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Chapter 1

Why Data Center Efficiency 
Matters 

Data centers are the information factories that shape our modern experience. When 
we access online information ranging from reading our personal email and the news 
to engaging in commerce, using social media, and consuming entertainment, we are 
depending on data centers, which provide the computational backbone for the Internet.  
They create many of the movies we watch, design the cars we drive, and optimize the 
airplanes we fly. They are used to make scientific discoveries, to find oil, and to predict 
the spread of disease. Data centers are at the heart of the digital economy.

In 2010, about 30 million servers were in operation worldwide,1 and the number has 
been increasing annually. The growth of the Internet of Things2 is expected to increase 
the number of connected devices to over 25 billion by 2020. Other factors driving growth 
include the continued “dematerialization” of goods,3 the growth of the worldwide 
economy,4 and the increased expectation that our lives are connected to one another 
through computing technology.

From the perspective of overall energy use, centralized data center–based computing 
in modern facilities is highly efficient. Recently Facebook estimated that the energy used 
to sustain an average account for a month is about equal to the energy used to make 
a cup of coffee.5 eBay’s published data center energy use6 shows that the amount of 
carbon produced per transaction is about 50 times lower than the carbon produced in 
a short drive to the store to complete the same purchase.7 One recent study found that 

1Jonathan G. Koomey, Growth in Data Center Electricity Use 2005 TO 2010 (Oakland,  
CA: Analytics Press, 2011), http://analyticspress.com/datacenters.html.
2See www.gartner.com/newsroom/id/2636073.
3See http://gigaom.com/2010/04/29/greennet-the-dematerialization-opportunity/.
4See, for example, John M. Jordan, Information, Technology and Innovation: Resources for Growth 
in a Connected World (New York: Wiley, 2012).
5See www.facebook.com/green/app_439663542812831.
6See http://tech.ebay.com/dashboard.
7See www.datacenterknowledge.com/archives/2013/03/12/why-ebays-digital-service-
efficiency-changes-the-game/.

http://analyticspress.com/datacenters.html
http://www.gartner.com/newsroom/id/2636073
http://gigaom.com/2010/04/29/greennet-the-dematerialization-opportunity/
http://www.facebook.com/green/app_439663542812831
http://tech.ebay.com/dashboard
http://www.datacenterknowledge.com/archives/2013/03/12/why-ebays-digital-service-efficiency-changes-the-game/
http://www.datacenterknowledge.com/archives/2013/03/12/why-ebays-digital-service-efficiency-changes-the-game/
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online purchasing of music uses 40%–80% less energy than any of multiple methods for 
delivering music by CD, even though that calculation used an upper bound estimate for 
the electricity intensity of Internet data transfers.8

It’s somewhat ironic that a principal driver of efficiency in data centers, namely 
scale, also attracts the most attention to the energy use by data centers. Large-scale data 
centers can share more resources; for instance, in the case of N + 1 redundancy of critical 
infrastructure systems such as air handlers or power back-up systems,9 the incremental 
penalty decreases as size, and therefore N, increases. However, because of their scale, 
data centers also require large amounts of electrical energy to operate. Typical large-scale 
data centers require tens of megawatts of electrical power—enough power to sustain 
a small city. It is in part this high localized energy use that attracts attention to data 
centers—they are large and visible buildings that consume a lot of energy. As a result, 
they can attract the scrutiny of both social activists,10 neighbors,11 and legislators.12

An Industry’s Call to Action
It was the convergence of two unrelated events that brought attention to data center energy 
use. The first was the growth in scale of data centers and the Internet. By one estimate, the 
number of adults logging onto the Internet increased by 37% from 2000 to 2004. The other 
trend was the growth of computing performance primarily through clock speed and 
efficiencies increases.13 The result of both growing numbers of data centers and growing 
power use by the servers (driven by numbers of servers, only marginally by power use per 
server) within the data center was explosive growth in the power consumed by the data 
center. Although overstated, claims of “economic meltdown” of the data center certainly 
grabbed attention.14

In response to rising public awareness of data center energy use, Congress 
commissioned a 2007 analysis of US data center energy consumption.15 The work, 
completed in 2007 by Lawrence Berkeley National Laboratory using a “bottoms-up” 
methodology, estimated that data centers were consuming about 1.5% of US electrical 
energy. Even more alarming, by 2006, data center energy use had doubled since the year 
2000 and was on track to almost double again over the following five years.

8Christopher Weber, Jonathan G. Koomey, and Scott Matthews, “The Energy and Climate  
Change Impacts of Different Music Delivery Methods,” Journal of Industrial Ecology 14, no. 5 
(October 2010): 754–769, http://dx.doi.org/10.1111/j.1530-9290.2010.00269.x.
9See www.lifelinedatacenters.com/data-center/ups-configuration-redundancy/.
10See www.greenbiz.com/blog/2011/12/15/facebook-ends-greenpeace-campaign-major-
green-commitments.
11See http://news.idg.no/cw/art.cfm?id=7C75C477-1A64-67EA-E4F528FE768FA524.
12See www.whitehouse.gov/blog/2014/09/30/better-buildings-challenge-expands-take-
data-centers/.
13See Jonathan G. Koomey, Stephen Berard, Marla Sanchez, and Henry Wong, “Implications 
of Historical Trends in the Electrical Efficiency of Computing,” IEEE Annals of the History of 
Computing 33, no. 3 (July–September 2011): 46–54, http://doi.ieeecomputersociety.
org/10.1109/MAHC.2010.28.
14Ken Brill, “The Economic Meltdown of Moore’s Law and the Green Data Center,” (2007)  
www.usenix.org/legacy/event/lisa07/tech/brill_talk.pdf.
15See www.energystar.gov/index.cfm?c=prod_development.server_efficiency_study.

http://dx.doi.org/10.1111/j.1530-9290.2010.00269.x
http://www.lifelinedatacenters.com/data-center/ups-configuration-redundancy/
http://www.greenbiz.com/blog/2011/12/15/facebook-ends-greenpeace-campaign-major-green-commitments
http://www.greenbiz.com/blog/2011/12/15/facebook-ends-greenpeace-campaign-major-green-commitments
http://news.idg.no/cw/art.cfm?id=7C75C477-1A64-67EA-E4F528FE768FA524
http://www.whitehouse.gov/blog/2014/09/30/better-buildings-challenge-expands-take-data-centers/
http://www.whitehouse.gov/blog/2014/09/30/better-buildings-challenge-expands-take-data-centers/
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/MAHC.2010.28
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/MAHC.2010.28
http://www.usenix.org/legacy/event/lisa07/tech/brill_talk.pdf
http://www.energystar.gov/index.cfm?c=prod_development.server_efficiency_study
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The report flagged the concern that without concerted effort within the data center 
industry to improve efficiency, the growth of energy consumption risked becoming 
unsupportable with implications not only for the industries directly affected, but for the 
economy itself.

The report highlighted some opportunities to improve efficiency and painted several 
achievable scenarios. Among areas identified for improvement with the biggest impact 
were data center infrastructure efficiency and the IT equipment inside the data centers. 
Although the efficiency of the IT equipment in data centers, and specifically the servers, is 
the focus of this book, it is worthwhile to discuss some of the progress that has been made 
in improving the efficiency of the infrastructure of data centers.

Data Center Infrastructure Energy Use 
The infrastructure energy use of data centers, meaning the energy used to provide 
clean, reliable, uninterrupted power to the IT equipment and also to remove the waste 
heat generated by the equipment, is an important part of the overall energy use by 
data centers. In many cases, the infrastructure can consume a substantial portion of 
the overall energy use of the data center. Figure 1-1 shows the power consumption of a 
data center, divided into infrastructure (of non-IT power) and the IT equipment power 
consumption. Since non-IT power does not contribute directly to information processing, 
it is considered to contribute to the inefficiency of the data center.

Input
Power

Total Data Center Power

Non-IT Power

UPS
Servers
Network
Storage

Security Appliances
Etc.

Etc.

Chillers
CRACs
CRAHs
Lighting

Switch Gear

IT Power

Figure 1-1. The power consumption of a data center

Since the infrastructure exists only to provide support to the IT equipment by 
maintaining acceptable environmental factors and ensuring clean uninterrupted power 
delivery, it is considered to be an overhead power usage. On the other hand, the IT 
equipment is contributing directly to the information processing, and hence is directly 
related to the efficiency of the data center. This is illustrated schematically in Figure 1-1.
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The accepted metric for infrastructure efficiency is the power usage effectiveness (PUE), 
defined as the ratio of the total energy use by the data center to that of the energy used  
by the IT equipment.

PUE
Total DataCenter EnergyUse

IT Equipment EnergyUse
=

Typical enterprise data centers that were designed to now outdated computer room 
building standards typically would have had a PUE in the range of two to three.16 That 
means that for one watt of power used to run the computer, one to two watts of power are 
used to supply power and provide cooling for the IT equipment. By modern standards, 
this is highly inefficient. Figure 1-2 illustrates the inverse relationship between data center 
infrastructure and PUE. For PUE = 2.0, 50% of the power in the data center is used for 
non-computational purposes. Some highly inefficient data centers can operate at a  
PUE > 3. As PUE increases above 2.0, over 50% of the data center power is used for 
heating, cooling, and power conditioning.

Figure 1-2. The fraction of total data center power used by data center infrastructure as a 
function of the PUE

Through work done by industry groups like the Green Grid,17 standard methods 
to improve infrastructure efficiency have been defined and implemented across the 
industry. These have resulted in dramatic improvements in the PUE values of state-of-
the-art data centers.

A commonly discussed potential weakness of PUE as a metric of data center 
efficiency is that the very inefficiencies PUE addresses, those of moving air for cooling 
and conditioning electrical power for delivery, also exist within the server (and thus 
the IT equipment) itself. Although this is true, the incentive to improve the server by 
optimizing its energy efficiency lies with the system manufacturer (as will be discussed 
later in this chapter). PUE provides a metric the designer and operator of the data center 
facility can use to optimize what is within their control. It is for this reason PUE has been 
such a successful driver of overall data center efficiency.

16Victor Avelar, Dan Azevedo, Alan French, eds., “PUE: A Comprehensive Examination of the 
Metric,” White Paper #49 (2013), www.thegreengrid.org/~/media/WhitePapers/WP49-PUE%20
A%20Comprehensive%20Examination%20of%20the%20Metric_v6.pdf?lang=en
17See www.thegreengrid.org/.

http://www.thegreengrid.org/~/media/WhitePapers/WP49-PUE%20A%20Comprehensive%20Examination%20of%20the%20Metric_v6.pdf?lang=en
http://www.thegreengrid.org/~/media/WhitePapers/WP49-PUE%20A%20Comprehensive%20Examination%20of%20the%20Metric_v6.pdf?lang=en
http://www.thegreengrid.org/
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Purpose-built mega data centers—like those of Yahoo!, Facebook, and Google—are 
heavily reliant upon free-air cooling.18 Typical PUE values in these data centers are about 1.1,  
meaning of the energy being consumed by the data center, only 10% is being used for 
non-compute-related tasks. Other, more conventional recently constructed data centers 
have PUE values near 1.4, meaning about 40% of the energy used by the data center goes 
to support infrastructure. The reasons these values are higher than the purpose-built mega 
data centers has to do with specific architectural choices, such as cooling design, as well as 
requirements for equipment redundancy to meet business-specific resiliency goals.

Although new data center construction typically follows industry best practices for 
efficient design, improving the efficiency of older, legacy data centers remains a persistent 
problem. There are several root causes of this. One of these is the rapid evolution of data 
center technology. For instance, as recently as 2011, ASHRAE approved new building 
standards that encourage higher operating temperatures in many types of data center.19 
Typically higher operating temperatures have been reported to reduce infrastructure 
energy use by up to 4% per degree Celsius,20 a substantial savings.21

Data centers have been operated between 68 and 72 F, mostly for historical reasons. 
Cooling requirements in older IT equipment and mainframe computers were less well 
understood and placed heavy reliance on room cooling because of their scale and size.22 
A room-sized computer demands room sized cooling. With the migration toward the 
current generation of servers, the cooling requirements of the servers have changed, but 
room specifications have been slow to follow.

Although the higher temperature set point can be adjusted in older buildings, air 
flow management systems may not be designed or optimized to mitigate localized hot 
spots in the data center. Unless hot spots are carefully managed, this can lead to increased 
risk for service availability unless the architecture is substantially changed. Since data 
center buildings are typically depreciated on a 10- to 20-year schedule, it’s not entirely 
surprising that the timescale for the majority of data centers to catch up with current best 
practices, let alone match future advances, is on the order of years. At this point, much of 
the technical innovation for improved data center infrastructure is completed or known, 
and it is simply a matter of time for current practice to catch up with best practices.

Energy Proportional Server Efficiency 
Nearly simultaneously with the report to the US Congress on data center energy 
consumption, an influential paper published by Luiz André Barroso and Urs Hölzle 
of Google23 introduced the concept of energy proportional computing. Computing 
efficiency depends on both the computational work output of the server as well as the 
energy consumed by the server. The key insight of the energy proportional model was 

18See www.google.com/green/efficiency/datacenters.
19Thermal Guidelines for Data Processing Environments, 3rd ed. (ASHRAE, 2012).
20See www.datacenterknowledge.com/archives/2007/09/24/data-center-cooling-set-
points-debated/.
21More careful studies of this savings appear to be warranted.
22See www.intel.com/content/www/us/en/data-center-efficiency/efficient-datacenter-
high-ambient-temperature-operation-brief.html.
23See www.barroso.org/publications/ieee_computer07.pdf.

http://www.google.com/green/efficiency/datacenters
http://www.datacenterknowledge.com/archives/2007/09/24/data-center-cooling-set-points-debated/
http://www.datacenterknowledge.com/archives/2007/09/24/data-center-cooling-set-points-debated/
http://www.intel.com/content/www/us/en/data-center-efficiency/efficient-datacenter-high-ambient-temperature-operation-brief.html
http://www.intel.com/content/www/us/en/data-center-efficiency/efficient-datacenter-high-ambient-temperature-operation-brief.html
http://www.barroso.org/publications/ieee_computer07.pdf
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the realization that bringing server efficiency closer to the theoretical maximum at all 
workload conditions would improve overall data center efficiency. By ensuring server 
energy use scaled proportionally to workload, the efficiency of the servers is optimized 
over a wider range of utilization, as shown in Figure 1-3. The figure on the left shows the 
power consumption of a server (ca. 2006) whose idle power is 70% of the peak power. 
Because power consumption does not scale with workload, the efficiency is far below 
peak at most operating conditions. The figure on the right shows a server with idle power 
which is 20% of peak. In this case the efficiency is much higher at all utilization points.

Figure 1-3. The power consumption and efficiency of two model servers

Most servers in 2007 consumed almost the same power at 0% utilization (i.e., doing no 
computations) as they consumed at 100% utilization (i.e., doing the maximum workload 
or computations per second). For instance, one of the earliest systems reported on the 
SPECPower benchmark had an idle power of approximately 70% of its peak power.24 This is 
of concern because, in this case, the power consumption is not proportional to workload; 
efficiency can be far below the peak efficiency of the server. Indeed, servers often spend 
much of the time at low utilization. “Energy proportional” scaling of energy use ensures that 
these servers will operate at high energy efficiency even at lower workload utilization.

Regulatory Environment
A significant outcome of the report to Congress was a focused effort by the Environmental 
Protection Agency’s Energy Star program to create a standard for energy efficiency.25 
Since, at the time, the art of understanding and measuring server efficiency was nascent, 
initial efforts focused on measuring server idle power. As discussed earlier, idle power can 
be a good proxy for energy proportionality so long as server performance is also taken 
into account.

24See http://spec.org/power_ssj2008/results/res2007q4/power_ssj2008-20071129-
00017.html.
25See www.energystar.gov/index.cfm?c=prod_development.server_efficiency_study.

http://spec.org/power_ssj2008/results/res2007q4/power_ssj2008-20071129-00017.html
http://spec.org/power_ssj2008/results/res2007q4/power_ssj2008-20071129-00017.html
http://www.energystar.gov/index.cfm?c=prod_development.server_efficiency_study
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It’s a common pitfall to equate energy efficiency uniquely with low power. Server 
idle power, while correlating in some cases to higher efficiency servers, cannot by itself 
be counted on as a reliable indicator of efficiency. The reason for this is that efficiency 
correlates to both server energy use and server performance. A computer with low 
performance will take relatively longer to complete a given amount of work, which can 
offset any benefits of reduced power.

The current Energy Star standard focuses broadly on energy efficiency, including 
efficient power supplies, capability to measure and monitor power usage, efficient 
components, and advanced power management features.26

In addition to the United States, several other countries have taken steps to 
encourage or even require certain levels of energy efficiency in servers. Among these are 
the European Union,27 Australia,28 and China. In some cases, energy efficiency restrictions 
are required due to a lack of necessary electrical grid capacity, whereas with other cases, 
the standards fit with a framework of reducing carbon footprint.29

A summary of international regulatory implications for server design is shown in 
Figure 1-4. Although server idle power is a common focus, approaches differ depending 
on location. This can be problematic since requirements for one (e.g., overall energy 
consumption) may not be consistent with another (e.g., computing energy efficiency). 
Server energy efficiency standards and regulations can focus on different aspects of 
energy efficiency. The Energy Star program focuses on idle power and component 
efficiency. It is planning to shift toward measures of energy efficiency.

Figure 1-4. Server energy efficiency standards and regulations

26See www.energystar.gov/products/specs/enterprise_servers_specification_ 
version_2_0_pd.
27See www.powerint.com/en/green-room/agencies/ec-eup-eco-directive.
28See www.energyrating.gov.au/wp-content/uploads/Energy_Rating_Documents/Product_
Profiles/Other/Data_Centres/200905-data-centre-efficiency.pdf.
29See www.digitaleurope.org/DocumentDownload.aspx?Command=Core_ 
Download&EntryId=109.

http://www.energystar.gov/products/specs/enterprise_servers_specification_version_2_0_pd
http://www.energystar.gov/products/specs/enterprise_servers_specification_version_2_0_pd
http://www.powerint.com/en/green-room/agencies/ec-eup-eco-directive
http://www.energyrating.gov.au/wp-content/uploads/Energy_Rating_Documents/Product_Profiles/Other/Data_Centres/200905-data-centre-efficiency.pdf
http://www.energyrating.gov.au/wp-content/uploads/Energy_Rating_Documents/Product_Profiles/Other/Data_Centres/200905-data-centre-efficiency.pdf
http://www.digitaleurope.org/DocumentDownload.aspx?Command=Core_Download&EntryId=109
http://www.digitaleurope.org/DocumentDownload.aspx?Command=Core_Download&EntryId=109
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Efficient power supplies are important for overall server efficiency since any losses 
in the power supply are overhead for any energy uses ultimately for computation. In the 
2006 timeframe, power supplies had efficiencies that were as low as 50%.30 Low-efficiency 
power suppliers are cheap to produce, and since customers didn’t demand higher 
efficiency, there was no incentive by the server manufacturer to improve efficiency. 
But the opportunity is enormous. With the adoption of 80 Plus power supply efficiency 
guidelines by the EPA for Energy Star in 2007, power supply efficiency rapidly improved. 
Current power supplies, to be Energy Star–compliant, are required to have efficiencies 
of 89% at 50% load and a power factor of 0.9. Comparing this to an efficiency of 50%, the 
power consumption of a server would be reduced 35% for a fixed load.

Measuring Energy Efficiency
It is a common pitfall to associate energy efficiency with low power. Efficiency generally 
associates a level of output for an amount of input. In the case of computing, the 
output associated with efficiency measurements is the number of computational cycles 
completed. Therefore, although low power can definitely contribute to energy efficiency, 
it is insufficient without adequate performance.

Several metrics are for measuring energy efficiency of servers, but two of the most 
common are SPECPower_ssj2008 and HPC Linpack. SPECPower was developed by the 
Standard Performance Evaluation Corporation (SPEC) in 2008 for the express purpose 
of measuring server energy efficiency. Linpack is a high-performance computing 
benchmark made up of a collection of Fortran subroutines.31 It is used as a measure of 
energy efficiency on the Green50032 listing of supercomputing energy efficiency.

SPECPower
SPECPower measures the efficiency of a single server using a graduated workload. 
The workload is graduated in increments of 10% of a measured maximum or 100% 
server workload performance. SPECPower is based on server-side Java, which has the 
advantage that measurements can be implemented with a single client set-up. Thus it is 
economical to operate.

An example output of published SPECPower measurement is shown in Figure 1-5.33 
Performance to power ratios are measured at an established set of points. The quantity

ssj ops power_ åå
is an accepted indicator of overall system energy efficiency. As of this writing  
(March 2015), measurement of over 480 systems have been published. The utility of 
published SPECPower data is very high since it separates the assessment of power and 
performance across what is all the “load line” from 0 to 100% of maximum workload.

30See http://en.wikipedia.org/wiki/80_Plus.
31See www.top500.org/project/linpack/.
32See www.green500.org/.
33See http://spec.org/power_ssj2008/results/res2013q4/power_ssj2008-20131001-
00642.html.

http://en.wikipedia.org/wiki/80_Plus
http://www.top500.org/project/linpack/
http://www.green500.org/
http://spec.org/power_ssj2008/results/res2013q4/power_ssj2008-20131001-00642.html
http://spec.org/power_ssj2008/results/res2013q4/power_ssj2008-20131001-00642.html
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Figure 1-5. A sample of a SPECPower published result. The table emphasizes both workload 
performance and energy efficiency

The data published for SPECPower has shown a strong trend of improvement in 
the energy efficiency of servers. Although SPECPower is not measured for a large variety 
of servers, it is representative of the capability of servers whose power management is 
properly configured. Figure 1-6 shows a plot of the energy efficiency of all dual socket 
servers with Intel Xeon processors as a function of the “hardware available” data for 
the system. The data show that the energy efficiency of the servers are increasing 
exponentially (note the logarithmic scale), doubling approximately every 1.6 years. 
That means that in the 7 years since 2007 when the benchmark was published, energy 
efficiency has increase by about a factor of 20.

Figure 1-6. Dual-socket server energy efficiency, as measured by SPECPower, Intel-Xeon  
based systems versus their “hardware available” date. Note the logarithmic scale, 
indicating an exponential trend

What is less obvious is what the contributions are to the increase in energy efficiency. 
Since energy efficiency is a ratio of performance to power usage, the increase can be 
attributed to either a performance increase or a power decrease. It turns out both are 
responsible in the case of SPECPower.
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Figure 1-7. Trend of both the ratio of idle to maximum power and the performance for all 
published two-socket Intel Xeon–based servers

To understand this, we can look at the details of the SPECPower data shown in 
Figure 1-7. The figure shows the trend of both the ratio of idle to maximum power and 
the performance for all published two-socket Intel Xeon–based servers at SPEC.org for 
the SPECPower_ssj2008 benchmark. Both trends emphasize the growing importance of 
energy-proportional behavior of servers in improving energy efficiency. The ratio of idle 
to max power is a metric for the proportionality of the server. SPECPower reports carry a 
wealth of information about the server, including CPU and memory configuration.

The historical trend of energy proportional efficiency can be visualized in another 
way—by examining the “load line” of respective generations of servers as measured 
by SPECPower. The load line is simply a graph of the server power versus the absolute 
workload. From the graph, the power, efficiency, and performance of the server can 
be deduced. Figure 1-8 shows the selected graphs from platforms built from specific 
generations of processor families. The horizontal axis measures computations work up 
to a measured system performance limit. The vertical axis measures system power. Over 
time, according to this specific benchmark, system performance has increased while 
system power has decreased.

Figure 1-8. The “load lines” of several generations of two socket servers as measured by 
SPECPower_ssj2008
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How do you read the graph? System workload is plotted along the x-axis (from active 
idle to a load point of 100% system capacity) and system power is plotted along the y-axis. 
The curves for each server follow an intuitive progression; as system workload increases, 
power usage increases. The degree of that increase is related to the proportionality of the 
system. Note that higher performance is to the right, lower power is down, and therefore 
higher efficiency is to the lower right.  Note also, work output capability is measured in 
server-side Jave operations per second or ssj_ops, which is a measure of system performance.

What’s first evident from the graph is the higher peak performance in each 
successive generation. There is a gain in “peak” energy efficiency inherent with 
performance increases in the systems (more “work”). This is the progression known 
colloquially as Moore’s Law. Note that the peak power of these systems is relatively 
constant at about 250 watts.

However, the graph reveals an additional progression toward lower power at low 
utilization, that is, toward delivering even higher gains in energy efficiency at actual data 
center workloads via “energy proportionality.” Assuming each system is run at the mid-
load point, the average power dropped from a little over 200 watts in 2006 to about 120 
watts in 2012. That’s a net power reduction of about 40% and, assuming $0.10/kWh energy 
costs and a PUE of 2.0, an operational cost saving of about $150/year. In addition, the work 
output capability (measured in ssj_ops) at that load point increases over a factor of 10.

The families of curves reveal several interesting trends. The first notable trend is the 
steady decrease in idle power of the systems. You’ll notice the curves fall into sets of pairs. 
At a high level, this is because managing idle power of a server is primarily related to the 
microarchitecture. Indeed optimizing the features of the microarchitecture to achieve the 
right balance of power and performance capability is a main subject of this book.

You’ll also note the steady increase in performance with each generation. These 
performance increases have two origins. In the years 2006, 2009, and 2012, new 
microarchitectures were introduced. In intervening years new process technologies were 
introduced (Intel’s “tick-tock” model34) giving rise to lower power and also substantially 
increased performance. Table 1-1 lists the evolution of energy-efficient servers derived 
from both process technology and microarchitectural revolutions. Development of new 
architecture and new silicon process technologies represent huge investments in capital 
and engineering. The highlights emphasize the tick-tock development cycles of staggered 
process technology and architecture.

34See www.intel.com/content/www/us/en/silicon-innovations/intel-tick-tock-model-
general.html.

http://www.intel.com/content/www/us/en/silicon-innovations/intel-tick-tock-model-general.html
http://www.intel.com/content/www/us/en/silicon-innovations/intel-tick-tock-model-general.html
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It is also instructive to look at the reduction in the energy per operation as deduced 
from the SPECPower data. The energy reduction is easily visualized in Figure 1-9 as the 
area of the rectangle defined by the average power and the time per ssj_op. Each data 
point is labeled for correspondence to Figure 1-8. The time per ssj_op is calculated as 
the reciprocal of measured ssj_ops at 10% utilization on the SPECPower trend curves in 
Figure 1-8.

Figure 1-9. A representation of the energy per ssj_op as measured by SPECPowerssj_2008 
showing the role of both reducing the time and the power consumed while doing a 
computation. Both have been important in reducing overall energy consumption

Table 1-1. The Evolution of Energy-Efficient Servers

Year Microarchitecture Family Process Technology Processor Family

2006 Core 45 nm Xeon 5100

2008 Core 32 nm Xeon 5400

2009 Nehalem 32 nm Xeon 5500

2010 Nehalem 22 nm Xeon 5600

2012 Sandy Bridge 22 nm Xeon E5

2014 Haswell 14 nm Xeon E5 v3
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What is interesting is the stair-step pattern shown in Figure 1-10—the trend of the 
energy per operation as a function of time shows a 41% per year reduction. From 2006 
to 2008 we moved from 65 nm to 45 nm silicon technology, and from 2009 to 2010 from 
45 nm to 32 nm silicon technology. In each case, the time to complete an operation 
decreased by about half. Complementing that, from 2008 to 2009, and from 2010 to 2012, 
were significant microarchitecture changes. These resulted in time reductions associated 
with performance gains, but also significant power reductions. Overall, both power and 
time reductions contributed to the gains in efficiency.

Figure 1-10. The SPECPowerssj_2008 trend of the energy per operation as a function of 
time shows an exponential trend that is consistent with an efficiency-doubling time of 
0.9 years. This is much faster than the 1.5 years reported by Koomey, owing to additional 
efficiency gains from energy proportionality

Plotting the data as a time series versus the “system available” date from the 
SPECpower data shows the expected exponential trend. The fit parameters equate to a 
41% per year reduction in the energy per operation and about a factor of 20 over the range 
shown. Putting the energy needed for computation into perspective, 0.5 milli-Joules is the 
energy needed to light a 100-watt bulb for about 5 microseconds.

The performance and efficiency gains from microarchitecture also play a strong role 
in other benchmarks, as the next discussion of high performance computing will show.
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High Performance Computing Efficiency
High Performance Computing (HPC) is another area where a trend of computing 
efficiency has been established by well-accepted methods. The Green500 list has, 
since 2007, published a semi-annual list of the top energy-efficient super computers in 
the world.35 The Green500 shares the same workload as the Top500 supercomputing 
performance list.36 Both are based on HP Linpack, which derives from a collection of 
Fortran linear algebra routines written in Fortran in the 1970s. Excellent source material 
on the Linkpack routines can be found online.37

Alternative benchmarks have appeared, such as the Graph500,38 which are 
more relevant to measuring performance of supercomputers running data-intensive 
applications. Arguably with the growth of “big data” applications to continue into the 
future, these kinds of benchmarks will be relevant to a broader range of supercomputing 
applications. However, at this writing, the alternatives are just getting going and have not 
yet gained the same recognition as have the Top500 and Green500 lists. As a result, this 
discussion will focus on the historical trends of the Green500 and Top500 lists.

At the scale of supercomputers today, performance leadership is practically 
inseparable from efficiency leadership due to the practical constraint of power. The 
power consumption of the largest supercomputers in the world is now between 10 and 20 
megawatts. Although these limits are not written in stone, at an estimated infrastructure 
cost of about $10 per watt, the cost of expanding beyond those limits is prohibitive 
except for the largest governmental and private agencies. With the expanded role of 
supercomputing in everything from office scale DNA decoding to field-based geophysics, 
the need for higher performance in fixed-power environments is increasing.39

Since both performance and efficiency are important to supercomputing 
leadership, it is convenient to look at both the efficiency and performance of 
supercomputers simultaneously. The Exascalar method does exactly this, plotting the 
points from the Green500 list by their performance and efficiency.40 Figure 1-11 shows 
the efficiency and performance of the computers in the Top500 supercomputer list since 
2007. The historical trend line reveals that the performance gains of the top systems have 
been due to both efficiency gains and increases in power. Exascalar measures progress of 
supercomputing leadership toward a goal of 1018 flops (an Exaflop) in a power envelope 
of 20 megawatts. As is evident in Figure 1-11, the points fall roughly into a triangular 
shape with a taxonomy that reflects the state of the art in computing performance and 
efficiency and also cost.

35See www.green500.org/.
36See www.top500.org/.
37See www.top500.org/project/linpack/.
38See www.graph500.org/.
39See www.intel.com/content/www/us/en/research/tomorrow-project/intel-labs-dna-
sequencing-and-bio-chem-sensing-video.html.
40See www.datacenterknowledge.com/archives/2012/07/10/june-2012-exascalar-
efficiency-dominates-hpc/.

http://www.green500.org/
http://www.top500.org/
http://www.top500.org/project/linpack/
http://www.graph500.org/
http://www.intel.com/content/www/us/en/research/tomorrow-project/intel-labs-dna-sequencing-and-bio-chem-sensing-video.html
http://www.intel.com/content/www/us/en/research/tomorrow-project/intel-labs-dna-sequencing-and-bio-chem-sensing-video.html
http://www.datacenterknowledge.com/archives/2012/07/10/june-2012-exascalar-efficiency-dominates-hpc/
http://www.datacenterknowledge.com/archives/2012/07/10/june-2012-exascalar-efficiency-dominates-hpc/
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The Exascalar values in this graph are computed from the formula where both 
efficiency and performance are normalized to the goal of one Exaflop in a 20 megawatt 
power envelope.
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The factor of 2  ensures consistency with an earlier (but more complex and less 
generalizable) formulation of Exacalar.41

The earlier-mentioned triangular shape comes about because of the constraints of 
power in general application. Although the trend in increased power is evident from the 
trend line of the top Exascalar systems, that increase, about a factor to ten, also increases 
the installation costs by roughly a factor of ten and therefore represents a major barrier 
for a majority of adopters.42 Another point to note in the graph is that systems in the 
lower left-hand corner consume almost 100 times the power of the systems in the lower 
right-hand corner of the triangle, but deliver the same performance. This represents a 
potentially very large difference in total cost of ownership (TCO).

41Balaji Subramaniam, Winston Saunders, Tom Scogland, Wu-chun Feng, “Trends in Energy-
Efficient Computing: A Perspective from the Green500,” Proceedings of the 4th International Green 
Computing Conference (Arlington, VA, June 2013).
42www.datacenterknowledge.com/archives/2013/01/28/the-taxonomy-of-exascalar/.

Figure 1-11. The Exascalar plot of the June 2013 Green500 list 

http://www.datacenterknowledge.com/archives/2013/01/28/the-taxonomy-of-exascalar/
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The trend of the Exascalar can also be plotted as a time series as shown in Figure 1-12. 
The top Exascalar system trend intersects the Exaflop equivalent of Exascalar (e = 0) some 
time in the year 2019. The median Exascalar trend is increasing at a slower rate, which 
can be accounted for by the slower increase in power (but similar gains in efficiency) of 
the general population. The differential between the top and median Exascalar growth is 
accounted for by the increased power levels of the top systems.

Figure 1-12. The trend of the top and median Exascalar as a function of publication date

Comparing theSPECPowerssj_2008 results with the Exascalar results shows 
the challenge of trending energy use and efficiency with benchmarks. In the case of 
SPECPowerssj_2008, the overall system power has decreased over time to benefit 
efficiency, while in the case of the HPC benchmarks, overall system power has increased 
over time to achieve higher performance.

Energy Efficiency and Cost
Energy efficiency is a highly desirable characteristic in data centers, but the overall goal 
of a data center is to meet the computational needs within both physical and financial 
constraints of the organization. These constraints are usually captured in a TCO model,  
which takes into account both capital and operational costs of the data center  
(see Table 1-2).
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43Vasileios Kontorinis, et al., “Managing Distributed UPS Energy for Effective Power Capping in 
Data Centers,” International Symposium on Computer Architecture, ISCA (2012), http://cseweb.
ucsd.edu/~tullsen/DCmodeling.html.

TCO generally depends very strongly on the specific applications or intended use of 
the data center. This is a reflection of the wide range of applications for data centers. For 
instance, in some locations, the high costs of energy may favor the choice of a particular 
power envelope for the servers or, in some other cases, software licensing costs may 
strongly influence hardware choices.

However, outside these special cases, some general observations can be made  
about TCO.

Costs fall into two categories: capital costs and ongoing operational costs. The capital 
costs are associated with the the facility of the data center itself as well as the servers 
and other IT gear required to make the data center operate. Important operational 
costs include electricity, water, maintenance, and so on. Other factors, such as expected 
depreciation for both the facility and IT hardware, may also have a pronounced effect on 
the outcome of the model.

Many TCO models are available online. Some are made available for cost; some are 
available as a service.43 These models have varying degrees of sophistication depending 
on the desired fidelity and tolerance for error.

Table 1-2 lists the ranges of parameters for a TCO model. The operational server 
energy cost includes overhead of PUE = 2.0. In both cases, the energy cost to run the 
servers in a data center is comparable to the facility cost itself.

Table 1-2. Ranges of Parameters for a TCO Model

Low Cost Range
(U.S.)

High Cost Range
(U.S.)

Facility capital cost per watt $8–$12 $20–$40

Facility capital depreciation 10 years 20 years

Facility capital cost/watt/year $0.80–$1.20 $1.0–$2.0

Electricity cost per watt $0.03/kWh $0.15/kWh

PUE 1.2 2.0

Operational server energy  
cost/watt/year

$0.31 $2.62

Since the subject of this book is primarily server energy cost, a simplified model 
is shown in the table emphasizing the comparison of the facility cost with the energy 
needed to run the servers. The low cost range data center might correspond to an efficient 
cloud data center in a region selected for a mild climate and low-cost electricity. The high 
cost range might correspond to a highly secure and redundant data center near a major 
metropolitain area. In both cases, it is apparent that the energy costs of the data center are 
comparable to the facility capital cost.

http://cseweb.ucsd.edu/~tullsen/DCmodeling.html
http://cseweb.ucsd.edu/~tullsen/DCmodeling.html
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More sophisticated models take into account much more detailed analysis of 
individual data center costs, building upon and also substantiating the simpler analysis 
in Table 1-2.44 In the model shown in Figure 1-13, power and cooling infrastructure costs 
are about equivalent to the utility energy costs. Although energy costs and facility capital 
costs represent about equal parts of the TCO, server depreciation is also an important 
contributor.

Figure 1-13. An example of a breakdown of data center TCO 

However, traditional data center TCO models do not consider the cost of work output 
from the data center per se; they simply treat the servers as power-consuming units 
without regard for energy efficiency or performance of their computing capability. What 
is astonishing is that from a work output standpoint, the most wasteful energy consumers 
in data centers (even low PUE data centers) can be inefficient servers.

To illustrate this point, consider Figure 1-14, taken from an actual assessment 
of a Fortune100 company’s data center. The analysis consisted of looking at the age 
distribution of the servers and then assessing, based on their configuration, energy 
consumption and finally their work output (or performance) capability. Although older 
servers were only 32% of the population, they consumed the majority of energy and 
only contributed a small fraction of the total computational output of the data center. 

44Ibid.
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Since server efficiency doubles approximately every one to two years (depending on 
application and the specific metric used), older servers are far less efficient and constitute 
a larger fraction of energy use for a lower fraction of computing cycles.

Figure 1-14. Data from a walkthrough inventory of a Fortune 100 company showing the 
energy consumption and age distribution of servers

In this particular data center, servers older than 2007 consume 60% of the energy 
but contribute only an estimated 4% of the compute capability. Although this may seem 
counterintuitive, consider the argument from the perspective of Moore’s Law; if the 
performance doubles approximately every two years, servers from 2006 do approximately 
1/8th the computational work of servers dating from 2012, when the data was collected. 
Given the power consumption date presented earlier, it is also feasible that the energy 
consumption would decrease in newer servers, dependent on configuration.

Therefore, in data centers concerned not just about energy usage, but actual 
computational work, the energy efficiency and performance of the servers are important 
overall considerations. Detailed measurements on either actual or representative 
workloads are generally needed to achieve the highest levels of overall workload 
efficiency. The remainder of this book focuses specifically on the optimizations that can 
take place not only at the server level but also the data center level to optimize energy use 
and computational output of what may amount to a multi-million or even billion dollar 
investment.
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Summary
In this chapter we have reviewed the performance and efficiency trends of data centers 
and have shown that the servers can contribute to the overall energy use in data centers, 
especially in cases where the efficiency of the infrastructure has been optimized.

We’ve compared the performance and efficiency trends of servers based on both the 
SPECPowerssj_2008 and the derived Exascalar benchmarks. In both cases, the efficiency 
of servers has improved exponentially over time, though with differing trends, depending 
on the specific workload.

In subsequent chapters, we will show how the efficiency of servers can be optimized 
for specific workloads, thus enabling users to tailor their server configurations for 
optimum performance and efficiency. In the final chapter of the book, we will tie these 
results back to TCO and show how performance, power, and cost tie together into an 
overall framework of datacenter TCO.
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Chapter 2

CPU Power Management

The CPUs and memory inside of a data center consume a fraction of the overall power, 
but their efficiency and built-in power management capabilities are one of the biggest 
influences on data center efficiency. Saving power inside of the CPU has multiplicative 
savings at larger scales. Saving 1 watt of power at the CPU can easily turn into 1.5 watts 
of savings due to power delivery efficiency losses inside the server, and up to 3 watts in 
the data center. Reducing CPU power reduces the cooling costs, since less heat must be 
removed from the overall system.

Before discussing how power is saved in the CPU, we will first review some basics of 
CPU architecture and how power is consumed inside of circuits. Then we will discuss the 
methods and algorithms for saving power inside of both memory and the CPU.  
Chapters 7 and 8 will investigate how to monitor and control these features.

Server CPU Architecture/Design 
Over the years, server CPU core design has significantly evolved to provide high 
performance and energy-efficient execution of workloads. However, no core is complete 
without an effective support system to provide the core with the data it needs to execute. 
Caches, main memory, and hard drives provide a hierarchical mechanism for storing 
data with varied capacity, bandwidth, and latency tradeoffs. In more recent years, highly 
scalable interconnects have been developed inside CPUs in order to facilitate the scaling 
of the number of cores.

A less widely known goal of CPU design is optimization for total cost of ownership 
(TCO) amortization. Because the CPU plays a central role in information processing, 
matching the CPU with the right amount of performance/capabilities with the other 
data center infrastructure is critical to achieving the best TCO. Different workloads have 
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different sweet spots. For example, many high performance computing (HPC) workloads 
are very sensitive to scaling and cross-node communication. These communication 
networks can be very expensive and hence contribute significantly to data center TCO. 
In such systems, it is desirable to maximize per node performance in order to reduce the 
communication subsystem costs and dependency. On the other hand, a cold storage 
deployment1—where a large number of hard drives hold data that is very infrequently 
accessed over a connection with much lower bandwidth—may require much lower CPU 
performance in order to suit the needs of the end user.

CPU Architecture Building Blocks
Typical multi-core server CPUs follow a common high-level architecture in order to 
efficiently provide compute agents with the data that they require. The main components 
of a modern CPU are the cores that perform the computation, I/O for sending and 
receiving the data that is required for the computation, memory controllers, and support 
infrastructure allowing these other pieces to efficiently communicate with each other. 
Figure 2-1 shows an example of such a system. The boxes with a dashed outline are 
optionally included on the CPU Silicon die, whereas the others are now almost always 
integrated into the same die as the cores. Table 2-1 provides some high-level definitions 
for the primary CPU components. 
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PCIe

Memory
Controller

L3 Cache Coherent
Interconnect

Core

L1 $$

L2 $$

Core

L1 $$
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…
Core

L1 $$

L2 $$

Chipset

Figure 2-1. A typical server CPU architecture block diagram

1Cold storage is a usage model where a large amount of rarely used data is stored on a single system 
with a large number of connected hard drives to provide a massive level of storage.
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Threads, Cores, and Modules
Traditional server CPUs, such as those found in Intel’s Xeon E5 systems, are built using 
general purpose cores optimized to provide good performance across a wide range of 
workloads. However, achieving highest performance across a wide range of workloads 
has associated costs. As a result, more specialized cores are also possible. Some cores, 
for example, may sacrifice floating point performance in order to reduce area and cost. 
Others may add substantial vector throughput while sacrificing the ability to handle 
complex control flow. 

Individual cores can support multiple hardware threads of execution. These are also 
known as logical processors. This technique has multiple names, including simultaneous 
multithreading (SMT) and Hyper-Threading Technology (HT). These technologies were 
introduced in Intel CPUs in 2002. SMT attempts to take advantage of the fact that a single 
thread of execution on a core does not, on many workloads, make use of all the resources 

Table 2-1. Primary CPU Components

Component Description

Core Cores are the compute agents of a CPU. These can include general 
purpose cores as well as more targeted cores such as general-
purpose computing on graphics processing units (GPGPUs). 
Cores take software programs and execute them through loads, 
stores, arithmetic, and control flow (branches).

Cache Caches save frequently used data so that the cores do not need to 
go all the way to main memory to fetch the data that they need. 
A cache hierarchy provides multiple levels of caches, with lower 
levels being quick to access with smaller sizes, and higher levels 
being slower to access but providing much higher capacity. 
Caches are typically on the same die as the cores, but this is not 
strictly required (particularly with large caches).

On-die fabric Interconnects exist on the CPU dies that are commonly called 
on-die or on-chip fabrics. These are not to be confused with 
fabrics that connect multiple CPU dies together at the data 
center level.

Memory controller Memory controllers provide an interface to main memory  
(DDR in many recent processor generations).

PCIe PCIe provides a mechanism to connect external devices such as 
network cards into the CPU.

Chipset The chipset can be thought of as a support entity to the CPU. 
In addition to supporting the boot process, it can also provide 
additional capabilities such as PCIe, hard drive access, 
networking, and manageability. Chipset functionality is integrated 
into the same die or package as the cores in the microserver space.
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available in the core. This is particularly true when a thread is stalled for some reason 
(such as when it is waiting for a response from memory). Running multiple threads 
on a given core can reduce the per thread performance while increasing the overall 
throughput. SMT is typically a very power-efficient technique. The additional throughput 
and performance can increase the overall power draw, but the wall power increase is 
small compared to the potential performance upside.

Note ■  there are two types of threads: hardware threads and software threads. operating 
systems manage a large number of software threads and perform context switches to pick 
which software thread is active on a given hardware thread at a given point in time.

Intel Atom processors also have the concept of CPU modules. In these processors, 
two cores share a large L2 cache. The modules interface with the CPU fabric rather than 
the cores interfacing directly.

The terms threads and processors are commonly used to mean different things in 
hardware and software contexts. Different terms can be used to refer to the same things 
(see Table 2-2). This frequently leads to confusion.

Table 2-2. Threads, Core, and Processor Terminology

Term Description

Hardware thread Hardware threads, logical processors, and logical cores are all 
the same. Each can execute a single software thread at a given 
point in time.Logical processor

Logical core

Hardware core Hardware cores and physical cores represent a block of 
hardware that has the ability to execute applications. A single 
physical core can support multiple logical cores if it supports 
SMT. Logical cores that share a physical core share many of the 
hardware resources of that core (caches, arithmetic units, etc.).

Physical core

Software thread A software thread is a sequence of software instructions. Many 
software threads exist in a system at a given point in time. The 
operating system scheduler is responsible for selecting which 
software thread executes on a given logical processor at a certain 
point in time.
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Caches and the Cache Hierarchy
Server CPU cores typically consume a large percentage of the processor power and also 
make up a large percentage of the CPU area. These cores consume data as part of their 
execution. If starved for data, they can stall while waiting for data in order to execute an 
instruction, which is bad for both performance and power efficiency. Caches attempt to 
store frequently used data so that the core execution units can quickly access it to reduce 
these stalls.

Caches are typically built using SRAM cells. It is not uncommon for caches to 
consume as much area on the CPU as the cores. However, their contribution to power is 
much smaller since only a small percentage of the transistors toggle at any given time.

A range of cache hierarchies is possible. Figure 2-2 shows two examples of cache 
hierarchies. The figure on the left illustrates the cache hierarchy used on Xeon processors 
since the Nehalem2 generation and the figure on the right illustrates the hierarchy used 
on the Avoton3 generation. Different hierarchies have various performance tradeoffs and 
can also impact power management decisions. For example, the large L3 cache outside 
the cores in the design on the left may require the application of power management 
algorithms in order to achieve good power efficiency.
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Figure 2-2. Cache hierarchy examples

2Nehalem is the code name for the Xeon server processor architecture released in 2008.
3Avoton is the code name for the Atom server processor architecture released in 2013.
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Dies and Packages
CPUs are manufactured wafers of monocrystalline silicon. During manufacturing, each 
wafer is printed with a large number of rectangular CPU dies that are subsequently cut 
from the wafer once the manufacturing is complete. A moderately large server die is on 
the order of ~20 mm on a side (~400 mm2). Figure 2-3 shows two magnified dies, one from 
the 8c Avoton SoC (system on a chip) and another from the Ivy Bridge 10c. The Avoton die 
is actually much smaller in size than the Xeon.

Figure 2-3. Die photos of the 8c Atom Avoton (top) and 10c Xeon Ivy Bridge EP (bottom)  
(not to scale)

Dies are then placed into a package as part of the manufacturing process. The package 
provides the interface between the die and the motherboard. Some packages (particularly 
lower power and lower cost offerings) are soldered directly to the motherboard. Others 
are said to be socketed, which means that they can be installed, removed, and replaced for 
the motherboard. The package connects to the motherboard through metal pins, which 
provide both power to the CPU and communication channels (such as the connection 
to DDR memory). Power flows into a CPU through many pins, and higher power CPUs 
require more pins in order to supply the required power. Additional connectivity (such as 
more DDR channels or support for more PCIe devices) also increases pin count.
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Packages can also include an integrated heat spreader (IHS), which is conceptually 
an integrated heat sink. Removing heat generated by the consumption of power within a 
CPU is critical to achieving high performance systems. IHSs help to spread the heat from 
the cores (and other areas with high power/heat density) out to the rest of the die to avoid 
hot spots that can lead to early throttling and lower performance. Figure 2-4 shows two 
CPU packages—one from an Avoton SoC and one from a Sandy Bridge. The Sandy Bridge 
package is much wider and deeper to accommodate the larger die and additional pins, 
but is also much taller. Part of this additional height is due to the IHS.

Figure 2-4. Package photos of an 8c Xeon Sandy Bridge EP (right) and 8c Atom Avoton 
(left)

Multiple dies can be included in a single package. This is called a multi-chip package 
(MCP). MCPs can provide a cost-effective way for increasing the capabilities of a product. 
One can connect two identical dies (commonly used to increase core count), or different 
dies (such as a chipset and a CPU). Connecting two devices inside of a package is denser, 
lower power, and lower latency than connecting two separate packages. It is also possible 
to connect dies from different process technologies or optimization points. MCPs have 
been effectively used in the past to provide high core count processors for high-end servers 
without the need for huge dies that can be cost prohibitive to manufacture. Dies within an 
MCP share power delivery and thermal constraints with each other, and therefore there 
are limits. For example, it can be very challenging (and expensive) to cool two 130 W CPUs 
stuck together into a single 260 W package. Bandwidth and latency between two dies in an 
MCP are also constrained compared to what is possible in a single die.

On-die Fabrics and the Uncore
Historically, Intel has referred to all of the on-die logic outside of the cores as the uncore. 
In the Nehalem generation, this included the L3 cache, integrated memory controller, 
QuickPath Interconnect (QPI; for multi-socket communication), and an interconnect 
that tied it all together. In the Sandy Bridge generation, PCIe was integrated into the 
CPU uncore. The uncore continues to incorporate more and more capabilities and 
functionality, as additional components continue to be integrated into the CPU dies. As 
a result, the CPU is now being replaced with the concept of system on a chip (SoC). This 
is most common in user devices such as cell phones, where a large number of special-
function hardware components provide various capabilities (modems, sensor hubs, 
general purpose cores, graphics cores, etc.). It is also spreading into the server space with 
products like Avoton that incorporate cores, SATA, Ethernet, PCIe, USB, and the chipset 
into a single CPU package. Increased integration can reduce TCO because fewer discrete 
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devices must be purchased. It can also result in denser designs for the same reason. It 
can also be more power efficient to incorporate more functionality into a single die or 
package as higher performance connections consume lower power when integrated.

In these SoCs, the interconnect that provides the communication between the 
various IPs has been termed an on-die fabric in recent years. Off-chip fabrics that connect 
multiple CPUs together into large, non-coherent4 groups of CPUs also exist. Modern on-
die fabrics are the evolution of the uncore interconnect from earlier generation CPUs.

On servers, when the cores are active and executing workloads, the power 
contribution from the uncore tends to be much smaller than the cores. However, when 
the cores are all idle and in a deep sleep state, the uncore tends to be the dominant 
consumer of power on the CPU as it is more challenging to efficiently perform power 
management without impacting the performance of server workloads. The exact 
breakdown of power between the cores and uncore can vary widely based on the 
workload, product, or power envelope.

Power Control Unit
As power management has become more and more complex, CPUs have added internal 
microcontrollers that have special firmware for managing the CPU power management 
flows. At Intel, these microcontrollers are called both the PCU (power control unit) and 
the P-Unit, and the code that they execute is called pcode. The PCU is integrated into the 
CPU with the cores. These microcontrollers are generally proprietary, and the firmware 
that runs on them is kept secret. It is not possible for OEMs or end users to write their own 
firmware or change the existing firmware in these PCUs. However, various configuration 
options are available to the OEM and end user. These can be controlled through either 
the OS or BIOS. Tuning and configuring these options is discussed in Chapter 8.

The PCU is responsible for the bulk of the power and thermal management 
capabilities that will be discussed through the rest of this chapter. The firmware running 
on the microcontroller implements various control algorithms for managing the power 
and performance of the CPU. Table 2-3 provides a high-level snapshot of some of the 
roles and capabilities of the PCU. The PCU is connected to almost every major block of 
logic on the CPU die and is continuously monitoring and controlling their activity.

Table 2-3. Common PCU Roles

Role Description

Power management Central control center for managing voltage, frequency, and 
other power saving states

Thermal management Implements algorithms to prevent the CPU from overheating

Reset controller Facilitates powering up the CPU

4Coherent fabrics are also possible and are traditionally used in supercomputer designs.
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Firmware can be patched in the field, either through BIOS or even directly from a 
running system in the OS. However, patch deployment after devices enter production is 
not frequent.

Server vendors do use their own proprietary firmware that runs off-chip on a 
baseboard management controller (BMC; a small microcontroller). This firmware 
frequently interacts with the PCU for performing both power and thermal management 
through the Platform Environment Control Interface (PECI). These topics will be 
discussed in more detail in Chapters 4 and 5.

External Communication
Although performing calculations is important on CPUs, getting data in and out of the 
CPU is a key part of many server workloads. Table 2-4 provides an overview of a selection 
of the key interfaces.

Table 2-4. External Communication

Interface Details

Memory (DDR) Memory provides storage for application code and data. It can also 
provide caching for frequently accessed data from drives. It is not 
uncommon for server CPUs to have hundreds of GBs of memory 
capacity, and even TBs are possible.

Drive storage Drive storage is also common on servers. Some end users are 
moving away from having any local drive storage on compute 
nodes, electing instead to store all persistent data on separate 
storage nodes that are accessed over a high bandwidth network. The 
boot process can even be performed completely over the network. 
This can save significant procurement cost. Other customers still 
find a need for local storage on individual nodes.

Networking Ethernet or InfiniBand are staples of most server nodes for moving 
data in and out of a given CPU for processing, or between nodes for 
tasks that utilize multiple CPUs for a single task.

Video ports Video ports are rare and generally are not included on the platform. 
It is common for users to connect discrete graphics cards in the rare 
occasion where video is required.

USB ports USB ports are also common and are primarily used for special tasks 
like firmware updates or debugging (not during normal execution).

Manageability Servers commonly include an interface like PECI for external 
controllers to manage the server. These interfaces provide a 
mechanism for tasks like monitoring temperature or controlling 
power without interfering with the software running on the CPU cores.

(continued)
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Thermal Design
CPUs consume power in order to execute; that power must be dissipated in order to keep 
temperatures under control. On modern CPUs, thermal sensors exist to monitor the 
temperature and help guarantee that the CPU will not get to a dangerous temperature 
where reduced reliability or damage could occur. CPUs may throttle themselves to stay 
under a target temperature or even initiate an immediate shutdown if temperature 
exceeds certain thresholds.

Most server CPUs are sold with thermal design point (TDP) power. The TDP specifies 
the amount of power that the CPU can consume, running a commercially available  
worst-case SSE application over a significant period of time and therefore the amount of 
heat that the platform designer must be able to remove in order to avoid thermal throttling 
conditions. The TDP power is generally paired with a base frequency (sometimes called the 
P1 frequency). A defined TDP condition is used to characterize this (power, frequency) pair. 
The goal of the TDP condition on servers has been to identify the worst-case real workload5 
that a customer may run. Different vendors (or even different products from the same 
vendor) can use varied TDP definitions, making it difficult to use this number for meaningful 
comparisons across these boundaries. Sequences of code that will consume more power 
at the TDP frequency than the TDP power do exist, and these workloads will be throttled in 
order to stay within the design constraints of the system and to prevent damage to the CPU.

Note ■  Different workloads can consume a wide range of power at the same frequency. 
Many workloads consume significantly lower power than the tDp workload at the tDp 
frequency. Turbo is a feature that allows those workloads to run at higher frequencies while 
staying within the thermal and electrical specifications of the processor.

Interface Details

Coherent 
interconnects

In deployments that have multiple CPUs per node, a coherent 
interconnect is used to connect the multiple sockets (e.g., Intel QPI). 
This allows multiple CPUs to be connected to each other and share 
a single operating system.

Non-coherent 
bridging

Some CPUs also support technologies to create non-coherent 
interconnects between nodes using PCIe (e.g., Intel NTB [Non-
Transparent Bridge]). These technologies create non-coherent 
“windows” into the physical memory space across two machines 
where each machine appears as a PCIe device to the other machine 
(with a memory-mapped I/O [MMIO] range assigned to it). Today it is 
primarily used in storage usage models for redundancy across servers.

Table 2-4. (continued)

5AVX applications are not included in the base frequency on current server processors. Starting with 
HSW E5, a secondary “AVX P1” frequency was provided with each SKU to provide guidance for 
high-power AVX workloads.
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Many traditional server processors have had TDP power in the range of ~30 W to 
~150 W. Microservers push TDPs much lower—down to ~5 W. Although it is possible 
to build processors with larger TDPs, these tend to be more challenging to work with. 
Larger heat densities can be difficult to cool efficiently and make cost effective. It is also 
possible to have larger processor dies that have less heat density, but these dies can also 
be challenging to manufacture efficiently.

Some client processors have adopted a concept called Scenario Design Power (SDP). 
This concept suggests that designing for the TDP may result in over-design in certain 
usage models. SDP attempts to provide OEMs with guidance about the thermal needs of 
certain constrained usage models. SDP has not been adopted for any server products at 
this time. Servers tend to rely on Turbo to reduce exposure to any platform  
over-design caused by designing to TDP.

CPU Design Building Blocks
The CPU architecture is constructed with a mix of analog and digital components. Analog 
design is typically used for designing the off-chip communication (such as the circuits 
that implement PCIe and DDR I/O), whereas the bulk of the remaining system is built out 
of digital logic.

Digital Synchronous Logic and Clocks
The bulk of the computation performed by CPUs is done by digital synchronous logic. 
Synchronous designs can be thought of as large pipelines. Tasks are broken up into 
subsets of work (see Figure 2-5). Groups of logic gates (implemented with transistors) 
take input data (1s and 0s) and calculate a set of output data. It takes time for the 
transistors to compute the answer from an input set, and during that time, it is desirable 
for that input data to be stable. Flops store state for logic while it computes and store the 
output data when it is ready for the next set of logic. Clocks, distributed throughout the 
CPU, tell these flops when they should latch the data coming into them.

Flop
Logic 
Gates

Flop Logic 
Gates

…

Clock

Figure 2-5. Digital synchronous logic

When people think of CPUs, they generally think about all the logic inside the CPUs 
that conceptually does all the work. However, clocks are necessary to all these digital 
circuits and are spread throughout the CPU. Clocks are typically driven by phased-locked 
loops (PLLs), although it is also possible to use other simpler circuits, such as a ring 
oscillators. Many modern PLL designs provide configurability that allows them to be 
locked at different frequencies. It takes time (generally measured in microseconds)  
to lock a PLL at a target frequency.
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SRAM and eDRAM
Static random-access memory (SRAM or static RAM) is a block of logic that is used to 
store data. Most caches are built based on SRAM designs, and therefore SRAM commonly 
makes up a large percentage of the CPU die. Dynamic RAM (DRAM) is another type of 
logic that can be used to store data, and it is used for DDR devices.

SRAM is much larger in size than DRAM and consumes more power per byte of data, 
but it is also much faster to access and easier to design with. Unlike DRAM, it is built with 
similar manufacturing techniques to normal CPU logic, making it more amenable to 
integration into a single CPU die with other logic. It is possible to build large caches using 
embedded DRAM (eDRAM). eDRAM is used in Haswell E3 servers.

I/O
I/O circuits provide the capabilities for communication on and off a die. For example, 
these circuits are used for DDR, PCIe, and coherent interconnects like QPI. Most 
interconnects are parallel—transmitting multiple bits of data simultaneously. However, 
some serial interconnects still exist for low-bandwidth communication with various 
platform agents like voltage regulators.

There are two main types of I/O that can be used: differential signaling and single-
ended signaling. Single-ended signaling is the simplest method for communicating with 
I/O. Conceptually, to transmit N bits of parallel data, N + 1 wires are required. One wire 
holds a reference voltage (commonly 0 V ground) whereas the others transmit binary 
data with a predefined higher voltage representing a 1. Differential signaling is more 
complicated, using a pair of wires (called a differential pair) to transmit a single bit of 
data. Differential signaling is less exposed to noise and other transmission issues, and 
therefore it provides a mechanism to reach higher frequencies and transmission rates. 
However, differential signaling requires roughly twice the platform routing compared to 
single-ended signaling and also tend to consume more power—even when they are not 
actively transmitting useful data.

Intel Server Processors
Throughout this chapter, various recent Intel server processors will be referred to by their 
codenames in an attempt to illustrate the progression of the technologies. Figure 2-6 
illustrates the progression of the Intel server processors. Each major server processor 
generation is shown in a box with its major characteristics (number of supported 
sockets, number of cores, and process technology). Groups of processors with similar 
architectures have been grouped together with different shades of gray boxes. As an 
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Nehalem (45 nm)

Sockets: 1-2
Cores: up to 4 (NHM)

Westmere (32 nm)

Sockets: 1-2
Cores: up to 6 (WSM)

Sandy Bridge-E3 (32 nm)

Sockets: 1
Cores: up to 4 (SNB)

Sandy Bridge-E5 (32 nm)

Sockets: 1-4
Cores: up to 8 (SNB)

Beckton (45 nm)

Sockets: up to 8
Cores: up to 8 (NHM)

Westmere-EX (32 nm)

Sockets: up to 8
Cores: up to 10 (WSM)

Ivy Bridge-E3 (22 nm)

Sockets: 1
Cores: up to 4 (IVB)

Ivy Bridge-E5 (22 nm)

Sockets: 1-4
Cores: up to 12 (IVB)

Ivy Bridge-E7 (22 nm)

Sockets: up to 8
Cores: up to 15 (IVB)

Haswell-E3 (22 nm)

Sockets: 1
Cores: up to 4 (HSW)

Haswell-E5 (22 nm)

Sockets: 1-4
Cores: up to 18 (HSW)

Haswell-E7 (22 nm)

Sockets: up to 8
Cores: up to 18 (HSW)

Centerton (32 nm)

Sockets: up to 1
Cores: up to 2 (SLT)

Avoton (22 nm)

Sockets: 1
Cores: up to 8 (SLM)

Time

Figure 2-6. Intel server processor progression

It is important to note that the E3 products are based on desktop processor 
architecture and are therefore limited to a single socket and lower core counts. At the 
same time, they have much earlier time to market than the E5 and E7 processors. So, 
although a Haswell-E3 and Haswell-E5 share the same core design, the uncore design is 
different.

Introduction to Power 
One of the first topics taught in electrical engineering is Power = Current * Voltage (P = I * V).  
You can think of power as a pipe with water flowing through it. Current is effectively how 
fast the water is flowing, whereas the voltage is the size of the pipe. If you have a small pipe 
(low voltage), it is difficult to move a lot of water (electricity). Similarly, if you can slow down 
how fast the water flows, you can reduce your water usage. Power management in a CPU 
is all about efficiently (and dynamically) controlling both current and voltage in order to 
minimize power while providing the performance that is desired by the end user. 

Figure 2-7 illustrates a conceptual hierarchy of where power goes from the wall down 
to the circuits inside the CPU. This section will primarily explore the CPU and memory 
power components.

example, the Sandy Bridge-E5, Ivy Bridge-E5, and Ivy Bridge-E7 processors are all based 
on a similar architecture, which is separate from the single-socket Sandy Bridge-E3 and 
Ivy Bridge-E3 processors.
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Table 2-5 provides a summary of some common power terms.

CPU Power Breakdown
The CPU power can conceptually be broken into

The logic power (executing the instructions)•	

The I/O power (connecting the CPU to the outside world)•	

These can be broken down further as described in the following sections.

Table 2-5. Common Power Terms

Term Abbreviation Description

Voltage V Voltage is the electrical potential difference 
between two points.

Current (amps) A Current is the rate at which the energy flows.

Capacitance C Capacitance is the ability of a system to store an 
electrical charge. Batteries can be thought of as 
large capacitors that store charge.

Frequency f Frequency refers to number of transitions in a unit 
of time. In processors, this generally refers to the 
rate at which the clock is toggling.

Energy (joules) J Joules are a unit of energy or work. It does not 
matter how fast or slow the work is done—just how 
much work it takes.

Power (watts) W Power is a measurement of energy over time. 
Doing the same amount of work in half the time 
requires twice the power.

CPU Power Platform Power

I/O

Wall Power

Logic

Leakage

Dynamic

Clocks Logic

Memory

Drives

Power Delivery

Cooling

PCIe Devices

Illustration.  Not drawn to scale.

Figure 2-7. Wall power breakdown illustration
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Logic Power
When the logic in the CPU transitions between 0 and 1, power is consumed. The 
transistors are effectively each little tiny capacitors that are charging and discharging (and 
expending power in the process). This is referred to as the active power of the CPU.

There are two components to active power:

Power consumed by the clocks that run throughout the CPU.•	

Power consumed by the actual logic that is performing •	
computation.

Only a subset of the bits in the CPU transition between 0 and 1 in a given cycle. 
Different workloads exhibit different switching rates. This leads to the application ratio 
(AR) value in the equation, which modulates the active power. For example, it is common 
for certain types of workloads to not perform floating point math. In these workloads, the 
floating point logic is unused and will not transition and consume active power.

Leakage power can be thought of as the charge that is lost inside of the CPU to keep 
the transistors powered on. The equations for leakage are more complicated than for 
active power, but conceptually it is simple: leakage power increases exponentially with 
both voltage and temperature.

The breakdown between leakage and dynamic power is very sensitive to the 
workload, processor, process generation, and operating conditions. Dynamic power 
typically contributes a larger percentage of the CPU power, particularly when the 
processor is running at a high utilization.

Table 2-6 summarizes the CPU logic power breakdown.

Table 2-6. CPU Logic Power Breakdown

Component Conceptual Equations Description

Active power I ~ C * V * f * AR

P ~ C * V2 * f * AR

Active power can be thought of as the 
power consumed to toggle transistors 
between 1s and 0s.

Leakage power I ~ eV * et

P ~ V * (eV * et)

Leakage power can be thought of as the 
charge that is lost inside of the CPU to 
keep the transistors powered on.

I/O Power
Running high bandwidth interconnects that are common in modern CPU designs can 
contribute a large percentage of the CPU power. This is particularly true in the emerging 
low-power microserver space. In some of these products, the percentage of power 
consumed on I/O devices tends to be a larger percentage of the overall SoC power.

There are conceptually two types of I/O devices: those that consume power in 
a manner that is proportional to the amount of bandwidth that they are transmitting 
(DDR), and those that consume an (almost) constant power when awake (PCIe/QPI). 
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I/O interfaces also have active and leakage power, but it is useful to separate them 
out for power management discussions. The switching rate in traditional I/O interfaces is 
directly proportional to the bandwidth of data flowing through that interconnect.

In order to transmit data at very high frequencies, many modern I/O devices have 
moved to differential signaling. A pair of physical wires is used to communicate a single 
piece of information. In addition to using multiple wires to transmit a single bit of data, 
typically the protocols for these lanes are designed to toggle frequently and continuously 
in order to improve signal integrity. As a result, even at low utilizations, the bits continue 
to toggle, making the power largely insensitive to bandwidth.

Table 2-7 summarizes the types of I/O power.

Table 2-7. Types of I/O Power

Component Conceptual Equations Description

Traditional I/O power I ~ BW * V * f Traditional I/O components 
typically exhibit power utilization 
that is a function of their 
bandwidth (utilization) along with 
voltage and frequency.

Example: DDR3/4 data and 
command busses

Differential signaling 
I/O power

I ~ V * f Differential signaling I/O power is 
a function of voltage and frequency 
but is generally not sensitive to 
bandwidth (utilization).

Examples: PCIe, Ethernet, and Intel 
QPI all use differential signaling to 
transmit data.

Frequency, Voltage, and Temperature Interactions
Although power can easily be thought of as a function of voltage, frequency, and 
temperature, each of these components has an impact on the way that the others behave. 
Thus, their interaction with each other is also of relevance to energy efficiency. 

In order to increase the frequency of a system, you must also increase the voltage. 
The voltage required to run a circuit tends to increase with the square of the frequency 
(see Figure 2-8). This relationship is critical to power efficiency and understanding 
power management. At some low frequencies, it is possible to change the frequency with 
only a small (if any) impact to voltage and relatively small increases in overall power. 
At higher frequencies, a large increase in voltage is required to get just a small increase 
in frequency. The exact relationship between these two components is based on the 
transistor design. There are varied manufacturing and design techniques that are used 
to select the operating voltage at different frequency points. So, although conceptually 
voltage scales with the square of the frequency, this is not always how real systems 
operate in production.
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Different transistor designs and process technologies have different characteristics. 
Transistors that can achieve higher frequencies must trade off low-power characteristics. 
These are commonly used in high-power server CPU designs. On the other hand, 
transistors can be optimized for low leakage and low-power operation, trading off high 
frequency operation. This type of transistor is used in phone, tablet, and laptop devices. 
They can also be used in microservers and other low-power servers. Both types of 
transistors can be used to build power efficient CPUs and data centers. 

Note ■  executing at a lower voltage and frequency (and power) does not necessarily 
make a system more power efficient. rather, the most efficient operating point tends to exist 
around the “knee” of the exponential curve (or slightly to the right of the knee). a common 
misconception is that the lower the frequency and the lower the power, the more efficient 
the operation. this is commonly incorrect, particularly when power is measured at the wall. 
It is also possible to build very power efficient data centers using both low-power CpUs  
leveraging power-optimized transistors and higher power CpUs based on frequency  
optimized transistors.

Leakage current is exponentially sensitive to temperature. Traditionally, increases 
in temperature have resulted in higher power as a result of increases in leakage current. 
However, leakage power has trended down in recent process generations. The result is 
that there is less sensitivity to temperature.

There is another phenomenon called inverse temperature dependence (ITD).  
As temperature goes down, the voltage required to operate a transistor at a given 
frequency can increase. This behavior is most pronounced at lower voltages. In high-
power server CPUs, this phenomenon typically does not impact peak performance or 
power, since voltage and temperature in these situations are high enough that there is 
minimal if any ITD compensation required. However, ITD can become more significant 
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Figure 2-8. Voltage/frequency relationships
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in low-power CPUs that operate at lower voltages, frequencies, and temperatures. The 
ITD phenomenon has been known for many years but may become more notable as 
leakage power is driven down. Historically, as temperatures decreased, leakage power 
dropped more than the increase in power from ITD. On products with very low levels of 
leakage power, ITD effects could result in increased net power at low temperatures.

Power-Saving Techniques
Now that we have looked at the basics of where power goes in the data center, we will 
investigate some of the high-level techniques for achieving power efficiency. There are 
two conceptual ways to save power:

Turn it off.•	

Turn it down.•	

Different components in the data center and CPU have different techniques for 
performing each of these two operations. The rest of this chapter will go into some of the 
details of those techniques.

Turn It Off
Turning off the lights in your house is a very effective way to save power. When CFL light 
bulbs first were introduced to the market, many were unhappy with the long time it took 
for them to provide the desired amount of light quickly. In a CPU, similar issues arise. 
There are different levels of “off,” and the tradeoffs are made between saving power and 
how quickly different subcomponents are available when desired (see Table 2-8). 

Table 2-8. Turning Logic Power Off

Component Wake Latency Description

Clock gating ~10 ns to ~1 ms Stop the clocks, saving active power

Power gating ~1 to 10 ms Removes all power, saving both leakage and active 
power

Synchronous design used in modern CPUs depends on clocks to be routed 
throughout the logic. If a given block of logic is not in use, the clocks going to that logic do 
not need to be driven. Clock gating is the act of stopping the clocks to a given block of logic 
to save power. By gating the clocks, both the power of the clocks themselves can be saved, 
as well as any other dynamic power in the logic (since it cannot transition without clocks).

Clock gating can be performed at a wide range of granularities. For example, a single 
adder could be clock gated if not in use, or an entire core could be clock gated. Clock 
gating can be performed autonomously by the hardware when it detects logic is not in 
use, or it can be performed with software intervention. When clocks to a block of logic are 
gated, the dynamic power of that block is driven down close to zero, whereas the leakage 
power is not impacted. State (information) in the circuit is maintained.
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Power gating is a technique that allows both leakage and active power to be saved. 
However, it takes much longer to wake the circuits back up compared to clock gating. In 
addition to preventing transistor state transitions, power gating removes all power from 
a circuit so that leakage power is also driven to zero. State is lost with power gating, so 
special actions (like save/restore or retention flops) must be used in conjunction with 
power gating.

Turn It Down
Voltage has a significant impact on both the dynamic and leakage power of a circuit. By 
reducing the voltage when performance is not required, power can be saved. Table 2-9 
provides a summary of two common mechanisms for reducing voltage. 

Table 2-9. Turning Logic Power Down by Reducing Voltage

Component Description

Voltage/frequency scaling If high frequency is not required, it can be dynamically 
reduced in order to achieve a lower power level. When 
frequency is reduced, it may also be possible to reduce the 
voltage.

Retention voltage (Vret) The voltage required to maintain state in a circuit can be 
lower than the voltage required to operate that circuit. For 
example, maintaining data in a cache can be done with 
much lower voltage than is required to read/write that data.

Decreasing the voltage to Vret is frequently paired with 
clock gating in order to achieve a “middle ground” 
between basic clock gating and power gating. Compared 
to power gating, some leakage power continues to be 
consumed, but state is maintained allowing for simpler 
designs and faster wake latencies.

Note ■  Voltage reduction is a critical piece to power savings. Leakage power scales 
exponentially with voltage, and dynamic power scales about with the square of the voltage.

Power-Saving Strategies
One major challenge with power management algorithms is understanding how multiple 
algorithms will impact one another. Saving power comes with some cost. For example, if 
you put memory into a low-power state, it takes time to wake it back up in order to service 
a memory request. While that request is waiting for memory to wake back up, something 
else in the system is generally awake and waiting while consuming energy. Aggressively 
saving power in one part of the system can actually result in a net power increase in the 
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overall system if not done carefully. Features can be enabled that save power for their 
subsystem at some overall performance cost and minimal to no overall power savings.  
A good system design will hide these challenges from the end users and enable them to 
get the most out of their system.

The platform characteristics can play a large role in determining “what’s best.” As 
an example, in a system with 1 TB of memory connected across two sockets, a large 
percentage of the platform power is spent in the memory. Aggressively using memory 
power management here is generally a great idea. On the other hand, if a system only has 
8 GB of memory and a single DIMM of memory, using memory power management can 
only save a small amount of overall memory power and may increase platform power in 
certain conditions because of increase active time in the IA cores. Chapter 8 will discuss 
some of these tuning options and tradeoffs.

