regular matrix using Eq. 9.16.

Step 3: Formation of the matrices A and N by partitioning of the matrix Ar.

9.4 Analysis of Regular Structures with Excessive
Members

In this section the analysis of those structures for which the irregularity is produced
by excessive members is studied. Here the force method is used for the analysis,
with the only difference that instead of removing member to obtain a statically
determinate structure, members are removed to transform the structure into a
regular one. Here the relationships required for the force method are presented.
Base on the concepts of the force method, the internal forces of the members of the
near-regular structure can be expressed as:

o= 15 |y | ©0.18)

After the formation of the matrix B which was described in Sect. 9.2, one can
calculate the internal forces of the excessive members using the following
relationships:

D2 :BltFBl H D1 :BllFBo (919)
X=-D,'D/P (9.20)

Here F is a block matrix of dimension (e + t) X (e + t) and contains all the
flexibility matrices of the members of the near-regular structure. The matrix D is of
dimension t X k and the matrix D, is of dimension t x t. This means that for
calculating the internal forces of the excessive members, only the inverse of a
matrix of dimension t is needed.

At the end, the forces of X are added to the external force vector P denoted by P*
which is defined as the equivalent external load of the regular structure. According
to this, the displacements of the structure can be obtained by the inverse of the
stiffness matrix of the regular structure as follows:

P* =P+ NX (9.21)
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A=S"'p* (9.22)

where S~ ! is the inverse of the stiffness matrix of the DOFs of the regular structure
and can be obtained using the existing methods, Kaveh [3]. The vector A contains
the displacements of the near-regular structure.

The matrix N is the transformation matrix of the internal forces in excessive
members from local to global coordinate systems.

9.4.1 Summary of the Algorithm

Step 1: Numbering the DOFs, nodes and members of the near-regular structure and
formation of the external force vector P.

Step 2: Formation of the matrices S~ ' and s .

Step 3: Formation of the equilibrium matrix of the near-regular structure using
Eq. 9.16.

Step 4: Calculation of the By and B, matrices using Eq. 9.15.

Step 5: Formation of the flexibility matrix F in a block diagonal form for all the
members of the near-regular structure.

Step 6: Calculation of the matrices D; and D, using Eq. 9.19.

Step 7: Calculation of the vector X using Eq. 9.20.

Step 8: Calculation of the equivalent external load of the regular structure using
Eq. 9.21.

Step 9: Calculation of the nodal displacements of the near-regular structure using
Eq. 9.21.

The above explanations are further explained through the following simple
example.

9.4.2 Investigation of a Simple Example

For the 10-bar truss shown in Fig. 9.14, deleting member 10, the structures become
regular. Here using the force method, the internal force of the member 10 is
calculated and as an additional force it is added to the external forces. Then the
regular structure is analyzed with the new loads.

It should be noted that in the standard force method the basic structure is selected
for a redundant structure is often statically determinate. For the structure of this
example we have four statical indeterminacy and four redundants should be chosen.
However, in our approach the basic structure is selected as a regular structure which
is not necessarily statically determinate.

In this example, EA is assumed to be unit for all the members and the external
load vector is as follows:
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Fig. 9.14 A 10-bar truss P2 P4 P6
transformable to a regular 2l P1 2 4 P3 6 6| P5
structure
4 3 5 1
2 1 10 9
l 1 &
| 2 — 2 —=]

P=[10 0 0 20 0 O]

One of the methods for the formation of the equilibrium matrix is to use the
equilibrium equations of forces at the nodes and formation of the matrix of the
coefficients of the forces. In this example the equilibrium matrix of the near-regular
structure is calculated using this approach. The obtained equilibrium matrix is
partitioned into A and N using Eq. 9.11.

The force equilibrium equations will be as follows:

P, = —Q, — v2/2Q, . Py=0Q; +v2/2Q,
Py =Q,+v2/2Q; — Qs — v2/2Qs ., Ps=+2/2Q; + Qs + v2/2Qy
Ps = Qs + v2/2Q; +2/v5Qy . Pe=+/2/2Q; + Qo + 1/V/5Qyg

The relation between the equilibrium matrix A and the vector of external and
internal forces of the structure can be written as:

P =AQ (9.23)

In this way the matrix A and the partitioning considering the excessive member
10 will be as follows:

0 -1 0 -0.7071 0 0 0 0 0 0
1 0 0 0.7071 0 0 0 0 0 0
A= [A | N]: 0 1 0.7071 0 0 -1 0 -0.7071 0 0
0 0 0.7071 0 1 0 0 0.7071 0 0
0 0 0 0 0 1 0.7071 0 0]0.9844
10 0 0 0 0 0 0.7071 0 110.4472 |

Thus the matrix N will be as
N=[0 0 0 0 0.9844 0.4472]t

The stiffness matrix of the regular structure by elimination of the member
10 will become:
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0.6767 —0.1767 —0.5 0 0 0
—0.1767  0.6767 0 0 0 0
S — —0.5 0 1.3535 0 -0.5 0
0 0 0 0.8535 0 0

0 0 -0.5 0 0.6767 0.1767

0 0 0 0 0.1767 0.6767

Replacing two columns 5 and 6 with columns 3 and 4, and also their
corresponding rows, This matrix will get Form III pattern and calculating its
eigenvalues leads to the formation of S~ '. Here, s is a block diagonal matrix having
the stiffness of the members of the regular structure. Since the structure is a truss,
therefore this matrix becomes a diagonal one.

s = diag{0.5,0.5,0.3535,0.3535,0.5,0.5,0.3535,0.3535,0.5}

In this relation diag represents a block diagonal matrix.
Substituting the above matrices in Eq. 9.15 leads to the formation of By and B,
matrices.

[ 03535  0.8311 01846 0  0.1464 —0.0382]
—0.6464 —0.1688 0.1846 0  0.1464 —0.0382
03535  0.0923  0.4459 02928 0.3535 —0.0923
—0.5 02387 —02612 0  —0.2071 0.0540
Bo—| © 0 0 0587 0 0

—0.1464 —0.0382 —0.1847 0  0.6464 —0.1688
02071  0.0540 02612 0 05 02387
—0.3535  0.0923 —0.4459 02928 —0.3535 0.0923
—0.1464 —0.0382 —0.1847 0  —03535 0.8311
.0 0 0 0 0 0o |

B, = [—0.1138 —0.1138 —0.2749 0.1610 0 —0.5026 —0.5540 0.2749 —0.0557 1]'

The flexibility matrix of the near-regular structure F in general is a block
diagonal matrix. Since the considered structure is a truss, thus this matrix has
numerical values in its diagonal.

F = ding{2,2,2v2,2v2,2,2,2v2,2v2,2,2V5}

Using Eq. 9.19 the matrices D, and D, are formed as follows:

D, = [—0.8719 —0.2277 —1.0997 0 —2.1050 —0.1109];
D, = [6.4045]

Now employing Eq. 9.20, the internal forces of the excessive members are
calculated as:
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X=-D,”'D,P
1 1 4 t
~ %045 < | -08719 ... 0 ...|-[10 00200 0] =-1.3624

Substituting the values of X in Eq. 9.21, the vector P* can be obtained. Now
according to Eq. 9.22, multiplying this vector with S~ !, the displacement vector of
the nodal forces of the near-regular structure can be obtained.

P* = {10,0,0,20,1.2177,0.6089}'
A ={25.8839 6.7609 12.6449 23.4314 8.3473 —3.0400}

It should be noted that the aim of this example was the explanation of the method
by means of a simple example and for showing the capabilities of the presented
method is not sufficient. The reduction in dimensions of the matrices achieved by
the present method and the speed of calculation will be illustrated in Sect. 9.5.

9.5 Analysis of Regular Structures with Some Missing
Members

In this section we consider those structures which need addition of some members
to become a regular one. Obviously the method presented in the previous section
can not be applied directly for these structures. However, for transforming this case
to the previous one, a pair of members with equal modulus of elasticity having
different signs, are added where we have lack of members for regularity. In the next
step the members with negative modulus of elasticity are considered as excessive
members and separated from the structure. The remaining process of the analysis is
the same as the previous case. The internal forces of the members with negative
modulus of elasticity are calculated and added to the external forces. Then the
regular structure with the external loads together with the internal forces of the
excessive members which are applied as the additional external forces, is analyzed.
In the following a simple example is considered for further explanation.

