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Preface

This textbook grew out of lecture notes for the thermodynamics courses
offered in the Department of Mechanical Engineering at the University of
Victoria. Writing my own notes forced me to thoroughly consider how, in
my subjective view, engineering thermodynamics should be taught. At the
same time I aimed for a concise presentation, with the material of three
courses delivered on about 600 pagesEl My hope in publishing this book is
that students of thermodynamics might find the chosen approach accessible,
and maybe illuminating, and discover thermodynamics and its interesting
applications for themselves.

Probably the biggest difference to standard texts is when and how the
second law of thermodynamics and its central quantity, the entropy, are in-
troduced. The second law describes irreversible processes like friction and
heat transfer, which are related to a loss in work. For instance, work that
is needed to overcome friction in a generator cannot be converted into elec-
tricity, hence there is a loss. Accordingly, it should be one of the main goals
of a thermal engineer to reduce irreversibility as much as possible. Indeed,
the desire to understand and quantify irreversible losses is one of the central
themes of the present treatment, it is touched upon in almost all chapters.

The emphasis on irreversibilities requires the introduction of the second law
as early as possible. The classical treatment, which is still used in most texts
on engineering thermodynamics, is to derive the second law from discussion
on thermal engines with and without losses. Obviously, this requires an exten-
sive discussion of thermodynamic processes and thermal engines by means of
the first law of thermodynamics—the law of conservation of energy—before
the second law can even be mentioned. In the present treatment, entropy and

! The courses (13 weeks & 3 hours), and the relevant book chapters, as currently
taught at the University of Victoria, are:
Thermodynamics (UVic Mech 240): Chapters 1-10
Energy Conversion (UVic Mech 390): Chapters 11-14, 18.1-18.9, 19,
23.1-23.5, 24
Advanced Thermodynamics (UVic Mech 443): Chapters 16-18, 20-26



VI Preface

the second law are introduced directly after the first law, based on observa-
tions of rather simple processes, in particular the trend of unmanipulated
systems to approach a unique equilibrium state. With this, the complete set
of thermodynamic laws is available almost immediately, and the discussion of
all thermodynamic processes and engines relies on both laws from the start.
All considerations on engines which are typically used to derive the second
law, are now a result of the analysis of the engines by means of the first and
second law.

As soon as the thermodynamic laws are stated we are in calmer waters.
The discussion of property relations, processes in closed and open systems,
thermodynamic cycles, mixtures and so on follows established practice, only,
perhaps, with the additional emphasis on irreversibility and loss. Some el-
ements that might not be found in other books on engineering thermody-
namics concern the microscopic definition of entropy, the afore mentioned
emphasis on thermodynamic losses, and the detailed discussion of a number
of advanced energy conversion systems such as Atkinson engine, solar tower
(updraft power plant), turbo-fan air engine, ramjet and scramjet, compressed
air energy storage, osmotic power plants, carbon sequestration, phase and
chemical equilibrium, or fuel cells. The principles of non-equilibrium thermo-
dynamics are used to derive transport laws such as Newton’s law of cooling,
Darcy’s law for flow through porous media, and activation losses in fuel cells.

There are about 300 end-of-chapter problems for homework assignments
and exams. The problems were chosen in order to emphasize all important
concepts and processes. They are accompanied by detailed solved examples
in all chapters, and it is recommended to first study the examples and then
tackle the problems. Many problems require the use of thermodynamic prop-
erty tables, which are widely available in print and online.

Any presentation of a large topic such as thermodynamics can never be
complete. The choice of topics in this book is a personal one, but I am
confident that after studying this book the reader will find easy access to
most other thermodynamics texts, be they written for mechanical engineers,
chemical engineers, or scientists. Thermodynamics and Energy Conversion
processes will remain an important part of modern civilization. High energy
efficiency can only be obtained from a deep understanding of the Laws of
Thermodynamics, which describe the interplay of Energy, Entropy, and Ef-
ficiency. It is my sincere hope that this book will contribute to this end.

Victoria, BC Henning Struchtrup
Spring 2014 (struchtr@uvic.ca)
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Chapter 1
Introduction: Why Thermodynamics?

1.1  Energy and Work in Our World

Mechanical and electrical work is what drives our daily lives: cars, trucks,
planes, trains, ships—in short, all transport—require motors which are ei-
ther based on combustion of fuel or on electric energy. Our home and work
environments are unthinkable without the many devices that are powered
by electricity: light, microwave and stove, freezer and refrigerator, television
and radio, DVD and bluray, CD and MP3 player, smartphone and telephone
landline, computer and printer, washer and dryer, air conditioning and (some-
times) heat, power drill and lawn mower; the list goes on. Hospitals and fac-
tories are filled to the rim with mechanical and electronic devices and robots
that are driven by electrical energy.

Electricity, however, is mainly obtained by converting mechanical work
into electrical work in a generator: our lifestyle requires an endless supply of
mechanical work.

For most of its history, humankind was only able to harvest mechanical
work as nature provided it. Wind and water wheels were used not only to mill
grain, but also for other purposes, most importantly for pumping irrigation
water [] But else, there was little, and an abundance of tasks had to be done
by human labor: farming, e.g., harvesting with a scythe, and weaving with a
loom come to mind immediately.

Heat, as obtained from combustion of wood, fat, oil or coal, however, was
used for cooking, lighting and heating, and other tasks unrelated to mechan-
ical work, most importantly probably the smelting of metals.

The industrial revolution was triggered in the 18th century by the invention
of heat engines, that is engines that convert heat into work. In particular the
development of the steam engine by engineers like James Watt led to the
lifestyle we enjoy. Now a wide array of heat engines is available. The original

! Today, wind turbines and large hydropower dams harvest the same natural powers
to directly produce electricity.

H. Struchtrup, Thermodynamics and Energy Conversion, 1
DOI: 10.1007/978-3-662-43715-5 1, (© Springer-Verlag Berlin Heidelberg 2014



2 1 Introduction: Why Thermodynamics?

piston steam engines are replaced by steam turbines, while piston engines
such as the Diesel and Otto engines are omnipresent on our streets and in
ships, gas turbines drive aircraft and run in power plants.

For all engines, the heat is typically created by the burning of a fuel, such
as coal, natural gas, oil, etc., or from nuclear power. The fuel is costly, and
scarce, and therefore one will aim to make heat engines as efficient as possible.
Moreover, combustion of fuels releases carbon dioxide into the atmosphere,
which impacts global climate. More efficient use of fuels can at least slow down
the rate at which carbon dioxide is added to the atmosphere, and hence high
efficiencies have more than pecuniary value.

Thermodynamics was developed out of the desire to understand the limits
of heat engine efficiency. Modern power plants run on intricate improvements
on the original steam engine process that result from the deeper understand-
ing of thermodynamic processes. Early steam engines had efficiencies of heat
to work conversion of only a few percent, while modern combined cycle gas
turbine/steam power plants exhibit efficiencies of up to 60%. Moreover, ther-
modynamic consideration can establish absolute upper bounds on efficiencies
for processes, answering questions such as: how much work can be obtained
at best from a heat source at a given temperature? or: what is the maximum
work that could be obtained from a given amount of fuel? Only comparing ac-
tual performance against these theoretical limits can give adequate measures
of efficiency. Of course, these questions and the answers will be discussed
throughout this book.

Since its beginnings with the industrial revolution, thermodynamics has
developed into a science that explains a wide array of natural and technical
phenomena. Thermodynamic laws govern a host of processes: heat to work
conversion in heat engines, and the inverse, i.e., the work to heat conversion
in freezers, refrigerators and air conditioning systems; mixing and separation;
transport through membranes (osmosis); chemical reactions and combustion,
and so on. All of these will be discussed in this text.

In short, a good understanding of thermodynamics is indispensable in a
wide range of fields, in particular mechanical and chemical engineering, chem-
istry, physics, and life sciences.

1.2  Mechanical and Thermodynamical Forces

Newton’s laws of motion describe how a system reacts to an applied force:
it moves. For instance, a weight on a coiled-up thread can be used to bring
a shaft to rotation. When the shaft is connected to a generator, electricity
is produced: the potential energy of the weight is transformed into electrical
work. We see that a force, here gravity acting on the weight, can be used to
generate mechanical work, here the rotation of the shaft, which then can be
transformed again, here into electrical work. As long as the mechanical and
electrical systems used are frictionless and resistance free, there is no loss,
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that is the electrical work produced is equal to the mechanical work done by
the weight.

But, of course, there is friction and ohmic resistance, and some of the in-
put work is required to overcome these. Hence, in a system with friction, the
amount of electrical work provided is less than the work done by the weight.
So where has that work gone? Thermodynamics gives the answer: due to
friction and resistance, the system becomes warmer than its environment,
and then heat flows into the environment: some of the work is converted to
heat. While mechanics can describe friction losses, and electrodynamics can
describe ohmic resistance, a full account of the system requires a thermody-
namic description, entailing quantities like temperature and heat, which do
not appear in mechanics and electrodynamics.

We all have some idea of what temperature is, since we have a sense for
hot and cold. Also, we have the experience that when we put a cold and a hot
body in contact, the cold body will become warmer and the warm body will
become colder, until they have the same temperature. Just think of a soft
drink originally at room temperature and ice: the ice will warm and melt,
and the drink will become cooler ... and a bit watery. Or think of a hot cup
of coffee left on a table: After sufficiently long time the coffee assumes the
temperature of the room around—it has cooled down—while the air in the
room has become just a tiny bit warmer. Our iced soft drink, when forgotten
on the table, will eventually warm up to the room temperature. In both cases,
thermal energy is redistributed between the subsystems we looked at—soft
drink, ice, coffee, air in the room. The associated temperature change is also
linked to the size of the system: soft drink and ice both experience sensible
changes in temperature and state; also the coffee’s temperature changes no-
ticeably, while it would require a rather sensitive thermometer to measure
the temperature change of the air in the room.

Hot and cold drinks are just an example for a fundamental observation:
heat goes from hot to cold in the desire to equilibrate temperature. In analogy
to mechanics, where a force causes movement of its point of application, we
can say that the temperature difference is a thermodynamic force that causes
heat to flow. And just as a mechanical force can drive a generator to produce
electricity, the thermodynamic force can be used to generate mechanical work,
and electricity. This, in fact, is what a heat engine does.

The tendency to equilibrate into a homogeneous state is not observed
only for temperature but also for other quantities. For instance, a droplet of
ink added to a glass of water will distribute until, after some time, the ink
concentration is homogeneous. This desire to mix evenly is driven by another
thermodynamic force, which is related to the difference in concentration.
Careful analysis will show that the driving force is the difference in a quantity
known as the chemical potential. Also this force can be harvested for work,
e.g. using osmosis, where freshwater is drawn into saltwater through semi-
permeable membranes that allow only water, but not salt, to pass.
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There are other examples for nature’s desire to equilibrate, for instance
in chemical reactions. The amounts of reactants and reaction products will
assume an equilibrium state that depends on the actual conditions in the
reactor, such as pressure and temperature. Any equilibration process can be
described by a thermodynamic force, and can be used—at least in principle—
to provide work.

Processes opposite to equilibration move against the thermodynamic forces,
and hence work must be provided to force these processes to happen. A re-
frigerator cools only a small part of the kitchen, by forcing heat from the
inside to the outside: (electrical) work is required to drive the compressor in
the refrigerator. Separation processes require work, or other forms of energy,
as well. Using the same semi-permeable membrane as above, one can produce
freshwater from saltwater by pressing the latter against the membrane. This
requires high pressures, and consumes work.

Chemically fabricated materials are everywhere in our lives from clothing—
fleece has replaced wool—to medication. About one percent of the world’s
energy consumption is used to produce ammonia (NHs) which is the base
product for nitrogen fertilizers and explosives. Widespread availability of
fertilizer, together with modern machines—driven by heat engines—for the
year-round farm work have increased yield from fields largely, while at the
same time the relative number of people working in farming has—in the first
world—declined dramatically. For all chemical processes the goal is to run the
reactors such that the yield is high. This requires perfect understanding of
the thermodynamic forces and equilibria, so that one can set the conditions,
e.g., pressure and temperature, accordingly.

1.3 Systems, Balance Laws, Property Relations

In order to describe thermal processes accurately, we require a number of
equations and relations to describe the behavior of the thermal system under
consideration, and the details of the materials contained in the system.

The previous paragraph in fact points to the first requirement of any ther-
modynamic analysis, which is to chose a well defined system to be described,
e.g., the system could be an entire power plant, or just the steam turbine
within. In any case, the system boundary must be well defined so that all
transport of material, energy etc. across the system boundary is well under-
stood.

The processes within a system are described by balance laws, equations
that account for all changes within the system as well as the transport across
the system boundary. Balance laws are often written as rate equations, where
the change of the amount of the balanced quantity over time is equated to
causes for change, such as flow over the boundary, or creation/destruction
inside the system.
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The simplest balance law is the conservation law for mass, which states
that mass cannot be created or destroyed. Hence, the mass inside the sys-
tem boundaries can change only due to transfer of mass in or out over the
boundaries. A closed system is defined as having no mass transfer over the
boundaries, accordingly the mass in a closed system is constant. In an open
systern. mass can enter or leave; this can lead to changing amount of mass
within the system, for instance when a container is filled, or, when the inflow
is balanced by the outflow, to an exchange of the material in the system,
while the mass in the system is constant.

The conservation laws for energy states that energy cannot be created or
destroyed. To emphasize its central importance, it is known as the First Law
of Thermodynamics. Energy exists in different forms; familiar from mechanics
are kinetic and potential energy, and thermodynamics adds internal (also
called thermal) energy. The first law describes the conversion between the
different forms of energy, and the transport of energy in form of heat and
work. While the first law describes conversion from work to heat and vice
versa, it cannot distinguish between possible and impossible processes.

Indeed, thermodynamic processes are restricted in many ways, e.g., heat
will by itself go from hot to cold and not vice versa, or a mixture will not
spontaneously separate. These restrictions are formulated in the Second Law
of Thermodynamics. The second law introduces a new quantity, the entropy,
which can only be created, but not destroyed. Accordingly, the second law is a
balance law for entropy that describes the change of entropy in the system due
to transport across the boundary, and creation inside the system. Since we
have no sense for entropy, this quantity is somewhat non-intuitive, however,
the second law is seen at work quite easily, for instance in all equilibration
processes such as those discussed above. Processes in which entropy is created
are called irreversible, and any creation of entropy can be related to a loss in
work. The second law has far ranging consequences, including the restriction
of the efficiency of heat engines to values below unity, that is, heat cannot be
fully converted into work.

As just stated, we have no sense for entropy. But then, we have no sense
for energy as well, and our sense for temperature is rather inexact. To fill
the thermodynamic laws with life, the quantities appearing in them, most
importantly energy and entropy, must be related to measurable quantities.

With temperature playing a prominent role in thermodynamics, temper-
ature and its measurement must be clearly defined, which is done by means
of the Zeroth Law of Thermodynamics, which states that two bodies in equi-
librium have the same temperature. The assigned number (zero) indicates
that this law now is introduced before the first and second laws, but histori-
cally its importance for a sound development of thermodynamic theory was
recognized only after these were named.

Measurable quantities are length (and thus area and volume), time (and
thus velocity and acceleration), mass, pressure (or force), temperature, and
concentration. For specific systems the thermodynamic laws must be furnished
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with property relations that describe the physical behavior of the materials
contained in the system, by relating measurable quantities to each other as
well as to those that cannot be measured directly (energy, entropy ...). Prop-
erty relations are laid down in equations or in tables, they result from careful
measurements and evaluation of these by means of the thermodynamic laws.

1.4 Thermodynamics as Engineering Science

Typically, scientists and engineers ask different questions. With some sim-
plification, one might say that a scientist asks Why does this happen?, while
an engineer asks How can I use it? But then, the boundaries between sci-
ence and engineering are rather fluent, and there is significant overlap. For
instance, both disciplines will be interested in the basic laws—in form of
equations—that describe the observed phenomena. For the scientist this is
part of understanding and describing nature, while for the engineer the basic
laws are tools to model and improve engineering devices. It is probably fair
to say that the deeper an engineer understands the laws of nature, the more
use she/he can make of them. Deeper understanding will lead to new ideas
that might not be obvious at the first look.

As stated earlier, thermodynamics was developed out of an engineering
desire, namely to improve the efficiencies of heat engines. This need resulted
in the thermodynamic laws, which were found on purely phenomenological
grounds, that is by observation and conclusion. As will be seen, thermal
energy and entropy arise as necessary, and rather helpful, quantities, which
appear in their respective laws (1st and 2nd). The laws describe work and heat
exchange, and the trend to equilibrium, but they do not answer the questions
What is energy? What is entropy? Indeed, for engineering applications the
answer to these questions is not relevant, as long as property relations for
energy and entropy can be found from measurements, as is the case.

Nevertheless, a deeper understanding of these quantities can be obtained
by looking at the microscopic description of matter, that is on the atomic
or molecular level. Thermal energy can be related to microscopic kinetic and
potential energies, so that concepts from mechanics can be transferred to
some degree.

Entropy can be related to the number of microscopic realizations of the
same macroscopic state, as will be discussed for rather simple model exam-
ples. The trend to equilibrium as expressed in the second law is then simply a
motion of the system towards macroscopic states that have a larger number of
microscopic realizations. The final equilibrium state has the largest number
of realizations, and thus is—by far—most likely. Often one finds explanations
of entropy as a measure for “disorder”, but this might be misleading wording,
unless a careful definition of “disorder” is provided.

Even somewhat superficial arguments on microscopic behavior can yield
deeper insight into entropy, and thermodynamic processes. Hence, the
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introductory chapter on entropy and the chapters on reacting and non-reacting
mixtures contain some descriptions on the microscopic level. Naturally, we
can just scratch the surface. The reader might study these sections for some
insight—for deeper understanding, we must refer to the relevant scientific
literature.

As might become clear from the above, the microscopic description of
entropy relies on ideas of statistics. The proper understanding of matter on
the microscopic level is subject of Statistical Mechanics, a branch of physics
which for instance can be used to find property relations.

1.5 Thermodynamic Analysis

After the introduction and general discussion of the basic laws of thermody-
namics and the property relations, the study of thermodynamics turns to the
thermodynamic analysis of a wide variety of systems.

The system considered, and the goal of the analysis, depends on the field
of study. This text focuses on engineering applications of thermodynamics,
where the aim is to understand the working principles, and to evaluate the
performance of thermodynamic systems such as power plants, refrigerators,
chemical reactors and so on. Deep understanding of system behavior from
thermodynamic analysis will lead to performance enhancement by proper
setting of available parameters, redesign for improved efficiency, replacement
by more efficient alternatives, and, possibly, to development of completely
new system configurations.

Thermodynamic analysis of a system entails some or all of the following;:

e Introductory discussion of the system under consideration. What is the

purpose of the system, how is it achieved?

General discussion of the working principles of the system.

Clear identification of the system. Decomposition into subsystems for eas-
ier evaluation.

e Material considerations. Are there limiting values for system parameters,
e.g. maximum temperatures and pressures, that cannot be exceeded?

e Determination of all relevant physical data (pressure, temperature, en-
ergy, entropy and so on) at all relevant locations in the system, and its
subsystems.

e Computation of all heat and work exchanges for the system, and its sub-
systems.

e Evaluation of system performance, as expressed through meaningfully de-
fined efficiency measures, both for subsystems and the overall system.

e Analysis of system configuration and performance. Which controllable pa-
rameters must be changed, and how, to improve or optimize the system?

e Second law analysis: Identification of irreversible processes in the system.
Determination of entropy generation and associated work loss, both within
the system and in the exchange between system and its surroundings.
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Which processes have the largest losses? Can the system be modified to
reduce the loss?

General analysis. Is the system as evaluated suitable for the chosen pur-
pose? What are the alternative systems, or system configurations? Which
system/configuration should be preferred?

1.6  Applications

Before we enter the technical part of our studies of thermodynamics, for a
quick overview, we present a list of the engineering applications that will be
discussed in the following chapters:

Hydrostatic and barometric pressure laws.

Efficiency limits for heat engines, refrigerators and heat pumps.
Perpetual motion engines.

Internal combustion engines: Otto, Diesel, Atkinson.

Simple open systems: compressor, pump, turbine, throttle, nozzle, diffuser.
Heat exchangers: co- and counter-flow closed heat exchangers, open heat
exchangers

Steam power plants: standard and reheat cycles, advanced cycles with
open and closed feedwater heaters.

Vapor refrigeration systems and heat pumps: standard cycles, advanced
multi-stage cycles.

Linde gas liquefaction process.

Stirling and Ericsson engines.

Multi-stage compressors.

Gas turbine systems for power generation: standard cycle and multi-stage
cycles.

Combined cycle: gas turbine and steam cycle for high efficiency.

Solar tower: updraft power plant.

Air engines: standard air turbine and turbo-fan engines.

Supersonic flows: rockets, ramjet and scramjet.

Filling and discharge.

Compressed air energy storage (CEAS): storing energy by compressing air
into large caverns.

Temperature change in throttling (Joule-Thomson coefficient).
Thermodynamic equilibrium and phase equilibrium.

Ice skating.

Mixtures, heat and entropy of mixing.

Psychrometrics: humidifying and de-humidifying for air conditioning, cool-
ing towers.

Mixing and separation.

Osmosis.

Desalination by reverse osmosis.

Pressure retarded osmosis: power from mixing freshwater and saltwater.
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Gas separation and COg removal: work requirement for carbon capture
and storage.

Two-phase mixtures: ideal and non-ideal mixtures, activity and fugacity,
Raoult’s law, phase diagrams.

Distillation columns.

Gas solubility: Henry’s law, carbonized and nitrogenated drinks.
Reacting mixtures: law of mass action and Le Chatelier principle.
Haber-Bosch process for ammonia (NH3) production.

Combustion.

Work potential of a fuel.

Work losses in a steam power plant.

Fuel cells: potential and power, losses caused by mass transfer, resistance,
activation and crossover.

Electrolyzers.



Chapter 2
Systems, States, and Processes

2.1 The Closed System

The first step in any thermodynamic consideration is to identify the system
that one wishes to describe. Any complex system, e.g., a power plant, can be
seen as a compound of some—or many—smaller and simpler systems that
interact with each other. For the basic understanding of the thermodynamic
laws it is best to begin with the simplest system, and study more complex
systems later as assemblies of these simple systems.

The simplest system of interest is the closed system where a substance
is enclosed by walls, and no mass flows over the system boundaries. The
prototype of the closed system is a piston-cylinder device, as depicted in
Fig. P71l We shall assume that the device contains a fixed amount of a simple
substance, that is a substance that does not undergo chemical changes.

Y AL

Fig. 2.1 The piston-cylinder device with heat and work exchange is the standard
example for closed systems

There is only a small number of manipulations possible to change the
state of a closed system, which are indicated in the figure: the volume of

H. Struchtrup, Thermodynamics and Energy Conversion, 11
DOI: 10.1007/978-3-662-43715-5 2, (© Springer-Verlag Berlin Heidelberg 2014
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the system can be changed by moving the piston, the system can be stirred
with a propeller, and the system can be heated or cooled by changing the
temperature of the system boundary, as indicated by the heating coillll These
actions lead to exchange of energy between the system and its surroundings,
either by work in case of piston movement and stirring, or by the exchange
of heat. The transfer of energy by work and heat will be formulated in the
First Law of Thermodynamics.

The change of energy and volume of the system will lead to changes in
other properties of the enclosed substance, in particular pressure and tem-
perature. Thermodynamic laws and property relations are required to predict
the changes of the different properties, and the exchange of heat and work.

Most processes have a direction in time. For instance, we can do work to
move the propeller and stir a liquid, which increases the liquid temperature
due to friction, but we will never observe that a liquid at rest suddenly begins
to move a propeller and does work (e.g. the lifting of a weight), see Fig.
The direction of processes is formulated in the Second Law of Thermody-
namics, which has, as will be seen, far ranging consequences for technical
applications.

/

possible impossible

Fig. 2.2 A possible and an impossible process

We shall first consider the complete set of thermodynamic equations for
closed systems. In open systems mass crosses the system boundaries, and this
leads to additional terms in the thermodynamic laws. These will be discussed
in Chapter

2.2 Micro and Macro

A macroscopic amount of matter filling the volume V', say a steel rod or a
gas in a box, consists of an extremely large number—to the order of 10%3—
of atoms or molecules. These are in constant interaction which each other

L Another possibility to heat or cool the system is through absorption and emission
of radiation, and transfer of radiation across the system boundary.
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and exchange energy and momentum, e.g., a gas particle in air at standard
conditions undergoes about 10° collisions per second.

From the viewpoint of mechanics, one would have to describe each particle
by its own (quantum mechanical) equation of motion, in which the interactions
with all other particles would have to be taken into account. Obviously, due to
the huge number of particles, this is not feasible. Fortunately, the constant in-
teraction between particles leads to a collective behavior of the matter already
in very small volume elements dV, in which the state of the matter can be de-
scribed by few macroscopic properties like pressure, mass density, temperature
and others. This allows us to describe the matter not as an assembly of atoms,
but as a continuum where the state in each volume element dV' is described by
these few macroscopic properties.

Note that the underlying assumption is that the volume element contains
a sufficiently large number of particles. Indeed, the continuum hypothesis
breaks down under certain circumstances, in particular for highly rarefied
gases. In all what follows, however, we shall only consider systems in which
the assumption is well justified.

2.3  Mechanical State Properties

Of the many state properties that we shall meet, we first introduce those
properties that can be easily measured, and are familiar from mechanics.
We consider a system of volume V' which is filled by a mass m of substance.
To describe variation of properties in space, it is useful to divide the system
into infinitesimal elements of size dV and mass dm, as sketched in Fig.

,/ —_\\\v: / av
\\
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)
\ /
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Fig. 2.3 A system of volume V and mass m is divided into infinitesimal elements
of size dV and mass dm

The volume V = [dV filled by the substance can, in principle, be mea-

sured by means of a ruler. The SI unit for volume is the cubic meter [m?],
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for smaller volumes one might use the litre, 1litre = 1073 m?, or the cubic

centimetre, 1cm?® = 1073 litre = 10~ m?.

The mass m = [ dm of the substance can be measured using a scale. The
SI unit of mass is kilogram [kg]. For small masses it is convenient to use the
gram, 1g = 1073 kg, and for large masses it is convenient to use the metric
ton, 1t = 1000 kg.

The pressure p of the substance can be measured as the force required to
keep a piston in place, divided by the surface area of the piston. The SI unit
for pressure is the Pascal: 1 Pa = 1% =1 Hlffz ; one often uses the kilo-Pascal,
1kPa = 1000 Pa, or the mega-Pascal, 1 MPa = 10 Pa. Two common non-SI
units for pressure are the bar, 1 bar = 10° Pa = 0.1 MPa, and the atmosphere
(the standard air pressure at sea level), 1 atm = 1.01325 bar.

Many pressure measuring devices (manometers) do not measure absolute
pressure, but the difference to the local atmospheric pressure putm (which
is normally not 1atm!), the so-called gauge pressure pgauge = P — Patm- For
pressures below the local atmospheric pressure the gauge pressure would be
negative, and it is common to use the vacuum pressure Pyac = Patm — P-

The velocity vector of a mass element is defined as its directed displacement
per unit time. Mostly we shall be interested only in the absolute velocity V,
the SI unit is meters per second [—“S“]

2.4  Extensive and Intensive Properties

It is useful to distinguish between extensive properties, which are related to
the size of the system, and intensive properties, which are independent of
the size of the system. Mass m and volume V are extensive quantities, e.g.,
they double when the system is doubled; pressure p and temperature T are
intensive properties, they remain unchanged when the system is doubled.
As an example Fig. 24 shows the combination (or splitting) of a system at
pressure p and temperature T', with total mass mq + mo and volume V; + V5.

2.5  Specific Properties

A particular class of intensive properties are the specific properties, which
are defined as the ratio between an extensive property and the correspond-
ing mass. In general notation, the specific property ¢ corresponding to the
extensive property @ is defined as

6= % . (2.1)

For instance, the specific volume is

=

(2.2)
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Fig. 2.4 When two systems at same pressure p and temperature 1" are combined,
the intensive properties pressure and temperature remain unchanged, while the
extensive properties mass m and volume V' add

Here p = 77 is the mass density, i.e., the mass per volume.

2.6 Molar Properties

For the thermodynamic discussion of mixtures, reacting or not, it is advan-
tageous to consider the number of particles involved rather than mass. The
number of atoms or molecules is rather large and thus it is customary to
count the number of particles in moles, with the unit [mol] or [kmol]. One
mole is the number of atoms in 12 g of the carbon isotope '2C, which is given
by the Avogadro constant (Amedeo Avogadro, 1776-1856)

1
N4 = 6.022 x 1023m—01 . (2.3)

The mass of one mole of particles is the molar mass M with the unit 1%01 =

kg
1 kmol*
for other substances can be found in tables.

The number of moles of substance is related to mass by

By definition, the molar mass of 2C is M¢ = 12%, the molar mass

m
n=—.

M
Mole specific properties will be labeled with an overbar, they are related to
extensive and mass specific properties as, e.g.,
p=—=——=»Mo. (2.4)

) m P
n nm
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2.7 Inhomogeneous States

In inhomogeneous states intensive and specific properties vary locally, that
is they have different values in different volume elements dV. In this case,
the local specific properties are defined through the values of the extensive
property d® and the mass dm in the volume element,

_w
T dm

6 (2.5)

For example, the local specific volume v and the local mass density p are

defined as 1 av
vV=— = —. (2.6)
p dm
The values of the extensive properties for the full system are determined
by integration of the specific properties over the mass elements,

P = /¢dm, (2.7)

or, by means of the relation dm = pdV, by integration over the volume
elements,

P = /p¢dv. (2.8)

As an example, Fig. 2-8lshows the inhomogeneous distribution of mass density
p in a system. Note that due to inhomogeneity, the density is a function of
location 7 = {x,y, z} of the element dV, hence p = p (7).

mz/p(?)dV

Fig. 2.5 Inhomogeneous distribution of mass density p (7°) in a system
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2.8 Processes and Equilibrium States

A process is any change in one or more properties occurring within a system.
The system depicted in Fig. 2] can be manipulated by moving the piston
or propeller, and by exchanging heat. Any manipulation changes the state of
the system locally and globally: a process occurs.

After all manipulation stops, the states in the volume elements will keep
changing for a while—that is the process continues—until a stable final state
is assumed. This stable final state is called the equilibrium state. The system
will remain in the equilibrium state until a new manipulation commences.

Simple examples from daily life are: (a) A cup of coffee is stirred with a
spoon. After the spoon is removed, the coffee will keep moving for a while
until it comes to rest. It will stay at rest indefinitely, unless stirring is recom-
menced or the cup is moved. (b) Milk is poured into coffee. Initially, there
are light-brown regions of large milk content and dark-brown regions of low
milk content. After a while, however, coffee and milk are well-mixed, at mid-
brown color, and remain in that state. Stirring speeds the process up, but
the mixing occurs also when no stirring takes place. (¢) A spoon used to
stir hot coffee becomes hot at the end immersed in the coffee. A while after
it is removed from the cup, it will have assumed a homogeneous tempera-
ture. (d) Oil mixed with vinegar by stirring will separate after a while, with
oil on top of the vinegar. The last example shows that not all equilibrium
states are homogeneous; however, temperature will always be homogeneous
in equilibrium.

In short, observation of daily processes, and experiments in the laboratory,
show that a system that is left to itself for a sufficiently long time will ap-
proach a stable equilibrium state, and will remain in this state as long as the
system is not subjected to further action.

The details of the equilibrium state depend on the constraints on the sys-
tem, in particular material, size and energy. The time required for reaching
the equilibrium state depends on the initial deviation from the equilibrium
state, the material, and the geometryE A change of pressure at the system
boundary propagates with the speed of sound (sound is a pressure wave) into
the system, which will reach a new equilibrium pressure relatively fast. On
the other hand, a change of temperature at the system boundary diffuses
relatively slowly into the system: the spoon that is used to stir hot coffee
needs quite a while to feel hot at the side that is not immersed in the cup.

2.9 Quasi-static and Fast Processes

When one starts to manipulate a system that is initially in equilibrium, the equi-
librium state is disturbed, and a new process occurs. When the manipulation

2 Some systems remain in metastable states for very long time, until a bigger
disturbance causes them to go into their stable equilibrium state.
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happens sufficiently slow, the system can adapt so that it is in an equilibrium
state at any time. Slow processes that lead the system through a series of equi-
librium states are called quasi-static, or quasi-equilibrium, processes.