Race to Idle vs. Slow Down
When going on a road trip, cars are traditionally most efficient when running at about 
60 mph. If you drive faster than that, the car will be active for a shorter amount of 
time, its efficiency while active will be less, and it will consume more gas. If you drive 
slower, gas may be consumed at a slower rate (in time), but the overall gas spent will 
be larger because the car is active longer. At speeds higher than 60 mph, there is higher 
wind resistance and drag on the car, and engines are typically not optimized to run as 
efficiently. At lower speeds, the drag may be lower, but the engine is running below its 
capabilities, making it less efficient.

Similar behavior can exist inside of a CPU. The speed of the car is similar to the 
voltage/frequency of the CPU. Theoretically, you can achieve the best power efficiency by 
cycling between the most efficient operating point and turning it off in order to supply the 
desired level of performance. This strategy has traditionally been referred to as Race to 
Idle or Race to Halt (HALT is a CPU instruction instructing a core to stop executing and go 
into a power saving state).

The Race to Idle strategy has generally been shown to be inefficient in many server 
usage models because the idle state consumes too much power due to its constraints. 
Imagine that it would take one hour to start your car whenever you wanted to use it. If 
you were using your car frequently throughout the day, you would just never turn the car 
off. At night, it might be a great idea, but on a weekend filled with chores, you would be 
unwilling to wait for your car to warm up. Similarly, a commuter with a fixed schedule 
might be able to tolerate taking one hour to turn on their car in the morning (they could 
turn it on before getting ready for work). This is because they know when they are going 
to need it. A doctor who is “on call,” on the other hand, would not be able to tolerate this 
because they may need to go into work at any time and would have zero tolerance for a 
delay. So, even if they are able to rush through their tasks, they would have to leave the car 
running when they were done with it.

Servers tend to be more like on-call doctors. They never know exactly when they 
are going to be needed, and they need to be available quickly when they are needed. 
Problems like network packet drops can occur if deep idle states are employed that 
require long exit latencies. At times, servers know that they will not be needed  
(i.e., the doctor goes on vacation). However, this is generally the exception rather than the 
common case.
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Table 2-10 summarizes some of the different techniques that can be used to save 
power in a server CPU.

Table 2-10. Power-Saving Strategy

Strategy Driving Example Server Application

Race to Idle Drive 100 mph taking rest stops The server runs at peak power and 
performance in an attempt to get into 
a deep power saving state.

This typically is not effective or 
employed in server usage models. 
Too much power is consumed in idle 
states to make this effective, because 
very deep idle states take too long to 
wake up. It is difficult to predict when 
to wake up accurately.

Jog to Idle Drive 60 mph taking rest stops The server runs at an efficient 
operating point that is still slightly 
faster than required at a given point in 
time and then attempts to get into an 
idle state.

This technique theoretically sounds 
good, but actually achieving periods 
of idleness is challenging.

Slow and 
Steady

Drive 45 mph continuously The server runs at the utilization 
that it thinks it needs to in order to 
complete the work that it has, with no 
intention of trying to get breaks along 
the way.

This is typically the most common 
technique used in server power 
management today due to the system 
constraints preventing deep idle 
power savings.

CPU Power and Performance States
There exist a number of standard techniques for turning logic off as well as lowering the 
operating voltage inside of the CPU. This section will provide an overview of the power 
management capabilities that exist in the CPU and then go into detail about how each of 
the states performs under different environments. Table 2-11 provides an overview of the 
different power management states that are covered in detail in the following pages.
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Table 2-11. Overview of CPU Power Management States

State Granularity Description

C-states Core/thread Turning cores off and halting execution 
of instructions: These states save power by 
stopping execution on the core. Different 
levels of C-state exist with varied amounts 
of power savings and exit latency costs. C1 
is the state with the shortest exit latency but 
least power savings. Larger numbers, like C6, 
imply deeper power savings and longer exit 
latencies.

Package C-states Package Turning off a subset of the package to save 
power when it is idle: Package C-states kick 
in when all cores are in a C-state other than 
C0 (active). Like with core C-states, there can 
be multiple levels of package C-states that 
provide tradeoffs between power savings and 
exit latency. The package includes all the 
cores as well as other package blocks, such 
as shared caches, integrated PCIe, memory 
controllers, and so on. On Intel Xeon CPUs, 
these states typically have exit latencies <40 ms 
in order to avoid network packet drops.

P-states Various Changing the frequency and voltage of a 
subset of the system: Traditionally these 
states have been focused on the cores, 
but changing the frequencies of other 
components of the CPU is also possible (such 
as a shared L3 cache). Execution can continue 
at varied performance and power levels when 
using P-states.

T-states Core Duty cycling the cores at a fixed interval: 
T-states duty cycle the core execution to save 
additional power. These states are generally 
used for aggressive throttling when needed 
for thermal, electrical, or power reasons. They 
traditionally have not been used for power 
efficiency.

(continued)
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State Granularity Description

S-states Package Turning off the entire package (sleep state): 
These states are most common in client and 
workstation usage models, but can also be 
applied in some server CPUs. They tend to 
have very long exit latencies (seconds) but can 
drive the power close to zero. S0 represents 
the active state and S5 the “off” state (with 
multiples states in between).

G-states Platform Global states: These states refer to the power 
state of the platform. These are similar to 
S-states. G-states are generally not visible 
to the end user and are used by platform 
designers.

D-states Device Devices (PCIe, SATA, etc.) in a powered-
down state: D-states are traditionally for 
devices such as PCIe cards and SATA and 
refer to low-power states where the device is 
powered down. D-states are not a focus on 
servers.

Table 2-11. (continued)

C-States
C-states provide software with the ability to request that the CPU enters a low-power 
state by turning off cores or other pieces of logic. A single CPU core may support multiple 
software threads if it supports simultaneous multithreading (SMT). Each HW thread has 
its own state and is given the opportunity to request different C-states. These are referred 
to as thread C-states, and are denoted as TCx (where x is an integer). In order for a core to 
enter a core C-state (denoted as CCx), each thread on that core must request that state or 
deeper. For example, on a core that supports two threads, if either thread is in TC0, then 
the core must be in CC0. If one thread is in TC3 and the other is in TC6, then the core 
will be allowed to enter CC3. Thread C-states themselves save minimal, if any, power by 
themselves, whereas core C-states can save significant power.

There are also package C-states, which can be entered when all the cores on that 
package enter into a deep core state. These states are commonly denoted as PCx or PkgCx 
(where x is an integer). At times, package state numbering is correlated to the state of the 
cores on that package, but this is not a hard rule. For example, the PC2 state on certain 
modern server processors is used when all cores on that package are in CC3 or CC6 states 
but other constraints are preventing the system from entering into a state deeper than PC2.
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Thread C-States
Software requests C-states on a thread granularity. Minimal, if any, power savings actions 
are taking when a thread enters into a thread C-state without also inducing a core C-state. 
On CPUs that support SMT, these states are effectively a stepping stone to getting into 
core C-states. On CPUs that do not support SMT, thread and core C-states are effectively 
identical.

Core C-States
Core C-states determine if a core is on or off. Under normal execution, a core is said to  
be in the C0 state. When software (typically the OS) indicates that a logical processor 
should go idle, it will enter into a C-state. Various wake events are possible that trigger the 
core to begin executing code again (interrupts and timers are common examples).

Software provides hints to the CPU about what state it should go into (see Chapter 6 
for more details). The MWAIT instruction, which tells the CPU to enter a C-state, includes 
parameters about what state is desired. The CPU power management subsystem, 
however, is allowed to perform whatever state it deems is optimal (this is referred to as 
C-state demotion).

Table 2-12 shows the C-state definitions from the Sandy Bridge, Ivy Bridge, and 
Haswell CPUs. There are no hard rules about how these states are named, but with a 
product line across generations, these definitions exhibit minimal changes.

Table 2-12. Core C-State Examples

Core C-State Wake Latency Description

CC0 N/A The active state (code executing): At least 
one thread is actively executing in this state. 
Autonomous clock gating is common for 
unused logic blocks.

CC1 ~1 ms Core clock gated: In CC1, the core clocks are 
(mostly) gated. Some clocks may still be active 
(for example, to service external snoops), but 
dynamic power is driven close to zero. Core 
caches and TLBs are maintained, coherent, 
and available.

CC1e ~1 ms + frequency  
transition

Enhanced C1—hint to drop voltage: CC1e is 
effectively the same as C1, except it provides 
a hint to the global voltage/frequency control 
that V/f can be reduced to save additional 
power.

(continued)
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Core C0

Core C0 (CC0) is the active state when cores are executing one or more threads. The 
core’s caches are all available. Autonomous power savings actions, such as clock gating, 
are possible and common. For example, it may be possible to clock gate floating point 
logic if integer code is being executed.

Core C1 and C1e

Core C1 (CC1) is the core sleep state with the fastest exit latency. Clock gating is 
performed on a large portion of the logic, but all of the core state is maintained (caches, 
TLBs, etc.). Some logic is typically still active to support snooping of the core caches 
to maintain coherency. Core C1 is a state that the core can enter and exit without 
interacting with the PCU. This enables fast transitions, but also prevents the global power 
management algorithms from taking advantage of this state for some optimizations.

Core C1e is a similar state, except that it provides a hint that the core can be reduced 
to a lower voltage/frequency as well. Although the exit from C1 and C1e are both 
about the same latency, it does take some time to ramp the core back to the requested 
frequency after the wake. The C1e state is generally achieved at the package granularity. 
In other words, all cores on a socket must first enter a C1e or deeper state prior to 
dropping the voltage/frequency on any core requesting C1e.

Core C3

Core C3 (CC3) provides gated clocks and a request to drop the voltage to retention 
voltage. It is conceptually a lower voltage version of C1e that does not require a frequency 
transition. C3 does, however, flush the core caches and core TLBs. It also has a much 

Core C-State Wake Latency Description

CC3 ~50–100 ms Clocks gated and request for retention 
voltage: Processor state is maintained, but 
voltage is allowed to drop to Vret. L1 + L2 (core) 
caches are flushed. Core TLBs are flushed.

CC6 ~50–100 ms Power gating: The core is power gated (voltage 
at 0). L1 + L2 (core) caches are flushed. Core 
TLBs are flushed. Processor state is saved 
outside the core (and restored on a wake).

CC7–CC10 Various CC6 with extra savings outside the core: 
Additional states deeper than CC6 exist on 
certain CPUs. These states are generally not 
supported on server processors today due to 
their long latencies.

Table 2-12. (continued)
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longer wakeup latency than C1e. CC3 entrance and exits are coordinated with the PCU, so 
additional optimizations can take further advantage of this state (more later).

Core C6

Core C6 (CC6) saves a large amount of power by power gating the core. This requires the 
core to flush its state out including its caches and TLBs. Core C6 has a longer wakeup 
latency than CC3 (generally twice as long) because it must relock the PLL and ungate the 
power, but it can also save significantly more power than CC3 or C1e (the exact amounts 
vary significantly from product to product). This is the deepest possible power saving 
state for the core itself.

Note ■  CC6 is the workhorse on servers for major idle power savings. CC1 is useful for  
saving power during short idle periods, or on systems where the latency requirements preclude 
the use of CC6. the CC3 state has generally shown minimal value in practice in servers.  
the performance impact of this state is similar to that of CC6 because of the cache flush, and 
dropping the voltage to Vret only occurs when all cores in the voltage domain agree to do so.

Core C7 (and up)

States deeper than CC6 are productized on many client devices. The core itself does 
not have any states deeper than power gating and CC6, but these deeper states can 
be requested by software and they provide a hint to the global power management 
algorithms about the potential for package-scoped power management optimizations 
(like flushing a shared L3 cache).

Note ■  States deeper than CC6 have generally been challenged on servers,6 because 
the server software environments rarely become completely idle. Flushing the L3 cache, 
for example, has non-trivial memory energy cost (both on entry and wake), and also results 
in longer wake periods on short wake events (because all data/code must be fetched from 
memory). these additional power costs tend to significantly offset (or even exceed) the 
power savings allowed by flushing the cache. Servers also tend to have much lower levels 
of latency tolerance, making further optimizations challenging.

6There was some confusion on the Sandy Bridge and Ivy Bridge generations because the CC7 state 
was enumerated in CPUID to software on Sandy Bridge, and then removed on Ivy Bridge. The CC7 
state on Sandy Bridge E5 had identical power savings characteristics to CC6. As a result, to avoid 
long-term confusion, the CC7 state was removed on Ivy Bridge and does not exist on Haswell E5 or 
Avoton.
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C-State Demotion

The PCU can demote C-state requests made by software and decide to enter into more 
shallow states if it believes that the OS is asking for states that are sub-optimal. Early 
versions of software C-state control at times made overly aggressive requests for C-states 
when they were enabled, exposing some customers to performance degradation with 
C-states. In an attempt to resolve these concerns, C-state demotion was added into the 
PCU firmware in an attempt to prevent entry into deep C-states when it was determined 
by the processor that it could be detrimental to either performance or power efficiency. 
The details of these algorithms are not disclosed, and different algorithms have been 
deployed on different product generations. Although the PCU has worked to reduce the 
exposure to C-state performance degradation, operating systems have also tuned their 
selection algorithms to reduce their own exposure to performance degradation.

Early implementations of core C-state required OS software to save and restore both 
the time stamp counter (TSC) and local APIC timers. Recent processors have removed 
this requirement, and most of the work for entering a C-state and waking back up is 
handled autonomously by the CPU hardware and firmware.

Package C-States
When an entire CPU is idle, it can be placed into a package C-state in order to save 
additional power beyond what is possible with the subcomponents individually. These 
states are targeted at idle (or close to idle) conditions. The exact definition of these package 
states (what is turned off, and what the requirements are to do so) changes from CPU to 
CPU and generation to generation. However, the high-level concept remains the same.

When a CPU enters a deep package C-state, memory is no longer available to devices 
connected to the CPU (such as the network card). Intel servers commonly target a worst 
case of about 40 microseconds in order to restore the path to main memory for PCIe 
devices.

Table 2-13 provides an example of the package C-state definitions that are used 
across the Sandy Bridge, Ivy Bridge, and Haswell Server generations. Avoton did not 
implement package C-states and was able to achieve very low idle power without the 
need for a separate state managed by the power control unit. Instead, the power savings 
optimizations for idle power were implemented autonomously in the various IPs 
throughout the SoC. 
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Table 2-13. Package C-State Examples

Package 
C-State

Core C-States Path to Memory Description

PC0 At least one in 
CC0.

Available The active state (code executing). 
No package-scoped power savings.

PC1e None in CC0/
CC1. At least one 
in CC1e.

Available All cores have entered C1e or 
deeper states, allowing the 
opportunity for the voltage and 
frequency to drop. At least one 
core is still in C1e, preventing more 
aggressive power savings.

PC2 All cores in  
CC3/CC6.

Available All cores are in CC3/CC6, but PCIe 
or a remote socket is still active. 
The shared uncore must still be 
active to support these other traffic 
sources. Minimal package-scoped 
optimizations can be performed 
here. The actions in this state are 
effectively identical to PC1e.

PC3 All cores in CC3/
CC6. At least one 
in CC3.

Not available All cores are in CC3/CC6 and other 
traffic sources (PCIe and remote 
sockets) are also idle. Package 
scoped operations, such as deep 
memory self-refresh or uncore Vret 
are possible.

PC6 All cores in CC6. Not available Same as PC3, except no cores are 
in CC3. Additional more aggressive 
power savings may be possible. On 
Ivy Bridge EP, for example, the L3 
cache was only taken to retention 
voltage in PC6 and not in PC3.

PC7 All cores in CC7. Not available Same as PC6, except the L3 cache is 
also flushed.

Note ■  the pC7 state has not been productized in many server processors (though it 
has been evaluated). Flushing the L3 cache costs memory energy and also causes any 
short-term core wakeups to take significantly longer, as all data/code must be fetched from 
memory. these added costs tend to significantly reduce the power savings that can be 
achieved with such a state, while also leaving the user with a longer wakeup latency.
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Module C-States
A module refers to a collection of cores that share resources. On Intel Atom-based server 
processors such as Avoton, groups of two cores share a single L2 cache. Other groupings are 
theoretically possible, such as sharing a single voltage/frequency domain. C-states are also 
possible at the module level and are commonly referred to as MCx (where x is an integer). 

Note ■  Module C-states have not been used as aggressively as core and package  
C-states in production on servers due to challenges in finding energy-efficient  
optimizations with them in server environments. these issues are similar to those observed 
with the flushed L3 cache in package C-states.

P-States
P-states were invented in order to dynamically reduce (or increase) the CPU operating 
voltage and frequency to match the needs of the user at a given point in time. Running at 
lower frequencies results in lower performance and longer latency to complete the same 
amount of work. However, it may be possible to complete a required amount of work with 
lower energy. A good example is a web server running a news web site. At 3:00 a.m., it is 
unlikely that many people will be accessing the data on that webserver. By running at a lower 
voltage/frequency, power can be saved. Each web request transaction on that CPU will 
take longer to complete, but in many cases the latency delta is so small relative to network 
transfer latencies that the customer will never notice. As the system load begins to increase, 
the frequency can be increased to meet the higher level of demand while a continued 
quality of service is maintained. The operating system has traditionally been responsible for 
selecting which frequency the system should operate at. See Chapter 6 for more details.

Note ■  as shown in Figure 2-8, the voltage  savings from decreasing frequency shrinks at 
lower frequencies (and eventually becomes zero). Decreasing frequencies past the point of 
voltage scaling is possible, but it tends to be inefficient. Users are better off using C-states 
at this point to save power. as a result, processors have a minimum supported operating 
frequency (called pn) and may not expose lower frequencies to the operating system or allow 
lower frequencies to be requested.

P-states have since been extended to also transition voltage/frequency on other 
domains in order to save additional power. In some modern servers, the L3 cache and  
on-chip interconnect contribute non-trivial power to the CPU, and it is desirable to 
reduce the V/f of this domain when high performance is not required.

P-states are managed as a ratio of a base clock frequency (bclk). On the Nehalem 
generation, the bclk ran at 133 MHz. If the OS requested a ratio of 20, then the system 
would run at 2.66 GHz. All Xeon processors starting with Sandy Bridge have used a  
100 MHz bclk. The Avoton architecture had a variable bclk that was based on the memory 
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frequency of the system. Each different ratio is commonly referred to as a bin of frequency. 
It is not possible to control frequency at granularity smaller than the bclk speed.

Voltage regulators (VRs) supply voltage to the CPU from the external platform  
(see Chapter 4 for more details). Having a large number of VRs to supply different 
voltages is expensive and challenging to manage/design. It is generally not power 
efficient to reduce the frequency of a system without also reducing the voltage. As a result, 
CPUs have supported a single variable voltage/frequency domain for the cores.

Note ■  having different cores on a CpU running at different frequencies but at the same 
voltage is suboptimal because frequency scaling without voltage scaling tends to be  
inefficient. as a result, most processors that are constrained to a single voltage domain for 
the cores are designed to require those cores to all run at the same frequency at all times.

In Haswell, Intel introduced the Integrated Voltage Regulator (IVR). This enables 
individual cores to have their own voltage (and therefore frequency) domains, enabling 
efficient per core P-states (PCPS). Low-dropout regulators (LDOs) can also be used to 
provide variable voltages across cores in a CPU with a single input voltage, but such a 
technique has not been productized by Intel to date.

Table 2-14 illustrates the progression of P-states in recent generations. Changes and 
innovation often occur on processors when a new platform is introduced since these 
optimizations have a platform design impact.

Table 2-14. P-State Developments across Server Generations

Generation Base Clock Core P-States Uncore P-States Comments

Nehalem 
Westmere

133 MHz One variable 
domain

Static frequency  
(based on SKU)

Sandy Bridge 
Ivy Bridge

100 MHz One variable 
domain

Same voltage/
frequency as core 
domain

Uncore V/f 
scaling provides 
significant power 
savings at low 
utilizations.

Avoton Variable 
based on 
memory 
speed

One variable 
domain

Static frequency  
(based on memory 
speed)

Uncore domain 
has low power 
contribution (no 
L3 cache).

Haswell E3 100 MHz One variable 
domain

One dedicated 
variable domain

IVR used for 
separate uncore 
domain.

Haswell E5/E7 100 MHz Per core 
variable 
domains

One dedicated 
variable domain

IVR allows per core 
control.
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Per Socket P-States
Certain processors such as Sandy Bridge, Ivy Bridge, and Avoton provide a single voltage/
frequency domain across all cores on a socket. The target frequency is selected by looking 
across the requested frequencies on each of the threads with voting rights and taking 
the max of those frequencies. Voting rights are determined by the state that the thread 
is in, and that varies across generations. For example, a thread that is in a TC6 state 
may relinquish its voting rights on certain processor generations. It is important to note 
that the target frequency is not always granted—other aspects of the systems, such as 
temperature and power, may limit how high the frequency is able to go.

On Sandy Bridge and Ivy Bridge, voting rights were lost by any threads in  
C1e/C3/C6 states. This had two effects on the system. First, when all threads went into 
one of these C-states on a socket, no core on that socket would have voting rights and the 
core frequency would drop to the minimum frequency. Secondly, if different cores were 
requesting different frequencies, and a core requesting the highest frequency went to 
sleep, it could result in a decrease in frequency to the next highest requested frequency.

Avoton used a different approach. All cores maintained voting rights even when they 
were in C1e/C6 states (there was no C3 state on Avoton). However, a package C1e state 
was also used, which detected certain conditions when all threads were in a C1 or deeper 
state and would decrease the frequency to an efficient level.

Per Core P-States
Haswell E5/E7 provides the ability to independently change the frequency and voltage of 
the individual cores in the CPU.7 In this mode of operation, the target frequency of a given 
core is simply the max of the requested frequency for the threads on the core. There is no 
concept of voting rights here.

Many servers execute workloads (like web servers) that service small, discrete 
“transactions.” As the transactions come into the system, they are forked out to the 
various threads that service them. In this type of workload, different hardware cores 
tend to observe imbalances in utilization. These imbalances are constantly shifting 
and moving, but it is possible to take advantage of transient imbalances and reduce 
the frequency on cores that are underutilized. Figure 2-9 provides an example of one 
such workload. It compares management of P-states at the socket granularity (per 
socket P-states, or PSPS) to the per core granularity (PCPS). On the x-axis is the system 
utilization (with increasing utilization from left to right), and on the y-axis is the CPU 
socket power.

7This capability is not available on HSW E3 products.
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When running different workloads on a system, it can be useful to execute them at 
different frequencies. A common example of this is with virtualization. One user may 
desire 100% of their virtualized resources, whereas another may be running at very 
low utilization. PCPS allows the active user to ramp their voltage and frequency up 
without imposing those power costs on the second user. A similar situation exists with 
different types of workloads running on a system. If a subset of cores is being used for 
some performance-critical task and are running at a high frequency while another core 
periodically wakes up to service a daemon, there is no need to execute that daemon at 
the high voltage/frequency point. When threads wake up and execute at a high voltage/
frequency, they theoretically can get into a deep C-state faster (mitigating the cost of 
the high frequency, or even turning it into a net power savings). It is not uncommon 
for server platforms to have a significant set of background software threads that can 
perturb the system, it can cause threads to wake up frequently, thus preventing the use 
of these deep C-states at moderate to high system utilizations. This behavior is much 
less common on power-optimized consumer platforms where it would cause significant 
battery life degradation (with or without PCPS).

Per core P-states are not always a huge win. A good example of this is with low-power 
microservers. In microservers, it is common for the amount of power consumed by the 
IA cores to be a smaller percentage of the overall platform power. It is also common for 
these CPUs to run at lower frequencies with smaller voltage dynamic range. Without 
good voltage scaling, you are better off racing to halt on an individual core and getting 
into a deep C-state on that core rather than reducing the frequency and voltage of that 
core alone.

Figure 2-9. Per core P-states (PCPS) vs. per socket P-states (PSPS)
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Uncore Frequency Scaling
The Nehalem and Westmere families of processors maintained a constant frequency in 
the uncore. At low system utilizations (about 10%–40%), this was an inefficient operating 
condition, because the L3 cache was kept at a higher frequency and voltage than 
necessary. However, it provided generally consistent performance behavior. 

On the Sandy Bridge and Ivy Bridge generations, the uncore and cores on a socket were 
tied together into a single voltage/frequency domain. When the cores changed frequency, 
the uncore (L3 cache) moved with them. This provided significantly better power efficiency 
at low system utilizations, since the L3 cache voltage was reduced, saving leakage power. In 
addition to this, many server workloads saw improved frequency scaling efficiency (larger 
performance increases by increasing frequency). 

On Haswell, the cores and uncore were moved to separate variable voltage/
frequency domains. This allows the system to take advantage of all the benefits of a 
variable uncore domain, while also allowing for improved power efficiency. For example, 
if one socket in a two-socket system desires high performance and the second socket is 
idle, it informs the second socket that it is in a high-performance mode. The idle socket is 
then able to increase the frequency of its uncore in order to supply the best memory and 
snoop latencies to the high-performance socket without increasing the voltage/frequency 
of the idle cores on that idle socket. This feature is called perf p-limit. Similar behavior is 
possible when high performance is required by PCIe. 

Avoton does not have an L3 cache or a high-power uncore like is commonly found 
on Xeon processors. As a result, managing the uncore frequency is simply not worth the 
cost in that case. 

Turbo
CPU server platforms are typically designed to provide sufficient cooling for relatively 
worst-case real workloads and power delivery capabilities. In servers, the vast majority 
of the workloads that are typically run on these systems run well below these constraints 
that they are designed for. Turbo was introduced to take advantage of this dynamic 
headroom. It increases the operating frequency of the CPU in order to take advantage of 
any headroom for

Power•	

Thermals•	

Electricals•	

In order to provide additional frequency beyond the base frequency of the unit, 
headroom must exist in each of these three major areas. The amount of Turbo that can be 
achieved is dependent on the thermals of the platform/data center, the workload being 
run, and even the specific unit.
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Turbo Architecture

The Turbo architecture/micro-architecture is largely shared across the Intel product lines 
(from phones/tablets up to E7 servers). However, the behavior of these algorithms has 
generally been different in each domain. In consumer devices (laptops, tablets, etc.), it 
is not uncommon for users to require short-term performance boosts. These platforms 
are also frequently thermally constrained. Turbo provides additional performance while 
the temperature increases (both internal to the CPU as well as on the device “skin” that 
people touch). With some workloads, the thermal capacity will eventually run out, and 
the CPU must throttle back its frequency in order to stay within the thermal constraints of 
the platform. The Turbo architecture introduced in the Sandy Bridge generation (called 
Turbo 2.0 or Running Average Power Limit [RAPL]) attempted to model these thermal 
characteristics and provide a mechanism for staying within a desired thermal constraint, 
both in the actual CPU as well as at the platform. On servers, it is not uncommon for 
certain workloads to sustain high levels of Turbo frequency indefinitely.

Power/Thermal Limits

Thermal constraints generally track directly with power usage over long-time constants. 
A laptop, for example, can dissipate a certain amount of power/heat without changing 
temperature. Use more power, and the laptop will heat up; use less, and it will cool 
down. The Turbo algorithms model these behaviors and constrain power over thermally 
significant time constants (usually seconds) in order to stay within the desired thermal 
envelope. These same algorithms exist in servers and work to keep the CPU within a 
desired power/thermal envelope. See the section “T-States” for more details.

Thermal Protection

In addition to controlling thermals through power limiting, the CPU provides thermal 
management routines that keep the CPU operating within its thermal specifications. 
These thermal algorithms are enforced during Turbo as well. They are documented in 
“CPU Thermal Management” section.

Electrical Protection

Although both power and thermals can generally be dealt with reactively, electrical 
constraints are generally less forgiving. The power delivery of the platform has a maximum 
current that it can supply (called ICCMAX). This limit typically comes from the voltage 
regulators (both IVR and MBVR), but CPU package and socket constraints are also 
involved. Exceeding the ICCMAX of a VR for shorts periods of time (microseconds) can 
result in a voltage droop and a system failure. These time constants are too fast to detect 
and react to reliably today, and as a result, a combination of proactive enforcement and 
platform design constraints must be used to prevent system failure. The Turbo algorithm 
has an electrical design point (EDP) limit that detects when it may be possible to exceed 
the ICCMAX of the processor and reduces frequency proactively to avoid these problems. 
Typical workloads will see little to no EDP throttling, because the CPUs are tested to 
ensure that it is possible to electrically achieve maximum Turbo under most conditions.
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The big exception to this rule is with advanced vector extensions (AVX) workloads. 
AVX is a set of wide-vector instructions targeted primarily at high-performance 
computing and other math-heavy applications. These instructions have the potential 
to consume significant power and pull significant current. As a result, when AVX 
instructions are in use, the EDP algorithm can push the frequency down by one or 
more frequency bins. AVX can significantly improve both performance and power/
performance efficiency, but it can also reduce overall performance if only lightly used.

Note ■  aVX has the potential to consume significant power when used. however, when 
it is not in use, much of the logic can be automatically (and dynamically) gated off, and the 
CpU does not need to take aVX into account for electrical protection calculations. there are 
generally no BIoS knobs or oS knobs to disable aVX, since it has minimal cost to workloads 
that do not make use of it.

Table 2-15 illustrates the behavior of EDP across generations. In Sandy Bridge, EDP 
did not exhibit a significant impact on system behavior. On Ivy Bridge, EDP throttling was 
more common. This throttling was applied across the entire socket. In other words, if one 
core was using AVX, all cores were throttled to stay within the limits. Haswell operates in 
a manner similar to Ivy Bridge. However, separate constraints were included that defined 
the level of Turbo that was possible when AVX was active.

Table 2-15. Turbo Electrical Protection Across Generations

Generation EDP Throttling

Sandy Bridge E5 Not common. Applied per socket.

Ivy Bridge E5 Common with AVX. Applied per socket.

Haswell E5 Common with AVX. Applied per socket. Hard limits on Turbo 
applied for AVX codes.8

Avoton None.

C-States and Turbo
C-states not only save power but also can provide additional performance when used 
with Turbo. By placing cores into deep C-states (C3 or deeper), it can be possible to grant 
higher Turbo frequencies. Not only do C-states save power that can be spent on Turbo, 
but, when in a sleep state, the PCU knows that the cores cannot suddenly require high 
current. This means that the platform ICCMAX constraints are divided up across fewer 
cores, allowing them to achieve higher frequencies. This can be particularly useful in 
workloads that have a mix of parallel and serial portions, because the serial portions 

8See www.intel.com/content/dam/www/public/us/en/documents/white-papers/ 
performance-xeon-e5-v3-advanced-vector-extensions-paper.pdf.

www.intel.com/content/dam/www/public/us/en/documents/white-papers/
performance-xeon-e5-v3-advanced-vector-extensions-paper.pdf
www.intel.com/content/dam/www/public/us/en/documents/white-papers/
performance-xeon-e5-v3-advanced-vector-extensions-paper.pdf
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can achieve higher frequencies and complete faster. The core C1e and C1 states are not 
negotiated with the global PCU in order to provide fast wake and sleep responsiveness. 
They also do not reduce the voltage, and some hardware continues to operate (such as 
the path to snoop the caches that are not flushed). As a result, use of the C1 and C1e states 
can slightly improve Turbo performance by saving power, but additional Turbo bins are 
not made available.

Note ■  C-states commonly increase peak performance of certain workloads when used 
in conjunction with turbo by allowing higher frequencies to be achieved when the number of 
active software threads is less than the number of available hardware threads.

Fused Turbo Frequencies
Each processor SKU is fused with a base (P1) frequency as well as a max Turbo (P0) 
frequency. In addition to these two points, limits are commonly imposed on Turbo 
depending on the number of active cores. For example, an 8-core CPU may have base 
frequency of 2.8 GHz and a maximum Turbo frequency of 3.6 GHz, but it may only be 
allowed to achieve a frequency of 3.2 GHz if all of the cores are active, or a frequency of 
3.4 GHz if four cores are active. Many server workloads make use of all available cores 
while running with Turbo and are therefore limited to the all-core Turbo frequency (P0n 
frequency). The supported maximum Turbo frequencies for different numbers of active 
cores are referred to as the Turbo schedule. On Haswell, the Turbo schedule concept was 
extended to AVX. In addition to the legacy Turbo schedule, an additional set of fused 
limits was added and applied when AVX workloads are active.

T-States
T-states provide a mechanism to duty-cycle9 the core in order to achieve even lower levels 
of power savings than are possible with P-states without depending on the operating 
system to request a C-state with MWAIT. T-states are a very inefficient way to save power 
and are generally used exclusively in catastrophic situations to avoid system shutdown 
or crash. T-states can be requested by the operating system or entered autonomously by 
the CPU when it detects severe thermal or power constraints. Modern operating systems 
do not make use of the T-state request infrastructure, but it is maintained for legacy 
purposes.

T-states are generally implemented using course-grained duty cycling between a 
C1-like state and C0 state (10s to 100s of microseconds of clocks being gated, followed by 
a period of being active). However, it is also possible to use fine-grained clock modulation 
(or clock duty cycling) to implement these states, or course-grained duty cycle with 
deeper C-states.

9T-states technically also include frequency reduction below the point where voltage reduction  
is possible.
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S-States and G-States
S-states and G-states provide deep power management at the platform level. S-states 
are software (and end-user) visible, while G-states are targeted primarily at platform 
designers. Software must request for a CPU to enter into an S-state, and a wakeup from 
an S-state requires software (BIOS and OS) support. This is different from package states 
where the wake is managed entirely by the CPU. The S0/S4/S5 states are supported 
by most server CPUs. S3 is generally more of a workstation and client feature and is 
not supported by all server processors. Table 2-16 provides a summary of some of the 
common S- and G-states.

Table 2-16. S-States and G-States

G-State S-State Description

G0 S0 The CPU is powered on and managing its own 
power.

G1 (sleeping) S1/S2 Legacy sleep states that have since been 
replaced by package C-states.

S3 (suspend) CPU (mostly) turned off with state saved in 
DRAM for fast wake (seconds).

S4 (hibernate) CPU completely turned off with state 
maintained on drive for improved wakeup 
latency.

G2 (soft off) S5 (soft off) CPU is completely turned off with no state 
saved. Some minimal power still provided 
by the PSU to enable wakeups (button press, 
keyboard, WoL [Wake on LAN], etc.). Wake 
from this state can take many seconds to 
minutes.

S3 (mechanical off) N/A PSU is no longer providing any power. Some 
minimal power may still exist for maintaining 
the system clock or minimal otherwise volatile 
states.

S0ix
S0ix states provide power savings that are conceptually similar to package C-states. They 
provide global optimizations to save large amounts of power at an idle state. There are 
varied levels of S0ix (today from S0i1 to S0i3) that provide successively deeper levels of 
power savings with increasing exit latencies. The S0ix terminology has predominantly 
been used in consumer devices and not in servers. The exact definition of these different 
states has (to date) changed from generation to generation.
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Running Average Power Limit (RAPL)
Imagine having a car that had a top speed of 35 mph, and whenever you tried to drive 
the car faster than 35 mph, it would react by dropping the speed down to 32 mph. In 
such a situation, it would be very difficult to sustain 35 mph. This is conceptually how 
Turbo behaved on the Nehalem generation of processors. Whenever power exceeded the 
allowed threshold, the frequency would be decreased in order to get back below the limit. 
Frequency was managed on 133 MHz increments with only about 10 different options 
for which frequency could be selected (imagine a gas pedal that had only 10 different 
“options” for how hard you could press), causing the system to drop below the target max 
power level. As a result, in workloads that were power constrained, it would be difficult to 
make use of the full capabilities of the system.

Sandy Bridge introduced the concept of Running Average Power Limit (RAPL) for 
controlling power usage on a platform to an average limit. RAPL is a closed loop control 
algorithm that monitors power and controls frequency (and voltage). On prior generations, 
the Turbo algorithm attempted to keep the power below a limit. Whenever power exceeded 
that limit, frequency would be reduced in order to get it back under the limit as quickly as 
possible. With RAPL, exceeding the power limit for short periods of time (usually up to a 
few seconds) is okay. The goal of RAPL is to provide an average power at the desired limit 
in a manner that will keep the system within the thermal/power constraints.

Platforms have a variety of different constraints that must be met in order to keep the 
system stable. There are a variety of different thermal requirements (e.g., not over-heating 
the CPU, VRs, PSU, memory, and other devices) as well as power delivery requirements 
(e.g., staying under the ICCMAX of the VR). Many of these constraints will be discussed 
in Chapter 4. RAPL provides capabilities for addressing a number (but not all of) of these 
different constraints.

Different components/constraints in the platform have different power 
requirements. Some constraints are loose—they can be broken for certain periods of 
time. Others are hard constraints, and breaking them can lead to failures. Table 2-17 
provides some examples of these constraints.
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Table 2-17. Platform Power Constraints Example

Platform 
Constraint

Typical Power 
Constraint

Notes

Voltage 
regulators

~2 times  
TDP power

Exceeding the constraints of the voltage regulator 
for short periods of time (microseconds) can lead to 
system failure. These limits are typically hard limits.

Power supply ~1.2 times  
TDP power

Power supplies and the platform can burst to 
higher power levels for periods of time (typically 
milliseconds). These time constants can be increased 
with additional cost.

CPU thermals ~TDP power It typically takes time for the CPU to heat up. As a 
result, exceeding the thermal power budget for a short 
period of time can be acceptable (while the system 
heats up). These time constants are platform- and 
workloads-specific, and are typically in the hundreds 
of milliseconds to seconds. The CPU will protect 
itself if it detects that temperatures are exceeding the 
specified limits.

RAPL is targeted at controlling a number of (but not all of) these requirements. 
Different levels of RAPL provide protection for different time constants that are targeted 
at different platform constraints (see Table 2-18). These capabilities have evolved over 
time (see Table 2-19). RAPL provides one mechanism (PL1) for controlling average 
power over thermally significant time constants (seconds). The goal is to maximize the 
total power available while staying within the configured constraints. It also provides 
additional mechanism (PL2/PL3) for controlling the system over much shorter time 
constants in an attempt to stay within various power delivery constraints. These limits 
are typically higher than PL1 but must be enforced over much smaller windows of time. 
Unlike thermally constrained consumer platforms (like small form factor laptops), the 
exact PL2 and PL3 values are generally less critical to overall system performance, and 
typically are not aggressively tuned.

Table 2-18. RAPL Levels10

Level Time Constant Target Usage Example Configuration

PL1 Seconds Thermals + average power TDP

PL2 ~10 ms Thermals + power delivery ~1.2 times TDP

PL3 <10 ms with duty cycle Power delivery ~1.2 times TDP

ICCMAX Proactive Power delivery SKU specific

10Values in this table are provided as typical examples. They are not in any way hard limits, and the 
values are all programmable by the system designer (within certain constraints).
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Sandy Bridge implemented PL1 and PL2 time scales. By default, PL1 is set to the TDP 
power of the processor/SKU, and PL2 is set to about 1.2 times TDP. Each of these limits 
can be set statically (by BIOS) or controlled dynamically at runtime (through either PECI 
or IA software). Any limits for PL1 set above the TDP power level will be clipped to TDP 
(with the exception of high-end desktop processors that support overclocking). Although 
this worked well in some usage models, supporting only PL1 and PL2 made it difficult 
to use RAPL for power delivery protection. It was still deployed for data center power 
budgeting and control, but guard bands were required.

Haswell extended the capabilities on Sandy Bridge to attempt to better address 
short-term power delivery constraints. In addition to PL1/PL2, a third constraint (PL3) 
was added to the system that can detect power excursions on shorter time constants 
and throttle with deterministic duty cycles. This enabled less power delivery over-design 
(particularly at the granularity of the PSU).

Sandy Bridge also enforced an ICCMAX limit. As discussed previously, ICCMAX 
is enforced proactively so that it is never exceeded. On Haswell, ICCMAX became 
programmable at runtime. This allowed for the data center management software to set a 
hard limit on the max current/power that would never be exceeded.

Figure 2-10 provides an illustration of PL1 and PL2 in operation (not to scale). The 
PL3 power level conceptually operates in a similar manner as PL2, just with more well-
defined behavior that is more amenable to platform design. The x-axis of both graphs 
represents time. As time goes from left to right, different workload phases execute  
(as shown by the “Activity” at the bottom of the chart). To start, the workload is in a low 
activity phase (such as memory allocation). Despite frequency running high, the actual 
power is low. In this phase, the temperature will generally be relatively lower, and the 
control loop can acquire these power credits to spend later.

Table 2-19. RAPL Capabilities Across Product Generations

Product PL1/PL2 PL3 ICCMAX Memory

Sandy Bridge/
Ivy Bridge

Supported Not supported Static, decided at boot Per socket

Haswell Supported Supported11 Dynamic control Per socket

Avoton Supported Not supported Not supported Not supported

11PL3 was supported on HSW E5/E7. On this processor, the power level was shared with the PL2 
power level. On HSW E3 PL3 used a separate configurable power level from PL2.
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Then, the workload transitions into a “heavy” phase. At the high frequency, the 
heavy workload exceeds the PL2 level and is quickly throttled back down until it is below 
PL2. It is then able to sustain a slightly lower frequency for a while despite the average 
power being higher than PL1. The CPU is effectively spending the energy credits that 
were saved up while the power was low. This is intended to model the thermal capacity 
of the system. It is okay to run above the PL1 power for a while as the heat sink heats up. 
Once those credits are used up, the frequency will drop further in order to sustain the PL1 
average. The PL1 control loop will periodically increase and decrease the frequency such 
that the running average matches the PL1 constraint.

Finally, the workload completes the heavy phase and transitions into a phase of 
medium activity. The power drops as the activity reduces. After a short period, the control 
loop acquires enough budget to begin increasing the frequency again. In this case, the 
frequency stabilizes at the maximum supported frequency as the power consumed at that 
level is below the PL1 constraint. This mode of operation is actually quite common on 
many server workloads that consume less than the PL1 power even at the max supported 
Turbo frequency.
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Figure 2-10. Illustration of power-throttling with Turbo 2.0
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The RAPL concept can be applied to any power domain that supports power 
reporting and a mechanism for providing throttling to control power. DRAM RAPL 
provides an interface to control power to the DRAM domain. PP0 RAPL existed on the 
Sandy Bridge and Ivy Bridge generations for controlling the power of the core power 
domain (VCC). This was not found to be particularly useful in production and therefore 
was removed in the Haswell E5 generation.

IMON and Digital Power Meter
In order to provide a closed-loop algorithm for RAPL, it is necessary to provide power-
measurement feedback. There are two high-level ways to do this: (1) measure the power/
current with an analog circuit, or (2) estimate the power using logic inside the CPU. 
Voltage regulator current monitoring (VR IMON) is the primary option for number 1. As 
the VRs supply current to the CPU, a circuit within the VR keeps track of an estimate of 
the power. The CPU then periodically (usually ~100 ms to ~1 ms) samples this reading 
and calculates power from it. The alternative to this is to use a digital power meter to 
implement number2.

VR IMON is generally significantly easier to implement/tune for the CPU but adds 
some platform cost. For a single VR, these costs are generally small (much less than $1). 
It does have the drawback that the VR circuit must be tuned for accuracy. The digital 
power meter provides a mechanism to estimate power without the platform requirement. 
Most server designs leverage VR IMON, because it provides good accuracy with lower 
effort. The exception here is the CPU on Sandy Bridge and Ivy Bridge, which used the 
digital power meter. VR IMON also typically includes some simplified digital power 
meter for a subset of the die. For example, on Avoton, there are a large number of input 
VRs. Many of those VRs supply a small and (generally) constant voltage/current to the 
CPU. Rather than implement VR IMON on these rails (increasing platform cost and 
design complexity), a simple digital power meter is used to estimate power for those 
rails. Table 2-20 illustrates how power monitoring has evolved over recent processor 
generations. 

Table 2-20. Turbo Power Monitoring/Enforcement Across Generations

Generation Throttler Power Measurement

Nehalem/Westmere E5 Turbo 1.0 CPU: VR IMON DRAM: N/A (not 
supported)

Sandy Bridge/ 
Ivy Bridge E5

RAPL (Turbo 2.0) CPU: digital power meter DRAM: VR 
IMON

Haswell E5 RAPL (Turbo 2.0) CPU: VR IMON DRAM: VR IMON

Avoton RAPL (Turbo 2.0) CPU: VR IMON  DRAM: VR IMON



Chapter 2 ■ CpU power ManageMent

63

Note ■  Vr IMon is typically optimized at the max current level that the Vr can supply.  
as load reduces, the amount of error is mostly constant (in amps). however, as a percentage 
of the load, the error increases. as an example, 1 a of error out of 100 a is only a 1% error. 
however, at a utilization of 10 a, this error becomes 10%. So, when systems are idle, both 
the DraM and CpU IMon reporting tends to exhibit higher errors. platform memory power 
(and current requirements) can vary significantly based on the amount of memory capacity. 
DraM Vr inaccuracy can be large (as a percentage) on systems allocated with much lower 
capacity than the platforms are capable of.

Linpack Example
Linpack (HPL) is a terrible workload for illustrating typical server workload power 
behavior. However, it is excellent at stressing a system and demonstrating the behavior of 
the RAPL algorithm and therefore is used here. Many typical server workloads that run 
with the default system configuration (PL1 = TDP) will not experience any throttling from 
RAPL and can sustain Turbo indefinitely.

Figure 2-11 shows the behavior of Linpack (HPL) over a subset of the workload run 
with RAPL engaged at a temperature of 85°C and a 1 s time constant. There are a couple 
of interesting observations from these data. First off, they illustrate the overall behavior 
of RAPL in a real workload. In the beginning (to the left), Linpack is performing memory 
allocation and consuming relatively low power despite the high frequency. Next, the 
actual workload kicks in. Power jumps up above the PL1 limit. After a number of seconds, 
the RAPL PL1 limit kicks in and brings the power down to the TDP/PL1 limit. At this time, 
frequency drops off by about 100 MHz in order to sustain the 85 W limit.
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Figure 2-11. Linpack power, frequency, and temperature with 85 W RAPL limit

Second, Socket 0 consumes more power and achieves less frequency (and 
performance) than Socket 1. In the platform studied, Socket 0 is in the thermal shadow 
of the socket. In other words, the fans were blowing air first over Socket 1 and then that 
heated air passed over Socket 0. The result is that the temperature of Socket 0 is much 
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warmer than Socket 1, increasing the leakage power consumed by that CPU. As a result, 
Socket 0 achieves lower average frequency at steady-state, and its initial boost when the 
workload starts executing lasts for less time.

Many typical server workloads will not show this type of performance variability 
across sockets as they tend to achieve the maximum supported Turbo frequency even 
at higher temperatures. However, when lower power limits are engaged, this sort of 
variability can be observed. Data center management utilities monitor the achieved 
performance levels across different sockets and different nodes in the data center in an 
attempt to balance out the necessary power to optimize performance.

DRAM (Memory) RAPL
In addition to the socket domain, the Xeon E5 line supports DRAM RAPL, which provides 
power limiting to the memory domain. Memory power can be a significant portion 
of the overall platform power. This was particularly the case with 1.5 V DDR3. With 
the transition to DDR4, this contribution has decreased but still remains important, 
particularly in large memory capacity systems.

DRAM RAPL is conceptually very similar to socket RAPL. Power is monitored over 
a time window, and throttling is performed in order to stay within a designed power 
limit. With CPU RAPL, power is modulated by controlling the voltage and frequency of 
the system. With DRAM, changes to voltage and frequency are not common. As a result, 
power is controlled by limiting the amount of transactions to the DRAM devices. DRAM 
power is very sensitive to bandwidth. Unlike socket RAPL, which supports separate PL1 
and PL2 power levels and time constants, DRAM RAPL today only supports a single 
configuration point. There is also no ICCMAX control point, although proactive peak 
bandwidth control can be performed using the thermal management infrastructure.

The DRAM power domain is separate from the CPU domain. The two cannot 
automatically share power today. The VRs that power memory typically also supply 
power to the DDR I/Os that exist on the CPU. This power is included in the CPU domain 
(typically using some form of digital power meter). In order to avoid double-counting, 
this power is subtracted from the DRAM RAPL. Data center management software can 
implement algorithms that allow for power to be shared between the Socket and DRAM 
domains. Although the two domains are separate, they will interact with each other. 
Setting a strong CPU RAPL limit that results in heavy CPU throttling will generally result 
in lower DRAM power because the lower CPU performance will result in lower DRAM 
bandwidth. The side effects to CPU power caused by DRAM RAPL are less obvious. When 
DRAM RAPL throttling is engaged, the cores spend more time stalled. These stalls will 
reduce the activity of the cores and reduce their power (in the short term). If those cores 
were running at a low frequency, the OS may observe a higher utilization and increase 
the voltage and frequency, ultimately increasing the CPU power. On the other hand, if the 
frequency is already running at the max, the power will be decreased.

Throttling memory is generally a very power inefficient action. Cores are left 
stalled and unable to efficiently complete work in order to enter a C-state. As a result, 
under normal operation, DRAM RAPL is generally used to limit power at a level slightly 
higher than the needs of the workload. For example, if a workload is consuming 20 W 
unthrottled but the system could consume up to 30 W, a 20 W limit could be deployed 
that avoids throttling the workload but also prevents it from jumping up to 30 W.  



Chapter 2 ■ CpU power ManageMent

66

The remaining 10 W can then be spent elsewhere by the management software. If power 
needs to be reduced and throttling needs to occur, it should generally start with the CPU 
domain and then only move to the DRAM domain as a last resort.

Note ■  DraM rapL is most effectively used to ensure that you don’t over-provision 
unnecessary power to DraM. however, throttling memory should be avoided except when 
critically necessary.

CPU Thermal Management
Maintaining a safe operating temperature is critical to long-term functionality of a CPU. 
Managing the platform cooling to keep the CPU within an optimal temperature range is 
typically the responsibility of platform software and is discussed in detail in Chapter 4. 
However, the CPU itself monitors its own temperature and provides automatic thermal 
throttling mechanisms to protect the CPU from damage or data from being lost.

The CPU keeps track of the internal temperature (Tj or junction temperature) of 
the die using multiple thermal sensors. If these thermal sensors detect a temperature 
larger than the max allowed temperature of the SKU (DTSMAX), the operating frequency 
is throttled back to stay within the thermal constraints. Thermal throttling through 
this mechanism is generally not common, but it has been developed to provide good 
performance when in use. Frequency is generally throttled slowly while the temperature 
exceeds the desired levels. Thermals inside of a CPU do not respond instantaneously to 
changes in power/frequency due to non-trivial thermal resistance. Temperature does 
not typically change much faster than about every 10 ms (and commonly much slower). 
As a result, the thermal throttling algorithms are tuned to reduce frequency and evaluate 
its impact on temperature over millisecond time scales before further reduction in 
frequency is performed.

If the temperature begins to exceed the DTSMAX by a large amount, aggressive 
throttling (typically to the minimum supported frequency) is performed in order to 
quickly reduce temperature. This is commonly referred to as a critical temperature event. 
In servers, this occurrence is very uncommon, and typically only happens when there is 
a catastrophic issue with the cooling capabilities of the platform/rack (i.e., a fan or two 
stops working). When this type of throttling is engaged, the goal is to keep the system 
functional until the platform issue can be diagnosed and resolved. Performance is not a 
priority. It is possible to configure the OS/BIOS to attempt a “graceful” shutdown (from 
software) when this event occurs, but this capability is typically not enabled in server 
systems and the aggressive throttling is relied upon instead.

In addition to the DTSMAX, each unit is fused with a catastrophic trip temperature 
that is typically referred to as THERMTRIP. When the temperature exceeds this fused 
limit, the CPU immediately signals to the platform (through a pin) that an immediate 
hardware shutdown (without OS intervention) should be performed. This capability 
is implemented entirely in simple, dedicated asynchronous hardware, and is intended 
to function even if other failures occur within the CPU. In other words, the cores 
and internal microcontrollers could all hang, and the clock network could fail, but 
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THERMTRIP would still be operational. It is very rare to observe THERMTRIP in 
production units, and it can even be difficult to induce it in the lab without disabling the 
other thermal control algorithms.

Note ■  thermal throttling can occur from improper cooling (e.g., a fan failure or a poor 
thermal design) or because of turbo consuming all of the thermal headroom that is  
available. the thermal reporting mechanisms that exist on modern processors do not  
differentiate between these two cases, and this can lead to some confusion by end users.

Figure 2-12 provides an example of Linpack when it is being exposed to thermal 
throttling on Socket 0. Similar to the example in Figure 2-11, in this case Linpack is being 
run on a system where Socket 0 is in the thermal shadow of Socket 1, causing it to run at 
higher temperatures. At the beginning of the workload, memory allocation is performed 
and the system is able to run at the full 2.6 GHz frequency without significant heating. 
Once memory allocation is complete and the actual workload begins to run, power 
increases significantly and the processor begins to warm up. At about the 150-second 
mark, Socket 0 begins to hit the DTSMAX temperature of 95°C, and frequency begins 
to throttle in order to keep the CPU below the 95°C temperature. Frequency decreases 
until it stabilizes at an average frequency of ~2.45 GHz. Note that in this case, the CPU is 
actually switching between the 100MHz frequency bin granularities (2.4 GHz and  
2.5 GHz, primarily), and it is the average frequency that sustains ~2.45 GHz.
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Note ■  In many versions of the Linux kernel, any sort of thermal throttling is commonly 
reported as a “concerning” error message. thermal throttling, while uncommon in  
servers, is something that will frequently happen over the life of a product and there is  
nothing wrong with the system. when quickly transitioning from low-power workloads into 
very high-power workloads, the temperature of the CpU can frequently increase faster than 
the fan speed control algorithms can react to keep the temperature below DtSMaX. the 
CpU thermal management algorithms are in place to protect the CpU from damage and 
react gracefully to control frequency to stay within the thermal budget.

Prochot
There exists a pin called PROCHOT# on modern server CPUs that can both provide an 
indication of when the CPU is being thermally throttled (output mode) and be used as a 
mechanism for the platform to tell the CPU to throttle (input mode). It can also be used 
as a bidirectional pin so that both modes can be used simultaneously. Prochot output 
mode can be used for various platform usage models. The input indicates to the CPU 
that it should perform a heavy throttle as quickly as possible (usually to a low frequency). 
Haswell improved the speed of the Prochot mechanism so that it could be used for power 
delivery protection. More details are in Chapter 4.

CPU Power Management Summary
Figure 2-13 provides a high-level example of the various states that software and the CPU 
can employ to save power through a combination of “turning off” and “turning down.”

Figure 2-13. Server CPU power management example



Chapter 2 ■ CpU power ManageMent

70

Summary
It is quite common for data centers to operate at less than full capacity for a large 
percentage of time. Power costs contribute a large percentage of the TCO of many data 
centers. The benefits of saving power in the CPU are compounded by reducing cooling 
costs as well (discussed in Chapter 4). The features described in this chapter can save 
significant power and cost over the life of a data center.

P-states (voltage/frequency scaling) provide a mechanism to “dim the lights” 
when full performance is not required. This will increase the time to complete a task, 
particularly in workloads that require significant compute. However, in many cases, 
the time that a given transaction takes to execute on a given node is small compared to 
network latencies, hard drive accesses, and other overheads. Increases in the compute 
time on a node for that transaction can be a small fraction of the overall response time. 
On the other hand, some jobs and tasks are very latency sensitive and these increased 
response times can be undesirable.

CPU thermal management protects the CPU from dangerous temperature levels with 
a combination of P-states and T-states. Platform thermal management will be discussed 
in more detail in Chapter 4.

Turbo provides a mechanism for processors to take advantage of full capabilities 
of the platform and data center design by increasing the frequency beyond the base 
frequency in order to achieve higher performance. Even some of the most latency-
sensitive customers are beginning to use Turbo due to the large potential for increased 
performance.

C-states, clock gating, and power gating provide a mechanism to “turn off the lights” 
when cores or even entire packages are not needed. Although wakeups take some time 
(generally <50 ms), these delays are not observable in many usage models. A favorite 
customer question is, “I turned off power management and my performance went down. 
What happened?” C-states can also increase performance in many workloads by allowing 
other cores to turbo up to higher frequencies.

It is not uncommon for data center managers to disable all power management 
to avoid performance degradation in their fleets. Although not all power management 
techniques are right for all users, many can save significant money by finding the right 
features for their particular deployment. Chapter 7 will discuss how to monitor the 
behavior of a system, and Chapter 8 will provide guidance on how to tune and configure a 
system for different types of usage models.
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Chapter 3

Memory and I/O Power 
Management

CPUs cannot operate effectively without memory to store working data and I/O interfaces 
to bring in data from drives and the network. Although the CPU is a common focus for 
power management and power efficiency discussions, in many systems the memory 
subsystem can contribute a significant power footprint. I/O is also important but tends 
to contribute a much smaller piece of the pie. This chapter will provide an overview of 
server memory architecture and how the power and thermal management techniques 
work. It will also discuss how power is managed for the other I/Os that provide the CPU 
with the data required for operation.

System Memory
Memory power can contribute a very large +-percentage of the overall platform power 
in some system designs. Different usage models require wide ranges of memory 
capacity, causing the importance of memory power to vary from user to user. Different 
types of memory can also have a wide range of power consumption. This section will 
provide an overview of memory architecture and how it impacts power consumption in 
the data center.

Memory Architecture Basics
Before we discuss the power management capabilities of server systems, it is important to 
understand the basics of how memory works and how power is consumed. Let’s start at the 
high level. Sticks of memory, or DIMMs, are plugged into slots on the platform. Each slot is 
connected to a memory channel. Multiple DIMMs can be connected to the same memory 
channel, but when this is done, those DIMMs share the same command/data connection, 
and therefore allow for increased capacity, but not bandwidth. The number of DIMMs per 
channel is abbreviated as DPC (e.g., 1 DPC = 1 DIMM per channel).
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When the CPU issues a read to memory, it generally1 fetches 64 Bytes (B)2 of data 
from a single stick of memory. Each physical address (PA) in the system is mapped to a 
specific channel/DIMM that is connected into the CPU. The read/write is issued on the 
command bus, and data is returned (if a read) or sent along with the write command on 
the data bus. The relevant DIMM on the channel determines that the command is for it 
and processes the request.

Data on DDR3/DDR4 is handled in Burst-Length 8 (BL8). This means that a single 
access (read or write) uses eight slots on the memory bus (see Figure 3-1). The memory 
bus is 8 B wide, providing 64 B of data across these eight bursts and runs at the DDR 
frequency. So, a given channel can provide DDR Frequency (GHz) * 8 (Bytes/clock) of 
memory bandwidth (in GB/s). Each of these eight bursts will acquire some data from 
multiple devices on the DIMM (the exact number depends on the type of DIMM).

Figure 3-1. DDR and the CPU platform

Devices and Ranks
Figure 3-2 provides a high-level overview of memory DIMMs and how they connect to 
a CPU Socket. Each DIMM of memory consists of a number of memory devices. The 
devices are the actual “chips” that you will see soldered down to the DIMM. Each device 
supplies a subset of the 8 B chunks of data that are returned in each burst. Server memory 
devices/DIMMs can be ×4 or ×8 (called “by 4” or “by 8”).3 This refers to the amount of 
data that each device supplies toward each 8 B burst. ×4 memory supplies only 4 b of 
data for each 8 B chunk, and therefore 16 devices are required in order to supply the data. 
×8 memory supplies 8 b of data, so only 8 devices are required. Device manufacturers 
commonly only produce a couple of device sizes at a time—and those devices can either 
be manufactured into ×8 or ×4 memory. ×4 devices allow for higher DIMM capacities 
using the same device size as well as improved reliability with error correcting code (ECC) 
by requiring more devices to supply data for a single 64 B access.

1Certain reliability features do exist, like memory Lockstep, which allow for a given 64 B chunk of 
data to be fetched from multiple devices in order to improve reliability. These are not commonly 
used in typical servers and are targeted at very high-availability systems.
2A bit (b) of data refers to a single binary piece of data (1 or 0). A byte (B) of data refers to a 
collection of 8 bits.
3Other types exist, but are not common in server usage models (e.g., client devices using DDR3 
commonly supported ×16 memory as well).
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DIMMs also have ranks (usually one, two, four, or eight). Individual DRAM devices 
are single-ranked. So, when a DIMM supports two ranks, for example, this means that 
the number of DRAM devices on that DIMM is doubled. So, a ×8 DIMM that requires 8 
devices to supply 64 B of data will actually have 16 devices if it has two ranks, or 32 devices 
if it has four ranks. A single bus connects the DIMM to the CPU, and all the ranks on that 
DIMM share that bus. However, each rank is able to operate somewhat autonomously 
from the others. One of the biggest challenges for a DRAM device is switching between 
doing reads and writes (and back again). As a result, the memory controller must insert a 
sizeable bubble between these types of transactions to a given rank. DIMMs that support 
multiple ranks are able to sneak other transaction onto the channel bus while one rank 
switches modes, allowing for improved bandwidth and average latency. As a result, 
for performance, we generally recommend that you use either two single-ranked (SR) 
DIMMs of the same size on a channel, or one or more dual-ranked (DR) DIMMs in order 
to help hide these inefficiencies. Quad-ranked (QR) and even some oct-rank (OR) DIMMs 
also exist on the market.

Note ■  all memory is not equal. as with CpUs, new process technologies are being  
applied to memory, which enables lower power and increased capacities. at a given point  
in time, vendors are only able to economically manufacture devices up to a given size.  
the “next size up” (two times the capacity) are at times available, but they come at a  
significant cost premium. By increasing the number of ranks or moving from ×8 to  
×4 devices, vendors can increase the number of devices on a dIMM and thus increase 
capacity. Using a smaller number of higher capacity devices can consume significantly less 
power than using a large number of lower capacity devices, despite the fact that both can 
provide the same memory capacity.

Figure 3-2. DDR channels, DIMMs, and ranks
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Memory Error Correction (ECC)
Server memory typically leverages ECC memory to provide protection, both from transient 
errors and device failures. Each 8 B burst of data that is supplied includes an additional 
ninth byte of data that provides the ECC protection. This increases the cost and power of 
memory proportionally but is generally considered a “must-have” in server deployments.

Note ■  It is not possible to disable the eCC device in order to save power in  
systems today.

With ×8 memory, an additional device is included on the DIMM to support ECC. 
With ×4, two additional devices are required. ×4 memory provides improved reliability 
because each device provides a smaller percentage of the data. If a single device fails, 
the ECC algorithm is able to correct all data and continue to operate the system. On ×8 
memory, if a device fails, it is possible to detect such a condition and hang the system, but 
correction is not possible.

Memory Capacity
The capacity of a DIMM is a function of the ranks, devices, and device size. DIMMs are 
typically sold in Gigabytes (GB), whereas devices are typically referred to in Gigabits (Gb). 
The following formula summarizes how one can calculate the capacity of a DIMM based 
on the components:

Capacity GB
DeviceSize Gb Ranks

Devices
Rank

bits
B

( )
( ) * *

=

æ
è
ç

ö
ø
÷  

8
yyte

DeviceSize Gb Ranks
B

byX

bits
Byte

æ

è
ç

ö

ø
÷

=

æ

è
ç

ö

ø
÷

æ

è
ç

ö

( ) * *
64

8

 

øø
÷

=
( )DeviceSize Gb Ranks

byX

( ) * * 8  

Examples:

DR ×8 4 Gb = 4 Gb * 2 ranks * 8 / (×8) = 8 GB•	

QR ×4 8 Gb = 8 Gb * 4 ranks * 8 / (×4) = 64 GB•	

One can increase DIMM capacity by increasing the number of ranks, the device size, 
or the number of devices per DIMM (moving from ×8 to ×4).
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Note ■  For optimal performance, we typically recommend that you use dual-ranked (dr) 
memory, because it allows for more efficient use of the memory bus. this is particularly true 
of workloads that make use of high memory bandwidth. Single-ranked memory can also show 
good performance when you use it with multiple dIMMs of the same size per channel (since 
the memory controller has more than one rank to work with). Quad-ranked (Qr) memory also 
can make efficient use of the memory bus, but it typically requires a lower frequency.

Device Power Characteristics 
Many users have a feel for how much memory they think they need, but it can be difficult 
to understand how to populate the system in order to provide that desired memory. 
Table 3-1 provides some general rules of thumb for how memory power scales. In each of 
these cases, capacity is increased by either 1.5 or 2 times. You might expect power to scale 
directly with capacity, but different decisions result in different power impacts. (Note that 
these numbers are intended only as a conceptual guidance, not as a hard rule.)

Table 3-1. DDR4 DIMM Power Scaling Examples

Parameter Power Impact Capacity Other Notes

Single-rank to  
dual-rank

~1.3–1.5 times 2 times Improved performance with a  
one-DPC configuration, particularly 
with high-bandwidth workloads.

×8 to ×4 ~1.4 times 2 times Improved reliability.

Two times  
device capacity

<1.1 times 2 times Device size increases commonly 
come with better process technology, 
so this is difficult to accurately 
quantify.

One DPC to  
two DPC

~1.5–1.7 times 2 times Improved performance with single-
ranked DIMMs. Can decrease 
memory frequency. Power does 
not double in this case, because 
the bandwidth provided by each 
DIMM is 50% of the bandwidth if two 
DIMMs were used.

Two DPC to  
three DPC

See note 1.5 times Generally has significant impact 
on memory frequency. Not a fair 
comparison. Three DPC should 
be used for customers who need 
capacities not economically possible 
with two DPC.
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Note ■  Using dual-ranked memory in a one-dpC configuration is typically the most 
power/performance efficient across a range of workloads. Increasing the number of  
dIMMs per channel tends to be less power efficient than other alternatives but can also be  
attractive from a dIMM cost perspective. If low capacity and low bandwidth are required, 
one-dpC single-ranked topologies are the most power efficient. however, this efficiency 
quickly falls off if memory bandwidth begins to get stressed. Before purchasing one-dpC 
single-ranked systems, we highly recommend that you characterize the bandwidth  
requirements of their workloads first (as described in Chapter 7).

DDR has been optimized to minimize leakage power. Not only does this result 
in minimal power scaling with temperature, but it also minimizes the power cost of 
increasing the device capacity. This tends to be the most power-efficient mechanism for 
increasing capacity but can also be price prohibitive, especially after a certain point.

Power deltas for additional ranks and DIMMs tend to be smaller at higher 
bandwidths since the overheads are amortized across the power for providing the 
necessary bandwidth. This is not the case with ×8 to ×4 scaling.

DDR3 vs. DDR4
At a high-level, the architecture of DDR3 and DDR4 are very similar. From an end-user 
perspective, DDR4 enables higher frequencies while running at lower voltages and 
consuming less power. There are some other internal changes for improving performance 
(e.g., more banks). Table 3-2 shows how memory technology has progressed in recent 
years. Voltage has decreased despite increases in maximum frequency. Larger and larger 
devices have also been possible as process technology shrinks. Note that the maximum 
device capacities do not always represent what a given processor can support.

Table 3-2. DDR Generation Comparisons

DDR Generation Voltage Frequencies Device Capacities

DDR2 1.8 V up to ~1600 up to 1 Gb

DDR3 1.5 V up to ~1866/2133 Spec supports up to 8 Gb  
(4 Gb common)

DDR3L 1.35 V up to ~1333/1600

DDR4 1.2 V up to ~3200 (TBD) Spec supports up to 16 Gb

DDR3 supported two different voltages: 1.35 V and 1.5 V. However, running at the 
lower frequency reduced the peak frequency that could be achieved. DDR4 transitioned 
all memory to use 1.2 V but also provided a significant boost in peak frequencies (and 
with it, peak bandwidth).
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DDR voltage plays a significant role in energy efficiency (the exact amount varies a 
good amount across memory types). On processors supporting DDR3/DDR3L memory, 
a tradeoff could generally be made between selecting DDR3 memory and achieving 
a higher frequency, or DDR3L and operating at a lower voltage. Higher frequencies 
can significantly improve memory bandwidth and performance on certain workloads 
(particularly in the high performance computing space). They also provide slightly 
lower latencies, but these benefits tend to be small (a few percent of performance at 
best). Many enterprise systems with large memory capacities come nowhere close to the 
memory bandwidth limits of the system and can save significant energy by using DDR3L 
with minimal impact to performance. In platforms with smaller memory topologies, the 
importance of memory voltage overall is much smaller.

RDIMMs, UDIMMs, SODIMMs, and LRDIMMs
Most servers typically use registered DIMMs  (RDIMMs), although unregistered DIMMS 
(UDIMMs) are an alternative. Signal integrity is challenging with high-speed memory, 
particularly when multiple memory DIMMs coexist on the same memory channel. 
RDIMMs include a register on the DIMM that reduces the electrical load on the memory 
controller; this improves signal integrity and allows for increased memory frequencies 
(and higher performance). RDIMMs have traditionally been more expensive than 
UDIMMs because of the smaller volume and additional components. However, this trend 
may or may not continue as more client devices move to different memory technologies 
than those found on servers. The register also consumes measurable power (on the order 
of ~0.5 to ~1 W per DIMM) when active (some of this power can be saved in low-power 
states). Different processors and platforms have varied rules and constraints about the 
maximum frequency that can be supported by different types of memory (UDIMM vs. 
RDIMM) as well as the topology of memory (number of ranks, number of DIMMs per 
channel, etc.).

UDIMMs can be purchased with and without ECC. ECC increases the number of 
devices required by 12.5%, and power increases at about the same rate. Small-outline 
DIMMs (SODIMMs) show very similar characteristics to UDIMMs (both ECC and non-
ECC)—they are just physically smaller and therefore cannot hold as many devices.

ECC UDIMMs and SODIMMs are a good solution for low capacity, low power, and 
low cost deployments. Systems requiring larger capacities or high reliability typically use 
RDIMMs.

LRDIMMs (load-reduced DIMMs), a type of RDIMM, provide some additional 
buffering that allows them to provide access to a large number of devices and still 
maintain high frequencies. QR RDIMMs suffer from electrical issues that limit their 
frequencies. LRDIMMs attempt to address this by providing an additional buffer chip on 
the DIMM to address the increased device count and improve signal integrity. LRDIMMs 
provide high capacity and high performance. The additional buffer chip consumes 
some additional power and increases memory latencies slightly, but neither is really of 
consequence at the platform level. LRDIMMs are generally more expensive per GB of 
memory compared to normal DR RDIMMs. When they were originally released, they also 
had a healthy price premium over high capacity QR RDIMMs, but that price delta has 
come down over time (on DDR3). If you need massive memory capacity, LRDIMM is a 
good place to start.
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Memory Channel Interleave and Imbalanced Memory 
Configurations
Each channel has a finite amount of memory bandwidth that it can sustain. By interleaving 
a stream of requests across multiple channels, high memory bandwidth (and higher 
performance) can be achieved. In order to get optimal performance in a system, each 
channel should be populated with the same capacity of memory. However, sometimes this 
is not the most cost effective way to achieve a given desired memory capacity. If imbalanced 
configurations are going to be used, it is best to avoid situations where a single channel has 
more capacity than the others, because this results in a section of memory with a “one-way” 
interleave (and 25% of the theoretical peak bandwidth) as shown in Figure 3-3.

Figure 3-3. Imbalanced memory interleave example

By default, most systems today are set up to have separate non-uniform memory 
access (NUMA) memory regions assigned to each socket. For example, a system with 
32 GB of memory would have the first 16 GB of memory allocated on socket 0 and the 
second 16 GB on socket 1. An alternative to this approach is to use a uniform memory 
access (UMA) allocation, which interleaves every other cache line across the sockets 
(effectively providing a single 32 GB region across both sockets in the previous example). 
In many usage models, this is detrimental to performance because it increases the 
latency of half of the requests by forcing them to the remote socket. Many users are 
better off letting the OS (which is aware of this behavior) manage memory allocation 
and attempt to locate memory on the local socket in order to reduce memory latency. 
However, certain usage models do exist where the memory NUMA schemes are unable to 
successfully locate memory in the optimal place and actually lose performance by trying 
to do so. This is, however, generally uncommon, and most workloads either benefit from 
such an allocation or show little sensitivity.

Memory interleave does not typically have a direct impact on memory power 
savings. Power efficiency here is typically achieved by optimizing for performance. Some 
interesting effects are possible, although in imbalanced configurations. For example, 
imbalanced configurations can result in certain ranks being accessed infrequently, 
resulting in higher CKE power savings (discussed more in the following pages).
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Power and Performance States
A number of power savings techniques4 exist for reducing memory power when it is not 
fully utilized. In general, most of these techniques fit into the category of “turning things 
off” and not “turning them down.” There are really two main techniques for saving power:

Turning off CKE (clock enable): Power savings during short idle •	
periods at the rank granularity

Self-refresh: Power savings during long idle periods at the channel •	
granularity

Self-refresh allows for significant memory power to be saved but also can require 
non-trivial wakeup costs (~10 ms). Turning off CKE provides less power savings but can 
have very fast wakeups (~10 ns). Turning off CKE can also be done on a rank-by-rank 
basis, whereas self-refresh must be performed at the channel granularity. As a result, 
in servers, self-refresh is typically targeted at idle systems, whereas CKE is targeted at 
moderately active systems. Dynamically managing memory frequency at runtime has 
not been productized. Changing frequency is a non-trivial piece of work, and the power 
savings are generally not significant due to the static voltage.

CKE Power Savings
Each rank has a clock enable (CKE) signal that is driven from the CPU memory controller 
to the DIMM. By de-asserting CKE, the rank is allowed to enter a low power state that 
can be exited quickly (~10 ns to ~100 ns). A number of different flavors of CKE have 
differences in their details, but in general, they mostly behave the same. Because CKE is 
managed on a per-rank granularity, there is potentially more opportunity for CKE power 
savings on systems with more ranks.

At a high-level, there are two types of CKE:

Active power down (APD): Memory pages are kept open•	 5 and the 
row buffer stays powered up.

Precharge power down (PPD): The memory pages in all banks on •	
a rank have been “closed” or “precharged,” and the row buffer can 
be powered down.