9.5.1 Investigation of an Illustrative Simple Example

In this section a simple example is used to describe the process of the algorithm. In a
4-bar structure shown in Fig. 9.15a, it is obvious that if we add a member between
the nodes 2 and 3, the structure will be transformed into Form II and one can easily
calculate its inverse. Now we add two members 5 and 6 of identical properties have
modulus of elasticity of different signs between the two nodes 2 and 3. This is
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Fig. 9.15 (a) An irregular structure. (b) The irregular structure with a pair of members being
added. (c) Representation of the internal forces in the regular structure. (d) The added member
with negative modulus

logical assumption because the property of one member can be nullified by the
other member.

Member 6 has negative modulus of elasticity and we consider it as a member
separation of which transforms the structure into a regular one as shown in
Fig. 9.15c. The structure obtained in this way is equivalent to the basic structure
of the force method. From here onward all the previous steps can be employed.
Figure 9.15d shows the excessive bar with negative modulus of elasticity which is
separated from the truss shown in Fig. 9.15b.

The external force vector will be as follows:

P=[0 0 0 —10]
For the formation of the equilibrium matrix of the structure shown in Fig. 9.15b,

one can either use the equations corresponding to the equilibrium of the forces at
the nodes, or alternatively use Eq. 9.16.
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1 0 0 0.8944 0 0

A 0 0 -1 -0.4472 0 0
o1 oo 0 0.8944 | 0.8944
0 0 1 0 0.4472 | 0.4472

The matrices A and N can be obtained by partitioning the above matrix
according to Eq. 9.11 and numbering the internal force of the separated member.

1 0 0 0.8944 0 0
A— 0 0 —1 —-0.4472 0 . N= 0

01 0 0 0.8944 ’ 0.8944

0 0 1 0 0.4472 0.4472

The matrix S™' corresponding to the regular structure shown in Fig. 9.15c, and
the matrix s are as follows:

1.5935 2.0508 —0.4065 1.9491
2.0508 9.8338 —1.9491 9.3465
—0.4065 —-1.9491 1.5935 —2.0508
1.9491 9.3465 —2.0508 9.8338

s =diag{0.5 0.5 1 0.4472 0.4472}

S'=

It can be seen that the matrix S can be transformed into Form II by multiplying
the row and column 2 by —1. Using the above matrices and Eq. 9.8, the matrix R is
obtained as:

0.7967 1.0254 —0.2032  0.9745
—0.2032 —-0.9745 0.7967 —1.0254
R=|-0.1016 -0.4873 —0.1016 0.4872
0.2272 —1.1464 0.2272 —1.0896
0.2272 1.0896  0.2272 1.1464

Using Eq. 9.15, the matrices By and B, are obtained as:

0.7967 1.0254 —-0.2032 0.9745 0.2540
—0.2032 —-0.9745 0.7967 —1.0254 0.2540
B, — —1.1016 —-0.4873 —0.1016 0.4872 | B, — 0.1270
0.2272 —1.1464 0.2272 —1.0896 |’ —0.2840
0.2272 1.0896  0.2272 1.1464 0.7159

0 0 0 0 1

The flexibility matrix F for the truss shown in Fig. 9.15b will be as follows:
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F=diag{2 2 1 22360 22360 —2.2360}
Using Eq. 9.19 the following matrices are obtained:
D, =[0.5081 2.4364 0.5081 2.5635]; D, =[-0.6351]
The matrix X is calculated from Eq. 9.20 as

X=-D,!D,P=
x [0.5081 2.4364 0.5081 2.5635].[0 0 0 —10]' = —40.3607

0.6351

Adding X to the vector of external loads according to Eq. 9.21 and multiplying
the matrix S~ employing Eq. 9.22 we will have:

P*=1[0 0 —36.0997 —28.0498]'
A=[—40 —191.803 0 —201.803]"

Finally, using X and Eq. 9.14 one can find the internal forces of the structure
shown in Fig. 9.15b as follows:

Q=[-20 0 —10 223607 —40.3607 —40.3607]"

One can recognize the equality of the internal forces of the entries 5 and 6.

9.6 Practical Examples

Here four examples are presented. The first two examples correspond to Sect. 9.3
and the third example belongs to Sect. 9.4. The fourth example corresponds to the
combination of the methods presented in Sects. 9.3 and 9.4. The latter example is
chosen as a frame structure to showing the applicability of the presented method to
other skeletal structures other than trusses.

Example 1. A truss with 47 members is considered in the form of a single layer
rotational dome, having two members 26 and 27 making the truss a near-regular
one, Fig. 9.16. If we remove these two members then the remaining regular
structure can easily be solved using the method of Kaveh and Rahami [8]. The
value of EA = 1 N is assumed to be identical for all the members and the force
Pg =10 N and Pf, =20 N are applied at nodes 2 and 8, in z direction and
y direction, respectively.

For solution of this problem the members 26 and 27 are considered as excessive
members. For the above near-regular structure the equilibrium matrix At has
dimension 30 x 47 and by partitioning using Eq. 9.11, the matrices A and N with
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Fig. 9.17 (a) The regular structure obtained by deleting the excessive members. (b) The deformed
shape of the structure of Example 1

dimensions 30 x 45 and 30 x 2 are obtained. The matrix S of the regular structure
with dimension 30 x 30 is formed by deleting the excessive members, shown in
Fig. 9.17a, as follows:

5
S =

(P; ® Ay)

i=1

In this relation the matrices A; and P; are the submatrices constituting the
matrix S.

Using the method presented in Kaveh and Rahami [8] the inverse of the matrix
S is formed by using the eigenvalues and eigenvectors of five 6 x 6 matrices.
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s is a diagonal matrix of dimension 45 x 45 containing the stiffness matrices of
the members of the regular structure and F is a diagonal matrix of dimension
47 x 47 consisting of the flexibility matrices of the near-regular structure . There-
fore the matrices By and B; of dimension 47 x 30 and 47 x 2 can be obtained
using the Eq. 9.15.

The matrices D; and D, of dimension 2 x 30 and 2 x 2 obtained by using
Eq. 9.19 as follows:

D, =

3 14 30
5.6163 ... —=30.9438 ...
—62.3208 ... —29.6975

D, _ | 4267122 —156.126
27 | —-156.126 267.2256

The vector of the internal forces of the excessive members X can be calculated
from Eq. 9.20 as:

1 3 14 30
X:—inv<{426'7122 156~126D .. 56163 .. —30.9438 ...
—156.126 267.2256 . —62.3208 ... —29.6975 ...

1 3 14 30]"
[o . 10 .. 20 .. o}
X={-1.9283,0.7148}'

The matrix of the internal forces of the near-regular structure can be obtained by
substituting X in Eq. 9.14 as follows:

t

. 1 2 3 4 44 45 46 47
Q= [8.7095 0.1002 —0.6626 —2.1497 ... —0.6706 0.4741 —1.9283 0.7148

We substitute X in Eq. 9.21, and substitute the vector of the equivalent external
forces of the regular structure in Eq. 9.22. The vector of the displacements for the
near-regular structure can then be obtained using the inverse of the stiffness matrix
of the regular structure.

A= 1 2 3 4 27 28 29 30 t
= | —70.6421 —47.0104 399.9523 117.5682 ... —9.5185 110.8598 56.1357 90.5555]

The deformed shape of the structure is shown in Fig. 9.17b.

If we solve the structure by a conventional method we have to find the inverse of
a matrix of dimension 30 x 30, while the present approach requires the inverse of
5 matrices of dimension 6 x 6 and the inverse of the matrix D; of dimension2 x 2.

Example 2. A communication space tower studied in Kaveh and Rahami [8], is
considered in here. This model can be expressed as the product two graphs. In
practice the towers have horizontal belts employed in different heights. These belts
make their model irregular. In here we want to analyze those towers which have
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Fig. 9.18 A communication space tower with five pairs of excessive members being shown at the
central core of the structure

belts at the central core of the structure (Fig. 9.18). If we consider these members as
additional ones, we will obtain a regular structure. Such a regular structure can be
generated by rotation of one of its faces. Using the force method the internal forces
of the excessive members will be calculated and together with other external loads
will be applied to the regular structure.

This tower has 84 nodes and 330 members. The load applied to the structure is
P =1 kN applied in all DOFs of the 4 upper nodes of the tower. The value of
EA = 100 N for all members is considered to be identical.

The structure has 80 free nodes and 330 members and 10 members belong to the
belt of the structure.
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Forming the equilibrium matrix of the near-regular structure which is of dimen-
sion 240 x 330, and its partitioning by employing Eq. 9.11, the matrices A and N of
dimensions 240 x 320 and 240 x 10 can be obtained.

