
Shelve in
Computer Hardware/General

User level:
Beginning–Advanced

BOOKS FOR PROFESSIONALS BY PROFESSIONALS
®

Energy Effi cient Servers
Energy Efficient Servers: Blueprints for Data Center Optimization introduces engineers
and IT professionals to the power management technologies and techniques used in
energy efficient servers. The book details the different power management features used in
today’s processors, memory, interconnects, I/O devices, and other platform components.
It examines the role firmware and software play in initializing and controlling these features,
and shares strategies for improving data center performance. Using examples from cloud,
HPC, and enterprise environments, the book teaches readers how to monitor, analyze,
and optimize their server infrastructure and shares optimization techniques used by data
center administrators and system optimization experts at the world’s most advanced
data centers.

What you’ll learn:

• Boost your knowledge of power management features and options in modern
servers—from data center and systems software to low-level processor
technologies

• Improve your understanding of the power management technologies used in
cores, caches, memory, system agents, processor interconnects, and PCIe

• Learn techniques for monitoring and characterizing server power management
technologies and their impact on component- and system-level activities

• Develop strategies that help improve infrastructure utilization and
cost-effectiveness, guide configuration and purchasing decisions, and
enhance application deployment

• Learn to reduce server energy consumption without compromising
service-level software requirements, data center infrastructure, and the
needs of end users

Who this book is for:

Primarily: Engineers and IT professionals. More broadly, the book appeals to anyone who
designs or relies on a server to run services and applications, from software engineers, to
system administrators, to equipment and system manufacturers, to data center operators.

Gough
Steiner

Saunders

9 781430 266372

53999
ISBN 978-1-4302-6637-2

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

v

Contents at a Glance

About the Authors ���xv

About the Technical Reviewers ��xvii

Contributing Authors ���xix

Acknowledgments ���xxi

Chapter 1: Why Data Center Efficiency Matters ■ ����������������������������� 1

Chapter 2: CPU Power Management ■ ��� 21

Chapter 3: Memory and I/O Power Management ■ �������������������������� 71

Chapter 4: Platform Power Management ■ ������������������������������������� 93

Chapter 5: BIOS and Management Firmware ■ ����������������������������� 153

Chapter 6: Operating Systems ■ �� 173

Chapter 7: Monitoring ■ ��� 209

Chapter 8: Characterization and Optimization ■ ��������������������������� 269

Chapter 9: Data Center Management ■ �� 307

Appendix A: Technology and Terms ■ �� 319

Index �� 327

1

Chapter 1

Why Data Center Efficiency
Matters

Data centers are the information factories that shape our modern experience. When
we access online information ranging from reading our personal email and the news
to engaging in commerce, using social media, and consuming entertainment, we are
depending on data centers, which provide the computational backbone for the Internet.
They create many of the movies we watch, design the cars we drive, and optimize the
airplanes we fly. They are used to make scientific discoveries, to find oil, and to predict
the spread of disease. Data centers are at the heart of the digital economy.

In 2010, about 30 million servers were in operation worldwide,1 and the number has
been increasing annually. The growth of the Internet of Things2 is expected to increase
the number of connected devices to over 25 billion by 2020. Other factors driving growth
include the continued “dematerialization” of goods,3 the growth of the worldwide
economy,4 and the increased expectation that our lives are connected to one another
through computing technology.

From the perspective of overall energy use, centralized data center–based computing
in modern facilities is highly efficient. Recently Facebook estimated that the energy used
to sustain an average account for a month is about equal to the energy used to make
a cup of coffee.5 eBay’s published data center energy use6 shows that the amount of
carbon produced per transaction is about 50 times lower than the carbon produced in
a short drive to the store to complete the same purchase.7 One recent study found that

1Jonathan G. Koomey, Growth in Data Center Electricity Use 2005 TO 2010 (Oakland,
CA: Analytics Press, 2011), http://analyticspress.com/datacenters.html.
2See www.gartner.com/newsroom/id/2636073.
3See http://gigaom.com/2010/04/29/greennet-the-dematerialization-opportunity/.
4See, for example, John M. Jordan, Information, Technology and Innovation: Resources for Growth
in a Connected World (New York: Wiley, 2012).
5See www.facebook.com/green/app_439663542812831.
6See http://tech.ebay.com/dashboard.
7See www.datacenterknowledge.com/archives/2013/03/12/why-ebays-digital-service-
efficiency-changes-the-game/.

http://analyticspress.com/datacenters.html
http://www.gartner.com/newsroom/id/2636073
http://gigaom.com/2010/04/29/greennet-the-dematerialization-opportunity/
http://www.facebook.com/green/app_439663542812831
http://tech.ebay.com/dashboard
http://www.datacenterknowledge.com/archives/2013/03/12/why-ebays-digital-service-efficiency-changes-the-game/
http://www.datacenterknowledge.com/archives/2013/03/12/why-ebays-digital-service-efficiency-changes-the-game/

Chapter 1 ■ Why Data Center effiCienCy Matters

2

online purchasing of music uses 40%–80% less energy than any of multiple methods for
delivering music by CD, even though that calculation used an upper bound estimate for
the electricity intensity of Internet data transfers.8

It’s somewhat ironic that a principal driver of efficiency in data centers, namely
scale, also attracts the most attention to the energy use by data centers. Large-scale data
centers can share more resources; for instance, in the case of N + 1 redundancy of critical
infrastructure systems such as air handlers or power back-up systems,9 the incremental
penalty decreases as size, and therefore N, increases. However, because of their scale,
data centers also require large amounts of electrical energy to operate. Typical large-scale
data centers require tens of megawatts of electrical power—enough power to sustain
a small city. It is in part this high localized energy use that attracts attention to data
centers—they are large and visible buildings that consume a lot of energy. As a result,
they can attract the scrutiny of both social activists,10 neighbors,11 and legislators.12

An Industry’s Call to Action
It was the convergence of two unrelated events that brought attention to data center energy
use. The first was the growth in scale of data centers and the Internet. By one estimate, the
number of adults logging onto the Internet increased by 37% from 2000 to 2004. The other
trend was the growth of computing performance primarily through clock speed and
efficiencies increases.13 The result of both growing numbers of data centers and growing
power use by the servers (driven by numbers of servers, only marginally by power use per
server) within the data center was explosive growth in the power consumed by the data
center. Although overstated, claims of “economic meltdown” of the data center certainly
grabbed attention.14

In response to rising public awareness of data center energy use, Congress
commissioned a 2007 analysis of US data center energy consumption.15 The work,
completed in 2007 by Lawrence Berkeley National Laboratory using a “bottoms-up”
methodology, estimated that data centers were consuming about 1.5% of US electrical
energy. Even more alarming, by 2006, data center energy use had doubled since the year
2000 and was on track to almost double again over the following five years.

8Christopher Weber, Jonathan G. Koomey, and Scott Matthews, “The Energy and Climate
Change Impacts of Different Music Delivery Methods,” Journal of Industrial Ecology 14, no. 5
(October 2010): 754–769, http://dx.doi.org/10.1111/j.1530-9290.2010.00269.x.
9See www.lifelinedatacenters.com/data-center/ups-configuration-redundancy/.
10See www.greenbiz.com/blog/2011/12/15/facebook-ends-greenpeace-campaign-major-
green-commitments.
11See http://news.idg.no/cw/art.cfm?id=7C75C477-1A64-67EA-E4F528FE768FA524.
12See www.whitehouse.gov/blog/2014/09/30/better-buildings-challenge-expands-take-
data-centers/.
13See Jonathan G. Koomey, Stephen Berard, Marla Sanchez, and Henry Wong, “Implications
of Historical Trends in the Electrical Efficiency of Computing,” IEEE Annals of the History of
Computing 33, no. 3 (July–September 2011): 46–54, http://doi.ieeecomputersociety.
org/10.1109/MAHC.2010.28.
14Ken Brill, “The Economic Meltdown of Moore’s Law and the Green Data Center,” (2007)
www.usenix.org/legacy/event/lisa07/tech/brill_talk.pdf.
15See www.energystar.gov/index.cfm?c=prod_development.server_efficiency_study.

http://dx.doi.org/10.1111/j.1530-9290.2010.00269.x
http://www.lifelinedatacenters.com/data-center/ups-configuration-redundancy/
http://www.greenbiz.com/blog/2011/12/15/facebook-ends-greenpeace-campaign-major-green-commitments
http://www.greenbiz.com/blog/2011/12/15/facebook-ends-greenpeace-campaign-major-green-commitments
http://news.idg.no/cw/art.cfm?id=7C75C477-1A64-67EA-E4F528FE768FA524
http://www.whitehouse.gov/blog/2014/09/30/better-buildings-challenge-expands-take-data-centers/
http://www.whitehouse.gov/blog/2014/09/30/better-buildings-challenge-expands-take-data-centers/
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/MAHC.2010.28
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/MAHC.2010.28
http://www.usenix.org/legacy/event/lisa07/tech/brill_talk.pdf
http://www.energystar.gov/index.cfm?c=prod_development.server_efficiency_study

Chapter 1 ■ Why Data Center effiCienCy Matters

3

The report flagged the concern that without concerted effort within the data center
industry to improve efficiency, the growth of energy consumption risked becoming
unsupportable with implications not only for the industries directly affected, but for the
economy itself.

The report highlighted some opportunities to improve efficiency and painted several
achievable scenarios. Among areas identified for improvement with the biggest impact
were data center infrastructure efficiency and the IT equipment inside the data centers.
Although the efficiency of the IT equipment in data centers, and specifically the servers, is
the focus of this book, it is worthwhile to discuss some of the progress that has been made
in improving the efficiency of the infrastructure of data centers.

Data Center Infrastructure Energy Use
The infrastructure energy use of data centers, meaning the energy used to provide
clean, reliable, uninterrupted power to the IT equipment and also to remove the waste
heat generated by the equipment, is an important part of the overall energy use by
data centers. In many cases, the infrastructure can consume a substantial portion of
the overall energy use of the data center. Figure 1-1 shows the power consumption of a
data center, divided into infrastructure (of non-IT power) and the IT equipment power
consumption. Since non-IT power does not contribute directly to information processing,
it is considered to contribute to the inefficiency of the data center.

Input
Power

Total Data Center Power

Non-IT Power

UPS
Servers
Network
Storage

Security Appliances
Etc.

Etc.

Chillers
CRACs
CRAHs
Lighting

Switch Gear

IT Power

Figure 1-1. The power consumption of a data center

Since the infrastructure exists only to provide support to the IT equipment by
maintaining acceptable environmental factors and ensuring clean uninterrupted power
delivery, it is considered to be an overhead power usage. On the other hand, the IT
equipment is contributing directly to the information processing, and hence is directly
related to the efficiency of the data center. This is illustrated schematically in Figure 1-1.

Chapter 1 ■ Why Data Center effiCienCy Matters

4

The accepted metric for infrastructure efficiency is the power usage effectiveness (PUE),
defined as the ratio of the total energy use by the data center to that of the energy used
by the IT equipment.

PUE
Total DataCenter EnergyUse

IT Equipment EnergyUse
=

Typical enterprise data centers that were designed to now outdated computer room
building standards typically would have had a PUE in the range of two to three.16 That
means that for one watt of power used to run the computer, one to two watts of power are
used to supply power and provide cooling for the IT equipment. By modern standards,
this is highly inefficient. Figure 1-2 illustrates the inverse relationship between data center
infrastructure and PUE. For PUE = 2.0, 50% of the power in the data center is used for
non-computational purposes. Some highly inefficient data centers can operate at a
PUE > 3. As PUE increases above 2.0, over 50% of the data center power is used for
heating, cooling, and power conditioning.

Figure 1-2. The fraction of total data center power used by data center infrastructure as a
function of the PUE

Through work done by industry groups like the Green Grid,17 standard methods
to improve infrastructure efficiency have been defined and implemented across the
industry. These have resulted in dramatic improvements in the PUE values of state-of-
the-art data centers.

A commonly discussed potential weakness of PUE as a metric of data center
efficiency is that the very inefficiencies PUE addresses, those of moving air for cooling
and conditioning electrical power for delivery, also exist within the server (and thus
the IT equipment) itself. Although this is true, the incentive to improve the server by
optimizing its energy efficiency lies with the system manufacturer (as will be discussed
later in this chapter). PUE provides a metric the designer and operator of the data center
facility can use to optimize what is within their control. It is for this reason PUE has been
such a successful driver of overall data center efficiency.

16Victor Avelar, Dan Azevedo, Alan French, eds., “PUE: A Comprehensive Examination of the
Metric,” White Paper #49 (2013), www.thegreengrid.org/~/media/WhitePapers/WP49-PUE%20
A%20Comprehensive%20Examination%20of%20the%20Metric_v6.pdf?lang=en
17See www.thegreengrid.org/.

http://www.thegreengrid.org/~/media/WhitePapers/WP49-PUE%20A%20Comprehensive%20Examination%20of%20the%20Metric_v6.pdf?lang=en
http://www.thegreengrid.org/~/media/WhitePapers/WP49-PUE%20A%20Comprehensive%20Examination%20of%20the%20Metric_v6.pdf?lang=en
http://www.thegreengrid.org/

Chapter 1 ■ Why Data Center effiCienCy Matters

5

Purpose-built mega data centers—like those of Yahoo!, Facebook, and Google—are
heavily reliant upon free-air cooling.18 Typical PUE values in these data centers are about 1.1,
meaning of the energy being consumed by the data center, only 10% is being used for
non-compute-related tasks. Other, more conventional recently constructed data centers
have PUE values near 1.4, meaning about 40% of the energy used by the data center goes
to support infrastructure. The reasons these values are higher than the purpose-built mega
data centers has to do with specific architectural choices, such as cooling design, as well as
requirements for equipment redundancy to meet business-specific resiliency goals.

Although new data center construction typically follows industry best practices for
efficient design, improving the efficiency of older, legacy data centers remains a persistent
problem. There are several root causes of this. One of these is the rapid evolution of data
center technology. For instance, as recently as 2011, ASHRAE approved new building
standards that encourage higher operating temperatures in many types of data center.19
Typically higher operating temperatures have been reported to reduce infrastructure
energy use by up to 4% per degree Celsius,20 a substantial savings.21

Data centers have been operated between 68 and 72 F, mostly for historical reasons.
Cooling requirements in older IT equipment and mainframe computers were less well
understood and placed heavy reliance on room cooling because of their scale and size.22
A room-sized computer demands room sized cooling. With the migration toward the
current generation of servers, the cooling requirements of the servers have changed, but
room specifications have been slow to follow.

Although the higher temperature set point can be adjusted in older buildings, air
flow management systems may not be designed or optimized to mitigate localized hot
spots in the data center. Unless hot spots are carefully managed, this can lead to increased
risk for service availability unless the architecture is substantially changed. Since data
center buildings are typically depreciated on a 10- to 20-year schedule, it’s not entirely
surprising that the timescale for the majority of data centers to catch up with current best
practices, let alone match future advances, is on the order of years. At this point, much of
the technical innovation for improved data center infrastructure is completed or known,
and it is simply a matter of time for current practice to catch up with best practices.

Energy Proportional Server Efficiency
Nearly simultaneously with the report to the US Congress on data center energy
consumption, an influential paper published by Luiz André Barroso and Urs Hölzle
of Google23 introduced the concept of energy proportional computing. Computing
efficiency depends on both the computational work output of the server as well as the
energy consumed by the server. The key insight of the energy proportional model was

18See www.google.com/green/efficiency/datacenters.
19Thermal Guidelines for Data Processing Environments, 3rd ed. (ASHRAE, 2012).
20See www.datacenterknowledge.com/archives/2007/09/24/data-center-cooling-set-
points-debated/.
21More careful studies of this savings appear to be warranted.
22See www.intel.com/content/www/us/en/data-center-efficiency/efficient-datacenter-
high-ambient-temperature-operation-brief.html.
23See www.barroso.org/publications/ieee_computer07.pdf.

http://www.google.com/green/efficiency/datacenters
http://www.datacenterknowledge.com/archives/2007/09/24/data-center-cooling-set-points-debated/
http://www.datacenterknowledge.com/archives/2007/09/24/data-center-cooling-set-points-debated/
http://www.intel.com/content/www/us/en/data-center-efficiency/efficient-datacenter-high-ambient-temperature-operation-brief.html
http://www.intel.com/content/www/us/en/data-center-efficiency/efficient-datacenter-high-ambient-temperature-operation-brief.html
http://www.barroso.org/publications/ieee_computer07.pdf

Chapter 1 ■ Why Data Center effiCienCy Matters

6

the realization that bringing server efficiency closer to the theoretical maximum at all
workload conditions would improve overall data center efficiency. By ensuring server
energy use scaled proportionally to workload, the efficiency of the servers is optimized
over a wider range of utilization, as shown in Figure 1-3. The figure on the left shows the
power consumption of a server (ca. 2006) whose idle power is 70% of the peak power.
Because power consumption does not scale with workload, the efficiency is far below
peak at most operating conditions. The figure on the right shows a server with idle power
which is 20% of peak. In this case the efficiency is much higher at all utilization points.

Figure 1-3. The power consumption and efficiency of two model servers

Most servers in 2007 consumed almost the same power at 0% utilization (i.e., doing no
computations) as they consumed at 100% utilization (i.e., doing the maximum workload
or computations per second). For instance, one of the earliest systems reported on the
SPECPower benchmark had an idle power of approximately 70% of its peak power.24 This is
of concern because, in this case, the power consumption is not proportional to workload;
efficiency can be far below the peak efficiency of the server. Indeed, servers often spend
much of the time at low utilization. “Energy proportional” scaling of energy use ensures that
these servers will operate at high energy efficiency even at lower workload utilization.

Regulatory Environment
A significant outcome of the report to Congress was a focused effort by the Environmental
Protection Agency’s Energy Star program to create a standard for energy efficiency.25
Since, at the time, the art of understanding and measuring server efficiency was nascent,
initial efforts focused on measuring server idle power. As discussed earlier, idle power can
be a good proxy for energy proportionality so long as server performance is also taken
into account.

24See http://spec.org/power_ssj2008/results/res2007q4/power_ssj2008-20071129-
00017.html.
25See www.energystar.gov/index.cfm?c=prod_development.server_efficiency_study.

http://spec.org/power_ssj2008/results/res2007q4/power_ssj2008-20071129-00017.html
http://spec.org/power_ssj2008/results/res2007q4/power_ssj2008-20071129-00017.html
http://www.energystar.gov/index.cfm?c=prod_development.server_efficiency_study

Chapter 1 ■ Why Data Center effiCienCy Matters

7

It’s a common pitfall to equate energy efficiency uniquely with low power. Server
idle power, while correlating in some cases to higher efficiency servers, cannot by itself
be counted on as a reliable indicator of efficiency. The reason for this is that efficiency
correlates to both server energy use and server performance. A computer with low
performance will take relatively longer to complete a given amount of work, which can
offset any benefits of reduced power.

The current Energy Star standard focuses broadly on energy efficiency, including
efficient power supplies, capability to measure and monitor power usage, efficient
components, and advanced power management features.26

In addition to the United States, several other countries have taken steps to
encourage or even require certain levels of energy efficiency in servers. Among these are
the European Union,27 Australia,28 and China. In some cases, energy efficiency restrictions
are required due to a lack of necessary electrical grid capacity, whereas with other cases,
the standards fit with a framework of reducing carbon footprint.29

A summary of international regulatory implications for server design is shown in
Figure 1-4. Although server idle power is a common focus, approaches differ depending
on location. This can be problematic since requirements for one (e.g., overall energy
consumption) may not be consistent with another (e.g., computing energy efficiency).
Server energy efficiency standards and regulations can focus on different aspects of
energy efficiency. The Energy Star program focuses on idle power and component
efficiency. It is planning to shift toward measures of energy efficiency.

Figure 1-4. Server energy efficiency standards and regulations

26See www.energystar.gov/products/specs/enterprise_servers_specification_
version_2_0_pd.
27See www.powerint.com/en/green-room/agencies/ec-eup-eco-directive.
28See www.energyrating.gov.au/wp-content/uploads/Energy_Rating_Documents/Product_
Profiles/Other/Data_Centres/200905-data-centre-efficiency.pdf.
29See www.digitaleurope.org/DocumentDownload.aspx?Command=Core_
Download&EntryId=109.

http://www.energystar.gov/products/specs/enterprise_servers_specification_version_2_0_pd
http://www.energystar.gov/products/specs/enterprise_servers_specification_version_2_0_pd
http://www.powerint.com/en/green-room/agencies/ec-eup-eco-directive
http://www.energyrating.gov.au/wp-content/uploads/Energy_Rating_Documents/Product_Profiles/Other/Data_Centres/200905-data-centre-efficiency.pdf
http://www.energyrating.gov.au/wp-content/uploads/Energy_Rating_Documents/Product_Profiles/Other/Data_Centres/200905-data-centre-efficiency.pdf
http://www.digitaleurope.org/DocumentDownload.aspx?Command=Core_Download&EntryId=109
http://www.digitaleurope.org/DocumentDownload.aspx?Command=Core_Download&EntryId=109

Chapter 1 ■ Why Data Center effiCienCy Matters

8

Efficient power supplies are important for overall server efficiency since any losses
in the power supply are overhead for any energy uses ultimately for computation. In the
2006 timeframe, power supplies had efficiencies that were as low as 50%.30 Low-efficiency
power suppliers are cheap to produce, and since customers didn’t demand higher
efficiency, there was no incentive by the server manufacturer to improve efficiency.
But the opportunity is enormous. With the adoption of 80 Plus power supply efficiency
guidelines by the EPA for Energy Star in 2007, power supply efficiency rapidly improved.
Current power supplies, to be Energy Star–compliant, are required to have efficiencies
of 89% at 50% load and a power factor of 0.9. Comparing this to an efficiency of 50%, the
power consumption of a server would be reduced 35% for a fixed load.

Measuring Energy Efficiency
It is a common pitfall to associate energy efficiency with low power. Efficiency generally
associates a level of output for an amount of input. In the case of computing, the
output associated with efficiency measurements is the number of computational cycles
completed. Therefore, although low power can definitely contribute to energy efficiency,
it is insufficient without adequate performance.

Several metrics are for measuring energy efficiency of servers, but two of the most
common are SPECPower_ssj2008 and HPC Linpack. SPECPower was developed by the
Standard Performance Evaluation Corporation (SPEC) in 2008 for the express purpose
of measuring server energy efficiency. Linpack is a high-performance computing
benchmark made up of a collection of Fortran subroutines.31 It is used as a measure of
energy efficiency on the Green50032 listing of supercomputing energy efficiency.

SPECPower
SPECPower measures the efficiency of a single server using a graduated workload.
The workload is graduated in increments of 10% of a measured maximum or 100%
server workload performance. SPECPower is based on server-side Java, which has the
advantage that measurements can be implemented with a single client set-up. Thus it is
economical to operate.

An example output of published SPECPower measurement is shown in Figure 1-5.33
Performance to power ratios are measured at an established set of points. The quantity

ssj ops power_ åå
is an accepted indicator of overall system energy efficiency. As of this writing
(March 2015), measurement of over 480 systems have been published. The utility of
published SPECPower data is very high since it separates the assessment of power and
performance across what is all the “load line” from 0 to 100% of maximum workload.

30See http://en.wikipedia.org/wiki/80_Plus.
31See www.top500.org/project/linpack/.
32See www.green500.org/.
33See http://spec.org/power_ssj2008/results/res2013q4/power_ssj2008-20131001-
00642.html.

http://en.wikipedia.org/wiki/80_Plus
http://www.top500.org/project/linpack/
http://www.green500.org/
http://spec.org/power_ssj2008/results/res2013q4/power_ssj2008-20131001-00642.html
http://spec.org/power_ssj2008/results/res2013q4/power_ssj2008-20131001-00642.html

Chapter 1 ■ Why Data Center effiCienCy Matters

9

Figure 1-5. A sample of a SPECPower published result. The table emphasizes both workload
performance and energy efficiency

The data published for SPECPower has shown a strong trend of improvement in
the energy efficiency of servers. Although SPECPower is not measured for a large variety
of servers, it is representative of the capability of servers whose power management is
properly configured. Figure 1-6 shows a plot of the energy efficiency of all dual socket
servers with Intel Xeon processors as a function of the “hardware available” data for
the system. The data show that the energy efficiency of the servers are increasing
exponentially (note the logarithmic scale), doubling approximately every 1.6 years.
That means that in the 7 years since 2007 when the benchmark was published, energy
efficiency has increase by about a factor of 20.

Figure 1-6. Dual-socket server energy efficiency, as measured by SPECPower, Intel-Xeon
based systems versus their “hardware available” date. Note the logarithmic scale,
indicating an exponential trend

What is less obvious is what the contributions are to the increase in energy efficiency.
Since energy efficiency is a ratio of performance to power usage, the increase can be
attributed to either a performance increase or a power decrease. It turns out both are
responsible in the case of SPECPower.

Chapter 1 ■ Why Data Center effiCienCy Matters

10

Figure 1-7. Trend of both the ratio of idle to maximum power and the performance for all
published two-socket Intel Xeon–based servers

To understand this, we can look at the details of the SPECPower data shown in
Figure 1-7. The figure shows the trend of both the ratio of idle to maximum power and
the performance for all published two-socket Intel Xeon–based servers at SPEC.org for
the SPECPower_ssj2008 benchmark. Both trends emphasize the growing importance of
energy-proportional behavior of servers in improving energy efficiency. The ratio of idle
to max power is a metric for the proportionality of the server. SPECPower reports carry a
wealth of information about the server, including CPU and memory configuration.

The historical trend of energy proportional efficiency can be visualized in another
way—by examining the “load line” of respective generations of servers as measured
by SPECPower. The load line is simply a graph of the server power versus the absolute
workload. From the graph, the power, efficiency, and performance of the server can
be deduced. Figure 1-8 shows the selected graphs from platforms built from specific
generations of processor families. The horizontal axis measures computations work up
to a measured system performance limit. The vertical axis measures system power. Over
time, according to this specific benchmark, system performance has increased while
system power has decreased.

Figure 1-8. The “load lines” of several generations of two socket servers as measured by
SPECPower_ssj2008

Chapter 1 ■ Why Data Center effiCienCy Matters

11

How do you read the graph? System workload is plotted along the x-axis (from active
idle to a load point of 100% system capacity) and system power is plotted along the y-axis.
The curves for each server follow an intuitive progression; as system workload increases,
power usage increases. The degree of that increase is related to the proportionality of the
system. Note that higher performance is to the right, lower power is down, and therefore
higher efficiency is to the lower right. Note also, work output capability is measured in
server-side Jave operations per second or ssj_ops, which is a measure of system performance.

What’s first evident from the graph is the higher peak performance in each
successive generation. There is a gain in “peak” energy efficiency inherent with
performance increases in the systems (more “work”). This is the progression known
colloquially as Moore’s Law. Note that the peak power of these systems is relatively
constant at about 250 watts.

However, the graph reveals an additional progression toward lower power at low
utilization, that is, toward delivering even higher gains in energy efficiency at actual data
center workloads via “energy proportionality.” Assuming each system is run at the mid-
load point, the average power dropped from a little over 200 watts in 2006 to about 120
watts in 2012. That’s a net power reduction of about 40% and, assuming $0.10/kWh energy
costs and a PUE of 2.0, an operational cost saving of about $150/year. In addition, the work
output capability (measured in ssj_ops) at that load point increases over a factor of 10.

The families of curves reveal several interesting trends. The first notable trend is the
steady decrease in idle power of the systems. You’ll notice the curves fall into sets of pairs.
At a high level, this is because managing idle power of a server is primarily related to the
microarchitecture. Indeed optimizing the features of the microarchitecture to achieve the
right balance of power and performance capability is a main subject of this book.

You’ll also note the steady increase in performance with each generation. These
performance increases have two origins. In the years 2006, 2009, and 2012, new
microarchitectures were introduced. In intervening years new process technologies were
introduced (Intel’s “tick-tock” model34) giving rise to lower power and also substantially
increased performance. Table 1-1 lists the evolution of energy-efficient servers derived
from both process technology and microarchitectural revolutions. Development of new
architecture and new silicon process technologies represent huge investments in capital
and engineering. The highlights emphasize the tick-tock development cycles of staggered
process technology and architecture.

34See www.intel.com/content/www/us/en/silicon-innovations/intel-tick-tock-model-
general.html.

http://www.intel.com/content/www/us/en/silicon-innovations/intel-tick-tock-model-general.html
http://www.intel.com/content/www/us/en/silicon-innovations/intel-tick-tock-model-general.html

Chapter 1 ■ Why Data Center effiCienCy Matters

12

It is also instructive to look at the reduction in the energy per operation as deduced
from the SPECPower data. The energy reduction is easily visualized in Figure 1-9 as the
area of the rectangle defined by the average power and the time per ssj_op. Each data
point is labeled for correspondence to Figure 1-8. The time per ssj_op is calculated as
the reciprocal of measured ssj_ops at 10% utilization on the SPECPower trend curves in
Figure 1-8.

Figure 1-9. A representation of the energy per ssj_op as measured by SPECPowerssj_2008
showing the role of both reducing the time and the power consumed while doing a
computation. Both have been important in reducing overall energy consumption

Table 1-1. The Evolution of Energy-Efficient Servers

Year Microarchitecture Family Process Technology Processor Family

2006 Core 45 nm Xeon 5100

2008 Core 32 nm Xeon 5400

2009 Nehalem 32 nm Xeon 5500

2010 Nehalem 22 nm Xeon 5600

2012 Sandy Bridge 22 nm Xeon E5

2014 Haswell 14 nm Xeon E5 v3

Chapter 1 ■ Why Data Center effiCienCy Matters

13

What is interesting is the stair-step pattern shown in Figure 1-10—the trend of the
energy per operation as a function of time shows a 41% per year reduction. From 2006
to 2008 we moved from 65 nm to 45 nm silicon technology, and from 2009 to 2010 from
45 nm to 32 nm silicon technology. In each case, the time to complete an operation
decreased by about half. Complementing that, from 2008 to 2009, and from 2010 to 2012,
were significant microarchitecture changes. These resulted in time reductions associated
with performance gains, but also significant power reductions. Overall, both power and
time reductions contributed to the gains in efficiency.

Figure 1-10. The SPECPowerssj_2008 trend of the energy per operation as a function of
time shows an exponential trend that is consistent with an efficiency-doubling time of
0.9 years. This is much faster than the 1.5 years reported by Koomey, owing to additional
efficiency gains from energy proportionality

Plotting the data as a time series versus the “system available” date from the
SPECpower data shows the expected exponential trend. The fit parameters equate to a
41% per year reduction in the energy per operation and about a factor of 20 over the range
shown. Putting the energy needed for computation into perspective, 0.5 milli-Joules is the
energy needed to light a 100-watt bulb for about 5 microseconds.

The performance and efficiency gains from microarchitecture also play a strong role
in other benchmarks, as the next discussion of high performance computing will show.

Chapter 1 ■ Why Data Center effiCienCy Matters

14

High Performance Computing Efficiency
High Performance Computing (HPC) is another area where a trend of computing
efficiency has been established by well-accepted methods. The Green500 list has,
since 2007, published a semi-annual list of the top energy-efficient super computers in
the world.35 The Green500 shares the same workload as the Top500 supercomputing
performance list.36 Both are based on HP Linpack, which derives from a collection of
Fortran linear algebra routines written in Fortran in the 1970s. Excellent source material
on the Linkpack routines can be found online.37

Alternative benchmarks have appeared, such as the Graph500,38 which are
more relevant to measuring performance of supercomputers running data-intensive
applications. Arguably with the growth of “big data” applications to continue into the
future, these kinds of benchmarks will be relevant to a broader range of supercomputing
applications. However, at this writing, the alternatives are just getting going and have not
yet gained the same recognition as have the Top500 and Green500 lists. As a result, this
discussion will focus on the historical trends of the Green500 and Top500 lists.

At the scale of supercomputers today, performance leadership is practically
inseparable from efficiency leadership due to the practical constraint of power. The
power consumption of the largest supercomputers in the world is now between 10 and 20
megawatts. Although these limits are not written in stone, at an estimated infrastructure
cost of about $10 per watt, the cost of expanding beyond those limits is prohibitive
except for the largest governmental and private agencies. With the expanded role of
supercomputing in everything from office scale DNA decoding to field-based geophysics,
the need for higher performance in fixed-power environments is increasing.39

Since both performance and efficiency are important to supercomputing
leadership, it is convenient to look at both the efficiency and performance of
supercomputers simultaneously. The Exascalar method does exactly this, plotting the
points from the Green500 list by their performance and efficiency.40 Figure 1-11 shows
the efficiency and performance of the computers in the Top500 supercomputer list since
2007. The historical trend line reveals that the performance gains of the top systems have
been due to both efficiency gains and increases in power. Exascalar measures progress of
supercomputing leadership toward a goal of 1018 flops (an Exaflop) in a power envelope
of 20 megawatts. As is evident in Figure 1-11, the points fall roughly into a triangular
shape with a taxonomy that reflects the state of the art in computing performance and
efficiency and also cost.

35See www.green500.org/.
36See www.top500.org/.
37See www.top500.org/project/linpack/.
38See www.graph500.org/.
39See www.intel.com/content/www/us/en/research/tomorrow-project/intel-labs-dna-
sequencing-and-bio-chem-sensing-video.html.
40See www.datacenterknowledge.com/archives/2012/07/10/june-2012-exascalar-
efficiency-dominates-hpc/.

http://www.green500.org/
http://www.top500.org/
http://www.top500.org/project/linpack/
http://www.graph500.org/
http://www.intel.com/content/www/us/en/research/tomorrow-project/intel-labs-dna-sequencing-and-bio-chem-sensing-video.html
http://www.intel.com/content/www/us/en/research/tomorrow-project/intel-labs-dna-sequencing-and-bio-chem-sensing-video.html
http://www.datacenterknowledge.com/archives/2012/07/10/june-2012-exascalar-efficiency-dominates-hpc/
http://www.datacenterknowledge.com/archives/2012/07/10/june-2012-exascalar-efficiency-dominates-hpc/

Chapter 1 ■ Why Data Center effiCienCy Matters

15

The Exascalar values in this graph are computed from the formula where both
efficiency and performance are normalized to the goal of one Exaflop in a 20 megawatt
power envelope.

e =
æ

è
ç

ö

ø

1

2 10 20 1018 18
Log

Efficiency

Flops MWatt

Performance

Flops
÷÷

The factor of 2 ensures consistency with an earlier (but more complex and less
generalizable) formulation of Exacalar.41

The earlier-mentioned triangular shape comes about because of the constraints of
power in general application. Although the trend in increased power is evident from the
trend line of the top Exascalar systems, that increase, about a factor to ten, also increases
the installation costs by roughly a factor of ten and therefore represents a major barrier
for a majority of adopters.42 Another point to note in the graph is that systems in the
lower left-hand corner consume almost 100 times the power of the systems in the lower
right-hand corner of the triangle, but deliver the same performance. This represents a
potentially very large difference in total cost of ownership (TCO).

41Balaji Subramaniam, Winston Saunders, Tom Scogland, Wu-chun Feng, “Trends in Energy-
Efficient Computing: A Perspective from the Green500,” Proceedings of the 4th International Green
Computing Conference (Arlington, VA, June 2013).
42www.datacenterknowledge.com/archives/2013/01/28/the-taxonomy-of-exascalar/.

Figure 1-11. The Exascalar plot of the June 2013 Green500 list

http://www.datacenterknowledge.com/archives/2013/01/28/the-taxonomy-of-exascalar/

Chapter 1 ■ Why Data Center effiCienCy Matters

16

The trend of the Exascalar can also be plotted as a time series as shown in Figure 1-12.
The top Exascalar system trend intersects the Exaflop equivalent of Exascalar (e = 0) some
time in the year 2019. The median Exascalar trend is increasing at a slower rate, which
can be accounted for by the slower increase in power (but similar gains in efficiency) of
the general population. The differential between the top and median Exascalar growth is
accounted for by the increased power levels of the top systems.

Figure 1-12. The trend of the top and median Exascalar as a function of publication date

Comparing theSPECPowerssj_2008 results with the Exascalar results shows
the challenge of trending energy use and efficiency with benchmarks. In the case of
SPECPowerssj_2008, the overall system power has decreased over time to benefit
efficiency, while in the case of the HPC benchmarks, overall system power has increased
over time to achieve higher performance.

Energy Efficiency and Cost
Energy efficiency is a highly desirable characteristic in data centers, but the overall goal
of a data center is to meet the computational needs within both physical and financial
constraints of the organization. These constraints are usually captured in a TCO model,
which takes into account both capital and operational costs of the data center
(see Table 1-2).

Chapter 1 ■ Why Data Center effiCienCy Matters

17

43Vasileios Kontorinis, et al., “Managing Distributed UPS Energy for Effective Power Capping in
Data Centers,” International Symposium on Computer Architecture, ISCA (2012), http://cseweb.
ucsd.edu/~tullsen/DCmodeling.html.

TCO generally depends very strongly on the specific applications or intended use of
the data center. This is a reflection of the wide range of applications for data centers. For
instance, in some locations, the high costs of energy may favor the choice of a particular
power envelope for the servers or, in some other cases, software licensing costs may
strongly influence hardware choices.

However, outside these special cases, some general observations can be made
about TCO.

Costs fall into two categories: capital costs and ongoing operational costs. The capital
costs are associated with the the facility of the data center itself as well as the servers
and other IT gear required to make the data center operate. Important operational
costs include electricity, water, maintenance, and so on. Other factors, such as expected
depreciation for both the facility and IT hardware, may also have a pronounced effect on
the outcome of the model.

Many TCO models are available online. Some are made available for cost; some are
available as a service.43 These models have varying degrees of sophistication depending
on the desired fidelity and tolerance for error.

Table 1-2 lists the ranges of parameters for a TCO model. The operational server
energy cost includes overhead of PUE = 2.0. In both cases, the energy cost to run the
servers in a data center is comparable to the facility cost itself.

Table 1-2. Ranges of Parameters for a TCO Model

Low Cost Range
(U.S.)

High Cost Range
(U.S.)

Facility capital cost per watt $8–$12 $20–$40

Facility capital depreciation 10 years 20 years

Facility capital cost/watt/year $0.80–$1.20 $1.0–$2.0

Electricity cost per watt $0.03/kWh $0.15/kWh

PUE 1.2 2.0

Operational server energy
cost/watt/year

$0.31 $2.62

Since the subject of this book is primarily server energy cost, a simplified model
is shown in the table emphasizing the comparison of the facility cost with the energy
needed to run the servers. The low cost range data center might correspond to an efficient
cloud data center in a region selected for a mild climate and low-cost electricity. The high
cost range might correspond to a highly secure and redundant data center near a major
metropolitain area. In both cases, it is apparent that the energy costs of the data center are
comparable to the facility capital cost.

http://cseweb.ucsd.edu/~tullsen/DCmodeling.html
http://cseweb.ucsd.edu/~tullsen/DCmodeling.html

Chapter 1 ■ Why Data Center effiCienCy Matters

18

More sophisticated models take into account much more detailed analysis of
individual data center costs, building upon and also substantiating the simpler analysis
in Table 1-2.44 In the model shown in Figure 1-13, power and cooling infrastructure costs
are about equivalent to the utility energy costs. Although energy costs and facility capital
costs represent about equal parts of the TCO, server depreciation is also an important
contributor.

Figure 1-13. An example of a breakdown of data center TCO

However, traditional data center TCO models do not consider the cost of work output
from the data center per se; they simply treat the servers as power-consuming units
without regard for energy efficiency or performance of their computing capability. What
is astonishing is that from a work output standpoint, the most wasteful energy consumers
in data centers (even low PUE data centers) can be inefficient servers.

To illustrate this point, consider Figure 1-14, taken from an actual assessment
of a Fortune100 company’s data center. The analysis consisted of looking at the age
distribution of the servers and then assessing, based on their configuration, energy
consumption and finally their work output (or performance) capability. Although older
servers were only 32% of the population, they consumed the majority of energy and
only contributed a small fraction of the total computational output of the data center.

44Ibid.

Chapter 1 ■ Why Data Center effiCienCy Matters

19

Since server efficiency doubles approximately every one to two years (depending on
application and the specific metric used), older servers are far less efficient and constitute
a larger fraction of energy use for a lower fraction of computing cycles.

Figure 1-14. Data from a walkthrough inventory of a Fortune 100 company showing the
energy consumption and age distribution of servers

In this particular data center, servers older than 2007 consume 60% of the energy
but contribute only an estimated 4% of the compute capability. Although this may seem
counterintuitive, consider the argument from the perspective of Moore’s Law; if the
performance doubles approximately every two years, servers from 2006 do approximately
1/8th the computational work of servers dating from 2012, when the data was collected.
Given the power consumption date presented earlier, it is also feasible that the energy
consumption would decrease in newer servers, dependent on configuration.

Therefore, in data centers concerned not just about energy usage, but actual
computational work, the energy efficiency and performance of the servers are important
overall considerations. Detailed measurements on either actual or representative
workloads are generally needed to achieve the highest levels of overall workload
efficiency. The remainder of this book focuses specifically on the optimizations that can
take place not only at the server level but also the data center level to optimize energy use
and computational output of what may amount to a multi-million or even billion dollar
investment.

Chapter 1 ■ Why Data Center effiCienCy Matters

20

Summary
In this chapter we have reviewed the performance and efficiency trends of data centers
and have shown that the servers can contribute to the overall energy use in data centers,
especially in cases where the efficiency of the infrastructure has been optimized.

We’ve compared the performance and efficiency trends of servers based on both the
SPECPowerssj_2008 and the derived Exascalar benchmarks. In both cases, the efficiency
of servers has improved exponentially over time, though with differing trends, depending
on the specific workload.

In subsequent chapters, we will show how the efficiency of servers can be optimized
for specific workloads, thus enabling users to tailor their server configurations for
optimum performance and efficiency. In the final chapter of the book, we will tie these
results back to TCO and show how performance, power, and cost tie together into an
overall framework of datacenter TCO.

21

Chapter 2

CPU Power Management

The CPUs and memory inside of a data center consume a fraction of the overall power,
but their efficiency and built-in power management capabilities are one of the biggest
influences on data center efficiency. Saving power inside of the CPU has multiplicative
savings at larger scales. Saving 1 watt of power at the CPU can easily turn into 1.5 watts
of savings due to power delivery efficiency losses inside the server, and up to 3 watts in
the data center. Reducing CPU power reduces the cooling costs, since less heat must be
removed from the overall system.

Before discussing how power is saved in the CPU, we will first review some basics of
CPU architecture and how power is consumed inside of circuits. Then we will discuss the
methods and algorithms for saving power inside of both memory and the CPU.
Chapters 7 and 8 will investigate how to monitor and control these features.

Server CPU Architecture/Design
Over the years, server CPU core design has significantly evolved to provide high
performance and energy-efficient execution of workloads. However, no core is complete
without an effective support system to provide the core with the data it needs to execute.
Caches, main memory, and hard drives provide a hierarchical mechanism for storing
data with varied capacity, bandwidth, and latency tradeoffs. In more recent years, highly
scalable interconnects have been developed inside CPUs in order to facilitate the scaling
of the number of cores.

A less widely known goal of CPU design is optimization for total cost of ownership
(TCO) amortization. Because the CPU plays a central role in information processing,
matching the CPU with the right amount of performance/capabilities with the other
data center infrastructure is critical to achieving the best TCO. Different workloads have

Chapter 2 ■ CpU power ManageMent

22

different sweet spots. For example, many high performance computing (HPC) workloads
are very sensitive to scaling and cross-node communication. These communication
networks can be very expensive and hence contribute significantly to data center TCO.
In such systems, it is desirable to maximize per node performance in order to reduce the
communication subsystem costs and dependency. On the other hand, a cold storage
deployment1—where a large number of hard drives hold data that is very infrequently
accessed over a connection with much lower bandwidth—may require much lower CPU
performance in order to suit the needs of the end user.

CPU Architecture Building Blocks
Typical multi-core server CPUs follow a common high-level architecture in order to
efficiently provide compute agents with the data that they require. The main components
of a modern CPU are the cores that perform the computation, I/O for sending and
receiving the data that is required for the computation, memory controllers, and support
infrastructure allowing these other pieces to efficiently communicate with each other.
Figure 2-1 shows an example of such a system. The boxes with a dashed outline are
optionally included on the CPU Silicon die, whereas the others are now almost always
integrated into the same die as the cores. Table 2-1 provides some high-level definitions
for the primary CPU components.

Fabric

PCIe

Memory
Controller

L3 Cache Coherent
Interconnect

Core

L1 $$

L2 $$

Core

L1 $$

L2 $$

…
Core

L1 $$

L2 $$

Chipset

Figure 2-1. A typical server CPU architecture block diagram

1Cold storage is a usage model where a large amount of rarely used data is stored on a single system
with a large number of connected hard drives to provide a massive level of storage.

Chapter 2 ■ CpU power ManageMent

23

Threads, Cores, and Modules
Traditional server CPUs, such as those found in Intel’s Xeon E5 systems, are built using
general purpose cores optimized to provide good performance across a wide range of
workloads. However, achieving highest performance across a wide range of workloads
has associated costs. As a result, more specialized cores are also possible. Some cores,
for example, may sacrifice floating point performance in order to reduce area and cost.
Others may add substantial vector throughput while sacrificing the ability to handle
complex control flow.

Individual cores can support multiple hardware threads of execution. These are also
known as logical processors. This technique has multiple names, including simultaneous
multithreading (SMT) and Hyper-Threading Technology (HT). These technologies were
introduced in Intel CPUs in 2002. SMT attempts to take advantage of the fact that a single
thread of execution on a core does not, on many workloads, make use of all the resources

Table 2-1. Primary CPU Components

Component Description

Core Cores are the compute agents of a CPU. These can include general
purpose cores as well as more targeted cores such as general-
purpose computing on graphics processing units (GPGPUs).
Cores take software programs and execute them through loads,
stores, arithmetic, and control flow (branches).

Cache Caches save frequently used data so that the cores do not need to
go all the way to main memory to fetch the data that they need.
A cache hierarchy provides multiple levels of caches, with lower
levels being quick to access with smaller sizes, and higher levels
being slower to access but providing much higher capacity.
Caches are typically on the same die as the cores, but this is not
strictly required (particularly with large caches).

On-die fabric Interconnects exist on the CPU dies that are commonly called
on-die or on-chip fabrics. These are not to be confused with
fabrics that connect multiple CPU dies together at the data
center level.

Memory controller Memory controllers provide an interface to main memory
(DDR in many recent processor generations).

PCIe PCIe provides a mechanism to connect external devices such as
network cards into the CPU.

Chipset The chipset can be thought of as a support entity to the CPU.
In addition to supporting the boot process, it can also provide
additional capabilities such as PCIe, hard drive access,
networking, and manageability. Chipset functionality is integrated
into the same die or package as the cores in the microserver space.

Chapter 2 ■ CpU power ManageMent

24

available in the core. This is particularly true when a thread is stalled for some reason
(such as when it is waiting for a response from memory). Running multiple threads
on a given core can reduce the per thread performance while increasing the overall
throughput. SMT is typically a very power-efficient technique. The additional throughput
and performance can increase the overall power draw, but the wall power increase is
small compared to the potential performance upside.

Note ■ there are two types of threads: hardware threads and software threads. operating
systems manage a large number of software threads and perform context switches to pick
which software thread is active on a given hardware thread at a given point in time.

Intel Atom processors also have the concept of CPU modules. In these processors,
two cores share a large L2 cache. The modules interface with the CPU fabric rather than
the cores interfacing directly.

The terms threads and processors are commonly used to mean different things in
hardware and software contexts. Different terms can be used to refer to the same things
(see Table 2-2). This frequently leads to confusion.

Table 2-2. Threads, Core, and Processor Terminology

Term Description

Hardware thread Hardware threads, logical processors, and logical cores are all
the same. Each can execute a single software thread at a given
point in time.Logical processor

Logical core

Hardware core Hardware cores and physical cores represent a block of
hardware that has the ability to execute applications. A single
physical core can support multiple logical cores if it supports
SMT. Logical cores that share a physical core share many of the
hardware resources of that core (caches, arithmetic units, etc.).

Physical core

Software thread A software thread is a sequence of software instructions. Many
software threads exist in a system at a given point in time. The
operating system scheduler is responsible for selecting which
software thread executes on a given logical processor at a certain
point in time.

Chapter 2 ■ CpU power ManageMent

25

Caches and the Cache Hierarchy
Server CPU cores typically consume a large percentage of the processor power and also
make up a large percentage of the CPU area. These cores consume data as part of their
execution. If starved for data, they can stall while waiting for data in order to execute an
instruction, which is bad for both performance and power efficiency. Caches attempt to
store frequently used data so that the core execution units can quickly access it to reduce
these stalls.

Caches are typically built using SRAM cells. It is not uncommon for caches to
consume as much area on the CPU as the cores. However, their contribution to power is
much smaller since only a small percentage of the transistors toggle at any given time.

A range of cache hierarchies is possible. Figure 2-2 shows two examples of cache
hierarchies. The figure on the left illustrates the cache hierarchy used on Xeon processors
since the Nehalem2 generation and the figure on the right illustrates the hierarchy used
on the Avoton3 generation. Different hierarchies have various performance tradeoffs and
can also impact power management decisions. For example, the large L3 cache outside
the cores in the design on the left may require the application of power management
algorithms in order to achieve good power efficiency.

Core

L1D L1I

Core

L1D L1I

L2

Module

Core

L1D

L2

L1I

Core

L1D

L2

L1I

Core

L1D

L2

L1I

Core

L1D

L2

L1I

Shared L3

Core

L1D L1I

Core

L1D L1I

L2

Module

Fabric

Figure 2-2. Cache hierarchy examples

2Nehalem is the code name for the Xeon server processor architecture released in 2008.
3Avoton is the code name for the Atom server processor architecture released in 2013.

Chapter 2 ■ CpU power ManageMent

26

Dies and Packages
CPUs are manufactured wafers of monocrystalline silicon. During manufacturing, each
wafer is printed with a large number of rectangular CPU dies that are subsequently cut
from the wafer once the manufacturing is complete. A moderately large server die is on
the order of ~20 mm on a side (~400 mm2). Figure 2-3 shows two magnified dies, one from
the 8c Avoton SoC (system on a chip) and another from the Ivy Bridge 10c. The Avoton die
is actually much smaller in size than the Xeon.

Figure 2-3. Die photos of the 8c Atom Avoton (top) and 10c Xeon Ivy Bridge EP (bottom)
(not to scale)

Dies are then placed into a package as part of the manufacturing process. The package
provides the interface between the die and the motherboard. Some packages (particularly
lower power and lower cost offerings) are soldered directly to the motherboard. Others
are said to be socketed, which means that they can be installed, removed, and replaced for
the motherboard. The package connects to the motherboard through metal pins, which
provide both power to the CPU and communication channels (such as the connection
to DDR memory). Power flows into a CPU through many pins, and higher power CPUs
require more pins in order to supply the required power. Additional connectivity (such as
more DDR channels or support for more PCIe devices) also increases pin count.

Chapter 2 ■ CpU power ManageMent

27

Packages can also include an integrated heat spreader (IHS), which is conceptually
an integrated heat sink. Removing heat generated by the consumption of power within a
CPU is critical to achieving high performance systems. IHSs help to spread the heat from
the cores (and other areas with high power/heat density) out to the rest of the die to avoid
hot spots that can lead to early throttling and lower performance. Figure 2-4 shows two
CPU packages—one from an Avoton SoC and one from a Sandy Bridge. The Sandy Bridge
package is much wider and deeper to accommodate the larger die and additional pins,
but is also much taller. Part of this additional height is due to the IHS.

Figure 2-4. Package photos of an 8c Xeon Sandy Bridge EP (right) and 8c Atom Avoton
(left)

Multiple dies can be included in a single package. This is called a multi-chip package
(MCP). MCPs can provide a cost-effective way for increasing the capabilities of a product.
One can connect two identical dies (commonly used to increase core count), or different
dies (such as a chipset and a CPU). Connecting two devices inside of a package is denser,
lower power, and lower latency than connecting two separate packages. It is also possible
to connect dies from different process technologies or optimization points. MCPs have
been effectively used in the past to provide high core count processors for high-end servers
without the need for huge dies that can be cost prohibitive to manufacture. Dies within an
MCP share power delivery and thermal constraints with each other, and therefore there
are limits. For example, it can be very challenging (and expensive) to cool two 130 W CPUs
stuck together into a single 260 W package. Bandwidth and latency between two dies in an
MCP are also constrained compared to what is possible in a single die.

On-die Fabrics and the Uncore
Historically, Intel has referred to all of the on-die logic outside of the cores as the uncore.
In the Nehalem generation, this included the L3 cache, integrated memory controller,
QuickPath Interconnect (QPI; for multi-socket communication), and an interconnect
that tied it all together. In the Sandy Bridge generation, PCIe was integrated into the
CPU uncore. The uncore continues to incorporate more and more capabilities and
functionality, as additional components continue to be integrated into the CPU dies. As
a result, the CPU is now being replaced with the concept of system on a chip (SoC). This
is most common in user devices such as cell phones, where a large number of special-
function hardware components provide various capabilities (modems, sensor hubs,
general purpose cores, graphics cores, etc.). It is also spreading into the server space with
products like Avoton that incorporate cores, SATA, Ethernet, PCIe, USB, and the chipset
into a single CPU package. Increased integration can reduce TCO because fewer discrete

Chapter 2 ■ CpU power ManageMent

28

devices must be purchased. It can also result in denser designs for the same reason. It
can also be more power efficient to incorporate more functionality into a single die or
package as higher performance connections consume lower power when integrated.

In these SoCs, the interconnect that provides the communication between the
various IPs has been termed an on-die fabric in recent years. Off-chip fabrics that connect
multiple CPUs together into large, non-coherent4 groups of CPUs also exist. Modern on-
die fabrics are the evolution of the uncore interconnect from earlier generation CPUs.

On servers, when the cores are active and executing workloads, the power
contribution from the uncore tends to be much smaller than the cores. However, when
the cores are all idle and in a deep sleep state, the uncore tends to be the dominant
consumer of power on the CPU as it is more challenging to efficiently perform power
management without impacting the performance of server workloads. The exact
breakdown of power between the cores and uncore can vary widely based on the
workload, product, or power envelope.

Power Control Unit
As power management has become more and more complex, CPUs have added internal
microcontrollers that have special firmware for managing the CPU power management
flows. At Intel, these microcontrollers are called both the PCU (power control unit) and
the P-Unit, and the code that they execute is called pcode. The PCU is integrated into the
CPU with the cores. These microcontrollers are generally proprietary, and the firmware
that runs on them is kept secret. It is not possible for OEMs or end users to write their own
firmware or change the existing firmware in these PCUs. However, various configuration
options are available to the OEM and end user. These can be controlled through either
the OS or BIOS. Tuning and configuring these options is discussed in Chapter 8.

The PCU is responsible for the bulk of the power and thermal management
capabilities that will be discussed through the rest of this chapter. The firmware running
on the microcontroller implements various control algorithms for managing the power
and performance of the CPU. Table 2-3 provides a high-level snapshot of some of the
roles and capabilities of the PCU. The PCU is connected to almost every major block of
logic on the CPU die and is continuously monitoring and controlling their activity.

Table 2-3. Common PCU Roles

Role Description

Power management Central control center for managing voltage, frequency, and
other power saving states

Thermal management Implements algorithms to prevent the CPU from overheating

Reset controller Facilitates powering up the CPU

4Coherent fabrics are also possible and are traditionally used in supercomputer designs.

Chapter 2 ■ CpU power ManageMent

29

Firmware can be patched in the field, either through BIOS or even directly from a
running system in the OS. However, patch deployment after devices enter production is
not frequent.

Server vendors do use their own proprietary firmware that runs off-chip on a
baseboard management controller (BMC; a small microcontroller). This firmware
frequently interacts with the PCU for performing both power and thermal management
through the Platform Environment Control Interface (PECI). These topics will be
discussed in more detail in Chapters 4 and 5.

External Communication
Although performing calculations is important on CPUs, getting data in and out of the
CPU is a key part of many server workloads. Table 2-4 provides an overview of a selection
of the key interfaces.

Table 2-4. External Communication

Interface Details

Memory (DDR) Memory provides storage for application code and data. It can also
provide caching for frequently accessed data from drives. It is not
uncommon for server CPUs to have hundreds of GBs of memory
capacity, and even TBs are possible.

Drive storage Drive storage is also common on servers. Some end users are
moving away from having any local drive storage on compute
nodes, electing instead to store all persistent data on separate
storage nodes that are accessed over a high bandwidth network. The
boot process can even be performed completely over the network.
This can save significant procurement cost. Other customers still
find a need for local storage on individual nodes.

Networking Ethernet or InfiniBand are staples of most server nodes for moving
data in and out of a given CPU for processing, or between nodes for
tasks that utilize multiple CPUs for a single task.

Video ports Video ports are rare and generally are not included on the platform.
It is common for users to connect discrete graphics cards in the rare
occasion where video is required.

USB ports USB ports are also common and are primarily used for special tasks
like firmware updates or debugging (not during normal execution).

Manageability Servers commonly include an interface like PECI for external
controllers to manage the server. These interfaces provide a
mechanism for tasks like monitoring temperature or controlling
power without interfering with the software running on the CPU cores.

(continued)

Chapter 2 ■ CpU power ManageMent

30

Thermal Design
CPUs consume power in order to execute; that power must be dissipated in order to keep
temperatures under control. On modern CPUs, thermal sensors exist to monitor the
temperature and help guarantee that the CPU will not get to a dangerous temperature
where reduced reliability or damage could occur. CPUs may throttle themselves to stay
under a target temperature or even initiate an immediate shutdown if temperature
exceeds certain thresholds.

Most server CPUs are sold with thermal design point (TDP) power. The TDP specifies
the amount of power that the CPU can consume, running a commercially available
worst-case SSE application over a significant period of time and therefore the amount of
heat that the platform designer must be able to remove in order to avoid thermal throttling
conditions. The TDP power is generally paired with a base frequency (sometimes called the
P1 frequency). A defined TDP condition is used to characterize this (power, frequency) pair.
The goal of the TDP condition on servers has been to identify the worst-case real workload5
that a customer may run. Different vendors (or even different products from the same
vendor) can use varied TDP definitions, making it difficult to use this number for meaningful
comparisons across these boundaries. Sequences of code that will consume more power
at the TDP frequency than the TDP power do exist, and these workloads will be throttled in
order to stay within the design constraints of the system and to prevent damage to the CPU.

Note ■ Different workloads can consume a wide range of power at the same frequency.
Many workloads consume significantly lower power than the tDp workload at the tDp
frequency. Turbo is a feature that allows those workloads to run at higher frequencies while
staying within the thermal and electrical specifications of the processor.

Interface Details

Coherent
interconnects

In deployments that have multiple CPUs per node, a coherent
interconnect is used to connect the multiple sockets (e.g., Intel QPI).
This allows multiple CPUs to be connected to each other and share
a single operating system.

Non-coherent
bridging

Some CPUs also support technologies to create non-coherent
interconnects between nodes using PCIe (e.g., Intel NTB [Non-
Transparent Bridge]). These technologies create non-coherent
“windows” into the physical memory space across two machines
where each machine appears as a PCIe device to the other machine
(with a memory-mapped I/O [MMIO] range assigned to it). Today it is
primarily used in storage usage models for redundancy across servers.

Table 2-4. (continued)

5AVX applications are not included in the base frequency on current server processors. Starting with
HSW E5, a secondary “AVX P1” frequency was provided with each SKU to provide guidance for
high-power AVX workloads.

Chapter 2 ■ CpU power ManageMent

31

Many traditional server processors have had TDP power in the range of ~30 W to
~150 W. Microservers push TDPs much lower—down to ~5 W. Although it is possible
to build processors with larger TDPs, these tend to be more challenging to work with.
Larger heat densities can be difficult to cool efficiently and make cost effective. It is also
possible to have larger processor dies that have less heat density, but these dies can also
be challenging to manufacture efficiently.

Some client processors have adopted a concept called Scenario Design Power (SDP).
This concept suggests that designing for the TDP may result in over-design in certain
usage models. SDP attempts to provide OEMs with guidance about the thermal needs of
certain constrained usage models. SDP has not been adopted for any server products at
this time. Servers tend to rely on Turbo to reduce exposure to any platform
over-design caused by designing to TDP.

CPU Design Building Blocks
The CPU architecture is constructed with a mix of analog and digital components. Analog
design is typically used for designing the off-chip communication (such as the circuits
that implement PCIe and DDR I/O), whereas the bulk of the remaining system is built out
of digital logic.

Digital Synchronous Logic and Clocks
The bulk of the computation performed by CPUs is done by digital synchronous logic.
Synchronous designs can be thought of as large pipelines. Tasks are broken up into
subsets of work (see Figure 2-5). Groups of logic gates (implemented with transistors)
take input data (1s and 0s) and calculate a set of output data. It takes time for the
transistors to compute the answer from an input set, and during that time, it is desirable
for that input data to be stable. Flops store state for logic while it computes and store the
output data when it is ready for the next set of logic. Clocks, distributed throughout the
CPU, tell these flops when they should latch the data coming into them.

Flop
Logic
Gates

Flop Logic
Gates

…

Clock

Figure 2-5. Digital synchronous logic

When people think of CPUs, they generally think about all the logic inside the CPUs
that conceptually does all the work. However, clocks are necessary to all these digital
circuits and are spread throughout the CPU. Clocks are typically driven by phased-locked
loops (PLLs), although it is also possible to use other simpler circuits, such as a ring
oscillators. Many modern PLL designs provide configurability that allows them to be
locked at different frequencies. It takes time (generally measured in microseconds)
to lock a PLL at a target frequency.

Chapter 2 ■ CpU power ManageMent

32

SRAM and eDRAM
Static random-access memory (SRAM or static RAM) is a block of logic that is used to
store data. Most caches are built based on SRAM designs, and therefore SRAM commonly
makes up a large percentage of the CPU die. Dynamic RAM (DRAM) is another type of
logic that can be used to store data, and it is used for DDR devices.

SRAM is much larger in size than DRAM and consumes more power per byte of data,
but it is also much faster to access and easier to design with. Unlike DRAM, it is built with
similar manufacturing techniques to normal CPU logic, making it more amenable to
integration into a single CPU die with other logic. It is possible to build large caches using
embedded DRAM (eDRAM). eDRAM is used in Haswell E3 servers.

I/O
I/O circuits provide the capabilities for communication on and off a die. For example,
these circuits are used for DDR, PCIe, and coherent interconnects like QPI. Most
interconnects are parallel—transmitting multiple bits of data simultaneously. However,
some serial interconnects still exist for low-bandwidth communication with various
platform agents like voltage regulators.