At first glance, this may sound like a simple power/performance tradeoff. APD 
saves a bit less power but keeps pages open. However, in practice on servers, it does not 
actually work out this way. Many times when a rank goes idle for long enough to turn 
off CKE, the memory pages are also finished being accessed, and therefore having them 

4See the DDR3 and DDR4 specifications at www.jedec.org for more details. JESD79-4A contains 
information for DDR4, and JESD79-3F for DDR3.
5Memory pages are different from software/TLB pages. Different device types have different 
memory page sizes. A single 4 K software page can be mapped to either a single memory page  
(in open page configurations) or to many memory pages (in closed page topologies). Large pages  
(2 M and larger) typically exist over multiple memory pages.

http://www.jedec.org
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closed is good for both performance and power. Both CKE PPD and CKE APD are able 
to save on the order of 30% of the power, and the differences between the two for both 
power and performance are negligible.

The CPU can force PPD to be used by issuing a PREALL command to a given rank 
before de-asserting CKE. This closes all the pages in all banks on the rank, allowing PPD 
to be used. Alternatively, the CPU can simply de-assert CKE when all necessary timing 
parameters have been met. If one or more pages are open, the DIMM will be in APD. 
Otherwise, it will be in PPD. In Intel server documentation, the PPD mode refers to the 
case where PREALL is explicitly issued before de-asserting CKE, while APD mode disables 
this PREALL. It is still possible to get into a PPD state from the APD mode if all pages 
happened to be closed at the time CKE was de-asserted.

On DDR3, there were two main versions of PPD: PPDF (fast) and PPDS (slow). PPDS 
saved more power at the cost of a slight increase in exit latency. Usually the added exit 
latency is trivial, so PPDS is generally the better state. In the big picture, the differences 
between PPDF, PPDS, and APD are not large (either for performance or power efficiency).

One of the big changes with the transition from DDR3 and DDR4 is with how ODT 
is handled. Rather than requiring the memory controller to manage ODT, it is handled 
autonomously by the DIMM. In addition to this, the PPDS and PPDF states have been 
merged into a single PPD state where the DLL is kept powered and ODT is managed 
by the DIMM. This new simplified mode has excellent power savings. The DLL was 
redesigned on DDR4 and consumes much less power when active. It is possible to turn 
off all the DLLs on a channel when an entire channel is idle and save additional power. 
However, this state has not been productized on Intel servers thus far.

When all ranks on a DIMM are powered down, the register on RDIMMs can also 
enter a low power state. This does not save all of the register power but can save a couple 
hundred mW per DIMM.

It is also possible to power down the IBT (input-buffer termination). IBT OFF 
theoretically can save ~100 mW per DIMM with CKE (it also exists with self-refresh). 
However, in practice, the savings tend to be much smaller at the platform level because 
of the increased exit latency. This mode has not been aggressively enabled on servers 
due to the low power savings upside and wake latency exposures. It is more interesting in 
microserver usage models, particularly with self-refresh (more later).

Table 3-3 provides a summary of the various types of CKE power savings, including 
on which types of DDR they are supported. Table 3-4 provides a summary of how CKE has 
evolved over multiple processor generations.

Table 3-3. CKE Mode Summary

Type Granularity Banks ODT DLL DDR3 DDR4

APD Per rank ³ 1 active On On Supported Supported

PPDF Per rank All precharged On On Supported Supported (PPD)

PPDS Per rank All precharged Off Off Supported Not Supported
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Table 3-4. CKE Across Generations

Generation DDR APD PPDF PPDS Channel

PPDS-DLLOFF

Nehalem/Westmere E5 DDR3 Y Y 1 DPC N

Sandy Bridge/Ivy Bridge E5 DDR3 Y Y Y Y

Avoton DDR3 Y Y 1 DPC N

Haswell E5 DDR4 Y N N N

Self-Refresh
DRAM devices (unlike SRAM) must be periodically refreshed in order to keep the data 
valid. Refreshing memory is really nothing more than reading it out of the arrays and 
writing it back in. During normal operation, the memory controller is periodically issuing 
refresh commands in order to refresh a portion of the device. The entire device must be 
refreshed periodically (usually on the order of 10s of milliseconds). When a given channel 
is not being used, it is possible to put all the DIMMs on that channel into a self-refresh 
state where the DIMM itself is responsible for handling refresh. This state both saves 
power on the DIMM and allows for additional power to be saved in the CPU memory 
controller and I/Os. However, this additional power savings generally comes with a  
non-trivial latency cost. Like with CKE, there are different flavors of self-refresh that 
provide varied power savings and latency characteristics.

Because self-refresh is performed at the channel granularity and because it tends to 
have longer exit latencies, it is typically used for saving power when the system is completely 
idle. Self-refresh residencies in active systems tend to be very low. Typical high-capacity 
server DIMMs that are in self-refresh tend to consume on the order of 0.2 W to 0.5 W.

The main differentiator between the different flavors of self-refresh is how the CK 
signals are handled. This is referred to as the clock stop mode. CK and CK# are a pair 
of differential clocks that are necessary for transmitting commands and data between 
the CPU and memory. If the CPU continues to drive these signals during self-refresh, 
the wakeup latency can be relatively fast (< 1 ms). However, this mode saves minimal 
additional power compared to simply turning off CKE and the DLL. The clock can also 
be stopped. It can be tri-stated, driven low, or driven high. Each of these states results in 
additional power savings, but exit latency increases to ~10 ms.

CKE can also be tri-stated (i.e., not driven to either 0 or 1) during self-refresh to save 
some additional power (compared to driving it low). It must be driven low on UDIMMs, 
but otherwise it can be tri-stated (the voltage is not driven high or low; it is simply left to 
float to wherever it settles).
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Note ■  Self-refresh is most useful when the entire system is idle and CK can be stopped. 
as a result, it is used sparingly when cores/Io are active (where CKe management is used 
instead). however, when the entire system is idle, it can be used more aggressively.  
this is particularly the case when it is paired with package C-state power savings features. 
In these cases, the 10 ms wake latency can frequently be done in parallel with other  
long-latency operations (ramping voltage, locking pLLs, etc.), making the power savings 
effectively “free.”

Voltage/Frequency 
Systems today will not dynamically change the voltage/frequency of DDR. On DDR3, 
some devices support running at both 1.5 V and 1.35 V (called DDR3L). With the 
transition to DDR4, all DIMMs run at 1.2 V. DDR3L was released after DDR3, and DDR4L 
is expected in the future as well.

Running DDR3 at 1.35 V generally exhibits significant memory power savings. The 
amount/percentage is very sensitive to the configuration in question, but using DDR3L 
can save significant power on systems that leverage a large amount of memory.

On the other hand, generally the frequency of memory is really not all that important. 
Running at lower voltages can limit the achievable frequency in the system on DDR3, and 
the frequency can impact the maximum amount of power that a DIMM can consume, but 
the power to run most workloads is typically not that sensitive to frequency. As an example, 
taking some DDR3L memory that typically runs at 1333 and decreasing the frequency to 
1066 and running at the same (moderate) throughput would save less than 5% memory 
power. At the same time, such a change could also reduce memory CKE residency or 
increase core active time, further reducing the power benefits from the reduced frequency. 
With that said, running at 1333 does provide an additional 25% bandwidth, and if that 
bandwidth is actually used, then the memory power will increase by ~10%–20%. However, 
this is generally a great power/performance tradeoff—25% more used bandwidth usually 
means 25% more performance. The 10%–20% memory power increase for 25% more 
performance is a small power price to pay when measured at the wall.

On DDR4, the percent power savings by reducing frequency is larger, but this is 
largely because the overall power has gone down. Power savings with DDR4 is typically 
on the order of 50–400 mW per DIMM when reducing by a single frequency bin (again, 
without taking into account additional power consumed elsewhere as a result of the lower 
performance). Long story short: reducing memory frequency is generally not a good idea.

DDR Thermal Management
Managing the temperature of memory DIMMs is critical to preventing loss of data or 
system crashes. Most server memory is capable of monitoring temperature, but the CPU 
is responsible for providing the thermal management algorithms that protect the DIMMs. 
Memory temperature is another input to the fan speed control algorithms that are 
discussed in Chapter 4.
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Monitoring Temperature
The DIMMs themselves typically provide a thermal sensor called a thermal sensor on-die  
(TSOD), which provides a single temperature reading for an entire stick of memory. 
Historically, not all memory used in servers included a TSOD (UDIMMs in particular), 
but as time has progressed it has become standard. There is only a single thermal sensor 
on a DIMM, and it is commonly located near the center of the DIMM (lengthwise). Air 
commonly flows down the DIMM and heats up as it passes over the devices. As a result, 
the first device tends to be at a lower temperature than the last device, with a single 
temperature reading taken somewhere in the middle. The CPU (or BMC) reads this 
temperature over a System Management Bus (SMBus).

Memory Throttling
The CPU is responsible for throttling requests to the DIMM in order to reduce the memory 
temperature when it begins to enter a high temperature range. Table 3-5 provides a 
summary of some of the common methodologies for management memory thermals.

Table 3-5. Memory Thermal Management Techniques

Mechanism Requires TSOD Description

OLTT No Open-Loop Thermal Throttling

OLTT is the simplest mechanism for managing 
thermals. A static bandwidth limit is put in place in 
an attempt to avoid high-power operation.

CLTT Yes Closed-Loop Thermal Throttling

CLTT takes temperature readings from the TSOD 
and performs varied levels of memory bandwidth 
throttling in order to keep the DIMM in a safe 
operating range.

Dynamic CLTT Yes Dynamic CLTT

Dynamic CLTT is an enhanced version of CLTT 
that takes other platform information into account 
(such as fan speed) to adjust the throttling 
configuration dynamically to save additional power.

OLTT (open-loop thermal throttling) is the most basic mechanism for performing 
throttling. Historically it was used in low-cost systems that did not have TSODs available 
on the DIMMs to provide temperature-based throttling. TSODs are standard on most 
server memory today, but the legacy OLTT mechanisms are still available.

CLTT (closed-loop thermal throttling) is the standard mechanism for providing memory 
temperature protection. The CPU monitors the temperature of the DIMMs and engages 
varied levels of throttling depending on the temperature. Doubling the memory refresh rate 
is also commonly performed at higher temperatures in order to avoid data corruption.
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As discussed previously, temperature increases as air flows down the length of 
a DIMM. This increase is called a thermal gradient. The amount of gradient can vary 
with other platform parameters. For example, high fan speed results in more air flow 
and smaller temperature gradients than reduced fan speeds. With the baseline CLTT 
support, platform designers must assume some amount of gradient when configuring the 
CLTT throttling algorithms. The CPU provides an interface with Dynamic CLTT for the 
platform management firmware to dynamically change the throttling constraints based 
on an estimate of the thermal gradient. This can be used to save power or to prevent 
throttling when fan speeds are high and there is a smaller gradient. The algorithms used 
to estimate the gradient and configure the throttler are typically proprietary IP for a 
platform designer.

MEMHOT is a platform signal similar to PROCHOT. Different products make 
different use of MEMHOT. It can be used as an input to the CPU, providing an indication 
from the platform that the CPU should perform memory throttling. This input can be 
used for the platform to trigger memory throttling when a thermal issue is detected in 
the platform (even if the DIMMs themselves are not too hot). It is also frequently used to 
throttle memory power/thermals when some other undesirable event is detected in the 
platform like an overheating power supply. MEMHOT can be used as an output from the 
CPU and as an indication to the platform management that the DIMMs have reached a 
high temperature. On some CPUs, MEMHOT can also be bidirectional and support both 
input and output modes simultaneously.

DDR3 and DDR4 memory also supports an EVENT# pin that triggers when the TSOD 
detects high temperatures. This open-drain pin is typically wired directly to the BMC and 
is not used directly by the CPU. It is commonly used for detecting critical temperature 
levels that require an immediate system shutdown.

CPU DDRIO
I/Os exist on the CPU that connect to the traces that go to the DIMMs. These I/Os 
typically run at the same voltage as the memory and are supplied by the same voltage 
regulator.6 Multiple channels frequently share a voltage regulator. DDRIO power at a first 
order is a function of the bandwidth that it is driving (both reads and writes). There is 
some additional power cost that results from increasing the number of DIMMs, but this 
is not a first-order impact. Despite the fact that DDRIO power shares a voltage regulator 
with memory, the power is typically assigned to the CPU for Running Average Power 
Limit (RAPL) usage models. This is done in order to effectively manage thermals within a 
power budget. It also allows the CPU to trade off unused power (and thermal) headroom 
back to the CPU cores when underutilized. This can be useful, since many high DDRIO 
power workloads do not require heavy core power, whereas core-centric workloads tend 
to have low to moderate DDRIO usage.

6Platforms that leverage buffered memory solutions (such as Haswell EX) have more complicated 
power delivery designs, and may run the DDRIO and DIMMs on separate voltage regulators.
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Workload Behavior
Workloads tend to either demand very high memory bandwidth (³ 80% peak) or be 
relatively insensitive to memory throughput (< 30% peak). There are always exceptions to 
the rule, but this is a trend that can be observed across a range of server workloads. Many of 
the workloads that fit into the high bandwidth category come from the high-performance 
computing segment, or could benefit from data structure optimization to improve cache 
locality. Memory power has a moderate dynamic range even without memory power 
management features. This is particularly the case with one-DPC configurations. It tends 
to be less apparent with two-DPC and three-DPC configurations, since on average, the 
percentage of traffic that goes to a given DIMM is cut (in half or in a third), reducing 
the actual dynamic range of the DIMM bandwidth. As an example, with a one-DPC DR 
configuration, scaling bandwidth from 20%–80% increases memory power by ~1.5 times.

Memory Reliability Features
A number of reliability features exist for memory that can have an impact on the power 
drawn by a given workload.

Memory Lockstep is a reliability feature where a single 64 B piece of data is stored 
across two DIMMs on two different memory channels. Since DDR3 and DDR4 work 
in BL8 mode, a single read or write actually fetches 128 B of data from the memory, 
increasing the amount of memory bandwidth that most workloads will consume. 
Lockstep tends to only be used in environments where high reliability is required because 
it both increases memory power and tends to have a measurable performance impact.

Patrol Scrub is a memory reliability feature that is typically enabled on all server 
CPUs by default. This feature attempts to walk through all of the memory space more or 
less every 24 hours, reading each line and checking the ECC. The goal is to identify errors 
while they can still be corrected. A single channel on each socket is typically scrubbed at 
a time. In certain situations this can result in channels not entering self-refresh because 
this blocks scrubbing, thus increasing memory power of idle systems. Patrol scrub is 
generally a low-cost method for reducing exposure to uncorrectable errors, and the 
added power cost is generally worth that reduction in exposure.

CPU I/Os
In addition to memory, there are a number of additional I/O capabilities that exist on 
modern server processors including interconnects that connect multiple sockets together 
(such as Intel QPI) as well as PCIe, which provides connectivity to devices like network 
cards and storage.

CPU Interconnect
In multi-socket systems interconnects exist that connect the different sockets to each 
other. These interconnects are used to maintain coherency across the sockets, to 
provide a communication channel between the sockets, and to connect memory that 
is connected from one socket to the other. In order to provide high performance and 
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prevent the coherency overhead from slowing down the performance of the cores,  
these interconnects are required to be high bandwidth and low latency and consume a 
non-trivial amount of power.

On the Sandy Bridge EP processors, the QPI interconnect consumes ~5 W of power 
per socket. Much of this power is consumed in the I/Os, and therefore it does not scale 
down significantly from one process generation to the next.

Because of their moderate power draw, these interconnects are most efficient on 
higher power processors that can amortize the cost of the power. Using a 5 W multi-
socket coherent interconnect to hook up two 20 W processors is typically not worth the 
overhead. Rather than spending power on the I/Os, you are better off simply using a 
higher power single socket processor.

Link Power States
Power management of an interconnect is no different from anything else at a high level. 
However, one typical constraint is that it is difficult to scale the voltage of an interconnect 
in order to efficiently scale the frequency. As a result, reducing frequency can save power, 
but this is not always the most efficient decision. Table 3-6 illustrates some of the power 
states available on Intel’s QPI 1.0.

Table 3-6. QPI 1.0 Link Power States

State Name Power Granularity Description

L0 Link Active 100% – Link active and running at full 
size and frequency. Provides 
maximum bandwidth at 
minimum latency.

L0s Link Sleeping ~50% Per direction Subset of lanes asleep and 
not actively transmitting 
data. Not possible to send 
any information. Some lanes 
(clocks, etc.) still active, 
allowing for fast wakeup.

L0p Partial Link Active ~75% Per direction Similar to L0s state, but a 
subset of the data lanes 
remain awake (typically half, 
but anything is possible). 
Bandwidth is reduced and 
latency for transmitting data 
increases.

L1 Link Down < 10% Entire link  
(both 
directions)

Link is completely powered 
down. In order to transmit 
data, it must be retrained.
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L0p is a very useful power management state, particularly at low system utilizations. 
Many server workloads, particularly in the enterprise area, do not make heavy use 
of either memory bandwidth or the interconnect bandwidth. As a result, the loss in 
bandwidth from cutting the link in half has minimal impact on the actual performance or 
throughput of the system. L0p does, however, increase the amount of latency that it takes 
to transmit a data packet from one socket to the other. Data packets typically contain 64 
B of data, and the link itself is much smaller than this. This can add ~10 ns of latency for 
such transfers. Although this latency is mostly inconsequential at low system utilizations, 
it can cost 1%–2% peak performance on workloads that are very latency sensitive and 
transmit significant data from one socket to the other.

L1 is an excellent state for idle systems. Although it takes multiple microseconds 
to wake a link back up, this is commonly “free” if there are long-latency actions being 
performed in the system (memory self-refresh, ramping voltage from a retention level 
to an active level, etc.). As a result, L1 is typically used during package C-states. Using it 
more aggressively during active states tends to result in performance glass jaws and even 
platform power increases.

L0s was a state that was productized on early QPI generations, but it has since been 
not supported. L0s is theoretically most useful if workloads exhibit bursty behavior 
between being active and completely idle. With a coherent interconnect and server 
workloads, it is uncommon to find periods of no traffic that last longer than a few 
hundred nanoseconds unless the system is completely idle. A trickle of coherency 
and communication traffic between sockets always seems to exist, particularly in real 
workloads that do not exhibit perfect NUMA locality. In situations where the system is 
indeed idle, L1 provides the necessary idle power savings.

Note ■  L0s support has been removed from recent CpUs due to minimal power savings 
upside. L1 is only used during package C-states, where its latency can be hidden by other 
components during a wakeup.

Dynamic control of QPI frequency is not performed today. By reducing the 
frequency of the interconnect, not only is the bandwidth reduced, but the latency for 
transmitting data packets increases. This is particularly the case with L0p. This impacts 
the performance of the cores, which can spend more time stalled waiting for data to be 
returned to them. Not only does this impact the peak performance of the system, but it 
can even reduce the power/performance efficiency across a range of utilizations.

PCIe
The PCIe specifications provide standardized mechanisms for saving power. These link 
states are used across the wide range of devices that make use of PCIe (from low-power 
devices to servers). When it comes to PCIe link power management, server CPUs today 
are typically slaves to the devices that are connected to them. The devices themselves 
(through their own dedicated driver/firmware/hardware) initiate the transitions into 
power management states. The CPU is able to send negative-acknowledgment (NACK) 
requests but never initiates them.
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Link Power States
PCIe uses L0s and L1 states. Unlike QPI, there is no defined partial width (L0p) state. 
However, it is possible to dynamically change (or statically configure) the link width that 
a device uses through the upconfigure flow. Table 3-7 provides an overview of the power 
management states used by PCIe.

Table 3-7. PCIe Link Power States

State Name Savings Exit Latency Granularity Description

L0 Link 
Active

– – – Link is active and running 
at full size and frequency. 
Provides maximum 
bandwidth at minimum 
latency.

L0s Link 
Sleeping

~20 mW  
per lane,  
per 
direction

Microseconds Per direction Subset of lanes asleep and 
not actively transmitting 
data. Not possible to send 
any information. Some 
lanes (clocks, for example) 
are still active, allowing 
for fast wakeup. L0s is 
initiated autonomously 
by the link layer (no OS/
driver interactions).

L1 Link 
Down

~100 mW 
per lane

Microseconds Entire 
link (both 
directions)

Link is powered down. 
In order to transmit 
data, it must be 
retrained. Can be used 
dynamically at runtime. 
L1 can be triggered both 
autonomously by the 
connected device (ASPM 
L1) or through an OS/
Driver call (L1-soft).

L2 Link Off ~125 mW 
per lane

Milliseconds Entire 
link (both 
directions)

Saves slightly more power 
than L1. Generally used 
for unconnected links and 
links that are disabled at 
boot. L2 is only initiated 
through a software 
request.
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Note ■  power savings is design dependent. these numbers provide a reference point.

L1 can be used during idle periods but has typically not been heavily utilized 
because of the latency impact and minimal power savings at the wall relative to overall 
socket power. Drivers and devices are typically tuned to use this state in only the most-
idle conditions to avoid wakeup cost. With deep package C-states, the wakeup cost of L1 
can generally be hidden since the CPU is informed about the wake and can perform other 
wakeup actions in parallel. L1 is becoming more interesting in the microserver space 
where the I/Os contribute a much larger chunk of the node power.

Note ■  L0s is not supported on recent server processors. It saves relatively small 
amounts of power with non-trivial exit latencies. It is generally better off leaving a port in  
L0 or allowing it to drop all the way to L1.

Link Frequency/Voltage
PCIe has gone through three generations. Each generation has a single specified 
frequency at which the device runs (see Table 3-8). Multiple voltage/frequency points 
are not supported. However, the newer generation devices support (by rule) backward 
compatibility to the prior generation’s frequencies. Changing frequency requires a full 
link retrain and is typically not performed dynamically at runtime today (although it is 
supported). Voltage is constant across generations/frequencies. When a PCIe 2.0 device 
is connected into a processor that supports PCIe 3.0, the device can only operate in  
PCIe 1.0 or 2.0 modes.

Table 3-8. PCIe Generations

Generation Frequency Theoretical ×8 Bandwidth

PCIe 1.0 2.5 GHz 2 GB/s

PCIe 2.0 5 GHz 4 GB/s

PCIe 3.0 8 GHz 7.88 GB/s

Although PCIe 3.0 only increased frequency by 60%, it was able to almost double the 
peak throughput. This was due to more efficient encoding and better use of the available 
wires for actual data.
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Link Width
The number of lanes of PCIe impact the bandwidth that can be pushed through a link. 
Double the lanes, and the theoretical peak bandwidth is also doubled. The maximum 
number of lanes that a device is able to use is a function of both the device itself as 
well as the slot that it is connected to. Some systems may also allow the width of 
certain slots to be configured by BIOS. This can save a small amount of power but is 
generally not significant and can significantly reduce throughput. This could be useful 
for benchmarking but is not something that would generally be recommended for 
production systems.

PCIe devices can dynamically change the number of lanes in use at a given point 
in time. This can be done through software drivers (through the upconfigure and 
downconfigure flows) or through autonomous linkwidth change, allowing them to save 
power when lower bandwidth is required. These flows can be thought of as a way to 
reconfigure the link at runtime by restarting it with a different width (the lanes that are 
no longer used are no longer driven, reducing power). Reconfiguration typically takes 
microseconds, during which time the link is unavailable to transmit data. This flow has 
not been aggressively productized in server PCIe devices to date. These modes typically 
save relatively small amounts of overall system power and can cause non-trivial impacts 
to performance and latency in server usage models.

Hot Add
Many servers support Hot-Add flows.  These allow PCIe cards to be inserted into the 
system at runtime without a reboot. However, this comes at a cost. In order to support 
Hot-Add, the lanes periodically cycle through a DETECT state that consumes moderate 
power. For a ×8 lane, this can add on the order of 100 mW of power on average. Through 
BIOS, PCIe lanes can be forced into an L2 state so that they do not perform this detection.

D-states
Similar to core C-states, PCIe devices can use D-states that indicate that a device is 
powered down. D-states are commonly used in phones, tablets, and laptops under idle 
conditions. They are not common under active load in servers. D-states are traditionally 
handled outside the CPU by PCIe devices that are connected to the platform with no 
interaction with the CPU (except side effects like the L1 state being used). As traditionally 
discrete devices are integrated into SoCs, this may change.

Summary
Memory can consume a large percentage of the overall power “pie” in many server 
systems. This is particularly the case in deployments that depend on large memory 
capacities. CKE and self-refresh can save significant amounts of power with almost no 
impact to the performance of the system. Making use of these capabilities is critical for 
achieving power efficiency in deployments with large memory capacities.
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Selecting the correct type and configuration of memory can also have a large impact 
on energy consumption as well as performance. Building systems with at least two ranks 
per channel tends to result in the best performance across a wide range of workloads. 
Larger capacity devices tend to provide additional capacity at lower power cost than more 
DIMMs or more ranks, but they can also be cost prohibitive.

I/O power has historically been a much smaller contributor to overall system 
power, and getting overly aggressive with power optimizations in this area can be 
counterproductive. This is particularly the case with high-power CPUs. I/O power does 
become much more significant on CPUs with low power draw such as microservers and 
embedded devices.
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Chapter 4

Platform Power Management

Each CPU in a data center requires a large amount of support hardware. This support 
hardware, contained within the server chassis, is generally referred to as the platform. 
Over the years, more and more of the platform has been integrated into the CPU, such as 
memory controllers and PCIe connectivity. However, a large portion of the overall power 
in the data center is still consumed by the support infrastructure outside of the CPUs and 
memory. Storage (drives), networking, power delivery, and cooling all can contribute a 
significant amount to the overall cost of a data center. Some of these components (like the 
fans) have sophisticated algorithms that attempt to manage their power consumption, 
whereas others (like drives) tend to employ minimal power management techniques.

Platform Overview
A platform is conceptually everything (including the CPU) required for a CPU to operate. 
It includes the power delivery (which converts electricity from the power grid into 
something usable by the different platform components), cooling (fans, heat sinks, etc.), 
as well as the memory, drives, and networking that are connected to the CPU sockets.

Common Platform Components
A single platform is commonly referred to as a node, which generally incorporates from 
one to eight CPUs that are connected with coherency.1 A wide range of platform designs 
are possible and available. However, some standard building blocks go into just about any 
platform design (see Table 4-1). This chapter investigates some of the power management 
characteristics of these various platform components.

1Coherency is a mechanism that allows different software threads running on different CPUs to 
share a large set of physical memory without requiring software management.
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A wide range of platform designs are used in the industry. Some designs provide 
large amounts of data storage and connect a large number of drives. Others may be 
completely driveless and use the network to bring data into the node. Figure 4-1 provides 
an example of one potential platform node with two CPU sockets.

Table 4-1. Common Platform Components

Component Description

CPU These processors provide the computation and execution of user 
workloads. See Chapter 2.

Memory Memory provides temporary storage for data being used by the 
CPUs. See Chapter 3.

Storage Storage (drives) provides bulk storage of data. SAS  
(serial attached SCSI) and SATA (Serial ATA) are two common 
protocols for connecting drives to a storage controller.

Networking Networking provides for communication between multiple nodes. 
Ethernet and InfiniBand (IB) are common networking interfaces. 
NICs (network interface cards) provide the connectivity between the 
CPU and the Ethernet/IB network.

Power delivery Different components in the system require different voltages and 
types of current (AC/DC). VRs (voltage regulators) are DC to DC 
converters that take an input voltage and step it down to a lower 
operating voltage. PSUs (power supplies) take AC current and 
convert it to DC.

Cooling When servers consume power, it is turned into heat. Fans and other 
cooling devices are used to extract that heat from the platform to 
maintain a safe operating temperature.
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Integration
As time has progressed, more pieces of the platform have been integrated into fewer 
discrete chips. This can save cost and power and even improve performance in some cases.

CPU Integration
For many years, the sole role of the CPU die was to provide one (or a couple of) cores and 
a supporting cache hierarchy. These were then connected to some system bus (front-side 
bus (FSB) on Intel systems), which then connected them to a chipset. This chipset provided 
a memory controller and PCI connectivity for devices like drive and network controllers. 
These busses consumed power, limit bandwidth, and increased latencies. As a result, more 
and more of the chipset began to get integrated into the CPU itself, both to reduce platform 
power and to increase performance. Table 4-2 provides an overview of some of the key 
integration milestones over Xeon processor generations.

Figure 4-1. Two socket platform node example
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Although power can be saved (fewer platform busses and I/Os driving them) and 
performance can be improved (on-die busses provide higher bandwidth and lower 
latency compared to off-chip interconnects), this integration is not free. The area of the 
CPU must increase to accommodate the additional components. CPU packages may need 
to accommodate more pins (which increases cost). This integration also moves power 
that was previously consumed out in the platform into a much closer physical location to 
the traditional CPU components. This either requires that more power (and cooling) be 
provided to the CPU or that less power be made available to the cores.

CPUs are typically built on the latest manufacturing process technology that provides 
the best power efficiency. Other devices in the platform are usually manufactured on 
older technologies. When they are integrated into the CPU, these capabilities get an 
immediate upgrade in power efficiency due to the process technology improvement.

Chipset Integration
The CPU absorbed the memory controller and some of the PCIe connectivity away from 
the chipset in the Nehalem and Sandy Bridge generations. However, the chipset has 
started integrating other components of the platform. Storage and network controllers 
are now standard on server chipsets. PCIe is still provided, although it is generally lower 
performance than the CPU links and is focused on low-bandwidth connectivity. Chipsets 
are discussed in more detail later in this chapter.

Microservers and Server SoCs
Server system on a chip (SoC) components are becoming more and more prevalent.  
In these designs, the chipset and CPU are integrated together into a single die or as a 
multi-chip package (MCP). The primary goal here is to reduce the costs of deploying 
a single CPU node. The concept of a microserver is where you target these lower-cost 
devices in mass quantities in a data center to provide adequate performance at reduced 
costs. Although microservers have received significant press in recent years, deploying 
these lower-cost, power efficient, highly integrated devices into embedded markets is 
arguably even more interesting.

Table 4-2. Integration over Intel EP CPU Generations

Generation Integration

Nehalem Memory controllers

Jasper Forest (Nehalem Derivative) PCIe 2.0 (up to 16 lanes)

Sandy Bridge PCIe 3.0 (up to 40 lanes) that can share  
L3 cache with cores

Haswell Voltage regulators
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Platform Manageability
Running a large data center requires capabilities for monitoring and managing the 
various components that go into a data center. Controlling fans, rebooting nodes that 
have crashed, monitoring power, and many other tasks are all critical to managing 
a typical data center. These concepts will be discussed in Chapters 5 and 9. Rather 
than having software running on the CPU cores to provide these capabilities, many 
server platforms have traditionally deployed dedicated management chips. These are 
commonly called baseboard management controllers (BMCs).

Server BMCs are OEM-proprietary devices with a small microcontroller at their 
heart. They have tentacles throughout the platform in order to monitor and control the 
various subsystems. Platform Environment Control Interface (PECI) is a standard used 
for interactions between BMCs and CPUs. System Management Bus (SMBus) protocol 
is also commonly used for providing telemetry information from platform devices 
(power supplies, etc.) to the BMC. Intelligent Platform Management Interface (IPMI) 
is an interface used for software to interact with the BMC for extracting the wealth of 
information of which the BMC is aware (see Chapter 7 for examples). A single platform 
with N coherent CPU sockets is generally paired with a single BMC, but this is not strictly 
required.

BMCs themselves do not consume a significant amount of power but can have 
a notable impact on the overall power draw of the system since they control the fans 
associated with a given platform node. Thermal management is discussed later in 
this chapter. Servers without BMCs have been investigated in order to reduce power 
consumption and save on integration costs, but thus far, such designs have not taken off.

CPU Sockets
Modern CPU nodes can support varied numbers of CPU sockets. Uni-processor (UP) and 
dual-processor (DP) servers make up the bulk of the server processor nodes sold today.

Multi-processor (MP) nodes commonly consist of four or eight processors, but other 
topologies are also possible. MP platforms have a higher procurement cost associated 
with them, and are frequently used in situations where large single-node performance or 
memory capacity is required. By moving to a larger number of CPU processors per node, 
the cost of some of the platform components can be amortized. For example, if each node 
requires a boot SSD and a network connection, one can potentially reduce the number of 
required SSDs and network connections by two times by going from a UP to a DP platform.

Note ■  Due to the large procurement costs and usage models associated with mp  
systems, power efficiency and power savings are typically a lower priority for end users.
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DP platforms provide an excellent cost/performance sweet spot. MP platforms have 
typically demanded a higher overall price per CPU, while UP platforms are not as effective 
at amortizing other platform costs (power and procurement). DP platforms also exhibit 
strong performance scaling for many workloads.

UP server systems have traditionally been relegated to situations that simply did not 
demand the performance of a DP or MP system. Rather than being deployed in a data 
center, they have been used in other lower-end server appliances such as small business 
NAS (network-attached storage). As single node performance continues to increase, UP 
systems cost amortization is improving. If a DP system requires two network connections 
in order to provide sufficient data to saturate the capabilities of the cores, then there 
is no additional savings by scaling to two sockets. Server SoCs (like microservers) that 
incorporate capabilities like networking also help reduce the power and procurement 
amortization benefits of multi-socket systems.

Platforms that directly connect two to eight processors coherently to each other 
are said to be glueless. A variety of glueless topologies have been developed over time. 
Figure 4-2 shows some examples from recent processor generations from Intel. Note 
that in each of these examples, every socket is either one or two “hops” from each other 
socket on the platform. It is possible to connect even more processors in a coherent 
network, but this generally requires special hardware (or glue) called node controllers. If 
all the processors are directly connected to each other through point to point links, the 
platform is said to be fully connected. Fully connected platforms generally have lower 
latencies, higher bandwidth, and better performance scaling than platforms that are not. 
There is a small power cost for the additional connectivity, but the return on investment 
(performance) is well worth the cost for most usage models.

Figure 4-2. Example glueless coherent platform topologies

Node Controllers
Although the majority of platforms limit the number of coherent CPUs to a maximum of 
eight, it is possible to build much larger coherent systems using node controllers (xNC). 
Node controllers are generally discrete chips that connect one, two, or four CPUs out to 
other node controllers through a proprietary fabric (see Figure 4-3). These systems are 
frequently used for building supercomputers and can connect hundreds of processors 
and thousands of cores into a single coherent domain running a single operating system. 
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Note that it is also possible to build large supercomputers without node controllers by 
connecting a large number of nodes non-coherently through a network. The differences 
between these designs are beyond the scope of this book.

Figure 4-3. Node controller example

Memory Risers and Memory Buffer Chips
Certain high-end servers demand very large memory capacities. Databases are the most 
common example. Each CPU socket is generally limited in the amount of DDR memory 
to which it can directly attach. The number of DDR channels on a socket is constrained 
by packaging and die costs. The number of DIMMs on a channel is limited by electrical 
loading constraints. LR-DIMMs attempt to address some of these issues but can only 
go so far. In order to expand memory past the constraints imposed by the CPU socket, 
memory risers and memory buffer chips have been used on some high-end servers. 
Rather than connecting the CPU directly to memory, the CPU communicates with a 
discrete chip in the platform that is then able to communicate to the actual DDR memory. 
In these platforms, the memory is connected on separate riser cards, where a set of 
DIMMs is connected to a card, and then that card is connected into the motherboard. 
There have been various flavors of these technologies over the years. Intel has 
historically productized a memory buffer technology as part of its EX platforms (called 
Scalable Memory Buffer [SMB]), and other OEMs have deployed their own proprietary 
technologies to provide similar capabilities. These buffer chips do consume measurable 
power (usually a few watts), but they tend to be dwarfed by other power in such platforms 
(including the memory that they provide connectivity to).
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Server Chipsets
Many server platforms employ discrete chipsets that are connected to the CPUs. These 
devices provide key legacy capabilities required for booting the platform, capabilities 
for manageability, and also integration of many features that otherwise would require 
discrete controllers (such as storage, network, and USB controllers). Some SoCs integrate 
the chipset functionality into the package with an MCP, while others (like Avoton) 
integrate the entire chipset into the same die as the CPU. The discrete chipsets used in 
many Xeon server designs at Intel are called a PCH (Platform Controller Hub). The PCH 
attaches to the CPU via a proprietary DMI (Direct Media Interface) link, and provides 
boot, manageability, and I/O services to the platform.

The PCH has been the south bridge of the two-chip Xeon Intel Architecture since 
the Nehalem/Tylersburg generation and is a companion to the CPU. This architecture 
succeeds the Intel Hub Architecture, which was a three-chip solution. Successive 
generations of PCH have advanced the I/O capability of IA platforms, with Gen2 PCIe, 
Gen3 SATA, and Gen3 USB now available on Wellsburg. A microcontroller-based power 
management controller (PMC) and a Management Engine (ME) were added to the PCH 
to support traditional power management features, along with several extended features.

The chipset serves a variety of purposes in the platform. Table 4-3 provides a 
high-level summary of some of the key capabilities. Figure 4-4 shows an example block 
diagram of such a system. Table 4-4 enumerates some of the integrated functionality of 
modern PCHs.

Table 4-3. PCH High-Level Capabilities

Capability Description

High-performance I/O connectivity This includes PCIe, storage (SATA and/or SAS), 
networking, etc. These capabilities are only 
available when the CPU is active and the system is 
in the S0 state.

Wake/boot The PCH both detects wake events (like Wake on 
LAN) and sequences the platform to transition in 
and out of platform power states. The PCH also 
provides access to flash memory for BIOS.

Manageability This provides interfaces for the data center to 
monitor and manage the node, such as reading 
temperatures.

Real-time clock (RTC) This maintains the system clock that tracks clock 
time. If you unplug a desktop from the wall, your 
time and date is not lost since it is maintained on 
the RTC. The same capability exists in server PCHs.

Legacy I/O connectivity This provides connectivity to low-performance 
platform connectivity that is generally required 
for system operation.
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Figure 4-4. A typical server PCH architecture block diagram

Table 4-4. Primary PCH Components

Component Description

On-die fabric Interconnects exist on the PCH that are commonly called on-die 
or on-chip fabrics. These interconnects are conceptually similar to 
those in CPUs. These are not to be confused with fabrics that connect 
multiple CPUs together at the data center level.

DMI DMI provides a mechanism to connect the PCH and components 
connected downstream from the PCH to the CPU. It operates very 
similar to PCIe.

PCIe PCIe connectivity can be incorporated both into the CPU and the 
PCH and shares the same basic power management capabilities. The 
PCH is useful for high fanout, low bandwidth connectivity.

SATA Storage connectivity is included on some PCHs and is discussed in 
the “Storage” section of this chapter.

USB USB is primarily targeted and consumer usage models but is also 
present in servers (particularly for debug usage models). It is 
discussed later in this chapter.

Ethernet Ethernet integration is also incorporated into the PCH. Networking 
power management is discussed in the “Networking” section of  
this chapter.

(continued)
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The PCH has traditionally been the component that provides access to various 
high-speed I/Os (SATA, Ethernet, PCIe, USB), although these capabilities are increasingly 
being integrated into the CPU to create SoC components. The SATA/PCIe/Ethernet/USB 
interfaces provide access to external communication, including disk/solid-state storage, 
networking, USB ports, and manageability. Moving data with higher performance 
between two devices in a platform consumes non-trivial power, and integration is an 
effective way to significantly improve overall platform power consumption.

Internally, the PCH architecture is constructed with a mix of analog and digital 
components. Similar to the CPU uncore, analog design is used for designing the off-chip 
communication (e.g., PCIe/SATA/USB physical interface) and on-die memory (SRAM), 
while the bulk of the remaining system is built out of synchronous digital logic. Unlike 
traditional server CPUs, a large percentage of the chipset power is consumed by analog 
I/O circuitry (commonly called physical layer or PHY) and not the digital logic.

PCH and Platform Power Management
The PCH orchestrates many of the platform power states introduced in Chapter 2. 
In addition to this task, it is responsible for managing its own power states. Table 4-5 
provides an overview of the power management states in which the PCH participates.

Component Description

SPI/LPC

(legacy I/O)

Serial Peripheral Interface (SPI) and Low Pin Count Interface (LPC) 
provide connection points to platform boot devices that contain the 
BIOS/UEFI image, as well as firmware for other PCH components 
(e.g., ME, Ethernet).

ME The Management Engine on the PCH provides platform management 
services, key management, and cryptographic services.

SMBus SMBus provides a legacy mechanism for communication with platform 
peripherals for system and power management–related tasks.

Table 4-4. (continued)
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Since the PCH controls the platform rails and clocks, it needs to remain powered on 
even in states where the CPU is powered off (G- and S-states). This is accomplished by 
using platform power rails that are successively powered off depending on the system 
state. The PCH provides a number of high-level capabilities that are successively disabled 
at lower power states. Table 4-4 provides an overview of these capabilities, and Table 4-6 
shows how the capabilities are disabled in each power state.

Table 4-5. System States Supported by Server PCH

State Description

C-states Low-power states for PCH I/Os

See Chapter 2 for details on CPU C-states. PCH does not support all the 
traditional CPU C-states but places its I/Os in low-power states when 
the CPU is not active.

• C0 is an active state when the PCH logic and I/O are functional.

• Cx is a clock/power-gated state, during which PCH I/Os are 
transitioned to a lower power-managed state.

S-states Turning off the CPU package (sleep state)

See Chapter 2 for details on S-states. The PCH I/Os are turned off 
(except S0), but the PCH core logic remains active in all S-states.

PCH can wake the CPU up from S3/S4/S5 states based on platform 
signaling. Waking from an S3 state takes seconds, whereas waking from 
S5 requires a full system boot and can take multiple minutes.

M-states Turning off the Management Engine

These states are related to the Management Engine.

• M0: Active state, when platform is in S0 state.

• M3: Active state, when platform is in S3/S4/S5 state, used for  
out-of-band platform management and diagnostics.

• MOff: Management engine is turned off in Sx.

G-states Global states

See Chapter 2 for details. The PCH is active in G0 to G2 and is only off 
in the G3 state (mechanical off).
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Systems autonomously transition out of the G3 state and into the G2 state when power 
is supplied to the platform. From there, various wake events can be used to transition the 
state into a higher power operational mode as needed. As such, the G3 state is hidden 
from the user.

PCH Power Management
The PCH consumes a small percentage of a node’s overall power. Because the bulk of the 
power consumed by the PCH exists in the I/O PHYs, the typical power consumed under 
load is very dependent on the number of connected devices. The TDP power of Patsburg 
(the chipset used with Sandy Bridge and Ivy Bridge E5 processors) was 8 W to 12 W when 
all of the high-speed I/O ports were connected (fully populated). Wellsburg (paired with 
Haswell E5) consumed a TDP of 7 W when fully populated. Notable power can be saved 
if certain I/Os are not populated. Table 4-7 provides an overview of four different usage 
configurations of the PCH and the corresponding TDP power for those configurations.

Table 4-6. Example PCH Power States and Capabilities

G-State M-State S-States Power Rails Manageability Wake Capability

G0 M0 S0 All available Available N/A (awake)

G0 M3 S3/S4/S5 Wake + Manageability +  
RTC

Available Yes

G2 MOff S4/S5 Wake + RTC Disabled Yes

G3 MOff S4/S5 RTC Disabled None

Table 4-7. PCH TDP Power (W) Consumption with Various I/O Port Configurations

Workstation Server Low Power Boot-Only

USB2 Ports 14 6 2 (detection) 0

USB3 Ports 4 4 1 (detection) 0

SATA3 Ports 8 5 2 0

SATA2 Ports 2 1 1 0

PCIe Lanes 8 4 2 0

TDP (W) 6.5 5 3.2 1

The Wellsburg PCH, which launched with the Haswell Server CPU, is built on a  
low-leakage process and does not implement techniques like voltage-frequency scaling 
or power gating to reduce the power consumed at runtime. Turbo is not available.  
In order to save power, clock gating is performed on logic features that are disabled or 
not currently in use. Since the PCH is I/O dominated, a sizable portion of the power is 
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consumed by the circuits that provide the physical interface to the platform. The voltage 
of these interfaces is generally static (as defined by industry standard specifications). 
Several power management states are defined for the links to opportunistically reduce 
power based on the operating state, as described in the following subsections.

If an entire section of logic is not being used, then the PLL (phase-locked loop) 
that drives that logic can be powered down. For example, if a user is building a compute 
node that lacks any local drives, the storage subsystem in the PCH can be completely 
powered down.

PCIe in Chipsets
Prior to Sandy Bridge and Jasper Forest, chipsets provided the PCIe connectivity in the 
platform. When Sandy Bridge integrated PCIe into the CPU, the chipsets continued to 
provide this capability. Today in platforms with discrete PCH devices, PCIe connectivity 
is offered on both the CPU die and the PCH. PCIe in the PCH provides the same power-
saving capabilities that are described in Chapter 3 (L1, DLW).

PCIe on the CPU provides high performance and (relatively) low latency connectivity 
at the expense of limitations in the fanout (devices smaller than x4 consume four lanes). 
The PCH, on the other hand, provides lower bandwidth and longer latencies, but can be 
bifurcated down to x1 making it an excellent choice for low bandwidth devices.

PCH Thermal Management
The PCH contains thermal sensors in order to monitor the temperature and help 
guarantee that the PCH will not get to a dangerous temperature where reduced reliability 
or damage could occur. The PCH may throttle itself to stay under a target temperature or 
even initiate an immediate shutdown if temperature exceeds a catastrophic threshold. 
Like CPUs, PCHs are spec’d with a TDP rating that is used to design the thermal solution 
and an ICCMAX rating that is used to size the voltage regulators to power the voltage rails. 
They also contain similar thermal protection mechanisms such as shutting down the 
platform when catastrophic temperatures are detected. Platform thermal management is 
discussed in detail later in the chapter.

Networking
Network interfaces—both the local LAN adapter as well as network infrastructure 
devices—are the gateway for the server platform to the rest of the world. Network activity 
demonstrates unpredictable distribution of packet arrival times at multiple scales. 
As a side effect, the network interfaces are never fully powered down. LAN adapters 
contribute ~5–10 W to the overall platform power. This power is not one of the primary 
power contributors in typical server platforms that deploy high-power CPUs and large 
amounts of memory. Although the LAN adapters themselves do not directly contribute a 
significant percentage of the platform power, their behavior and configuration can have a 
large impact on the power consumption of the CPU (and thus the platform).
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Note ■  although network cards do not themselves contribute a significant percentage 
of the platform power consumption, their configuration and behavior can have significant 
impacts on CpU power (and thus platform power).

In typical usage, LAN component power is driven by five main factors. Table 4-8 
provides a high-level summary of these factors (which are discussed in detail in the 
following pages.).

Table 4-8. Primary Factors in LAN Controller Power

Factor Description

Ambient temperature LAN devices have traditionally been manufactured 
with high-leakage process technologies, resulting in a 
significant power increase at higher temperatures.

Attached media The type of connection (fiber optic, copper cable, etc.)  
can have a moderate impact on the power consumption.

Configured speed LAN controllers can be configured by software to run at 
lower frequencies. This can save notable power.

Power management features Various power management options are available that 
can trade off performance (latency) to save power.

Bandwidth Packets per second have the biggest impact on NIC 
power (not raw bandwidth). However, on recent high-
performance networking devices, there is not significant 
sensitivity to bandwidth.

Ambient Temperature, TDP, and Thermal Management
Many LAN vendors quote typical power numbers in their datasheets. However, there 
are no industry conventions as to what typical usage is, though many assume 25°C for 
ambient air temperature, and nominal voltage. An increase in temperature from 25°C 
to 70°C can increase the component power by 50% to 100% solely due to leakage (which 
itself is a function of the silicon process used to produce the device). As LAN controllers 
transition to lower leakage processes or are integrated into low-leakage SoC designs, the 
sensitivity to temperature will decrease.

Similar to CPU designs, the maximum quoted power of the LAN controller is measured 
assuming worst-case conditions, including high temperatures (~70°C ambient). The server 
platform thermal management—such as fan size and speed—is designed to cool to this 
maximum component thermal design point (TDP). LAN controllers are typically designed 
assuming passive cooling, and it is also common for these devices to exist in areas of 
limited airflow. Active cooling—such as fans—is discouraged because of server platform 
reliability concerns. The net result is, regardless of the functionality or media provided, 
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the server LAN component TDP must be 10 W or less (unless special design provisions are 
made at the platform level for additional fan cooling). Tables 4-9, 4-10, and 4-11 show some 
historical information about Intel LAN adapter TDP power.

Table 4-9. Historical TDP Power of Single-Port 1 Gbps Intel LAN Adapters

Year Device Ports/Speed TDP (W) TDP (W) / Gbps

2001 Intel 82544EI PCI-X 1x 1 Gbps 1.5 W 1.5 W

2004 Intel 82541 PCI 1x 1 Gbps 1.0 W 1.0 W

2005 Intel 82573 PCIe 1x 1 Gbps 1.3 W 1.3 W

2008 Intel 82574 PCI 1x 1 Gbps 0.7 W 0.7 W

2012 Intel I210 PCIe 1x 1 Gbps 0.7 W 0.7 W

Table 4-10. Historical TDP Power of Multi-Port 1 GBps Intel LAN Adapters

Year Device Ports/Speed TDP (W) TDP (W) / Gbps

2005 Intel 82571 PCIe 2x 1 Gbps 3.4 W 1.7 W

2009 Intel 82576 PCIe 2x 1 Gbps 2.8 W 1.4 W

2010 Intel 82580 PCIe 4x 1 Gbps 3.5 W 0.9 W

2011 Intel I350 PCIe 2x 1 Gbps 2.8 W 1.4 W

2011 Intel I350 PCIe 4x 1 Gbps 4.0 W 1.0 W

Table 4-11. Historical TDP Power of 10 GBps Intel LAN Adapters

Year Device Ports/Speed TDP (W) TDP (W) / Gbps

2001 Intel 82597 PCI-X 1x 10 Gbps 9.0 W 0.9 W

2007 Intel 82598 PCIe 2x 10 Gbps 6.5 W 0.3 W

2011 Intel 82599 PCIe 2x 10 Gbps 6.2 W 0.3 W

2012 Intel X540 PCIe w/ 
10GBASE-T Phy2

2x 10 Gbps 12.5 W 0.6 W

2014 Intel X710 PCIe 4x 10 Gbps 7.0 W 0.17 W

2This device includes a 10GBASE-T attached media, increasing the TDP power. The other 
controllers listed must be paired with a separate attached media.
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Note ■  typical power for nIC cards is well below their tDp specifications. nICs frequently 
operate at lower temperatures than their specifications, saving significant leakage power.

In typical usage, the LAN component does not operate at TDP. Some LAN devices 
include thermal sensor diodes, as well as management interfaces, to enable other 
platform components to query the component thermal state and adjust fan speed. In 
practice, many of these platform methods require additional calibration of the thermal 
sensors which, if not done, may limit the effectiveness of the fan speed algorithms.

Attached Media
Most LAN adapters can be paired with a variety of different interconnect types that provide 
the actual connectivity between the LAN adapter and network switches. These are called 
attached media.

Server LAN implementations have a greater variety of media types than those found 
on client systems. Whereas most equate Ethernet to the pervasive RJ-45 connector and 
10BASE-T (10 Mbps), 100BASE-TX (Fast Ethernet, or 100 Mbps) and 1000BASE-T  
(1 Gbps Gigabit Ethernet), server platforms have employed several media types as 
summarized in Table 4-12.

Table 4-12. Types of Attached Media

Type Max Distance Power Latency

Multi-mode short reach (SR) fiber optic ~400 m ~1 W Slight increase

Single-mode long read (LR) fiber optic ~10 km ~1 W Slight increase

KX/KX4/KR Backplane (copper) Server backplane 100s of mW Best

Direct Attach (DA) 3–10 m 100s of mW Best

BASE-T 100+ m 2–3 W Adds ~1 
microsecond

Note ■  Cost and distances are generally the deciding factors in attached media selection. 
latency is important to a subset of customers.
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Each of these media solutions have tradeoffs between cable cost, power, distance, 
and even propagation velocity (fiber is slightly slower than copper-based connections). 
Because of this diversity, many server LAN connections are shipped with an SFP or 
SFP+ cage, which accepts various media type pluggable modules.

LAN Power Management Features
A number of common features are used for reducing power of both the LAN devices 
and the CPU. In addition to these, higher-end server LAN adapters implement multiple 
queues and methods to balance network traffic across multiple CPU cores. As a result, 
CPU cores can operate at a reduced frequency and save power.

Media Speed
Some media types—such as BASE-T and backplane—support establishing a link at lower 
media rates than the maximum possible—such as a 1 Gbps adapter linked at 100 Mbps. 
Lowering the established link rate often reduces the component power, sometimes by as 
much as 50%. As the link speed drops, the internal synchronized media clock lowers in 
frequency, leading to a lower dynamic power. Another effect relates to effective packet rates, 
since LAN component power varies more as a function of packet rate than packet size. For 
each packet, the LAN controller performs various lookups on the packet headers. Reducing 
the media rate reduces the packet rates as well, again leading to lower dynamic power.

In practice, changing media speed is not applicable for most server usage models. 
The transition latency is slow, and the reduced speed results in significant peak 
throughput reductions and the potential for increased latencies. Although this can save 
notable power from the perspective of the LAN controller, it is generally not as significant 
as a percentage of the overall platform power.

Energy Efficient Ethernet
BASE-T and backplane media also support Energy Efficient Ethernet3 (EEE). This is 
frequently called triple-E for short. EEE devices enter into a low power mode during idle 
periods, periodically sending idle sequences to keep the link active and sending a wakeup 
symbol to the peer when the link needs to be reactivated. Depending on the media, the 
link transitions from idle to active are less than about 16 microseconds. BASE-T devices 
can reduce their PHY idle power as much 400 mW with 1000BASE-T, and by 2 W with 
10GBASE-T.

EEE is managed by the NIC driver and can be controlled at runtime. It is generally 
enabled by default. The latency cost of EEE is not noticeable in many usage models, but 
the power savings is also not particularly significant. Latency sensitive users may want to 
attempt to disable this capability.

3EEE is decribed in detail in IEEE Std 802.3az-2010.
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Wake on LAN
Wake on LAN (WoL) is a common feature available on server LAN adapters. It is not a 
power-savings feature as much as a mechanism to wake the system from an S-state.

If the platform supports suspend or wake from soft-off modes, WoL allows remote 
administrators a simple method to remotely activate a server platform. Often, the LAN 
interface will reduce link speed automatically when entering this state to minimize 
power and await receipt of a wake pattern. A common pattern used is the Magic Packet 
pattern. Upon receipt, the LAN controller asserts a signal to the platform to bring the 
system out of the low-power state.

Active State Power Management (ASPM)
Discrete LAN controllers are connected using PCIe. As such, PCIe Active State Power 
Management is available to manage power on LAN controllers. PCIe power management 
is discussed in Chapter 3.

NIC ASPM L1 is frequently disabled in server deployments. This can frequently 
be performed in the system BIOS. The latency implications are frequently not worth 
the low amount of power savings. One common issue with ASPM L1 is that it blocks 
communication between a driver (running on the CPU) and the NIC device. When 
communication is required, the core is then stalled. This ends up wasting CPU power, 
which eats into the already small savings from L1.

Interrupt Moderation
Interrupt moderation is another common feature of LAN controllers. It limits the rate 
at which interrupt signals are delivered to the host CPU. This often reduces the CPU 
utilization with little to no observable impact to bandwidth. Interrupt moderation has 
little impact on NIC power, but the decreased CPU utilizations can significantly improve 
CPU power consumption. It can also make additional CPU cycles available for other 
processes, improving the throughput of the node. By rate limiting interrupts, the CPU is 
notified less often, resulting in an increase in latency and response time. The amount of 
latency impact can be tuned inside the NIC driver and is commonly configured to levels 
on the order of 100–200 microseconds. This feature is typically enabled by default, and 
can be disabled (or configured) inside the NIC driver configuration.

Interrupt moderation can have a significant impact on power and latency in systems, 
and is frequently overlooked. Tuning this feature should be a priority for anyone who is 
concerned about latency and response times.

DMA coalescing is a related feature that attempts to queue up data transfers inside 
the NIC and burst them into the CPU. The intention of this feature was to allow the CPU 
to get into a low-power idle state between bursts of activity. In practice this feature has 
shown minimal effectiveness in server environments while also significantly increasing 
network latencies. It is not enabled by default.



Chapter 4 ■ platform power management

111

USB
USB connectivity is provided by server PCHs. Many large-scale data centers do not 
connect devices to USB under normal operation, but it is common for USB ports to be 
included on those platforms. “Crash cart” support is a common usage model, where USB 
is periodically used to connect a keyboard/mouse for local debug, or to connect a USB 
drive for similar purposes. USB can also be used in some low-end storage systems for 
connecting USB storage. Power management of USB can be very effective at saving power 
at minimal to no power cost due to these limited usage models.

Link Power States
The initial USB power management capabilities were very coarse grained. A suspend/resume  
scheme provided two levels—effectively “on” and “off.” These take milliseconds for 
transitions, making them inadequate for many power-efficiency usage models. USB 
devices are common in consumer usage models where achieving very low idle power 
is critical to achieving long battery life. As a result, USB has been a focus for power 
optimization in these environments. Much of these capabilities are unnecessary in 
server usage models.

USB 2.0 originally only supported these two levels but later added support for 
L-states that complemented the suspend state. On USB 2.0, the state of the link is tied to 
the power state of the device. These states are summarized in Table 4-13. Suspend can 
still be used for states that have no latency sensitivity (such as S3/S4).

Table 4-13. USB 2.0 Power States

State Name Link Savings Device Savings Exit Latency

L0 On -- -- --

L1 Sleep ~100 mW Device-specific microseconds

L2 Suspend ~125 mW Device draws almost no power milliseconds

L3 Off/Disconnected ~140 mW Device powered down milliseconds

Note: Power savings are design dependent. These numbers provide a reference point.

On USB 3.0, the device power states were decoupled from the link power states. 
U-states were defined that control the power state of the link only. Table 4-14 provides an 
overview of the four USB 3.0 link power states.
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Link Frequency/Voltage
USB has gone through three generations. Each generation has a single frequency at which 
the device runs (see Table 4-15). Multiple voltage/frequency points are not supported. 
Newer generation devices support (by rule) backward compatibility to the prior 
generation frequencies.

Table 4-15. USB Generations

Generation Frequency Duplex Theoretical Bandwidth

USB 1.x 12 MHz Half 1.5 MB/s

USB 2.0 480 MHz Half 35 MB/s

USB 3.0 5 GHz Full 500 MB/s (per direction)

Table 4-14. USB 3.0 Link Power States

State Name Link Savings Exit Latency

U0 Link active -- --

U1 Link down ~100 mW per lane Microseconds

U2 Link down ~125 mW per lane Milliseconds

U3 Link off ~140 mW per lane Milliseconds

Note: Power savings are design dependent. These numbers provide a reference point.

USB 3.0 moved to a full-duplex design, effectively providing separate communication 
channels for both directions, increasing the peak throughput when data are transferred in 
both directions simultaneously. This required the addition of two more differential pairs, 
and is similar to a single lane of PCIe or a SATA connection.

Storage
Many modern data centers deploy storage in a variety of different ways. Some compute 
nodes have no local storage and depend entirely on the network to provide access to 
remote storage. It is also common to see compute nodes with a single drive (commonly 
an SSD) that provides for high-performance local storage. Other nodes can be targeted for 
storage and can provide access to a large number of drives. These nodes are connected 
to compute servers through high-performance interconnects to provide large pools of 
shared storage.
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Traditionally, drives have been connected through PCIe-based controllers. Two 
standard interfaces exist for these controllers: SATA and SAS. Serial Advanced Technology 
Attachment (SATA) is the lower cost of the two, but it also provides lower peak performance. 
SATA can be used both in consumer and server usage models. Serial attached SCSI (SAS) 
is generally more expensive and higher performance and is targeted at enterprise usage 
models. SATA drives can be connected to a SAS infrastructure, but SAS drives cannot be 
connected to a SATA controller. SATA and SAS support both SSDs (solid state drives) and 
HDDs (hard disk drives). In addition to providing higher peak performance, SAS provides 
the ability to connect a large number of drives to a single controller, making it popular in 
very high capacity deployments.

In recent years, SSDs have begun to be directly connected on PCIe. Non-Volatile 
Memory Express (NVMe) is a specification for performing this direct connection. NVMe 
provides lower latency and higher performance than SAS and SATA. This is particularly 
well-suited for high performance compute nodes that require local storage. NVMe SSDs 
exhibit similar power characteristics to SATA and SAS SSDs. Their potential for higher 
performance also translates into higher power consumption.

Storage power consumption is generally not a significant component of the overall 
node power in traditional compute servers. However, the power consumption of the 
drives on a storage node can dwarf the other components on the node. Storage power is 
also more significant in low-power, low-performance servers where the drive power is not 
amortized across a high-power CPU node.

Storage Servers and Power Management
In a typical storage server the CPU complex manages tens to thousands of drives.  
Storage servers can use a mix of SSDs and HDDs, and the mix is determined by the 
performance needs. SSDs have higher procurement costs but provide improved 
performance. A significant amount of power in storage servers is consumed by the drives. 
Cooling a dense storage complex can also consume non-trivial power.

It is increasingly critical to manage the power consumed by the storage devices, 
without adversely affecting performance. Various power management schemes can be 
used depending on the performance requirements of the application. In a cold storage 
system where a massive amount of data is maintained but accessed rarely with low 
performance and latency requirements, aggressive power management can be used 
to reduce costs. On the other hand, limited power savings is used in performance- and 
latency-critical storage deployments. Aggressive power savings in such environments can 
be detrimental to performance but can also reduce overall data center power efficiency 
by forcing compute nodes to wait longer for data (wasting power in the process).

Power savings opportunities exist both within the drives and in the communication 
layer between the drives and their controllers. Storage power management schemes 
have been developed for both server usage models as well as consumer usage models. In 
consumer usage models, very low idle power is critical for battery life, and capabilities have 
been developed to address these concerns. These same capabilities may be available in the 
server space but can provide poor tradeoffs. A few hundred milliwatts of power savings is 
commonly a poor tradeoff if it could result in milliseconds of response time increase.
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HDDs and SDDs
SSDs generally provide higher bandwidth and lower latencies than HDDs; however, 
this has traditionally come at increased power and cost per capacity. Actual power 
consumption is drive dependent, and can range anywhere from a couple of watts to more 
than 10 watts.

Traditionally, 3.5" HDDs have been extensively used in data centers and other 
server applications. They can provide the best cost per GB due to the larger platters. 2.5" 
HDDs do tend to exhibit lower power draw than 3.5" drives of the same capacity, but this 
benefit tends to be overshadowed by their overall lower maximum capacity in the same 
technology generation.

The amount of traffic that an HDD is servicing has minimal impact on the amount 
of power that is consumed. Rather, the state of the drive (Is it spinning? Are the heads 
loaded?) is the predominant component of HDD power consumption. SSDs, on the other 
hand, exhibit significant power dynamic range as a function of bandwidth. The act of 
reading and writing the cells itself consumes a significant percentage of the drive power. 
SSDs’ power consumption also appears to scale with capacity. This is not because the cells 
themselves consume significant power, but because peak performance of these higher 
capacity drives is frequently higher, providing more potential for power consumption.

Power consumption during spin-up of an HDD is often the highest power draw of 
all of the different operating states of an HDD. It can dwarf the power consumption of 
normal operation. In storage servers with a large number of HDDs, staggered spin-up 
can be employed to prevent the excessive power consumption of spin-up, which may 
result in a power shortage. Staggered spin-up starts one drive at a time, either waiting for 
the drive to signal that it is ready or waiting a predefined amount of time prior to starting 
the next drive. Many data center designers are concerned about the provisioned power of 
each node, rack, and so on. This is the amount of power that the system must be designed 
to provide and is generally less than the sum of the worst-case power of every individual 
subcomponent in the system. When spin-up is staggered, platform power delivery does 
not need to be designed for this high-peak power across many drives simultaneously, 
which means that both cost and the potential for compute density improve. However, 
this comes at the cost of additional potential latency when drives are spinning down for 
power efficiency reasons.

SATA and SAS Drive Power Management
Power management of drives can be split into two categories: saving power on the actual 
drive and saving power on the interconnect (PHY). SAS and SATA have many similarities 
in their power management methodologies and terminology. Power management of the 
drive itself is significantly more important than the PHY.

SATA devices (drives) support four power states as shown in Table 4-16. These states 
can save significant power. The Sleep state is rarely used on servers. You would likely not 
want to use Standby with HDDs on a compute server when any activity is possible, but 
careful use is possible on large storage arrays.
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SAS power management is conceptually very similar to that of SATA. The PHY 
supports both Partial and Slumber states with the same characteristics. In the T10 SAS 
standard, additional states are defined. Although the ATA8-ACS SATA standard only 
calls for the four states enumerated in Table 4-16, SATA drives may also support similar 
states to SAS. Table 4-17 provides a summary of these states with ballpark power savings 
estimates. Note that significant HDD power savings is only possible when significant 
exit latency costs are accepted. As a result, these power savings modes are typically only 
deployed after significant idle periods (if at all).

Table 4-16. SATA Device Power Savings4

Action Description Receives  
Commands

HDD Wake Latency

Working (active) Normal operation.  
Fully powered.

Yes Spun up N/A

Idle Active power savings. 
May take longer to 
respond to commands.

Yes Spun up Milliseconds

Standby Device still responds to 
typical commands, but 
response time may be  
significant.

Yes Spun down <= 30 seconds

Sleep Device is put to sleep. 
Must be explicitly 
woken up.

No Spun down <= 30 seconds

4ATA8-ACS Standard. www.sata-io.org/sites/default/files/images/SATAPowerManagement_
articleFINAL_4-3-12_1.pdf.

Table 4-17. SAS/SATA HDD Power Savings Modes

State Spinning Heads Power Savings Exit Latency

Active Full speed Loaded Baseline N/A

Idle A Full speed Loaded ~10% ~100 ms

Idle B Full speed Unloaded ~20% ~200–400 ms

Idle C Reduced speed Unloaded ~50% Seconds

Standby Y (SAS) Spun down Unloaded ~90% Seconds

Standby Z (SAS)

Standby (SATA)

Spun down Unloaded ~90% Seconds

http://www.sata-io.org/sites/default/files/images/SATAPowerManagement_articleFINAL_4-3-12_1.pdf
http://www.sata-io.org/sites/default/files/images/SATAPowerManagement_articleFINAL_4-3-12_1.pdf
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For the PHY, both SAS and SATA supports two low-power modes; Partial and 
Slumber (see Table 4-18). After some predetermined period of inactivity, either the 
host or the device can signal the PHY to enter its reduced power state. PHY power 
management has moderately long wakeup latencies, limiting the ability for fine-grained 
power savings. Slumber has quite long wake latencies, which preclude them from being 
used in some server usage models. Partial also achieves idle power on the order of ~100 
mW, so further power savings at the expense of latency can be counter-productive at 
the platform level outside of deep idle platform states. DevSleep is predominantly a 
consumer device power state.

Table 4-18. PHY Power States5

Action Wake Latency

Active (SAS)

PHY Ready (SATA)

N/A

Partial <10 ms

Slumber <10 ms

DevSleep (SATA) ~1 s

SSD drives are common in both consumer and enterprise environments. However, 
these drives have different characteristics and optimization points. Low-power operation 
and idle power optimization is critical in the consumer space, and the drives have been 
optimized for those cases. On the other hand, this has been less of a focus in many 
enterprise drives. Unlike with HDDs, enterprise SSDs may consume only 25% (or less) of 
their peak read bandwidth power while running in an Active Idle state (and maintaining 
fast response times). Traditionally, enterprise SSD procurement costs have dwarfed 
power costs, and users were not likely to deploy SSDs into areas that would be exposed 
to significant idle periods. As time progresses, the cost per GB of SSDs is decreasing. 
This will enable SSDs to compete in usage models traditionally reserved for HDDs and is 
expected to make power management more of a focus.

Frequency/Voltage
SATA and SAS both have evolved over time by increasing frequencies to provide higher 
bandwidth. Table 4-19 illustrates how these generations have evolved. Newer generation 
devices support (by rule) backward compatibility to the prior generation frequencies, and 
the operating voltage has been held constant.

5www.sata-io.org/sites/default/files/documents/SATADevSleep-and-
RTD3-WP-037-20120102-2_final.pdf

http://www.sata-io.org/sites/default/files/documents/SATADevSleep-and-RTD3-WP-037-20120102-2_final.pdf
http://www.sata-io.org/sites/default/files/documents/SATADevSleep-and-RTD3-WP-037-20120102-2_final.pdf
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SATA and SAS traditionally transfer data serially (1 bit of data at a time) and use 
8b/10b6 encoding, which consumes 20% of the data in order to support the high-speed 
transmission.

80% * (1.5 GHz / 8 bits per byte) = 150 MB/s
SATA 3.2 includes support for PCIe connected devices, which can leverage the 

parallel nature of PCIe to achieve even higher throughput. It includes the SATA 3 
capabilities for traditional SATA connectivity (at the same bandwidth).

NVMe Drive Power Management
NVMe provides power management capabilities that allow the power to be scaled down 
at the cost of lower throughput and higher latency. Seven different states are defined 
(numbered 0 to 6) as shown in Table 4-20.

Table 4-19. SATA and SAS Generations

SATA Generation SAS Generation Link Frequency Theoretical Peak Bandwidth

SATA 1.x SAS 1.0 1.5 GHz 150 MB/s

SATA 2.x SAS 1.0 3 GHz 300 MB/s

SATA 3.x SAS 2.0 6 GHz 600 MB/s

- SAS 3.0 12 GHz 1200 MB/s

Table 4-20. NVMe Power States

State Operational Exit Latency Performance

0 Yes -- Peak

1 to 4 Yes Microseconds Degraded throughput and latency with 
increasing exit latency

5 No ~50 ms

6 No ~500 ms

NVMe allows the host to manage power statically or dynamically to complement 
autonomous power management performed by the NVMe drives. When power is 
managed statically, the host predetermines the power allocated to the NVMe drives and 
sets the NVMe power state of each drive. When the host manages power dynamically, 
the NVMe power state of each device is updated periodically to accommodate changing 
performance and power requirements of the host.

68b/10b is an encoding scheme that takes 8 bits of data and transfers it using 10 bits. It is used to 
transmit data over some high-speed interfaces.
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Note ■  nVme is frequently used in compute servers that demand peak performance.  
as a result, aggressive power management, particularly with states 5 and 6, may  
not be a good match.

NVMe is a relatively new technology. Power management of enterprise-class NVMe 
drives has not been a priority for many users or designs. Many of the initial enterprise 
offerings do not implement these power management states.

Power Delivery
There are a large number of components within a server platform, and each of them 
requires power to provide their necessary function. Different components in the system 
have different requirements for the type of power that they receive. Some need high 
voltages, others low. Some are very sensitive to operating at a very specific voltage, 
whereas others are able to tolerate a range of voltages.

Since the type of power provided to a server system is similar to the power you get 
from your home’s wall outlet, the system has many power converters to convert this AC 
(alternating current) voltage to the many specific DC (direct current) voltages needed 
by all its components. The conversion of this AC voltage to the required DC voltages 
consumes power, referred to as losses in the converter. The typical measure of these 
losses in the power converters is expressed as an efficiency. Efficiency is expressed 
as the ratio of the output power to the input power. Since the input power equals the 
output power plus the power losses of the converter, the efficiency can be expressed as 
the following equation:

Efficiency
Output Power

InputPower

Output Power

Output Power Co
= =

+ nnverter Power Losses

How efficiently these power converters convert power from higher voltages to the 
lower voltages that are required by the loads is critical to the overall efficiency of the 
system. Even in systems with the best converter efficiency, these losses can make up 
10%–20% of the power in the system. At low system utilizations, they can contribute an 
even higher percentage of the power. This section provides an overview of these power 
converter losses, basics of the different type of power converters used in the system, the 
various elements of the power conversions that contribute to their losses, and special 
features to help reduce losses in these power converters.

Overview of Power Delivery
Figure 4-5 illustrates an example power converter block diagram for a standard dual 
processor system. Block diagrams like this are commonly found in motherboard 
schematics.
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Power is first processed by a power supply and converted from AC to DC (see Table 4-21).  
The output DC power from the power supply is then converted to the various DC voltage 
levels required by different platform components (see Table 4-22). Power budgets must 
be determined for each component in the system so that sizing can be done at each stage 
of the power delivery network (see Table 4-23).

Figure 4-5. Dual socket power conversion block diagram
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Table 4-21. Components in a Power Supply

Component Type Typical Efficiency Description

Power factor 
correction

Power converter 
in system AC/DC 
power supply

~98% This is a power conversion 
stage inside the system 
power supply whose primary 
function is to provide power 
factor correction. This is 
the first stage converter. It 
provides a 400 VDC output 
voltage to the second stage in 
the power supply.

Isolated DC/DC 
stage

Power converter 
in the system  
AC/DC power 
supply

~97% This is a power conversion 
stage inside the system 
power supply whose primary 
functions are to provide safety 
isolation for the AC input and 
provide a regulated DC output 
voltage that can be used by 
the system.

Table 4-22. Types of DC/DC Power Converters

Component Type Typical Efficiency Description

Multi-phase  
buck

DC/DC switching 
power converter  
on the  
motherboard

80–90% Power converter used to 
provide high currents at 
low voltages. Frequently 
converts 12 V to 1–2 V.

Buck regulator Simple DC/DC 
switching power 
converter on the 
motherboard

~90% Simple converters 
used to power lower 
power devices on the 
motherboard. Typical 
inputs of 12 V/5 V/3.3 V 
converting to outputs of 
5 V to <1 V.

Linear regulator Power converter 
used to power 
very low power 
devices on the 
motherboard

Output Voltage

Input Voltage

Very simple and low-cost 
converter that provides 
poor efficiency and 
therefore is used only 
for very low-power 
loads. Their efficiency is 
determined by the ratio 
of the output voltage to 
the input voltage.
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The block diagram contains switching power converters, linear regulators, and 
the loads. Almost all of the system power passes through three to four stages of power 
conversion to get from the 230 VAC input to the points of load. There are multiple reasons 
why the power passes through these series stages:

The first step converts from AC to DC to provide power factor •	
correction. Most digital circuits require DC power for operation.

It is more efficient to transmit higher voltages over longer distances. •	
This is why power is kept at higher voltages as long as possible.

Low-power loads are powered by linear regulators. While these •	
regulators are less efficient than more complex voltage regulators, 
they also have lower cost due to their simple design and small 
number of components. The loss in efficiency is small in the 
overall power consumption.