The stiffness matrix S of the regular structure is of 240 x 240 and has the
following form:

4

S=) (PioA)

i=1

Using the method presented in Kaveh and Rahami [8], the inverse of the stiffness
matrix of the regular structure can be obtained using the eigenvalues and eigenvec-
tors of four 60 x 60 matrices. In this example, since the structure is truss, s is a
diagonal matrix of dimension 320 x 320 containing the stiffness matrices of the
members of the regular structure. Having the above mentioned matrices and using
Eq. 9.15 one can easily form the By and B; matrices which are of dimension
330 x 240 and 330 x 10. For this structure, the flexibility matrix F of the near-
regular structure has dimension 330 x 330. Having the matrices By, B; and F, the
matrices D; and D, of dimensions 10 x 320 and 10 x 10 are obtained from
Eq. 9.19. Here D; is as follows:

[ 02999 —0.1033 0.2226 —0.2225 0.3121 -0.3121 0.4017 —0.4017 0.4912 —0.4912
—0.1033 0.2999 —-0.2225 0.2226 —0.3121 0.3121 —0.4017 0.4017 —04912 0.4912
0.2226 —0.2225 29468 —2.7704 5.5850 —5.5850 8.3715 —8.3715 11.1580 —11.1581
—0.2225 0.2226 —2.7704 2.9468 —5.5850 5.5850 —8.3715 8.3715 —11.158 11.1581
0.3121 —0.3121 5.5850 —5.5850 15.3371 —15.1836 252968 —25.296 35.3849 —35.385
—0.3121 0.3121 —5.5850 5.5850 —15.183 15.3371 —25.296 25.2968 —35.385 35.3849
0.4017 —-0.4017 8.3715 —8.3715 25.2968 —25.2968 48.2162 —48.085 71.7608 —71.760
—0.4017 0.4017 —8.3715 8.3715 —25.296 252968 —48.0854 48.2162 —71.760 71.7608
04912 —0.4912 11.1580 —11.158 353849 —35385 71.7608 —71.760 116.622 —116.514

| —0.4912 0.4912 —11.158 11.1580 —35.385 35.3849 —71.760 71.7608 —116.514 116.622 |

D, =

In this way and using Eq. 9.20, the vector of internal forces of the excessive
members can be obtained as

X = {—84.7178, —84.7178, — 85.0153, — 85.0153, — 106.172, — 106.172, — 133.071, — 133.071, — 163.915, — 163.915}'
Adding X to the external load vector using Eq. 9.21 and applying the load to the

regular structure in Eq. 9.22, the vector displacements for the near-regular structure
is obtained. The nodal displacements in some DOFs are as follows:

A— 61 121 181 t
= .1, 9513.052 ... 314684 ... 65318.71 ?‘!0.]

The deformed shape of the structure is shown in Fig. 9.19.
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Fig. 9.19 A
communication
transmission tower together
with its deformation
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For solution of this structure using a conventional stiffness method we have to
find the inverse of 240 x 240, while the present approach requires the inverse of
four matrices of dimension 60 x 60 and the inverse of the matrix D; of dimension

10 x 10 to complete the analysis of the near-regular structure.
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Fig. 9.20 (a) Two and three dimensional representations of the 43-bar structure. (b) The
corresponding regular structure [1]

Example 3. Consider a 43-bar truss structure shown in Fig. 9.20a. This structure
becomes a cyclically symmetric structure by addition of two members between the
nodes 12 and 14, and nodes 11 and 13.

A pair of members with identical geometry and equal modulus of elasticity
having different signs, are added where we have lack of members for regularity. In
the next step the members with negative modulus of elasticity are considered as
excessive members are separated from the structure. The external forces consist of
P2 = P¥ = 10 N. For all the member we consider EA = 1 N.

Forming the equilibrium matrix At of the near-regular structure according to
Eq. 9.16, which is of dimension 30 x 47, and its partitioning by employing
Eq. 9.11, the matrices A and N of dimensions 30 x 45 and 30 x 2 are obtained.
It should be noted that the matrix At corresponds to the near-regular structure
which has both members of positive and negative modulus of elasticity.
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t

1 19 27 30
N= |0 ... 0.0248 0.8650 0.5010 0 0 0 0 0 0 ... 0
0 ... 0 0 0  —0.1375 0.8347 0.5332 0.1375 —0.8347 —0.5332 ... 0

The matrix S corresponding to Fig. 9.20b can be expressed as

S:i(Pi®Ai)

i=1

Thus as we observed in Example 1, the inverse of the stiffness matrix which is of
dimension 30 x 30 can be calculated by evaluating the eigenvalues and eigenvec-
tors of five matrices of dimension 6 x 6. The diagonal matrix s is of dimension
45 x 45 containing the stiffness matrices of the members of the structure shown in
Fig. 9.20b. The diagonal matrix F is of dimension 47 x 47 containing the flexibil-
ity matrices of the members of the regular structure together with the excessive
members.

Using Eq. 9.15 one can easily form the By, and B; matrices which are of
dimension 47 x 30 and 47 x 2. Having the matrices By, B; and F, the matrices
D, and D, of dimensions 2 x 30 and 2 x 2 are obtained from Eq. 9.19. Here D, is
as follows:

D, _ | ~19:4620  1.8186
27| 1.8186  —10.7629

Equation 9.20 can be employed to find the vector X as:

X=-D,'D,P |
- 3 14
_ —19.4620 1.8186 ... 03207 ... 13854 ... [l 3 14 301"
18186 —107629] | 00640 ... 03018 ... | L0 - 10 100
«_ [ 08584
| —=0.1949

Using Eq. 9.21 the equivalent external forces of the regular structure are
obtained, and using the inverse of S one can easily find the nodal displacements
of the near-regular structure by Eq. 9.22.

p* — [! 3 14 19 27 301t
=10 ...10 ... 10 ... 0.0213 0.7426 0.4301 0.0268 —0.1627 —0.1039 —0.0268 0.1627 0.1039 ... 0

A— 1 2 29 30 ¢
= [7105.512 —134.943 380.134 51.383 ... —18.489 50.4185 —75.205 116.529}

The internal forces of the regular structure and the excessive members can be
found using Eq. 9.14 as



404 9 Analysis of Regular Structures Using Graph Products

Fig. 9.21 (a) A 24-story irregular frame with bracing. (b) The regular part of the irregular frame
with fictitious columns of positive modulus of elasticity being added. (¢) The bracing part
consisting of 32 bracing elements and 49 fictitious bending elements with negative modulus of
elasticity being added as shown at the fop of the structure [1]

_ 1 2 3 5 6 43 44 45 46 47 t
Q= [6.8906 —0.9281 1.7904 —0.950 —5.60 ... —0.0003 0.8584 —0.1949 0.8584 70.1949}

As it can be seen, the internal forces in members 44, 46 and 45, 47 which are the
added pairs of members are the same as the entries of X.

For solution of this near-regular structure using a conventional stiffness method
we have to find the inverse of 30 x 30, while the present approach requires the
inverse of 5 matrices of dimension 6 x 6 and the inverse a matrix of dimension
2 x 2 to complete the analysis of the near-regular structure .

Example 4. A 24-story 3D frame is shown in Fig. 9.21a, with 49 columns and
84 beam in each story. The dimensions of all the beams and columns are assumed to
be identical in all the stories. In each face of the building 8 bracing elements are
added to increase the stiffness of the structure. Naturally these elements make the
model irregular. Here using the presented method, the bracing elements are
decomposed from the structure the analysis is performed for two separate parts,
namely the regular bending frame and the excessive bracing elements.
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If the top part of the structure is fixed similar to the bottom part, then the bending
frame structure can be easily analyzed using the method presented in [3]. Therefore
here we consider pairs of bending elements with positive and negative modulus of
elasticity at end part of the structure, similar to the columns of the other stories, as
illustrated in Fig. 9.21b. The columns are connected to the top part of the structure
and fixed at the other ends. The elements with negative modulus of elasticity are
considered as excessive members and are separated from the structure. Therefore
the excessive members consist of 32 bracing elements and 49 bending elements
with negative modulus of elasticity. These elements are highlighted in Fig. 9.21c. In
this way, the regular structure consists of a 24 story frame together with additional
bending elements with positive modulus of elasticity as illustrated in Fig. 9.21b.