If the manipulation that causes a quasi-static process stops, the system is
already in an equilibrium state, and no further change will be observed.

Equilibrium states are simple, quite often they are homogenous states, or
can be approximated as homogeneous states. The state of the system is fully
described by few extensive properties, such as mass, volume, energy, and the
corresponding pressure and temperature.

When the manipulation is fast, so that the system has no time to reach a
new equilibrium state, it will be in non-equilibrium states. If the manipulation
that causes a non-equilibrium process stops, the system will undergo changes
until it has reached its equilibrium state. The equilibration process takes
place while no manipulation occurs, i.e., the system is left to itself. Thus, the
equilibration is an uncontrolled process.

Non-equilibrium processes typically are inhomogeneous. Their proper de-
scription requires values of the properties at all locations 7 (i.e., in all volume
elements dV) of the system. The detailed description of non-equilibrium pro-
cesses is more complex than the description of quasi-static processes.

All real-life applications of thermodynamics involve some degree of non-
equilibrium. Quasi-static processes are an idealization that serves to approx-
imate real-life—i.e., non-equilibrium—processes.

2.10 Reversible and Irreversible Processes

The approach to equilibrium introduces a timeline for processes: As time
progresses, an isolated system will always go towards its unique equilibrium
state. The opposite will not be observed, that is a system will never be seen
spontaneously leaving its equilibrium state when no manipulation occurs.

Indeed, we immediately detect whether a movie of a non-equilibrium pro-
cess is played forward or backwards: well mixed milk coffee will not separate
suddenly into milk and coffee; a spoon of constant temperature will not sud-
denly become hot at one end, and cold at the other; a propeller immersed in
a fluid at rest will not suddenly start to move and lift a weight (Fig. 22));
oil on top of water will not suddenly mix with the water; etc. We shall call
processes with a time-line irreversible.

Only for quasi-static processes, where the system is always in equilibrium
states, we cannot distinguish whether a movie is played forwards or back-
wards. We shall call these processes reversible. Since equilibration requires
time, quasi-static, or reversible, processes typically are slow processes, so
that the system always has sufficient time to adapt to an imposed change.

Equilibration processes can have quite different time scales. For instance,
pressure changes are transported with the speed of sound (~ 350+), and
piston cylinder systems can be approximated as quasi-static if the piston
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velocity is significantly below the speed of sound. The mean piston speed in
a car engine, which depends on stroke and speed, is typically below 202,
hence compression and expansion processes in a car engine can be considered
as quasi-static. Heat transfer, on the other hand, is a very slow process, with
a time scale determined by the heat conductivity. Accordingly, quasi-static
processes involving heating must be rather slow. For fast processes such as
the compression and expansion process in a car engine, there is no time at
all for significant heat transfer between the cylinder walls and the gas, and
the process can be approximated as quasi-static processes with no heating.

The second law of thermodynamics will be introduced as formalization of
the observation that an isolated system is moving towards a unique equi-
librium state, and will allow for a more formal definition of reversible and
irreversible processes.

2.11 Temperature and the Zeroth Law

So far we have discussed only properties known from mechanics, namely mass
m, volume V', pressure p, and velocity V. Temperature, as a measure of how
hot or cold a body is, is the first thermodynamic quantity that we introduce.

Indeed, through touching objects we can distinguish between hot and cold.
However, our sense for temperature is relatively inexact, just feel the metal
and the wood of your chair, which have the same temperature, but feel differ-
ent. Objective measurement of temperature requires (a) a proper definition,
and (b) a proper device for measurement—a thermometer.

Observation of nature and of processes towards equilibrium have estab-
lished the following definition of temperature:

Two bodies in thermal equilibrium have the same temperature.

This statement is so important that it is known as the Zeroth Law of
Thermodynamics. As example, consider two bodies, e.g., a cup of hot coffee
and a spoon, or two stones, at different temperatures T4 > T which are
brought into thermal contact, see Fig. for a schematic representation.
An equilibration process occurs, and after a while the system comprised of
the two bodies reaches its equilibrium state, with a common temperature 7.
While we shall need the first law—the conservation of energy—to compute
its actual value, we know from experience that the final temperature will lie
between the initial temperatures, T4 > T > Tp.

The zeroth law as stated above implies that if body A is in thermal equi-
librium with bodies B and C, than also bodies B and C will be in equilibrium.
All three will have the same temperature.

Thus, to measure the temperature of a body, all we have to do is to bring
a calibrated thermometer into contact with the body and wait until the equi-
librium state of the system (body and thermometer) is reached. When the
size of the thermometer is small compared to the size of the body, the final
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time

Ty

Fig. 2.6 Two bodies of different temperatures Ta, T assume a common temper-
ature T a while after they are brought into thermal contact

temperature of body and thermometer will be almost equal to the initial
temperature of the body, see Sec. B.12

2.12 Thermometers and Temperature Scale

So what is a thermometer? Thermometers rely on the change of physical
properties with temperature. The volume of most liquids grows with temper-
ature, the volume change is employed in mercury or alcohol thermometers:
liquid thermometers rely on the measurement of length. Resistance ther-
mometers rely on the change of ohmic resistance of electric conductors with
temperature. Thermocouples use thermoelectric effects—voltage caused by
temperature difference—to measure temperatures.

Thermometers must be carefully calibrated, so that different thermome-
ters, and different types of thermometers, will agree in their measurements.
The calibration requires reference points that can be reproduced accurately,
and a proper definition of the scale between the reference points.

The temperature scale used in daily life is the Celsius scale which measures
temperature in degrees Celsius [°C]. The Celsius scale was originally defined
based on the boiling and freezing points of water at p = 1 atm to define the
temperatures of 100 °C and 0 °C. The Fahrenheit scale, which is employed in
the USA, assigns these points the temperatures 212 °F and 32 °F. National
and international bureaus of standards now use a larger number of well-
defined fix points for the calibration of thermometers.

Just having reference points is not enough, there must be a well-defined scale
for the temperatures between the reference points. As an example we consider
two liquid thermometers filled with different liquids A and B, which are build
such that their liquid columns have the same heights for the reference points
at 0°C and 100 °C, see Fig. 27l However, the change of volume with temper-
ature might follow different non-linear functions V' (T") for the two liquids, so
that both thermometers show different heights for temperatures between the
reference points, as example the figure shows different readings for 50 °C.
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Fig. 2.7 Two liquid thermometers with liquids of different temperature-volume
characterisitics

2.13 Gas Temperature Scale

To define a proper temperature scale between the reference points, one has to
agree on a particular reference substance, and define the scale for that sub-
stance. Thermometers involving other substances, or other physical effects,
can then be calibrated based on the reference.

The reference substance used is the ideal gas. Any gas at sufficiently low
pressures and large enough temperatures (see Sec. [6.10), behaves as an ideal
gas. From experiments one observes that for an ideal gas confined to a fixed
volume the pressure increases with temperature. The temperature scale is
defined such that the relation between pressure and temperature is linear,
that is

T(°C)=a+bp (2.9)

where the two constants a and b can be found from two well-defined reference
points. With this, temperature is determined through measurement of pres-
sure, see Fig. 2.8l For the Celsius scale one finds a = —273.15 °C independent
of the ideal gas used. The constant b depends on the volume, mass and type
of the gas in the thermometer.

By shifting the temperature scale by a, one can define an alternative scale,
the ideal gas temperature scale, as

T(K)=bp. (2.10)

The ideal gas scale has the unit Kelvin [K, not °K] and is related to the
Celsius scale as

T (K) :T(°C)O—Ié+273.15K. (2.11)
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T =a+bp

V = const
T, p

Fig. 2.8 In a gas thermometer, temperature 7' is determined through measurement
of pressure p

For engineering problems one often uses T (K) = T'(°C) &5 + 273 K, that is
one ignores the difference of 0.15K to the exact value. Temperature differ-
ences have the same numerical value for both scales, AT (K) = AT (°C) &.

Since pressure cannot be negative, the ideal gas temperature cannot as-
sume negative values, T (K) > 0. The ideal gas temperature scale fulfills all
requirements on the thermodynamic temperature scale that will follow from
the second law, and it coincides with the thermodynamic Kelvin scale. Much
later, in Sec. 23.6] we will learn about the 3rd law of thermodynamics which,
simply put, states that absolute zero = 0 K cannot be reached.

Some care must be taken in notation. For convenience temperatures are
quite often given on the Celsius scale, but many thermodynamic equations
require the thermodynamic temperature in Kelvin. Most often the same sym-
bol, T, is used for temperatures on either scale, one has to be careful to not
get confused.

2.14 Thermal Equation of State

Careful measurements on simple substances show that specific volume v (or
density p = 1/v), pressure p and temperature T' cannot be controlled inde-
pendently. Indeed, they are linked through a relation of the form p = p (v, T),
or p=1p(p,T), known as the thermal equation of state. For most substances,
this relation cannot be easily expressed as an actual equation, but is laid
down in property tables, see Chapter

The thermal equation of state relates measurable properties. It suffices to
know the values of two properties to determine the values of others. This will
still be the case when we add energy and entropy to the list of thermodynamic
properties, which can be determined through measurement of any two of the
measurable properties, i.e., (p,T) or (v,T) or (p,v).

For inhomogeneous states, where the properties are space dependent, we
assume the validity of the thermal equation of state in the local volume
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element dV. This assumption reflects our understanding that the atoms and
molecules of the considered substance are interacting frequently, and thus
behave collectively, see Sec.

To summarize: The complete knowledge of the macroscopic state of a sys-
tem requires the values of two intensive properties in each location (i.e., in
each infinitesimal volume element), and the local velocity. The state of a sys-
tem in equilibrium, where properties are homogeneous, is described by just
two intensive properties (plus the size of the system, that is either total vol-
ume, or total mass). In comparison, the knowledge of the microscopic state
would require the knowledge of location and velocity of each particle.

2.15 Ideal Gas Law

The ideal gas is one of the simplest substances to study, since it has simple
property relations. Ideal gases are employed in many engineering applications.
Arguably, the most important ideal gas is air, which is the working substance
in a large number of systems, including internal combustion engines.

Careful measurements have shown that for an ideal gas pressure p, total
volume V', thermodynamic temperature T, and mass m are related by an
explicit thermal equation of state, the ideal gas law

pV =mRT . (2.12)

Here, R is the gas constant that depends on the type of the gas. Alternative
forms of the equation result from introducing the specific volume v = V/m
or the mass density p = 1/v so that

pv=RT , p=pRT. (2.13)

The ideal gas law is our first property relation. According to this equation,
the properties appearing in the equation cannot be changed independently:
the change of one property must necessarily lead to a change of at least
one other property. When the temperature is kept constant, an increase in
pressure leads to a reduction of volume; when pressure is kept constant, the
increase of temperature leads to increase of volume; when volume is kept
constant, reduction of temperature leads to lower pressure. Of course, there
can be processes where all three, pressure, volume, and temperature, change.

%], where 1kJ = 10°Nm is the

energy unit kilo-Joule. Further examination has shown that the gas constant
is related to the molar mass of the gas. One finds

The gas constant R has the unit

—

(2.14)

where
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kJ
kmol K

is the wniversal gas constant. The following list shows the molar masses
of some important gasesE air, hydrogen, helium, nitrogen, oxygen, carbon
dioxide,

R =238.314

(2.15)

kg kg kg

Maix = 209, My, =29, Mye = 47—, (2.16)
kg kg kg

My, = 28425, Mo, =327, Mco, = 44— .

Note that air is a mixture of nitrogen (~78% by particle number), oxygen
(~21%), and argon (~1%) with traces of other substances including carbon
dioxide (~0.04%).

The corresponding values of the gas constant are

kJ kJ kJ
air — 2 T == 41 3 2
R, 0.287 kg K Ry, 57 kg K Rye 077T——— ke K’
kJ kJ kJ
i, = 0297 25 Ro, = 02607 . oo, = 0189 (2.17)

More values can be found in property tables.
Mass m and mole number n are related as n = m/M, so that the ideal gas
equation can be written in yet another form, with the universal gas constant,

pV =nRT . (2.18)

This equation does not contain any quantities that depend on the type of
gas, accordingly the behavior of ideal gases is universal.

2.16 A Note on Problem Solving

Before we start solving our first problems, it might be worthwhile to briefly
list good practices for problem solving. Typically, any engineering problem
should be tackled by the following steps:

1. Understand the problem, i.e., read the question carefully. Nothing good
can come from a solution that is based on a misunderstanding.

2. Make a sketch of the relevant system, and proper diagrams. A good sketch
can summarize a complicatedly worded problem in a far more accessible
form.

3 The given values are rounded for easier memorlzatlon Exact values are M, =
28 97 ke_ MHz 2.01588 —&— kmol, MHe = 4.002602 —==-, My, = 28.0134 = kg

kmol? kmol?’
= 31.9988 —5=, Mco, = 44.0095

kmol 4

kmol ’ kmol
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3. Indicate all quantities that are known on the sketch, or in a list, so that
they are easy to find when needed. List all processes that occur in the
System

4. List the quantities that need to be determined.

5. List the relevant thermodynamic equations for their determination.

6. Simplify the equations based on what is known about the processes in
the system.

7. Solve the equations for the quantities of interest. Do not insert values
for quantities before all manipulation of equations is complete; in other
words, solve symbolically, and insert values as late as possible. This sim-
plifies double checking of computations, and makes it far easier to correct
errors that occur due to mistyping of values or wrong unit conversions.

8. Carefully consider and simplify all units. Before you have sufficient prac-
tice, never assume the outcome of a unit conversion, or the final unit for
a value in a computation. Wrong unit conversions are a rather frequent
source of major problems: always double-check. Note that each property
value must be accompanied by a unit, i.e., never just write a number but
[number valuexunit].

9. Add comments throughout your treatment of the problem, so that you
have text and equations/values on your answer. Written out sentences
make the solution accessible, and you can explain assumptions, simplifi-
cations etc. This makes it far easier to follow through the line of argument
for any reader—including yourself at a later point in time; just equations
make for an unreadable submission.

10. Finally, use experience and common sense to scrutinize the final results.
Do they make sense, e.g., are the values for temperatures, pressures,
energies etc. realistic?

We shall as much as possible adhere to these steps in the examples through-
out this book. However, due to space restrictions, we will, e.g., not always
have a sketch, and will skip over algebraic reformulations of equations. More-
over, explicit unit conversions will be shown only in few early examples. It is
strongly recommended that the reader goes through the examples carefully,
including making a sketch, and double checking of all calculations, including
the units.

2.17 Example: Air in a Room

A room of dimension 5m x 10m x 3m is filled with air at 20°C, 1atm.
Compute the mass of air in the room, the number of moles and the number
of particles. If the temperature in the room increases to 25 °C for the same
pressure, what amount of air has left through doors and windows?

We use the ideal gas law (ZI2) with the values V = 150m?, p =
101.325kPa, T = 293 K. Note that the ideal gas law requires the Kelvin
temperature! We find, with R = 0.287% as the gas constant for air,
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pV  101.325 x 150 kPam? kPam?
== ~ 180.74 ke = 180.74kg .
TTRT T 087X 293 LK P &

For the unit conversion we have used that 1 kPa = 103 FNQ and 1kJ = 10 N m,

hence 1kPa = 1%. The corresponding mole number n and particle number
N are, with M = 29%;%)1 and the Avogadro constant ([2Z3]),

n= % —6.23kmol , N = nN4 = 3.75 x 1027 .
For a temperature of 25°C = 298 K we find the mass m = 177.71 kg, that is
a mass of 3.03 kg has left the room.

2.18 Example: Air in a Refrigerator

A refrigerator of volume Vi = 330 litre which maintains food at T = 5°C
is located in a kitchen at Ty = 22°C, pg = 1.02atm. When the refrigerator
door is opened, warm air enters the cooling space, and when the door is closed
again, this warm air is cooled to Tr. We ask for the amount of air inside, and
for the net force on the door after cooling is complete.

To simplify the problem, we assume that the air in the refrigerator is
completely exchanged, so that in the moment of closing all air in the interior
is at Ty, po. Then, the mass in the interior is, with pg = 103.35kPa, Vr =
0.33m?, T, = 295K and R = 0.287%,

o PoVR
RTy

= 0.403kg .

As long as no air enters during the cooling process, the pressure in the
interior after cooling is complete is, with T = 278 K,
mRTR TR

g = i . ]. t = .4kP .
PR Vi pOTo 0.961 atm = 97 a

When the door has an area of A = 0.6m?2, the pressure difference between
inside and outside gives the net force

F = A(po—pr) =3.57TkN.

This force must be overcome to open the door. Note that the calculation
assumes perfect sealing, and complete replacement of the cold air with warm
air. Actual kitchen refrigerators have imperfect seals, so that some air creeps
through during cooling, hence the observed forces are weaker. Nevertheless,
in particular not too long after closing, one can observe this effect. Try your
refrigerator at home!
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2.19 More on Pressure

Pressure p is defined as the force (F') exerted by a fluid per unit area (A),
p = F/A, in the limit of infinitesimal area. Pressure is isotropic, that is the
force on a surface is independent of the orientation of that surface.

Po

mg
p

Fig. 2.9 A piston resting on a liquid

A piston of mass m and cross section A rests on a liquid in a cylinder,
as depicted in Fig. B0} the atmospheric pressure is pg. We determine the
pressure p of the liquid at the piston.

The piston is at rest, in mechanical equilibrium, which implies that all
forces F; on the piston add up to zero, > F; = 0. The acting forces are the
weight mg of the piston, where g = 9.8173 is the gravitational acceleration,
and the pressure forces due to atmospheric and liquid pressure, pgA and pA,
respectively. With the proper signs for the forces we have

mg+poA—pA=0 — p:po—i—%. (2.19)
The system pressure, p, balances the external pressure, pg, and the weight of
the piston.

Gravitation leads to variation of water pressure with depth, and of air
pressure with height. We compute both following Fig. The water-air
interface is at the location z = 0 where the pressure is pg. The insert shows
a small layer of substance, air or water, of thickness dz and cross section A.
The mass of the layer, dm, follows from the mass density p and the layer
volume dV = Adz as dm = pAdz.

The forces acting on the layer are the contributions of the pressures below,
p(z) A, and above, p (z + dz) A, and the weight gdm = pgAdz. We assume
the fluid (air or water) is at rest, so that the forces balance,

p(z+dz) A+ pgAdz —p(z) A=0. (2.20)

For infinitesimal dz we can use Taylor’s formula p (z + dz) = p(z) + dz—(j)dz
and find a differential equation for pressure,

dp (2)
dz

=—pg . (2.21)
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91 Tdz

air

water

Fig. 2.10 On the computation of pressure variation in the gravitational field

To proceed, we have to differentiate between water and air. First we con-
sider water: Water can be assumed in good approximation to be an incom-
pressible substance, that is the water density is constant, with the well-known
value of py,o ~ 1000%. Integration of (Z21) is straightforward, and gives,
together with the condition p (z = 0) = po,

p(2) =po — pgz . (2.22)

This is the hydrostatic pressure law, which is often written in terms of depth
h=—zas
p(h) =po + pgh . (2.23)

This relation is valid for all incompressible liquids, where the appropriate
mass density p must be used. For water, depth increase by Ah = 10.33m
increases the pressure by about 1 atm. Hydrostatic pressure depends only on
depth, not on the actual weight of liquid above. This implies that hydrostatic
pressure is independent of the geometry of the container, see Fig. 211 for an
illustration.

Air, on the other hand, is compressible, it obeys the ideal gas law p = pRT.
Using this to eliminate density from the differential equation for pressure
221)), we find

dp (2) g
o TR (Z)dz . (2.24)
Integration is only possible when we have additional information on the tem-
perature T (z) as a function of height z.
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Fig. 2.11 Hydrostatic pressure depends only on depth

When the atmospheric temperature is constant, 7' (z) = Tp, integration
of [224)) gives, together with the boundary condition p(z =0) = po, the
barometric formula "

p=poe 770 . (2.25)

This formula describes the exponential decrease of pressure with height in an
isothermal atmosphere.

In the actual atmosphere, however, the temperature is not constant, but
decreases with height approximately as T (z) = Ty — az with a = 1Ok—Ifn.
Then, integration of (Z24]) gives

oz aR
—po (1= . 2.2
P ="po < To) (2.26)

Figure compares both pressure functions for air and Ty = 293 K. For
the non-isothermal atmosphere the pressure decreases slightly faster, but at
moderate heights the difference is almost not noticeable. The Canadian town
of Banlff is located at an altitude of 1463 m above sea level. When the sea level
pressure is pg = 1 atm we compute from (228) and (Z26]) local pressures of
0.843 atm and 0.839 atm, respectively. Note that most weather forecasts do
not present the actual local pressure p, but the normalized pressure, that is
the corresponding sea level pressure py. For instance, when the forecast gives
the pressure for Banff as 990 kPa, based on ([Z:20]) the actual pressure in town
will be 831 kPa.

The example shows a marked influence of gravitation on pressure for
heights on the kilometer scale. Most engineering devices are relatively small,
at most on the scale of several meters, and the variation of gas pressure can
be safely ignored. Therefore it is sufficient to assign just one value of pressure
to a gaseous system in equilibrium.

Gas pressure results from the momentum change of those gas particles
that hit the wall and bounce back, and thus exert a force. When a gas filled
container is put on a scale, the scale will show the total weight of container and
gas, although most of the gas particles are not in contact with the container
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Fig. 2.12 Atmospheric pressure over height for constant and variable temperature

walls. Indeed, it is the small variation with pressure between top and bottom
of a container which puts the weight of the gas on the scale.

Problems

2.1. Ideal Gas I

A 5 litre container holds helium at a temperature of 25°C and a pressure of
2 atm. Determine the mass of gas in the container, the number of moles, and
the number of particles.

2.2. Ideal Gas II

A cylinder with radius 5 cm contains 5 g of pure oxygen at a temperature of
200 °C. The cylinder is closed with a freely moving piston, which in equilib-
rium rests at a height of 50 cm. Determine the mass of the piston.

2.3. Ideal Gas Thermometer

An ideal gas thermometer holds a fixed gas volume of 1000 cm®. For calibra-
tion, the thermometer is brought into contact with melting ice and boiling
water, both at 1atm, where the pressures measured are p; = 51.6 kPa and
p2 = 70.5kPa.

1. For Celsius temperature, assume a linear relation of the form 7'(°C) =
a + bp and determine the constants a and b.

2. Determine the mole number of particles enclosed.

3. Careful measurement shows that the mass of gas enclosed is 1g. Find the
molar mass—what gas is it most likely?

2.4. Ideal Gas and Spring

The following process is done in a room at a temperature of 20°C and a
pressure of 100 kPa: A container with quadratic base of 10 cm side length is
closed by a piston of mass m, = 100 g. Initially, the piston is fixed at a height
of Hy = 10 cm, and the cylinder is filled with 2.5 g of carbondioxide. A spring
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is attached to the piston from above, so that at the initial state the spring is
at its rest length. When the fixing of the piston is removed, the piston moves
up, and the spring is compressed. The system comes to an equilibrium state
such that the piston has moved up by AH = 3cm.

1. Determine the spring constant k.
2. The gas in the container is now heated to 120 °C. Determine the final
displacement of the piston.

2.5. Climbing a Mountain

In an atmosphere where the temperature depends on height z as T' = Ty — az,
with Ty = T' (2 =0) = 15°C and o = 8.5., a climber located at height
z1 = 500m fills a piston-cylinder device with air, so that the device contains
2000 cm? of air. At this height, the climber measures an atmospheric pressure
of p1 = 0.95bar. The device is closed by a freely moving piston with mass
m, = 300 g and surface area of A, = 40 cm?®. The climber carries the system

to the top of the mountain, at zo = 4810 m.

1. Determine temperature and pressure of the atmosphere at z1, 2s.

2. Determine the pressure inside the system at z;, and the mass of air in the
system.

3. The climber reaches the top of the mountain at z5. After the system has
established equilibrium with the surrounding air, determine the pressure
in the system, and the system volume.

2.6. Ascent of a Balloon
The volume of a closed balloon shell is V; = 800m3, if completely filled.
The mass of the balloon, including basket, but without the gas filling, is
mp = 500kg. The temperature of the environment and of the gas filling is
5°C, and remains constant during the ascent. Initially, the balloon is filled
with Vy = 500m? of helium at the ground level pressure of pg = 0.98 bar. As
the balloon rises, its volume increases until it reaches V.

For the solution of the following questions, assume that the air pres-
sure depends on height z according to the barometric formula p(z) =

Do €XP [— Rf:To] where R, is the specific gas constant for air, and z is

the height above ground.

Helium can be considered as an ideal gas with My, = 4-—&

kmol*

1. Compute the mass of the helium filling.

2. As the balloon ascents, the volume of the filling increases. Compute the vol-
ume of the balloon as function of height. Above which height is the balloon
completely filled? (Hint: the pressures of helium filling and the surrounding
air are equal as long the balloon is not filled completely).

3. Compute the buoyancy for V' < V, and show that it is independent of
height. The buoyancy force is given as Fg = p,;.(2)gV where V is the
actual balloon volume, and p,;, (z) the density of the surrounding air at
height z.
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4. Set up an equation for the buoyancy for the case that the balloon is com-
pletely filled. How high will the balloon rise?

2.7. An Experiment
As you accelerate in a car, you are pressed in the seat—what happens to a
helium filled balloon? Think about it, or try it, then explain!



Chapter 3
The First Law of Thermodynamics

3.1 Conservation of Energy

It is our daily experience that heat can be converted to work, and that work
can be converted to heat. A propeller mounted over a burning candle will spin
when the heated air rises due to buoyancy: heat is converted to work. Rubbing
your hands makes them warmer: work is converted to heat. Humankind has
a long and rich history of making use of both conversions. Friction between a
fast spun stick and a resting piece of wood is used since millennia to create a
fire. Technical applications of heat to work conversions are abundant through
history, and our modern life is unthinkable without heat engines such as steam
and gas turbines for generation of electricity, or car and aircraft engines
for transport. In cooling engines work is used to withdraw heat, such as in
refrigerators or in air conditioning devices.

The evaporation of water to steam by heating provides a large change in
volume and/or pressure. Devices using this effect were known already more
than 2000 years ago, but they became prevalent with the development of the
steam engine. Thermodynamics was initially developed to better understand
the processes in steam engines and other conversion devices, so that the
understanding can be used to improve the engines.

While the heat-to-work and work-to-heat conversions are readily observ-
able in simple and more complex processes, the governing law is not at all
obvious from simple observation. It required groundbreaking thinking and
careful experiments to unveil the law of conservation of energy. Due to its
importance in thermodynamics, it is also known as the First Law of Ther-
modynamics.

Expressed in words, the First Law of Thermodynamics reads:

Energy cannot be produced nor destroyed, it can only be transferred, or
converted from one form to another. In short, energy is conserved.

It took quite some time to formulate the first law in this simple form, the
credit for finding and formulating it goes to Robert Meyer (1814-1878), James

H. Struchtrup, Thermodynamics and Energy Conversion, 33
DOI: 10.1007/978-3-662-43715-5 3, (© Springer-Verlag Berlin Heidelberg 2014
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Prescott Joule (1818-1889), and Hermann Helmholtz (1821-1894). Through
careful measurements and analysis, they recognized that thermal energy, me-
chanical energy, and electrical energy can be transformed into each other,
which implies that energy can be transferred by doing work, as in mechanics,
and by heat transfer.

The first law is generally valid, no violation was ever observed. As knowl-
edge of physics has developed, other forms of energy had to be included,
such as radiative energy, nuclear energy, or the mass-energy equivalence of
the theory of relativity, but there is no doubt today that energy is conserved
under all circumstances.

am Y

Fig. 3.1 Closed system with energy E exchanging work W and heat Q with its
surroundings

We formulate the first law for the simple closed system, depicted again
in Fig. Bl where all three possibilities to manipulate the system from the
outside are indicated. For this system, the conservation law for energy reads

dFE . .
T Q-WwW, (3.1)
where E is the total energy of the system, Q is the heat transfer rate in or
out of the system, and W = Wpiston —&—mepe”er is the total power—the work
per unit time—exchanged with the surroundings.

This equation states that the change of the system’s energy in time (dFE/dt)
is equal to the energy transferred by heat and work per unit time (Q - W)
The sign convention used is such that heat transferred into the system is
positive, and work done by the system is positive.

The SI unit of energy, work, and heat is the Joule, 1J =1Nm =1 kgsf}lQ;
the ST unit of power and heat transfer rate is the Watt, 1 W = 1%.
All contributions to the first law (3.]), i.e., energy, work and heat, will be

discussed in detail in the following sections.
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3.2 Total Energy

The total energy E of the system is the sum of its kinetic energy Egin,
potential energy E,,:, and internal—or thermal—energy U,

E=U+ Epin + Epot - (3.2)

Presently, these are the only forms of energy that we need for the description
of thermal processes; other forms of energy that can be relevant are chemical
energy, nuclear energy, radiative energy and electrical energy, which will be
introduced when required.

We address the different contributions to energy in the next sections.

3.3 Kinetic Energy

The kinetic energy is well-known from mechanics. For a homogeneous system
of mass m and velocity V), kinetic energy is given by

Egin = %vz . (3.3)

For inhomogeneous states the total kinetic energy of the system is obtained
by integration of the specific kinetic energy ey;, over all mass elements dm =
pdV'; we have

1
Chin = §V2 and FEip, = /pekde:/gv2dV. (3.4)

3.4 Potential Energy

Also the potential energy in the gravitational field is well-known from me-
chanics. For a homogeneous system of mass m , potential energy is given by

Epot = mgz (3.5)

where z is the elevation of the system’s center of mass over a reference height,
and g = 9.81 is the gravitational acceleration on Earth.

For inhomogeneous states the total potential energy of the system is ob-
tained by integration of the specific potential energy ep,; over all mass ele-
ments dm = pdV'; we have

epot =gz and Epy = /pepoth = /pgde. (3.6)
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3.5 Internal Energy and the Caloric Equation of State

Even if a macroscopic element of matter is at rest, its atoms move (in a gas
or liquid) or vibrate (in a solid) fast, so that each atom has microscopic ki-
netic energy. Moreover, the atoms are subject to interatomic forces, which
contribute microscopic potential energies. These microscopic energies depend
on temperature, and the higher the temperature, the higher the average mi-
croscopic energy. Since the microscopic kinetic and potential energies cannot
be observed macroscopically, one speaks of the internal energy, or thermal
energy, of the material, denoted as U.

For inhomogeneous states the total internal energy of the system is ob-
tained by integration of the specific internal energy w over all mass elements
dm = pdV . For homogeneous and inhomogeneous systems we have

U=mu and U = /pudV. (3.7)

Internal energy cannot be measured directly. The caloric equation of state
relates the specific internal energy u to measurable quantities, it is of the form
u=u(T,v), or u = u(T,p). Recall that pressure, volume and temperature
are related by the thermal equation of state, p (v, T'); therefore it suffices to
know two properties in order to determine the others.

The caloric equation of state must be determined by careful measurements,
where the response of the system to heat or work supply is evaluated by means
of the first law. For most materials the results cannot be easily expressed as
equations, and are tabulated in property tables, see Chapter [fl Some simple
caloric equations of state will be presented already in Sec. B.101

For inhomogeneous states, where the properties are space dependent, we
assume the validity of the caloric equation of state in the local volume element
dV'. This assumption reflects our understanding that the atoms and molecules
of the considered substance are interacting frequently, and thus behave as a
collective, see Sec.

3.6 Work and Power

Work, denoted by W, is the product of a force and the displacement of its
point of application. Power, denoted by W, is work done per unit time, that
is the force times the velocity of its point of application. The total work for
a process is the time integral of power over the duration At =t — ;1 of the
process,

to .
W= / Wt . (3.8)
ty

For the closed system depicted in Fig. [Z1] there are two contributions to
work: mowving boundary work, due to the motion of the piston, and rotating
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shaft work, which moves the propeller. Other forms of work, e.g., spring work
or electrical work will be discussed as required.

Work and power can be positive or negative. We follow the sign convention
that work done by the system is positive and work done to the system is
negative.

Moving boundary work is best computed from a piston-cylinder system,
as depicted in Fig. 3.2} however, the subsequent expressions are valid for
arbitrary system geometries. The force on the piston of cross section A
is pA and thus the work for an infinitesimal displacement ds is given by
OW = pAds = pdV, where dV = Ads is the volume change associated with
the displacement. As the piston is moved, the pressure within the system
might change. Thus, the work Wi, for a finite displacement Vo — V; must
be computed by summing over the infinitesimal contributions §W, that is by
integration, Wis = [ W = ff pdV .