The easily accessible portions of the platform must not  •	
expose technicians to dangerous sources of electricity  
(such as the AC input).

Table 4-23. Power Block Diagram—Loads

Component Description

Cores, uncore, DIMMs These loads in the system are the primary power consumers 
and provide the core computing capabilities of the system.

LAN, PCH, USB, PCIe These are lower power loads in the system that provide input 
and output to the system compute capabilities.

HDD These are medium power loads that provide storage 
capabilities.

Active cooling These are medium power loads that are primarily axial fans 
in the system. Other types of exotic cooling, such as liquid 
cooling, are also possible.

Note ■  transmitting power using higher voltages is more efficient. wires used for  
transmitting power have resistance in them. power is consumed because of this resistance 
and is proportional to the square of the current (watts = I2r). By increasing voltage at a fixed 
power, current is reduced, thus reducing these quadratic losses (power = I * r).
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It’s not uncommon to see a system with a total of 25–30 power converters in the 
system and on the motherboard. There are a few reasons for these many converters:

Power efficiency can be improved by adding more regulators in •	
order to reduce I2R losses.

Certain legacy functions and capabilities require specific  •	
voltage levels.

System standard components (USB, HDD, PCIe adapters)  •	
require industry standard voltages that cannot be changed.

Customized voltages are required for processors and other silicon •	
devices in order to achieve high performance and power  
efficient designs.

Power Converter Basics
As discussed earlier, the system contains different types of power converters. Each of 
these has tradeoffs that can have a significant impact on the overall power efficiency of 
the platform.

First, energy can be transmitted either as AC (alternating current) or DC (direct current). 
Digital circuits require DC power to operate. AC power is commonly used to transmit 
power from power plants across the electrical grid because it is relatively easy (and 
inexpensive) to change AC voltages using transformers. AC power is used to distribute 
power within data centers as well, but it must be converted into DC power at some point 
in order to drive digital circuits.

AC/DC power conversion provides this mechanism. Different components in 
a platform require different voltages. DC/DC power converters change the voltage 
of DC power to match the requirements for each component. The main types of 
power converters used in standard server systems are boost converters, isolated buck 
converters, single and multiphase buck converters, and linear regulators.

System AC/DC Power Supply
The first components in the node power delivery network, the boost converter and 
the isolated buck converter, are integrated into the power supply. The basic schematic 
for these converters are shown in Figure 4-6. It is important to understand the basic 
functions of these converters to grasp the tradeoffs between efficiency and features.

Figure 4-6. Example AC/DC power supply schematic
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Note ■  It is not a requirement that aC voltage be used as an input to a platform node 
and power supply. other input voltages such as 380 VDC and 240 VDC are being used 
to help improve facility power distribution efficiency and availability. In these cases, the 
aC to DC conversion stage is not required and can be removed from the power supply to 
improve efficiency.

Both converters in the system AC/DC power supply are switching converters, which 
means MOSFETs are used to chop the input voltage into a square wave, and then they are 
filtered again to obtain a DC voltage. There is a PWM (pulse width modulation) controller 
that controls the duty cycle to maintain the required output voltage.

PSUs and the Boost Stage

The boost converter in the power supply maintains a regulated voltage to the isolated 
buck stage of the power supply. The boost’s main purpose is to wave-shape the input 
current to provide power factor (PF) correction and lower current harmonic distortion 
(ITHD), resulting in improved power efficiency. Good power supplies achieve PF > 0.99 
and ITHD < 5%. Since a boost converter requires that the output voltage always be greater 
than the input voltage, you typically see a boost output voltage of ~400 VDC  
( > =110 240 2 373% * *VAC Vpeak ).

Note ■  Inputs other than 240 VaC are also possible. 277 VaC (one phase of a 480 VaC 
system) is becoming more common since it can be used in more efficient facility power 
delivery designs.

PSUs and the Isolated Buck Stage

The isolated buck stage of the PSU provides a few basic functions:

A regulated output voltage (12 V in most server systems), which is •	
used by down-stream DC to DC converters as well as fans

•	 Galvanic isolation (preventing current flow) between the AC input 
to the DC output as required by safety agencies

•	 Ride-through capability, which powers the system from its input 
bulk capacitor during short (½ to 1 cycle) loss of the AC input

The AC ride-through capability is important to keep in mind because this requires 
the isolated buck stage to maintain regulation on its output over a wider range of input as 
the bulk capacitor discharges. This tends to make the design of this stage less optimized 
for efficiency; however, it is required for reliability of the IT equipment.
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Redundant Power Supplies

Historically, many servers deployed redundant power supplies and redundant AC feeds 
to the system in order to improve reliability. Both of these are supported by using multiple 
power supplies in the system. A common design uses two power supplies. One PSU has 
enough power to power the system (sometimes at a lower performance), and a second 
power supply of the same wattage is used in parallel to provide redundancy in case either 
one fails. This is referred to as a 1+1 design. The redundant power supplies normally share 
the load of the system. Since each power supply has its own AC input, this also provides 
1+1 redundant AC feeds to the system. With more power supplies in the system a 2+2 or 
3+1 redundant configuration is sometimes used. This can scale up to N+N or N+1 number 
of power supplies; where N power supplies are needed to power the system.

In recent years, certain classes of server deployments have focused on improved 
software resiliency. This is particularly true of large cloud deployments. In such 
situations, system failure is expected (at some low rate) and the software that executes 
on the system is robust to handle occasional failures. Conceptually, a problem that used 
to be solved with additional hardware (and procurement costs) is now being handled in 
software. Redundant power supplies are not necessary in such designs.

Shared Power Supplies

A single power supply (or even redundant supplies) can be shared by multiple nodes in 
some designs. A good example of such a design is with microservers. In such a design, the 
output power of the CPU is routed to multiple sets of voltage regulators associated with 
different nodes in the rack. In this case, the definition of a platform is somewhat blurred 
since the PSU is now a shared resource. One drawback of this approach is the blast radius, 
which refers to the number of nodes/components that are impacted if one fails.

PMBus

The power supply has become a key power measurement device in the IT equipment 
and is used by the facility to see how much power the IT load is consuming. The accuracy 
of these embedded sensors has improved to +/– 2% over a typical loading range of 
the system by using special metering IC in the power supply and by using calibration 
techniques on the manufacturing line. The power sensor in the power supply is used 
by Intel Node Manager (see Chapter 5) in conjunction with the processor RAPL feature 
(see Chapter 2) to control the system power. This allows the user to protect the facility 
infrastructure by guaranteeing that the system does not exceed a predefined limit.

DC to DC Power Converters
Once the power has been converted from a high VAC down to ~12 VDC, a number 
of additional DC to DC conversion steps are required so that each component in the 
platform is supplied with the voltage (and current) that they require. There are a number 
of different types of DC to DC converters that can be used in different situations.
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Single-Phase Buck Converters

For medium power loads, single-phase buck converters are used to convert power from 
12 V to lower voltages in the system. These may range from < 1 A to 30 A outputs.

Figure 4-7 provides an example schematic for a single-phase buck converter. The 
PWM controller converts the 12 VDC input to output voltage by switching the high-side 
MOSFET to chop the 12 V input. Then a DC voltage is reconstituted with the LC filter 
on the output. A low-side MOSFET is used to allow the inductor current to keep flowing 
through the output filter. The industry has optimized special components in these 
converters taking 12 V input to low-output voltages. The high-side MOSFETs are specially 
designed to handle the high switching voltages with very low duty cycles, and the low-side 
MOSFETs are optimized for the high duty cycles and high RMS currents demanded by 
their special requirements in the converters.

Figure 4-7. Single-phase buck converter

Motherboard Multiphase Buck Converters

In a standard server system, more than half of the system power goes to power the 
processors and memory. For mainstream motherboards, this power is supplied by 
multiphase buck converters to achieve high performance and small form factors. 
Requirements of these power converters drive their design to have very fast responses 
to load changes required by the processors and DIMMs, to maintain a tight voltage 
regulation on a low-voltage rail as silicon processes reduce their geometries, and to 
have a small footprint to fit on dense motherboards. All of these requirements challenge 
the efficiency of the motherboard VR designs. The use of multiphase buck converters 
has become the method for achieving the best design to meet all of these growing 
requirements and still maintain good efficiency.

Figure 4-8 shows a simplified schematic of the power stage for a multiphase buck 
converter. This example shows a four-phase buck converter. PWM controllers are 
available that have the flexibility to provide anywhere from two to six phases. Some can 
provide multiple output voltages. These multiphase converters have shared input and 
output capacitors. The PWM controller switches the phases similar to the single-phase 
buck; however, the controller switches one phase at a time. Therefore, for a four-phase 
buck converter, each phase is switched at 90 degrees from one another. This allows the 
controller to meet the high load transient and high current demands of the processors and 
DIMMs. The PWM controllers for these multiphase buck converters have added features 
to shed phases at lighter loads to save power (with no cost to software performance) and 
serial communication to communicate/manage these high power converters.
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SVID

VRs used to power the main CPU voltage rails and DDR memory frequently support SVID 
(serial VID). SVID is a serial communication bus between the processor package and 
the voltage regulator controllers that is used for two main purposes to help improve the 
efficiency of the processor and manage power in the system:

•	 Voltage set point: The processor uses SVID to set the optimum 
voltage for the motherboard VR to power the processor. This can 
be used to set the static voltage for a given type of processor for 
certain rails. This can also be used to set the voltage to the cores in 
the processor dynamically as the P-state changes (see Chapter 2).

•	 Power reporting: The processor uses SVID to read the power from 
the VR on some systems. This way the processor can monitor how 
much power it and the memory is consuming, enabling RAPL 
(see Chapter 2).

One or more SVID busses can be used per CPU socket. They connect the CPU to all 
of the SVID-controller regulators that supply power to that CPU (or memory connected to 
that CPU). The SVID bus is a simple three-wire interface with a clock (the frequency can 
change across different platforms), an alert (interrupt), and a data wire. Multiple SVID 
busses may be required depending on the bandwidth demands of the bus for supporting 
both of the primary usage models just defined.

Figure 4-8. Multiphase buck converter
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Motherboard Linear Regulators

Linear regulators convert a higher voltage to a lower voltage by dropping voltage across a 
series FET (field-effect transistor) operated in its linear range. The output is controlled by 
the FET’s gate voltage. Linear regulators are used sparingly since they are lower efficiency. 
Their efficiency is determined by the ratio of output voltage to input voltage plus a small 
quiescent power. Linear regulators can be a good design choice for very low power 
supplies where losses are not significant in the big picture or when a very small voltage 
drop is required.

Integrated Voltage Regulators

The Intel Haswell processor integrated the last voltage regulator stages into the processor 
package with a new capability called Integrated Voltage Regulator (IVR). This added 
power conversion stage brings with it advantages that outweigh the disadvantage of 
adding another series power conversion stage.

•	 Max current reduction. Designing motherboard voltage regulators 
with high maximum currents can be cost prohibitive. By 
providing the die with a higher input voltage (and by using IVR 
to step the voltage down for use by the circuits), the max current 
provided to the die decreases.

•	 Higher input voltage to the processor resulting in smaller power 
delivery losses in the platform. IVR allows a higher voltage to be 
delivered to the processor package while still maintaining the 
required lower voltages at the chips since the IVR power converter 
controls the chip power. In Haswell, the package input voltage 
is maintained at about 1.8 V, about twice the voltage needed by 
the circuits in the package. By running at twice the voltage, the 
current required to provide a given level of power is cut in half. 
Lower current results in less voltage loss between the VR and the 
package (in the platform), improving the overall platform power 
efficiency.

•	 Tighter voltage regulation resulting in lower voltage guardbands 
and lower power operation. IVR brings with it tighter voltage 
regulation at the chips since it is physically closer to the chips. 
This means the voltage may be kept lower at the chips since less 
margin for parasitic inductive drops needs to be allowed for—the 
lower the voltage, the lower the power consumption of the silicon 
(lower leakage and lower active power).

•	 IVR provides cost-effective voltage control of small subcomponents 
within a die such as an individual core. This enables features like 
per-core P-states (see Chapter 2). It also enables the voltage levels 
to be optimized for each of these subcomponents.
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One drawback of IVR is that the power losses that existed in motherboard VRs are 
moved into the IVR on the CPU die. Although this may result in a net power win for the 
platform, it does increase the power on the CPU die, which can lead to challenges with 
thermal density and cooling. When you compare similar SKUs on Haswell E5 (with IVR) 
and Ivy Bridge E5 (without IVR), you will notice that the TDP power has increased on 
Haswell. These changes were primarily driven by the increases in CPU power from the 
IVR integration.

Power Management Integrated Circuit

The term Power Management Integrated Circuit (PMIC) is applied to integrated circuits 
that have multiple power conversion controllers in one small package; they also may 
contain integrated switches for supporting switching buck converters. The integration 
of many converters into one package helps to reduce the size and has traditionally been 
used in the small form factors of mobile devices like phones and tablets. PMICs are now 
being applied in server computers to help keep the size small while still supporting the 
many lower power rails on the motherboard. These PMIC may be used to power LAN, 
PCH, and BMC devices on a standard server board or the memory and processor rails on 
a microserver with a SoC package. The reason to use PMIC is not to reduce losses in the 
system, but to reduce the size of the power converters.

Power Conversion Losses
Now that we have reviewed the various types of power converters and their applications, 
this section will take a holistic look at power converters to understand what causes losses. 
It will also explore system level design tradeoffs.

Some energy is always lost in transmission through wires because of the resistance 
in those wires. There are losses due to the currents passing through resistances; these are 
the condition losses and are proportional to the resistance and the square of the current 
(power = current2 × resistance). If we consider only these resistive losses, we would expect 
the losses at very light loads (like those found when a system is at idle) to drop to very 
low power; however, this is not the case. We need to consider two other types of losses 
that occur in switching power converters; these have been commonly referred to as 
proportional losses and fixed losses.

Proportional losses are losses in the power converter that increase linearly with the 
output power of the converter (or output current, since power converters are voltage 
regulators). These are elements like diodes that have a loss equal to the forward drop 
of the diode times the current through the diode. The proportional losses of power 
converters are not very interesting since this is not a dominant element at any load.

The fixed losses of the power converter are very significant at light loads. Fixed 
losses in a power converter are caused by elements such as the switching of the MOSFET 
parasitic capacitances, the switching of currents through the power components, and 
the transformer core hysteresis losses in the power supply. These fixed losses are always 
present whenever the power converter is working. Table 4-24 provides an overview of the 
types of power delivery losses on a platform.
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Motherboard VRs
Each of the different types of motherboard VRs exhibits different power efficiency 
profiles. The behavior and efficiency of different types of voltage regulators changes as 
the load (current demand) of the regulator changes. This section will evaluate different 
types of VRs by looking at their power losses both in terms of power (watts) as well as 
their efficiency.

Note ■  Voltage regulator efficiencies typically appear poor at low utilizations. however,  
it is important to note that the actual power losses in these conditions are relatively small in 
absolute terms compared to the losses at higher utilizations.

Single-Phase Buck Converter

Figures 4-9 and 4-10 show the loss curve and efficiency curve for a single-phase buck 
converter that is capable of 30 A maximum output load and converts 12 V input to 1.7 V  
output. A second order polynomial trend line of the losses versus the output current 
closely fits the loss curve. These three coefficients represent the squared (0.052x2), 
proportional (0.045x), and fixed (+ 1) losses of the single-phase buck converter where x 
is the output current of the VR. The plot also shows these three loss elements separately 
to see how they contribute across the output load. The fixed losses dominate at lighter 
loads less than 10 A and the squared losses dominate at heavier loads of greater than 
20 A. The effects of the fixed losses cause the efficiency to drop very quickly as load 
decreases below 10 A, and the efficiency tails off at heavier loads due to the effects of 
the squared losses.

Table 4-24. Types of Power Conversion Losses

Type Description

Conduction losses Power losses that are caused by current passing through  
resistive elements.

Proportional losses Power losses that are caused mainly by the forward drop of diodes. 
These are the least significant of the three types of losses.

Fixed losses Power losses that do not change with the output load on 
 the converter.
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Note ■  Vrs must be sized for the worst-case possible current demands of the loads they 
power in order to avoid system failure. however, typical steady-state current demands, even 
under heavy load, are common at much lower utilization levels. as a result, the efficiency 
tail-off that is observed at higher utilizations is generally less significant to the overall power 
delivery efficiency than the efficiency losses at low utilizations.

Figure 4-9. Example single-phase buck converter losses

Figure 4-10. Example single-phase buck converter efficiency
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Multiphase VR Losses

Multiphase VRs are typically used for heavier loads on the motherboard, like memory 
DIMMs and processor cores. If we consider the same 12 V to 1.7 V buck converter, but 
expand it to three phases to support up to 90 A, we see a different loss curve compared to 
the single-phase converter. Figure 4-11 shows the losses in the three-phase converter are 
higher than the single-phase converter. This is due to the additional fixed losses from the 
additional phases and added switching losses of the extra phases.

Figure 4-11. Example multiphase VR power losses

At loads greater than 20 A the three-phase converter starts to have lower losses. 
The squared component (from conduction losses) is smaller with the multiphase VR 
(0.0018 vs. 0.0052). This is because the current now has about a third of the resistance to 
pass through.

Comparing the efficiency curves shows how the single-phase converter is better 
at lighter loads and the three-phase converter is better at heavier loads. Note that this 
example is provided without phase shedding (discussed momentarily), which can 
improve the efficiency of multiphase VRs at low utilizations.

Phase Shedding

Figure 4-12 illustrates that a single-phase VR can provide better efficiency at low current 
demands when compared to a multiphase VR that is capable of much higher max current. 
Phase shedding is a feature on some multiphase VRs that is intended to provide the best of 
both worlds: good, light load efficiency of a single-phase buck converter and the power/
efficiency advantages of the multiphase buck converter at heavier loads. In present 
systems, the phase shedding has mostly been controlled by the processors; the phases are 
shed when the processors know their power requirements are less than a single-phase 
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capability. In newer PWM controllers, the controller automatically turns off the phases as 
it senses the load dropping and turns on phases as loads increase. This is referred to as 
auto-phase shedding. Auto-phase shedding can be far more efficient than CPU-managed 
phase shedding, because the CPU is not always aware of the immediate current demands 
and must request phases assuming some worst-case condition.

Figure 4-12. Example multiphase VR efficiency

Diode Emulation and Burst Mode

Two other methods used to help reduce VR losses at very light loads are diode emulation 
mode and burst mode. Diode emulation mode turns off the low-side FET switch and 
instead uses the body diode in the FET, saving the switching losses in the low-side FET. 
This is used only at very light current demands. Burst mode reduces losses by skipping 
switching cycles to effectively reduce the switching frequency of the converter, helping to 
further reduce switching losses, again at very light current demands.

Note ■  In typical servers, the current demand does not drop low enough to take 
advantage of diode emulation, even when the system is completely idle. as a result, this 
feature is not as commonly supported. phase shedding provides the bulk of the efficiency 
improvements at low utilizations in server Vr designs.
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System Power Supplies (AC/DC)
System power supplies have similar power losses and also can be accurately modeled 
as a second order polynomial made up of squared losses, proportional losses, and fixed 
losses. In most server systems, manufacturers offer multiple power supply wattage 
ratings that can be used in the same system. This allows the users to optimize the cost 
of the power supply for the configuration they plan to use in the system (e.g., processor 
performance, memory size, storage size). The selection of the power supply wattage also 
affects the power consumption of the system. Using a properly sized power supply in the 
system can help reduce the system power. The use of redundant power supplies in the 
system to improve availability also affects the efficiency of the system.

Figure 4-13 shows the losses in a 750 W power supply with the fixed, proportional, 
and squared losses broken out. This is an 80-Plus platinum-level-efficient power supply.7 
As with the motherboard VR, at low loads (less than ~30% of peak), the fixed losses 
dominate and cause the efficiency to drop off. At moderate to high loads (greater than 
~50% of peak), the squared losses dominate and cause the efficiency to drop off.

Figure 4-13. Example 750 W PSU losses (230 VAC)

Note ■  pSU losses increase with lower input voltages. the charts in figure 4-14 are  
measured with a 230 VaC input (high line). at lower input voltage, such as 120 VaC, the  
efficiency is reduced by about 2%. this is due to the higher currents in the power factor  
correction stage of the power supply.

7>94% efficiency at 50% load based on requirements documented at www.80plus.com.

http://www.80plus.com/
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Right-Sizing Power Supplies

Next we will consider the tradeoffs in using power supplies with higher and lower power 
ratings. Figure 4-15 shows the loss curves for four different power supplies: 460 W, 
750 W, 1200 W, and 1600 W. These are all platinum efficient per 80 Plus.8 The squared, 
proportional, and fixed loss coefficients are also shown as a comparison. Two notable 
conclusions can be drawn from this chart:

Power supplies with lower wattage ratings have lower fixed losses.•	

Power supplies with higher wattage have lower squared losses.•	

Figure 4-15. Example PSU losses for different power ratings

Figure 4-14. Example 750 W PSU efficiency (230 VAC)

880 Plus is a voluntary certification program for PSUs.
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Note ■  power supply selection can have an impact on the power consumption of a 
system. Systems that run at low utilizations will experience the best power efficiency using 
power supplies that are just large enough for the system. on the other hand, power can be 
saved by selecting an oversized power supply if system utilization tends to be heavy.

The following two examples show how differently sized power supplies can 
provide benefits to power efficiency depending on the typical load of the system. Larger 
power supplies can be more power efficient in systems that, on average, run at higher 
utilizations.

Example 1: A system load of 100 W on the output of the power 
supply produces 7.7 W losses in the 460 W power supply, 
whereas the 1200 W power supply produces 13.0 W  
losses, a 5.3 W savings using the smaller power supply.

Example 2: A system load of 700 W on the output of the power 
supply produces 55.2 W losses in the 750 W power supply 
whereas the 1600 W power supply produces 43.4 W  
losses, a 8.2 W savings with the larger power supply.

Closed Loop System Throttling (CLST)

When right-sizing your power supply to the system configuration and the workloads 
you plan to run, you must consider the system reliability. If some abnormal condition 
occurs on the system (like running a higher power workload) the system cannot shut 
down due to an overload on the system power supply. Many systems running Intel 
Node Manager and a PMBus power supply have a protection feature called Closed Loop 
System Throttling (CLST). This feature will throttle the system power/performance if 
the power supply senses an overload warning condition. This quick reduction in load 
will protect the power supply from shutting down. Therefore, CLST provides protection 
against unexpectedly higher system power consumption. This gives you the protections 
needed to maintain good system reliability while using a lower power supply rating. 
This throttling is very aggressive and can result in significant performance loss. As a result, 
it is important that you budget sufficient headroom in the power supply selection to 
compensate for increases in power demand that may occur over the life of the server 
(software updates resulting in higher power draw, increased temperatures, etc).

Losses in Redundant Power Supplies

When considering redundant power supplies, remember that the system power 
supplies will share the system load, which will change the overall power supply 
losses in the system. Figure 4-16 shows an example of the power supply losses for 
a 750 W in a non-redundant single PSU configuration along with a redundant 1+1 
PSU configuration. The x-axis in the plot is the total load on all power supplies in the 
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system. You can again see that for heavier loaded systems (> ~500 W, in this example), 
the redundant 1+1 system with two power supplies in the system have lower losses 
in the power supplies. And for lighter loads (< ~500 W) the redundant power supply 
system has higher losses in the power supplies than the system powered by a single 
power supply.

Figure 4-16. Example PSU losses with redundant power supplies

Note ■  System availability and reliability is generally a high priority for server customers. 
the efficiency loss associated with redundant power supplies is generally an acceptable 
cost, and many systems make use of redundant power supplies as a result.

The relative efficiency of redundant power supplies versus single power supplies is 
dependent on the specifics of the power supplies in question, as shown in the following 
two examples: one shows a more efficient single power supply, and the other lists a more 
efficient redundant power supply.

Example 1: At a load of 200 W on the system, the single 750 W 
losses are 14.0 W and the 1+1 power supply total losses are 
21.1 W, a 7.1 W savings in losses for the system with a single  
power supply.

Example 2: At a load of 650 W on the system, the single 750 W 
losses are 49.3 W and the 1+1 power supply total losses  
are 41.1 W, a 8.2 W savings in the losses for the system with  
the 1+1 configuration.
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Power Supply Cold Redundancy

You can see by the preceding power supply redundancy loss examples that to achieve 
the best power efficiency in all cases, it would be best to have something similar to what 
was discussed for the motherboard VR phase-shedding feature. So, at lighter loads, the 
system runs from one power supply (but still maintains redundancy), and at heavier 
loads, the system runs from both power supplies in a load-sharing mode. This can be 
achieved by a feature supported by many server systems today, which is sometimes 
referred to as cold redundancy. In this case, one power supply is powered off into a 
cold standby state automatically at lighter loads. The cold standby state still allows 
the power supply to power on quickly if the active power supply fails. This maintains 
the system power supply redundancy feature. Then, at heavier loads, the cold standby 
power supply powers on automatically to share the load and maintain the lowest 
possible losses in the power supplies.

Thermal Management
Typical servers in data centers consume a large amount of electricity, turning it into heat. 
Extracting this heat from the data center consumes a non-trivial amount of overall data 
center electricity. Over time, the efficiency of cooling has improved significantly, reducing 
the overall contribution to power. However, it is still a major factor in energy consumption.

A server cooling system must ensure that each and every component meets its 
specification. Most components have damage, functional, and reliability temperature 
specifications as seen in Figure 4-17. A well-designed thermal management scheme must 
ensure compliance to the specifications while also not over-cooling and wasting power. 
In most cases it is impractical to design a system to handle every possible workload 
under all possible combinations of extreme conditions, including fan failures, high-room 
ambient temperatures, and altitude.

Figure 4-17. Component temperature specifications and thermal management
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The functional limit is normally aligned with maximum system utilization whereas 
the server is exposed to a worst-case corner of the allowable range of the environmental 
class (temperature, altitude, humidity) for which the server has been designed. At lower  
utilizations, the system is maintained at a lower temperature in order to reduce 
component wearout that can occur if higher temperatures (at or near the functional limit) 
are sustained for long periods of time.

A well-designed server will have thermal management to ensure compliance to 
those specifications either directly through the cooling design implementation, or in 
combination with the thermal management system. Component temperature is driven 
by three factors in an air-cooled system defined in Table 4-25: system ambient, air 
heating, and self heating. These are illustrated in Figure 4-18. Table 4-26 provides some 
common terms used for heat transfer.

Table 4-25. Types of Heating

Type Description

System ambient9 Inlet temperature of the system

This includes any rack effects, which can increase the  
temperature delivered to the platform node.

Air heating Increase in air temperature due to upstream heat sources in  
the platform

This is affected by component placement, upstream component 
power dissipation, air movers, and local air delivery.

Self heating Increase in component temperature above local ambient due to 
the heat dissipated on the device of interest

This is driven by component packaging, power dissipation, and 
thermal solution (e.g., heat sink).

9Defined in the ASHRAE (American Society of Heating, Refrigeration, and Air-conditioning 
Engineers) Thermal Guidelines for Data Processing Environments.
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Figure 4-18. Local ambient, air heating, and self-heating of second socket

Table 4-26. Common Heat Transfer Terms

Type Description

Conduction The heat transfer at the molecular level between adjacent particles. 
Heat from a die is conducted through the surrounding packaging until 
it is delivered to a heat transfer surface (like a heat sink).

Convection The heat transfer through random molecular motion and bulk 
movement of a fluid (or air). Airflow in a server is an example of 
convection.

Radiation The heat transfer through electromagnetic waves; generally negligible 
in server heat transfer due to the dominance of forced convection.

Most server processor dies are connected to a substrate made of FR4 (a glass-reinforced 
epoxy laminate) enabling simple integration using a socket that enables removal and 
replacement of the processor. To facilitate heat sink attachment, an integrated heat 
spreader is attached on top of the package. Component heat is transferred by conduction 
to the heat spreader and removed by forced convection.

When a heat sink is used on a component, a thermal interface material (TIM) is 
required to fill the air gaps between the component and the heat sink. The TIM has much 
higher thermal conductivity than air.

Figure 4-19 shows the typical packaging of a processor with an integrated heat sink 
(IHS). The IHS serves to protect the die, spread the heat, and provide a mounting surface 
for a heat sink. Heat is primarily conducted through the first TIM (TIM 1) to the IHS and 
out through the second TIM (TIM 2) to the heat sink. Thermal paste between the CPU 
package and the heat sink is an example of a TIM 2. Most servers use forced convection 
created by a fan to provide higher local velocities, thereby enhancing the convective heat 
transfer out of the heat sink.
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When designing an air-cooled system, the thermal engineer must consider a number 
of factors contributing to the component temperature. Through a careful understanding 
of the critical components, their specifications, and placement requirements, the thermal 
engineer can optimize layouts to maintain the lowest cost, highest efficiency, and highest 
performance solution. So-called shadowing of components results in significantly 
increased cooling difficulty and the lowest cooling capability. Shadowing implies that 
the air heating in the following component temperature equation will be relatively high, 
resulting in costly thermal solutions and high fan power.

Components with high power density (power/area) require thermal enhancement, 
such as a heat sink or heat spreader. Either of these devices spreads the heat to a larger 
surface area enabling significantly improved convective heat transfer.

The following equation describes how power, air heating, and ambient temperatures 
impact the temperature that is exposed to the package. The actual silicon die (and 
transistors) are exposed to even higher temperatures than the T-case.

T
C
 = Y

CA
 x Power + System Pre-heating + External Ambient

where

T•	
C
 (T-case) is the case temperature of the component.

•	 Y
CA

 (psi-CA) is the thermal characteristic of the heat sink as 
measured from case (C) to ambient (A) and in units of °C/W. The 
lower the Y

CA
, the better the thermal performance of the cooling 

solution, since the component (case) temperature will be closer to 
the ambient temperature at a given power consumption.

Power is the power dissipated (consumed) by the component.•	

Component and heat sink convective thermal performance is proportional to the 
inverse of airflow, as shown in the example characteristics shown in Figure 4-20. This 
means that the cooling efficiency (Y

CA
) improves significantly with airflow up until a 

point (somewhere between 10 and 15 CFM in the illustration). After that point, significant 
increases in airflow (at high power cost) will only provide small benefits to the actual 
cooling. Fan power is proportional to the cube of airflow (and fan speed). Operating in 
the conduction-dominated region of a heat sink can significantly increase the power 
consumption (and inefficiency) of a system.

Figure 4-19. CPU packaging thermal terminology
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Figure 4-20. Example heat sink performance

Note ■  Cooling efficiency is non-linear with airflow. Significant increases in fan speed 
(and fan power) may only yield slight improvements in cooling once a heat sink has reached 
its maximum capabilities.

System Considerations
The platform design team must carefully consider the components, configurations, 
usage models, environmental conditions, and the system-, rack-, and room-level airflow 
protocols to achieve an optimal cooling solution. These design considerations must be 
evaluated against the cost, performance, and energy objectives of the solution.

Note ■  running a system at higher temperatures will increase the leakage power of the 
CpU (and other devices in the platform). however, the power savings from running with 
reduced cooling typically far exceed the increases in device leakage power.

Component selection and placement detail will drive the design and consequently 
are the most critical elements to consider during the design phase. One example is the 
selection of memory technology to be supported. An entry-level server designed to 
support the highest capacity and frequency memory could burden the system design with 
expensive fans that are never needed by most customers. All components must be similarly 
considered including the power range under which the components must function.
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Note ■  Increased CpU leakage power from higher temperatures can reduce turbo 
performance. however, the performance returns from over-cooling a platform are generally 
not large and can be cost prohibitive. reducing the temperature by 20°C may only increase 
performance by a few percent (if at all).

In many platform designs, component placement is primarily driven by electrical 
routing considerations. Lengths between key components must be minimized to ensure 
signal integrity and meet timing requirements. Placement for thermal considerations 
matters but is not the foremost driver during the board layout process. The thermal 
engineer must provide the guidance to the board design team to enable solutions that 
have a reasonable chance for success while not necessarily being thermally optimal. 
Examples of systems that vary in cooling difficulty are shown in Figure 4-21, where the 
system on the left has thermally shadowed memory and processors whereas the system 
on the right does not. Thermally shadowed refers to a component being downstream 
from another component in the airflow. In such a design, the shadowed components are 
exposed to higher temperatures.

Figure 4-21. Example board layouts

Thermal shadowing is commonly used in dense multi-socket platform designs. 
Because the first processor heats the air before it gets to the second processor, the 
ambient temperature of the second processor is higher. The cooling solution must 
compensate for this increase in ambient temperature. This frequently results in more 
expensive heat sinks and higher fan speeds, which increases both procurement costs and 
power consumption. The thermal requirements of higher densities come at a power/
performance efficiency cost.



Chapter 4 ■ platform power management

143

Note ■  Components that are in the thermal shadow of other high-power components 
frequently operate at higher temperatures and therefore consume more leakage power.  
with CpUs, this increase in power can result in different levels of turbo being achieved if 
equal power is allocated across the two sockets.

The design engineer must thoroughly understand the expected airflow paths and 
optimize the airflow delivery accordingly to maximize energy efficiency of the thermal 
subsystem. Selection and usage of the air moving devices must be matched and designed 
to the server design. Tradeoffs between air movers and heat sink design must be 
performed to find the optimal design points for both. The cooling performance, power 
consumption, acoustic signature, fan reliability, and redundancy features are important 
characteristics that factor into the overall solution.

Component Thermal Management Features
Power management features are used to perform power-performance limiting that 
enables a component to stay within temperature limits. Sensors create the data necessary 
to trigger power management. Processors, memory, and some chipset components 
contain sophisticated thermal management capability and are discussed in the following 
sections.

Processors
Processors have three high-level temperature points as shown in Table 4-27. These 
temperature values vary across different products, and the values shown provide an 
example of typical values.
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Table 4-27. Notable Processor Temperature Levels

Level Description Typical Temperature

TCONTROL Above this temperature, fans 
should be running at full speed 
in order to ensure the long-term 
reliability of the processor.

~5°C–10°C below prochot

Between TCONTROL and 
PROCHOT, the fans will all be 
running at full speed. These 
conditions typically occur 
when the processor is running 
at full utilization and ambient 
temperature is high.

PROCHOT (DTSMAX) Max temperature at which 
the processor functionality 
is guaranteed. Autonomous 
thermal management 
algorithms inside the processor 
(see Chapter 2) will work to 
ensure that this level is not 
exceeded.

~80°C–100°C

Between PROCHOT and 
THERMTRIP, processor 
functionality is not guaranteed. 
Data corruption (silent or 
detected) or system hang may 
occur.

THERMTRIP Catastrophic shutdown 
temperature. Above this 
temperature, irreversible 
physical damage may occur to 
the processor. This is protected 
by a combination of the 
processor and the platform.

~125°C

Memory
Similar to processors, power management features are used to manage potential 
excursions above unsupportable temperature limits on DIMMs. Because the memory 
controller is now contained in the processor, the processor determines the memory’s 
thermal state and activates power management features. Thermal sensors on the DIMMs 
are accessed by the processor, and memory traffic regulation can be activated as needed.
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The data retention time of DRAM devices used on DIMMs is temperature dependent. 
Increasing the memory refresh rate allows operation at higher temperatures. Operation at 
that higher temperature is called extended temperature range (ETR) and is supported by 
most volume DRAM manufacturers. By enabling higher temperature operation, one can 
reduce cooling costs of the platform. This does come at a small cost of DIMM power from 
the extra refreshes and some small performance loss, but the resulting fan power savings 
implies higher power efficiency at the platform level. As memory temperatures increase 
beyond the ETR threshold, memory thermal throttling features in the CPU will engage. 
See Chapter 3 for more details.

Platform Thermal Management
Thermal control enables optimization of system performance as a function of usage, 
configuration, cooling capability, and environment. Underlying this optimization is 
the parallel use of fan speed control and power management to meet the customer’s 
requirements. Some customers may desire maximum performance and may not want to 
be concerned with cooling costs, while others may be willing to trade off a small amount 
of performance under certain circumstances in order to achieve better power efficiency 
(and lower cooling costs).

Components and their specifications are the primary drivers in a server’s thermal 
design (e.g., heat sink, fan selection, and airflow management). The thermal engineer can 
create a superior thermal design, but without a thermal management system to provide 
real-time optimization, that design may be acoustically unacceptable or highly inefficient. 
True superiority quite often lies in the thermal management scheme and its capability for 
delivering precisely the performance needed and meeting the component specifications 
while consuming the lowest amount of power.

Platform thermal management enables optimization in four areas:

Operation within component thermal limits•	

Maximization of performance•	

Minimization of acoustic output•	

Minimization of wall power consumption•	

All server components are designed to handle thousands of thermal cycles due to the 
natural temperature variation that occurs as a result of workload demands. Servers can  
go from idle to high usage many times a day and must be capable of years of operation 
under this type of variation, resulting in wide temperature extremes on the components.

The thermal management (TM) system manages component temperatures, 
performance, power consumption, and acoustics using two primary mechanisms:

Fan speed control (cooling delivery)•	

Component power-limiting features (e.g., P-states and  •	
memory throttling)

With some servers the initial setup during boot time enables the end user to 
configure the system to preferentially favor acoustics, power efficiency, or performance.
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Thermal Control Inputs—Sensors
Sensors provide the inputs to the control scheme. Table 4-28 provides an overview of 
some types of sensors used for platform thermal management.

Table 4-28. Types of Sensors Used for Thermal Management

Sensor Type Description

Direct temperature On-component sensor(s) found on processors, memory, 
hard disk drives (HDDs), chipset, GPGPU, etc.

Indirect temperature Off-component, discrete sensor used to directly measure air 
or board temperature. This information can be correlated to 
components without sensors.

Power or activity Power can be used to estimate the temperature of different 
components of a platform (in conjunction with platform 
characterization and other temperature sensors). It can also 
be used by algorithms to optimize the overall platform power.

Fan speed Used for ensuring that a fan is operating within design 
parameters.

Fan presence Used for detecting whether a fan is populated  
(e.g., redundant configuration).

Different components in the platform use different types of sensors for monitoring 
temperature (see Table 4-29).
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Table 4-29. Platform Component Sensor Types

Component Sensor Description

Processor A server processor has many thermal sensors but 
only exposes the max temperature to the platform 
thermal management. Multiple sensors are 
strategically placed to enable the processor’s own 
power management features to engage as necessary 
to ensure that silicon temperature does not exceed 
the point to which the processor was qualified 
and tested, but also to eliminate inaccuracy in 
determining actual die hot spot temperature.

Memory Most server DIMMs have an on-PCB (printed 
circuit board), discrete thermal sensor. Thermal 
sensor temperature is highly correlated with DRAM 
temperature, thereby enabling a single sensor to 
cover all components on the DIMM. Some DIMMs 
have a buffer, which may also have a separately 
accessible thermal sensor.

Chipset (and other silicon devices) Many silicon devices have an accessible sensor 
for use in TM. Some limited thermal management 
may be available locally on these devices, but 
they are used primarily for fan speed control and 
catastrophic protection.

Hard drives Hard drives contain thermal sensors that are 
accessible through a drive or RAID (redundant 
array of inexpensive drives) controller.

Voltage regulators Nearly all high-powered voltage regulators have a 
local thermal sensor to protect the components in 
the VR region. Historically this has been primarily 
for high-temperature protection.

PCIe cards In some cases the PCIe card supports sensor 
capability, which is available to the server for 
thermal management. However, this is not common 
and, as a result, cooling must be sized to handle any 
possible card that can be installed. Indirect sensors 
are sometimes used to infer PCIe temperatures.

Power supplies Most power supplies have their own cooling 
(internal fans) and manage their cooling without 
system intervention.
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Figure 4-22 provides an example of how thermal sensors are distributed across  
a platform.

Figure 4-22. Example platform thermal sensor layout

Voltage Regulators

Voltage regulators (VRs) can be made of multiple discrete components on a board, and 
a thermal sensor is generally placed near the component that is expected to exhibit the 
highest temperature. In the past, the sensor primarily provided functional protection with 
little available usage for fan speed control. More fine-grained TM implementations have 
the capability for using the VR sensors in fan speed control algorithms. VRs can support
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OTP (over-temperature protection), which results in an •	
immediate shutdown

Prochot, which is a connection to platform Prochot to cause the •	
CPU to engage in heavy throttling when the VR is hot

VRHOT, which is an alert on SVID to tell the CPU to throttle•	

Power Supplies

Power supplies have their own thermal sensors and fans that are used for autonomous 
thermal management. They have temperature protection mechanisms that can shut 
down the system when a catastrophic condition is detected. The power supply’s fans can 
supplement the server’s cooling in certain conditions. As a result, the platform TM system 
can sometimes override the power supply fan control in order to drive higher fan speed 
as necessary to cool system components.

Fan Speed Control and Design
Optimizing the speed of fans in a system can result in significant improvements in power 
efficiency. Simply running the fans at max speed is an easy way to ensure that the system 
operates within its specifications and provides the maximum performance, but this 
comes at a significant energy cost.

System designers have proprietary fan speed control algorithms that run in their 
BMCs; these attempt to minimize fan speeds while staying within the component 
specifications. Multiple algorithms can be used simultaneously with the final fan speed to 
be determined by comparingthe results of these algorithms.

Multiple (i.e., tens of) sensors are used in the algorithm with the required fan speeds 
set based on the components with the least margin to their specifications. The algorithm 
must ensure that unacceptable fan oscillations do not occur, even at low fan speeds. 
These could be just as annoying to a customer as a continuous loud noise.

Note ■  It is possible for a system to transition from low-power consumption and  
corresponding low fan speeds to a very high-power workload in microseconds. although the 
CpU die does not heat up instantaneously due to the higher power utilization, it may heat up 
faster than the fan speed control subsystem can increase the fan speeds, resulting in a short 
period of CpU thermal throttling. fan speed control algorithms that are heavily optimized for 
energy efficiency can be more exposed to this type of behavior.

Fan or cooling zones are often used to precisely adjust specific fans to the needs 
of components most coupled with those fans. Cooling zones can be proximity based, 
or physically separated. The extent of optimization versus cost is considered when 
designing cooling segmentation created through cooling zones. Using a fan zone 
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implementation enables total fan power and acoustic to be minimized. Fans in a non-
stressed zone can run at lower speeds than those needed in a more highly stressed zone. 
A stressed zone implies that at least one component is approaching its temperature 
limit. Figure 4-23 shows two examples of fan zones mapped to two different boards 
designed for use in a 1U chassis.

Figure 4-23. Fan zone mapping

Each sensor is mapped to the fan zones depending on its thermal connection to 
that zone. A single sensor could impact a single zone or multiple zones depending on 
positioning and ducting. By mapping specific components to specific fan zones, more 
granularity in fan control can be obtained, thereby reducing total fan power.

A variation on a proportional, integral, derivative (PID) controller is commonly used 
for fan speed control. For each thermal sensor or group of thermal sensors, a separate 
PID algorithm is running. At each time step, a new fan speed setting is determined from 
the PID controller using temperature value from each sensor. The management controller 
determines the actual fan speed setting based on the maximum calculated fan speed 
setting from all the simultaneously operating PID algorithms.

Fan speed settings normally have a floor, preventing operation below the levels 
necessary to cool components without sensors where the real-time temperatures  
are unknown.
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Summary
Each CPU requires a large amount of support hardware in order to complete its tasks. 
Data centers are generally made up of a large of number of racks. Each rack contains a 
number of separate platforms (or chassis) that provide one (or a few) compute nodes. 
In addition to the CPUs, a platform includes the memory, drives, networking, power 
delivery, cooling, and more that is required for enabling a small number of CPUs to 
operate. Similar problems and tasks must also be managed at larger scales in a rack or 
even across a data center. As an example, each platform likely has dedicated cooling 
hardware and thermal monitoring and management capabilities. However, additional 
cooling is necessary for extracting heat from the rack and ultimately the data center. This 
topic is discussed in Chapter 9.

A wide range of platform designs are possible, with different optimization points 
for different usages. A storage platform may include a massive number of drives all 
connected to a single two-socket (DP) node. A compute node may have a single high-
speed network connection, no drives, and some amount of memory that has been 
selected for the types of workloads that run on that node. Large EX platforms tend to have 
high CPU TDP powers. However, their support hardware also tends to have high costs 
(both for power and procurement), amortizing the cost of that additional power and 
making it very cost efficient. Similarly, low power offerings can be very effective if high 
performance is not needed.

The power/performance efficiency of a CPU is heavily dependent on the platform 
around it and the demands of the workload in question on that platform. Measuring 
performance per TDP watt of a CPU can be a very misleading statistic due to the many 
platform components that contribute to power. If the task that is required is bottlenecked 
by drives, adding more compute performance (and increasing power) will be inefficient. 
Similarly, if a platform includes significant power outside the CPU, and increasing the 
CPU power results in an increase in overall platform performance, it may be more power 
efficient for the platform to increase the CPU power even if the CPU performance per 
CPU watt decreases. Building a power efficient platform requires balancing the compute 
needs with the capabilities of the supporting platform devices.
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Chapter 5

BIOS and Management 
Firmware

Thousands of times a second, CPUs, memory, system interconnects, and other 
components transition between a number of different active and idle power states to 
minimize the use of energy. Energy-efficient use of these power states isn’t possible 
without careful coordination between hardware and software—including BIOS firmware, 
management firmware, operating systems, and applications. If any one of these firmware 
or software components fails to fulfill its role in this coordination, it can cause a wide 
variety of problems—from increases in power to decreases in performance. Figure 5-1 
illustrates the hierarchy of software components used in enabling and controlling the use 
of power management features.

Figure 5-1. Hierarchy of software components used in power management
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BIOS firmware is responsible for turning on and configuring power management 
features. BIOS must also expose power management features to the operating system 
(OS) to allow for software control. This advertisement includes a list of the supported 
power states, each state’s power and performance characteristics, and a description of 
control interfaces. In some cases, OS device drivers can discover and configure power 
management features directly. The OS is responsible for monitoring the system at 
runtime and using the BIOS-provided interfaces to control power management features 
based on past, current, and projected future activity. This activity is ultimately generated 
by applications that use system resources to perform computations and manipulate data.

This chapter begins with a description of BIOS firmware and its role in activating and 
configuring features. It continues with an overview of BIOS firmware’s role in updating 
microcode and creating Advanced Configuration and Power Interface (ACPI)) objects 
that describe power management capabilities to software. It includes an overview of 
management firmware including hardware protection, power capping, and system 
monitoring functions. The chapter concludes with a description of the Intelligent 
Platform Management Interface (IPMI) and how it is used to configure and control 
firmware capabilities used for power management.

BIOS Firmware
When a server is powered on, power management features such as C-states, P-states, 
interconnect power states, and memory power states are not configured or enabled. 
This is unlike many of the other system functions that do not require explicit firmware 
or software enabling. Enabling and configuring power management features is the 
responsibility of BIOS firmware.

Many power management features exist in different processor units or different 
system components. These features have different clock and power domains, different 
initialization sequences, and different enabling requirements. As a result, configuration 
and enabling takes place across multiple stages where BIOS firmware coordinates with 
the CPU’s power control unit (PCU) and other units to initialize individual features. If this 
initialization fails, power and thermal management will not function properly.

During the various power management initialization stages, there are two common 
methods for communication between firmware and hardware. The first is reading and 
writing small data arrays in hardware called registers. Register size is typically measured 
in bits, for example, a 32-bit register or a 64-bit register. Registers provide a convenient 
mechanism for software and hardware communication and are used extensively in the 
control and configuration of power management features. The three most common  
types of registers used for power management are model specific registers (MSRs), 
control and status registers (CSRs), and memory-mapped input/output (MMIO).  
These registers can only be read or written in Ring 0, meaning they are only accessible 
to kernel mode software with the highest privilege level. Where there is a need to use a 
register to frequently access status information, make repeated changes to configuration 
settings, or regularly change power states of the processor, MSRs are used. These registers 
can be accessed with low software overhead using dedicated RDMSR and WRMSR 
instructions. Where there is power management control or status information that needs 
to be accessed infrequently or only during boot time, CSRs and MMIO are used. CSRs are 
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registers mapped to memory locations in legacy PCI configuration space, where several 
layers of device drivers may be required to access these after control has been passed to 
the operating system.

A second communication method between software and hardware is the x86 
CPUID instruction. The CPUID instruction provides a fast mechanism for software 
to query the processor to determine feature support and configuration information, 
and it is accessible in Ring 3 or by user mode software (for example, the CPU type, the 
topology of cores and threads, and various feature support flags). The CPUID instruction 
provides a low-latency and error-resilient way to determine if a processor supports power 
management features such as P-states or C-states, and what happens to various clock 
sources when the processor is idle.

Not all power management features are under direct operating system control. 
Chapter 2 details how Turbo allows the processor to operate above the CPU base 
frequency, how a multi-socket system enters a coordinated package C-state, and how 
power and thermal events can trigger processor throttling. These types of features are 
controlled by CPU microcode and PCU firmware. Activity generated by applications or 
OS power management policies may influence the use of these features, but the core 
functionality is controlled elsewhere. In addition to the PCU, other microcontrollers in 
the system, such as a baseboard management controller (BMC) or a Management Engine 
(ME) in the chipset, may also participate in the control of power management features.

Microcode Update
There may be cases where it is necessary to change the behavior of hardware power 
management features—to fix issues, to add new functionality, or to optimize feature use. 
The majority of these updates can be done through BIOS firmware updates. The greatest 
benefit of firmware updates is the ability to improve system behavior without having 
to replace any components. However, the downside is the need to restart the system in 
order to do so. In datacenters with tens of thousands of servers, a simple firmware update 
becomes an event with significant cost and complexity.

Where there is a need to enhance or correct CPU-specific behavior, this can be 
performed by the operating system. Operating systems include updated CPU microcode 
and have the ability to update CPU microcode without needing to install and validate 
a new BIOS firmware image or reboot the server. CPU microcode updates are done by 
loading microcode into memory and writing the address of the microcode to the  
IA32_UCODE_WRITE MSR.

Throughout this book, several of the MSRs outlined start with the IA32_ prefix. This 
prefix indicates that the MSR is architectural, meaning it is supported in future CPUs using 
a consistent address and data field definition. Data fields that are reserved or undefined 
can be used to add new functionality over time. Architectural MSRs also do not change 
across different product segments. For example, the definition of IA32_PERF_CTRL is 
identical across phones, tablets, notebooks, and servers. This is critical for maintaining 
forward and backward compatibility with the various software components utilized in 
power management. MSRs are documented in detail in the Intel Architecture Software 
Developer Manuals.
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Advanced Configuration and Power Interface
As discussed in Chapter 2, C-states and P-states, or processor idle power and processor 
performance states, are controlled by the operating system. After these features are 
configured and enabled by BIOS firmware, BIOS firmware is responsible for advertising 
these power states and control interface information to the operating system. To 
accommodate compatibility and flexibility between different hardware and software 
implementations, an industry standard interface called Advanced Configuration and 
Power Interface (ACPI) is used.1 ACPI provides an interface for conveying power state 
information in abstract terms so operating systems and hardware power management 
features can advance independently without causing any loss of functionality. For 
example, a new hardware C-state released in 2015 can be used efficiently by an operating 
system released in 2005 as long as that C-state is described using ACPI. This abstraction 
is necessary because there can be significant differences in power state behavior between 
different platforms, architectures, and CPUs, even when those power states share the 
same name. Similarly, OS power management policies may choose not to use a power 
state in one product and version, but may choose to in another. The scope of ACPI goes 
beyond describing power states and control interfaces. Rather than a comprehensive 
review of ACPI capabilities, this section discusses only those key interfaces most relevant 
to understanding the hardware and software interaction in power management.

ACPI provides an abstraction for several different types of states including S-states, 
C-states, P-states, T-states, and D-states. ACPI states are identified by a letter indicating 
the state type, followed by a number indicating the depth of the state. For example, S0 is 
system state 0 and P5 is performance state 5.

Lower numbers indicate a state with more activity and higher power—the number 
0 always indicates the state with the most activity, highest performance, and highest 
power. As a result, lower numbered and higher power states are called shallow power 
states whereas higher numbered and lower power states are called deep power states. 
The description of states as shallow or deep is done to convey state transition costs, 
such as latency or the transitional energy needed to enter or exit a state. During these 
transitions, the system is stalled or may be taking actions that will affect performance 
when the processor resumes execution, such as flushing caches and translation 
lookaside buffers (TLBs).

A resource can only be in one state type at any given time. For example, a system 
can only be in one S-state at a time, a core can only be in one P-state at a time, and a 
device can only be in one D-state at a time. Figure 5-2 illustrates the relationships and 
dependencies between S-states, C-states, and P-states and how a system transitions 
between them.

1Advanced Configuration and Power Interface Specification, Revision 5.0a, November 13, 2013.



157

Chapter 5 ■ BIOS and ManageMent FIrMware

S-states
S-states refer to system level sleep states and include S0, S1, S3, S4, and S5. The CPU only 
executes instructions in the S0 state. The use of other S-states is somewhat uncommon for 
servers, because most servers are usually in an active state (S0), where they are active or 
ready to execute or they are powered off (S5). A server in an S5 or soft off state is one that 
is powered off, but still plugged in. Even though an ACPI S0 state describes an active state, 
it is possible for processors, devices, or other resources in the system to be idle. System 
level states can be in a shallower state than processor or other device states, but they can 
never be in a deeper state.

ACPI S3, commonly referred to as suspend, is a sleep state where OS context is saved 
to system memory; memory remains powered, but most of the other system components 
are powered down. In S4, all devices have been powered off, but current OS context has 
been retained on a storage device. S3 and S4 support varies with many server products 
not supporting these.

Figure 5-2. Summary of ACPI power states and transitions
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Note ■  Use of S3 and S4 is uncommon in servers. these states do not maintain an  
active network connection, and execution context is no longer in CpU caches. It can take 
a significant amount of time to resume from these states, making them difficult to use in 
dynamic environments with variable load.

C-states
The ACPI specification defines three types of idle power or C-states: C1, C2, and C3. A 
C0 state describes an active processor that is executing instructions. An ACPI C1 state is 
mandatory. It describes the lowest latency idle power state and is reserved for processor 
states that have an insignificant amount of transition latency or performance impact. An 
ACPI C2 state is a deeper state than C1, with lower power and higher latency. It’s allowed 
to have measurable latency impact but does not require any additional software handling 
above what an ACPI C1 state requires. An ACPI C3 state is the lowest power and highest 
latency state and has extra software overhead associated with C-state entry and exit. ACPI 
C3-type states have software visible effects. Use of these states may require the OS to 
check on chipset activity before entering the state or may require the OS to identify and 
use alternative time sources due to a processor timestamp counter or local APIC timer 
stopping after entering the C-state.

Due to the increased software complexity of ACPI C3-type states, most modern 
servers do not implement C-states that map to anything deeper than an ACPI C2-type 
state. Over time, hardware C-states have been optimized to eliminate or reduce software 
visible effects. This ranges from architecting timers so they continue to run when the 
processor is in deep C-states and eliminating dependencies on activity level outside the 
CPU to aggressively reducing deep C-state exit latencies.

Note ■  a common point of confusion is the difference between hardware C-states and 
apCI C-state types. each of the hardware C-states described in Chapter 2 is mapped to an 
aCpI C-state type when they are advertised by BIOS firmware. For example, hardware C1 
states map to an aCpI C1 type whereas hardware C3 and hardware C6 states map to an 
aCpI C2-type state.

P-states
P-states refer to processor performance states and include ACPI P0, and P1 to Pn, where 
the number of states between 0 and n varies based on the number of unique voltage 
and frequency operating points supported by the processor. Pn is also referred to as the 
deepest P-state. Unlike S-states or C-states, which represent idle states, P-states represent 
active states, and as a result, ACPI P-states are only utilized when the processor is in C0, 
actively executing instructions.
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The P0 state is the highest performance and highest power state, and every state from 
P1 down to Pn results in a decrease in power and a decrease in performance in comparison 
to lower-numbered states. ACPI limits the number of P-states to no more than 16. In cases 
where a processor has more than 16 hardware P-states, BIOS firmware must decide which 
of these are exposed to the OS. BIOS firmware typically exposes an ACPI P-state for every 
base clock step between the processor’s minimum frequency (Pn) and the CPU base 
frequency. Turbo mode, discussed in Chapter 2, is always mapped to ACPI P0.

D-states
The ACPI specification also defines device power states, or D-states. ACPI D-states aren’t 
utilized as frequently on servers as they are in clients. Many servers are unable to use 
D-states since the latency to resume from these states is too significant for use in active 
servers. Another reason ACPI D-states aren’t always exposed on servers is because 
additional standard interfaces for device state discovery and control exist, such as Power 
Management Control and Status register (PMCSR) , defined by the PCI and PCI express 
specification. Some device drivers manage native device-specific power states via private 
device-specific controls. Many devices have the capability to monitor their own device 
activity and manage power without any software control. Even where there are no 
software exposed D-states, devices or CPUs may be autonomously transitioning between 
various power states at runtime to manage power.

Although there are various control methods and specifications that describe device 
power management outside of ACPI, they all share the same terminology. A D0 state 
is active, D1 and D2 are low-power states where device context is saved, and D3 is the 
lowest power, highest latency state where no device context is saved.

ACPI Interfaces
An operating system needs a much greater level of detail about power states and their 
behavior in order to utilize them efficiently. When selecting between different power states, 
the OS needs to know each state’s power consumption, the transition time to enter and exit a 
state, what level of execution context is lost upon entering a state, and specific mechanisms 
for initiating entry. ACPI standardizes tables to describe this detailed information to the OS.

BIOS firmware is responsible for constructing these tables and loading them into 
memory where the operating system reads them and enumerates capabilities. ACPI 
tables that include core power state information are the DSDT (Differentiated System 
Description Table) and the SSDT (Secondary System Description Table). These tables 
consist of several objects that provide needed power state and control information to the 
OS. The following list describes the primary set of ACPI objects used by the OS:

•	 _OSC and _PDC (Operating System Capabilities and Processor 
Driver Capabilities): These methods are used to communicate 
capabilities of the OS to BIOS firmware. This includes describing 
OS capabilities in terms of coordinating control across multiple 
logical and physical processors, and its ability to control P-states 
and C-states. The capabilities of the OS will determine what 
power management features BIOS firmware will expose.
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•	 _PSS (Performance Supported States): This object lists the 
P-states available to the OS. For each state, the object includes 
a performance level (typically core frequency in MHz), the 
maximum power consumption, and transition latency. In 
addition, the object lists a control register value that the OS uses 
to identify a P-state when requesting a power state change and a 
status value that the OS uses to identify a P-state when checking 
on processor status. A separate ACPI object defines the processor 
status register that the OS uses to determine the current P-state 
and to check the status of existing P-state control requests.

The ACPI specification describes P-states in terms of guaranteed 
frequency. Turbo mode, or the ability for processor cores to 
run above the CPU base frequency, is not guaranteed. Turbo 
is opportunistic with the frequency dependent on thermal or 
power headroom. Since Turbo frequency is not guaranteed, it 
is improper to expose the maximum Turbo frequency via ACPI. 
As a result, the ACPI _PSS exposes Turbo (P0) at 1 MHz higher 
frequency than P1. When the OS requests Turbo, hardware 
will maximize frequency, potentially running well above what 
is advertised to the OS. If frequency determinism is a hard 
requirement for users, software interfaces are provided so Turbo 
can be disabled.

Note ■  there are many cases where exposing turbo as a single p-state is not energy  
efficient. not allowing the operating system to choose intermediate p-states between  
p1 and the maximum turbo frequency can result in selection of a p-state that is higher 
performance and power than required.

 •	 _PSD (P-state Domain): The ACPI _PSD object describes CPU 
control dependency, defining whether logical processors in a CPU 
have their own P-states or whether subsets of logical processors 
share a common P-state. Some server CPUs have a single P-state 
domain, meaning all logical processors in that CPU share a single 
frequency. Other server CPUs have a different P-state domain for 
each core, meaning that all cores in the CPU can run at their own 
independent frequency. The _PSD object is also responsible for 
describing the P-state coordination type, which is discussed in 
greater detail later in this chapter.
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Note ■  errors in aCpI objects can cause significant power issues. Figure 5-3 shows the 
impact of an online transaction processing workload running on a system with an  
incorrect _pSd. these issues have resulted in substantial (up to 40 w higher) power  
increases throughout a range of different operating conditions.

Figure 5-3. Power impact from ACPI _PSD object with an incorrect mapping

 •	 _PCT (Performance Control): This object describes the 
processor registers or firmware locations that allow the OS to 
change P-states and to check the status of P-state requests. To 
change P-states, the OS uses the _PCT-specified control register. 
P-state transitions are initiated by the OS writing a P-state’s control 
value (specified in the _PSS) to the control register. In order to 
check the status of P-state requests, the OS uses the _PCT-specified 
status register. The status register also specifies the current P-state 
in terms of the _PSS-specified P-state control value.

Most modern processors specify these interfaces in terms of what 
ACPI calls Functional Fixed Hardware (FFH) , or a processor MSR. 
This allows the performance control interface to be implemented 
directly in hardware providing a low latency and error resilient 
interface. Where a native processor interface is not available 
or desirable, an original equipment manufacturer (OEM) can 
implement platform-specific code to handle performance control.
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•	 _CST (C-states): This object lists the C-states available to the 
OS. Details provided for each C-state include the register used to 
place a processor into a C-state, the ACPI C-state type, worst-case 
latency, and typical power consumption. Power consumption 
numbers in the _CST are not used by operating systems because 
they are assumed to be estimates only. The latency field is used by 
several OS control policies to limit use of some C-states based on 
system activity levels or where there is a specific device that can’t 
tolerate latency above some threshold.

Similar to ACPI P-state objects, an ACPI _CSD object exists to 
describe processor control dependences for C-states. Understanding 
cross logical-processor C-state dependencies is useful for 
understanding C-state impact when the OS needs to consolidate 
execution to some subset of logical processors in the CPU.

After an operating system initializes, it evaluates these ACPI methods and has 
all the information it needs to request hardware transitions between various idle and 
active states and to check the status of those requests. The OS control policy uses ACPI-
advertised information outlining the expected power and performance impact of the 
various states to make state transition decisions, and it uses ACPI-advertised control 
mechanisms to execute those decisions.

Note ■  there is a long history of issues with the resiliency and robustness of the aCpI 
interface for OS power management. Some modern operating systems are starting to use 
native processor interfaces such as CpUId to discover the CpU type, power management 
features, and control interfaces directly from hardware. this use of native processor  
interfaces limits how flexible the power management solution is, but it eliminates errors in 
aCpI objects from causing functional or performance issues.

Setup Utility
The setup utility, also implemented in BIOS firmware, is a powerful tool for fine-tuning 
power management and optimizing a platform for specific workloads. The majority of 
power management features can be enabled, disabled, or have their default behavior 
changed through simple setup options. Chapter 8 is a comprehensive optimization 
reference that discusses options commonly found in the setup utility and different ways 
these options can be configured to decrease power, increase performance, or, in an ideal 
scenario, both.
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Management Firmware
Microcontrollers in cars can monitor fuel level and consumption rate. They can indicate 
if tire pressure is low or if a turn signal is burned out, and they can keep a record of 
diagnostic events that can be retrieved by a technician during a service appointment. 
These capabilities are provided independent of who is driving the car, or if the car is 
speeding or is stopped.

Management firmware running on server microcontrollers plays a very similar 
role. Management firmware provides power, monitoring, event logging, inventory, and 
remote management capabilities independent of the OS or state of the processors. This 
is particularly useful in the datacenter where there is large number of servers, where 
systems are going up and down for maintenance, and where servers are running different 
operating systems. Two key firmware components that are critical for power management 
are the baseboard management controller (BMC) firmware and the Management Engine 
(ME) firmware, called Node Manager.

Node Manager Capabilities
Node Manager firmware provides key capabilities for managing and optimizing both power 
and cooling resources in the datacenter. It exposes a standardized set of hardware protection, 
monitoring, and power capping features to the BMC and to external management software. 
Node Manager acts as a satellite controller and offloads power management responsibilities 
from the BMC, with some of the capabilities always running and others activated by a profile.

Hardware Protection
Node Manager firmware implements a set of hardware protection mechanisms to protect 
the platform during adverse or unexpected conditions. There are proactive protection 
mechanisms such as dynamically limiting platform power to the capabilities of the PSU. 
There are also reactive protection mechanisms such as closed loop system protection (CLST) 
and Smart Ride Through (SmaRT) that protect the platform during PSU over-temperature, 
under-voltage, and over-current events. These capabilities are hardware assisted, with sensor 
devices using the SMBUS protocol to notify Node Manager about critical events. Protection 
mechanisms respond immediately in the case of an adverse condition, with required 
actions, such as processor and memory throttling, occurring in under a millisecond.

Monitoring
Another key capability of Node Manager firmware is comprehensive platform monitoring. 
In addition to the monitoring capabilities provided by processors and memory, modern 
servers implement several onboard sensors in intelligent power supply units (PSUs), 
voltage regulators (VRs), hot swap controllers (HSCs), and in devices accessible by the 
BMC. These sensors enable fine-grained power monitoring since they are capable of 
reporting voltage, current, power, and energy consumption for individual components. 
Combining together all the board, processor, and memory sensors creates a sensor grid 
that Node Manager firmware relies on for power management.
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These monitoring capabilities have uses beyond enabling Node Manager’s protection 
and power capping features. External management software uses these monitoring 
capabilities in a variety of ways. For example, events that monitor inlet temperature, outlet 
temperature, and volumetric airflow are used by facility control software.

Note ■  In order to expose more information about the platform, node Manager adds several 
synthetic sensors such as outlet temperature and volumetric airflow. these sensors are 
derived from other sensors in the platform and calculated based on a mathematical model.

Events that monitor compute utilization and memory utilization are used by 
orchestration software to aid in workload placement and migration decisions. Events that 
monitor power consumption are used to characterize and optimize production workloads. 
Various types of sensors and usages are described in greater detail in Chapter 7.

Power Capping
Node Manager firmware allows users to set and enforce a power cap ensuring that power 
will not exceed a defined threshold. External management software uses this capability in 
several different scenarios to provide power, performance, and cost benefits.

Most servers operate well below the theoretical maximum platform power, even 
when workloads are running at peak throughput. This limits the number of servers that 
can be safely added to a rack with fixed power capacity. Rather than allowing a server 
to operate up to the theoretical maximum platform power, users can enforce a power 
cap that corresponds to more representative peak conditions. This power cap can be 
determined using insight gained from datacenter monitoring, it can be established by 
characterizing production workloads under peak conditions, or it can be established 
based on some percentage of the theoretical maximum platform power. Using a more 
representative power cap, rack density can be improved.

Note ■  node Manager provides a feature that automatically characterizes platform  
minimum and maximum power during BIOS pOSt using specialty workloads. the results  
of this characterization can be used to identify an appropriate power cap when it is not  
possible to do so using production workloads.

Several additional applications of power capping exist—for example, power capping 
to survive a power or cooling failure in the datacenter. An aggressive power cap can be 
enforced during these conditions, decreasing server power and cooling requirements. 
This keeps applications running, delaying or avoiding automatic shutdown. Power 
capping can also be applied strategically to maximize resources where energy has 
a variable cost. Figure 5-4 shows external interfaces and components used by Node 
Manager firmware to enable hardware protection, monitoring, and power capping.
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Figure 5-4. External interfaces and components used by Node Manager firmware

Node Manager Policies
By default, Node Manager firmware activates hardware protection and basic monitoring. 
Additional Node Manager firmware capabilities are supported using user-defined policies 
that can be created, configured, enabled, and disabled.

Policies can be always running, such as a power capping policy that replaces the 
theoretical maximum platform power with a cap more representative of peak conditions. 
Policies can also be enabled by a trigger, or some monitoring event used to activate the 
policy. For example, a policy can enforce a power cap only when an inlet temperature 
exceeds some threshold. An operator might define several different inlet temperature 
thresholds, with each one activating a different power cap.

Node Manager policies typically monitor or control power for a specific policy 
domain. A domain is simply an abstraction for related individual platform components. 
For example, a policy that targets the platform domain includes all components in the 
server. The CPU domain would report and control power for all CPUs in the system, 
treating them as a single entity, while the memory domain reports and controls power for 
all DIMMs and memory controllers in the system.

Table 5-1 lists all the different attributes of a Node Manager policy that operators can 
use to configure policies to match desired behavior and specific needs. These attributes 
enable more sophisticated event-driven management. For example, if the server is unable 
to meet a power cap, the policy can define a resulting action, such as sending an event to 
external management software or shutting down the platform.
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Table 5-1. Attributes of a Node Manager Policy

Attribute Supported Values Description

Assigned policy ID A one-byte numeric value. Indicates a unique identifier 
for the policy. This is 
assigned during policy 
creation.

Policy domain Can be any of the following:

Entire platform•	

CPU subsystem domain•	

Memory subsystem domain•	

Hardware protection domain•	

High-power I/O domain•	

Indicates the specific 
platform subsystem the 
policy is applied to.

Administrative state 
for policy

Can be either of the following:

Enabled•	

Disabled•	

Indicates the state of the 
policy. Even if a policy is 
disabled, monitoring for the 
policy is still enabled.

Policy trigger type Can be any of the following:

No policy trigger.•	

Inlet temperature limit (in •	
Celsius).

Missing power reading •	
timeout (in 1/10th of a 
second).

Time after host reset (in 1/10th •	
of a second).

Boot time policy. This policy •	
will be applied only at boot.

Indicates the trigger for 
policy activation. If “No 
policy trigger” is specified, 
the policy is always active. 
For all other triggers, the 
policy is only active while 
the condition is true.

Policy trigger limit A temperature value in Celsius or a 
time value in 1/10 of a second.

Indicates the specific value 
associated with the trigger.

Policy limit A power cap can be specified as 
one of the following:

Power (in W)•	

Throttling level (in %)•	

Indicates a power cap to be 
enforced. Platform throttling 
level is used in case of 
missing power readings.

(continued)
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Table 5-1. (continued)

Attribute Supported Values Description

Aggressiveness Can be one of the following:

Automatic•	

Force unaggressive mode•	

Force aggressive mode•	

Indicates the types of power 
management mechanisms 
used to keep the server 
below a power cap. Node 
Manager attempts to 
meet a cap using the most 
energy efficient mechanism 
available. Mechanisms 
with greater performance 
impact are used only 
when a cap cannot be met 
using the energy efficient 
mechanisms.

Correction time 
limit

A time value in milliseconds. Indicates the maximum 
time, in milliseconds, in 
which the Node Manager 
must take corrective actions 
to meet a power cap. If this 
time is exceeded, the “Policy 
exception action” specifies 
the next action.

Policy exception 
actions

Can be either or both of the 
following:

Send alert.•	

Shut down system (hard •	
shutdown via BMC).

Indicates action taken if the 
policy limit cannot be met. 
Sending an alert will cause 
Node Manager to generate 
an asynchronous event to 
notify external management 
software that the defined 
limit is too low.

Policy storage 
option

Can be either of the following:

Persistent storage•	

Volatile memory storage•	

Indicates the storage type 
of a policy. By default 
the policies are stored 
persistently so Node 
Manager will restore 
the policies after each 
platform reset. If policies 
are frequently created and 
updated, volatile storage 
should be used.

(continued)
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Table 5-1. (continued)

Attribute Supported Values Description

Statistics reporting 
period

A time window in seconds. Indicates the averaging 
window for monitoring. 
This allows operators to 
specify up to a one hour 
moving average window for 
monitoring.

Alert thresholds Up to three thresholds in the units 
specified by trigger type.

For a policy without a trigger, the 
thresholds array contains average 
power in watts.

For temperature-based triggers, 
the thresholds array contains 
temperature in degrees Celsius.

For time-based triggers, the array 
contains time in 1/10 of a second.

Indicates threshold trigger 
values need to exceed to 
generate events.

Suspend periods An array of start and stop times 
including recurrence patterns 
based on the day of the week.

Indicates when the policy 
will be enforced.

2IPMI Specification, v2.0, Rev. 1.1.

The policy allows operators to specify various alert thresholds. Each policy supports 
up to three thresholds that can be used to generate events. For example, it is common to 
set a threshold close to the defined power cap, so external management software can see 
how close the system is getting to enforcing a cap.

The policy allows operators to specify suspend periods. This defines a weekly pattern 
of days and times a policy should be enabled or disabled—for example, power capping 
servers hosting IT infrastructure during nights and weekends. Node Manager automatically 
synchronizes the real-time clock used for scheduling with the host OS real-time clock to 
keep software and systems in sync.

IPMI
BMC and Node Manager firmware capabilities are configured and controlled through 
the Intelligent Platform Management Interface (IPMI).2 Support for IPMI is widespread, 
with the vast majority of servers supporting it. IPMI provides a standard well-defined 
interface between external management software and the underlying platform, enabling 
various monitoring, logging, inventory, and recovery functions using simple request and 
response messages.
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IPMI messages or commands target the BMC. The BMC acts as a communication 
hub for satellite controllers in the platform that include their own monitoring and control 
capabilities such as the ME in the PCH. Communication between the BMC and satellite 
management controllers takes place over an I2C bus using the Intelligent Platform 
Management Bridge (IPMB) interface. The I2C bus, SMBus, PMBus, memory-mapped 
I/O ports, as well as private management busses are all used to connect management 
controllers to various sensors in the platform.

Use of IPMI eliminates the need for vendor-specific tools that are incompatible 
between different platforms. Since IPMI is an open standard, it also allows servers to 
implement management functionality independent of the OS, BIOS, or the system 
configuration. Monitoring functions in the BMC can be accessed by IPMI out-of-band, 
over the network by a connected client. These functions can also be accessed by IPMI  
in-band through management tools and device drivers installed on the server.

Sensor Model
Sensors in a platform, such as a CPU and memory temperature sensors are discovered by 
management software using IPMI commands. This discovery is aided by the IPMI sensor 
model. The sensor model describes all the different sensors supported, as well as each 
sensor’s name, type, and the values they return. Some sensors may provide real-time 
measurements whereas others may provide only a count or indication of past events.

Sensor information is stored in IPMI sensor data records (SDRs). In addition to 
storing information on sensor capabilities, the SDR is used to describe the various 
devices connected to the ICMB and it associates each sensor with the host management 
controller. The SDR also provides information on event generation capabilities and 
describes thresholds that can be set to trigger events.