The required parameters for the analysis are as k = 7, 056, t = 326, and
e = 19, 446. Using Eqgs. 9.16 and 9.17 and employing the rotation and stiffness
matrices of the elements in their local coordinate systems, the matrix At of
dimension 7056 x 19772 can be constructed. For the formation of the stiffness
matrices of the elements, the local coordinate systems should be selected such that
the form given in Eq. 9.17 is formed. For each bending elements, six internal forces,
and for bracing elements only one axial force are assumed. It should be noted that
the fictitious elements with &= modulus of elasticity contribute in the formation of
this matrix.

By partitioning the matrix At we obtain two matrices A and N having dimen-
sions 7056 x 19446 and 7056 x 326, respectively. Since the regular part contains
3,241 bending elements, thus the unassembled stiffness matrix s is of dimension
19446 x 19446. The assembled matrix S of the regular part has dimension
7056 x 7056. Utilizing the method of Ref. [3], the inverse of this matrix can easily
be obtained calculating the eigenvalues of 24 matrices of dimension 294 x 294.

In this way forming the inverse of the stiffness matrix and using Eq. 9.8, the
matrix R of dimension 19446 x 7056 can be obtained. Having this matrix the
matrices By and B of dimensions 19772 x 7056 and 19772 x 326 will be formed
using Eq. 9.15. The flexibility matrix F contains the flexibility of all the elements of
the near-regular structure (bending elements, bracing elements, and pair of fictitious
elements with + and — signs). This matrix is a block matrix such that for the
bending members blocks are 6 x 6 and for the bracing members the blocks are
1 x 1. Thus the dimension of F is 19772 x 19772.

With help of Eq. 9.19 the matrices D; and D, of dimensions 326 x 7056 and
326 x 326 are obtained, respectively. Using Eq. 9.20 and finding the inverse of D,
leads to the vector of unknown X of dimension 326 x 1. Substituting this in
Eq. 9.21, the equivalent external force vector of the regular part of the structure is
obtained. Multiplying the inverse of the stiffness matrix of the regular part, the
displacement vector of the near-regular structure of dimension 7056 x 1 is
obtained.

It can be observed that the analysis of the problem with the help of this method
for frame structures is the same as that of the trusses which were discussed in the
previous examples, with the only difference that the rotation and stiffness matrices
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for the bending elements in the local coordinate systems should be defined
according to the Eq. 9.17.

In this problem instead of inverting the stiffness matrix of dimension
7056 x 7056 in direct analysis of the near-regular structure, one needs to find the
inverse of the matrix D, of dimension 326 x 326, and calculate the eigenvalues of
24 matrices of dimension 294 x 294. This shows the efficiency of the present
method. Obviously increasing the number of stories this efficiency will become
more apparent. In other words in this method a matrix of dimension 7056 is
decomposed into 24 matrices of dimension 294.
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Chapter 10

Simultaneous Analysis, Design

and Optimization of Structures Using Force
Method and Supervised Charged System
Search

10.1 Introduction

Developing methods with higher computation efficiency is a crucial subject in
advanced engineering problems of multi-physics nature. For instance, analyzing
structures with larger number of members requires larger memory size and longer
computation time. In addition, this costly computation has to be repeated many
times, typically over 5,000 times, because the cross section size of the members is
not determined in the early stages of designing such structures. Therefore, reducing
the size of structural matrices and eliminating the unduly repetitions in the design
and analysis procedures can lead to a considerable reduction in the computation
efficiency [1, 2]. In this chapter, this goal is achieved utilizing meta-heuristics
algorithms which minimize the energy function indirectly. Besides, design proce-
dure and minimizing the weight of the structure is added to the analysis procedure.
One of the most reliable meta-heuristic methods recently developed is Charged
System Search (CSS) [3, 4], that is used in here. In this chapter, supervisor agents
are considered to increase the exploration ability of the CSS algorithm. This method
is called supervised CSS abbreviated as SCSS. Also a new formulation of the
penalty function is made to improve the performance of the supervised CSS.
Designing structures with minimum weight can be achieved by using minimum
energy methods, and members with pre-defined stress ratios [5], instead of the
direct solution of classic equations. This results in avoiding not only the repetitive
computations in the design and analysis, but also avoiding the computation of the
solution of equations with large matrices. For this purposed, one needs to formulate
the equations based on the minimum energy principle, and employ them in an
efficient optimization algorithm. Combining the SCSS algorithm and the force
method provides a suitable means for this purpose. The former is a suitable
optimization algorithm and the latter can be used to derive the energy equations.
In the first part of this chapter, supervisor agents are introduced. In the second
part energy formulation based on the force method is derived and the supervised
SCSS algorithm is applied to the analysis procedure. In the third part, using the

A. Kaveh, Computational Structural Analysis and Finite Element Methods, 407
DOI 10.1007/978-3-319-02964-1_10, © Springer International Publishing Switzerland 2014
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SCSS and prescribed stress ratios, structures are analyzed and designed, and finally
in the last part weight minimization is performed by imposing the analysis proce-
dure as a constraint to the SCSS. In recent years the CSS has been applied
successfully to many engineering optimization problems. For optimal design of
structures, CSS has performed very well and improved all of the resulted design
parameters and weights achieved by the other algorithms. Large-scale structures are
analyzed and designed in this chapter in order to show the accuracy of the method
when applied to different kinds of structures.

10.2 Supervised Charged System Search Algorithm

In the CSS algorithm, each vector of variables is an agent that moves through the
search space and finds the minimal solutions [3, 4]. Throughout the search process,
an agent might go to a coordinate in the search space that already has been searched
by the same agent or another. If this coordinates have a good fitness, it will be saved
in the Charged Memory [3] but if this coordinate does not have a good fitness, it will
not be saved anywhere. Therefore, this step of the search process becomes redun-
dant. This unnecessary step adversely affects the exploration ability of the algo-
rithm. In this chapter, the supervisor agents are introduced to improve the
exploration ability of the CSS algorithm. The supervisor agent is an independent
agent of constant values that repels the agent if its coordinate has a bad fitness or
attracts the agents if its coordinate has a good fitness. This procedure is repeated in
all of the iterations and gives an overall view of the search space. The number of
supervisor agents is selected at the beginning of the algorithm, and then their
constant coordinates in the search space are determined as follows:

(i = 1) [Xmax,j = Xmin,j]

XSpi = NOSA — 1

+Xmin,j (101)

where NOSA is the number of supervisor agents, and xs;; is the jth variable of the
ith supervisor agent; Xpin j and Xpax j are the minimum and the maximum limits of
the jth variable. The kind of the force for these agents is determined as

p = log (E) (10.2)

fit;

where p is the same as the parameter in the original version of the CSS [3], fit; is
equal to the fitness value of the ith supervisor agent and fitis the average value of the
fitness of the normal agents. Calculating other properties of the supervisor agents
such as force and radius are similar to the standard CSS algorithm [3]. Supervisor
agents do not move from their coordinate determined from Eq. 10.1, yet they apply
additional forces on the normal agents. By doing so, they determine the fitness
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values of their fixed coordinate and its neighborhood, resulting in a better explora-
tion ability of the CSS algorithm.

10.3 Analysis by Force Method and Charged System
Search

In the presented approach, force method is applied to analyze structures. Since this
method leads to less number of unknowns, it is preferred to displacement method.
In the force method, the redundant forces are unknowns, whereas in the displace-
ment method, the nodal displacements are unknowns. In this method [1, 2, 5], the
energy relationships of the structure that satisfies the compatibility, force-
displacement and equilibrium conditions are derived, and then, minimized using
the SCSS. Suppose {p} = {p1.p2. - -.Pn}" is the vector of nodal forces, {q} = {qi,
q2,- - .,qn}t is the vector of redundant forces, and {r} = {s1,50,. . -,Sm}" comprises of
the internal forces of the members. Equilibrium condition results in the following
equation [1, 2]:

r=Bop +Biq = [By B1]|:z] (10.3)

In addition, the complementary energy function is:
U = = r'Fur (10.4)

where [F,,] is the unassembled flexibility matrix of the structure. According to the
Castigliano’s principle, a group of the redundant forces that minimize the comple-
mentary energy function is the exact solution that satisfies compatibility condition.
By substituting {r} from Eq. 10.3 in Eq. 10.4, the following equation obtained:

U3l ot m| P (105)

where [H] = [By Bj]'[Fm][Bo Bi]. Decomposing matrix [H] into four
submatrices leads to:

1

Us = ({p}t [pr] {p}+ {P}t [Hpq] {a} + {q}t [qu] {p}+ {‘l}t [qu] {p})

(10.6)

NS}

In the classical method, the derivative of U in terms of {q} is calculated and is
equated to zero leading to:
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{a} = —[Hqq] " [Hy) {p} (10.7)

Since [H] is symmetric, [Hgpl' = [Hpql, Ref. [S].