There are two main types of I/O that can be used: differential signaling and single-
ended signaling. Single-ended signaling is the simplest method for communicating with
I/O. Conceptually, to transmit N bits of parallel data, N + 1 wires are required. One wire
holds a reference voltage (commonly 0 V ground) whereas the others transmit binary
data with a predefined higher voltage representing a 1. Differential signaling is more
complicated, using a pair of wires (called a differential pair) to transmit a single bit of
data. Differential signaling is less exposed to noise and other transmission issues, and
therefore it provides a mechanism to reach higher frequencies and transmission rates.
However, differential signaling requires roughly twice the platform routing compared to
single-ended signaling and also tend to consume more power—even when they are not
actively transmitting useful data.

Intel Server Processors
Throughout this chapter, various recent Intel server processors will be referred to by their
codenames in an attempt to illustrate the progression of the technologies. Figure 2-6
illustrates the progression of the Intel server processors. Each major server processor
generation is shown in a box with its major characteristics (number of supported
sockets, number of cores, and process technology). Groups of processors with similar
architectures have been grouped together with different shades of gray boxes. As an

Chapter 2 ■ CpU power ManageMent

33

Nehalem (45 nm)

Sockets: 1-2
Cores: up to 4 (NHM)

Westmere (32 nm)

Sockets: 1-2
Cores: up to 6 (WSM)

Sandy Bridge-E3 (32 nm)

Sockets: 1
Cores: up to 4 (SNB)

Sandy Bridge-E5 (32 nm)

Sockets: 1-4
Cores: up to 8 (SNB)

Beckton (45 nm)

Sockets: up to 8
Cores: up to 8 (NHM)

Westmere-EX (32 nm)

Sockets: up to 8
Cores: up to 10 (WSM)

Ivy Bridge-E3 (22 nm)

Sockets: 1
Cores: up to 4 (IVB)

Ivy Bridge-E5 (22 nm)

Sockets: 1-4
Cores: up to 12 (IVB)

Ivy Bridge-E7 (22 nm)

Sockets: up to 8
Cores: up to 15 (IVB)

Haswell-E3 (22 nm)

Sockets: 1
Cores: up to 4 (HSW)

Haswell-E5 (22 nm)

Sockets: 1-4
Cores: up to 18 (HSW)

Haswell-E7 (22 nm)

Sockets: up to 8
Cores: up to 18 (HSW)

Centerton (32 nm)

Sockets: up to 1
Cores: up to 2 (SLT)

Avoton (22 nm)

Sockets: 1
Cores: up to 8 (SLM)

Time

Figure 2-6. Intel server processor progression

It is important to note that the E3 products are based on desktop processor
architecture and are therefore limited to a single socket and lower core counts. At the
same time, they have much earlier time to market than the E5 and E7 processors. So,
although a Haswell-E3 and Haswell-E5 share the same core design, the uncore design is
different.

Introduction to Power
One of the first topics taught in electrical engineering is Power = Current * Voltage (P = I * V).
You can think of power as a pipe with water flowing through it. Current is effectively how
fast the water is flowing, whereas the voltage is the size of the pipe. If you have a small pipe
(low voltage), it is difficult to move a lot of water (electricity). Similarly, if you can slow down
how fast the water flows, you can reduce your water usage. Power management in a CPU
is all about efficiently (and dynamically) controlling both current and voltage in order to
minimize power while providing the performance that is desired by the end user.

Figure 2-7 illustrates a conceptual hierarchy of where power goes from the wall down
to the circuits inside the CPU. This section will primarily explore the CPU and memory
power components.

example, the Sandy Bridge-E5, Ivy Bridge-E5, and Ivy Bridge-E7 processors are all based
on a similar architecture, which is separate from the single-socket Sandy Bridge-E3 and
Ivy Bridge-E3 processors.

Chapter 2 ■ CpU power ManageMent

34

Table 2-5 provides a summary of some common power terms.

CPU Power Breakdown
The CPU power can conceptually be broken into

The logic power (executing the instructions)•	

The I/O power (connecting the CPU to the outside world)•	

These can be broken down further as described in the following sections.

Table 2-5. Common Power Terms

Term Abbreviation Description

Voltage V Voltage is the electrical potential difference
between two points.

Current (amps) A Current is the rate at which the energy flows.

Capacitance C Capacitance is the ability of a system to store an
electrical charge. Batteries can be thought of as
large capacitors that store charge.

Frequency f Frequency refers to number of transitions in a unit
of time. In processors, this generally refers to the
rate at which the clock is toggling.

Energy (joules) J Joules are a unit of energy or work. It does not
matter how fast or slow the work is done—just how
much work it takes.

Power (watts) W Power is a measurement of energy over time.
Doing the same amount of work in half the time
requires twice the power.

CPU Power Platform Power

I/O

Wall Power

Logic

Leakage

Dynamic

Clocks Logic

Memory

Drives

Power Delivery

Cooling

PCIe Devices

Illustration. Not drawn to scale.

Figure 2-7. Wall power breakdown illustration

Chapter 2 ■ CpU power ManageMent

35

Logic Power
When the logic in the CPU transitions between 0 and 1, power is consumed. The
transistors are effectively each little tiny capacitors that are charging and discharging (and
expending power in the process). This is referred to as the active power of the CPU.

There are two components to active power:

Power consumed by the clocks that run throughout the CPU.•	

Power consumed by the actual logic that is performing •	
computation.

Only a subset of the bits in the CPU transition between 0 and 1 in a given cycle.
Different workloads exhibit different switching rates. This leads to the application ratio
(AR) value in the equation, which modulates the active power. For example, it is common
for certain types of workloads to not perform floating point math. In these workloads, the
floating point logic is unused and will not transition and consume active power.

Leakage power can be thought of as the charge that is lost inside of the CPU to keep
the transistors powered on. The equations for leakage are more complicated than for
active power, but conceptually it is simple: leakage power increases exponentially with
both voltage and temperature.

The breakdown between leakage and dynamic power is very sensitive to the
workload, processor, process generation, and operating conditions. Dynamic power
typically contributes a larger percentage of the CPU power, particularly when the
processor is running at a high utilization.

Table 2-6 summarizes the CPU logic power breakdown.

Table 2-6. CPU Logic Power Breakdown

Component Conceptual Equations Description

Active power I ~ C * V * f * AR

P ~ C * V2 * f * AR

Active power can be thought of as the
power consumed to toggle transistors
between 1s and 0s.

Leakage power I ~ eV * et

P ~ V * (eV * et)

Leakage power can be thought of as the
charge that is lost inside of the CPU to
keep the transistors powered on.

I/O Power
Running high bandwidth interconnects that are common in modern CPU designs can
contribute a large percentage of the CPU power. This is particularly true in the emerging
low-power microserver space. In some of these products, the percentage of power
consumed on I/O devices tends to be a larger percentage of the overall SoC power.

There are conceptually two types of I/O devices: those that consume power in
a manner that is proportional to the amount of bandwidth that they are transmitting
(DDR), and those that consume an (almost) constant power when awake (PCIe/QPI).

Chapter 2 ■ CpU power ManageMent

36

I/O interfaces also have active and leakage power, but it is useful to separate them
out for power management discussions. The switching rate in traditional I/O interfaces is
directly proportional to the bandwidth of data flowing through that interconnect.

In order to transmit data at very high frequencies, many modern I/O devices have
moved to differential signaling. A pair of physical wires is used to communicate a single
piece of information. In addition to using multiple wires to transmit a single bit of data,
typically the protocols for these lanes are designed to toggle frequently and continuously
in order to improve signal integrity. As a result, even at low utilizations, the bits continue
to toggle, making the power largely insensitive to bandwidth.

Table 2-7 summarizes the types of I/O power.

Table 2-7. Types of I/O Power

Component Conceptual Equations Description

Traditional I/O power I ~ BW * V * f Traditional I/O components
typically exhibit power utilization
that is a function of their
bandwidth (utilization) along with
voltage and frequency.

Example: DDR3/4 data and
command busses

Differential signaling
I/O power

I ~ V * f Differential signaling I/O power is
a function of voltage and frequency
but is generally not sensitive to
bandwidth (utilization).

Examples: PCIe, Ethernet, and Intel
QPI all use differential signaling to
transmit data.

Frequency, Voltage, and Temperature Interactions
Although power can easily be thought of as a function of voltage, frequency, and
temperature, each of these components has an impact on the way that the others behave.
Thus, their interaction with each other is also of relevance to energy efficiency.

In order to increase the frequency of a system, you must also increase the voltage.
The voltage required to run a circuit tends to increase with the square of the frequency
(see Figure 2-8). This relationship is critical to power efficiency and understanding
power management. At some low frequencies, it is possible to change the frequency with
only a small (if any) impact to voltage and relatively small increases in overall power.
At higher frequencies, a large increase in voltage is required to get just a small increase
in frequency. The exact relationship between these two components is based on the
transistor design. There are varied manufacturing and design techniques that are used
to select the operating voltage at different frequency points. So, although conceptually
voltage scales with the square of the frequency, this is not always how real systems
operate in production.

Chapter 2 ■ CpU power ManageMent

37

Different transistor designs and process technologies have different characteristics.
Transistors that can achieve higher frequencies must trade off low-power characteristics.
These are commonly used in high-power server CPU designs. On the other hand,
transistors can be optimized for low leakage and low-power operation, trading off high
frequency operation. This type of transistor is used in phone, tablet, and laptop devices.
They can also be used in microservers and other low-power servers. Both types of
transistors can be used to build power efficient CPUs and data centers.

Note ■ executing at a lower voltage and frequency (and power) does not necessarily
make a system more power efficient. rather, the most efficient operating point tends to exist
around the “knee” of the exponential curve (or slightly to the right of the knee). a common
misconception is that the lower the frequency and the lower the power, the more efficient
the operation. this is commonly incorrect, particularly when power is measured at the wall.
It is also possible to build very power efficient data centers using both low-power CpUs
leveraging power-optimized transistors and higher power CpUs based on frequency
optimized transistors.

Leakage current is exponentially sensitive to temperature. Traditionally, increases
in temperature have resulted in higher power as a result of increases in leakage current.
However, leakage power has trended down in recent process generations. The result is
that there is less sensitivity to temperature.

There is another phenomenon called inverse temperature dependence (ITD).
As temperature goes down, the voltage required to operate a transistor at a given
frequency can increase. This behavior is most pronounced at lower voltages. In high-
power server CPUs, this phenomenon typically does not impact peak performance or
power, since voltage and temperature in these situations are high enough that there is
minimal if any ITD compensation required. However, ITD can become more significant

Frequency

Vo
lta

ge

Figure 2-8. Voltage/frequency relationships

Chapter 2 ■ CpU power ManageMent

38

in low-power CPUs that operate at lower voltages, frequencies, and temperatures. The
ITD phenomenon has been known for many years but may become more notable as
leakage power is driven down. Historically, as temperatures decreased, leakage power
dropped more than the increase in power from ITD. On products with very low levels of
leakage power, ITD effects could result in increased net power at low temperatures.

Power-Saving Techniques
Now that we have looked at the basics of where power goes in the data center, we will
investigate some of the high-level techniques for achieving power efficiency. There are
two conceptual ways to save power:

Turn it off.•	

Turn it down.•	

Different components in the data center and CPU have different techniques for
performing each of these two operations. The rest of this chapter will go into some of the
details of those techniques.

Turn It Off
Turning off the lights in your house is a very effective way to save power. When CFL light
bulbs first were introduced to the market, many were unhappy with the long time it took
for them to provide the desired amount of light quickly. In a CPU, similar issues arise.
There are different levels of “off,” and the tradeoffs are made between saving power and
how quickly different subcomponents are available when desired (see Table 2-8).

Table 2-8. Turning Logic Power Off

Component Wake Latency Description

Clock gating ~10 ns to ~1 ms Stop the clocks, saving active power

Power gating ~1 to 10 ms Removes all power, saving both leakage and active
power

Synchronous design used in modern CPUs depends on clocks to be routed
throughout the logic. If a given block of logic is not in use, the clocks going to that logic do
not need to be driven. Clock gating is the act of stopping the clocks to a given block of logic
to save power. By gating the clocks, both the power of the clocks themselves can be saved,
as well as any other dynamic power in the logic (since it cannot transition without clocks).

Clock gating can be performed at a wide range of granularities. For example, a single
adder could be clock gated if not in use, or an entire core could be clock gated. Clock
gating can be performed autonomously by the hardware when it detects logic is not in
use, or it can be performed with software intervention. When clocks to a block of logic are
gated, the dynamic power of that block is driven down close to zero, whereas the leakage
power is not impacted. State (information) in the circuit is maintained.

Chapter 2 ■ CpU power ManageMent

39

Power gating is a technique that allows both leakage and active power to be saved.
However, it takes much longer to wake the circuits back up compared to clock gating. In
addition to preventing transistor state transitions, power gating removes all power from
a circuit so that leakage power is also driven to zero. State is lost with power gating, so
special actions (like save/restore or retention flops) must be used in conjunction with
power gating.

Turn It Down
Voltage has a significant impact on both the dynamic and leakage power of a circuit. By
reducing the voltage when performance is not required, power can be saved. Table 2-9
provides a summary of two common mechanisms for reducing voltage.

Table 2-9. Turning Logic Power Down by Reducing Voltage

Component Description

Voltage/frequency scaling If high frequency is not required, it can be dynamically
reduced in order to achieve a lower power level. When
frequency is reduced, it may also be possible to reduce the
voltage.

Retention voltage (Vret) The voltage required to maintain state in a circuit can be
lower than the voltage required to operate that circuit. For
example, maintaining data in a cache can be done with
much lower voltage than is required to read/write that data.

Decreasing the voltage to Vret is frequently paired with
clock gating in order to achieve a “middle ground”
between basic clock gating and power gating. Compared
to power gating, some leakage power continues to be
consumed, but state is maintained allowing for simpler
designs and faster wake latencies.

Note ■ Voltage reduction is a critical piece to power savings. Leakage power scales
exponentially with voltage, and dynamic power scales about with the square of the voltage.

Power-Saving Strategies
One major challenge with power management algorithms is understanding how multiple
algorithms will impact one another. Saving power comes with some cost. For example, if
you put memory into a low-power state, it takes time to wake it back up in order to service
a memory request. While that request is waiting for memory to wake back up, something
else in the system is generally awake and waiting while consuming energy. Aggressively
saving power in one part of the system can actually result in a net power increase in the

Chapter 2 ■ CpU power ManageMent

40

overall system if not done carefully. Features can be enabled that save power for their
subsystem at some overall performance cost and minimal to no overall power savings.
A good system design will hide these challenges from the end users and enable them to
get the most out of their system.

The platform characteristics can play a large role in determining “what’s best.” As
an example, in a system with 1 TB of memory connected across two sockets, a large
percentage of the platform power is spent in the memory. Aggressively using memory
power management here is generally a great idea. On the other hand, if a system only has
8 GB of memory and a single DIMM of memory, using memory power management can
only save a small amount of overall memory power and may increase platform power in
certain conditions because of increase active time in the IA cores. Chapter 8 will discuss
some of these tuning options and tradeoffs.

Race to Idle vs. Slow Down
When going on a road trip, cars are traditionally most efficient when running at about
60 mph. If you drive faster than that, the car will be active for a shorter amount of
time, its efficiency while active will be less, and it will consume more gas. If you drive
slower, gas may be consumed at a slower rate (in time), but the overall gas spent will
be larger because the car is active longer. At speeds higher than 60 mph, there is higher
wind resistance and drag on the car, and engines are typically not optimized to run as
efficiently. At lower speeds, the drag may be lower, but the engine is running below its
capabilities, making it less efficient.

Similar behavior can exist inside of a CPU. The speed of the car is similar to the
voltage/frequency of the CPU. Theoretically, you can achieve the best power efficiency by
cycling between the most efficient operating point and turning it off in order to supply the
desired level of performance. This strategy has traditionally been referred to as Race to
Idle or Race to Halt (HALT is a CPU instruction instructing a core to stop executing and go
into a power saving state).

The Race to Idle strategy has generally been shown to be inefficient in many server
usage models because the idle state consumes too much power due to its constraints.
Imagine that it would take one hour to start your car whenever you wanted to use it. If
you were using your car frequently throughout the day, you would just never turn the car
off. At night, it might be a great idea, but on a weekend filled with chores, you would be
unwilling to wait for your car to warm up. Similarly, a commuter with a fixed schedule
might be able to tolerate taking one hour to turn on their car in the morning (they could
turn it on before getting ready for work). This is because they know when they are going
to need it. A doctor who is “on call,” on the other hand, would not be able to tolerate this
because they may need to go into work at any time and would have zero tolerance for a
delay. So, even if they are able to rush through their tasks, they would have to leave the car
running when they were done with it.

Servers tend to be more like on-call doctors. They never know exactly when they
are going to be needed, and they need to be available quickly when they are needed.
Problems like network packet drops can occur if deep idle states are employed that
require long exit latencies. At times, servers know that they will not be needed
(i.e., the doctor goes on vacation). However, this is generally the exception rather than the
common case.

Chapter 2 ■ CpU power ManageMent

41

Table 2-10 summarizes some of the different techniques that can be used to save
power in a server CPU.

Table 2-10. Power-Saving Strategy

Strategy Driving Example Server Application

Race to Idle Drive 100 mph taking rest stops The server runs at peak power and
performance in an attempt to get into
a deep power saving state.

This typically is not effective or
employed in server usage models.
Too much power is consumed in idle
states to make this effective, because
very deep idle states take too long to
wake up. It is difficult to predict when
to wake up accurately.

Jog to Idle Drive 60 mph taking rest stops The server runs at an efficient
operating point that is still slightly
faster than required at a given point in
time and then attempts to get into an
idle state.

This technique theoretically sounds
good, but actually achieving periods
of idleness is challenging.

Slow and
Steady

Drive 45 mph continuously The server runs at the utilization
that it thinks it needs to in order to
complete the work that it has, with no
intention of trying to get breaks along
the way.

This is typically the most common
technique used in server power
management today due to the system
constraints preventing deep idle
power savings.

CPU Power and Performance States
There exist a number of standard techniques for turning logic off as well as lowering the
operating voltage inside of the CPU. This section will provide an overview of the power
management capabilities that exist in the CPU and then go into detail about how each of
the states performs under different environments. Table 2-11 provides an overview of the
different power management states that are covered in detail in the following pages.

Chapter 2 ■ CpU power ManageMent

42

Table 2-11. Overview of CPU Power Management States

State Granularity Description

C-states Core/thread Turning cores off and halting execution
of instructions: These states save power by
stopping execution on the core. Different
levels of C-state exist with varied amounts
of power savings and exit latency costs. C1
is the state with the shortest exit latency but
least power savings. Larger numbers, like C6,
imply deeper power savings and longer exit
latencies.

Package C-states Package Turning off a subset of the package to save
power when it is idle: Package C-states kick
in when all cores are in a C-state other than
C0 (active). Like with core C-states, there can
be multiple levels of package C-states that
provide tradeoffs between power savings and
exit latency. The package includes all the
cores as well as other package blocks, such
as shared caches, integrated PCIe, memory
controllers, and so on. On Intel Xeon CPUs,
these states typically have exit latencies <40 ms
in order to avoid network packet drops.

P-states Various Changing the frequency and voltage of a
subset of the system: Traditionally these
states have been focused on the cores,
but changing the frequencies of other
components of the CPU is also possible (such
as a shared L3 cache). Execution can continue
at varied performance and power levels when
using P-states.

T-states Core Duty cycling the cores at a fixed interval:
T-states duty cycle the core execution to save
additional power. These states are generally
used for aggressive throttling when needed
for thermal, electrical, or power reasons. They
traditionally have not been used for power
efficiency.

(continued)

Chapter 2 ■ CpU power ManageMent

43

State Granularity Description

S-states Package Turning off the entire package (sleep state):
These states are most common in client and
workstation usage models, but can also be
applied in some server CPUs. They tend to
have very long exit latencies (seconds) but can
drive the power close to zero. S0 represents
the active state and S5 the “off” state (with
multiples states in between).

G-states Platform Global states: These states refer to the power
state of the platform. These are similar to
S-states. G-states are generally not visible
to the end user and are used by platform
designers.

D-states Device Devices (PCIe, SATA, etc.) in a powered-
down state: D-states are traditionally for
devices such as PCIe cards and SATA and
refer to low-power states where the device is
powered down. D-states are not a focus on
servers.

Table 2-11. (continued)

C-States
C-states provide software with the ability to request that the CPU enters a low-power
state by turning off cores or other pieces of logic. A single CPU core may support multiple
software threads if it supports simultaneous multithreading (SMT). Each HW thread has
its own state and is given the opportunity to request different C-states. These are referred
to as thread C-states, and are denoted as TCx (where x is an integer). In order for a core to
enter a core C-state (denoted as CCx), each thread on that core must request that state or
deeper. For example, on a core that supports two threads, if either thread is in TC0, then
the core must be in CC0. If one thread is in TC3 and the other is in TC6, then the core
will be allowed to enter CC3. Thread C-states themselves save minimal, if any, power by
themselves, whereas core C-states can save significant power.

There are also package C-states, which can be entered when all the cores on that
package enter into a deep core state. These states are commonly denoted as PCx or PkgCx
(where x is an integer). At times, package state numbering is correlated to the state of the
cores on that package, but this is not a hard rule. For example, the PC2 state on certain
modern server processors is used when all cores on that package are in CC3 or CC6 states
but other constraints are preventing the system from entering into a state deeper than PC2.

Chapter 2 ■ CpU power ManageMent

44

Thread C-States
Software requests C-states on a thread granularity. Minimal, if any, power savings actions
are taking when a thread enters into a thread C-state without also inducing a core C-state.
On CPUs that support SMT, these states are effectively a stepping stone to getting into
core C-states. On CPUs that do not support SMT, thread and core C-states are effectively
identical.

Core C-States
Core C-states determine if a core is on or off. Under normal execution, a core is said to
be in the C0 state. When software (typically the OS) indicates that a logical processor
should go idle, it will enter into a C-state. Various wake events are possible that trigger the
core to begin executing code again (interrupts and timers are common examples).

Software provides hints to the CPU about what state it should go into (see Chapter 6
for more details). The MWAIT instruction, which tells the CPU to enter a C-state, includes
parameters about what state is desired. The CPU power management subsystem,
however, is allowed to perform whatever state it deems is optimal (this is referred to as
C-state demotion).

Table 2-12 shows the C-state definitions from the Sandy Bridge, Ivy Bridge, and
Haswell CPUs. There are no hard rules about how these states are named, but with a
product line across generations, these definitions exhibit minimal changes.

Table 2-12. Core C-State Examples

Core C-State Wake Latency Description

CC0 N/A The active state (code executing): At least
one thread is actively executing in this state.
Autonomous clock gating is common for
unused logic blocks.

CC1 ~1 ms Core clock gated: In CC1, the core clocks are
(mostly) gated. Some clocks may still be active
(for example, to service external snoops), but
dynamic power is driven close to zero. Core
caches and TLBs are maintained, coherent,
and available.

CC1e ~1 ms + frequency
transition

Enhanced C1—hint to drop voltage: CC1e is
effectively the same as C1, except it provides
a hint to the global voltage/frequency control
that V/f can be reduced to save additional
power.

(continued)

Chapter 2 ■ CpU power ManageMent

45

Core C0

Core C0 (CC0) is the active state when cores are executing one or more threads. The
core’s caches are all available. Autonomous power savings actions, such as clock gating,
are possible and common. For example, it may be possible to clock gate floating point
logic if integer code is being executed.

Core C1 and C1e

Core C1 (CC1) is the core sleep state with the fastest exit latency. Clock gating is
performed on a large portion of the logic, but all of the core state is maintained (caches,
TLBs, etc.). Some logic is typically still active to support snooping of the core caches
to maintain coherency. Core C1 is a state that the core can enter and exit without
interacting with the PCU. This enables fast transitions, but also prevents the global power
management algorithms from taking advantage of this state for some optimizations.

Core C1e is a similar state, except that it provides a hint that the core can be reduced
to a lower voltage/frequency as well. Although the exit from C1 and C1e are both
about the same latency, it does take some time to ramp the core back to the requested
frequency after the wake. The C1e state is generally achieved at the package granularity.
In other words, all cores on a socket must first enter a C1e or deeper state prior to
dropping the voltage/frequency on any core requesting C1e.

Core C3

Core C3 (CC3) provides gated clocks and a request to drop the voltage to retention
voltage. It is conceptually a lower voltage version of C1e that does not require a frequency
transition. C3 does, however, flush the core caches and core TLBs. It also has a much

Core C-State Wake Latency Description

CC3 ~50–100 ms Clocks gated and request for retention
voltage: Processor state is maintained, but
voltage is allowed to drop to Vret. L1 + L2 (core)
caches are flushed. Core TLBs are flushed.

CC6 ~50–100 ms Power gating: The core is power gated (voltage
at 0). L1 + L2 (core) caches are flushed. Core
TLBs are flushed. Processor state is saved
outside the core (and restored on a wake).

CC7–CC10 Various CC6 with extra savings outside the core:
Additional states deeper than CC6 exist on
certain CPUs. These states are generally not
supported on server processors today due to
their long latencies.

Table 2-12. (continued)

Chapter 2 ■ CpU power ManageMent

46

longer wakeup latency than C1e. CC3 entrance and exits are coordinated with the PCU, so
additional optimizations can take further advantage of this state (more later).

Core C6

Core C6 (CC6) saves a large amount of power by power gating the core. This requires the
core to flush its state out including its caches and TLBs. Core C6 has a longer wakeup
latency than CC3 (generally twice as long) because it must relock the PLL and ungate the
power, but it can also save significantly more power than CC3 or C1e (the exact amounts
vary significantly from product to product). This is the deepest possible power saving
state for the core itself.

Note ■ CC6 is the workhorse on servers for major idle power savings. CC1 is useful for
saving power during short idle periods, or on systems where the latency requirements preclude
the use of CC6. the CC3 state has generally shown minimal value in practice in servers.
the performance impact of this state is similar to that of CC6 because of the cache flush, and
dropping the voltage to Vret only occurs when all cores in the voltage domain agree to do so.

Core C7 (and up)

States deeper than CC6 are productized on many client devices. The core itself does
not have any states deeper than power gating and CC6, but these deeper states can
be requested by software and they provide a hint to the global power management
algorithms about the potential for package-scoped power management optimizations
(like flushing a shared L3 cache).

Note ■ States deeper than CC6 have generally been challenged on servers,6 because
the server software environments rarely become completely idle. Flushing the L3 cache,
for example, has non-trivial memory energy cost (both on entry and wake), and also results
in longer wake periods on short wake events (because all data/code must be fetched from
memory). these additional power costs tend to significantly offset (or even exceed) the
power savings allowed by flushing the cache. Servers also tend to have much lower levels
of latency tolerance, making further optimizations challenging.

6There was some confusion on the Sandy Bridge and Ivy Bridge generations because the CC7 state
was enumerated in CPUID to software on Sandy Bridge, and then removed on Ivy Bridge. The CC7
state on Sandy Bridge E5 had identical power savings characteristics to CC6. As a result, to avoid
long-term confusion, the CC7 state was removed on Ivy Bridge and does not exist on Haswell E5 or
Avoton.

Chapter 2 ■ CpU power ManageMent

47

C-State Demotion

The PCU can demote C-state requests made by software and decide to enter into more
shallow states if it believes that the OS is asking for states that are sub-optimal. Early
versions of software C-state control at times made overly aggressive requests for C-states
when they were enabled, exposing some customers to performance degradation with
C-states. In an attempt to resolve these concerns, C-state demotion was added into the
PCU firmware in an attempt to prevent entry into deep C-states when it was determined
by the processor that it could be detrimental to either performance or power efficiency.
The details of these algorithms are not disclosed, and different algorithms have been
deployed on different product generations. Although the PCU has worked to reduce the
exposure to C-state performance degradation, operating systems have also tuned their
selection algorithms to reduce their own exposure to performance degradation.

Early implementations of core C-state required OS software to save and restore both
the time stamp counter (TSC) and local APIC timers. Recent processors have removed
this requirement, and most of the work for entering a C-state and waking back up is
handled autonomously by the CPU hardware and firmware.

Package C-States
When an entire CPU is idle, it can be placed into a package C-state in order to save
additional power beyond what is possible with the subcomponents individually. These
states are targeted at idle (or close to idle) conditions. The exact definition of these package
states (what is turned off, and what the requirements are to do so) changes from CPU to
CPU and generation to generation. However, the high-level concept remains the same.

When a CPU enters a deep package C-state, memory is no longer available to devices
connected to the CPU (such as the network card). Intel servers commonly target a worst
case of about 40 microseconds in order to restore the path to main memory for PCIe
devices.

Table 2-13 provides an example of the package C-state definitions that are used
across the Sandy Bridge, Ivy Bridge, and Haswell Server generations. Avoton did not
implement package C-states and was able to achieve very low idle power without the
need for a separate state managed by the power control unit. Instead, the power savings
optimizations for idle power were implemented autonomously in the various IPs
throughout the SoC.

Chapter 2 ■ CpU power ManageMent

48

Table 2-13. Package C-State Examples

Package
C-State

Core C-States Path to Memory Description

PC0 At least one in
CC0.

Available The active state (code executing).
No package-scoped power savings.

PC1e None in CC0/
CC1. At least one
in CC1e.

Available All cores have entered C1e or
deeper states, allowing the
opportunity for the voltage and
frequency to drop. At least one
core is still in C1e, preventing more
aggressive power savings.

PC2 All cores in
CC3/CC6.

Available All cores are in CC3/CC6, but PCIe
or a remote socket is still active.
The shared uncore must still be
active to support these other traffic
sources. Minimal package-scoped
optimizations can be performed
here. The actions in this state are
effectively identical to PC1e.

PC3 All cores in CC3/
CC6. At least one
in CC3.

Not available All cores are in CC3/CC6 and other
traffic sources (PCIe and remote
sockets) are also idle. Package
scoped operations, such as deep
memory self-refresh or uncore Vret
are possible.

PC6 All cores in CC6. Not available Same as PC3, except no cores are
in CC3. Additional more aggressive
power savings may be possible. On
Ivy Bridge EP, for example, the L3
cache was only taken to retention
voltage in PC6 and not in PC3.

PC7 All cores in CC7. Not available Same as PC6, except the L3 cache is
also flushed.

Note ■ the pC7 state has not been productized in many server processors (though it
has been evaluated). Flushing the L3 cache costs memory energy and also causes any
short-term core wakeups to take significantly longer, as all data/code must be fetched from
memory. these added costs tend to significantly reduce the power savings that can be
achieved with such a state, while also leaving the user with a longer wakeup latency.

Chapter 2 ■ CpU power ManageMent

49

Module C-States
A module refers to a collection of cores that share resources. On Intel Atom-based server
processors such as Avoton, groups of two cores share a single L2 cache. Other groupings are
theoretically possible, such as sharing a single voltage/frequency domain. C-states are also
possible at the module level and are commonly referred to as MCx (where x is an integer).

Note ■ Module C-states have not been used as aggressively as core and package
C-states in production on servers due to challenges in finding energy-efficient
optimizations with them in server environments. these issues are similar to those observed
with the flushed L3 cache in package C-states.

P-States
P-states were invented in order to dynamically reduce (or increase) the CPU operating
voltage and frequency to match the needs of the user at a given point in time. Running at
lower frequencies results in lower performance and longer latency to complete the same
amount of work. However, it may be possible to complete a required amount of work with
lower energy. A good example is a web server running a news web site. At 3:00 a.m., it is
unlikely that many people will be accessing the data on that webserver. By running at a lower
voltage/frequency, power can be saved. Each web request transaction on that CPU will
take longer to complete, but in many cases the latency delta is so small relative to network
transfer latencies that the customer will never notice. As the system load begins to increase,
the frequency can be increased to meet the higher level of demand while a continued
quality of service is maintained. The operating system has traditionally been responsible for
selecting which frequency the system should operate at. See Chapter 6 for more details.

Note ■ as shown in Figure 2-8, the voltage savings from decreasing frequency shrinks at
lower frequencies (and eventually becomes zero). Decreasing frequencies past the point of
voltage scaling is possible, but it tends to be inefficient. Users are better off using C-states
at this point to save power. as a result, processors have a minimum supported operating
frequency (called pn) and may not expose lower frequencies to the operating system or allow
lower frequencies to be requested.

P-states have since been extended to also transition voltage/frequency on other
domains in order to save additional power. In some modern servers, the L3 cache and
on-chip interconnect contribute non-trivial power to the CPU, and it is desirable to
reduce the V/f of this domain when high performance is not required.

P-states are managed as a ratio of a base clock frequency (bclk). On the Nehalem
generation, the bclk ran at 133 MHz. If the OS requested a ratio of 20, then the system
would run at 2.66 GHz. All Xeon processors starting with Sandy Bridge have used a
100 MHz bclk. The Avoton architecture had a variable bclk that was based on the memory

Chapter 2 ■ CpU power ManageMent

50

frequency of the system. Each different ratio is commonly referred to as a bin of frequency.
It is not possible to control frequency at granularity smaller than the bclk speed.

Voltage regulators (VRs) supply voltage to the CPU from the external platform
(see Chapter 4 for more details). Having a large number of VRs to supply different
voltages is expensive and challenging to manage/design. It is generally not power
efficient to reduce the frequency of a system without also reducing the voltage. As a result,
CPUs have supported a single variable voltage/frequency domain for the cores.

Note ■ having different cores on a CpU running at different frequencies but at the same
voltage is suboptimal because frequency scaling without voltage scaling tends to be
inefficient. as a result, most processors that are constrained to a single voltage domain for
the cores are designed to require those cores to all run at the same frequency at all times.

In Haswell, Intel introduced the Integrated Voltage Regulator (IVR). This enables
individual cores to have their own voltage (and therefore frequency) domains, enabling
efficient per core P-states (PCPS). Low-dropout regulators (LDOs) can also be used to
provide variable voltages across cores in a CPU with a single input voltage, but such a
technique has not been productized by Intel to date.

Table 2-14 illustrates the progression of P-states in recent generations. Changes and
innovation often occur on processors when a new platform is introduced since these
optimizations have a platform design impact.

Table 2-14. P-State Developments across Server Generations

Generation Base Clock Core P-States Uncore P-States Comments

Nehalem
Westmere

133 MHz One variable
domain

Static frequency
(based on SKU)

Sandy Bridge
Ivy Bridge

100 MHz One variable
domain

Same voltage/
frequency as core
domain

Uncore V/f
scaling provides
significant power
savings at low
utilizations.

Avoton Variable
based on
memory
speed

One variable
domain

Static frequency
(based on memory
speed)

Uncore domain
has low power
contribution (no
L3 cache).

Haswell E3 100 MHz One variable
domain

One dedicated
variable domain

IVR used for
separate uncore
domain.

Haswell E5/E7 100 MHz Per core
variable
domains

One dedicated
variable domain

IVR allows per core
control.

Chapter 2 ■ CpU power ManageMent

51

Per Socket P-States
Certain processors such as Sandy Bridge, Ivy Bridge, and Avoton provide a single voltage/
frequency domain across all cores on a socket. The target frequency is selected by looking
across the requested frequencies on each of the threads with voting rights and taking
the max of those frequencies. Voting rights are determined by the state that the thread
is in, and that varies across generations. For example, a thread that is in a TC6 state
may relinquish its voting rights on certain processor generations. It is important to note
that the target frequency is not always granted—other aspects of the systems, such as
temperature and power, may limit how high the frequency is able to go.

On Sandy Bridge and Ivy Bridge, voting rights were lost by any threads in
C1e/C3/C6 states. This had two effects on the system. First, when all threads went into
one of these C-states on a socket, no core on that socket would have voting rights and the
core frequency would drop to the minimum frequency. Secondly, if different cores were
requesting different frequencies, and a core requesting the highest frequency went to
sleep, it could result in a decrease in frequency to the next highest requested frequency.

Avoton used a different approach. All cores maintained voting rights even when they
were in C1e/C6 states (there was no C3 state on Avoton). However, a package C1e state
was also used, which detected certain conditions when all threads were in a C1 or deeper
state and would decrease the frequency to an efficient level.

Per Core P-States
Haswell E5/E7 provides the ability to independently change the frequency and voltage of
the individual cores in the CPU.7 In this mode of operation, the target frequency of a given
core is simply the max of the requested frequency for the threads on the core. There is no
concept of voting rights here.

Many servers execute workloads (like web servers) that service small, discrete
“transactions.” As the transactions come into the system, they are forked out to the
various threads that service them. In this type of workload, different hardware cores
tend to observe imbalances in utilization. These imbalances are constantly shifting
and moving, but it is possible to take advantage of transient imbalances and reduce
the frequency on cores that are underutilized. Figure 2-9 provides an example of one
such workload. It compares management of P-states at the socket granularity (per
socket P-states, or PSPS) to the per core granularity (PCPS). On the x-axis is the system
utilization (with increasing utilization from left to right), and on the y-axis is the CPU
socket power.

7This capability is not available on HSW E3 products.

Chapter 2 ■ CpU power ManageMent

52

When running different workloads on a system, it can be useful to execute them at
different frequencies. A common example of this is with virtualization. One user may
desire 100% of their virtualized resources, whereas another may be running at very
low utilization. PCPS allows the active user to ramp their voltage and frequency up
without imposing those power costs on the second user. A similar situation exists with
different types of workloads running on a system. If a subset of cores is being used for
some performance-critical task and are running at a high frequency while another core
periodically wakes up to service a daemon, there is no need to execute that daemon at
the high voltage/frequency point. When threads wake up and execute at a high voltage/
frequency, they theoretically can get into a deep C-state faster (mitigating the cost of
the high frequency, or even turning it into a net power savings). It is not uncommon
for server platforms to have a significant set of background software threads that can
perturb the system, it can cause threads to wake up frequently, thus preventing the use
of these deep C-states at moderate to high system utilizations. This behavior is much
less common on power-optimized consumer platforms where it would cause significant
battery life degradation (with or without PCPS).

Per core P-states are not always a huge win. A good example of this is with low-power
microservers. In microservers, it is common for the amount of power consumed by the
IA cores to be a smaller percentage of the overall platform power. It is also common for
these CPUs to run at lower frequencies with smaller voltage dynamic range. Without
good voltage scaling, you are better off racing to halt on an individual core and getting
into a deep C-state on that core rather than reducing the frequency and voltage of that
core alone.

Figure 2-9. Per core P-states (PCPS) vs. per socket P-states (PSPS)

Chapter 2 ■ CpU power ManageMent

53

Uncore Frequency Scaling
The Nehalem and Westmere families of processors maintained a constant frequency in
the uncore. At low system utilizations (about 10%–40%), this was an inefficient operating
condition, because the L3 cache was kept at a higher frequency and voltage than
necessary. However, it provided generally consistent performance behavior.

On the Sandy Bridge and Ivy Bridge generations, the uncore and cores on a socket were
tied together into a single voltage/frequency domain. When the cores changed frequency,
the uncore (L3 cache) moved with them. This provided significantly better power efficiency
at low system utilizations, since the L3 cache voltage was reduced, saving leakage power. In
addition to this, many server workloads saw improved frequency scaling efficiency (larger
performance increases by increasing frequency).

On Haswell, the cores and uncore were moved to separate variable voltage/
frequency domains. This allows the system to take advantage of all the benefits of a
variable uncore domain, while also allowing for improved power efficiency. For example,
if one socket in a two-socket system desires high performance and the second socket is
idle, it informs the second socket that it is in a high-performance mode. The idle socket is
then able to increase the frequency of its uncore in order to supply the best memory and
snoop latencies to the high-performance socket without increasing the voltage/frequency
of the idle cores on that idle socket. This feature is called perf p-limit. Similar behavior is
possible when high performance is required by PCIe.

Avoton does not have an L3 cache or a high-power uncore like is commonly found
on Xeon processors. As a result, managing the uncore frequency is simply not worth the
cost in that case.

Turbo
CPU server platforms are typically designed to provide sufficient cooling for relatively
worst-case real workloads and power delivery capabilities. In servers, the vast majority
of the workloads that are typically run on these systems run well below these constraints
that they are designed for. Turbo was introduced to take advantage of this dynamic
headroom. It increases the operating frequency of the CPU in order to take advantage of
any headroom for

Power•	

Thermals•	

Electricals•	

In order to provide additional frequency beyond the base frequency of the unit,
headroom must exist in each of these three major areas. The amount of Turbo that can be
achieved is dependent on the thermals of the platform/data center, the workload being
run, and even the specific unit.

Chapter 2 ■ CpU power ManageMent

54

Turbo Architecture

The Turbo architecture/micro-architecture is largely shared across the Intel product lines
(from phones/tablets up to E7 servers). However, the behavior of these algorithms has
generally been different in each domain. In consumer devices (laptops, tablets, etc.), it
is not uncommon for users to require short-term performance boosts. These platforms
are also frequently thermally constrained. Turbo provides additional performance while
the temperature increases (both internal to the CPU as well as on the device “skin” that
people touch). With some workloads, the thermal capacity will eventually run out, and
the CPU must throttle back its frequency in order to stay within the thermal constraints of
the platform. The Turbo architecture introduced in the Sandy Bridge generation (called
Turbo 2.0 or Running Average Power Limit [RAPL]) attempted to model these thermal
characteristics and provide a mechanism for staying within a desired thermal constraint,
both in the actual CPU as well as at the platform. On servers, it is not uncommon for
certain workloads to sustain high levels of Turbo frequency indefinitely.

Power/Thermal Limits

Thermal constraints generally track directly with power usage over long-time constants.
A laptop, for example, can dissipate a certain amount of power/heat without changing
temperature. Use more power, and the laptop will heat up; use less, and it will cool
down. The Turbo algorithms model these behaviors and constrain power over thermally
significant time constants (usually seconds) in order to stay within the desired thermal
envelope. These same algorithms exist in servers and work to keep the CPU within a
desired power/thermal envelope. See the section “T-States” for more details.

Thermal Protection

In addition to controlling thermals through power limiting, the CPU provides thermal
management routines that keep the CPU operating within its thermal specifications.
These thermal algorithms are enforced during Turbo as well. They are documented in
“CPU Thermal Management” section.

Electrical Protection

Although both power and thermals can generally be dealt with reactively, electrical
constraints are generally less forgiving. The power delivery of the platform has a maximum
current that it can supply (called ICCMAX). This limit typically comes from the voltage
regulators (both IVR and MBVR), but CPU package and socket constraints are also
involved. Exceeding the ICCMAX of a VR for shorts periods of time (microseconds) can
result in a voltage droop and a system failure. These time constants are too fast to detect
and react to reliably today, and as a result, a combination of proactive enforcement and
platform design constraints must be used to prevent system failure. The Turbo algorithm
has an electrical design point (EDP) limit that detects when it may be possible to exceed
the ICCMAX of the processor and reduces frequency proactively to avoid these problems.
Typical workloads will see little to no EDP throttling, because the CPUs are tested to
ensure that it is possible to electrically achieve maximum Turbo under most conditions.

Chapter 2 ■ CpU power ManageMent

55

The big exception to this rule is with advanced vector extensions (AVX) workloads.
AVX is a set of wide-vector instructions targeted primarily at high-performance
computing and other math-heavy applications. These instructions have the potential
to consume significant power and pull significant current. As a result, when AVX
instructions are in use, the EDP algorithm can push the frequency down by one or
more frequency bins. AVX can significantly improve both performance and power/
performance efficiency, but it can also reduce overall performance if only lightly used.

Note ■ aVX has the potential to consume significant power when used. however, when
it is not in use, much of the logic can be automatically (and dynamically) gated off, and the
CpU does not need to take aVX into account for electrical protection calculations. there are
generally no BIoS knobs or oS knobs to disable aVX, since it has minimal cost to workloads
that do not make use of it.

Table 2-15 illustrates the behavior of EDP across generations. In Sandy Bridge, EDP
did not exhibit a significant impact on system behavior. On Ivy Bridge, EDP throttling was
more common. This throttling was applied across the entire socket. In other words, if one
core was using AVX, all cores were throttled to stay within the limits. Haswell operates in
a manner similar to Ivy Bridge. However, separate constraints were included that defined
the level of Turbo that was possible when AVX was active.

Table 2-15. Turbo Electrical Protection Across Generations

Generation EDP Throttling

Sandy Bridge E5 Not common. Applied per socket.

Ivy Bridge E5 Common with AVX. Applied per socket.

Haswell E5 Common with AVX. Applied per socket. Hard limits on Turbo
applied for AVX codes.8

Avoton None.

C-States and Turbo
C-states not only save power but also can provide additional performance when used
with Turbo. By placing cores into deep C-states (C3 or deeper), it can be possible to grant
higher Turbo frequencies. Not only do C-states save power that can be spent on Turbo,
but, when in a sleep state, the PCU knows that the cores cannot suddenly require high
current. This means that the platform ICCMAX constraints are divided up across fewer
cores, allowing them to achieve higher frequencies. This can be particularly useful in
workloads that have a mix of parallel and serial portions, because the serial portions

8See www.intel.com/content/dam/www/public/us/en/documents/white-papers/
performance-xeon-e5-v3-advanced-vector-extensions-paper.pdf.

www.intel.com/content/dam/www/public/us/en/documents/white-papers/
performance-xeon-e5-v3-advanced-vector-extensions-paper.pdf
www.intel.com/content/dam/www/public/us/en/documents/white-papers/
performance-xeon-e5-v3-advanced-vector-extensions-paper.pdf

Chapter 2 ■ CpU power ManageMent

56

can achieve higher frequencies and complete faster. The core C1e and C1 states are not
negotiated with the global PCU in order to provide fast wake and sleep responsiveness.
They also do not reduce the voltage, and some hardware continues to operate (such as
the path to snoop the caches that are not flushed). As a result, use of the C1 and C1e states
can slightly improve Turbo performance by saving power, but additional Turbo bins are
not made available.

Note ■ C-states commonly increase peak performance of certain workloads when used
in conjunction with turbo by allowing higher frequencies to be achieved when the number of
active software threads is less than the number of available hardware threads.

Fused Turbo Frequencies
Each processor SKU is fused with a base (P1) frequency as well as a max Turbo (P0)
frequency. In addition to these two points, limits are commonly imposed on Turbo
depending on the number of active cores. For example, an 8-core CPU may have base
frequency of 2.8 GHz and a maximum Turbo frequency of 3.6 GHz, but it may only be
allowed to achieve a frequency of 3.2 GHz if all of the cores are active, or a frequency of
3.4 GHz if four cores are active. Many server workloads make use of all available cores
while running with Turbo and are therefore limited to the all-core Turbo frequency (P0n
frequency). The supported maximum Turbo frequencies for different numbers of active
cores are referred to as the Turbo schedule. On Haswell, the Turbo schedule concept was
extended to AVX. In addition to the legacy Turbo schedule, an additional set of fused
limits was added and applied when AVX workloads are active.

T-States
T-states provide a mechanism to duty-cycle9 the core in order to achieve even lower levels
of power savings than are possible with P-states without depending on the operating
system to request a C-state with MWAIT. T-states are a very inefficient way to save power
and are generally used exclusively in catastrophic situations to avoid system shutdown
or crash. T-states can be requested by the operating system or entered autonomously by
the CPU when it detects severe thermal or power constraints. Modern operating systems
do not make use of the T-state request infrastructure, but it is maintained for legacy
purposes.

T-states are generally implemented using course-grained duty cycling between a
C1-like state and C0 state (10s to 100s of microseconds of clocks being gated, followed by
a period of being active). However, it is also possible to use fine-grained clock modulation
(or clock duty cycling) to implement these states, or course-grained duty cycle with
deeper C-states.

9T-states technically also include frequency reduction below the point where voltage reduction
is possible.

Chapter 2 ■ CpU power ManageMent

57

S-States and G-States
S-states and G-states provide deep power management at the platform level. S-states
are software (and end-user) visible, while G-states are targeted primarily at platform
designers. Software must request for a CPU to enter into an S-state, and a wakeup from
an S-state requires software (BIOS and OS) support. This is different from package states
where the wake is managed entirely by the CPU. The S0/S4/S5 states are supported
by most server CPUs. S3 is generally more of a workstation and client feature and is
not supported by all server processors. Table 2-16 provides a summary of some of the
common S- and G-states.

Table 2-16. S-States and G-States

G-State S-State Description

G0 S0 The CPU is powered on and managing its own
power.

G1 (sleeping) S1/S2 Legacy sleep states that have since been
replaced by package C-states.

S3 (suspend) CPU (mostly) turned off with state saved in
DRAM for fast wake (seconds).

S4 (hibernate) CPU completely turned off with state
maintained on drive for improved wakeup
latency.

G2 (soft off) S5 (soft off) CPU is completely turned off with no state
saved. Some minimal power still provided
by the PSU to enable wakeups (button press,
keyboard, WoL [Wake on LAN], etc.). Wake
from this state can take many seconds to
minutes.

S3 (mechanical off) N/A PSU is no longer providing any power. Some
minimal power may still exist for maintaining
the system clock or minimal otherwise volatile
states.

S0ix
S0ix states provide power savings that are conceptually similar to package C-states. They
provide global optimizations to save large amounts of power at an idle state. There are
varied levels of S0ix (today from S0i1 to S0i3) that provide successively deeper levels of
power savings with increasing exit latencies. The S0ix terminology has predominantly
been used in consumer devices and not in servers. The exact definition of these different
states has (to date) changed from generation to generation.

Chapter 2 ■ CpU power ManageMent

58

Running Average Power Limit (RAPL)
Imagine having a car that had a top speed of 35 mph, and whenever you tried to drive
the car faster than 35 mph, it would react by dropping the speed down to 32 mph. In
such a situation, it would be very difficult to sustain 35 mph. This is conceptually how
Turbo behaved on the Nehalem generation of processors. Whenever power exceeded the
allowed threshold, the frequency would be decreased in order to get back below the limit.
Frequency was managed on 133 MHz increments with only about 10 different options
for which frequency could be selected (imagine a gas pedal that had only 10 different
“options” for how hard you could press), causing the system to drop below the target max
power level. As a result, in workloads that were power constrained, it would be difficult to
make use of the full capabilities of the system.

Sandy Bridge introduced the concept of Running Average Power Limit (RAPL) for
controlling power usage on a platform to an average limit. RAPL is a closed loop control
algorithm that monitors power and controls frequency (and voltage). On prior generations,
the Turbo algorithm attempted to keep the power below a limit. Whenever power exceeded
that limit, frequency would be reduced in order to get it back under the limit as quickly as
possible. With RAPL, exceeding the power limit for short periods of time (usually up to a
few seconds) is okay. The goal of RAPL is to provide an average power at the desired limit
in a manner that will keep the system within the thermal/power constraints.

Platforms have a variety of different constraints that must be met in order to keep the
system stable. There are a variety of different thermal requirements (e.g., not over-heating
the CPU, VRs, PSU, memory, and other devices) as well as power delivery requirements
(e.g., staying under the ICCMAX of the VR). Many of these constraints will be discussed
in Chapter 4. RAPL provides capabilities for addressing a number (but not all of) of these
different constraints.

Different components/constraints in the platform have different power
requirements. Some constraints are loose—they can be broken for certain periods of
time. Others are hard constraints, and breaking them can lead to failures. Table 2-17
provides some examples of these constraints.

Chapter 2 ■ CpU power ManageMent

59

Table 2-17. Platform Power Constraints Example

Platform
Constraint

Typical Power
Constraint

Notes

Voltage
regulators

~2 times
TDP power

Exceeding the constraints of the voltage regulator
for short periods of time (microseconds) can lead to
system failure. These limits are typically hard limits.

Power supply ~1.2 times
TDP power

Power supplies and the platform can burst to
higher power levels for periods of time (typically
milliseconds). These time constants can be increased
with additional cost.

CPU thermals ~TDP power It typically takes time for the CPU to heat up. As a
result, exceeding the thermal power budget for a short
period of time can be acceptable (while the system
heats up). These time constants are platform- and
workloads-specific, and are typically in the hundreds
of milliseconds to seconds. The CPU will protect
itself if it detects that temperatures are exceeding the
specified limits.

RAPL is targeted at controlling a number of (but not all of) these requirements.
Different levels of RAPL provide protection for different time constants that are targeted
at different platform constraints (see Table 2-18). These capabilities have evolved over
time (see Table 2-19). RAPL provides one mechanism (PL1) for controlling average
power over thermally significant time constants (seconds). The goal is to maximize the
total power available while staying within the configured constraints. It also provides
additional mechanism (PL2/PL3) for controlling the system over much shorter time
constants in an attempt to stay within various power delivery constraints. These limits
are typically higher than PL1 but must be enforced over much smaller windows of time.
Unlike thermally constrained consumer platforms (like small form factor laptops), the
exact PL2 and PL3 values are generally less critical to overall system performance, and
typically are not aggressively tuned.

Table 2-18. RAPL Levels10

Level Time Constant Target Usage Example Configuration

PL1 Seconds Thermals + average power TDP

PL2 ~10 ms Thermals + power delivery ~1.2 times TDP

PL3 <10 ms with duty cycle Power delivery ~1.2 times TDP

ICCMAX Proactive Power delivery SKU specific

10Values in this table are provided as typical examples. They are not in any way hard limits, and the
values are all programmable by the system designer (within certain constraints).

Chapter 2 ■ CpU power ManageMent

60

Sandy Bridge implemented PL1 and PL2 time scales. By default, PL1 is set to the TDP
power of the processor/SKU, and PL2 is set to about 1.2 times TDP. Each of these limits
can be set statically (by BIOS) or controlled dynamically at runtime (through either PECI
or IA software). Any limits for PL1 set above the TDP power level will be clipped to TDP
(with the exception of high-end desktop processors that support overclocking). Although
this worked well in some usage models, supporting only PL1 and PL2 made it difficult
to use RAPL for power delivery protection. It was still deployed for data center power
budgeting and control, but guard bands were required.

Haswell extended the capabilities on Sandy Bridge to attempt to better address
short-term power delivery constraints. In addition to PL1/PL2, a third constraint (PL3)
was added to the system that can detect power excursions on shorter time constants
and throttle with deterministic duty cycles. This enabled less power delivery over-design
(particularly at the granularity of the PSU).

Sandy Bridge also enforced an ICCMAX limit. As discussed previously, ICCMAX
is enforced proactively so that it is never exceeded. On Haswell, ICCMAX became
programmable at runtime. This allowed for the data center management software to set a
hard limit on the max current/power that would never be exceeded.

Figure 2-10 provides an illustration of PL1 and PL2 in operation (not to scale). The
PL3 power level conceptually operates in a similar manner as PL2, just with more well-
defined behavior that is more amenable to platform design. The x-axis of both graphs
represents time. As time goes from left to right, different workload phases execute
(as shown by the “Activity” at the bottom of the chart). To start, the workload is in a low
activity phase (such as memory allocation). Despite frequency running high, the actual
power is low. In this phase, the temperature will generally be relatively lower, and the
control loop can acquire these power credits to spend later.

Table 2-19. RAPL Capabilities Across Product Generations

Product PL1/PL2 PL3 ICCMAX Memory

Sandy Bridge/
Ivy Bridge

Supported Not supported Static, decided at boot Per socket

Haswell Supported Supported11 Dynamic control Per socket

Avoton Supported Not supported Not supported Not supported

11PL3 was supported on HSW E5/E7. On this processor, the power level was shared with the PL2
power level. On HSW E3 PL3 used a separate configurable power level from PL2.

Chapter 2 ■ CpU power ManageMent

61

Then, the workload transitions into a “heavy” phase. At the high frequency, the
heavy workload exceeds the PL2 level and is quickly throttled back down until it is below
PL2. It is then able to sustain a slightly lower frequency for a while despite the average
power being higher than PL1. The CPU is effectively spending the energy credits that
were saved up while the power was low. This is intended to model the thermal capacity
of the system. It is okay to run above the PL1 power for a while as the heat sink heats up.
Once those credits are used up, the frequency will drop further in order to sustain the PL1
average. The PL1 control loop will periodically increase and decrease the frequency such
that the running average matches the PL1 constraint.

Finally, the workload completes the heavy phase and transitions into a phase of
medium activity. The power drops as the activity reduces. After a short period, the control
loop acquires enough budget to begin increasing the frequency again. In this case, the
frequency stabilizes at the maximum supported frequency as the power consumed at that
level is below the PL1 constraint. This mode of operation is actually quite common on
many server workloads that consume less than the PL1 power even at the max supported
Turbo frequency.

PL1

PL2

Po
w

er

Time

Fr
eq

ue
nc

y

Time

Activity Low Heavy Medium

Exceed PL2

Acquire PL1
budget

Spend PL1
budget

Average ~PL1
power

Control freq to
maintain PL1

Acquire PL1
budget

Increase freq
with new budget

Throttle to
meet PL2

Constant

Out of PL1 budget
drop freq

Figure 2-10. Illustration of power-throttling with Turbo 2.0

Chapter 2 ■ CpU power ManageMent

62

The RAPL concept can be applied to any power domain that supports power
reporting and a mechanism for providing throttling to control power. DRAM RAPL
provides an interface to control power to the DRAM domain. PP0 RAPL existed on the
Sandy Bridge and Ivy Bridge generations for controlling the power of the core power
domain (VCC). This was not found to be particularly useful in production and therefore
was removed in the Haswell E5 generation.

IMON and Digital Power Meter
In order to provide a closed-loop algorithm for RAPL, it is necessary to provide power-
measurement feedback. There are two high-level ways to do this: (1) measure the power/
current with an analog circuit, or (2) estimate the power using logic inside the CPU.
Voltage regulator current monitoring (VR IMON) is the primary option for number 1. As
the VRs supply current to the CPU, a circuit within the VR keeps track of an estimate of
the power. The CPU then periodically (usually ~100 ms to ~1 ms) samples this reading
and calculates power from it. The alternative to this is to use a digital power meter to
implement number2.

VR IMON is generally significantly easier to implement/tune for the CPU but adds
some platform cost. For a single VR, these costs are generally small (much less than $1).
It does have the drawback that the VR circuit must be tuned for accuracy. The digital
power meter provides a mechanism to estimate power without the platform requirement.
Most server designs leverage VR IMON, because it provides good accuracy with lower
effort. The exception here is the CPU on Sandy Bridge and Ivy Bridge, which used the
digital power meter. VR IMON also typically includes some simplified digital power
meter for a subset of the die. For example, on Avoton, there are a large number of input
VRs. Many of those VRs supply a small and (generally) constant voltage/current to the
CPU. Rather than implement VR IMON on these rails (increasing platform cost and
design complexity), a simple digital power meter is used to estimate power for those
rails. Table 2-20 illustrates how power monitoring has evolved over recent processor
generations.

Table 2-20. Turbo Power Monitoring/Enforcement Across Generations

Generation Throttler Power Measurement

Nehalem/Westmere E5 Turbo 1.0 CPU: VR IMON DRAM: N/A (not
supported)

Sandy Bridge/
Ivy Bridge E5

RAPL (Turbo 2.0) CPU: digital power meter DRAM: VR
IMON

Haswell E5 RAPL (Turbo 2.0) CPU: VR IMON DRAM: VR IMON

Avoton RAPL (Turbo 2.0) CPU: VR IMON DRAM: VR IMON

Chapter 2 ■ CpU power ManageMent

63

Note ■ Vr IMon is typically optimized at the max current level that the Vr can supply.
as load reduces, the amount of error is mostly constant (in amps). however, as a percentage
of the load, the error increases. as an example, 1 a of error out of 100 a is only a 1% error.
however, at a utilization of 10 a, this error becomes 10%. So, when systems are idle, both
the DraM and CpU IMon reporting tends to exhibit higher errors. platform memory power
(and current requirements) can vary significantly based on the amount of memory capacity.
DraM Vr inaccuracy can be large (as a percentage) on systems allocated with much lower
capacity than the platforms are capable of.

Linpack Example
Linpack (HPL) is a terrible workload for illustrating typical server workload power
behavior. However, it is excellent at stressing a system and demonstrating the behavior of
the RAPL algorithm and therefore is used here. Many typical server workloads that run
with the default system configuration (PL1 = TDP) will not experience any throttling from
RAPL and can sustain Turbo indefinitely.

Figure 2-11 shows the behavior of Linpack (HPL) over a subset of the workload run
with RAPL engaged at a temperature of 85°C and a 1 s time constant. There are a couple
of interesting observations from these data. First off, they illustrate the overall behavior
of RAPL in a real workload. In the beginning (to the left), Linpack is performing memory
allocation and consuming relatively low power despite the high frequency. Next, the
actual workload kicks in. Power jumps up above the PL1 limit. After a number of seconds,
the RAPL PL1 limit kicks in and brings the power down to the TDP/PL1 limit. At this time,
frequency drops off by about 100 MHz in order to sustain the 85 W limit.

Chapter 2 ■ CpU power ManageMent

64

2.4

2.5

2.6

2.7

0 5 10 15 20 25 30 35 40

30 35 40

Fr
eq

ue
nc

y
(G

Hz
)

Time (Seconds)

50
55
60
65
70
75
80
85
90
95

100

0 5 10 15 20 25

30 35 400 5 10 15 20 25

Te
m

pe
ra

tu
re

 (C
)

Time (Seconds)

Time (Seconds)

60
65
70
75
80
85
90
95

So
ck

et
 P

ow
er

 (W
)

Memory Allocation Execution

>PL1 boost

Stable power @ 85 W

Socket 0 Socket 1

Figure 2-11. Linpack power, frequency, and temperature with 85 W RAPL limit

Second, Socket 0 consumes more power and achieves less frequency (and
performance) than Socket 1. In the platform studied, Socket 0 is in the thermal shadow
of the socket. In other words, the fans were blowing air first over Socket 1 and then that
heated air passed over Socket 0. The result is that the temperature of Socket 0 is much

Chapter 2 ■ CpU power ManageMent

65

warmer than Socket 1, increasing the leakage power consumed by that CPU. As a result,
Socket 0 achieves lower average frequency at steady-state, and its initial boost when the
workload starts executing lasts for less time.

Many typical server workloads will not show this type of performance variability
across sockets as they tend to achieve the maximum supported Turbo frequency even
at higher temperatures. However, when lower power limits are engaged, this sort of
variability can be observed. Data center management utilities monitor the achieved
performance levels across different sockets and different nodes in the data center in an
attempt to balance out the necessary power to optimize performance.

DRAM (Memory) RAPL
In addition to the socket domain, the Xeon E5 line supports DRAM RAPL, which provides
power limiting to the memory domain. Memory power can be a significant portion
of the overall platform power. This was particularly the case with 1.5 V DDR3. With
the transition to DDR4, this contribution has decreased but still remains important,
particularly in large memory capacity systems.