(r— | ds
TTTTTTTTTTTTTTTI
b

Fig. 3.2 Moving boundary work in a piston-cylinder system at pressure p, piston
area A, displacement ds. Work is dW = pdV = pAds.

The power W is obtained from multiplying the force pA with the velocity
% of the piston. Since the cross section does not change, we have A% = %,
and W = p%.

Altogether we have the following expressions for moving boundary work
with finite and infinitesimal displacement, and for power,

2 , v
Wi = / pdV , W =pdV , W= P (3.9)
1

Here, p is the pressure at the piston; for simplicity we have ignored variations
of pressure along the piston surface.

Closed equilibrium systems are characterized by a single homogeneous
pressureEl p, a single homogeneous temperature T, and the volume V. In
quasi-static (or reversible) processes, the system passes through a series of
equilibrium states which can be indicated in suitable diagrams. Figure
shows a pressure-volume diagram (p-V-diagram) of two different reversible
processes connecting the points {p1,V1} and {p2, V2}. Due to the relation

! Hydrostatic variation ignored, see Sec. 210
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Wia = ff pdV', the work is the area below the respective process curves as
indicated by hatching. Obviously, the amount of work depends on the process:
work is a path dependent function.

Dp
n Yy ~ow = pav
path 1
i Wf§’=/ pdV
S path 2
&
P2 NS 2
=>
Vi oV

Fig. 3.3 Two reversible processes between points 1 and 2 in the p-V-diagram, and
the corresponding moving boundary work

The power transmitted by a rotating shaft is related to the torque T and
the revolutionary speed n (revolutions per unit time) as W = 27aT, the
total work transmitted during a finite time interval is, again, Wys = [ 12 Wdt.
The transmission between the shaft and the working fluid is performed by a
propeller (turbines, compressors etc.).

In a closed system the propeller stirs the working fluid and creates in-
homogeneous states. Fluid friction transmits fluid motion (i.e., momentum
and kinetic energy) from the fluid close to the propeller to the fluid further
away. Due to the inherent inhomogeneity, stirring of a fluid in a closed system
cannot be a quasi-static process.

This is different in open systems, where fluid is entering and leaving the
system. The motion of the fluid can be used to drive the propeller, which de-
celerates the fluid and transmits work out of the system, or the propeller can
provide work to accelerate the fluid. These flow processes can be reversible.

In general, there might be several work interactions Wj of the system, then
the total work for the system is the sum over all contributions; e.g., for power

W= "W (3.10)

Finally we note that mechanical work can be transferred without restric-
tions between systems in mechanical contact:
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By using gears and levers, one can transfer work from slow moving to
fast moving systems and vice versa, and one can transmit work from
high pressure to low pressure systems and vice versa.

3.7 Exact and Inexact Differentials

Above we have seen that work depends on the process path. In the language
of mathematics this implies that the work for an infinitesimal step is not an
exact differential, and that is why a Greek delta (d) is used to denote the
work for an infinitesimal change as §W. As will be seen in the next section,
heat is path dependent as well.

State properties like pressure, temperature, volume and energy describe
the momentary state of the system, or, for inhomogeneous states, the momen-
tary state in the local volume element. State properties have exact differen-
tials for which we write, e.g., dE and dV'. The energy change Fs— F7 = ff dE

and the volume change V5 — V; = ff dV are independent of the path con-
necting the states.

It is important to remember that work and heat, as path functions, only
describe property changes, not states. A state is characterized by state prop-
erties (pressure, temperature, etc.), it does not possess work or heat.

Quasi-static (reversible) processes go through well defined equilibrium
states, so that the whole process path can be indicated in diagrams, e.g.,
the p-V-diagram.

Non-equilibrium (irreversible) processes, for which typically the states are
different in all volume elements, cannot be drawn into diagrams. Often irre-
versible processes connect homogeneous equilibrium states which can be in-
dicated in the diagram. We shall use dashed lines to indicate non-equilibrium
processes that connect equilibrium states. As an example, Fig. [3.4] shows a
p-V-diagram of two processes, one reversible, one irreversible, between the
same equilibrium states 1 and 2. We emphasize that the dashed line does
not refer to actual states of the system. The corresponding work for the non-
equilibrium process cannot be indicated as the area below the curve, since
its computation requires the knowledge of the—inhomogeneous!—pressures
at the piston surface at all times during the process.

3.8 Heat Transfer

Heat is the transfer of energy due to differences in temperature. Experience
shows that for systems in thermal contact the direction of heat transfer is
restricted:

Heat will always go from hot to cold by itself, but not vice versa.
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Vi vV
Fig. 3.4 A reversible (quasi-static) and an irreversible (non-equilibrium) process
between the equilibrium states 1 and 2

This restriction of direction is an important difference to energy transfer
by work between systems in mechanical contact, which is not restricted.

Since heat flows only in response to a temperature difference, a quasi-static
(reversible) heat transfer process can only be realized in the limit of infinites-
imal temperature differences between the system and the system boundary,
and for infinitesimal temperature gradients within the system.

The main heat transfer mechanisms are: (a) Heat conduction, where ther-
mal energy is transmitted by microscopic energy exchange between neighbor-
ing particles. (b) Convection, where fluid elements move to hotter or colder
parts of the system and then exchange energy with the new neighborhood.
(c) Radiative transfer, where electromagnetic radiation that crosses the sys-
tem boundaries is absorbed or emitted by the matter inside the system. In
the present context we do not need to discuss the details of these heat trans-
fer mechanisms, which ultimately describe the same thing: energy transfer
driven by temperature difference.

We use the following notation: () denotes the heat transfer rate, that is
the amount of energy transferred as heat per unit time. Heat depends on the
process path, so that the heat exchanged for an infinitesimal process step,
8Q = Qdt, is not an exact differential. The total heat transfer for a process
between states 1 and 2 is

2 to A
Q12 =/ 5Q = Qdt . (3.11)
1

t1
By convention, heat transferred into the system is positive, heat transferred
out of the system is negative.

A process in which no heat transfer takes place, Q = 0, is called adiabatic
process.
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In general, there might be several heat interactions Qj, of the system, then
the total heat for the system is the sum over all contributions; e.g., for the
heating rate

Q=> Q. (3.12)
k

Confusion might result between the use of the word heat in everyday lan-
guage, and its use in thermodynamics. In thermodynamics, heat solely de-
scribes a means to transfer energy in response to temperature differences. In
particular we emphasize that heat is not a form of energy, and does not relate
to how hot it might be outside. To say “oh, what a heat” is common language,
a thermodynamicist will say “oh, it’s pretty hot outside”, or, even better, “oh,
the temperature is pretty high today.” A state is characterized by its energy
or temperature, a change of state is characterized by heat (transfer).

3.9 The First Law for Reversible Processes

The form BI) of the first law is valid for all closed systems. When only
reversible processes occur within the system, so that the system is in equi-
librium states at any time, the equation can be simplified as follows: From
our discussion of equilibrium states we know that for reversible processes
the system will be homogeneous, and that all changes must be very slow,
which implies very small velocities. Therefore, kinetic energy can be ignored,
Elin = 0. Stirring, which transfers energy by moving the fluid and friction,
is irreversible, hence in a reversible process only moving boundary work can
be transferred. As long as the system location does not change, the potential
energy does not change, and we can set E,, = 0.

With all this, for reversible (quasi-static) processes the first law of ther-
modynamics reduces to

v . av

2
E*Q_pﬁ or UQ—U1:Q12—/1 pdV (3.13)

where the second form results from integration over the process duration. We
shall later, in particular in Chapter [7 use this equation extensively to study
reversible processes in closed systems.

3.10 The Specific Heat at Constant Volume

We consider a closed system heated at constant volume (isochoric process),
where the first law BI3) reduces to (recall that U = mu (T,v) and m =

const.) ) o
u .
" (6T>U T (3.14)
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Here, (g—éﬁ)v = % denotes the partial derivative of internal energy with

temperature at constant specific volumdd v = V/m. This derivative is known
as the specific heat (or specific heat capacity) at constant volume,

- (2) 19

To understand this name for ¢,, we rewrite (3.14) as

_Qdt _5Q

m m

codT (3.16)
From this equation we see that ¢, is the amount of heat required to increase
the temperature of 1kg of substance by 1K at constant volume. The specific
heat can be measured by controlled heating of a fixed amount of substance

in a fixed volume system, and measurement of the ensuing temperature dif-

. e kJ
ference; its SI unit is [m]

In general, ¢, (T,v) = (g—;ﬂ)v is a function of temperature and specific vol-

ume. For incompressible liquids and solids the specific volume is constant,
v = const, and the specific heat is a function of temperature alone. Inter-
estingly, also for ideal gases the specific heat turns out to be a function of
temperature alone, both experimentally and from theoretical considerations.
For these materials the internal energy depends only on temperature, and
integration gives the caloric equation of state as

T
w(T) = /T e (T')dT" + g . (3.17)

Only energy differences can be measured, where the first law is used to eval-
uate careful experiments. The choice of the energy constant ug = u (Tp) fixes
the energy scale. The actual value of this constant will only become relevant
for the discussion of chemical reactions. Note that proper mathematical nota-
tion requires to distinguish between the actual temperature T of the system,
and the integration variable T".

For materials in which the specific heat varies only slightly with temper-
ature in the interval of interest, the specific heat can be approximated by a
suitable constant average c2"9, so that the caloric equation of state assumes
the particularly simple linear form

2 Due to the abundance of thermodynamic properties, and the freedom to choose
any two of them as variables, one needs to be careful with the notation. In the
present context, internal energy depends on two variables, and when a partial
derivative is taken with respect to one variable, it is customary to indicate the
second variable by a subscript, to condense notation. This notation, where, e.g.,
(g—;)v = % will be used throughout this text for partial derivatives of prop-
erties.
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w(T)=c"9 (T —Tp) +up - (3.18)

This relation for the caloric equation of state will serve us well in our first
examples.
For temperatures around the standard environmental temperature Ty =

298 K (= 25°C), the specific heat of air is ¢' = 0.717%, for liquid water

one finds ¢, = 4.18%. The old unit for heat and thermal energy, the
calorie [cal], is defined such that one calorie is the heat required to raise the
temperature of one gram of water by one degree Celsius (from 14.5°C to
15.5°C at pp = L atm), thus 1cal = 4.18 J, and 1kcal = 4.18kJ.

3.11  Enthalpy

In many thermodynamic calculations one encounters the combination U+pV/,
or the mass divided equivalent u+pwv, and it is convenient to introduce a name
and a symbol for these. We define the total and the specific enthalpy as

H=U+pV , h=u+pv, (3.19)

where H = mbh.
Using enthalpy to replace internal energy, the first law for quasi-static
processes assumes the formdd

dH . d 2
=0+ ve and Hz—H1:Q12+/ Vdp . (3.20)
dt dt 1

As an application we consider a closed system heated at constant pressure

(isobaric process), so that % = 0. In this case, the first law reduces to

% = Q, or, since H - mh (Tap)a

8h) ar .
o) =4, (3.21)
m(aT ,dt

Here (g—;ﬂ)p = % denotes the partial derivative of specific enthalpy with

respect to temperature at constant pressure p. This derivative is known as
the specific heat at constant pressure

p = (%ﬁ)p . (3.22)

To understand this name for c,, we rewrite the above equation as

* From the defintion of enthalpy we have U = H — pV, hence 4% = w =

t t
4 _ pd¥ — V92: inserting this into the first law (BI3) gives the shown result.
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cpdT = % : (3.23)

We see that ¢, is the amount of heat required to increase the temperature of
3 v | kd
1kg of substance by 1K at constant pressure; its SI unit is [@}

For an ideal gas the thermal equation of state gives pv = RT, and the
internal energy u (T') is a function of temperature alone. It follows that for
the ideal gas also the enthalpy h(T) = w4+ pv = w(T) + RT is a function
of temperature alone. From the definitions of the specific heats (3.15] [3.22])
follows ¢, = ¢, + R; for air at Ty one finds cgir = 1.004%. For ideal gases
enthalpy and specific heat are related as

T
h(T) = / ¢ (T)dT" +ho or h=c™ (T ~To) +ho,  (3.24)

To

where the latter relation holds in case of constant specific heat.
For incompressible solids and liquids (v = const.), the specific heats at

i Opv\  _ o (Ov) _—
constant pressure and constant volume agree, since (8_T)p =Dp ( aT)p =0

(also see Sec. [[61] for a more detailed argument), and one writes the specific
heat without an index, ¢ = ¢, = ¢p. The specific heat for water will be
denoted as ¢,,.

While its internal energy depends only on temperature, the enthalpy of an
incompressible substance (constant specific volume v) depends on tempera-
ture and pressure. Indeed, by its definition A = u + pv, enthalpy depends
explicitly on pressure. With hg as the enthalpy at a reference point (7o, po),
the enthalpy for an incompressible solid or liquid with constant specific heat
becomes

h(T,p) =c*9 (T —Ty) + (p—po) v+ ho . (3.25)

Note that no substance is truly incompressible, normally the specific volume
changes at least a little bit. This leads to small differences between specific
heats which can be ignored as long as the compressibility is sufficiently small.

3.12 Example: Equilibration of Temperature

We apply the first law to the situation depicted in Fig. Two bodies A
and B that are initially at different temperatures T4 and T, respectively,
are brought into thermal contact. After a sufficiently long time, we find that
both bodies have assumed the common temperature 7.

For this problem, kinetic energy is zero, and potential energy does not
change. When the system [A + B] is adiabatically enclosed (Q = 0), and no
work is done (W = 0), the first law of thermodynamics simply states that

the energy of the system remains constant,
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dU
E_O'

Thus, the energy of the end state is equal to the initial energy, Usnq = Ulnit-

For simple incompressible solids the internal energy is given byﬁ U =mcT,
where ¢ denotes the average specific heat (assumed to be a constant) and m
is the mass. The internal energy of the system consisting of the two bodies
is initially

Uinit =Ua +Up = macaTa + mpcpTh .

To emphasize that the first law does not automatically give equal final tem-
peratures for the two bodies, we write Ueng = macaTa + mpegTp with
different final temperatures Ty and Tg. We solve for Ty,

mpcp

Ty = TA + (TB — TB) R (326)

maca
and see that there are infinitely many solutions for the final temperatures
(T4, Tp) that fulfill the first law: conservation of energy alone is not sufficient
to determine the final equilibrium state.
However, our experience, laid down in the zeroth law, tells us that the
final temperatures agree: Ty = T = T. We find the final temperature as the
weighted average of the two initial temperatures,

T macaTa +mpepTh

maca +mpcp

with the weights given by the thermal masses maca, mpcp. We shall later
employ the second law to find the same result.

As discussed, a thermometer utilizes the equilibration of temperature. The
act of measurement should not affect the result. To study the relevant con-
dition, let body B be the thermometer, used to measure the temperature of
body A. The final temperature T' of body and thermometer can be written
in the alternative form

mpcp (TB — TA)
maca +mpcp

T="Ts+

The measured temperature T is close to the initial temperature Ty of body
A when mpeg < macy. It follows that a thermometer should have consid-
erably smaller thermal mass mc than the body whose temperature is to be
measured.

4 With the energy constant up = ¢Tb.
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3.13 Example: Uncontrolled Expansion of a Gas

Our next example concerns the uncontrolled expansion of an ideal gas. For
this, we consider an ideal gas in a container which is divided by a membrane,
see Fig. Initially the gas is contained in one part of the container at
{T1,p1,V1}, while the other part is evacuated. The membrane is destroyed,
and the gas expands into the container. The fast motion of the gas is slowed
down by internal friction, and in the final homogeneous equilibrium state
{T2,p2, Va} the gas is at rest and distributed over the total volume of the
container. Note that we have no control over the flow after the membrane is
destroyed: this is an irreversible process.

ideal gas ¢ vacuum ideal gas

—
T, P 13, p2, Vo

Fig. 3.5 Irreversible adiabatic expansion of an ideal gas

The container is adiabatically enclosed to the exterior, and, since its walls
are rigid, no work is transmitted to the exterior. Thus, the first law for closed
systems (B.I]) reduces to

d (U + Ekin + Epot)
dt

= 0 5
or, after integration,
Us + Ekin,Q + Epot,2 =U; + Ekin,l + Epot,l .

Since the gas it at rest initially and in the end, Ekin,1 = Egin2 = 0, and
since potential energy has not changed Epoi,1 = Epot,2, the above reduces to
Uy = Uy. With U = mu, and m = const., the specific internal energy remains
unchanged,

u(Ty,v1) = u(Te,va) .

Measurements for ideal gases show that 17 = 75, that is the initial and
final temperatures of the gas are the same. With this, the previous condition
becomes

u (Tl,Ul) =U (Tl, Ug) 5

which can only hold if the internal energy of the ideal gas does not depend
on volume. This experiment verifies that the internal energy of the ideal gas
is independent of volume, and depends only on temperature, u = u (7).
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3.14 Example: Friction Loss

One litre of water in an adiabatic container is stirred such that the initial
average velocity of the water is V1 = 522, Stirring stops, and due to internal
friction and friction between water and container walls the water will come
to rest after a while. The water still moves after the stirrer is removed, but
we have no control over the water motion: this is an irreversible process. We
compute the change of temperature in the equilibration process.

After stirring stops, the system is isolated, no heat and work are exchanged,

Q = W = 0, potential energy remains constant, db;’;"t = 0. The energy

balance ([B]) reduces to % (U + Ekin) = 0, so that the total energy U + Ej;y,
stays constant,

Us + Ein2 = Ui + Egin,1 -

From experience we know that in the final homogeneous equilibrium state
the water is at rest, Ej;, 2 = 0, and we find

m
U2 - U1 = maAT = Eka = 7]}12 .
Mass cancels and we find the temperature difference as

2

1V 1252
ar=12_1 = =0.003K.

QCw 24'18k_g

For the unit conversion, we have used that 1% (& kJ = 103 r: Note
that this very small temperature change is due only to the destruction of the
initial kinetic energy. Constant stirring of a viscous liquid can increase its
temperature considerably; the relevant form for the first law is dt =—W,or

al’ _ —mm where W is the work required for stirring. A good example from

dt
daily life is the kneading of pizza dough, which can become quite warm.

3.15 Example: Heating Problems
3.15.1 Heating of Water

2 litre of water at 77 = 20 °C are heated in a well isolated 2 kW electric kettle.
We compute the time required to heat the water to To = 90 °C.
In this temperature range, liquid water can be well described as an incom-
pressible liquid with mass density p = 1000 k% and constant specific heat
cw = 4.18 3% . The mass of water in the heater is m = pV = 2kg. Since the
volume of the water remains unchanged, there is no work done, and with the

internal energy U = mc,, (T — Tp) + uo, the first law reduces to

dT
Mmcéy—- = Q ;

dt
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with Q = 2kW as given. Separation of variables and integration over the

duration of the process gives mey, (To — T1) = Q (t2 — t1), or

kJ

MCy €K
At =ty —t1 = — Ty —T1) =292.6——=—K = 292.6s.
2 1 Q ( 2 1) KW S

For the unit conversion we have used that 1 kW = 1%.

3.15.2  Heating of Water with Heat Loss

We consider the same problem as above, only that now the water in the heater
loses heat to the environment at Th = 20°C at a rate of Qposs = @ (T —Ty)
with a transfer coefficient o = 25%. The heat loss must be added to the heat
supplied by the kettle, so that the first law reads (careful with the sign, the
heat loss must be subtracted)

dT .
mcwE:Q—a(T—TO) .

Since Ty, Q and « are constant in time, this differential equation can be
written in the equivalent form

Integration between {t1,71} and {t2, T2} gives the solution

1n<T2—T —9>—1H(T1—T —Q>—— < At
o o MCy

or, solved for At

T —Ty— 2
Mew ) 217707 o _ 69545
a T, -T,- 4

[e3

At =

The higher the water temperature becomes, the more heat is lost. With the
values given above, for At — oo, we find a maximum temperature of 75° =

Ty + % = 100°C (note that % = 2kW — 2000W _ 80 K). The chosen value

25 W 25
for «v is a bit high for a water heater, which nol;mally can bring water to boil
and evaporate in finite time.

The heat transfer coefficient o depends on the material, and the system
configuration. Our sense of cold or hot is not a sense of temperature, but
rather a sense of heat transfer. When we touch an object with large heat
transfer coefficient, a large amount of heat is exchanged between our hand
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and the object, which feels hotter or colder as an object with smaller heat
transfer coefficient at the same temperature. The amount of energy available
plays a role as well. A larger amount of heat can be transferred to our hand
from an object with large thermal mass mc. Wood feels not as cold as metal
of the same temperature.

3.15.3  Isochoric Heating of an Ideal Gas

We consider the air-filled room from a previous example which contains
180.94 kg of air, initially at 20°C, 1atm. We now assume the room is per-
fectly sealed, so that the air volume remains constant, and ask for the total
amount of heat that must be supplied to heat the room to 25 °C.

We describe air as an ideal gas with constant specific heat, so its internal
energy is given by U = me, (T — Tp) + ug, with ¢, = 0.717 szK. Since the

volume remains constant, no work is done, Wyp = ff pdV = 0, and the first

law reduces to
dT

a9

mcy,

Integration gives
2 .
Q12 = / Qdt = mc, AT = 648.7kJ .
1

A 2kW heater would need At = ng/Q = 324 s to heat the air in the room
by 5°C. The heating of a real room takes longer, since a substantial amount
of heat is required to heat the walls, which have a large thermal mass mc,
moreover one will expect heat loss through the walls to the colder outside
environment.

The pressure after heating is completed, ps, follows from the ideal gas
law pV = mRT. Since mass and volume remain constant we have p/T =
mR/V = const, so that pa/To = p1/Th or po = p1Te/T1 = 1.017atm =
1.0305 bar (temperatures in Kelvin!).

3.15.4  Isobaric Heating of an Ideal Gas

Next we ask for the amount of heat required to heat the same amount of air
under constant pressure.

In this case, the heat is best computed from the alternative form (F.20)
which for constant pressure reduces to

dH .
E_Qa

where H = mbh is the enthalpy of the enclosed air, with h = ¢, (T' — To) + ho
and ¢, = 1.004%. Integration gives
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2
Q12 = / Qdt = mep, AT = 908.3kJ .
1

A 2kW heater would need At = ng/Q = 454 s to heat the air in the room,
provided that no heat loss occurs to and through the walls.

The initial volume is Vi = 150m> and the volume after heating follows
from the ideal gas law pV = mRT. Since pressure and mass remain constant,
we have Vo /Ty = Vi /Ty and find Vo = Vi Ty /T, = 152.6m>. The expansion
of the air requires moving boundary work. Since pressure is constant we find

2 2
Wm:/ pdV:p/ dV =p (Vo — Vi) =2594kJ .
1 1

In the isochoric case all heat supplied goes to increase the internal energy.
The heat required for isobaric heating is bigger since, while the increase
of internal energy is the same, additional energy is required to provide the
expansion work.

Problems

3.1. Tank and Contents

A well-insulated copper tank of mass 12kg at 27°C is filled with 4 litres
of water at 50 °C. The tank is heated with a 1kW resistance heater for 2%
minutes, and then left alone. Determine the temperature of the system after

equilibrium is established. Is the process reversible or irreversible? For copper:

p=89xE, ¢, = 0.386 %

3.2. Cooling Process
A 0.5m® block of steel (p = 7.832L ¢, = 0.5 initially at 250°C is
g

litre?
heated with a constant rate of Q = 50kW. How long does it take until the
block’s temperature is 600 °C?

3.3. Equilibration of Temperature

To warm the water in your bathtub, you decide to heat it by throwing a
block of hot iron into the water. When your bathtub holds 150 litres of water
initially at 20°C, and you can heat the iron to 400 °C, what mass should
the iron block have so that you can have a bath at 33°C? Is the process
reversible or irreversible? Assume no heat loss to anywhere, and no boiling,
evaporation etc.

Specific heats: ¢, = 4.18%, Ciron = 0.450%.

3.4. Irreversible Expansion

An ideal gas is confined to one side of a rigid, insulated (= no heat transfer,
adiabatic) container, divided by a partition. The other side is initially evac-
uated. The initial state of the gas is p; = 2bar, T} = 400K, V7 = 0.02m3.
When the partition is removed, the gas expands to fill the entire container
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and achieves a final equilibrium pressure of 1.5 bar. Determine the volume of
the container.

3.5. Stirring of a Liquid

A thermally insulated 2 litre tank is filled with mercury, which is stirred.
When the stirring power is 200 W, how long does it take to raise the temper-
ature of the mercury by 10°C? Is the process reversible or irreversible?

3.6. Kneading of a Pizza Dough
A high quality kitchen mixer has a 575 W electric motor. Good pizza dough
should be kneaded for about 10 minutes. When 2 kg of dough is kneaded in
an adiabatically insulated container, and its initial temperature was 20 °C,
what temperature will the dough have after kneading?

Assume specific heat of dough as ¢ = 2.73%.

3.7. Measurement of Specific Heat

To measure the specific heat of light oil (incompressible liquid, mass density
0.911;2%6) two litres of oil are stirred in a well-insulated container for 12.5
minutes. The stirrer consumes a power of 75 W, and it is observed that the
temperature rises from 23 °C to 40 °C. Ignore kinetic and potential energies.

and determine the specific heat of the oil.

3.8. Ice Cream Maker

An ice maker stirs 5 kg of a fruit-cream-air mixture (p = 570%, cp =
1.7%). The electric motor of the stirrer consumes 575 W of power. It is
observed that after 10 minutes the temperature of the ice cream has dropped
from Th = —2°C to To = —18 °C. Determine the cooling rate of the ice cream
maker.

3.9. Heating of a Room
A room of 300 sq.ft. area and 8 ft height is to be maintained at a constant
temperature of 68 °F while the outside temperature is 32 °F. The heat transfer

rate to the outside is given by Newton’s law of cooling, @ = o (T — Tj) with
a=25%,
K

1. Compute the heating power required to maintain the temperature con-
stant.

2. When the heating power is doubled, how long does it take to heat the
room from 68 °F to 77 °F?

Convert all results to SI units.

3.10. Isobaric Heating of an Ideal Gas
0.5kg hydrogen gas (Hz) are enclosed in a piston-cylinder system at 22°C,
3atm. In a reversible isobaric process (constant pressure), the hydrogen dou-
bles its volume.

Determine:
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1. The initial volume of the system, and the work done in the expansion.
2. The temperature at the end of the expansion, and the heat exchange with
the surroundings.

3.11. Isothermal Compression of an Ideal Gas

10 kg helium are enclosed in a piston-cylinder system at 20 °C, 10 bar. In a re-
versible isothermal process (constant temperature), the helium is compressed
to half the original volume. Compute:

1. The initial volume of the system.
2. The work required for compression.
3. The heat exchange with the surroundings.

3.12. Ideal Gas with Non-constant Specific Heat

In a series of experiments you have found that for temperatures in

(300K, 900K), the specific heat at constant volume of air is ¢, (T') =
0.0598T'\ _kJ

(0'695 + Toook ) kgK*

1. Make a table with the specific heats ¢, (T') and ¢, (T'), specific internal
energy u (T'), and specific enthalpy h (T') for temperatures in the range of
validity. As reference value chose u (300K) = 215£L.

2. 2 kg of air are isobarically heated from 340 K to 860 K. By means of your
table, determine the heat supply @12 and the work Wis.

3. Redo the calculation under the assumption that the specific heat can be
approximated by its value at 300 K (so that it is constant). Determine the
relative error for heat and work.

3.13. Work and Heat
A fixed mass m of carbon monoxide (CO) gas at Ty = 30°C is confined in
a piston-cylinder system. The gas undergoes a reversible isothermal process
(constant temperature), that is the pressure changes according to the relation
p =mRTy/V. The initial and final volumes are V; = 0.1 m? and V5 = 0.15m?
and the initial pressure is p; = 500 kPa.

Consider CO as ideal gas with constant specific heat and molar mass M =

kg .
28450 Determine:

1. The mass of CO in the system.

2. The pressure py at the end of the process.

3. The total work required for the process. Show the process in a p-V-
diagram.

4. The total heat exchange.

3.14. Work and Heat

Nitrogen (ideal gas with constant specific heats) undergoes a reversible pro-
cess in a closed system, where the pressure changes according to the relation
p = aV? + b. The initial and final volumes are V; = 0.3m? and V5 = 0.1 m3,
and the corresponding pressures are p; = 100kPa and py; = 200kPa; the
initial temperature is 77 = 30 °C. Determine:
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1. The mass of nitrogen in the system.

2. The temperature at the end of the process.

3. The total work required for the process. Show the process in a p-V-
diagram.

4. The total heat exchange.

3.15. Work and Heat

Helium, initially at temperature 77 = 0°C undergoes a reversible process
in a closed system, where the pressure changes according to the relation
p = aV3 + b. The initial and final volumes are V; = 0.1 m?® and V5 = 0.2m?,
and the corresponding pressures are p; = 100 kPa and py = 40kPa. For the
relevant temperature range helium behaves as an ideal gas. As for all noble
gases, its specific heat is constant, ¢, = %R. Determine:

1. The mass of helium in the system.

2. The temperature at the end of the process.

3. The total work required for the process. Show the process in a p-V-
diagram.

4. The total heat exchange.



Chapter 4
The Second Law of Thermodynamics

4.1 The Second Law

In our qualitative description of processes we have already emphasized the
trend of any isolated system towards an unique and stable equilibrium state.
The Second Law of Thermodynamics is the quantitative formulation of this
observation. Its importance goes well beyond the computation of the unique
equilibrium states for isolated systems. In particular, as will be seen, it gives
strong restrictions for the efficiency of energy conversion systems, and thus
is of enormous importance for engineering applications.

The original derivation of the second law through Rudolf Clausius (1822—
1888) was based on the argument that the direction of heat transfer is re-
stricted and then relied heavily on statements on thermodynamic cycles. The
following derivation postulates an inequality to describe the trend to equi-
librium, and uses arguments on process direction for simple equilibration
processes to identify terms in the postulated equation. This approach allows
us to introduce the second law quite early, before any thermodynamic pro-
cesses and cycles are discussed. With this, entropy and the second law will
be available for the evaluation of processes and cycles from the start. All
equations and conclusions agree to the classical approach, as presented in
most textbooks on engineering thermodynamics, just the order of arguments
is different.

4.2  Entropy and the Trend to Equilibrium

To set the stage, we briefly summarize our earlier statements on processes
in closed systems: a closed system can be manipulated by exchange of work
and heat with its surroundings only. In non-equilibrium—i.e., irreversible—
processes, when all manipulation stops, the system will undergo further
changes until it reaches a final equilibrium state. This equilibrium state is
stable, that is the system will not leave the equilibrium state spontaneously.

H. Struchtrup, Thermodynamics and Energy Conversion, 55
DOI: 10.1007/978-3-662-43715-5 4, (© Springer-Verlag Berlin Heidelberg 2014
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It requires new action—exchange of work or heat with the surroundings—to
change the state of the system.

The following non-equilibrium processes are well-known from experience,
and will be used in the considerations below: (a) Heat goes from hot to
cold. When two bodies at different temperatures are brought into thermal
contact, heat will flow from the hotter to the colder body until both reach
their common equilibrium temperature. (b) Work can be transferred without
restriction, by means of gears and levers. However, in transfer some work
might be lost to friction.

The process from an initial non-equilibrium state to the final equilibrium
state requires some time. However, if the actions on the system (only work and
heat!) are sufficiently slow, the system has enough time to adapt and will be
in equilibrium states at all times. We speak of quasi-static—or, reversible—
processes. When the slow manipulation is stopped at any time, no further
changes occur.

The behavior of isolated systems described above—a change occurs until
a stable state is reached—can be described mathematically by an inequality.
The final stable state must be a maximum (alternatively, a minimum) of
a suitable extensive property describing the system. We call that extensive
property entropy, denoted S, and write an inequality for the isolated system,

% = Sgen > 0. (4.1)
Sgen is called the entropy generation rate. The entropy generation rate is pos-
itive in non-equilibrium (S, > 0), and vanishes in equilibrium (S, = 0).
The new equation () states that in an isolated system the entropy will
grow in time (% > 0) until the stable equilibrium state is reached (% =0).
Non-zero entropy generation describes the irreversible process towards equi-
librium, e.g., through internal heat transfer and friction. There is no entropy
generation in equilibrium. Since entropy only grows before the equilibrium
state is reached, the latter is a maximum of entropy.