Accordingly, in the classical method the inverse of [Hqq] needs to be calculated.
This is a difficult task, and requires extensive computer memory, especially in the
case of large scale structures. Therefore, finding {q} that minimizes the comple-
mentary energy without calculating the inverse of [Hgp] reduces the computation
time and computer memory. The first term of Eq. 10.6 is constant and the second
and third terms are equal. It can be shown that the third and fourth terms of U* are
symmetric. Therefore

Fu = {q}'[Hg] {p} (10.8)

is the equation that should be minimized [5].

Enhanced Charged System Search [4] is used to minimize Eq. 10.8. In this part,
the force method analysis is applied to different types of structures to illustrate the
performance of the method.

Case Study 1. The first example is an 11-member truss with three degrees of
statical indeterminacy, as shown in Fig. 10.1. Consequently, the energy function
includes three variables.

The classical method that calculates the exact and minimum amount of U leads
to 419.8475, whereas, using the present approach with CSS, U° = 419.8476 is
obtained and {q} is calculated as:

{q} = {4.6394 —3.7629 8.1900}'

The optimization history is shown in Fig. 10.2. The number of agents is selected
as 20.

Case Study 2. The second example is an unbraced planar frame with constant EI
having 36° of statical indeterminacy, as shown in Fig. 10.3. In this example, the
axial force, shear and moment in the first node of the beams are considered as the
redundant forces. As a result, the energy function includes 36 variables. Note that
only the bending energy is considered as the energy of the frame. Loading condition
is considered as:

1. Aload —10 kN in the y-direction at nodes 8-11,
2. A load 10 kN in the x-direction at nodes 8—11,
3. A bending moment 10 kN.m in the x-y surface at nodes 8—11.

The exact calculation of U leads to 1,234.8; while it is U = 1,249.2 utilizing
the CSS algorithm. Figure 10.4 shows the variation of Fy versus the number of
iterations. As shown above, there is a very close agreement between the exact and
the calculated value for the energy function, verifying the accuracy of the algo-
rithm. In this case, the redundant forces are obtained as follows:
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Fig. 10.1 A simple truss and the selected basic structure (Case Study 1): (a) A planar truss. (b)
The selected basic structure
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Fig. 10.2 Variation of Fy versus the number of iterations in the 11-member truss (Case Study 1)

{q} = {1.1275,5.3155,14.0096,2.4854,4.8316,12.0549,4.0405,4.2845, 10.7913,
—3.0551,1.2459,2.9740,—4.0016,1.3874,3.2303,5.5762,1.4122,1.3221,0.0660,
0.2315,0.4707,0.1680,0.2155,0.4678,0.4265,0.1987,0.2503,—0.1444,0.0425,
—0.0728, 0.0540,0.0052,0.0351,0.0373,0.0847, 0.0901 }'

Case Study 3. In the third example, a 40-element grilling system is considered to
illustrate the accuracy of the force method and CSS in analyzing space frames.
Geometry, nodal loads and basic structure are shown in Fig. 10.5. Torsion and shear
in z direction, and moment around the axis with a greater moment of inertia in each
member are considered as redundant forces.

Both the torsion and bending energies are considered as energy function in this
structure. G, I and E are constant for members and the Poisson’s ratio (v) is
considered 0.3. The cross-sections of members are considered to be 272 W-section
as given in LRFD-AISC. Using the least square regression, the polar moment of
inertia (J) is expressed as a function of the moment of inertia (I):



412 10 Simultaneous Analysis, Design and Optimization of Structures Using Force. . .

_ @ @ ® @
3m
1 &) 2) ® ®
3m
1 @ © @ @
3m
1 @ ® @ @
3m
J_ @ @ @ @
=zz2 EZZ3 EZZ3 =
Y l 5m ! 5m ! 5m l
|_.. X
Fig. 10.3 An unbraced planar frame (Case Study 2)
5500
5000
4500 +
4000
3500
=]
L
3000
2500
2000 +
1500
1000 A . A . )
200 400 600 800 1000

Iteration

Fig. 10.4 Variation of Fy versus the number of iterations in the unbraced planar frame analysis
(Case Study 2)
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Fig. 10.5 A 40-element grillage (Case Study 3). (a) Geometry. (b) Node and element ordering. (c)
Basic structure

J=1.041 (10.9)
Also
E =2G(1 +v) (10.10)

By substituting Egs. 10.9 and 10.10 in [F,], the energy function is derived. The
exact calculation of energy using the classical method leads to 170,840, whereas,
using the present approach U® = 177,460 is obtained. The redundant forces, {q},
are shown in Table 10.1.

Case Study 4. The Last example of this part is a 26-story tower with 246° of statical
indeterminacy selected from Ref. [6], as shown in Fig. 10.6a, b. The energy
function has 246 unknowns. The cross section and module of elasticity for all of
the elements are considered constant and equal. Geometry and basic structure is
shown in Fig. 10.6c.

The loading on the structure consists of:

1. The vertical load at each node in the first section is equal to —3 Kkips
(—13.344 kN)

2. The vertical load at each node in the second section is equal to —6 kips
(—26.688 kN)

3. The vertical load at each node in the third section is equal to —9 kips
(—40.032 kN)
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Table 10.1 The caleulated ¢ ™ 0914 ¢,y —0.0084 q3 —0.0312 gss 0.7119
Z%C}‘;i‘e‘ﬁz;tf‘;cileﬁn‘gsysmm @ 02167  qu —18335 qus —5.1336 qss —4.0377
(Case Study 3) x 10* q3  —3.9005 qz 0.7346  q3¢ —0.0287 ¢qs; —0.2541
qs  —0.6323 qum —1.0314 qu 05316 qsg 0.0398
qs 0.314 qz3 3.6083 qqu —19493 qs9 —6.1707
qs  —03381 qu4 00769 qq 00136 g 2.1362
¢ 01307  qus —0.0497 qu —0.0397 qe 0.1051
qs —0.0469 qp6 0.0678  q44 0.0061 g2 —3.0445
Qo 28322  qu 50685 qus 45725  qe 19832
Qo 04806  qug 1.0572  qu —0.2432 qes —0.0718
qun —0.3335 q —0.1714 q4;7 —1.6436 qgs 0.2401
qiz 2.1219 qzo 5.5207 qqs  0.296 qes 1.3579
Qs —0.7939 qy 04753  qe 12002  qg 0.0941
Qe 02277 qs2 —4.0345 qsp —5.6626 Qg —2.4965
qs 3.3177 qsz 0.0442 qs; 0.1194 qee —0.2361
Qs 01725  qas —03564 qs; 1.1286  q7e —0.8848
qQin —1.4645 q3s —3.7443 qs3 —5.547 qu  —3.9475
qs —0.8168 qs6 0.055 qss —0.17 q7z 0.2642

4. The horizontal load at each node on the right side in the x direction is equal to —1
kips (—4.448 kN)

5. The horizontal load at each node on the left side in the x direction is equal to 1.5
kips (6.672 kN)

6. The horizontal load at each node on the front side in the y direction is equal to
—1 kips (—4.448 kN)

7. The horizontal load at each node on the back side in the y direction is equal to
1 kips (4.448 kN)

In this example, the exact calculation of the energy function leads to
1.8008 x 107, and it is obtained as 1.8252 x 107 using the force method and
CSS that is very close to the exact value.

10.4 Procedure of Structural Design Using Force Method
and the CSS

In this section, design and optimization procedures are added to the analysis
presented in the previous section. There are two major approaches to formulate
the objective function in the simultaneous analysis and design of an optimal
structure:

1. Using the pre-selected stress ratio.
2. Minimizing the structure weight.
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Fig. 10.6 A 26-story tower. (a) Geometry and grouping. (b) Top view. (c¢) Basic structure (Case
Studies 4 and 10)

10.4.1 Pre-selected Stress Ratio

In this approach [5], a preselected stress ratio is assumed for each member, and then
the complementary energy is minimized as the objective function. If the cross
sections A; (i = 1,...,m) are known, then the analysis can be performed using a
meta-heuristics method such as CSS, described in the Sect. 3.
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However, usually the cross sectional areas are not determined at the beginning of
the design procedure. This problem leads to a new formulation of the complemen-
tary energy that eliminates A; (i = 1,...,m) from the energy function [5].