Note ■  IpMI is extensible so server manufacturers are able to add their own custom 
sensors and commands. as a result, management controller monitoring capabilities can vary 
greatly from one server to another.

Inventory information such as FRU (field replaceable unit) devices connected to the 
platform are stored in the SDR. FRU data includes information for inventory management 
such as serial number, part number, manufacturer, and description.

System Event Log
Events generated by the BMC and by Node Manager firmware are stored in a centralized 
event log called the System Event Log (SEL)—for example, an indication that a fan is 
no longer functioning properly. Similar to SDR access, IPMI enables access to the SEL 
providing common functions such as reading or clearing the log.
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Satellite controllers send their messages to this centralized log via the IPMB, 
allowing the SEL to act as a single platform event repository. Stored in flash memory, 
events captured in the SEL contain critical information that isn’t lost if power is 
disconnected or there is an operating system failure.

Node Manager API
Node Manager capabilities described earlier in the chapter are accessed and controlled 
through IPMI commands. The Node Manager IPMI API includes numerous IPMI 
commands for creating policies, configuring policies, accessing monitoring capabilities, 
and accessing runtime attributes.

The Node Manager IPMI API describes commands operators can use to query 
capability and version information. External management software relies on this interface 
to discover capabilities as different platforms may expose a different set of policy domains 
and features.

The API describes commands operators can use to specify the destination of alerts. 
Node Manager defines a set of events that are sent directly to external management 
software, bypassing the BMC SEL. For these events, the IPMI Alert Immediate API is 
used. This gives external management software the choice between event-driven or 
periodic polling management. The API also includes commands that provide additional 
management functionality. For example, commands that enable operators to set a Turbo 
synchronization ratio, or a frequency limit for Turbo. This feature can be used to improve 
performance determinism in high performance computing (HPC) environments. 

A complete list of commands included in the Node Manager IPMI API are included 
in the Node Manager specification at www.intel.com/content/www/us/en/power-
management/intelligent-power-node-manager-specification.html.

The Node Manager IPMI API includes two types of interfaces:

•	 External API: This is designed for use by external management 
software. This API uses the policy domain abstraction to expose 
high-level monitoring and control to external management 
software. Exposing platform management capabilities at a 
domain level simplifies management and improves scalability, 
especially in environments with thousands of servers to manage.

•	 Internal API: This is designed for use by the BMC or other 
management controllers in the system. This low-level API allows 
the BMC to access specific sensors and control features as 
needed.

http://www.intel.com/content/www/us/en/power-management/intelligent-power-node-manager-specification.html
http://www.intel.com/content/www/us/en/power-management/intelligent-power-node-manager-specification.html
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ACPI Power Metering Objects
In addition to IPMI, Node Manager also exposes power monitoring and power capping 
capabilities through ACPI power metering objects. This allows the OS to participate in 
monitoring and control. The key ACPI objects that enable this functionality are outlined 
here:

•	 _PMC (Power Meter Capabilities): This object describes the power 
meter capabilities including measurement unit, type, accuracy, 
and sampling time. It describes whether the platform is capable of 
monitoring platform power, enforcing a power cap, or both.

•	 _PMM (Power Meter Measurement) and _PAI (Power 
Averaging Interval): The _PMM object returns the latest reading 
from the power meter. The averaging window for the _PMM 
returned reading is defined by the _PAI.

•	 _PTP (Power Trip Points): This object is used to define the upper 
and lower trip points for the power meter.

•	 _SHL (Set Hardware Limit) and _GHL (Get Hardware Limit): 
These objects are used to enforce a platform power limit.

Summary
BIOS and management firmware play a critical role initializing, configuring, controlling, 
and advertising power management features to external software. Without these actions, 
systems would fail to utilize power management features, resulting in high power usage, 
low performance, or both. Standard interfaces such as ACPI and IPMI are used to enable 
firmware to communicate with external software in an OS-independent fashion.

Chapter 6 will continue the discussion on software architecture with a description of 
the operating system’s role in power management. It will describe how the OS uses BIOS 
firmware exposed ACPI objects to enumerate and control various power states. It will also 
describe how OS power state selection, process scheduling, and memory management 
decisions made by the OS impact energy efficiency.
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Operating Systems

Software computation and data manipulation is the essence of the work done on a server 
and in a datacenter. What is often overlooked is the critical role operating systems play 
in determining both the performance (the speed of work) and the cost (the energy 
consumed) doing that work. Operating systems manage a software work plan; an efficient 
work plan gets work done faster and at lower cost.

Well-optimized operating systems can increase the time spent in low-power 
CPU, memory, and interconnect states. They avoid careless use of system resources 
that can limit a server’s use of low-power states—for example, polling for completion 
of some event or activity, choosing a suboptimal resolution of the system timer, or 
performing operations that only utilize a small subset of logical processors in the 
system. Well-optimized operating systems adapt their use of power management 
features to match changes in workloads, changes in server utilization, and changes in 
operator preferences.

This chapter begins with an overview of operating systems and their role in selecting 
power states, scheduling, and memory management. This includes a description of 
the interfaces operating systems use for power state control as well as the policies and 
metrics the OS uses to drive those decisions. Additional considerations for virtualized 
environments are discussed, including consolidation and virtual machine migration.  
The chapter concludes with a comparison of different operating environments, the unique 
power management capabilities of these environments, and how these capabilities have 
changed over time.

Note ■  The term operating system (OS) used throughout this chapter is inclusive of both 
a native operating system and a virtual machine monitor (VMM). A VMM assumes the same 
power management roles and responsibilities that a native OS does, so information in this 
chapter applies equally to both environments.
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Operating Systems
Once equipped with power state information and the appropriate controls from BIOS, 
the OS must implement power management policies that determine how and when to 
use various power states based on system activity or any known power and performance 
constraints. Striking the right balance between low power and high performance is a 
difficult problem since the right balance differs greatly from environment to environment 
and user to user. Operating system power management (OSPM) policies may be unaware 
of service-level agreements in place or of quality of service requirements. They may 
not understand whether the system is running a stand-alone application or whether 
it is part of a complex distributed application. Even knowledge of specific applications 
executing tells the OS very little about what the appropriate balance is between power 
and performance. To an OS, a web server hosting the front end for a family photo 
sharing service looks identical to a web server hosting the front end for critical financial 
transactions.

The diversity of power and performance requirements in a datacenter presents a 
unique challenge for implementing and optimizing OSPM policy on servers. In other 
compute environments, such as phones and tablets, common performance expectations 
are known ahead of time. For example, gaming is good at 30 frames per second and 
great at 60 frames per second. Holding a device in your hand shouldn’t make your hand 
perspire, touch gestures should be processed in a matter of milliseconds, and creating an 
audible pause during audio playback is unacceptable.

In a server environment, the performance impact of power management features 
varies greatly based on the workload, application, system configuration, and performance 
requirements. Some workloads will see no performance impact whereas others may 
see substantial impact. In the absence of known performance requirements, OSPM 
policy needs to make the best decisions it can regarding the balance between low power 
and high performance using the limited information it does have. The two primary 
policies the OS is responsible for is the selection of C-states and P-states. The following 
sections describe the mechanisms these policies use for hardware state control as well as 
monitoring capabilities and metrics used for policy feedback and decision making.

C-state Control 
As indicated in Figure 6-1, most operating systems implement OSPM policies in device 
drivers. The processor can be thought of as just another device in this context. The drivers 
communicate with hardware using a set of standard control interfaces that are described 
by ACPI or ascertained with CPUID. When an OS has no work to be done on a logical 
processor, it enters an idle function where eventually one of two instructions can be 
executed to transition the logical processor into an idle C-state. 
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MWAIT
The most common way for an OS to enter an idle state is by executing the MWAIT 
instruction. MWAIT can only be executed in Ring 0, so applications are unable to directly 
enter idle states. MWAIT provides the OS control over the specific C-state and sub-state 
to enter and under what conditions that C-state can be exited. The OS conveys C-state 
control details through two general-purpose registers used by MWAIT.

The OS uses the ECX register to specify how it wants C-states to exit upon external 
interrupts. When the OS-specified interrupts should be treated as break events, execution 
resumes within the idle function rather than directly executing an interrupt service 
routine (ISR). The OS uses the EAX register to specify the target C-state (C1, C3, or C6) 
and the target sub-state. The MWAIT sub-state is used for lower-level control of a specific 
C-state. For example, if a specific C-state flushes the caches upon C-state entry, different 
sub-states may be used to modify the behavior of the cache flush, such as flushing the 
entire cache at once, or flushing the cache progressively over multiple time-delayed 
phases. Figure 6-1 is an example of various C-states supported on a processor and the 
MWAIT hints used to specify these states.

Any interrupt—such as a timer interrupt, device interrupt, or inter-processor 
interrupt (IPI)—will cause a C-state to exit and execution to resume. In addition 
to C-states exiting based on interrupts, MWAIT can be used in combination with a 
MONITOR instruction. Executed by the OS before the MWAIT instruction, a MONITOR 
instruction allows the OS to specify a memory address for the processor to monitor. 
With a MONITOR instruction armed, any subsequently entered C-state will be exited 
if the monitored data address is modified. This provides an additional mechanism for 
software defined C-state exit conditions. For example, the Linux kernel utilizes this 
mechanism by arming MONITOR/WAIT pairs with a kernel need_resched flag. This 
flag is modified by the OS to indicate that the kernel scheduler should be activated on 
a particular logical processor. Exiting C-states based on a modified MONITOR address 
also provides a mechanism for waking up a specific logical processor without needing 
to generate an IPI.

Figure 6-1. Example MWAIT hints OS uses to specify various processor C-states
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HLT
Older operating systems, or operating systems with deep C-states disabled, may execute 
the HLT (halt) instruction in place of an MWAIT in an idle function. HLT does not require, 
nor does it support, the same level of control that MWAIT does. HLT simply places the 
logical processor in the shallowest state, or the hardware C1 state. With the introduction 
of MWAIT, there is no longer a need for HLT. In modern systems, microcode converts HLT 
instructions into MWAIT instructions requesting hardware C1.

C-state Policy
In simple terms, the role of OSPM C-state policy is to predict the future. Shallow C-states 
are best used when the system has very short idle durations, for example, packet 
processing over a high-speed network. Deep C-states are best used when the system 
has long, uninterrupted idle durations; for example, idle time between submitting and 
completing an I/O. Figure 6-2 shows sample utilization from a single logical processor.  
It shows a mix of different shorter and longer idle durations, and ideal use of C-states.

Figure 6-2. Sample logical processor utilization with requested C-state

With each logical processor generating unique utilization characteristics, OSPM 
policy needs to make individual decisions for each of them. Hardware is responsible for 
coordinating logical processor-level requests from two logical processors to determine 
the core C-state. For example, if one logical processor on a core is requesting C6 and the 
other is requesting C1, the core will go to C1. Similarly, hardware coordinates between 
core C-states to determine the package C-state. During hardware coordination, the 
shallowest of all C-state requests is used.

Optimal use of C-states is important for both power and performance. As discussed 
earlier, deep C-states introduce a performance penalty when they are exited. Using a deep 
C-state throughout a sequence of short idle periods results in a significant amount of stall 
time relative to the time spent executing instructions. In addition to latency penalties, 
there is also a transitional energy cost associated with C-state entry and exit. It may be 
counterintuitive, but using deep C-states throughout a sequence of short idle durations 
may actually result in higher power and lower performance. An idle duration has to be up 
to hundreds of microseconds long for the deepest C-states to save power—otherwise the 
energy cost of entry and exit has not been amortized.
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C-state latency information exposed by ACPI is of limited use to OSPM C-state 
policy. It can be useful where software knows exactly what latency it can and can’t 
tolerate. However, the latency value exposed by ACPI represents worst case latency, a 
value that can be several times greater than average or typical latency and is encountered 
only when in a package C-state. Cases where C-state latency is equal to the ACPI exposed 
value may never be encountered. In reality, there is no single value that represents C-state 
exit latency—it is variable and heavily dependent on other CPU activities. An additional 
downside of ACPI exposed latency is that it does not convey other performance visible 
effects such as cache and TLB flushes. These actions momentarily slow execution when 
the processor wakes up from a C-state due to running on caches that no longer contain 
recently used instructions and data.

C-state power consumption information exposed by ACPI also provides an incomplete 
picture from a power perspective. The power consumption of a logical processor, core, and 
package C-state are all very different, but ACPI objects expose only a single power value. In 
addition, ACPI C-state objects don’t capture the idle duration necessary to break even from 
an energy perspective. In general, trying to convey to software accurate power consumption 
for some low-level state is problematic. Actual measured power depends on a number of 
external factors such as part to part CPU variation, temperature, and the efficiency power 
delivery components such as VRs and power supplies. 

Chapter 2 discusses hardware C-state demotion mechanisms that processors use 
to prohibit deep C-states. If the PCU detects that such C-states are being used, the result 
may be a measurable performance impact or power increase. With these features in 
place, the OSPM C-state policies have the option of simply specifying the deepest state 
they tolerate, instead of trying to determine an ideal state, and allowing for further C-state 
selection optimization in hardware. This option has the benefit of eliminating complex 
software algorithms and simplifying the path to entering idle.

Processor Utilization
One metric OSPM C-state policy uses to determine whether to use deep or shallow 
C-states is processor utilization. This metric describes the percentage of time the 
processor is active or unhalted. The CPU provides fixed counters the OS can use to 
measure utilization on each logical processor. For example, the IA32_FIXED_CTR1 MSR 
described in Table 6-1 counts unhalted cycles at the rate of CPU base frequency (or  
P1 frequency) and the time stamp counter (TSC) MSR described in Table 6-2 counts all 
cycles, both halted and unhalted, at the same rate of CPU base frequency. Measuring 
the two events over some time period allows the operating system to calculate average 
utilization—the ratio of unhalted cycles in comparison to all possible cycles.

Table 6-1. IA32_FIXED_CTR1 MSR (0x30B)

Bits Width Field Description

63:0 64 bits Unhalted cycles Always running measure of logical 
processor utilization. Increments when 
processor is active at the CPU base 
frequency of the part.
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In reality, a logical processor can only be in one of two utilization states at any  
given time, active (100%), or idle (0%). It’s observing and averaging utilization of a  
logical processor over some longer time window that gives us the concept of being 
partially utilized.

Each OSPM policy has to decide over what length of time it will observe utilization. 
If the time window is too short, it’s likely the average utilization result will be 0%, 100%, or 
something very close to those endpoints. If the time window is too long, the OS will fail to 
identify fleeting changes or other interesting characteristics in the variation of utilization. 
In addition to observing utilization over a single time window, OSPM may use multiple 
time windows to gain additional insight into longer term utilization trends. Another OS 
metric used for selection of C-states is known future activity, such as periodic timers that 
are due to expire soon, I/O outstanding, or repeating patterns of device interrupts. Unlike 
utilization, these methods rely on known events and can be predicted more accurately. 

The complexity in OSPM accurately predicting idle durations, trends, or patterns in 
idle, and the potential for error in these predictions, does not prevent a good decision 
from being made. In fact, appropriate use of C-states can be realized with very simple 
C-state policies. In modern processors, deep C-state exit latencies are only a fraction of 
what they were when the technology was first introduced, so the impact of a suboptimal 
decision has been reduced significantly. Although there are environments with acute 
latency sensitivity, this is the exception rather than the norm. The majority of datacenter 
workloads see no measurable performance impact from the use of C-states.

P-state Control
P-states represent the most significant power performance tradeoff in a server today. In 
most systems, the power and performance impact of P-states is greater than the impact 
of all other power management features in the platform combined. The impact of OSPM 
P-state decisions is substantial. On a multi-socket system, a given decision could result 
in 100 watts lower power or cutting transaction response times in half. As such, OSPM 
P-state policies must identify a balance between low power and high performance that 
meets most of their user’s needs. It’s impossible to meet all users’ requirements, so OSPM 
policies must also provide mechanisms for administrators to customize OSPM behavior 
to meet their needs.

Similar to C-states, software use of P-states has been greatly simplified over time. For 
example, early P-state implementations required the processor to be in a coordinated idle 
state, holding off system activity through the completion of a P-state transition. In modern 
processors, P-state transitions are low latency and are performed dynamically.

Table 6-2. IA32_TSC MSR (0x10)

Bits Width Field Description

63:0 64 bits Timestamp Always running measure of logical 
processor time. Increments when the 
processor is active or idle at the CPU base 
frequency of the part.



179

ChApTer 6 ■ OperATing SySTeMS

Software Controlled Interface
Software utilizes writes to MSRs rather than executing instructions to initiate P-state 
transitions. State transitions are initiated by OSPM writing a control value (or frequency 
ratio relative to base clock) to the IA32_PERF_CTL register. Table 6-3 describes this 
interface and its capabilities. The ACPI _PSS object discussed in Chapter 5 describes 
each individual P-state based on the control value. It acts as an identifier that hardware 
associates with an internal frequency and operating point.

Table 6-3. IA32_PERF_CTL MSR (0x199)

Bits Width Field Description

7:0 8 bits Reserved Unused

15:8 8 bits P-state target Control value (frequency ratio relative 
to base clock) used to transition 
logical processor to the P-state target

31:16 16 bits Reserved Unused

33:32 1 bit Turbo mode disable Disables Turbo mode

63:34 31 bits Reserved Unused

IA32_PERF_CTL is accessible by the OS, by firmware, and by advanced applications 
with kernel-level privileges. There are cases where multiple entities may try to 
control P-states simultaneously. Although these cases are rare, where they exist, the 
administrator must take great care to ensure the capability is disabled for entities that 
should not have control.

The ACPI _PSD object (discussed in Chapter 5) informs the OS of its role and 
responsibility in coordinating P-state transitions. If all the logical processors in a CPU 
share the same P-state domain, it is not necessary for every logical processor to request a 
P-state change. OSPM policies have the ability to decide which of those logical processors 
should ultimately own the decision. Similarly, if all the logical processors in a CPU have 
their own unique P-state domain, the operating system must monitor each of them 
individually and make unique, logical, processor-specific requests.

Hardware provides several mechanisms OSPM can use to get feedback on policy 
decisions. The IA32_PERF_STATUS MSR provides a measure of the current frequency 
ratio, which conveys the specific processor P-state a core is utilizing. This mechanism 
is frequently used by software outside the OS to show the current operating conditions. 
Another mechanism for measuring frequency is the IA32_APERF and IA32_MPERF 
MSRs. IA32_APERF increments at the real frequency of a logical processor whereas  
IA32_MPERF increments at the CPU base frequency of the CPU. Measured over time, 
the ratio of IA32_APERF/IA32_MPERF allows OSPM to calculate the average frequency 
of a logical processor. Both IA32_APERF and IA32_MPERF can be reset by the operating 
system by writing them to zero, allowing OSPM to clear history from one observation 
window to the next. Some operating systems do not reset these registers,  
so IA32_APERF and IA32_MPERF can be used by other software outside the OS.  
Tables 6-4, 6-5, and 6-6 describe these mechanisms in greater detail.
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Table 6-4. IA32_APERF MSR (0xE8)

Bits Width Field Description

63:0 64 bits Actual performance Always running measure of time. 
Increments when processor is active at the 
current operating frequency of the part.

Table 6-5. IA32_MPERF MSR (0xE7)

Bits Width Field Description

63:0 63:0 Measured 
performance

Always running measure of time. 
Increments when processor is active at the 
CPU base frequency of the part.

Table 6-6. IA32_PERF_STATUS MSR (0x198)

Bits Width Field Description

7:0 8 bits Reserved Unused

14:8 7 bits Core ratio Frequency ratio of the core.  
This is multiplied by the base clock  
(typically 100 MHz) to get core frequency.

63:15 49 bits Reserved Unused

Collaborative Interface
A controversial topic that has been debated for years between hardware, firmware, and 
software engineers is, “Who is the ideal entity to control P-states?” Each of these entities 
has some unique information that provides insight to making an optimal P-state selection. 
For example, the OS has unique information about processes and threads, their priority, 
and dependencies between them. Hardware has unique insight into power, temperature, 
leakage, and resource scalability. Hardware can continuously monitor behavior and 
detect changes faster than an OS. Management firmware may understand a critical 
need to migrate a virtual machine (VM) off a server or have unique knowledge about 
response time requirements. A collaborative interface that allows control entities to specify 
requirements and hints, rather than discrete P-states, is a step toward a mutual decision.

Some of the latest CPUs contain support for hardware-controlled performance  
states (HWP), an interface for collaborative decision-making between hardware and 
software. HWP gives software the ability to supply a target frequency range to operate 
within along with performance guidance hints. This allows software to use its unique 
information to provide guidance and for hardware to optimize the selection of P-states 
within those software provided constraints. If software has no unique information to 
provide, hardware has the ability to autonomously select P-states.
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There are a number of new capabilities this interface provides for control, feedback, 
and notifications that don’t exist in the legacy interface. For example, this interface has 
the capability to indicate a change to guaranteed frequency initiated by an external power 
or thermal control policy. Tables 6-7 and 6-8 highlight the most important interface 
capabilities—the primary ones used by OSPM to cooperatively manage P-states. HWP 
MSRs are documented in detail in the Intel Architecture Software Developer Manuals.

Table 6-7. IA32_HWP_CAPABILITIES MSR (0x771)

Field Description

Highest performance Value for the maximum non-guaranteed 
performance level (aka Turbo).

Guaranteed performance Current value for the guaranteed performance 
level. Can change dynamically as a result of 
internal or external constraints (e.g., thermal or 
power limits).

Most efficient performance Value of the most efficient performance level (aka 
P-state with the lowest voltage).

Lowest performance Value of the lowest performance level.

Reserved Unused.

Table 6-8. IA32_HWP_REQUEST MSR (0x774)

Field Description

Minimum performance Minimum performance allowed in P-state selection.

Maximum performance Maximum performance allowed in P-state selection.

Desired performance A performance hint to hardware within the performance 
range defined by IA32_HWP_CAPABILTIES (see Table 6-7). 
If set to zero, hardware makes this decision autonomously.

Energy performance 
preference

A performance hint to hardware that influences the 
rate of performance increase/decrease and the result of 
hardware optimizations.

Reserved Optional or unused.
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Firmware Control
The previous sections detailed some of the challenges software faces in the selection of 
P-states, such as how to strike a balance between low power and high performance that 
will meet most users’ needs. Another challenge software faces is ensuring that new power 
management features work correctly on older versions of software.

This is a commonly faced challenge as new hardware is frequently coupled 
with old software. For example, a server utilizing hardware released in 2014 may be 
running software released in 2009. Forklift upgrades, where software and hardware are 
simultaneously upgraded, are uncommon due to cost, complexity, and integration risk. 
In many datacenters, hardware platforms are upgraded or replaced several times under 
the same software stack. This mismatch between the introduction of new hardware 
and new software creates an environment where servers may not be fully enabled or 
optimized for the latest power management features. This is very different from client 
products that can rely on new hardware being coupled with new software as well as some 
product-specific device drivers for power and thermal management. Figure 6-3 illustrates 
the differences in energy efficiency between different Linux kernels without changing the 
server, applications, or workload. Between 2008 and 2012, idle power decreased by 35 W 
and active power at a given throughput level decreased by up to 15 W.

Figure 6-3. Power impact of different Linux kernels

Another challenge in a datacenter is enforcing a consistent set of power and 
performance tradeoffs across systems running different operating systems. Each OSPM 
policy makes its own unique choices about power state selection leading to unique 
behaviors. One may be biased toward maximizing performance while another may be 
biased toward minimizing power. There are cases where it is desirable to have a single 
OS-agnostic power management policy that can be applied across many different 
software environments.

It is not practical for an administrator to continually upgrade software to enable the 
latest hardware feature support and optimizations. Similarly, it is not practical for an 
administrator to fine-tune one OS to behave like another. To address these issues, several 
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server manufacturers provide their own P-state control capability that is implemented 
in firmware. This allows an administrator to apply a uniform P-state control policy 
to an entire rack of servers that may be using a variety of different operating systems 
and versions. Similar to many OSPM implementations, these firmware policies allow 
administrators to specify a preference toward low power, high performance, or a balanced 
setting. These types of advanced configuration options are available as BIOS setup options, 
allowing administrators to select between firmware or software-controlled policies.

P-state Policy
P-state policy is responsible for adjusting the performance capability of the processor 
to meet current or expected demand. When logical processor utilization is low, demand 
can be met by running the processor at low frequency. As logical processor utilization 
increases, frequency must also increase to prevent the system from reaching full 
utilization. 

Similar to C-states, P-state policy is based primarily on logical processor utilization. 
Individual policies may supplement utilization with additional information such as the 
current operating frequency, or the priority of processes running. Utilization calculation 
and time window considerations discussed for C-states are similar for P-states including 
the use of IA32_PERF_CTR1 and IA32_TSC. Similar to C-states, the OS makes individual 
decisions on behalf of each logical processor where the ACPI P-state domain indicates 
this is necessary.

Performance Capacity
There are two ways a server can increase throughput, or the number of instructions 
executed per second. The first is to utilize available resources. This is as simple as utilizing 
idle cycles on a processor whenever that processor is not fully utilized. The second is 
to increase the speed or rate at which a logical processor executes instructions. This is 
accomplished through increasing frequency.

There are many cases where processor utilization alone is not sufficient to 
understand the operating conditions of a processor. For example, if a processor is 50% 
utilized running at 1.0 GHz (its minimum frequency), that processor has significantly 
more performance headroom than if it was 50% utilized running at 3.0 GHz (its maximum 
frequency). Although processor utilization is the same in both cases, the operating 
conditions are very different.

An important concept to introduce that aids in the understanding of processor 
operating conditions and OSPM P-state policies is performance capacity. This metric is 
based on processor utilization, but it takes into account the impact of running at a higher 
or lower frequency to accurately capture performance headroom. The capacity metric 
represents the amount of the maximum guaranteed throughput capability the processor 
is currently using.

Capacity Utilization at CPU Base Frequency
Current Frequency

(%) *=
CCPU Base Frequency
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A capacity of 100% might represent a processor running at 100% utilization while at the 
CPU base frequency. This is the guaranteed throughput capability of the processor. With 
Turbo, which is a non-guaranteed frequency, it is possible for capacity to exceed 100%.

Figure 6-4 illustrates how OSPM uses frequency to achieve maximum throughput. 
Up to 40% of maximum throughput is achieved at the lowest frequency, simply by 
utilizing idle cycles. At the point at which logical processor utilization starts to approach 
100%, OSPM P-state policy increases frequency to provide additional throughput. 
When the processor reaches 90% of maximum throughput, it is running at the highest 
frequency, and the last 10% of idle cycles are utilized to reach maximum throughput.  
This chart also serves as an illustration of a P-state policy designed for best energy efficiency.

Figure 6-4. Comparison of frequency across a full range of performance

From a capacity standpoint, a 100% utilized processor running at 1.5 GHz and a 
50% utilized processor running at 3.0 GHz are identical. Running at high utilization and 
low frequency provides lower power and higher response times whereas running at low 
utilization and high frequency provides higher power and lower response times. The 
performance impact of P-states is realized in a datacenter in terms of higher or lower 
response times.

Where there is sustained load on the system, a P-state policy should never impact 
maximum throughput. Use of P-states varies between operating systems, and operation 
at a given capacity can be accomplished in many ways. Whether to meet an increase in 
compute demand by running at higher utilization or by running at higher frequency is 
a key decision OSPM P-state policy needs to manage. Figure 6-5 shows a comparison 
between average logical processor capacity and average logical processor utilization. 
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Figure 6-5. Comparison between average utilization and average capacity

Note ■  Datacenter administrators typically describe server utilization in terms of logical 
processor utilization, or what is displayed by monitoring and profiling tools. Describing 
utilization without taking into account frequency is terribly misleading since a server running 
at 40% utilization may in fact only be running at 25% capacity.

In Figure 6-6, capacity exceeds 100% because the metric is based on the CPU base 
frequency, or the guaranteed frequency of the processor. As discussed earlier, Turbo 
mode is a non-guaranteed frequency, so the chart illustrates performance due to Turbo 
being above and beyond the guaranteed performance capacity of the processor. Capacity 
isn’t a perfect metric either; it assumes exceptional frequency scaling (ratio of the 
percentage increase in performance to the percentage increase in frequency). In reality, 
frequency scaling varies from system to system since it is heavily dependent on the 
performance of the cache and memory subsystem and is influenced by unique workload 
and system characteristics.

Figure 6-6. Sample logical processor utilization with requested P-state over one second
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Figure 6-6 shows sample capacity from a single logical processor and energy efficient 
use of P-states over one second of time. For simplicity, the example assumes nine P-states 
with the lowest frequency mode at P8, the CPU base frequency of the processor at P1, 
and Turbo at P0. During periods of light activity, P8 is frequently selected, even when the 
capacity is greater than 30%. Nearly half of the throughput capability of the processor can 
be satisfied by utilizing idle cycles at P8 alone. 

There are cases outside of Turbo where the CPU will run logical processors at a 
higher frequency than the OS requests. The integration of memory controllers and 
I/O (PCIe) in the processor creates cases where logical processor utilization alone is 
insufficient to determine if frequency is limiting performance. For example, it is possible 
for network intensive workloads to drive line-rate traffic at very low processor utilization. 
Due to this low processor utilization, a typical OSPM policy will select a low frequency 
P-state. However, in this case, running logical processors at the highest frequency will 
increase throughput through decreasing latency. With OSPM lacking visibility into these 
types of bottlenecks, modern processors include special features to detect and handle 
these cases. The CPU will autonomously increase processor frequency in cases of high IO 
bandwidth to ensure maximum throughput is not impacted.

P-state Coordination
With P-states, as is the case for T-states and C-states, it is possible to change the way 
coordination happens between software and hardware. Specified via ACPI, power state 
coordination can use one of the following methods. (The vast majority of server operating 
systems utilize HW_ALL.)

•	 HW_ALL: The OS makes state transition requests for each logical 
processor and treats them as independent. The OS does not need 
to consider any effects on other logical processors. Hardware takes 
care of any coordination needed. Where there are two logical 
processors in the same core requesting P1, and one of the logical 
processors changes its request to Pn, the core remains at P1.

•	 SW_ANY: The OS makes a state transition request for a single 
logical processor in the same domain and the effect is immediate 
and independent of previous requests. Where there are two 
logical processors in the same core requesting P1, and one of the 
logical processors requests Pn, the core goes to Pn. 

•	 SW_ALL: The OS makes state transition requests for each logical 
processor in the same domain and treats them as dependent. For 
example, if there are sixteen logical processors in a single domain, 
the OS changes P-state for that domain by making the same 
request on each of the sixteen logical processors. 
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Note ■  While p-state coordination is controlled by BiOS firmware, selecting a mode other 
than hW_ALL can result in undesirable behavior because most operating systems have not 
been enabled or optimized for other modes.

T-state Control
Operating systems also have the capability to control T-states, or throttling states, 
described in Chapter 2. Modern server processors all include the appropriate 
temperature sensors and hardware mechanisms to prevent the processor from 
overheating, so OS control of T-states is no longer necessary. Using T-states to improve 
energy efficiency is generally not done nor is it recommended. Unlike P-states, voltage is 
not scaled for T-states—using T-states results in substantial decreases in performance for 
only small decreases in power.

Global Power Policy
There are cases where the default C-state or P-state policy set by the OS may be out 
of sync with user performance requirements. Operating systems have two different 
mechanisms for tuning power management to address this. The most common is support 
for predefined power policies. Operating systems provide options for the administrator 
to set a global power management policy that will change the behavior and selection 
of C-states and P-states to be more biased toward low power, high performance, or a 
balanced approach. For example, the Windows Server control panel exposes options 
such as high performance, balanced, and power saver that change the way the internal 
OSPM algorithms select C-states and P-states. A second type of tuning is possible using 
advanced settings or options accessed using low-level tools or interfaces that allow 
administrators to customize their own policy.

As discussed in Chapter 2, there are a variety of other power management features 
outside of C-states and P-states that impact power and performance. Most of these power 
states across memory, caches, and processor interconnects are not explicitly controlled 
by OSPM. The visibility required to make power state decisions only exists in hardware. 
Although OSPM has no low-level control over these power features, hardware does 
expose a mechanism for the OS to specify an energy policy preference.

Energy policy preference, or OSPM bias toward low power or high performance, is 
controlled by the IA32_ENERGY_PERF_BIAS MSR described in Table 6-9. The register is used 
to define the desired balance between power and performance for those power management 
features that are not explicitly controlled by OSPM. In environments with strict response time 
requirements, it’s preferable to use the minimum IA32_ENERGY_PERF_BIAS value rather 
than disabling features, since disabling power management features can increase power and 
temperature, ultimately impacting maximum performance. IA32_ENERGY_PERF_BIAS is 
dynamic so it can be changed at runtime as OSPM sees fit.
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Table 6-9. IA32_ENERGY_PERF_BIAS MSR (0x1B0)

Bits Width Field Description

3:0 4 bits Energy policy preference hint Represents a sliding scale where the 
value 0 is maximum performance 
and the value 15 is minimum energy. 
A value of 7 roughly translates to a 
balanced policy.

63:15 49 bits Reserved Unused

Process Scheduling
The OS process scheduler doesn’t directly interact with hardware power management 
features, but its scheduling policies can have a significant effect on energy efficiency. 
Many scheduler features that improve performance, such as starvation prevention 
(ensuring every process gets a chance to run), unique treatment of CPU and I/O bound 
processes, load balancing, and migration optimizations, have a positive impact on energy 
efficiency. However, there are many features where performance benefit has a negative 
impact. In addition, the answer to the question of whether or not various scheduler 
features improve energy efficiency can depend on the target microarchitecture. Some 
of the key factors that impact kernel scheduler energy efficiency include awareness of 
logical processor, core, and package topology and capabilities, timer tick frequency, and 
execution consolidation.

Topology and Capability Awareness
A key piece of information an OS scheduler needs in order to make energy-efficient 
decisions is to what degree multiple hardware threads or logical processors on the 
same core share resources. Where there is very little resource sharing between logical 
processors, a process scheduler can treat them as independent execution resources. 
However, where there is substantial resource sharing between logical processors, a 
process scheduler needs to understand how the throughput capability of an individual 
logical processor is impacted as additional logical processors sharing the same resources 
are concurrently utilized.

With a large number of servers running at low utilization, the process scheduler has 
a key decision to make in terms of how to utilize logical processors. One strategy is to 
utilize a single logical processor on every core before utilizing any of the simultaneous 
multi-threading (SMT) “sibling” logical processors. This has the benefit of giving 
logical processors dedicated access to otherwise shared core resources, keeping logical 
processor utilization low. Low logical processor utilization leads OSPM to use lower 
power P-states. Another strategy is to utilize both logical processors on a core before 
utilizing any of the additional cores. This limits coherency traffic and minimizes resource 
use, improving C-state residency. It may allow some of the cores to remain in long 
uninterrupted idle durations.
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There is no single right answer for the best strategy to pursue since the optimal 
decision is microarchitecture specific. Your strategy depends on the amount of resources 
shared between logical processors; it is influenced by cache sizes and levels of the cache 
hierarchy; and it is subject to the different types of C-states available and the latency 
to transition in and out of them. To some extent, it even depends on unique workload 
characteristics. Generally speaking, the majority of server processors benefit from 
spreading software threads out over as many cores as possible. Typically, the scheduling 
decision that keeps core frequency lowest is the most energy efficient. When a scheduler 
utilizes all logical processors on the same core before scheduling on the next cores, 
resource contention increases utilization and leads to OSPM use of higher power P-states 
earlier. It takes a substantial increase in C-state residency to offset even a single step 
increase in P-states.

Another strategy from a process scheduling standpoint is to utilize all the 
logical processors on one CPU before utilizing logical processors on the other CPU. 
Conceptually, this makes a lot of sense as a CPU executing no instructions should be 
able to enter very low power states. In reality, benefits with this approach are mixed. In 
a multi-socket system with two or more CPUs, any single CPU cannot independently go 
to a deep package C-state while any other CPU in the system is active. There can be a 
significant amount of memory and I/O device activity on a CPU even when all its logical 
processors are idle due to the integration of the memory controller and PCIe.

Another challenge with utilizing only logical processors on one CPU is the impact 
to the non-uniform memory access (NUMA) locality. If remote memory references 
increase as a result of a scheduling decision, it can increase response times and 
decrease energy efficiency.

OSPM P-state policies that are optimized for performance may see an energy efficiency 
benefit to this approach as they use high-frequency P-states even at low utilization.  
In these environments, utilizing all the logical processors on one CPU before utilizing 
logical processors on the other CPU limits the number of CPUs running at high voltage.

Timer Tick Frequency
A periodic timer interrupt determines the frequency at which the operating system will 
perform necessary scheduling tasks. This periodic timer or timer tick plays a significant 
role in energy efficiency, both when the processor is active and when it’s idle. When idle, 
logical processors must wake up to handle timer ticks, interrupting the coordination 
necessary to enter a deep package C-state. Modern operating systems suppress the timer 
tick or limit the number of timer ticks when the system is idle. For example, at idle, timer 
ticks may be received by a single logical processor that is responsible for forwarding 
the interrupt only to active logical processors. This improves the average idle duration 
for logical processors and results in improved package C-state residency. This action is 
commonly called tick skipping, dynamic ticks, or tickless idle.

When the processor is partially utilized, high-frequency timer ticks can lead to higher 
performance, but this comes at a power cost. A kernel with a 1000 Hz tick rate delivers a 
timer interrupt every 1 millisecond whereas a kernel with a 64 Hz tick rate delivers a timer 
tick every 15.6 milliseconds. Linux has the option to get rid of timer ticks even when busy.



190

ChApTer 6 ■ OperATing SySTeMS

From a performance perspective, running with a higher frequency tick results in 
lower response time. The increased time accuracy from a higher frequency tick improves 
the resolution of timed events—it leads to more precise process preemption and it 
improves enforcement of priority and fairness policies. For example, a high-priority 
process that is reading data from a drive will have less latency between drive reads with 
a high-frequency timer tick. From a power perspective, systems running with a higher 
frequency timer spend more time handling timer interrupts. This increase in interrupt 
handling time drives logical processor utilization higher and splits long idle durations 
needed for deeper C-state entry into several shorter idle durations. Increased interrupt 
rates also increase the number of C-state transitions, accumulating more C-state exit 
latency and adding more transitional energy.

Execution Consolidation (Core Parking)
A process scheduler spreads software threads across as many logical processors as possible, 
avoiding scheduling multiple software threads on the same logical processor until there 
are no more free logical processors available. This maximizes use of parallel resources and 
minimizes process response time. There are some cases from a performance, power, or 
thermal perspective when it is preferable to do the opposite—scheduling multiple threads 
on a single logical processor to leave other logical processors idle. When execution is 
consolidated in this manner, the OS must also ensure the handling of device interrupts and 
other timed events is done only on the subset of active logical processors.

Energy Efficiency

Scheduling software threads to maximize utilization on a single logical processor while 
leaving other logical processors idle increases deep C-state residency and minimizes 
power state transitions. Execution consolidation has many different names in products 
and research such as core parking, core idling, and power-aware scheduling. Creating 
an imbalanced load in this manner keeps some number of logical processors in an 
uninterrupted idle state. 

Although execution consolidation does increase deep C-state residency, it doesn’t 
necessarily improve energy efficiency—whether or not this practice benefits energy 
efficiency is dependent on many factors. One key consideration is the amount of power 
that comes from the cores in comparison to the remaining uncore components, such 
as the last level cache, memory controllers, and processor interconnects. Execution 
consolidation is not favorable for CPUs that have a significant amount of power coming 
from uncore components. It takes only a single active logical processor to keep the 
uncore components in an active state. In these cases, the percentage increase in power 
from running a workload on two cores compared to one core is very small. Execution 
consolidation is more favorable where a CPU has non-core resources, such as mid-level 
caches, shared by small subsets of cores, but not all cores. The more that cores and 
resources shared by small subsets of cores account for total CPU power, the more 
favorable execution consolidation becomes. 

Execution consolidation can increase response times as only one software thread 
can run at any given time on a logical processor. With execution consolidation, software 
threads that are ready to execute may need to wait to execute to avoid utilizing those 
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logical processors kept in an uninterrupted idle state. This practice typically results in 
active cores running a high utilization, also limiting the time a CPU can utilize package 
C-state states. Another consideration is the degree to which the software threads share 
data. Where there is substantial data sharing, particularly data that is frequently modified, 
execution consolidation can improve cache locality significantly. This characteristic is 
not clearly visible to a process scheduler, so dynamically identifying beneficial cases is 
difficult. Where cache benefits are realized, the reduction in execution time and decrease 
in interconnect and memory utilization can offset some or all of the cost of increased 
execution time. The same execution consolidation concept can extend to CPUs in  
multi-socket systems. However, it is common for the memory controller and I/O (PCIe) 
in the CPU to be active even if no software threads are running. This uncore activity 
consumes a significant amount of power. As a result, simply moving software threads off 
of a socket will not allow that socket to enter a low power idle state.

In measuring energy efficiency, a key consideration is how execution consolidation 
is used in conjunction with P-states. For most processors, actions taken by the process 
scheduler that cause increases in logical processor utilization typically lead to increased 
use of higher frequency P-states. In these cases, energy efficiency suffers because even 
very small increases in core voltage result in very large increases in power. In practice, it 
takes very specific or synthetic workloads on very specific processors to show an energy 
efficiency benefit from execution consolidation, but these cases are the minority.

Power Capping

A more universally beneficial application of execution consolidation is for power capping, 
that is, managing the system so it is always operating below a defined power limit. 
The primary mechanism for server power limiting is by placing hard limits on logical 
processor frequency and memory bandwidth. When these mechanisms are exhausted 
and the power limit is still not met, platform firmware can initiate logical processor 
idling to reduce power further. In cases where there is a failure in power or cooling 
infrastructure, it may take several different power limiting mechanisms to meet the power 
limit and avoid system shutdown.

ACPI includes an optional processor aggregator device that provides an interface 
and control point for firmware to idle logical processors. When additional power limiting 
is necessary, firmware requests a specific number of logical processors using the  
ACPI _PUR method, and the OS satisfies this request.

There is no energy efficiency benefit to power limiting when the practice is 
characterized on a single server. However, in cases where a rack of servers are operating 
under a rack-level power limit, datacenter management software can limit power of less 
critical servers in order to give additional power budget to more critical ones.

Single-Threaded Performance

Another application of execution consolidation is to improve single-threaded 
performance. As discussed in Chapter 2, Turbo frequency increases with the number 
of idle cores in the CPU. Restricting the key software thread along with device interrupt 
handling, timed events, and any other background activity all to a single core ensures the 
active core is always running at the maximum Turbo frequency.
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Memory Management
Similar to the concept of execution consolidation, if a server is using less than its full memory 
capacity, it is possible to consolidate memory references to a subset of memory. This allows 
remaining memory to enter uninterrupted low-power states. There has been significant 
investigation in this area, but only a limited number of scenarios realize a benefit.

Memory consolidation requires the OS to understand the physical memory 
topology. Similar to CPU topology, this information is conveyed to the OS through ACPI. 
The Memory Power State Table (MPST) describes physical memory in terms of memory 
power nodes, or specific address ranges that are power managed as a single entity. 
There can be several address ranges within a single node because these ranges may not 
necessarily be contiguous. In addition, MPST describes the power states supported by 
hardware including power consumption and exit latencies. Similar to OSPM for C-states 
and P-states, this level of information is critical for the memory manager, so it has the 
right inputs to determine power saving and performance impact.

Unlike C-states and P-states, the OS is not required to initiate power state transitions 
for memory nodes. Hardware autonomously transitions power nodes between 
appropriate power states based on their activity level. Memory nodes are typically 
defined at the channel level instead of a rank or DIMM level. The reason for this is 
because the lowest power states for memory, such as self-refresh, are applied at the 
channel level. Figure 6-7 shows the relationship between physical memory and memory 
power nodes. A memory power node could include from one to three DIMMs.

Figure 6-7. Relationship between physical memory and memory power nodes
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Equipped with the physical memory topology, latency, and power information, an 
OS memory manager can make power-aware decisions about memory allocation. First, 
physical memory can be allocated so that DIMMs are used to capacity on one channel 
before DIMMs are used from remaining channels. Next, the OS memory manager can 
periodically relocate physical memory. This is necessary as a large amount of unused 
physical memory is uncommon and memory becomes fragmented over time. Relocation 
puts frequently referenced memory into one subset of power nodes, and infrequently 
referenced or unallocated memory into another subset of power nodes. Although this 
practice doesn’t ensure that one subset of nodes is always idle, it does allow for significant 
residency improvements in the deepest power states. 

As is the case with other power management features described in this chapter, 
memory consolidation needs to balance the need for low power with the need for high 
performance. The default settings for a server are to interleave memory across channels 
and across ranks of memory. This increases the bandwidth capability of the system 
by spreading large regions of allocated memory evenly across channels, ranks, and 
DIMMs. In order to enable power-aware memory management, this interleaving needs 
to be disabled by BIOS firmware when the memory controllers are initialized. From a 
memory bandwidth perspective, many datacenter workloads use only a fraction of the 
bandwidth capability, so no performance impact is realized. For other workloads with 
higher memory bandwidth requirements, this is an unacceptable trade off. It is possible 
for an operating system to maintain some level of memory interleaving to accommodate 
bandwidth demands, but the overhead of managing this interleaving in software would 
eliminate any of the potential benefits.

Another challenge facing memory reference consolidation is the complexity of 
relocating memory. Relocating memory adds overhead in terms of additional processor time 
and additional memory traffic, both of which reduce the time spent in low-power states. 
Workloads that change their memory reference characteristics over time or memory pages 
that are repurposed over time make it difficult to predict what pages will be hot or cold. 
Finally, not all regions of memory can be relocated, such as reserved or non-paged memory.

The potential benefit of memory consolidation is being reduced over time as 
datacenters transition from DDR3 1.5 V to DDR3L 1.35 V to DDR4 1.2 V. Not only is 
active memory power lower, but the power differences between shallow memory power 
states applied at a rank level and deep memory power states applied at a channel level 
are decreasing. The complexity of power-aware memory management leads to limited 
applicability. It requires very specific workloads and system configurations to show 
significant energy efficiency benefits.

Device Drivers
In addition to processor drivers that implement C-state and P-state control policies, some 
I/O device drivers are also responsible for implementing device power management 
and control policies. Other devices autonomously manage power and do not define 
software interfaces for power state discovery and control. Most servers can’t tolerate the 
latency of deep D-states in a production environment. In cases where the latency impact 
is negligible, some devices monitor their own activity and utilize shallow states. In other 
cases, many D-states features are unused or disabled on servers.
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PCIe, SATA, and USB
As discussed earlier in the chapter, operating systems use PCI-SIG defined standardized 
interfaces for discovering PCIe D-state capabilities, for putting devices into a D-state, 
and for querying the power status of devices. The OS PCI driver discovers the supported 
capabilities from PCI configuration space when it enumerates the PCI devices. D-states 
for PCIe, SATA, and USB devices are managed through similar native hardware interfaces. 
ACPI is used to augment or supplement these capabilities’ for example, to handle devices 
that lack native hardware interfaces, such as end-point devices on I2C (standard bus for 
attaching low-speed peripherals). Similar to C-states and P-states, software coordinates 
with hardware to initiate D-state transitions.

Software-initiated D-states require a greater level of coordination than do processor 
power states because they involve device, host, bus, and class drivers. Device drivers 
are responsible for saving and restoring device context before and after devices are put 
into low-power states. In addition, the OS has the additional responsibility of ensuring 
devices have no pending transactions before initiating entry into a D-state. Additionally, 
the OS must ensure that all devices on a bus are in a low-power state before putting a bus 
in a low-power state. Due to the latency of device power management, server operating 
systems typically initiate D-states based on entry into a higher level system state, such 
as S3. Prior to entering S3, the OS is required to put each device into a D3 state. The OS 
maintains specific mappings between S-states and different D-states bus and device 
components must go into prior to entering a target S-state.

Graphics
Modern server processors may also include integrated graphics processors. One of the 
more complex cases of I/O device driver power management is for graphics because, 
in addition to the responsibility of managing D-states, the graphics driver must also 
manage graphics processor P-states. Similar to a processor driver, the graphics driver’s 
P-state request is also based on events that measure the current level of activity. Device 
drivers use a combination of demand, latency, and frame per second (fps) requirements 
in determining the appropriate P-state. The graphics driver updates the PCU with 
information in addition to the required core and ring performance to keep graphics 
running effectively.

With integrated graphics, processor cores and graphics share the same package 
power and thermal budget. This is unlike most servers, which feature a discrete graphics 
controller. With integrated graphics, it’s not possible for both graphics and processing 
cores to be active in the highest frequency state at the same time. Two different device 
drivers making requests for higher performance and power states on the same CPU 
without coordination between them can cause issues where either the processor cores 
or graphics aren’t getting their requested performance. When the power budget cannot 
satisfy the requests of both drivers, the PCU makes decisions based on its own internal 
knowledge to best balance the power budget.

Graphics devices also utilize C-states, but these are controlled autonomously in 
hardware. Graphics hardware detects when resources are idle and handles C-state entry 
including context save and restore. C-states are immediately exited whenever graphics 
hardware is accessed by the device driver.
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Virtualization
A virtual machine monitor (VMM) has all the same responsibilities for power management that 
a native operating system does. The VMM, or host, is responsible for controlling C-states, 
P-states, and global power policy. In addition to these mechanisms, VMMs enable several 
additional capabilities that improve energy efficiency such as server consolidation or new 
approaches to power management enabled by virtual machine (VM) migration.

Power State Control
VMM management of C-states, P-states, and global power policy is not a responsibility 
shared with guest VMs. These features are host-controlled. If guest VMs were allowed 
to access power state control capabilities, it would create a number of policy conflicts 
between concurrently running VMs. Some VMs, with no knowledge of other VMs, would 
require high performance, biasing state selection toward shallow idle states and high-
power active states. Some VMs would require low performance, biasing state selection 
toward deep idle states and low-power active states, and other VMs would request 
everything else in-between. 

Allowing the host to control power management and limiting or eliminating the role 
of guest VMs is common practice across the various models for virtualization, such as the 
hypervisor model used in ESXi, the host-based model used by Hyper-V and the kernel-
based virtual machine, or KVM, and the hybrid model used by Xen. Each of these VMMs 
boots VMs using virtual BIOS. The virtual BIOS exposed to guest VMs has a different set 
of capabilities than the physical server’s own BIOS firmware. To facilitate host-controlled 
power management, the virtual BIOS does not expose power management features to the 
guest VM. This prevents guest VMs from unnecessarily loading drivers and control policy 
for C-states and P-states—all guest VMs need to do is execute a halt. This eliminates 
additional overhead introduced by guests making state requests that would be ultimately 
ignored by the host.

There are some cases where guests are enlightened, or aware they are running in 
a virtualized environment. These guests may be given certain control capabilities or 
may have an awareness of power management features that is not typical of guest VMs. 
This enlightenment allows for some power management optimizations by the host. For 
example, different C-states or S-states may be exposed to guests, allowing individual VM’s 
power state selections to act as feedback for the host. These requests allow a host power 
management policy to consider individual VM requests along with its own policy to make 
optimal system-level decisions.

Idle Considerations
Virtualized environments present some unique challenges to getting to low idle power. 
Even an operating system doing nothing generates significant activity when there are 
many different guest VM operating systems loaded. Similar to native environments, or 
environments that run a single operating system, some minimal amount of activity exists 
at idle, such as periodic timer interrupts or network heartbeats. These periodic events 
continually wake up logical processors and can prevent the system from entering deep 
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package C-states. Even a minimal amount of activity becomes significant when it is 
multiplied by a large number of VMs on a single physical system.

Similar to native operating systems, many VMM have optimized idle scenarios in an 
attempt to align periodic events and reduce the number of times logical processors are 
woken up. For example, timer ticks for different VMs (especially those sharing a common 
frequency), can be aligned to happen at the same time. This causes periodic event 
handling for multiple VMs to happen in parallel, reducing the number of power state 
transitions and increasing average idle residency.

Figure 6-8 compares VMM and guest idle scenarios across several years of software 
improvements. In the figure, the base system idle power is approximately 100 watts. The 
2009 software stack uses a combination of guest operating systems released at that time 
and earlier, with varying degrees of idle activity optimization. The VMM in this case is 
doing little to no periodic activity alignment. The 2014 software stack uses a combination 
of guest operating systems released at that time and earlier and the VMM aligns periodic 
activity. This comparison illustrates the importance of software components in achieving 
low idle power in a virtualized environment.

Figure 6-8. Idle power impact due to software in a virtualized environment

Active Considerations
Utilization characteristics in a virtualized environment are typically different than a 
native environment. Guest VMs are limited in the number of logical processors, the 
amount of memory, and the amount of network bandwidth they can utilize. These limits 
vary based on instance type and VM size. Restricting applications to different subsets 
of system resources leads to asymmetric resource utilization. Resource utilization in 
a native environment is typically very similar across processors and sockets because 
applications have the ability to utilize all available system resources. In a virtualized 
environment, it’s not uncommon to see some logical processors running at sustained 
100% utilization, while others are idle or at low utilization. These significant differences in 
utilization characteristics affect the OSPM policy’s ability to make P-state decisions that 
accommodate a wide variety of VM performance requirements.
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Figures 6-9 and 6-10 illustrate typical logical processor utilization at a fixed 
throughput rate. In the example of a native environment, the system experiences very 
few changes in utilization characteristics and many of the logical processors have similar 
utilization levels. In the example of a virtualized environment, the system experiences 
frequent changes in utilization characteristics with great variation in utilization across 
logical processors. These qualities lead to a challenging set of decisions for OSPM. 
In order to meet the performance requirements of a wide variety of VMs, virtualized 
environments are typically much less aggressive in their use of power management.

Figure 6-9. Example of 30% throughput in a native environment

Figure 6-10. Example of 30% throughput in a virtualized environment
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Another consideration from an energy efficiency standpoint is the overhead of 
additional software layers present in a virtualized environment. This overhead can 
increase execution or response time and decrease throughput. Either of these impacts 
increases power as transactions or computational tasks take longer to complete.  
The impact of virtualization overhead increases as more virtual servers are consolidated 
onto the same physical server. CPU bound workloads tend to experience less impact 
from overhead, typically less than 10%, since there is little to no kernel time. I/O-bound 
workloads that execute lots of system calls, retire a lot of privileged instructions, and 
generate a lot of interrupts typically see greater than 15% overhead.

As a result, software or hardware enhancements that limit or eliminate the overhead 
of a VMM provide significant improvements in energy efficiency. Virtualization 
technologies such as EPTs (extended page tables) or VT-d (virtualization technology for 
direct device assignment) are typically thought of as performance optimizations, but 
running workloads on systems with and without these features enabled demonstrate 
their capability as a power optimization.

Consolidation
The majority of native servers, or servers that run a single operating system, support only 
one primary application. Limiting the number of applications has several benefits in this 
scenario. It improves performance, it avoids resource conflicts, it improves the ability 
to monitor applications, and it encapsulates problems. In many cases, running a single 
application on a server also leads to low CPU utilization.

The single-best method for improving energy efficiency of a server is to increase 
utilization. The energy cost of a server transaction is inversely proportional to utilization. 
For example, the average energy cost of a server transaction is up to five times lower at 60% 
capacity than it is at 10% capacity. Server consolidation is one of the primary mechanisms 
for increasing utilization. It allows a number of existing servers, such as servers running 
at low utilization or servers running with low-performance processors, to be replaced by 
a single higher performance server. The operating systems and applications from existing 
servers are consolidated and deployed as guest VMs running under a VMM on the higher 
performance server. Even though multiple applications are running on the same physical 
server, these applications continue to gain many of the same isolation benefits realized 
with a 1:1 mapping between applications and physical servers.

The benefits of consolidation from an energy efficiency perspective are immense. 
The primary benefit is the power savings realized by decreasing the number of physical 
servers required to support the same set of applications. Most virtualized environments 
have greater than a 10:1 consolidation ratio (the number of virtual servers running on 
a single physical server), so the opportunity to save power is tremendous. After server 
consolidation, many of the older and higher powered servers can be powered off and 
removed completely. The next benefit of consolidation is the ability to increase the 
average utilization of servers. Physical servers running a VMM supporting multiple 
applications typically have much higher utilization than native servers supporting a 
single application.
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Note ■  Consolidation is often limited by non-CpU constraints such as the amount of 
DrAM in the platform or performance requirements defined in service level agreements.

Servers running legacy software, or older applications and operating systems, 
are frequent targets for consolidation. Older operating systems may not have optimal 
support for the latest hardware power management features or may have some power 
management features by default. For example, environments such as Windows Server 
2003 or Linux distributions using pre-2.6.5 kernels do not enable the most beneficial 
power management features out of the box. In this context, consolidation provides 
additional benefit by enabling legacy software environments to use the latest OSPM 
policies. When guests with legacy software are run under a modern VMM, many of the 
latest software power management benefits are realized.

VM Migration
A server running at 25% of maximum performance is energy proportional if it consumes 
no more than 25% of maximum power. Technologies such as C-states, P-states, and 
memory CKE (Clock Enable) are key ingredients in the pursuit of energy proportionality; 
however, servers still have a long way to go to meet this goal.

Migration allows VMMs to move a guest VM from one physical server to another 
without service interruption or loss of execution context. There are many reasons to 
move a VM from one physical system to another. The most common reasons are to 
perform maintenance on a system or to vacate a system that is experiencing some type 
of performance or functional issue. Datacenter management software also uses VM 
migration to load balance virtual servers across physical servers. Using migration and 
consolidation together, some servers can remain at high utilization where the energy 
cost of transactions is minimized. The remaining servers can be suspended (S3) or 
powered off (S5). Figure 6-11 illustrates energy proportionality through migration and 
consolidation. With migration and consolidation represented by this example, energy 
efficiency can be improved by more than 25%.
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Inactive servers can be awakened by wake-on-LAN packets or by standard  
out-of-band management interfaces such as the Intelligent Platform Management Interface 
(IPMI). It is also common to keep some number of servers idle, but not suspended. 
When new VMs are created, these instances can be provisioned on unutilized but active 
servers, hiding the latency of initializing suspended servers. These practices allow for a 
more dynamic resource pool where energy efficiency is maximized and fluctuations in 
throughput are accommodated without waiting for servers to enter and exit S-states.

Migration is gaining adoption to improve utilization and energy efficiency, but 
the practice is not widespread today. There are a number of reasons why adoption is 
inhibited. First, VM migration is very expensive from a latency perspective. It can take 
several minutes to migrate a VM depending on the workload, application, and active 
memory footprint. During the migration, the average response time of transactional 
workloads increases sharply. For computational workloads, the maximum throughput 
decreases. Applications utilizing local storage in either case present additional 
challenges. Many datacenters lack the capability to accurately predict current and future 
demand. Transitions in and out of S-states exhibit high latency. Exiting S3 can take 
several seconds to resume where there is significant execution context that needs to be 
restored. Hardware and software innovations will continue to accelerate VM migration 
time and decrease S-state transition time making this a more viable energy efficiency 
strategy moving forward.

Figure 6-11. Example of efficiency through migration and consolidation
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Comparison of Operating Environments
All OSes use the same mechanisms for power management discovery and control, 
however the strategy and use of these interfaces is very different. Each OS makes a unique 
set of decisions on how to measure activity, how frequently to change power states, and 
what is acceptable performance impact. Each OS determines whether these decisions 
are self-contained or influenced by outside services, management, and orchestration 
software. Each OS determines the amount of customization and tuning it will allow and 
how different combinations of OS decisions map to higher level global power policies.

The following sections provide details on unique characteristics of each of the 
most broadly deployed server operating systems. The section outlines unique traits and 
behavior of OSPM default settings including a look at the balance between power and 
performance. Major feature and policy changes of each OS are outlined to compare 
specific OS versions with different power management features and capabilities 
described in this chapter.

Microsoft Windows Server (including Hyper-V)
Windows Server OSPM is optimized for best energy efficiency by default. Applications 
running in this environment consume less energy, minimizing cost. Significant increases 
in response times are realized as a result of the focus on lower power. As is the case across 
all operating systems, OSPM policies do not typically impact maximum performance. 
Power management features that impact performance are not used when there is 
sustained high CPU utilization.

The Windows Server P-state policy is capacity driven, increasing frequency when 
utilization passes a predefined threshold. The threshold to increase frequency is high, 
ensuring that use of higher frequency only happens when the server is no longer able 
to accommodate demand at the current frequency. The policy is more aggressive in 
decreasing frequency when utilization decreases than it is in increasing frequency when 
utilization increases, leading to lower power. The Windows Server P-state policy does an 
excellent job of utilizing the full range of ACPI exposed P-states. Utilization is observed 
over tens of milliseconds and the OSPM P-state policy has the ability to maintain past 
history of utilization.

The Windows Server C-state policy is simple, examining utilization over a window of 
tens of milliseconds. The C-state policy makes a single target state decision based on the 
last observation window that is used throughout the current observation window. The 
simplicity of the policy has the advantage of being non-intrusive, adding no latency to the 
C-state entry path in software. With hardware demotion mechanisms filtering out non-
optimal C-state decisions, the solution provides outstanding energy efficiency.

Windows Server supports user-configurable global power policies including 
power saver, balanced, and high performance. Each of the power policies represents 
a combination of individual OSPM parameters that control C-state and P-state policy 
decisions. The behavior of each of these parameters and features is highly configurable. 
For example, it is easy to set a P-state floor or ceiling, modify thresholds for frequency 
increase or decrease, or change the duration of the observation window used to measure 
utilization. An example of this is in high-performance mode where P-states below the 
advertised frequency of the CPU are not used.
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It is typically much easier to tune OSPM policies to decrease response time than it is 
to tune policies to decrease power, making the Windows Server default behavior a good 
starting point for administrators looking to fine-tune OSPM to meet specific performance 
requirements. The power policies also change IA32_ENERGY_PERF_BIAS, adjusting 
hardware power management features to meet the desired balance between power and 
performance specified by the OS. Several of the key Windows Server tuning mechanisms 
are described in detail in Chapter 7.

Windows Server also includes advanced power features that can provide additional 
benefits in some special cases. These advanced features can provide power saving with 
a subset of specific workloads running on specific systems. Where feature benefits don’t 
apply to most workloads and systems, the advanced features are typically disabled by 
default. The core parking feature in Windows Server consolidates execution to improve 
energy efficiency. It dynamically adjusts the number of logical processors used for 
running software threads, allowing some logical processors to enter deep, uninterrupted 
idle states. The Windows Server utility distribution feature can be coupled with core 
parking. Utility distribution monitors activity that cannot easily be relocated from one 
logical processor to another, such as software threads or interrupts affinitized to a 
specific logical processor. Windows Server uses this information to improve core parking 
decisions and to improve prediction of future demand. The memory cooling feature 
consolidates memory references to a limited set of memory power domains, saving 
power for systems with large memory capacity where significant portions of memory are 
not frequently utilized.

OSPM is largely the same between Windows Server and Hyper-V, but the specific 
parameters and tuning values that define power saver, balanced, and high-performance 
power policies vary slightly between the two. Hyper-V includes some minor changes that 
trade off some of the power savings for improved response times.

Table 6-10 identifies major power management features and improvements added to 
Windows Server over time. 

Table 6-10. Historical Changes in Microsoft Server Operating Environments

Version Released Changes

Windows Server 2003 2003 Added support for C-states.

Added support for P-states.

Added support for T-states.

Added global power policy (user selectable).

Default policy is high-performance (results in 
P-states not used by default).

No independent logical processor control for 
P-states and C-states, only a single processor 
supported.

(continued)
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Linux Distributions (including KVM)
Linux OSPM is optimized for low latency. Applications running in this environment have 
improved performance, minimizing transaction response times. A significant increase 
in power is realized as a result of the focus on lower latency. Similar to other operating 
systems, the OSPM policies do not impact maximum throughput. Power management 
features that may impact performance are not used under sustained high CPU utilization.

Linux supports P-states through the CPUfreq infrastructure which provides 
interfaces for low-level control drivers and high-level control policies, called governors. 
Governors can be dynamically changed, but the default for most server distributions is 
ondemand. Ondemand is capacity driven, and selects the highest available frequency 
when utilization is above a predefined threshold. When utilization falls below the 
threshold, the next lowest frequency is used. Under variable loads, frequency is increased 
more aggressively than it is decreased, leading to low latency. When a server is partially 
utilized, ondemand tends to use a limited range of ACPI-exposed P-states, with the 
majority of requests being for Pn or P0. This is due to the P0 being the only target state 

Version Released Changes

Windows Server 2003 R2 2005 No significant changes to Windows Server 2003.

Windows Server 2008  
(and Hyper-V role)

2008 Default processor performance policy is 
balanced (results in P-states used by default).

Added power policy for ASPM.

Windows Server 2008 R2 
(and Hyper-V role)

2009 New processor power management policies with 
significant energy efficiency improvements.

Added timer tick coalescing.

Added intelligent timer tick distribution  
(tick skipping).

Added core parking.

Added power metering and budgeting.

Added remote power management and  
group policy.

Hyper-V now built in.

Hyper-V live migration.

Windows Server 2012 2012 Added logical processor idling.

Added memory cooling.

Hyper-V supports more VMs and more processors 
per VM (4 to 64).

Windows Server 2012 R2 2013 No significant changes to Windows Server 2012.

Table 6-10. (continued)
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used whenever utilization exceeds the threshold. Ondemand observes utilization of tens 
of milliseconds and does not consider past history.

For environments without response time requirements that can tolerate additional 
latency, the conservative governor is an alternative to ondemand. This governor provides 
a more balanced use of the full range of P-states. In comparison to ondemand, the 
conservative governor results in higher response times, but with lower power. The 
performance governor can be used to permanently run at the highest frequency, and the 
powersave governor can be used to permanently run at the lowest frequency.

Intel also provides its own native P-state driver called intel_pstate. This driver is 
optimized for low response times and minimizes latency and the software overhead of 
P-state selection as the governor and scaling driver are combined. The driver is enhanced 
to understand the specific capabilities of each processor, which allows for improved 
use of Turbo. The intel_pstate driver can be described as a native driver, meaning it 
uses CPU interfaces to determine a richer set of information about power management 
capabilities instead of using ACPI. Native drivers are resilient to any issues the BIOS may 
introduce with incorrect ACPI objects.

Similar to P-states, Linux supports C-states through the CPUidle infrastructure, 
which provides the same separation between low-level control drivers and high-level 
control policies. The default governor for most server distributions is menu. OSPM 
policy uses a number of different metrics to make an optimal C-state decision. These 
include previous C-state residencies, expected idle duration, and the exit latency of target 
C-states. A target C-state is selected for every idle entry on every logical processor rather 
than determining a single target C-state for all logical processors over some time window. 
The advantage of this approach is that poor decisions are less frequent; the disadvantage 
of this approach is the cost of additional software overhead. The advantages typically 
outweigh the disadvantages, providing superior energy efficiency. Intel also provides its 
own low-level intel_idle driver that is enhanced to understand specific capabilities of 
each processor. intel_idle is able to expose more hardware C-states than an ACPI BIOS 
can expose to acpi_idle. For example, on some servers, intel_idle is able to export a 
C1 state with lower latency than C1E. Unlike intel_pstate, it does not replace existing 
higher-level policy.

Linux does not include global power policies that automatically change governors, 
their tuning, and platform-level controls such as IA32_ENERGY_PERF_BIAS, with a  
single setting. Rather, Linux relies on individually selecting and tuning C-state  
governors and P-state governors along with utilities such as cpupower to manage  
IA32_ENERGY_PERF_BIAS settings and options for execution consolidation. Linux has 
extensive capabilities to fine-tune individual power management parameters such as 
setting a minimum frequency or restricting use of a specific C-state. These are discussed 
in greater detail in Chapter 7.

Linux has several advanced power features that can provide additional benefits in 
certain environments. These features may work well with a specific workload and specific 
microarchitecture, but not well in others. As a result, some of these features are disabled 
by default. The scheduler supports core parking through cgroups and the CPU hotplug 
infrastructure. These features can be used to consolidate execution to a specific subset 
of logical processors. However, it must be coupled with additional management software 
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to enable dynamic execution consolidation. Energy efficiency benefits of execution 
consolidation are more common when coupled with a low-latency P-state policy, such as 
ondemand. Energy efficiency benefits are less common when this technique is coupled 
with a balanced or low-power P-state policy.

Note ■  The kernel-based virtual machine (KVM) inherits key power management  
functionality from Linux, so there are very few differences in power management capabilities 
or policies between a native and virtualized environment using KVM. Xen does not inherit 
key power management functionality in the same way. power management features added 
to the Linux kernel have to be re-implemented or ported to Xen, so many of the features and 
explanations in this section do not directly apply to Xen in the same manner.

Table 6-11 identifies major power management features and improvements added 
to the Linux kernel over time. In some cases, key power management features have been 
back-ported to add the support to existing Linux distributions. Rather than cover every 
distribution, along with the kernel major and minor version numbers, the Linux reference 
introduces the kernel version in which a capability was first introduced.

Table 6-11. Historical Changes in Linux Server Operating Environments

Version Released Changes

Kernel 2.4.22 2003 ACPI built-in

P-states disabled by default

Kernel 2.6.5 2004 Added CPUfreq subsystem

Added ondemand and other governors

P-states enabled by default (using ondemand governor)

Kernel 2.6.18 2006 Added support for deep C-states (I/O port)

Kernel 2.6.19 2006 Added MWAIT support for deep C-states

Added APERF/MPERF feedback used for P-states

Kernel 2.6.23 2007 ACPI OSI (Linux) disabled by default

Kernel 2.6.24 2008 Added tickless idle (CONFIG_NO_HZ)

Added CPUidle subsystem

Kernel 2.6.30 2009 Added USB HID autosuspend

Kernel 2.6.32 2009 Added acpi_pad (processor aggregator device) for 
power limiting

(continued)
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VMWare ESX and ESXi
In contrast to the approach taken by other operating systems, a key focus for ESXi-based 
environments is managing power at a cluster level, between a larger numbers of servers. 
Distributed Power Management (DPM) consolidates active VMs to a subset of servers, 
running that subset of active servers at higher utilization, while placing unutilized servers 
in a standby or off mode. DPM can be configured to run VMs on the smallest subset of 
servers possible to achieve energy proportionality. 

OSPM policies for C-states and P-states are covered by Host Power Management 
(HPM). With multiple VMs competing for system resources, ESX Host Power 
Management is optimized for low latency. Applications running in this environment 
have improved performance, minimizing transaction response times. Applications that 
run in this environment have lower response times, but that comes at the cost of higher 
power. Similar to other operating systems, power management features that may impact 
performance are not used under sustained high CPU utilization.

ESXi supports user-configurable power policies including high performance, balanced, 
low power, and custom. These policies include both a combination of power management 
parameters and associated tuning values as well as static enabling and disabling of features. 
For example, in high-performance mode, P-states and deep C-states are completely 
disabled. In balanced and low-power modes, both P-states and deep S-states are enabled. 
Low-power mode enables all power management features and includes more aggressive 
use of the lower power and higher latency states. Custom policy allows administrators to 
specify power management parameter values such as limiting C-states based on their exit 
latency or changing the observation window used to measure utilization.

Version Released Changes

Kernel 2.6.35 2010 Added intel_idle (Intel CPUidle C-state driver)

Kernel 2.6.36 2010 Added support for deep C-states in CPU offline

Added USB mass storage autosuspend

Kernel 3.1 2011 Added kernel support for IA32_ENERGY_PERF_BIAS 
(kernel sets this to 6 if found it is 0 at boot-time)

Kernel 3.5 2012 Removed sched_mc_power_savings scheduler 
tunable (early dynamic execution consolidation 
implementation)

Kernel 3.9 2013 Added intel_pstate (native Intel P-state driver)

Added idle injection driver

Kernel 3.10 2013 Added full tickless (CONFIG_NO_HZ_FULL) allowing 
Linux to be built with no clock ticks, either when idle  
or busy

Kernel 3.11 2013 Added native RAPL driver for in-band power limiting

Table 6-11. (continued)
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Table 6-12 identifies major power management features and improvements added to 
ESXi over time. 

Table 6-12. Historical Changes in VMWare ESX/ESXi Operating Environments

Version Released Changes

VMware ESX 3.5 2007 Added Distributed Power Management (dynamic 
migration of VMs, shutdown and restart of servers 
to manage power).

VMware ESX 4.0 2009 Added support for P-states (disabled by default).

VMware ESX 4.1 2010 Added global power policy (user selectable).

Default policy is high-performance (results in 
P-states not used by default).

VMware ESXi 5.0 2011 Added Host Power Management.

Default policy is balanced (enables P-states by 
default, but no C-states).

VMware ESXi 5.1 2012 No significant changes.

VMware ESXi 5.5 2013 Added C-state support to balanced policy.

Summary
Operating systems play a key role in selecting both idle and active power states for the 
server. This is a difficult balancing act because the OS decisions heavily impact both 
performance and power. In addition to power state selection, OS process scheduling, I/O, 
interrupt handling, and memory management decisions also have a significant impact 
on power. Virtualized environments include many of the same capabilities as native 
environments. They also enable new usage models, such as migration and consolidation, 
which can provide substantial improvements in energy efficiency.

The list of historical changes across operating systems at the end of the chapter 
serves as a reference to highlight both the power management limitations of legacy 
operating systems as well as the latest power management enhancements in modern 
operating systems.
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Chapter 7

Monitoring

Optimizing a server for power, performance, or cost can be achieved with minimal 
effort. This process begins with monitoring the behavior of a system to understand how 
it is used and what opportunities exist for improvement. Sensor measurements such as 
voltage, current, energy, power, and temperature identify individual components that 
contribute the most to overall server power. Latency, bandwidth, and throughput events 
illustrate the energy cost of delivering additional performance. Monitoring of power 
state transitions, clock interrupts, and device interrupts allows users to build a deeper 
understanding of the distribution of work on a server. This chapter introduces various 
monitoring capabilities and how they work. It discusses various events and metrics, how 
these are collected, and what a user can learn from these. Chapter 8 continues with a 
description of how these events and statistics can be used to guide optimization decisions.