DRAM RAPL is conceptually very similar to socket RAPL. Power is monitored over
a time window, and throttling is performed in order to stay within a designed power
limit. With CPU RAPL, power is modulated by controlling the voltage and frequency of
the system. With DRAM, changes to voltage and frequency are not common. As a result,
power is controlled by limiting the amount of transactions to the DRAM devices. DRAM
power is very sensitive to bandwidth. Unlike socket RAPL, which supports separate PL1
and PL2 power levels and time constants, DRAM RAPL today only supports a single
configuration point. There is also no ICCMAX control point, although proactive peak
bandwidth control can be performed using the thermal management infrastructure.

The DRAM power domain is separate from the CPU domain. The two cannot
automatically share power today. The VRs that power memory typically also supply
power to the DDR I/Os that exist on the CPU. This power is included in the CPU domain
(typically using some form of digital power meter). In order to avoid double-counting,
this power is subtracted from the DRAM RAPL. Data center management software can
implement algorithms that allow for power to be shared between the Socket and DRAM
domains. Although the two domains are separate, they will interact with each other.
Setting a strong CPU RAPL limit that results in heavy CPU throttling will generally result
in lower DRAM power because the lower CPU performance will result in lower DRAM
bandwidth. The side effects to CPU power caused by DRAM RAPL are less obvious. When
DRAM RAPL throttling is engaged, the cores spend more time stalled. These stalls will
reduce the activity of the cores and reduce their power (in the short term). If those cores
were running at a low frequency, the OS may observe a higher utilization and increase
the voltage and frequency, ultimately increasing the CPU power. On the other hand, if the
frequency is already running at the max, the power will be decreased.

Throttling memory is generally a very power inefficient action. Cores are left
stalled and unable to efficiently complete work in order to enter a C-state. As a result,
under normal operation, DRAM RAPL is generally used to limit power at a level slightly
higher than the needs of the workload. For example, if a workload is consuming 20 W
unthrottled but the system could consume up to 30 W, a 20 W limit could be deployed
that avoids throttling the workload but also prevents it from jumping up to 30 W.

Chapter 2 ■ CpU power ManageMent

66

The remaining 10 W can then be spent elsewhere by the management software. If power
needs to be reduced and throttling needs to occur, it should generally start with the CPU
domain and then only move to the DRAM domain as a last resort.

Note ■ DraM rapL is most effectively used to ensure that you don’t over-provision
unnecessary power to DraM. however, throttling memory should be avoided except when
critically necessary.

CPU Thermal Management
Maintaining a safe operating temperature is critical to long-term functionality of a CPU.
Managing the platform cooling to keep the CPU within an optimal temperature range is
typically the responsibility of platform software and is discussed in detail in Chapter 4.
However, the CPU itself monitors its own temperature and provides automatic thermal
throttling mechanisms to protect the CPU from damage or data from being lost.

The CPU keeps track of the internal temperature (Tj or junction temperature) of
the die using multiple thermal sensors. If these thermal sensors detect a temperature
larger than the max allowed temperature of the SKU (DTSMAX), the operating frequency
is throttled back to stay within the thermal constraints. Thermal throttling through
this mechanism is generally not common, but it has been developed to provide good
performance when in use. Frequency is generally throttled slowly while the temperature
exceeds the desired levels. Thermals inside of a CPU do not respond instantaneously to
changes in power/frequency due to non-trivial thermal resistance. Temperature does
not typically change much faster than about every 10 ms (and commonly much slower).
As a result, the thermal throttling algorithms are tuned to reduce frequency and evaluate
its impact on temperature over millisecond time scales before further reduction in
frequency is performed.

If the temperature begins to exceed the DTSMAX by a large amount, aggressive
throttling (typically to the minimum supported frequency) is performed in order to
quickly reduce temperature. This is commonly referred to as a critical temperature event.
In servers, this occurrence is very uncommon, and typically only happens when there is
a catastrophic issue with the cooling capabilities of the platform/rack (i.e., a fan or two
stops working). When this type of throttling is engaged, the goal is to keep the system
functional until the platform issue can be diagnosed and resolved. Performance is not a
priority. It is possible to configure the OS/BIOS to attempt a “graceful” shutdown (from
software) when this event occurs, but this capability is typically not enabled in server
systems and the aggressive throttling is relied upon instead.

In addition to the DTSMAX, each unit is fused with a catastrophic trip temperature
that is typically referred to as THERMTRIP. When the temperature exceeds this fused
limit, the CPU immediately signals to the platform (through a pin) that an immediate
hardware shutdown (without OS intervention) should be performed. This capability
is implemented entirely in simple, dedicated asynchronous hardware, and is intended
to function even if other failures occur within the CPU. In other words, the cores
and internal microcontrollers could all hang, and the clock network could fail, but

Chapter 2 ■ CpU power ManageMent

67

THERMTRIP would still be operational. It is very rare to observe THERMTRIP in
production units, and it can even be difficult to induce it in the lab without disabling the
other thermal control algorithms.

Note ■ thermal throttling can occur from improper cooling (e.g., a fan failure or a poor
thermal design) or because of turbo consuming all of the thermal headroom that is
available. the thermal reporting mechanisms that exist on modern processors do not
differentiate between these two cases, and this can lead to some confusion by end users.

Figure 2-12 provides an example of Linpack when it is being exposed to thermal
throttling on Socket 0. Similar to the example in Figure 2-11, in this case Linpack is being
run on a system where Socket 0 is in the thermal shadow of Socket 1, causing it to run at
higher temperatures. At the beginning of the workload, memory allocation is performed
and the system is able to run at the full 2.6 GHz frequency without significant heating.
Once memory allocation is complete and the actual workload begins to run, power
increases significantly and the processor begins to warm up. At about the 150-second
mark, Socket 0 begins to hit the DTSMAX temperature of 95°C, and frequency begins
to throttle in order to keep the CPU below the 95°C temperature. Frequency decreases
until it stabilizes at an average frequency of ~2.45 GHz. Note that in this case, the CPU is
actually switching between the 100MHz frequency bin granularities (2.4 GHz and
2.5 GHz, primarily), and it is the average frequency that sustains ~2.45 GHz.

Chapter 2 ■ CpU power ManageMent

68

2.3

2.4

2.5

2.6

2.7

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300

220 240 260 280 300

Fr
eq

ue
nc

y
(G

Hz
)

Time (Seconds)

50
55
60
65
70
75
80
85
90
95

100

0 20 40 60 80 100 120 140 160 180 200

Te
m

pe
ra

tu
re

 (C
)

Time (Seconds)

220 240 260 280 3000 20 40 60 80 100 120 140 160 180 200
Time (Seconds)

60
65
70
75
80
85
90
95

So
ck

et
 P

ow
er

 (W
)

Memory Allocation Execution—Heating Up

Thermal throttling

Power decrease to
reduce temperature

Socket 1 not
impacted

Socket 0 Socket 1

Execution—Socket 0 Throttling

DTSMAX = 95°C

Figure 2-12. Linpack frequency, temperature, and power when thermally throttled

Chapter 2 ■ CpU power ManageMent

69

Note ■ In many versions of the Linux kernel, any sort of thermal throttling is commonly
reported as a “concerning” error message. thermal throttling, while uncommon in
servers, is something that will frequently happen over the life of a product and there is
nothing wrong with the system. when quickly transitioning from low-power workloads into
very high-power workloads, the temperature of the CpU can frequently increase faster than
the fan speed control algorithms can react to keep the temperature below DtSMaX. the
CpU thermal management algorithms are in place to protect the CpU from damage and
react gracefully to control frequency to stay within the thermal budget.

Prochot
There exists a pin called PROCHOT# on modern server CPUs that can both provide an
indication of when the CPU is being thermally throttled (output mode) and be used as a
mechanism for the platform to tell the CPU to throttle (input mode). It can also be used
as a bidirectional pin so that both modes can be used simultaneously. Prochot output
mode can be used for various platform usage models. The input indicates to the CPU
that it should perform a heavy throttle as quickly as possible (usually to a low frequency).
Haswell improved the speed of the Prochot mechanism so that it could be used for power
delivery protection. More details are in Chapter 4.

CPU Power Management Summary
Figure 2-13 provides a high-level example of the various states that software and the CPU
can employ to save power through a combination of “turning off” and “turning down.”

Figure 2-13. Server CPU power management example

Chapter 2 ■ CpU power ManageMent

70

Summary
It is quite common for data centers to operate at less than full capacity for a large
percentage of time. Power costs contribute a large percentage of the TCO of many data
centers. The benefits of saving power in the CPU are compounded by reducing cooling
costs as well (discussed in Chapter 4). The features described in this chapter can save
significant power and cost over the life of a data center.

P-states (voltage/frequency scaling) provide a mechanism to “dim the lights”
when full performance is not required. This will increase the time to complete a task,
particularly in workloads that require significant compute. However, in many cases,
the time that a given transaction takes to execute on a given node is small compared to
network latencies, hard drive accesses, and other overheads. Increases in the compute
time on a node for that transaction can be a small fraction of the overall response time.
On the other hand, some jobs and tasks are very latency sensitive and these increased
response times can be undesirable.

CPU thermal management protects the CPU from dangerous temperature levels with
a combination of P-states and T-states. Platform thermal management will be discussed
in more detail in Chapter 4.

Turbo provides a mechanism for processors to take advantage of full capabilities
of the platform and data center design by increasing the frequency beyond the base
frequency in order to achieve higher performance. Even some of the most latency-
sensitive customers are beginning to use Turbo due to the large potential for increased
performance.

C-states, clock gating, and power gating provide a mechanism to “turn off the lights”
when cores or even entire packages are not needed. Although wakeups take some time
(generally <50 ms), these delays are not observable in many usage models. A favorite
customer question is, “I turned off power management and my performance went down.
What happened?” C-states can also increase performance in many workloads by allowing
other cores to turbo up to higher frequencies.

It is not uncommon for data center managers to disable all power management
to avoid performance degradation in their fleets. Although not all power management
techniques are right for all users, many can save significant money by finding the right
features for their particular deployment. Chapter 7 will discuss how to monitor the
behavior of a system, and Chapter 8 will provide guidance on how to tune and configure a
system for different types of usage models.

71

Chapter 3

Memory and I/O Power
Management

CPUs cannot operate effectively without memory to store working data and I/O interfaces
to bring in data from drives and the network. Although the CPU is a common focus for
power management and power efficiency discussions, in many systems the memory
subsystem can contribute a significant power footprint. I/O is also important but tends
to contribute a much smaller piece of the pie. This chapter will provide an overview of
server memory architecture and how the power and thermal management techniques
work. It will also discuss how power is managed for the other I/Os that provide the CPU
with the data required for operation.

System Memory
Memory power can contribute a very large +-percentage of the overall platform power
in some system designs. Different usage models require wide ranges of memory
capacity, causing the importance of memory power to vary from user to user. Different
types of memory can also have a wide range of power consumption. This section will
provide an overview of memory architecture and how it impacts power consumption in
the data center.

Memory Architecture Basics
Before we discuss the power management capabilities of server systems, it is important to
understand the basics of how memory works and how power is consumed. Let’s start at the
high level. Sticks of memory, or DIMMs, are plugged into slots on the platform. Each slot is
connected to a memory channel. Multiple DIMMs can be connected to the same memory
channel, but when this is done, those DIMMs share the same command/data connection,
and therefore allow for increased capacity, but not bandwidth. The number of DIMMs per
channel is abbreviated as DPC (e.g., 1 DPC = 1 DIMM per channel).

Chapter 3 ■ MeMory and I/o power ManageMent

72

When the CPU issues a read to memory, it generally1 fetches 64 Bytes (B)2 of data
from a single stick of memory. Each physical address (PA) in the system is mapped to a
specific channel/DIMM that is connected into the CPU. The read/write is issued on the
command bus, and data is returned (if a read) or sent along with the write command on
the data bus. The relevant DIMM on the channel determines that the command is for it
and processes the request.

Data on DDR3/DDR4 is handled in Burst-Length 8 (BL8). This means that a single
access (read or write) uses eight slots on the memory bus (see Figure 3-1). The memory
bus is 8 B wide, providing 64 B of data across these eight bursts and runs at the DDR
frequency. So, a given channel can provide DDR Frequency (GHz) * 8 (Bytes/clock) of
memory bandwidth (in GB/s). Each of these eight bursts will acquire some data from
multiple devices on the DIMM (the exact number depends on the type of DIMM).

Figure 3-1. DDR and the CPU platform

Devices and Ranks
Figure 3-2 provides a high-level overview of memory DIMMs and how they connect to
a CPU Socket. Each DIMM of memory consists of a number of memory devices. The
devices are the actual “chips” that you will see soldered down to the DIMM. Each device
supplies a subset of the 8 B chunks of data that are returned in each burst. Server memory
devices/DIMMs can be ×4 or ×8 (called “by 4” or “by 8”).3 This refers to the amount of
data that each device supplies toward each 8 B burst. ×4 memory supplies only 4 b of
data for each 8 B chunk, and therefore 16 devices are required in order to supply the data.
×8 memory supplies 8 b of data, so only 8 devices are required. Device manufacturers
commonly only produce a couple of device sizes at a time—and those devices can either
be manufactured into ×8 or ×4 memory. ×4 devices allow for higher DIMM capacities
using the same device size as well as improved reliability with error correcting code (ECC)
by requiring more devices to supply data for a single 64 B access.

1Certain reliability features do exist, like memory Lockstep, which allow for a given 64 B chunk of
data to be fetched from multiple devices in order to improve reliability. These are not commonly
used in typical servers and are targeted at very high-availability systems.
2A bit (b) of data refers to a single binary piece of data (1 or 0). A byte (B) of data refers to a
collection of 8 bits.
3Other types exist, but are not common in server usage models (e.g., client devices using DDR3
commonly supported ×16 memory as well).

Chapter 3 ■ MeMory and I/o power ManageMent

73

DIMMs also have ranks (usually one, two, four, or eight). Individual DRAM devices
are single-ranked. So, when a DIMM supports two ranks, for example, this means that
the number of DRAM devices on that DIMM is doubled. So, a ×8 DIMM that requires 8
devices to supply 64 B of data will actually have 16 devices if it has two ranks, or 32 devices
if it has four ranks. A single bus connects the DIMM to the CPU, and all the ranks on that
DIMM share that bus. However, each rank is able to operate somewhat autonomously
from the others. One of the biggest challenges for a DRAM device is switching between
doing reads and writes (and back again). As a result, the memory controller must insert a
sizeable bubble between these types of transactions to a given rank. DIMMs that support
multiple ranks are able to sneak other transaction onto the channel bus while one rank
switches modes, allowing for improved bandwidth and average latency. As a result,
for performance, we generally recommend that you use either two single-ranked (SR)
DIMMs of the same size on a channel, or one or more dual-ranked (DR) DIMMs in order
to help hide these inefficiencies. Quad-ranked (QR) and even some oct-rank (OR) DIMMs
also exist on the market.

Note ■ all memory is not equal. as with CpUs, new process technologies are being
applied to memory, which enables lower power and increased capacities. at a given point
in time, vendors are only able to economically manufacture devices up to a given size.
the “next size up” (two times the capacity) are at times available, but they come at a
significant cost premium. By increasing the number of ranks or moving from ×8 to
×4 devices, vendors can increase the number of devices on a dIMM and thus increase
capacity. Using a smaller number of higher capacity devices can consume significantly less
power than using a large number of lower capacity devices, despite the fact that both can
provide the same memory capacity.

Figure 3-2. DDR channels, DIMMs, and ranks

Chapter 3 ■ MeMory and I/o power ManageMent

74

Memory Error Correction (ECC)
Server memory typically leverages ECC memory to provide protection, both from transient
errors and device failures. Each 8 B burst of data that is supplied includes an additional
ninth byte of data that provides the ECC protection. This increases the cost and power of
memory proportionally but is generally considered a “must-have” in server deployments.

Note ■ It is not possible to disable the eCC device in order to save power in
systems today.

With ×8 memory, an additional device is included on the DIMM to support ECC.
With ×4, two additional devices are required. ×4 memory provides improved reliability
because each device provides a smaller percentage of the data. If a single device fails,
the ECC algorithm is able to correct all data and continue to operate the system. On ×8
memory, if a device fails, it is possible to detect such a condition and hang the system, but
correction is not possible.

Memory Capacity
The capacity of a DIMM is a function of the ranks, devices, and device size. DIMMs are
typically sold in Gigabytes (GB), whereas devices are typically referred to in Gigabits (Gb).
The following formula summarizes how one can calculate the capacity of a DIMM based
on the components:

Capacity GB
DeviceSize Gb Ranks

Devices
Rank

bits
B

()
() * *

=

æ
è
ç

ö
ø
÷

8
yyte

DeviceSize Gb Ranks
B

byX

bits
Byte

æ

è
ç

ö

ø
÷

=

æ

è
ç

ö

ø
÷

æ

è
ç

ö

() * *
64

8

øø
÷

=
()DeviceSize Gb Ranks

byX

() * * 8

Examples:

DR ×8 4 Gb = 4 Gb * 2 ranks * 8 / (×8) = 8 GB•	

QR ×4 8 Gb = 8 Gb * 4 ranks * 8 / (×4) = 64 GB•	

One can increase DIMM capacity by increasing the number of ranks, the device size,
or the number of devices per DIMM (moving from ×8 to ×4).

Chapter 3 ■ MeMory and I/o power ManageMent

75

Note ■ For optimal performance, we typically recommend that you use dual-ranked (dr)
memory, because it allows for more efficient use of the memory bus. this is particularly true
of workloads that make use of high memory bandwidth. Single-ranked memory can also show
good performance when you use it with multiple dIMMs of the same size per channel (since
the memory controller has more than one rank to work with). Quad-ranked (Qr) memory also
can make efficient use of the memory bus, but it typically requires a lower frequency.

Device Power Characteristics
Many users have a feel for how much memory they think they need, but it can be difficult
to understand how to populate the system in order to provide that desired memory.
Table 3-1 provides some general rules of thumb for how memory power scales. In each of
these cases, capacity is increased by either 1.5 or 2 times. You might expect power to scale
directly with capacity, but different decisions result in different power impacts. (Note that
these numbers are intended only as a conceptual guidance, not as a hard rule.)

Table 3-1. DDR4 DIMM Power Scaling Examples

Parameter Power Impact Capacity Other Notes

Single-rank to
dual-rank

~1.3–1.5 times 2 times Improved performance with a
one-DPC configuration, particularly
with high-bandwidth workloads.

×8 to ×4 ~1.4 times 2 times Improved reliability.

Two times
device capacity

<1.1 times 2 times Device size increases commonly
come with better process technology,
so this is difficult to accurately
quantify.

One DPC to
two DPC

~1.5–1.7 times 2 times Improved performance with single-
ranked DIMMs. Can decrease
memory frequency. Power does
not double in this case, because
the bandwidth provided by each
DIMM is 50% of the bandwidth if two
DIMMs were used.

Two DPC to
three DPC

See note 1.5 times Generally has significant impact
on memory frequency. Not a fair
comparison. Three DPC should
be used for customers who need
capacities not economically possible
with two DPC.

Chapter 3 ■ MeMory and I/o power ManageMent

76

Note ■ Using dual-ranked memory in a one-dpC configuration is typically the most
power/performance efficient across a range of workloads. Increasing the number of
dIMMs per channel tends to be less power efficient than other alternatives but can also be
attractive from a dIMM cost perspective. If low capacity and low bandwidth are required,
one-dpC single-ranked topologies are the most power efficient. however, this efficiency
quickly falls off if memory bandwidth begins to get stressed. Before purchasing one-dpC
single-ranked systems, we highly recommend that you characterize the bandwidth
requirements of their workloads first (as described in Chapter 7).

DDR has been optimized to minimize leakage power. Not only does this result
in minimal power scaling with temperature, but it also minimizes the power cost of
increasing the device capacity. This tends to be the most power-efficient mechanism for
increasing capacity but can also be price prohibitive, especially after a certain point.

Power deltas for additional ranks and DIMMs tend to be smaller at higher
bandwidths since the overheads are amortized across the power for providing the
necessary bandwidth. This is not the case with ×8 to ×4 scaling.

DDR3 vs. DDR4
At a high-level, the architecture of DDR3 and DDR4 are very similar. From an end-user
perspective, DDR4 enables higher frequencies while running at lower voltages and
consuming less power. There are some other internal changes for improving performance
(e.g., more banks). Table 3-2 shows how memory technology has progressed in recent
years. Voltage has decreased despite increases in maximum frequency. Larger and larger
devices have also been possible as process technology shrinks. Note that the maximum
device capacities do not always represent what a given processor can support.

Table 3-2. DDR Generation Comparisons

DDR Generation Voltage Frequencies Device Capacities

DDR2 1.8 V up to ~1600 up to 1 Gb

DDR3 1.5 V up to ~1866/2133 Spec supports up to 8 Gb
(4 Gb common)

DDR3L 1.35 V up to ~1333/1600

DDR4 1.2 V up to ~3200 (TBD) Spec supports up to 16 Gb

DDR3 supported two different voltages: 1.35 V and 1.5 V. However, running at the
lower frequency reduced the peak frequency that could be achieved. DDR4 transitioned
all memory to use 1.2 V but also provided a significant boost in peak frequencies (and
with it, peak bandwidth).

Chapter 3 ■ MeMory and I/o power ManageMent

77

DDR voltage plays a significant role in energy efficiency (the exact amount varies a
good amount across memory types). On processors supporting DDR3/DDR3L memory,
a tradeoff could generally be made between selecting DDR3 memory and achieving
a higher frequency, or DDR3L and operating at a lower voltage. Higher frequencies
can significantly improve memory bandwidth and performance on certain workloads
(particularly in the high performance computing space). They also provide slightly
lower latencies, but these benefits tend to be small (a few percent of performance at
best). Many enterprise systems with large memory capacities come nowhere close to the
memory bandwidth limits of the system and can save significant energy by using DDR3L
with minimal impact to performance. In platforms with smaller memory topologies, the
importance of memory voltage overall is much smaller.

RDIMMs, UDIMMs, SODIMMs, and LRDIMMs
Most servers typically use registered DIMMs (RDIMMs), although unregistered DIMMS
(UDIMMs) are an alternative. Signal integrity is challenging with high-speed memory,
particularly when multiple memory DIMMs coexist on the same memory channel.
RDIMMs include a register on the DIMM that reduces the electrical load on the memory
controller; this improves signal integrity and allows for increased memory frequencies
(and higher performance). RDIMMs have traditionally been more expensive than
UDIMMs because of the smaller volume and additional components. However, this trend
may or may not continue as more client devices move to different memory technologies
than those found on servers. The register also consumes measurable power (on the order
of ~0.5 to ~1 W per DIMM) when active (some of this power can be saved in low-power
states). Different processors and platforms have varied rules and constraints about the
maximum frequency that can be supported by different types of memory (UDIMM vs.
RDIMM) as well as the topology of memory (number of ranks, number of DIMMs per
channel, etc.).

UDIMMs can be purchased with and without ECC. ECC increases the number of
devices required by 12.5%, and power increases at about the same rate. Small-outline
DIMMs (SODIMMs) show very similar characteristics to UDIMMs (both ECC and non-
ECC)—they are just physically smaller and therefore cannot hold as many devices.

ECC UDIMMs and SODIMMs are a good solution for low capacity, low power, and
low cost deployments. Systems requiring larger capacities or high reliability typically use
RDIMMs.

LRDIMMs (load-reduced DIMMs), a type of RDIMM, provide some additional
buffering that allows them to provide access to a large number of devices and still
maintain high frequencies. QR RDIMMs suffer from electrical issues that limit their
frequencies. LRDIMMs attempt to address this by providing an additional buffer chip on
the DIMM to address the increased device count and improve signal integrity. LRDIMMs
provide high capacity and high performance. The additional buffer chip consumes
some additional power and increases memory latencies slightly, but neither is really of
consequence at the platform level. LRDIMMs are generally more expensive per GB of
memory compared to normal DR RDIMMs. When they were originally released, they also
had a healthy price premium over high capacity QR RDIMMs, but that price delta has
come down over time (on DDR3). If you need massive memory capacity, LRDIMM is a
good place to start.

Chapter 3 ■ MeMory and I/o power ManageMent

78

Memory Channel Interleave and Imbalanced Memory
Configurations
Each channel has a finite amount of memory bandwidth that it can sustain. By interleaving
a stream of requests across multiple channels, high memory bandwidth (and higher
performance) can be achieved. In order to get optimal performance in a system, each
channel should be populated with the same capacity of memory. However, sometimes this
is not the most cost effective way to achieve a given desired memory capacity. If imbalanced
configurations are going to be used, it is best to avoid situations where a single channel has
more capacity than the others, because this results in a section of memory with a “one-way”
interleave (and 25% of the theoretical peak bandwidth) as shown in Figure 3-3.

Figure 3-3. Imbalanced memory interleave example

By default, most systems today are set up to have separate non-uniform memory
access (NUMA) memory regions assigned to each socket. For example, a system with
32 GB of memory would have the first 16 GB of memory allocated on socket 0 and the
second 16 GB on socket 1. An alternative to this approach is to use a uniform memory
access (UMA) allocation, which interleaves every other cache line across the sockets
(effectively providing a single 32 GB region across both sockets in the previous example).
In many usage models, this is detrimental to performance because it increases the
latency of half of the requests by forcing them to the remote socket. Many users are
better off letting the OS (which is aware of this behavior) manage memory allocation
and attempt to locate memory on the local socket in order to reduce memory latency.
However, certain usage models do exist where the memory NUMA schemes are unable to
successfully locate memory in the optimal place and actually lose performance by trying
to do so. This is, however, generally uncommon, and most workloads either benefit from
such an allocation or show little sensitivity.

Memory interleave does not typically have a direct impact on memory power
savings. Power efficiency here is typically achieved by optimizing for performance. Some
interesting effects are possible, although in imbalanced configurations. For example,
imbalanced configurations can result in certain ranks being accessed infrequently,
resulting in higher CKE power savings (discussed more in the following pages).

Chapter 3 ■ MeMory and I/o power ManageMent

79

Power and Performance States
A number of power savings techniques4 exist for reducing memory power when it is not
fully utilized. In general, most of these techniques fit into the category of “turning things
off” and not “turning them down.” There are really two main techniques for saving power:

Turning off CKE (clock enable): Power savings during short idle •	
periods at the rank granularity

Self-refresh: Power savings during long idle periods at the channel •	
granularity

Self-refresh allows for significant memory power to be saved but also can require
non-trivial wakeup costs (~10 ms). Turning off CKE provides less power savings but can
have very fast wakeups (~10 ns). Turning off CKE can also be done on a rank-by-rank
basis, whereas self-refresh must be performed at the channel granularity. As a result,
in servers, self-refresh is typically targeted at idle systems, whereas CKE is targeted at
moderately active systems. Dynamically managing memory frequency at runtime has
not been productized. Changing frequency is a non-trivial piece of work, and the power
savings are generally not significant due to the static voltage.

CKE Power Savings
Each rank has a clock enable (CKE) signal that is driven from the CPU memory controller
to the DIMM. By de-asserting CKE, the rank is allowed to enter a low power state that
can be exited quickly (~10 ns to ~100 ns). A number of different flavors of CKE have
differences in their details, but in general, they mostly behave the same. Because CKE is
managed on a per-rank granularity, there is potentially more opportunity for CKE power
savings on systems with more ranks.

At a high-level, there are two types of CKE:

Active power down (APD): Memory pages are kept open•	 5 and the
row buffer stays powered up.

Precharge power down (PPD): The memory pages in all banks on •	
a rank have been “closed” or “precharged,” and the row buffer can
be powered down.

At first glance, this may sound like a simple power/performance tradeoff. APD
saves a bit less power but keeps pages open. However, in practice on servers, it does not
actually work out this way. Many times when a rank goes idle for long enough to turn
off CKE, the memory pages are also finished being accessed, and therefore having them

4See the DDR3 and DDR4 specifications at www.jedec.org for more details. JESD79-4A contains
information for DDR4, and JESD79-3F for DDR3.
5Memory pages are different from software/TLB pages. Different device types have different
memory page sizes. A single 4 K software page can be mapped to either a single memory page
(in open page configurations) or to many memory pages (in closed page topologies). Large pages
(2 M and larger) typically exist over multiple memory pages.

http://www.jedec.org

Chapter 3 ■ MeMory and I/o power ManageMent

80

closed is good for both performance and power. Both CKE PPD and CKE APD are able
to save on the order of 30% of the power, and the differences between the two for both
power and performance are negligible.

The CPU can force PPD to be used by issuing a PREALL command to a given rank
before de-asserting CKE. This closes all the pages in all banks on the rank, allowing PPD
to be used. Alternatively, the CPU can simply de-assert CKE when all necessary timing
parameters have been met. If one or more pages are open, the DIMM will be in APD.
Otherwise, it will be in PPD. In Intel server documentation, the PPD mode refers to the
case where PREALL is explicitly issued before de-asserting CKE, while APD mode disables
this PREALL. It is still possible to get into a PPD state from the APD mode if all pages
happened to be closed at the time CKE was de-asserted.

On DDR3, there were two main versions of PPD: PPDF (fast) and PPDS (slow). PPDS
saved more power at the cost of a slight increase in exit latency. Usually the added exit
latency is trivial, so PPDS is generally the better state. In the big picture, the differences
between PPDF, PPDS, and APD are not large (either for performance or power efficiency).

One of the big changes with the transition from DDR3 and DDR4 is with how ODT
is handled. Rather than requiring the memory controller to manage ODT, it is handled
autonomously by the DIMM. In addition to this, the PPDS and PPDF states have been
merged into a single PPD state where the DLL is kept powered and ODT is managed
by the DIMM. This new simplified mode has excellent power savings. The DLL was
redesigned on DDR4 and consumes much less power when active. It is possible to turn
off all the DLLs on a channel when an entire channel is idle and save additional power.
However, this state has not been productized on Intel servers thus far.

When all ranks on a DIMM are powered down, the register on RDIMMs can also
enter a low power state. This does not save all of the register power but can save a couple
hundred mW per DIMM.

It is also possible to power down the IBT (input-buffer termination). IBT OFF
theoretically can save ~100 mW per DIMM with CKE (it also exists with self-refresh).
However, in practice, the savings tend to be much smaller at the platform level because
of the increased exit latency. This mode has not been aggressively enabled on servers
due to the low power savings upside and wake latency exposures. It is more interesting in
microserver usage models, particularly with self-refresh (more later).

Table 3-3 provides a summary of the various types of CKE power savings, including
on which types of DDR they are supported. Table 3-4 provides a summary of how CKE has
evolved over multiple processor generations.

Table 3-3. CKE Mode Summary

Type Granularity Banks ODT DLL DDR3 DDR4

APD Per rank ³ 1 active On On Supported Supported

PPDF Per rank All precharged On On Supported Supported (PPD)

PPDS Per rank All precharged Off Off Supported Not Supported

Chapter 3 ■ MeMory and I/o power ManageMent

81

Table 3-4. CKE Across Generations

Generation DDR APD PPDF PPDS Channel

PPDS-DLLOFF

Nehalem/Westmere E5 DDR3 Y Y 1 DPC N

Sandy Bridge/Ivy Bridge E5 DDR3 Y Y Y Y

Avoton DDR3 Y Y 1 DPC N

Haswell E5 DDR4 Y N N N

Self-Refresh
DRAM devices (unlike SRAM) must be periodically refreshed in order to keep the data
valid. Refreshing memory is really nothing more than reading it out of the arrays and
writing it back in. During normal operation, the memory controller is periodically issuing
refresh commands in order to refresh a portion of the device. The entire device must be
refreshed periodically (usually on the order of 10s of milliseconds). When a given channel
is not being used, it is possible to put all the DIMMs on that channel into a self-refresh
state where the DIMM itself is responsible for handling refresh. This state both saves
power on the DIMM and allows for additional power to be saved in the CPU memory
controller and I/Os. However, this additional power savings generally comes with a
non-trivial latency cost. Like with CKE, there are different flavors of self-refresh that
provide varied power savings and latency characteristics.

Because self-refresh is performed at the channel granularity and because it tends to
have longer exit latencies, it is typically used for saving power when the system is completely
idle. Self-refresh residencies in active systems tend to be very low. Typical high-capacity
server DIMMs that are in self-refresh tend to consume on the order of 0.2 W to 0.5 W.

The main differentiator between the different flavors of self-refresh is how the CK
signals are handled. This is referred to as the clock stop mode. CK and CK# are a pair
of differential clocks that are necessary for transmitting commands and data between
the CPU and memory. If the CPU continues to drive these signals during self-refresh,
the wakeup latency can be relatively fast (< 1 ms). However, this mode saves minimal
additional power compared to simply turning off CKE and the DLL. The clock can also
be stopped. It can be tri-stated, driven low, or driven high. Each of these states results in
additional power savings, but exit latency increases to ~10 ms.

CKE can also be tri-stated (i.e., not driven to either 0 or 1) during self-refresh to save
some additional power (compared to driving it low). It must be driven low on UDIMMs,
but otherwise it can be tri-stated (the voltage is not driven high or low; it is simply left to
float to wherever it settles).

Chapter 3 ■ MeMory and I/o power ManageMent

82

Note ■ Self-refresh is most useful when the entire system is idle and CK can be stopped.
as a result, it is used sparingly when cores/Io are active (where CKe management is used
instead). however, when the entire system is idle, it can be used more aggressively.
this is particularly the case when it is paired with package C-state power savings features.
In these cases, the 10 ms wake latency can frequently be done in parallel with other
long-latency operations (ramping voltage, locking pLLs, etc.), making the power savings
effectively “free.”

Voltage/Frequency
Systems today will not dynamically change the voltage/frequency of DDR. On DDR3,
some devices support running at both 1.5 V and 1.35 V (called DDR3L). With the
transition to DDR4, all DIMMs run at 1.2 V. DDR3L was released after DDR3, and DDR4L
is expected in the future as well.

Running DDR3 at 1.35 V generally exhibits significant memory power savings. The
amount/percentage is very sensitive to the configuration in question, but using DDR3L
can save significant power on systems that leverage a large amount of memory.

On the other hand, generally the frequency of memory is really not all that important.
Running at lower voltages can limit the achievable frequency in the system on DDR3, and
the frequency can impact the maximum amount of power that a DIMM can consume, but
the power to run most workloads is typically not that sensitive to frequency. As an example,
taking some DDR3L memory that typically runs at 1333 and decreasing the frequency to
1066 and running at the same (moderate) throughput would save less than 5% memory
power. At the same time, such a change could also reduce memory CKE residency or
increase core active time, further reducing the power benefits from the reduced frequency.
With that said, running at 1333 does provide an additional 25% bandwidth, and if that
bandwidth is actually used, then the memory power will increase by ~10%–20%. However,
this is generally a great power/performance tradeoff—25% more used bandwidth usually
means 25% more performance. The 10%–20% memory power increase for 25% more
performance is a small power price to pay when measured at the wall.

On DDR4, the percent power savings by reducing frequency is larger, but this is
largely because the overall power has gone down. Power savings with DDR4 is typically
on the order of 50–400 mW per DIMM when reducing by a single frequency bin (again,
without taking into account additional power consumed elsewhere as a result of the lower
performance). Long story short: reducing memory frequency is generally not a good idea.

DDR Thermal Management
Managing the temperature of memory DIMMs is critical to preventing loss of data or
system crashes. Most server memory is capable of monitoring temperature, but the CPU
is responsible for providing the thermal management algorithms that protect the DIMMs.
Memory temperature is another input to the fan speed control algorithms that are
discussed in Chapter 4.

Chapter 3 ■ MeMory and I/o power ManageMent

83

Monitoring Temperature
The DIMMs themselves typically provide a thermal sensor called a thermal sensor on-die
(TSOD), which provides a single temperature reading for an entire stick of memory.
Historically, not all memory used in servers included a TSOD (UDIMMs in particular),
but as time has progressed it has become standard. There is only a single thermal sensor
on a DIMM, and it is commonly located near the center of the DIMM (lengthwise). Air
commonly flows down the DIMM and heats up as it passes over the devices. As a result,
the first device tends to be at a lower temperature than the last device, with a single
temperature reading taken somewhere in the middle. The CPU (or BMC) reads this
temperature over a System Management Bus (SMBus).

Memory Throttling
The CPU is responsible for throttling requests to the DIMM in order to reduce the memory
temperature when it begins to enter a high temperature range. Table 3-5 provides a
summary of some of the common methodologies for management memory thermals.

Table 3-5. Memory Thermal Management Techniques

Mechanism Requires TSOD Description

OLTT No Open-Loop Thermal Throttling

OLTT is the simplest mechanism for managing
thermals. A static bandwidth limit is put in place in
an attempt to avoid high-power operation.

CLTT Yes Closed-Loop Thermal Throttling

CLTT takes temperature readings from the TSOD
and performs varied levels of memory bandwidth
throttling in order to keep the DIMM in a safe
operating range.

Dynamic CLTT Yes Dynamic CLTT

Dynamic CLTT is an enhanced version of CLTT
that takes other platform information into account
(such as fan speed) to adjust the throttling
configuration dynamically to save additional power.

OLTT (open-loop thermal throttling) is the most basic mechanism for performing
throttling. Historically it was used in low-cost systems that did not have TSODs available
on the DIMMs to provide temperature-based throttling. TSODs are standard on most
server memory today, but the legacy OLTT mechanisms are still available.

CLTT (closed-loop thermal throttling) is the standard mechanism for providing memory
temperature protection. The CPU monitors the temperature of the DIMMs and engages
varied levels of throttling depending on the temperature. Doubling the memory refresh rate
is also commonly performed at higher temperatures in order to avoid data corruption.

Chapter 3 ■ MeMory and I/o power ManageMent

84

As discussed previously, temperature increases as air flows down the length of
a DIMM. This increase is called a thermal gradient. The amount of gradient can vary
with other platform parameters. For example, high fan speed results in more air flow
and smaller temperature gradients than reduced fan speeds. With the baseline CLTT
support, platform designers must assume some amount of gradient when configuring the
CLTT throttling algorithms. The CPU provides an interface with Dynamic CLTT for the
platform management firmware to dynamically change the throttling constraints based
on an estimate of the thermal gradient. This can be used to save power or to prevent
throttling when fan speeds are high and there is a smaller gradient. The algorithms used
to estimate the gradient and configure the throttler are typically proprietary IP for a
platform designer.

MEMHOT is a platform signal similar to PROCHOT. Different products make
different use of MEMHOT. It can be used as an input to the CPU, providing an indication
from the platform that the CPU should perform memory throttling. This input can be
used for the platform to trigger memory throttling when a thermal issue is detected in
the platform (even if the DIMMs themselves are not too hot). It is also frequently used to
throttle memory power/thermals when some other undesirable event is detected in the
platform like an overheating power supply. MEMHOT can be used as an output from the
CPU and as an indication to the platform management that the DIMMs have reached a
high temperature. On some CPUs, MEMHOT can also be bidirectional and support both
input and output modes simultaneously.

DDR3 and DDR4 memory also supports an EVENT# pin that triggers when the TSOD
detects high temperatures. This open-drain pin is typically wired directly to the BMC and
is not used directly by the CPU. It is commonly used for detecting critical temperature
levels that require an immediate system shutdown.

CPU DDRIO
I/Os exist on the CPU that connect to the traces that go to the DIMMs. These I/Os
typically run at the same voltage as the memory and are supplied by the same voltage
regulator.6 Multiple channels frequently share a voltage regulator. DDRIO power at a first
order is a function of the bandwidth that it is driving (both reads and writes). There is
some additional power cost that results from increasing the number of DIMMs, but this
is not a first-order impact. Despite the fact that DDRIO power shares a voltage regulator
with memory, the power is typically assigned to the CPU for Running Average Power
Limit (RAPL) usage models. This is done in order to effectively manage thermals within a
power budget. It also allows the CPU to trade off unused power (and thermal) headroom
back to the CPU cores when underutilized. This can be useful, since many high DDRIO
power workloads do not require heavy core power, whereas core-centric workloads tend
to have low to moderate DDRIO usage.

6Platforms that leverage buffered memory solutions (such as Haswell EX) have more complicated
power delivery designs, and may run the DDRIO and DIMMs on separate voltage regulators.

Chapter 3 ■ MeMory and I/o power ManageMent

85

Workload Behavior
Workloads tend to either demand very high memory bandwidth (³ 80% peak) or be
relatively insensitive to memory throughput (< 30% peak). There are always exceptions to
the rule, but this is a trend that can be observed across a range of server workloads. Many of
the workloads that fit into the high bandwidth category come from the high-performance
computing segment, or could benefit from data structure optimization to improve cache
locality. Memory power has a moderate dynamic range even without memory power
management features. This is particularly the case with one-DPC configurations. It tends
to be less apparent with two-DPC and three-DPC configurations, since on average, the
percentage of traffic that goes to a given DIMM is cut (in half or in a third), reducing
the actual dynamic range of the DIMM bandwidth. As an example, with a one-DPC DR
configuration, scaling bandwidth from 20%–80% increases memory power by ~1.5 times.

Memory Reliability Features
A number of reliability features exist for memory that can have an impact on the power
drawn by a given workload.

Memory Lockstep is a reliability feature where a single 64 B piece of data is stored
across two DIMMs on two different memory channels. Since DDR3 and DDR4 work
in BL8 mode, a single read or write actually fetches 128 B of data from the memory,
increasing the amount of memory bandwidth that most workloads will consume.
Lockstep tends to only be used in environments where high reliability is required because
it both increases memory power and tends to have a measurable performance impact.

Patrol Scrub is a memory reliability feature that is typically enabled on all server
CPUs by default. This feature attempts to walk through all of the memory space more or
less every 24 hours, reading each line and checking the ECC. The goal is to identify errors
while they can still be corrected. A single channel on each socket is typically scrubbed at
a time. In certain situations this can result in channels not entering self-refresh because
this blocks scrubbing, thus increasing memory power of idle systems. Patrol scrub is
generally a low-cost method for reducing exposure to uncorrectable errors, and the
added power cost is generally worth that reduction in exposure.

CPU I/Os
In addition to memory, there are a number of additional I/O capabilities that exist on
modern server processors including interconnects that connect multiple sockets together
(such as Intel QPI) as well as PCIe, which provides connectivity to devices like network
cards and storage.

CPU Interconnect
In multi-socket systems interconnects exist that connect the different sockets to each
other. These interconnects are used to maintain coherency across the sockets, to
provide a communication channel between the sockets, and to connect memory that
is connected from one socket to the other. In order to provide high performance and

Chapter 3 ■ MeMory and I/o power ManageMent

86

prevent the coherency overhead from slowing down the performance of the cores,
these interconnects are required to be high bandwidth and low latency and consume a
non-trivial amount of power.

On the Sandy Bridge EP processors, the QPI interconnect consumes ~5 W of power
per socket. Much of this power is consumed in the I/Os, and therefore it does not scale
down significantly from one process generation to the next.

Because of their moderate power draw, these interconnects are most efficient on
higher power processors that can amortize the cost of the power. Using a 5 W multi-
socket coherent interconnect to hook up two 20 W processors is typically not worth the
overhead. Rather than spending power on the I/Os, you are better off simply using a
higher power single socket processor.

Link Power States
Power management of an interconnect is no different from anything else at a high level.
However, one typical constraint is that it is difficult to scale the voltage of an interconnect
in order to efficiently scale the frequency. As a result, reducing frequency can save power,
but this is not always the most efficient decision. Table 3-6 illustrates some of the power
states available on Intel’s QPI 1.0.

Table 3-6. QPI 1.0 Link Power States

State Name Power Granularity Description

L0 Link Active 100% – Link active and running at full
size and frequency. Provides
maximum bandwidth at
minimum latency.

L0s Link Sleeping ~50% Per direction Subset of lanes asleep and
not actively transmitting
data. Not possible to send
any information. Some lanes
(clocks, etc.) still active,
allowing for fast wakeup.

L0p Partial Link Active ~75% Per direction Similar to L0s state, but a
subset of the data lanes
remain awake (typically half,
but anything is possible).
Bandwidth is reduced and
latency for transmitting data
increases.

L1 Link Down < 10% Entire link
(both
directions)

Link is completely powered
down. In order to transmit
data, it must be retrained.

Chapter 3 ■ MeMory and I/o power ManageMent

87

L0p is a very useful power management state, particularly at low system utilizations.
Many server workloads, particularly in the enterprise area, do not make heavy use
of either memory bandwidth or the interconnect bandwidth. As a result, the loss in
bandwidth from cutting the link in half has minimal impact on the actual performance or
throughput of the system. L0p does, however, increase the amount of latency that it takes
to transmit a data packet from one socket to the other. Data packets typically contain 64
B of data, and the link itself is much smaller than this. This can add ~10 ns of latency for
such transfers. Although this latency is mostly inconsequential at low system utilizations,
it can cost 1%–2% peak performance on workloads that are very latency sensitive and
transmit significant data from one socket to the other.

L1 is an excellent state for idle systems. Although it takes multiple microseconds
to wake a link back up, this is commonly “free” if there are long-latency actions being
performed in the system (memory self-refresh, ramping voltage from a retention level
to an active level, etc.). As a result, L1 is typically used during package C-states. Using it
more aggressively during active states tends to result in performance glass jaws and even
platform power increases.

L0s was a state that was productized on early QPI generations, but it has since been
not supported. L0s is theoretically most useful if workloads exhibit bursty behavior
between being active and completely idle. With a coherent interconnect and server
workloads, it is uncommon to find periods of no traffic that last longer than a few
hundred nanoseconds unless the system is completely idle. A trickle of coherency
and communication traffic between sockets always seems to exist, particularly in real
workloads that do not exhibit perfect NUMA locality. In situations where the system is
indeed idle, L1 provides the necessary idle power savings.

Note ■ L0s support has been removed from recent CpUs due to minimal power savings
upside. L1 is only used during package C-states, where its latency can be hidden by other
components during a wakeup.

Dynamic control of QPI frequency is not performed today. By reducing the
frequency of the interconnect, not only is the bandwidth reduced, but the latency for
transmitting data packets increases. This is particularly the case with L0p. This impacts
the performance of the cores, which can spend more time stalled waiting for data to be
returned to them. Not only does this impact the peak performance of the system, but it
can even reduce the power/performance efficiency across a range of utilizations.

PCIe
The PCIe specifications provide standardized mechanisms for saving power. These link
states are used across the wide range of devices that make use of PCIe (from low-power
devices to servers). When it comes to PCIe link power management, server CPUs today
are typically slaves to the devices that are connected to them. The devices themselves
(through their own dedicated driver/firmware/hardware) initiate the transitions into
power management states. The CPU is able to send negative-acknowledgment (NACK)
requests but never initiates them.

Chapter 3 ■ MeMory and I/o power ManageMent

88

Link Power States
PCIe uses L0s and L1 states. Unlike QPI, there is no defined partial width (L0p) state.
However, it is possible to dynamically change (or statically configure) the link width that
a device uses through the upconfigure flow. Table 3-7 provides an overview of the power
management states used by PCIe.

Table 3-7. PCIe Link Power States

State Name Savings Exit Latency Granularity Description

L0 Link
Active

– – – Link is active and running
at full size and frequency.
Provides maximum
bandwidth at minimum
latency.

L0s Link
Sleeping

~20 mW
per lane,
per
direction

Microseconds Per direction Subset of lanes asleep and
not actively transmitting
data. Not possible to send
any information. Some
lanes (clocks, for example)
are still active, allowing
for fast wakeup. L0s is
initiated autonomously
by the link layer (no OS/
driver interactions).

L1 Link
Down

~100 mW
per lane

Microseconds Entire
link (both
directions)

Link is powered down.
In order to transmit
data, it must be
retrained. Can be used
dynamically at runtime.
L1 can be triggered both
autonomously by the
connected device (ASPM
L1) or through an OS/
Driver call (L1-soft).

L2 Link Off ~125 mW
per lane

Milliseconds Entire
link (both
directions)

Saves slightly more power
than L1. Generally used
for unconnected links and
links that are disabled at
boot. L2 is only initiated
through a software
request.

Chapter 3 ■ MeMory and I/o power ManageMent

89

Note ■ power savings is design dependent. these numbers provide a reference point.

L1 can be used during idle periods but has typically not been heavily utilized
because of the latency impact and minimal power savings at the wall relative to overall
socket power. Drivers and devices are typically tuned to use this state in only the most-
idle conditions to avoid wakeup cost. With deep package C-states, the wakeup cost of L1
can generally be hidden since the CPU is informed about the wake and can perform other
wakeup actions in parallel. L1 is becoming more interesting in the microserver space
where the I/Os contribute a much larger chunk of the node power.

Note ■ L0s is not supported on recent server processors. It saves relatively small
amounts of power with non-trivial exit latencies. It is generally better off leaving a port in
L0 or allowing it to drop all the way to L1.

Link Frequency/Voltage
PCIe has gone through three generations. Each generation has a single specified
frequency at which the device runs (see Table 3-8). Multiple voltage/frequency points
are not supported. However, the newer generation devices support (by rule) backward
compatibility to the prior generation’s frequencies. Changing frequency requires a full
link retrain and is typically not performed dynamically at runtime today (although it is
supported). Voltage is constant across generations/frequencies. When a PCIe 2.0 device
is connected into a processor that supports PCIe 3.0, the device can only operate in
PCIe 1.0 or 2.0 modes.

Table 3-8. PCIe Generations

Generation Frequency Theoretical ×8 Bandwidth

PCIe 1.0 2.5 GHz 2 GB/s

PCIe 2.0 5 GHz 4 GB/s

PCIe 3.0 8 GHz 7.88 GB/s

Although PCIe 3.0 only increased frequency by 60%, it was able to almost double the
peak throughput. This was due to more efficient encoding and better use of the available
wires for actual data.

Chapter 3 ■ MeMory and I/o power ManageMent

90

Link Width
The number of lanes of PCIe impact the bandwidth that can be pushed through a link.
Double the lanes, and the theoretical peak bandwidth is also doubled. The maximum
number of lanes that a device is able to use is a function of both the device itself as
well as the slot that it is connected to. Some systems may also allow the width of
certain slots to be configured by BIOS. This can save a small amount of power but is
generally not significant and can significantly reduce throughput. This could be useful
for benchmarking but is not something that would generally be recommended for
production systems.

PCIe devices can dynamically change the number of lanes in use at a given point
in time. This can be done through software drivers (through the upconfigure and
downconfigure flows) or through autonomous linkwidth change, allowing them to save
power when lower bandwidth is required. These flows can be thought of as a way to
reconfigure the link at runtime by restarting it with a different width (the lanes that are
no longer used are no longer driven, reducing power). Reconfiguration typically takes
microseconds, during which time the link is unavailable to transmit data. This flow has
not been aggressively productized in server PCIe devices to date. These modes typically
save relatively small amounts of overall system power and can cause non-trivial impacts
to performance and latency in server usage models.

Hot Add
Many servers support Hot-Add flows. These allow PCIe cards to be inserted into the
system at runtime without a reboot. However, this comes at a cost. In order to support
Hot-Add, the lanes periodically cycle through a DETECT state that consumes moderate
power. For a ×8 lane, this can add on the order of 100 mW of power on average. Through
BIOS, PCIe lanes can be forced into an L2 state so that they do not perform this detection.

D-states
Similar to core C-states, PCIe devices can use D-states that indicate that a device is
powered down. D-states are commonly used in phones, tablets, and laptops under idle
conditions. They are not common under active load in servers. D-states are traditionally
handled outside the CPU by PCIe devices that are connected to the platform with no
interaction with the CPU (except side effects like the L1 state being used). As traditionally
discrete devices are integrated into SoCs, this may change.

Summary
Memory can consume a large percentage of the overall power “pie” in many server
systems. This is particularly the case in deployments that depend on large memory
capacities. CKE and self-refresh can save significant amounts of power with almost no
impact to the performance of the system. Making use of these capabilities is critical for
achieving power efficiency in deployments with large memory capacities.

Chapter 3 ■ MeMory and I/o power ManageMent

91

Selecting the correct type and configuration of memory can also have a large impact
on energy consumption as well as performance. Building systems with at least two ranks
per channel tends to result in the best performance across a wide range of workloads.
Larger capacity devices tend to provide additional capacity at lower power cost than more
DIMMs or more ranks, but they can also be cost prohibitive.

I/O power has historically been a much smaller contributor to overall system
power, and getting overly aggressive with power optimizations in this area can be
counterproductive. This is particularly the case with high-power CPUs. I/O power does
become much more significant on CPUs with low power draw such as microservers and
embedded devices.

93

Chapter 4

Platform Power Management

Each CPU in a data center requires a large amount of support hardware. This support
hardware, contained within the server chassis, is generally referred to as the platform.
Over the years, more and more of the platform has been integrated into the CPU, such as
memory controllers and PCIe connectivity. However, a large portion of the overall power
in the data center is still consumed by the support infrastructure outside of the CPUs and
memory. Storage (drives), networking, power delivery, and cooling all can contribute a
significant amount to the overall cost of a data center. Some of these components (like the
fans) have sophisticated algorithms that attempt to manage their power consumption,
whereas others (like drives) tend to employ minimal power management techniques.

Platform Overview
A platform is conceptually everything (including the CPU) required for a CPU to operate.
It includes the power delivery (which converts electricity from the power grid into
something usable by the different platform components), cooling (fans, heat sinks, etc.),
as well as the memory, drives, and networking that are connected to the CPU sockets.

Common Platform Components
A single platform is commonly referred to as a node, which generally incorporates from
one to eight CPUs that are connected with coherency.1 A wide range of platform designs
are possible and available. However, some standard building blocks go into just about any
platform design (see Table 4-1). This chapter investigates some of the power management
characteristics of these various platform components.

1Coherency is a mechanism that allows different software threads running on different CPUs to
share a large set of physical memory without requiring software management.

Chapter 4 ■ platform power management

94

A wide range of platform designs are used in the industry. Some designs provide
large amounts of data storage and connect a large number of drives. Others may be
completely driveless and use the network to bring data into the node. Figure 4-1 provides
an example of one potential platform node with two CPU sockets.

Table 4-1. Common Platform Components

Component Description

CPU These processors provide the computation and execution of user
workloads. See Chapter 2.

Memory Memory provides temporary storage for data being used by the
CPUs. See Chapter 3.

Storage Storage (drives) provides bulk storage of data. SAS
(serial attached SCSI) and SATA (Serial ATA) are two common
protocols for connecting drives to a storage controller.

Networking Networking provides for communication between multiple nodes.
Ethernet and InfiniBand (IB) are common networking interfaces.
NICs (network interface cards) provide the connectivity between the
CPU and the Ethernet/IB network.

Power delivery Different components in the system require different voltages and
types of current (AC/DC). VRs (voltage regulators) are DC to DC
converters that take an input voltage and step it down to a lower
operating voltage. PSUs (power supplies) take AC current and
convert it to DC.

Cooling When servers consume power, it is turned into heat. Fans and other
cooling devices are used to extract that heat from the platform to
maintain a safe operating temperature.

Chapter 4 ■ platform power management

95

Integration
As time has progressed, more pieces of the platform have been integrated into fewer
discrete chips. This can save cost and power and even improve performance in some cases.

CPU Integration
For many years, the sole role of the CPU die was to provide one (or a couple of) cores and
a supporting cache hierarchy. These were then connected to some system bus (front-side
bus (FSB) on Intel systems), which then connected them to a chipset. This chipset provided
a memory controller and PCI connectivity for devices like drive and network controllers.
These busses consumed power, limit bandwidth, and increased latencies. As a result, more
and more of the chipset began to get integrated into the CPU itself, both to reduce platform
power and to increase performance. Table 4-2 provides an overview of some of the key
integration milestones over Xeon processor generations.

Figure 4-1. Two socket platform node example

Chapter 4 ■ platform power management

96

Although power can be saved (fewer platform busses and I/Os driving them) and
performance can be improved (on-die busses provide higher bandwidth and lower
latency compared to off-chip interconnects), this integration is not free. The area of the
CPU must increase to accommodate the additional components. CPU packages may need
to accommodate more pins (which increases cost). This integration also moves power
that was previously consumed out in the platform into a much closer physical location to
the traditional CPU components. This either requires that more power (and cooling) be
provided to the CPU or that less power be made available to the cores.

CPUs are typically built on the latest manufacturing process technology that provides
the best power efficiency. Other devices in the platform are usually manufactured on
older technologies. When they are integrated into the CPU, these capabilities get an
immediate upgrade in power efficiency due to the process technology improvement.

Chipset Integration
The CPU absorbed the memory controller and some of the PCIe connectivity away from
the chipset in the Nehalem and Sandy Bridge generations. However, the chipset has
started integrating other components of the platform. Storage and network controllers
are now standard on server chipsets. PCIe is still provided, although it is generally lower
performance than the CPU links and is focused on low-bandwidth connectivity. Chipsets
are discussed in more detail later in this chapter.

Microservers and Server SoCs
Server system on a chip (SoC) components are becoming more and more prevalent.
In these designs, the chipset and CPU are integrated together into a single die or as a
multi-chip package (MCP). The primary goal here is to reduce the costs of deploying
a single CPU node. The concept of a microserver is where you target these lower-cost
devices in mass quantities in a data center to provide adequate performance at reduced
costs. Although microservers have received significant press in recent years, deploying
these lower-cost, power efficient, highly integrated devices into embedded markets is
arguably even more interesting.

Table 4-2. Integration over Intel EP CPU Generations

Generation Integration

Nehalem Memory controllers

Jasper Forest (Nehalem Derivative) PCIe 2.0 (up to 16 lanes)

Sandy Bridge PCIe 3.0 (up to 40 lanes) that can share
L3 cache with cores

Haswell Voltage regulators

Chapter 4 ■ platform power management

97

Platform Manageability
Running a large data center requires capabilities for monitoring and managing the
various components that go into a data center. Controlling fans, rebooting nodes that
have crashed, monitoring power, and many other tasks are all critical to managing
a typical data center. These concepts will be discussed in Chapters 5 and 9. Rather
than having software running on the CPU cores to provide these capabilities, many
server platforms have traditionally deployed dedicated management chips. These are
commonly called baseboard management controllers (BMCs).

Server BMCs are OEM-proprietary devices with a small microcontroller at their
heart. They have tentacles throughout the platform in order to monitor and control the
various subsystems. Platform Environment Control Interface (PECI) is a standard used
for interactions between BMCs and CPUs. System Management Bus (SMBus) protocol
is also commonly used for providing telemetry information from platform devices
(power supplies, etc.) to the BMC. Intelligent Platform Management Interface (IPMI)
is an interface used for software to interact with the BMC for extracting the wealth of
information of which the BMC is aware (see Chapter 7 for examples). A single platform
with N coherent CPU sockets is generally paired with a single BMC, but this is not strictly
required.

BMCs themselves do not consume a significant amount of power but can have
a notable impact on the overall power draw of the system since they control the fans
associated with a given platform node. Thermal management is discussed later in
this chapter. Servers without BMCs have been investigated in order to reduce power
consumption and save on integration costs, but thus far, such designs have not taken off.

CPU Sockets
Modern CPU nodes can support varied numbers of CPU sockets. Uni-processor (UP) and
dual-processor (DP) servers make up the bulk of the server processor nodes sold today.

Multi-processor (MP) nodes commonly consist of four or eight processors, but other
topologies are also possible. MP platforms have a higher procurement cost associated
with them, and are frequently used in situations where large single-node performance or
memory capacity is required. By moving to a larger number of CPU processors per node,
the cost of some of the platform components can be amortized. For example, if each node
requires a boot SSD and a network connection, one can potentially reduce the number of
required SSDs and network connections by two times by going from a UP to a DP platform.

Note ■ Due to the large procurement costs and usage models associated with mp
systems, power efficiency and power savings are typically a lower priority for end users.

Chapter 4 ■ platform power management

98

DP platforms provide an excellent cost/performance sweet spot. MP platforms have
typically demanded a higher overall price per CPU, while UP platforms are not as effective
at amortizing other platform costs (power and procurement). DP platforms also exhibit
strong performance scaling for many workloads.

UP server systems have traditionally been relegated to situations that simply did not
demand the performance of a DP or MP system. Rather than being deployed in a data
center, they have been used in other lower-end server appliances such as small business
NAS (network-attached storage). As single node performance continues to increase, UP
systems cost amortization is improving. If a DP system requires two network connections
in order to provide sufficient data to saturate the capabilities of the cores, then there
is no additional savings by scaling to two sockets. Server SoCs (like microservers) that
incorporate capabilities like networking also help reduce the power and procurement
amortization benefits of multi-socket systems.

Platforms that directly connect two to eight processors coherently to each other
are said to be glueless. A variety of glueless topologies have been developed over time.
Figure 4-2 shows some examples from recent processor generations from Intel. Note
that in each of these examples, every socket is either one or two “hops” from each other
socket on the platform. It is possible to connect even more processors in a coherent
network, but this generally requires special hardware (or glue) called node controllers. If
all the processors are directly connected to each other through point to point links, the
platform is said to be fully connected. Fully connected platforms generally have lower
latencies, higher bandwidth, and better performance scaling than platforms that are not.
There is a small power cost for the additional connectivity, but the return on investment
(performance) is well worth the cost for most usage models.

Figure 4-2. Example glueless coherent platform topologies

Node Controllers
Although the majority of platforms limit the number of coherent CPUs to a maximum of
eight, it is possible to build much larger coherent systems using node controllers (xNC).
Node controllers are generally discrete chips that connect one, two, or four CPUs out to
other node controllers through a proprietary fabric (see Figure 4-3). These systems are
frequently used for building supercomputers and can connect hundreds of processors
and thousands of cores into a single coherent domain running a single operating system.

Chapter 4 ■ platform power management

99

Note that it is also possible to build large supercomputers without node controllers by
connecting a large number of nodes non-coherently through a network. The differences
between these designs are beyond the scope of this book.

Figure 4-3. Node controller example

Memory Risers and Memory Buffer Chips
Certain high-end servers demand very large memory capacities. Databases are the most
common example. Each CPU socket is generally limited in the amount of DDR memory
to which it can directly attach. The number of DDR channels on a socket is constrained
by packaging and die costs. The number of DIMMs on a channel is limited by electrical
loading constraints. LR-DIMMs attempt to address some of these issues but can only
go so far. In order to expand memory past the constraints imposed by the CPU socket,
memory risers and memory buffer chips have been used on some high-end servers.
Rather than connecting the CPU directly to memory, the CPU communicates with a
discrete chip in the platform that is then able to communicate to the actual DDR memory.
In these platforms, the memory is connected on separate riser cards, where a set of
DIMMs is connected to a card, and then that card is connected into the motherboard.
There have been various flavors of these technologies over the years. Intel has
historically productized a memory buffer technology as part of its EX platforms (called
Scalable Memory Buffer [SMB]), and other OEMs have deployed their own proprietary
technologies to provide similar capabilities. These buffer chips do consume measurable
power (usually a few watts), but they tend to be dwarfed by other power in such platforms
(including the memory that they provide connectivity to).