Each agent in the CSS is a vector of redundant forces. Moreover, according to
Eq. 10.3, the internal forces of members, {r}, is obtained from the selected agents.
The ratio between the stress in each member (o;) and its corresponding allowable
stress (o,) is defined as C:

c=2 (10.11)

Ga

where 6; = 7-. By substituting ;in Eq. 10.11, the cross section area of each member
is obtained in terms of the internal force r;, stress ratio C, and the allowable stress o,

I

A =
Co,

(10.12)

Consequently, one can express the unassembled flexibility matrix of each
member as a function of L, E, q and C as follows:

L 1

Fp—=— = -
™ ~EA  Ef(r,L,C) °

(4,C, L, E) (10.13)

Substituting Fy,, in Eq. 10.4, leads to the elimination of A; from the formulation
of the complimentary energy:

1

MinU® =
in E

(P q]'[Bo Bi]'g(q.C,L)][By Bi][p q] (10.14)

Pre-selected stress ratio is a parameter controlling the weight of the structure and
stress constraint, simultaneously. Therefore, by minimizing the energy function in
the analysis procedure, weight optimization and stress constraints satisfaction are
fulfilled.

Case Study 5. As an example consider the truss shown in Fig. 10.7. This truss is
designed with the constraints explained in Table 10.2 and using Eq. 10.14 as the
objective function. In this example, two cases are considered. In case I, the stress
ratios of the members is different, whereas in case II, it is assumed to be constant for
all the members. For the sake of simplicity, the cross-sections are selected as hollow
squares, as shown in Fig. 10.8. In this example, a population of 20 agents is
considered in the CSS algorithm. The magnitude of A; is determined considering
the selected values of C;. Enhanced CSS with supervisor agent is utilized in the
simultaneous analysis and design of this structure and the results are shown in
Tables 10.3 and 10.4. The convergence history is shown in Fig. 10.9. To verify the
efficiency of the present method and combining the CSS algorithm and force
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a 147kN b
s K : 2 . 245kN @

Fig. 10.7 A simple truss with pre-selected stress ratios (Case Study 5). (a) Geometry. (b) Basic
structure

method in minimizing the structural weight, the design parameters and redundant
forces obtained from CSS, are compared to those computed using the Genetic
Algorithm (GA), reported by Kaveh and Rahami [5]. The comparison results are
shown in Tables 10.3 and 10.4 for Case I and Case II, respectively.

In this example, the exact calculation of the energy function leads to
6.5989 x 105, and it is obtained as 6.6056 x 10° using the force method and
CSS for case I. Besides, the exact calculation of the energy function leads to
7.5368140 x 10°, and it is obtained as 7.5368147 x 10° using the force method
and CSS for case II. The close agreement between these values verifies the accuracy
of the calculated redundant forces shown in Tables 10.3 and 10.4 for case I and case
II, respectively. Also variation of Fy versus the iteration is shown in Fig. 10.9.

10.4.1.1 Fully Stress Design (FSD) for Statically Indeterminate
Structures

In this part, the presented CSS and force method is applied to an Optimally Criteria
Method (OCM), namely Fully Stress Design (FSD). FSD leads to a correct optimal
weight for statically determinate structures under a single load condition. In the
FSD all the members are supposed to be subjected to their maximal allowable
stresses [5]. Achieving such a design for an indeterminate structure with fixed
geometry is not always possible. Even by changing the geometry, a FSD may not
be achieved. Here a formulation presented by Kaveh and Rahami [5] is used to
indirect analysis in the process of optimization. This formulation can be applied to
all types of structures, however, a truss with the following strain energy is
considered:

P’L yPILA 1
cfz 72 _ Z 25
U=2 5" yEAZ — yE 2OV (10.15)

It should noted that for constant E and vy, the minimum weight can be achieved
only when the stresses in all the members are identical. Therefore, in Eq. 10.15, the
term corresponding with the stresses, i.e. 01-2, may be moved out of the summation.

On the other hand, in the design procedure, one can consider the fully stress
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Table 10.2 Design data for the 11-bar planar truss (Case Study 5)

Design variables

Redundant and size variables q1; ¢2; q 3; A1; Az; Az; Ag; As; Ag; A7; Ags Aoy Aqo; Ay
Material and section property

Young’s modulus is assumed to be constant

Density of the material: p = 0.00277 kg/cm® = 0.1 1b/in’

A = 0.4h%,r = \/0.4A, thicknesst = 0.1h.

Constraint data

Stress ratios

Case 1: C = {0.9,0.8,0.85,0.8,0.9, 0.85,0.95,0.9, 0.8, 0.9, 0.95}
Case2: ¢;=1i=1,...,11

For tensile members

F, < 0.6 Fy and 4; < 300

For compressive members

A <200

[(172?2)F}C|
F, = s for A <C.
34 7
(%*m}cz

2
F,=2E for ), <C,
@ 23 =
Stress constraints

0; < 23443 MPa; i =1, ..., 11

Fig. 10.8 A hollow square N
cross-section (Case Study 5)

Smanae

..................................

Table 10.3 Optimal design comparison for the 11-bar truss (Case Study 5) (case 1)

Weight (N)

2,136.25

Size variable(cm?)

Ay Ay As Ay As Ag Ag Ag Ag Ajo An
11.55 13.36 41.20 4.44 4.44 42.51 6.94 9.15 61.02 9.71 17.51
Redundant variables x10* (N)

q1 92 q3
123.04 —5.04 244.69
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Table 10.4 Optimal design comparison for the 11-bar truss (Case Study 5) (case 2)

419

Weight (N)

1,914.84

Size variable (cm?)

Ay Ay As Ay As Ag Ay Ag

11.55 1336 4120 444 444 4251 694 9.15
Redundant variables x10° (N)

q1 92 q3
94.04 —0.0000541 198.66

Ap
17.51

141
12

10

Fu(energy)

L 1 L L 1

2
0 200 400 600 800 1000
Iteration

Fig. 10.9 Variation of Fy versus the iteration in the design procedure for the 11-member truss

(Case Study 5)

constraint instead of minimum weight. This is because the minimum weight
corresponds to a structure for that all the members are subjected to their maximum

allowable stress.

Case Study 6. As an example, consider the structure shown in the Fig. 10.10,
selected from Ref. [7]. The design and member size constraints are reported in
Table 10.5. Redundant forces in this example are selected as internal forces in

members 1 and 9. Twenty agents are selected in the CSS algorithm.
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Fig. 10.10 A 10-bar truss 360in 360in
example (Case Studies = ’ ) 2 1
6 and 7, Ref. [7]) 4
T 8 1
5 6 360in
3 4 4 a7
4 ()
v v
P P

Table 10.5 Design data for the 10-bar planar truss (Case Study 6)

Loading

Node Px: kips (kN) Py: kips (kN) Pz: kips (kN)
2 0 —100(—444.8) 0

4 0 100(—444.8) 0

Design variables

Variables: q1; ¢> (and A1;A45;A3;443A5,46;A7;48;A0;A 10 In case 3)
Material property and constraint data

Young’s modulus: E = 1e7 psi = 6.895¢7MPa

Density of the material: p = 0.1 Ib/in® = 0.00277 kg/cm®

For all members: A; > 0.1 in2; i=1,...,10

Stress constraints

(a) FSD

Case 1: lo}l < 25ksi(172.375 MPa); i =1, ..., 10

Case 2: loj <25ksi;i=1,...,8,10and log | < 50 ksi (344.75 MPa)
(b) Weight minimization

Case 3: loil < 25ksi;i=1,..., 8,10 and Io91 < 50 ksi (344.75 MPa)

10.5 Minimum Weight

In the second approach of simultaneous design and analysis of structures, the
objective function is the weight of the structure, and the equilibrium, compatibility,
and force/displacement conditions are the constraints. In summary, all these three
conditions are called analysis criteria for simplicity. Other constraint such as stress,
displacement, dynamical properties, and etc. can also be imposed to the fitness
function. Penalty function is the most common approach to satisfying the con-
straints. The penalty function imposes a penalty to the fitness value of the solution,
if the constraint is not satisfied:

f=A+aB (10.16)