System and subcomponent monitoring helps users to improve component selection 
and future system design. Monitoring aids in software optimization and in identifying 
issues and opportunities to improve resource usage. Control decisions in management 
software utilize monitoring, adapting infrastructure to meet changing conditions. 
For example, management software can monitor processor utilization and memory 
bandwidth to guide VM migration decisions. Or a CPU can use thermal sensors to identify 
when to throttle processors down to a lower frequency.

Monitoring features are spread across several subcomponents in the platform. 
Processors have programmable performance monitoring units in the cores and uncore, 
baseboards are equipped with power and thermal sensors monitored by management 
controllers, and operating systems monitor individual application processor, memory, 
and I/O use. Comparing monitoring data from different subcomponents allows users to 
build a complete picture of how power and performance affect energy efficiency.

Hardware Monitoring
There are a variety of mechanisms for extracting monitored events or statistics from the 
CPU. Some of these high-level mechanisms are summarized in Table 7-1. Although each 
of these mechanisms includes some unique features and capabilities, it is not uncommon 
for certain events to be tracked through multiple mechanisms.
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There are a variety of different mechanisms for accessing CPU power statistics. 
However, the majority of these capabilities require kernel-level permission (administrator 
in Windows, root in Linux). If you do not have these privileges, these statistics are only 
available if the system administrator allows common users to access them. These 
statistics are also commonly not available inside of virtual machines, because the 
statistics are intended for the system as a whole.

Fixed Counters
A number of fixed counters are available in the system for tracking various statistics. 
These counters cannot be stopped or cleared (except through CPU cold boot or warm 
reset). These counters are very useful where the ability to access a common statistic is 
needed by multiple users at the same time. The downside of fixed counters is that they are 
restricted from some of the more powerful monitoring techniques.

Core Performance Monitors
Cores on Intel CPUs have used a standard performance monitoring infrastructure 
for many generations. Dedicated configurable counters (typically four) exist for each 
hardware thread. A configuration register exists for each counter that allows users to 
select a specific event to count. In addition to the four configurable counters, three fixed 
counters exist on the core. All of these are implemented as MSRs and are considered a 
part of the core performance monitoring architecture. The core performance monitors 
are covered in detail in the Intel Software Developers Manual (SDM) and therefore will 
not be covered in detail here. See the following resources for more information:

Table 7-1. Types of CPU Hardware Monitoring 

Mechanism Description

Performance monitoring  
counters (fixed counters)

These counters continually track a single fixed statistic. 
In many cases they are free-running, meaning they 
continuously count and cannot be stopped or cleared. Many 
critical hardware statistics are maintained in fixed counters.

Performance  
monitoring counters  
(programmable)

Hardware performance monitoring is frequently used by 
software developers for characterizing and optimizing their 
code. The majority of these counters can be configured 
to count a wide range of events. Performance monitoring 
counters exist inside the cores as well as in the uncore.

Status snapshots Registers provide a snapshot of some system state. Software 
can read this state at a given point in time to understand the 
characteristics of the system. The most common example of 
a snapshot is temperature status registers. 
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•	 www.intel.com/content/dam/www/public/us/en/documents/
manuals/64-ia-32-architectures-software-developer-
manual-325462.pdf.

Core performance monitoring events are included as part of the SDM •	
by processor family since these events can change from generation to 
generation. Core performance monitoring events for each processor 
are also described in public files (tsv and json) available at the 
following link: https://download.01.org/perfmon/.

For monitoring power management, the three fixed counter MSRs (IA32_FIXED_
CTR[0,1,2]) in the core can be very powerful. Each of these counters can be configured 
with the IA32_FIXED_CTR_CTRL MSR to either monitor a specific thread that is 
executing, or, in the case of processors with SMT, monitor all the threads on the core. 
The first fixed counter tracks instructions retired, which is a count of every instruction 
executed by the processor. The second counter tracks unhalted cycles, or cycles when 
the processor is actively executing instructions. The second counter always counts at the 
current operating frequency of the processor. The third counter tracks unhalted cycles 
similar to the second, except it always counts at the base frequency of the processor. 
Software can use the IA32_FIXED_CTR_CTRL MSR to configure fixed counters to monitor 
either a specific thread or all threads that share a core. This configuration is done by 
writing a specific field in the IA32_FIXED_CTR_CTRL MSR called AnyThread. The same 
MSR interface exposes options to track either user time or kernel time, or both.

Many software tools already exist for monitoring both fixed and programmable  
core performance monitors (a selection of these are discussed later in the chapter).  
The simplest way to use a counter is with time-based sampling, using the following steps:

1. Clear the counter (to avoid early overflow).

2. Configure the desired event in the configuration register and 
enable the counter.

3. Wait some amount of time (while applications execute).

4. Read the counter again.

5. Repeat steps 1–4.

More advanced techniques are also possible, such as event-based sampling (EBS).  
In EBS, instead of collecting samples over a fixed amount of time, counters are 
automatically stopped when one of the counters hits a desired value. At this point, an 
interrupt is generated that informs monitoring software to collect additional information 
about system and software state. EBS is not frequently used for monitoring power 
management and therefore will not be discussed here. 

Uncore Performance Monitors
Unlike core performance monitoring, the performance monitoring architecture in 
the uncore is not standardized across all generations and product lines. A common 
architecture is used on Xeon E5/E7 products starting in the Sandy Bridge generation. Very 
few uncore performance monitoring capabilities have been productized on other Intel 
products, so this chapter will focus on those available in E5/E7.

http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-manual-325462.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-manual-325462.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-manual-325462.pdf
https://download.01.org/perfmon/
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Uncore performance monitoring introduced in Sandy Bridge is quite similar to the 
capabilities that exist in the core. Counters are distributed throughout the different blocks 
in the uncore, providing the ability to collect a large number of statistics simultaneously. 
Although the bulk of the power-related statistics exist in the counters in the PCU, there are 
power-relevant events in other blocks too.

Product-specific details of the uncore performance monitoring capabilities and 
registers are published whenever a product is launched. E5/E7 uncore performance 
monitoring documentation is included for the latest generation of products at the 
following links: 

•	 www.intel.com/content/dam/www/public/us/en/documents/
design-guides/xeon-e5-2600-uncore-guide.pdf

•	 www-ssl.intel.com/content/dam/www/public/us/en/
documents/manuals/xeon-e5-2600-v2-uncore-manual.pdf

•	 www.intel.com/content/www/us/en/processors/xeon/xeon-e5-
v3-uncore-performance-monitoring.html

Global Freeze/Unfreeze 
A challenge with uncore performance monitoring is coordination between the large 
number of monitoring units spread across various uncore blocks. Simply reading all the 
counters across those blocks can take tens of microseconds. This latency can both perturb 
workload execution (particularly if sampling is done over very short time windows) and 
risk collecting statistics about the monitoring software as opposed to the workload of 
interest. As a result, the uncore performance monitoring architecture includes a global 
“freeze” and “unfreeze” capability. This capability attempts to start and stop all counters 
across various uncore blocks at the same time. Although the synchronization is not 
perfect, any delay in the freeze of uncore performance monitoring (also known as skid) is 
typically well below a microsecond.

Edge Detection and Average Time in State
Many monitoring events specify a condition that is counted for every cycle in which that 
condition is true. For example, if there is an event that monitors the time when a core is 
in a target C-state, that counter will increment every cycle when the core is in the target 
C-state. In addition to measuring time in state, it is also useful to be able to monitor 
the number of transitions in and out of a state. For example, you might want to be able 
to count the number of times a target C-state was entered. In order to avoid plumbing 
separate events for both time and transitions, Edge Detect hardware is used, which can 
transform any event that counts time (or cycles) into an event that counts transitions.

A common monitoring technique is to use one counter to monitor cycles and a 
separate counter to monitor edges. By using both these events, a user can calculate the 
average time in a state:

AverageTime in State
TotalTime in State
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http://www.intel.com/content/dam/www/public/us/en/documents/design-guides/xeon-e5-2600-uncore-guide.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/design-guides/xeon-e5-2600-uncore-guide.pdf
http://www-ssl.intel.com/content/dam/www/public/us/en/documents/manuals/xeon-e5-2600-v2-uncore-manual.pdf
http://www-ssl.intel.com/content/dam/www/public/us/en/documents/manuals/xeon-e5-2600-v2-uncore-manual.pdf
http://www.intel.com/content/www/us/en/processors/xeon/xeon-e5-v3-uncore-performance-monitoring.html
http://www.intel.com/content/www/us/en/processors/xeon/xeon-e5-v3-uncore-performance-monitoring.html
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Standard Events and Occupancy Events
Many events simply increment by one in a given cycle. If, for example, you are monitoring 
the number of reads to DRAM, a standard event would increment by one for each read.

In performance monitoring, when doing queuing and latency analysis, it can be 
useful to measure the occupancy of different queues. Occupancy events can increment by 
one or more in each cycle. Occupancy events can also be used with a threshold compare 
to increment by one whenever a queue is at a configurable occupancy or larger.

For performance monitoring, occupancy events are commonly used in the  
following ways:

Average latency in a queue•	

Average Latency Time inQueue
Accumulated Occupancy

Queue Alloc
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Average occupancy of the queue•	
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Occupancy events can also be applied to power management statistics despite 
“queues” physically not being a common part of power management. For example, one 
may want to understand the amount of time when all cores are simultaneously in a core 
C6 state. By looking at individual core residencies, it is impossible to tell how the different 
core activity lines up in time. By using an occupancy event for a core C6 state with a 
threshold set to the number of cores in the system, you can count the amount of time 
when all cores are simultaneously idle. 

Status Snapshots
Snapshots provide an instantaneous view of system characteristics. These are particularly 
useful for information that does not change very often (like temperature). One drawback 
of status snapshots is that monitoring software can accidentally collect information about 
itself. For example, if processor frequency is being measured by monitoring software at 
a high sampling rate, it may cause frequency to increase higher than it normally would 
without monitoring software present.

1Multiple threshold events can be used at the same time across multiple counters to build histograms.
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Counter Access and Counter Constraints 
Reading or writing from counters and snapshots typically takes a moderate amount of 
time. It can take tens of clock cycles to access core programmable counters and hundreds 
of clock cycles to access uncore and other counters. By collecting a large amount of 
information from throughout, the system can perturb workloads. The amount of statistics 
collected can have a large impact on the size of sampling that can be performed. Typically, 
sampling faster than about every 10 ms can lead to significant workload perturbations. 

Counters can be implemented in the processor in different ways. Large hardware 
counters can be quite expensive (area, power) and are not always desirable—particularly 
in area-constrained blocks or those that are replicated many times. It is also difficult or 
impossible to provide instantaneous information about certain types of information, for 
example, in counters for monitoring energy consumption. Statistics about energy are very 
expensive to monitor accurately through regular synchronous logic. As a result, some fixed 
counters are updated periodically with this information rather than instantaneously.

Events and Metrics
Monitoring mechanisms described in the preceding section support a wide variety of 
different measurable events such as core temperature, uncore P-state transitions, or 
cache lines transferred over a CPU interconnect. Events typically measure a precise low-
level occurrence, behavior, or time in state. Events by themselves often do not provide 
meaningful insight into system or subcomponent behavior. As a result, it is common to 
use one or more low-level events to calculate a higher-level power or performance metric. 
For example, a common metric for memory performance is bandwidth. This is calculated 
based on a number of low-level events such as CAS commands, DDR frequency, and the 
measurement duration in DDR clock cycles.

Events and metrics include many different types of statistics. Some examples 
are time, temperature, energy, voltage, frequency, latency, and bandwidth. Specific 
events and metrics exist across various subcomponents providing insight into runtime 
characteristics of the system.

Time (RDTSC)
Most software environments provide mechanisms to access information about time in 
the system. Generally these APIs are sufficient for collecting information about elapsed 
time when collecting power and performance monitoring statistics.

There are many different ways to measure time in the system. x86 includes an 
instruction for getting time—the read time stamp counter (RDTSC), which is available 
both to user space applications and the kernel. Since it is possible for instructions to 
execute out of order, RDTSCP (a serializing version of RDTSC) is also provided. This 
version ensures all preceding instructions have completed before reading the time stamp 
counter. RDTSC is synchronized both across all the threads on a socket, and across threads 
in a multi-socket system. The RDTSC instruction returns a cycle count that increments 
at the rate of the base frequency of the processor. Although there is a centralized clock on 
each CPU, the time stamp counter is also maintained in the core, making it very fast to 
access. Unlike some performance monitoring counters, RDTSC counts through all power 
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management states. Several other timers exist on the system, but the time stamp counter is 
preferred because many of them take much longer to access.

Most software tools will provide APIs to measure elapsed time, so making direct use 
of the RDTSC instruction is generally not necessary. Although many of the statistics and 
formulas in this chapter that rely on elapsed time will use delta TSC, this can be replaced 
with whatever time measurement is provided by a given software environment. 

Basic Performance 
Two basic performance metrics that are key to understanding energy efficiency are 
CPI and path length. CPI, or cycles per instruction, measures the average number of 
CPU cycles it takes to retire a single instruction. This is the inverse of the common 
performance metric IPC, or instructions per cycle. Low CPI occurs when work is 
computationally simple, where there is a lack of complex operations, and data references 
frequently hit in core caches. High CPI occurs when work is computationally complex, 
high-latency operations are frequent, and many data references need to be satisfied by 
memory. Software with low CPI maximizes the time various subcomponents can spend 
in low power idle states. It is more energy efficient than high CPI.

Path length measures the average number of instructions it takes to complete a 
single unit of work. This unit of work is commonly represented by the throughput metric 
for a workload of interest. For example, a unit of work might be a single HTTP transaction 
on a web server, a write to a database, a portion of a complex scientific computation, or 
a single drive read in an I/O testing tool. Beyond the obvious performance advantages, 
software with low path length also maximizes the time spent in low power idle states 
since fewer steps are necessary to complete a unit of work.

Performance can be improved either through completing work faster (decreasing 
CPI), or by completing work using fewer steps (decreasing path length). In the following 
formula, performance represents the time it takes to complete a unit of work. As a 
result, performance can generally be expressed by multiplying CPI by path length. The 
following formulas show how to calculate these basic performance metrics. These can 
be monitored per-logical processor, per-core, or per-application process, or they can be 
averaged to give a system level view.

Performance CPI Path Length

CPI CPU CLK UNHALTED THREAD INST
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Energy Use 
Energy is monitored through both the socket and memory RAPL features (see Chapter 2  
for more details). As part of RAPL, free running energy counters track the amount of 
joules that are consumed by the processor. All energy measured by RAPL is represented 
in the same format, called energy units. A single energy unit represents a fixed amount 
of microjoules of energy consumed. Measuring energy in larger granularity energy 
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units allows a high-resolution energy counter to cover a much broader range of values. 
However, the specific amount of microjoules an energy unit represents can change from 
processor generation to generation. The RAPL_POWER_UNIT MSR exposes the energy 
units that are used for RAPL on a given processor. Bits 12:8 show the energy units. As an 
example, Sandy Bridge presents a value of 0x10, which corresponds to ~15.3 microjoule 
increments (1/2^16).

Note ■  energy units can change from generation to generation. haswell, for example, 
uses different units (~61 microjoules) than Sandy Bridge and ivy Bridge (~15.3 microjoules).

The amount of energy and average power consumed over a time window can be 
measured with the following two equations: 

Energy Joules
Energy Counter
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Table 7-2 lists the different types of energy statistics available on the processor. 

Table 7-2. Energy Statistics

Statistic Type Description

Socket energy Fixed free-running 
counter

Socket energy reports an estimate of the 
energy used by all the logic in the CPU 
package, including all power rails. Not all 
rails are actively measured, so the power 
reported here is strictly guidance.

DRAM energy Fixed free-running 
counter

DRAM energy provides an estimate of the 
energy used by the DDR3/4 memory devices 
in the system. Note that support for DRAM 
RAPL does require some platform enabling, 
and not all systems support DRAM RAPL.

Core energy Fixed free-running 
counter

The core energy counter was introduced 
on the Sandy Bridge generation, but was 
later dropped on the Haswell generation. 
It is expensive to provide accurate energy 
estimates for the core domain.
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Note ■  energy counters are only 32 bits today. on Sandy Bridge, for example, it was 
possible for the counters to roll over after a few minutes. Similar to a car odometer, when 
the energy counters overflow, they simply wrap around, starting over at zero. Software that 
makes use of these counters should detect and adjust for this overflow.

Temperature
Modern processors include numerous temperature sensors that are exposed to software. 
These sensors are generally only available to kernel-level software, because they typically 
exist in MSR register space. These sensors are sometimes called digital temperature 
sensors (DTS). Temperatures are usually quite accurate, particularly close to the 
throttling temperature point. As temperatures get colder, DTS accuracy tends to degrade.

Most server memory also includes temperature sensors on the DIMMs. This is 
always the case with RDIMMs, and almost always the case with ECC UDIMMs. These 
sensors are called thermal sensor on-die (TSOD). A single TSOD exists on the memory 
DIMM (typically in the middle of the DIMM) rather than having individual sensors in 
each device. Because DRAM devices can be quite long, it is not uncommon for there to be 
a large thermal gradient down the length of the DIMM. This is particularly the case where 
DIMMs are oriented in the same direction as the airflow in the platform. As air passes 
over devices as it moves down the DIMM, it heats up, causing the “last” device to be 
much warmer than the first. Platform designers take these gradients into account when 
designing their thermal solutions. Because the TSOD is in the middle of the devices, 
it is common for some devices to have higher temperatures and some to have lower 
temperatures.

Rather than exposing the actual temperature in degrees Celsius, temperature 
counters report the margin to throttle (or the delta between the maximum allowed 
temperature and the current temperature). The margin to throttle is measured at a core 
level through the IA32_THERM_STATUS MSR and at a package level through the IA32_
PACKAGE_THERM_STATUS MSR. Package temperature reports the highest temperature 
across all sensors on the package. This includes any additional thermal sensors that may 
exist outside the cores. Traditionally, cores have been a hot spot on a server die, but this 
trend is starting to change on low-power server designs where a larger percentage of 
the package power budget is spent on I/O power. The maximum allowed temperature 
needed to calculate the actual temperature in degrees Celsius is measured by the 
TEMPERATURE_TARGET MSR.

The IA32_THERM_STATUS MSR is thread-scoped, meaning an individual thread 
can only access temperature information about itself. In some systems, multiple threads 
can share a single temperature sensor and therefore will always get the same result. In 
addition to reporting temperature, the IA32_THERM_STATUS MSR also reports log and 
status information about thermal throttling that may have occurred in the system. The 
IA32_PACKAGE_THERM_STATUS and TEMPERATURE_TARGET MSRs are package-
scoped, meaning that all threads on a socket share the same register (and data). Table 7-3 
lists the different types of temperature statistics available on the system.
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Table 7-3. Temperature Statistics

Statistic Type Description

Core  
temperature

Status snapshot Core temperatures are exposed through 
IA32_THERM_STATUS (MSR 0x19C) and 
TEMPERATURE_TARGET (MSR 0x1A2).
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TEMPERATURE TARGET

T

( ) =
[ ]_ :23 16

argeet Offset TEMPERATURE TARGET

M intoThrottle IA T

= [ ]

=

_ :

_

29 24

32arg HHERM STATUS

Temperature C
DTSMAX T et Offset M

_ :22 16[ ]

( ) =
- -arg argiintoThrottle

Package  
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Status snapshot Package temperatures are exposed through
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Additional  
package  
temperature  
sensors

Status snapshot Sensors do commonly exist outside the core. 
There is no standardized interface for accessing 
information about these thermal sensors, although 
their information is included in PACKAGE_
THERM_STATUS.

Memory 
DIMM 
temperature

Status snapshot Memory DIMM temperature is also maintained 
in the package for systems that support TSOD 
DIMMs. Like with the other package sensors, 
there is no standardized register set for accessing 
temperature information. Although this 
information is not publically documented today, 
IPMI can be used at the platform level to monitor 
memory DIMM temperatures. 
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Frequency and Voltage
Frequency is one of the most important statistics when it comes to power and performance. 
There are a wide range of mechanisms for monitoring the operating frequency in the system.

Two primary mechanisms are the thread-scoped IA32_PERF_STATUS and  
IA32_PERF_CTRL MSRs. The IA32_PERF_STATUS MSR holds the current frequency  
ratio of the thread that reads it. It also has a non-architectural field that provides  
guidance on the current operating voltage of the core. The voltage field does not exist  
on older generation server CPUs but is present in many of the current CPUs. The  
IA32_PERF_CTRL MSR is the same interface introduced in Chapter 6 that allows 
the operating system to request a frequency ratio for a given thread. Similar to the 
IA32_PERF_STATUS MSR, the IA32_PERF_CTRL MSR also has a field for requested 
voltage, however this is no longer used. Voltage is now autonomously controlled by the 
package, and writes to these bits have no impact on system behavior. Monitoring both of 
these registers together allows users to understand the relationship between requested 
frequency and granted frequency.

On E5/E7 processors starting with Haswell, the uncore has its own frequency and 
voltage (see Chapter 2 for details). These processors include an UNCORE_PERF_STATUS 
MSR that holds the current operating ratio of the uncore. This register is not architectural 
and generally is only exposed on systems that have dynamic control of the uncore ratio.

The IA32_APERF and IA32_MPERF MSRs can be used to measure average frequency 
over a user-defined time window. These free-running counters are sometimes also called 
ACNT and MCNT. Technically ACNT and MCNT have no architectural definition. Instead, 
only the ratio of the two is defined. ACNT counts at the frequency at which the thread is 
running whenever the thread is active. MCNT counts at the base frequency (P1) of the 
CPU whenever the thread is active. Neither of these MSRs count when the thread is halted 
in a thread C1 or deeper C-state.

Recent versions of Windows have started clearing both ACNT and MCNT in the kernel, 
making it unusable by other software tools. Older versions of Linux (before 2.6.29) also had 
this behavior. Linux no longer clears these MSRs at runtime so that other software tools 
(such as turbostat, which is included with the kernel) can make use of the MSRs as well.

Similar to ACNT and MCNT, the fixed counters can also be used to monitor the 
average frequency of either a core or a specific thread when it is active. This methodology 
automatically filters out time when a core is asleep. The IA32_FIXED_COUNTER1 
MSR increments at the rate of the current frequency whenever a thread (or core) is not 
halted. The IA32_FIXED_COUNTER2 MSR increments at the rate of the base clock of the 
processor whenever a core (or thread) is not halted. As discussed in “Core Performance 
Monitors” earlier in this chapter, when the fixed counter AnyThread bits are set to 0, the 
counters measure average operating frequency of a specific thread while it is active. When 
the AnyThread bits are set to 1, the fixed counters measure average operating frequency 
of the core as a whole.

Note ■  it is common for different threads in the system to report different average 
frequencies, even on processors that do not support per-core p-states. this is because the 
average is only taken while a core is active.
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To measure average uncore frequency over a user-defined time window, clocks 
can be counted in the CPU caching agent using a programmable counter (see uncore 
monitoring links earlier in this chapter for programming information). The caching agent 
clocks are stopped in Package C6, so this needs to be taken into account when calculating 
the average frequency. Table 7-4 lists the different frequency and voltage statistics 
available on the system.

Table 7-4. Frequency Statistics

Statistic Type Description

Current  
core frequency

Status  
snapshot

Core frequency is exposed through IA32_PERF_
STATUS (MSR 0x198).

On Nehalem and Westmere generations:

Frequency GHz
IA PERF STATUS( )= * [ ]4 32 15 8

30

_ _ :

On Sandy Bridge (and generations that follow it):

Frequency GHz
IA PERF STATUS( )= [ ]32 15 8

10

_ _ :

Current  
core voltage

Status  
snapshot

Core voltage is exposed through  
IA32_PERF_STATUS (MSR 0x198)

Voltage volts
IA PERF STATUS( )= [ ]32 47 32

213

_ _ :

Requested core 
frequency

Status  
snapshot

Requested frequency is exposed through  
IA32_PERF_CTRL (MSR 0x199).

Frequency GHz
IA PERF STATUS( )= [ ]32 15 8

10

_ _ :

Current uncore 
frequency

Status  
snapshot

Uncore frequency is exposed through UNCORE_
PERF_STATUS (MSR 0x621).

Frequency GHz
UNCORE PERF STATUS( )= [ ]_ _ :6 0

10

(continued)
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Table 7-4. (continued)

Statistic Type Description

Average core 
frequency

(APERF/MPERF)

Free-running  
counter

Average core frequency is exposed through IA32_
APERF (MSR 0xE7) and IA32_MPERF (MSR 0xE8).

Average Frequency GHz

Base Frequency
APERF

MPERF

( ) =
*
D
D

Average core 
frequency
(core performance 
monitoring)

Core  
performance  
monitor

Average core frequency is also exposed  
through IA32_FIXED_COUNTER1 and  
IA32_FIXED_COUNTER2.

Average Frequency GHz

Base Frequency
IA FIXED COUNTER

I

( ) =
*
D
D

32 1_ _

AA FIXED COUNTER32 1_ _

Average uncore 
frequency

Uncore 
performance 
monitor

Average uncore frequency is exposed through a 
combination of programmable and free running 
counters.

Avg Active Freq GHz
Caching Agent Clocks

Sample Period ns Pa

. ( ) =

( ) -
D

cckageC sidency ns6Re ( )

Frequency 
histograms

Status 
snapshot

Some processors support the ability to generate 
frequency histograms for either the core or uncore or 
both. Configuring these events can be challenging. 
The PCM tool (discussed later in this chapter) provides 
these capabilities on processors that support it. 

Frequency 
transitions

Status 
snapshot

One can measure the number of frequency 
transitions occurring in the system. On Sandy 
Bridge and Ivy Bridge E5/E7, frequency transitions 
on a given socket can be measured by using Edge 
Detection on the FREQ_TRANS_CYCLES event.

On Haswell E5/E7, an additional performance 
monitoring event was added that tracks the 
number of uncore frequency transitions. The 
FREQ_TRANS_CYCLES event still exists and now 
counts the total number of frequency transitions 
across all cores as well as the uncore.

Note: these “cycles” events also provide a rough 
estimate of the number of cycles for performing 
frequency transitions, but in general, they do not 
provide highly accurate indications of how long 
software was prevented from executing code.
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Table 7-5. Core C-State Hardware Statistics

Statistic Type Description

Core C-state  
residency

Fixed free-running  
counters

Free-running counters have been added on 
many processor generations to track the C-state 
residency on each core. They count at the same 
rate as RDTSC (at the base frequency of the 
processor).

Core C1 is exposed through MSR 0x660*.•	

Core C3 is exposed through MSR 0x3FC.•	

Core C6 is exposed through MSR 0x3FD.•	

These counters refer to the actual hardware 
C-state and not the ACPI C-state.

Core  
C0 residency

Core  
performance  
monitor

As discussed earlier in the chapter, IA32_FIXED_
COUNTER2 (with AnyThread = 1) monitors 
cycles spent in Core C0 and counts at the base 
frequency of the processor.

Core  
C1 residency

Equation On processors that do not include a Core C1 
Residency MSR, it can be calculated through the 
following equation:

DeepCstateCycles
CoreC Cycles CoreC Cycles

CoreC Cycles
TSC

=
+

=

6 3

1
CCycles DeepCstateCycles CoreC Cycles- - 0

Thread active 
(TC0)

Core performance 
monitor

The IA32_FIXED_COUNTER2 MSR (with 
AnyThread = 0) will monitor the amount of time 
that the current thread is in a TC0 state. It counts 
at the base frequency of the processor.

(continued)

C-States
Tables 7-5 and 7-6 list the different C-state statistics available on the system.
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Table 7-5. (continued)

Statistic Type Description

Thread C1 Equation Thread C1 is not easily measured (except on 
processors that support the Core C1 residency 
counter and do not support SMT). The following 
equation can be used:

DeepCstateCycles
CoreC Cycles CoreC Cycles

ThreadC Cycles
T

=
+

=

6 3

1
SSC Cycles DeepCstateCycles ThreadC Cycles- - 0

Core C-state 
occupancy

Uncore 
performance 
monitor

The uncore provides a performance monitor 
that tracks the number of cores in a particular 
state at a given point in time. This can be used 
to calculate the average number of active cores. 
In addition, users can use the thresholding logic 
in the uncore performance monitors to count 
cycles with a given number of cores active. See 
the Uncore Performance Monitoring guide for 
a given processor for details, or see the source 
code of PCM (more details later) for an example. 

*Core C1 residency is currently only supported on Silvermont-based processors.



Chapter 7 ■ Monitoring

224

Table 7-6. Package C-State Hardware Statistics

Statistic Type Description

Package  
C-state  
residency

Fixed free-running  
counters,  
performance  
monitor

Just like with core C-states, free running counters 
exist for measuring package C-state residency.

Package C2 is exposed through MSR 0x60D.•	

Package C3 is exposed through MSR 0x3F8.•	

Package C6 is exposed through MSR 0x3F9.•	

Package  
C-state 
transitions

Uncore  
performance  
monitor

The residency MSRs are great for monitoring 
residency, but it is not possible to measure 
transitions with them. As a result, the same events 
for measuring residency were added into the 
Uncore Performance Monitoring infrastructure on 
Ivy Bridge. Using these events for residency with 
edge detection provides the ability to monitor the 
number of transitions.

You can calculate the average time spent in a 
package C-state (average idle periods across the 
entire node) with the following equation:

Avg Time in PackageCx
PackageCx sidency

Number of CxTransition
.

Re
=

ss

You can also calculate the average time between 
package C-states:

Avg Time in PackageCx Entrances
TotalTime

Number of CxTransition

. =

ss
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Table 7-7. Memory Power and Performance Statistics

Statistic Type Description

Bandwidth Uncore  
performance  
monitor

CAS commands (see Chapter 2 for more details) 
refer to read and write commands issued to 
DRAM. By counting CAS commands, one can 
measure memory bandwidth.

Bandwith Utiliztion
CAS Commands

DCLK Cycles

Bandwidth
GB

s

=
*

æ
è
ç

ö

4

øø
÷ =

* ( )*Utiluization DDR Frequency GHz
Bytes

clock

8

Clock gated time Uncore  
performance  
monitor

The fixed performance monitoring cycles 
counter in the memory controller will increment 
whenever the clocks are not gated. By measuring 
time between samples with RDTSC in 
conjunction with the fixed cycles counter, you can 
calculate time clock gated.

Percent Active
DCLK Cycles

RDTSC

Base Frequency CHz

DDR Fre

=
*

*
( )2 D

D qquency CHz( )

CKE Uncore  
performance  
monitor

CKE is controlled per rank. The memory controller 
has an event that counts time spent when the 
CKE signal is high (and power is high). This can 
be subtracted from the total number of clocks to 
determine time spent with CKE low. CKE is always 
low when the memory controller clocks are gated.

Percent CKE Low
CKE HighCycles

DCLK Cycles
= -1

Memory Power and Performance
Each memory controller channel on Xeon E5/E7 CPUs includes multiple uncore 
performance monitoring counters and one fixed counter that counts DCLK2 cycles. On 
recent processor generations, the memory controller clock is gated in deep package 
states, and the performance monitors will stop counting in this state. Table 7-7 lists key 
memory power and performance statistics available on the system.

(continued)

2DCLK = ½ the clock speed of the marked speed of the DDR memory.
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Memory bandwidth directly impacts memory power. Required memory bandwidth 
also can significantly impact purchasing decisions when building a system.

PCIe Power Management
Little visibility exists into PCIe power management from within the SoC.

QPI Power Management and Performance
A wide range of performance monitors are available for QPI. Tables 7-8 and 7-9 list 
key QPI power and performance statistics available on the system. The performance 
monitoring counters in the QPI block count at the clock rate of the logic in that block. The 
QPI link operates at very high frequencies measured in GT/s (giga transfers per second). 
Sandy Bridge, for example, operated at frequency up to 8 GT/s. In these designs, a single 
flit (an 80-bit unit of transfer) of data is transmitted in four transfers (or at a rate of 2 GHz 
in this example). Starting with Sandy Bridge, the clocks used for the QPI performance 
monitoring logic ran at half this frequency (or 1 GHz in this example), and the logic can 
process two flits per cycle.

Statistic Type Description

Self-refresh Uncore 
performance 
monitor

Memory self-refresh is applied at the channel 
level. Whenever a channel is completely clock 
gated, it is also in the self-refresh state. Therefore, 
when one calculates actual time in self-refresh, 
the percent time spent in a clock-gated state 
should always be added to the total calculated 
by the performance monitor. Self-refresh is used 
primarily at idle. It is common to observe very 
little time spent in self-refresh and very little time 
spent clock gated, even when at low utilization.

Percent Self fresh

Percent Active
Self freshCycles

DCLK Cy

Re
Re

=

- +1
ccles

Table 7-7. (continued)
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Table 7-8. QPI Power Statistics

Statistic Type Description

QPI frequency (GT/s) Uncore  
performance  
monitor

You can measure the frequency of the QPI 
block for Sandy Bridge and Ivy Bridge with 
the following equation:

Avg
GT

s

QPI CLK Cycles

Time Nano onds
. = *

( )
8

D
sec

You can measure the frequency of the QPI 
block for Haswell with the following equation:

Avg
GT

s

QPI CLK Cycles

Time Nano onds
. = *

( )
4

D
sec

Note that this equation assumes an  
active system that is preventing any  
course-grained clock gating from occurring. 
Lower frequencies may be measured in 
systems that are nearly idle.

L0p time Uncore  
performance  
monitor

Time spent in the L0p state can be monitored 
with the QPI L0p event.

%QPI L p
L pCycles

QPI CLK Cycles
O

O
=

D
D

By using edge detect, one can also measure 
the number of L0p transitions. Note that L0p 
transitions block data transfers for only a very 
short amount of time.

L1 time Uncore  
performance  
monitor

Time spent in the L1 state can be monitored 
with the QPI L1 event. On recent processor 
generations, L1 is used exclusively in the 
package C6 state, so there is little need to 
measure its residency separately. In fact, this 
QPI counter stops counting in many cases due 
to clock gating that occurs at the same time.

(continued)
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Statistic Type Description

Clock gating Uncore 
performance 
monitor

The entire QPI block can be clock gated on 
some processor generations when the link is 
in an L1 state. By measuring the QPI cycles, 
one can calculate the amount of time when 
the link is clock gated and in an L1 state. To 
do this, one must know the clock frequency 
of the QPI link first. 

%Clock Gated
LOpCycles

QPI Freq GHz Time Nano onds

=

-
( )* ( )

1
D

sec

Table 7-8. (continued)
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Table 7-9. QPI Performance Statistics

Statistic Type Description

Bandwidth Uncore  
Performance  
Monitor

QPI bandwidth is driven not only by the transmission of 
cache lines of data, but also by the transmission of additional 
information for maintaining coherency and QPI protocol.

The QPI performance monitors can separate  
out the protocol overhead flits from the data flits.  
The “TxL_FLITS_G0” event (code 0x0) used with the 
following event masks provide this information.

Mask: 0000_0001b: Idle flits•	

Mask: 0000_0010b: Data flits•	

Mask: 0000_0100b: Protocol flits•	

Mask: 0000_0110b: Total used flits (other than Idle)•	

Recall that when QPI is not in an L1 state, it is always 
transmitting flits. Idle flits are used when no actual 
information must be transmitted. As a result, a simple 
way to measure the link utilization is with the following 
equations.

For Sandy Bridge and Ivy Bridge:

Link Utilization
QPI FLits Data otocol

QPI Clocks
%( )= +( )

*
D

D
Pr

2

For Haswell:

Link Utilization
QPI FLits Data otocol

QPI Clocks
%( )= +( )D

D
Pr

One can also subtract off cycles spent in QPI L1 in order 
to filter out long idle periods from the utilization metric, 
but this is generally not significant when monitoring active 
workloads.

Data bandwidth (GB/s) is another interesting metric that 
gives an indication of expected QPI power. Each flit in QPI 
contains 8 Bytes of data. Therefore, data bandwidth can be 
calculated with the following:

 

Data Bandwidth
GB

S

B QPI Data Flits

Time Nano onds
æ
è
ç

ö
ø
÷ =

*
( )

8 D
sec
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Management Controller Monitoring
Management controllers in the system, including the Baseboard Management Controller 
(BMC) and the Management Engine (ME) in the PCH, provide broader platform-level 
monitoring functions. The BMC connects to various busses, sensors, and components 
in the system, allowing it to act as a centralized monitoring resource covering a large 
number of different system components. The BMC can also pair monitoring functions 
with threshold values to generate events, such as an indication that a component’s 
temperature has exceeded a safe level.

Management controller monitoring complements the monitoring functions 
provided by the CPU and operating system. The BMC and ME provide access to many 
unique monitoring events that cannot be monitored elsewhere such as fan speed, power 
supplies, voltages, and general platform health. It also allows for monitoring while a 
system is booting, powered off, or unresponsive. As discussed in Chapter 5, management 
controller monitoring functions are accessed through IPMI.

Component Power Sensors
Great insight is gained by understanding individual component power consumption and 
how individual components add up to overall platform power. In an ideal monitoring 
solution, platform power (after PSU efficiency losses) would equal the sum of all the 
individually measured components. However, most servers can only measure CPU and 
memory power, leaving an incomplete picture.

Note ■  a common question is “how does power break down in a system?” one  
engineering technique is to identify the few components that consume the most power 
and focus optimization efforts on those. the breakdown of power in a system changes 
significantly from server to server and many of the individual components in a system only 
represent a small percentage of overall power.

Additional sensors can be added to the baseboard to measure these missing 
components, reporting either power or current and voltage. During board design, the cost 
of adding these enhanced sensors necessary to calculate component power is relatively 
small, for example, adding VRs that expose readings over the SMBus interface or adding 
current sensors accessible over I2C. These additional sensors allow the Node Manager 
(NM) firmware to calculate energy for all components in the platform to identify where 
unaccounted power is coming from. For example, NM can expose individual energy 
measurements for PCH, LAN, fans, and the BMC. The current generation of Node 
Manager supports up to 32 additional monitoring devices so component energy can be 
monitored in fine-grained detail. 

Similar to the use of the CPU energy events, NM energy events are coupled with 
timestamps so users can read the sensors periodically to calculate power over a desired 
time window.
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Synthetic Sensors
In order to expose more information about the platform, Node Manager adds new 
synthetic sensors for platform characteristics that cannot be easily measured. Node 
Manager 3.0 added the ability to report volumetric airflow and outlet temperature. 
Those values are calculated based on the server chassis characterization process and 
current readings from fans speed sensors, energy consumed by the platform, and 
inlet air temperature. External management software can create a heat map from 
information about the physical location of servers in the datacenter and the reported 
outlet temperatures. This information can be utilized to improve datacenter efficiency, 
for example, to dynamically manage cooling set points, identify hotspots, or optimize 
workload placement decisions.

Sensors and Events
Between the BMC and the ME, there are an extensive number of sensors, events, and 
metrics provided for monitoring. Table 7-10 provides an example of the leading events 
used to characterize server energy efficiency. Support for various sensors and the specific 
names of those sensors can vary by platform, so generic or typical names are used in the 
table. Many different types of sensors such as error indications, hard drive status, or fault 
and activity LED status are intentionally left out of the table to focus on those sensors 
most relevant for power.

Table 7-10. Common Monitoring Events Accessible by IPMI

Type Description

PSU input power Monitors power going into the power supply. This represents the 
total power of the node.

PSU output power Monitors power going out of the power supply. Useful for 
understanding the efficiency of the power supply.

PSU current Monitors PSU current. Useful for observing conditions such as 
over-current and verifying that the PSU is working within the 
design specification.

PSU voltage Monitors PSU voltage. Useful for observing conditions such as 
under-voltage and verifying that the PSU is working within the 
design specification.

Voltage Monitors voltage across various power rails. This is typically 
paired with some alert to ensure voltage is not higher than the 
expected threshold.

(continued)
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Type Description

CPU energy Monitors energy by individual CPU. It is useful to monitor 
energy sensors over time in order to calculate power. One CPU 
consuming significantly more power than others warrants 
investigation. There may be an opportunity to improve energy 
efficiency by optimizing software.

Memory energy Monitors energy by subset of DIMMs sharing a common VR. 
Useful for assessing the impact of component selection.

LAN energy Monitors LAN energy by individual interface.

Fan energy Monitors fan energy by individual fan. Useful in conjunction with 
Fan Tachometer and component temperatures for assessing the 
efficiency of fan speed control.

PCH energy Monitors PCH energy including the ME.

BMC energy Monitors BMC energy.

Chassis inlet 
temperature

Monitors temperature at the front panel where colder air is 
coming in. 

Outlet temperature Monitors temperature at the rear panel where hotter air is going 
out. Combined with inlet and component temperature, this is 
useful for understanding heat removal.

Riser inlet 
temperature

Monitors temperature at the given riser board location.

Riser outlet 
temperature

Monitors temperature at the given riser board location.

Board temperature Monitors temperature at the baseboard.

PCH temperature Monitors temperature at the PCH including the ME.

PSU temperature Monitors temperature at the power supply.

CPU temperature Monitors temperature by individual CPU. One CPU running 
significantly hotter than the others warrants investigation. There 
may be an opportunity to improve energy efficiency by optimizing 
software.

DIMM temperature Monitors DIMM temperature by individual DIMM.

CPU prochot Monitors use of thermal throttling due to the CPU reaching or 
exceeding its maximum safe operating temperature.

Table 7-10. (continued)

(continued)
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Type Description

CPU thermtrip Monitors use of thermal protection mechanisms. In this case, the 
system was powered down to prevent hardware damage due to 
the temperature exceeding catastrophic levels.

Memhot Monitors memory controller use of bandwidth throttling due to 
one or more DIMMs reaching or exceeding their maximum safe 
operating temperature.

VRhot Monitors VRs reaching or exceeding their maximum safe 
operating temperature.

Fan tachometer Monitors fan speed in RPM by individual fan.

Volumetric airflow Metric describing the volumetric airflow as a function of fan 
speed in RPM and the number of platform zones.

CPU utilization This NM compute usage per second (CUPS) metric monitors 
average utilization across all cores. Useful for a variety of 
datacenter management and orchestration functions, such as VM 
placement. 

Memory utilization This NM CUPS metric monitors average memory utilization 
across all memory channels.

I/O utilization This NM CUPS metric monitors average I/O utilization of PCIe.

Overall utilization A composite metric, this monitors server utilization using a 
weighted average of the CPU, memory, and I/O CUPS utilization 
metrics. This provides an overall assessment of workload 
performance and availability indicators. It is useful for resource 
optimization of power and cooling in a datacenter.

Table 7-10. (continued)

The usefulness of these events is greatly enhanced when several related events are 
compared together. For example, monitoring the combination of PSU input and PSU 
output power enables users to calculate both PSU efficiency and power conversion losses.

Power Conversion Losses Pin Pout

PSU Efficiency
Pout

Pin

= -

=

Note ■  in calculating pSU efficiency, it is best to use pout and pin values averaged over a 
longer time window. this method takes into account the capacitance of the pSU and results 
in more representative values.
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When BMC monitoring is measured with a workload representative of production 
use, it enables users to build a deeper understanding of the interactions between various 
components. Figure 7-1 illustrates various system component temperatures across a 
range of server load.

The component temperature in Figure 7-1 can be compared with Figure 7-2, 
collected at the same time. Comparison of these figures illustrates how fan speed is 
increased to keep each component within a safe operating temperature. Analyzing 
related thermal events in conjunction with component-level power allows operators to 
gain insight into the efficiency of their cooling solution.

Figure 7-1. Component temperatures across a range of server load
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Figure 7-2. Fan speed across a range of server load

Software Monitoring
Chapter 6 discussed the role operating systems play in selecting power states and how 
operating systems balance power and performance in managing system resources. 
Different types of applications running on a system can pose a variety of challenges in 
scheduling, memory management, and I/O. Operating systems provide comprehensive 
monitoring capabilities that allow users to analyze this behavior. This analysis enables 
users to gauge how efficiently their system is running, detect poor application behavior, 
and discover issues with hardware configuration.

Operating systems track many of the same events that are monitored by the CPU. 
For example, the operating system and CPU can both monitor kernel and user time. 
In some cases, the operating system is able to provide unique insight into events not 
understood by the CPU. Operating systems can track time spent in system calls, time 
spent in interrupt handlers, and time spent submitting and completing I/O. They can also 
track time spent by individual processes. These enrichments allow the operating system 
to provide deeper insight into events such as kernel time. In some cases, the operating 
system is able to add a different perspective to events measured by both the CPU and 
operating system. For example, the CPU monitors P-state residency in terms of the states 
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that were granted. The operating system is capable of monitoring P-state residency both 
in terms of the states that were granted and the states that were requested.

When operating system events are used in conjunction with the CPU events, users 
can build a deeper understanding of the software/hardware interface. For example, the 
CPU is capable of measuring a specific effect, such as a core being idle 90% of the time 
and using only C1. The operating system is capable of measuring a specific cause, such as 
frequent network interrupt handling on the core with high C1 residency.

Another difference between events measured by the CPU and the operating system 
is accuracy. CPU events are typically clock-cycle accurate, whereas the accuracy of 
operating system events can vary between products and versions. For example, some 
events may only be sampled instead of measured, and some events may only be updated 
during infrequent clock interrupts.

Events used to monitor resource utilization and kernel functions are common across 
different operating systems. Although the events themselves are similar, there can be 
some subtle differences in the event names and in precisely what is being measured. For 
example, one operating system may include kernel time, queue time, and device time in 
its measure of drive latency, whereas another operating system may only include device 
time. This section discusses common operating system events in an operating system–
independent fashion. Following an outline of these events, several examples of different 
operating system–specific tools and usages are provided.

Utilization and Processor Time 
The operating system is capable of breaking down active and idle time into a very detailed 
set of information. These events can be used to determine how much time is spent 
executing application code to identify applications that are running at unexpected times 
or to identify applications that are running more frequently than expected. For example, 
these events can detect an intrusive management or security service that may be keeping 
the system out of a low power idle state.

Processor time events can be analyzed across logical processors, across cores, or 
across packages to identify utilization asymmetry. This may indicate misconfigured 
software or legacy software with poor parallel design that is leading to inefficient 
operation. These events can also be used to assess resource utilization as activity 
increases or decreases over time. Several of the charts in this chapter illustrate this type 
of example, demonstrating how an event changes across the full range of server load. 
Table 7-11 lists several common events describing processor time.
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Table 7-11. Common CPU Utilization Events Exposed by Operating Systems

Type Description

User time Monitors the time spent executing application code. 
Several operating system tools exist, such as Perfmon on 
Windows environments or SAR on Linux environments, to 
break down user time by thread, processor, or VM.

Kernel time Also known as privileged time, this monitors the time 
spent by the operating system including scheduling, 
memory management, and interacting with different 
devices in the system.

Kernel interrupt time Monitors the time spent processing hardware interrupts. 
This represents the higher priority portion of an interrupt 
that requires immediate attention, or the top half.

Kernel soft interrupt time Also known as software interrupt time, softirq time, 
or a deferred procedure call, this monitors time spent 
processing the remaining lower priority operation of an 
interrupt, or the bottom half.

Kernel idle time Monitors the time spent where there were no processes 
scheduled or ready to run. Some operating systems 
support iowait, a more specific kernel idle time metric that 
differentiates idle time between idle with or without I/Os 
outstanding.

Guest time (VMM only) Monitors the time spent running guest VMs for virtualized 
environments.

Wait time (VMM only) Monitors the time spent waiting for contended physical 
resources in virtualized environments. Wait time is also 
known as steal, dispatch, or ready time. High values can 
indicate oversubscription or VMs that frequently wait on 
preemption of another VM. 

Figure 7-3 illustrates how the various components of processor time change with 
increasing server load. At the maximum throughput level, only 85% of time is spent 
executing application code, with the remaining processor time spent performing 
common kernel functions such as executing system calls or handling interrupts. 
Optimizations that decrease system time can yield significant improvements in energy 
efficiency as it provides additional processor time for applications completing work. For 
example, enabling interrupt coalescing in a network device can reduce the total number 
of interrupts, thus reducing system time.



Chapter 7 ■ Monitoring

238

Simultaneous Multithreading (SMT)
When discussing processor time, it is important to revisit the relationship between 
physical processors and logical processors, or hardware threads in Hyper Threading (HT). 
Since two logical processors share the cache and execution units of a physical processor, 
it is possible to drive a physical processor to 100% utilization even when each of the 
logical processors only runs at 50% utilization. It’s also possible for two logical processors 
at 50% utilization to only drive physical processor utilization slightly above 50%. For 
datacenter workloads, it’s common to see physical processor utilization up to 50% higher 
than the reported logical processor utilization. Figure 7-4 illustrates a typical case where 
actual physical processor utilization is significantly higher than the logical processor 
utilization.

Figure 7-3. CPU time broken down into various categories 
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Operating systems measure utilization for logical processors, which can give a 
misleading picture of hardware resource utilization as power consumption, and the 
use of active and idle power management features are much more closely tied to 
physical processor utilization. Overall utilization is best measured using the hardware 
mechanisms described earlier in this chapter. 

Virtualization
Virtualization provides several additional challenges in monitoring processor time. 
If utilization is measured from a virtual machine, it is a measure of virtual processor 
utilization, or utilization of only the resources made available to that VM. For example, 
in the case of VM oversubscription, it’s possible for VMs to measure an average virtual 
processor utilization of 10%, whereas the processors themselves are running much higher 
than that. As a result, it would be inaccurate to conclude that a system is lightly utilized 
because the average virtual processor utilization is low.

Similar to the insight that can be gained by comparing physical processor utilization 
to logical processor utilization, additional insight can be gained be examining virtual 
processor utilization. For system-level analysis, monitoring is best done from the host 
perspective. The host has the same monitoring visibility as a native operating system as 
well as the ability to track individual utilization of various guest VMs.

Figure 7-4. CPU time compared between logical and physical processor utilization
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Processor Power State Requests
Chapters 2 and 4 introduced the idea that not all operating system requests for a 
particular C-state or P-state are necessarily granted by hardware. For example, the 
operating system might request a high-frequency P-state and end up getting a lower 
frequency P-state due to a thermal event. Operating systems have the ability to monitor 
their own internal state requests in addition to what is granted by hardware. Figures 7-5 
and 7-6 illustrate the differences between software-requested states and hardware-
granted states in C-state residency. In Figure 7-5, ACPI C2 (hardware C6) is requested 
across the range of server load, but Figure 7-6 shows it is only actually used between 0% 
and 20% load.

 

Figure 7-5. Comparison of software C-state residency (requested) for ACPI C1 and ACPI C2
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Note ■  in Figures 7-5 and 7-6 the sum of aCpi C1 (hardware C1) and aCpi C2 (hardware C6)  
residency adds up to total idle time. the remaining time not represented in the figure is  
active time.

Comparing requested residencies to granted residencies can highlight the 
effectiveness of various hardware and software control policies. These comparisons 
identify the source of unexpected state residencies, they illustrate the impact of P-state 
and C-state coordination between threads, and they can help guide server tuning 
decisions.

One reason for the substantial differences between requested and granted 
residencies is that software is monitoring requests at the logical processor level, whereas 
hardware is monitoring at the physical processor level. If half of the logical processors in 
a system are requesting C6 and the other half of the logical processors are requesting C1, 
it is possible that every core is in C1. Any time sibling logical processors are requesting 
different states, the shallower of the two states is granted.

Another reason for the differences between requested and granted residencies is 
that hardware is utilizing mechanisms to restrict use of deep C-states where it detects 
significant latency impact or if the energy cost to enter and exit deep C-states will not be 
recovered by short idle durations. These mechanisms are described in detail in Chapter 2.

Figure 7-6. Comparison of hardware C-state residency (granted) for ACPI C1 and ACPI C2
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Tables 7-12 and 7-13 list several common events exposed by operating systems to 
monitor C-state and P-state residency and transitions.

 

Table 7-12. Common C-State Events  Exposed by Operating Systems

Type Description

C1/C2/C3 residency %  
(software requested)

Monitors the percent of time the operating system is 
requesting ACPI C1, ACPI C2, or ACPI C3. This is typically 
measured for each logical processor.

C1/C2/C3 residency %  
(hardware granted)

Monitors the percent of time CPU cores actually spent in 
various states. Operating systems map the output of the 
residency MSRs described earlier in this chapter to the 
appropriate ACPI state.

C1/C2/C3 transitions Monitors the number of software requests made for each 
ACPI C-state type. Operating system C-state transition counts 
are typically much higher than actual hardware C-state 
transitions due to the coordination of logical processors.

Average idle time Monitors the average logical processor idle duration.

wakeups Also known as idle break events, these events count the 
number of times a logical processor was woken up due to an 
interrupt or break event. Useful for assessing latency impact 
of C-state transitions.

Idling status Also known as core parking status, this event indicates that 
a logical processor is not being made available for process 
scheduling. This is an indication of execution consolidation, 
discussed in Chapter 4.

Table 7-13. Common P-State Events Exposed by Operating Systems

Type Description

Frequency transitions  
(software requested)

Monitors the number of times various operating frequencies 
were requested. It is measured for each logical processor. 
Useful for assessing the latency impact of P-state transitions.

Frequency residency %  
(software requested)

Monitors the percent of time the operating system spent 
requesting various operating frequencies. It is measured for 
each logical processor. For servers with a single P-state shared 
by all cores on same package, this can be used to identify the 
application or thread that drives frequency higher.

(continued)
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Scheduler, Processes, and Threads
The scheduler’s decisions in determining how compute resources are allocated, shared, 
and utilized play a key role in energy efficiency. Monitoring this behavior allows users 
to gain insights into the interaction and impact of running multiple VMs, applications, 
or processes concurrently. For example, if an operating system migrates processes too 
aggressively, the additional time it takes to restore execution context or the additional 
time it takes to reference remote memory can increase power. If the operating system 
migrates processes too conservatively, it can cause scalability issues and utilization 
asymmetry. Cases where one subset of logical processors is running at significantly 
higher utilization than the other logical processors lead to more aggressive use of higher 
voltage and frequency states, increasing power.

Chapters 2, 3, 4, and 6 introduced a number of decisions hardware and software 
power management policies need to make in order to strike the right balance between 
low power and low latency. The scheduler has similar challenges with similar impacts in 
balancing between high throughput and low latency. Scheduling decisions that minimize 
latency can improve transaction response times, but it can come at the cost of energy 
efficiency. If maximum throughput is decreased to improve latency, it results in a greater 
number of resources (and power) required to meet a peak performance requirement.

Operators that characterize and understand the behavior of the scheduler, processes 
and threads can uncover opportunities to tune thread affinity and priority to improve 
energy efficiency. Table 7-14 lists several common events for monitoring the scheduler.

Type Description

Operating frequency  
(hardware granted)

Monitors the operating frequency by sampling a hardware 
feedback mechanism that indicates the current frequency at 
which any logical processor is running.

TSC frequency Also known as CPU base frequency, this monitors the 
maximum guaranteed frequency, or P1.

Maximum frequency % Monitors the ratio of current operating frequency divided by 
CPU base frequency. Values greater than 1 indicate use of 
turbo, or non-guaranteed frequency. Useful for determining 
how much additional frequency turbo is granting at any 
given time.

Processor capacity % Also known as % processor utility, this monitors the 
performance capacity concept introduced in Chapter 4. 

Table 7-13. (continued)
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Interrupts
The frequency of interrupts, the distribution of interrupts across logical processors, the 
division of interrupt processing between top and bottom halves, and the batching of 
interrupts provide deeper insight into the distribution of work on a server and  
how the interrupt processing can affect energy efficiency. For example, when clock or 
device interrupts occur during idle time, they cause logical processors to exit C-states. 
A high interrupt rate at low throughput is undesirable because low throughput typically 
coincides with low utilization. When interrupts occur during active time, they cause 
processes and threads to be suspended until processing of the interrupt is complete.

Splitting the top from the bottom half of interrupt processing enables the kernel to 
parallelize interrupt processing when a single logical processor is handling interrupts 
of a specific type. However, the bottom half doesn’t necessarily execute on the same 
logical processor that handled the interrupt. Interrupts being processed by a very small 
number of logical processors can be undesirable. This can drive utilization significantly 
higher on logical processors handling interrupts and cause the top and bottom half 
of interrupts to be handled by different logical processors. This introduces additional 
overhead in scheduling and in accessing shared data that is not resident in one of the 

Table 7-14. Common Scheduler, Process, and Thread Events Exposed by Operating Systems

Type Description

Processor queue length Also known as processor queue depth, this monitors the 
queue length of tasks waiting to be scheduled. Useful in 
conjunction with other processor time and interrupt events 
to identify the cause of utilization asymmetry.

Context switches Monitors the number of times execution context was 
switched between processes. Useful for efficiency analysis 
because saving and restoring context introduces additional 
overhead.

Migrations Monitors the number of times a process or thread was 
scheduled on a logical processor that is different from the 
last time.

System calls Monitors the number of requests for the kernel to perform 
some action on behalf of an application, such as reading or 
modifying inaccessible data or interacting with hardware 
devices. Useful since high system call rates may indicate 
inefficient use of kernel interfaces.

Processes/Threads Monitors the current number of processes and threads.

Process/Thread state Monitors the current state of processes and threads. 
Provides insight on priority, readiness to run, and reasons 
threads are waiting. 
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logical processor’s local caches. The distribution of hard and soft interrupts can increase 
the overall number of interrupts due to additional IPIs.

Table 7-15 lists events that can be used to identify how interrupt handling is divided 
across logical processors.

Table 7-15. Common Interrupt Events Exposed by Operating Systems

Type Description

Device interrupts Monitors the number of device interrupts. Useful to monitor 
by specific IRQ and where interrupt processing occurs. A 
single device may have multiple IRQs that are handled by 
different logical processors.

Device soft interrupts Also known as softirq or deferred procedure call rate, this 
monitors the number of software interrupts and where 
they occur. Useful for understanding whether the top and 
bottom half of interrupt handling are occurring on the same 
logical processor or if a logical processor is overloaded by 
interrupt handling.

Clock interrupts Monitors the number of clock interrupts and where they 
occur. Useful to understand if clock interrupts may be 
impacting either C-state residency or the frequency of 
scheduling decisions.

IPI (inter-processor  
interrupts)

Monitors the number of inter-processor interrupts used to 
communicate between logical processors and where they 
occur. These are used for flushing caches and translation 
lookaside buffers (TLBs), for scheduling, and for requesting 
some action from a remote logical processor.

Interrupt coalescing Also known as interrupt moderation or interrupt batching, 
this monitors hardware interrupts that are batched and 
processed periodically rather than when they would 
normally be processed. This lowers the overhead of 
processing interrupts but increases transaction response 
time. Useful for determining if default behavior for 
processing interrupts is biased toward energy efficiency or 
low latency. 

Memory 
It is critical to monitor both memory usage and locality to determine how an application’s 
use of memory impacts energy efficiency. Sizing memory capacity to meet, but not 
exceed application requirements is critical for energy efficiency. If there is an excess of 
free memory capacity in the system, a significant amount of power consumption comes 
from memory that provides no performance benefit. Similarly, if there is not enough free 
memory in the system, performance and efficiency can be crippled by swapping.
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Monitoring can also help determine the effectiveness of memory in use. Some 
applications can utilize a virtually unlimited amount of memory, but it may not be 
beneficial to do so. For example, applications that use memory as a cache for content 
stored on drives frequently hit a point of diminishing returns. At this point, use of 
additional memory only yields minor increases in cache hit rates, trading off a very small 
performance increase for a large increase in power.

Minimizing the amount of memory references that target a remote processor can 
provide substantial efficiency improvements. In systems with non-uniform memory 
access (NUMA), or systems with multiple processor sockets, each processor has faster 
access to local DRAM than it does to remote DRAM or DRAM attached to different 
sockets. Many applications aren’t properly optimized for NUMA, which results in an 
equal amount of local and remote memory accesses. It takes more processor time to 
complete an operation using remote memory than it does using local memory because 
the increase in memory latency is reflected in CPU stall cycles.

Note ■  it is surprising to see environments that apply extensive and aggressive efficiency 
optimization techniques, yet they continue to use applications not optimized for nUMa. 
application nUMa optimization remains one of the more common missed opportunities for 
improving performance and energy efficiency, especially given that the improvements can 
be realized without any hardware changes.

Table 7-16 lists common events that can be used to identify how effectively memory 
is being utilized and to understand the locality of memory references.

Table 7-16. Common Memory Events Exposed by Operating Systems

Type Description

NUMA locality Monitors the percent or amount of memory references that 
are satisfied by local memory. Useful in understanding how 
well optimized software is for a multi-socket system. This can 
be collected with tools such as NumaTOP for Linux. NUMA 
locality can have a significant impact on CPU utilization.

Total memory Monitors the total memory capacity of the system.

Used/Free memory Monitors the amount of memory in the system currently 
being used. It is useful to monitor this by specific applications, 
processes, and threads to understand if there are areas for 
improvement. It is also useful to understand how much 
memory is being used for drive caching, since that memory 
appears as used but is still available for application use.

(continued)
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I/O
Issues due to insufficient I/O performance are critical to identify because they result 
in the use of more servers (and more power) than necessary to meet performance 
requirements. I/O bottlenecks can prevent applications from being able to fully utilize 
CPUs and memory, causing components in the system to consume a significant amount 
of energy while doing little useful work.

Understanding what is sufficient in terms of I/O performance can be a significant 
challenge. There is a tremendous range in peak performance between different 
technologies available today. For example, storage subsystems can use different 
interfaces (3 Gb/s, 6 Gb/s, or 12 Gb/s), different protocols (SATA, SAS, or FC) and 
different drive types (HDD or SSD). SSDs can have a tremendous impact on system 
behavior by removing a latency bottleneck that plagues many workloads. In addition to 
the technologies being used, peak performance is dependent on I/O type, block or packet 
size, the mix between reads and writes, or the mix between random and sequential 
I/O. Operating system monitoring features are key to understanding specific workload 
characteristics and the limitations of an I/O subsystem.

When monitoring I/O it is important to understand the maximum performance of 
the I/O subsystem when compared to the necessary performance requirements. This 
applies to both networking and storage. Figure 7-7 compares peak drive I/O operations 
per second (IOPS) and drive bandwidth to runtime measurements across a range of  
server load. 

Type Description

Paging Monitors blocks or pages of memory moved in and out of 
physical memory from a secondary storage device.

Swapping Monitors entire process memory footprints moved in and 
out of physical memory from a secondary storage device. 
Swapping has a severe impact on performance and energy 
efficiency. If a system is swapping, the workload needs to be 
optimized to decrease the working set size, or more memory 
capacity needs to be added.

Table 7-16. (continued)
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I/O bottlenecks are frequently introduced during new technology transitions. 
CPU and memory performance increase at a very different rate than I/O subsystem 
performance does. Upgrading to the latest platform may result in very different increases 
in compute performance compared to I/O performance. Another transition that 
frequently introduces issues with insufficient I/O performance is virtualization. With 
several VMs sharing an I/O subsystem, increases in traffic, in resource competition, and 
in diversity of I/O traffic can cause significant decreases in peak I/O performance.

Some I/O bottlenecks can be addressed through tuning, for example, enabling 
offloading capabilities in an I/O adapter, segmenting or segregating traffic to specific 
interfaces, enabling interrupt batching, or using virtualization technologies for directed 
I/O (VT-d). Table 7-15 lists common events that can be used to monitor I/O performance 
and to compare runtime performance to peak performance capabilities.

Figure 7-7. Comparing runtime IOPS and bandwidth to theoretical maximums
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Table 7-17. Common I/O Events Exposed by Operating Systems

Type Description

Reads/Writes 
(or Rx/Tx)

Monitors the number of reads and writes. Useful for  
calculating IOPS.

Read/Write Bytes 
(or Rx/Tx Bytes)

Monitors the bandwidth of reads and writes. Useful for 
monitoring on a per-drive or per-interface level to pinpoint 
potential issues.

Queue length Monitors the average queue length for reads and writes or 
the average number of I/Os waiting to be processed. Useful 
for identifying I/O bottlenecks.

Queue wait time Also known as queue latency, this monitors the average time 
I/O requests wait in a queue before they are submitted to a 
device. Useful for identifying I/O bottlenecks.

Service time Also known as device latency, this monitors the average time 
it takes for an I/O submitted to a device to be completed. 
Useful in combination with queue wait time to understand 
how different phases of I/O contribute to end-to-end latency.

Latency Monitors end-to-end latency of an I/O including kernel time.

Utilization % Monitors the % of time a device is active processing I/Os.

Controller idle states Monitors the device power states of various controllers. 

Tools
This chapter introduced several low-level mechanisms for configuring and accessing 
monitoring features. For most uses, this complexity can be managed by software tools 
rather than by an end user. The following section provides a short description of some 
common software tools and sample usages. This is not intended to be a comprehensive 
list of all tools and usages. Rather, it introduces the reader to the type of tools available for 
monitoring and how they can be used. Extensive documentation for these software tools 
is available online.

Health Checks
Many times, users are interested in getting a high-level picture of what is going on in the 
system and are less interested in diving into the architectural and micro-architectural 
details. There are two common tools for Linux (PowerTOP and turbostat) and two for 
Windows (Perfmon and Powercfg) that provide an excellent first stop for information 
about the power characteristics of a system.
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Turbostat (Linux)
Turbostat is a simple but powerful tool that is built into the Linux kernel tree. It monitors

Per-thread: Average frequency, activity•	

Per-core: Core C-states, temperature•	

Per-package: Temperature, package C-states, package power, core •	
power (where supported), DRAM power

Turbostat has several different command-line options that can come in handy for 
a range of usage models. Simply running it without any parameters will provide one-
second snapshots of a range of statistics. Figure 7-8 shows an example of turbostat output.

Figure 7-8. Turbostat output from a 3.12 kernel

Turbostat is commonly run alongside a workload to get statistics about the 
system during the measurement. Note that although the statistics provided are heavily 
influenced by the workload, it is also affected by anything else running on the system.
 
>> turbostat <program>
 

The -v option is a great way to collect a wide range of debug information about the 
system configuration. 
 
>> turbostat -v
 

Running turbostat at one-second intervals, particularly on large multi-socket 
systems, can perturb workload behavior (and the results from the tool). Consider 
increasing the monitoring interval if statistics at one-second intervals are not necessary. 
This is particularly useful when trying to collect statistics about an idle system.
 
>> turbostat -i 2
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3If your kernel was configured without MSR support (either built in or through a kernel module), 
then you will need to recompile your kernel in order to use turbostat.

Turbostat can also be used as a simple tool for monitoring various MSRs in the 
system. The -m and -M options will read the corresponding MSR one time from each thread 
for each sample. The -M option will dump a 64-bit output, whereas the -m option does a 
short output. The following command will dump MSR 0x199 at two-second intervals.
 
>> turbostat -i 2 -M 0x199
 

The -C and -c options provide a similar capability, but instead of displaying the 
raw value of the register, these options provide a dump of the delta between the current 
sample and the previous sample. This can be useful for monitoring the deltas for counters 
over time. As an example, the following command will dump the delta in APREF (MSR 
0xE7) every one-second sample.
 
>> turbostat -i 1 -M 0xe7
 

Not all distributions automatically include the turbostat binary, but it is trivial to 
compile and use once you have the kernel source. The tool is stand-alone, so if you 
download a recent kernel (from kernel.org), it will include the source. Turbostat requires 
that your kernel have MSR support.3

 
// Extract the kernel source after downloading it
>> tar xf linux-3.12.20.tar.xz
 
// find the sourcecode and cd to the relevant directory
>> cd linux-3.12.20
>> find . -name turbostat.c
>> cd tools/power/x86/turbostat/
 
// build the tool
>> make
 
// make sure that the MSR kernel module is active
>> sudo modprobe msr
 
// run the tool
>> sudo ./turbostat 

PowerTOP (Linux)
PowerTOP is an open-source tool for characterizing power management and diagnosing 
power management issues. Like turbostat, it is targeted at various usage models (not just 
servers). It is a useful addition because it provides some additional information above 
and beyond what turbostat provides. Some notable additions include average time in 
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C-states and frequency histograms. Powertop also provides a large amount of information 
targeted at consumer usage models (device idle power). The device statistics tend to be 
less relevant on servers. Figure 7-9 shows sample output of the tool.

Figure 7-9. Powertop 2.6.1 idle stats
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The basic powertop command line provides slow sample intervals by default (many 
seconds). This can be useful to minimize the application’s overhead, particularly on idle 
systems, but it also provides much slower results. The time parameter can speed this up 
(at the expense of increased CPU overhead).

The --html option will dump an HTML file. By default, this will collect a single 
measurement of the tool. However, more measurements can be collected, generating 
multiple HTML files. The --html option can collect statistics over the execution of a 
workload with the --workload parameter. Similar to turbostat, powertop will collect 
statistics for the entire system and not just the specified workload. 
 
>> powertop --workload=./test.sh --html=test.powertop.html

Powercfg (Windows) 
Powercfg is a Windows command-line tool that enables users to tune lower-level 
operating system power management settings. It allows users to enable and disable 
features, change power policies, and identify issues that may impact power management. 
For example, Powercfg can be used to change settings for hard drive power options 
during inactivity and to query devices to understand the power states they support.

One of the unique applications of Powercfg is its ability to generate an energy report. 
This option analyzes the system and reports events and configuration details that may 
impact power management. The Powercfg energy report gives detailed statistics on idle 
interruption, device activity, failure of devices to support power states, changes to the 
operating system timer frequency, and supported power states.

The following example command uses Powercfg to list the different power policies 
supported by the operating system and indicates that the current active policy is 
balanced. This setting also corresponds to how the operating system is setting  
IA32_ENERGY_PERF_BIAS during initialization.
 
C:\Windows\system32>powercfg -list
 
Existing Power Schemes (* Active)
-----------------------------------
Power Scheme GUID: 381b4222-f694-41f0-9685-ff5bb260df2e  (Balanced) *
Power Scheme GUID: 8c5e7fda-e8bf-4a96-9a85-a6e23a8c635c  (High performance)
Power Scheme GUID: a1841308-3541-4fab-bc81-f71556f20b4a  (Power saver)
 

The following example command shows how to create the energy report.
 
C:\Windows\system32>powercfg.exe /energy
 

Figure 7-10 shows a sample of the energy report results. In this example, the system 
is seeing poor package C-state residency, and the energy report has identified that several 
USB devices are connected to the server that do not have USB selective suspend enabled. 
This activity is preventing the system from maximizing residency in its lowest idle  
power state.
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Hardware Monitoring Tools
Programming and reading the various performance counters in the core and uncore 
of a processor can become fairly complicated. In order to simplify this task, there are a 
number of stand-alone tools that perform the event programming, data collection, and 
visualization for the user.

Intel Performance Counter Monitor (PCM)
PCM provides stand-alone tools that handle counter programming and collection for 
the user. PCM also includes sample routines that demonstrate how to configure and 
read performance counters with open-source C++ code. These routines translate the raw 
events into meaningful metrics like memory traffic into GB/s or energy consumed into 
Joules. PCM is targeted at both power and performance monitoring and characterization 
and is available as source code with a BSD-like license at www.intel.com/software/pcm.

Intel PCM runs on multiple platforms including Linux, Microsoft Windows, FreeBSD, 
and Mac OS X. This is possible, because it only requires a driver to program the MSRs. For 
platforms like Windows, which do not already provide such a driver, the package includes 
sample code for the driver as well. Binaries are not distributed at the time of publishing, 
but instructions for compilation are included.

PCM can be used in one of two ways: (1) as a set of stand-alone utilities, or  
(2) integrated into an application. Figure 7-11 shows an example of a graph generated 
from data collected by the stand-alone pcm-power utility on a four-socket system.

Figure 7-10. A portion of the energy report generated by the Windows Powercfg tool

http://www.intel.com/software/pcm
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The standalone command-line program PCM is similar to turbostat in that it 
periodically prints the output to the screen for a given time interval. This time interval  
can be specified as the first parameter. For large servers with tens or hundreds of cores,  
it is often useful to suppress the metrics for individual cores by using the -nc parameter  
(for example, > pcm.x 1 –nc). An example from a four-socket system is show in Figure 7-12.

Figure 7-11. Socket and DRAM power trace generated from PCM-collected data on  
four-socket system
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It is also possible to monitor with PCM throughout the duration of a workload 
by providing the workload executable as a parameter. Since PCM monitors the whole 
system, the script can actually be a workload driver for a server application that was 
started beforehand. Please note that in this case, PCM reports the metrics for the entire 
workload measurement, for example, the total energy consumption.
 
> pcm.x ./run_workload.sh
 

For simpler post-processing by spreadsheet program, another convenient feature is 
the ability to generate comma-separated lists using the -csv option:
 
> pcm.x 1 -csv 2>&1 | tee pcm.txt
 

PCM includes a utility targeted exclusively at power management: pcm-power. 
This utility can measure a number of the statistics made available through the uncore 
performance monitors on Xeon E5/E7 processors, including these:

Core C-state residencies•	

Causes of frequency throttling (thermal, power, OS requested, •	
electrical/fuse)

Figure 7-12. Standalone PCM showing power and performance metrics from a  
four-socket system



Chapter 7 ■ Monitoring

257

Frequency transition statistics•	

Prochot statistics•	

Frequency histograms•	

DRAM power savings (CKE and self-refresh)•	

For example, to monitor the number of frequency transitions occurring in the system 
at one-second intervals (and hide memory statistics), one would execute 
 
> pcm-power.x 1 -p 5 -m -1
 

Figure 7-13 shows the output of this command. In addition to displaying frequency 
transition statistics, some power and thermal statistics are also displayed. Additional 
information is collected using the free-running counters and therefore is displayed 
regardless of the command line. Note that the DRAM Energy counter was not enabled 
on the system under test here and therefore reported 0. DRAM RAPL is not a required 
capability and is not supported on all platforms.

Figure 7-13. pcm-power screenshot—frequency transitions

Figure 7-14 shows an example where pcm-power is monitoring why the system is 
unable to achieve the maximum possible frequency (frequency clipping cause) by using 
the following command line. In this command line, grep is used to filter out some of the 
extraneous information.
 
> pcm-power.x 1 -p 3 -m -1 | grep –E "(PCUClocks|limit cycles)" 
 

Figure 7-14. pcm-power screenshot—frequency clipping cause

The “headroom below TjMax” is shown as 1 or 0, indicating that the system is at 
the thermal limit. At the same time, the “Thermal freq limit cycles” is hovering at 90%, 
indicating that the frequency of the system is being limited because of thermal limits a 
large percentage of the time.
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A number of other targeted standalone applications are available as well:

pcm-numa reports, for each core, the traffic to local and remote •	
memory.

pcm-memory reports memory traffic per memory channel.•	

pcm-pcie reports memory traffic to and from PCIe devices.•	

pcm-power can report multiple values depending on the •	
parameter selection.