Chapter 4 ■ platform power management

100

Server Chipsets
Many server platforms employ discrete chipsets that are connected to the CPUs. These
devices provide key legacy capabilities required for booting the platform, capabilities
for manageability, and also integration of many features that otherwise would require
discrete controllers (such as storage, network, and USB controllers). Some SoCs integrate
the chipset functionality into the package with an MCP, while others (like Avoton)
integrate the entire chipset into the same die as the CPU. The discrete chipsets used in
many Xeon server designs at Intel are called a PCH (Platform Controller Hub). The PCH
attaches to the CPU via a proprietary DMI (Direct Media Interface) link, and provides
boot, manageability, and I/O services to the platform.

The PCH has been the south bridge of the two-chip Xeon Intel Architecture since
the Nehalem/Tylersburg generation and is a companion to the CPU. This architecture
succeeds the Intel Hub Architecture, which was a three-chip solution. Successive
generations of PCH have advanced the I/O capability of IA platforms, with Gen2 PCIe,
Gen3 SATA, and Gen3 USB now available on Wellsburg. A microcontroller-based power
management controller (PMC) and a Management Engine (ME) were added to the PCH
to support traditional power management features, along with several extended features.

The chipset serves a variety of purposes in the platform. Table 4-3 provides a
high-level summary of some of the key capabilities. Figure 4-4 shows an example block
diagram of such a system. Table 4-4 enumerates some of the integrated functionality of
modern PCHs.

Table 4-3. PCH High-Level Capabilities

Capability Description

High-performance I/O connectivity This includes PCIe, storage (SATA and/or SAS),
networking, etc. These capabilities are only
available when the CPU is active and the system is
in the S0 state.

Wake/boot The PCH both detects wake events (like Wake on
LAN) and sequences the platform to transition in
and out of platform power states. The PCH also
provides access to flash memory for BIOS.

Manageability This provides interfaces for the data center to
monitor and manage the node, such as reading
temperatures.

Real-time clock (RTC) This maintains the system clock that tracks clock
time. If you unplug a desktop from the wall, your
time and date is not lost since it is maintained on
the RTC. The same capability exists in server PCHs.

Legacy I/O connectivity This provides connectivity to low-performance
platform connectivity that is generally required
for system operation.

Chapter 4 ■ platform power management

101

Figure 4-4. A typical server PCH architecture block diagram

Table 4-4. Primary PCH Components

Component Description

On-die fabric Interconnects exist on the PCH that are commonly called on-die
or on-chip fabrics. These interconnects are conceptually similar to
those in CPUs. These are not to be confused with fabrics that connect
multiple CPUs together at the data center level.

DMI DMI provides a mechanism to connect the PCH and components
connected downstream from the PCH to the CPU. It operates very
similar to PCIe.

PCIe PCIe connectivity can be incorporated both into the CPU and the
PCH and shares the same basic power management capabilities. The
PCH is useful for high fanout, low bandwidth connectivity.

SATA Storage connectivity is included on some PCHs and is discussed in
the “Storage” section of this chapter.

USB USB is primarily targeted and consumer usage models but is also
present in servers (particularly for debug usage models). It is
discussed later in this chapter.

Ethernet Ethernet integration is also incorporated into the PCH. Networking
power management is discussed in the “Networking” section of
this chapter.

(continued)

Chapter 4 ■ platform power management

102

The PCH has traditionally been the component that provides access to various
high-speed I/Os (SATA, Ethernet, PCIe, USB), although these capabilities are increasingly
being integrated into the CPU to create SoC components. The SATA/PCIe/Ethernet/USB
interfaces provide access to external communication, including disk/solid-state storage,
networking, USB ports, and manageability. Moving data with higher performance
between two devices in a platform consumes non-trivial power, and integration is an
effective way to significantly improve overall platform power consumption.

Internally, the PCH architecture is constructed with a mix of analog and digital
components. Similar to the CPU uncore, analog design is used for designing the off-chip
communication (e.g., PCIe/SATA/USB physical interface) and on-die memory (SRAM),
while the bulk of the remaining system is built out of synchronous digital logic. Unlike
traditional server CPUs, a large percentage of the chipset power is consumed by analog
I/O circuitry (commonly called physical layer or PHY) and not the digital logic.

PCH and Platform Power Management
The PCH orchestrates many of the platform power states introduced in Chapter 2.
In addition to this task, it is responsible for managing its own power states. Table 4-5
provides an overview of the power management states in which the PCH participates.

Component Description

SPI/LPC

(legacy I/O)

Serial Peripheral Interface (SPI) and Low Pin Count Interface (LPC)
provide connection points to platform boot devices that contain the
BIOS/UEFI image, as well as firmware for other PCH components
(e.g., ME, Ethernet).

ME The Management Engine on the PCH provides platform management
services, key management, and cryptographic services.

SMBus SMBus provides a legacy mechanism for communication with platform
peripherals for system and power management–related tasks.

Table 4-4. (continued)

Chapter 4 ■ platform power management

103

Since the PCH controls the platform rails and clocks, it needs to remain powered on
even in states where the CPU is powered off (G- and S-states). This is accomplished by
using platform power rails that are successively powered off depending on the system
state. The PCH provides a number of high-level capabilities that are successively disabled
at lower power states. Table 4-4 provides an overview of these capabilities, and Table 4-6
shows how the capabilities are disabled in each power state.

Table 4-5. System States Supported by Server PCH

State Description

C-states Low-power states for PCH I/Os

See Chapter 2 for details on CPU C-states. PCH does not support all the
traditional CPU C-states but places its I/Os in low-power states when
the CPU is not active.

• C0 is an active state when the PCH logic and I/O are functional.

• Cx is a clock/power-gated state, during which PCH I/Os are
transitioned to a lower power-managed state.

S-states Turning off the CPU package (sleep state)

See Chapter 2 for details on S-states. The PCH I/Os are turned off
(except S0), but the PCH core logic remains active in all S-states.

PCH can wake the CPU up from S3/S4/S5 states based on platform
signaling. Waking from an S3 state takes seconds, whereas waking from
S5 requires a full system boot and can take multiple minutes.

M-states Turning off the Management Engine

These states are related to the Management Engine.

• M0: Active state, when platform is in S0 state.

• M3: Active state, when platform is in S3/S4/S5 state, used for
out-of-band platform management and diagnostics.

• MOff: Management engine is turned off in Sx.

G-states Global states

See Chapter 2 for details. The PCH is active in G0 to G2 and is only off
in the G3 state (mechanical off).

Chapter 4 ■ platform power management

104

Systems autonomously transition out of the G3 state and into the G2 state when power
is supplied to the platform. From there, various wake events can be used to transition the
state into a higher power operational mode as needed. As such, the G3 state is hidden
from the user.

PCH Power Management
The PCH consumes a small percentage of a node’s overall power. Because the bulk of the
power consumed by the PCH exists in the I/O PHYs, the typical power consumed under
load is very dependent on the number of connected devices. The TDP power of Patsburg
(the chipset used with Sandy Bridge and Ivy Bridge E5 processors) was 8 W to 12 W when
all of the high-speed I/O ports were connected (fully populated). Wellsburg (paired with
Haswell E5) consumed a TDP of 7 W when fully populated. Notable power can be saved
if certain I/Os are not populated. Table 4-7 provides an overview of four different usage
configurations of the PCH and the corresponding TDP power for those configurations.

Table 4-6. Example PCH Power States and Capabilities

G-State M-State S-States Power Rails Manageability Wake Capability

G0 M0 S0 All available Available N/A (awake)

G0 M3 S3/S4/S5 Wake + Manageability +
RTC

Available Yes

G2 MOff S4/S5 Wake + RTC Disabled Yes

G3 MOff S4/S5 RTC Disabled None

Table 4-7. PCH TDP Power (W) Consumption with Various I/O Port Configurations

Workstation Server Low Power Boot-Only

USB2 Ports 14 6 2 (detection) 0

USB3 Ports 4 4 1 (detection) 0

SATA3 Ports 8 5 2 0

SATA2 Ports 2 1 1 0

PCIe Lanes 8 4 2 0

TDP (W) 6.5 5 3.2 1

The Wellsburg PCH, which launched with the Haswell Server CPU, is built on a
low-leakage process and does not implement techniques like voltage-frequency scaling
or power gating to reduce the power consumed at runtime. Turbo is not available.
In order to save power, clock gating is performed on logic features that are disabled or
not currently in use. Since the PCH is I/O dominated, a sizable portion of the power is

Chapter 4 ■ platform power management

105

consumed by the circuits that provide the physical interface to the platform. The voltage
of these interfaces is generally static (as defined by industry standard specifications).
Several power management states are defined for the links to opportunistically reduce
power based on the operating state, as described in the following subsections.

If an entire section of logic is not being used, then the PLL (phase-locked loop)
that drives that logic can be powered down. For example, if a user is building a compute
node that lacks any local drives, the storage subsystem in the PCH can be completely
powered down.

PCIe in Chipsets
Prior to Sandy Bridge and Jasper Forest, chipsets provided the PCIe connectivity in the
platform. When Sandy Bridge integrated PCIe into the CPU, the chipsets continued to
provide this capability. Today in platforms with discrete PCH devices, PCIe connectivity
is offered on both the CPU die and the PCH. PCIe in the PCH provides the same power-
saving capabilities that are described in Chapter 3 (L1, DLW).

PCIe on the CPU provides high performance and (relatively) low latency connectivity
at the expense of limitations in the fanout (devices smaller than x4 consume four lanes).
The PCH, on the other hand, provides lower bandwidth and longer latencies, but can be
bifurcated down to x1 making it an excellent choice for low bandwidth devices.

PCH Thermal Management
The PCH contains thermal sensors in order to monitor the temperature and help
guarantee that the PCH will not get to a dangerous temperature where reduced reliability
or damage could occur. The PCH may throttle itself to stay under a target temperature or
even initiate an immediate shutdown if temperature exceeds a catastrophic threshold.
Like CPUs, PCHs are spec’d with a TDP rating that is used to design the thermal solution
and an ICCMAX rating that is used to size the voltage regulators to power the voltage rails.
They also contain similar thermal protection mechanisms such as shutting down the
platform when catastrophic temperatures are detected. Platform thermal management is
discussed in detail later in the chapter.

Networking
Network interfaces—both the local LAN adapter as well as network infrastructure
devices—are the gateway for the server platform to the rest of the world. Network activity
demonstrates unpredictable distribution of packet arrival times at multiple scales.
As a side effect, the network interfaces are never fully powered down. LAN adapters
contribute ~5–10 W to the overall platform power. This power is not one of the primary
power contributors in typical server platforms that deploy high-power CPUs and large
amounts of memory. Although the LAN adapters themselves do not directly contribute a
significant percentage of the platform power, their behavior and configuration can have a
large impact on the power consumption of the CPU (and thus the platform).

Chapter 4 ■ platform power management

106

Note ■ although network cards do not themselves contribute a significant percentage
of the platform power consumption, their configuration and behavior can have significant
impacts on CpU power (and thus platform power).

In typical usage, LAN component power is driven by five main factors. Table 4-8
provides a high-level summary of these factors (which are discussed in detail in the
following pages.).

Table 4-8. Primary Factors in LAN Controller Power

Factor Description

Ambient temperature LAN devices have traditionally been manufactured
with high-leakage process technologies, resulting in a
significant power increase at higher temperatures.

Attached media The type of connection (fiber optic, copper cable, etc.)
can have a moderate impact on the power consumption.

Configured speed LAN controllers can be configured by software to run at
lower frequencies. This can save notable power.

Power management features Various power management options are available that
can trade off performance (latency) to save power.

Bandwidth Packets per second have the biggest impact on NIC
power (not raw bandwidth). However, on recent high-
performance networking devices, there is not significant
sensitivity to bandwidth.

Ambient Temperature, TDP, and Thermal Management
Many LAN vendors quote typical power numbers in their datasheets. However, there
are no industry conventions as to what typical usage is, though many assume 25°C for
ambient air temperature, and nominal voltage. An increase in temperature from 25°C
to 70°C can increase the component power by 50% to 100% solely due to leakage (which
itself is a function of the silicon process used to produce the device). As LAN controllers
transition to lower leakage processes or are integrated into low-leakage SoC designs, the
sensitivity to temperature will decrease.

Similar to CPU designs, the maximum quoted power of the LAN controller is measured
assuming worst-case conditions, including high temperatures (~70°C ambient). The server
platform thermal management—such as fan size and speed—is designed to cool to this
maximum component thermal design point (TDP). LAN controllers are typically designed
assuming passive cooling, and it is also common for these devices to exist in areas of
limited airflow. Active cooling—such as fans—is discouraged because of server platform
reliability concerns. The net result is, regardless of the functionality or media provided,

Chapter 4 ■ platform power management

107

the server LAN component TDP must be 10 W or less (unless special design provisions are
made at the platform level for additional fan cooling). Tables 4-9, 4-10, and 4-11 show some
historical information about Intel LAN adapter TDP power.

Table 4-9. Historical TDP Power of Single-Port 1 Gbps Intel LAN Adapters

Year Device Ports/Speed TDP (W) TDP (W) / Gbps

2001 Intel 82544EI PCI-X 1x 1 Gbps 1.5 W 1.5 W

2004 Intel 82541 PCI 1x 1 Gbps 1.0 W 1.0 W

2005 Intel 82573 PCIe 1x 1 Gbps 1.3 W 1.3 W

2008 Intel 82574 PCI 1x 1 Gbps 0.7 W 0.7 W

2012 Intel I210 PCIe 1x 1 Gbps 0.7 W 0.7 W

Table 4-10. Historical TDP Power of Multi-Port 1 GBps Intel LAN Adapters

Year Device Ports/Speed TDP (W) TDP (W) / Gbps

2005 Intel 82571 PCIe 2x 1 Gbps 3.4 W 1.7 W

2009 Intel 82576 PCIe 2x 1 Gbps 2.8 W 1.4 W

2010 Intel 82580 PCIe 4x 1 Gbps 3.5 W 0.9 W

2011 Intel I350 PCIe 2x 1 Gbps 2.8 W 1.4 W

2011 Intel I350 PCIe 4x 1 Gbps 4.0 W 1.0 W

Table 4-11. Historical TDP Power of 10 GBps Intel LAN Adapters

Year Device Ports/Speed TDP (W) TDP (W) / Gbps

2001 Intel 82597 PCI-X 1x 10 Gbps 9.0 W 0.9 W

2007 Intel 82598 PCIe 2x 10 Gbps 6.5 W 0.3 W

2011 Intel 82599 PCIe 2x 10 Gbps 6.2 W 0.3 W

2012 Intel X540 PCIe w/
10GBASE-T Phy2

2x 10 Gbps 12.5 W 0.6 W

2014 Intel X710 PCIe 4x 10 Gbps 7.0 W 0.17 W

2This device includes a 10GBASE-T attached media, increasing the TDP power. The other
controllers listed must be paired with a separate attached media.

Chapter 4 ■ platform power management

108

Note ■ typical power for nIC cards is well below their tDp specifications. nICs frequently
operate at lower temperatures than their specifications, saving significant leakage power.

In typical usage, the LAN component does not operate at TDP. Some LAN devices
include thermal sensor diodes, as well as management interfaces, to enable other
platform components to query the component thermal state and adjust fan speed. In
practice, many of these platform methods require additional calibration of the thermal
sensors which, if not done, may limit the effectiveness of the fan speed algorithms.

Attached Media
Most LAN adapters can be paired with a variety of different interconnect types that provide
the actual connectivity between the LAN adapter and network switches. These are called
attached media.

Server LAN implementations have a greater variety of media types than those found
on client systems. Whereas most equate Ethernet to the pervasive RJ-45 connector and
10BASE-T (10 Mbps), 100BASE-TX (Fast Ethernet, or 100 Mbps) and 1000BASE-T
(1 Gbps Gigabit Ethernet), server platforms have employed several media types as
summarized in Table 4-12.

Table 4-12. Types of Attached Media

Type Max Distance Power Latency

Multi-mode short reach (SR) fiber optic ~400 m ~1 W Slight increase

Single-mode long read (LR) fiber optic ~10 km ~1 W Slight increase

KX/KX4/KR Backplane (copper) Server backplane 100s of mW Best

Direct Attach (DA) 3–10 m 100s of mW Best

BASE-T 100+ m 2–3 W Adds ~1
microsecond

Note ■ Cost and distances are generally the deciding factors in attached media selection.
latency is important to a subset of customers.

Chapter 4 ■ platform power management

109

Each of these media solutions have tradeoffs between cable cost, power, distance,
and even propagation velocity (fiber is slightly slower than copper-based connections).
Because of this diversity, many server LAN connections are shipped with an SFP or
SFP+ cage, which accepts various media type pluggable modules.

LAN Power Management Features
A number of common features are used for reducing power of both the LAN devices
and the CPU. In addition to these, higher-end server LAN adapters implement multiple
queues and methods to balance network traffic across multiple CPU cores. As a result,
CPU cores can operate at a reduced frequency and save power.

Media Speed
Some media types—such as BASE-T and backplane—support establishing a link at lower
media rates than the maximum possible—such as a 1 Gbps adapter linked at 100 Mbps.
Lowering the established link rate often reduces the component power, sometimes by as
much as 50%. As the link speed drops, the internal synchronized media clock lowers in
frequency, leading to a lower dynamic power. Another effect relates to effective packet rates,
since LAN component power varies more as a function of packet rate than packet size. For
each packet, the LAN controller performs various lookups on the packet headers. Reducing
the media rate reduces the packet rates as well, again leading to lower dynamic power.

In practice, changing media speed is not applicable for most server usage models.
The transition latency is slow, and the reduced speed results in significant peak
throughput reductions and the potential for increased latencies. Although this can save
notable power from the perspective of the LAN controller, it is generally not as significant
as a percentage of the overall platform power.

Energy Efficient Ethernet
BASE-T and backplane media also support Energy Efficient Ethernet3 (EEE). This is
frequently called triple-E for short. EEE devices enter into a low power mode during idle
periods, periodically sending idle sequences to keep the link active and sending a wakeup
symbol to the peer when the link needs to be reactivated. Depending on the media, the
link transitions from idle to active are less than about 16 microseconds. BASE-T devices
can reduce their PHY idle power as much 400 mW with 1000BASE-T, and by 2 W with
10GBASE-T.

EEE is managed by the NIC driver and can be controlled at runtime. It is generally
enabled by default. The latency cost of EEE is not noticeable in many usage models, but
the power savings is also not particularly significant. Latency sensitive users may want to
attempt to disable this capability.

3EEE is decribed in detail in IEEE Std 802.3az-2010.

Chapter 4 ■ platform power management

110

Wake on LAN
Wake on LAN (WoL) is a common feature available on server LAN adapters. It is not a
power-savings feature as much as a mechanism to wake the system from an S-state.

If the platform supports suspend or wake from soft-off modes, WoL allows remote
administrators a simple method to remotely activate a server platform. Often, the LAN
interface will reduce link speed automatically when entering this state to minimize
power and await receipt of a wake pattern. A common pattern used is the Magic Packet
pattern. Upon receipt, the LAN controller asserts a signal to the platform to bring the
system out of the low-power state.

Active State Power Management (ASPM)
Discrete LAN controllers are connected using PCIe. As such, PCIe Active State Power
Management is available to manage power on LAN controllers. PCIe power management
is discussed in Chapter 3.

NIC ASPM L1 is frequently disabled in server deployments. This can frequently
be performed in the system BIOS. The latency implications are frequently not worth
the low amount of power savings. One common issue with ASPM L1 is that it blocks
communication between a driver (running on the CPU) and the NIC device. When
communication is required, the core is then stalled. This ends up wasting CPU power,
which eats into the already small savings from L1.

Interrupt Moderation
Interrupt moderation is another common feature of LAN controllers. It limits the rate
at which interrupt signals are delivered to the host CPU. This often reduces the CPU
utilization with little to no observable impact to bandwidth. Interrupt moderation has
little impact on NIC power, but the decreased CPU utilizations can significantly improve
CPU power consumption. It can also make additional CPU cycles available for other
processes, improving the throughput of the node. By rate limiting interrupts, the CPU is
notified less often, resulting in an increase in latency and response time. The amount of
latency impact can be tuned inside the NIC driver and is commonly configured to levels
on the order of 100–200 microseconds. This feature is typically enabled by default, and
can be disabled (or configured) inside the NIC driver configuration.

Interrupt moderation can have a significant impact on power and latency in systems,
and is frequently overlooked. Tuning this feature should be a priority for anyone who is
concerned about latency and response times.

DMA coalescing is a related feature that attempts to queue up data transfers inside
the NIC and burst them into the CPU. The intention of this feature was to allow the CPU
to get into a low-power idle state between bursts of activity. In practice this feature has
shown minimal effectiveness in server environments while also significantly increasing
network latencies. It is not enabled by default.

Chapter 4 ■ platform power management

111

USB
USB connectivity is provided by server PCHs. Many large-scale data centers do not
connect devices to USB under normal operation, but it is common for USB ports to be
included on those platforms. “Crash cart” support is a common usage model, where USB
is periodically used to connect a keyboard/mouse for local debug, or to connect a USB
drive for similar purposes. USB can also be used in some low-end storage systems for
connecting USB storage. Power management of USB can be very effective at saving power
at minimal to no power cost due to these limited usage models.

Link Power States
The initial USB power management capabilities were very coarse grained. A suspend/resume
scheme provided two levels—effectively “on” and “off.” These take milliseconds for
transitions, making them inadequate for many power-efficiency usage models. USB
devices are common in consumer usage models where achieving very low idle power
is critical to achieving long battery life. As a result, USB has been a focus for power
optimization in these environments. Much of these capabilities are unnecessary in
server usage models.

USB 2.0 originally only supported these two levels but later added support for
L-states that complemented the suspend state. On USB 2.0, the state of the link is tied to
the power state of the device. These states are summarized in Table 4-13. Suspend can
still be used for states that have no latency sensitivity (such as S3/S4).

Table 4-13. USB 2.0 Power States

State Name Link Savings Device Savings Exit Latency

L0 On -- -- --

L1 Sleep ~100 mW Device-specific microseconds

L2 Suspend ~125 mW Device draws almost no power milliseconds

L3 Off/Disconnected ~140 mW Device powered down milliseconds

Note: Power savings are design dependent. These numbers provide a reference point.

On USB 3.0, the device power states were decoupled from the link power states.
U-states were defined that control the power state of the link only. Table 4-14 provides an
overview of the four USB 3.0 link power states.

Chapter 4 ■ platform power management

112

Link Frequency/Voltage
USB has gone through three generations. Each generation has a single frequency at which
the device runs (see Table 4-15). Multiple voltage/frequency points are not supported.
Newer generation devices support (by rule) backward compatibility to the prior
generation frequencies.

Table 4-15. USB Generations

Generation Frequency Duplex Theoretical Bandwidth

USB 1.x 12 MHz Half 1.5 MB/s

USB 2.0 480 MHz Half 35 MB/s

USB 3.0 5 GHz Full 500 MB/s (per direction)

Table 4-14. USB 3.0 Link Power States

State Name Link Savings Exit Latency

U0 Link active -- --

U1 Link down ~100 mW per lane Microseconds

U2 Link down ~125 mW per lane Milliseconds

U3 Link off ~140 mW per lane Milliseconds

Note: Power savings are design dependent. These numbers provide a reference point.

USB 3.0 moved to a full-duplex design, effectively providing separate communication
channels for both directions, increasing the peak throughput when data are transferred in
both directions simultaneously. This required the addition of two more differential pairs,
and is similar to a single lane of PCIe or a SATA connection.

Storage
Many modern data centers deploy storage in a variety of different ways. Some compute
nodes have no local storage and depend entirely on the network to provide access to
remote storage. It is also common to see compute nodes with a single drive (commonly
an SSD) that provides for high-performance local storage. Other nodes can be targeted for
storage and can provide access to a large number of drives. These nodes are connected
to compute servers through high-performance interconnects to provide large pools of
shared storage.

Chapter 4 ■ platform power management

113

Traditionally, drives have been connected through PCIe-based controllers. Two
standard interfaces exist for these controllers: SATA and SAS. Serial Advanced Technology
Attachment (SATA) is the lower cost of the two, but it also provides lower peak performance.
SATA can be used both in consumer and server usage models. Serial attached SCSI (SAS)
is generally more expensive and higher performance and is targeted at enterprise usage
models. SATA drives can be connected to a SAS infrastructure, but SAS drives cannot be
connected to a SATA controller. SATA and SAS support both SSDs (solid state drives) and
HDDs (hard disk drives). In addition to providing higher peak performance, SAS provides
the ability to connect a large number of drives to a single controller, making it popular in
very high capacity deployments.

In recent years, SSDs have begun to be directly connected on PCIe. Non-Volatile
Memory Express (NVMe) is a specification for performing this direct connection. NVMe
provides lower latency and higher performance than SAS and SATA. This is particularly
well-suited for high performance compute nodes that require local storage. NVMe SSDs
exhibit similar power characteristics to SATA and SAS SSDs. Their potential for higher
performance also translates into higher power consumption.

Storage power consumption is generally not a significant component of the overall
node power in traditional compute servers. However, the power consumption of the
drives on a storage node can dwarf the other components on the node. Storage power is
also more significant in low-power, low-performance servers where the drive power is not
amortized across a high-power CPU node.

Storage Servers and Power Management
In a typical storage server the CPU complex manages tens to thousands of drives.
Storage servers can use a mix of SSDs and HDDs, and the mix is determined by the
performance needs. SSDs have higher procurement costs but provide improved
performance. A significant amount of power in storage servers is consumed by the drives.
Cooling a dense storage complex can also consume non-trivial power.

It is increasingly critical to manage the power consumed by the storage devices,
without adversely affecting performance. Various power management schemes can be
used depending on the performance requirements of the application. In a cold storage
system where a massive amount of data is maintained but accessed rarely with low
performance and latency requirements, aggressive power management can be used
to reduce costs. On the other hand, limited power savings is used in performance- and
latency-critical storage deployments. Aggressive power savings in such environments can
be detrimental to performance but can also reduce overall data center power efficiency
by forcing compute nodes to wait longer for data (wasting power in the process).

Power savings opportunities exist both within the drives and in the communication
layer between the drives and their controllers. Storage power management schemes
have been developed for both server usage models as well as consumer usage models. In
consumer usage models, very low idle power is critical for battery life, and capabilities have
been developed to address these concerns. These same capabilities may be available in the
server space but can provide poor tradeoffs. A few hundred milliwatts of power savings is
commonly a poor tradeoff if it could result in milliseconds of response time increase.

Chapter 4 ■ platform power management

114

HDDs and SDDs
SSDs generally provide higher bandwidth and lower latencies than HDDs; however,
this has traditionally come at increased power and cost per capacity. Actual power
consumption is drive dependent, and can range anywhere from a couple of watts to more
than 10 watts.

Traditionally, 3.5" HDDs have been extensively used in data centers and other
server applications. They can provide the best cost per GB due to the larger platters. 2.5"
HDDs do tend to exhibit lower power draw than 3.5" drives of the same capacity, but this
benefit tends to be overshadowed by their overall lower maximum capacity in the same
technology generation.

The amount of traffic that an HDD is servicing has minimal impact on the amount
of power that is consumed. Rather, the state of the drive (Is it spinning? Are the heads
loaded?) is the predominant component of HDD power consumption. SSDs, on the other
hand, exhibit significant power dynamic range as a function of bandwidth. The act of
reading and writing the cells itself consumes a significant percentage of the drive power.
SSDs’ power consumption also appears to scale with capacity. This is not because the cells
themselves consume significant power, but because peak performance of these higher
capacity drives is frequently higher, providing more potential for power consumption.

Power consumption during spin-up of an HDD is often the highest power draw of
all of the different operating states of an HDD. It can dwarf the power consumption of
normal operation. In storage servers with a large number of HDDs, staggered spin-up
can be employed to prevent the excessive power consumption of spin-up, which may
result in a power shortage. Staggered spin-up starts one drive at a time, either waiting for
the drive to signal that it is ready or waiting a predefined amount of time prior to starting
the next drive. Many data center designers are concerned about the provisioned power of
each node, rack, and so on. This is the amount of power that the system must be designed
to provide and is generally less than the sum of the worst-case power of every individual
subcomponent in the system. When spin-up is staggered, platform power delivery does
not need to be designed for this high-peak power across many drives simultaneously,
which means that both cost and the potential for compute density improve. However,
this comes at the cost of additional potential latency when drives are spinning down for
power efficiency reasons.

SATA and SAS Drive Power Management
Power management of drives can be split into two categories: saving power on the actual
drive and saving power on the interconnect (PHY). SAS and SATA have many similarities
in their power management methodologies and terminology. Power management of the
drive itself is significantly more important than the PHY.

SATA devices (drives) support four power states as shown in Table 4-16. These states
can save significant power. The Sleep state is rarely used on servers. You would likely not
want to use Standby with HDDs on a compute server when any activity is possible, but
careful use is possible on large storage arrays.

Chapter 4 ■ platform power management

115

SAS power management is conceptually very similar to that of SATA. The PHY
supports both Partial and Slumber states with the same characteristics. In the T10 SAS
standard, additional states are defined. Although the ATA8-ACS SATA standard only
calls for the four states enumerated in Table 4-16, SATA drives may also support similar
states to SAS. Table 4-17 provides a summary of these states with ballpark power savings
estimates. Note that significant HDD power savings is only possible when significant
exit latency costs are accepted. As a result, these power savings modes are typically only
deployed after significant idle periods (if at all).

Table 4-16. SATA Device Power Savings4

Action Description Receives
Commands

HDD Wake Latency

Working (active) Normal operation.
Fully powered.

Yes Spun up N/A

Idle Active power savings.
May take longer to
respond to commands.

Yes Spun up Milliseconds

Standby Device still responds to
typical commands, but
response time may be
significant.

Yes Spun down <= 30 seconds

Sleep Device is put to sleep.
Must be explicitly
woken up.

No Spun down <= 30 seconds

4ATA8-ACS Standard. www.sata-io.org/sites/default/files/images/SATAPowerManagement_
articleFINAL_4-3-12_1.pdf.

Table 4-17. SAS/SATA HDD Power Savings Modes

State Spinning Heads Power Savings Exit Latency

Active Full speed Loaded Baseline N/A

Idle A Full speed Loaded ~10% ~100 ms

Idle B Full speed Unloaded ~20% ~200–400 ms

Idle C Reduced speed Unloaded ~50% Seconds

Standby Y (SAS) Spun down Unloaded ~90% Seconds

Standby Z (SAS)

Standby (SATA)

Spun down Unloaded ~90% Seconds

http://www.sata-io.org/sites/default/files/images/SATAPowerManagement_articleFINAL_4-3-12_1.pdf
http://www.sata-io.org/sites/default/files/images/SATAPowerManagement_articleFINAL_4-3-12_1.pdf

Chapter 4 ■ platform power management

116

For the PHY, both SAS and SATA supports two low-power modes; Partial and
Slumber (see Table 4-18). After some predetermined period of inactivity, either the
host or the device can signal the PHY to enter its reduced power state. PHY power
management has moderately long wakeup latencies, limiting the ability for fine-grained
power savings. Slumber has quite long wake latencies, which preclude them from being
used in some server usage models. Partial also achieves idle power on the order of ~100
mW, so further power savings at the expense of latency can be counter-productive at
the platform level outside of deep idle platform states. DevSleep is predominantly a
consumer device power state.

Table 4-18. PHY Power States5

Action Wake Latency

Active (SAS)

PHY Ready (SATA)

N/A

Partial <10 ms

Slumber <10 ms

DevSleep (SATA) ~1 s

SSD drives are common in both consumer and enterprise environments. However,
these drives have different characteristics and optimization points. Low-power operation
and idle power optimization is critical in the consumer space, and the drives have been
optimized for those cases. On the other hand, this has been less of a focus in many
enterprise drives. Unlike with HDDs, enterprise SSDs may consume only 25% (or less) of
their peak read bandwidth power while running in an Active Idle state (and maintaining
fast response times). Traditionally, enterprise SSD procurement costs have dwarfed
power costs, and users were not likely to deploy SSDs into areas that would be exposed
to significant idle periods. As time progresses, the cost per GB of SSDs is decreasing.
This will enable SSDs to compete in usage models traditionally reserved for HDDs and is
expected to make power management more of a focus.

Frequency/Voltage
SATA and SAS both have evolved over time by increasing frequencies to provide higher
bandwidth. Table 4-19 illustrates how these generations have evolved. Newer generation
devices support (by rule) backward compatibility to the prior generation frequencies, and
the operating voltage has been held constant.

5www.sata-io.org/sites/default/files/documents/SATADevSleep-and-
RTD3-WP-037-20120102-2_final.pdf

http://www.sata-io.org/sites/default/files/documents/SATADevSleep-and-RTD3-WP-037-20120102-2_final.pdf
http://www.sata-io.org/sites/default/files/documents/SATADevSleep-and-RTD3-WP-037-20120102-2_final.pdf

Chapter 4 ■ platform power management

117

SATA and SAS traditionally transfer data serially (1 bit of data at a time) and use
8b/10b6 encoding, which consumes 20% of the data in order to support the high-speed
transmission.

80% * (1.5 GHz / 8 bits per byte) = 150 MB/s
SATA 3.2 includes support for PCIe connected devices, which can leverage the

parallel nature of PCIe to achieve even higher throughput. It includes the SATA 3
capabilities for traditional SATA connectivity (at the same bandwidth).

NVMe Drive Power Management
NVMe provides power management capabilities that allow the power to be scaled down
at the cost of lower throughput and higher latency. Seven different states are defined
(numbered 0 to 6) as shown in Table 4-20.

Table 4-19. SATA and SAS Generations

SATA Generation SAS Generation Link Frequency Theoretical Peak Bandwidth

SATA 1.x SAS 1.0 1.5 GHz 150 MB/s

SATA 2.x SAS 1.0 3 GHz 300 MB/s

SATA 3.x SAS 2.0 6 GHz 600 MB/s

- SAS 3.0 12 GHz 1200 MB/s

Table 4-20. NVMe Power States

State Operational Exit Latency Performance

0 Yes -- Peak

1 to 4 Yes Microseconds Degraded throughput and latency with
increasing exit latency

5 No ~50 ms

6 No ~500 ms

NVMe allows the host to manage power statically or dynamically to complement
autonomous power management performed by the NVMe drives. When power is
managed statically, the host predetermines the power allocated to the NVMe drives and
sets the NVMe power state of each drive. When the host manages power dynamically,
the NVMe power state of each device is updated periodically to accommodate changing
performance and power requirements of the host.

68b/10b is an encoding scheme that takes 8 bits of data and transfers it using 10 bits. It is used to
transmit data over some high-speed interfaces.

Chapter 4 ■ platform power management

118

Note ■ nVme is frequently used in compute servers that demand peak performance.
as a result, aggressive power management, particularly with states 5 and 6, may
not be a good match.

NVMe is a relatively new technology. Power management of enterprise-class NVMe
drives has not been a priority for many users or designs. Many of the initial enterprise
offerings do not implement these power management states.

Power Delivery
There are a large number of components within a server platform, and each of them
requires power to provide their necessary function. Different components in the system
have different requirements for the type of power that they receive. Some need high
voltages, others low. Some are very sensitive to operating at a very specific voltage,
whereas others are able to tolerate a range of voltages.

Since the type of power provided to a server system is similar to the power you get
from your home’s wall outlet, the system has many power converters to convert this AC
(alternating current) voltage to the many specific DC (direct current) voltages needed
by all its components. The conversion of this AC voltage to the required DC voltages
consumes power, referred to as losses in the converter. The typical measure of these
losses in the power converters is expressed as an efficiency. Efficiency is expressed
as the ratio of the output power to the input power. Since the input power equals the
output power plus the power losses of the converter, the efficiency can be expressed as
the following equation:

Efficiency
Output Power

InputPower

Output Power

Output Power Co
= =

+ nnverter Power Losses

How efficiently these power converters convert power from higher voltages to the
lower voltages that are required by the loads is critical to the overall efficiency of the
system. Even in systems with the best converter efficiency, these losses can make up
10%–20% of the power in the system. At low system utilizations, they can contribute an
even higher percentage of the power. This section provides an overview of these power
converter losses, basics of the different type of power converters used in the system, the
various elements of the power conversions that contribute to their losses, and special
features to help reduce losses in these power converters.

Overview of Power Delivery
Figure 4-5 illustrates an example power converter block diagram for a standard dual
processor system. Block diagrams like this are commonly found in motherboard
schematics.

Chapter 4 ■ platform power management

119

Power is first processed by a power supply and converted from AC to DC (see Table 4-21).
The output DC power from the power supply is then converted to the various DC voltage
levels required by different platform components (see Table 4-22). Power budgets must
be determined for each component in the system so that sizing can be done at each stage
of the power delivery network (see Table 4-23).

Figure 4-5. Dual socket power conversion block diagram

Chapter 4 ■ platform power management

120

Table 4-21. Components in a Power Supply

Component Type Typical Efficiency Description

Power factor
correction

Power converter
in system AC/DC
power supply

~98% This is a power conversion
stage inside the system
power supply whose primary
function is to provide power
factor correction. This is
the first stage converter. It
provides a 400 VDC output
voltage to the second stage in
the power supply.

Isolated DC/DC
stage

Power converter
in the system
AC/DC power
supply

~97% This is a power conversion
stage inside the system
power supply whose primary
functions are to provide safety
isolation for the AC input and
provide a regulated DC output
voltage that can be used by
the system.

Table 4-22. Types of DC/DC Power Converters

Component Type Typical Efficiency Description

Multi-phase
buck

DC/DC switching
power converter
on the
motherboard

80–90% Power converter used to
provide high currents at
low voltages. Frequently
converts 12 V to 1–2 V.

Buck regulator Simple DC/DC
switching power
converter on the
motherboard

~90% Simple converters
used to power lower
power devices on the
motherboard. Typical
inputs of 12 V/5 V/3.3 V
converting to outputs of
5 V to <1 V.

Linear regulator Power converter
used to power
very low power
devices on the
motherboard

Output Voltage

Input Voltage

Very simple and low-cost
converter that provides
poor efficiency and
therefore is used only
for very low-power
loads. Their efficiency is
determined by the ratio
of the output voltage to
the input voltage.

Chapter 4 ■ platform power management

121

The block diagram contains switching power converters, linear regulators, and
the loads. Almost all of the system power passes through three to four stages of power
conversion to get from the 230 VAC input to the points of load. There are multiple reasons
why the power passes through these series stages:

The first step converts from AC to DC to provide power factor •	
correction. Most digital circuits require DC power for operation.

It is more efficient to transmit higher voltages over longer distances. •	
This is why power is kept at higher voltages as long as possible.

Low-power loads are powered by linear regulators. While these •	
regulators are less efficient than more complex voltage regulators,
they also have lower cost due to their simple design and small
number of components. The loss in efficiency is small in the
overall power consumption.

The easily accessible portions of the platform must not •	
expose technicians to dangerous sources of electricity
(such as the AC input).

Table 4-23. Power Block Diagram—Loads

Component Description

Cores, uncore, DIMMs These loads in the system are the primary power consumers
and provide the core computing capabilities of the system.

LAN, PCH, USB, PCIe These are lower power loads in the system that provide input
and output to the system compute capabilities.

HDD These are medium power loads that provide storage
capabilities.

Active cooling These are medium power loads that are primarily axial fans
in the system. Other types of exotic cooling, such as liquid
cooling, are also possible.

Note ■ transmitting power using higher voltages is more efficient. wires used for
transmitting power have resistance in them. power is consumed because of this resistance
and is proportional to the square of the current (watts = I2r). By increasing voltage at a fixed
power, current is reduced, thus reducing these quadratic losses (power = I * r).

Chapter 4 ■ platform power management

122

It’s not uncommon to see a system with a total of 25–30 power converters in the
system and on the motherboard. There are a few reasons for these many converters:

Power efficiency can be improved by adding more regulators in •	
order to reduce I2R losses.

Certain legacy functions and capabilities require specific •	
voltage levels.

System standard components (USB, HDD, PCIe adapters) •	
require industry standard voltages that cannot be changed.

Customized voltages are required for processors and other silicon •	
devices in order to achieve high performance and power
efficient designs.

Power Converter Basics
As discussed earlier, the system contains different types of power converters. Each of
these has tradeoffs that can have a significant impact on the overall power efficiency of
the platform.

First, energy can be transmitted either as AC (alternating current) or DC (direct current).
Digital circuits require DC power to operate. AC power is commonly used to transmit
power from power plants across the electrical grid because it is relatively easy (and
inexpensive) to change AC voltages using transformers. AC power is used to distribute
power within data centers as well, but it must be converted into DC power at some point
in order to drive digital circuits.

AC/DC power conversion provides this mechanism. Different components in
a platform require different voltages. DC/DC power converters change the voltage
of DC power to match the requirements for each component. The main types of
power converters used in standard server systems are boost converters, isolated buck
converters, single and multiphase buck converters, and linear regulators.

System AC/DC Power Supply
The first components in the node power delivery network, the boost converter and
the isolated buck converter, are integrated into the power supply. The basic schematic
for these converters are shown in Figure 4-6. It is important to understand the basic
functions of these converters to grasp the tradeoffs between efficiency and features.

Figure 4-6. Example AC/DC power supply schematic

Chapter 4 ■ platform power management

123

Note ■ It is not a requirement that aC voltage be used as an input to a platform node
and power supply. other input voltages such as 380 VDC and 240 VDC are being used
to help improve facility power distribution efficiency and availability. In these cases, the
aC to DC conversion stage is not required and can be removed from the power supply to
improve efficiency.

Both converters in the system AC/DC power supply are switching converters, which
means MOSFETs are used to chop the input voltage into a square wave, and then they are
filtered again to obtain a DC voltage. There is a PWM (pulse width modulation) controller
that controls the duty cycle to maintain the required output voltage.

PSUs and the Boost Stage

The boost converter in the power supply maintains a regulated voltage to the isolated
buck stage of the power supply. The boost’s main purpose is to wave-shape the input
current to provide power factor (PF) correction and lower current harmonic distortion
(ITHD), resulting in improved power efficiency. Good power supplies achieve PF > 0.99
and ITHD < 5%. Since a boost converter requires that the output voltage always be greater
than the input voltage, you typically see a boost output voltage of ~400 VDC
(> =110 240 2 373% * *VAC Vpeak).

Note ■ Inputs other than 240 VaC are also possible. 277 VaC (one phase of a 480 VaC
system) is becoming more common since it can be used in more efficient facility power
delivery designs.

PSUs and the Isolated Buck Stage

The isolated buck stage of the PSU provides a few basic functions:

A regulated output voltage (12 V in most server systems), which is •	
used by down-stream DC to DC converters as well as fans

•	 Galvanic isolation (preventing current flow) between the AC input
to the DC output as required by safety agencies

•	 Ride-through capability, which powers the system from its input
bulk capacitor during short (½ to 1 cycle) loss of the AC input

The AC ride-through capability is important to keep in mind because this requires
the isolated buck stage to maintain regulation on its output over a wider range of input as
the bulk capacitor discharges. This tends to make the design of this stage less optimized
for efficiency; however, it is required for reliability of the IT equipment.

Chapter 4 ■ platform power management

124

Redundant Power Supplies

Historically, many servers deployed redundant power supplies and redundant AC feeds
to the system in order to improve reliability. Both of these are supported by using multiple
power supplies in the system. A common design uses two power supplies. One PSU has
enough power to power the system (sometimes at a lower performance), and a second
power supply of the same wattage is used in parallel to provide redundancy in case either
one fails. This is referred to as a 1+1 design. The redundant power supplies normally share
the load of the system. Since each power supply has its own AC input, this also provides
1+1 redundant AC feeds to the system. With more power supplies in the system a 2+2 or
3+1 redundant configuration is sometimes used. This can scale up to N+N or N+1 number
of power supplies; where N power supplies are needed to power the system.

In recent years, certain classes of server deployments have focused on improved
software resiliency. This is particularly true of large cloud deployments. In such
situations, system failure is expected (at some low rate) and the software that executes
on the system is robust to handle occasional failures. Conceptually, a problem that used
to be solved with additional hardware (and procurement costs) is now being handled in
software. Redundant power supplies are not necessary in such designs.

Shared Power Supplies

A single power supply (or even redundant supplies) can be shared by multiple nodes in
some designs. A good example of such a design is with microservers. In such a design, the
output power of the CPU is routed to multiple sets of voltage regulators associated with
different nodes in the rack. In this case, the definition of a platform is somewhat blurred
since the PSU is now a shared resource. One drawback of this approach is the blast radius,
which refers to the number of nodes/components that are impacted if one fails.

PMBus

The power supply has become a key power measurement device in the IT equipment
and is used by the facility to see how much power the IT load is consuming. The accuracy
of these embedded sensors has improved to +/– 2% over a typical loading range of
the system by using special metering IC in the power supply and by using calibration
techniques on the manufacturing line. The power sensor in the power supply is used
by Intel Node Manager (see Chapter 5) in conjunction with the processor RAPL feature
(see Chapter 2) to control the system power. This allows the user to protect the facility
infrastructure by guaranteeing that the system does not exceed a predefined limit.

DC to DC Power Converters
Once the power has been converted from a high VAC down to ~12 VDC, a number
of additional DC to DC conversion steps are required so that each component in the
platform is supplied with the voltage (and current) that they require. There are a number
of different types of DC to DC converters that can be used in different situations.

Chapter 4 ■ platform power management

125

Single-Phase Buck Converters

For medium power loads, single-phase buck converters are used to convert power from
12 V to lower voltages in the system. These may range from < 1 A to 30 A outputs.

Figure 4-7 provides an example schematic for a single-phase buck converter. The
PWM controller converts the 12 VDC input to output voltage by switching the high-side
MOSFET to chop the 12 V input. Then a DC voltage is reconstituted with the LC filter
on the output. A low-side MOSFET is used to allow the inductor current to keep flowing
through the output filter. The industry has optimized special components in these
converters taking 12 V input to low-output voltages. The high-side MOSFETs are specially
designed to handle the high switching voltages with very low duty cycles, and the low-side
MOSFETs are optimized for the high duty cycles and high RMS currents demanded by
their special requirements in the converters.

Figure 4-7. Single-phase buck converter

Motherboard Multiphase Buck Converters

In a standard server system, more than half of the system power goes to power the
processors and memory. For mainstream motherboards, this power is supplied by
multiphase buck converters to achieve high performance and small form factors.
Requirements of these power converters drive their design to have very fast responses
to load changes required by the processors and DIMMs, to maintain a tight voltage
regulation on a low-voltage rail as silicon processes reduce their geometries, and to
have a small footprint to fit on dense motherboards. All of these requirements challenge
the efficiency of the motherboard VR designs. The use of multiphase buck converters
has become the method for achieving the best design to meet all of these growing
requirements and still maintain good efficiency.

Figure 4-8 shows a simplified schematic of the power stage for a multiphase buck
converter. This example shows a four-phase buck converter. PWM controllers are
available that have the flexibility to provide anywhere from two to six phases. Some can
provide multiple output voltages. These multiphase converters have shared input and
output capacitors. The PWM controller switches the phases similar to the single-phase
buck; however, the controller switches one phase at a time. Therefore, for a four-phase
buck converter, each phase is switched at 90 degrees from one another. This allows the
controller to meet the high load transient and high current demands of the processors and
DIMMs. The PWM controllers for these multiphase buck converters have added features
to shed phases at lighter loads to save power (with no cost to software performance) and
serial communication to communicate/manage these high power converters.

Chapter 4 ■ platform power management

126

SVID

VRs used to power the main CPU voltage rails and DDR memory frequently support SVID
(serial VID). SVID is a serial communication bus between the processor package and
the voltage regulator controllers that is used for two main purposes to help improve the
efficiency of the processor and manage power in the system:

•	 Voltage set point: The processor uses SVID to set the optimum
voltage for the motherboard VR to power the processor. This can
be used to set the static voltage for a given type of processor for
certain rails. This can also be used to set the voltage to the cores in
the processor dynamically as the P-state changes (see Chapter 2).

•	 Power reporting: The processor uses SVID to read the power from
the VR on some systems. This way the processor can monitor how
much power it and the memory is consuming, enabling RAPL
(see Chapter 2).

One or more SVID busses can be used per CPU socket. They connect the CPU to all
of the SVID-controller regulators that supply power to that CPU (or memory connected to
that CPU). The SVID bus is a simple three-wire interface with a clock (the frequency can
change across different platforms), an alert (interrupt), and a data wire. Multiple SVID
busses may be required depending on the bandwidth demands of the bus for supporting
both of the primary usage models just defined.

Figure 4-8. Multiphase buck converter

Chapter 4 ■ platform power management

127

Motherboard Linear Regulators

Linear regulators convert a higher voltage to a lower voltage by dropping voltage across a
series FET (field-effect transistor) operated in its linear range. The output is controlled by
the FET’s gate voltage. Linear regulators are used sparingly since they are lower efficiency.
Their efficiency is determined by the ratio of output voltage to input voltage plus a small
quiescent power. Linear regulators can be a good design choice for very low power
supplies where losses are not significant in the big picture or when a very small voltage
drop is required.

Integrated Voltage Regulators

The Intel Haswell processor integrated the last voltage regulator stages into the processor
package with a new capability called Integrated Voltage Regulator (IVR). This added
power conversion stage brings with it advantages that outweigh the disadvantage of
adding another series power conversion stage.

•	 Max current reduction. Designing motherboard voltage regulators
with high maximum currents can be cost prohibitive. By
providing the die with a higher input voltage (and by using IVR
to step the voltage down for use by the circuits), the max current
provided to the die decreases.

•	 Higher input voltage to the processor resulting in smaller power
delivery losses in the platform. IVR allows a higher voltage to be
delivered to the processor package while still maintaining the
required lower voltages at the chips since the IVR power converter
controls the chip power. In Haswell, the package input voltage
is maintained at about 1.8 V, about twice the voltage needed by
the circuits in the package. By running at twice the voltage, the
current required to provide a given level of power is cut in half.
Lower current results in less voltage loss between the VR and the
package (in the platform), improving the overall platform power
efficiency.

•	 Tighter voltage regulation resulting in lower voltage guardbands
and lower power operation. IVR brings with it tighter voltage
regulation at the chips since it is physically closer to the chips.
This means the voltage may be kept lower at the chips since less
margin for parasitic inductive drops needs to be allowed for—the
lower the voltage, the lower the power consumption of the silicon
(lower leakage and lower active power).

•	 IVR provides cost-effective voltage control of small subcomponents
within a die such as an individual core. This enables features like
per-core P-states (see Chapter 2). It also enables the voltage levels
to be optimized for each of these subcomponents.

Chapter 4 ■ platform power management

128

One drawback of IVR is that the power losses that existed in motherboard VRs are
moved into the IVR on the CPU die. Although this may result in a net power win for the
platform, it does increase the power on the CPU die, which can lead to challenges with
thermal density and cooling. When you compare similar SKUs on Haswell E5 (with IVR)
and Ivy Bridge E5 (without IVR), you will notice that the TDP power has increased on
Haswell. These changes were primarily driven by the increases in CPU power from the
IVR integration.

Power Management Integrated Circuit

The term Power Management Integrated Circuit (PMIC) is applied to integrated circuits
that have multiple power conversion controllers in one small package; they also may
contain integrated switches for supporting switching buck converters. The integration
of many converters into one package helps to reduce the size and has traditionally been
used in the small form factors of mobile devices like phones and tablets. PMICs are now
being applied in server computers to help keep the size small while still supporting the
many lower power rails on the motherboard. These PMIC may be used to power LAN,
PCH, and BMC devices on a standard server board or the memory and processor rails on
a microserver with a SoC package. The reason to use PMIC is not to reduce losses in the
system, but to reduce the size of the power converters.

Power Conversion Losses
Now that we have reviewed the various types of power converters and their applications,
this section will take a holistic look at power converters to understand what causes losses.
It will also explore system level design tradeoffs.

Some energy is always lost in transmission through wires because of the resistance
in those wires. There are losses due to the currents passing through resistances; these are
the condition losses and are proportional to the resistance and the square of the current
(power = current2 × resistance). If we consider only these resistive losses, we would expect
the losses at very light loads (like those found when a system is at idle) to drop to very
low power; however, this is not the case. We need to consider two other types of losses
that occur in switching power converters; these have been commonly referred to as
proportional losses and fixed losses.

Proportional losses are losses in the power converter that increase linearly with the
output power of the converter (or output current, since power converters are voltage
regulators). These are elements like diodes that have a loss equal to the forward drop
of the diode times the current through the diode. The proportional losses of power
converters are not very interesting since this is not a dominant element at any load.

The fixed losses of the power converter are very significant at light loads. Fixed
losses in a power converter are caused by elements such as the switching of the MOSFET
parasitic capacitances, the switching of currents through the power components, and
the transformer core hysteresis losses in the power supply. These fixed losses are always
present whenever the power converter is working. Table 4-24 provides an overview of the
types of power delivery losses on a platform.

Chapter 4 ■ platform power management

129

Motherboard VRs
Each of the different types of motherboard VRs exhibits different power efficiency
profiles. The behavior and efficiency of different types of voltage regulators changes as
the load (current demand) of the regulator changes. This section will evaluate different
types of VRs by looking at their power losses both in terms of power (watts) as well as
their efficiency.

Note ■ Voltage regulator efficiencies typically appear poor at low utilizations. however,
it is important to note that the actual power losses in these conditions are relatively small in
absolute terms compared to the losses at higher utilizations.

Single-Phase Buck Converter

Figures 4-9 and 4-10 show the loss curve and efficiency curve for a single-phase buck
converter that is capable of 30 A maximum output load and converts 12 V input to 1.7 V
output. A second order polynomial trend line of the losses versus the output current
closely fits the loss curve. These three coefficients represent the squared (0.052x2),
proportional (0.045x), and fixed (+ 1) losses of the single-phase buck converter where x
is the output current of the VR. The plot also shows these three loss elements separately
to see how they contribute across the output load. The fixed losses dominate at lighter
loads less than 10 A and the squared losses dominate at heavier loads of greater than
20 A. The effects of the fixed losses cause the efficiency to drop very quickly as load
decreases below 10 A, and the efficiency tails off at heavier loads due to the effects of
the squared losses.

Table 4-24. Types of Power Conversion Losses

Type Description

Conduction losses Power losses that are caused by current passing through
resistive elements.

Proportional losses Power losses that are caused mainly by the forward drop of diodes.
These are the least significant of the three types of losses.

Fixed losses Power losses that do not change with the output load on
 the converter.

Chapter 4 ■ platform power management

130

Note ■ Vrs must be sized for the worst-case possible current demands of the loads they
power in order to avoid system failure. however, typical steady-state current demands, even
under heavy load, are common at much lower utilization levels. as a result, the efficiency
tail-off that is observed at higher utilizations is generally less significant to the overall power
delivery efficiency than the efficiency losses at low utilizations.

Figure 4-9. Example single-phase buck converter losses

Figure 4-10. Example single-phase buck converter efficiency

Chapter 4 ■ platform power management

131

Multiphase VR Losses

Multiphase VRs are typically used for heavier loads on the motherboard, like memory
DIMMs and processor cores. If we consider the same 12 V to 1.7 V buck converter, but
expand it to three phases to support up to 90 A, we see a different loss curve compared to
the single-phase converter. Figure 4-11 shows the losses in the three-phase converter are
higher than the single-phase converter. This is due to the additional fixed losses from the
additional phases and added switching losses of the extra phases.

Figure 4-11. Example multiphase VR power losses

At loads greater than 20 A the three-phase converter starts to have lower losses.
The squared component (from conduction losses) is smaller with the multiphase VR
(0.0018 vs. 0.0052). This is because the current now has about a third of the resistance to
pass through.

Comparing the efficiency curves shows how the single-phase converter is better
at lighter loads and the three-phase converter is better at heavier loads. Note that this
example is provided without phase shedding (discussed momentarily), which can
improve the efficiency of multiphase VRs at low utilizations.

Phase Shedding

Figure 4-12 illustrates that a single-phase VR can provide better efficiency at low current
demands when compared to a multiphase VR that is capable of much higher max current.
Phase shedding is a feature on some multiphase VRs that is intended to provide the best of
both worlds: good, light load efficiency of a single-phase buck converter and the power/
efficiency advantages of the multiphase buck converter at heavier loads. In present
systems, the phase shedding has mostly been controlled by the processors; the phases are
shed when the processors know their power requirements are less than a single-phase

Chapter 4 ■ platform power management

132

capability. In newer PWM controllers, the controller automatically turns off the phases as
it senses the load dropping and turns on phases as loads increase. This is referred to as
auto-phase shedding. Auto-phase shedding can be far more efficient than CPU-managed
phase shedding, because the CPU is not always aware of the immediate current demands
and must request phases assuming some worst-case condition.

Figure 4-12. Example multiphase VR efficiency

Diode Emulation and Burst Mode

Two other methods used to help reduce VR losses at very light loads are diode emulation
mode and burst mode. Diode emulation mode turns off the low-side FET switch and
instead uses the body diode in the FET, saving the switching losses in the low-side FET.
This is used only at very light current demands. Burst mode reduces losses by skipping
switching cycles to effectively reduce the switching frequency of the converter, helping to
further reduce switching losses, again at very light current demands.

Note ■ In typical servers, the current demand does not drop low enough to take
advantage of diode emulation, even when the system is completely idle. as a result, this
feature is not as commonly supported. phase shedding provides the bulk of the efficiency
improvements at low utilizations in server Vr designs.

Chapter 4 ■ platform power management

133

System Power Supplies (AC/DC)
System power supplies have similar power losses and also can be accurately modeled
as a second order polynomial made up of squared losses, proportional losses, and fixed
losses. In most server systems, manufacturers offer multiple power supply wattage
ratings that can be used in the same system. This allows the users to optimize the cost
of the power supply for the configuration they plan to use in the system (e.g., processor
performance, memory size, storage size). The selection of the power supply wattage also
affects the power consumption of the system. Using a properly sized power supply in the
system can help reduce the system power. The use of redundant power supplies in the
system to improve availability also affects the efficiency of the system.

Figure 4-13 shows the losses in a 750 W power supply with the fixed, proportional,
and squared losses broken out. This is an 80-Plus platinum-level-efficient power supply.7
As with the motherboard VR, at low loads (less than ~30% of peak), the fixed losses
dominate and cause the efficiency to drop off. At moderate to high loads (greater than
~50% of peak), the squared losses dominate and cause the efficiency to drop off.

Figure 4-13. Example 750 W PSU losses (230 VAC)

Note ■ pSU losses increase with lower input voltages. the charts in figure 4-14 are
measured with a 230 VaC input (high line). at lower input voltage, such as 120 VaC, the
efficiency is reduced by about 2%. this is due to the higher currents in the power factor
correction stage of the power supply.

7>94% efficiency at 50% load based on requirements documented at www.80plus.com.

http://www.80plus.com/

Chapter 4 ■ platform power management

134

Right-Sizing Power Supplies

Next we will consider the tradeoffs in using power supplies with higher and lower power
ratings. Figure 4-15 shows the loss curves for four different power supplies: 460 W,
750 W, 1200 W, and 1600 W. These are all platinum efficient per 80 Plus.8 The squared,
proportional, and fixed loss coefficients are also shown as a comparison. Two notable
conclusions can be drawn from this chart:

Power supplies with lower wattage ratings have lower fixed losses.•	

Power supplies with higher wattage have lower squared losses.•	

Figure 4-15. Example PSU losses for different power ratings

Figure 4-14. Example 750 W PSU efficiency (230 VAC)

880 Plus is a voluntary certification program for PSUs.

Chapter 4 ■ platform power management

135

Note ■ power supply selection can have an impact on the power consumption of a
system. Systems that run at low utilizations will experience the best power efficiency using
power supplies that are just large enough for the system. on the other hand, power can be
saved by selecting an oversized power supply if system utilization tends to be heavy.

The following two examples show how differently sized power supplies can
provide benefits to power efficiency depending on the typical load of the system. Larger
power supplies can be more power efficient in systems that, on average, run at higher
utilizations.

Example 1: A system load of 100 W on the output of the power
supply produces 7.7 W losses in the 460 W power supply,
whereas the 1200 W power supply produces 13.0 W
losses, a 5.3 W savings using the smaller power supply.

Example 2: A system load of 700 W on the output of the power
supply produces 55.2 W losses in the 750 W power supply
whereas the 1600 W power supply produces 43.4 W
losses, a 8.2 W savings with the larger power supply.

Closed Loop System Throttling (CLST)

When right-sizing your power supply to the system configuration and the workloads
you plan to run, you must consider the system reliability. If some abnormal condition
occurs on the system (like running a higher power workload) the system cannot shut
down due to an overload on the system power supply. Many systems running Intel
Node Manager and a PMBus power supply have a protection feature called Closed Loop
System Throttling (CLST). This feature will throttle the system power/performance if
the power supply senses an overload warning condition. This quick reduction in load
will protect the power supply from shutting down. Therefore, CLST provides protection
against unexpectedly higher system power consumption. This gives you the protections
needed to maintain good system reliability while using a lower power supply rating.
This throttling is very aggressive and can result in significant performance loss. As a result,
it is important that you budget sufficient headroom in the power supply selection to
compensate for increases in power demand that may occur over the life of the server
(software updates resulting in higher power draw, increased temperatures, etc).

Losses in Redundant Power Supplies

When considering redundant power supplies, remember that the system power
supplies will share the system load, which will change the overall power supply
losses in the system. Figure 4-16 shows an example of the power supply losses for
a 750 W in a non-redundant single PSU configuration along with a redundant 1+1
PSU configuration. The x-axis in the plot is the total load on all power supplies in the

Chapter 4 ■ platform power management

136

system. You can again see that for heavier loaded systems (> ~500 W, in this example),
the redundant 1+1 system with two power supplies in the system have lower losses
in the power supplies. And for lighter loads (< ~500 W) the redundant power supply
system has higher losses in the power supplies than the system powered by a single
power supply.

Figure 4-16. Example PSU losses with redundant power supplies

Note ■ System availability and reliability is generally a high priority for server customers.
the efficiency loss associated with redundant power supplies is generally an acceptable
cost, and many systems make use of redundant power supplies as a result.

The relative efficiency of redundant power supplies versus single power supplies is
dependent on the specifics of the power supplies in question, as shown in the following
two examples: one shows a more efficient single power supply, and the other lists a more
efficient redundant power supply.