In Eq. 10.16, f is the fitness value, A is the objective function and B is the penalty
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function and « is often selected as a big number. According to this equation, when B
goes to zero and A goes to its minimum value, f goes to the minimum value of the
fitness. However, since the minimum complementary energy is not zero, this form
of penalty function cannot be used. In this case, W is minimum while the
corresponding U° is not minimum, i.e. the structure is not analyzed yet. Also a
small value of a does not guarantee the minimum value of the B. On the other hand,
in a structure that is in equilibrium and compatibility state, sum of the complemen-
tary energy U and the strain energy U is zero. Therefore, instead of the comple-
mentary energy, the sum of the complementary energy and the strain energy is used
as the analysis criteria and is imposed to CSS as a constraint. The strain energy is a
function of nodal displacements as follows:

{d} = [Bo]'[Fu]([Bo]{p} + [B1]{a}) (10.17)

and

U = 5 {d)'[K]{d) — {d)'{F) (10.18)

where [K] is the stiffness matrix and {F} is the nodal force vector. For equilibrium,
U is negative and U + U is equal to zero. This formulation is used for the 10-bar
truss example (Case Study 6) of Case III. Table 10.6 shows the results. Twenty
agents are selected in the CSS algorithm. Also the resulting minimum weight is
compared to the one obtained by Kaveh and Rahami in [5], and Kaveh and Hassani
in [8] for the same example. The result of comparison is shown in Table 10.7.
Similar to the other cases, CSS with supervisor agents have shown a better
performance. Kaveh and Rahami in [5] used a different formulation to impose the
analysis criteria as a constraint. In this method, using the derivative of U® in
Eq. 10.6 with respect to {q} leads to:

S [l o)+ (B} —0 (10.19)

Equation 10.19 indicates that the complementary energy of the structure is equal
to its minimum value in the compatibility condition. Thus {q} should be selected
such that Eq. 10.19 holds. The left hand of this equation is a zero vector and it
should be changed to a scalar. The best way is calculation of the norm, because the
norm of a vector is equal to zero when all the entries is equal to zero. Here, we use
the equilibrium itself. For this purpose we can write

F(q,A) = W(A)(1 + anorm([Hgp | {p} + [Hqq){a})) (10.20)

Having {q} and {A}, the magnitude of F can be calculated from Eq. 10.20 and its
minimum for a large value of « corresponds to minimum W. Other constraints such
as stress constraints, displacement constraints or dynamical properties constraints
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Table 10.6 Results of the 10-bar planar truss (Case Study 6) (case 1-3)

Case 1 (FSD)

A={794 0.10 805 391 0.10 0.10 573 557 5.54 0.11}inZ, W = 1,591.8 Ib
Case 2 (FSD)

A=1{777 024 825 379 0.1011 022 597 541 3.67 031}in®, W= 1,591.81b
Case 3 (weight minimization)

A={777 024 825 3.79 0.1011 022 597 541 3.67 0.31}in®, W =1,51621b

Table 10.7 Optimal design Kaveh and
comparision for the 10-bar Method (GA)[5] (ACO)[8] Ahmadi[25]
truss (Case Study 6) -

Best weight (case 1) Ib  1,593.5 1,593.5 1,591.8

Best weight (case 2) Ib  1,723.5 1,723.5 1,724.6
Best weight (case 3)1b  1,519.2 1,519.2 1,516.2

can be applied to Eq. 10.20 after normalizing and selecting a penalty coefficient.
Therefore, the final formulation will be as follow:

Find—q,A;AS{Sq or S. }

MinF(q,A)= Z:: Ailip; (1+anorm([Hgp |{p} + [Hqq) {a})) + nZ_Cmax(O,gm (A))

m=1

(10.21)

where Sq and S. are the discrete and continuous sections, respectively.
gnm(A) corresponds to violation of the constraints. Because of indirect analysis,
internal forces in earlier iterations are not reliable. In other words, since the
redundant forces are not exact, the calculated constraints are not exact either, and
cannot be relied on. Reliability criteria can be norm([Hgpl{p} + [Hggl{q}).
Accordingly, the design constraints penalty function can be altered to:

F(q>A) :Zin:] Ai]ipi (1 +an0rm( [qu} {p}—|— [qu} {q})) +imaX(O,gm (A))R(norm)

(10.22)

where R(norm) is a function of norm([Hgpl{p} + [Heql{q}). This function can be
considered as follows:

R(norm) = log(10 + NORM) (10.23)

where NORM is equal to norm([Hgpl{p} + [Hgql{q}). In all of the examples
studied in the following, Eq. 10.22 has been used in the CSS algorithm.
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Table 10.8 Design data for the 10-bar planar truss (Case Study 7)

Material property and constraint data

Young’s modulus: E = 1e7 psi = 6.895¢7MPa

Density of the material: p = 0.1 Ib/in® = 0.00277 kg/cm®

Stress constraints

loj] < 25 ksi(172.375 MPa); i =1, ..., 10

Nodal displacement constraint in all directions of the co-ordinate system

Al <2in(508cm);i=1,...,4

List of the available profiles

Case 1: (Discrete sections)

A; = {1.62,1.80, 1.99, 2.13, 2.38, 2.62, 2.63, 2.88, 2.93, 3.09, 3.13, 3.38, 3.47, 3.55, 3.63, 3.84,
3.87,3.88,4.18,4.22,4.49,4.59,4.80,4.97,5.12,5.74,7.22,7.97,11.5,13.5,13.9, 142, 15.5,
16.0, 16.9, 18.8, 19.9, 22.0, 22.9, 26.5, 30.0, 33.5} in®

A; = {10.4516, 11.6129, 12.8387, 13.7419, 15.3548, 16.9032, 16.9677, 18.5806, 18.9032,
19.9354, 20.1935, 21.8064, 22.3871, 22.9032, 23.4193, 24.7741, 24.9677, 25.0322, 26.9677,
27.2258, 28.9677, 29.6128, 30.9677, 32.0645, 33.0322, 37.0322, 46.5806, 51.4193, 74.1934,
87.0966, 89.6772, 91.6127, 99.9998, 103.2256, 109.0320, 121.2901, 128.3868, 141.9352,
147.7416, 170.9674, 193.5480, 216.1286} cm>

Case 2: (Continuous sections)

0.1 < A; < 35in”(225.8960) cm> i = 1, ..., 10

Case Study 7: A 10-bar Planar Truss. The 10-bar truss as shown in Fig. 10.10 is
considered for optimal design. Table 10.8 contains the necessary data. As seen
displacement constraint is added to the design procedure. Two cases are considered,
the first is optimal design using discrete sections and the second corresponds to
continuous sections. Equation 10.22 is used as the objective function in the CSS,
where a population of 20 CPs is used. In both cases, A and q are variables. In
discrete case a code is utilized that moves the section between two available
sections to one of them based of a probabilistic function. Results are obtained in
Tables 10.9 and 10.10 for discrete and continuous sections, respectively.

Case Study 8: A 25-bar Space Truss. Geometry, nodal ordering and grouping of
members are sown in Fig. 10.11 and Table 10.11, respectively. Table 10.12 con-
tains the necessary data for design. Table 10.13 contains the results and shows the
efficiency of this method and combining the CSS and force method compared to the
other algorithms.

In this example, the calculated maximum displacement in case 1 and case
2, using exact displacement method, are equal to 0.3482 in and 0.3503 in. and
those of the present method are 0.3496 in and 0.3498 in. respectively. There is
another set of areas for case 2 as A = {0.10, 0.10, 3.7598, 0.10, 1.8932, 0.7755,
0.1408, 3.8460} and the corresponding weight is equal to 468.1998. Maximum
displacement of this set of areas leads to 0.3497 in.
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Fig. 10.11 Geometry of a :
25-bar space truss (Case
Study 8)

~ X
Table. 10.11 Member Group number Members
grouping 1 1-2
2 14,2-3,1-5,2-6
3 2-5,2-4,1-3,2-6
4 3-6,4-5
5 3-4,5-6
6 3-10,6-7,4-9,5-8
7 3-8,4-7,6-9,5-10
8 3-7,4-8,5-9,6-10

Table 10.12 Design data for a 25-bar space truss (Case Study 8)

Design variables

Size variables Aj;A2;A3A4A5A6A7A8; 415 42 435 945 s Qe 47
Material property and constraint data

Young’s modulus: E = 1e7 psi

Density of the material: p = 0.1 Ib/in® = 0.00277 kg/cm®

Stress constraints

loj] < 40 ksi (275.8 MPa); i =1,...,25

Displacement constraint in the directions of X and Y in the co-ordinate system
1A, <0.35in (0.8890 cm); i = 1,2