Both KSysGuard (KDE) and Windows Perfmon provide visualization mechanisms for 
monitoring individual counters in real time. See the PCM webpage for the latest recipes.

Since PCM is distributed as source code, it can also be integrated directly into an 
application to facilitate collecting system-wide statistics while an application executes. 
The initialization is as easy as
 
PCM * m = PCM::getInstance();
if (m->program() != PCM::Success) return;
 

The actual measurement is similar to measuring time, where you store the clock 
before and after the critical code and then take the difference. For the performance 
counters, there are states available per core, package (socket), and system. There are also 
predefined functions for all supported metrics:
 
SystemCounterState before = getSystemCounterState();
 
// run your code here
 
SystemCounterState after = getSystemCounterState();
 

Then, specific statistics can be displayed with, for example, the following:
 
cout << "Instructions: " << getInstructonsRetired(before, after)
     << "CPU Energy  : " << getConsumedEnergy(before, after)
     << "DRAM Energy : " << getDRAMConsumedEnergy(before, after);

Linux Perf
Newer Linux systems have an integrated profiling and tracing subsystem called perf_
events. The perf_events subsystem provides an interface to the CPU’s Performance 
Monitoring Units (PMUs); it provides an interface to the software tracepoints provided 
by the Linux kernel, and it takes care of sharing resources between different users. A 
standard command-line tool called “perf” allows access to the perf_events interface. 
Other tools and libraries, such as NumaTOP or PAPI, also utilize the perf_events 
subsystem. There are also GUI frontends available, such as Eclipse perf or sysprof. 
The perf tool is typically included as a package in the Linux distribution. A wiki with 
documentation about using perf can be found at https://perf.wiki.kernel.org/
index.php/Tutorial.

https://perf.wiki.kernel.org/index.php/Tutorial
https://perf.wiki.kernel.org/index.php/Tutorial
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The perf_events subsystem is integrated into the Linux kernel with the functionality 
varying depending on kernel version. All perf versions have support for basic PMU 
profiling with sampling. The perf top utility (shown in Figure 7-15) is an easy way to see 
details about where the CPU is currently spending its time.

Figure 7-15. Perf top example

Perf also provides access to software trace points provided by the kernel. For 
example, perf timechart record records all schedule events and idle periods and 
can generate a GANTT-style chart with a perf timechart report. This is useful for 
understanding short stretches (a few seconds) of workload behavior. Timechart first 
records the system behavior to a perf.data and then generates a SVG file to visualize the 
trace in a GANTT chart–like representation. 
 
% sudo perf timechart record sleep 1
[ perf record: Woken up 2 times to write data ]
[ perf record: Captured and wrote 1.289 MB perf.data (~56298 samples) ]
% sudo perf timechart
Written 1.0 seconds of trace to output.svg.
 

output.svg can then be viewed in a SVG viewer, for example, with Chrome. There 
are two sets of data provided in the SVG timecharts:

A view of what is running on each of the logical processors •	
(Figure 7-16)

A view of the activity of each of the software threads (Figure •	 7-17)
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Figure 7-17. Timechart part 2: software thread activity

Figure 7-16. Timechart part 1: logical processor activity
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The logical processor information in Figure 7-16 shows both the requested C-states 
for each of the threads as well as the threads that are active on each of the virtual CPUs 
(in blue). When cores are asleep, it provides guidance about whether they are waiting for 
I/O (called the io_schedule routine) or if they are idle and waiting for the CPU (called the 
schedule routine).

The software thread view in Figure 7-17 shows when each of the different software 
threads are active (in blue) and when the threads are inactive (in gray). The trace will 
show the threads starting the first time it sees them execute (and not necessarily when 
they actually began execution). 

In some cases it’s also useful to look at the raw trace events, which can be post-
processed with scripts to extract information of interest. The visual timecharts can be 
challenging to work with on large systems with many threads. The data file generated 
by the perf timechart record can be viewed with perf script in text format as an 
alternative to the visual timechart.
 
% sudo perf script | less
       swapper      0 [000] 176421.261802: power:cpu_idle: state=4 cpu_id=0
       perf      7667 [001] 176421.262026: sched:sched_switch: prev_comm=perf top
       swapper     0 [000] 176421.262692: sched:sched_wakeup: comm=qemu-system
       swapper     0 [000] 176421.262694: power:cpu_idle: state=4294967295 cpu
 

The first line is the process (swapper means idle), then the pid, CPU number, 
timestamp, event name, and event parameters. In the first line, CPU 0 goes to sleep with 
C-state 4. Shortly after, there is a context switch of perf to a thread of top on CPU 1. Then 
eventually a qemu-system process wakes up CPU 0, which causes an idle exit.

More trace points can be displayed with perf list (as root), recorded with perf 
record, and displayed with perf script.

A couple of useful tracing features in perf are kprobes and uprobes. These allow 
you to create new trace points dynamically in the kernel or in user programs. These can 
be accessed with the perf probe command. The following example sets a probe on the 
malloc function and measures malloc accesses:
 
// list functions available
% perf probe -F -x /lib64/libc.so.6  | grep malloc
Malloc
 
// add a trace point
% sudo perf probe -x /lib64/libc.so.6 malloc
Added new event:
  probe_libc:malloc    (on 0x82520)
 
// collect a trace
% perf record -e probe_libc:malloc sleep 1
 
// generate a report from the trace
% perf report
// remove the trace point when done
% perf probe –d probe_libc:malloc
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The perf stat command can also be used to access the CPU energy meters 
(requires kernel 3.14+). The following example command collects package energy use on 
a single socket system every 100 ms. To get a break down for multiple sockets, --per-
socket can be used.
 
$ sudo perf stat -I100 -e power/energy-pkg/              -a sleep 1
#           time             counts   unit events
     0.100177504              0.25 Joules power/energy-cores/      [100.00%]
     0.100177504              0.86 Joules power/energy-pkg/
...
     0.701274659              0.23 Joules power/energy-cores/
     0.701274659              0.82 Joules power/energy-pkg/
 

Perf has a simple built-in performance monitoring event list (see perf list).  
In addition, it is also possible to specify events raw (cpu/event=0x54,umask=0xFF/).

On Xeon E5/E7 processors, it may also be possible to access the uncore events 
through perf. This can be done with the ucperf.py tool in pmu-tools. This example prints 
the percentage of time the socket’s frequency is thermally limited every second.
 
sudo ./ucevent.py  PCU.PCT_CYC_FREQ_THERMAL_LTD
S0-PCU.PCT_CYC_FREQ_THERMAL_LTD
0.00
0.00
0.00

IPMItool
The most frequently used tool to access BMC monitoring capabilities as well as BMC 
health, inventory, and management functions is IPMItool. This open source command-
line tool supports out-of-band access via an authenticated network connection as well as 
in-band use via a device driver on the server.

The following example demonstrates use of IPMItool by listing the SDR. This 
command enables users to determine what sensors are available and do a quick check on 
the status of those sensors. In this example, all but the temperature and thermal sensors 
have been removed to simplify the example. Specific commands and a full list of available 
command-line options are available by invoking the tool’s help option, and additional 
information can be readily found online. 
 
# ipmitool -I lanplus -H xeon-bmc -U root -P pass sdr
 
BB P1 VR Temp    | no reading        | ns
Front Panel Temp | 22 degrees C      | ok
SSB Temp         | no reading        | ns
BB P2 VR Temp    | no reading        | ns
BB Vtt 2 Temp    | no reading        | ns
BB Vtt 1 Temp    | no reading        | ns
I/O Mod Temp     | no reading        | ns
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HSBP 1 Temp      | no reading        | ns
SAS Mod Temp     | 25 degrees C      | ok
Exit Air Temp    | no reading        | ns
LAN NIC Temp     | 35 degrees C      | ok
PS1 Temperature  | 26 degrees C      | ok
PS2 Temperature  | no reading        | ns
P1 Therm Margin  | -59 degrees C     | ok
P2 Therm Margin  | -60 degrees C     | ok
P1 Therm Ctrl %  | 0 unspecified     | ok
P2 Therm Ctrl %  | 0 unspecified     | ok
P1 DTS Therm Mgn | -59 degrees C     | ok
P2 DTS Therm Mgn | -60 degrees C     | ok
P1 VRD Hot       | 0x00              | ok
P2 VRD Hot       | 0x00              | ok
P1 Mem01 VRD Hot | 0x00              | ok
P1 Mem23 VRD Hot | 0x00              | ok
P2 Mem01 VRD Hot | 0x00              | ok
P2 Mem23 VRD Hot | 0x00              | ok
DIMM Thrm Mrgn 1 | no reading        | ns
DIMM Thrm Mrgn 2 | no reading        | ns
DIMM Thrm Mrgn 3 | no reading        | ns
DIMM Thrm Mrgn 4 | no reading        | ns
Mem P1 Thrm Trip | 0x00              | ok
Mem P2 Thrm Trip | 0x00              | ok
Agg Therm Mgn 1  | no reading        | ns
BB +12.0V        | 10.78 Volts       | nc
BB +5.0V         | -1.65 Volts       | cr
BB +3.3V         | 1.91 Volts        | cr
BB +5.0V STBY    | 2.93 Volts        | cr
BB +3.3V AUX     | 1.91 Volts        | cr
BB +1.05Vccp P1  | 1.53 Volts        | cr
BB +1.05Vccp P2  | 1.04 Volts        | ok
BB +1.5 P1MEM AB | 1.48 Volts        | ok
BB +1.5 P1MEM CD | 1.03 Volts        | cr
BB +1.5 P2MEM AB | 1.03 Volts        | cr
BB +1.5 P2MEM CD | 0.78 Volts        | cr
BB +1.8V AUX     | 1.94 Volts        | nc
BB +1.1V STBY    | 1.30 Volts        | cr
BB +3.3V Vbat    | 3.08 Volts        | ok
BB +1.35 P1LV AB | disabled          | ns
BB +1.35 P1LV CD | disabled          | ns
BB +1.35 P2LV AB | disabled          | ns
BB +1.35 P2LV CD | disabled          | ns
BB +3.3 RSR1 PGD | 3.43 Volts        | ok
BB +3.3 RSR2 PGD | 0.65 Volts        | cr
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The following example command demonstrates use of IPMItool drill-down into 
fan-specific sensors. The first example shows how to read the tachometer for connected 
fans. There are cases where a sensor exists in the SDR, but it is currently not reporting a 
measurement due to being powered off, disconnected, or unsupported. Disconnected 
fans have been removed in this example for simplicity.
 
# ipmitool -I lanplus -H xeon-bmc -U root -P pass sdr type fan
 
System Fan 1A    | 30h | ok  | 29.1  | 5890 RPM
System Fan 3A    | 34h | ok  | 29.5  | 5890 RPM
System Fan 5A    | 38h | ok  | 29.9  | 5890 RPM
CPU 1 Fan        | 3Ch | ok  | 29.11 | 5820 RPM
CPU 2 Fan        | 3Dh | ok  | 29.12 | 5400 RPM
 

The sample command in the following example demonstrates use of raw commands 
to read fan energy sensors. To access lower-level capabilities in the BMC it may be 
necessary to provide unique one-byte value sequences to indicate a specific command 
and associated parameters. It is sometimes necessary to use raw commands with 
IPMItool because not all BMC commands are captured as individual command-line 
options. Instructions on how to construct raw commands are included in the IPMI 
specification, and instructions on how to specify associated parameters for the name and 
location of sensors are captured in documentation provided by the server manufacturer. 
The names and locations of sensors can vary by platform.

The following command returns energy for one of the fans. The last 8 bytes returned 
by the command include 4 bytes for running energy in millijoules and 4 bytes for 
running time in milliseconds. The command is executed twice to illustrate common 
usage. Periodic reading of these sensors allows users to calculate power. For example, 
subtracting the first command’s energy from the second command’s energy provides an 
energy delta. The energy delta between two commands can be divided by the time delta 
to calculate power.
 
# ipmitool -I lan -H xeon-bmc -U root -P pass -b 6 -t 0x2c raw 0x2E 0xFB 
0x57 01 0x00  0x3 0x0
 
57 01 00 19 f5 13 01 c7 e3 17 00
 
# ipmitool -I lan -H xeon-bmc -U root -P pass -b 6 -t 0x2c raw 0x2E 0xFB 
0x57 01 0x00  0x3 0x0
 
57 01 00 f5 54 14 01 fb eb 17 00 

Note ■  ipMitool can also be used to access node Manager functionality since node  
Manager is connected to the BMC using an ipMB link.
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More information on component-level power management can be found at  
www-ssl.intel.com/content/www/us/en/data-center/data-center-management/node-
manager-general.html.

Operating System Monitoring Tools
Many times, users are interested in getting a high-level picture of what applications and 
the operating system are doing and are less interested in diving into the architectural 
and micro-architectural details. Commonly used tools for Linux (SAR) and Windows 
(Perfmon and Logman) provide an excellent first stop for information about the power 
and performance characteristics of software.

SAR 
SAR is a Linux tool that monitors processor time, power states, scheduling, memory, I/O, 
and many other operating system visible events. SAR collects events over a user-defined 
time interval and outputs many event counts as per-second averages. For several of the 
monitored events, SAR provides additional detail below a system-level view. For example, 
processor time can be measured for each individual logical processor, and I/O statistics 
can be measured for each individual drive or network interface. SAR can be used to gain 
extensive insight into resource use.

The user-defined time interval and the number of intervals to use in data collection 
are defined by command-line parameters. For example, the following command specifies 
-A to measure all events, once per second, over 120 seconds. A full list of available 
command-line options is available by invoking the tool’s help option, and additional 
information can be readily found online.
 
# sar -A 1 120 > sar.dat
 

The following shows a sample of the output and includes a portion that monitors 
context switches and interrupts. SAR measures interrupts both at the system level and 
per IRQ. Users can use SAR output along with /proc/interrupts and /proc/irq/*/smp_
affinity to determine what specific devices are generating the interrupts, how frequent 
they are, and where they are being handled.
 
08:46:14 PM    proc/s   cswch/s
08:46:24 PM      2.24 104049.64
 
08:46:14 PM      INTR    intr/s
08:46:24 PM       sum 198321.77
08:46:24 PM        19      1.12
08:46:24 PM        99   7552.09
08:46:24 PM       100   7574.47
08:46:24 PM       101   7297.25
08:46:24 PM       102   7580.26
08:46:24 PM       103   7472.13

http://www-ssl.intel.com/content/www/us/en/data-center/data-center-management/node-manager-general.html
http://www-ssl.intel.com/content/www/us/en/data-center/data-center-management/node-manager-general.html
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08:46:24 PM       104   7808.85
08:46:24 PM       105   7774.36
08:46:24 PM       114   7650.66
08:46:24 PM       115   1660.83
08:46:24 PM       116   1443.44
08:46:24 PM       117   1593.69
08:46:24 PM       118   1750.97
08:46:24 PM       119   1373.35
08:46:24 PM       120   1674.57
08:46:24 PM       123   1417.90
08:46:24 PM       124   1298.17
08:46:24 PM       125   1331.54
08:46:24 PM       126   1375.99
08:46:24 PM       127   1025.64
08:46:24 PM       128   1324.62
08:46:24 PM       129   1425.33
08:46:24 PM       130   1441.81
08:46:24 PM       131      0.71
08:46:24 PM       132      0.51
08:46:24 PM       133      0.51
08:46:24 PM       134      0.51
08:46:24 PM       135      0.51

Perfmon and Logman
Perfmon is a Windows tool that monitors processor time, power states, scheduling, 
memory, I/O, and many other events. Perfmon also allows applications to add their own 
events to the Perfmon infrastructure, allowing users to monitor performance from an 
application’s perspective alongside the operating system events. Perfmon can be used to 
develop extensive insight into resource use.

Perfmon events can be visualized in real-time using the GUI (shown in Figure 7-18) 
or they can be collected for offline analysis using the Windows Logman tool. Logman 
provides command-line automation of Perfmon as well as other monitoring features such 
as event traces. It allows users to define different data collectors, or sets of monitoring 
events, and control when and how the data is collected. Users have the options of creating 
an always-running monitoring log, initiating different data collection scripts at different 
times, and writing output to multiple formats.
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The Windows typeperf command will list all available Perfmon events on the 
system. Users can redirect output of this command to a file and edit the file as they see 
fit to include only the events of interest. The resulting file can then be used as input to 
Logman to define and create a new data collector. Here is an example of this command:
 
C:\Windows\System32\typeperf.exe -q > input_file
 

The following example command creates a new data collector called TEST. Logman 
includes many command-line options to define collection interval, output format, and 
output location. A full list of available command-line options is available by invoking the 
tool’s help option.
 
C:\Windows\System32\logman create counter TEST
--v -ow -f csv -si 12 -rf 00:01:20 -cf \path \input_file -o \path
 

The following example command starts the TEST data collector. This will monitor 
the system for 120 seconds and write to a comma-separated value (CSV) file as defined by 
the command-line options used to define the data collector.
 
C:\Windows\System32\logman start TEST
 

Figure 7-18. The Node Manager ACPI Power Metering counters in Performance Monitor 
showing a power limit being enforced
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The following output shows a sample of the output including a count of C2 and C1 
requests per second issued by the operating system.
 
12/4/2013 12:53:46 PM        147563.4769         42.47840145
12/4/2013 12:53:58 PM        147825.0577        180.6790098
12/4/2013 12:54:10 PM        149276.3783        120.0697295
12/4/2013 12:54:22 PM        148175.1804         70.16651533
12/4/2013 12:54:34 PM        145440.724          83.24879264
12/4/2013 12:54:46 PM        144713.8251        145.7252465
12/4/2013 12:54:58 PM        146356.6638        112.1651317
12/4/2013 12:55:10 PM        147555.4464        102.7483379
12/4/2013 12:55:22 PM        147615.9768         46.81029614
12/4/2013 12:55:34 PM        148977.9331        106.331977        

Summary
Numerous capabilities and tools exist for monitoring a system to understand power 
and performance characteristics. Different types of monitoring capabilities, including 
hardware monitoring, management controller monitoring, and software monitoring, 
have unique benefits and usages that aid in understanding system behavior.

Simple metrics can be used to convert raw monitoring data into formats more 
suitable for analysis, and a number of software tools can aid in visualization. Common 
monitoring tools, example use, and example output outlined at the end of this chapter 
provide a quick-start guide for monitoring. Chapter 8 will continue by discussing 
monitoring techniques that can be used to guide optimization decisions, along with 
specific examples of tuning.



269

Chapter 8

Characterization and 
Optimization

Servers have a wide variety of different hardware and software configuration options. 
These include simple options such as enabling and disabling a feature. It also includes 
more advanced options that allow operators to control usage conditions, functionality, 
or other feature behavior. The individual features discussed in this book are primarily for 
power management—for example, P-states, C-states, link, and device states. Servers also 
have a large number of configurable features that are designed for performance including 
Turbo, memory prefetchers, or memory controller page policy.  
In addition, servers have a large number of configurable features that are designed to add 
functionality, such as virtualization; security; or reliability, availability, and serviceability 
(RAS) features.

Servers have an equally large number of software options including different 
operating systems, applications, and management software options. For any given 
workload, a server’s default hardware and software settings are designed to provide a 
good balance between low power and high performance. However, for many workloads, 
these default settings may not be optimal or may not be in line with an operator’s 
performance, power, or cost goals. Most platforms enable power management features, 
so they are used aggressively when utilization is low. They are used conservatively as 
utilization increases, and they are disabled when the server reaches full capacity. At full 
capacity, power management features are either explicitly or implicitly disabled, so power 
management has no negative impact to maximum throughput.

All of the different types of features just described have an impact on performance, 
power, or other factors. The specific impact varies significantly based on the workload 
being measured and the system components being used. In many cases, the only way 
to definitively understand how various configuration options will impact power or 
performance is by experimenting on a specific system configuration. For example, an 
I/O-intensive workload with simple transactions may realize an undesirable performance 
impact from PCIe L1. However, the impact will vary significantly depending on the 
I/O (network or storage), device latency, device bandwidth, and whether the system is 
running at low or high utilization. There is no one-size-fits-all answer to questions about 
individual feature performance or power characteristics.
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Before determining whether to tune, which features to tune, or how to tune, operators 
need to determine their requirements, such as functionality, power, and performance. 
It is also important to identify optimization goals. An operator who is optimizing for 
maximum performance may make decisions regardless of power consumption and will 
end up choosing a very different set of features and tunings than an operator who wants 
to minimize power. Other operators may take a more balanced approach; they may seek 
to lower power as much as possible, but at the same time, still meet a response time 
(performance) requirement. Other operators will use power management as aggressively 
as possible as long as those features do not impact maximum throughput. For a small 
number of servers, the investment in advanced feature tuning may not be worthwhile. 
However, the value increases significantly as the number of servers deployed increases.

Note ■  the process outlined in this chapter frequently refers to tuning to decrease power 
or increase performance and the tradeoffs between the two. You can use the same process 
and analysis techniques to assess other tradeoffs, such as cost or functionality. in addition, 
requirements may extend beyond power and performance, such as temperature or  
reliability limits.

Feature tuning is very straightforward with the right tools and process. Chapters 2-6  
describe various power management features, including how they work, and feature 
power and performance characteristics. Chapter 7 described how to monitor those 
features to understand their use. This chapter describes a process for characterizing and 
optimizing servers for the datacenter.

The following steps provide an overview of optimizing a server. Many of these 
individual steps will be described in greater detail throughout the remainder of the chapter.

1. Set power and performance requirements and optimization 
goals. For example, minimize energy while meeting a 
response time requirement or maximize performance below a 
temperature limit.

2. Collect data in the target environment to understand runtime 
characteristics. This includes data collected using power, 
performance, and thermal monitoring capabilities over a 
range of use conditions.

3. Analyze data to identify gaps relative to requirements and to 
understand what improvements the operator needs to make 
to reach optimization goals.

4. Analyze data to uncover new issues and opportunities. For 
example, an operator may identify during characterization 
that they only use a fraction of the available memory capacity 
or that the number of software threads running is frequently 
less than the number of logical processors.
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5. Create a test environment for tuning experimentation. Identify 
a workload that is representative of the target environment. 
Reuse industry and open source workloads that model similar 
applications and services or create new workloads based on 
the target environment’s key characteristics.

6. Identify options to tune including BIOS setup options, OS 
options, and application options.

7. Measure the target workload and collect data with server 
default settings. This represents the baseline measurement 
that all future experiments will be compared against.

8. Measure the target workload with each identified feature and 
tuning, making only one change at a time.

9. For each change, collect and analyze data to identify the 
power and performance impact.

10. Identify those changes that aid in meeting requirements and 
optimization goals and measure the target workload with a 
combination of these.

11. Deploy beneficial changes to the target environment.

12. Repeat the process whenever there is a significant change to 
requirements, optimization goals, use conditions, or system 
components. 

Workloads
Workloads are software services, applications, or testing tools that measure the 
performance of a server. They attempt to model representative usage scenarios based 
on usage conditions of interest. Workloads provide a repeatable way to measure 
performance of a system and are particularly useful when you are experimenting with 
and trying to understand the impact of changes to hardware or software in a datacenter.

Performance can be represented in a variety of different ways depending on the 
workload of interest. For example, throughput metrics, such as transactions per second 
or I/O per second, measure the peak performance capabilities of the platform. Latency 
metrics, such as transaction response times, time to completion for compute jobs, or 
I/O (drive and network) latency, measure the responsiveness of the platform. Power 
metrics, such as platform power, memory power, frequencies, and voltages, are used 
to understand the energy cost per unit of work. Several workloads bring together a 
combination of the metrics of interest, providing performance per watt or performance 
per dollar.

Workloads can be used to study a subset of system components, the system as a 
whole, or a cluster of servers. A profound understanding of system behavior can be gained 
when representative workloads are coupled with extensive data collection (such as core 
and uncore performance monitoring units, digital power meters, and OS metrics) and the 
results are carefully analyzed.
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Identifying Suitable Workloads
The first requirement for any workload is that it is measurable. A service, application, or 
testing tool must have one or more metrics captured during a measurement that can be 
used to convey various measured throughput, latencies, or a composite metric of the two.

Workloads must be repeatable. If an experiment is conducted twice, three times, or 
a hundred times without any configuration changes in-between, the measured results 
must be the same. Workloads with poor repeatability make it difficult or impossible for 
operators to tell whether a measured change in performance is due to a configuration 
change or simply due to normal experiment variation. Ideally, workloads used for 
experimentation have less than 1% variation in measured power and performance; 
however, 2%-3% is common. If variation exceeds 5%, it presents a problem because the 
workload can no longer be used to assess the impact of smaller or more subtle changes to 
system configuration.

Workloads must be reproducible—executing the same transactions or computations, 
using the same inputs, and following the same order or distribution for every 
measurement. Reproducible workloads measure performance during a timed interval 
that is the same for every measurement. They also can be reset to a starting state that is 
identical across measurements. For example, workloads that utilize a database must be 
able to restore a backup database before every measurement.

Workloads or systems with poor scalability can affect how repeatable or reproducible 
a measurement is. For example, a workload that is being used to measure compute 
performance will not shed light on changes if there is an I/O bottleneck. Similarly, a 
workload that only utilizes a few threads may not accurately illustrate the performance 
difference between an eight-core or an eighteen-core processor.

Workloads must be representative. Representative workloads perform similar 
transactions or computations as the scenario being modeled and also use the same 
software stack and configuration as the scenario being modeled. For example, a 
representative Infrastructure as a Service (IaaS) workload would utilize a virtualized 
environment. It would have virtual machines utilizing heterogeneous applications, 
it would vary the load on the server over time, and it would vary the number of 
running instances. Many workloads include random elements to improve their 
representativeness—for example, workloads that vary the client think time or the 
interarrival rate of transactions.

Workloads that are not representative typically only model a small portion of 
the scenario of interest. This makes it more likely that the tuning results from a test 
environment will not apply to the production environment. For example, a testing tool 
that measures single-threaded TCP roundtrip latency wouldn’t be representative of a web 
server. An operator could make several changes to improve the performance of the test 
workload that would have no impact or a negative impact on their production workload.

Another key attribute for characterization and optimization is whether the workload 
is configurable; for example, does the operator have the ability to change the problem size 
in a scientific workload or to change the number of connected clients in a transactional 
workload? Having ample configuration options is key to tailoring the workload setting to 
best match an environment of interest.
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Workload Types
There are a wide variety of different workload types—for example, testing tools, energy 
efficiency benchmarks, industry benchmarks, and datacenter workloads. Each has 
different applications, different purposes or goals, and a different level of complexity.

Testing Tools
Testing tools don’t necessarily model a representative service or application; instead, they 
are used to stress a single component or subset of related components in the system. For 
example, Intel provides a testing tool to characterize cache and memory performance. 
The Intel Memory Latency Checker tool (Intel MLC) can be used to measure maximum 
memory bandwidth, idle latency, and loaded latency.1 Although these tools are great for 
testing some key system characteristics, it is also relatively easy to misinterpret the results. 
One common mistake is to measure idle memory latency with clock-enabled (CKE) 
power savings enabled. These power savings commonly engage during idle latency tests, 
causing a significant increase in the idle latency. CKE tends to have much smaller impacts 
on real system performance.

There are also testing tools that focus on I/O. The open source iperf workload is 
popular for measuring network bandwidth; the NetPIPE workload is popular for network 
latency. For storage, the open source FIO or IOmeter tools are popular and flexible and 
allow users to vary different I/O parameters and think times.

Testing tools can give a preliminary indication of how a given feature might impact 
power or performance. They are also very helpful in identifying the base capabilities of 
a platform and can be used as guides for detecting bottlenecks. Individual components 
can be monitored when testing tools are being measured to understand state residencies, 
bandwidth, or throughput limits. Chapter 7 provides an outline of the different types of 
metrics to look at when monitoring components.

It can be easy to misinterpret the results of some micro benchmarks. For example, 
idle latency benchmarks (such as the Intel MLC) will exhibit significant increases in 
latency as a result of memory CKE power savings features (see Chapter 3). Not only 
will CKE result in an increase in idle latency due to the CKE wakeup, but the precharge 
powerdown (PPD) feature will also result in closed memory pages (and further latency 
increase). It is not uncommon for users to draw the conclusion that CKE causes 
significant performance loss based on this benchmark. In practice on real workloads, 
CKE has a much smaller impact on latency. 

Energy Efficiency Workloads
Energy efficiency workloads are used to study both the power and performance 
characteristics of a system. They exercise CPU and memory and provide a great 
preliminary analysis of system behavior. The most popular energy efficiency workloads 
are SPECpower_ssj2008 (SPECpower) and the Server Efficiency Rating Tool (SERT)  from 

1See https://software.intel.com/en-us/articles/intelr-memory-latency-checker.

https://software.intel.com/en-us/articles/intelr-memory-latency-checker
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the Standard Performance Evaluation Corporation (SPEC). SPECpower is widely used 
across the industry and features several years of published results, so there is a great 
amount of data to use for system comparisons.

SPECpower

SPECpower measures simple transactions running in a Java Virtual Machine (JVM) across 
a broad range of CPU and memory utilization. It includes idle, maximum throughput, and 
a range of load points in between those endpoints. It provides a way to visualize power 
consumption at various ratios of maximum performance. This visualization, with power 
on one axis and performance on the other axis, is commonly called the load line. There 
are examples of this visualization spread throughout this book; however, many examples 
use a workload other than SPECpower. The load line methodology introduced by SPEC 
in SPECpower has seen broad use across the industry because it can be easily applied to 
different workloads.

Figure 8-1 shows CPU power during a SPECpower measurement. It illustrates several 
calibration load points used to determine system performance, as well as several load 
points of varying utilization all the way down to idle.
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Figure 8-1. CPU power measured over various load levels of SPECpower

SPECpower has some representative characteristics, but it lacks more sophisticated 
transactions that are common in datacenter workloads. It does not exercise a complete 
software stack and does not have any significant storage or network I/O. As a result, 
SPECpower includes some characteristics that are not commonly seen in production 
workloads. SPECpower has an order of magnitude fewer power state transitions 
compared to typical datacenter workloads. Residency in low-power states is much 
higher in SPECpower than in other workloads. In SPECpower, transactions are initiated 
in batches, rather than being individually initiated by network connected clients. This 
means the workload is both idle and  active for longer periods of time, leading to very 
different P-state behavior than is seen with a typical datacenter workload.
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Due to the workload’s focus on CPU and memory, certain features or platform-level 
changes may improve SPECpower scores, but they do not provide a benefit in a typical 
datacenter workload. As is the case with every workload, there are optimizations that may 
benefit SPECpower that aren’t generally a good idea to apply elsewhere.

Note ■  a significant challenge in workload selection is balancing ease of use with  
representativeness. Workloads that model realistic use scenarios tend to include a large 
number of network-connected clients, sophisticated software stacks, and multiple different 
systems under test. Workloads that are easy to install, measure, and maintain do not.

The Server Efficiency Rating Tool (SERT)

SERT is a new SPEC tool suite under development that measures power and performance 
across a broader range of use conditions and applications. Rather than executing a 
single test, it includes a variety of different worklets that stress the CPU (different types of 
operations, including mixing integer, floating point, data references, and modification), 
memory, and drives separately. SPECpower loads are one of the worklets, so SERT 
extends the type of analysis that can be done above and beyond SPECpower.

SERT has been adopted by the Environmental Protection Agency (EPA)  for their 
Energy Star program for servers. SERT is also being investigated for use in energy 
efficiency programs by government agencies around the globe including Europe and 
Asia. It is interesting to note that SERT is being used not only for power and performance 
assessments, but is also being considered for government-based environmental 
programs.

Industry Workloads
Industry workloads are typically two- or three-tier workloads with transactions driven 
over the network based on more realistic transaction interarrival rates. These workloads 
use representative application and software stacks and often include quality of service 
or response time requirements. The ability to measure transaction response time is a key 
capability because it allows operators to characterize the performance impact of power 
management features. The downside to using industry workloads is that they represent a 
significant resource investment, both in engineer time and hardware.

Industry workloads are one of the best tools available to characterize and optimize 
a server. These workloads are maintained and updated by various open source efforts 
and an industry consortium, and they see extensive use across the industry. The majority 
of charts in this book were generated using monitoring power and performance with 
industry workloads.

A number of good industry workloads span various market segments. For 
example, many HPC and scientific workloads span life sciences, computer-aided 
engineering, financial modeling, and weather simulation, and many of these are open 
source. Similarly, there are a number of enterprise workloads modeling database 
and mail servers, customer relationship management (CRM) systems, and enterprise 
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resource planning (ERP) systems, and there are also many cloud workloads that model 
multitenant environments or that model environments with distributed services that 
utilize the Web, memory cache, and databases.

The Transaction Processing Performance Council (TPC) and SPEC are two industry 
organizations that develop and maintain workloads. TPC workloads such as TPC-C 
(order-entry OLTP), TPC-E (brokerage-firm OLTP), and TPC-DS (decision support 
system) are popular for power and performance characterization. SPEC workloads such 
as SPECweb (web server), SPECvirt (infrastructure consolidation), and SPECimap (mail 
server) provide similar capabilities. In addition to the industry organizations, there are 
also a number of company-sponsored workloads such as SAP Sales and Distribution  
(SAP SD) workload or VMware VMmark.

In addition to the workloads maintained by industry organizations, a number 
of good open source workloads span various market segments: Olio (web, social 
networking), mcblaster (object cache), HammerDB (OLTP), and TPoX (Transaction 
Processing over XML), for example.

Note ■  open source workloads are an excellent starting point for workload development 
or for customizing a workload to better model a target environment.

Industry workloads are more complex and realistic, and they represent a step 
above. Unlike SPECpower, most industry workloads do not have integrated power and 
performance metrics, and they do not automatically generate a load line. However, the 
load line concept from SPECpower can be easily applied to industry workloads.

Industry workloads allow users to create a variety of different loads, typically 
specified by a number of virtual clients or delay time between client transactions. For 
example, Olio requires an operator to specify the number of users that will be used to 
generate different types of web transactions. Measurement across a variety of different 
utilization or throughput levels is possible by running with a different number of users. 
For many virtual workloads, several thousand virtual clients are required to reach 
maximum throughput, so it is easy to make fine-grained adjustments to load based on 
varying the number of users.

Idle Workloads
As is the case with industry workloads, the conditions used to test an idle server should 
also be representative. Many idle power measurements are taken shortly after a server 
is powered on and initialization is complete. The server may not have any applications 
or services initialized and ready for use. This state is called operating system idle. In 
operating system idle, it is typical to see long, uninterrupted idle durations and excellent 
residency in package C-states.

To get a representative measurement, it is best to measure idle on a system that 
has all applications and services initialized and has recently completed running a 
representative workload. This state is called active idle, and unlike operating system 
idle, it may include intermittent network activity, periodic management and security 
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operations, and sporadic application activity. Active idle for virtualized environments 
typically includes a variety of different virtual machines running different software stacks, 
adding to its complexity. As the name implies, active idle is significantly more active than 
operating system idle, leading to higher power. Figure 8-2 illustrates the difference in 
activity between operating system idle and active idle with numerous applications and 
services loaded.
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Figure 8-2. Variation in CPU utilization between active idle and OS idle

Measuring and comparing the differences in operating system idle and active idle 
can help to identify software and hardware components that impact idle power. For 
example, applications that utilize polling rather than events or applications that change 
the timer frequency of the operating system can both result in higher idle power. Because 
most servers spend a significant amount of time idle, optimizing for idle can be as 
beneficial as optimizing for active loads. The tools operators can use to diagnose active 
idle issues are discussed in Chapter 7.

System Characterization
Hardware and software monitoring tools are key capabilities needed for system 
characterization. The best techniques for data collection can change based on the 
workload type or based on the amount or type of data collected.

Steady State vs. Non-Steady State
When monitoring workloads it’s important to identify whether the workload of interest 
is steady state or non-steady state. During a steady state workload, system characteristics 
don’t change significantly over time. Industry benchmarks that model transactional 
systems are typically steady state workloads; TPC-E or SPECweb are examples of this type 
of workload. These workloads execute a predetermined mix of transactions, repeatedly, 
over a very long period of time.



Chapter 8 ■ CharaCterization and optimization

278

For many workloads, there is a significant amount of ramp-up time before steady 
state is reached. When a workload first starts, application and system characteristics are 
changing frequently as clients connect, load is balanced, and frequently-used data is 
cached.

Non-steady state workloads consist of frequently changing system characteristics. It’s 
common for application behavior to change from one second to the next—for example, 
a scientific application modeling weather patterns or a data analytics workload with 
different map and reduce phases. Figure 8-3 shows how the rate of instruction retirement 
varies for a steady state and non-steady state workload. The multiple different phases of 
the non-steady state workload can be clearly identified.
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Figure 8-3. Variation in instructions retired between non-steady state and steady state 
workloads

Data Collection
There are a number of important considerations for collecting data during workloads. If 
data collection tools are executed too frequently or multiple tools are executed in parallel, 
it can alter the behavior of the workload. If data collection is not started and stopped at a 
consistent point in time, data cannot be compared between measurements.

Collection Duration
The start time and length of data collection depends on whether the workload is steady 
state or non-steady state. For steady state workloads, power and performance data is 
typically not collected during ramp-up since initialization phases are not of interest. 
Similarly, data collection can be skipped during ramp-down phases or when a workload 
has finished and is restoring files to a known starting state.

When data is collected during the steady state between ramp-up and ramp-down,  
it is only necessary to collect data for a small portion of time because system 
characteristics don’t change significantly from one moment to the next. Data collected 
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during one minute of steady state should have characteristics very similar to data 
collected during the next minute of data collection. Data collection may need to be 
started and stopped for workloads that have several significant intervals. For example, 
SPECpower may require tools to be started and stopped at specific times to allow for 
load points to be individually analyzed.

For non-steady state workloads, performance and power data is typically collected 
throughout the entire duration of a measurement. Unlike steady state workloads, it is not 
reasonable to collect data for a smaller portion of time since the characteristics of data 
collected during one minute of time can be very different from the data collected during 
the remainder of the workload.

Collection Frequency
If power and performance events are collected at high frequency, data collection tools 
will interrupt applications frequently, stealing CPU cycles from the workload of interest. 
This may alter the natural behavior of the workload, revealing power or performance 
issues that would not occur when data collection is stopped. If events are collected at low 
frequency, interesting workload characteristics may be difficult to discern. Operators will 
be unable to both identify unique phases of the workload and determine how power and 
performance characteristics change over time.

Note ■  Unlike hardware monitoring tools, operating system tools can collect hundreds 
of different events in a single interval. Collecting data at low frequency can still perturb the 
workload if too many events are collected at the same time.

For steady state workloads, data collected at low frequency will produce a similar 
result as data collected at high frequency. This simplifies the data collection process for 
steady state workloads since the workload can be characterized with only a small amount 
of data. For non-steady state workloads, high frequency collection is necessary. Finding 
the ideal data collection frequency will require some experimentation as it varies from 
workload to workload. The goal is to collect data as frequently as possible while having no 
impact on system power or performance.

Event Ordering and Event Groups
Many times it is necessary to analyze several events collected at the same time to get a 
complete picture of component or system behavior. For example, to characterize memory 
references during a particular phase of a workload, an operator may want to measure 
read transactions, write transactions, page hits, page empty accesses, page misses, 
and memory latency. As discussed in Chapter 7, this may not be possible since many 
monitoring units can only collect a small number of events in parallel.
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For steady state workloads, this isn’t a significant issue. Monitored events measure 
very similar values from one moment to the next, so it is possible to gain the desired insight 
into component or system behavior by splitting up events over several different groups 
measured at different times. For non-steady state workloads, the limitation of monitoring 
units can be an issue. The best practice is to collect related events as close (in time) to each 
other as possible and to collect the same event groups repeatedly at high frequency.

Multiple Tools
During workload characterization, operators may be required to measure data using 
several different tools targeting monitoring capabilities spread across software, firmware, 
and hardware. When multiple tools are used, there are some cases where it is beneficial 
to measure multiple tools simultaneously. For example, to provide complete coverage for 
a non-steady state workloads or when there is interest in comparing software metrics to 
hardware metrics collected at the same time. There are other cases where it is beneficial 
to measure multiple tools one at a time. For example, to limit how intrusive data 
collection is during a steady state workload.

Similar to the process of determining collection frequency, event groups, and event 
ordering, there are several choices for how to collect data using multiple tools. These require 
some experimentation as each of those choices has unique strengths and weaknesses.

Methodology
Characterizing and optimizing a server requires not only good workloads and a good data 
collection strategy, it also requires good methodology. The following recommendations 
serve as guidelines for basic server characterization.

Quality test each server before investing time in characterization •	
and analysis. Use testing tools to confirm the configuration is 
healthy, and measure the target workload several times to ensure 
workload variability is within acceptable limits.

Always collect data with monitoring tools. Without proper •	
visibility into power and performance characteristics, the result 
of changes to software or hardware from one measurement to the 
next will not be well understood.

Always use a consistent baseline measurement, making no •	
change to the configuration throughout the duration of an 
experiment. For example, if a driver or BIOS is updated, drive 
capacity is added, or a network is reconfigured, measurements on 
the server can no longer be compared to previous measurements.

Only change one variable at a time between measurements. For •	
example, coupling several software optimizations together in 
a measurement may result in no change in power, whereas in 
reality, some of the optimizations may be helpful while the others 
are harmful.
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Always automate workloads and data collection. This ensures •	
measurements will collect data with the same start time, end 
time, collection frequency, and event ordering every time. 
Without this consistency in timing, comparisons between 
different measurements may provide misleading results.

Use a controlled thermal environment. Repeatability of a •	
workload can be impacted if the temperature varies significantly 
based on weather, time of day, or activity of other systems.

Analysis
With thousands of different events that can be monitored during a measurement, using 
a top-down analysis is one of the best strategies for analyzing changes to a server. First, it 
is important to look at the big picture. The most important metrics to analyze are power, 
performance, and cost since most feature tuning will result in an increase or decrease in 
one or more of these. Performance will be measured in throughput and latency (response 
time or time to completion) and will be collected by the target workload. Power will be 
measured either using a digital power meter or through the power supply or current 
sensors using the monitoring features described in Chapter 7.

Power Metrics
Configuration and tuning changes can cause very large differences in system power. 
Figure 8-4 highlights how substantial the change can be. The lowest power tuning in this 
example is able to minimize the energy cost per transaction without impacting maximum 
throughput.
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To build a deeper understanding of a configuration or tuning change, first identify 
the component or components that caused the change. Then, identify specifically why 
those components’ power changed. For a given power increase or decrease, there are 
several events and metrics in the data collected that can be used to identify the cause.

In an ideal scenario, the system is capable of component-level power measurements, 
and the components contributing to a change in power can be identified simply by 
comparing the power of individual components (processors, memory, PCH, LAN 
adapters, drives, and fans).

However, systems with component-level power measurement capability are 
uncommon today. A more assessable approach to determining a change in power is 
to identify differences in active and idle states and operating conditions. These are the 
primary factors that ultimately determine power consumption. For example, a change 
in CPU power could be identified by analyzing CPU C-state and P-state residency and 
transitions. A change in fan power could be identified by analyzing each fan’s tachometer, 
and a change in interconnect power could be identified by analyzing interconnect 
voltage, frequency, and link width.

If power measurement and monitoring capabilities are insufficient to identify what 
caused a change in power, performance and thermal events can be used to provide 
alternative insight. For example, if a measurement showed a 10-times increase in IOPS to 
a SSD, this increased activity may indicate a measurable increase in drive power.

A change in system power is always the result of a single component change because 
there are many complex dependencies between various components in the system. For 
example, an operator could decrease memory power by limiting the memory frequency 
used and capacity installed; however, this change might increase system power as CPUs 
are stalled waiting for data to be returned from memory and drives. As the workloads 
used become more sophisticated, the number and complexity of component and system 
dependencies increase. For example, tuning any given node in a cluster of servers 
running a distributed application may result in a small local difference but a substantial 
global difference when the cluster is viewed as a whole.

The following list serves as a prioritized guide for top-down power analysis. 
Although this list is targeted for power analysis, performance metrics are also valuable, 
and will be covered momentarily. See Chapter 7 for more details on how to monitor these 
various metrics.

CPU Power•	

P-state residency•	

C-state residency and transitions•	

Temperature•	

Memory power•	

Frequency and voltage (static at runtime)•	

Self-refresh and CKE residency and transitions•	
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Thermal management•	

Platform temperatures•	

Fan power•	

Tachometer•	

Device power•	

Link width and frequency•	

I/O bandwidth and transactions per second•	

QPI L1 and L0p residency and transitions•	

Other•	

Additional system performance metrics•	

Performance Metrics
Configuration and tuning changes can cause very large differences in system 
performance. Figure 8-5 highlights how substantial the change can be. This figure 
underlines the importance of performance requirements. If this server had a performance 
requirement that 95% of transactions are completed in less than 10 milliseconds, then the 
lowest power tuning would decrease power and cost while still meeting that performance 
requirement. However, if the server had a performance requirement that 95% of 
transactions are completed in less than 2 milliseconds, an operator may both tune for 
performance and load systems to no more than 80% of maximum capacity.
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To build a deeper understanding of a configuration or tuning change, first identify 
the component or components that caused the change. Then identify specifically why 
those components’ performance changed. This process of performance analysis is easier 
if the target workload’s sensitivity to CPU frequency and I/O subsystem performance is 
well understood.

Note ■  one good method for determining sensitivity to CpU performance is through  
frequency scaling studies. this involves running a target workload several times across 
a range of fixed frequencies. the results allow operators to calculate scaling efficiency 
between two frequencies by comparing the percent increase in performance to the percent 
increase in frequency.

If a workload exhibits poor frequency scaling, transaction time is likely dominated 
by waiting for memory or I/O. Alternatively, the poor frequency scaling may be the 
result of a bottleneck. For example, a datacenter workload that drives line rate network 
traffic is unlikely to see a significant increase or decrease in performance based on CPU 
frequency.

Differences in performance can be identified by analyzing the changes in CPI, 
path length, or power state residencies. For example, a decrease in operating frequency 
will almost certainly result in a decrease in performance. An increase in CPI could be 
the result of a degrading cache hit rate or increasing memory latency. The source of an 
increase in path length can be identified by analyzing execution profiles collected by 
tools such as Linux perf. The execution profile will allow an operator to drill down to the 
specific process, modules, or function that is exhibiting a change in behavior.

The following list is a prioritized guide for top-down analysis. Note that system 
power, covered in the previous section, is very important to consider when understanding 
changes in performance. For example, monitoring C-state residency and transitions 
not only tells the operator about time spent in state, it also tells about accumulated exit 
latency (C0 impact) and effects of flushing caches (CPI impact). See Chapter 7 for more 
details on how to monitor these various metrics.

CPU performance•	

Cycles per instruction (CPI)•	

Cache misses and latency•	

Memory latency•	

C-state transitions (latency) and residency (C0)•	

Path length•	

Software execution profiles•	

P-state residency (frequency)•	

Thermal throttling•	
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Memory performance•	

Memory latency•	

Self-refresh and CKE residency and transitions•	

Memory bandwidth•	

Thermal throttling•	

Interconnect power•	

QPI L1 and L0p residency and transitions•	

Device performance•	

Link width and frequency•	

I/O bandwidth and transactions per second•	

Optimization
There are a large number of different optimization opportunities in the system, and it 
can be challenging to know which are worth the effort. This section explores a variety of 
different optimization opportunities and investigates the potential tradeoffs involved. In 
addition to highlighting valuable opportunities, it will cover a selection of items that you 
may want to avoid. Some optimizations must be performed at boot in the BIOS, whereas 
others may be possible at runtime. This chapter provides recipes, where possible, for how 
to make different changes in the system.

Power management algorithms can also provide improved performance in select 
cases. This section will highlight some of these opportunities for improved performance.

CPU Power Management
Typically, the CPU is one of the first places to start performing power (and performance) 
optimizations because it frequently contributes significantly to the overall power in the 
platform. However, there are times when the CPU is not as significant to the overall power 
consumption of the platform. A good example is a storage system with a large JBOD 
(just a bunch of disks). In such a system, the CPU power may not be a major contributor 
to the overall power, and it may not be worth the effort to focus on CPU optimizations. 
One of the first tasks in performing any optimization work is to determine where the 
power is going. Total platform power should be characterized and compared against the 
CPU subcomponent power (see Chapter 7 for details). It is common for the CPU (and 
memory) to contribute a significant percentage of the overall platform power, but this 
should be confirmed prior to focusing significant effort on optimizations. 

Chapter 2 provides background on many of the features discussed in this section.
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P-States and Turbo
Voltage and frequency can play a significant factor in power consumption. Running at a 
lower frequency when performance is not required can save significant platform power, 
particularly on high TDP Xeon processors.

Running at lower frequency (P-states) will likely increase the response time of 
workloads when they are running at low to moderate utilizations. However, as shown in 
Figure 8-5, many workloads exhibit much higher overall response times when running at 
peak utilization (with or without power management) than what is observed when power 
management is enabled at lower utilizations. As a result, the response time impact of 
these features may not be the dominant component in the worst-case latency situation.

Turbo can be used to increase the achieved frequency beyond the base frequency. 
On recent processor generations, it has been common for Turbo to provide a 10%–20% 
(or more) peak performance increase. A common misconception is that Turbo provides 
“burst” performance for only a short period of time. Although this is frequently true 
in thermally constrained consumer devices, it is generally not the case in server 
deployments. Server workloads can frequently sustain some level of Turbo indefinitely.

RAPL (and other frequency management algorithms) can engage while Turbo is 
running to limit the frequency of the system. Frequency is typically managed by these 
algorithms on (small) millisecond granularities. Frequency transitions block execution 
for about 10 to 20 microseconds. The algorithms have been tuned so that these transition 
periods have minimal impact on the overall throughput (and performance) of the system. 
However, users who are very sensitive to latency disturbances, such as high-frequency 
traders, may not want to use Turbo in order to avoid execution being blocked. Many 
server workloads are able to easily tolerate this latency cost, and the benefits provided by 
the increased frequency far outweigh the latency cost.

A common misconception is that Turbo frequencies are less power efficient than 
running with Turbo disabled. Although this is true on some processor SKUs, it is not 
always the case. Some lower power and lower frequency products achieve optimal 
platform performance per watt while running in Turbo.

Modern operating systems take tens of milliseconds to detect changes in demand 
and utilization. As a result, the use of OS-controlled P-states can result in short periods 
of time where the operating frequency is lower than what would be best for the demand 
of the system. One of the potential upsides of hardware power management in future 
products is the ability to improve the response time to changes in demand and utilization.

Note ■  the use of p-states and turbo does not have to be a yes-or-no question. modern 
operating systems can be constrained to request frequencies within a range. this can result 
in significant power efficiency savings with contained impacts to response time.

P-states and Turbo need not be an all-or-nothing decision. For example, a user has 
a system that typically runs at ~60% utilization, but periodically it has an increase in 
demand. That user’s system has a SKU that can run at an “all-core Turbo” (P0n) frequency 
of 3 GHz and a base frequency (P1) of 2.6 GHz. When the customer runs the system  
with Turbo requested all the time, there is a notable increase in peak performance 
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(which is useful for those periods of high demand), but it comes at a notable power 
increase during the typical levels of demand. Running with all of Turbo and P-states 
enabled results in good power efficiency, but at times, it has undesirable response time 
characteristics. In such a case, the user could instruct the OS to always request at  
least 2.4 GHz. Under such a configuration, the user is able to avoid the power cost of running 
at 3 GHz at typical utilizations, but then transition up to 3 GHz when demand increases.

Note ■  it is recommended that both turbo and p-states be controlled through the operating  
system and not through the BioS. this provides significant flexibility for a longer term to 
changes in decisions without requiring system reboots (which can be very undesirable in 
large-scale deployments).

The BIOS does have the ability to disable Turbo, and many BIOS designers expose 
this option to end users. However, there is no way to disable frequency transitions in the 
system. Some BIOSes include an option to disable EIST (Enhanced Intel Speedstep, but 
this will only change how P-states are enumerated to the OS in ACPI.

Note ■  Some oems have proprietary mechanisms for managing frequency that exist 
between the oS and the CpU by leveraging capabilities made possible by aCpi. Special care 
may be necessary if these capabilities are enabled in the oem’s BioS.

Frequency Control in Windows

In Windows, frequency can be managed through the Power Options control panel as 
well as by using the powercfg command line utility. The High Performance tuning 
option (available both in the control panel and through powercfg) will instruct the OS to 
request the maximum frequency at all times. By default, the Balanced mode will request 
frequencies across the spectrum, including Turbo if it was enabled by the BIOS.2 Under 
the Advanced Settings options, you can find additional tuning options to control the 
range of frequencies that are selected (see the Minimum Processor State and Maximum 
Processor State configuration options). Note that these options do not control actions in 
the Turbo range.

The powercfg utility can also be used to manage both frequency selection and Turbo.3 
Turbo can be disabled with the following command line (or enabled by changing the 0 to a 1):
 
powercfg -setacvalueindex scheme_current sub_processor PERFBOOSTMODE 0
powercfg -setactive scheme_current
 

2Note that Intel processors prior to the Westmere generation had Turbo disabled by default in the 
Windows Balanced configuration mode.
3See the Performance Tuning Guidelines for more details about powercfg. https://msdn.
microsoft.com/en-us/library/windows/hardware/dn529134.

https://msdn.microsoft.com/en-us/library/windows/hardware/dn529134
https://msdn.microsoft.com/en-us/library/windows/hardware/dn529134
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Frequency selection outside the Turbo range can also be controlled with powercfg:
 
powercfg -setacvalueindex scheme_current sub_processor PROCTHROTTLEMIN 60
powercfg -setacvalueindex scheme_current sub_processor PROCTHROTTLEMAX 100
powercfg -setactive scheme_current
 

The current system configuration can be dumped from powercfg with this 
command:
 
powercfg -Q,

Frequency Control in Linux

The Intel P-state Linux driver provides a mechanism for constraining the requested 
frequencies in sysfs.4 These are located today in
 
/sys/devices/system/cpu/intel_pstate/
 

The max_perf_pct, min_perf_pct, and no_turbo files can be used to configure the 
desired P-state behavior on a per-logical-processor granularity. The percentage values 
that are configured here include control in the Turbo range, making it possible to limit 
the maximum frequency used even in the Turbo range. Although it is not possible to 
determine which part of the range is for Turbo today using the sysfs interface, you can 
disable Turbo at runtime by executing the following (as root):
 
# echo 1 >> /sys/devices/system/cpu/intel_pstate/no_turbo
 

The algorithms that select frequency can be further tuned using debugfs. However, 
most users have generally reported minimal benefit by moving away from the default 
configurations.

Prior to the introduction of the intel_pstate driver, the acpi_freq driver was used 
by default to manage frequency in Linux. Little effort has been spent in recent years to 
optimize this driver to work well in a server environment, and it is not recommended. 
One drawback of the intel_pstate driver is that support is required in the actual kernel 
for it. It is not possible to load the driver as a module on an older kernel. Note that it is 
possible to fall back to the older acpi_freq driver on kernels that include support for 
intel_pstates using the boot-time kernel parameter intel_pstate=disable. ,

The Linux kernel also supports the concept of P-state “governors,” which control 
the aggressiveness of the frequency selection algorithm. With acpi_idle, the ondemand 
and performance governors were common in server deployments. The performance 
governor simply requested the max performance at all times, whereas ondemand 
attempted to change the frequency based on system utilization. Many users experienced 
performance issues with the ondemand governor, pushing them to use the performance 
governor (which effectively disabled P-states outside of Turbo). With intel_pstates, 

4See www.kernel.org/doc/Documentation/cpu-freq/intel-pstate.txt for details.

http://www.kernel.org/doc/Documentation/cpu-freq/intel-pstate.txt
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ondemand is no longer an option. Instead, intel_pstates provides the performance and 
powersave options. The performance governor operates like it used to—the system will 
request the max frequency at all times. The powersave governor replaces ondemand and 
provides a new algorithm (compared to acpi_freq), which is intended to provide power 
savings without some of the performance drawbacks that were observed with acpi_freq 
ondemand.

Turbo Ratio Limit

As described in Chapter 2, processors generally have varied maximum Turbo frequencies 
based on the number of active cores. These limits are fused into each unit and are fixed 
across a given processor SKU. Users can, at runtime, reduce the maximum allowed Turbo 
frequencies based on the number of active cores using MSRs 0x1AD, 0x1AE, and 0x1AF. 
The exact semantics of thee MSRs is processor specific (and summarized in Figure 8-6).

MSR Bits MSR Bits MSR Bits
1 1AD [7:0] 1AD [7:0] 1AD [7:0]
2 1AD [15:8] 1AD [15:8] 1AD [15:8]
3 1AD [23:16] 1AD [23:16] 1AD [23:16]
4 1AD [31:24] 1AD [31:24] 1AD [31:24]
5 1AD [39:32] 1AD [39:32] 1AD [39:32]
6 1AD [47:40] 1AD [47:40] 1AD [47:40]
7 1AD [55:48] 1AD [55:48] 1AD [55:48]
8 1AD [63:56] 1AD [63:56] 1AD [63:56]
9 - - 1AE [7:0] 1AE [7:0]
10 - - 1AE [15:8] 1AE [15:8]
11 - - 1AE [23:16] 1AE [23:16]
12 - - 1AE [31:24] 1AE [31:24]
13 - - 1AE [39:32] 1AE [39:32]
14 - - 1AE [47:40] 1AE [47:40]
15 - - 1AE [55:48] 1AE [55:48]
16 - - - - 1AE [63:56]
17 - - - - 1AF [7:0]
18 - - - - 1AF [15:8]

Semaphore - - 1AE [63] 1AF [63]

Sandy Bridge Ivy Bridge HaswellCores 
Active

Figure 8-6. Turbo ratio limit configuration

Starting with the Sandy Bridge generation, specific Turbo frequencies could be 
requested directly by the operating system. As a result, controlling Turbo frequencies with 
these MSRs may not be necessary in all conditions. As an example, if you are simply looking 
to set a maximum requested frequency with intel_pstates, this can be done with sysfs  
(as described previously). However, in other OSs where ACPI is used, there may not be a user 
interface to the OS for this level of control. In such situations, these MSRs can be used.  
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These MSRs can also be used for fine tuning the Turbo levels based on the number of active 
cores. However, in practice, such configuration is generally not needed. On Sandy Bridge 
servers, MSR 0x1AD was sufficient to control the limits. Each byte in the register specified the 
ratio for a given core count. There was a maximum of 8 cores, so the 64-bit MSR was sufficient.

Ivy Bridge servers support up to 15 cores. MSR 0x1AE was added in order to provide 
1 Byte per core. The user was required to first configure MSR 0x1AD and then 0x1AE. 
When writing to MSR 0x1AE, bit [63] needed to be set to 1 to instruct the hardware to take 
the configuration. 

Haswell servers supported up to 18 cores. MSR 0x1AF was added, and the 
semaphore bit was moved out to MSR 0x1AF [63].

Note that these MSRs are package-scoped, meaning that one copy is shared across 
all cores on a given socket. When writing these registers, you should generally perform 
the writes from one logical processor on each socket in the system.

Turbo Ratio Limit provides a mechanism for users to find a “compromise” between 
enabling and disabling Turbo. For example, a user may find that using all of Turbo results 
in undesirable frequency transitions, but disabling Turbo significantly reduces peak 
performance and throughput. By reducing all maximum Turbo ratios to some level in 
between P1 and P0n, the user may be able to find a sustainable Turbo frequency (on a 
given workload) that does not generate any frequency transitions. This can be a useful 
compromise between completely disabling Turbo and using the full Turbo capabilities. 

On Haswell processors, the use of AVX instructions could reduce the maximum 
Turbo frequencies. The user could use Turbo Ratio Limits to set the max Turbo 
frequencies to match the levels achieved with AVX, providing more consistent frequency 
as workloads transitioned between AVX sections.

Note that due to scalability concerns, this approach may be discontinued on future 
processor generations and replaced with an adapted interface.

Uncore Frequency Scaling

Uncore Frequency Scaling (UFS) was introduced on Haswell E5/E7. This feature 
autonomously controls the frequency of the uncore based on a variety of metrics inside 
the CPU. UFS not only saves power, but also works to share power with the cores in order 
to provide higher frequency and improved performance. UFS transitions block all system 
traffic for about 20 ms today. As a result, these transitions have been tuned to be rare 
(milliseconds between transitions).

The UFS frequency algorithm can be controlled using the non-architectural MSR 
0x620. [7:0] controls the minimum ratio; [15:8] controls the max. With these two fields, the 
algorithm can be bounded. The internals of the algorithm cannot be configured and may 
change from generation to generation.

The base (untuned) UFS algorithm has been tuned for performance on most 
enterprise workloads. A common (and simple) alternative configuration is to set this 
MSR to 0x3F3F, which will attempt to lock the uncore at the highest frequency allowed 
by the processor SKU. This configuration is useful for latency-sensitive usage models. 
Many networking users have also found this configuration to be desirable for their 
usage models. Note that the TDP frequency assumptions assume that UFS is allowed 
to be dynamically managed, and locking the frequency at the maximum may result in 
frequency reduction below P1 on very high-power workloads. In practice, this is not 
observed on real workloads. 
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Core C-States
In addition to P-states and frequency controls, Core C-states provide some of the biggest 
impact CPU power across a range of system utilizations. As described in Chapter 2, it is 
important to remember that Core C6 can provide a significant performance boost when 
paired with Turbo by allowing periods of time where only a few threads are active to 
operate at higher frequencies. This can be valuable in certain parallel workloads where 
Amdahl’s Law5 is at work.

Unlike P-states,  which slow down the rate that instructions are executed, C-states 
provide power savings at the cost of a “wake-up” when execution is resumed. These wake 
latencies are typically in the tens of microseconds for C6 and about a microsecond for C1. 
Just like P-states, this will ultimately manifest itself as an increase in response time.

The core will enter the C1 state when the HLT (halt) instruction is executed. This is 
part of the instruction set and C1 cannot be disabled in hardware. Core C1e can similarly 
not be directly disabled by hardware. However, there is a configuration bit that the BIOS 
can set that causes C1 requests to be promoted into C1e requests. This is frequently 
documented as “C1e Enable,” but that definition is not strictly true. C1e on Windows is 
generally enabled and disabled using this bit as a result of the way that ACPI enumerates 
C-states to the operating system. This is also the case with older versions of Linux 
using the ACPI idle driver. The Linux intel_idle driver will automatically disabled the 
promotion of C1 to C1e independent of BIOS configuration so that it can autonomously 
select between those two states based on the system behavior (C1 is used when a short 
idle period is predicted, whereas C1e will be used for slightly longer idle periods).

Core C6 is used when MWAIT(C6) is executed by the operating system. There is no 
hardware disable for Core C6 on current processors. The BIOS has the option of selecting 
which C-states are enumerated to the operating system using ACPI. Different BIOS 
designers expose this to the customer in different manners. Disabling C6 through the 
BIOS will effectively disable it on both Windows and older versions of Linux using the 
acpi_idle driver.

Linux with the intel_idle driver today will not look at the BIOS configuration 
when deciding what C-states to use. Because intel_idle does not look at ACPI, it is not 
possible for the BIOS to communicate this information to the driver. Instead, it uses the 
intel_idle.max_cstates kernel parameter to control the level of C-states used. This 
definition is product- (and even kernel-) specific, so some experimentation may be 
required. Note that setting this to a value of 0x0 will disable the driver rather than disable 
C-states, so values greater than 0x0 are recommended

There is also a demotion algorithm that can autonomously decide to use a shallower 
C-state than what the OS has selected. In general, it is not recommended that users 
manipulate this configuration.

Note ■  today the CpU will not autonomously grant a deeper C-state than the one that the 
operating system requested.

5The speed-up of parallel computing is limited by the percentage of a workload that is run in a  
serial manner.



Chapter 8 ■ CharaCterization and optimization

292

Runtime Core Disable
C-states can provide a performance boost by providing access to higher Turbo 
frequencies and also by saving power in a power-constrained environment. Although 
C-states will autonomously be requested by the operating system if no work is pending 
for that core, it is also possible to provide a hint to the OS that a given CPU should not be 
used. This will prevent the OS from scheduling tasks to that core so that it can stay in a 
deep C-state. Note that this behavior is not 100% robust, because cores can still be woken 
up in certain cases (e.g., a broadcast thermal interrupt). However, in practice, they tend to 
be very effective.

On Linux, this is called core offline and can be done on an individual core basis 
using sysfs.
 
#echo 0 > /sys/devices/system/cpu/cpuX/online
 

On Linux, the logical processors to physical core mapping (including sockets and 
hyperthreads) is technically controlled by the BIOS. The topology can be discovered using 
sysfs:
 
/sys/devices/system/cpu/cpu*/topology/*
 

Although it is recommended that the topology be discovered and decoded, it 
is useful to understand what to expect in general. In practice, the mapping is mostly 
consistent across generations and configurations and is best described with an example 
(see Figure 8-7 for an illustration). Consider a two-socket system with two four-core 
processors that each support HT. The logical processors that are enumerated in sysfs will 
be enumerated as follows:

Logical processors 0 to 3 represent the first thread on cores 0 to 3 •	
on socket 0.

Logical processors 4 to 7 represent the first thread on cores 0 to 3 •	
on socket 1.

Logical processors 8 to 11 represent the second thread on cores 0 •	
to 3 on socket 0.

Logical processors 12 to 15 represent the second thread on cores 0 •	
to 3 on socket 1.
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Windows has a related feature called Core Parking. This feature is a bit different from 
the offlining support that is available in Linux, and it does not provide a mechanism to 
force certain cores to stay turned off. Core Parking is no longer recommended in server 
deployments by Microsoft6 and has been disabled by default.

Although Windows does not have a way to force specific logical processors to turn 
off across the operating system, specific applications can be affinitized to a set of logical 
processors. In conjunction with OS requested C-states, the user can use affinity control 
to encourage the OS to not use specific cores, allowing them to enter into a deep C-state. 
The logical processor to physical core mapping can be decoded using the coreinfo7 
utility. Affinity control is beyond the scope of this book.

Package C-States 
Unlike Core C-states, which are under the control of the operating system, package 
C-states today are autonomously managed by the CPU. See Chapter 2 for more details on 
package C-States. Package C-states save additional power when all of the cores are in a 
deep C-state by taking additional power savings steps that would not be possible if cores 
were active. These states are generally only possible at very low system utilizations, and 
their residencies can be monitored with software, as described in Chapter 7.

One of the biggest impacts of package C-states is that they increase the latency for 
external devices to communicate with DDR memory. In order to access memory, the CPU 
must wake from the package state, which typically takes tens of microseconds.

When it uses package C-states, the idle power of the Xeon E5 CPU is on the order of 
10-15 W. With Core C-states enabled and package C-states disabled, the CPU power will 
increase by a moderate amount (the amount is dependent on the processor generation). 
Note that this power increase will be amplified by power delivery efficiency losses  
(see Chapter 4), since power delivery tends to be less efficient at lower power levels.  
A rough rule of thumb is a ~1.5–2 times increase.

Figure 8-7. Example logical processor bitmask with two-socket, four-core CPUs on Linux

6See http://support.microsoft.com/kb/2814791.
7See https://technet.microsoft.com/en-us/sysinternals/cc835722.aspx.

http://support.microsoft.com/kb/2814791
https://technet.microsoft.com/en-us/sysinternals/cc835722.aspx
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Package C-states can also impact platform power. This impact can be even larger 
than what is observed on the CPU die. The most notable impact comes from memory 
self-refresh. If opportunistic self-refresh is disabled, then disabling package C-states will 
result in memory only using CKE to save power. This can have a large impact on platform 
idle power savings, particularly on systems with a large memory capacity.

As described earlier in this chapter in the “Idle Workloads” section, one limitation 
with package C-states is that it is common for the software that continuously runs on 
them to result in an “active idle” state that is not truly idle. These states are most effective 
when the system is able to achieve a truly idle state across all sockets in the node. This 
is different from many consumer usage models, which are aggressively optimized and 
tuned for idle power due to battery life concerns. In order to take full advantage of idle 
power savings opportunities, additional work may be required to tune (or stop) software 
that prevents the system from becoming truly idle.

If a user has a system that spends a notable amount of time at idle, then enabling 
package C-States can save a notable amount of system power. This is particularly true of 
systems with large memory capacities. Package C-states are typically controlled by the 
BIOS. The OS does not have direct control over these states today. It is also possible to 
disable them by writing 0x0 into MSR 0xE2 [2:0] (CST_CONFIG_CONTROL).

Energy Performance Bias
A number of power management algorithms manage different power and performance 
tradeoffs in the system. Some of these algorithms are internal and their tunings are not 
externally visible. Energy Performance Bias (EPB) provides a mechanism for software 
to provide a hint to the CPU about how the user would like the system to make these 
tradeoffs. Today, this is an architectural MSR that provides 4 bits to select from up to 16 
different operating modes. Smaller values represent more performance whereas larger 
values save more power. Rather than requiring users to attempt to tune 10 different 
features that could have different tunings on each project, this feature is intended to 
provide a simple interface for tuning CPU power management algorithms.

On Xeon E5/E7 processors starting with Sandy Bridge, EPB supported four modes 
of operation and the two least significant bits of the MSR were ignored. In practice, only 
two modes have ultimately shown significant value: a Performance mode (EPB values 0 to 
3) and a Balanced Performance mode (EPB values 0 to 7). Two deeper modes (Balanced 
Energy and Energy Efficient) exist, but in practice, it has been difficult to distinguish them 
from the Balanced Performance mode. Table 8-1 provides an overview of some of the key 
features that are managed by EPB.

Table 8-1. EPB Feature Control Summary

Feature Performance Balanced Performance

Turbo demotion Disabled Enabled

Memory CKE Disabled Enabled

QPI L0p Disabled Enabled

Internal algorithms Performance tunings Power savings
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Dynamic switching is another feature that was introduced on Sandy Bridge E5 that 
automatically transitions the system into the Performance mode when the CPU detects 
that high performance is desired. It is recommended that this remain enabled. Some users 
may desire to override some of these decisions that are typically controlled by EPB and 
Dynamic EPB Switching, and these limited opportunities will be discussed later in this 
chapter. Note that dynamic switching will not occur on systems that have disabled Turbo, 
so selecting the right EPB mode is more important on such systems. Users who configure 
the system to request Turbo 100% of the time (such as the Windows or Linux performance 
governors) will also switch the system into Performance EPB mode 100% of the time.)

EPB has not been optimized on Atom servers or on Xeon E3 servers like it has been 
on the E5/E7 product lines. The dynamic switching algorithm is also only productized  
on E5/E7.

When it was initially architected, EPB was placed in control of the operating system 
with 0x1B0 IA32_ENERGY_PERF_BIAS. On Windows, the Power Options control panel 
Performance mode will automatically select the EPB Performance mode. On Linux, the 
easiest option is to simply write directly to the MSR on all threads. EPB is not managed 
dynamically on Linux.

On Sandy Bridge, a configuration bit was added so that the BIOS could take control 
of EPB away from the operating system. This is controlled by the non-architectural MSR 
0x1FC (MSR_POWER_CTL). If bit [25] is 0, then the EPB is controlled by the OS and MSR 
0x1B0. Otherwise, the OEM is in control. In these cases, EPB may be controlled through 
some existing BIOS option to further simplify the process for end users.

One of the biggest impacts of EPB is the Turbo demotion algorithm. Turbo demotion 
has no impact for customers that have disabled Turbo. In such a situation, using the EPB 
Performance mode may be the best choice. However, such a configuration will result in 
CKE being disabled, which may be undesirable. Overrides are available for CKE to ensure 
that it will be used. This will be discussed later in the chapter.

For customers that are making use of Turbo, the Balanced Performance mode has 
been shown to effectively save power with minimal impact to performance on most 
workloads due to dynamic switching. One drawback to this situation occurs when there 
is a spike in system demand. Similar to the operating system, it will take time (tens to 
hundreds of milliseconds) to detect the spike in demand and react accordingly.

Note that recent versions of the Linux kernel will detect an EPB boot configuration of 
0x0 (Performance) and reprogram it automatically to 0x6 (Balanced Performance). As such, 
you may want to configure this mode using the operating system instead of the BIOS.)

Hyperthreading
Hyperthreading (HT) allows two logical processors to share a single core. By sharing a 
core, they frequently reduce their thread performance in order to achieve higher overall 
throughput and higher system performance. The act of enabling HT has almost zero 
impact on power by itself. However, by having multiple threads share the resources 
of a core and increase the overall performance and throughput of the core, power is 
frequently increased. Running a core with HT enabled, but having the scheduler only 
use one of the two logical processors on that core, will result in an almost identical power 
consumption to disabling HT.
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Although HT will frequently increase the power consumption of a core, it almost 
always does so in a power efficient manner. It is typically one of the most power efficient 
performance optimizations that exists; however, some workloads that do not benefit from 
HT do exist. Workloads that are very sensitive to memory bandwidth are a good example. 
Such workloads may see a slight efficiency loss by executing them with HT. However, in 
practice, disabling HT in order to improve power efficiency is very rarely an optimization 
that pays dividends.

HT can frequently be disabled in the BIOS. It is also possible to instruct Linux not 
to use HT threads using the same mechanism as core offlining. This provides effectively 
the same behavior as the BIOS disable. The /affinity flag can be used in Windows for a 
similar effect.

Prefetchers
Prefetchers can provide significant performance boosts on certain types of workloads. On 
others, they provide little value. Some workloads even lose performance with prefetchers, 
but this has become much less common over the years as memory bandwidth has 
improved and the state of the art has improved with prefetcher design.

Prefetchers almost always increase the amount of memory bandwidth being 
consumed by the system. Even workloads that see no performance benefit from prefetching 
may observe a measurable increase in memory bandwidth. This memory bandwidth will 
increase platform power. As a result, users may see power efficiency improvements by 
disabling prefetchers on workloads that exhibit little or no performance upside.