Example 1: At a load of 200 W on the system, the single 750 W
losses are 14.0 W and the 1+1 power supply total losses are
21.1 W, a 7.1 W savings in losses for the system with a single
power supply.

Example 2: At a load of 650 W on the system, the single 750 W
losses are 49.3 W and the 1+1 power supply total losses
are 41.1 W, a 8.2 W savings in the losses for the system with
the 1+1 configuration.

Chapter 4 ■ platform power management

137

Power Supply Cold Redundancy

You can see by the preceding power supply redundancy loss examples that to achieve
the best power efficiency in all cases, it would be best to have something similar to what
was discussed for the motherboard VR phase-shedding feature. So, at lighter loads, the
system runs from one power supply (but still maintains redundancy), and at heavier
loads, the system runs from both power supplies in a load-sharing mode. This can be
achieved by a feature supported by many server systems today, which is sometimes
referred to as cold redundancy. In this case, one power supply is powered off into a
cold standby state automatically at lighter loads. The cold standby state still allows
the power supply to power on quickly if the active power supply fails. This maintains
the system power supply redundancy feature. Then, at heavier loads, the cold standby
power supply powers on automatically to share the load and maintain the lowest
possible losses in the power supplies.

Thermal Management
Typical servers in data centers consume a large amount of electricity, turning it into heat.
Extracting this heat from the data center consumes a non-trivial amount of overall data
center electricity. Over time, the efficiency of cooling has improved significantly, reducing
the overall contribution to power. However, it is still a major factor in energy consumption.

A server cooling system must ensure that each and every component meets its
specification. Most components have damage, functional, and reliability temperature
specifications as seen in Figure 4-17. A well-designed thermal management scheme must
ensure compliance to the specifications while also not over-cooling and wasting power.
In most cases it is impractical to design a system to handle every possible workload
under all possible combinations of extreme conditions, including fan failures, high-room
ambient temperatures, and altitude.

Figure 4-17. Component temperature specifications and thermal management

Chapter 4 ■ platform power management

138

The functional limit is normally aligned with maximum system utilization whereas
the server is exposed to a worst-case corner of the allowable range of the environmental
class (temperature, altitude, humidity) for which the server has been designed. At lower
utilizations, the system is maintained at a lower temperature in order to reduce
component wearout that can occur if higher temperatures (at or near the functional limit)
are sustained for long periods of time.

A well-designed server will have thermal management to ensure compliance to
those specifications either directly through the cooling design implementation, or in
combination with the thermal management system. Component temperature is driven
by three factors in an air-cooled system defined in Table 4-25: system ambient, air
heating, and self heating. These are illustrated in Figure 4-18. Table 4-26 provides some
common terms used for heat transfer.

Table 4-25. Types of Heating

Type Description

System ambient9 Inlet temperature of the system

This includes any rack effects, which can increase the
temperature delivered to the platform node.

Air heating Increase in air temperature due to upstream heat sources in
the platform

This is affected by component placement, upstream component
power dissipation, air movers, and local air delivery.

Self heating Increase in component temperature above local ambient due to
the heat dissipated on the device of interest

This is driven by component packaging, power dissipation, and
thermal solution (e.g., heat sink).

9Defined in the ASHRAE (American Society of Heating, Refrigeration, and Air-conditioning
Engineers) Thermal Guidelines for Data Processing Environments.

Chapter 4 ■ platform power management

139

Figure 4-18. Local ambient, air heating, and self-heating of second socket

Table 4-26. Common Heat Transfer Terms

Type Description

Conduction The heat transfer at the molecular level between adjacent particles.
Heat from a die is conducted through the surrounding packaging until
it is delivered to a heat transfer surface (like a heat sink).

Convection The heat transfer through random molecular motion and bulk
movement of a fluid (or air). Airflow in a server is an example of
convection.

Radiation The heat transfer through electromagnetic waves; generally negligible
in server heat transfer due to the dominance of forced convection.

Most server processor dies are connected to a substrate made of FR4 (a glass-reinforced
epoxy laminate) enabling simple integration using a socket that enables removal and
replacement of the processor. To facilitate heat sink attachment, an integrated heat
spreader is attached on top of the package. Component heat is transferred by conduction
to the heat spreader and removed by forced convection.

When a heat sink is used on a component, a thermal interface material (TIM) is
required to fill the air gaps between the component and the heat sink. The TIM has much
higher thermal conductivity than air.

Figure 4-19 shows the typical packaging of a processor with an integrated heat sink
(IHS). The IHS serves to protect the die, spread the heat, and provide a mounting surface
for a heat sink. Heat is primarily conducted through the first TIM (TIM 1) to the IHS and
out through the second TIM (TIM 2) to the heat sink. Thermal paste between the CPU
package and the heat sink is an example of a TIM 2. Most servers use forced convection
created by a fan to provide higher local velocities, thereby enhancing the convective heat
transfer out of the heat sink.

Chapter 4 ■ platform power management

140

When designing an air-cooled system, the thermal engineer must consider a number
of factors contributing to the component temperature. Through a careful understanding
of the critical components, their specifications, and placement requirements, the thermal
engineer can optimize layouts to maintain the lowest cost, highest efficiency, and highest
performance solution. So-called shadowing of components results in significantly
increased cooling difficulty and the lowest cooling capability. Shadowing implies that
the air heating in the following component temperature equation will be relatively high,
resulting in costly thermal solutions and high fan power.

Components with high power density (power/area) require thermal enhancement,
such as a heat sink or heat spreader. Either of these devices spreads the heat to a larger
surface area enabling significantly improved convective heat transfer.

The following equation describes how power, air heating, and ambient temperatures
impact the temperature that is exposed to the package. The actual silicon die (and
transistors) are exposed to even higher temperatures than the T-case.

T
C
 = Y

CA
 x Power + System Pre-heating + External Ambient

where

T•	
C
 (T-case) is the case temperature of the component.

•	 Y
CA

 (psi-CA) is the thermal characteristic of the heat sink as
measured from case (C) to ambient (A) and in units of °C/W. The
lower the Y

CA
, the better the thermal performance of the cooling

solution, since the component (case) temperature will be closer to
the ambient temperature at a given power consumption.

Power is the power dissipated (consumed) by the component.•	

Component and heat sink convective thermal performance is proportional to the
inverse of airflow, as shown in the example characteristics shown in Figure 4-20. This
means that the cooling efficiency (Y

CA
) improves significantly with airflow up until a

point (somewhere between 10 and 15 CFM in the illustration). After that point, significant
increases in airflow (at high power cost) will only provide small benefits to the actual
cooling. Fan power is proportional to the cube of airflow (and fan speed). Operating in
the conduction-dominated region of a heat sink can significantly increase the power
consumption (and inefficiency) of a system.

Figure 4-19. CPU packaging thermal terminology

Chapter 4 ■ platform power management

141

Figure 4-20. Example heat sink performance

Note ■ Cooling efficiency is non-linear with airflow. Significant increases in fan speed
(and fan power) may only yield slight improvements in cooling once a heat sink has reached
its maximum capabilities.

System Considerations
The platform design team must carefully consider the components, configurations,
usage models, environmental conditions, and the system-, rack-, and room-level airflow
protocols to achieve an optimal cooling solution. These design considerations must be
evaluated against the cost, performance, and energy objectives of the solution.

Note ■ running a system at higher temperatures will increase the leakage power of the
CpU (and other devices in the platform). however, the power savings from running with
reduced cooling typically far exceed the increases in device leakage power.

Component selection and placement detail will drive the design and consequently
are the most critical elements to consider during the design phase. One example is the
selection of memory technology to be supported. An entry-level server designed to
support the highest capacity and frequency memory could burden the system design with
expensive fans that are never needed by most customers. All components must be similarly
considered including the power range under which the components must function.

Chapter 4 ■ platform power management

142

Note ■ Increased CpU leakage power from higher temperatures can reduce turbo
performance. however, the performance returns from over-cooling a platform are generally
not large and can be cost prohibitive. reducing the temperature by 20°C may only increase
performance by a few percent (if at all).

In many platform designs, component placement is primarily driven by electrical
routing considerations. Lengths between key components must be minimized to ensure
signal integrity and meet timing requirements. Placement for thermal considerations
matters but is not the foremost driver during the board layout process. The thermal
engineer must provide the guidance to the board design team to enable solutions that
have a reasonable chance for success while not necessarily being thermally optimal.
Examples of systems that vary in cooling difficulty are shown in Figure 4-21, where the
system on the left has thermally shadowed memory and processors whereas the system
on the right does not. Thermally shadowed refers to a component being downstream
from another component in the airflow. In such a design, the shadowed components are
exposed to higher temperatures.

Figure 4-21. Example board layouts

Thermal shadowing is commonly used in dense multi-socket platform designs.
Because the first processor heats the air before it gets to the second processor, the
ambient temperature of the second processor is higher. The cooling solution must
compensate for this increase in ambient temperature. This frequently results in more
expensive heat sinks and higher fan speeds, which increases both procurement costs and
power consumption. The thermal requirements of higher densities come at a power/
performance efficiency cost.

Chapter 4 ■ platform power management

143

Note ■ Components that are in the thermal shadow of other high-power components
frequently operate at higher temperatures and therefore consume more leakage power.
with CpUs, this increase in power can result in different levels of turbo being achieved if
equal power is allocated across the two sockets.

The design engineer must thoroughly understand the expected airflow paths and
optimize the airflow delivery accordingly to maximize energy efficiency of the thermal
subsystem. Selection and usage of the air moving devices must be matched and designed
to the server design. Tradeoffs between air movers and heat sink design must be
performed to find the optimal design points for both. The cooling performance, power
consumption, acoustic signature, fan reliability, and redundancy features are important
characteristics that factor into the overall solution.

Component Thermal Management Features
Power management features are used to perform power-performance limiting that
enables a component to stay within temperature limits. Sensors create the data necessary
to trigger power management. Processors, memory, and some chipset components
contain sophisticated thermal management capability and are discussed in the following
sections.

Processors
Processors have three high-level temperature points as shown in Table 4-27. These
temperature values vary across different products, and the values shown provide an
example of typical values.

Chapter 4 ■ platform power management

144

Table 4-27. Notable Processor Temperature Levels

Level Description Typical Temperature

TCONTROL Above this temperature, fans
should be running at full speed
in order to ensure the long-term
reliability of the processor.

~5°C–10°C below prochot

Between TCONTROL and
PROCHOT, the fans will all be
running at full speed. These
conditions typically occur
when the processor is running
at full utilization and ambient
temperature is high.

PROCHOT (DTSMAX) Max temperature at which
the processor functionality
is guaranteed. Autonomous
thermal management
algorithms inside the processor
(see Chapter 2) will work to
ensure that this level is not
exceeded.

~80°C–100°C

Between PROCHOT and
THERMTRIP, processor
functionality is not guaranteed.
Data corruption (silent or
detected) or system hang may
occur.

THERMTRIP Catastrophic shutdown
temperature. Above this
temperature, irreversible
physical damage may occur to
the processor. This is protected
by a combination of the
processor and the platform.

~125°C

Memory
Similar to processors, power management features are used to manage potential
excursions above unsupportable temperature limits on DIMMs. Because the memory
controller is now contained in the processor, the processor determines the memory’s
thermal state and activates power management features. Thermal sensors on the DIMMs
are accessed by the processor, and memory traffic regulation can be activated as needed.

Chapter 4 ■ platform power management

145

The data retention time of DRAM devices used on DIMMs is temperature dependent.
Increasing the memory refresh rate allows operation at higher temperatures. Operation at
that higher temperature is called extended temperature range (ETR) and is supported by
most volume DRAM manufacturers. By enabling higher temperature operation, one can
reduce cooling costs of the platform. This does come at a small cost of DIMM power from
the extra refreshes and some small performance loss, but the resulting fan power savings
implies higher power efficiency at the platform level. As memory temperatures increase
beyond the ETR threshold, memory thermal throttling features in the CPU will engage.
See Chapter 3 for more details.

Platform Thermal Management
Thermal control enables optimization of system performance as a function of usage,
configuration, cooling capability, and environment. Underlying this optimization is
the parallel use of fan speed control and power management to meet the customer’s
requirements. Some customers may desire maximum performance and may not want to
be concerned with cooling costs, while others may be willing to trade off a small amount
of performance under certain circumstances in order to achieve better power efficiency
(and lower cooling costs).

Components and their specifications are the primary drivers in a server’s thermal
design (e.g., heat sink, fan selection, and airflow management). The thermal engineer can
create a superior thermal design, but without a thermal management system to provide
real-time optimization, that design may be acoustically unacceptable or highly inefficient.
True superiority quite often lies in the thermal management scheme and its capability for
delivering precisely the performance needed and meeting the component specifications
while consuming the lowest amount of power.

Platform thermal management enables optimization in four areas:

Operation within component thermal limits•	

Maximization of performance•	

Minimization of acoustic output•	

Minimization of wall power consumption•	

All server components are designed to handle thousands of thermal cycles due to the
natural temperature variation that occurs as a result of workload demands. Servers can
go from idle to high usage many times a day and must be capable of years of operation
under this type of variation, resulting in wide temperature extremes on the components.

The thermal management (TM) system manages component temperatures,
performance, power consumption, and acoustics using two primary mechanisms:

Fan speed control (cooling delivery)•	

Component power-limiting features (e.g., P-states and •	
memory throttling)

With some servers the initial setup during boot time enables the end user to
configure the system to preferentially favor acoustics, power efficiency, or performance.

Chapter 4 ■ platform power management

146

Thermal Control Inputs—Sensors
Sensors provide the inputs to the control scheme. Table 4-28 provides an overview of
some types of sensors used for platform thermal management.

Table 4-28. Types of Sensors Used for Thermal Management

Sensor Type Description

Direct temperature On-component sensor(s) found on processors, memory,
hard disk drives (HDDs), chipset, GPGPU, etc.

Indirect temperature Off-component, discrete sensor used to directly measure air
or board temperature. This information can be correlated to
components without sensors.

Power or activity Power can be used to estimate the temperature of different
components of a platform (in conjunction with platform
characterization and other temperature sensors). It can also
be used by algorithms to optimize the overall platform power.

Fan speed Used for ensuring that a fan is operating within design
parameters.

Fan presence Used for detecting whether a fan is populated
(e.g., redundant configuration).

Different components in the platform use different types of sensors for monitoring
temperature (see Table 4-29).

Chapter 4 ■ platform power management

147

Table 4-29. Platform Component Sensor Types

Component Sensor Description

Processor A server processor has many thermal sensors but
only exposes the max temperature to the platform
thermal management. Multiple sensors are
strategically placed to enable the processor’s own
power management features to engage as necessary
to ensure that silicon temperature does not exceed
the point to which the processor was qualified
and tested, but also to eliminate inaccuracy in
determining actual die hot spot temperature.

Memory Most server DIMMs have an on-PCB (printed
circuit board), discrete thermal sensor. Thermal
sensor temperature is highly correlated with DRAM
temperature, thereby enabling a single sensor to
cover all components on the DIMM. Some DIMMs
have a buffer, which may also have a separately
accessible thermal sensor.

Chipset (and other silicon devices) Many silicon devices have an accessible sensor
for use in TM. Some limited thermal management
may be available locally on these devices, but
they are used primarily for fan speed control and
catastrophic protection.

Hard drives Hard drives contain thermal sensors that are
accessible through a drive or RAID (redundant
array of inexpensive drives) controller.

Voltage regulators Nearly all high-powered voltage regulators have a
local thermal sensor to protect the components in
the VR region. Historically this has been primarily
for high-temperature protection.

PCIe cards In some cases the PCIe card supports sensor
capability, which is available to the server for
thermal management. However, this is not common
and, as a result, cooling must be sized to handle any
possible card that can be installed. Indirect sensors
are sometimes used to infer PCIe temperatures.

Power supplies Most power supplies have their own cooling
(internal fans) and manage their cooling without
system intervention.

Chapter 4 ■ platform power management

148

Figure 4-22 provides an example of how thermal sensors are distributed across
a platform.

Figure 4-22. Example platform thermal sensor layout

Voltage Regulators

Voltage regulators (VRs) can be made of multiple discrete components on a board, and
a thermal sensor is generally placed near the component that is expected to exhibit the
highest temperature. In the past, the sensor primarily provided functional protection with
little available usage for fan speed control. More fine-grained TM implementations have
the capability for using the VR sensors in fan speed control algorithms. VRs can support

Chapter 4 ■ platform power management

149

OTP (over-temperature protection), which results in an •	
immediate shutdown

Prochot, which is a connection to platform Prochot to cause the •	
CPU to engage in heavy throttling when the VR is hot

VRHOT, which is an alert on SVID to tell the CPU to throttle•	

Power Supplies

Power supplies have their own thermal sensors and fans that are used for autonomous
thermal management. They have temperature protection mechanisms that can shut
down the system when a catastrophic condition is detected. The power supply’s fans can
supplement the server’s cooling in certain conditions. As a result, the platform TM system
can sometimes override the power supply fan control in order to drive higher fan speed
as necessary to cool system components.

Fan Speed Control and Design
Optimizing the speed of fans in a system can result in significant improvements in power
efficiency. Simply running the fans at max speed is an easy way to ensure that the system
operates within its specifications and provides the maximum performance, but this
comes at a significant energy cost.

System designers have proprietary fan speed control algorithms that run in their
BMCs; these attempt to minimize fan speeds while staying within the component
specifications. Multiple algorithms can be used simultaneously with the final fan speed to
be determined by comparingthe results of these algorithms.

Multiple (i.e., tens of) sensors are used in the algorithm with the required fan speeds
set based on the components with the least margin to their specifications. The algorithm
must ensure that unacceptable fan oscillations do not occur, even at low fan speeds.
These could be just as annoying to a customer as a continuous loud noise.

Note ■ It is possible for a system to transition from low-power consumption and
corresponding low fan speeds to a very high-power workload in microseconds. although the
CpU die does not heat up instantaneously due to the higher power utilization, it may heat up
faster than the fan speed control subsystem can increase the fan speeds, resulting in a short
period of CpU thermal throttling. fan speed control algorithms that are heavily optimized for
energy efficiency can be more exposed to this type of behavior.

Fan or cooling zones are often used to precisely adjust specific fans to the needs
of components most coupled with those fans. Cooling zones can be proximity based,
or physically separated. The extent of optimization versus cost is considered when
designing cooling segmentation created through cooling zones. Using a fan zone

Chapter 4 ■ platform power management

150

implementation enables total fan power and acoustic to be minimized. Fans in a non-
stressed zone can run at lower speeds than those needed in a more highly stressed zone.
A stressed zone implies that at least one component is approaching its temperature
limit. Figure 4-23 shows two examples of fan zones mapped to two different boards
designed for use in a 1U chassis.

Figure 4-23. Fan zone mapping

Each sensor is mapped to the fan zones depending on its thermal connection to
that zone. A single sensor could impact a single zone or multiple zones depending on
positioning and ducting. By mapping specific components to specific fan zones, more
granularity in fan control can be obtained, thereby reducing total fan power.

A variation on a proportional, integral, derivative (PID) controller is commonly used
for fan speed control. For each thermal sensor or group of thermal sensors, a separate
PID algorithm is running. At each time step, a new fan speed setting is determined from
the PID controller using temperature value from each sensor. The management controller
determines the actual fan speed setting based on the maximum calculated fan speed
setting from all the simultaneously operating PID algorithms.

Fan speed settings normally have a floor, preventing operation below the levels
necessary to cool components without sensors where the real-time temperatures
are unknown.

Chapter 4 ■ platform power management

151

Summary
Each CPU requires a large amount of support hardware in order to complete its tasks.
Data centers are generally made up of a large of number of racks. Each rack contains a
number of separate platforms (or chassis) that provide one (or a few) compute nodes.
In addition to the CPUs, a platform includes the memory, drives, networking, power
delivery, cooling, and more that is required for enabling a small number of CPUs to
operate. Similar problems and tasks must also be managed at larger scales in a rack or
even across a data center. As an example, each platform likely has dedicated cooling
hardware and thermal monitoring and management capabilities. However, additional
cooling is necessary for extracting heat from the rack and ultimately the data center. This
topic is discussed in Chapter 9.

A wide range of platform designs are possible, with different optimization points
for different usages. A storage platform may include a massive number of drives all
connected to a single two-socket (DP) node. A compute node may have a single high-
speed network connection, no drives, and some amount of memory that has been
selected for the types of workloads that run on that node. Large EX platforms tend to have
high CPU TDP powers. However, their support hardware also tends to have high costs
(both for power and procurement), amortizing the cost of that additional power and
making it very cost efficient. Similarly, low power offerings can be very effective if high
performance is not needed.

The power/performance efficiency of a CPU is heavily dependent on the platform
around it and the demands of the workload in question on that platform. Measuring
performance per TDP watt of a CPU can be a very misleading statistic due to the many
platform components that contribute to power. If the task that is required is bottlenecked
by drives, adding more compute performance (and increasing power) will be inefficient.
Similarly, if a platform includes significant power outside the CPU, and increasing the
CPU power results in an increase in overall platform performance, it may be more power
efficient for the platform to increase the CPU power even if the CPU performance per
CPU watt decreases. Building a power efficient platform requires balancing the compute
needs with the capabilities of the supporting platform devices.

153

Chapter 5

BIOS and Management
Firmware

Thousands of times a second, CPUs, memory, system interconnects, and other
components transition between a number of different active and idle power states to
minimize the use of energy. Energy-efficient use of these power states isn’t possible
without careful coordination between hardware and software—including BIOS firmware,
management firmware, operating systems, and applications. If any one of these firmware
or software components fails to fulfill its role in this coordination, it can cause a wide
variety of problems—from increases in power to decreases in performance. Figure 5-1
illustrates the hierarchy of software components used in enabling and controlling the use
of power management features.

Figure 5-1. Hierarchy of software components used in power management

154

Chapter 5 ■ BIOS and ManageMent FIrMware

BIOS firmware is responsible for turning on and configuring power management
features. BIOS must also expose power management features to the operating system
(OS) to allow for software control. This advertisement includes a list of the supported
power states, each state’s power and performance characteristics, and a description of
control interfaces. In some cases, OS device drivers can discover and configure power
management features directly. The OS is responsible for monitoring the system at
runtime and using the BIOS-provided interfaces to control power management features
based on past, current, and projected future activity. This activity is ultimately generated
by applications that use system resources to perform computations and manipulate data.

This chapter begins with a description of BIOS firmware and its role in activating and
configuring features. It continues with an overview of BIOS firmware’s role in updating
microcode and creating Advanced Configuration and Power Interface (ACPI)) objects
that describe power management capabilities to software. It includes an overview of
management firmware including hardware protection, power capping, and system
monitoring functions. The chapter concludes with a description of the Intelligent
Platform Management Interface (IPMI) and how it is used to configure and control
firmware capabilities used for power management.

BIOS Firmware
When a server is powered on, power management features such as C-states, P-states,
interconnect power states, and memory power states are not configured or enabled.
This is unlike many of the other system functions that do not require explicit firmware
or software enabling. Enabling and configuring power management features is the
responsibility of BIOS firmware.

Many power management features exist in different processor units or different
system components. These features have different clock and power domains, different
initialization sequences, and different enabling requirements. As a result, configuration
and enabling takes place across multiple stages where BIOS firmware coordinates with
the CPU’s power control unit (PCU) and other units to initialize individual features. If this
initialization fails, power and thermal management will not function properly.

During the various power management initialization stages, there are two common
methods for communication between firmware and hardware. The first is reading and
writing small data arrays in hardware called registers. Register size is typically measured
in bits, for example, a 32-bit register or a 64-bit register. Registers provide a convenient
mechanism for software and hardware communication and are used extensively in the
control and configuration of power management features. The three most common
types of registers used for power management are model specific registers (MSRs),
control and status registers (CSRs), and memory-mapped input/output (MMIO).
These registers can only be read or written in Ring 0, meaning they are only accessible
to kernel mode software with the highest privilege level. Where there is a need to use a
register to frequently access status information, make repeated changes to configuration
settings, or regularly change power states of the processor, MSRs are used. These registers
can be accessed with low software overhead using dedicated RDMSR and WRMSR
instructions. Where there is power management control or status information that needs
to be accessed infrequently or only during boot time, CSRs and MMIO are used. CSRs are

155

Chapter 5 ■ BIOS and ManageMent FIrMware

registers mapped to memory locations in legacy PCI configuration space, where several
layers of device drivers may be required to access these after control has been passed to
the operating system.

A second communication method between software and hardware is the x86
CPUID instruction. The CPUID instruction provides a fast mechanism for software
to query the processor to determine feature support and configuration information,
and it is accessible in Ring 3 or by user mode software (for example, the CPU type, the
topology of cores and threads, and various feature support flags). The CPUID instruction
provides a low-latency and error-resilient way to determine if a processor supports power
management features such as P-states or C-states, and what happens to various clock
sources when the processor is idle.

Not all power management features are under direct operating system control.
Chapter 2 details how Turbo allows the processor to operate above the CPU base
frequency, how a multi-socket system enters a coordinated package C-state, and how
power and thermal events can trigger processor throttling. These types of features are
controlled by CPU microcode and PCU firmware. Activity generated by applications or
OS power management policies may influence the use of these features, but the core
functionality is controlled elsewhere. In addition to the PCU, other microcontrollers in
the system, such as a baseboard management controller (BMC) or a Management Engine
(ME) in the chipset, may also participate in the control of power management features.

Microcode Update
There may be cases where it is necessary to change the behavior of hardware power
management features—to fix issues, to add new functionality, or to optimize feature use.
The majority of these updates can be done through BIOS firmware updates. The greatest
benefit of firmware updates is the ability to improve system behavior without having
to replace any components. However, the downside is the need to restart the system in
order to do so. In datacenters with tens of thousands of servers, a simple firmware update
becomes an event with significant cost and complexity.

Where there is a need to enhance or correct CPU-specific behavior, this can be
performed by the operating system. Operating systems include updated CPU microcode
and have the ability to update CPU microcode without needing to install and validate
a new BIOS firmware image or reboot the server. CPU microcode updates are done by
loading microcode into memory and writing the address of the microcode to the
IA32_UCODE_WRITE MSR.

Throughout this book, several of the MSRs outlined start with the IA32_ prefix. This
prefix indicates that the MSR is architectural, meaning it is supported in future CPUs using
a consistent address and data field definition. Data fields that are reserved or undefined
can be used to add new functionality over time. Architectural MSRs also do not change
across different product segments. For example, the definition of IA32_PERF_CTRL is
identical across phones, tablets, notebooks, and servers. This is critical for maintaining
forward and backward compatibility with the various software components utilized in
power management. MSRs are documented in detail in the Intel Architecture Software
Developer Manuals.

156

Chapter 5 ■ BIOS and ManageMent FIrMware

Advanced Configuration and Power Interface
As discussed in Chapter 2, C-states and P-states, or processor idle power and processor
performance states, are controlled by the operating system. After these features are
configured and enabled by BIOS firmware, BIOS firmware is responsible for advertising
these power states and control interface information to the operating system. To
accommodate compatibility and flexibility between different hardware and software
implementations, an industry standard interface called Advanced Configuration and
Power Interface (ACPI) is used.1 ACPI provides an interface for conveying power state
information in abstract terms so operating systems and hardware power management
features can advance independently without causing any loss of functionality. For
example, a new hardware C-state released in 2015 can be used efficiently by an operating
system released in 2005 as long as that C-state is described using ACPI. This abstraction
is necessary because there can be significant differences in power state behavior between
different platforms, architectures, and CPUs, even when those power states share the
same name. Similarly, OS power management policies may choose not to use a power
state in one product and version, but may choose to in another. The scope of ACPI goes
beyond describing power states and control interfaces. Rather than a comprehensive
review of ACPI capabilities, this section discusses only those key interfaces most relevant
to understanding the hardware and software interaction in power management.

ACPI provides an abstraction for several different types of states including S-states,
C-states, P-states, T-states, and D-states. ACPI states are identified by a letter indicating
the state type, followed by a number indicating the depth of the state. For example, S0 is
system state 0 and P5 is performance state 5.

Lower numbers indicate a state with more activity and higher power—the number
0 always indicates the state with the most activity, highest performance, and highest
power. As a result, lower numbered and higher power states are called shallow power
states whereas higher numbered and lower power states are called deep power states.
The description of states as shallow or deep is done to convey state transition costs,
such as latency or the transitional energy needed to enter or exit a state. During these
transitions, the system is stalled or may be taking actions that will affect performance
when the processor resumes execution, such as flushing caches and translation
lookaside buffers (TLBs).

A resource can only be in one state type at any given time. For example, a system
can only be in one S-state at a time, a core can only be in one P-state at a time, and a
device can only be in one D-state at a time. Figure 5-2 illustrates the relationships and
dependencies between S-states, C-states, and P-states and how a system transitions
between them.

1Advanced Configuration and Power Interface Specification, Revision 5.0a, November 13, 2013.

157

Chapter 5 ■ BIOS and ManageMent FIrMware

S-states
S-states refer to system level sleep states and include S0, S1, S3, S4, and S5. The CPU only
executes instructions in the S0 state. The use of other S-states is somewhat uncommon for
servers, because most servers are usually in an active state (S0), where they are active or
ready to execute or they are powered off (S5). A server in an S5 or soft off state is one that
is powered off, but still plugged in. Even though an ACPI S0 state describes an active state,
it is possible for processors, devices, or other resources in the system to be idle. System
level states can be in a shallower state than processor or other device states, but they can
never be in a deeper state.

ACPI S3, commonly referred to as suspend, is a sleep state where OS context is saved
to system memory; memory remains powered, but most of the other system components
are powered down. In S4, all devices have been powered off, but current OS context has
been retained on a storage device. S3 and S4 support varies with many server products
not supporting these.

Figure 5-2. Summary of ACPI power states and transitions

158

Chapter 5 ■ BIOS and ManageMent FIrMware

Note ■ Use of S3 and S4 is uncommon in servers. these states do not maintain an
active network connection, and execution context is no longer in CpU caches. It can take
a significant amount of time to resume from these states, making them difficult to use in
dynamic environments with variable load.

C-states
The ACPI specification defines three types of idle power or C-states: C1, C2, and C3. A
C0 state describes an active processor that is executing instructions. An ACPI C1 state is
mandatory. It describes the lowest latency idle power state and is reserved for processor
states that have an insignificant amount of transition latency or performance impact. An
ACPI C2 state is a deeper state than C1, with lower power and higher latency. It’s allowed
to have measurable latency impact but does not require any additional software handling
above what an ACPI C1 state requires. An ACPI C3 state is the lowest power and highest
latency state and has extra software overhead associated with C-state entry and exit. ACPI
C3-type states have software visible effects. Use of these states may require the OS to
check on chipset activity before entering the state or may require the OS to identify and
use alternative time sources due to a processor timestamp counter or local APIC timer
stopping after entering the C-state.

Due to the increased software complexity of ACPI C3-type states, most modern
servers do not implement C-states that map to anything deeper than an ACPI C2-type
state. Over time, hardware C-states have been optimized to eliminate or reduce software
visible effects. This ranges from architecting timers so they continue to run when the
processor is in deep C-states and eliminating dependencies on activity level outside the
CPU to aggressively reducing deep C-state exit latencies.

Note ■ a common point of confusion is the difference between hardware C-states and
apCI C-state types. each of the hardware C-states described in Chapter 2 is mapped to an
aCpI C-state type when they are advertised by BIOS firmware. For example, hardware C1
states map to an aCpI C1 type whereas hardware C3 and hardware C6 states map to an
aCpI C2-type state.

P-states
P-states refer to processor performance states and include ACPI P0, and P1 to Pn, where
the number of states between 0 and n varies based on the number of unique voltage
and frequency operating points supported by the processor. Pn is also referred to as the
deepest P-state. Unlike S-states or C-states, which represent idle states, P-states represent
active states, and as a result, ACPI P-states are only utilized when the processor is in C0,
actively executing instructions.

159

Chapter 5 ■ BIOS and ManageMent FIrMware

The P0 state is the highest performance and highest power state, and every state from
P1 down to Pn results in a decrease in power and a decrease in performance in comparison
to lower-numbered states. ACPI limits the number of P-states to no more than 16. In cases
where a processor has more than 16 hardware P-states, BIOS firmware must decide which
of these are exposed to the OS. BIOS firmware typically exposes an ACPI P-state for every
base clock step between the processor’s minimum frequency (Pn) and the CPU base
frequency. Turbo mode, discussed in Chapter 2, is always mapped to ACPI P0.

D-states
The ACPI specification also defines device power states, or D-states. ACPI D-states aren’t
utilized as frequently on servers as they are in clients. Many servers are unable to use
D-states since the latency to resume from these states is too significant for use in active
servers. Another reason ACPI D-states aren’t always exposed on servers is because
additional standard interfaces for device state discovery and control exist, such as Power
Management Control and Status register (PMCSR) , defined by the PCI and PCI express
specification. Some device drivers manage native device-specific power states via private
device-specific controls. Many devices have the capability to monitor their own device
activity and manage power without any software control. Even where there are no
software exposed D-states, devices or CPUs may be autonomously transitioning between
various power states at runtime to manage power.

Although there are various control methods and specifications that describe device
power management outside of ACPI, they all share the same terminology. A D0 state
is active, D1 and D2 are low-power states where device context is saved, and D3 is the
lowest power, highest latency state where no device context is saved.

ACPI Interfaces
An operating system needs a much greater level of detail about power states and their
behavior in order to utilize them efficiently. When selecting between different power states,
the OS needs to know each state’s power consumption, the transition time to enter and exit a
state, what level of execution context is lost upon entering a state, and specific mechanisms
for initiating entry. ACPI standardizes tables to describe this detailed information to the OS.

BIOS firmware is responsible for constructing these tables and loading them into
memory where the operating system reads them and enumerates capabilities. ACPI
tables that include core power state information are the DSDT (Differentiated System
Description Table) and the SSDT (Secondary System Description Table). These tables
consist of several objects that provide needed power state and control information to the
OS. The following list describes the primary set of ACPI objects used by the OS:

•	 _OSC and _PDC (Operating System Capabilities and Processor
Driver Capabilities): These methods are used to communicate
capabilities of the OS to BIOS firmware. This includes describing
OS capabilities in terms of coordinating control across multiple
logical and physical processors, and its ability to control P-states
and C-states. The capabilities of the OS will determine what
power management features BIOS firmware will expose.

160

Chapter 5 ■ BIOS and ManageMent FIrMware

•	 _PSS (Performance Supported States): This object lists the
P-states available to the OS. For each state, the object includes
a performance level (typically core frequency in MHz), the
maximum power consumption, and transition latency. In
addition, the object lists a control register value that the OS uses
to identify a P-state when requesting a power state change and a
status value that the OS uses to identify a P-state when checking
on processor status. A separate ACPI object defines the processor
status register that the OS uses to determine the current P-state
and to check the status of existing P-state control requests.

The ACPI specification describes P-states in terms of guaranteed
frequency. Turbo mode, or the ability for processor cores to
run above the CPU base frequency, is not guaranteed. Turbo
is opportunistic with the frequency dependent on thermal or
power headroom. Since Turbo frequency is not guaranteed, it
is improper to expose the maximum Turbo frequency via ACPI.
As a result, the ACPI _PSS exposes Turbo (P0) at 1 MHz higher
frequency than P1. When the OS requests Turbo, hardware
will maximize frequency, potentially running well above what
is advertised to the OS. If frequency determinism is a hard
requirement for users, software interfaces are provided so Turbo
can be disabled.

Note ■ there are many cases where exposing turbo as a single p-state is not energy
efficient. not allowing the operating system to choose intermediate p-states between
p1 and the maximum turbo frequency can result in selection of a p-state that is higher
performance and power than required.

 •	 _PSD (P-state Domain): The ACPI _PSD object describes CPU
control dependency, defining whether logical processors in a CPU
have their own P-states or whether subsets of logical processors
share a common P-state. Some server CPUs have a single P-state
domain, meaning all logical processors in that CPU share a single
frequency. Other server CPUs have a different P-state domain for
each core, meaning that all cores in the CPU can run at their own
independent frequency. The _PSD object is also responsible for
describing the P-state coordination type, which is discussed in
greater detail later in this chapter.

161

Chapter 5 ■ BIOS and ManageMent FIrMware

Note ■ errors in aCpI objects can cause significant power issues. Figure 5-3 shows the
impact of an online transaction processing workload running on a system with an
incorrect _pSd. these issues have resulted in substantial (up to 40 w higher) power
increases throughout a range of different operating conditions.

Figure 5-3. Power impact from ACPI _PSD object with an incorrect mapping

 •	 _PCT (Performance Control): This object describes the
processor registers or firmware locations that allow the OS to
change P-states and to check the status of P-state requests. To
change P-states, the OS uses the _PCT-specified control register.
P-state transitions are initiated by the OS writing a P-state’s control
value (specified in the _PSS) to the control register. In order to
check the status of P-state requests, the OS uses the _PCT-specified
status register. The status register also specifies the current P-state
in terms of the _PSS-specified P-state control value.

Most modern processors specify these interfaces in terms of what
ACPI calls Functional Fixed Hardware (FFH) , or a processor MSR.
This allows the performance control interface to be implemented
directly in hardware providing a low latency and error resilient
interface. Where a native processor interface is not available
or desirable, an original equipment manufacturer (OEM) can
implement platform-specific code to handle performance control.

162

Chapter 5 ■ BIOS and ManageMent FIrMware

•	 _CST (C-states): This object lists the C-states available to the
OS. Details provided for each C-state include the register used to
place a processor into a C-state, the ACPI C-state type, worst-case
latency, and typical power consumption. Power consumption
numbers in the _CST are not used by operating systems because
they are assumed to be estimates only. The latency field is used by
several OS control policies to limit use of some C-states based on
system activity levels or where there is a specific device that can’t
tolerate latency above some threshold.

Similar to ACPI P-state objects, an ACPI _CSD object exists to
describe processor control dependences for C-states. Understanding
cross logical-processor C-state dependencies is useful for
understanding C-state impact when the OS needs to consolidate
execution to some subset of logical processors in the CPU.

After an operating system initializes, it evaluates these ACPI methods and has
all the information it needs to request hardware transitions between various idle and
active states and to check the status of those requests. The OS control policy uses ACPI-
advertised information outlining the expected power and performance impact of the
various states to make state transition decisions, and it uses ACPI-advertised control
mechanisms to execute those decisions.

Note ■ there is a long history of issues with the resiliency and robustness of the aCpI
interface for OS power management. Some modern operating systems are starting to use
native processor interfaces such as CpUId to discover the CpU type, power management
features, and control interfaces directly from hardware. this use of native processor
interfaces limits how flexible the power management solution is, but it eliminates errors in
aCpI objects from causing functional or performance issues.

Setup Utility
The setup utility, also implemented in BIOS firmware, is a powerful tool for fine-tuning
power management and optimizing a platform for specific workloads. The majority of
power management features can be enabled, disabled, or have their default behavior
changed through simple setup options. Chapter 8 is a comprehensive optimization
reference that discusses options commonly found in the setup utility and different ways
these options can be configured to decrease power, increase performance, or, in an ideal
scenario, both.

163

Chapter 5 ■ BIOS and ManageMent FIrMware

Management Firmware
Microcontrollers in cars can monitor fuel level and consumption rate. They can indicate
if tire pressure is low or if a turn signal is burned out, and they can keep a record of
diagnostic events that can be retrieved by a technician during a service appointment.
These capabilities are provided independent of who is driving the car, or if the car is
speeding or is stopped.

Management firmware running on server microcontrollers plays a very similar
role. Management firmware provides power, monitoring, event logging, inventory, and
remote management capabilities independent of the OS or state of the processors. This
is particularly useful in the datacenter where there is large number of servers, where
systems are going up and down for maintenance, and where servers are running different
operating systems. Two key firmware components that are critical for power management
are the baseboard management controller (BMC) firmware and the Management Engine
(ME) firmware, called Node Manager.

Node Manager Capabilities
Node Manager firmware provides key capabilities for managing and optimizing both power
and cooling resources in the datacenter. It exposes a standardized set of hardware protection,
monitoring, and power capping features to the BMC and to external management software.
Node Manager acts as a satellite controller and offloads power management responsibilities
from the BMC, with some of the capabilities always running and others activated by a profile.

Hardware Protection
Node Manager firmware implements a set of hardware protection mechanisms to protect
the platform during adverse or unexpected conditions. There are proactive protection
mechanisms such as dynamically limiting platform power to the capabilities of the PSU.
There are also reactive protection mechanisms such as closed loop system protection (CLST)
and Smart Ride Through (SmaRT) that protect the platform during PSU over-temperature,
under-voltage, and over-current events. These capabilities are hardware assisted, with sensor
devices using the SMBUS protocol to notify Node Manager about critical events. Protection
mechanisms respond immediately in the case of an adverse condition, with required
actions, such as processor and memory throttling, occurring in under a millisecond.

Monitoring
Another key capability of Node Manager firmware is comprehensive platform monitoring.
In addition to the monitoring capabilities provided by processors and memory, modern
servers implement several onboard sensors in intelligent power supply units (PSUs),
voltage regulators (VRs), hot swap controllers (HSCs), and in devices accessible by the
BMC. These sensors enable fine-grained power monitoring since they are capable of
reporting voltage, current, power, and energy consumption for individual components.
Combining together all the board, processor, and memory sensors creates a sensor grid
that Node Manager firmware relies on for power management.

164

Chapter 5 ■ BIOS and ManageMent FIrMware

These monitoring capabilities have uses beyond enabling Node Manager’s protection
and power capping features. External management software uses these monitoring
capabilities in a variety of ways. For example, events that monitor inlet temperature, outlet
temperature, and volumetric airflow are used by facility control software.

Note ■ In order to expose more information about the platform, node Manager adds several
synthetic sensors such as outlet temperature and volumetric airflow. these sensors are
derived from other sensors in the platform and calculated based on a mathematical model.

Events that monitor compute utilization and memory utilization are used by
orchestration software to aid in workload placement and migration decisions. Events that
monitor power consumption are used to characterize and optimize production workloads.
Various types of sensors and usages are described in greater detail in Chapter 7.

Power Capping
Node Manager firmware allows users to set and enforce a power cap ensuring that power
will not exceed a defined threshold. External management software uses this capability in
several different scenarios to provide power, performance, and cost benefits.

Most servers operate well below the theoretical maximum platform power, even
when workloads are running at peak throughput. This limits the number of servers that
can be safely added to a rack with fixed power capacity. Rather than allowing a server
to operate up to the theoretical maximum platform power, users can enforce a power
cap that corresponds to more representative peak conditions. This power cap can be
determined using insight gained from datacenter monitoring, it can be established by
characterizing production workloads under peak conditions, or it can be established
based on some percentage of the theoretical maximum platform power. Using a more
representative power cap, rack density can be improved.

Note ■ node Manager provides a feature that automatically characterizes platform
minimum and maximum power during BIOS pOSt using specialty workloads. the results
of this characterization can be used to identify an appropriate power cap when it is not
possible to do so using production workloads.

Several additional applications of power capping exist—for example, power capping
to survive a power or cooling failure in the datacenter. An aggressive power cap can be
enforced during these conditions, decreasing server power and cooling requirements.
This keeps applications running, delaying or avoiding automatic shutdown. Power
capping can also be applied strategically to maximize resources where energy has
a variable cost. Figure 5-4 shows external interfaces and components used by Node
Manager firmware to enable hardware protection, monitoring, and power capping.

165

Chapter 5 ■ BIOS and ManageMent FIrMware

Figure 5-4. External interfaces and components used by Node Manager firmware

Node Manager Policies
By default, Node Manager firmware activates hardware protection and basic monitoring.
Additional Node Manager firmware capabilities are supported using user-defined policies
that can be created, configured, enabled, and disabled.

Policies can be always running, such as a power capping policy that replaces the
theoretical maximum platform power with a cap more representative of peak conditions.
Policies can also be enabled by a trigger, or some monitoring event used to activate the
policy. For example, a policy can enforce a power cap only when an inlet temperature
exceeds some threshold. An operator might define several different inlet temperature
thresholds, with each one activating a different power cap.

Node Manager policies typically monitor or control power for a specific policy
domain. A domain is simply an abstraction for related individual platform components.
For example, a policy that targets the platform domain includes all components in the
server. The CPU domain would report and control power for all CPUs in the system,
treating them as a single entity, while the memory domain reports and controls power for
all DIMMs and memory controllers in the system.

Table 5-1 lists all the different attributes of a Node Manager policy that operators can
use to configure policies to match desired behavior and specific needs. These attributes
enable more sophisticated event-driven management. For example, if the server is unable
to meet a power cap, the policy can define a resulting action, such as sending an event to
external management software or shutting down the platform.

166

Chapter 5 ■ BIOS and ManageMent FIrMware

Table 5-1. Attributes of a Node Manager Policy

Attribute Supported Values Description

Assigned policy ID A one-byte numeric value. Indicates a unique identifier
for the policy. This is
assigned during policy
creation.

Policy domain Can be any of the following:

Entire platform•	

CPU subsystem domain•	

Memory subsystem domain•	

Hardware protection domain•	

High-power I/O domain•	

Indicates the specific
platform subsystem the
policy is applied to.

Administrative state
for policy

Can be either of the following:

Enabled•	

Disabled•	

Indicates the state of the
policy. Even if a policy is
disabled, monitoring for the
policy is still enabled.

Policy trigger type Can be any of the following:

No policy trigger.•	

Inlet temperature limit (in •	
Celsius).

Missing power reading •	
timeout (in 1/10th of a
second).

Time after host reset (in 1/10th •	
of a second).

Boot time policy. This policy •	
will be applied only at boot.

Indicates the trigger for
policy activation. If “No
policy trigger” is specified,
the policy is always active.
For all other triggers, the
policy is only active while
the condition is true.

Policy trigger limit A temperature value in Celsius or a
time value in 1/10 of a second.

Indicates the specific value
associated with the trigger.

Policy limit A power cap can be specified as
one of the following:

Power (in W)•	

Throttling level (in %)•	

Indicates a power cap to be
enforced. Platform throttling
level is used in case of
missing power readings.

(continued)

167

Chapter 5 ■ BIOS and ManageMent FIrMware

Table 5-1. (continued)

Attribute Supported Values Description

Aggressiveness Can be one of the following:

Automatic•	

Force unaggressive mode•	

Force aggressive mode•	

Indicates the types of power
management mechanisms
used to keep the server
below a power cap. Node
Manager attempts to
meet a cap using the most
energy efficient mechanism
available. Mechanisms
with greater performance
impact are used only
when a cap cannot be met
using the energy efficient
mechanisms.

Correction time
limit

A time value in milliseconds. Indicates the maximum
time, in milliseconds, in
which the Node Manager
must take corrective actions
to meet a power cap. If this
time is exceeded, the “Policy
exception action” specifies
the next action.

Policy exception
actions

Can be either or both of the
following:

Send alert.•	

Shut down system (hard •	
shutdown via BMC).

Indicates action taken if the
policy limit cannot be met.
Sending an alert will cause
Node Manager to generate
an asynchronous event to
notify external management
software that the defined
limit is too low.

Policy storage
option

Can be either of the following:

Persistent storage•	

Volatile memory storage•	

Indicates the storage type
of a policy. By default
the policies are stored
persistently so Node
Manager will restore
the policies after each
platform reset. If policies
are frequently created and
updated, volatile storage
should be used.

(continued)

168

Chapter 5 ■ BIOS and ManageMent FIrMware

Table 5-1. (continued)

Attribute Supported Values Description

Statistics reporting
period

A time window in seconds. Indicates the averaging
window for monitoring.
This allows operators to
specify up to a one hour
moving average window for
monitoring.

Alert thresholds Up to three thresholds in the units
specified by trigger type.

For a policy without a trigger, the
thresholds array contains average
power in watts.

For temperature-based triggers,
the thresholds array contains
temperature in degrees Celsius.

For time-based triggers, the array
contains time in 1/10 of a second.

Indicates threshold trigger
values need to exceed to
generate events.

Suspend periods An array of start and stop times
including recurrence patterns
based on the day of the week.

Indicates when the policy
will be enforced.

2IPMI Specification, v2.0, Rev. 1.1.

The policy allows operators to specify various alert thresholds. Each policy supports
up to three thresholds that can be used to generate events. For example, it is common to
set a threshold close to the defined power cap, so external management software can see
how close the system is getting to enforcing a cap.

The policy allows operators to specify suspend periods. This defines a weekly pattern
of days and times a policy should be enabled or disabled—for example, power capping
servers hosting IT infrastructure during nights and weekends. Node Manager automatically
synchronizes the real-time clock used for scheduling with the host OS real-time clock to
keep software and systems in sync.

IPMI
BMC and Node Manager firmware capabilities are configured and controlled through
the Intelligent Platform Management Interface (IPMI).2 Support for IPMI is widespread,
with the vast majority of servers supporting it. IPMI provides a standard well-defined
interface between external management software and the underlying platform, enabling
various monitoring, logging, inventory, and recovery functions using simple request and
response messages.

169

Chapter 5 ■ BIOS and ManageMent FIrMware

IPMI messages or commands target the BMC. The BMC acts as a communication
hub for satellite controllers in the platform that include their own monitoring and control
capabilities such as the ME in the PCH. Communication between the BMC and satellite
management controllers takes place over an I2C bus using the Intelligent Platform
Management Bridge (IPMB) interface. The I2C bus, SMBus, PMBus, memory-mapped
I/O ports, as well as private management busses are all used to connect management
controllers to various sensors in the platform.

Use of IPMI eliminates the need for vendor-specific tools that are incompatible
between different platforms. Since IPMI is an open standard, it also allows servers to
implement management functionality independent of the OS, BIOS, or the system
configuration. Monitoring functions in the BMC can be accessed by IPMI out-of-band,
over the network by a connected client. These functions can also be accessed by IPMI
in-band through management tools and device drivers installed on the server.

Sensor Model
Sensors in a platform, such as a CPU and memory temperature sensors are discovered by
management software using IPMI commands. This discovery is aided by the IPMI sensor
model. The sensor model describes all the different sensors supported, as well as each
sensor’s name, type, and the values they return. Some sensors may provide real-time
measurements whereas others may provide only a count or indication of past events.

Sensor information is stored in IPMI sensor data records (SDRs). In addition to
storing information on sensor capabilities, the SDR is used to describe the various
devices connected to the ICMB and it associates each sensor with the host management
controller. The SDR also provides information on event generation capabilities and
describes thresholds that can be set to trigger events.

Note ■ IpMI is extensible so server manufacturers are able to add their own custom
sensors and commands. as a result, management controller monitoring capabilities can vary
greatly from one server to another.

Inventory information such as FRU (field replaceable unit) devices connected to the
platform are stored in the SDR. FRU data includes information for inventory management
such as serial number, part number, manufacturer, and description.

System Event Log
Events generated by the BMC and by Node Manager firmware are stored in a centralized
event log called the System Event Log (SEL)—for example, an indication that a fan is
no longer functioning properly. Similar to SDR access, IPMI enables access to the SEL
providing common functions such as reading or clearing the log.

170

Chapter 5 ■ BIOS and ManageMent FIrMware

Satellite controllers send their messages to this centralized log via the IPMB,
allowing the SEL to act as a single platform event repository. Stored in flash memory,
events captured in the SEL contain critical information that isn’t lost if power is
disconnected or there is an operating system failure.

Node Manager API
Node Manager capabilities described earlier in the chapter are accessed and controlled
through IPMI commands. The Node Manager IPMI API includes numerous IPMI
commands for creating policies, configuring policies, accessing monitoring capabilities,
and accessing runtime attributes.

The Node Manager IPMI API describes commands operators can use to query
capability and version information. External management software relies on this interface
to discover capabilities as different platforms may expose a different set of policy domains
and features.

The API describes commands operators can use to specify the destination of alerts.
Node Manager defines a set of events that are sent directly to external management
software, bypassing the BMC SEL. For these events, the IPMI Alert Immediate API is
used. This gives external management software the choice between event-driven or
periodic polling management. The API also includes commands that provide additional
management functionality. For example, commands that enable operators to set a Turbo
synchronization ratio, or a frequency limit for Turbo. This feature can be used to improve
performance determinism in high performance computing (HPC) environments.

A complete list of commands included in the Node Manager IPMI API are included
in the Node Manager specification at www.intel.com/content/www/us/en/power-
management/intelligent-power-node-manager-specification.html.

The Node Manager IPMI API includes two types of interfaces:

•	 External API: This is designed for use by external management
software. This API uses the policy domain abstraction to expose
high-level monitoring and control to external management
software. Exposing platform management capabilities at a
domain level simplifies management and improves scalability,
especially in environments with thousands of servers to manage.

•	 Internal API: This is designed for use by the BMC or other
management controllers in the system. This low-level API allows
the BMC to access specific sensors and control features as
needed.

http://www.intel.com/content/www/us/en/power-management/intelligent-power-node-manager-specification.html
http://www.intel.com/content/www/us/en/power-management/intelligent-power-node-manager-specification.html

171

Chapter 5 ■ BIOS and ManageMent FIrMware

ACPI Power Metering Objects
In addition to IPMI, Node Manager also exposes power monitoring and power capping
capabilities through ACPI power metering objects. This allows the OS to participate in
monitoring and control. The key ACPI objects that enable this functionality are outlined
here:

•	 _PMC (Power Meter Capabilities): This object describes the power
meter capabilities including measurement unit, type, accuracy,
and sampling time. It describes whether the platform is capable of
monitoring platform power, enforcing a power cap, or both.

•	 _PMM (Power Meter Measurement) and _PAI (Power
Averaging Interval): The _PMM object returns the latest reading
from the power meter. The averaging window for the _PMM
returned reading is defined by the _PAI.

•	 _PTP (Power Trip Points): This object is used to define the upper
and lower trip points for the power meter.

•	 _SHL (Set Hardware Limit) and _GHL (Get Hardware Limit):
These objects are used to enforce a platform power limit.

Summary
BIOS and management firmware play a critical role initializing, configuring, controlling,
and advertising power management features to external software. Without these actions,
systems would fail to utilize power management features, resulting in high power usage,
low performance, or both. Standard interfaces such as ACPI and IPMI are used to enable
firmware to communicate with external software in an OS-independent fashion.

Chapter 6 will continue the discussion on software architecture with a description of
the operating system’s role in power management. It will describe how the OS uses BIOS
firmware exposed ACPI objects to enumerate and control various power states. It will also
describe how OS power state selection, process scheduling, and memory management
decisions made by the OS impact energy efficiency.

173

Chapter 6

Operating Systems

Software computation and data manipulation is the essence of the work done on a server
and in a datacenter. What is often overlooked is the critical role operating systems play
in determining both the performance (the speed of work) and the cost (the energy
consumed) doing that work. Operating systems manage a software work plan; an efficient
work plan gets work done faster and at lower cost.

Well-optimized operating systems can increase the time spent in low-power
CPU, memory, and interconnect states. They avoid careless use of system resources
that can limit a server’s use of low-power states—for example, polling for completion
of some event or activity, choosing a suboptimal resolution of the system timer, or
performing operations that only utilize a small subset of logical processors in the
system. Well-optimized operating systems adapt their use of power management
features to match changes in workloads, changes in server utilization, and changes in
operator preferences.

This chapter begins with an overview of operating systems and their role in selecting
power states, scheduling, and memory management. This includes a description of
the interfaces operating systems use for power state control as well as the policies and
metrics the OS uses to drive those decisions. Additional considerations for virtualized
environments are discussed, including consolidation and virtual machine migration.
The chapter concludes with a comparison of different operating environments, the unique
power management capabilities of these environments, and how these capabilities have
changed over time.

Note ■ The term operating system (OS) used throughout this chapter is inclusive of both
a native operating system and a virtual machine monitor (VMM). A VMM assumes the same
power management roles and responsibilities that a native OS does, so information in this
chapter applies equally to both environments.

174

ChApTer 6 ■ OperATing SySTeMS

Operating Systems
Once equipped with power state information and the appropriate controls from BIOS,
the OS must implement power management policies that determine how and when to
use various power states based on system activity or any known power and performance
constraints. Striking the right balance between low power and high performance is a
difficult problem since the right balance differs greatly from environment to environment
and user to user. Operating system power management (OSPM) policies may be unaware
of service-level agreements in place or of quality of service requirements. They may
not understand whether the system is running a stand-alone application or whether
it is part of a complex distributed application. Even knowledge of specific applications
executing tells the OS very little about what the appropriate balance is between power
and performance. To an OS, a web server hosting the front end for a family photo
sharing service looks identical to a web server hosting the front end for critical financial
transactions.

The diversity of power and performance requirements in a datacenter presents a
unique challenge for implementing and optimizing OSPM policy on servers. In other
compute environments, such as phones and tablets, common performance expectations
are known ahead of time. For example, gaming is good at 30 frames per second and
great at 60 frames per second. Holding a device in your hand shouldn’t make your hand
perspire, touch gestures should be processed in a matter of milliseconds, and creating an
audible pause during audio playback is unacceptable.

In a server environment, the performance impact of power management features
varies greatly based on the workload, application, system configuration, and performance
requirements. Some workloads will see no performance impact whereas others may
see substantial impact. In the absence of known performance requirements, OSPM
policy needs to make the best decisions it can regarding the balance between low power
and high performance using the limited information it does have. The two primary
policies the OS is responsible for is the selection of C-states and P-states. The following
sections describe the mechanisms these policies use for hardware state control as well as
monitoring capabilities and metrics used for policy feedback and decision making.

C-state Control
As indicated in Figure 6-1, most operating systems implement OSPM policies in device
drivers. The processor can be thought of as just another device in this context. The drivers
communicate with hardware using a set of standard control interfaces that are described
by ACPI or ascertained with CPUID. When an OS has no work to be done on a logical
processor, it enters an idle function where eventually one of two instructions can be
executed to transition the logical processor into an idle C-state.

175

ChApTer 6 ■ OperATing SySTeMS

MWAIT
The most common way for an OS to enter an idle state is by executing the MWAIT
instruction. MWAIT can only be executed in Ring 0, so applications are unable to directly
enter idle states. MWAIT provides the OS control over the specific C-state and sub-state
to enter and under what conditions that C-state can be exited. The OS conveys C-state
control details through two general-purpose registers used by MWAIT.

The OS uses the ECX register to specify how it wants C-states to exit upon external
interrupts. When the OS-specified interrupts should be treated as break events, execution
resumes within the idle function rather than directly executing an interrupt service
routine (ISR). The OS uses the EAX register to specify the target C-state (C1, C3, or C6)
and the target sub-state. The MWAIT sub-state is used for lower-level control of a specific
C-state. For example, if a specific C-state flushes the caches upon C-state entry, different
sub-states may be used to modify the behavior of the cache flush, such as flushing the
entire cache at once, or flushing the cache progressively over multiple time-delayed
phases. Figure 6-1 is an example of various C-states supported on a processor and the
MWAIT hints used to specify these states.

Any interrupt—such as a timer interrupt, device interrupt, or inter-processor
interrupt (IPI)—will cause a C-state to exit and execution to resume. In addition
to C-states exiting based on interrupts, MWAIT can be used in combination with a
MONITOR instruction. Executed by the OS before the MWAIT instruction, a MONITOR
instruction allows the OS to specify a memory address for the processor to monitor.
With a MONITOR instruction armed, any subsequently entered C-state will be exited
if the monitored data address is modified. This provides an additional mechanism for
software defined C-state exit conditions. For example, the Linux kernel utilizes this
mechanism by arming MONITOR/WAIT pairs with a kernel need_resched flag. This
flag is modified by the OS to indicate that the kernel scheduler should be activated on
a particular logical processor. Exiting C-states based on a modified MONITOR address
also provides a mechanism for waking up a specific logical processor without needing
to generate an IPI.

Figure 6-1. Example MWAIT hints OS uses to specify various processor C-states

176

ChApTer 6 ■ OperATing SySTeMS

HLT
Older operating systems, or operating systems with deep C-states disabled, may execute
the HLT (halt) instruction in place of an MWAIT in an idle function. HLT does not require,
nor does it support, the same level of control that MWAIT does. HLT simply places the
logical processor in the shallowest state, or the hardware C1 state. With the introduction
of MWAIT, there is no longer a need for HLT. In modern systems, microcode converts HLT
instructions into MWAIT instructions requesting hardware C1.

C-state Policy
In simple terms, the role of OSPM C-state policy is to predict the future. Shallow C-states
are best used when the system has very short idle durations, for example, packet
processing over a high-speed network. Deep C-states are best used when the system
has long, uninterrupted idle durations; for example, idle time between submitting and
completing an I/O. Figure 6-2 shows sample utilization from a single logical processor.
It shows a mix of different shorter and longer idle durations, and ideal use of C-states.

Figure 6-2. Sample logical processor utilization with requested C-state

With each logical processor generating unique utilization characteristics, OSPM
policy needs to make individual decisions for each of them. Hardware is responsible for
coordinating logical processor-level requests from two logical processors to determine
the core C-state. For example, if one logical processor on a core is requesting C6 and the
other is requesting C1, the core will go to C1. Similarly, hardware coordinates between
core C-states to determine the package C-state. During hardware coordination, the
shallowest of all C-state requests is used.

Optimal use of C-states is important for both power and performance. As discussed
earlier, deep C-states introduce a performance penalty when they are exited. Using a deep
C-state throughout a sequence of short idle periods results in a significant amount of stall
time relative to the time spent executing instructions. In addition to latency penalties,
there is also a transitional energy cost associated with C-state entry and exit. It may be
counterintuitive, but using deep C-states throughout a sequence of short idle durations
may actually result in higher power and lower performance. An idle duration has to be up
to hundreds of microseconds long for the deepest C-states to save power—otherwise the
energy cost of entry and exit has not been amortized.

177

ChApTer 6 ■ OperATing SySTeMS

C-state latency information exposed by ACPI is of limited use to OSPM C-state
policy. It can be useful where software knows exactly what latency it can and can’t
tolerate. However, the latency value exposed by ACPI represents worst case latency, a
value that can be several times greater than average or typical latency and is encountered
only when in a package C-state. Cases where C-state latency is equal to the ACPI exposed
value may never be encountered. In reality, there is no single value that represents C-state
exit latency—it is variable and heavily dependent on other CPU activities. An additional
downside of ACPI exposed latency is that it does not convey other performance visible
effects such as cache and TLB flushes. These actions momentarily slow execution when
the processor wakes up from a C-state due to running on caches that no longer contain
recently used instructions and data.

C-state power consumption information exposed by ACPI also provides an incomplete
picture from a power perspective. The power consumption of a logical processor, core, and
package C-state are all very different, but ACPI objects expose only a single power value. In
addition, ACPI C-state objects don’t capture the idle duration necessary to break even from
an energy perspective. In general, trying to convey to software accurate power consumption
for some low-level state is problematic. Actual measured power depends on a number of
external factors such as part to part CPU variation, temperature, and the efficiency power
delivery components such as VRs and power supplies.