The above postulation of an inequality is based on phenomenological ar-
guments. The discussion of irreversible processes has shown that all isolated
systems will in time evolve to a unique equilibrium state. The first law alone
does not suffice to describe this behavior. We have seen this in the description
of temperature equilibration in Sec. B.I2, where the first law has infinitely
many solutions for the final temperatures T4, Tp, and additional input is
needed to state that T4 = T'g in equilibrium. Above, we relied on experience
as additional input, the second law is a formalization of that experience. Non-
equilibrium processes aim to reach equilibrium, and the inequality is required
to describe the clear direction in time.

In the next sections we will extend the second law to non-isolated system,
and identify entropy as a measurable property.
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4.3 Entropy Flux

In non-isolated systems, which exchange heat and work with the surround-
ings, we expect an exchange of entropy with the surroundings which must be
added to the entropy inequality. We write

as . . )
2 =+ Sgen, with Sger 20, (4.2)

where ¥ is the entropy fluz. This equation states that the change of entropy in
time (dS/dt) is due to transport of entropy over the system boundary (¥) and
generation of entropy within the system boundaries (Sgen) This form of the
second law is valid for all processes in closed systems. The entropy generation
rate is positive, Sgen > 0, for irreversible processes, and it vanishes, Sgen =0,
in equilibrium, and for reversible processes, where the system is in equilibrium
states at all times.

All real technical processes are somewhat irreversible, since friction and
heat transfer cannot be avoided. Reversible processes are idealizations that
can be used to study the principle behavior of processes, and best performance
limits.

Since a closed system can only be manipulated through the exchange of
heat and work with the surroundings, the transfer of any other property,
including the transfer of entropy, must be related to heat and work, and
must vanish when heat and work vanish. Therefore the entropy flux ¥ can
only be of the form ) ' '

v =p5Q W, (4.3)
with coefficients 3, v that must be related to system and process properties.

Equation ([2]) gives the mathematical formulation of the trend to equilib-
rium for a non-isolated closed system (exchange of heat and work, but not of

mass). The next step is to identify entropy S and the coefficients 3, v in the
entropy flux ¥ in terms of quantities we can measure or control.

4.4  Entropy in Equilibrium

For quasi-static processes, which are in equilibrium states at all times, the
entropy generation vanishes, Sge,, = 0, and the equation ([Z) for entropy
becomes

ds
dt
in quasi-static processes the entropy of a closed system changes by entropy
transfer only.
With this and ([3]), we have for reversible processes, where W =pdL dt ,

=V (4.4)

e T (4.5)
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Eliminating heat Q between this, and the first law for quasi-static processes
) % = Q _p%v ylelds

ds dU av
=+ (-

= (4.6)

This equation relates entropy S to the state properties U and V', and implies
that S (U, V) is a state property as well. Since pressure p, volume V', temper-
ature 7', and internal energy U are related through the thermal and caloric
equations of state, p = p (T, V), U = U (T, V), the knowledge of any two of
these determines the others. Thus, entropy, our new property, can be written
as a function of any two of the above properties, e.g., S (T,V) or S (p,T) or
S(U,p) or S(U,V). From the last form, we compute the time derivative of
entropy with the chain rule,

dS _ (95 dU_ (08Y dV wn
dt — \oU ), dt oV )y dt '

Comparison of the last two equations relates 5 and (8 — ) to the partial
derivatives of entropy,

(%)V_ﬂ ’ <%)U—(ﬁ—v)p. (4.8)

So far, entropy and the coefficients 5 and « in the entropy flux are not yet
fixed. Since entropy is a state property, also its derivatives (g—g)v and (3—5) U
are state properties, and it follows that 8 and (8 — ) are state properties as
well[] Since S , U and V are extensive, their quotients and derivatives must
be intensive quantities; therefore 8 and ~ are intensive quantities. Obviously,
we are interested in non-trivial entropy functions, and therefore we must have
B#0,(B—7)#0.

In anticipation of later discussion we introduce the thermodynamic tem-
perature as T = 1/(. At this point, this is a just a definition, however, it will
be shown soon that 7" has all the characteristics required for the definition of
a thermodynamic temperature. In particular, it will be seen that the entropy
flux term BQ = Q/T is related to the restriction of the direction of heat
transfer: heat flows from warm to cold, not vice versa. No such restriction
applies for work, which, by means of gears and levers, can be transmitted
from slow to fast and vice versa, or from low force to high force and vice
versa. Because of this, v must be a constant, which can be set to v = 0—the
interested reader will find the full argument in Sec. .17l

With 8 = 1/T and v = 0, we have the partial derivatives of entropy
expressed through measurable quantities,

! Note that, when the entropy flux [@3) was introduced, this was not clear: 5 and
(8 — ) could in principle depend on work and heat. The argument presented here
shows that this is not so, at least in equilibrium.
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@b @5 w

The entropy flux (£3) is
(4.10)

Q-

4.5 Entropy as Property: The Gibbs Equation

With the partial derivatives of entropy as above, the differential dS =
(g—g)v dUu + (g—f;)UdV becomes

TdS = dU + pdV . (4.11)

This relation is known as the Gibbs equation, named after Josiah Willard
Gibbs (1839 - 1903). The Gibbs equation is a differential relation between
properties and valid for all simple substances.

Since T and p are intensive, and U and V are extensive properties, entropy
is extensive. The specific entropy s = S/m can be computed from the Gibbs
equation for specific properties, which is obtained by division of (£I1]) with
the constant mass m,

Tds = du+ pdv . (4.12)

Replacing internal energy by enthalpy, u = h — pv, gives an alternative form
of the Gibbs equation,
Tds =dh —vdp . (4.13)

The Gibbs equation gives a large number of relations and restrictions between
properties, in particular it allows to determine property relations for entropy.

Entropy, just as internal energy, cannot be measured directly. Property
relations for entropy are computed from the Gibbs equation, and the thermal
and caloric equations of state, p (T, v) and u (T, v). Here, we consider this for
incompressible substances and for ideal gases.

For incompressible liquids and solids, the specific volume is constant, hence
dv = 0. The caloric equation of state (BI8]) implies du = ¢dT" and the Gibbs
equation reduces to T'ds = cdT'. For constant specific heat, ¢ = const., inte-
gration gives entropy as explicit function of temperature,

s(T) :clnZ + 50, (4.14)
To
where sg is the entropy at the reference temperature Tj. As long as no chem-
ical reactions are involved, the definition of the entropy scale, i.e., the value
of sg, can be freely chosen; the third law of thermodynamics will fix the scale
properly.
For an ideal gas we have du = ¢,dT and v = RT/p so that the Gibbs
equation ([@I3]) becomes
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ds =cp———R— . (4.15)

For a gas with temperature dependent specific heat, integration yields

s(T,p) = s (T) — Rln 2 |, (4.16)
Po
where "
T/

is the—temperature dependent—entropy at reference pressure pg, and sq is
the reference entropy at {Zo,po}-

For a gas with constant specific heat, the integration can be performed to
give

T
s(T,p):cpln——Rln£+so. (4.18)
To Po

The entropy s (T, v) follows from this either by replacing the pressure with
the ideal gas equation (p = RT'/v) or from integrating (£12)) as (for constant
specific heat)

T
s(T,v):cvln——i—Rlni—&—so (4.19)
T() ()

Property relations for other substances will be presented in Chapter

4.6 T-S-Diagram

Solving the first law for reversible processes (3.I3) for heat and comparing
the result with the Gibbs equation we find, with Qdt = 0@,

1 1
dS = = (AU + pdV) = =5Q . (4.20)

We recall that heat is a path function, i.e., Q) is an inexact differential, but
entropy is a state property, i.e., dS is an exact differential. In the language
of mathematics, the inverse thermodynamic temperature % serves as an in-
tegrating factor for 6@, such that dS = %JQ becomes an exact differential.
From the above, we see that for reversible processes §Q = T'dS. Accord-
ingly, the total heat exchanged in a reversible process can be computed
from temperature and entropy as the area below the process curve in the

temperature-entropy diagram (T-S-diagram),

2
Q12=/ TdsS . (4.21)
1
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Fig. 4.1 Heat as the area below the reversible process curve in the T-S-diagram

Ty

Qi2=0

>

S

Fig. 4.2 Isentropic (adiabatic reversible) process in the T-S-diagram

This is analog to the computation of the work as Wiy = ff pdV, Fig. @1
gives an illustration.

For a reversible adiabatic process §QQ = T'dS = 0, that is the entropy is
constant in the process. We say a reversible adiabatic process is isentropic.
The process curve in the T-S-diagram is a vertical line, see Fig.

4.7 The Entropy Balance

In the previous sections, we considered homogeneous systems that undergo
equilibrium processes. To generalize for processes in inhomogeneous systems,
we consider the system as a compound of sufficiently small subsystems. The
key assumption is that each of the subsystems is in local equilibrium, so that
it can be characterized by the same state properties as a macroscopic equilib-
rium system. To simplify the proceedings somewhat, we consider numbered
subsystems of finite size, and summation. A more refined argument would
consider infinitesimal cells dV', and integration.
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Figure [£3] indicates the splitting into subsystems, and highlights a sub-
system 17 inside the system and a subsystem k at the system boundary. Tem-
perature and pressure in the subsystems are given by T;, p; and Tk, pk,
respectively. Generally, temperature and pressure are inhomogeneous, that
is adjacent subsystems have different temperatures and pressures. Accord-
ingly, each subsystem interacts with its neighborhood through heat and work
transfer as indicated by the arrows. Heat and work exchanged with the sur-
roundings of the system are indicated as Q) and W

Fig. 4.3 Non-equilibrium system split into small equilibrium subsystems. Arrows
indicate work and heat exchange between neighboring elements, and the surround-
ings.

Internal energy and entropy in a subsystem i are denoted as F; and S;, and,
since both are extensive, the corresponding quantities for the complete system
are obtained by summation over all subsystems, E = >, F;, S = ). S;. Note
that in the limit of infinitesimal subsystems the sums become integrals, as in
Sec. 271 The balances of energy and entropy for a subsystem ¢ read

dE;
dt

ds; Qi

= + Sgeni s (4.22)

QZ_WZ )

where Q; = Zj Q” is the net heat exchange, and W; = Zj W” is the net
work exchange for the subsystem. Here, the summation over j indicates the
exchange of heat and work with the neighboring cells, such that, e.g., Q,',j is
the heat that i receives from the neighboring cell j.

To obtain first and second law for the compound system, we have to sum
the corresponding laws for the subsystems, which gives

dE

A R SN £ D

and
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as Qr - ) )
DN EE g with S, >0 4.24
p zk: T, + Sgen, with Sy 0 (4.24)

In the above Qy, is the heat transferred over a system boundary which has
temperature Ty. As will be explained next, the summation over k£ concerns
only heat and work exchange with the surroundings.

Since energy is conserved, the internal exchange of heat and work between
subsystems cancels in the conservation law for energy ([23). For instance,
in the exchange between neighboring subsystems ¢ and j, Q;; is the heat
that ¢ receives from j and W; ; is the work that i does on j. Moreover, Q; ;
is the heat that j receives from ¢ and W;; is the work that j does on .
Since energy is conserved, no energy is added or lost in transfer between ¢
and j, that is Q; ; = —Q;,; and W; ; = —W; ;. Accordingly, the sums vanish,
Qi,j+Qj,i = 0and W; j+W,; = 0. Extension of the argument shows that the
internal exchange of heat and work between subsystems adds up to zero, so
that only exchange with the surroundings, indicated by subscript k, appears
in (E23).

Entropy, however, is not conserved, but may be produced. Exchange of
heat and work between subsystems, if irreversible, will contribute to the en-
tropy generation rate S'gen. Thus, the total entropy generation rate Sgen of
the compound system is the sum of the entropy generation rates in the sub-
systems Sgen,i plus additional terms related to the energy transfer between

subsystems, Sgen =3, Sgen,,' + ZZ ; QT’ . In simple substances, entropy gen-
eration occurs due to internal heat flow and internal friction. We repeat that
entropy generation is strictly positive, Sgen > 0, in irreversible processes, and
is zero, Sgen = 0, in reversible processes.

To fully quantify entropy generation, that is to compute its actual value,
requires the detailed local computation of all processes inside the system from
the conservation laws and the second law as partial differential equations.
The derivation and analysis of the local laws is a topic of Non-equilibrium
Thermodynamics.

The above derivation of the second law equation (£24) relies on the
assumption that the equilibrium property relations for entropy are valid lo-
cally also for non-equilibrium systems. This local equilibrium hypothesis—
equilibrium in a subsystem, but not in the compound system—works well
for most systems in technical thermodynamics. It should be noted that the
assumption breaks down for extremely strong non-equilibria; this lies outside
the scope of our endeavours.

4.8 The Direction of Heat Transfer

A temperature reservoir is defined as a large body whose temperature does
not change when heat is removed or added. Figure 4] shows heat trans-
fer between two reservoirs of temperatures Ty and T, where Ty is the
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IR :

ST R 777
Tr,

Fig. 4.4 Heat transfer between two reservoirs at 71 and 7. In steady state the
heat conductor does not accumulate energy, therefore QL =-Qun.

temperature of the hotter system. The heat is transferred through a heat
conductor, which is the thermodynamic system to be evaluated. A pure heat
transfer problem is studied, where the conductor receives the heat flows Q H
and Q L, and exchanges no work with the surroundings, W = 0. The first and
second law (23] L24]) applied to the heat conductor read

U : ’ .
—QL+QH ;o — it — o = Sen >0 (4.25)

For steady state conditions no changes over time are observed in the conduc-
tor, so that % = % = 0. The first law shows that the heat fluxes must be
equal in absolute value, but opposite in sign,

Qu=-QL=Q. (4.26)
With this, the second law reduces to the inequality

/1 1 .
—— — | = >0. .
Q (TL TH) Sgen >0 (4.27)

Clausius’ original derivation of the second law is based on the statement
that heat will go from hot to cold by itself, but not vice versa. We shall use
this statement to learn more on thermodynamic temperature T'. Since we
declared Ty as the temperature of the hotter reservoir, heat should go from
the reservoir at Ty to the reservoir at Tr. According to Fig. [4.4] the proper
direction of heat transfer in accordance to Clausius’ statement is for positive
Qp, that is for Q > 0, which implies QL < 0. With Q > 0 the inequality
EZ7) holds for (—L - %) > 0, which is fulfilled if (a) T > T, and (b)
Ty and T7, have the same sign, i.e., T is either always positive or always
negative. The discussion of friction in the next section will show that 7" must
be positive.
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T7,

Tuy>Tr, Q>0 Te>Tr, Q<0
allowed forbidden

Fig. 4.5 Heat transfer between two reservoirs with T > Tr. Heat must go from
warm to cold.

Figure gives an illustration of the allowed process, where heat goes
from hot to cold, and the forbidden process, where heat would go from cold
to hot by itself.

4.9 Internal Friction

The sign of temperature follows from the observation that a stirred substance
will come to rest due to friction with the container walls, and within the fluid.
When coffee, or any other liquid, is stirred, it will spin a while after the spoon
is removed. The motion will slow down because of internal friction, and finally
the coffee will be at rest in the cup. The second law should describe this well-
known behavior, which is observed in all viscous fluids.

With the fluid in motion, we have to account for the kinetic energy of
the swirling, which must be computed by summation (i.e., integration), of the

-
local kinetic energies p(2 )V (7)2 in all volume elements; see Fig. The
first and second law read

d(U + Egin) . : as Qr
S T Tkin) g 2N E sy, .
yr Q=W , — > 7 2 0 (4.28)

We assume adiabatic systems (Q = 0) without any work exchange (W = 0,
this implies constant volume), so that

d (U + Ekin) as

= > . 4.2
o 0, 0 (4.29)

o
If we ignore local temperature differences within the stirred substance, we
have with (3]



66 4 The Second Law of Thermodynamics

Fig. 4.6 The kinetic energy Elir of a stirred fluid is the sum of the kinetic energies
in all volume elements. Friction with the container wall, and within the fluid, will
slow down the fluid until it comes to rest in the final equilibrium state.

dS_(@S) dU _1dU _ 1dB _ (430)

dt \oUu),dt  Tdt T dt =
Experience shows that over time the fluid slows down, hence the kinetic

energy By = [ %VQdV decreases over time, and will be zero in equilibrium,
where the stirred substance comes to rest, V = 0; this implies

dE%in
dt

<0. (4.31)

The latter inequality is compatible with the 2nd law in the form (Z30) only
if the thermodynamic temperature is non-negative, T' > 0.

An equivalent experience is that work in transmission can be lost to fric-
tion, but not gained. Figure .7 shows the work and heat flows for a gearbox
operating at constant temperature T', at steady state. The gearbox receives

the work — ’Wm , and delivers the work Wout > 0. Moreover, the gearbox is

in thermal contact with the environment from which it receives the heat Q
The figure shows absolute values for work, the arrows indicate the direction
of the work flows. The first law is straightforward to evaluate: Since the gear
box operates at steady state, the energy supply must equal the energy loss.
The statement of the first law can be read straight from the figure: Energy
flow in (arrows pointing towards the gearbox) must be equal to energy flow
out (arrows out of the gearbox),

]Wm O =W - (4.32)

There is only a single heat flow contribution, therefore the second law becomes
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Wi

Fig. 4.7 Work and heat flow in a gearbox operating at constant temperature 7'
The heat is expected to be negative, @ < 0.

Q ’Wz - Wout .
—T = 7,11 - Sgen Z 0. (433)

We consider it a general experience that some work is lost in the transmission
through a gearbox, and that the box sheds heat into the environmentE

Wt < ‘Wn , 0<0. (4.34)

Comparison between the two last equations shows, again, that the thermo-
dynamic temperature must not be negative, T > 0.

Wt > 0, which is transmitted into the environment. The reason for the loss
is friction within the gearbox.

The lost work leaves the gearbox in form of heat ‘Qout

4.10 Newton’s Law of Cooling

We return to the discussion of heat transfer. The inequality (£27) requires

that @ has the same sign as (Tl—L — ﬁ), a requirement that is fulfilled for a

heat transfer rate

Q= aA(Ty —Ty) (4.35)
with a positive heat transfer coefficient @ > 0, and the heat exchange surface
area A. This relation, which we already used in an example, is known as New-
ton’s law of cooling, and is often used in heat transfer problems. The values of
the positive coeflicient o must be found from the detailed configuration and

2 This is tantamount to the statement that a system exchanging heat with a single
reservoir cannot produce work (see Sec. further below). Indeed, if the system

would receive the heat Q > 0, the first law would require Wout > Wm‘ more

work would leave the system than enter, which means that the single incoming
heat @ would be converted to work.
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conditions in the heat transfer system. The surface area A appears due to the
intuitive expectation that enlarging the transfer area leads to a proportional
increase in the amount of heat transferred.

Heat transfer was introduced as energy transfer due to temperature dif-
ference with heat going from hot to cold, Newton laws of cooling states that
as a result of the temperature difference one will observe a response, namely
the heat flux.

The procedure to derive Newton’s law of cooling can be described as fol-
lows: The entropy generation rate (£27)) is interpreted as the product of
a thermodynamic force—here, the temperature difference (Ty — Tr,)—and a
corresponding flux—here, the heat flux Q. To ensure positivity of the entropy
generation rate, the flux must be proportional to the force, with a positive
factor ¢ A that must be measured. The same strategy can be used for other
force-flux pairs.

With Newton’s law of cooling it is easy to see that heat transfer over
finite temperature differences is an irreversible process. Indeed, the second

law ([E27) gives with (35

. . 1 1 (7H - 7L)2
— A= & . 4.
Sgen = @ (TL TH) « Ti T >0 ( 36)

Only when the temperature difference is infinitesimal, i.e., Ty = T + dT,
entropy generation can be ignored, and heat transfer can be considered as
a reversible process. This can be seen as follows: For infinitesimal d1' the

. 2
entropy generation rate becomes Sge, = a4 (%—f) . Since quadratic terms in

infinitesimal differences can be ignored, this implies Sgen =0 (dI' = 0). In
this case, to have a finite amount of heat transferred, the heat exchange area
A must go to infinity.

4.11 Zeroth Law and Second Law

While above we considered heat transfer between reservoirs, the conclusion is
valid for heat conduction between arbitrary systems: As long as the systems
are in thermal contact through heat conductors, and their temperatures are
different, there will be heat transfer between the systems. Only when the
temperatures of the systems are equal, heat transfer will cease. This is the
case of thermal equilibrium, where no change in time occurs anymore. This
includes that the temperature of an isolated body in thermal equilibrium will
be homogeneous, where equilibration occurs through heat transfer within the
system.

The zeroth law states: In equilibrium systems in thermal contact assume
the same temperature. Thus, the zeroth law of thermodynamics might appear
as a special case of the second law. It stands in its own right, however, since
it defines temperature as a measurable quantity.
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4.12 Example: Equilibration of Temperature

We return to the problem considered in Sec. the equilibration of tem-
perature between two bodies A and B, with initial temperatures T4 and T5.
The first law alone was not sufficient to find the final common temperature,
which will now be obtained from the second law. The compound system A+ B
is adiabatic to the outside, so that the second law becomes

45 _a(Sa+5s)

dt dt -
Thus the total entropy S = S + Sp of the system will grow in time until it
will assume its maximum in equilibrium, when no further changes occur.

For the simple solids under consideration, by ([@I4]) the entropy is S =

mcln TZO, so that

T T
S =584+ S8 ZmACAhl—A —‘rchBln—B .
To To
The first law relates the actual temperatures T4 and Tg of the two bodies
and their initial temperatures T4, Tp through [B.26]). With this, the entropy
of the system becomes a function of T’z only,

Ta mpepTp—Tg T
S = In| — _— In — .
maca In <T0 + s T ) +mpcp In T

Since the entropy of the compound system A+ B can only grow, in equilibrium

the entropy assumes the largest possible value, which is obtained from the
condition % = 0. The evaluation, left as an exercise for the reader, gives

the expected result for the common equilibrium temperature,

T T
TB:TA:T:mACA A+mpcep B

MACA + MpBCp

4.13 Example: Uncontrolled Expansion of a Gas

We consider the entropy change for the uncontrolled expansion of an ideal
gas in Sec. B.I3] for which the first law gave Ty = Tb. The second law for this
adiabatic process simply reads

as

E :Sgen > 0.

Integration over the process duration yields

to .
Sy — S = / Sgendt = Sgen >0.
ty
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The total change of entropy follows from the ideal gas entropy (with constant
specific heat), Eq. (£19) as

52—51:m(SQ—sl):lenE:lenﬁz().
|41 D2

Since in this process the temperature of the ideal gas remains unchanged, the
growth of entropy is only attributed to the growth in volume: by filling the
larger volume V5, the gas assumes a state of larger entropy. Since the container

is adiabatic, there is no flux of entropy over the boundary (i.e., > %’: =0),
and all entropy generated stays within the system, Sge,, = S2 — 51.

4.14  What Is Entropy?

The arguments that gave us the second law and entropy as a property cen-
tered around the trend to equilibrium observed in any system left to itself
(isolated system). Based on the derivation, the question What is entropy?
can be answered simply by saying It’s a quantity that arises when one con-
structs an inequality that describes the trend to equilibrium. Can there be a
deeper understanding of entropy?

Before we try to answer, we look at internal energy: When the first law of
thermodynamics was found, the concept of internal energy was new, and
it was difficult to understand what it might describe. At that time, the
atomic structure of matter was not known, and internal energy could not
be interpreted—it appeared because it served well to describe the phenom-
ena. Today we know more, and we understand internal energy as the kinetic
and potential energies of atoms and molecules on the microscopic level. Thus,
while the concept of internal energy arose from the desire to describe phenom-
ena, today it is relatively easy to understand, because it has a macroscopic
analogue in mechanics.

Entropy also came into play to describe the phenomena, but it is a new
quantity, without a mechanical analogue. A deeper understanding of entropy
can be gained, as for internal energy, from considerations on the atomic scale.
Within the framework of his Kinetic Theory of Gases, Ludwig Boltzmann
(1844-1905) found a microscopic interpretation of entropy, where entropy
is related to concepts of probability. A not too precise description of this
interpretation follows below.

Macroscopically, a state is described by only a few macroscopic proper-
ties, e.g., temperature, pressure, volume. Microscopically, a state is described
through the location and momentum of all atoms within the system. The
microscopic state is constantly changing due to the microscopic motion of
the atoms, and there are many microscopic states that describe the same
macroscopic state. If we denote the total number of all microscopic states
that describe the same macroscopic state by {2, then the entropy of the
macroscopic state according to Boltzmann is
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S=kgln2. (4.37)

The constant kg = R/A = 1.3804 x 10*23% is the Boltzmann constant,
which can be interpreted as the gas constant per particle.

The growth of entropy in an isolated system, % > 0, thus means that the
system shifts to macrostates which have larger numbers of microscopic real-
izations. Equilibrium states have particularly large numbers of realizations,
and this is why they are observed.

To make the ideas somewhat clearer, we consider the expansion of a gas
when a barrier is removed, see Secs. B.I3] LT3l This is a particularly simple
case, where the internal energy, and thus the distribution of energy over the
particles, does not change. Hence, we can ignore the distribution of thermal
energy over the particles, and the exchange of energy between them.

We assume a system of N gas particles in a volume V. The volume of a
single particle is vg, and in order to be able to compute the number {2, we
“quantize” the accessible volume V' into n = V/vy boxes that each can ac-
commodate just one particle. Note that in a gas, where the distance between
individual particles is relatively large, most boxes are empty. Due to their
thermal energy, the atoms move from box to box. The number of microstates
is simply given by the number of realizations of a state with N filled boxes
and (n — N) empty boxes, which is

n!
By means of Stirling’s formula Inz! = xlnz — z (for > 1) the entropy
E31) for this state becomes
N N
S(N,V)=kp [—Nlng—(n—N)ln<1—g)} . (4.39)

Now we can compute the change of entropy with volume. For this, we
consider the same N particles in two different volumes, V; = nyvg and V5 =
novo. The entropy difference Sy — 51 = S (N, Va) — S (N, V1) between the two
states can be written as

Sy — S = kg {Nln@ +nln (1—£>
ni ni

1- N
N na
—noln{1—— ]+ Nln—%| . (4.40)
)
mn1
In an ideal gas the number of possible positions n is much bigger than the

number of particles NV, that is nﬂl < 1, % < 1. Taylor expansion yields the
entropy difference to leading order as
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%
Sy — Sy = kpNn Z—j = mRIn Vj , (4.41)

where we reintroduced volume (Vi 2 = n12v9), and introduced the mass as
m = M N/A; R = R/M is the gas constant. This is just the change of entropy
computed in Sec.

It is instructive to compare the number of realizations for the two cases,
for which we find

2y So— 51 Vo (Ve N
EexpTeXp<N1nV1>(Vl> . (4.42)

For a macroscopic amount of gas, the particle number N is extremely large
(order of magnitude ~ 10?3), so that already for a small difference in volume
the ratio of microscopic realization numbers is enormous. For instance for
Vy =24, we find 2 =27,

Microscopic states change constantly due to travel of, and collisions be-
tween, particles. Each of the {2 microstates compatible with the given
macrostate is observed with the same probability, 1/£2. The {2; microstates
in which the gas is confined in the volume V;j are included in the {25 mi-
crostates in which the gas is confined in the larger volume V5. Thus, after
removal of the barrier, there is a finite, but extremely small probability of

N
P = % = (%) to find all gas particles in the initial volume Vj. This

probability is so small that the expected waiting time for observing a return
into the original volume exceeds the lifetime of the universe by many orders
of magnitude. If we do not want to wait that long for the return to initial
state, we have to push the gas back into the initial volume, which requires
work.

In generalization of the above, we can conclude that it is quite unlikely that

a portion V,, of the volume is void of particles. The corresponding probability

. _ N . . R
is P, = (%) . The average volume available for one particle is V' = %,

and when V,, = vV we find, for the large particle numbers in an macroscopic
amount of gas, P, = (1 — %)N ~ e~ ". Thus, as long as V,, is bigger than the
average volume for a single particle, so that v > 1, the probability for a void is
very small. Moreover, inhomogeneous distributions are rather unlikely, since
the number of homogeneous distributions is far larger than the number of
strongly inhomogeneous distributions. This is why we observe homogeneous
distributions in equilibrium.

Figure gives an illustration of microstates for a rather small system.
The system of N =9 particles with n = 81 boxes allows for 2 = 9!(8817119)! =
2.61 x 10'! microstates, three of which are shown in the figure. Microstate
A is one of the 2; = % = 4.69 x 10° microstates in which the gas
in confined to the left third of the system. Microstates B and C' are more
homogeneous distributions.
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Fig. 4.8 A system of 9 particles with 81 accessible positions in three different
microstates A, B, C

4.15 Entropy and Disorder

Often it is said that entropy is a measure for disorder, where disorder has a
higher entropy. This can be related to the above discussion by means of the
following analogy: The ordered state of an office is the state where all papers,
folders, books and pens are in their designated shelf space. Thus, they are
confined to a relatively small initial volume of the shelf, V3. When work is
done in the office, all these papers, folders, books and pens are removed from
their initial location, and, after they are used, are dropped somewhere in the
office—mnow they are only confined to the large volume of the office, V5. The
actions of the person working in the office constantly change the microstate
of the office (the precise location of that pen ... where is it now?), in analogy
to thermal motion.

At the end of the day, the office looks like a mess and needs work to
clean up. Note, however, that the final state of the office—which appears to
be so disorderly—is just one accessible microstate, and therefore it has the
same probability as the fully ordered state, where each book and folder is
at its designated place on the shelf. A single microstate, e.g., a particular
distribution of office material over the office in the evening, has no entropy.
Entropy is a macroscopic property that counts the number of all possible
microstates, e.g., all possible distributions of office material.

A macroscopic state which puts strong restrictions on the elements has a
low entropy, e.g., when all office material is in shelves behind locked doors.
When the restrictions are removed—the doors are unlocked—the number of
possible distributions grows, and so does entropy. Thermal motion leads to a
constant change of the distribution within the inherent restrictions.

To our eye more restricted macroscopic states—all gas particles only in a
small part of the container, or all office material behind closed doors—appear
more orderly, while less restricted states generally appear more disorderly. In
this sense one can say that entropy is a measure for disorder.

In the office, every evening the disordered state differs from that of the
previous day. Over time, one faces a multitude of disordered states, that is
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the disordered office has many realizations, and a large entropy. In the end,
this makes cleaning up cumbersome, and time consuming.

Our discussion focussed on spatial distributions where the notion of or-
der is well-aligned with our experience. The thermal contribution to entropy
is related to the distribution of microscopic energy e, over the particles,
where e, is the microscopic energy per particle. In Statistical Thermody-
namics one finds that in equilibrium states the distribution of microscopic
energies between particles is exponential, A exp [—%] The factor A must
be chosen such that the sum over all particles gives the internal energy,

U= Zm Ae,, exp [_k%T] One might say that the exponential itself is an

orderly function, so that the equilibrium states are less disordered than non-
equilibrium states. Moreover, for lower temperatures the exponential is more
narrow, the microscopic particle energies are confined to lower values, and
one might say that low temperature equilibrium states are more orderly than
high temperature equilibria. And indeed, we find that entropy grows with
temperature, that is colder systems have lower entropies.

4.16  Entropy and Life

The second law states that systems left to themselves tend to disorder, in
the non-trivial sense discussed above. To leave a system to itself, it must
be isolated from its surroundings, so that no transport of mass and energy
oxéer the system boundaries occurs. For such a system the second law reads
d

%7 = 0, entropy—disorder—must increase. A system which is not isolated

can have decreasing entropy. Indeed, for a closed system the second law reads
% -3 %’: > 0; thus, by suitable manipulation of the system, in particular
cooling (Qk < 0), its entropy can decrease, more ordered states are possible.

Earth itself is not isolated, since it receives an abundance of high tem-
perature energy from the sun in form of radiation (sun surface temperature
Ts ~ 5700K). At the same time Earth emits low temperature energy, also
in form of radiation (Earth surface temperature Ty ~ 300 K). This exchange
of energy with Earth’s surrounding allows decreasing entropy locally on the
planet. When we assume that the amount of heat received and emitted by ra-

), the second law for Earth reads % > ’Q‘ (7}_5 — ﬁ)

Since Ts > Tg, the left hand side is negative, Earth’s entropy may, but must
not, decrease.

If entropy is decreasing within a system (which cannot be isolated!), en-
tropy must be growing somewhere else. When a sufficient portion of the
surroundings are included in the system, entropy must grow. The entropy
in the universe, which is a rather large isolated system, is increasing. The
processes in the sun create entropy locally, in the sun.