List of the available profiles

Case 1: (Discrete sections)

Ai={0.1,0.5 x 1(I=12,...,76), 39.81, 40} in*

Al = {0.6452,3.2258 x 1 (1= 1,2, ...,76), 256.8382, 258.0640} cm>
Case 2: (Continuous sections)

Ai >0.1 in? (0.6452)

Loading data

Node Px: kips (kN) Py: kips (kN) Pz: kips (kN)
1 —10 (44.48) —10 (44.48) —10 (44.48)
2 0 —10 (44.48) —10 (44.48)
3 0.5 (2.224) 0 0

6 0.5 (2.224) 0 0
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Table 10.14 Design data for a 120-bar space dome (Case Study 9)

Design variables

Vaariables: Aj;A2;A3A4A5A6A7; 415 425 435 445 955 des 75 485 do
Material property and constraint data

Young’s modulus: E = 30,450 ksi = 210,000 MPa

Density of the material: p = 0.288 Ib/in®> =7971.810 kg/cm®

For all members: 0.775 < A; < 20 in%i=I1,...,120

Constraints

j=t r=VidxA

Stress constraints

For tensile members

F, < 0.6 Fy and 4; < 300

For compressive members

A < 200

F, = [(1 - ;‘CI?>F}} /(g + 3 8‘6) for 4; < C,

F,= 1223";5 for 4; < C.

6; < 58.0 ksi (400 MPa); i =1, ..., 120

Displacement constraint in the directions of X, Y anc Z in all unsupported nodes
Al < 0.1969in

Case Study 9: A 120-bar Dome. A 120-bar dome structure is considered in this
example. This structure has 9° of statical indeterminacy. The necessary data for
design, and constraints are shown in Table 10.14. Optimal design comparison for
the 26-story tower is obtained in Table 10.15. Geometry, ordering and member
grouping structure are shown in Fig. 10.12. Loading condition is considered as:

1. A vertical load at node 1 equal to —13.49 kips (—60 kN)
2. Vertical loads at node 2 through 14 equal to —6.744 kips (—30 kN)
3. Vertical loads at the rest of the nodes equal to —2.248 kips (—10 kN)

Redundant forces are considered as the reactions at nodes 39, 43 and 47.

For the present approach the maximum stress ratio is equal to 0.9552 and the
maximum displacement using the exact displacement method is equal 0.17335 in,
and the maximum displacement using the present method is calculated as
0.17339 in.

In this example, when the displacement method is utilized as an analysis
procedure, the unknowns change from redundant forces to nodal displacements.
Then number of unknowns drastically increase from 9 redundant forces to
111 nodal displacements. This imposes a highly computational cost on the optimi-
zation procedure. Equation 10.24 will be used to analysis using displacement
method.
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(44)

Z
T 275.5%9in. (700cm)
230.31in. (585¢m)

118.11in. (300cm)
273.26in |

\
V—OOO
(694, 1cm)

492.12in, |
(1250 ¢cm)
625.5%in. |
(1589 ¢m)

Fig. 10.12 A 120-bar dome (Case Study 9)

norm([K]{X} — {F}) =0 (10.24)

where K is considered as the stiffness matrices of the structure. X is considered as
the nodal displacement vector and F is the nodal forces vector.

Case Study 10: A 26-story Tower. The main aim of the present method is to avoid
the computation of the inverse of the large-scale structures matrices. This method
must be applied to the large-scale structures to show the superiority of the present
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Table 10.16 Design data and constraints of 26-story truss (Case Study 10)

Design variables

Variables A1;A2;A3;. . 5As0; Q15 Q2;- - -5 Q246

Material property and constraint data

Young’s modulus: £ = 1e7 psi

Density of the material: p = 0.1 Ib/in® = 0.00277 kg/cm®

Stress constraints

lo;l < 25 ksi(172.375 MPa); i =1, ..., 942

Displacement constraint in the directions of X and Y in the co-ordinate system

1Al < 151n (about 1/250 of the total height of the tower) for the four nodes of the top level in the x,
y and z directions

List of the available profiles

Case 1: Ai >1in? (6.452) cm®>  Ai <200 in® (1,290.32) cm?

Table 10.17 Design comparison for the 26-story truss (Case Study 10)

Variable Erbatur and Hasangebi Rahami Kaveh and Talatahari  Kaveh and
(in%) [23] et al. [24] [6] Ahmadi [25]
Al 1 2.7859 0.962 1.0376
A2 1 1.3572 2.557 2.0424
A3 3 5.0362 1.65 1.6003
A4 1 2.2398 0.402 1.0113
AS 1 1.2226 0.657 1.0033
A6 17 14.9575 18.309 2.5260
A7 3 2.9568 0.346 1.0001
A8 7 10.9038 3.076 1.0981
A9 20 14.4177 2.235 2.4705
A10 1 3.709 3.813 1.0222
All 8 5.7076 0.856 1.2531
Al12 7 4.9264 1.138 1.0024
Al13 19 14.1751 3.374 1.8253
Al4 2 1.9043 0.573 1.0463
Al5 5 2.8101 19.53 1.6020
Al16 1 1 1.512 1.0760
A17 22 18.807 2.667 2.2508
Al8 3 2.6151 0.478 1.0177
A19 9 12.5328 17.873 3.4032
A20 1 1.1314 0.335 1.0012
A21 34 30.5122 2.78 5.3252
A22 3 3.346 0.43 1.0003
A23 19 17.045 3.048 4.4083
A24 27 18.0785 5.112 10.7550
A25 42 39.2717 19.352 5.0916
A26 1 2.6062 0.476 1.0029
A27 12 9.8303 2.887 5.5097
A28 16 13.1126 19.5 7.9683
A29 19 13.6897 4.772 44314
A30 14 16.9776 5.063 5.3373

(continued)
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Table 10.17 (continued)

Variable Erbatur and Hasancebi =~ Rahami Kaveh and Talatahari  Kaveh and
(in%) [23] et al. [24] [6] Ahmadi [25]
A31 42 37.6006 15.175 6.7094
A32 4 3.0602 1.176 1.6518
A33 4 5.5106 0.839 3.1108
A34 4 1.8014 1.394 1.0434
A35 1 1.1568 0.153 1.2485
A36 1 1.2423 0.247 1.0746
A37 62 62.7741 18.673 6.8163
A38 3 3.3276 0.696 1.2514
A39 2 4.2369 1.395 5.4658
A40 4 1.7202 0.422 1.1308
A41 1 1.0148 0.417 1.3079
A42 2 5.6428 0.679 1.0063
A43 77 78.0094 19.584 9.9490
Ad44 3 3.2206 0.533 1.1061
A45 2 3.5934 1.64 7.3345
Ad6 3 4.7668 0.618 2.3035
A47 2 1.1531 0.531 2.3722
A48 3 2.1698 1.374 1.0706
A49 100 99.6406 19.656 13.9159
AS0 4 4.1469 0.888 2.7680
A5l 1 2.16 4.456 5.2249
AS52 4 4.1499 0.386 1.0024
AS3 6 11.207 10.398 11.7689
A54 3 11.0904 18.834 12.1676
ASS 49 35.9499 18.147 19.9929
AS6 1 2.1937 3.28 9.2241
AS57 62 66.1705 2972 1.0313
A58 1 3.3402 4.927 8.1362
AS9 3 4.0525 0.288 1.0025
Weight (Ib) 143,436 142,295.75 47,370.8412 47,108.4972

method. For this purpose, a 26-story tower as shown in Fig. 10.6 is considered.
Loading condition is defined in Case Study 4. Design data and constraints are
maintained in the Table 10.16. This structure has 246° of statical indeterminacy.
The member grouping has 59 groups as shown in Fig. 10.6. The simultaneous
analysis, design and optimization of this structure have 305 variables. A population
of 100 CPs is considered in the CSS algorithm. Equation 10.22 is taken as the
objective function in the CSS algorithm with supervisor agents. Optimal design
comparison for the 26-story tower is provided in Table 10.17.

In this example, the exact maximum nodal displacement calculated for the four
top nodes, using the displacement method, is 14.3442 in. The present method leads
to 14.7688 in. The maximum stress ratio is equal to 94.90 %. According to the
above table the efficiency of the CSS and especially the present method in analysis,
design and optimization of large-scale structures in comparison to other methods
become apparent.
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