Chapter 2 discusses hardware C-state demotion mechanisms that processors use
to prohibit deep C-states. If the PCU detects that such C-states are being used, the result
may be a measurable performance impact or power increase. With these features in
place, the OSPM C-state policies have the option of simply specifying the deepest state
they tolerate, instead of trying to determine an ideal state, and allowing for further C-state
selection optimization in hardware. This option has the benefit of eliminating complex
software algorithms and simplifying the path to entering idle.

Processor Utilization
One metric OSPM C-state policy uses to determine whether to use deep or shallow
C-states is processor utilization. This metric describes the percentage of time the
processor is active or unhalted. The CPU provides fixed counters the OS can use to
measure utilization on each logical processor. For example, the IA32_FIXED_CTR1 MSR
described in Table 6-1 counts unhalted cycles at the rate of CPU base frequency (or
P1 frequency) and the time stamp counter (TSC) MSR described in Table 6-2 counts all
cycles, both halted and unhalted, at the same rate of CPU base frequency. Measuring
the two events over some time period allows the operating system to calculate average
utilization—the ratio of unhalted cycles in comparison to all possible cycles.

Table 6-1. IA32_FIXED_CTR1 MSR (0x30B)

Bits Width Field Description

63:0 64 bits Unhalted cycles Always running measure of logical
processor utilization. Increments when
processor is active at the CPU base
frequency of the part.

178

ChApTer 6 ■ OperATing SySTeMS

In reality, a logical processor can only be in one of two utilization states at any
given time, active (100%), or idle (0%). It’s observing and averaging utilization of a
logical processor over some longer time window that gives us the concept of being
partially utilized.

Each OSPM policy has to decide over what length of time it will observe utilization.
If the time window is too short, it’s likely the average utilization result will be 0%, 100%, or
something very close to those endpoints. If the time window is too long, the OS will fail to
identify fleeting changes or other interesting characteristics in the variation of utilization.
In addition to observing utilization over a single time window, OSPM may use multiple
time windows to gain additional insight into longer term utilization trends. Another OS
metric used for selection of C-states is known future activity, such as periodic timers that
are due to expire soon, I/O outstanding, or repeating patterns of device interrupts. Unlike
utilization, these methods rely on known events and can be predicted more accurately.

The complexity in OSPM accurately predicting idle durations, trends, or patterns in
idle, and the potential for error in these predictions, does not prevent a good decision
from being made. In fact, appropriate use of C-states can be realized with very simple
C-state policies. In modern processors, deep C-state exit latencies are only a fraction of
what they were when the technology was first introduced, so the impact of a suboptimal
decision has been reduced significantly. Although there are environments with acute
latency sensitivity, this is the exception rather than the norm. The majority of datacenter
workloads see no measurable performance impact from the use of C-states.

P-state Control
P-states represent the most significant power performance tradeoff in a server today. In
most systems, the power and performance impact of P-states is greater than the impact
of all other power management features in the platform combined. The impact of OSPM
P-state decisions is substantial. On a multi-socket system, a given decision could result
in 100 watts lower power or cutting transaction response times in half. As such, OSPM
P-state policies must identify a balance between low power and high performance that
meets most of their user’s needs. It’s impossible to meet all users’ requirements, so OSPM
policies must also provide mechanisms for administrators to customize OSPM behavior
to meet their needs.

Similar to C-states, software use of P-states has been greatly simplified over time. For
example, early P-state implementations required the processor to be in a coordinated idle
state, holding off system activity through the completion of a P-state transition. In modern
processors, P-state transitions are low latency and are performed dynamically.

Table 6-2. IA32_TSC MSR (0x10)

Bits Width Field Description

63:0 64 bits Timestamp Always running measure of logical
processor time. Increments when the
processor is active or idle at the CPU base
frequency of the part.

179

ChApTer 6 ■ OperATing SySTeMS

Software Controlled Interface
Software utilizes writes to MSRs rather than executing instructions to initiate P-state
transitions. State transitions are initiated by OSPM writing a control value (or frequency
ratio relative to base clock) to the IA32_PERF_CTL register. Table 6-3 describes this
interface and its capabilities. The ACPI _PSS object discussed in Chapter 5 describes
each individual P-state based on the control value. It acts as an identifier that hardware
associates with an internal frequency and operating point.

Table 6-3. IA32_PERF_CTL MSR (0x199)

Bits Width Field Description

7:0 8 bits Reserved Unused

15:8 8 bits P-state target Control value (frequency ratio relative
to base clock) used to transition
logical processor to the P-state target

31:16 16 bits Reserved Unused

33:32 1 bit Turbo mode disable Disables Turbo mode

63:34 31 bits Reserved Unused

IA32_PERF_CTL is accessible by the OS, by firmware, and by advanced applications
with kernel-level privileges. There are cases where multiple entities may try to
control P-states simultaneously. Although these cases are rare, where they exist, the
administrator must take great care to ensure the capability is disabled for entities that
should not have control.

The ACPI _PSD object (discussed in Chapter 5) informs the OS of its role and
responsibility in coordinating P-state transitions. If all the logical processors in a CPU
share the same P-state domain, it is not necessary for every logical processor to request a
P-state change. OSPM policies have the ability to decide which of those logical processors
should ultimately own the decision. Similarly, if all the logical processors in a CPU have
their own unique P-state domain, the operating system must monitor each of them
individually and make unique, logical, processor-specific requests.

Hardware provides several mechanisms OSPM can use to get feedback on policy
decisions. The IA32_PERF_STATUS MSR provides a measure of the current frequency
ratio, which conveys the specific processor P-state a core is utilizing. This mechanism
is frequently used by software outside the OS to show the current operating conditions.
Another mechanism for measuring frequency is the IA32_APERF and IA32_MPERF
MSRs. IA32_APERF increments at the real frequency of a logical processor whereas
IA32_MPERF increments at the CPU base frequency of the CPU. Measured over time,
the ratio of IA32_APERF/IA32_MPERF allows OSPM to calculate the average frequency
of a logical processor. Both IA32_APERF and IA32_MPERF can be reset by the operating
system by writing them to zero, allowing OSPM to clear history from one observation
window to the next. Some operating systems do not reset these registers,
so IA32_APERF and IA32_MPERF can be used by other software outside the OS.
Tables 6-4, 6-5, and 6-6 describe these mechanisms in greater detail.

180

ChApTer 6 ■ OperATing SySTeMS

Table 6-4. IA32_APERF MSR (0xE8)

Bits Width Field Description

63:0 64 bits Actual performance Always running measure of time.
Increments when processor is active at the
current operating frequency of the part.

Table 6-5. IA32_MPERF MSR (0xE7)

Bits Width Field Description

63:0 63:0 Measured
performance

Always running measure of time.
Increments when processor is active at the
CPU base frequency of the part.

Table 6-6. IA32_PERF_STATUS MSR (0x198)

Bits Width Field Description

7:0 8 bits Reserved Unused

14:8 7 bits Core ratio Frequency ratio of the core.
This is multiplied by the base clock
(typically 100 MHz) to get core frequency.

63:15 49 bits Reserved Unused

Collaborative Interface
A controversial topic that has been debated for years between hardware, firmware, and
software engineers is, “Who is the ideal entity to control P-states?” Each of these entities
has some unique information that provides insight to making an optimal P-state selection.
For example, the OS has unique information about processes and threads, their priority,
and dependencies between them. Hardware has unique insight into power, temperature,
leakage, and resource scalability. Hardware can continuously monitor behavior and
detect changes faster than an OS. Management firmware may understand a critical
need to migrate a virtual machine (VM) off a server or have unique knowledge about
response time requirements. A collaborative interface that allows control entities to specify
requirements and hints, rather than discrete P-states, is a step toward a mutual decision.

Some of the latest CPUs contain support for hardware-controlled performance
states (HWP), an interface for collaborative decision-making between hardware and
software. HWP gives software the ability to supply a target frequency range to operate
within along with performance guidance hints. This allows software to use its unique
information to provide guidance and for hardware to optimize the selection of P-states
within those software provided constraints. If software has no unique information to
provide, hardware has the ability to autonomously select P-states.

181

ChApTer 6 ■ OperATing SySTeMS

There are a number of new capabilities this interface provides for control, feedback,
and notifications that don’t exist in the legacy interface. For example, this interface has
the capability to indicate a change to guaranteed frequency initiated by an external power
or thermal control policy. Tables 6-7 and 6-8 highlight the most important interface
capabilities—the primary ones used by OSPM to cooperatively manage P-states. HWP
MSRs are documented in detail in the Intel Architecture Software Developer Manuals.

Table 6-7. IA32_HWP_CAPABILITIES MSR (0x771)

Field Description

Highest performance Value for the maximum non-guaranteed
performance level (aka Turbo).

Guaranteed performance Current value for the guaranteed performance
level. Can change dynamically as a result of
internal or external constraints (e.g., thermal or
power limits).

Most efficient performance Value of the most efficient performance level (aka
P-state with the lowest voltage).

Lowest performance Value of the lowest performance level.

Reserved Unused.

Table 6-8. IA32_HWP_REQUEST MSR (0x774)

Field Description

Minimum performance Minimum performance allowed in P-state selection.

Maximum performance Maximum performance allowed in P-state selection.

Desired performance A performance hint to hardware within the performance
range defined by IA32_HWP_CAPABILTIES (see Table 6-7).
If set to zero, hardware makes this decision autonomously.

Energy performance
preference

A performance hint to hardware that influences the
rate of performance increase/decrease and the result of
hardware optimizations.

Reserved Optional or unused.

182

ChApTer 6 ■ OperATing SySTeMS

Firmware Control
The previous sections detailed some of the challenges software faces in the selection of
P-states, such as how to strike a balance between low power and high performance that
will meet most users’ needs. Another challenge software faces is ensuring that new power
management features work correctly on older versions of software.

This is a commonly faced challenge as new hardware is frequently coupled
with old software. For example, a server utilizing hardware released in 2014 may be
running software released in 2009. Forklift upgrades, where software and hardware are
simultaneously upgraded, are uncommon due to cost, complexity, and integration risk.
In many datacenters, hardware platforms are upgraded or replaced several times under
the same software stack. This mismatch between the introduction of new hardware
and new software creates an environment where servers may not be fully enabled or
optimized for the latest power management features. This is very different from client
products that can rely on new hardware being coupled with new software as well as some
product-specific device drivers for power and thermal management. Figure 6-3 illustrates
the differences in energy efficiency between different Linux kernels without changing the
server, applications, or workload. Between 2008 and 2012, idle power decreased by 35 W
and active power at a given throughput level decreased by up to 15 W.

Figure 6-3. Power impact of different Linux kernels

Another challenge in a datacenter is enforcing a consistent set of power and
performance tradeoffs across systems running different operating systems. Each OSPM
policy makes its own unique choices about power state selection leading to unique
behaviors. One may be biased toward maximizing performance while another may be
biased toward minimizing power. There are cases where it is desirable to have a single
OS-agnostic power management policy that can be applied across many different
software environments.

It is not practical for an administrator to continually upgrade software to enable the
latest hardware feature support and optimizations. Similarly, it is not practical for an
administrator to fine-tune one OS to behave like another. To address these issues, several

183

ChApTer 6 ■ OperATing SySTeMS

server manufacturers provide their own P-state control capability that is implemented
in firmware. This allows an administrator to apply a uniform P-state control policy
to an entire rack of servers that may be using a variety of different operating systems
and versions. Similar to many OSPM implementations, these firmware policies allow
administrators to specify a preference toward low power, high performance, or a balanced
setting. These types of advanced configuration options are available as BIOS setup options,
allowing administrators to select between firmware or software-controlled policies.

P-state Policy
P-state policy is responsible for adjusting the performance capability of the processor
to meet current or expected demand. When logical processor utilization is low, demand
can be met by running the processor at low frequency. As logical processor utilization
increases, frequency must also increase to prevent the system from reaching full
utilization.

Similar to C-states, P-state policy is based primarily on logical processor utilization.
Individual policies may supplement utilization with additional information such as the
current operating frequency, or the priority of processes running. Utilization calculation
and time window considerations discussed for C-states are similar for P-states including
the use of IA32_PERF_CTR1 and IA32_TSC. Similar to C-states, the OS makes individual
decisions on behalf of each logical processor where the ACPI P-state domain indicates
this is necessary.

Performance Capacity
There are two ways a server can increase throughput, or the number of instructions
executed per second. The first is to utilize available resources. This is as simple as utilizing
idle cycles on a processor whenever that processor is not fully utilized. The second is
to increase the speed or rate at which a logical processor executes instructions. This is
accomplished through increasing frequency.

There are many cases where processor utilization alone is not sufficient to
understand the operating conditions of a processor. For example, if a processor is 50%
utilized running at 1.0 GHz (its minimum frequency), that processor has significantly
more performance headroom than if it was 50% utilized running at 3.0 GHz (its maximum
frequency). Although processor utilization is the same in both cases, the operating
conditions are very different.

An important concept to introduce that aids in the understanding of processor
operating conditions and OSPM P-state policies is performance capacity. This metric is
based on processor utilization, but it takes into account the impact of running at a higher
or lower frequency to accurately capture performance headroom. The capacity metric
represents the amount of the maximum guaranteed throughput capability the processor
is currently using.

Capacity Utilization at CPU Base Frequency
Current Frequency

(%) *=
CCPU Base Frequency

184

ChApTer 6 ■ OperATing SySTeMS

A capacity of 100% might represent a processor running at 100% utilization while at the
CPU base frequency. This is the guaranteed throughput capability of the processor. With
Turbo, which is a non-guaranteed frequency, it is possible for capacity to exceed 100%.

Figure 6-4 illustrates how OSPM uses frequency to achieve maximum throughput.
Up to 40% of maximum throughput is achieved at the lowest frequency, simply by
utilizing idle cycles. At the point at which logical processor utilization starts to approach
100%, OSPM P-state policy increases frequency to provide additional throughput.
When the processor reaches 90% of maximum throughput, it is running at the highest
frequency, and the last 10% of idle cycles are utilized to reach maximum throughput.
This chart also serves as an illustration of a P-state policy designed for best energy efficiency.

Figure 6-4. Comparison of frequency across a full range of performance

From a capacity standpoint, a 100% utilized processor running at 1.5 GHz and a
50% utilized processor running at 3.0 GHz are identical. Running at high utilization and
low frequency provides lower power and higher response times whereas running at low
utilization and high frequency provides higher power and lower response times. The
performance impact of P-states is realized in a datacenter in terms of higher or lower
response times.

Where there is sustained load on the system, a P-state policy should never impact
maximum throughput. Use of P-states varies between operating systems, and operation
at a given capacity can be accomplished in many ways. Whether to meet an increase in
compute demand by running at higher utilization or by running at higher frequency is
a key decision OSPM P-state policy needs to manage. Figure 6-5 shows a comparison
between average logical processor capacity and average logical processor utilization.

185

ChApTer 6 ■ OperATing SySTeMS

Figure 6-5. Comparison between average utilization and average capacity

Note ■ Datacenter administrators typically describe server utilization in terms of logical
processor utilization, or what is displayed by monitoring and profiling tools. Describing
utilization without taking into account frequency is terribly misleading since a server running
at 40% utilization may in fact only be running at 25% capacity.

In Figure 6-6, capacity exceeds 100% because the metric is based on the CPU base
frequency, or the guaranteed frequency of the processor. As discussed earlier, Turbo
mode is a non-guaranteed frequency, so the chart illustrates performance due to Turbo
being above and beyond the guaranteed performance capacity of the processor. Capacity
isn’t a perfect metric either; it assumes exceptional frequency scaling (ratio of the
percentage increase in performance to the percentage increase in frequency). In reality,
frequency scaling varies from system to system since it is heavily dependent on the
performance of the cache and memory subsystem and is influenced by unique workload
and system characteristics.

Figure 6-6. Sample logical processor utilization with requested P-state over one second

186

ChApTer 6 ■ OperATing SySTeMS

Figure 6-6 shows sample capacity from a single logical processor and energy efficient
use of P-states over one second of time. For simplicity, the example assumes nine P-states
with the lowest frequency mode at P8, the CPU base frequency of the processor at P1,
and Turbo at P0. During periods of light activity, P8 is frequently selected, even when the
capacity is greater than 30%. Nearly half of the throughput capability of the processor can
be satisfied by utilizing idle cycles at P8 alone.

There are cases outside of Turbo where the CPU will run logical processors at a
higher frequency than the OS requests. The integration of memory controllers and
I/O (PCIe) in the processor creates cases where logical processor utilization alone is
insufficient to determine if frequency is limiting performance. For example, it is possible
for network intensive workloads to drive line-rate traffic at very low processor utilization.
Due to this low processor utilization, a typical OSPM policy will select a low frequency
P-state. However, in this case, running logical processors at the highest frequency will
increase throughput through decreasing latency. With OSPM lacking visibility into these
types of bottlenecks, modern processors include special features to detect and handle
these cases. The CPU will autonomously increase processor frequency in cases of high IO
bandwidth to ensure maximum throughput is not impacted.

P-state Coordination
With P-states, as is the case for T-states and C-states, it is possible to change the way
coordination happens between software and hardware. Specified via ACPI, power state
coordination can use one of the following methods. (The vast majority of server operating
systems utilize HW_ALL.)

•	 HW_ALL: The OS makes state transition requests for each logical
processor and treats them as independent. The OS does not need
to consider any effects on other logical processors. Hardware takes
care of any coordination needed. Where there are two logical
processors in the same core requesting P1, and one of the logical
processors changes its request to Pn, the core remains at P1.

•	 SW_ANY: The OS makes a state transition request for a single
logical processor in the same domain and the effect is immediate
and independent of previous requests. Where there are two
logical processors in the same core requesting P1, and one of the
logical processors requests Pn, the core goes to Pn.

•	 SW_ALL: The OS makes state transition requests for each logical
processor in the same domain and treats them as dependent. For
example, if there are sixteen logical processors in a single domain,
the OS changes P-state for that domain by making the same
request on each of the sixteen logical processors.

187

ChApTer 6 ■ OperATing SySTeMS

Note ■ While p-state coordination is controlled by BiOS firmware, selecting a mode other
than hW_ALL can result in undesirable behavior because most operating systems have not
been enabled or optimized for other modes.

T-state Control
Operating systems also have the capability to control T-states, or throttling states,
described in Chapter 2. Modern server processors all include the appropriate
temperature sensors and hardware mechanisms to prevent the processor from
overheating, so OS control of T-states is no longer necessary. Using T-states to improve
energy efficiency is generally not done nor is it recommended. Unlike P-states, voltage is
not scaled for T-states—using T-states results in substantial decreases in performance for
only small decreases in power.

Global Power Policy
There are cases where the default C-state or P-state policy set by the OS may be out
of sync with user performance requirements. Operating systems have two different
mechanisms for tuning power management to address this. The most common is support
for predefined power policies. Operating systems provide options for the administrator
to set a global power management policy that will change the behavior and selection
of C-states and P-states to be more biased toward low power, high performance, or a
balanced approach. For example, the Windows Server control panel exposes options
such as high performance, balanced, and power saver that change the way the internal
OSPM algorithms select C-states and P-states. A second type of tuning is possible using
advanced settings or options accessed using low-level tools or interfaces that allow
administrators to customize their own policy.

As discussed in Chapter 2, there are a variety of other power management features
outside of C-states and P-states that impact power and performance. Most of these power
states across memory, caches, and processor interconnects are not explicitly controlled
by OSPM. The visibility required to make power state decisions only exists in hardware.
Although OSPM has no low-level control over these power features, hardware does
expose a mechanism for the OS to specify an energy policy preference.

Energy policy preference, or OSPM bias toward low power or high performance, is
controlled by the IA32_ENERGY_PERF_BIAS MSR described in Table 6-9. The register is used
to define the desired balance between power and performance for those power management
features that are not explicitly controlled by OSPM. In environments with strict response time
requirements, it’s preferable to use the minimum IA32_ENERGY_PERF_BIAS value rather
than disabling features, since disabling power management features can increase power and
temperature, ultimately impacting maximum performance. IA32_ENERGY_PERF_BIAS is
dynamic so it can be changed at runtime as OSPM sees fit.

188

ChApTer 6 ■ OperATing SySTeMS

Table 6-9. IA32_ENERGY_PERF_BIAS MSR (0x1B0)

Bits Width Field Description

3:0 4 bits Energy policy preference hint Represents a sliding scale where the
value 0 is maximum performance
and the value 15 is minimum energy.
A value of 7 roughly translates to a
balanced policy.

63:15 49 bits Reserved Unused

Process Scheduling
The OS process scheduler doesn’t directly interact with hardware power management
features, but its scheduling policies can have a significant effect on energy efficiency.
Many scheduler features that improve performance, such as starvation prevention
(ensuring every process gets a chance to run), unique treatment of CPU and I/O bound
processes, load balancing, and migration optimizations, have a positive impact on energy
efficiency. However, there are many features where performance benefit has a negative
impact. In addition, the answer to the question of whether or not various scheduler
features improve energy efficiency can depend on the target microarchitecture. Some
of the key factors that impact kernel scheduler energy efficiency include awareness of
logical processor, core, and package topology and capabilities, timer tick frequency, and
execution consolidation.

Topology and Capability Awareness
A key piece of information an OS scheduler needs in order to make energy-efficient
decisions is to what degree multiple hardware threads or logical processors on the
same core share resources. Where there is very little resource sharing between logical
processors, a process scheduler can treat them as independent execution resources.
However, where there is substantial resource sharing between logical processors, a
process scheduler needs to understand how the throughput capability of an individual
logical processor is impacted as additional logical processors sharing the same resources
are concurrently utilized.

With a large number of servers running at low utilization, the process scheduler has
a key decision to make in terms of how to utilize logical processors. One strategy is to
utilize a single logical processor on every core before utilizing any of the simultaneous
multi-threading (SMT) “sibling” logical processors. This has the benefit of giving
logical processors dedicated access to otherwise shared core resources, keeping logical
processor utilization low. Low logical processor utilization leads OSPM to use lower
power P-states. Another strategy is to utilize both logical processors on a core before
utilizing any of the additional cores. This limits coherency traffic and minimizes resource
use, improving C-state residency. It may allow some of the cores to remain in long
uninterrupted idle durations.

189

ChApTer 6 ■ OperATing SySTeMS

There is no single right answer for the best strategy to pursue since the optimal
decision is microarchitecture specific. Your strategy depends on the amount of resources
shared between logical processors; it is influenced by cache sizes and levels of the cache
hierarchy; and it is subject to the different types of C-states available and the latency
to transition in and out of them. To some extent, it even depends on unique workload
characteristics. Generally speaking, the majority of server processors benefit from
spreading software threads out over as many cores as possible. Typically, the scheduling
decision that keeps core frequency lowest is the most energy efficient. When a scheduler
utilizes all logical processors on the same core before scheduling on the next cores,
resource contention increases utilization and leads to OSPM use of higher power P-states
earlier. It takes a substantial increase in C-state residency to offset even a single step
increase in P-states.

Another strategy from a process scheduling standpoint is to utilize all the
logical processors on one CPU before utilizing logical processors on the other CPU.
Conceptually, this makes a lot of sense as a CPU executing no instructions should be
able to enter very low power states. In reality, benefits with this approach are mixed. In
a multi-socket system with two or more CPUs, any single CPU cannot independently go
to a deep package C-state while any other CPU in the system is active. There can be a
significant amount of memory and I/O device activity on a CPU even when all its logical
processors are idle due to the integration of the memory controller and PCIe.

Another challenge with utilizing only logical processors on one CPU is the impact
to the non-uniform memory access (NUMA) locality. If remote memory references
increase as a result of a scheduling decision, it can increase response times and
decrease energy efficiency.

OSPM P-state policies that are optimized for performance may see an energy efficiency
benefit to this approach as they use high-frequency P-states even at low utilization.
In these environments, utilizing all the logical processors on one CPU before utilizing
logical processors on the other CPU limits the number of CPUs running at high voltage.

Timer Tick Frequency
A periodic timer interrupt determines the frequency at which the operating system will
perform necessary scheduling tasks. This periodic timer or timer tick plays a significant
role in energy efficiency, both when the processor is active and when it’s idle. When idle,
logical processors must wake up to handle timer ticks, interrupting the coordination
necessary to enter a deep package C-state. Modern operating systems suppress the timer
tick or limit the number of timer ticks when the system is idle. For example, at idle, timer
ticks may be received by a single logical processor that is responsible for forwarding
the interrupt only to active logical processors. This improves the average idle duration
for logical processors and results in improved package C-state residency. This action is
commonly called tick skipping, dynamic ticks, or tickless idle.

When the processor is partially utilized, high-frequency timer ticks can lead to higher
performance, but this comes at a power cost. A kernel with a 1000 Hz tick rate delivers a
timer interrupt every 1 millisecond whereas a kernel with a 64 Hz tick rate delivers a timer
tick every 15.6 milliseconds. Linux has the option to get rid of timer ticks even when busy.

190

ChApTer 6 ■ OperATing SySTeMS

From a performance perspective, running with a higher frequency tick results in
lower response time. The increased time accuracy from a higher frequency tick improves
the resolution of timed events—it leads to more precise process preemption and it
improves enforcement of priority and fairness policies. For example, a high-priority
process that is reading data from a drive will have less latency between drive reads with
a high-frequency timer tick. From a power perspective, systems running with a higher
frequency timer spend more time handling timer interrupts. This increase in interrupt
handling time drives logical processor utilization higher and splits long idle durations
needed for deeper C-state entry into several shorter idle durations. Increased interrupt
rates also increase the number of C-state transitions, accumulating more C-state exit
latency and adding more transitional energy.

Execution Consolidation (Core Parking)
A process scheduler spreads software threads across as many logical processors as possible,
avoiding scheduling multiple software threads on the same logical processor until there
are no more free logical processors available. This maximizes use of parallel resources and
minimizes process response time. There are some cases from a performance, power, or
thermal perspective when it is preferable to do the opposite—scheduling multiple threads
on a single logical processor to leave other logical processors idle. When execution is
consolidated in this manner, the OS must also ensure the handling of device interrupts and
other timed events is done only on the subset of active logical processors.

Energy Efficiency

Scheduling software threads to maximize utilization on a single logical processor while
leaving other logical processors idle increases deep C-state residency and minimizes
power state transitions. Execution consolidation has many different names in products
and research such as core parking, core idling, and power-aware scheduling. Creating
an imbalanced load in this manner keeps some number of logical processors in an
uninterrupted idle state.

Although execution consolidation does increase deep C-state residency, it doesn’t
necessarily improve energy efficiency—whether or not this practice benefits energy
efficiency is dependent on many factors. One key consideration is the amount of power
that comes from the cores in comparison to the remaining uncore components, such
as the last level cache, memory controllers, and processor interconnects. Execution
consolidation is not favorable for CPUs that have a significant amount of power coming
from uncore components. It takes only a single active logical processor to keep the
uncore components in an active state. In these cases, the percentage increase in power
from running a workload on two cores compared to one core is very small. Execution
consolidation is more favorable where a CPU has non-core resources, such as mid-level
caches, shared by small subsets of cores, but not all cores. The more that cores and
resources shared by small subsets of cores account for total CPU power, the more
favorable execution consolidation becomes.

Execution consolidation can increase response times as only one software thread
can run at any given time on a logical processor. With execution consolidation, software
threads that are ready to execute may need to wait to execute to avoid utilizing those

191

ChApTer 6 ■ OperATing SySTeMS

logical processors kept in an uninterrupted idle state. This practice typically results in
active cores running a high utilization, also limiting the time a CPU can utilize package
C-state states. Another consideration is the degree to which the software threads share
data. Where there is substantial data sharing, particularly data that is frequently modified,
execution consolidation can improve cache locality significantly. This characteristic is
not clearly visible to a process scheduler, so dynamically identifying beneficial cases is
difficult. Where cache benefits are realized, the reduction in execution time and decrease
in interconnect and memory utilization can offset some or all of the cost of increased
execution time. The same execution consolidation concept can extend to CPUs in
multi-socket systems. However, it is common for the memory controller and I/O (PCIe)
in the CPU to be active even if no software threads are running. This uncore activity
consumes a significant amount of power. As a result, simply moving software threads off
of a socket will not allow that socket to enter a low power idle state.

In measuring energy efficiency, a key consideration is how execution consolidation
is used in conjunction with P-states. For most processors, actions taken by the process
scheduler that cause increases in logical processor utilization typically lead to increased
use of higher frequency P-states. In these cases, energy efficiency suffers because even
very small increases in core voltage result in very large increases in power. In practice, it
takes very specific or synthetic workloads on very specific processors to show an energy
efficiency benefit from execution consolidation, but these cases are the minority.

Power Capping

A more universally beneficial application of execution consolidation is for power capping,
that is, managing the system so it is always operating below a defined power limit.
The primary mechanism for server power limiting is by placing hard limits on logical
processor frequency and memory bandwidth. When these mechanisms are exhausted
and the power limit is still not met, platform firmware can initiate logical processor
idling to reduce power further. In cases where there is a failure in power or cooling
infrastructure, it may take several different power limiting mechanisms to meet the power
limit and avoid system shutdown.

ACPI includes an optional processor aggregator device that provides an interface
and control point for firmware to idle logical processors. When additional power limiting
is necessary, firmware requests a specific number of logical processors using the
ACPI _PUR method, and the OS satisfies this request.

There is no energy efficiency benefit to power limiting when the practice is
characterized on a single server. However, in cases where a rack of servers are operating
under a rack-level power limit, datacenter management software can limit power of less
critical servers in order to give additional power budget to more critical ones.

Single-Threaded Performance

Another application of execution consolidation is to improve single-threaded
performance. As discussed in Chapter 2, Turbo frequency increases with the number
of idle cores in the CPU. Restricting the key software thread along with device interrupt
handling, timed events, and any other background activity all to a single core ensures the
active core is always running at the maximum Turbo frequency.

192

ChApTer 6 ■ OperATing SySTeMS

Memory Management
Similar to the concept of execution consolidation, if a server is using less than its full memory
capacity, it is possible to consolidate memory references to a subset of memory. This allows
remaining memory to enter uninterrupted low-power states. There has been significant
investigation in this area, but only a limited number of scenarios realize a benefit.

Memory consolidation requires the OS to understand the physical memory
topology. Similar to CPU topology, this information is conveyed to the OS through ACPI.
The Memory Power State Table (MPST) describes physical memory in terms of memory
power nodes, or specific address ranges that are power managed as a single entity.
There can be several address ranges within a single node because these ranges may not
necessarily be contiguous. In addition, MPST describes the power states supported by
hardware including power consumption and exit latencies. Similar to OSPM for C-states
and P-states, this level of information is critical for the memory manager, so it has the
right inputs to determine power saving and performance impact.

Unlike C-states and P-states, the OS is not required to initiate power state transitions
for memory nodes. Hardware autonomously transitions power nodes between
appropriate power states based on their activity level. Memory nodes are typically
defined at the channel level instead of a rank or DIMM level. The reason for this is
because the lowest power states for memory, such as self-refresh, are applied at the
channel level. Figure 6-7 shows the relationship between physical memory and memory
power nodes. A memory power node could include from one to three DIMMs.

Figure 6-7. Relationship between physical memory and memory power nodes

193

ChApTer 6 ■ OperATing SySTeMS

Equipped with the physical memory topology, latency, and power information, an
OS memory manager can make power-aware decisions about memory allocation. First,
physical memory can be allocated so that DIMMs are used to capacity on one channel
before DIMMs are used from remaining channels. Next, the OS memory manager can
periodically relocate physical memory. This is necessary as a large amount of unused
physical memory is uncommon and memory becomes fragmented over time. Relocation
puts frequently referenced memory into one subset of power nodes, and infrequently
referenced or unallocated memory into another subset of power nodes. Although this
practice doesn’t ensure that one subset of nodes is always idle, it does allow for significant
residency improvements in the deepest power states.

As is the case with other power management features described in this chapter,
memory consolidation needs to balance the need for low power with the need for high
performance. The default settings for a server are to interleave memory across channels
and across ranks of memory. This increases the bandwidth capability of the system
by spreading large regions of allocated memory evenly across channels, ranks, and
DIMMs. In order to enable power-aware memory management, this interleaving needs
to be disabled by BIOS firmware when the memory controllers are initialized. From a
memory bandwidth perspective, many datacenter workloads use only a fraction of the
bandwidth capability, so no performance impact is realized. For other workloads with
higher memory bandwidth requirements, this is an unacceptable trade off. It is possible
for an operating system to maintain some level of memory interleaving to accommodate
bandwidth demands, but the overhead of managing this interleaving in software would
eliminate any of the potential benefits.

Another challenge facing memory reference consolidation is the complexity of
relocating memory. Relocating memory adds overhead in terms of additional processor time
and additional memory traffic, both of which reduce the time spent in low-power states.
Workloads that change their memory reference characteristics over time or memory pages
that are repurposed over time make it difficult to predict what pages will be hot or cold.
Finally, not all regions of memory can be relocated, such as reserved or non-paged memory.

The potential benefit of memory consolidation is being reduced over time as
datacenters transition from DDR3 1.5 V to DDR3L 1.35 V to DDR4 1.2 V. Not only is
active memory power lower, but the power differences between shallow memory power
states applied at a rank level and deep memory power states applied at a channel level
are decreasing. The complexity of power-aware memory management leads to limited
applicability. It requires very specific workloads and system configurations to show
significant energy efficiency benefits.

Device Drivers
In addition to processor drivers that implement C-state and P-state control policies, some
I/O device drivers are also responsible for implementing device power management
and control policies. Other devices autonomously manage power and do not define
software interfaces for power state discovery and control. Most servers can’t tolerate the
latency of deep D-states in a production environment. In cases where the latency impact
is negligible, some devices monitor their own activity and utilize shallow states. In other
cases, many D-states features are unused or disabled on servers.

194

ChApTer 6 ■ OperATing SySTeMS

PCIe, SATA, and USB
As discussed earlier in the chapter, operating systems use PCI-SIG defined standardized
interfaces for discovering PCIe D-state capabilities, for putting devices into a D-state,
and for querying the power status of devices. The OS PCI driver discovers the supported
capabilities from PCI configuration space when it enumerates the PCI devices. D-states
for PCIe, SATA, and USB devices are managed through similar native hardware interfaces.
ACPI is used to augment or supplement these capabilities’ for example, to handle devices
that lack native hardware interfaces, such as end-point devices on I2C (standard bus for
attaching low-speed peripherals). Similar to C-states and P-states, software coordinates
with hardware to initiate D-state transitions.

Software-initiated D-states require a greater level of coordination than do processor
power states because they involve device, host, bus, and class drivers. Device drivers
are responsible for saving and restoring device context before and after devices are put
into low-power states. In addition, the OS has the additional responsibility of ensuring
devices have no pending transactions before initiating entry into a D-state. Additionally,
the OS must ensure that all devices on a bus are in a low-power state before putting a bus
in a low-power state. Due to the latency of device power management, server operating
systems typically initiate D-states based on entry into a higher level system state, such
as S3. Prior to entering S3, the OS is required to put each device into a D3 state. The OS
maintains specific mappings between S-states and different D-states bus and device
components must go into prior to entering a target S-state.

Graphics
Modern server processors may also include integrated graphics processors. One of the
more complex cases of I/O device driver power management is for graphics because,
in addition to the responsibility of managing D-states, the graphics driver must also
manage graphics processor P-states. Similar to a processor driver, the graphics driver’s
P-state request is also based on events that measure the current level of activity. Device
drivers use a combination of demand, latency, and frame per second (fps) requirements
in determining the appropriate P-state. The graphics driver updates the PCU with
information in addition to the required core and ring performance to keep graphics
running effectively.

With integrated graphics, processor cores and graphics share the same package
power and thermal budget. This is unlike most servers, which feature a discrete graphics
controller. With integrated graphics, it’s not possible for both graphics and processing
cores to be active in the highest frequency state at the same time. Two different device
drivers making requests for higher performance and power states on the same CPU
without coordination between them can cause issues where either the processor cores
or graphics aren’t getting their requested performance. When the power budget cannot
satisfy the requests of both drivers, the PCU makes decisions based on its own internal
knowledge to best balance the power budget.

Graphics devices also utilize C-states, but these are controlled autonomously in
hardware. Graphics hardware detects when resources are idle and handles C-state entry
including context save and restore. C-states are immediately exited whenever graphics
hardware is accessed by the device driver.

195

ChApTer 6 ■ OperATing SySTeMS

Virtualization
A virtual machine monitor (VMM) has all the same responsibilities for power management that
a native operating system does. The VMM, or host, is responsible for controlling C-states,
P-states, and global power policy. In addition to these mechanisms, VMMs enable several
additional capabilities that improve energy efficiency such as server consolidation or new
approaches to power management enabled by virtual machine (VM) migration.

Power State Control
VMM management of C-states, P-states, and global power policy is not a responsibility
shared with guest VMs. These features are host-controlled. If guest VMs were allowed
to access power state control capabilities, it would create a number of policy conflicts
between concurrently running VMs. Some VMs, with no knowledge of other VMs, would
require high performance, biasing state selection toward shallow idle states and high-
power active states. Some VMs would require low performance, biasing state selection
toward deep idle states and low-power active states, and other VMs would request
everything else in-between.

Allowing the host to control power management and limiting or eliminating the role
of guest VMs is common practice across the various models for virtualization, such as the
hypervisor model used in ESXi, the host-based model used by Hyper-V and the kernel-
based virtual machine, or KVM, and the hybrid model used by Xen. Each of these VMMs
boots VMs using virtual BIOS. The virtual BIOS exposed to guest VMs has a different set
of capabilities than the physical server’s own BIOS firmware. To facilitate host-controlled
power management, the virtual BIOS does not expose power management features to the
guest VM. This prevents guest VMs from unnecessarily loading drivers and control policy
for C-states and P-states—all guest VMs need to do is execute a halt. This eliminates
additional overhead introduced by guests making state requests that would be ultimately
ignored by the host.

There are some cases where guests are enlightened, or aware they are running in
a virtualized environment. These guests may be given certain control capabilities or
may have an awareness of power management features that is not typical of guest VMs.
This enlightenment allows for some power management optimizations by the host. For
example, different C-states or S-states may be exposed to guests, allowing individual VM’s
power state selections to act as feedback for the host. These requests allow a host power
management policy to consider individual VM requests along with its own policy to make
optimal system-level decisions.

Idle Considerations
Virtualized environments present some unique challenges to getting to low idle power.
Even an operating system doing nothing generates significant activity when there are
many different guest VM operating systems loaded. Similar to native environments, or
environments that run a single operating system, some minimal amount of activity exists
at idle, such as periodic timer interrupts or network heartbeats. These periodic events
continually wake up logical processors and can prevent the system from entering deep

196

ChApTer 6 ■ OperATing SySTeMS

package C-states. Even a minimal amount of activity becomes significant when it is
multiplied by a large number of VMs on a single physical system.

Similar to native operating systems, many VMM have optimized idle scenarios in an
attempt to align periodic events and reduce the number of times logical processors are
woken up. For example, timer ticks for different VMs (especially those sharing a common
frequency), can be aligned to happen at the same time. This causes periodic event
handling for multiple VMs to happen in parallel, reducing the number of power state
transitions and increasing average idle residency.

Figure 6-8 compares VMM and guest idle scenarios across several years of software
improvements. In the figure, the base system idle power is approximately 100 watts. The
2009 software stack uses a combination of guest operating systems released at that time
and earlier, with varying degrees of idle activity optimization. The VMM in this case is
doing little to no periodic activity alignment. The 2014 software stack uses a combination
of guest operating systems released at that time and earlier and the VMM aligns periodic
activity. This comparison illustrates the importance of software components in achieving
low idle power in a virtualized environment.

Figure 6-8. Idle power impact due to software in a virtualized environment

Active Considerations
Utilization characteristics in a virtualized environment are typically different than a
native environment. Guest VMs are limited in the number of logical processors, the
amount of memory, and the amount of network bandwidth they can utilize. These limits
vary based on instance type and VM size. Restricting applications to different subsets
of system resources leads to asymmetric resource utilization. Resource utilization in
a native environment is typically very similar across processors and sockets because
applications have the ability to utilize all available system resources. In a virtualized
environment, it’s not uncommon to see some logical processors running at sustained
100% utilization, while others are idle or at low utilization. These significant differences in
utilization characteristics affect the OSPM policy’s ability to make P-state decisions that
accommodate a wide variety of VM performance requirements.

197

ChApTer 6 ■ OperATing SySTeMS

Figures 6-9 and 6-10 illustrate typical logical processor utilization at a fixed
throughput rate. In the example of a native environment, the system experiences very
few changes in utilization characteristics and many of the logical processors have similar
utilization levels. In the example of a virtualized environment, the system experiences
frequent changes in utilization characteristics with great variation in utilization across
logical processors. These qualities lead to a challenging set of decisions for OSPM.
In order to meet the performance requirements of a wide variety of VMs, virtualized
environments are typically much less aggressive in their use of power management.

Figure 6-9. Example of 30% throughput in a native environment

Figure 6-10. Example of 30% throughput in a virtualized environment

198

ChApTer 6 ■ OperATing SySTeMS

Another consideration from an energy efficiency standpoint is the overhead of
additional software layers present in a virtualized environment. This overhead can
increase execution or response time and decrease throughput. Either of these impacts
increases power as transactions or computational tasks take longer to complete.
The impact of virtualization overhead increases as more virtual servers are consolidated
onto the same physical server. CPU bound workloads tend to experience less impact
from overhead, typically less than 10%, since there is little to no kernel time. I/O-bound
workloads that execute lots of system calls, retire a lot of privileged instructions, and
generate a lot of interrupts typically see greater than 15% overhead.

As a result, software or hardware enhancements that limit or eliminate the overhead
of a VMM provide significant improvements in energy efficiency. Virtualization
technologies such as EPTs (extended page tables) or VT-d (virtualization technology for
direct device assignment) are typically thought of as performance optimizations, but
running workloads on systems with and without these features enabled demonstrate
their capability as a power optimization.

Consolidation
The majority of native servers, or servers that run a single operating system, support only
one primary application. Limiting the number of applications has several benefits in this
scenario. It improves performance, it avoids resource conflicts, it improves the ability
to monitor applications, and it encapsulates problems. In many cases, running a single
application on a server also leads to low CPU utilization.

The single-best method for improving energy efficiency of a server is to increase
utilization. The energy cost of a server transaction is inversely proportional to utilization.
For example, the average energy cost of a server transaction is up to five times lower at 60%
capacity than it is at 10% capacity. Server consolidation is one of the primary mechanisms
for increasing utilization. It allows a number of existing servers, such as servers running
at low utilization or servers running with low-performance processors, to be replaced by
a single higher performance server. The operating systems and applications from existing
servers are consolidated and deployed as guest VMs running under a VMM on the higher
performance server. Even though multiple applications are running on the same physical
server, these applications continue to gain many of the same isolation benefits realized
with a 1:1 mapping between applications and physical servers.

The benefits of consolidation from an energy efficiency perspective are immense.
The primary benefit is the power savings realized by decreasing the number of physical
servers required to support the same set of applications. Most virtualized environments
have greater than a 10:1 consolidation ratio (the number of virtual servers running on
a single physical server), so the opportunity to save power is tremendous. After server
consolidation, many of the older and higher powered servers can be powered off and
removed completely. The next benefit of consolidation is the ability to increase the
average utilization of servers. Physical servers running a VMM supporting multiple
applications typically have much higher utilization than native servers supporting a
single application.

199

ChApTer 6 ■ OperATing SySTeMS

Note ■ Consolidation is often limited by non-CpU constraints such as the amount of
DrAM in the platform or performance requirements defined in service level agreements.

Servers running legacy software, or older applications and operating systems,
are frequent targets for consolidation. Older operating systems may not have optimal
support for the latest hardware power management features or may have some power
management features by default. For example, environments such as Windows Server
2003 or Linux distributions using pre-2.6.5 kernels do not enable the most beneficial
power management features out of the box. In this context, consolidation provides
additional benefit by enabling legacy software environments to use the latest OSPM
policies. When guests with legacy software are run under a modern VMM, many of the
latest software power management benefits are realized.

VM Migration
A server running at 25% of maximum performance is energy proportional if it consumes
no more than 25% of maximum power. Technologies such as C-states, P-states, and
memory CKE (Clock Enable) are key ingredients in the pursuit of energy proportionality;
however, servers still have a long way to go to meet this goal.

Migration allows VMMs to move a guest VM from one physical server to another
without service interruption or loss of execution context. There are many reasons to
move a VM from one physical system to another. The most common reasons are to
perform maintenance on a system or to vacate a system that is experiencing some type
of performance or functional issue. Datacenter management software also uses VM
migration to load balance virtual servers across physical servers. Using migration and
consolidation together, some servers can remain at high utilization where the energy
cost of transactions is minimized. The remaining servers can be suspended (S3) or
powered off (S5). Figure 6-11 illustrates energy proportionality through migration and
consolidation. With migration and consolidation represented by this example, energy
efficiency can be improved by more than 25%.

200

ChApTer 6 ■ OperATing SySTeMS

Inactive servers can be awakened by wake-on-LAN packets or by standard
out-of-band management interfaces such as the Intelligent Platform Management Interface
(IPMI). It is also common to keep some number of servers idle, but not suspended.
When new VMs are created, these instances can be provisioned on unutilized but active
servers, hiding the latency of initializing suspended servers. These practices allow for a
more dynamic resource pool where energy efficiency is maximized and fluctuations in
throughput are accommodated without waiting for servers to enter and exit S-states.

Migration is gaining adoption to improve utilization and energy efficiency, but
the practice is not widespread today. There are a number of reasons why adoption is
inhibited. First, VM migration is very expensive from a latency perspective. It can take
several minutes to migrate a VM depending on the workload, application, and active
memory footprint. During the migration, the average response time of transactional
workloads increases sharply. For computational workloads, the maximum throughput
decreases. Applications utilizing local storage in either case present additional
challenges. Many datacenters lack the capability to accurately predict current and future
demand. Transitions in and out of S-states exhibit high latency. Exiting S3 can take
several seconds to resume where there is significant execution context that needs to be
restored. Hardware and software innovations will continue to accelerate VM migration
time and decrease S-state transition time making this a more viable energy efficiency
strategy moving forward.

Figure 6-11. Example of efficiency through migration and consolidation

201

ChApTer 6 ■ OperATing SySTeMS

Comparison of Operating Environments
All OSes use the same mechanisms for power management discovery and control,
however the strategy and use of these interfaces is very different. Each OS makes a unique
set of decisions on how to measure activity, how frequently to change power states, and
what is acceptable performance impact. Each OS determines whether these decisions
are self-contained or influenced by outside services, management, and orchestration
software. Each OS determines the amount of customization and tuning it will allow and
how different combinations of OS decisions map to higher level global power policies.

The following sections provide details on unique characteristics of each of the
most broadly deployed server operating systems. The section outlines unique traits and
behavior of OSPM default settings including a look at the balance between power and
performance. Major feature and policy changes of each OS are outlined to compare
specific OS versions with different power management features and capabilities
described in this chapter.

Microsoft Windows Server (including Hyper-V)
Windows Server OSPM is optimized for best energy efficiency by default. Applications
running in this environment consume less energy, minimizing cost. Significant increases
in response times are realized as a result of the focus on lower power. As is the case across
all operating systems, OSPM policies do not typically impact maximum performance.
Power management features that impact performance are not used when there is
sustained high CPU utilization.

The Windows Server P-state policy is capacity driven, increasing frequency when
utilization passes a predefined threshold. The threshold to increase frequency is high,
ensuring that use of higher frequency only happens when the server is no longer able
to accommodate demand at the current frequency. The policy is more aggressive in
decreasing frequency when utilization decreases than it is in increasing frequency when
utilization increases, leading to lower power. The Windows Server P-state policy does an
excellent job of utilizing the full range of ACPI exposed P-states. Utilization is observed
over tens of milliseconds and the OSPM P-state policy has the ability to maintain past
history of utilization.

The Windows Server C-state policy is simple, examining utilization over a window of
tens of milliseconds. The C-state policy makes a single target state decision based on the
last observation window that is used throughout the current observation window. The
simplicity of the policy has the advantage of being non-intrusive, adding no latency to the
C-state entry path in software. With hardware demotion mechanisms filtering out non-
optimal C-state decisions, the solution provides outstanding energy efficiency.

Windows Server supports user-configurable global power policies including
power saver, balanced, and high performance. Each of the power policies represents
a combination of individual OSPM parameters that control C-state and P-state policy
decisions. The behavior of each of these parameters and features is highly configurable.
For example, it is easy to set a P-state floor or ceiling, modify thresholds for frequency
increase or decrease, or change the duration of the observation window used to measure
utilization. An example of this is in high-performance mode where P-states below the
advertised frequency of the CPU are not used.

202

ChApTer 6 ■ OperATing SySTeMS

It is typically much easier to tune OSPM policies to decrease response time than it is
to tune policies to decrease power, making the Windows Server default behavior a good
starting point for administrators looking to fine-tune OSPM to meet specific performance
requirements. The power policies also change IA32_ENERGY_PERF_BIAS, adjusting
hardware power management features to meet the desired balance between power and
performance specified by the OS. Several of the key Windows Server tuning mechanisms
are described in detail in Chapter 7.

Windows Server also includes advanced power features that can provide additional
benefits in some special cases. These advanced features can provide power saving with
a subset of specific workloads running on specific systems. Where feature benefits don’t
apply to most workloads and systems, the advanced features are typically disabled by
default. The core parking feature in Windows Server consolidates execution to improve
energy efficiency. It dynamically adjusts the number of logical processors used for
running software threads, allowing some logical processors to enter deep, uninterrupted
idle states. The Windows Server utility distribution feature can be coupled with core
parking. Utility distribution monitors activity that cannot easily be relocated from one
logical processor to another, such as software threads or interrupts affinitized to a
specific logical processor. Windows Server uses this information to improve core parking
decisions and to improve prediction of future demand. The memory cooling feature
consolidates memory references to a limited set of memory power domains, saving
power for systems with large memory capacity where significant portions of memory are
not frequently utilized.

OSPM is largely the same between Windows Server and Hyper-V, but the specific
parameters and tuning values that define power saver, balanced, and high-performance
power policies vary slightly between the two. Hyper-V includes some minor changes that
trade off some of the power savings for improved response times.

Table 6-10 identifies major power management features and improvements added to
Windows Server over time.

Table 6-10. Historical Changes in Microsoft Server Operating Environments

Version Released Changes

Windows Server 2003 2003 Added support for C-states.

Added support for P-states.

Added support for T-states.

Added global power policy (user selectable).

Default policy is high-performance (results in
P-states not used by default).

No independent logical processor control for
P-states and C-states, only a single processor
supported.

(continued)

203

ChApTer 6 ■ OperATing SySTeMS

Linux Distributions (including KVM)
Linux OSPM is optimized for low latency. Applications running in this environment have
improved performance, minimizing transaction response times. A significant increase
in power is realized as a result of the focus on lower latency. Similar to other operating
systems, the OSPM policies do not impact maximum throughput. Power management
features that may impact performance are not used under sustained high CPU utilization.

Linux supports P-states through the CPUfreq infrastructure which provides
interfaces for low-level control drivers and high-level control policies, called governors.
Governors can be dynamically changed, but the default for most server distributions is
ondemand. Ondemand is capacity driven, and selects the highest available frequency
when utilization is above a predefined threshold. When utilization falls below the
threshold, the next lowest frequency is used. Under variable loads, frequency is increased
more aggressively than it is decreased, leading to low latency. When a server is partially
utilized, ondemand tends to use a limited range of ACPI-exposed P-states, with the
majority of requests being for Pn or P0. This is due to the P0 being the only target state

Version Released Changes

Windows Server 2003 R2 2005 No significant changes to Windows Server 2003.

Windows Server 2008
(and Hyper-V role)

2008 Default processor performance policy is
balanced (results in P-states used by default).

Added power policy for ASPM.

Windows Server 2008 R2
(and Hyper-V role)

2009 New processor power management policies with
significant energy efficiency improvements.

Added timer tick coalescing.

Added intelligent timer tick distribution
(tick skipping).

Added core parking.

Added power metering and budgeting.

Added remote power management and
group policy.

Hyper-V now built in.

Hyper-V live migration.

Windows Server 2012 2012 Added logical processor idling.

Added memory cooling.

Hyper-V supports more VMs and more processors
per VM (4 to 64).

Windows Server 2012 R2 2013 No significant changes to Windows Server 2012.

Table 6-10. (continued)

204

ChApTer 6 ■ OperATing SySTeMS

used whenever utilization exceeds the threshold. Ondemand observes utilization of tens
of milliseconds and does not consider past history.

For environments without response time requirements that can tolerate additional
latency, the conservative governor is an alternative to ondemand. This governor provides
a more balanced use of the full range of P-states. In comparison to ondemand, the
conservative governor results in higher response times, but with lower power. The
performance governor can be used to permanently run at the highest frequency, and the
powersave governor can be used to permanently run at the lowest frequency.

Intel also provides its own native P-state driver called intel_pstate. This driver is
optimized for low response times and minimizes latency and the software overhead of
P-state selection as the governor and scaling driver are combined. The driver is enhanced
to understand the specific capabilities of each processor, which allows for improved
use of Turbo. The intel_pstate driver can be described as a native driver, meaning it
uses CPU interfaces to determine a richer set of information about power management
capabilities instead of using ACPI. Native drivers are resilient to any issues the BIOS may
introduce with incorrect ACPI objects.

Similar to P-states, Linux supports C-states through the CPUidle infrastructure,
which provides the same separation between low-level control drivers and high-level
control policies. The default governor for most server distributions is menu. OSPM
policy uses a number of different metrics to make an optimal C-state decision. These
include previous C-state residencies, expected idle duration, and the exit latency of target
C-states. A target C-state is selected for every idle entry on every logical processor rather
than determining a single target C-state for all logical processors over some time window.
The advantage of this approach is that poor decisions are less frequent; the disadvantage
of this approach is the cost of additional software overhead. The advantages typically
outweigh the disadvantages, providing superior energy efficiency. Intel also provides its
own low-level intel_idle driver that is enhanced to understand specific capabilities of
each processor. intel_idle is able to expose more hardware C-states than an ACPI BIOS
can expose to acpi_idle. For example, on some servers, intel_idle is able to export a
C1 state with lower latency than C1E. Unlike intel_pstate, it does not replace existing
higher-level policy.

Linux does not include global power policies that automatically change governors,
their tuning, and platform-level controls such as IA32_ENERGY_PERF_BIAS, with a
single setting. Rather, Linux relies on individually selecting and tuning C-state
governors and P-state governors along with utilities such as cpupower to manage
IA32_ENERGY_PERF_BIAS settings and options for execution consolidation. Linux has
extensive capabilities to fine-tune individual power management parameters such as
setting a minimum frequency or restricting use of a specific C-state. These are discussed
in greater detail in Chapter 7.

Linux has several advanced power features that can provide additional benefits in
certain environments. These features may work well with a specific workload and specific
microarchitecture, but not well in others. As a result, some of these features are disabled
by default. The scheduler supports core parking through cgroups and the CPU hotplug
infrastructure. These features can be used to consolidate execution to a specific subset
of logical processors. However, it must be coupled with additional management software

205

ChApTer 6 ■ OperATing SySTeMS

to enable dynamic execution consolidation. Energy efficiency benefits of execution
consolidation are more common when coupled with a low-latency P-state policy, such as
ondemand. Energy efficiency benefits are less common when this technique is coupled
with a balanced or low-power P-state policy.

Note ■ The kernel-based virtual machine (KVM) inherits key power management
functionality from Linux, so there are very few differences in power management capabilities
or policies between a native and virtualized environment using KVM. Xen does not inherit
key power management functionality in the same way. power management features added
to the Linux kernel have to be re-implemented or ported to Xen, so many of the features and
explanations in this section do not directly apply to Xen in the same manner.

Table 6-11 identifies major power management features and improvements added
to the Linux kernel over time. In some cases, key power management features have been
back-ported to add the support to existing Linux distributions. Rather than cover every
distribution, along with the kernel major and minor version numbers, the Linux reference
introduces the kernel version in which a capability was first introduced.

Table 6-11. Historical Changes in Linux Server Operating Environments

Version Released Changes

Kernel 2.4.22 2003 ACPI built-in

P-states disabled by default

Kernel 2.6.5 2004 Added CPUfreq subsystem

Added ondemand and other governors

P-states enabled by default (using ondemand governor)

Kernel 2.6.18 2006 Added support for deep C-states (I/O port)

Kernel 2.6.19 2006 Added MWAIT support for deep C-states

Added APERF/MPERF feedback used for P-states

Kernel 2.6.23 2007 ACPI OSI (Linux) disabled by default

Kernel 2.6.24 2008 Added tickless idle (CONFIG_NO_HZ)

Added CPUidle subsystem

Kernel 2.6.30 2009 Added USB HID autosuspend

Kernel 2.6.32 2009 Added acpi_pad (processor aggregator device) for
power limiting

(continued)

206

ChApTer 6 ■ OperATing SySTeMS

VMWare ESX and ESXi
In contrast to the approach taken by other operating systems, a key focus for ESXi-based
environments is managing power at a cluster level, between a larger numbers of servers.
Distributed Power Management (DPM) consolidates active VMs to a subset of servers,
running that subset of active servers at higher utilization, while placing unutilized servers
in a standby or off mode. DPM can be configured to run VMs on the smallest subset of
servers possible to achieve energy proportionality.

OSPM policies for C-states and P-states are covered by Host Power Management
(HPM). With multiple VMs competing for system resources, ESX Host Power
Management is optimized for low latency. Applications running in this environment
have improved performance, minimizing transaction response times. Applications that
run in this environment have lower response times, but that comes at the cost of higher
power. Similar to other operating systems, power management features that may impact
performance are not used under sustained high CPU utilization.

ESXi supports user-configurable power policies including high performance, balanced,
low power, and custom. These policies include both a combination of power management
parameters and associated tuning values as well as static enabling and disabling of features.
For example, in high-performance mode, P-states and deep C-states are completely
disabled. In balanced and low-power modes, both P-states and deep S-states are enabled.
Low-power mode enables all power management features and includes more aggressive
use of the lower power and higher latency states. Custom policy allows administrators to
specify power management parameter values such as limiting C-states based on their exit
latency or changing the observation window used to measure utilization.

Version Released Changes

Kernel 2.6.35 2010 Added intel_idle (Intel CPUidle C-state driver)

Kernel 2.6.36 2010 Added support for deep C-states in CPU offline

Added USB mass storage autosuspend

Kernel 3.1 2011 Added kernel support for IA32_ENERGY_PERF_BIAS
(kernel sets this to 6 if found it is 0 at boot-time)

Kernel 3.5 2012 Removed sched_mc_power_savings scheduler
tunable (early dynamic execution consolidation
implementation)

Kernel 3.9 2013 Added intel_pstate (native Intel P-state driver)

Added idle injection driver

Kernel 3.10 2013 Added full tickless (CONFIG_NO_HZ_FULL) allowing
Linux to be built with no clock ticks, either when idle
or busy

Kernel 3.11 2013 Added native RAPL driver for in-band power limiting

Table 6-11. (continued)

207

ChApTer 6 ■ OperATing SySTeMS

Table 6-12 identifies major power management features and improvements added to
ESXi over time.

Table 6-12. Historical Changes in VMWare ESX/ESXi Operating Environments

Version Released Changes

VMware ESX 3.5 2007 Added Distributed Power Management (dynamic
migration of VMs, shutdown and restart of servers
to manage power).

VMware ESX 4.0 2009 Added support for P-states (disabled by default).

VMware ESX 4.1 2010 Added global power policy (user selectable).

Default policy is high-performance (results in
P-states not used by default).

VMware ESXi 5.0 2011 Added Host Power Management.

Default policy is balanced (enables P-states by
default, but no C-states).

VMware ESXi 5.1 2012 No significant changes.

VMware ESXi 5.5 2013 Added C-state support to balanced policy.

Summary
Operating systems play a key role in selecting both idle and active power states for the
server. This is a difficult balancing act because the OS decisions heavily impact both
performance and power. In addition to power state selection, OS process scheduling, I/O,
interrupt handling, and memory management decisions also have a significant impact
on power. Virtualized environments include many of the same capabilities as native
environments. They also enable new usage models, such as migration and consolidation,
which can provide substantial improvements in energy efficiency.

The list of historical changes across operating systems at the end of the chapter
serves as a reference to highlight both the power management limitations of legacy
operating systems as well as the latest power management enhancements in modern
operating systems.

209

Chapter 7

Monitoring

Optimizing a server for power, performance, or cost can be achieved with minimal
effort. This process begins with monitoring the behavior of a system to understand how
it is used and what opportunities exist for improvement. Sensor measurements such as
voltage, current, energy, power, and temperature identify individual components that
contribute the most to overall server power. Latency, bandwidth, and throughput events
illustrate the energy cost of delivering additional performance. Monitoring of power
state transitions, clock interrupts, and device interrupts allows users to build a deeper
understanding of the distribution of work on a server. This chapter introduces various
monitoring capabilities and how they work. It discusses various events and metrics, how
these are collected, and what a user can learn from these. Chapter 8 continues with a
description of how these events and statistics can be used to guide optimization decisions.

System and subcomponent monitoring helps users to improve component selection
and future system design. Monitoring aids in software optimization and in identifying
issues and opportunities to improve resource usage. Control decisions in management
software utilize monitoring, adapting infrastructure to meet changing conditions.
For example, management software can monitor processor utilization and memory
bandwidth to guide VM migration decisions. Or a CPU can use thermal sensors to identify
when to throttle processors down to a lower frequency.

Monitoring features are spread across several subcomponents in the platform.
Processors have programmable performance monitoring units in the cores and uncore,
baseboards are equipped with power and thermal sensors monitored by management
controllers, and operating systems monitor individual application processor, memory,
and I/O use. Comparing monitoring data from different subcomponents allows users to
build a complete picture of how power and performance affect energy efficiency.

Hardware Monitoring
There are a variety of mechanisms for extracting monitored events or statistics from the
CPU. Some of these high-level mechanisms are summarized in Table 7-1. Although each
of these mechanisms includes some unique features and capabilities, it is not uncommon
for certain events to be tracked through multiple mechanisms.

Chapter 7 ■ Monitoring

210

There are a variety of different mechanisms for accessing CPU power statistics.
However, the majority of these capabilities require kernel-level permission (administrator
in Windows, root in Linux). If you do not have these privileges, these statistics are only
available if the system administrator allows common users to access them. These
statistics are also commonly not available inside of virtual machines, because the
statistics are intended for the system as a whole.