Life, most importantly, is fed by the sun. Just think of the human body:
we grow, we learn, and thus keep disorder within the confines of our body

diation is the same (’Q
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rather small. As humans are open systems, we maintain a low entropy level
by exchange of mass and energy with our surroundings. Within the larger
system around us, entropy grows, but within the smaller boundaries of our
bodies (and minds!), entropy decreases, or is at least maintained at the same
level.

The sun is the source of life, since it provides the energy we need to lower
entropy in our open system Earth, and in our open system human body.
Evolution, as an increase of order, does not contradict the second law.

4.17 The Entropy Flux Revisited

When we discussed the possible form of the entropy flux ¥ in Sec. B3} we
introduced two coefficients 3, v but we soon set them to f=1/T and vy =0
in order to simplify the proceedings. In this section, we run briefly through
the proper line of arguments that show that + must be a constant, which
can be set to zero. The argument also shows that 8 must depend only on
temperature, must grow inversely to temperature, and must be positive. Thus
[ behaves like inverse thermodynamic temperature, which agrees with our
statements above.

For the argument we split the inhomogeneous system under consideration
into a large number of small subsystems, each with their individual properties,
see Fig. With the entropy flux ¥ = 8Q —yW we find the second law for
non-equilibrium systems from summing over subsystems as

ds™)
dt

+ Z’Yka - ZBka - Sgen Z 0 B (443)

where S0 is the entropy for this choice of flux. As before, Qy, W), denote the
exchange of heat and work with the surroundings of the system, and S, vy,
are the corresponding values of the unknown coefficients in the sub-systems
at the system boundaries. All internal exchange of heat and work between
the subsystems must be such that entropy is generated. The corresponding
terms are absorbed in the entropy generation rate Sgen. The first law for the
system is given in ([£23)).

We consider the above form ([@43]) of the second law for a heat conductor.
For steady state heat transfer without any work exchange between a hot
reservoir (H) and a cold reservoir (L) through the heat conductor, the above
reduces to

—BuQu — BrQL = Sgen > 0. (4.44)

Here, B and [, are the values of 3 at the hot and cold sides of the conductor,
respectively. The first law gives Qg = —Q = @ so that

(5L 7BH)Q.:Sgen >0. (445)
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Since heat must go from hot to cold, the heat must be positive, Q > 0, which
requires (8, — By) > 0. Thus, the coefficient 8 must be smaller for the part
of the system which is in contact with the hotter reservoir. This must be so
irrespective of the values of any other properties at the system boundaries
(L, H). Therefore 5 must depend on temperature only.

It follows that 8 must be a decreasing function of temperature alone, if
temperature of hotter states is defined to be higher. The left part of Fig.
shows a schematic of the heat transfer process.

hot
Z Bu ( ) / Z ! / Z
G—l|
~la|=2 [Wous
Ve 5[, (cold) 7 /. e 7 /.
heat transfer transmission of work

Fig. 4.9 Heat transfer through a heat conductor HC (left) and transmission of
work through a steady state system S (right)

We proceed with the discussion of the coefficient «. For this, we turn our
attention to the transmission of work. The right part of Fig. shows two
“reservoirs” characterized by different values 7y, vy between which work is
transmitted by a steady state system S. The direction of work transfer is not
restricted: by means of gears and levers work can be transmitted from low
to high force and vice versa, and from low to high velocity and vice versa.
Therefore, transmission might occur from I to II, and as well from II to I.
Accordingly, there is no obvious interpretation of the coefficient .

Friction might occur in the transmission. Thus, in the transmission process
order to keep the transmission system at constant temperature, some heat
must be removed. Work and heat for both cases are indicated in the figure,
the arrows indicate the direction of transfer.

dUu _

The first law for both transmission processes reads (steady state, < = 0)

we expect some work lost to frictional heating, therefore ‘Wout . In

0=- ’Q‘ - ’Wout

+ ’Wn

, (4.46)
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where the signs account for the direction of the fluxes. Since work loss in
transmission means ’Wout‘ < ‘Wm’, this implies that heat must leave the
system, Q = — ‘Q‘ <0.

Due to the different direction of work in the two processes considered, the
second law ([{43)) gives different conditions for both situations,

—71 ‘Wm

+Y11 ‘Wout

+5 ’Q‘ >0, 7 ‘Wout

Y11 ’Wm +5 ’Q‘ >0, (4.47)

where, as we have just seen, [ is a measure for the temperature of the trans-
mission system. Elimination of the heat between first and second laws gives
two inequalities,

(v — B) ’Wout

= (1= ) |Win

Z 0 ) (71 - B) ’Wout

— (v —B) ‘Wm

>0,
(4.48)
or, after some reshuffling,

‘ Wout

’Wout

(B =7m) <B-v) ,» B-7) <B-) - (4.49)

Combining the two equations gives the two inequalities

2

< (5—71) ) (5—711)

. 2
’Wout

‘ Wout

(B—=1) < B =) -

’ n ‘ Win

(4.50)

From the latter follows, since 0 < HWOM‘ < 1, that (8 —+) must be non-

Win

negative.

Both inequalities ({E49]) must hold for arbitrary transmission systems, that

. Wou . .
is for all 0 < M < 1, and all 8. For a reversible transmission, where

Wer

[Wou|

[Win

1 =y = 7 must be a constant, and (5 — ) > 0 for all 5.
With + as a constant, the entropy balance ([43]) becomes

= 1, both inequalities (£49) can only hold for ~v; = ~y;. Accordingly,

ds)
dt

+’YW—ZB}CQk :Sgen > 0. (451)
The energy balance W = > Qr — % allows to eliminate work,

d(S®) —~E)

dt - Z (6k - ’Y) Qk = Sgen >0. (452)
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With S = S0 — yE as the standard entropy, and T = 1/ (8 —~) as the
positive thermodynamic temperature, we find the second law in the form
(24). This is equivalent to setting v = 0, and 8 = 1/T as was done in
Sec. [£4

Problems

4.1. Isothermal Stirring of Mercury

2 litre of mercury confined in a container in thermal contact to an environment
at 15°C are stirred with a 200 W stirrer. How much entropy is created in 20
minutes of stirring? Does the entropy of the mercury change? What happens
to the entropy created?

4.2. Adiabatic Stirring of Mercury

2 litre of mercury confined in an isolated container are stirred with a 200 W
stirrer. When the mercury was at 15 °C initially, what is its temperature after
20 minutes of stirring? How much entropy is created in the process? What
happens to the entropy created?

4.3. Kneading of Pizza Dough
2kg of dough (¢ = 2.73%) confined in a container are kneaded with a
350 W kitchen mixer.

1. The container is in thermal contact to an environment at 25°C so that
the temperature of the dough is 25°C at all times. How much entropy is
created in 10 minutes of kneading?

2. The container is thermally isolated. When the dough was at 25 °C initially,
how long does it take until the temperature is 40 °C? How much entropy
is created in the process?

3. Both processes are irreversible, hence entropy is created. Explain where
the produced entropy goes.

4.4. Stirring of Petroleum

4litre of petroleum (p = 640%, cp = 2.0% ) confined in an isolated rigid
container are stirred by an electric motor which consumes 50 W of electrical
power.

1. How long does it take until the temperature of the petroleum is raised by
5°C?

2. What is the relation between entropy generation and power? Is the process
reversible or irreversible?

4.5. Industrial Stirrer

During manufacture, 2 tons of polyethylene (incompressible liquid, specific
heat ¢ = 2.9308%) are stirred in a well-insulated container for 20 minutes.
It is observed that the temperature rises from 42 °C to 49 °C. Ignoring kinetic
and potential energies, determine the power demand of the stirrer, and the
entropy generated during the process.
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4.6. A Brick Falls

A 2t brick cube falls to the ground on a planet without atmosphere. The
gravitational acceleration is 17. The cube crashes on the ground and comes
to rest. From what height must the cube fall to increase its temperature by
10 K? When the brick’s initial temperature was 200 K, how much entropy is
created in the process? How much work could be obtained in a reversible
process? Brick: p = 1922%, c=0.79

kg K
4.7. A Bad Accident
A 2t truck running at a speed of 120km/ h crashes against a concrete wall
and comes to rest. Assume that the truck is made of steel (p = 7830%,
c= 0.5%)7 and that all energy stays in the truck.

1. By what amount will the average temperature of the truck change?

2. How much entropy is created in the process? Assume initial temperature
is Ty = 20°C.

3. How much work could have been obtained in a reversible process, e.g., by
electromagnetic brakes that charge a battery? Compare the possible work
to Tosgen.

4.8. Dissipation of Kinetic Energy
In Sec. E9]it was shown that in an isolated system kinetic energy will vanish
in equilibrium. Repeat the proof for a non-adiabatic system.

4.9. Tank and Contents
A well-insulated steel tank of mass 10kg contains 5litre of liquid water.
Initially, the temperature of the tank is 7°C, and the temperature of the

water is 90 °C. Specific heats: cgee; = 0.5%, Cwater = 4.18%

1. What is the temperature of the system after equilibrium is established?

2. Compute the change of entropy of the tank.

3. Compute the change of entropy of the water.

4. How much entropy is created in the process? Is the process reversible or
irreversible?

4.10. Property Change in Argon

The state of argon (ideal gas with constant specific heats) is changed by
heating and compression from initial state p; = 1bar, T3 = 230K to the
final state pa = 20 bar, To = 400 K. Compute the change of internal energy
and the change of entropy of the gas. Do you have enough information to
compute the heat and work exchanged? Why not?

4.11. Work and Heat
Krypton (Kr) gas at Ty = 230 °C is confined in a piston-cylinder system. The
gas undergoes a reversible process where the pressure changes according to
the relation p = p;(V4/V)?2. The initial and final volumes are V; = 0.2m3
and V5 = 0.1 m? and the initial pressure is p; = 4 bar.

As all monatomic gases, krypton behaves as an ideal gas with constant

specific heat; its molar mass is M = 83.81(—;%. Determine:
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1. The mass of Kr in the system.

2. Pressure po and temperature T, at the end of the process.
3. The total work for the process.

4. The total heat exchange.

5. The change of entropy of the gas.

4.12. Irreversible Expansion of Xenon

Xenon (ideal gas with constant specific heats) is confined in one half of a
2.5 litre container. The other half of the container is evacuated, and the con-
tainer is well-insulated. When the partition is removed, the gas expands ir-
reversibly to fill the whole container. Initially, the xenon is at p; = 20 bar,
Ty = 400 K. Compute the final state ps, To and the entropy generated.

4.13. Irreversible Expansion of Neon

Neon (ideal gas with constant specific heats) is confined in a 1litre gas con-
tainer at p; = 13 bar, 71 = 500 K. This container is enclosed in an evacuated
rigid container of unknown volume, which is well-insulated. The inner con-
tainer becomes defect, and the neon expands irreversibly to fill the accessible
volume. The final pressure is measured as 4 bar. From the first and second
law determine the final temperature 15, the volume of the bigger container,
and the entropy generated.

4.14. Ideal Gas with Non-constant Specific Heat
We go back to problem BI2] where you made a table of values for ¢, (T),

¢p (T), u(T) and h(T') for air, when the specific heat at constant volume is

e (T) = (0'695 + 0188(9)8;1) klg]K'

1. To your table, add a column for the entropy at standard pressure py,

defined as s°(T) = ;; Cpg)dT + so for temperatures in the range

(300K, 900 K). As reference value chose s° (300K) = 7.14%.

2. 3 kg of air are heated in a reversible isochoric process (constant volume)
from 320 K, 2bar to 800 K. By means of your table, determine the work
Wi, the heat supply @12, and the change in entropy, So — .

3. Redo the calculation of 2. under the assumption that the specific heat can
be approximated by its value at 300 K (so that it is constant). Determine

the relative errors for heat, work and entropy difference.

4.15. Equilibrium State I

N blocks of different metals with masses m;, specific heats ¢; and tempera-
tures T; are enclosed in an adiabatic rigid chamber. All blocks are brought
into thermal contact. Use the first and second law to show that in equilibrium
all blocks must have the same temperature.

Hint: In equilibrium entropy must be a maximum. Since energy is con-
served, entropy must be maximized under the constraint of given energy.
The most elegant way to solve the problem is using the method of Lagrange
multipliers to take care of the constraint.
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4.16. Equilibrium State II
An insulated container holds the mass mg = [ pdV of an ideal gas, and
the overall energy is fixed at Ey = [p (u(T)+ 5V?+ gz)dV. Note that
in general density p, temperature T and velocity ) depend on location 7.
Show that in equilibrium temperature is homogeneous, density follows the
barometric law, and velocity vanishes.

Hint: Here you have to maximize total entropy S = [ ps (T, p) dV under
constraints of given mass and energy. Use Lagrange multipliers and Euler’s
equation of variational calculus.

4.17. Equilibrium State III

An insulated room contains a rigid shelf on which rests a metal ball (mass
m, specific heat ¢, initial temperature T'). The shelf is at height H above
the floor. By using first and second law, answer the following questions: Is
the system in a thermodynamic equilibrium state, and if so, why? If not,
what is the system’s thermodynamic equilibrium state, and why? Does your
answer depend on whether the room is evacuated, or filled with air? If you
find the system is not in thermodynamic equilibrium, why do we find it in
the unstable configuration?



Chapter 5

Energy Conversion and the Second
Law

5.1 Energy Conversion

In the preceding sections we have evaluated the second law with respect
to its ability for the description of basic equilibration processes, e.g., the
equilibration of temperature, the direction of heat transfer, the dissipation of
kinetic energy, and friction losses in gears. Now we shall apply thermodynamic
analysis to conversion processes between work and heat.

The science of thermodynamics emerged from an engineering question:
How much work can be obtained from a given amount of heat? This question
arose when the first steam engines were built, which had efficiencies of only a
few percent. The question is still of outmost importance, as a sustainable way
of living requires the optimal use of resources. Having a good understanding
of the possibilities and limitations in energy conversion processes is the first
step in building better—more efficient—engines.

Before we discuss more complex energy conversion processes, we consider a
relatively simple problem: Energy conversion processes between two thermal
reservoirs at different temperatures Ty and Tr,, with Ty > T

The natural environment, usually assumed to be at T, = 25°C, is the
prototype of a thermal reservoir. Due to its size, the environment has al-
most infinite thermal mass mc,, and hence it can provide or accept a large
amount of heat without changing its temperature. Ultimately, all systems are
in thermal contact with the natural environment, and it serves as heat sink
or source for most energy conversion processes.

Many of today’s heat engines rely on the combustion of a fuel (coal, oil,
gas). Combustion processes do not create a reservoir of constant high tem-
perature, but rather a flow of hot combustion gases that provides heat at
varying temperature. Therefore, the following considerations are not always
directly applicable to combustion systems. Nevertheless, the subsequent sec-
tions give important and relevant insights, to which we shall come back again
and again.

H. Struchtrup, Thermodynamics and Energy Conversion, 83
DOI: 10.1007/978-3-662-43715-5 5, (© Springer-Verlag Berlin Heidelberg 2014
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Fig. 5.1 Two heat reservoirs at Ty and 77, connected by a thermal engine E

Pure heat transfer between the two reservoirs was discussed already in Sec.
] with the statement that by itself heat goes from warm to cold, but cannot
go from cold to warm. We now consider processes that involve heat and work.
The systems considered are engines that operate at steady state, that is they
do not accumulate or loose energy or entropy over time, % = % = 0. The
detailed processes inside the engines will be discussed extensively later. For
the present overall evaluation, however, they are of no concern, and thus the
set-up considered is as simple as shown in Fig. B.It The thermal engine E
exchanges heat with both reservoirs, and produces or consumes power. The
direction of the arrows in Fig. Bl simply indicates the convention for heat
and work: heat in and work out are positive. In the following figures, however,
we will use absolute values of heat and work, and the direction of the flows
will be indicated by the directions of the arrows.

For steady state processes, the first and second law for this set-up read

0=Qu+Qr-Ww , 2L _*L_35.>0. (5.1)

5.2 Heat Engines

First we consider power generation, that is the conversion of heat into work
in a heat engine, so that W = ’W’ > 0. Elimination of Q1 between the first
and second law (B.I]) gives the work

) T . .
W= (1 - —L> Qu — TrSgen - (5.2)
Ty

Since we require W > 0, the right hand side of this equation must be positive
as well. The last term, —T7,Sgey,, is zero or negative, since thermodynamic
temperature and entropy generation rate are both non-negative; therefore,

the first term, ( — %) Qp, must be positive. Since the bracket is always
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positive, this implies positive heat input from the hot reservoir, Q H= ‘Q H‘ >

0. The heat rejected to the colder reservoir is QL = —%QH — TLSge,L < 0.
Figure B2 shows the direction of heat and work flow for a heat engine between
the reservoirs.

Bk

©—"
24

Tr,

Fig. 5.2 Heat and work directions in a heat engine

According to ([&.2)), for given Ty, 11, the work output is larger for smaller
entropy generation rate Sgen > 0. Entropy generation is due to heat transfer
and friction processes within the engine, and between engine and reservoirs,
and cannot be totally avoided in real engines. Instead, the engineering task
is to minimize entropy generation within the system as much as possible, in
order to achieve the best possible performance of the engine. The work loss
to irreversibilities is proportional to the entropy generation,

Wloss = TLSgen >0. (53)

The theoretical limit for the power generated from two reservoirs with
constant temperatures is obtained for Sge, = 0, that is for a fully reversible
engine, as

Weo = (1 - —) Qu . (5.4)

This is the work output of a Carnot engine, named after Sadi Carnot (1796-
1832), who established this theoretical limit. Any entropy generation Sgen in
the engine reduces the work output by TLSgen.

To quantify the performance of engines, it is useful to define dimensionless
efficiency measures that compare the output (“what you get”) to the input
(“what you pay for”). For heat engines, accordingly, one defines the thermal
efficiency 7, as the ratio between work output and heat input. For heat
engines operating between two reservoirs, we obtain

W TL TLSgen
Mh = = = 1- T_ -
Qu H Qu

<1 (5.5)
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for irreversible engines, and
Neo=—-—=1——x1 (5.6)

for the Carnot engine.

The Carnot efficiency 7. is the efficiency of a fully reversible engine oper-
ating between two reservoirs at constant temperatures. Since it was computed
from general considerations, its value is completely independent of the details
of the engine, i.e., it does not depend on the working fluid used, nor on the
realization of the engine. The Carnot efficiency is a universal limit for the
thermal efficiency any engine operating between two reservoirs at Ty, T},
can have. We summarize the above in two statements:

(a) The thermal efficiency of a fully reversible engine operating between
two reservoirs is independent of the realization of the engine; it is given
by the Carnot efficiency nq.

(b) Any engine operating between two reservoirs in which irreversible
processes occur has a thermal efficiency below that of a fully reversible
engine.

The amount of work produced grows with the temperature ratio Ty /7L
between the reservoirs. In technical energy conversion processes one will aim
for high upper temperature Ty to ensure high energy conversion efficiency.
At high temperatures material strength is limited, so that the upper tem-
peratures are limited through the materials used for building the engines.
Typically, the lower temperature T7, is the temperature of the environment,
To.

For temperature ratios Ty /Ty, close to unity, i.e., small temperature differ-
ences, the thermal efficiency is small, and only little power can be produced.
Hence, low temperature waste heat (low Ty ) is relatively useless for power
production, and, if possible, should rather be used for space heating. High
temperature waste heat (high T ), however, has considerable work potential
that should be used. In other words:

Energy at high temperature is more valuable than energy at low temper-
ature, since more work can be extracted from it.

5.3 The Kelvin-Planck Statement

Even the—fully reversible—Carnot engine has a thermal efficiency 7. below
unity: Not all heat received from the hot reservoir can be converted into
work, some heat must be rejected to a colder reservoir. The Kelvin-Planck
formulation of the second law states this as follows:

No steady state thermodynamic process is possible in which heat is com-
pletely converted into work.
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Fig. 5.3 Heat cannot be completely converted into work, but work can be com-
pletely converted to heat

This statement is a direct consequence of the first and second law. For a
steady state process with just one heat exchange the laws require
' 1%
_@:__207 (5.7)
Ty Ty
hence heat and work must both be negative. Figure shows the forbidden
process, and also the—allowed—inverse process, the complete conversion of
work into heat through friction. A typical example for the latter are resis-
tance heaters in which electrical work is converted to heat through electric
resistance.

5.4  Refrigerators and Heat Pumps

While heat cannot go from cold to warm by itself, one can use work consum-
ing devices to perform this task, a refrigerator or heat pump as depicted in
Fig. B4

A refrigerator removes heat from a cold reservoir, e.g., the interior of a
freezer, at T, and rejects heat to the environment at T—the goal is to cool
the cold reservoir. A heat pump is used for space heating, it takes heat from
the environment at 77, and rejects heat into the room that is being heated
at Ty. While the values of the temperatures Ty, Ty differ for refrigerator
and heat pump, both operate according to the same principles.

With heat being removed from the colder reservoir, and heat rejected into

the warm reservoir, we have Qp = — ‘QH‘ <0, and Qp = ’QL‘ > 0. From
combining first and second law by eliminating Q H, we find the condition

W (?—H - 1> ‘QL’ = ThSyen > 0. (5.8)
L

Since (%I — ) > 0, the sign requirement can only be fulfilled if work is done

on the system, W =— ‘W’ < 0, where
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Fig. 5.4 Heat and work directions in a refrigerator/heat pump

’W‘ (— - 1) ’QL‘ + T Sgen . (5.9)

This equation relates the work requirement, W, to the heat removed from
the colder reservoir, Qp; it is well suited for evaluating refrigerators.
For heat pump systems one is interested in the work required in relation

to the heat supply Q g to the warmer reservoir. Eliminating ’Q L‘ one finds

]W‘ - (1 - —> ’QH’ TS e - (5.10)

Since T Sgen > 0, any generation of entropy within a refrigeration or heat

pump system increases the work requirement ‘W‘, and thus the operating

cost. The extra work to overcome irreversibilities is T’ HSgen for a refrigerator
and TLSgen for a heat pump. One will aim at reducing all causes for entropy
generation, i.e., friction, heat transfer over finite temperature difference, etc.,
as much as possible.

The theoretical limit for the work of the refrigeration and heat pump
systems are obtained for fully reversible engines, for which S'gen = 0. This
results in the expressions for a Carnot refrigerator and a Carnot heat pump,
respectively, which read

’W’R,C B (_ a 1) ‘QL’ ’ ’W’HP,C - (1 a 17:_2) ‘QH’ - (61D

Also the performance of refrigerators and heat pumps is measured by di-
mensionless efficiency measures that compare the output (“what you get”)
to the input (“what you pay for”), which here are the ratios of heat re-
moved/supplied to the work required to run the device, known as the coef-
ficients of performance (COP). We obtain, for refrigerator and heat pump
operating between two reservoirs,
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of
COPg = — = — —— =<1, (5.12)
Wl Te 14 Tes
T Qx|
ol
COPyp = —— = TLS >1. (5.13)

The COP of a refrigerator can be above or below unity, but the COP of
a heat pump is never below unity. A resistance heater (RH), which converts
electrical power Wra fully into heat QRH = Wrpy has a COP of unity,
COPgry = 1, which is the lower bound for heat pumps. A typical heat pump
has a COP above unity and gives more efficient heating.

Irreversible processes in engines lead to entropy generation and reduce the
COP. For fully reversible engines we find the COP of Carnot engines,

1 1
COPR7C == T]_ 2 1 5 COPHP7C == 1771[‘
T T Tu

>1. (5.14)

The COPs for the Carnot refrigerator and Carnot heat pump are the max-
imum possible COP for refrigeration or heat pump processes between two
heat reservoirs at Ty, T7,.

5.5 Kelvin-Planck and Clausius Statements

Clausius’ statement of the second law says that heat will not go from cold
to warm by itself. Note that the two words “by itself” are important here: a
heat pump system can transfer heat from cold to warm, but work must be
supplied, so the heat transfer is not “by itself.”

The Kelvin-Planck statement of the second law says that it is impossible
to construct a device operating at steady state that receives heat from a single
reservoir and produces work. In other words, no heat engine can be build that
has a thermal efficiency of n,;, = 1. In our treatment, this statement followed
from the evaluation of the second law, while the Clausius statement was used
explicitly in its development.

The Clausius statement is a daily experience—when we touch a hot plate,
we do not expect to get colder hands—but the Kelvin-Planck statement might
be more difficult to grasp. It is instructive to show that both statements are
equivalent. To this end, we consider the setting shown in Fig. 5.0 consisting
W‘ -
and an engine Il, a heat pump that consumes the work produced by engine
I. Engine | is forbidden by the Kelvin-Planck statement while engine Il is
allowed by the Clausius statement. As the figure shows, the net effect of the

of an engine | that completely converts the heat ’Q H‘ to power
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Fig. 5.5 The equivalency of the Kelvin-Planck (K/P) and Clausius (C) statements
of the second law

combined system [l 4 II] is heat transfer from cold to warm “by itself”, which
is forbidden by the Clausius statement. Both statements are equivalent.

5.6 Thermodynamic Temperature

In the derivation of the second law we have introduced thermodynamic tem-
perature T as the factor of proportionality between the heat transfer rate Q
and the entropy flux ¥.

In previous sections we have seen that this definition of thermodynamic
temperature stands in agreement with the direction of heat transfer: heat
flows from hot (high 7') to cold (low T) by itself. The heat flow aims at
equilibrating the temperature within any isolated system that is left to itself,
so that two systems in thermal equilibrium have the same thermodynamic
temperature. Moreover, the discussion of internal friction showed that ther-
modynamic temperature must be positive.

The discussion of energy conversion processes between two reservoirs adds
another requirement for thermodynamic temperature: For any reversible en-
gine operating between two reservoirs, it must fulfill the relation

T )
Tu _ Qu (5.15)
Tr QL

This relation follows from ([B.)2 for the case of a fully reversible engine,

Sgen = 0, independent of the realization of the reversible engine, or the

working substance employed.

It is therefore possible, at least in principle, to measure temperature ra-
tios through measurement of the heat exchange in fully reversible engines.
Accordingly, to define the thermodynamic temperature scale, only a single
reference temperature is required.

The Kelvin temperature scale, named after William Thomson, Lord Kelvin
(1824 - 1907), uses the triple point of water (611kPa, 0.01°C) as reference.
The triple point is the state at which a substance can coexist in all three
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phases, solid, liquid and vapor, see Sec. The Kelvin scales assigns the
value of T, = 273.16 K to this unique point, which can be reproduced easily
in laboratories.

Since thermodynamic temperature cannot be negative, the smallest possi-
ble thermodynamic temperature is 0 K, known as absolute zero.

The ideal gas temperature scale, introduced in Sec. ZI3] coincides with the
Kelvin scale. This will be seen later, in Sec. B2l when we explicitly compute
the thermal efficiency of a Carnot cycle operating with an ideal gas.

5.7 Perpetual Motion Engines

Perpetual motion engines are engines that violate the first or the second law
of thermodynamics, or both. Naturally, one will never meet these engines
since they are impossible to build—the thermodynamic laws are not to be
violated! One might meet inventors, however, who claim to have invented
engines that do miraculous things. Inevitably, the inventors will never be
able to show their engines in working condition, and their claims remain
eternally unproven.

A perpetual motion engine of the first kind is an engine that violates the
first law of thermodynamics, e.g., an engine that produces more work than
W > Q| - |

A perpetual motion engine of the second kind is an engine that violates
the second law of thermodynamics, e.g., a heat engine operating between two
reservoirs at T, Ty with an efficiency above the Carnot efficiency, n > 1— %
Violations of the second law are sometimes difficult to understand, and thus
perpetual motion engines of the second kind are more difficult to identify for
not so clever inventors, and their gullible investors.

the net heat exchange,

5.8 Reversible and Irreversible Processes

Irreversible processes are associated with entropy generation which reduces
the performance of engines. So far the terms reversible and irreversible were
rather loosely defined in Sec. A more exact definition of these terms
will make it easier to identify irreversible processes, and the related losses.
We define:

A thermodynamic process from state 1 to state 2 is reversible, if the
process can be inverted so that the system returns to its initial state
(state 1), and no changes remain in its surroundings.

A thermodynamic process from state 1 to state 2 is irreversible, if, when
the system is brought back into its initial state (state 1), changes remain
n its surroundings.
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Forward process

Remove division Gas expands, fills container
ideal gas ¢ vacuum ideal gas
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Fig. 5.6 Upper row: Irreversible expansion of a gas into vacuum. Lower row: The
intial state is recovered by pushing the piston and removing heat. Since the heat
added to the surroundings, 21, cannot be fully converted into the work needed to
push, Wa1, changes remain in the surroundings.

For an example, we return to the uncontrolled expansion of an ideal gas,
which is shown again in Fig. We found, in Sec. BI3l that the internal
energies of initial and final states are the same, Uy = Uy, while the gas fills a
bigger volume in the final state, Vo > V4. To return the gas to the initial state,
its volume must be reduced by compression, which requires the (reversible)
work Wy = f‘zl pdV < 0. The first law for any process from state 2 back to
the initial state 1 reads

Ui —Us=Q21 —Wa1 =0,

so that the heat Q21 = Wa; < 0 must be removed from the system, as
shown in the figure. Thus, the process 2-1 draws the work Wa; from the
surroundings and transfers the heat Q21 to the surroundings. The process
would be reversible, if the heat Q21 could be completely converted to the work
W51 by an engine residing in the surroundings. This, however, is forbidden by
the Kelvin-Planck statement of the second law, which states that only some
of the heat can be converted to work, but not all. Thus, some extra work
has to be provided to return the system to its original state, the system’s
surroundings have changed: the original process is irreversible.

Heat transfer serves as another example: The heat |Qap| has flown from
a hot body A to a cold body B by itself. To return both bodies to their
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original state one can use a heat pump, which consumes the work Wgp,
removes the heat Q) 4p from the colder body B, and delivers the heat |Q’y 5| =
|QaB|+|Wrp| to the warmer body A. After this, body B is in its initial state.
Body A received too much heat, however. To return A into its initial state,
the heat |Q’) 5| = |[Wrmp| must be moved from A to the surroundings. Due to
the Kelvin-Planck statement, the heat added to the surroundings |Q’} 5| can
only provide part of the work |Wgp| required to drive the heat pump: the
process is irreversible.

5.9 Internally and Externally Reversible Processes

For a sound thermodynamic evaluation of processes it is important to identify
and understand all causes for work loss to irreversible processes. Even if a
process is reversible within the boundaries of the system considered, there
might be associated irreversible processes outside the system boundaries. For
the thorough evaluation of the performance of a system, in particular for
accounting for the associated work losses inside and outside the system, the
following definitions are useful:

Internally reversible process: No irreversible processes occur inside the
system boundaries.

Externally reversible process: No irreversibilities occur outside the sys-
tem boundaries.

Fully reversible process: A process which is both, externally and inter-
nally reversible.

5.10 Irreversibility and Work Loss

The thermodynamic laws for closed systems that exchange heat with an ar-
bitrary number of reservoirs read

d(U + Ekin)

7 =Qo+> Q=W , ﬁ—@—Z%:S’genzo, (5.16)

Tk

where the heat exchange QO with a reservoir at Ty is highlighted. Most ther-
modynamic engines utilize the environment as heat source or sink, and in this
case Qo should be considered as the heat exchanged with the environment.
Note that the environment is freely available, and no cost is associated with
removing heat from, or rejecting heat into, the environment. For the heat
engines of Sec. and the heat pumps of Sec. [5.4] the environmental tem-
perature is Ty = T, while for the refrigerators of Sec. 5.4l we have Ty = Ty.
Elimination of Qo between the two laws and solving for work gives
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- To\ d(U + Exin — ToS) .
W=>" (1 - Tk) Qr — y — ToSgen - (5.17)

This equation generalizes the findings of the previous sections to arbitrary
processes in closed systems: The generation of entropy in irreversible pro-
cesses reduces the work output of work producing devices (where W >0,
e.g., heat engines) and increases the work requirement of work consuming
devices (where W < 0, e.g., heat pumps and refrigerators). We note the

appearance of the Carnot factor ( — 7;2) multiplying the heating rates Q.

The amount of work lost to irreversible processes is
V.Vloss = TOSgen >0, (518)

sometimes it is denoted as the irreversibility. It is an important engineering
task to identify and quantify the irreversible work losses, and to reduce them
by redesigning the system, or use of alternative processes.