MSR 0x1A4 can be used to configure prefetchers on many server processors. Bits 
[3:0] are generally mapped to different types of prefetchers in the system. By setting these 
bits to a 1, the corresponding prefetcher(s) are disabled. Setting all four bits to 0xF is an 
effective way to disable prefetching. This can be performed at runtime in order to enable 
easy testing or deployment. Some BIOSes also provide an interface to disable prefetchers 
and use the same interface. MSR 0x1A4 is not an architectural MSR and therefore may 
change in the future.

PCIe
The primary power saving feature for PCIe is L1. L1 enabling has generally struggled in 
the server ecosystem over the years. It saves a relatively small amount of power (on the 
order of ~1 W for an x8 connection on the CPU, with additional savings on the connected 
device) at the expense of increased latency for PCIe devices that make use of the feature.

On some Haswell E5 platforms, PCIe L1 has a larger impact on idle power than 
previously observed on Sandy Bridge and Ivy Bridge. On some platforms, additional 
platform-level power optimizations depend on all links being in the L1 state. This can 
change L1 from a 1 W feature into a 10 W feature. Users should experiment with L1 to best 
understand the tradeoffs on a given system.

ASPM L1 enabling is controlled by the BIOS. However, the operating system can also 
be used to disable ASPM. Enabling ASPM from the OS if it was not enabled by the BIOS is 
generally not recommended.
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In Linux, ASPM can be disabled using the pcie_aspm=off kernel parameter. ASPM 
can also be disabled using sysfs:
 
/sys/modules/pcie_aspm/parameters/policy
 

One can ascertain the current ASPM configuration using the following:
 
> lspci -vvvv | grep ASPM
 

In Windows, you can determine if ASPM is enabled or not with powercfg /energy 
report. ASPM can be configured with powercfg (assuming it was enabled by the BIOS). 
The following will disable ASPM:
 
powercfg -setacvalueindex scheme_current sub_pciexpress aspm 0
 

Customers who are concerned about PCIe latencies should investigate L1 disable. 
Others who are more power conscious should evaluate ASPM L1, particularly if their 
deployments are already making use of package C-states.

QPI
QPI supports two main power management features: L1 and L0p (as described in  
Chapter 3). QPI L1 is only utilized during package C-states and has zero cost due to the 
fact that the L1 wake-up is done in parallel with other longer latency operations. L0p is 
used at runtime and does result in some power and performance tradeoffs.

Starting with Ivy Bridge E5/E7, L0p was disabled automatically by dynamic switching 
or when the EPB performance mode was selected. L0p increases cross-socket data 
movement latencies by ~10 ns. This can result in a small decrease in performance  
(up to ~1%). Users that have disabled Turbo and desire maximum performance should 
consider setting EPB in performance mode.

QPI can be configured to run at lower frequencies. The QPI voltage is fixed and 
the power savings from running at lower frequencies tends to be relatively small. 
Bandwidth across the link is directly proportional to the QPI frequency, and there is 
also a small latency cost (<10 ns) when QPI is run at low frequencies. In practice, the 
power savings from running QPI at lower frequencies is not worth the performance and 
flexibility impact.

On some systems (particularly two-socket platforms), multiple links exist between 
sockets. It is possible to disable links in order to save notable power (on the order of ~10 
W at low, but non-idle utilizations) at the expense of a significant decrease in cross-
socket communication bandwidth. This can lead to severe performance loss on some 
workloads. However, a subset of workloads, such as those that primarily execute out 
of the cache or have extremely good NUMA optimizations and locality, may observe 
minimal performance loss. By monitoring the QPI link bandwidth, you may be able to 
determine whether this could be a good opportunity for power savings. It is not possible 
to enable or disable links at runtime.
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Memory
Memory can be a large contributor to overall platform power in deployments with large 
memory capacities. Memory naturally has a wide power dynamic range, because a large 
percentage of the power is a function of the memory bandwidth (independent of power 
management actions like CKE and self-refresh). A good rough estimate of memory 
power is a simple linear function where both the slope and y-intercept are a function of 
the type of memory deployed (capacity, ranks, process generation, etc.). Memory power 
management and the power characteristics of different types of memory technologies are 
discussed in Chapter 3. In addition to the inherent power scaling that exists in memory, 
additional CPU-driven power management capabilities can be tuned and configured to 
provide different power and performance characteristics.

As a general rule, users with small memory capacities likely need not get overly 
aggressive with memory power management, whereas those who are loading up the 
DIMM slots should carefully consider their options here. “Small” is a difficult term 
to formally define in this case. With the transition to DDR4, power consumption has 
significantly improved, making aggressive power management somewhat less important. 
On low-power servers with TDPs that are less than about 50 W, the contribution 
of memory power is proportionally larger, and a quick look at the memory power 
management configuration is advisable. For higher power servers, users who are 
deploying x4 devices in 2DPC configurations (or larger) should evaluate their options. 
Users with small deployments, such as a 1DPC x8 population, may want to look at other 
opportunities for power savings first.

CKE
CKE provides moderate levels of power savings with minimal performance penalty. As 
a result, it is commonly used while applications are active to save power during short 
idle periods. Using CKE while performance benchmarking generally results in a peak 
performance decrease of ~1% and a minimal impact on response times because it only 
costs ~10 ns to wake up memory from this state. Memory latency benchmarks suffer 
from CKE though, particularly because the PPD variety forces a page close. This latency 
increase is not representative of the performance impact on real workloads.

On systems that support dynamic switching and EPB (such as Xeon E5/E7 class 
servers starting with Sandy Bridge), CKE is disabled automatically in the Performance 
mode (or after a dynamic switch). Using EPB Balanced Performance with dynamic 
switching enabled is effective at avoiding the 1% peak throughput decrease while saving 
power at lower system utilizations for systems that have Turbo enabled and have not 
configured their OS to request max frequency 100% of the time. Users who configure 
their system to use EPB Performance mode or request maximum frequency 100% of the 
time should consider enabling CKE at all times if they have a large memory topology and 
are willing to trade off ~1% peak throughput. This configuration must be done through 
the BIOS, and different BIOS OEMs may make such a configuration available through 
different mechanisms. 
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Some platforms have provided options for both APD and PPD modes.8 In practice, the 
difference between these two modes of operation is not a first order impact on either power 
or performance. APD, for example, sounds like it should have slightly better performance 
characteristics (at slightly higher power), but in practice, it is largely not significant. As a 
result, tuning these modes is only recommended for users who are looking to fine-tune 
their system to a specific workload, and only after they exhaust other tuning opportunities.

On Avoton/Rangeley, EPB and dynamic switching do not control CKE. It must 
be statically configured by the BIOS. Due to the low SoC TDP power of these systems, 
smaller memory capacities will have a larger contribution to platform power, and users 
should consider their options with respect to CKE. One big exception here is with storage 
deployments that have a large number of HDDs. In this case, the memory power is 
frequently dwarfed by the drive power, making CKE less important overall.

Self-Refresh
Self-refresh provides much larger power savings than CKE at the cost of significant wake-up 
latencies (generally on the order of a few microseconds). As a result, it is typically targeted 
at large idle periods, such as when all cores are asleep. Aggressive use of self-refresh can 
result in performance loss and even an energy increase for completing a set of work.

Conceptually, there are two ways to use self-refresh. First, it can be used during deep 
package C-states. In this situation, the latency cost is effectively zero, since the wake-up 
can be done in parallel with other actions. We will refer to this as ForceSR for simplicity. 
Secondly, it can be used outside of package C-states. This is referred to as Opportunistic 
Self-Refresh (OSR). Because self-refresh is typically “free” during package C-states, 
controls for this capability are not made available for the user. OSR configuration is 
separate from the Package State configuration.

Unlike CKE, OSR (and Force SR) is not automatically disabled by EPB Performance 
or dynamic switching. This decision must be made in the BIOS. By default, OSR is 
configured to be very unaggressive. It is intended to target very long idle periods where 
package C-states are not active, such as in a system with very good NUMA optimizations 
or when package C-states have been disabled. It can also be useful in saving power in 
multi-socket systems at idle that are running software that prevents high package C-states 
residency but does not actually frequently access memory on all channels/sockets during 
the spurious events that are preventing package C-states. Tuning the aggressiveness of the 
algorithm is possible through the BIOS, but this is not recommended. 

Recall from Chapter 3 that the CK behavior is an option for how deep of a self-refresh 
to use. The clocks can stay active, which significantly shortens the wake latency but 
also reduces the power savings effectiveness. In practice, self-refresh with the CK active 
has minimal power savings benefits over CKE. As a result, this is the option that is less 
interesting than the Enable/Disable decision.

In practice, for most users, the base OSR configuration is effective at saving power 
without an observable impact to responsiveness or throughput. However, latency-
sensitive users who are concerned about block times on the order of ~5-10 ms should 
disable OSR in addition to package C-states.

8Haswell E5/E7 only productized the APD state.
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Patrol Scrub
Patrol Scrub is a reliability feature that steps through memory-reading each line and 
writing it back. The intention is to detect correctable errors (and correct them) before 
they can degrade into uncorrectable errors. The bandwidth cost of Patrol Scrub is quite 
small and does not materially impact the power of the system at runtime. However, Patrol 
Scrub does prevent OSR. Only a subset of channels on a socket is scrubbed at a time, 
though, so OSR is still possible on the remaining channels. Patrol Scrub is a very effective 
feature for avoiding uncorrectable errors, and it is not recommended that it be disabled. If 
a user observes that certain channels just won’t enter OSR, the likely explanation is Patrol 
Scrub. Package C-states have been optimized to provide self-refresh (across all channels) 
while also maintaining a good average scrub rate. 

NIC 
Chapter 4 discusses some of the network interface card (NIC) power management 
options. Table 8-2 provides an overview of these capabilities. NICs can be connected into 
any system, and therefore the power management configuration is managed by the driver 
and not by the BIOS. This configuration can typically be managed at runtime.

Table 8-2. NIC Optimization Summary

Feature Potential Savings Cost Description

Media Speed Up to a few watts Significant 
throughput loss 
and latency 
increase  
potential

The speed of NIC links can 
sometimes be reconfigured 
to save power at the 
expense of bandwidth. This 
can be done at runtime 
by software drivers, but it 
takes significant time to 
do so (during which time 
the network connection 
is blocked) and therefore 
it cannot be performed 
aggressively.

Energy Efficient 
Ethernet

~400 mW to ~2 W <~16 ms Idle power management 
feature for the network.

Interrupt  
Moderation

Platform  
dependent

Configurable, 
typically  
~100-200 ms

Rate limits delivery of 
interrupts to the CPU, 
frequently resulting in 
power savings, improved 
throughput, or both, at the 
expense of latency.
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Interrupt moderation is one of the most interesting features for the NIC. It is 
common for users to concern themselves with features like P-states, which can induce 
latency bubbles on the order of 10 microseconds, while ignoring interrupt moderation, 
which can cause 10 times larger latency increases. Although this feature does increase 
latency, it is effective at both saving power and improving network throughput. Latency-
sensitive users should consider changing the latency tuning parameter or even disabling 
this feature, but they should be aware that this will increase the demand on the CPU. )

DMA coalescing is another NIC feature. This feature has shown minimal 
effectiveness in server deployments. It is not enabled by default and is not generally 
recommended in servers.

Storage
Storage power management is made up of two components: the storage controller PHY 
and the device (HDD/SSD). These power management capabilities are standardized 
across both server storage subsystems as well as those found in consumer devices, and 
are discussed in Chapter 4.

As described in Chapter 4, SATA devices support four power savings modes: 
Working, Idle, Standby, and Sleep. Both Standby and Sleep can take significant time 
(seconds) to wake, and therefore they may not be desirable for server deployments. 
The Idle state, on the other hand, has minimal latency costs, and therefore it can be left 
enabled. For storage deployments where long latency wake-ups are acceptable, allowing 
the Standby state, or explicitly using the Sleep state, can help achieve very low idle power. 
Both SATA and SAS drives can enter a power management state either autonomously 
(after a configurable timer expires) or based on a command from the host. Table 8-3 
provides an overview of this control. Remember that with HDDs, power consumption is 
heavily dependent on the use of power management actions, whereas with SSDs, power 
will automatically scale with bandwidth consumption.

Table 8-3. SATA/SAS Drive Power Management Configuration

Type Host Request Timer Configuration

SATA Set Features: Go To Power Condition Set Features: Extended Power Condition

SAS Start/Stop Unit (SSU) command Power Condition Mode page

In Linux, the sdparm and hdparm tools can be used to control these options. The 
sdparn --all command is useful for discovering if the drive supports mode pages for 
power management. Not all drives support the full set of configuration options, and the 
–enumerate flag is useful for exploring common mode pages (independent of a specific 
drive). For hdparm, the -B, -S, and -M flags can be used to control the power management 
aggressiveness of some drives. Other flags exist for requesting a drive to enter into a  
low-power state.
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Smartmontools is another set of utilities that can be used to manage drives.9 smartctl  
is one frequently-used utility that is part of this package. These utilities are commonly 
available on Linux but can also be used on Windows.

In Windows, the idle time before spinning down a drive can be set with powercfg 
(setting it to a value of 0 will disable putting the drive to sleep):
 
powercfg /Change disk-timeout-ac 15
 

The SATA Aggressive Link Power Management (ALPM) power state of Partial is able 
to achieve low idle power (~100 mW) with a wake-up latency of <10 ms. The deeper states 
have minimal power savings benefits in most servers and can cause significant latency. 
Users who are very latency sensitive can consider disabling all these states, but Partial 
provides a good compromise between latency and power savings.

In Linux, the tlp and tuned-adm tools are available (depending on the distro) 
for managing a wide range of power management options, including link power 
management.10

Note ■  the tlp and tuned-adm utilities are useful for managing a variety of power  
management options in Linux.

In Windows, the link power management is controlled by powercfg in the disk 
subgroup. These options are hidden (not named) today. You can explore the current 
configuration using the following command. By doing this, you can ascertain the GUID 
associated with the hidden features and configure it in a manner similar to some of the 
previous command lines.
 
powercfg -qh scheme_current sub_disk

Thermal Management
CPU thermal management is configured to protect the system and is not tunable by 
consumers. Platform thermal management is managed be proprietary OEM algorithms, 
and therefore the specifics are beyond the scope of this book. OEMs commonly 
make different thermal management options available. More aggressive thermal 
management algorithms result in higher system temperatures and the potential for 
brief thermal throttling events and slight reductions in Turbo performance. In practice, 
these algorithms can save significant platform power without materially impacting the 
performance of the system.

9See www.smartmontools.org.
10See http://linrunner.de/en/tlp/tlp.html.

http://www.smartmontools.org/
http://linrunner.de/en/tlp/tlp.html
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Cooling a processor to very low temperatures tends to be cost prohibitive and 
unnecessary. Lower temperatures save leakage power and thereby improve Turbo 
performance of some workloads, but this effect is exponential and the benefits decrease 
rapidly as temperatures drops. The decrease in CPU leakage power typically is much 
smaller than the increase in cooling power.

Optimization at a Glance
This chapter has discussed a wide variety of different optimization opportunities, and it 
can be daunting to determine where to begin. What features should be enabled? Which 
should be disabled? Different users have different constraints and goals for what they 
are trying to achieve. This section provides a high-level summary of the various features 
that have been discussed. Before the optimizations are discussed, Table 8-4 provides 
a summary of some of the different types of impacts that these optimizations can 
have on the system. Tables 8-5 through 8-8 summarize a selection of the optimization 
opportunities, including the priority in which users may want to focus their efforts first.

Table 8-4. Performance Metrics

Metric Description

Response time Average time to complete a request from an external agent. Users 
of transaction processing workloads should note these.

Peak throughput The feature may reduce (or improve) the peak throughput of the 
system. This could also be called “peak performance.”

Execution block This feature may result in short periods of time (microseconds, 
unless noted otherwise) in which core execution may be blocked.

Device block This feature may result in short periods of time (microseconds, 
unless noted otherwise) in which an external device may be 
blocked from access to memory.
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On many systems, the CPU is a significant component of the overall platform power. 
Table 8-5 provides some highlights from the CPU power optimizations that have been 
discussed. Note that the power impact shown here is for a typical high-TDP Xeon E5/E7 
system. Not all systems will exhibit these impacts; the details are discussed in earlier sections.

Systems with large memory capacities or low-power CPUs may have large 
contributions for memory power. Table 8-6 provides a summary of some of the 
optimizations available for memory power savings. Users who are very latency sensitive 
will want to disable OSR, but typical users likely will not be exposed to it.

Networking cards themselves do not contribute a large percentage of platform 
power in most systems. However, Interrupt Moderation is a key feature that provides 
tradeoffs between CPU utilization, power consumption, and latency. Tuning this feature 
to suit a user’s needs can have a significant impact on the power/performance/latency 
characteristics of a system.) Table 8-7 provides a summary of some of the key NIC 
optimizations.

Table 8-6. Memory Optimization Summary

Feature Primary Performance Impact Utilization Targets Control Priority

CKE Enable Peak throughput All BIOS Medium

OSR Response time, execution 
block, device block

Idle BIOS Low

Table 8-7. NIC Optimization Summary

Feature Power Impact Primary  
Performance  
Impacts

Utilization 
Targets

Control Priority

Media speed Watts Peak throughput, 
response time

All Driver Low

EET Watts Response time, 
device block

Idle Driver Low

Interrupt 
moderation

Watts to tens  
of watts

Peak throughput, 
response time,  
device block

All Driver High

In compute servers with only one or two drives, storage power is generally not a large 
contributor to overall platform power. In storage nodes, on the other hand, HDD and/or 
SDD power can dominate the power consumption of the platform. Table 8-8 provides a 
summary of the storage power optimization opportunities for a storage node. For compute 
nodes, it may be desirable to disable or “turn down” many of these features. Some can add 
considerable latency with minimal power savings. The Slumber state, for example, saves 
minimal power in a server environment but can result in millisecond wake latencies.
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Summary
Power optimization can have a significant impact on both power consumption and 
performance in a platform. Users should start by characterizing their system behavior 
and power consumption so that they can decide which areas to focus on. There is no 
need to spend weeks attempting to optimize drive power if it is only consuming 5% of the 
overall platform power. Next, users need to identify a repeatable workload that can be 
used to best understand the power and performance tradeoffs of different optimizations. 
Once this is complete, users can identify targeted experiments on specific configuration 
changes based on the guidance provided in this chapter, and they can then identify the 
optimal configuration based on the their constraints and goals.

Finally, there are a few key things to remember when performing optimizations:

P-states need not be an all-or-nothing decision. Enabling a small •	
to moderate frequency range can save significant power with 
minimal exposure to performance problems. These decisions are 
best made in the OS and not with the BIOS.

Higher frequencies can, in many cases, provide better platform •	
power efficiency.

C-states can provide significant performance improvements when •	
paired with Turbo in addition to saving power.

Interrupt moderation tunings can have a significant impact on •	
response time, power efficiency, and throughput. Improved 
throughput and better power efficiency can be traded for faster 
response times.

Table 8-8. Storage Optimization Summary

Feature Power Impact 
(per drive)

Primary  
Performance  
Impacts

Utilization 
Targets

Control Priority

PHY power state 
(Partial/Slumber)

Hundreds  
of mW

Response time, 
execution block,  
peak throughput

Idle Driver Medium

Device power 
savings

Watts Response time, 
execution block,  
peak throughput

Idle Driver Medium
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Chapter 9

Data Center Management

In prior chapters we discussed the optimization of the computing infrastructure inside 
the data center for energy efficiency. However, within the framework of the entire data 
center, this is only part of the energy story.

Data Center Management and Power Distribution
As mentioned in Chapter 1, the infrastructure surrounding computers in the data 
center is equally important to consider in the context of overall energy efficiency. If the 
infrastructure is required to support the computing, it needs to be included in the overall 
energy equation. Data center infrastructure itself has multiple missions; along with 
sheltering the computers from natural elements like humidity, extreme temperatures,  
and natural disasters, it provides office space for the engineers and technicians who 
operate the data center, and it manages the computing resources. The data center 
infrastructure handles energy delivery to the computing resources and the disposal of 
waste heat from them. It also fulfills a mission of resiliency by providing both physical 
security and some form of survivability planning in the event of power outages.

In this chapter, we will touch on many of these aspects, especially as they pertain to 
energy management in the data center.

Data Center Facilities
Data center facilities vary widely in form, scale, and architecture, depending on local 
conditions, economics, and data center requirements. For instance, data centers can 
be housed in large purpose-built structures, as special purpose spaces within existing 
buildings, or in previously existing buildings adapted for a new purpose.

Large purpose-built data centers—such as those built by large Internet companies 
like Google, Apple, Facebook, and Microsoft—tend to be located in geographies that 
provide low-cost power and have close proximity to large populations centers (with 
proximity generally measured by ping times of less than 10–20 milliseconds) they serve. 
These data centers may be built with facility powers ranging from approximately  
1 to 20 megawatts.
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By way of contrast, many special purpose and general purpose data centers are 
housed within existing buildings. These data centers tend to be smaller and tend to be 
built to serve local or specialized purposes. Although smaller data centers can be built 
to high efficiency energy efficiency standards, in many cases these are of secondary 
importance to other considerations such as security, proximity to a specific physical 
location, or simply convenience.

Among the most interesting facilities are those built in buildings either renovated or 
adapted from another purpose. For instance, Google recently built a data center inside  
a converted paper mill in Finland.1 Because of changing demand for paper due to shifts in 
reading habits and the increased use of tablet computers, obsolete or excess paper mills, 
which are fitted to supply large amounts of electricity and cooling water, can make good 
candidates for alternative sites for data centers.2

Other data centers have been built inside of underground caves3 or on mountain 
tops,4 and some have even been proposed to float in off-shore barges.5 In each case, 
although the physical infrastructure of these facilities is quite different, the need to supply 
large amounts of electricity and ample capacity to remove the energy as waste heat are 
always common factors. It is the engineering of the power and cooling infrastructure that 
really distinguishes the efficiency of the data center.

Power Infrastructure
Although data centers may differ in mission, from providing network edge services to 
core compute to providing highly secure data processing and storage, in almost all cases, 
they require highly conditioned uninterruptable power to meet the high availability 
requirements their customers demand. The power to the data center needs to be highly 
conditioned to protect the servers, storage systems, and networking equipment in the 
data center from power transients. Both low-power conditions and power surges can 
cause equipment reliability issues and extended equipment downtime depending on 
duration and severity. Figure 9-1 shows a highly schematic layout of the connection 
of the electrical grid to the data center. When electrical grid power is interrupted, the 
uninterruptable power supply (UPS) assumes the load of the data center until the back-up  
generators can be started and reach full capacity. Due to cost constraints, it’s typical to 
support only the computing equipment on an uninterruptable basis.

1See “Hamina, Finland,” www.google.com/about/datacenters/inside/locations/hamina/.
2See Bart King, “Tablets are Significantly Reducing Media Industry’s Paper Use” (2011),  
www.sustainablebrands.com/news_and_views/articles/tablets-are-significantly-
reducing-media-industry%E2%80%99s-paper-use.
3See Nick Booth, “Green Mountain Puts Data Centre In NATO’s Norwegian Cave” (2013),  
www.techweekeurope.co.uk/workspace/green-mountain-data-centre-norway-120063.
4See Rich Miller, “The World’s Highest Data Center” (2013), 
www.datacenterknowledge.com/archives/2013/04/05/the-worlds-highest-data-center/.
5See Rich Miller, “Google Planning Offshore Data Barges” (2008), 
 www.datacenterknowledge.com/archives/2008/09/06/google-planning-offshore-data-barges/.

http://www.google.com/about/datacenters/inside/locations/hamina/
http://www.sustainablebrands.com/news_and_views/articles/tablets-are-significantly-reducing-media-industry%E2%80%99s-paper-use
http://www.sustainablebrands.com/news_and_views/articles/tablets-are-significantly-reducing-media-industry%E2%80%99s-paper-use
http://www.techweekeurope.co.uk/workspace/green-mountain-data-centre-norway-120063
http://www.datacenterknowledge.com/archives/2013/04/05/the-worlds-highest-data-center/
http://www.datacenterknowledge.com/archives/2008/09/06/google-planning-offshore-data-barges/
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Power Distribution Efficiency
Although most of this book has concerned itself with the energy efficiency of the servers 
themselves, a key factor in overall data center efficiency is the energy loss in getting energy 
to the servers themselves. So-called distribution losses (bringing power from a remote 
generation facility to the site of use) can range from a few percent in cases where the load is 
close to the generating capacity—such as the large data centers in Quincy, Washington, and 
The Dalles, Oregon, which are within a few miles of hydroelectric energy sources—to 10%–20% 
when data centers are several hundred miles from electricity generation. Although these 
losses can be extremely important in overall efficiency, addressing them relies primarily on 
the siting of the data center facility, which is outside the scope of this book.

Power Conditioning
Power conditioning for the data center is among the most important missions of the 
facility. The power for the servers needs to be both “clean,” meaning free from spikes 
or interruptions that might affect the availability of the servers in the data center, and 
economical, so the data center can achieve its mission at the lowest feasible cost. In this 
section, we’ll look at the high-level topologies of two ways this can be achieved, in what 
are called AC and DC power distribution.

In AC power distribution, power to the server is supplied as AC voltage, typically at 
208 VAC in the United States. AC power distribution is by far the most dominant in the 
industry. The flow of energy from the grid first powers the UPS system and then goes to 
the rack and row-level power distribution units (PDUs), where power is metered to the 
individual servers while at the same time protecting adjacent servers from electrical faults 
at any individual server.

Figure 9-2 shows a typical power distribution diagram for an AC data center. Power 
from the electrical grid feeds the UPS), which in turn provides clean uninterrupted power 
to the rack or row-level PDUs. These units convert power to levels usable by the servers 
while at the same time protecting the facility from faults at individual servers. The power 
and voltage conversions are highlighted. The UPS is shown with a bypass to allow more 
efficient operation. 

Back-up 
Generating 

Capacity

Uninterruptable
Power Supply 

(UPS)

Electrical 
Grid

Power Switching 
and 

Conditioning

Data Center

Office and Lighting
HVAC

Computing 
Equipment

Figure 9-1. Schematic of the connection of the electrical grid to the data center
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One significant concern with this standard topology is the repeated conversion between 
AC and DC voltages between the grid and the server. Each conversion can results in a several 
percentage point sacrifice in efficiency, which can contribute to higher electricity costs.

Two of the conversions in the UPS—AC to DC and then back from DC to AC—can 
be eliminated by using a bypass or, more colloquially, eco-mode of the UPS. Although 
there may be concerns about the switch over time between the bypass and battery power 
in the event of a power failure, these concerns have been largely mitigated by technical 
development of suppliers. Typical switch-over times are now about one quarter of a 
power cycle, far below the damage threshold for the IT equipment in the data center. The 
Green Grid has adopted the use of a bypass as a “best known method.”6

As an alternative to AC, there is compelling evidence that DC power to the data 
center can improve overall efficiency.7 The primary efficiency gains come from the 
elimination of inefficient conversions from AC to DC. An example topology for this 
is shown in Figure 9-3.  Power from the electrical grid feeds a converted PDU, which 
provides 48 VDC to the batteries and the servers. Voltage and AC to DC conversion steps 
are highlighted. 

Figure 9-2. A typical power distribution diagram for an AC data center
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Figure 9-3. A typical power distribution diagram for a DC data center

6See “Evaluation of Eco Mode in Uninterruptible Power Supply System” (2012),  
www.thegreengrid.org/en/Global/Content/white-papers/WP48-EvaluationofEcoModeinUn
interruptiblePowerSupplySystems.
7See My Ton, Brian Fortenbery, and William Schudi, “DC Power for Improved Data Center Efficiency”  
(2008), http://hightech.lbl.gov/documents/data_centers/DCDemoFinalReport.pdf.

The DC power infrastructure is inherently simpler than the AC power infrastructure 
because the number of required conversions, and hence expensive high-reliability 
high-power electrical gear, is reduced. However, the supply and experience base for AC 
power equipment is much larger since AC has been and remains the dominant industry 

http://www.thegreengrid.org/en/Global/Content/white-papers/WP48-EvaluationofEcoModeinUninterruptiblePowerSupplySystems
http://www.thegreengrid.org/en/Global/Content/white-papers/WP48-EvaluationofEcoModeinUninterruptiblePowerSupplySystems
http://hightech.lbl.gov/documents/data_centers/DCDemoFinalReport.pdf
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standard. For instance, although DC can and has been used safely for years in the 
communications world, technicians in more traditional data centers are not currently 
trained to use it. Thus, although there may be some theoretical advantages of one 
approach over the other, the reality is that both high efficiency and low total cost can be 
achieved in both approaches provided the proper engineering practices, such as the use 
of UPS bypass in the AC case, are implemented. 

Back-up Systems
Data center services need to be maintained even in the event of a power outage. For this, 
data centers rely on back-up power systems comprised, generally, of a short-term and 
longer term backup system. The short-term system is put into place to react quickly to 
fluctuations in supply and provide power, often for only a few minutes, until the high 
capacity longer term backup system can take over the full electrical load of the data center.

Uninterruptable power supplies (UPS) have long been built using large arrays of 
lead-acid batteries, and many data centers still use this simple but reliable technology. 
Lead-acid batteries, which are essentially like the battery in as typical automobile, 
can be purchased on the open market. The technology is mature and has not changed 
significantly in years. A downside to using batteries is that they need to be maintained and 
replaced on a regular basis to provide the intended high reliability of a back-up system.8

As a result, data center operators have sought and implemented alternative UPS 
schemes. One popular alternative is a high-speed rotating fly wheel system. In this 
case, rather than storing energy chemically, as in a battery, energy is stored kinetically 
through a high-speed, high-mass rotating flywheel. Flywheel systems take up less space 
than a battery system and require significantly less maintenance. But they also provide 
only a few seconds (in the range of 10–20, though this can vary depending on the size 
of the installation and load) of autonomy, implying that the back-up generators need 
to start up properly the first time. In addition, the size of the back-up generators needs 
to be increased slightly because, in addition to running the data center, they must also 
re-energize the flywheel system in a short amount of time to restore facility back-up.9 
Flywheel systems have the additional advantage that they run on AC supply, eliminating 
the needs for DC conversion.

The most common type of long-term back-up power for a data center is a diesel 
generator. The use of diesel generators is very common not only in data centers but 
also in other critical facilities such as hospitals, and thus they have a well-understood 
maintenance record and it is easy to find repair experts. Typically, diesel generators can 
represent about 10% of the capital cost of a data center. Although some proposals for 
reducing the cost of the generator capacity through intelligent IT have been made, these 
have not been widely adopted.10

8See “Implementing the Best Battery Maintenance Practices to Avoid Data Center Downtime” (2014), 
 www.datacenterknowledge.com/archives/2014/05/05/implementing-best-battery-
maintenance-practices-avoid-data-center-downtime/.
9See “Flywheel versus Battery in the Data Center” (2012), 
 www.datacenterdynamics.com/focus/archive/2012/11/flywheel-versus-battery-data-center.
10Ibid.

http://www.datacenterknowledge.com/archives/2014/05/05/implementing-best-battery-maintenance-practices-avoid-data-center-downtime/
http://www.datacenterknowledge.com/archives/2014/05/05/implementing-best-battery-maintenance-practices-avoid-data-center-downtime/
http://www.datacenterdynamics.com/focus/archive/2012/11/flywheel-versus-battery-data-center
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There has been some innovation in backup power systems in data centers to avoid 
both cost and some of the downsides of having to operate large diesel generating plants 
(with the concomitant exhaust and noise) on a regular basis. For instance, the Facebook 
data center in Sweden forgoes about 70% of the typical back-up generator capacity 
because they are able to take advantage of redundant electrical grids in the area. This 
approach is brilliant and easily provides very high reliability to the power network at a 
very economical cost scale. However, redundant electrical grids are not common and 
thus this approach is of limited use in most cases.

Another alternative to diesel generators are fuel cells. Fuel cells convert fuel 
(typically either hydrogen or methane) to energy in an electrochemical reaction. Fuel 
cells have many advantages over other power sources. In addition to be relatively 
compact and clean, they can be brought close to the load, eliminating grid and 
distribution losses. Indeed, some data center operators have considered eliminating grid 
energy entirely for this reason, reporting favorable overall total cost of ownership under 
assumptions for realistic cost parameters.11

The eBay data center in Utah, commissioned in 2013,12 gets most of its power from 
natural gas fuel cells built by Bloom Energy. According to eBay, the fuel cells reduce CO2 
emissions about 50% and also increase the reliability of the data center. Indeed, the fuel 
cells are the primary source of energy for the data center, reducing costs associated with 
back-up generators and UPS systems.

Cooling Infrastructure
Providing power to the servers is an important side of the data center energy equation. 
On the opposite side, equally important, is the removal of all the waste heat generated by 
the servers. It’s important to note that all the energy used to run the servers (and all the 
other equipment in the data center) needs to be removed as waste heat. That implies, for 
instance, that for a 10 megawatt data center load, exactly 10 megawatts of waste heat need 
to be dissipated to balance the energy input to the facility.

It’s instructive to understand the evolution of data center cooling since it tells a 
strong story about advancing the infrastructure side of overall data center efficiency. 
Typical data centers build in the 1990s mainly relied on central computer room air 
conditioning (CRAC) units to provide cooling. Warm air coming from racks from 
servers was pulled into the CRAC units, chilled to temperatures as low as 60 degrees 
Fahrenheit, and pushed back out into the room through perforated raised floor tiles. 
This served adequately, though hot spots did turn up (often due to the poor uniformity 
of air circulation), which required special treatment. In addition, cold air entering the 
computer room was instantly mixed with warmer air, reducing the effectiveness of the 
cooling units. 

11See “No More Electrical Infrastructure” (2013),
http://research.microsoft.com/pubs/203898/FCDC.pdf.
12See “Introducing Our Salt Lake City Data Center” (2013),  
http://blog.ebay.com/introducing-our-salt-lake-city-data-center-advancing-our-
commitment-to-cleaner-greener-commerce/.

http://research.microsoft.com/pubs/203898/FCDC.pdf
http://blog.ebay.com/introducing-our-salt-lake-city-data-center-advancing-our-commitment-to-cleaner-greener-commerce/
http://blog.ebay.com/introducing-our-salt-lake-city-data-center-advancing-our-commitment-to-cleaner-greener-commerce/
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Figure 9-4 shows the layout of two data center types. The top figure is a typical 
“ballroom” configuration typical prior to the year 2000. Newer data centers, such as 
the one shown on the bottom of Figure 9-4, segregate warm and cold air and use local 
ambient air to economize operations.

Server Rack CRAC unit

Raised Floor
Cold Air

Warm Air Return

Air Circulation 
and FiltrationCold Air

Warm Air Exhaust

Cold Air 
Intake

Figure 9-4. Two data center types: A typical, old “ballroom” configuration (top), and today’s 
data center (bottom)

Starting in the early 2000s, engineers realized that segregating warm and cold air 
from each other by pushing cold air up and behind the server and then pulling the warm 
air out through the front of the server could improve the efficiency of the cooling units 
significantly. For instance, a study by T-Systems and Intel found that segregating hot and 
cold air could reduce the power usage effectiveness (PUE) of a model data center from 
a rating of 1.8 to around 1.3, a significant reduction in infrastructure energy use.13 The 
work showed that even small air leaks, if not controlled, could have a significant effect on 
reducing the efficiency of the infrastructure.

The third major step in the evolution of data center infrastructure was the advent 
of what is called free-air cooling or the use of outside air to cool the data center. In many 
climate locations, outside air temperatures and humidity levels are low enough to 
effectively cool severs without additional help from air conditioners, provided air flows are 
maintained. There are many examples of data centers built to these standards, including 
the famous “chicken coop” data center, which relies on the tendency of warm air to rise 
where cross winds are, and then these move the warm air out of the building.14 The industry 

13See www.t-systems.com/news-media/white-papers/827826_2/blobBinary/White-Paper_
Data-Center-2020-I.pdf.
14See David Filo, “Serving Up Greener Data Centers” (2009), https://yodel.yahoo.com/blogs/
product-news/serving-greener-data-centers-1853.html.

http://www.t-systems.com/news-media/white-papers/827826_2/blobBinary/White-Paper_Data-Center-2020-I.pdf
http://www.t-systems.com/news-media/white-papers/827826_2/blobBinary/White-Paper_Data-Center-2020-I.pdf
https://yodel.yahoo.com/blogs/product-news/serving-greener-data-centers-1853.html
https://yodel.yahoo.com/blogs/product-news/serving-greener-data-centers-1853.html
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has studied the capacity of different climates to support natural air cooling and studies 
have been published by the Green Grid where the effects of an updated AHRAE standard 
to allow wider temperature and humidity ranges were considered.15

The final stage of data center facility evolution is the advent of the high-temperature 
data center. Silicon and computer hardware components can tolerate higher 
temperatures than humans can. Studies have shown that even off-the-shelf components 
can operate safely at 40°C.16 To further reduce cooling, there is a push to provide 
operational capability at 50°C.

Simplified Total Cost Models of Cost and 
Compute Infrastructure
A significant amount of work is available on total cost of ownership (TCO) models, 
including an excellent (and publicly available) one developed by Jonathan Koomey that 
gives significant detail for determining accurate cost benchmarks.17

In this section, rather than provide detailed models, we focus on a higher level 
perspective to help you understand the larger trends in cost. There is an inherent 
danger in using simplified models to make what can be relatively complex business 
decisions, but using them to help shape insight and recognize macroscopic trends 
can be useful.

Figure 9-5 shows a simplified TCO model of a 10,000 square foot data center. 
The model calculates the overall TCO of the entire data center, including building, 
infrastructure, and IT equipment costs. As important as what is in the model is 
what is not included. Important cost parameters like architectural choices, software 
licenses, labor and warranty coverage, insurance, and taxes could tip the conclusions 
of the model substantially and would need to be added for any responsible  
business decision.

15See “Updated Air-Side Free Cooling Maps” (2012), www.thegreengrid.org/en/Global/
Content/white-papers/WP46-UpdatedAirsideFreeCoolingMaps-TheImpactofASHRAE2011All
owableRanges.
16See “The Efficient Datacenter” (2011), www.intel.com/content/dam/doc/technology-brief/
efficient-datacenter-high-ambient-temperature-operation-brief.pdf.
17See Jonathan Koomey, “A Simple Model for Determining TCO for Data Centers” (2007),  
http://wdminc.com/whitepapers/SimpleModelDetermingTrueTCO.pdf.

http://www.thegreengrid.org/en/Global/Content/white-papers/WP46-UpdatedAirsideFreeCoolingMaps-TheImpactofASHRAE2011AllowableRanges
http://www.thegreengrid.org/en/Global/Content/white-papers/WP46-UpdatedAirsideFreeCoolingMaps-TheImpactofASHRAE2011AllowableRanges
http://www.thegreengrid.org/en/Global/Content/white-papers/WP46-UpdatedAirsideFreeCoolingMaps-TheImpactofASHRAE2011AllowableRanges
http://www.intel.com/content/dam/doc/technology-brief/efficient-datacenter-high-ambient-temperature-operation-brief.pdf
http://www.intel.com/content/dam/doc/technology-brief/efficient-datacenter-high-ambient-temperature-operation-brief.pdf
http://wdminc.com/whitepapers/SimpleModelDetermingTrueTCO.pdf
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At the most basic level, a cost model takes into account the capital costs (generally 
assumed to be incurred once and then amortized over some standard depreciation 
period to annualize the expense) and ongoing operating expense, which are paid on an 
as-used basis. Important parameters are highlighted in Figure 9-5. Figure 9-6 shows that 
operational electrical costs are a sizeable fraction of the overall TCO of a data center. 
Both the annual electrical energy cost and the electrical and cooling infrastructure scale 
directly with the watts consumed by the servers, thus a net reduction in server power can 
save on both operational and capital costs in the data center.

Unit Estimated Cost Annualized Cost

Data Center

Electrical and Cooling Cost/Watt $ 15 $4.0 M

10,000 Square Foot Building Cost/Square Foot $ 300 $0.20 M

Facility Depreciation Years 15 --

PUE (Unitless) 1.5 --

Server Cost per Server $ 5000 $5.0 M

Server Refresh Lifecycle Years 5 --

Electricity Cost per Kwh $ 0.10 --

Server Average Power Watts 300 $3.1 M

TOTAL -- -- $12.3M

Figure 9-5. A simplified TOC model of a 10,000 square foot data center calculated for 
nominal value

Figure 9-6. The operational electrical costs are a sizeable fraction of the overall TCO of a 
data center
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The ranges of electrical infrastructure cost depend primarily on architectural choices 
as mentioned earlier. Decisions, such as the kind and number of back-up generators, 
electrical redundancy, layout, and location, can all affect the choices of costs widely.  
In general, the range of $8.00 to $20.00 per watt represents reasonable estimated bounds, 
though deviations both above and below this range are possible.

Data center efficiencies in the range from PUE = 1.1 up to 3.0, where PUE is the 
power usage effectiveness, as defined in Chapter 1, are known in the industry. Generally 
the PUE in older facilities is much higher than it is in more modern facilities that use 
ambient cooling to reduce overhead costs.

Performance per Watt per Dollar
It’s common to hear people concerned about data center costs talk in terms of 
“performance per watt per dollar,” yet there seems to be no good description of this 
phrase in published literature. In this section, we briefly discuss where terms with the 
units of performance per watt per dollar come in to the cost of ownership equations.

In order for you to understand this, we need to add one more dimension, which 
we call computational work. Computational work is not the same a physical work, but it 
can nevertheless be thought of in a similar way—making a physical change on a system 
(in the case of a computer, the bits). This physical change requires energy, and thus the 
energy required to make the change can be equated to work done.

For the sake of the present case, we’ll consider the computational work rate to 
be done by a data center as a number, T, of transactions per second. The specific type 
of transaction isn’t important, and we’ll make a simplifying assumption that these 
transactions are uniform. If the capacity of the server, called its performance, is p 
transactions per second, then the number of servers, N, required in the data center is just
 

N = T/p
 

Now the total power use of the data center, P
total

 , will be the power required by the 
server, P

server
 , plus the power used by the infrastructure, or

 
P

total
 = N * P

server
  * PUE

 
Which, upon substituting the relationship above, becomes

 
P

total
 = T * P

server
  * PUE/p

 
Noting that Energy equals Power * Time, we can annualize the costs by considering 

the Power and the transactions rate, T, over a standard interval of time, which we’ll take to 
be one year. When you perform some simple algebra, it is easy to calculate cost efficiency 
in terms of transaction per dollar of operational energy cost:
 

T/(P
total

 * Energy Cost) = p/(P
server

 * Energy Cost * PUE)
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Note that the period of time over which the costs are averaged cancels in both the 
numerator and denominator, as we’d expect. The right-hand side has units of performance 
per watt per dollar. This equation has intuitive appeal. To maximize operational efficiency, 
you would want to maximize the transactions per energy cost. The equation highlights 
that this is achieved by maximizing system performance; minimizing server power and 
energy costs; and maximizing the data center infrastructure efficiency. Maximizing 
performance per watt per dollar minimizes the cost per transaction.

Summary
In this chapter we have shown that maximizing data center efficiency resolves to 
maximizing both the energy efficiency of the servers and the data center infrastructure. 
Power distribution plays a large role in the management of overall data center efficiency. 
Although AC dominates the current design and distribution of power to data centers, 
DC offers equivalent efficiency with fewer power conversions. As data centers move to 
alternative power sources like solar and fuel cells, which inherently provide DC power, 
we can expect to see a greater foothold of DC in data center design.

Finally, we have shown that total cost of ownership can offer a complex set of 
trade-offs in optimizing overall data center design, with both server performance and 
efficiency gains offering some of the most powerful variables in the overall optimization. 
This optimization reduces to maximizing “performance per watt per dollar” in order to 
achieve maximum cost efficiency.
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Appendix A

Technology and Terms

AC Alternating current.

ACNT A term commonly used to describe the IA32_APERF MSR 
used to calculate average frequency over a user-defined 
time window.

ACPI The Advanced Configuration and Power Interface is used by 
BIOS to expose platform power management capabilities.

APIC Advanced Programmable Interrupt Controller.

AR The application ratio is used to describe the CPU logic 
switching rate of a workload.

ASHRAE American Society of Heating, Refrigerating, and  
Air-Conditioning Engineers.

ASPM Active State Power Management is a feature used to 
manage the power of PCIe links.

Avoton Codename for Atom C2000-series SoC that follows 
Centerton.

AVX Advanced vector extensions are integer and floating-point 
instructions used to improve performance.

Bin A term used to describe the increase in frequency between 
any two P-states Pn and Pn-1.

BIOS Basic Input/Output System refers to the firmware used to 
initialize a server.

BMC The baseboard management controller is a dedicated 
microcontroller that provides remote monitoring and 
management functionality.

CC0/CC1/CC3/CC6 Describes a specific core-level C-state.

Centerton Codename for Atom S1200-series processor.

(continued)
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CKE The clock enable signal is commonly used to identify  
rank-level power down modes for memory.

CLST Closed Loop System Throttling is a power management 
feature that enables hardware protection using Node 
Manager and a PMBus power supply.

CLTT Closed Loop Thermal Throttling utilizes temperature 
monitoring to manage memory thermal throttling.

CPI Cycles per instruction is a basic performance metric.

CPU Central processing unit.

CPUID CPU identification instruction used to discover processor 
type and features.

CRAC Computer room air conditioner.

CRAH Computer room air handler.

CSR A control and status register frequently used for power 
management monitoring or control.

C-state An idle state where the processor has halted execution of 
instructions.

DC Direct current.

DPC The DIMMs per channel is a ratio used to describe the 
memory population of a platform.

DRAM Dynamic Random Access Memory.

D-state A low-power idle state for devices (PCIe, SATA).

DTSMAX The maximum allowed temperature of the processor.

Dynamic Switching A processor power management feature that automatically 
switches a platform to performance mode when capacity  
is high.

EBS Event-based sampling is a monitoring technique that 
allows operators to associate power and performance 
events with the specific modules, functions, and lines of 
code that caused them.

ECC Memory error correction used to provide protection from 
both transient errors and device failures.

EDP The electrical design point

EEE Energy efficient Ethernet is a low power mode that 
reduces PHY power.
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EN Identifies a platform or processor as Entry Level  
(Xeon E3 for one-socket servers).

Energy Perf Bias A model-specific register used to control how aggressively 
power management features will be used.

Entry Latency The time it takes to transition from an active to idle state 
(typically measured in microseconds).

EP Identifies a platform or processor as efficient performance 
(Xeon E5 for two- to four-socket servers).

EPA Environmental Protection Agency, responsible for the 
Energy Star program.

EX Identifies a platform or processors as expandable  
(Xeon E7 for 4-socket and larger servers).

Exit Latency The time it takes to transition from an idle to active state 
(typically measured in microseconds).

FIVR A Fully Integrated Voltage Regulator is a high-current 
switching regulator integrated into the processor.

G-state A global state that identifies the overall power state of  
a platform.

Haswell Codename for the Xeon E5 v3 processor that follows  
Ivy Bridge.

HDD A hard disk drive is a traditional spinning hard drive.

HIS Integrated heat spreader.

HLT Halt instruction used by an operating system to enter a C1 state.

HPC High performance computing.

HSC Hot swap controller.

HT Hyper-Threading technology is Intel’s implementation of 
simultaneous multithreading.

I/O Input/output is used to describe capabilities for 
communication such as DDR, PCIe, and coherent 
interconnects such as QPI.

IA The Intel Architecture term is commonly used to identify  
a hardware feature unique to Intel products.

IB InfiniBand is a low-latency and high-throughput 
communications link frequently used in high performance 
computing.

(continued)
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ICCMAX The maximum current power delivery a platform can 
supply.

IMON A voltage regulator current monitor used to measure 
power.

IPMI The Intelligent Platform Management Interface is a 
specification and operating system independent interface 
for remote management.

ITD Inverse temperature dependence.

Ivy Bridge Codename for the Xeon E5 v2 processor that follows  
Sandy Bridge.

LDO Low-dropout regulators used to provide variable voltages 
across cores in a processor with a single input voltage.

Linpack An HPC benchmark derived from a collection of Fortran 
linear algebra routines.

L-state A low-power idle state for interconnects (PCIe, DMI, QPI).

MBVR A motherboard voltage regulator.

MCNT A term commonly used to describe the IA32_MPERF MSR 
used to calculate average frequency over a user-defined  
time window.

MCP A multi-chip package is where multiple chips are 
integrated together in the same package.

ME The (Intel) Management Engine in the Platform Controller 
Hub used for monitoring, power capping, and hardware 
protection.

MMIO Memory mapped I/O.

MSR A model-specific register frequently used for power 
management monitoring or control.

MWAIT A Monitor Wait instruction used by an operating system to 
enter a C1 or deeper C-state.

Nehalem Codename for the Xeon 5500 processor.

NTB Non-transparent bridging is a support technology used to 
create non-coherent interconnects between nodes  
using PCIe.

NUMA Non-uniform memory access allocation provides contiguous 
memory regions for each processor’s local memory.
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NVMe Non-Volatile Memory Express is a specification for directly 
connecting SSDs on PCIe that provides lower latency and 
higher performance than SAS and SATA.

OEM Original equipment manufacturer.

OLTP Online transaction processing.

OLTT Open loop thermal throttling utilizes a static bandwidth 
limit to manage memory thermal throttling.

OS Operating system.

OSPM Operating system power management is a term commonly 
used to describe operating system power management 
policies and device drivers.

P1 frequency Represents the CPU base frequency, guaranteed 
frequency, or the marked frequency of a CPU.

Path Length Path length is a basic performance metric that measures 
the average number of instructions it takes to complete  
a single unit of work.

PC0/PC1/PC2/ PC3/PC6 Describes a specific package-level C-state.

PCH Also known as South Bridge, Platform Controller Hub is a 
chipset connected to the processor that integrates many 
features that would otherwise require discrete controllers 
(such as storage, network, USB, management, and legacy).

PCIe Peripheral Component Interconnect Express is a  
high-speed serial communication bus.

PCM Performance Counter Monitor is a set of stand-alone tools 
used to collect core and uncore power and performance 
events.

PCPS Per-core P-states allows individual cores that can each 
operate at their own frequency and voltage independent 
of what P-state other cores are in.

PCU The power control unit is an internal microcontroller used 
to facilitate CPU power management.

PECI The Platform Environment Control Interface is an 
interface for management controllers to communicate 
with the CPU.

PL1/PL2/PL3 A power level indicates a specific power limit used for 
power capping and power delivery protection.

(continued)
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P-Limit (I/O) A power management feature that allows the uncore to 
autonomously increase its uncore P-state to improve  
PCIe performance.

P-Limit (perf) A power management feature that allows an idle socket to 
increase its uncore P-state to improve snoop and  
memory latency.

PLL Phase-locked loop used to drive clocks.

PMBus Power Management Bus is an open standard protocol 
used for power management of power supplies.

PMIC A power management integrated circuit is applied to 
integrated circuits that have multiple power conversion 
controllers in one small package.

Pn frequency Represents the lowest frequency P-state or the most 
energy efficient frequency.

P-state A performance state is an active state that represents a 
fixed frequency and voltage operating point.

PSU Power supply unit.

PUE Power usage effectiveness is defined as the ratio of the 
total energy use by the datacenter to that of the energy 
used by the IT equipment.

PWM Pulse-width modulation.

QPI QuickPath Interconnect is used for multi-socket 
communication.

RAPL Running Average Power Limit is a power management 
feature used to maximize performance while meeting a 
specific thermal or power constraint.

RDTSC Read time stamp counter instruction used by software to 
measure time.

Sandy Bridge Codename for the Xeon E5 processor that follows 
Westmere.

SAS Serial attached SCSI is a common protocol for connecting 
disks to a storage controller.

SATA Serial ATA is a common protocol for connecting disks to a 
storage controller.

SEL The System Event Log is a centralized event log used by 
management firmware.
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Self-refresh A low power memory power state where the DIMM itself is 
responsible for handling refresh.

SKU The stock keeping unit term is commonly used to identify 
a CPU by its specific features (microarchitecture, core 
count, frequency, TDP).

SmaRT Smart Ride Through is a technology that allows a server to 
function through momentary loss of AC power.

SMBus The System Management Bus enables lightweight 
communication between platform devices.

SMT Simultaneous multithreading.

SoC A system on a chip is the coupling of the CPU with  
special-function hardware components in the same die.

SPEC The Standard Performance Evaluation Corporation 
creates and maintains server benchmarks.

SRAM Static random access memory.

SSD Solid-state disk drive is a high-performance hard drive 
that stores data in flash memory chips.

S-state A sleep state that powers down most platform 
components.

SVID Serial VID is a serial communication bus between the 
processor package and the voltage regulator controllers.

TC0/TC1/TC3/TC6 Describes a specific thread-level C-state.

TCO Total cost of ownership is a metric that estimates both the 
direct and indirect costs of a system.

TDP A thermal design point specifies the amount of power that 
the CPU can consume, and therefore the amount of heat 
that the platform must be able to remove in order to avoid 
thermal throttling conditions.

THERMTRIP A term used to describe the catastrophic trip temperature 
that, when exceeded, will result in immediate hardware 
shutdown.

TIM Thermal interface material fills the air gaps between the 
component being cooled and a heat sink.

Tj The junction temperature describes the internal 
temperature of the die.

TPC The Transaction Processing Performance Council creates 
and maintains server benchmarks.

(continued)
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TSC Time Stamp Counter.

TSOD Thermal sensor on die is a thermal sensor used in 
memory to measure temperature.

T-state An active state where core execution is duty-cycled at a 
fixed interval for thermal, electrical, or power reasons.

Turbo frequency Represents opportunistic frequency range about the CPU 
base frequency.

UFS Uncore Frequency Scaling describes a power 
management feature that allows the uncore to maintain its 
own P-state.

UMA Uniform memory access allocation interleaves every other 
cache line across each processor’s local memory.

Uncore A term commonly used to describe processor on-die logic 
outside of the cores.

USB Universal Serial Bus.

Vmin The minimum voltage used for the lowest frequency P-state.

VMM Virtual machine monitor.

VR Voltage regulator.

Vret The retention voltage required to maintain state in a 
circuit.

VT Virtualization technology is a term commonly used to 
describe technologies used to improve performance in a 
virtualized environment.

Westmere Codename for the Xeon 5600 processor that follows 
Nehalem.

Xeon E3 Processor type used in one-socket servers for workloads 
with low compute requirements.

Xeon E5 Processor type used in two-socket servers for most 
workloads.

Xeon E7 Processor type used in 2-socket to 256-socket servers for 
mission critical and scale-up workloads.

Xeon Phi Coprocessors used to accelerate workstation and cluster 
performance typically used in HPC.
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AC/DC power supply

boost stage, 123
converter, 122
isolated buck stage, 123
MOSFETs, 123
PDUs, 309
PMBus, 124
redundance, 124
shared power, 124

ACPI. See Advanced configuration and 
power interface (ACPI)

ACPI interfaces
C-states (CST), 162
FFH, 161
get hardware limit (GHL), 171
original equipment manufacturer 

(OEM), 161
OSC and PDC, 159
performance control (PCT), 161
performance supported states (PSS), 160
power averaging interval (PAI), 171
power impact, 161
power meter capabilities (PMC), 171
power meter measurement (PMM), 171
power trip points (PTP), 171
P-state domain (PSD), 160
set hardware limit (SHL), 171

Active power down (APD), 79
Active State Power Management (ASPM), 110
Advanced configuration and power 

interface (ACPI), 154, 156
Aggressive Link Power Management 

(ALPM), 302
APD. See Active power down (APD)
Architecture, Turbo

consumer devices, 54

C-states, 55–56
electrical protection, 55
fused frequencies, 56
power/thermal limits, 54
thermal protection, 54

ASHRAE, 5
ASPM. See Active State Power Management 

(ASPM)

B���������
Baseboard management controller 

(BMC), 155, 230–231
Basic input/output system (BIOS), 285
BIOS firmware

ACPI power states and transitions, 157
BMC, 155
CPUID, 155
CSRs, 154
C-states, 158
definition, 154
D-states, 159
IPMI, 154
microcode update, 155
MMIO, 154
MSRs, 154
operating system (OS), 154
PCU, 154
PMCSR, 159
P-states, 158
RDMSR and WRMSR, 154
setup utility, 162
S-states, 157
TLBs, 156

BL8. See Burst-Length 8 (BL8)
BMC. See Baseboard management 

controller (BMC)
Burst-Length 8 (BL8), 72
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C���������
Central processing unit (CPU)

optimization, 305
power management, 285
thermal management, 302

Chipset integration, 96
Clock-enabled (CKE) power savings, 298
Closed loop system protection (CLST), 163
Closed loop system throttling (CLST), 135
Closed-loop thermal throttling (CLTT), 84
CLTT. See Closed-loop thermal  

throttling (CLTT)
Computer room air conditioning  

(CRAC) units, 312
Control and status registers (CSRs), 154
Core offline, 292
Core Parking, 293
CPU architecture

8c Atom Avoton and 10c Xeon Ivy 
Bridge EP, 26

Avoton SoC and Sandy Bridge 
packages, 27

cache hierarchies, 25
components, 22
digital synchronous logic and clocks, 31
external communication, 29
Intel server processors, 33
I/O circuits, 32
on-die fabrics and uncore, 27–28
power control unit (PCU), 28–29
SRAM and eDRAM, 32
thermal design, 30
threads, cores and modules, 23
total cost of ownership (TCO), 21

CPU integration, 95–96
CPU power management

breakdown
I/O devices, 35
logic power, 35

common terms, 34
C-states

core C-states, 44–45, 47
module, 49
package, 47
thread, 44

description, 33, 41
frequency, voltage and  

temperature, 36–37

P-states
base clock frequency (bclk), 49
per core P-states (PCPS), 51–52
per socket P-states (PSPS), 51
server generations, 50
uncore frequency scaling, 53
voltage regulators (VRs), 50
web server, 49

S0ix, 58
S-states and G-states, 57
T-states, 56
Turbo (see Architecture, Turbo)

CPU sockets
DP platforms, 97
MP nodes, 97
node controllers, 98–99
UP server systems, 98

CPU thermal management, 66, 68–69
CSRs. See Control and status  

registers (CSRs)
C-states

BIOS, 291
core parking, 293
DDR memory, 293
Linux, 291
logical processors, 292
operating system, 293
power savings, 291
system utilizations, 291
turbo frequencies, 292
workloads, idle, 294

Customer relationship management 
(CRM) systems, 275

D���������
Data centers

AC power distribution, 309
air flow management systems, 5
ASHRAE, 5
back-up power systems, 311–312
“bottoms-up” methodology, 2
chicken coop, 313
computational work, 316
cooling systems, 5, 312–314
DC power distribution, 310
diesel generators, 311
digital economy, 1
eBay, 1
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electrical grid connection, 308–309
energy consumption, 19
energy efficiency and cost, 16, 307–308
energy proportional computing, 5–6
Facebook, 1
fly wheel system, 311
free-air cooling, 5, 313
fuel cells, 312
Green Grid, 4
Internet, 2
IT equipment, 3
lead-acid batteries, 311
Moore’s law, 19
natural disasters, sheltering, 307
network edge services, 308
power and cooling  

infrastructure, 18, 308
power back-up systems, 2
power conditioning, 309–311
power consumption, 3
power transients, 308
PUE, 4, 18, 313, 316
scale and architecture, 307
server, heat removal, 312
servers, 2
TCO models, 16, 18
total power, 316
underground caves/mountain  

tops, 308
UPS, 308, 311

Data manipulation, 173
DC to DC power converters

motherboard linear regulators, 127
motherboard multiphase buck 

converters, 125–126
PMIC, 128
single-phase buck converters, 125
SVID, 126
voltage regulators, 127–128

DDR thermal management
CLTT, 84
MEMHOT, 84
memory throttling, 83
OLTT, 83
SMBus, 83
monitoring, 83
TSOD, 83

Device drivers, 193–194
DIMMs, 71–74, 77, 80–82, 84

Distributed power management  
(DPM), 206

Distribution losses, 309
DMA coalescing, 301

E���������
ECC. See Error correcting code (ECC)
EEE. See Energy Efficient Ethernet (EEE)
Energy efficiency programs, 275
Energy Efficient Ethernet (EEE), 109
Energy Performance Bias (EPB), 294–295
Enterprise resource planning (ERP) 

systems, 275
Environmental Protection Agency (EPA), 

6–8, 275
Error correcting code (ECC), 72
Exascalar method, 14, 16
Execution consolidation

energy efficiency, 190
power capping, 191
single-threaded performance, 191

F���������
FFH. See Functional fixed hardware (FFH)
FIVR. See Fully Integrated Voltage 

Regulator (FIVR)
Frequency management algorithms, 286
Fully Integrated Voltage  

Regulator (FIVR), 127–128
Functional fixed hardware (FFH), 161

G���������
Green Grid, 4, 310, 314

H���������
Hard disk drives (HDDs), 114
Hardware-controlled performance 

(HWP), 180–181
Hardware monitoring

core performance monitors, 210–211
counter access and constraints, 214
CPI, 215
C-state statistics, 222–223
edge detection and average time, 

state, 212
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energy use, 215–216
events and metrics, 214
fixed counters, 210
frequency and voltage, 219–221
global freeze/unfreeze, 212
IPMItool, 262, 264–265
Linux perf, 259

Eclipse perf/sysprof, 258
integrated profiling and tracing 

subsystem, 258
logical processor activity, 260
malloc function, 261
perf top, 259
qemu-system process, 261
software thread activity, 260–261
Xeon E5/E7 processors, 262

memory power and performance 
statistics, 225

path length, 215
PCIe power management, 226
PCM. See Intel performance counter 

monitor (PCM)
QPI power management and 

performance, 226, 228–229
RDTSC, 215
standard and occupancy events, 213
status snapshots, 213
temperature, 217–218
types, 210
uncore performance monitoring, 212

HDDs. See Hard disk drives (HDDs)
High performance computing (HPC)

DNA decoding, 14
exascalar method, 14–16
Green500, 14
power consumption, 14
TCO, 15

HPC Linpack, 8
Hyperthreading (HT), 295

I���������
Industry workloads

ERP and CRM systems, 276
network based, 275
server, characterization and 

optimization, 275
SPECpower, 276
TPC, 276

Integrated graphics, 194
Intelligent platform management 

interface (IPMI), 154, 200
Intel Memory Latency Checker (Intel 

MLC) tools, 273
Intel performance counter monitor (PCM)

four-socket system, 255–256
frequency clipping cause, 257
frequency transitions, 257
Xeon E5/E7 processors, 256–257

Intel server processors, 33
Intel software developers manual  

(SDM), 210
Intel Xeon processors, 9
Interrupt moderation, 110
IPMI. See Intelligent platform 

management interface (IPMI)

J, K���������
Java Virtual Machine (JVM), 274

L���������
LAN power management

ASPM, 110
balance network traffic, 109
EEE, 109
interrupt moderation, 110
media speed, 109
WoL, 110

Linux distributions
CPUidle infrastructure, 204
IA32_ENERGY_PERF_BIAS, 204
Intel, 204
kernel version, 205
ondemand, 203–204

Linux kernels, 182, 205
Load line, 274

M���������
Management controllers monitoring

BMC and ME, 230
power sensors, 230
sensors, 231–235
synthetic sensors, 231

Management Engine (ME), 230
Management firmware

BMC, 163

Hardware monitoring (cont.)
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CLST, 163
definition, 163
hardware protection, 163
IPMI, 168
node manager (see Node manager)
power capping, 164
sensor model (see Sensor model)
smart ride through (SmaRT), 163
system event log (SEL), 169

Memory
buffer chips, 99
capacities, 99
DRAM devices, 145
management, 192–193
optimization, 305
power management, 298
reliability features, 85
risers, 99
thermal sensors, 144

Memory-mapped input/output  
(MMIO), 154

Microservers, 96
Microsoft Windows Server

core parking, 202
C-state policy, 201
memory cooling, 202
power management features and 

improvements, 202
power saver, balanced and high 

performance, 201
P-state policy, 201

MMIO. See Memory-mapped input/
output (MMIO)

Model specific registers (MSRs), 154
Monitoring

description, 209
management firmware

hot swap controllers (HSCs), 163
power supply units (PSUs), 163
voltage regulators (VRs), 163

sensor measurements, 209
system and subcomponent 

monitoring, 209
Moore’s law, 19
Motherboard linear regulators, 127
Motherboard multiphase buck  

converters, 125–126
Motherboard voltage regulators (VRs)

burst mode, 132
diode emulation mode, 132

losses, 131
phase shedding, 131–132
power losses, 129
single-phase buck converter, 129–130

MSRs. See Model specific  
registers (MSRs)

Multi-chip package (MCP), 27

N���������
Networking

ambient temperature, 106
attached media, 108–109
description, 105
frequency/voltage, 112
LAN component power, 106
LAN power management features  

(see LAN power management)
link power states, 111–112
TDP, 107
thermal management, 106, 108
USB connectivity, 111

Network interface card (NIC), 300–301, 305
Node manager

API, 170
attributes of, 166
BMC, 163
capabilities, 163
external interfaces and  

components, 165
high performance computing (HPC) 

environments, 170
policies, 165

Non-uniform memory access  
(NUMA), 78, 189, 246

Non-volatile memory express  
(NVMe), 117–118

NUMA. See Non-uniform memory access 
(NUMA)

NVMe. See Non-volatile memory express 
(NVMe)

O���������
OLTT. See open-loop thermal throttling 

(OLTT)
On-die termination (ODT), 80
Open-loop thermal throttling (OLTT), 83
Operating system capabilities (OSC), 159
Operating system (idle), 276–277
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Operating system monitoring tools
Perfmon and Logman, 266–268
SAR, 265–266

Operating system power  
management (OSPM)

collaborative interface, 180–181
C-state control, 174
C-state policy, 176–177
firmware control, 182–183
IA32_ENERGY_PERF_BIAS MSR, 187
IA32_PERF_CTL MSR (0x199), 179
IA32_PERF_STATUS MSR, 179–180
MWAIT, 175
performance capacity  

(see Performance capacity)
performance impact, 174
phones and tablets, 174
power state coordination, 186
processor utilization, 178
process scheduling, 188
P-state policy, 183
timer tick frequency, 189
topology and capability  

awareness, 188
T-state control, 187
Windows Server control panel, 187

Opportunistic self-refresh (OSR), 299
OSPM. See Operating system power 

management (OSPM)

P���������
Patrol Scrub, 300
PCM. See Intel performance counter 

monitor (PCM)
Performance capacity

average utilization, 184
frequency, 184
processor utilization, 183
P-states, 186

Performance metrics, 283–285, 303
Performance per watt per dollar, 316
Peripheral Component Interconnect 

Express (PCIe), 296–297
Physical address (PA), 72
Platform Controller Hub (PCH)

architecture block diagram, 101
capabilities, 100
components, 101–102
PCIe, 105
phase-locked loop, 105

platform power management, 102, 104
and TDP power, 104
thermal management, 105
three-chip solution, 100
two-chip Xeon Intel Architecture, 100
usage configurations, 104

Platform power components, 93–95
PMCSR. See Power management control 

and status register (PMCSR)
PMIC. See Power Management Integrated 

Circuit (PMIC)
Power conversion losses

energy transmission, 128
fixed losses, 128
motherboard VRs, 129–132
proportional losses, 128
system power supplies, 133–137
types, 129

Power delivery
AC/DC power supply  

(see AC/DC power supply)
block diagram—loads, 121
components, 120
conversion losses  

(see Power conversion losses)
DC/DC power  

converters, 120, 124–128
description, 118
dual socket power conversion, 119
energy transmitting, 122
motherboard, 122

Power distribution. See Data centers
Power management

algorithms, 285
APD, 79
CKE generation, 81
CKE power savings, 79
definition, 71
device power characteristics, 75
D-states, 90
hot-add flows, 90
link frequency/voltage, 89
link power states, 86
link width, 90
ODT, 80
PCIe, 87
performance, 79
PPD, 79
RAPL, 84
self-refresh, 81
voltage/frequency, 82
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Power management control and status 
register (PMCSR), 159

Power management integrated circuit 
(PMIC), 128

Power metrics, 281–283
Power-saving techniques

strategies, 40
turn it down, 39
turn it off, 38

Power usage effectiveness (PUE), 4, 313
PPD. See Precharge power down (PPD)
Precharge power down (PPD), 79
Prefetchers, 296
Processor driver capabilities (PDC), 159
Process scheduling, 188
Prochot, 69
P-states. See Turbo
PUE. See Power usage  

effectiveness (PUE)

Q���������
Quick path interconnect (QPI), 297

R���������
RAPL. See Running average power  

limit (RAPL)
Reliability, availability and serviceability 

(RAS) features, 269
Running average power  

limit (RAPL), 84
capabilities, product  

generations, 59–60
components/constraints, 58–59
DRAM, 65
IMON and digital power meter, 62
Linpack (HPL), 63–64
power-throttling, Turbo 2.0, 60–61
Sandy Bridge, 60

S���������
SAS. See Serial attached SCSI (SAS)
SATA. See Serial advanced technology 

attachment (SATA)
Self-refresh, 299
Sensor model

field replaceable unit (FRU), 169
sensor data records (SDRs), 169

Serial advanced technology attachment 
(SATA), 114–116

Serial attached SCSI (SAS), 114–116
Server chipsets

description, 100
legacy capabilities, 100
PCH (see Platform Controller Hub 

(PCH))
SoCs integrate, 100

Server CPU architecture. See CPU 
architecture

Server Efficiency Rating Tool  
(SERT), 273, 275

Servers
hardware and software  

configuration, 269
I/O devices, 269
operating systems, 269
optimizing steps, 270–271
RAS features, 269

Server-side Jave operations (ssj_ops), 11–12
Server system on a chip (SoC), 96
Silicon process technology, 11, 13
Simultaneous multi-threading (SMT), 188
Single-phase buck converters, 125, 129
SMBus. See System Management Bus 

(SMBus)
Software components, power 

management, 153
Software computation, 173
Software monitoring

applications, 235
C-state events, 242
frequent network interrupt  

handling, 236
hardware C-state residency, 241
interruption, 244–245
I/O performance, 247, 249
kernel time, 235
logical processor level, 241
memory, 245–246
Powercfg (Windows), 253–254
PowerTOP (Linux), 251
products and versions, 236
P-state events, 242–243
scheduler, processes and  

threads, 243–244
simultaneous multithreading  

(SMT), 238–239
software C-state residency, 240
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Turbostat (Linux), 250–251
utilization and processor  

time, 236–238
Solid state drives (SSDs), 114
SPEC. See Standard Performance 

Evaluation Corporation (SPEC)
SPECPower

dual socket servers, 9
Intel’s “tick-tock” model, 11
Java, 8
load line, 8, 10
power ratios, 8
server, 8

SRAM. See Static random-access memory
SSDs. See Solid state drives (SSDs)
Standard Performance Evaluation 

Corporation (SPEC), 8, 274
Static random-access memory (SRAM), 32
Storage

cold storage system, 113
compute nodes, 112
description, 113
frequency/voltage, 116–117
HDDs and SSDs, 114
NVMe power states, 117–118
power consumption, 113
SAS and SATA, 114–117
servers, 113

Storage optimization, 305
Storage power management, 301–302
System characterization

analysis, 281
collection frequency, 279
data collection, 278–279
event ordering and groups, 280
methodology, 280–281
steady state vs. non-steady  

state, 277–278
tools, 280

System Management Bus (SMBus), 83
System memory

architecture, 71
BL8, 72
capacity, 74
CPU DDRIO, 84
CPU interconnect (QPI), 85
CPU I/Os, 85
DDR channels, 73
DDR, CPU platform, 72

DDR3 and DDR4, 76
DDR4 DIMM, 75
DDR generation, 76
definition, 71
devices, 72
dual-ranked (DR), 73
ECC, 72, 74
imbalanced memory, 78
LRDIMMs, 77
memory thermal management 

techniques, 83
NUMA, 78
oct-rank (OR), 73
PA, 72
quad-ranked (QR), 73
RDIMMs, 77
SODIMMs, 77
UDIMMs, 77
UMA, 78

System power supplies
CLST, 135
cold redundancy, 137
different size, 134–135
losses, 133, 135–136
750 W PSU efficiency, 133–134
750 W PSU losses, 133
wattage ratings, 133

T���������
TCO. See Total cost of ownership (TCO)
TDP Xeon processors, 286
Technology and terms, 319–325
Thermal control inputs—sensors

layout, 148
platform component, 147
power supplies, 149
types, 146
voltage regulators, 148–149

Thermal gradient, 84
Thermal management

air-cooled system, 140
air heating, 139
component temperature 

specifications, 137
CPU packaging, 140
customer’s requirements, 145
equation, 140
fan speed control, 149–150
heating types, 138

Software monitoring (cont.)
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heat sink, 140–141
heat transfer terms, 139
IHS, 139
inputs—sensors, 146–149
local ambient, 139
memory, 144–145
natural temperature variation, 145
processors, 143–144
server cooling system, 137
system considerations, 141–143
TIM, 139
VRs, 149
worst-case corner, 138

Thermal sensor on-die (TSOD), 83, 217
Total cost of ownership (TCO)  

models, 15, 314–316
Transaction Processing Performance 

Council (TPC), 276
TSOD. See Thermal sensor on-die (TSOD)
Turbo

BIOS, 287
“burst” performance, 286
frequency control

Linux, 288
Windows, 287–288

modern operating systems, 286
ratio limits, 289–290
UFS, 290
voltage and frequency, 286

U���������
UMA. See Uniform memory access (UMA)
Uncore frequency scaling (UFS), 290
Uniform memory access (UMA), 78
Uninterruptable power  

supply (UPS), 308–309, 311

V���������
Virtual machine monitor (VMM)

energy efficiency, 198
hypervisor model, 195
idle scenarios, 195–196
logical processor utilization, 197–198
migration, 199–200
power state control, 195
server consolidation, 198
software/hardware  

enhancements, 198
VMM. See Virtual machine monitor 

(VMM)
VMWare ESX/ESXi, 206–207

W, X, Y, Z���������
Wake on LAN (WoL), 110
WoL. See Wake on LAN (WoL)
Workloads

characterization and  
optimization, 272

data collection, 271
energy efficiency, 273
Intel MLC, 273
JVM, 274
load line, 274
NetPIPE, 273
power and performance, 272–273
SERT, 275
software services, 271
SPECpower, 274
testing tools, 273
transactions/computations, 272
types, 273
virtual machines, 272
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