Fixed Counters
A number of fixed counters are available in the system for tracking various statistics.
These counters cannot be stopped or cleared (except through CPU cold boot or warm
reset). These counters are very useful where the ability to access a common statistic is
needed by multiple users at the same time. The downside of fixed counters is that they are
restricted from some of the more powerful monitoring techniques.

Core Performance Monitors
Cores on Intel CPUs have used a standard performance monitoring infrastructure
for many generations. Dedicated configurable counters (typically four) exist for each
hardware thread. A configuration register exists for each counter that allows users to
select a specific event to count. In addition to the four configurable counters, three fixed
counters exist on the core. All of these are implemented as MSRs and are considered a
part of the core performance monitoring architecture. The core performance monitors
are covered in detail in the Intel Software Developers Manual (SDM) and therefore will
not be covered in detail here. See the following resources for more information:

Table 7-1. Types of CPU Hardware Monitoring

Mechanism Description

Performance monitoring
counters (fixed counters)

These counters continually track a single fixed statistic.
In many cases they are free-running, meaning they
continuously count and cannot be stopped or cleared. Many
critical hardware statistics are maintained in fixed counters.

Performance
monitoring counters
(programmable)

Hardware performance monitoring is frequently used by
software developers for characterizing and optimizing their
code. The majority of these counters can be configured
to count a wide range of events. Performance monitoring
counters exist inside the cores as well as in the uncore.

Status snapshots Registers provide a snapshot of some system state. Software
can read this state at a given point in time to understand the
characteristics of the system. The most common example of
a snapshot is temperature status registers.

Chapter 7 ■ Monitoring

211

•	 www.intel.com/content/dam/www/public/us/en/documents/
manuals/64-ia-32-architectures-software-developer-
manual-325462.pdf.

Core performance monitoring events are included as part of the SDM •	
by processor family since these events can change from generation to
generation. Core performance monitoring events for each processor
are also described in public files (tsv and json) available at the
following link: https://download.01.org/perfmon/.

For monitoring power management, the three fixed counter MSRs (IA32_FIXED_
CTR[0,1,2]) in the core can be very powerful. Each of these counters can be configured
with the IA32_FIXED_CTR_CTRL MSR to either monitor a specific thread that is
executing, or, in the case of processors with SMT, monitor all the threads on the core.
The first fixed counter tracks instructions retired, which is a count of every instruction
executed by the processor. The second counter tracks unhalted cycles, or cycles when
the processor is actively executing instructions. The second counter always counts at the
current operating frequency of the processor. The third counter tracks unhalted cycles
similar to the second, except it always counts at the base frequency of the processor.
Software can use the IA32_FIXED_CTR_CTRL MSR to configure fixed counters to monitor
either a specific thread or all threads that share a core. This configuration is done by
writing a specific field in the IA32_FIXED_CTR_CTRL MSR called AnyThread. The same
MSR interface exposes options to track either user time or kernel time, or both.

Many software tools already exist for monitoring both fixed and programmable
core performance monitors (a selection of these are discussed later in the chapter).
The simplest way to use a counter is with time-based sampling, using the following steps:

1. Clear the counter (to avoid early overflow).

2. Configure the desired event in the configuration register and
enable the counter.

3. Wait some amount of time (while applications execute).

4. Read the counter again.

5. Repeat steps 1–4.

More advanced techniques are also possible, such as event-based sampling (EBS).
In EBS, instead of collecting samples over a fixed amount of time, counters are
automatically stopped when one of the counters hits a desired value. At this point, an
interrupt is generated that informs monitoring software to collect additional information
about system and software state. EBS is not frequently used for monitoring power
management and therefore will not be discussed here.

Uncore Performance Monitors
Unlike core performance monitoring, the performance monitoring architecture in
the uncore is not standardized across all generations and product lines. A common
architecture is used on Xeon E5/E7 products starting in the Sandy Bridge generation. Very
few uncore performance monitoring capabilities have been productized on other Intel
products, so this chapter will focus on those available in E5/E7.

http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-manual-325462.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-manual-325462.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-manual-325462.pdf
https://download.01.org/perfmon/

Chapter 7 ■ Monitoring

212

Uncore performance monitoring introduced in Sandy Bridge is quite similar to the
capabilities that exist in the core. Counters are distributed throughout the different blocks
in the uncore, providing the ability to collect a large number of statistics simultaneously.
Although the bulk of the power-related statistics exist in the counters in the PCU, there are
power-relevant events in other blocks too.

Product-specific details of the uncore performance monitoring capabilities and
registers are published whenever a product is launched. E5/E7 uncore performance
monitoring documentation is included for the latest generation of products at the
following links:

•	 www.intel.com/content/dam/www/public/us/en/documents/
design-guides/xeon-e5-2600-uncore-guide.pdf

•	 www-ssl.intel.com/content/dam/www/public/us/en/
documents/manuals/xeon-e5-2600-v2-uncore-manual.pdf

•	 www.intel.com/content/www/us/en/processors/xeon/xeon-e5-
v3-uncore-performance-monitoring.html

Global Freeze/Unfreeze
A challenge with uncore performance monitoring is coordination between the large
number of monitoring units spread across various uncore blocks. Simply reading all the
counters across those blocks can take tens of microseconds. This latency can both perturb
workload execution (particularly if sampling is done over very short time windows) and
risk collecting statistics about the monitoring software as opposed to the workload of
interest. As a result, the uncore performance monitoring architecture includes a global
“freeze” and “unfreeze” capability. This capability attempts to start and stop all counters
across various uncore blocks at the same time. Although the synchronization is not
perfect, any delay in the freeze of uncore performance monitoring (also known as skid) is
typically well below a microsecond.

Edge Detection and Average Time in State
Many monitoring events specify a condition that is counted for every cycle in which that
condition is true. For example, if there is an event that monitors the time when a core is
in a target C-state, that counter will increment every cycle when the core is in the target
C-state. In addition to measuring time in state, it is also useful to be able to monitor
the number of transitions in and out of a state. For example, you might want to be able
to count the number of times a target C-state was entered. In order to avoid plumbing
separate events for both time and transitions, Edge Detect hardware is used, which can
transform any event that counts time (or cycles) into an event that counts transitions.

A common monitoring technique is to use one counter to monitor cycles and a
separate counter to monitor edges. By using both these events, a user can calculate the
average time in a state:

AverageTime in State
TotalTime in State

of Transitions

Even
=
()
()

=
#

tt X

Edges Event X()

http://www.intel.com/content/dam/www/public/us/en/documents/design-guides/xeon-e5-2600-uncore-guide.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/design-guides/xeon-e5-2600-uncore-guide.pdf
http://www-ssl.intel.com/content/dam/www/public/us/en/documents/manuals/xeon-e5-2600-v2-uncore-manual.pdf
http://www-ssl.intel.com/content/dam/www/public/us/en/documents/manuals/xeon-e5-2600-v2-uncore-manual.pdf
http://www.intel.com/content/www/us/en/processors/xeon/xeon-e5-v3-uncore-performance-monitoring.html
http://www.intel.com/content/www/us/en/processors/xeon/xeon-e5-v3-uncore-performance-monitoring.html

Chapter 7 ■ Monitoring

213

Standard Events and Occupancy Events
Many events simply increment by one in a given cycle. If, for example, you are monitoring
the number of reads to DRAM, a standard event would increment by one for each read.

In performance monitoring, when doing queuing and latency analysis, it can be
useful to measure the occupancy of different queues. Occupancy events can increment by
one or more in each cycle. Occupancy events can also be used with a threshold compare
to increment by one whenever a queue is at a configurable occupancy or larger.

For performance monitoring, occupancy events are commonly used in the
following ways:

Average latency in a queue•	

Average Latency Time inQueue
Accumulated Occupancy

Queue Alloc
() =

aations

Average occupancy of the queue•	

AverageOccupancy
Accumulated Occupancy

Cycles
=

AverageOccupancyWhen Not Empty
Accumulated Occupancy

Cycles wit
=

hhOccupancy > 0

Time at a given occupancy (or more)•	 1

Percent Time with Occupancy X
Occupancy withThreshold X

Cycles
³ =

=

Occupancy events can also be applied to power management statistics despite
“queues” physically not being a common part of power management. For example, one
may want to understand the amount of time when all cores are simultaneously in a core
C6 state. By looking at individual core residencies, it is impossible to tell how the different
core activity lines up in time. By using an occupancy event for a core C6 state with a
threshold set to the number of cores in the system, you can count the amount of time
when all cores are simultaneously idle.

Status Snapshots
Snapshots provide an instantaneous view of system characteristics. These are particularly
useful for information that does not change very often (like temperature). One drawback
of status snapshots is that monitoring software can accidentally collect information about
itself. For example, if processor frequency is being measured by monitoring software at
a high sampling rate, it may cause frequency to increase higher than it normally would
without monitoring software present.

1Multiple threshold events can be used at the same time across multiple counters to build histograms.

Chapter 7 ■ Monitoring

214

Counter Access and Counter Constraints
Reading or writing from counters and snapshots typically takes a moderate amount of
time. It can take tens of clock cycles to access core programmable counters and hundreds
of clock cycles to access uncore and other counters. By collecting a large amount of
information from throughout, the system can perturb workloads. The amount of statistics
collected can have a large impact on the size of sampling that can be performed. Typically,
sampling faster than about every 10 ms can lead to significant workload perturbations.

Counters can be implemented in the processor in different ways. Large hardware
counters can be quite expensive (area, power) and are not always desirable—particularly
in area-constrained blocks or those that are replicated many times. It is also difficult or
impossible to provide instantaneous information about certain types of information, for
example, in counters for monitoring energy consumption. Statistics about energy are very
expensive to monitor accurately through regular synchronous logic. As a result, some fixed
counters are updated periodically with this information rather than instantaneously.

Events and Metrics
Monitoring mechanisms described in the preceding section support a wide variety of
different measurable events such as core temperature, uncore P-state transitions, or
cache lines transferred over a CPU interconnect. Events typically measure a precise low-
level occurrence, behavior, or time in state. Events by themselves often do not provide
meaningful insight into system or subcomponent behavior. As a result, it is common to
use one or more low-level events to calculate a higher-level power or performance metric.
For example, a common metric for memory performance is bandwidth. This is calculated
based on a number of low-level events such as CAS commands, DDR frequency, and the
measurement duration in DDR clock cycles.

Events and metrics include many different types of statistics. Some examples
are time, temperature, energy, voltage, frequency, latency, and bandwidth. Specific
events and metrics exist across various subcomponents providing insight into runtime
characteristics of the system.

Time (RDTSC)
Most software environments provide mechanisms to access information about time in
the system. Generally these APIs are sufficient for collecting information about elapsed
time when collecting power and performance monitoring statistics.

There are many different ways to measure time in the system. x86 includes an
instruction for getting time—the read time stamp counter (RDTSC), which is available
both to user space applications and the kernel. Since it is possible for instructions to
execute out of order, RDTSCP (a serializing version of RDTSC) is also provided. This
version ensures all preceding instructions have completed before reading the time stamp
counter. RDTSC is synchronized both across all the threads on a socket, and across threads
in a multi-socket system. The RDTSC instruction returns a cycle count that increments
at the rate of the base frequency of the processor. Although there is a centralized clock on
each CPU, the time stamp counter is also maintained in the core, making it very fast to
access. Unlike some performance monitoring counters, RDTSC counts through all power

Chapter 7 ■ Monitoring

215

management states. Several other timers exist on the system, but the time stamp counter is
preferred because many of them take much longer to access.

Most software tools will provide APIs to measure elapsed time, so making direct use
of the RDTSC instruction is generally not necessary. Although many of the statistics and
formulas in this chapter that rely on elapsed time will use delta TSC, this can be replaced
with whatever time measurement is provided by a given software environment.

Basic Performance
Two basic performance metrics that are key to understanding energy efficiency are
CPI and path length. CPI, or cycles per instruction, measures the average number of
CPU cycles it takes to retire a single instruction. This is the inverse of the common
performance metric IPC, or instructions per cycle. Low CPI occurs when work is
computationally simple, where there is a lack of complex operations, and data references
frequently hit in core caches. High CPI occurs when work is computationally complex,
high-latency operations are frequent, and many data references need to be satisfied by
memory. Software with low CPI maximizes the time various subcomponents can spend
in low power idle states. It is more energy efficient than high CPI.

Path length measures the average number of instructions it takes to complete a
single unit of work. This unit of work is commonly represented by the throughput metric
for a workload of interest. For example, a unit of work might be a single HTTP transaction
on a web server, a write to a database, a portion of a complex scientific computation, or
a single drive read in an I/O testing tool. Beyond the obvious performance advantages,
software with low path length also maximizes the time spent in low power idle states
since fewer steps are necessary to complete a unit of work.

Performance can be improved either through completing work faster (decreasing
CPI), or by completing work using fewer steps (decreasing path length). In the following
formula, performance represents the time it takes to complete a unit of work. As a
result, performance can generally be expressed by multiplying CPI by path length. The
following formulas show how to calculate these basic performance metrics. These can
be monitored per-logical processor, per-core, or per-application process, or they can be
averaged to give a system level view.

Performance CPI Path Length

CPI CPU CLK UNHALTED THREAD INST

= ∗

= _ _ . _ RRETIRED ANY

Path Length INST RETIRED ANY WorkloadThroughput

.

_ .=

Energy Use
Energy is monitored through both the socket and memory RAPL features (see Chapter 2
for more details). As part of RAPL, free running energy counters track the amount of
joules that are consumed by the processor. All energy measured by RAPL is represented
in the same format, called energy units. A single energy unit represents a fixed amount
of microjoules of energy consumed. Measuring energy in larger granularity energy

Chapter 7 ■ Monitoring

216

units allows a high-resolution energy counter to cover a much broader range of values.
However, the specific amount of microjoules an energy unit represents can change from
processor generation to generation. The RAPL_POWER_UNIT MSR exposes the energy
units that are used for RAPL on a given processor. Bits 12:8 show the energy units. As an
example, Sandy Bridge presents a value of 0x10, which corresponds to ~15.3 microjoule
increments (1/2^16).

Note ■ energy units can change from generation to generation. haswell, for example,
uses different units (~61 microjoules) than Sandy Bridge and ivy Bridge (~15.3 microjoules).

The amount of energy and average power consumed over a time window can be
measured with the following two equations:

Energy Joules
Energy Counter

MSR x
()= D

()[]2 0 606 12 8^ :

Average Power Watts
Energy Joules

Time Seconds
()= ()

()D

Table 7-2 lists the different types of energy statistics available on the processor.

Table 7-2. Energy Statistics

Statistic Type Description

Socket energy Fixed free-running
counter

Socket energy reports an estimate of the
energy used by all the logic in the CPU
package, including all power rails. Not all
rails are actively measured, so the power
reported here is strictly guidance.

DRAM energy Fixed free-running
counter

DRAM energy provides an estimate of the
energy used by the DDR3/4 memory devices
in the system. Note that support for DRAM
RAPL does require some platform enabling,
and not all systems support DRAM RAPL.

Core energy Fixed free-running
counter

The core energy counter was introduced
on the Sandy Bridge generation, but was
later dropped on the Haswell generation.
It is expensive to provide accurate energy
estimates for the core domain.

Chapter 7 ■ Monitoring

217

Note ■ energy counters are only 32 bits today. on Sandy Bridge, for example, it was
possible for the counters to roll over after a few minutes. Similar to a car odometer, when
the energy counters overflow, they simply wrap around, starting over at zero. Software that
makes use of these counters should detect and adjust for this overflow.

Temperature
Modern processors include numerous temperature sensors that are exposed to software.
These sensors are generally only available to kernel-level software, because they typically
exist in MSR register space. These sensors are sometimes called digital temperature
sensors (DTS). Temperatures are usually quite accurate, particularly close to the
throttling temperature point. As temperatures get colder, DTS accuracy tends to degrade.

Most server memory also includes temperature sensors on the DIMMs. This is
always the case with RDIMMs, and almost always the case with ECC UDIMMs. These
sensors are called thermal sensor on-die (TSOD). A single TSOD exists on the memory
DIMM (typically in the middle of the DIMM) rather than having individual sensors in
each device. Because DRAM devices can be quite long, it is not uncommon for there to be
a large thermal gradient down the length of the DIMM. This is particularly the case where
DIMMs are oriented in the same direction as the airflow in the platform. As air passes
over devices as it moves down the DIMM, it heats up, causing the “last” device to be
much warmer than the first. Platform designers take these gradients into account when
designing their thermal solutions. Because the TSOD is in the middle of the devices,
it is common for some devices to have higher temperatures and some to have lower
temperatures.

Rather than exposing the actual temperature in degrees Celsius, temperature
counters report the margin to throttle (or the delta between the maximum allowed
temperature and the current temperature). The margin to throttle is measured at a core
level through the IA32_THERM_STATUS MSR and at a package level through the IA32_
PACKAGE_THERM_STATUS MSR. Package temperature reports the highest temperature
across all sensors on the package. This includes any additional thermal sensors that may
exist outside the cores. Traditionally, cores have been a hot spot on a server die, but this
trend is starting to change on low-power server designs where a larger percentage of
the package power budget is spent on I/O power. The maximum allowed temperature
needed to calculate the actual temperature in degrees Celsius is measured by the
TEMPERATURE_TARGET MSR.

The IA32_THERM_STATUS MSR is thread-scoped, meaning an individual thread
can only access temperature information about itself. In some systems, multiple threads
can share a single temperature sensor and therefore will always get the same result. In
addition to reporting temperature, the IA32_THERM_STATUS MSR also reports log and
status information about thermal throttling that may have occurred in the system. The
IA32_PACKAGE_THERM_STATUS and TEMPERATURE_TARGET MSRs are package-
scoped, meaning that all threads on a socket share the same register (and data). Table 7-3
lists the different types of temperature statistics available on the system.

Chapter 7 ■ Monitoring

218

Table 7-3. Temperature Statistics

Statistic Type Description

Core
temperature

Status snapshot Core temperatures are exposed through
IA32_THERM_STATUS (MSR 0x19C) and
TEMPERATURE_TARGET (MSR 0x1A2).

Maximum temperature or DTSMAX
TEMPERATURE TARGET

T

() =
[]_ :23 16

argeet Offset TEMPERATURE TARGET

M intoThrottle IA T

= []

=

_ :

_

29 24

32arg HHERM STATUS

Temperature C
DTSMAX T et Offset M

_ :22 16[]

() =
- -arg argiintoThrottle

Package
temperature

Status snapshot Package temperatures are exposed through

IA PACKAGE THERM STATUS MSR X B

M in toThrottle
IA PA

32 1

32

_ _ _ .

_

()

=arg
CCKAGE THERM STATUS_ _ :22 16[]

Additional
package
temperature
sensors

Status snapshot Sensors do commonly exist outside the core.
There is no standardized interface for accessing
information about these thermal sensors, although
their information is included in PACKAGE_
THERM_STATUS.

Memory
DIMM
temperature

Status snapshot Memory DIMM temperature is also maintained
in the package for systems that support TSOD
DIMMs. Like with the other package sensors,
there is no standardized register set for accessing
temperature information. Although this
information is not publically documented today,
IPMI can be used at the platform level to monitor
memory DIMM temperatures.

Chapter 7 ■ Monitoring

219

Frequency and Voltage
Frequency is one of the most important statistics when it comes to power and performance.
There are a wide range of mechanisms for monitoring the operating frequency in the system.

Two primary mechanisms are the thread-scoped IA32_PERF_STATUS and
IA32_PERF_CTRL MSRs. The IA32_PERF_STATUS MSR holds the current frequency
ratio of the thread that reads it. It also has a non-architectural field that provides
guidance on the current operating voltage of the core. The voltage field does not exist
on older generation server CPUs but is present in many of the current CPUs. The
IA32_PERF_CTRL MSR is the same interface introduced in Chapter 6 that allows
the operating system to request a frequency ratio for a given thread. Similar to the
IA32_PERF_STATUS MSR, the IA32_PERF_CTRL MSR also has a field for requested
voltage, however this is no longer used. Voltage is now autonomously controlled by the
package, and writes to these bits have no impact on system behavior. Monitoring both of
these registers together allows users to understand the relationship between requested
frequency and granted frequency.

On E5/E7 processors starting with Haswell, the uncore has its own frequency and
voltage (see Chapter 2 for details). These processors include an UNCORE_PERF_STATUS
MSR that holds the current operating ratio of the uncore. This register is not architectural
and generally is only exposed on systems that have dynamic control of the uncore ratio.

The IA32_APERF and IA32_MPERF MSRs can be used to measure average frequency
over a user-defined time window. These free-running counters are sometimes also called
ACNT and MCNT. Technically ACNT and MCNT have no architectural definition. Instead,
only the ratio of the two is defined. ACNT counts at the frequency at which the thread is
running whenever the thread is active. MCNT counts at the base frequency (P1) of the
CPU whenever the thread is active. Neither of these MSRs count when the thread is halted
in a thread C1 or deeper C-state.

Recent versions of Windows have started clearing both ACNT and MCNT in the kernel,
making it unusable by other software tools. Older versions of Linux (before 2.6.29) also had
this behavior. Linux no longer clears these MSRs at runtime so that other software tools
(such as turbostat, which is included with the kernel) can make use of the MSRs as well.

Similar to ACNT and MCNT, the fixed counters can also be used to monitor the
average frequency of either a core or a specific thread when it is active. This methodology
automatically filters out time when a core is asleep. The IA32_FIXED_COUNTER1
MSR increments at the rate of the current frequency whenever a thread (or core) is not
halted. The IA32_FIXED_COUNTER2 MSR increments at the rate of the base clock of the
processor whenever a core (or thread) is not halted. As discussed in “Core Performance
Monitors” earlier in this chapter, when the fixed counter AnyThread bits are set to 0, the
counters measure average operating frequency of a specific thread while it is active. When
the AnyThread bits are set to 1, the fixed counters measure average operating frequency
of the core as a whole.

Note ■ it is common for different threads in the system to report different average
frequencies, even on processors that do not support per-core p-states. this is because the
average is only taken while a core is active.

Chapter 7 ■ Monitoring

220

To measure average uncore frequency over a user-defined time window, clocks
can be counted in the CPU caching agent using a programmable counter (see uncore
monitoring links earlier in this chapter for programming information). The caching agent
clocks are stopped in Package C6, so this needs to be taken into account when calculating
the average frequency. Table 7-4 lists the different frequency and voltage statistics
available on the system.

Table 7-4. Frequency Statistics

Statistic Type Description

Current
core frequency

Status
snapshot

Core frequency is exposed through IA32_PERF_
STATUS (MSR 0x198).

On Nehalem and Westmere generations:

Frequency GHz
IA PERF STATUS()= * []4 32 15 8

30

_ _ :

On Sandy Bridge (and generations that follow it):

Frequency GHz
IA PERF STATUS()= []32 15 8

10

_ _ :

Current
core voltage

Status
snapshot

Core voltage is exposed through
IA32_PERF_STATUS (MSR 0x198)

Voltage volts
IA PERF STATUS()= []32 47 32

213

_ _ :

Requested core
frequency

Status
snapshot

Requested frequency is exposed through
IA32_PERF_CTRL (MSR 0x199).

Frequency GHz
IA PERF STATUS()= []32 15 8

10

_ _ :

Current uncore
frequency

Status
snapshot

Uncore frequency is exposed through UNCORE_
PERF_STATUS (MSR 0x621).

Frequency GHz
UNCORE PERF STATUS()= []_ _ :6 0

10

(continued)

Chapter 7 ■ Monitoring

221

Table 7-4. (continued)

Statistic Type Description

Average core
frequency

(APERF/MPERF)

Free-running
counter

Average core frequency is exposed through IA32_
APERF (MSR 0xE7) and IA32_MPERF (MSR 0xE8).

Average Frequency GHz

Base Frequency
APERF

MPERF

() =
*
D
D

Average core
frequency
(core performance
monitoring)

Core
performance
monitor

Average core frequency is also exposed
through IA32_FIXED_COUNTER1 and
IA32_FIXED_COUNTER2.

Average Frequency GHz

Base Frequency
IA FIXED COUNTER

I

() =
*
D
D

32 1_ _

AA FIXED COUNTER32 1_ _

Average uncore
frequency

Uncore
performance
monitor

Average uncore frequency is exposed through a
combination of programmable and free running
counters.

Avg Active Freq GHz
Caching Agent Clocks

Sample Period ns Pa

. () =

() -
D

cckageC sidency ns6Re ()

Frequency
histograms

Status
snapshot

Some processors support the ability to generate
frequency histograms for either the core or uncore or
both. Configuring these events can be challenging.
The PCM tool (discussed later in this chapter) provides
these capabilities on processors that support it.

Frequency
transitions

Status
snapshot

One can measure the number of frequency
transitions occurring in the system. On Sandy
Bridge and Ivy Bridge E5/E7, frequency transitions
on a given socket can be measured by using Edge
Detection on the FREQ_TRANS_CYCLES event.

On Haswell E5/E7, an additional performance
monitoring event was added that tracks the
number of uncore frequency transitions. The
FREQ_TRANS_CYCLES event still exists and now
counts the total number of frequency transitions
across all cores as well as the uncore.

Note: these “cycles” events also provide a rough
estimate of the number of cycles for performing
frequency transitions, but in general, they do not
provide highly accurate indications of how long
software was prevented from executing code.

Chapter 7 ■ Monitoring

222

Table 7-5. Core C-State Hardware Statistics

Statistic Type Description

Core C-state
residency

Fixed free-running
counters

Free-running counters have been added on
many processor generations to track the C-state
residency on each core. They count at the same
rate as RDTSC (at the base frequency of the
processor).

Core C1 is exposed through MSR 0x660*.•	

Core C3 is exposed through MSR 0x3FC.•	

Core C6 is exposed through MSR 0x3FD.•	

These counters refer to the actual hardware
C-state and not the ACPI C-state.

Core
C0 residency

Core
performance
monitor

As discussed earlier in the chapter, IA32_FIXED_
COUNTER2 (with AnyThread = 1) monitors
cycles spent in Core C0 and counts at the base
frequency of the processor.

Core
C1 residency

Equation On processors that do not include a Core C1
Residency MSR, it can be calculated through the
following equation:

DeepCstateCycles
CoreC Cycles CoreC Cycles

CoreC Cycles
TSC

=
+

=

6 3

1
CCycles DeepCstateCycles CoreC Cycles- - 0

Thread active
(TC0)

Core performance
monitor

The IA32_FIXED_COUNTER2 MSR (with
AnyThread = 0) will monitor the amount of time
that the current thread is in a TC0 state. It counts
at the base frequency of the processor.

(continued)

C-States
Tables 7-5 and 7-6 list the different C-state statistics available on the system.

Chapter 7 ■ Monitoring

223

Table 7-5. (continued)

Statistic Type Description

Thread C1 Equation Thread C1 is not easily measured (except on
processors that support the Core C1 residency
counter and do not support SMT). The following
equation can be used:

DeepCstateCycles
CoreC Cycles CoreC Cycles

ThreadC Cycles
T

=
+

=

6 3

1
SSC Cycles DeepCstateCycles ThreadC Cycles- - 0

Core C-state
occupancy

Uncore
performance
monitor

The uncore provides a performance monitor
that tracks the number of cores in a particular
state at a given point in time. This can be used
to calculate the average number of active cores.
In addition, users can use the thresholding logic
in the uncore performance monitors to count
cycles with a given number of cores active. See
the Uncore Performance Monitoring guide for
a given processor for details, or see the source
code of PCM (more details later) for an example.

*Core C1 residency is currently only supported on Silvermont-based processors.

Chapter 7 ■ Monitoring

224

Table 7-6. Package C-State Hardware Statistics

Statistic Type Description

Package
C-state
residency

Fixed free-running
counters,
performance
monitor

Just like with core C-states, free running counters
exist for measuring package C-state residency.

Package C2 is exposed through MSR 0x60D.•	

Package C3 is exposed through MSR 0x3F8.•	

Package C6 is exposed through MSR 0x3F9.•	

Package
C-state
transitions

Uncore
performance
monitor

The residency MSRs are great for monitoring
residency, but it is not possible to measure
transitions with them. As a result, the same events
for measuring residency were added into the
Uncore Performance Monitoring infrastructure on
Ivy Bridge. Using these events for residency with
edge detection provides the ability to monitor the
number of transitions.

You can calculate the average time spent in a
package C-state (average idle periods across the
entire node) with the following equation:

Avg Time in PackageCx
PackageCx sidency

Number of CxTransition
.

Re
=

ss

You can also calculate the average time between
package C-states:

Avg Time in PackageCx Entrances
TotalTime

Number of CxTransition

. =

ss

Chapter 7 ■ Monitoring

225

Table 7-7. Memory Power and Performance Statistics

Statistic Type Description

Bandwidth Uncore
performance
monitor

CAS commands (see Chapter 2 for more details)
refer to read and write commands issued to
DRAM. By counting CAS commands, one can
measure memory bandwidth.

Bandwith Utiliztion
CAS Commands

DCLK Cycles

Bandwidth
GB

s

=
*

æ
è
ç

ö

4

øø
÷ =

* ()*Utiluization DDR Frequency GHz
Bytes

clock

8

Clock gated time Uncore
performance
monitor

The fixed performance monitoring cycles
counter in the memory controller will increment
whenever the clocks are not gated. By measuring
time between samples with RDTSC in
conjunction with the fixed cycles counter, you can
calculate time clock gated.

Percent Active
DCLK Cycles

RDTSC

Base Frequency CHz

DDR Fre

=
*

*
()2 D

D qquency CHz()

CKE Uncore
performance
monitor

CKE is controlled per rank. The memory controller
has an event that counts time spent when the
CKE signal is high (and power is high). This can
be subtracted from the total number of clocks to
determine time spent with CKE low. CKE is always
low when the memory controller clocks are gated.

Percent CKE Low
CKE HighCycles

DCLK Cycles
= -1

Memory Power and Performance
Each memory controller channel on Xeon E5/E7 CPUs includes multiple uncore
performance monitoring counters and one fixed counter that counts DCLK2 cycles. On
recent processor generations, the memory controller clock is gated in deep package
states, and the performance monitors will stop counting in this state. Table 7-7 lists key
memory power and performance statistics available on the system.

(continued)

2DCLK = ½ the clock speed of the marked speed of the DDR memory.

Chapter 7 ■ Monitoring

226

Memory bandwidth directly impacts memory power. Required memory bandwidth
also can significantly impact purchasing decisions when building a system.

PCIe Power Management
Little visibility exists into PCIe power management from within the SoC.

QPI Power Management and Performance
A wide range of performance monitors are available for QPI. Tables 7-8 and 7-9 list
key QPI power and performance statistics available on the system. The performance
monitoring counters in the QPI block count at the clock rate of the logic in that block. The
QPI link operates at very high frequencies measured in GT/s (giga transfers per second).
Sandy Bridge, for example, operated at frequency up to 8 GT/s. In these designs, a single
flit (an 80-bit unit of transfer) of data is transmitted in four transfers (or at a rate of 2 GHz
in this example). Starting with Sandy Bridge, the clocks used for the QPI performance
monitoring logic ran at half this frequency (or 1 GHz in this example), and the logic can
process two flits per cycle.

Statistic Type Description

Self-refresh Uncore
performance
monitor

Memory self-refresh is applied at the channel
level. Whenever a channel is completely clock
gated, it is also in the self-refresh state. Therefore,
when one calculates actual time in self-refresh,
the percent time spent in a clock-gated state
should always be added to the total calculated
by the performance monitor. Self-refresh is used
primarily at idle. It is common to observe very
little time spent in self-refresh and very little time
spent clock gated, even when at low utilization.

Percent Self fresh

Percent Active
Self freshCycles

DCLK Cy

Re
Re

=

- +1
ccles

Table 7-7. (continued)

Chapter 7 ■ Monitoring

227

Table 7-8. QPI Power Statistics

Statistic Type Description

QPI frequency (GT/s) Uncore
performance
monitor

You can measure the frequency of the QPI
block for Sandy Bridge and Ivy Bridge with
the following equation:

Avg
GT

s

QPI CLK Cycles

Time Nano onds
. = *

()
8

D
sec

You can measure the frequency of the QPI
block for Haswell with the following equation:

Avg
GT

s

QPI CLK Cycles

Time Nano onds
. = *

()
4

D
sec

Note that this equation assumes an
active system that is preventing any
course-grained clock gating from occurring.
Lower frequencies may be measured in
systems that are nearly idle.

L0p time Uncore
performance
monitor

Time spent in the L0p state can be monitored
with the QPI L0p event.

%QPI L p
L pCycles

QPI CLK Cycles
O

O
=

D
D

By using edge detect, one can also measure
the number of L0p transitions. Note that L0p
transitions block data transfers for only a very
short amount of time.

L1 time Uncore
performance
monitor

Time spent in the L1 state can be monitored
with the QPI L1 event. On recent processor
generations, L1 is used exclusively in the
package C6 state, so there is little need to
measure its residency separately. In fact, this
QPI counter stops counting in many cases due
to clock gating that occurs at the same time.

(continued)

Chapter 7 ■ Monitoring

228

Statistic Type Description

Clock gating Uncore
performance
monitor

The entire QPI block can be clock gated on
some processor generations when the link is
in an L1 state. By measuring the QPI cycles,
one can calculate the amount of time when
the link is clock gated and in an L1 state. To
do this, one must know the clock frequency
of the QPI link first.

%Clock Gated
LOpCycles

QPI Freq GHz Time Nano onds

=

-
()* ()

1
D

sec

Table 7-8. (continued)

Chapter 7 ■ Monitoring

229

Table 7-9. QPI Performance Statistics

Statistic Type Description

Bandwidth Uncore
Performance
Monitor

QPI bandwidth is driven not only by the transmission of
cache lines of data, but also by the transmission of additional
information for maintaining coherency and QPI protocol.

The QPI performance monitors can separate
out the protocol overhead flits from the data flits.
The “TxL_FLITS_G0” event (code 0x0) used with the
following event masks provide this information.

Mask: 0000_0001b: Idle flits•	

Mask: 0000_0010b: Data flits•	

Mask: 0000_0100b: Protocol flits•	

Mask: 0000_0110b: Total used flits (other than Idle)•	

Recall that when QPI is not in an L1 state, it is always
transmitting flits. Idle flits are used when no actual
information must be transmitted. As a result, a simple
way to measure the link utilization is with the following
equations.

For Sandy Bridge and Ivy Bridge:

Link Utilization
QPI FLits Data otocol

QPI Clocks
%()= +()

*
D

D
Pr

2

For Haswell:

Link Utilization
QPI FLits Data otocol

QPI Clocks
%()= +()D

D
Pr

One can also subtract off cycles spent in QPI L1 in order
to filter out long idle periods from the utilization metric,
but this is generally not significant when monitoring active
workloads.

Data bandwidth (GB/s) is another interesting metric that
gives an indication of expected QPI power. Each flit in QPI
contains 8 Bytes of data. Therefore, data bandwidth can be
calculated with the following:

Data Bandwidth
GB

S

B QPI Data Flits

Time Nano onds
æ
è
ç

ö
ø
÷ =

*
()

8 D
sec

Chapter 7 ■ Monitoring

230

Management Controller Monitoring
Management controllers in the system, including the Baseboard Management Controller
(BMC) and the Management Engine (ME) in the PCH, provide broader platform-level
monitoring functions. The BMC connects to various busses, sensors, and components
in the system, allowing it to act as a centralized monitoring resource covering a large
number of different system components. The BMC can also pair monitoring functions
with threshold values to generate events, such as an indication that a component’s
temperature has exceeded a safe level.

Management controller monitoring complements the monitoring functions
provided by the CPU and operating system. The BMC and ME provide access to many
unique monitoring events that cannot be monitored elsewhere such as fan speed, power
supplies, voltages, and general platform health. It also allows for monitoring while a
system is booting, powered off, or unresponsive. As discussed in Chapter 5, management
controller monitoring functions are accessed through IPMI.

Component Power Sensors
Great insight is gained by understanding individual component power consumption and
how individual components add up to overall platform power. In an ideal monitoring
solution, platform power (after PSU efficiency losses) would equal the sum of all the
individually measured components. However, most servers can only measure CPU and
memory power, leaving an incomplete picture.

Note ■ a common question is “how does power break down in a system?” one
engineering technique is to identify the few components that consume the most power
and focus optimization efforts on those. the breakdown of power in a system changes
significantly from server to server and many of the individual components in a system only
represent a small percentage of overall power.

Additional sensors can be added to the baseboard to measure these missing
components, reporting either power or current and voltage. During board design, the cost
of adding these enhanced sensors necessary to calculate component power is relatively
small, for example, adding VRs that expose readings over the SMBus interface or adding
current sensors accessible over I2C. These additional sensors allow the Node Manager
(NM) firmware to calculate energy for all components in the platform to identify where
unaccounted power is coming from. For example, NM can expose individual energy
measurements for PCH, LAN, fans, and the BMC. The current generation of Node
Manager supports up to 32 additional monitoring devices so component energy can be
monitored in fine-grained detail.

Similar to the use of the CPU energy events, NM energy events are coupled with
timestamps so users can read the sensors periodically to calculate power over a desired
time window.

Chapter 7 ■ Monitoring

231

Synthetic Sensors
In order to expose more information about the platform, Node Manager adds new
synthetic sensors for platform characteristics that cannot be easily measured. Node
Manager 3.0 added the ability to report volumetric airflow and outlet temperature.
Those values are calculated based on the server chassis characterization process and
current readings from fans speed sensors, energy consumed by the platform, and
inlet air temperature. External management software can create a heat map from
information about the physical location of servers in the datacenter and the reported
outlet temperatures. This information can be utilized to improve datacenter efficiency,
for example, to dynamically manage cooling set points, identify hotspots, or optimize
workload placement decisions.

Sensors and Events
Between the BMC and the ME, there are an extensive number of sensors, events, and
metrics provided for monitoring. Table 7-10 provides an example of the leading events
used to characterize server energy efficiency. Support for various sensors and the specific
names of those sensors can vary by platform, so generic or typical names are used in the
table. Many different types of sensors such as error indications, hard drive status, or fault
and activity LED status are intentionally left out of the table to focus on those sensors
most relevant for power.

Table 7-10. Common Monitoring Events Accessible by IPMI

Type Description

PSU input power Monitors power going into the power supply. This represents the
total power of the node.

PSU output power Monitors power going out of the power supply. Useful for
understanding the efficiency of the power supply.

PSU current Monitors PSU current. Useful for observing conditions such as
over-current and verifying that the PSU is working within the
design specification.

PSU voltage Monitors PSU voltage. Useful for observing conditions such as
under-voltage and verifying that the PSU is working within the
design specification.

Voltage Monitors voltage across various power rails. This is typically
paired with some alert to ensure voltage is not higher than the
expected threshold.

(continued)

Chapter 7 ■ Monitoring

232

Type Description

CPU energy Monitors energy by individual CPU. It is useful to monitor
energy sensors over time in order to calculate power. One CPU
consuming significantly more power than others warrants
investigation. There may be an opportunity to improve energy
efficiency by optimizing software.

Memory energy Monitors energy by subset of DIMMs sharing a common VR.
Useful for assessing the impact of component selection.

LAN energy Monitors LAN energy by individual interface.

Fan energy Monitors fan energy by individual fan. Useful in conjunction with
Fan Tachometer and component temperatures for assessing the
efficiency of fan speed control.

PCH energy Monitors PCH energy including the ME.

BMC energy Monitors BMC energy.

Chassis inlet
temperature

Monitors temperature at the front panel where colder air is
coming in.

Outlet temperature Monitors temperature at the rear panel where hotter air is going
out. Combined with inlet and component temperature, this is
useful for understanding heat removal.

Riser inlet
temperature

Monitors temperature at the given riser board location.

Riser outlet
temperature

Monitors temperature at the given riser board location.

Board temperature Monitors temperature at the baseboard.

PCH temperature Monitors temperature at the PCH including the ME.

PSU temperature Monitors temperature at the power supply.

CPU temperature Monitors temperature by individual CPU. One CPU running
significantly hotter than the others warrants investigation. There
may be an opportunity to improve energy efficiency by optimizing
software.

DIMM temperature Monitors DIMM temperature by individual DIMM.

CPU prochot Monitors use of thermal throttling due to the CPU reaching or
exceeding its maximum safe operating temperature.

Table 7-10. (continued)

(continued)

Chapter 7 ■ Monitoring

233

Type Description

CPU thermtrip Monitors use of thermal protection mechanisms. In this case, the
system was powered down to prevent hardware damage due to
the temperature exceeding catastrophic levels.

Memhot Monitors memory controller use of bandwidth throttling due to
one or more DIMMs reaching or exceeding their maximum safe
operating temperature.

VRhot Monitors VRs reaching or exceeding their maximum safe
operating temperature.

Fan tachometer Monitors fan speed in RPM by individual fan.

Volumetric airflow Metric describing the volumetric airflow as a function of fan
speed in RPM and the number of platform zones.

CPU utilization This NM compute usage per second (CUPS) metric monitors
average utilization across all cores. Useful for a variety of
datacenter management and orchestration functions, such as VM
placement.

Memory utilization This NM CUPS metric monitors average memory utilization
across all memory channels.

I/O utilization This NM CUPS metric monitors average I/O utilization of PCIe.

Overall utilization A composite metric, this monitors server utilization using a
weighted average of the CPU, memory, and I/O CUPS utilization
metrics. This provides an overall assessment of workload
performance and availability indicators. It is useful for resource
optimization of power and cooling in a datacenter.

Table 7-10. (continued)

The usefulness of these events is greatly enhanced when several related events are
compared together. For example, monitoring the combination of PSU input and PSU
output power enables users to calculate both PSU efficiency and power conversion losses.

Power Conversion Losses Pin Pout

PSU Efficiency
Pout

Pin

= -

=

Note ■ in calculating pSU efficiency, it is best to use pout and pin values averaged over a
longer time window. this method takes into account the capacitance of the pSU and results
in more representative values.

Chapter 7 ■ Monitoring

234

When BMC monitoring is measured with a workload representative of production
use, it enables users to build a deeper understanding of the interactions between various
components. Figure 7-1 illustrates various system component temperatures across a
range of server load.

The component temperature in Figure 7-1 can be compared with Figure 7-2,
collected at the same time. Comparison of these figures illustrates how fan speed is
increased to keep each component within a safe operating temperature. Analyzing
related thermal events in conjunction with component-level power allows operators to
gain insight into the efficiency of their cooling solution.

Figure 7-1. Component temperatures across a range of server load

Chapter 7 ■ Monitoring

235

Figure 7-2. Fan speed across a range of server load

Software Monitoring
Chapter 6 discussed the role operating systems play in selecting power states and how
operating systems balance power and performance in managing system resources.
Different types of applications running on a system can pose a variety of challenges in
scheduling, memory management, and I/O. Operating systems provide comprehensive
monitoring capabilities that allow users to analyze this behavior. This analysis enables
users to gauge how efficiently their system is running, detect poor application behavior,
and discover issues with hardware configuration.

Operating systems track many of the same events that are monitored by the CPU.
For example, the operating system and CPU can both monitor kernel and user time.
In some cases, the operating system is able to provide unique insight into events not
understood by the CPU. Operating systems can track time spent in system calls, time
spent in interrupt handlers, and time spent submitting and completing I/O. They can also
track time spent by individual processes. These enrichments allow the operating system
to provide deeper insight into events such as kernel time. In some cases, the operating
system is able to add a different perspective to events measured by both the CPU and
operating system. For example, the CPU monitors P-state residency in terms of the states

Chapter 7 ■ Monitoring

236

that were granted. The operating system is capable of monitoring P-state residency both
in terms of the states that were granted and the states that were requested.

When operating system events are used in conjunction with the CPU events, users
can build a deeper understanding of the software/hardware interface. For example, the
CPU is capable of measuring a specific effect, such as a core being idle 90% of the time
and using only C1. The operating system is capable of measuring a specific cause, such as
frequent network interrupt handling on the core with high C1 residency.

Another difference between events measured by the CPU and the operating system
is accuracy. CPU events are typically clock-cycle accurate, whereas the accuracy of
operating system events can vary between products and versions. For example, some
events may only be sampled instead of measured, and some events may only be updated
during infrequent clock interrupts.

Events used to monitor resource utilization and kernel functions are common across
different operating systems. Although the events themselves are similar, there can be
some subtle differences in the event names and in precisely what is being measured. For
example, one operating system may include kernel time, queue time, and device time in
its measure of drive latency, whereas another operating system may only include device
time. This section discusses common operating system events in an operating system–
independent fashion. Following an outline of these events, several examples of different
operating system–specific tools and usages are provided.

Utilization and Processor Time
The operating system is capable of breaking down active and idle time into a very detailed
set of information. These events can be used to determine how much time is spent
executing application code to identify applications that are running at unexpected times
or to identify applications that are running more frequently than expected. For example,
these events can detect an intrusive management or security service that may be keeping
the system out of a low power idle state.

Processor time events can be analyzed across logical processors, across cores, or
across packages to identify utilization asymmetry. This may indicate misconfigured
software or legacy software with poor parallel design that is leading to inefficient
operation. These events can also be used to assess resource utilization as activity
increases or decreases over time. Several of the charts in this chapter illustrate this type
of example, demonstrating how an event changes across the full range of server load.
Table 7-11 lists several common events describing processor time.

Chapter 7 ■ Monitoring

237

Table 7-11. Common CPU Utilization Events Exposed by Operating Systems

Type Description

User time Monitors the time spent executing application code.
Several operating system tools exist, such as Perfmon on
Windows environments or SAR on Linux environments, to
break down user time by thread, processor, or VM.

Kernel time Also known as privileged time, this monitors the time
spent by the operating system including scheduling,
memory management, and interacting with different
devices in the system.

Kernel interrupt time Monitors the time spent processing hardware interrupts.
This represents the higher priority portion of an interrupt
that requires immediate attention, or the top half.

Kernel soft interrupt time Also known as software interrupt time, softirq time,
or a deferred procedure call, this monitors time spent
processing the remaining lower priority operation of an
interrupt, or the bottom half.

Kernel idle time Monitors the time spent where there were no processes
scheduled or ready to run. Some operating systems
support iowait, a more specific kernel idle time metric that
differentiates idle time between idle with or without I/Os
outstanding.

Guest time (VMM only) Monitors the time spent running guest VMs for virtualized
environments.

Wait time (VMM only) Monitors the time spent waiting for contended physical
resources in virtualized environments. Wait time is also
known as steal, dispatch, or ready time. High values can
indicate oversubscription or VMs that frequently wait on
preemption of another VM.

Figure 7-3 illustrates how the various components of processor time change with
increasing server load. At the maximum throughput level, only 85% of time is spent
executing application code, with the remaining processor time spent performing
common kernel functions such as executing system calls or handling interrupts.
Optimizations that decrease system time can yield significant improvements in energy
efficiency as it provides additional processor time for applications completing work. For
example, enabling interrupt coalescing in a network device can reduce the total number
of interrupts, thus reducing system time.

Chapter 7 ■ Monitoring

238

Simultaneous Multithreading (SMT)
When discussing processor time, it is important to revisit the relationship between
physical processors and logical processors, or hardware threads in Hyper Threading (HT).
Since two logical processors share the cache and execution units of a physical processor,
it is possible to drive a physical processor to 100% utilization even when each of the
logical processors only runs at 50% utilization. It’s also possible for two logical processors
at 50% utilization to only drive physical processor utilization slightly above 50%. For
datacenter workloads, it’s common to see physical processor utilization up to 50% higher
than the reported logical processor utilization. Figure 7-4 illustrates a typical case where
actual physical processor utilization is significantly higher than the logical processor
utilization.

Figure 7-3. CPU time broken down into various categories

Chapter 7 ■ Monitoring

239

Operating systems measure utilization for logical processors, which can give a
misleading picture of hardware resource utilization as power consumption, and the
use of active and idle power management features are much more closely tied to
physical processor utilization. Overall utilization is best measured using the hardware
mechanisms described earlier in this chapter.

Virtualization
Virtualization provides several additional challenges in monitoring processor time.
If utilization is measured from a virtual machine, it is a measure of virtual processor
utilization, or utilization of only the resources made available to that VM. For example,
in the case of VM oversubscription, it’s possible for VMs to measure an average virtual
processor utilization of 10%, whereas the processors themselves are running much higher
than that. As a result, it would be inaccurate to conclude that a system is lightly utilized
because the average virtual processor utilization is low.

Similar to the insight that can be gained by comparing physical processor utilization
to logical processor utilization, additional insight can be gained be examining virtual
processor utilization. For system-level analysis, monitoring is best done from the host
perspective. The host has the same monitoring visibility as a native operating system as
well as the ability to track individual utilization of various guest VMs.

Figure 7-4. CPU time compared between logical and physical processor utilization

Chapter 7 ■ Monitoring

240

Processor Power State Requests
Chapters 2 and 4 introduced the idea that not all operating system requests for a
particular C-state or P-state are necessarily granted by hardware. For example, the
operating system might request a high-frequency P-state and end up getting a lower
frequency P-state due to a thermal event. Operating systems have the ability to monitor
their own internal state requests in addition to what is granted by hardware. Figures 7-5
and 7-6 illustrate the differences between software-requested states and hardware-
granted states in C-state residency. In Figure 7-5, ACPI C2 (hardware C6) is requested
across the range of server load, but Figure 7-6 shows it is only actually used between 0%
and 20% load.

Figure 7-5. Comparison of software C-state residency (requested) for ACPI C1 and ACPI C2

Chapter 7 ■ Monitoring

241

Note ■ in Figures 7-5 and 7-6 the sum of aCpi C1 (hardware C1) and aCpi C2 (hardware C6)
residency adds up to total idle time. the remaining time not represented in the figure is
active time.

Comparing requested residencies to granted residencies can highlight the
effectiveness of various hardware and software control policies. These comparisons
identify the source of unexpected state residencies, they illustrate the impact of P-state
and C-state coordination between threads, and they can help guide server tuning
decisions.

One reason for the substantial differences between requested and granted
residencies is that software is monitoring requests at the logical processor level, whereas
hardware is monitoring at the physical processor level. If half of the logical processors in
a system are requesting C6 and the other half of the logical processors are requesting C1,
it is possible that every core is in C1. Any time sibling logical processors are requesting
different states, the shallower of the two states is granted.

Another reason for the differences between requested and granted residencies is
that hardware is utilizing mechanisms to restrict use of deep C-states where it detects
significant latency impact or if the energy cost to enter and exit deep C-states will not be
recovered by short idle durations. These mechanisms are described in detail in Chapter 2.

Figure 7-6. Comparison of hardware C-state residency (granted) for ACPI C1 and ACPI C2

Chapter 7 ■ Monitoring

242

Tables 7-12 and 7-13 list several common events exposed by operating systems to
monitor C-state and P-state residency and transitions.

Table 7-12. Common C-State Events Exposed by Operating Systems

Type Description

C1/C2/C3 residency %
(software requested)

Monitors the percent of time the operating system is
requesting ACPI C1, ACPI C2, or ACPI C3. This is typically
measured for each logical processor.

C1/C2/C3 residency %
(hardware granted)

Monitors the percent of time CPU cores actually spent in
various states. Operating systems map the output of the
residency MSRs described earlier in this chapter to the
appropriate ACPI state.

C1/C2/C3 transitions Monitors the number of software requests made for each
ACPI C-state type. Operating system C-state transition counts
are typically much higher than actual hardware C-state
transitions due to the coordination of logical processors.

Average idle time Monitors the average logical processor idle duration.

wakeups Also known as idle break events, these events count the
number of times a logical processor was woken up due to an
interrupt or break event. Useful for assessing latency impact
of C-state transitions.

Idling status Also known as core parking status, this event indicates that
a logical processor is not being made available for process
scheduling. This is an indication of execution consolidation,
discussed in Chapter 4.

Table 7-13. Common P-State Events Exposed by Operating Systems

Type Description

Frequency transitions
(software requested)

Monitors the number of times various operating frequencies
were requested. It is measured for each logical processor.
Useful for assessing the latency impact of P-state transitions.

Frequency residency %
(software requested)

Monitors the percent of time the operating system spent
requesting various operating frequencies. It is measured for
each logical processor. For servers with a single P-state shared
by all cores on same package, this can be used to identify the
application or thread that drives frequency higher.

(continued)

Chapter 7 ■ Monitoring

243

Scheduler, Processes, and Threads
The scheduler’s decisions in determining how compute resources are allocated, shared,
and utilized play a key role in energy efficiency. Monitoring this behavior allows users
to gain insights into the interaction and impact of running multiple VMs, applications,
or processes concurrently. For example, if an operating system migrates processes too
aggressively, the additional time it takes to restore execution context or the additional
time it takes to reference remote memory can increase power. If the operating system
migrates processes too conservatively, it can cause scalability issues and utilization
asymmetry. Cases where one subset of logical processors is running at significantly
higher utilization than the other logical processors lead to more aggressive use of higher
voltage and frequency states, increasing power.

Chapters 2, 3, 4, and 6 introduced a number of decisions hardware and software
power management policies need to make in order to strike the right balance between
low power and low latency. The scheduler has similar challenges with similar impacts in
balancing between high throughput and low latency. Scheduling decisions that minimize
latency can improve transaction response times, but it can come at the cost of energy
efficiency. If maximum throughput is decreased to improve latency, it results in a greater
number of resources (and power) required to meet a peak performance requirement.

Operators that characterize and understand the behavior of the scheduler, processes
and threads can uncover opportunities to tune thread affinity and priority to improve
energy efficiency. Table 7-14 lists several common events for monitoring the scheduler.

Type Description

Operating frequency
(hardware granted)

Monitors the operating frequency by sampling a hardware
feedback mechanism that indicates the current frequency at
which any logical processor is running.

TSC frequency Also known as CPU base frequency, this monitors the
maximum guaranteed frequency, or P1.

Maximum frequency % Monitors the ratio of current operating frequency divided by
CPU base frequency. Values greater than 1 indicate use of
turbo, or non-guaranteed frequency. Useful for determining
how much additional frequency turbo is granting at any
given time.

Processor capacity % Also known as % processor utility, this monitors the
performance capacity concept introduced in Chapter 4.

Table 7-13. (continued)

Chapter 7 ■ Monitoring

244

Interrupts
The frequency of interrupts, the distribution of interrupts across logical processors, the
division of interrupt processing between top and bottom halves, and the batching of
interrupts provide deeper insight into the distribution of work on a server and
how the interrupt processing can affect energy efficiency. For example, when clock or
device interrupts occur during idle time, they cause logical processors to exit C-states.
A high interrupt rate at low throughput is undesirable because low throughput typically
coincides with low utilization. When interrupts occur during active time, they cause
processes and threads to be suspended until processing of the interrupt is complete.

Splitting the top from the bottom half of interrupt processing enables the kernel to
parallelize interrupt processing when a single logical processor is handling interrupts
of a specific type. However, the bottom half doesn’t necessarily execute on the same
logical processor that handled the interrupt. Interrupts being processed by a very small
number of logical processors can be undesirable. This can drive utilization significantly
higher on logical processors handling interrupts and cause the top and bottom half
of interrupts to be handled by different logical processors. This introduces additional
overhead in scheduling and in accessing shared data that is not resident in one of the

Table 7-14. Common Scheduler, Process, and Thread Events Exposed by Operating Systems

Type Description

Processor queue length Also known as processor queue depth, this monitors the
queue length of tasks waiting to be scheduled. Useful in
conjunction with other processor time and interrupt events
to identify the cause of utilization asymmetry.

Context switches Monitors the number of times execution context was
switched between processes. Useful for efficiency analysis
because saving and restoring context introduces additional
overhead.

Migrations Monitors the number of times a process or thread was
scheduled on a logical processor that is different from the
last time.

System calls Monitors the number of requests for the kernel to perform
some action on behalf of an application, such as reading or
modifying inaccessible data or interacting with hardware
devices. Useful since high system call rates may indicate
inefficient use of kernel interfaces.

Processes/Threads Monitors the current number of processes and threads.

Process/Thread state Monitors the current state of processes and threads.
Provides insight on priority, readiness to run, and reasons
threads are waiting.

Chapter 7 ■ Monitoring

245

logical processor’s local caches. The distribution of hard and soft interrupts can increase
the overall number of interrupts due to additional IPIs.

Table 7-15 lists events that can be used to identify how interrupt handling is divided
across logical processors.

Table 7-15. Common Interrupt Events Exposed by Operating Systems

Type Description

Device interrupts Monitors the number of device interrupts. Useful to monitor
by specific IRQ and where interrupt processing occurs. A
single device may have multiple IRQs that are handled by
different logical processors.

Device soft interrupts Also known as softirq or deferred procedure call rate, this
monitors the number of software interrupts and where
they occur. Useful for understanding whether the top and
bottom half of interrupt handling are occurring on the same
logical processor or if a logical processor is overloaded by
interrupt handling.

Clock interrupts Monitors the number of clock interrupts and where they
occur. Useful to understand if clock interrupts may be
impacting either C-state residency or the frequency of
scheduling decisions.

IPI (inter-processor
interrupts)

Monitors the number of inter-processor interrupts used to
communicate between logical processors and where they
occur. These are used for flushing caches and translation
lookaside buffers (TLBs), for scheduling, and for requesting
some action from a remote logical processor.

Interrupt coalescing Also known as interrupt moderation or interrupt batching,
this monitors hardware interrupts that are batched and
processed periodically rather than when they would
normally be processed. This lowers the overhead of
processing interrupts but increases transaction response
time. Useful for determining if default behavior for
processing interrupts is biased toward energy efficiency or
low latency.

Memory
It is critical to monitor both memory usage and locality to determine how an application’s
use of memory impacts energy efficiency. Sizing memory capacity to meet, but not
exceed application requirements is critical for energy efficiency. If there is an excess of
free memory capacity in the system, a significant amount of power consumption comes
from memory that provides no performance benefit. Similarly, if there is not enough free
memory in the system, performance and efficiency can be crippled by swapping.

Chapter 7 ■ Monitoring

246

Monitoring can also help determine the effectiveness of memory in use. Some
applications can utilize a virtually unlimited amount of memory, but it may not be
beneficial to do so. For example, applications that use memory as a cache for content
stored on drives frequently hit a point of diminishing returns. At this point, use of
additional memory only yields minor increases in cache hit rates, trading off a very small
performance increase for a large increase in power.

Minimizing the amount of memory references that target a remote processor can
provide substantial efficiency improvements. In systems with non-uniform memory
access (NUMA), or systems with multiple processor sockets, each processor has faster
access to local DRAM than it does to remote DRAM or DRAM attached to different
sockets. Many applications aren’t properly optimized for NUMA, which results in an
equal amount of local and remote memory accesses. It takes more processor time to
complete an operation using remote memory than it does using local memory because
the increase in memory latency is reflected in CPU stall cycles.

Note ■ it is surprising to see environments that apply extensive and aggressive efficiency
optimization techniques, yet they continue to use applications not optimized for nUMa.
application nUMa optimization remains one of the more common missed opportunities for
improving performance and energy efficiency, especially given that the improvements can
be realized without any hardware changes.

Table 7-16 lists common events that can be used to identify how effectively memory
is being utilized and to understand the locality of memory references.

Table 7-16. Common Memory Events Exposed by Operating Systems

Type Description

NUMA locality Monitors the percent or amount of memory references that
are satisfied by local memory. Useful in understanding how
well optimized software is for a multi-socket system. This can
be collected with tools such as NumaTOP for Linux. NUMA
locality can have a significant impact on CPU utilization.

Total memory Monitors the total memory capacity of the system.

Used/Free memory Monitors the amount of memory in the system currently
being used. It is useful to monitor this by specific applications,
processes, and threads to understand if there are areas for
improvement. It is also useful to understand how much
memory is being used for drive caching, since that memory
appears as used but is still available for application use.

(continued)

Chapter 7 ■ Monitoring

247

I/O
Issues due to insufficient I/O performance are critical to identify because they result
in the use of more servers (and more power) than necessary to meet performance
requirements. I/O bottlenecks can prevent applications from being able to fully utilize
CPUs and memory, causing components in the system to consume a significant amount
of energy while doing little useful work.

Understanding what is sufficient in terms of I/O performance can be a significant
challenge. There is a tremendous range in peak performance between different
technologies available today. For example, storage subsystems can use different
interfaces (3 Gb/s, 6 Gb/s, or 12 Gb/s), different protocols (SATA, SAS, or FC) and
different drive types (HDD or SSD). SSDs can have a tremendous impact on system
behavior by removing a latency bottleneck that plagues many workloads. In addition to
the technologies being used, peak performance is dependent on I/O type, block or packet
size, the mix between reads and writes, or the mix between random and sequential
I/O. Operating system monitoring features are key to understanding specific workload
characteristics and the limitations of an I/O subsystem.

When monitoring I/O it is important to understand the maximum performance of
the I/O subsystem when compared to the necessary performance requirements. This
applies to both networking and storage. Figure 7-7 compares peak drive I/O operations
per second (IOPS) and drive bandwidth to runtime measurements across a range of
server load.

Type Description

Paging Monitors blocks or pages of memory moved in and out of
physical memory from a secondary storage device.

Swapping Monitors entire process memory footprints moved in and
out of physical memory from a secondary storage device.
Swapping has a severe impact on performance and energy
efficiency. If a system is swapping, the workload needs to be
optimized to decrease the working set size, or more memory
capacity needs to be added.

Table 7-16. (continued)

Chapter 7 ■ Monitoring

248

I/O bottlenecks are frequently introduced during new technology transitions.
CPU and memory performance increase at a very different rate than I/O subsystem
performance does. Upgrading to the latest platform may result in very different increases
in compute performance compared to I/O performance. Another transition that
frequently introduces issues with insufficient I/O performance is virtualization. With
several VMs sharing an I/O subsystem, increases in traffic, in resource competition, and
in diversity of I/O traffic can cause significant decreases in peak I/O performance.

Some I/O bottlenecks can be addressed through tuning, for example, enabling
offloading capabilities in an I/O adapter, segmenting or segregating traffic to specific
interfaces, enabling interrupt batching, or using virtualization technologies for directed
I/O (VT-d). Table 7-15 lists common events that can be used to monitor I/O performance
and to compare runtime performance to peak performance capabilities.

Figure 7-7. Comparing runtime IOPS and bandwidth to theoretical maximums

Chapter 7 ■ Monitoring

249

Table 7-17. Common I/O Events Exposed by Operating Systems

Type Description

Reads/Writes
(or Rx/Tx)

Monitors the number of reads and writes. Useful for
calculating IOPS.

Read/Write Bytes
(or Rx/Tx Bytes)

Monitors the bandwidth of reads and writes. Useful for
monitoring on a per-drive or per-interface level to pinpoint
potential issues.