5.11 Examples

5.11.1  Entropy Generation in Cooling

A 2 kg block of copper at T7 = 250 °C equilibrates with the environment at
To = 20°C through heat transfer. The left part of Fig. B.7 shows a sketch
of the process, where the system boundary is chosen such that heat is trans-
ferred at the environmental temperature Ty. Copper can be considered as
an incompressible solid with constant specific heat ¢ = 0.4%, specific in-
ternal energy u = ¢ (T — Tp), and specific entropy s = cln TZO We compute
the amount of heat transferred into the environment, and the total entropy
generated.
The first and second law for this process read

U

. dS  Q
E_Q )

s _Q g
dt Ty + Sgen
Integrating over time between initial state (77) and final state (To = Tp)
gives

Uo—=Ui =Q12 , S2—51=—"~4 Sen »

To

where Sge,, = [ 12 Sgendt is the total entropy generation. With the given prop-
erty relations we find
Th Q2

me(To —Th) = Q12 mclnf1 = To + Sgen
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Fig. 5.7 A block of copper initially at 77 cools to environmental temperature To
by heat transfer (left), or by driving a reversible engine (Carnot engine, right); 7'
is the actual temperature at time t.

and thus, with Ty = 293K, 71 = 523 K (thermodynamic temperature must
be used for entropy and the second law!),

me Ty kJ
= —184kJ S, =— (T —Ty) —Toln—| =0.163— .
Q12 s gen T ( 1 0) 01n T K

Since entropy is generated, an irreversible loss is associated with the process.
The entropy generating process is heat transfer over the finite temperature
difference between copper block and environment.

5.11.2  Work Generation in Cooling

In the this example we determine the amount of work that could have been
obtained if the heat was not just transferred, but used to drive a heat engine.
We consider the same block of copper as before, but now the heat is used
to drive a Carnot engine in contact with the environment, as shown in the
right part of Fig. 5.7 In this case, there is no entropy generation, since the
Carnot engine is fully reversible. Thus, the first and second laws read (system
boundaries include the Carnot engine)

v . dS _Qy
a e W =g

Integration gives
Up=Ur=Qr—-W , S-5=—

so that
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T
Qr = cholnTO = —135.8kJ,
1

w

T,
QL — mc(Ty — Ty) = me Tl—To—TolnFl =48.2kJ .
0

A temperature difference can be used to drive a heat engine. If heat is just
transferred over a finite temperature difference, entropy is created, and the
opportunity to provide work is lost. In this example about 26% of the heat
leaving the copper (Qy = 184kJ) could be converted to work in the best
case. Note that W = T Sgen, where Sgep is the entropy generation in case
that no work is produced as computed in the previous section.

5.11.3  Perpetual Motion Engines

We consider some perpetual motion engines.

(a) A company claims to produce a power generation device that produces
7kW of power, takes in 11 kW of heat at a temperature of 840 K and rejects
8 kW of heat at 280 K.

We evaluate this claim: The work and heat flows are as in Fig. Eval-

uation of the first law shows that ‘QH‘ = ‘QL’ + W‘ should hold. With
‘QH‘ — 11KW, W’ — 7KW and ‘QL] — 8KW the first law is not fulfilled

the device is a perpetual motion engine of the first kind.

(b) Another company claims to produce a power generation device that
produces 7kW of power, takes in 10kW of heat at a temperature of 840 K
and rejects 3kW of heat at 280 K.

We evaluate this claim: The first law is balanced now, we need to check the
second law. The thermal efficiency of the device would be 1 = W/ Qu=0.1.
The work of a Carnot engine operating between the same temperatures is
Ne = 1 — T /Ty = 2/3. Thus the efficiency claimed is bigger than the
Carnot efficiency, which violates the second law—this engine is a perpetual
motion engine of the second kind.

(¢) Yet another company markets a refrigeration device that removes 1 kW
of heat from a cold space that is kept at —10°C, and rejects heat into an
environment at 22 °C. The company claims a power consumption of 122 W.

We evaluate this claim: The coefficient of performance for a Carnot refrig-

_ 9l

eration device operating between the same temperatures is COPr,c = Tw] =

W = 8.219 which would give a power consumption of We = 122 W.
Thus, the company claims to have a Carnot refrigeration device. While this
claim does not violate the first or the second law, it stands in contrast to
the fact that any real process is irreversible. Thus, for an actual device one
must expect efficiencies and COP’s below the Carnot values, which are the
maxima obtained for fully reversible processes. The company’s claim must

be wrong.
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5.11.4, A Heat Engine

An engine that operates at steady state between two reservoirs at Ty =
750°C and T, = 15°C, has a heat intake of 0.1 MW, and rejects 50 kW
of heat to the low temperature environment. We compute the power pro-
duced, the thermal efficiency, the entropy generation rate, and the work loss
to irreversibilities.

We identify QH = 100kW and Q7 = —50kW. The first law apphed to
the engine gives W Qu + Qr = 50kW. Accordingly, the engine’s thermal
efficiency is n = QH = 0.5.

The second law gives TH + %L —i—Sgen = 0 and thus the entropy generation

| Qe
TL

rate is Sgen =
fulfilled.

The thermal efficiency for a Carnot engine operating between the same
temperatures is no =1 — T_;LI = 0.718 (Kelvin temperatures!) which is above
the efficiency of the engine, as it must be. A Carnot engine would produce
the power We = UCQH = 71.8kW. The work loss to irreversibilities is
Wioss = We — W = 21.8kW.

A more instructive way to compute the work loss is as follows: Eliminating
the heat exchange with the environment, Q1. between first and second law
gives

— %—H = 0.076%. Since Sgen > 0, the second law is
H

W (1 — —) QH TLSgen .

The work loss to irreversibilities is Wloss = TLS'gen = 21.8kW.

5.11.5  Refrigerator

A restaurant refrigerator located in a kitchen at 21°C maintains its inte-
rior at 4 °C. The refrigerator consumes 300 W of power with a coefficient of
performance COPr = 3. We compute entropy generation and work loss.

The heat withdrawn from the interior is QL = COPgr ’W’ = 900 W.
According to the first law, the heat rejected into the kitchen is ‘QH‘ =

‘W‘ + Qr = 1200 W. The entropy generation rate follows from the second

law as

Ou G %] o oW
Ty Ty, Ty Ty, ’ K’

where Tp, = 277K and Ty = 294 K. Eliminating the heat rejected into the
kitchen between first and second law yields

Sgen = -

W) = - = (%’ - 1) QL + T Sgen -
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The work loss to irreversibilities is T/Vloss = THS'gen = 247.7W; this work is
required as input to overcome irreversibilities. A fully reversible refrigerator,
i.e., a Carnot refrigerator, which removes the same amount of heat @)1, has a

COPRrc =1/ (% — ) = 16.3, and would consume 55 W of electrical power.

Note that efficient operation of a refrigerator is not only achieved by in-
creasing its COP, but also by improving the thermal insulation. Indeed, the
heat @, that is removed from the interior has crept in through the insulated
walls of the refrigerator. Better insulation reduces the amount of heat that
must be removed, and thus the work consumption of the refrigerator.

5.11.6  Heat Pump with Internal and Fxternal
Irreversibilities

A heat pump is used to keep a home at 20°C. The heat pump draws heat

from the outside environment at 0 °C; its heating power is ’Q H’ = 2kW for

a power consumption of W’ = 0.5kW. In order to facilitate sufficient heat

transfer, a temperature difference of 10K is required between the working
substance of the heat pump and the respective environments. Figure 5.8 gives
a sketch of the heat and work flows, and the relevant temperature levels.

Tyr=30°C

Tr=20°C

@—]

Tr=0°C

o

7/
4]

7/

/7
Tr=-10°C

Fig. 5.8 A heat pump that requires a finite temperature difference of 10K for heat
exchange

We evaluate the process step by step. Let us first consider a perfectly
reversible Carnot heat pump, that is a device that can operate at the actual
temperatures of the two environments, Ty = 293K and T}, = 273 K. The
coefficient of performance of such an ideal engine is
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COPypc=1—= = 14.65 .

For the given heating power the fully reversible heat pump would consume
‘WC‘ = 0.137kW of power.

A internally reversible heat pump with external irreversibilities due to heat
transfer over finite temperatures is a Carnot heat pump operating between
the temperatures Ty = 303K and Ty, = 263 K. This engine would have a
coefficient of performance

COPup,c—int =

and would consume We_jne = 0.264 kW of power. The internally reversible
engine requires more work than the fully reversible engine, since a bigger
temperature interval is bridged. Entropy is generated in the heat transfer
over finite temperature differences, with the generation rate

Sgen = ’QH’( T, > ’QL‘(T_L TLL>

Since the engine is internally reversible, the relation g—L| = g—H‘ holds, so
L H
that
‘QH’ Ty T W
Sgen = AL = 0467—
Ty |Tu  TL K-

As always, the work loss is more interesting than the entropy generation rate.
We find the work loss to external irreversibilities as

V.Vloss—eact = WC—int - WC’ = TLSgen =0.127kW .

The actual engine consumes ‘W‘ = 0.5kW of power, that is it loses an
additional 0.236 kW to internal irreversibilities. Its coefficient of performance,
COPup = Qn ’ ’ =4, is typical for a commercial heat pump system.

The realistic heat pump system is 4 times more efficient than a resistance
heater (COPgry = 1), but the perfect—i.e., fully reversible—Carnot heat
pump is 3.7 times more efficient than the real engine.

We note that the heat required to keep the home at a comfortable tem-
perature needs to be provided since the home loses the same amount of heat
through its walls. Better insulation significantly reduces the heat requirement,
and thus the heating costs.
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Problems

5.1. Heat Engines

An engine that operates between two reservoirs at Ty = 500°C and T, =
25°C produces 1 MW of power from a heat intake of 2.5 MW. Compute the
heat rejected, the thermal efficiency, the entropy generation rate, and the
work loss to irreversibilities.

Another engine operates between two reservoirs at Ty = 1000°C and
Tr = 10°C, and has a thermal efficiency of 45% and its heat rejection rate
is 1.76 MW. Compute the power produced, the heat intake rate, the entropy
generation rate, and the work loss to irreversibilities.

5.2. Investment Advice

A friend asks whether he should invest in a new start-up company. The
company claims to sell a power generation device that produces 12.5 kW of
power, takes in 21 kW of heat at a temperature of 800 K and rejects 13 kW
of heat at 300 K. What advice do you give? Why?

5.3. More Investment Advice

Another friend asks whether she should invest in a company which claims to
make a power generation device that produces 12 kW of power, takes in heat
at a temperature of 800 K and rejects 8 kW of heat at 350 K. What advice
do you give? Why?

5.4. Your Friends Keep Asking You for Advice

A neighbor would like to have an air conditioning system. He finds a prod-
uct with the following specifications: For keeping a room at 20 °C when the
outside temperature is 30 °C the product consumes 0.5 kW to remove 9 kW
of heat. What’s your advice here, and why?

5.5. The Perfect Heater?

A relative needs a new heating system. She shows you a flyer from a company
marketing baseboard heaters. The flyer claims a 100% heating efficiency. Is
that a valid claim? Can your relative find a more efficient alternative? If so,
what would it be?

5.6. A Refrigerator

Yet another friend asks whether he should invest in a company which claims
to produce a refrigeration device with a COP of 7, that consumes 0.9 kW of
power to keep the inside at 4 °C, and rejects of heat to the warm environment
at 32°C. What advice do you give? Why?

5.7. A Heat Pump

An off-the shelf heat pump system has a COP of 3.5 for operation between
30°C and —10 °C. Determine the entropy generation per kW of heating, and
the percentage of consumed power required to overcome irreversibilities.
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5.8. Another Heat Pump

A heat pump providing 2kW of heat operates between the temperatures of
23°C and —2°C ; its entropy generation rate is Sgen = 1.3%. Determine the
power needed to drive the heat pump, and its COP.

5.9. Heat Engine with External Irreversibilities

A internally reversible heat engine operates between two reservoirs at 300 K
and 400 K; the engine produces 40 kW of power. The heat exchangers between
the engine and the reservoirs require a temperature difference of 20 K. Deter-
mine the heat exchanged with the two environments, the entropy generated
in heat transfer, and the work loss.

5.10. Refrigerator with Internal and External Irreversibilities

In a frozen pizza factory, the freezing compartment is kept at a temperature of
—30°C, while the outside temperature is 25 °C. The cooling system removes
2.25 MW of heat, and consumes 1.5 MW of power. Measurements show that
both heat exchangers operate at a temperature difference of 12°C to their
respective environments.

1. Determine the COP of the refrigeration system, and the COP and power
requirement of a fully reversible system used for the same cooling purpose.
2. Determine the work losses to internal and external irreversibilities.

5.11. Heat for Cooling

A chemical plant rejects 1 MW of waste heat at 400 °C. Elsewhere in the
plant, 5 MW of heat have to be removed from a warehouse at —10°C. Can
the waste heat be used to cool the warehouse when the environment is at
17°C? If so, how? Give arguments based on 1st and 2nd law, discuss your
assumptions.

5.12. Entropy Generation

In an industrial process, a device conducts heat between two hot reservoirs,
which are at 200 °C and 400 °C, and the environment at 23 °C. Specifically,
the conductor exchanges 4 kW of heat with the hottest reservoir, and 6 kW
of heat with the environment. Determine the entropy generation, and the
respective work loss.

5.13. Heat in the T-S-Diagram

In a reversible process in a closed system the heat is given as the area below
the process curve in the T-S-diagram, Q12 = ff TdS , or, when we divide by
mass, gio = % = ff Tds. To make use of this formula, one therefore needs
temperature as a function of entropy, T (s), for the process.

Consider a reversible process in air, as ideal gas with constant specific
n
heats, for which pressure and temperature are related as p = p; (Tll) with

a constant n. A process of this kind is called a polytropic process.
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4.

. Find the function T (s,p) by inverting the property relation for entropy,

s(T,p).

. Simplify for the polytropic process to obtain T (s).
. Make a sketch of the curve for polytropic processes with various values of

n. How does it change when n gets bigger?
Find heat by integration: gi1o = ff Tds. Also compute the work per unit

1%
mass, Wiy = nlf.

. Specify for a polytropic process with n = 2 that starts at 20°C, 7 bar

(state 1) and proceeds until pressure has doubled.



Chapter 6
Properties and Property Relations

6.1 State Properties and Their Relations

The thermodynamic laws contain many state properties, e.g. [SI units in
brackets]

temperature [K]

pressure [kPal

mass [ kg]
volume [m?]

specific volume [Ik ]

< =

mass density [Fg]
velocity []
specific internal energy [lﬁ—g]

I

kgK]

=u + pv specific enthalpy [

® o> e TD 2 <IN
|
I
3

specific entropy |

However, only few properties (T, p,m,V,V) can be measured directly, while
many of the quantities that appear in the thermodynamic laws (u, h, s, ...)
cannot be measured directly.

Experience shows that state properties are not independent, but are related
through property relations, which depend on the substance. By means of
property relations, thermodynamic quantities (u, h, s, ...) can be determined
indirectly, through measurement of (7', p, m, V, V).

Measurements show that for simple substances it is sufficient to know two
properties to find all others. This implies property relations of the form

p=p(T,v) thermal equation of state
v=wv(T,p) thermal equation of state
u=wu(T,v) caloric equation of state
h =h(T,p) caloric equation of state
s=s(T,p) entropy
H. Struchtrup, Thermodynamics and Energy Conversion, 103
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and so on. The thermal and caloric equations of state, p (T, v) and u (T, v),
must be determined in careful measurements, where the measurement of the
latter relies on the first law. In most cases, the equations of state are not
given as explicit equations, but in form of tables. The best known exception
is the ideal gas law, p = RT'/v.

Entropy must be determined from the thermal and caloric equations of
state through integration of the Gibbs equation, which gives a differential
relation between properties, and holds for all simple substances in the form

Tds = du+ pdv , (6.1)
or, with A = u + pv and thus dh = du + pdv + vdp, in the alternative form
Tds = dh — vdp . (6.2)

Property relations can be formulated between any set of three properties.
For instance: Considering the entropy as function of temperature and pres-
sure, s (T, p), together with the thermal equation of state, p (T, v), both can
be combined to s(T,p (T,v)) = s(T,v), that is entropy as function of tem-
perature and volume. Inversion of the caloric equation of state u (T, v) for
temperature yields temperature as a function of energy and volume, T (u, v).
Considering the latter in the entropy expression s (7T,v) yields entropy as
function of energy and volume, s (u,v). Solving this relation for energy, yields
energy as a function of entropy and volume, u (s,v). And so on. These are
just some examples of variable changes in property relations. A detailed anal-
ysis of property relations, where variable changes are used to identify deeper
relations between properties can be found in Chapter [[6 where it will be seen
that the Gibbs equation substantially reduces the measurements necessary
to produce thermodynamic tables.

6.2 Phases

Depending on the conditions, e.g., the values of pressure and temperature,
a substance assumes different phases—solid, liquid, vapor—which can also
coexist. We shall need property relations for all individual phases as well as
for the coexisting states.

Atoms and molecules interact through interatomic potentials ¢ () of the
form depicted in Fig. For intermediate particle distances around d, the
particles attract each other, while they repel each other when they are pushed
very close together (r < d). For large distances (r > d), the particles do not
notice each others presence (¢ (r) — 0 for r — 00).

In a solid, the particles sit at fixed locations in the atomic compound, e.g.,
a crystal lattice, and oscillate around the minimum of the potential. The
interatomic forces are strong, and keep the solid together.
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potential @(7)

min

d hi particle distance 7

Fig. 6.1 Interparticle potential ¢ as function of interparticle distance r

When the temperature is increased, the oscillations become stronger, and
the particles have enough energy to split the molecular bonds with their
neighbors, while the attractive forces are still significant. The particles can
move freely, but are densely packed with distances close to d. This is the
liquid state.

At even higher temperatures the particle energies exceed the attractive
potentials which cannot hold the particles together anymore. The particles
move fast at greater average distances. This is the gaseous, or vapor, state.

In solid and liquid states, the particles are in permanent contact and in-
teraction. While gas particles have a large average distance, they neverthe-
less interact through frequent collisions. The interaction between particles
leads to microscopic exchange of energy and momentum which facilitates the
macroscopic transfer of energy and momentum. The constant redistribution
of momentum and energy between particles drives the system towards the
equilibrium state.

6.3 Phase Changes

It is a daily experience that matter changes between phases: ice will melt,
water will boil and evaporate, dew will condense out of moist air, and so on.
We study the evaporation of liquid water at constant pressure p = latm,
as depicted in Fig. Water is confined in a piston-cylinder system with a
moving piston, the mass of the piston fixes the pressure in the system.

We go through the figure from left to right: At temperatures below 100 °C
(and above 0°C) only the liquid phase is found, we speak of compressed lig-
uid. Isobaric heat supply increases the temperature of the compressed liquid.
When the temperature reaches 100 °C, the water starts to evaporate. Fur-
ther heat supply does not increase the temperature, which still is 100 °C,
but leads to more evaporation. As evaporation occurs, liquid and vapor are
in an equilibrium state where both phases coexist, the saturated state. The
corresponding liquid and vapor states are denoted as saturated liguid and
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compressed saturated saturated saturated superheated
liquid liquid liquid-vapor vapor vapor
mixture | ﬁ |
ﬁ p =1latm
p=latm
p=1latm p=1latm p = latm
T < 100°C T =100°C T =100°C T =100°C T > 100°C

Fig. 6.2 Constant pressure evaporation of water at p = 1 atm

saturated vapor, respectively. Finally, when all liquid is evaporated, further
heat supply increases the temperature of the vapor above 100 °C, we speak
of superheated vapor.

When heat is withdrawn, the opposite process happens: the superheated
vapor will cool down until it reaches 100 °C, then vapor will start to con-
dense. After all vapor is condensed, the compressed liquid cools to lower
temperatures.

The saturation temperature depends on pressure, we write Ty (p). The
inversion gives the saturation pressure, denoted as psat (T'). In the example
we have Tyt (1atm) = 100°C and peat (100°C) = 1atm. Figure shows
a sketch of the saturation curve of water in the p-T-diagram. The curve
begins in the triple point (611Pa,0.01°C) and ends in the critical point
(22.09 MPa, 374.14°C).

For temperatures above the critical temperature, and for pressures above
the critical pressure, a saturated liquid-vapor equilibrium is not possible. In
the critical point all properties agree between vapor and liquid, and above
the critical point only one phase exists, one speaks of supercritical fluid.

The triple point gives the lowest temperature/pressure at which a satu-
rated liquid-vapor equilibrium is possible; only at this point all three phases,
solid, liquid and vapor, can coexist.

Apart from the liquid-vapor phase change, i.e., evaporation and conden-
sation, one observes the phase changes between solid and liquid, i.e., melting
and freezing (solidification), and between solid and vapor, i.e., sublimation
and deposition. For each, phase equilibrium is only possible for values of
pressure and temperature T and pressure p on the corresponding saturation
curve, psat (T).
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22.1MPa

latm

611Pa

)T

0.01°C 100°C 373.95°C

Fig. 6.3 Liquid-vapor saturation curve for water in the p-T-diagram with data
for triple point (Tr), critical point (Cr), and the boiling point of water at standard
pressure

Figure shows the saturation curves for water as ice, liquid, and vapor
in a p-T-diagram. Note the large number of different ice phases, which reflect
different lattice configurationsl! Phase equilibria (coexistence of two phases)
are only possible on those curves which are given by the saturation pressure
psat (T') for the respective phase equilibrium, or, alternatively, by the satura-
tion temperature Ty, (p) which is the inverse function. All three phases can
coexist in only one point, the triple point. Away from the saturation lines
the substance will be in just one of the phases as indicated in the figure. An
interesting information that can be drawn from the diagram is that no liquid
water exists at temperatures below —23 °C.

A particular feature of water is the negative slope of its melting curve
which implies that ice will melt under pressure. This behavior is related to
the volume change: A given amount of ice has a larger volume than the same
amount of liquid water, as can be seen by ice swimming on water. Melting
reduces the volume and thus counteracts the pressure increase. Melting under
pressure might play a role in the flow of glaciers, but does not explain the
slipperiness of ice, see Sec.

Sublimation can be observed in winter, where snow evaporates, in par-
ticular on dry sunny days, without melting. An industrial application of

! Read about Kurt Vonnegut’s fictitious ice-nine in his book Cat’s Cradle. Fortu-
nately, the real ice IX (not included in the diagram) has properties that differ from
those fabled by Vonnegut. Everything you want to know about water (including
full phase diagrams up to ice XV) can be found on Martin Chaplin’s water site
at http://wwwl.lsbu.ac.uk/water.
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Fig. 6.4 Phase diagram of water (after chart from http://www.chemicalogic.com).
Note that the pressure axis is logarithmic.

sublimation is the process of freeze-drying which is used to produce instant
coffee: coffee is frozen at a temperature T, and then subjected to a pres-
sure po below the sublimation pressure, pc < psub (T¢); this forces direct
evaporation of ice.

Saturation curves for other substances show the same principal charac-
teristics as those for water, in particular the existence of critical and triple
points. However, for almost all other substances the solid has a smaller vol-
ume than the liquid, and the solid-liquid line has a positive slope. Figure
shows p-T-diagrams with the saturation lines for sublimation, melting
and vaporization, and indication of the solid, liquid, and vapor regions. For
supercritical fluid there is no distinction between liquid and vapor.

Phase changes are related to volume changes. For most substances the
volume of the liquid is larger than that of the solid (see the left Fig. [63]),
with water being an exception (see the right Fig. [60]). Other substances that
exhibit expansion on freezing are silicon, gallium and bismuth. Vapor vol-
ume is always larger than liquid volume at the same pressure. The volume
differences do not become apparent in the p-T-diagram, where the saturated
states appear as lines, but in the pressure-volume diagram (p-v-diagram). For
a substance that contracts on freezing, such a diagram is sketched in Fig.
Saturated state lines in the diagram are indicated. There are two lines for
saturated liquid, one describes phase equilibrium with saturated vapor, the
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T

T

Fig. 6.5 Saturation lines and phases in the p-T-diagram. Left: Ordinary substance,
which expands on melting. Right: Water, which contracts on melting.

other phase equilibrium with saturated solid. In the two-phase regions (solid
+ liquid, liquid + vapor, solid + vapor) one observes mixtures of saturated
states, as discussed in the next section. On the triple line, one observes mix-
tures of all three phases, solid (volume v!"), liquid (v}") and vapor (vf") where
all three phases are at triple point pressure and temperature, ps-, Ty.
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saturated solid
saturated liguid

triple line

saturated solid + vapor \

Fig. 6.6 p-v-diagram for an ordinary substance
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We could also plot a T-v-diagram, but instead we show, in Fig. 6.7 the p-
v-T-surface of an ordinary substance (contracts on freezing). The p-T-, p-v-,
and T-v-diagrams are just the appropriate projections of the surface.

Pressure

Fig. 6.7 p-v-T-surface of an ordinary substance

6.4 p-v- and T-s-Diagrams

An indispensable tool for thermodynamic analysis are plots of processes in
suitable diagrams. The diagrams most often used are the p-v- and the T-s-
diagram. For most processes only liquid and vapor or gas phases are encoun-
tered, and thus one uses diagrams that only show liquid and vapor states,
and the corresponding two-phase region.

Figure[G.8lshows both diagrams including saturation lines and critical point.
Isothermal lines (constant temperature) are sketched in the p-v-diagram, and
isobaric lines (constant pressure) are sketched in the T-s-diagram. Note that
both are horizontal in the two-phase region, where pressure and temperature
are related through the saturation equation p = pgat (T'). Obviously, in the
p-v-diagram constant pressure lines are horizontal, and constant volume lines
are vertical; in the T-s-diagram constant temperature lines are horizontal, and
constant entropy lines are vertical.
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qui

saturated Tr

Fig. 6.8 p-v-diagram with two-phase region and isothermal lines (left), and T-s-
diagram with two-phase region and isobaric lines (right)

6.5 Saturated Liquid-Vapor Mixtures

For technical applications the most important phase change is that between
liquid and vapor; it is, e.g., employed in steam power plants and vapor re-
frigeration systems. We describe the properties of liquid-vapor mix in detail.
Other phase equilibria, e.g., liquid-solid equilibrium, can be treated along the
same lines.

We consider a mass m of a substance at temperature 7" and saturation
pressure psat (1') in liquid-vapor equilibrium. In phase equilibrium, saturated
liquid and vapor can either be separated, with the liquid on the bottom of
the container, or they can be mixed, with the liquid dispersed as droplets in
the vapor, see Fig. The mass of substance in the liquid phase is my, and
the mass of substance in the vapor phase is mg, where m¢+mg, = m. The use
of the indices f (for fluid) and and g (for gaseous) stems from a time when
the word fluid was synonymous with liquid, while the word today includes
gaseous states as well.

The specific volumes of the saturated liquid and vapor are vy (T) and
vg (T), respectivelyE and thus the total volume of the saturated mixture is

V =mysuy +mgu, . (6.3)

The specific volume of the mixture is obtained by division with the total

mass,
V. my mgy
— 9o, =(1— . 6.4
v=—=—uv;+ v, = (1—x)vy + 204 (6.4)

Here, we have introduced

2 Normally, specific volume is a function of temperature and pressure, v (T, p). For
saturated states, however, the pressure is the saturation pressure psa (T") which
is a function of temperature. Therefore the specific volume of a saturated state
is a function only of temperature. The same holds for other specific quantities
(energy, enthalpy, entropy).
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Fig. 6.9 Saturated state in p-v-diagram. The liquid might collect on the container
bottom, or might be dispersed as droplets.

Mg _ Mg (6.5)

Tr=—* =
m my +my
as the quality of the saturated liquid-vapor mixture, defined as the relative
mass of saturated vapor. Note that % = % =1-ux.

Other extensive quantities, e.g., internal energy U, enthalpy H, or entropy
S, are computed from the specific properties of the saturated liquid and vapor
states just like volume. The specific energy, enthalpy, entropy of the saturated
liquid are denoted as uy (T), hy (T'), sy (T), and those of the saturated vapor
as ug (T'), hyg (T), sq (T'). Total energy, enthalpy, entropy of the mixture are

U=mpus +mgyuy ,
H = mfhf + mghg R (6.6)

S =mgsp+mgsg .

The corresponding specific properties, u = U/m etc., are weighted averages,
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v=~1-2z)vs+ 20,4,
u=(1—x)us+zuy =us +auysy, (6.7)
hZ(l—Z‘)hf—I-Z‘hg:hf—l-l‘hfg,
s=1—2a)sf+xs =57 +TSsq .
Here,
upg =ug —ug, hyg=hg—hy, spg=sq—s¢ (6.8)

are the energy of vaporization, the enthalpy of vaporization, and the entropy
of vaporization. For the quality the above implies the identities

my v — vy U—Uf h—hy 5— sy
xTr = pry pry pry pry .

(6.9)
myg+mg Vg — Uy Ufg hyg Sfg

Property data for saturated states are listed in tables, either ordered by
temperature (“temperature table”, with p = psq: (T)) or by pressure (“pres-
sure table”, with T' = Tq (p)). Figure[E.I0lshows an excerpt of a temperature
table and Fig. [G.11]shows an excerpt of a pressure table, both for water. Sat-
uration tables for other substances are widely available.

Property data for internal energy and enthalpy is determined from ex-
periments by evaluating the first law, which only allows to determine en-
ergy or enthalpy differences. Therefore, in designing a property table, one
has the freedom to choose the value of a reference energy. For the tables
shown, the internal energy of the saturated liquid at the triple point was
chosen as uy (I'ry) = 0. All other energy and enthalpy values refer to this
choice. Entropy is determined from integration of the Gibbs equation, and
one has a choice of an integrating constant, which was chosen here such that,
sy (Try) = 0. Often, the reference value used in tables is determined from the
third law (Sec. 23.6]).

Care has to be taken when one uses data from different tables, since these
might rely on different choices for the energy and entropy references, which
will lead to errors, if not properly corrected.

6.6 Identifying States

Quality can only have values between 0 and 1. If one finds values outside this
range, one either has compressed liquid, or superheated vapor.

A state of given temperature T for which another property (v or u or h or
s) is known, is compressed liquid for

v<wvp(T) or u<up(T) or h<hy(T) or s<s;(T),
and it is superheated vapor if

v>vy(T) or u>ug(T) or h>hg(T) or s> s4(T) .
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Liquid-vapor saturation states of water, temperature table

T psat vf vg uf ug hf hfg hg sf sfg sg
deg-C kPa m3/kg m3/kg kJ/kg| ki/kg ki/kg ki/kg ki/kg ki/kgK| ki/kgK| ki/kgK
0.01 0.6113 0.001000 206.14 0.00f 2375.3] 0.00] 2501.4 2501.4 0.0000f 9.1562| 9.1562
10 1.2276 0.001000 106.38 42.00| 2389.2 42.01| 2477.8] 2519.8 0.1510| 8.7498| 8.9008

20 2.339 0.001002 57.79 83.95[ 2402.9 83.96] 2454.1| 2538.1 0.2966| 8.3706| 8.6672

30 4.246 0.001004 32.89 125.78| 2416.6 125.79| 2430.5| 2556.3 0.4369| 8.0164| 8.4533
40 7.384 0.001008 19.52 167.56] 2430.1 167.57| 2406.7| 2574.3 0.5725( 7.6845| 8.2570
50 12.35 0.001012 12.03 209.32| 24435 209.33| 2382.8] 2592.1 0.7038| 7.3725| 8.0763
60 19.94 0.001017 7.671 251.11| 2456.6 251.13( 23585 2609.6 0.8312 7.0784| 7.9096
70 31.19 0.001023' 5.042 29295 2469.6 292.98| 2333.8| 2626.8 0.9549 6.8004| 7.7553
80 47.39 0.001029 3.407 334.86 2482.2 334.91 2300.4 2635.3 1.0753| 6.5369| 7.6122
90 70.14] 0.001036 2.361 376.85| 2494.5 376.92| 2283.2| 2660.1 1.1925| 6.2866| 7.4791
MPa
100(| 0.10135 0.001044 1.6729 418.94| 2506.5 419.04( 2257.1| 2676.1 1.3069| 6.0480| 7.3549
110(| 0.14327 0.001052 1.2102 461.14 2518.1 461.30( 2230.2| 2691.5 1.4185| 5.8202 7.2387
120 | 0.19853 0.001060| 0.89190! 503.50f 2529.3 503.71| 2202.6] 2706.3 1.5276| 5.6020| 7.1296
130 0.2701 0.001070( 0.66850: 546.02 2539.9 546.31 2174.2| 2720.5 1.6344| 5.3925| 7.0269
140 0.3613 0.001080( 0.50890: 588.74 2550.0 589.13( 2144.8| 2733.9 1.7391| 5.1908| 6.9299
150 0.4758 0.001091| 0.39280! 631.68| 2559.5 632.20( 2114.3| 2746.5 1.8418| 4.9961| 6.8379
160 0.6178 0.001102( 0.30710: 674.87| 2568.4 675.55[ 2082.6] 2758.1 1.9427| 4.8075| 6.7502
170 0.7917 0.001114( 0.24280 718.33| 2576.5 719.21 2049.5| 2768.7 2.0419| 4.6244| 6.6663
180 1.0021 0.001127( 0.19405 762.09 2583.7 763.22( 2015.01 2778.2 2.1396| 4.4461| 6.5857
190 1.2544 0.001141( 0.15654: 806.19 2590.0 807.62| 1978.8| 2786.4 2.2359 4.2720 6.5079
200 1.5538 0.001157( 0.12736 850.65| 2595.3 852.45( 1940.8| 2793.2 2.3309| 4.1014| 6.4323
210 1.9062 0.001173( 0.10441 895.53| 2599.5 897.76( 1900.7| 2798.5 24248 3.9337| 6.3585
220 2318 0.001190( 0.08619: 940.87 2602.4 943.62 1858.5| 2802.1 25178 3.7683| 6.2861
230 2.795 0.001209( 0.07158 986.74| 2603.9 990.12( 1813.9| 2804.0 2.6099 3.6047| 6.2146
240 3.344 0.001229( 0.05976(( 1033.21| 2604.0(| 1037.32| 1766.5| 2803.8 2.7015 3.4422| 6.1437
250 3.973 0.001251 0.05013(( 1080.39| 2602.4(| 1085.36| 1716.1| 2801.5 2.7927( 3.2803| 6.0730
260 4.688| 0.001276| 0.04221|| 1128.39| 2599.0| 1134.37| 1662.5| 2796.9 2.8838| 3.1181] 6.0019
270 5.499 0.001302( 0.03564(( 1177.36| 2593.7| 1184.51| 1605.2| 2789.7 29751 29550 5.9301
280 6.412 0.001332( 0.03017(( 1227.46| 2586.1|| 1235.99| 1543.6| 2779.6 3.0668| 2.7903| 5.8571
290 7.436 0.001366( 0.02557(( 1278.92| 2576.0(| 1289.07| 1477.1| 2766.2 3.1594( 2.6227| 5.7821
300 8.581 0.001404| 0.02167 1332.0] 2563.0 1344.0| 1405.0| 2749.0 3.2534| 2.4511] 5.7045
310 9.856 0.001447( 0.018350! 1387.1 2546.4 1401.3| 1326.0 27273 3.3493 2.2737| 5.6230
320 11.27 0.001499( 0.015488: 1444.6] 2525.5 1461.5| 1238.6| 2700.1 3.4480 2.0882| 5.5362
330 12.85 0.001561( 0.012996! 1505.3] 2498.9 1525.3| 1140.6| 2665.9 3.5507| 1.8910| 5.4417
340 14.59 0.001638( 0.010797 1570.3| 2464.6 1594.2| 1027.8| 2622.0 3.6594| 1.6763| 5.3357
350 16.51 0.001740( 0.008813 1641.9] 24184 1670.6 893.3| 2563.9 3.7777| 1.4335| 5.2112
360 18.65 0.001893( 0.006945! 1725.2| 23515 1760.5 720.5( 2481.0 3.9147( 1.1379| 5.0526
370 21.03 0.002213| 0.004925! 1844.01 22285 1890.5 441.6( 2332.1 4.1106| 0.6865| 4.7971
374.14 22.09 0.003155( 0.003155! 2029.6] 2029.6 2099.3 0.0] 2099.3 4.4298| 0.0000{ 4.4298

source: http://www.thermofluids.net/

Fig. 6.10 Saturation table for water (temperature table)

A state of given pressure p for which another property (v or w or h or s)
is known, is compressed liquid for

v<wvp(p) or u<us(p) or h<hys(p) or s<sys(p),
and it is superheated vapor if
v >y (p) or u>ug(p) or h>hyg(p) or s> s4(p) .
A state of given pressure p and temperature T is compressed liquid for

T < Tias (p) Or D > Dsat (T) ,
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Liquid-vapor saturation states of water, pressure table

P Tsat vf vg uf ug hf hfg hg sf sfg sg

kPa deg-C m3/kg m3/kg ki/kg ki/kg ki/kg ki/kg ki/kg ki/kgK| ki/kgK| ki/kgK]|

0.6113 0.01 0.001000 206.14 0.00f 2375.3 0.00] 2501.4| 2501.4 0.0000f 9.1562| 9.1562

1 6.98 0.001000 129.21 29.30f 2385.0 29.30 2484.9| 2514.2 0.1059| 8.8697| 8.9756

2 17.50 0.001001 67.00 73.48| 2399.5 73.48| 2460.0| 2533.5 0.2607| 8.4630| 8.7237

3 24.08] 0.001003 45.67 101.04| 2408.5 101.05| 2444.5| 2545.5 0.3545| 8.2231| 8.5776

5 32.88 0.001005 28.19 137.81| 2420.5 137.82| 2423.7| 2561.5 0.4764| 7.9187| 8.3951

7.5 40.29 0.001008 19.24 168.78| 2430.5 168.79| 2406.0| 2574.8 0.5764| 7.6751] 8.2515

10 45.81 0.001010 14.67 191.82] 24379 191.83| 2392.9| 2584.7 0.6493| 7.5009| 8.1502

20 60.06 0.001017 7.649 251.38| 2456.7 251.40| 2358.3| 2609.7 0.8320| 7.0765| 7.9085

30 69.10] 0.001022 5.229 289.20| 2468.4 289.23| 2336.1] 2625.3 0.9439| 6.8247| 7.7686

50 81.33 0.001030 3.240 340.44| 2483.9 340.49| 2305.4| 2645.9 1.0910| 6.5029| 7.5939

75 91.78] 0.001037 2.217 384.31| 2496.7 384.39| 2278.6| 2663.0 1.2130| 6.2434| 7.4564
MPa

0.100]| 99.63 0.001043 1.694 417.36] 2506.1 417.46| 2258.0| 2675.5 1.3026| 6.0568| 7.3594

0.150 111.37 0.001053 1.1593 466.94( 2519.7 467.11| 2226.5| 2693.6 1.4336| 5.7897| 7.2233
0.200 120.23 0.001061 0.8857 504.49 2529.5 504.70( 2202.0| 2706.7 1.5301| 5.5970 7.1271
0.250 127.44 0.001067 0.7187 535.10f 2537.2 535.37( 2181.5| 2716.9 1.6072| 5.4455| 7.0527
0.300 133.55 0.001073 0.6058! 561.15 2543.6 561.47( 2163.8| 27253 1.6718| 5.3201| 6.9919
0.350 138.88 0.001079 0.5243 583.95( 2548.9 584.33( 2148.1| 27324 1.7275| 5.2130| 6.9405
0.400 143.63 0.001084 0.4625 604.31| 2553.6 604.74( 21339 2738.6 1.7766| 5.1193| 6.8959
0.500 151.86 0.001093 0.3749 639.68 2561.2 640.23( 2108.5| 2748.7 1.8607| 4.9606| 6.8213
0.600 158.85 0.001101 0.3157 669.90 2567.4 670.56 2086.2| 2756.8 1.9312| 4.8288| 6.7600
0.700 164.97 0.001108 0.2729! 696.44 2572.5 697.22( 2066.3| 2763.5 1.9922| 4.7158| 6.7080
0.800 170.43 0.001115 0.2404 720.22( 2576.8 721.11 2048.0| 2769.1 2.0462| 4.6166| 6.6628
0.900 175.38 0.001121 0.2150! 741.83| 2580.5 742.83( 2031.1| 2773.9 2.0946 4.5280| 6.6226
1.0 179.91 0.001127( 0.19444 761.68| 2583.6 762.81| 2015.3| 2778.1 2.1387| 4.4478| 6.5865
15 198.32 0.001154( 0.13177 843.16| 2594.5 844.89 1947.3| 2792.2 23150 4.1298| 6.4448
2.0 212.42 0.001177( 0.09963 906.44| 2600.3 908.79| 1890.7| 2799.5 24474 3.8935| 6.3409
3.0 233.90] 0.001217( 0.06668(( 1004.78| 2604.1|| 1008.42| 1795.8 2804.2 26457 3.5412| 6.1869
3.5 242.60] 0.001235( 0.05707(( 1045.43| 2603.7|| 1049.75| 1753.7| 2803.4 2.7253| 3.4000f 6.1253
4.0 250.40] 0.001252( 0.04978(( 1082.31| 2602.3|| 1087.31| 1714.1| 2801.4 2.7964| 3.2737| 6.0701
6.0 275.64] 0.001319( 0.03244(( 1205.44| 2589.7(| 1213.35| 1571.0f 2784.3 3.0267| 2.8625| 5.8892
8.0 295.06 0.001384( 0.02352(( 1305.57| 2569.8(| 1316.64| 1441.4| 2758.0 3.2068| 2.5364| 5.7432
10 311.06 0.001452( 0.018026(( 1393.04| 2544.4(| 1407.56| 1317.1| 2724.7 3.3596| 2.2545| 5.6141
12 324.75 0.001527( 0.014263. 1473.0] 2513.7 1491.3| 1193.6| 2684.9 3.4962| 1.9962| 5.4924
14 336.75[| 0.001611 | 0.011485 1548.6 2476.8 1571.1] 1066.5| 2637.6 3.6232 1.7485| 5.3717
16 347.44 0.001711| 0.009306! 1622.7| 2431.7 1650.1 930.5| 2580.6 3.7461| 1.4994| 5.2455
18 357.06 0.001840( 0.007489: 16989 23743 1732.0 777.1 2509.1 3.8715| 1.2329| 5.1044
20 365.81 0.002036( 0.005834 1785.6] 2293.0 1826.3 583.4( 2409.7 4.0139( 0.9130 4.9269
22.09 374.14] 0.003155( 0.003155! 2029.6] 2029.6 2099.3 0.0f 2099.3 4.4298( 0.0000| 4.4298

source: http://www.thermofluids.net/

Fig. 6.11 Saturation table for water (pressure table)

and it is superheated vapor if
T > Tyat (p) or p < Psat (T)

It is a useful exercise to verify the above conditions by means of p-v-, T-s-,
and p-T-diagrams!

6.7 Example: Condensation of Saturated Steam

As an example we consider the isochoric (constant volume) condensation of
saturated steam from an initial temperature of 177 = 280°C to T3 = 200°C.

In the initial state, the properties are just at the saturation values, which can
be read from Fig. [6.10] as
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3

p1 = peat (T1) = 64.12bar , vy = v, (T}) = 0.03017f—g :
kJ kJ

Up = Ug (Tl) = 2586.1k—g 5 hl = hg (Tl) = 27796k_g 5
kJ

The values of two properties—two bits of information—are required to fix
a state. In state 1 these are the temperature and the knowledge that the
steam is saturated. For state 2, we know its temperature T5, and its volume,
which is unchanged, vo = v1. To learn more about the final state, it is best
to draw the process into a p-v-diagram. As shown in Fig. [6.12] the isochoric
process to lower temperature is a vertical line downwards from the saturated
vapor curve, and the final state 2 lies in the two-phase region between the
saturation lines. Hence, this state is a mixture of saturated liquid at volume
vy (T2), and saturated vapor at volume vy (T%), which we find from the table

as vy (T3) = 0.0011572 and v, (T3) = 0.1273622.

Pa

7

(@) m=n oL v

Fig. 6.12 Isochoric cooling of saturated vapor between 77 and 7% in the p-v-
diagram. The final state 2 is in the two-phase region (mixture of saturated liquid
and saturated vapor).

Since vy = v1 = v, (T1), the quality of the final state is

vo — vy (Tp)  0.03017 —0.001157

- - =0.23.
g (T2) — vy (Ty)  0.12736 — 0.001157

€2

With this value for quality we find the properties at the end point as
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P2 = Psat (T2) = 15.54 bar ,
m3

vy = v; = 0.03017— ,
kg

kJ

ug = uy (T) + zouypg (Tr) = 1251.71{—g ,
kJ

ho = hf (TQ) +.’£2th (Tg) = 1298.6k—g s
sg = s (Ta) + w25 (T)—3274£

2 = sy (12 25fg (12) = 3. e K -

The values for uy (Th) , usq (T2) etc. are taken from the table. The verification
of the above results is left to the reader.

We recall that quality must have values between 0 and 1. If one computes
a quality outside this range, the corresponding state is not a saturated state,
but either compressed liquid or superheated vapor, for which the property
data must be found in the appropriate tables.

6.8 Superheated Vapor

For superheated vapors the equations of state depend on two properties, and
are normally laid down in extensive tables, or in computer software. Figure
6.3l shows an excerpt of a table with data for water vapor at some pressures
between 10 kPa and 20 MPa.

As an example we consider the adiabatic reversible compression of satu-
rated vapor at 77 = 100°C to a pressure pos = 3 MPa. From the second law
for reversible processes, ¢ = T'ds follows that such a process is isentropic
(constant entropy), and thus it is a natural choice to draw the process curve
in a T-s-diagram as depicted in Fig. Clearly, the final state 2 is outside
the two phase region, to the right, which means the final state is superheated

vapor. The properties of state 1 can be read from the saturation table in
Fig.[6.10] as

P1 = Dsat (T]) = 1.014 bar s
3

m
V1 = Uy (Tl) = 1673k—g 5

kJ
Uy = Ug (Tl) = 25065k—g 5

kJ
h1 = hy (T1) = 2676.1—
1 g (T1) 676 kg

kJ
S1 = Sg (Tl) = 73549@ .
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superheated water vapor

deg-C m3/kg ki/kg ki/kg ki/kgK m3/kg ki/kg ki/kg ki/kgK m3/kg ki/kg ki/kg ki/kgK

p =0.01 MPa (45.81 °C) p =0.10 MPa (99.63 °C) p =1.00 MPa (179.91 °C)
T \ u h s v u h s v u h s
Sat. 14.674 2437.9 2584.7 8.1502 1.694 2506.1 2675.5 7.3594 0.19444 2583.6 2778.1 6.5865
50 14.869 2443.9 2592.6 8.1749

100 17.196 2515.5 2687.5 8.4479 1.696 2506.7 2676.2 7.3614

150 19.512 2587.9 2783.0 8.6882 1.936 2582.8 27764 7.6143

200! 21.825 2661.3 2879.5 8.9038 2.172 2658.1 28753 7.8343 0.2060 2621.9 2827.9 6.6940

250! 24.136 2736.0 2977.3 9.1002 2406 2733.7 29743 8.0333 0.2327 2709.9 2942.6 6.9247

300! 26.445 2812.1 3076.5 9.2813 2.639 28104 30743 8.2158 0.2579 2793.2 3051.2 7.1229

400! 31.063 29689 3279.6 9.6077 3.103 2967.9 3278.2 8.5435 0.3066 2957.3 3263.9 7.4651

500! 35.679 31323 3489.1 9.8978 3.565 3131.6 3488.1 8.8342 0.3541 31244 34785 7.7622

600 40.295 3302.5 3705.4 10.1608 4.028 33019 37044 9.0976 0.4011 3296.8 3697.9 8.0290

700! 44911 3479.6 3928.7 10.4028 4490 3479.2 39282 9.3398 0.4478 3475.3 3923.1 8.2731

800! 49.526 3663.8 4159.0 10.6281 4.952 3663.5 41586  9.5652 0.4943 3660.4 4154.7 8.4996

900 54.141 3855.0 4396.4 10.8396 5.414 3854.8 4396.1 9.7767 0.5407 3852.2 43929 8.7118
1000 58.757 4053.0 4640.6 11.0393 5.875 4052.8 46403 9.9764 0.5871 4050.5 4637.6 8.9119
1100 63.372 4257.5 4891.2 11.2287 6.337 4257.3 4891.0 10.1659 0.6335 4255.1 4888.6 9.1017|
1200 67.987 4467.9 5147.8 11.4091 6.799 4467.7 5147.6 10.3463 0.6798 4465.6 51454 9.2822
1300 72.602 4683.7 5409.7 11.5811 7.260 4683.5 5409.5 10.5183 0.7261 4681.3 5407.4 9.4543

p =2.00 MPa (212.42 °C) p = 3.00 MPa (233.90 °C) p = 5.0 MPa (263.99 °C)
T v u h s v u h s v u h s

Sat. 0.09963 2600.3 2799.5 6.3409 0.06668 2604.1 2804.2  6.1869 0.03944 2597.1 27943 5.9734
225 0.10377 26283 2835.8 6.4147
250 0.11144 2679.6 2902.5 6.5453 0.07058 2644.0 2855.8  6.2872
300 0.12547 2772.6 3023.5 6.7664 0.08114 2750.1 2993.5  6.5390 0.04532 2698.0 2924.5 6.2084
350 0.13857 2859.8 3137.0 6.9563 0.09053 2843.7 31153  6.7428 0.05194 2808.7 3068.4 6.4493
400 0.15120 2945.2 3247.6 7.1271 0.09936 2932.8 32309 6.9212 0.05781 2906.6 3195.7 6.6459
500 0.17568 3116.2 3467.6 7.4317 0.11619 3108.0 3456.5 7.2338 0.06857 3091.0 3433.8 6.9759
600 0.19960 3290.9 3690.1 7.7024 0.13243 3285.0 3682.3  7.5085 0.07869 3273.0 3666.5 7.2589
700 0.2232 34709 3917.4 7.9487 0.14838 3466.5 3911.7 7.7571 0.08849 3457.6 3900.1 7.5122
800 0.2467 3657.0 4150.3 8.1765 0.16414 3653.5 41459 7.9862 0.09811 3646.6 4137.1 7.7440
900 0.2700 3849.3 4389.4 8.3895 0.17980 3846.5 43859 8.1999 0.10762 3840.7 4378.8 7.9593
1000 0.2933 4048.0 4634.6 8.5901 0.19541 4045.4 4631.6  8.4009 0.11707 4040.4 46257 8.1612
1100 0.3166 4252.7 48859 8.7800 0.21098 4250.3 4883.3  8.5912 0.12648 4245.6 4878.0 8.3520
1200 0.3398 4463.3 51429 8.9607 0.22652 4460.9 5140.5 8.7720 0.13587 4456.3 51357 8.5331
1300 0.3631 4679.0 5405.1 9.1329 0.24206 4676.6 5402.8  8.9442 0.14526 4672.0 5398.2 8.7055|

p = 8.0 MPa (295.06 °C) p = 12.5 MPa (327.89 °C) p = 20.0 MPa (365.81 °C)

T v u h s v u h s v u h s

Sat. 0.02352 2569.8 2758.0 5.7432(| 0.013495 2505.1 2673.8 5.4624|| 0.005834 2293.0 2409.7 4.9269
300! 0.02426 2590.9 2785.0 5.7906
350! 0.02995 2747.7 2987.3 6.1301| | 0.016126 2624.6 2826.2 5.7118
400 0.03432 2863.8 3138.3 6.3634 0.02000 2789.3 3039.3 6.0417|| 0.009942 2619.3 2818.1 5.5540
450 0.03817 2966.7 3272.0 6.5551 0.02299 2912.5 3199.8 6.2719|| 0.012695 2806.2 3060.1 5.9017
500 0.04175 3064.3 33983 6.7240 0.02560 3021.7 3341.8 6.4618|| 0.014768 29429 3238.2 6.1401
550! 0.04516 3159.8 3521.0 6.8778 0.02801 3125.0 3475.2 6.6290(| 0.016555 3062.4 3393.5 6.3348
600! 0.04845 3254.4 3642.0 7.0206 0.03029 32254 3604.0 6.7810(| 0.018178 3174.0 3537.6 6.5048
700 0.05481 34439 3882.4 7.2812 0.03460 34229 3855.3 7.0536 0.02113 3386.4 3809.0 6.7993
800! 0.06097 3636.0 4123.8 7.5173 0.03869 3620.0 4103.6  7.2965 0.02385 3592.7 4069.7 7.0544
900 0.06702 3832.1 4368.3 7.7351 0.04267 3819.1 43525 7.5182 0.02645 3797.5 4326.4 7.2830

1000 0.07301 4032.8 4616.9 7.9384 0.04658 4021.6 4603.8 7.7237 0.02897 4003.1 4582.5 7.4925|

1100 0.07896 4238.6 4870.3 8.1300| 0.05045 4228.2 4858.8 7.9165 0.03145 4211.3 4840.2 7.6874

1200 0.08489 4449.5 51285 8.3115 0.05430 4439.3 5118.0 8.0937 0.03391 4422.8 5101.0 7.8707

1300 0.09080 4665.0 5391.5 8.4842 0.05813 4654.8 5381.4 8.2717 0.03636 4638.0 5365.1 8.0442

source: http://www.thermofluids.net/

Fig. 6.13 Excerpt from a property table for superheated water vapor for a variety
of pressures. The temperature in brackets is the saturation temperature.
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1,

ygi

/ 1

Fig. 6.14 Isentropic compression of saturated vapor from p; to p2 in the T-s -
diagram

S

Two bits of information are required to identify state 2, and here these are
its pressure, po, and its entropy, since the process is isentropic, s = s1 =
7.3549%. In the table for superheated water vapor, Fig. [6.13] we have to
consider the center box which refers to the pressure 3 MPa. The required
value for entropy cannot be found in the table, but lies between values given.
The values closest above and below the required value of so = 7.3549% in
the table are

. kJ
sazs(p2:3MPa,Ta:500 C>:72338kg—K7
= 5(py = 3MPa, T}, = 600 °C) = 7.5085 k]
Sp = S(p2 = a, Ly = = (. kgK'

Figure shows a sketch of the function s (p2,7T) in a diagram, with the
tabled data points s,, sp and the target point sy indicated. Assuming that
the line @ — 2 — b can be well approximated by a straight line, we find the
target temperature T by linear interpolation as

$2 — Sq

T, =T, + (T, — T,) = 543.1°C .

Sh — Sa

Correspondingly, the values for volume, internal energy, and enthalpy are
computed by interpolation as

_ 3
Vg = g + 2750 (g, — v,) = 0.12337—— |
Sp — Sq kg
- kJ
Us = g + 25wy — uy) = 3186.0—
Sp — Sa kg
54 kJ
ho = ha + 22729 (hy — hy) = 3556.0— .

Sp — Sa kg
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s(p2,T)
St

52

Sa

T =T, 53— s,
ﬂ*n Sp — Sq

T, T, T

Fig. 6.15 Linear interpolation

Here, v, = v (p2,Tu), ua = u(p2,T,) etc. are the appropriate data values
from the table.
Since the process is adiabatic, we have 12 = 0 and the work per unit mass
can be computed from the first law as wio = u; — ug + q12 = —679.5%.
Thermodynamic properties are often listed in tables as discrete values, and
interpolation must be frequently used. Typically, tabulated values are spaced
such that the assumption of linearity is valid in good approximation.

6.9 Compressed Liquid

For compressed liquid, i.e., the pure liquid state, only few tables are available,
Fig. shows a table for compressed liquid water.

Most liquids, including water, are almost incompressible for a wider range
of pressures, and this allows us to develop useful approximations that relate
compressed liquid properties to those of saturated liquid.

For incompressible fluids a change of pressure does not lead to a change
of volume, so that the volume can be approximated by the volume of the
saturated liquid,

v(T,p) =v(T)~ vy (1) , (6.10)

that is the volume is independent of pressure, but not of temperature. Incom-
pressibility refers to changes at constant temperature, while thermal expan-
sion or contraction are allowed. With this approximation, isothermal lines for
the compressed liquid in the p-v-diagram are vertical lines upwards from the
saturated liquid line.

Internal energy seen as a function of temperature and volume can then be
reduced to its saturated liquid value as well:

u(T,v) ~u(T,vp (T)) =us (T) . (6.11)



6.9 Compressed Liquid 121
Compressed Liquid Water (H20) Table
deg-C m3/kg ki/kg ki/kg ki/kgK m3/kg ki/kg ki/kg ki/kgK m3/kg ki/kg  ki/kg ki/kgK
p =5 MPa (263.99 C) p =10 MPa (311.06 C) p =15 MPa (342.24 C)
T v u h s v u h s v u h s
sat. 0.0012859 1147.8 1154.2 2.9202(| 0.0014524 1393.0 1407.6 3.3596|| 0.0016581 1585.6 1610.5 3.6848
Of| 0.0009977 0.0 5.0 0.0001f| 0.0009952 0.1 10.0 0.0002(| 0.0009928 0.2 15.1  0.0004
20(| 0.0009995 83.7 88.7 0.2956| | 0.0009972 83.4 93.3 0.2945| [ 0.0009950 83.1 98.0 0.2934
40|| 0.0010056 167.0 172.0 0.5705|( 0.0010034 166.4 176.4 0.5686|| 0.0010013 165.8 180.8 0.5666
60[[ 0.0010149 250.2 255.3 0.8285|| 0.0010127 249.4 259.5 0.8258|| 0.0010105 248.5 263.7 0.8232
80[| 0.0010268 333.7 338.9 1.0720|| 0.0010245 332.6 342.8 1.0688|( 0.0010222 3315 346.8 1.0656
100{( 0.0010410 417.5 422.7 1.3030|| 0.0010385 416.1 426.5 1.2992|( 0.0010361 414.7 430.3 1.2955
120(( 0.0010576 501.8 507.1 1.5233|| 0.0010549 500.1 510.6 1.5189|( 0.0010522 498.4 514.2 1.5145
140[[ 0.0010768 586.8 592.2 1.7343|| 0.0010737 584.7 595.4 1.7292|( 0.0010707 582.7 598.7 1.7242
160[( 0.0010988 672.6 678.1 1.9375[| 0.0010953 670.1 681.1 1.9317|( 0.0010918 667.7 684.1 1.9260|
180(| 0.0011240 759.6 765.3 2.1341|| 0.0011199 756.7 767.8 2.1275|( 0.0011159 753.8 770.5 2.1210|
200{| 0.0011530 848.1 853.9 2.3255|( 0.0011480 8445 856.0 2.3178|| 0.0011433 841.0 858.2 2.3104
220|| 0.0011866 938.4 944.4 25128 0.0011805 934.1 9459 2.5039|| 0.0011748 929.9 947.5 2.4953
240|| 0.0012264 1031.4 1037.5 2.6979|| 0.0012187 1026.0 1038.1 2.6872|| 0.0012114 1020.8 1039.0 2.6771
260|| 0.0012749 1127.9 1134.3 2.8830|( 0.0012645 1121.1 1133.7 2.8699|| 0.0012550 1114.6 1133.4 2.8576
280 0.0013216 1220.9 1234.1 3.0548(| 0.0013084 1212.5 1232.1 3.0393
300 0.0013972 1328.4 1342.3 3.2469|| 0.0013770 1316.6 1337.3 3.2260
320 0.0014724 1431.1 1453.2 3.4247
340 0.0016311 1567.5 1591.9 3.6546
p =20 MPa (365.81 C) p =30 Mpa p =50 MPa
T v u h s v u h s v u h s
sat. [| 0.0020360 1785.6 1826.3 4.0139
Of[ 0.0009904 0.2 20.0 0.0004(| 0.0009856 0.3 29.8 0.0001f| 0.0009766 0.2 49.0 0.0014
20(| 0.0009928 82.8 102.6 0.2923 0.0009886 82.2 111.8 0.2899 0.0009804 81.0 130.0 0.2848
40|| 0.0009992 165.2 185.2 0.5646|| 0.0009951 164.0 193.9 0.5607|| 0.0009872 1619 211.2 0.5527
60[[ 0.0010084 247.7 267.9 0.8206|| 0.0010042 246.1 276.2 0.8154|( 0.0009962 243.0 292.8 0.8052
80[| 0.0010199 330.4 350.8 1.0624|| 0.0010156 328.3 358.8 1.0561|| 0.0010073 324.3 374.7 1.0440
100{( 0.0010337 413.4 4341 1.2917|| 0.0010290 410.8 441.7 1.2844|( 0.0010201 4059 456.9 1.2703
120[ 0.0010496 496.8 517.8 1.5102|| 0.0010445 493.6 5249 1.5018|( 0.0010348 487.7 539.4 1.4857
140[( 0.0010678 580.7 602.0 1.7193|| 0.0010621 576.9 608.8 1.7098|( 0.0010515 569.8 622.4 1.6915
160[ 0.0010885 665.4 687.1 1.9204|| 0.0010821 660.8 693.3 1.9096|( 0.0010703 652.4 7059 1.8891
180(( 0.0011120 751.0 773.2 2.1147|| 0.0011047 745.6 778.7 2.1024|( 0.0010912 735.7 790.3 2.0794
200|| 0.0011388 837.7 860.5 2.3031|( 0.0011302 8314 865.3 2.2893|| 0.0011146 819.7 8755 2.2634
220|| 0.0011695 925.9 949.3 2.4870|| 0.0011590 9183 953.1 2.4711|| 0.0011408 904.7 961.7 2.4419
240(( 0.0012046 1016.0 1040.0 2.6674|| 0.0011920 1006.9 1042.6 2.649|| 0.0011702 990.7 1049.2 2.6158
260[( 0.0012462 1108.6 1133.5 2.8459|| 0.0012303 1097.4 11343 2.8243|( 0.0012034 1078.1 1138.2 2.7860|
280|| 0.0012965 1204.7 1230.6 3.0248|| 0.0012755 1190.7 1229.0 2.9986|| 0.0012415 1167.2 1229.3 2.9537
300|| 0.0013596 1306.1 1333.3 3.2071|( 0.0013307 1287.9 1327.8 3.1741|| 0.0012860 1258.7 1323.0 3.1200
320|| 0.0014437 1415.7 1444.6 3.3979|| 0.0013997 1390.7 1432.7 3.3539|| 0.0013388 1353.3 1420.2 3.2868
340|| 0.0015684 1539.7 1571.0 3.6075|| 0.0014920 1501.7 1546.5 3.5426|| 0.0014032 1452.0 1522.1 3.4557
360|| 0.0018226 1702.8 1739.3 3.8772|| 0.0016265 1626.6 1675.4 3.7494|| 0.0014838 1556.0 1630.2 3.6291
380 0.0018691 1781.4 1837.5 4.0012|| 0.0015884 1667.2 1746.6 3.8101

source: http://www.thermofluids.net/

Fig. 6.16 Excerpt from a property table for compressed liquid water for a variety
of pressures. The temperature in brackets is the saturation temperature.

For consistency, enthalpy needs to be treated differently. Due to the def-
inition h = u + pv, the above approximations give in a first step h (T, p) =
us (T') + pvs (T). For the saturated liquid at the same temperature we have
hy (T) = s (T)+ psat (T') vy (T'). Combining both by eliminating uy (T'), we
find the approximation for the enthalpy of compressed liquid as

h (Tvp) =~ hf (T) + (p — Psat (T)) vf (T) :

(6.12)



122 6  Properties and Property Relations

For small enough pressures, the correction term for enthalpy can be ignored,
so that h (T, p) ~ hy (T).
Finally, entropy can be treated similar to internal energy,

s(T,v) ~s(T,vs (T)) =s¢(T) . (6.13)

With this approximation, isobaric lines for the compressed liquid in the T-s-
diagram lie on the saturated liquid line.

As an example, we consider compressed liquid water at p = 10 MPa and
T = 200°C, for which the table in Fig. gives

3
v (T, p) = v (200°C, 10 MPa) = 0.001148%

k
(T, p) = u(200°C, 10 MPa) = 844.51(_; ’
o kJ
h(T,p) = h(200°C, 10 MPa) = 856'0k_g ,
kJ

S (T,p) =S (200007 10 MPa) = 23178@ .

With the above approximations, we find the corresponding values from the
saturation table in Fig. [6.10] as

3
v (T,p) ~ vy (T) = vy (200°C) = 0.001157— ,

kg
. kJ
uw(T,v) ~uy(T) =uys(200°C) = 850.65k—g ,
. kJ
h(T,p) =~ hy (T) = hy (200°C) = 852.45k—g ,
kJ
h(T,p) = hy (T)+ (p — psar (T)) vy (T) = 862.2k—g ,
s(T,v) ~ s (T) = s (200°C) = 2 3309

For this particular example, the approximations yield relative errors below
1%, and even smaller at lower pressures. For higher pressures, however, the
relative errors are larger, since compressibility affects all property values,
hence these approximations should be used with care. Whenever a full table
for compressed liquid states is available, that table should be used. If a table
for the liquid states is not available, as is often the case for relatively low
pressures, the approximations are quite useful.
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6.10 The Ideal Gas

When the temperature of a vapor is sufficiently above the critical temperature
or when the pressure is sufficiently below the critical pressure, it will obey

the ideal gas law
pv = RT (6.14)

where R = R/M is the gas constant. We have discussed ideal gases already
in Sec. 2Tl and used the ideal gas law and the caloric equation of state in
examples. We repeat some of the property relations and add new ones.

Experiments and theoretical considerations (see Sec. [[6.3]) show that for
ideal gases internal energy u and enthalpy h = v + pv = v + RT depend
on temperature only. Therefore, also their derivatives, the specific heats at
constant volume, ¢,, and at constant pressure, ¢,, defined in (315 B22]),
depend only on temperature,

ou du
Cy = <6—T>U = d_T = Cy (T) s (615)

oh dh
Cp <8T) . dT Cp ( )
Since h = u + RT, it follows
cp=c+R. (6.16)

Integration of the specific heats gives energy and enthalpy,

T
w(T) = /; e (T')dT" + o, (6.17)
h@U—:/quTUdT“+hO,

To

with reference energy ug and, for consistency, reference enthalpy hy = ug +
RTy.

The entropy of an ideal gas is determined from integration of the Gibbs
equation (62). With dh = ¢,dT" and the ideal gas law, the Gibbs equation
assumes the form

—ar_ Y= ogr B
ds = TdT pof TdT pdp. (6.18)

The entropy for the state (T,p) follows by integration between (T, p) and
(To, po) as

s(T,p)=s°(T)— Rln L | (6.19)
Po

where we introduced the abbreviation
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T /
50 (T):/T #dT’—l—s(To,po) . (6.20)

The constant of integration is chosen such that s° (T) is the ideal gas entropy
at reference pressure pg = 1 bar. The value of the reference entropy s (T, po)
can be obtained from the third law, which will be discussed later (Sec. 23.0]).
As long as non-reacting mixtures are considered, its value is unimportant,
since it cancels in all calculations. Indeed, only entropy differences are rele-
vant, for which we find

s (Ta,p2) — s (Ty,p1) = 8° (Tp) — s° (T1) — Rlnf}—? . (6.21)

When one is not interested in entropy as a function of T" and p, but as a
function of T and v, the ideal gas law can be used to eliminate pressure,

T2U1

S(TQ,UQ)—S(T1,U1) :SO (TQ)-SO (T1) — Rln (6.22)

102
In summary, energy and enthalpy of the ideal gas depend only on temper-
ature, and its entropy depends explicitly on pressure (621]) or volume (622)),
and on temperature through the function s° (T'). The temperature dependent
quantities u (T),h (T), s (T) are tabulated
As an example we consider a property table for air. The molar specific
heat of air can be approximated by the Shomate equation

Ep =ag + alT + CLQTZ —+ CL3T3 —+ % s (623)
with (for T < 1000 K)
kJ kJ
= 30.0051 ——— = -8. 1073 ——
ag = 30.005 — aq 8.86766 x 10 T
k. k.
as = 2.21273 x 10—57‘13 as = —1.02450 x 10—87‘14 ’
kmol K kmol K
kJK
= 838.737T—— . 6.24
a kmol ( )

The mass based specific heats are ¢, = ¢,/M and ¢, = ¢, — R. Internal energy
u, enthalpy h and entropy function s (T') follow from integration using the
formulas above. Figure shows the resulting table.

Tables for other gases are widely available, or can be easily produced from
the Shomate equation with the appropriate data for the coefficients, which
can be found, e.g., from NIST (http://webbook.nist.gov/).

3 Some tables list molar quantities @ = uM, h = hM, 5° = s°M.
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Property table for AIR as ideal gas

ov ov

cp u h S Pr vr cp u h S Pr vr
T [kJ/kg] | [kJikg] [kJ/kg] [kJ/lkg] [kJ/kgK] T [kJ/kg] | [kJlkg] [kJlkg] [kJ/kg] [kJ/kgK]
220 | o715 | 1002 | 15768 22081 6.826 0346 | 6360 580 | 0759 | 1.046 | 420.39 586.85 7.808 1061 | 5469
230 | o715 | 1002 | 164.83 23083 6870 0404 | 5693 50 | 0761 1048 | 428,00 597.32 7.826 1129 | 5227
240 | o715 | 1002 | 171.98 24085 6913 0469 | 51241 600 | 0764 | 1.051 43562 607.82 7.844 12,00 | 49.98
250 | 0715 | 1002 | 179.13 25087 6.954 0540 | 4625 610 | 0765 | 1053 | 44327 618.34 7.861 1275 | 47.83
20 | 0715 | 1.002 | 186.28 260.89 6993 0620 | 4195 620 | 0768 | 1055 | 450.95 62888 7.878 1354 | 4580
270 | 0715 | 1.002 | 19343 27091 7.031 0707 | 3818 630 | 0771 1058 | 45864 639.44 7.895 14.36 | 43.87
273 | o715 | 1002 | 19557 27392 7.042 0735 | 3715 640 | 0773 | 1060 | 466.36 650.03 7.912 1522 | 4205
280 | 0716 | 1.003 | 20058 280.94 7.067 0803 | 3487 650 | 0775 | 1.062 | 474.10 660.64 7.928 16.12 | 40.33
20 | o716 | 1003 | 20774 29096 7.103 0908 | 3195 660 | 0778 | 1.065 | 481.87 671.28 7.044 17.06 | 38.70
20815 | 0716 | 1003 | 21357 29914 7430 1.000 | 2982 670 | 0780 | 1067 | 48966 681.94 7.960 18.04 | 37.15
300 | o716 | 1.003 | 214.90 300.99 7437 1022 | 2936 680 | 0783 | 1070 | 497.47 692,62 7.976 19.06 | 3568
310 | o717 | 1004 | 22207 311.03 7.169 1146 | 2705 690 | 0785 | 1072 | 50531 70333 7.992 2012 | 3429
320 | o718 | 1005 | 22024 321.08 7.201 1281 | 2409 700 | o787 | 1074 | 51317 714.06 8007 2124 | 329
330 | o718 | 1005 | 23642 33143 7.232 1426 | 2314 710 | 0790 | 1077 | 521.06 72482 8023 2240 | 3170
340 | 0719 | 1006 | 24361 34118 7.262 1584 | 2147 720 | 0792 | 1079 | 52897 735.60 8038 2361 | 3050
350 0.720 1.007 250.81 351.25 7.291 1.753 199.6 730 0.795 1.082 536.91 746.41 8.053 24.86 29.36
360 | o721 1008 | 25801 361.33 7.320 1035 | 186.0 740 | 0797 | 1084 | 54487 757.24 8.067 2647 | 2827
370 | 0722 | 1009 | 26523 371.42 7.347 2431 | 1736 750 | 0800 | 1087 | 55285 768.09 8.082 2754 | 2724
380 | 0724 | 1011 27246 381.52 7.374 2341 | 1623 760 | 0802 | 1089 | 560.86 778.97 8096 2895 | 2625
30 | o725 | 1012 | 27970 391,63 7.401 2565 | 1520 770 | 0805 | 1.091 568.90 789.87 8411 3043 | 2531
400 | 0726 | 1013 | 28696 40175 7.426 2805 | 1426 780 | 0807 | 1094 | 57695 800.80 8125 3196 | 2440
410 | 0727 | 1014 | 20422 411.89 7.451 3060 | 1340 790 | 0809 | 109 | 58503 811.75 8139 3355 | 2354
420 | 0729 | 1016 | 30151 422,04 7.476 3333 | 1260 800 | 0812 | 1009 | 59314 82273 8152 3521 | 2272
430 | 0730 | 1017 | 30880 43221 7.500 3622 | 187 810 | 0814 | 1101 601.27 83373 8.166 3692 | 2194
440 | 0732 | 1019 | 3161 44239 7.523 3930 | 1120 820 | 0816 | 1.103 | 609.42 844.75 8180 3870 | 2119
450 | 0734 | 1021 323.44 45259 7.546 4257 | 10571 830 | 0819 | 1106 | 617.59 855.79 8193 4055 | 2047
460 | 0735 | 102 | 33079 462.80 7.569 4603 | 9993 840 | 0821 1108 | 62579 866.86 8206 4247 | 1978
470 | 0737 | 1024 | 33815 473.03 7.591 4970 | 0456 850 | 0823 | 1.110 | 63401 877.95 8219 4446 | 19.12
480 | 0739 | 102 | 34553 48328 7.612 5358 | 8958 860 | 0826 | 1112 | 64226 889.07 8232 4652 | 18.49
490 | 0741 1028 | 35292 49355 7.633 5769 | 8494 870 | 0828 | 1115 | 65052 90020 8245 4865 | 1788
500 | 0743 | 1030 | 360.34 503.83 7.654 6202 | 8062 880 | 0830 | 1117 | 65881 91136 8.258 5086 | 17.30
510 | 0744 | 1.031 367.77 51414 7.674 6659 | 7659 80 | 0832 | 1119 | e67.12 92254 8.271 5315 | 1674
520 0.746 1.033 375.23 524.46 7.694 7141 72.82 900 0.834 1121 675.45 933.74 8.283 55.52 16.21
530 | 0749 | 1036 | 38270 534.81 7714 7648 | 6930 910 | 0836 | 1123 | 68381 944.96 8295 57.97 | 1570
540 | 0751 1038 | 390.20 545.17 7.734 8182 | 66.00 920 | 0838 | 1125 | 69218 956.21 8308 6051 | 1520
550 | 0753 | 1040 | 39772 556.56 7.753 8744 | 6290 930 | 0840 | 1127 | 70057 967.47 8320 6313 | 1473
560 | 0755 | 1042 | 40525 565.97 711 933 | 5999 %0 | 0842 | 1120 | 708.98 978.75 8332 6584 | 1428
570 | o757 | 1044 | 41281 576.40 7.79 995 | 5726 950 | 0844 | 1.131 717.41 990,05 8344 6864 | 1384

Fig. 6.17 Property data for air: specific heats ¢, (T') and ¢, (T'), internal energy
u (T), enthaply h (T) and entropy function s° (T) as functions of temperature

6.11 Monatomic Gases (Noble Gases)

For monatomic gases, i.e., the noble gases helium (He), neon (Ne), argon
(Ar), krypton (Kr), xenon (Xe), and radon (Rn), the specific heats are true
constants with the values

c&w==-R , cp:cv—i—R:gR (6.25)

and the caloric equation of state follows from straightforward integration as

S
=
|

= Cy (T - T()) + up , (626)
]’L(T) :Cp(T—T0)+h0 .

With ¢, = const, the integration in ([E20) can be performed easily, and
the entropy becomes

T
S(T,p):cpln——Rln£+so. (6.27)
To Do

Since the resulting expressions for the thermodynamic quantities of
monatomic gases are rather simple, these are typically not tabulated.
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6.12  Specific Heats and Cold Gas Approximation

The value of the specific heat is related to the degrees of freedom of a
molecule. Specifically, each degree of freedom contributes %R to the specific
heat at constant volume (equipartition of energy). The atoms of monatomic
gases are essentially spheres that can translate in three directions (up/down,
right/left, forward/backward); accordingly, the specific heat of monatomic
gases is ¢, = 3 X %R.

For diatomic gases like oxygen (Oz), nitrogen (N3), hydrogen (Haz), the
molecules are shaped like dumb-bells. At low temperatures these have, in
addition to their three translational degrees of freedom, two rotational de-
grees of freedom for the rotation about two principal axes—there is no rota-
tion around the longitudinal axis. More complex molecules like carbondioxid
(CO2) and water (H20) have three translational and three rotational degrees
of freedom. Moreover, the molecules can oscillate, the more complicated a
molecule is, the more oscillating modes are observed.

At sufficiently low temperatures only translational and rotational modes
are excited. With each mode contributing %R to the specific heat, we have
at low T for a diatomic gas ¢, = %R, cp = %R, and for a polyatomic gas
¢y = 3R, ¢, = 4R. Oscillatory modes obey quantum mechanical laws; they are
not excited at low temperatures and contribute in a temperature dependent
manner for higher temperatures. Figure [6.I8 shows the molar specific heat
¢p = Mcy, for a variety of ideal gases. Note the temperature independent value
Cp = —R =20.8 kk % for monatomlc gases, and the common low temperature

value of ¢, = R = 29.1 %% for diatomic gases.

Air, as a mixture of roughly 78% Na, 21% O5 and 1% Ar, behaves
essentially like a diatomic gas, with the low temperature specific heats
cﬁ" = %Rair, cg”" = %Rair. As air temperatures rises, so do the specific
heats.

To simplify computations, one frequently assumes constant specific heats.
To not deviate too much from the actual states, one should use suitable
average values c;"?, ¢;?9 for the temperature interval under consideration, or,
alternatively, the values at room temperature. In the latter case one speaks
of the cold-gas-approzimation, or, for air, cold-air-approximation. Internal
energy, enthalpy and entropy are

u(T) =89 (T — Tp) + uo ,
h(T) = " (T — Ty) + ho , (6.28)

Ty
s(T,p) = ¢®@9n =2 — RIn?2 45
( ap) D TO o + so -
The cold-gas-approximation, where one uses c2%9 = ¢, (Tp), works best for
relatively low temperatures (e.g., T < 600K for air), but is highly useful
to understand the basic behavior of thermodynamic systems. Constant spe-
cific heats allow analytical calculations that give, e.g., explicit expressions for
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specific heat ¢, [kI/kmolK]

H,

He, Ar, Ne, Kr, Xe, Rd
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Fig. 6.18 Molar specific heat at constant pressure ¢, = Mc, for various ideal gases
as function of temperature. Note that specific heat of monatomic gases (noble gases)
is constant. Based on specific heat data from NIST.

efficiencies that help to further the understanding. Exact engineering calcu-
lations must use variable specific heats, of course, and tabulated data must
be used, unless the gas is monatomic and the specific heat independent of
temperature!

6.13 Real Gases

Gases (or vapors) at relatively high pressures or relatively low temperatures
do not obey the ideal gas law. To understand why that is the case, it is
helpful to know a little bit about the derivation of the ideal gas law with the
tools of Statistical Thermodynamics, which relies on two assumptions: (a)
Gas particles are mass points, that is their volume can be ignored. (b) There
are no long-distance forces between the particles, they only interact in short
collisions, and travel most distance between collisions in free flight.

J. D. van der Waals (1837-1923) derived an equation that modifies the
ideal gas equation to address both points. The van der Waals equation reads

pzﬂ_i. (6.29)
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The constant b accounts for the volume of the particles, where v — b is the
volume accessible to an individual particle. The constant a accounts for long-
range attractive forces between the particles, which reduce the pressure. The
constants a,b can be obtained from fitting to critical point data. For large
values of the specific volume v the equation reduces to the ideal gas law. A
deeper discussion of the van der Waals equation can be found in Sec. [I6.8]
where it will be seen that the equation gives a good qualitative description
of real gas effects and liquid-vapor phase change. However, its quantitative
agreement with gas behavior is not so good. Therefore, the equation is mainly
used as an educational example, but not for simulation of real processes.

Since explicit equations for real gas behavior are useful for simulations
and calculations, there exist a wide variety of real gas equations, which
can be found in the technical literature (Redlich-Kwong equation, Beattie-
Bridgeman equation, virial expansions, etc.).

6.14  Fully Incompressible Solids and Liquids

Also for solids the specific heats depend in general on temperature and volume
(or any other pair of properties), and must be collected in tables. Quite often
it is possible to treat the solids to be fully incompressible (no change of
volume, v = const), and to assume constant specific heat. Then, internal
energy, enthalpy and entropy are

u(T) =c(T —Tp) +uog ,
h(T,p) = c(T —To) +v(p—po) + ho , (6.30)
T
T)=cln— )
s(T) =cln 7 + s0
As always, ug, hg and sg are suitable reference values. Due to incompressibil-

ity, the specific heats at constant volume and constant pressure agree, as the
following line of equations shows:

o (28 - (2ol (20 (o) —(2) e o

The same approximations can be used for fully incompressible liquids.

Problems

6.1. Property Diagrams and Data (Water)
Draw schematic p-T, p-v, T-v and T-s-diagrams for water, and mark the
following points in the diagrams.
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CR) critical point TR) triple point

1) p=1lbar, v= 0.8511?—; 2) p=1bar, h=3400%
3) p=20MPa, v="000122 4) h=2700, z=1

5 p=20MPa,u=310052  6) s=3%, T =255°C

Also, determine temperature, quality, specific internal energy, specific en-
thalpy, and specific volume for each point, and say whether you have com-
pressed liquid, saturated state, or superheated vapor.

6.2. Property Diagrams and Data (R134a)
Consider cooling fluid R134a. Based on the posted tables, determine temper-
ature, pressure, quality, specific internal energy, specific enthalpy, and specific
volume for each point, and say whether you have compressed liquid, saturated
state, or superheated vapor. Put all values in a table.

1.T=-4°C,h= 178.2% , 2.7 =-24°C,p=0.2MPa ,

3.7 =20°C,s = 0.9883%

6.3. Boiling Temperature

Water in a 5 cm deep pan is observed to boil at 98 °C. At what temperature
will the water in a 50 cm deep pan boil? Assume both pans are filled to the
rim.

6.4. Food Preservation

To preserve fruit or vegetables (canning), the food is cooked in a jar which
is covered by a lid, resting on a rubber seal. As water is evaporated during
cooking, vapor escapes and carries air out. After a while, only food, liquid
water and vapor are left in the jar. Then cooking stops, and as the jar cools,
the pressure in the jar drops, tightly sealing the jar. Consider a jar of 20 cm
diameter at 15 °C, and determine the force necessary to pull of the lid.

6.5. Cooling of Steam

2kg of superheated steam at 2bar, 300°C (state 1) are isobarically cooled
to the saturated vapor state (state 2). Then, the volume of the container is
fixed and the steam is cooled further until the temperature is 20 °C (state 3).

1. Draw the process into a p-v-diagram with respect to saturations lines.
Mark the critical point.
2. Compute heat and work exchanged for the processes 1-2 and 2-3.

6.6. Isentropic Expansion of R-134a Vapor

Refrigerant R-134a at 1.2 MPa, 50 °C (state 1) enclosed in a piston-cylinder
device expands in an adiabatic reversible (i.e., isentropic) process to 100 kPa
(state 2). Determine specific volume, internal energy, enthalpy, entropy at
both points. Compute heat and work exchanged between refrigerant and
surroundings.
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6.7. Evaporation of Water

3kg of saturated liquid water at 70 °C (state 1) are isobarically heated until
the volume reaches 0.921112—; (state 2). Then, the volume of the container is
fixed and the heating continues until all liquid is just evaporated (state 3).

1. Draw the process into a p-v-diagram with respect to saturation lines. Mark
the critical point.

2. Compute heat and work exchanged for the processes 1-2, and 2-3.

6.8. Condensation of R134a

500 g of cooling fluid R134a are enclosed in a piston cylinder system at 3.2 bar,
25°C. The system is isobarically cooled until the cooling fluid assumes a
temperature of —8°C.

1. Draw the process into p-v- and T-s-diagram with respect to saturation
lines.

2. Determine heat and work exchanged.

3. Determine the change of entropy.



Chapter 7

Reversible Processes in Closed
Systems

7.1 Standard Processes

In Chapter [ we shall study thermodynamic cycles in closed systems which
model thermal engines, including internal combustion engines. The focus will
lie on the understanding of the working principles of the cycles, and on the
main parameters that determine their efficiency. For this it is customary to
base the analysis on reversible processes, which allow a full analysis.

There are a number of processes that are often realized (at least approx-
imately) in thermodynamic systems: processes at constant volume, constant
pressure, constant temperature, or adiabatic processes. Typical thermody-
namic cycles consist of closed chains of several of these processes. In this
chapter we compute work and heat for these standard processes as a refer-
ence for the discussion of cycles.

7.2 Basic Equations

Figure [Tl shows, again, a piston-cylinder device as the prototypical closed
system. In reversible (quasi-static) processes, the system exchanges energy

W

()

BA333338

Q
Fig. 7.1 Closed system with piston work and heat exchange. In this chapter we

are interested in reversible processes only, so there is not stirring.

H. Struchtrup, Thermodynamics and Energy Conversion, 131
DOI: 10.1007/978-3-662-43715-5 7, (© Springer-Verlag Berlin Heidelberg 2014
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through heating and piston work only; stirring (propeller work) as an irre-
versible process is excluded. All movement of the material in the system is so
slow that velocity and kinetic energy can be ignored. For a stationary system,
potential energy is constant and can be ignored as well. Thus, at all times
the system is in homogeneous equilibrium states which are characterized by
the temperature T, the pressure p, and the volume V.

We list the relevant equations from previous chapters. Under the above
simplifications, the first law for closed systems reduces to

dUu . .

—=Q-W, 7.1
D= (71)
where @ is the heat transfer rate, and W denotes power. Integration over the
duration of the process gives the time-integrated energy balance

Uy — Uy = Q12 — W2, (7.2)

where

ta ta
Q2 = / Qdt and Wiy — / Wt (7.3)
t1 t1

are the total amounts of heat and work exchanged between the states 1 (at
time ¢1) and 2 (at time t3).
For an infinitesimal step of the process (duration dt) we have the differen-
tial form of the first law
dU = 6Q — oW, (7.4)

where 6Q = Qdt and §W = Wdt are heat and work exchanged during dt.
The notation implies that work and heat have inexact differentials, since they
are process dependent quantities.

For a reversible process in a closed system, the work is just the piston
work,

. dV to . 2 2
W=p— or Wp= Wdt = / oW = / pdV (7.5)
dt ty 1 1

and the heat can be computed from the second law, which for reversible

processes (Sgen, = 0) reduces to

. dS ta | 2 2
Q=T— or Qm:/ th:/éQ:/TdS. (7.6)
dt t1 1 1
Thus, for reversible processes, heat and work are the areas below the process
curves in the p-V-diagram and the T-S-diagram, respectively, as depicted in

Fig.
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Fig. 7.2 Heat and work in reversible processes as areas below the process curves
in the p-V- and the T-S-diagram

In the following sections we shall compute work and heat per unit mass,
which for reversible processes are given by

W 2
Wiy = L2 o Uy — U2 + qi2 = / pdv , (7.7)
m 1
2
12 = Gz =uU2 — Ul +wi2 = / Tds . (7.8)
m 1
Py 1,
5 2
1 1
‘v >

Fig. 7.3 Isochoric process: Realization, p-v- and T-s-diagrams

7.3 Isochoric Process: v = const., dv = 0

Isochoric processes (constant volume) can be easily realized by fixing the
volume, e.g., by clamping the piston, see Figure [Z3] for process sketch and
diagrams.

With dv = 0 in the constant volume process, heat and work follow from

CDILS) as
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w2 =0 , q2=u2—uy. (7.9)

We compute the process curve of an isochoric process in the T-s-diagram
for an ideal gas with constant specific heats. From the Gibbs equation and
the caloric equation of state we find for the isochoric process

Tds = du+ pdv = du = ¢, dT (7.10)

so that upon integration

T o
s—81 =cyIn— or T =Tie clll (7.11)
T

Thus, for an ideal gas, the isochoric process in the T-s-diagram follows an
exponential, as indicated in the T-s-diagram.

ﬁ D, T,
(CIDI) :

| | v ?

Fig. 7.4 Isobaric process: Realization, p-v- and T-s-diagrams

7.4  Isobaric Process: p = const., dp = 0

Isobaric processes (constant pressure) are easily realized by free pistons,
where the piston weight controls the pressure; see Fig. [[.4] for process sketch
and diagrams.

With dp = 0 in the constant pressure process, heat and work follow from

IS as
2 2
wm:/pdv:p/ dv=1p(va —v1) ,
1 1

2 2 2
12 = / Tds = / (dh — vdp) = / dh =hy —h; . (7.12)
1 1 1

Here we have used the Gibbs equation in the form [@I3)), T'ds = dh — vdp.

Again we compute the process curve in the T-s-diagram for an ideal gas
with constant specific heats. From the Gibbs equation and the caloric equa-
tion of state we find for the isobaric process
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Tds = dh — vdp = dh = c,dT , (7.13)

so that upon integration

s—s1

T
s—slchln? or T ="Tie °» . (7.14)
1

This was used for drawing the curve in the diagram. For an ideal gas, the
isobaric process in the T-s-diagram follows an exponential. Since ¢, = ¢, +
R > ¢,, isobaric lines in the T-s-diagram are not as steep as isochoric lines
starting at the same point.

7.5 Isentropic Process: g1 = g = ds =0

A system that is insulated against heat transfer is adiabatic. However, adi-
abatic processes are also realized if the process is sufficiently fast, so that
there is no time to exchange heat. A pressure disturbance at the boundary,
i.e., induced by the moving piston, travels with the speed of sound, and ac-
cordingly mechanical equilibrium in the working fluid is assumed rather fast.
A temperature disturbance at the boundary, however, diffuses slowly into the
working fluid. In other words, pressure equilibration and heat transfer occur
on quite distinct time scales. Accordingly, a compression (i.e., pressure in-
crease) or expansion (i.e., pressure decrease) process may be slow enough to
allow for pressure equilibration in the system, but at the same time may be
so fast that there is no time to exchange heat between the working fluid and
the system walls, even if they have different temperatures. Such a process
can be modelled to be (approximately) adiabatic.

From the relation between entropy and heat for reversible processes (7.0))
follows for an adiabatic process

0g=0=Tds = ds =0, s = const. (7.15)

The reversible adiabatic process is isentropic, see Fig. for process sketch
and diagrams.
The work is best computed from (8] which gives

w12 = U1 — U9 . (716)

We study the isentropic process in the ideal gas in more detail: From (G.21)
follows

s9 — 81 = 8° (Tg)—s0 (Tﬂ—Rln%zO (7.17)
1
or im)
s (Ta
P2 _ acxp [ 5| _ () (7.18)
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P T,

v S

Fig. 7.5 Isentropic process: Realization, p-v- and T-s-diagrams

pr (T) = aexp {SO(TT)} is called the relative pressure and often is tabulated

(e.g., for air); a is a constant used for scaling of p, (T), its value does not
affect the relation (ZI8). With the ideal gas law p = £L we can rewrite (ZI8)
as .

V2 bPr(%’z) _ U (1)

= = , (7.19)
v b pT(TlTl) vy (Th)
where v, (T') = bﬁ is called the relative volume, and might be tabu-

lated as well; b is another scaling constant. The ideal gas table for air in
Fig. includes columns for p, (T') and v, (T'), where a was chosen such
that p, (298.15K) = 1, i.e., a = exp [—SO(LR‘H’K)], and b = 1; other tables
might use other values of both constants.

In case of constant specific heats, the entropy is given by (621), which for
an isentropic process gives

T P2
s9—81=cp,In——Rln—=0. 7.20
2Ty p1 (7.20)

Solving for the temperature ratio we find, with R = ¢, — ¢,

-1

I _ (Zﬁ)kT : (7.21)

7 \p
where k denotes the ratio of specific heats k = Z—‘" By means of the ideal gas

law we find the alternative relations

P v\ F T v\ F
P2 _ (_2) . 2= (_2) . (7.22)
P1 U1 T U1

The above relations can be expressed in compact from as

Tp% =const. , poF =const. , Tv* ' = const. (7.23)
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The value of the ratio of specific heats is k = 1.667 for monatomic gases, and,
under the cold-gas approximation, &£ = 1.4 for diatomic gases, and k£ = 1.333
for polyatomic gases. Equations ((23]) are the adiabatic relations for ideal
gases with constant specific heats.

7.6 Isothermal Process: T' = const, dT = 0

Isothermal processes require exchange of heat with a large reservoir at con-
stant temperature. Since heat exchange is slow, isothermal processes must be
rather slow and therefore they are not found in the most common thermo-
dynamic cycles. Figure shows process sketch and diagrams.

I ' !

v S

Fig. 7.6 Isothermal process: Realization, p-v- and T-s-diagrams

Since temperature is constant, heat and work can be computed as

2 2
qlgz/Tds:T/ ds =T (s9 — s1) ,
1 1

wig =ur — Uz +qr2 =ur —uzs+ 7T (s2 —s1) . (7.24)

We consider the special case of the ideal gas where p = %, which was

used to draw the curve in the p-v-diagram. With the thermal equation of state
explicitly known, the work can also be determined by integration (recall T is
constant!),

2 2
d
wm:/ pdv:RT/ Y RTM2 = T2, (7.25)
1 1 v U1 p1

For the ideal gas the internal energy depends only on temperature, that is
du = 0 when dT = 0, and thus the heat exchange is equal to the work,

qi2 = w2 = RTIn 2 = ~RTIn 22 . (7.26)
U1 b1

Tt is left to the reader to confirm that (24 evaluated with the property
relations for an ideal gas yields the same result.
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7.7  Polytropic Process (Ideal Gas): pv™ = const

Processes in actual applications might differ from those discussed above. A
useful approximate description of a wide variety of processes in ideal gases is
offered by the polytropic process, which is a generalization of the adiabatic
relations (Z23)) to arbitrary exponents n,

Tpl_Tn =const. , pv" =const. , Tv" ! = const. (7.27)

Special choices for the polytropic exponent n refer to the previously discussed
processes as follows

n=0 = p=const isobaric

n=1 = pv = RT = const. isothermal

n=*k = pv* = const isentropic (const. ¢;)
n = 00 = v = const. isochoric

Often one uses values of n in the interval 1 < n < k to describe processes
that are not fully adiabatic and not fully isothermal, e.g., compression or
expansion processes with small heat exchange. Figure [[7] shows the various
processes in the two diagrams.

D g T
n==k n=00
n=k NTX
n<=1

n=0 n=1

n=0
=> =>

v S

Fig. 7.7 Polytropic processes with n = 0,1, k,co in p-v- and T-s-diagram

Since pv™ = p1v}, the work follows by integration as

2 2 1-n
d R
Wig = / pdy = pl'U?/ _U — b1 l(vﬁ) — 1] = — (T2 — Tl) ,
1 v 1—n|\n 1—n

(7.28)
which holds for all n # 1. The work for the case n = 1 (isothermal) can be
found from the above by using I’'Hopital’s rule:
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- . d <U_2)17n
dn \ v

lim wiy = lim ——— | (2} —1| = RTy lim “"/— — RTyIn -2 .

n—1 ns11—n |\ v n—1 (1 p) vy
(7.29)

The heat exchanged follows from the first law, g0 = us — uy + wio.

7.8  Summary

For easy reference, we collect the results of this section in a table,

isochoric dv=20 wig =0 q12 = U2 — U]

isobaric dp=0 wia = p (v — 1) qi2 = ho — hy

isentropic ds=0 Wiz = Uy — Ug q12 =10

isothermal dT'=0 wig =uy —u2 + q12 q12 = T (s2 — 51)

isothermal (id. gas) dT' =0 w2 = RT'In 22 12 = W12

1
polytropic (id. gas) pv" = const. wiz = 2= (Ty — T1) q12 = uz — uy + Wiz

7.9 Examples

7.9.1 Isochoric Process for Ideal Gas

Carbon dioxide is confined in a 10 litre tank at a pressure of p; = 10 bar.
In an isochoric heat transfer process the temperature drops from 77 = 670 K
to Tp = 25°C. We compute the heat transferred from the system and the
entropy change.
The mass of carbon dioxide in the system is (Mco, = 44%, Rco, =
kJ
0.189m)
pV
=—="790g.
"= RT &

Since volume is constant, the ideal gas law gives the final pressure as
Ty
=pi— =445bar.
P2 =P T ar

Specific internal energy and specific entropy in initial and final state can be
read from an appropriate table as

U (Tl) kJ gO (Tl) P1 kJ
- — 467.9-2 - “ Rt — 59315
Vi S Vi o ke K’
U (Tg) kJ gO (Tg) P2 kJ
- — 156.4-~ — T2 R P2 5792
2= ke © 2T T M o ke K
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Since the process is isochoric, the work is zero, wi2 = 0. The heat withdrawn
is

Q12 = mgi2 = m (ug —uy) = —23.8kJ,

and the total entropy change is

J
SQ - Sl =m (52 — 81) = —51.48k—g .

7.9.2  Isochoric Heating of Water

Saturated liquid-vapor mix at 100°C with quality x = 0.1 is isochorically
heated until the pressure is 2.5 MPa. We compute the final state, and the

heat supplied per unit mass.
From a steam table we find initial volume, specific energy and specific

entropy as

v1 = [(1 —21) vy + 219g]p_1000¢
3 3 3

— 0.9 %