Queue length Monitors the average queue length for reads and writes or
the average number of I/Os waiting to be processed. Useful
for identifying I/O bottlenecks.

Queue wait time Also known as queue latency, this monitors the average time
I/O requests wait in a queue before they are submitted to a
device. Useful for identifying I/O bottlenecks.

Service time Also known as device latency, this monitors the average time
it takes for an I/O submitted to a device to be completed.
Useful in combination with queue wait time to understand
how different phases of I/O contribute to end-to-end latency.

Latency Monitors end-to-end latency of an I/O including kernel time.

Utilization % Monitors the % of time a device is active processing I/Os.

Controller idle states Monitors the device power states of various controllers.

Tools
This chapter introduced several low-level mechanisms for configuring and accessing
monitoring features. For most uses, this complexity can be managed by software tools
rather than by an end user. The following section provides a short description of some
common software tools and sample usages. This is not intended to be a comprehensive
list of all tools and usages. Rather, it introduces the reader to the type of tools available for
monitoring and how they can be used. Extensive documentation for these software tools
is available online.

Health Checks
Many times, users are interested in getting a high-level picture of what is going on in the
system and are less interested in diving into the architectural and micro-architectural
details. There are two common tools for Linux (PowerTOP and turbostat) and two for
Windows (Perfmon and Powercfg) that provide an excellent first stop for information
about the power characteristics of a system.

Chapter 7 ■ Monitoring

250

Turbostat (Linux)
Turbostat is a simple but powerful tool that is built into the Linux kernel tree. It monitors

Per-thread: Average frequency, activity•	

Per-core: Core C-states, temperature•	

Per-package: Temperature, package C-states, package power, core •	
power (where supported), DRAM power

Turbostat has several different command-line options that can come in handy for
a range of usage models. Simply running it without any parameters will provide one-
second snapshots of a range of statistics. Figure 7-8 shows an example of turbostat output.

Figure 7-8. Turbostat output from a 3.12 kernel

Turbostat is commonly run alongside a workload to get statistics about the
system during the measurement. Note that although the statistics provided are heavily
influenced by the workload, it is also affected by anything else running on the system.

>> turbostat <program>

The -v option is a great way to collect a wide range of debug information about the
system configuration.

>> turbostat -v

Running turbostat at one-second intervals, particularly on large multi-socket
systems, can perturb workload behavior (and the results from the tool). Consider
increasing the monitoring interval if statistics at one-second intervals are not necessary.
This is particularly useful when trying to collect statistics about an idle system.

>> turbostat -i 2

Chapter 7 ■ Monitoring

251

3If your kernel was configured without MSR support (either built in or through a kernel module),
then you will need to recompile your kernel in order to use turbostat.

Turbostat can also be used as a simple tool for monitoring various MSRs in the
system. The -m and -M options will read the corresponding MSR one time from each thread
for each sample. The -M option will dump a 64-bit output, whereas the -m option does a
short output. The following command will dump MSR 0x199 at two-second intervals.

>> turbostat -i 2 -M 0x199

The -C and -c options provide a similar capability, but instead of displaying the
raw value of the register, these options provide a dump of the delta between the current
sample and the previous sample. This can be useful for monitoring the deltas for counters
over time. As an example, the following command will dump the delta in APREF (MSR
0xE7) every one-second sample.

>> turbostat -i 1 -M 0xe7

Not all distributions automatically include the turbostat binary, but it is trivial to
compile and use once you have the kernel source. The tool is stand-alone, so if you
download a recent kernel (from kernel.org), it will include the source. Turbostat requires
that your kernel have MSR support.3

// Extract the kernel source after downloading it
>> tar xf linux-3.12.20.tar.xz

// find the sourcecode and cd to the relevant directory
>> cd linux-3.12.20
>> find . -name turbostat.c
>> cd tools/power/x86/turbostat/

// build the tool
>> make

// make sure that the MSR kernel module is active
>> sudo modprobe msr

// run the tool
>> sudo ./turbostat

PowerTOP (Linux)
PowerTOP is an open-source tool for characterizing power management and diagnosing
power management issues. Like turbostat, it is targeted at various usage models (not just
servers). It is a useful addition because it provides some additional information above
and beyond what turbostat provides. Some notable additions include average time in

Chapter 7 ■ Monitoring

252

C-states and frequency histograms. Powertop also provides a large amount of information
targeted at consumer usage models (device idle power). The device statistics tend to be
less relevant on servers. Figure 7-9 shows sample output of the tool.

Figure 7-9. Powertop 2.6.1 idle stats

Chapter 7 ■ Monitoring

253

The basic powertop command line provides slow sample intervals by default (many
seconds). This can be useful to minimize the application’s overhead, particularly on idle
systems, but it also provides much slower results. The time parameter can speed this up
(at the expense of increased CPU overhead).

The --html option will dump an HTML file. By default, this will collect a single
measurement of the tool. However, more measurements can be collected, generating
multiple HTML files. The --html option can collect statistics over the execution of a
workload with the --workload parameter. Similar to turbostat, powertop will collect
statistics for the entire system and not just the specified workload.

>> powertop --workload=./test.sh --html=test.powertop.html

Powercfg (Windows)
Powercfg is a Windows command-line tool that enables users to tune lower-level
operating system power management settings. It allows users to enable and disable
features, change power policies, and identify issues that may impact power management.
For example, Powercfg can be used to change settings for hard drive power options
during inactivity and to query devices to understand the power states they support.

One of the unique applications of Powercfg is its ability to generate an energy report.
This option analyzes the system and reports events and configuration details that may
impact power management. The Powercfg energy report gives detailed statistics on idle
interruption, device activity, failure of devices to support power states, changes to the
operating system timer frequency, and supported power states.

The following example command uses Powercfg to list the different power policies
supported by the operating system and indicates that the current active policy is
balanced. This setting also corresponds to how the operating system is setting
IA32_ENERGY_PERF_BIAS during initialization.

C:\Windows\system32>powercfg -list

Existing Power Schemes (* Active)

Power Scheme GUID: 381b4222-f694-41f0-9685-ff5bb260df2e (Balanced) *
Power Scheme GUID: 8c5e7fda-e8bf-4a96-9a85-a6e23a8c635c (High performance)
Power Scheme GUID: a1841308-3541-4fab-bc81-f71556f20b4a (Power saver)

The following example command shows how to create the energy report.

C:\Windows\system32>powercfg.exe /energy

Figure 7-10 shows a sample of the energy report results. In this example, the system
is seeing poor package C-state residency, and the energy report has identified that several
USB devices are connected to the server that do not have USB selective suspend enabled.
This activity is preventing the system from maximizing residency in its lowest idle
power state.

Chapter 7 ■ Monitoring

254

Hardware Monitoring Tools
Programming and reading the various performance counters in the core and uncore
of a processor can become fairly complicated. In order to simplify this task, there are a
number of stand-alone tools that perform the event programming, data collection, and
visualization for the user.

Intel Performance Counter Monitor (PCM)
PCM provides stand-alone tools that handle counter programming and collection for
the user. PCM also includes sample routines that demonstrate how to configure and
read performance counters with open-source C++ code. These routines translate the raw
events into meaningful metrics like memory traffic into GB/s or energy consumed into
Joules. PCM is targeted at both power and performance monitoring and characterization
and is available as source code with a BSD-like license at www.intel.com/software/pcm.

Intel PCM runs on multiple platforms including Linux, Microsoft Windows, FreeBSD,
and Mac OS X. This is possible, because it only requires a driver to program the MSRs. For
platforms like Windows, which do not already provide such a driver, the package includes
sample code for the driver as well. Binaries are not distributed at the time of publishing,
but instructions for compilation are included.

PCM can be used in one of two ways: (1) as a set of stand-alone utilities, or
(2) integrated into an application. Figure 7-11 shows an example of a graph generated
from data collected by the stand-alone pcm-power utility on a four-socket system.

Figure 7-10. A portion of the energy report generated by the Windows Powercfg tool

http://www.intel.com/software/pcm

Chapter 7 ■ Monitoring

255

The standalone command-line program PCM is similar to turbostat in that it
periodically prints the output to the screen for a given time interval. This time interval
can be specified as the first parameter. For large servers with tens or hundreds of cores,
it is often useful to suppress the metrics for individual cores by using the -nc parameter
(for example, > pcm.x 1 –nc). An example from a four-socket system is show in Figure 7-12.

Figure 7-11. Socket and DRAM power trace generated from PCM-collected data on
four-socket system

Chapter 7 ■ Monitoring

256

It is also possible to monitor with PCM throughout the duration of a workload
by providing the workload executable as a parameter. Since PCM monitors the whole
system, the script can actually be a workload driver for a server application that was
started beforehand. Please note that in this case, PCM reports the metrics for the entire
workload measurement, for example, the total energy consumption.

> pcm.x ./run_workload.sh

For simpler post-processing by spreadsheet program, another convenient feature is
the ability to generate comma-separated lists using the -csv option:

> pcm.x 1 -csv 2>&1 | tee pcm.txt

PCM includes a utility targeted exclusively at power management: pcm-power.
This utility can measure a number of the statistics made available through the uncore
performance monitors on Xeon E5/E7 processors, including these:

Core C-state residencies•	

Causes of frequency throttling (thermal, power, OS requested, •	
electrical/fuse)

Figure 7-12. Standalone PCM showing power and performance metrics from a
four-socket system

Chapter 7 ■ Monitoring

257

Frequency transition statistics•	

Prochot statistics•	

Frequency histograms•	

DRAM power savings (CKE and self-refresh)•	

For example, to monitor the number of frequency transitions occurring in the system
at one-second intervals (and hide memory statistics), one would execute

> pcm-power.x 1 -p 5 -m -1

Figure 7-13 shows the output of this command. In addition to displaying frequency
transition statistics, some power and thermal statistics are also displayed. Additional
information is collected using the free-running counters and therefore is displayed
regardless of the command line. Note that the DRAM Energy counter was not enabled
on the system under test here and therefore reported 0. DRAM RAPL is not a required
capability and is not supported on all platforms.

Figure 7-13. pcm-power screenshot—frequency transitions

Figure 7-14 shows an example where pcm-power is monitoring why the system is
unable to achieve the maximum possible frequency (frequency clipping cause) by using
the following command line. In this command line, grep is used to filter out some of the
extraneous information.

> pcm-power.x 1 -p 3 -m -1 | grep –E "(PCUClocks|limit cycles)"

Figure 7-14. pcm-power screenshot—frequency clipping cause

The “headroom below TjMax” is shown as 1 or 0, indicating that the system is at
the thermal limit. At the same time, the “Thermal freq limit cycles” is hovering at 90%,
indicating that the frequency of the system is being limited because of thermal limits a
large percentage of the time.

Chapter 7 ■ Monitoring

258

A number of other targeted standalone applications are available as well:

pcm-numa reports, for each core, the traffic to local and remote •	
memory.

pcm-memory reports memory traffic per memory channel.•	

pcm-pcie reports memory traffic to and from PCIe devices.•	

pcm-power can report multiple values depending on the •	
parameter selection.

Both KSysGuard (KDE) and Windows Perfmon provide visualization mechanisms for
monitoring individual counters in real time. See the PCM webpage for the latest recipes.

Since PCM is distributed as source code, it can also be integrated directly into an
application to facilitate collecting system-wide statistics while an application executes.
The initialization is as easy as

PCM * m = PCM::getInstance();
if (m->program() != PCM::Success) return;

The actual measurement is similar to measuring time, where you store the clock
before and after the critical code and then take the difference. For the performance
counters, there are states available per core, package (socket), and system. There are also
predefined functions for all supported metrics:

SystemCounterState before = getSystemCounterState();

// run your code here

SystemCounterState after = getSystemCounterState();

Then, specific statistics can be displayed with, for example, the following:

cout << "Instructions: " << getInstructonsRetired(before, after)
 << "CPU Energy : " << getConsumedEnergy(before, after)
 << "DRAM Energy : " << getDRAMConsumedEnergy(before, after);

Linux Perf
Newer Linux systems have an integrated profiling and tracing subsystem called perf_
events. The perf_events subsystem provides an interface to the CPU’s Performance
Monitoring Units (PMUs); it provides an interface to the software tracepoints provided
by the Linux kernel, and it takes care of sharing resources between different users. A
standard command-line tool called “perf” allows access to the perf_events interface.
Other tools and libraries, such as NumaTOP or PAPI, also utilize the perf_events
subsystem. There are also GUI frontends available, such as Eclipse perf or sysprof.
The perf tool is typically included as a package in the Linux distribution. A wiki with
documentation about using perf can be found at https://perf.wiki.kernel.org/
index.php/Tutorial.

https://perf.wiki.kernel.org/index.php/Tutorial
https://perf.wiki.kernel.org/index.php/Tutorial

Chapter 7 ■ Monitoring

259

The perf_events subsystem is integrated into the Linux kernel with the functionality
varying depending on kernel version. All perf versions have support for basic PMU
profiling with sampling. The perf top utility (shown in Figure 7-15) is an easy way to see
details about where the CPU is currently spending its time.

Figure 7-15. Perf top example

Perf also provides access to software trace points provided by the kernel. For
example, perf timechart record records all schedule events and idle periods and
can generate a GANTT-style chart with a perf timechart report. This is useful for
understanding short stretches (a few seconds) of workload behavior. Timechart first
records the system behavior to a perf.data and then generates a SVG file to visualize the
trace in a GANTT chart–like representation.

% sudo perf timechart record sleep 1
[perf record: Woken up 2 times to write data]
[perf record: Captured and wrote 1.289 MB perf.data (~56298 samples)]
% sudo perf timechart
Written 1.0 seconds of trace to output.svg.

output.svg can then be viewed in a SVG viewer, for example, with Chrome. There
are two sets of data provided in the SVG timecharts:

A view of what is running on each of the logical processors •	
(Figure 7-16)

A view of the activity of each of the software threads (Figure •	 7-17)

Chapter 7 ■ Monitoring

260

Figure 7-17. Timechart part 2: software thread activity

Figure 7-16. Timechart part 1: logical processor activity

Chapter 7 ■ Monitoring

261

The logical processor information in Figure 7-16 shows both the requested C-states
for each of the threads as well as the threads that are active on each of the virtual CPUs
(in blue). When cores are asleep, it provides guidance about whether they are waiting for
I/O (called the io_schedule routine) or if they are idle and waiting for the CPU (called the
schedule routine).

The software thread view in Figure 7-17 shows when each of the different software
threads are active (in blue) and when the threads are inactive (in gray). The trace will
show the threads starting the first time it sees them execute (and not necessarily when
they actually began execution).

In some cases it’s also useful to look at the raw trace events, which can be post-
processed with scripts to extract information of interest. The visual timecharts can be
challenging to work with on large systems with many threads. The data file generated
by the perf timechart record can be viewed with perf script in text format as an
alternative to the visual timechart.

% sudo perf script | less
 swapper 0 [000] 176421.261802: power:cpu_idle: state=4 cpu_id=0
 perf 7667 [001] 176421.262026: sched:sched_switch: prev_comm=perf top
 swapper 0 [000] 176421.262692: sched:sched_wakeup: comm=qemu-system
 swapper 0 [000] 176421.262694: power:cpu_idle: state=4294967295 cpu

The first line is the process (swapper means idle), then the pid, CPU number,
timestamp, event name, and event parameters. In the first line, CPU 0 goes to sleep with
C-state 4. Shortly after, there is a context switch of perf to a thread of top on CPU 1. Then
eventually a qemu-system process wakes up CPU 0, which causes an idle exit.

More trace points can be displayed with perf list (as root), recorded with perf
record, and displayed with perf script.

A couple of useful tracing features in perf are kprobes and uprobes. These allow
you to create new trace points dynamically in the kernel or in user programs. These can
be accessed with the perf probe command. The following example sets a probe on the
malloc function and measures malloc accesses:

// list functions available
% perf probe -F -x /lib64/libc.so.6 | grep malloc
Malloc

// add a trace point
% sudo perf probe -x /lib64/libc.so.6 malloc
Added new event:
 probe_libc:malloc (on 0x82520)

// collect a trace
% perf record -e probe_libc:malloc sleep 1

// generate a report from the trace
% perf report
// remove the trace point when done
% perf probe –d probe_libc:malloc

Chapter 7 ■ Monitoring

262

The perf stat command can also be used to access the CPU energy meters
(requires kernel 3.14+). The following example command collects package energy use on
a single socket system every 100 ms. To get a break down for multiple sockets, --per-
socket can be used.

$ sudo perf stat -I100 -e power/energy-pkg/ -a sleep 1
time counts unit events
 0.100177504 0.25 Joules power/energy-cores/ [100.00%]
 0.100177504 0.86 Joules power/energy-pkg/
...
 0.701274659 0.23 Joules power/energy-cores/
 0.701274659 0.82 Joules power/energy-pkg/

Perf has a simple built-in performance monitoring event list (see perf list).
In addition, it is also possible to specify events raw (cpu/event=0x54,umask=0xFF/).

On Xeon E5/E7 processors, it may also be possible to access the uncore events
through perf. This can be done with the ucperf.py tool in pmu-tools. This example prints
the percentage of time the socket’s frequency is thermally limited every second.

sudo ./ucevent.py PCU.PCT_CYC_FREQ_THERMAL_LTD
S0-PCU.PCT_CYC_FREQ_THERMAL_LTD
0.00
0.00
0.00

IPMItool
The most frequently used tool to access BMC monitoring capabilities as well as BMC
health, inventory, and management functions is IPMItool. This open source command-
line tool supports out-of-band access via an authenticated network connection as well as
in-band use via a device driver on the server.

The following example demonstrates use of IPMItool by listing the SDR. This
command enables users to determine what sensors are available and do a quick check on
the status of those sensors. In this example, all but the temperature and thermal sensors
have been removed to simplify the example. Specific commands and a full list of available
command-line options are available by invoking the tool’s help option, and additional
information can be readily found online.

ipmitool -I lanplus -H xeon-bmc -U root -P pass sdr

BB P1 VR Temp | no reading | ns
Front Panel Temp | 22 degrees C | ok
SSB Temp | no reading | ns
BB P2 VR Temp | no reading | ns
BB Vtt 2 Temp | no reading | ns
BB Vtt 1 Temp | no reading | ns
I/O Mod Temp | no reading | ns

Chapter 7 ■ Monitoring

263

HSBP 1 Temp | no reading | ns
SAS Mod Temp | 25 degrees C | ok
Exit Air Temp | no reading | ns
LAN NIC Temp | 35 degrees C | ok
PS1 Temperature | 26 degrees C | ok
PS2 Temperature | no reading | ns
P1 Therm Margin | -59 degrees C | ok
P2 Therm Margin | -60 degrees C | ok
P1 Therm Ctrl % | 0 unspecified | ok
P2 Therm Ctrl % | 0 unspecified | ok
P1 DTS Therm Mgn | -59 degrees C | ok
P2 DTS Therm Mgn | -60 degrees C | ok
P1 VRD Hot | 0x00 | ok
P2 VRD Hot | 0x00 | ok
P1 Mem01 VRD Hot | 0x00 | ok
P1 Mem23 VRD Hot | 0x00 | ok
P2 Mem01 VRD Hot | 0x00 | ok
P2 Mem23 VRD Hot | 0x00 | ok
DIMM Thrm Mrgn 1 | no reading | ns
DIMM Thrm Mrgn 2 | no reading | ns
DIMM Thrm Mrgn 3 | no reading | ns
DIMM Thrm Mrgn 4 | no reading | ns
Mem P1 Thrm Trip | 0x00 | ok
Mem P2 Thrm Trip | 0x00 | ok
Agg Therm Mgn 1 | no reading | ns
BB +12.0V | 10.78 Volts | nc
BB +5.0V | -1.65 Volts | cr
BB +3.3V | 1.91 Volts | cr
BB +5.0V STBY | 2.93 Volts | cr
BB +3.3V AUX | 1.91 Volts | cr
BB +1.05Vccp P1 | 1.53 Volts | cr
BB +1.05Vccp P2 | 1.04 Volts | ok
BB +1.5 P1MEM AB | 1.48 Volts | ok
BB +1.5 P1MEM CD | 1.03 Volts | cr
BB +1.5 P2MEM AB | 1.03 Volts | cr
BB +1.5 P2MEM CD | 0.78 Volts | cr
BB +1.8V AUX | 1.94 Volts | nc
BB +1.1V STBY | 1.30 Volts | cr
BB +3.3V Vbat | 3.08 Volts | ok
BB +1.35 P1LV AB | disabled | ns
BB +1.35 P1LV CD | disabled | ns
BB +1.35 P2LV AB | disabled | ns
BB +1.35 P2LV CD | disabled | ns
BB +3.3 RSR1 PGD | 3.43 Volts | ok
BB +3.3 RSR2 PGD | 0.65 Volts | cr

Chapter 7 ■ Monitoring

264

The following example command demonstrates use of IPMItool drill-down into
fan-specific sensors. The first example shows how to read the tachometer for connected
fans. There are cases where a sensor exists in the SDR, but it is currently not reporting a
measurement due to being powered off, disconnected, or unsupported. Disconnected
fans have been removed in this example for simplicity.

ipmitool -I lanplus -H xeon-bmc -U root -P pass sdr type fan

System Fan 1A | 30h | ok | 29.1 | 5890 RPM
System Fan 3A | 34h | ok | 29.5 | 5890 RPM
System Fan 5A | 38h | ok | 29.9 | 5890 RPM
CPU 1 Fan | 3Ch | ok | 29.11 | 5820 RPM
CPU 2 Fan | 3Dh | ok | 29.12 | 5400 RPM

The sample command in the following example demonstrates use of raw commands
to read fan energy sensors. To access lower-level capabilities in the BMC it may be
necessary to provide unique one-byte value sequences to indicate a specific command
and associated parameters. It is sometimes necessary to use raw commands with
IPMItool because not all BMC commands are captured as individual command-line
options. Instructions on how to construct raw commands are included in the IPMI
specification, and instructions on how to specify associated parameters for the name and
location of sensors are captured in documentation provided by the server manufacturer.
The names and locations of sensors can vary by platform.

The following command returns energy for one of the fans. The last 8 bytes returned
by the command include 4 bytes for running energy in millijoules and 4 bytes for
running time in milliseconds. The command is executed twice to illustrate common
usage. Periodic reading of these sensors allows users to calculate power. For example,
subtracting the first command’s energy from the second command’s energy provides an
energy delta. The energy delta between two commands can be divided by the time delta
to calculate power.

ipmitool -I lan -H xeon-bmc -U root -P pass -b 6 -t 0x2c raw 0x2E 0xFB
0x57 01 0x00 0x3 0x0

57 01 00 19 f5 13 01 c7 e3 17 00

ipmitool -I lan -H xeon-bmc -U root -P pass -b 6 -t 0x2c raw 0x2E 0xFB
0x57 01 0x00 0x3 0x0

57 01 00 f5 54 14 01 fb eb 17 00

Note ■ ipMitool can also be used to access node Manager functionality since node
Manager is connected to the BMC using an ipMB link.

Chapter 7 ■ Monitoring

265

More information on component-level power management can be found at
www-ssl.intel.com/content/www/us/en/data-center/data-center-management/node-
manager-general.html.

Operating System Monitoring Tools
Many times, users are interested in getting a high-level picture of what applications and
the operating system are doing and are less interested in diving into the architectural
and micro-architectural details. Commonly used tools for Linux (SAR) and Windows
(Perfmon and Logman) provide an excellent first stop for information about the power
and performance characteristics of software.

SAR
SAR is a Linux tool that monitors processor time, power states, scheduling, memory, I/O,
and many other operating system visible events. SAR collects events over a user-defined
time interval and outputs many event counts as per-second averages. For several of the
monitored events, SAR provides additional detail below a system-level view. For example,
processor time can be measured for each individual logical processor, and I/O statistics
can be measured for each individual drive or network interface. SAR can be used to gain
extensive insight into resource use.

The user-defined time interval and the number of intervals to use in data collection
are defined by command-line parameters. For example, the following command specifies
-A to measure all events, once per second, over 120 seconds. A full list of available
command-line options is available by invoking the tool’s help option, and additional
information can be readily found online.

sar -A 1 120 > sar.dat

The following shows a sample of the output and includes a portion that monitors
context switches and interrupts. SAR measures interrupts both at the system level and
per IRQ. Users can use SAR output along with /proc/interrupts and /proc/irq/*/smp_
affinity to determine what specific devices are generating the interrupts, how frequent
they are, and where they are being handled.

08:46:14 PM proc/s cswch/s
08:46:24 PM 2.24 104049.64

08:46:14 PM INTR intr/s
08:46:24 PM sum 198321.77
08:46:24 PM 19 1.12
08:46:24 PM 99 7552.09
08:46:24 PM 100 7574.47
08:46:24 PM 101 7297.25
08:46:24 PM 102 7580.26
08:46:24 PM 103 7472.13

http://www-ssl.intel.com/content/www/us/en/data-center/data-center-management/node-manager-general.html
http://www-ssl.intel.com/content/www/us/en/data-center/data-center-management/node-manager-general.html

Chapter 7 ■ Monitoring

266

08:46:24 PM 104 7808.85
08:46:24 PM 105 7774.36
08:46:24 PM 114 7650.66
08:46:24 PM 115 1660.83
08:46:24 PM 116 1443.44
08:46:24 PM 117 1593.69
08:46:24 PM 118 1750.97
08:46:24 PM 119 1373.35
08:46:24 PM 120 1674.57
08:46:24 PM 123 1417.90
08:46:24 PM 124 1298.17
08:46:24 PM 125 1331.54
08:46:24 PM 126 1375.99
08:46:24 PM 127 1025.64
08:46:24 PM 128 1324.62
08:46:24 PM 129 1425.33
08:46:24 PM 130 1441.81
08:46:24 PM 131 0.71
08:46:24 PM 132 0.51
08:46:24 PM 133 0.51
08:46:24 PM 134 0.51
08:46:24 PM 135 0.51

Perfmon and Logman
Perfmon is a Windows tool that monitors processor time, power states, scheduling,
memory, I/O, and many other events. Perfmon also allows applications to add their own
events to the Perfmon infrastructure, allowing users to monitor performance from an
application’s perspective alongside the operating system events. Perfmon can be used to
develop extensive insight into resource use.

Perfmon events can be visualized in real-time using the GUI (shown in Figure 7-18)
or they can be collected for offline analysis using the Windows Logman tool. Logman
provides command-line automation of Perfmon as well as other monitoring features such
as event traces. It allows users to define different data collectors, or sets of monitoring
events, and control when and how the data is collected. Users have the options of creating
an always-running monitoring log, initiating different data collection scripts at different
times, and writing output to multiple formats.

Chapter 7 ■ Monitoring

267

The Windows typeperf command will list all available Perfmon events on the
system. Users can redirect output of this command to a file and edit the file as they see
fit to include only the events of interest. The resulting file can then be used as input to
Logman to define and create a new data collector. Here is an example of this command:

C:\Windows\System32\typeperf.exe -q > input_file

The following example command creates a new data collector called TEST. Logman
includes many command-line options to define collection interval, output format, and
output location. A full list of available command-line options is available by invoking the
tool’s help option.

C:\Windows\System32\logman create counter TEST
--v -ow -f csv -si 12 -rf 00:01:20 -cf \path \input_file -o \path

The following example command starts the TEST data collector. This will monitor
the system for 120 seconds and write to a comma-separated value (CSV) file as defined by
the command-line options used to define the data collector.

C:\Windows\System32\logman start TEST

Figure 7-18. The Node Manager ACPI Power Metering counters in Performance Monitor
showing a power limit being enforced

Chapter 7 ■ Monitoring

268

The following output shows a sample of the output including a count of C2 and C1
requests per second issued by the operating system.

12/4/2013 12:53:46 PM 147563.4769 42.47840145
12/4/2013 12:53:58 PM 147825.0577 180.6790098
12/4/2013 12:54:10 PM 149276.3783 120.0697295
12/4/2013 12:54:22 PM 148175.1804 70.16651533
12/4/2013 12:54:34 PM 145440.724 83.24879264
12/4/2013 12:54:46 PM 144713.8251 145.7252465
12/4/2013 12:54:58 PM 146356.6638 112.1651317
12/4/2013 12:55:10 PM 147555.4464 102.7483379
12/4/2013 12:55:22 PM 147615.9768 46.81029614
12/4/2013 12:55:34 PM 148977.9331 106.331977

Summary
Numerous capabilities and tools exist for monitoring a system to understand power
and performance characteristics. Different types of monitoring capabilities, including
hardware monitoring, management controller monitoring, and software monitoring,
have unique benefits and usages that aid in understanding system behavior.

Simple metrics can be used to convert raw monitoring data into formats more
suitable for analysis, and a number of software tools can aid in visualization. Common
monitoring tools, example use, and example output outlined at the end of this chapter
provide a quick-start guide for monitoring. Chapter 8 will continue by discussing
monitoring techniques that can be used to guide optimization decisions, along with
specific examples of tuning.

269

Chapter 8

Characterization and
Optimization

Servers have a wide variety of different hardware and software configuration options.
These include simple options such as enabling and disabling a feature. It also includes
more advanced options that allow operators to control usage conditions, functionality,
or other feature behavior. The individual features discussed in this book are primarily for
power management—for example, P-states, C-states, link, and device states. Servers also
have a large number of configurable features that are designed for performance including
Turbo, memory prefetchers, or memory controller page policy.
In addition, servers have a large number of configurable features that are designed to add
functionality, such as virtualization; security; or reliability, availability, and serviceability
(RAS) features.

Servers have an equally large number of software options including different
operating systems, applications, and management software options. For any given
workload, a server’s default hardware and software settings are designed to provide a
good balance between low power and high performance. However, for many workloads,
these default settings may not be optimal or may not be in line with an operator’s
performance, power, or cost goals. Most platforms enable power management features,
so they are used aggressively when utilization is low. They are used conservatively as
utilization increases, and they are disabled when the server reaches full capacity. At full
capacity, power management features are either explicitly or implicitly disabled, so power
management has no negative impact to maximum throughput.

All of the different types of features just described have an impact on performance,
power, or other factors. The specific impact varies significantly based on the workload
being measured and the system components being used. In many cases, the only way
to definitively understand how various configuration options will impact power or
performance is by experimenting on a specific system configuration. For example, an
I/O-intensive workload with simple transactions may realize an undesirable performance
impact from PCIe L1. However, the impact will vary significantly depending on the
I/O (network or storage), device latency, device bandwidth, and whether the system is
running at low or high utilization. There is no one-size-fits-all answer to questions about
individual feature performance or power characteristics.

Chapter 8 ■ CharaCterization and optimization

270

Before determining whether to tune, which features to tune, or how to tune, operators
need to determine their requirements, such as functionality, power, and performance.
It is also important to identify optimization goals. An operator who is optimizing for
maximum performance may make decisions regardless of power consumption and will
end up choosing a very different set of features and tunings than an operator who wants
to minimize power. Other operators may take a more balanced approach; they may seek
to lower power as much as possible, but at the same time, still meet a response time
(performance) requirement. Other operators will use power management as aggressively
as possible as long as those features do not impact maximum throughput. For a small
number of servers, the investment in advanced feature tuning may not be worthwhile.
However, the value increases significantly as the number of servers deployed increases.

Note ■ the process outlined in this chapter frequently refers to tuning to decrease power
or increase performance and the tradeoffs between the two. You can use the same process
and analysis techniques to assess other tradeoffs, such as cost or functionality. in addition,
requirements may extend beyond power and performance, such as temperature or
reliability limits.

Feature tuning is very straightforward with the right tools and process. Chapters 2-6
describe various power management features, including how they work, and feature
power and performance characteristics. Chapter 7 described how to monitor those
features to understand their use. This chapter describes a process for characterizing and
optimizing servers for the datacenter.

The following steps provide an overview of optimizing a server. Many of these
individual steps will be described in greater detail throughout the remainder of the chapter.

1. Set power and performance requirements and optimization
goals. For example, minimize energy while meeting a
response time requirement or maximize performance below a
temperature limit.

2. Collect data in the target environment to understand runtime
characteristics. This includes data collected using power,
performance, and thermal monitoring capabilities over a
range of use conditions.

3. Analyze data to identify gaps relative to requirements and to
understand what improvements the operator needs to make
to reach optimization goals.

4. Analyze data to uncover new issues and opportunities. For
example, an operator may identify during characterization
that they only use a fraction of the available memory capacity
or that the number of software threads running is frequently
less than the number of logical processors.

Chapter 8 ■ CharaCterization and optimization

271

5. Create a test environment for tuning experimentation. Identify
a workload that is representative of the target environment.
Reuse industry and open source workloads that model similar
applications and services or create new workloads based on
the target environment’s key characteristics.

6. Identify options to tune including BIOS setup options, OS
options, and application options.

7. Measure the target workload and collect data with server
default settings. This represents the baseline measurement
that all future experiments will be compared against.

8. Measure the target workload with each identified feature and
tuning, making only one change at a time.

9. For each change, collect and analyze data to identify the
power and performance impact.

10. Identify those changes that aid in meeting requirements and
optimization goals and measure the target workload with a
combination of these.

11. Deploy beneficial changes to the target environment.

12. Repeat the process whenever there is a significant change to
requirements, optimization goals, use conditions, or system
components.

Workloads
Workloads are software services, applications, or testing tools that measure the
performance of a server. They attempt to model representative usage scenarios based
on usage conditions of interest. Workloads provide a repeatable way to measure
performance of a system and are particularly useful when you are experimenting with
and trying to understand the impact of changes to hardware or software in a datacenter.

Performance can be represented in a variety of different ways depending on the
workload of interest. For example, throughput metrics, such as transactions per second
or I/O per second, measure the peak performance capabilities of the platform. Latency
metrics, such as transaction response times, time to completion for compute jobs, or
I/O (drive and network) latency, measure the responsiveness of the platform. Power
metrics, such as platform power, memory power, frequencies, and voltages, are used
to understand the energy cost per unit of work. Several workloads bring together a
combination of the metrics of interest, providing performance per watt or performance
per dollar.

Workloads can be used to study a subset of system components, the system as a
whole, or a cluster of servers. A profound understanding of system behavior can be gained
when representative workloads are coupled with extensive data collection (such as core
and uncore performance monitoring units, digital power meters, and OS metrics) and the
results are carefully analyzed.

Chapter 8 ■ CharaCterization and optimization

272

Identifying Suitable Workloads
The first requirement for any workload is that it is measurable. A service, application, or
testing tool must have one or more metrics captured during a measurement that can be
used to convey various measured throughput, latencies, or a composite metric of the two.

Workloads must be repeatable. If an experiment is conducted twice, three times, or
a hundred times without any configuration changes in-between, the measured results
must be the same. Workloads with poor repeatability make it difficult or impossible for
operators to tell whether a measured change in performance is due to a configuration
change or simply due to normal experiment variation. Ideally, workloads used for
experimentation have less than 1% variation in measured power and performance;
however, 2%-3% is common. If variation exceeds 5%, it presents a problem because the
workload can no longer be used to assess the impact of smaller or more subtle changes to
system configuration.

Workloads must be reproducible—executing the same transactions or computations,
using the same inputs, and following the same order or distribution for every
measurement. Reproducible workloads measure performance during a timed interval
that is the same for every measurement. They also can be reset to a starting state that is
identical across measurements. For example, workloads that utilize a database must be
able to restore a backup database before every measurement.

Workloads or systems with poor scalability can affect how repeatable or reproducible
a measurement is. For example, a workload that is being used to measure compute
performance will not shed light on changes if there is an I/O bottleneck. Similarly, a
workload that only utilizes a few threads may not accurately illustrate the performance
difference between an eight-core or an eighteen-core processor.

Workloads must be representative. Representative workloads perform similar
transactions or computations as the scenario being modeled and also use the same
software stack and configuration as the scenario being modeled. For example, a
representative Infrastructure as a Service (IaaS) workload would utilize a virtualized
environment. It would have virtual machines utilizing heterogeneous applications,
it would vary the load on the server over time, and it would vary the number of
running instances. Many workloads include random elements to improve their
representativeness—for example, workloads that vary the client think time or the
interarrival rate of transactions.

Workloads that are not representative typically only model a small portion of
the scenario of interest. This makes it more likely that the tuning results from a test
environment will not apply to the production environment. For example, a testing tool
that measures single-threaded TCP roundtrip latency wouldn’t be representative of a web
server. An operator could make several changes to improve the performance of the test
workload that would have no impact or a negative impact on their production workload.

Another key attribute for characterization and optimization is whether the workload
is configurable; for example, does the operator have the ability to change the problem size
in a scientific workload or to change the number of connected clients in a transactional
workload? Having ample configuration options is key to tailoring the workload setting to
best match an environment of interest.

Chapter 8 ■ CharaCterization and optimization

273

Workload Types
There are a wide variety of different workload types—for example, testing tools, energy
efficiency benchmarks, industry benchmarks, and datacenter workloads. Each has
different applications, different purposes or goals, and a different level of complexity.

Testing Tools
Testing tools don’t necessarily model a representative service or application; instead, they
are used to stress a single component or subset of related components in the system. For
example, Intel provides a testing tool to characterize cache and memory performance.
The Intel Memory Latency Checker tool (Intel MLC) can be used to measure maximum
memory bandwidth, idle latency, and loaded latency.1 Although these tools are great for
testing some key system characteristics, it is also relatively easy to misinterpret the results.
One common mistake is to measure idle memory latency with clock-enabled (CKE)
power savings enabled. These power savings commonly engage during idle latency tests,
causing a significant increase in the idle latency. CKE tends to have much smaller impacts
on real system performance.

There are also testing tools that focus on I/O. The open source iperf workload is
popular for measuring network bandwidth; the NetPIPE workload is popular for network
latency. For storage, the open source FIO or IOmeter tools are popular and flexible and
allow users to vary different I/O parameters and think times.

Testing tools can give a preliminary indication of how a given feature might impact
power or performance. They are also very helpful in identifying the base capabilities of
a platform and can be used as guides for detecting bottlenecks. Individual components
can be monitored when testing tools are being measured to understand state residencies,
bandwidth, or throughput limits. Chapter 7 provides an outline of the different types of
metrics to look at when monitoring components.

It can be easy to misinterpret the results of some micro benchmarks. For example,
idle latency benchmarks (such as the Intel MLC) will exhibit significant increases in
latency as a result of memory CKE power savings features (see Chapter 3). Not only
will CKE result in an increase in idle latency due to the CKE wakeup, but the precharge
powerdown (PPD) feature will also result in closed memory pages (and further latency
increase). It is not uncommon for users to draw the conclusion that CKE causes
significant performance loss based on this benchmark. In practice on real workloads,
CKE has a much smaller impact on latency.

Energy Efficiency Workloads
Energy efficiency workloads are used to study both the power and performance
characteristics of a system. They exercise CPU and memory and provide a great
preliminary analysis of system behavior. The most popular energy efficiency workloads
are SPECpower_ssj2008 (SPECpower) and the Server Efficiency Rating Tool (SERT) from

1See https://software.intel.com/en-us/articles/intelr-memory-latency-checker.

https://software.intel.com/en-us/articles/intelr-memory-latency-checker

Chapter 8 ■ CharaCterization and optimization

274

the Standard Performance Evaluation Corporation (SPEC). SPECpower is widely used
across the industry and features several years of published results, so there is a great
amount of data to use for system comparisons.

SPECpower

SPECpower measures simple transactions running in a Java Virtual Machine (JVM) across
a broad range of CPU and memory utilization. It includes idle, maximum throughput, and
a range of load points in between those endpoints. It provides a way to visualize power
consumption at various ratios of maximum performance. This visualization, with power
on one axis and performance on the other axis, is commonly called the load line. There
are examples of this visualization spread throughout this book; however, many examples
use a workload other than SPECpower. The load line methodology introduced by SPEC
in SPECpower has seen broad use across the industry because it can be easily applied to
different workloads.

Figure 8-1 shows CPU power during a SPECpower measurement. It illustrates several
calibration load points used to determine system performance, as well as several load
points of varying utilization all the way down to idle.

0

20

40

60

80

100

120

CP
U

Po
w

er
 (W

)

Time (s)

Figure 8-1. CPU power measured over various load levels of SPECpower

SPECpower has some representative characteristics, but it lacks more sophisticated
transactions that are common in datacenter workloads. It does not exercise a complete
software stack and does not have any significant storage or network I/O. As a result,
SPECpower includes some characteristics that are not commonly seen in production
workloads. SPECpower has an order of magnitude fewer power state transitions
compared to typical datacenter workloads. Residency in low-power states is much
higher in SPECpower than in other workloads. In SPECpower, transactions are initiated
in batches, rather than being individually initiated by network connected clients. This
means the workload is both idle and active for longer periods of time, leading to very
different P-state behavior than is seen with a typical datacenter workload.

Chapter 8 ■ CharaCterization and optimization

275

Due to the workload’s focus on CPU and memory, certain features or platform-level
changes may improve SPECpower scores, but they do not provide a benefit in a typical
datacenter workload. As is the case with every workload, there are optimizations that may
benefit SPECpower that aren’t generally a good idea to apply elsewhere.

Note ■ a significant challenge in workload selection is balancing ease of use with
representativeness. Workloads that model realistic use scenarios tend to include a large
number of network-connected clients, sophisticated software stacks, and multiple different
systems under test. Workloads that are easy to install, measure, and maintain do not.

The Server Efficiency Rating Tool (SERT)

SERT is a new SPEC tool suite under development that measures power and performance
across a broader range of use conditions and applications. Rather than executing a
single test, it includes a variety of different worklets that stress the CPU (different types of
operations, including mixing integer, floating point, data references, and modification),
memory, and drives separately. SPECpower loads are one of the worklets, so SERT
extends the type of analysis that can be done above and beyond SPECpower.

SERT has been adopted by the Environmental Protection Agency (EPA) for their
Energy Star program for servers. SERT is also being investigated for use in energy
efficiency programs by government agencies around the globe including Europe and
Asia. It is interesting to note that SERT is being used not only for power and performance
assessments, but is also being considered for government-based environmental
programs.

Industry Workloads
Industry workloads are typically two- or three-tier workloads with transactions driven
over the network based on more realistic transaction interarrival rates. These workloads
use representative application and software stacks and often include quality of service
or response time requirements. The ability to measure transaction response time is a key
capability because it allows operators to characterize the performance impact of power
management features. The downside to using industry workloads is that they represent a
significant resource investment, both in engineer time and hardware.

Industry workloads are one of the best tools available to characterize and optimize
a server. These workloads are maintained and updated by various open source efforts
and an industry consortium, and they see extensive use across the industry. The majority
of charts in this book were generated using monitoring power and performance with
industry workloads.

A number of good industry workloads span various market segments. For
example, many HPC and scientific workloads span life sciences, computer-aided
engineering, financial modeling, and weather simulation, and many of these are open
source. Similarly, there are a number of enterprise workloads modeling database
and mail servers, customer relationship management (CRM) systems, and enterprise

Chapter 8 ■ CharaCterization and optimization

276

resource planning (ERP) systems, and there are also many cloud workloads that model
multitenant environments or that model environments with distributed services that
utilize the Web, memory cache, and databases.

The Transaction Processing Performance Council (TPC) and SPEC are two industry
organizations that develop and maintain workloads. TPC workloads such as TPC-C
(order-entry OLTP), TPC-E (brokerage-firm OLTP), and TPC-DS (decision support
system) are popular for power and performance characterization. SPEC workloads such
as SPECweb (web server), SPECvirt (infrastructure consolidation), and SPECimap (mail
server) provide similar capabilities. In addition to the industry organizations, there are
also a number of company-sponsored workloads such as SAP Sales and Distribution
(SAP SD) workload or VMware VMmark.

In addition to the workloads maintained by industry organizations, a number
of good open source workloads span various market segments: Olio (web, social
networking), mcblaster (object cache), HammerDB (OLTP), and TPoX (Transaction
Processing over XML), for example.

Note ■ open source workloads are an excellent starting point for workload development
or for customizing a workload to better model a target environment.

Industry workloads are more complex and realistic, and they represent a step
above. Unlike SPECpower, most industry workloads do not have integrated power and
performance metrics, and they do not automatically generate a load line. However, the
load line concept from SPECpower can be easily applied to industry workloads.

Industry workloads allow users to create a variety of different loads, typically
specified by a number of virtual clients or delay time between client transactions. For
example, Olio requires an operator to specify the number of users that will be used to
generate different types of web transactions. Measurement across a variety of different
utilization or throughput levels is possible by running with a different number of users.
For many virtual workloads, several thousand virtual clients are required to reach
maximum throughput, so it is easy to make fine-grained adjustments to load based on
varying the number of users.

Idle Workloads
As is the case with industry workloads, the conditions used to test an idle server should
also be representative. Many idle power measurements are taken shortly after a server
is powered on and initialization is complete. The server may not have any applications
or services initialized and ready for use. This state is called operating system idle. In
operating system idle, it is typical to see long, uninterrupted idle durations and excellent
residency in package C-states.

To get a representative measurement, it is best to measure idle on a system that
has all applications and services initialized and has recently completed running a
representative workload. This state is called active idle, and unlike operating system
idle, it may include intermittent network activity, periodic management and security

Chapter 8 ■ CharaCterization and optimization

277

operations, and sporadic application activity. Active idle for virtualized environments
typically includes a variety of different virtual machines running different software stacks,
adding to its complexity. As the name implies, active idle is significantly more active than
operating system idle, leading to higher power. Figure 8-2 illustrates the difference in
activity between operating system idle and active idle with numerous applications and
services loaded.

0%

2%

4%

6%

8%

10%

0 10 20 30 40 50 60

CP
U

Ut
ili

za
tio

n
(%

)

Time (s)

Active Idle OS Idle

Figure 8-2. Variation in CPU utilization between active idle and OS idle

Measuring and comparing the differences in operating system idle and active idle
can help to identify software and hardware components that impact idle power. For
example, applications that utilize polling rather than events or applications that change
the timer frequency of the operating system can both result in higher idle power. Because
most servers spend a significant amount of time idle, optimizing for idle can be as
beneficial as optimizing for active loads. The tools operators can use to diagnose active
idle issues are discussed in Chapter 7.

System Characterization
Hardware and software monitoring tools are key capabilities needed for system
characterization. The best techniques for data collection can change based on the
workload type or based on the amount or type of data collected.

Steady State vs. Non-Steady State
When monitoring workloads it’s important to identify whether the workload of interest
is steady state or non-steady state. During a steady state workload, system characteristics
don’t change significantly over time. Industry benchmarks that model transactional
systems are typically steady state workloads; TPC-E or SPECweb are examples of this type
of workload. These workloads execute a predetermined mix of transactions, repeatedly,
over a very long period of time.

Chapter 8 ■ CharaCterization and optimization

278

For many workloads, there is a significant amount of ramp-up time before steady
state is reached. When a workload first starts, application and system characteristics are
changing frequently as clients connect, load is balanced, and frequently-used data is
cached.

Non-steady state workloads consist of frequently changing system characteristics. It’s
common for application behavior to change from one second to the next—for example,
a scientific application modeling weather patterns or a data analytics workload with
different map and reduce phases. Figure 8-3 shows how the rate of instruction retirement
varies for a steady state and non-steady state workload. The multiple different phases of
the non-steady state workload can be clearly identified.

0
5E+10
1E+11

1.5E+11
2E+11

2.5E+11
3E+11

0 200 400 600 800 1000 1200

In
st

ru
ct

io
ns

 R
et

ire
d

Time (s)

Non-Steady State Steady State

Figure 8-3. Variation in instructions retired between non-steady state and steady state
workloads

Data Collection
There are a number of important considerations for collecting data during workloads. If
data collection tools are executed too frequently or multiple tools are executed in parallel,
it can alter the behavior of the workload. If data collection is not started and stopped at a
consistent point in time, data cannot be compared between measurements.

Collection Duration
The start time and length of data collection depends on whether the workload is steady
state or non-steady state. For steady state workloads, power and performance data is
typically not collected during ramp-up since initialization phases are not of interest.
Similarly, data collection can be skipped during ramp-down phases or when a workload
has finished and is restoring files to a known starting state.

When data is collected during the steady state between ramp-up and ramp-down,
it is only necessary to collect data for a small portion of time because system
characteristics don’t change significantly from one moment to the next. Data collected

Chapter 8 ■ CharaCterization and optimization

279

during one minute of steady state should have characteristics very similar to data
collected during the next minute of data collection. Data collection may need to be
started and stopped for workloads that have several significant intervals. For example,
SPECpower may require tools to be started and stopped at specific times to allow for
load points to be individually analyzed.

For non-steady state workloads, performance and power data is typically collected
throughout the entire duration of a measurement. Unlike steady state workloads, it is not
reasonable to collect data for a smaller portion of time since the characteristics of data
collected during one minute of time can be very different from the data collected during
the remainder of the workload.

Collection Frequency
If power and performance events are collected at high frequency, data collection tools
will interrupt applications frequently, stealing CPU cycles from the workload of interest.
This may alter the natural behavior of the workload, revealing power or performance
issues that would not occur when data collection is stopped. If events are collected at low
frequency, interesting workload characteristics may be difficult to discern. Operators will
be unable to both identify unique phases of the workload and determine how power and
performance characteristics change over time.

Note ■ Unlike hardware monitoring tools, operating system tools can collect hundreds
of different events in a single interval. Collecting data at low frequency can still perturb the
workload if too many events are collected at the same time.

For steady state workloads, data collected at low frequency will produce a similar
result as data collected at high frequency. This simplifies the data collection process for
steady state workloads since the workload can be characterized with only a small amount
of data. For non-steady state workloads, high frequency collection is necessary. Finding
the ideal data collection frequency will require some experimentation as it varies from
workload to workload. The goal is to collect data as frequently as possible while having no
impact on system power or performance.

Event Ordering and Event Groups
Many times it is necessary to analyze several events collected at the same time to get a
complete picture of component or system behavior. For example, to characterize memory
references during a particular phase of a workload, an operator may want to measure
read transactions, write transactions, page hits, page empty accesses, page misses,
and memory latency. As discussed in Chapter 7, this may not be possible since many
monitoring units can only collect a small number of events in parallel.

Chapter 8 ■ CharaCterization and optimization

280

For steady state workloads, this isn’t a significant issue. Monitored events measure
very similar values from one moment to the next, so it is possible to gain the desired insight
into component or system behavior by splitting up events over several different groups
measured at different times. For non-steady state workloads, the limitation of monitoring
units can be an issue. The best practice is to collect related events as close (in time) to each
other as possible and to collect the same event groups repeatedly at high frequency.

Multiple Tools
During workload characterization, operators may be required to measure data using
several different tools targeting monitoring capabilities spread across software, firmware,
and hardware. When multiple tools are used, there are some cases where it is beneficial
to measure multiple tools simultaneously. For example, to provide complete coverage for
a non-steady state workloads or when there is interest in comparing software metrics to
hardware metrics collected at the same time. There are other cases where it is beneficial
to measure multiple tools one at a time. For example, to limit how intrusive data
collection is during a steady state workload.

Similar to the process of determining collection frequency, event groups, and event
ordering, there are several choices for how to collect data using multiple tools. These require
some experimentation as each of those choices has unique strengths and weaknesses.

Methodology
Characterizing and optimizing a server requires not only good workloads and a good data
collection strategy, it also requires good methodology. The following recommendations
serve as guidelines for basic server characterization.

Quality test each server before investing time in characterization •	
and analysis. Use testing tools to confirm the configuration is
healthy, and measure the target workload several times to ensure
workload variability is within acceptable limits.

Always collect data with monitoring tools. Without proper •	
visibility into power and performance characteristics, the result
of changes to software or hardware from one measurement to the
next will not be well understood.

Always use a consistent baseline measurement, making no •	
change to the configuration throughout the duration of an
experiment. For example, if a driver or BIOS is updated, drive
capacity is added, or a network is reconfigured, measurements on
the server can no longer be compared to previous measurements.

Only change one variable at a time between measurements. For •	
example, coupling several software optimizations together in
a measurement may result in no change in power, whereas in
reality, some of the optimizations may be helpful while the others
are harmful.

Chapter 8 ■ CharaCterization and optimization

281

Always automate workloads and data collection. This ensures •	
measurements will collect data with the same start time, end
time, collection frequency, and event ordering every time.
Without this consistency in timing, comparisons between
different measurements may provide misleading results.

Use a controlled thermal environment. Repeatability of a •	
workload can be impacted if the temperature varies significantly
based on weather, time of day, or activity of other systems.

Analysis
With thousands of different events that can be monitored during a measurement, using
a top-down analysis is one of the best strategies for analyzing changes to a server. First, it
is important to look at the big picture. The most important metrics to analyze are power,
performance, and cost since most feature tuning will result in an increase or decrease in
one or more of these. Performance will be measured in throughput and latency (response
time or time to completion) and will be collected by the target workload. Power will be
measured either using a digital power meter or through the power supply or current
sensors using the monitoring features described in Chapter 7.

Power Metrics
Configuration and tuning changes can cause very large differences in system power.
Figure 8-4 highlights how substantial the change can be. The lowest power tuning in this
example is able to minimize the energy cost per transaction without impacting maximum
throughput.

150
200
250
300
350
400

0% 20% 40% 60% 80% 100%

Po
w

er
 (W

)

Performance (% of Max)

Tuned for Highest Performance

Tuned for Lowest Power

Figure 8-4. Comparison between power and performance (throughput)—Server OLTP
Workload

Chapter 8 ■ CharaCterization and optimization

282

To build a deeper understanding of a configuration or tuning change, first identify
the component or components that caused the change. Then, identify specifically why
those components’ power changed. For a given power increase or decrease, there are
several events and metrics in the data collected that can be used to identify the cause.

In an ideal scenario, the system is capable of component-level power measurements,
and the components contributing to a change in power can be identified simply by
comparing the power of individual components (processors, memory, PCH, LAN
adapters, drives, and fans).

However, systems with component-level power measurement capability are
uncommon today. A more assessable approach to determining a change in power is
to identify differences in active and idle states and operating conditions. These are the
primary factors that ultimately determine power consumption. For example, a change
in CPU power could be identified by analyzing CPU C-state and P-state residency and
transitions. A change in fan power could be identified by analyzing each fan’s tachometer,
and a change in interconnect power could be identified by analyzing interconnect
voltage, frequency, and link width.

If power measurement and monitoring capabilities are insufficient to identify what
caused a change in power, performance and thermal events can be used to provide
alternative insight. For example, if a measurement showed a 10-times increase in IOPS to
a SSD, this increased activity may indicate a measurable increase in drive power.

A change in system power is always the result of a single component change because
there are many complex dependencies between various components in the system. For
example, an operator could decrease memory power by limiting the memory frequency
used and capacity installed; however, this change might increase system power as CPUs
are stalled waiting for data to be returned from memory and drives. As the workloads
used become more sophisticated, the number and complexity of component and system
dependencies increase. For example, tuning any given node in a cluster of servers
running a distributed application may result in a small local difference but a substantial
global difference when the cluster is viewed as a whole.

The following list serves as a prioritized guide for top-down power analysis.
Although this list is targeted for power analysis, performance metrics are also valuable,
and will be covered momentarily. See Chapter 7 for more details on how to monitor these
various metrics.

CPU Power•	

P-state residency•	

C-state residency and transitions•	

Temperature•	

Memory power•	

Frequency and voltage (static at runtime)•	

Self-refresh and CKE residency and transitions•	

Chapter 8 ■ CharaCterization and optimization

283

Thermal management•	

Platform temperatures•	

Fan power•	

Tachometer•	

Device power•	

Link width and frequency•	

I/O bandwidth and transactions per second•	

QPI L1 and L0p residency and transitions•	

Other•	

Additional system performance metrics•	

Performance Metrics
Configuration and tuning changes can cause very large differences in system
performance. Figure 8-5 highlights how substantial the change can be. This figure
underlines the importance of performance requirements. If this server had a performance
requirement that 95% of transactions are completed in less than 10 milliseconds, then the
lowest power tuning would decrease power and cost while still meeting that performance
requirement. However, if the server had a performance requirement that 95% of
transactions are completed in less than 2 milliseconds, an operator may both tune for
performance and load systems to no more than 80% of maximum capacity.

0
2000
4000
6000
8000

10000

0% 20% 40% 60% 80% 100%Re
sp

on
se

 T
im

e
(µ

s)

Performance (% of Max)

Tuned for Highest Performance

Tuned for Lowest Power

Figure 8-5. Comparison between response time and performance (throughput)

Chapter 8 ■ CharaCterization and optimization

284

To build a deeper understanding of a configuration or tuning change, first identify
the component or components that caused the change. Then identify specifically why
those components’ performance changed. This process of performance analysis is easier
if the target workload’s sensitivity to CPU frequency and I/O subsystem performance is
well understood.

Note ■ one good method for determining sensitivity to CpU performance is through
frequency scaling studies. this involves running a target workload several times across
a range of fixed frequencies. the results allow operators to calculate scaling efficiency
between two frequencies by comparing the percent increase in performance to the percent
increase in frequency.

If a workload exhibits poor frequency scaling, transaction time is likely dominated
by waiting for memory or I/O. Alternatively, the poor frequency scaling may be the
result of a bottleneck. For example, a datacenter workload that drives line rate network
traffic is unlikely to see a significant increase or decrease in performance based on CPU
frequency.

Differences in performance can be identified by analyzing the changes in CPI,
path length, or power state residencies. For example, a decrease in operating frequency
will almost certainly result in a decrease in performance. An increase in CPI could be
the result of a degrading cache hit rate or increasing memory latency. The source of an
increase in path length can be identified by analyzing execution profiles collected by
tools such as Linux perf. The execution profile will allow an operator to drill down to the
specific process, modules, or function that is exhibiting a change in behavior.

The following list is a prioritized guide for top-down analysis. Note that system
power, covered in the previous section, is very important to consider when understanding
changes in performance. For example, monitoring C-state residency and transitions
not only tells the operator about time spent in state, it also tells about accumulated exit
latency (C0 impact) and effects of flushing caches (CPI impact). See Chapter 7 for more
details on how to monitor these various metrics.

CPU performance•	

Cycles per instruction (CPI)•	

Cache misses and latency•	

Memory latency•	

C-state transitions (latency) and residency (C0)•	

Path length•	

Software execution profiles•	

P-state residency (frequency)•	

Thermal throttling•	

Chapter 8 ■ CharaCterization and optimization

285

Memory performance•	

Memory latency•	

Self-refresh and CKE residency and transitions•	

Memory bandwidth•	

Thermal throttling•	

Interconnect power•	

QPI L1 and L0p residency and transitions•	

Device performance•	

Link width and frequency•	

I/O bandwidth and transactions per second•	

Optimization
There are a large number of different optimization opportunities in the system, and it
can be challenging to know which are worth the effort. This section explores a variety of
different optimization opportunities and investigates the potential tradeoffs involved. In
addition to highlighting valuable opportunities, it will cover a selection of items that you
may want to avoid. Some optimizations must be performed at boot in the BIOS, whereas
others may be possible at runtime. This chapter provides recipes, where possible, for how
to make different changes in the system.

Power management algorithms can also provide improved performance in select
cases. This section will highlight some of these opportunities for improved performance.

CPU Power Management
Typically, the CPU is one of the first places to start performing power (and performance)
optimizations because it frequently contributes significantly to the overall power in the
platform. However, there are times when the CPU is not as significant to the overall power
consumption of the platform. A good example is a storage system with a large JBOD
(just a bunch of disks). In such a system, the CPU power may not be a major contributor
to the overall power, and it may not be worth the effort to focus on CPU optimizations.
One of the first tasks in performing any optimization work is to determine where the
power is going. Total platform power should be characterized and compared against the
CPU subcomponent power (see Chapter 7 for details). It is common for the CPU (and
memory) to contribute a significant percentage of the overall platform power, but this
should be confirmed prior to focusing significant effort on optimizations.

Chapter 2 provides background on many of the features discussed in this section.

Chapter 8 ■ CharaCterization and optimization

286

P-States and Turbo
Voltage and frequency can play a significant factor in power consumption. Running at a
lower frequency when performance is not required can save significant platform power,
particularly on high TDP Xeon processors.

Running at lower frequency (P-states) will likely increase the response time of
workloads when they are running at low to moderate utilizations. However, as shown in
Figure 8-5, many workloads exhibit much higher overall response times when running at
peak utilization (with or without power management) than what is observed when power
management is enabled at lower utilizations. As a result, the response time impact of
these features may not be the dominant component in the worst-case latency situation.

Turbo can be used to increase the achieved frequency beyond the base frequency.
On recent processor generations, it has been common for Turbo to provide a 10%–20%
(or more) peak performance increase. A common misconception is that Turbo provides
“burst” performance for only a short period of time. Although this is frequently true
in thermally constrained consumer devices, it is generally not the case in server
deployments. Server workloads can frequently sustain some level of Turbo indefinitely.

RAPL (and other frequency management algorithms) can engage while Turbo is
running to limit the frequency of the system. Frequency is typically managed by these
algorithms on (small) millisecond granularities. Frequency transitions block execution
for about 10 to 20 microseconds. The algorithms have been tuned so that these transition
periods have minimal impact on the overall throughput (and performance) of the system.
However, users who are very sensitive to latency disturbances, such as high-frequency
traders, may not want to use Turbo in order to avoid execution being blocked. Many
server workloads are able to easily tolerate this latency cost, and the benefits provided by
the increased frequency far outweigh the latency cost.

A common misconception is that Turbo frequencies are less power efficient than
running with Turbo disabled. Although this is true on some processor SKUs, it is not
always the case. Some lower power and lower frequency products achieve optimal
platform performance per watt while running in Turbo.

Modern operating systems take tens of milliseconds to detect changes in demand
and utilization. As a result, the use of OS-controlled P-states can result in short periods
of time where the operating frequency is lower than what would be best for the demand
of the system. One of the potential upsides of hardware power management in future
products is the ability to improve the response time to changes in demand and utilization.

Note ■ the use of p-states and turbo does not have to be a yes-or-no question. modern
operating systems can be constrained to request frequencies within a range. this can result
in significant power efficiency savings with contained impacts to response time.

P-states and Turbo need not be an all-or-nothing decision. For example, a user has
a system that typically runs at ~60% utilization, but periodically it has an increase in
demand. That user’s system has a SKU that can run at an “all-core Turbo” (P0n) frequency
of 3 GHz and a base frequency (P1) of 2.6 GHz. When the customer runs the system
with Turbo requested all the time, there is a notable increase in peak performance

Chapter 8 ■ CharaCterization and optimization

287

(which is useful for those periods of high demand), but it comes at a notable power
increase during the typical levels of demand. Running with all of Turbo and P-states
enabled results in good power efficiency, but at times, it has undesirable response time
characteristics. In such a case, the user could instruct the OS to always request at
least 2.4 GHz. Under such a configuration, the user is able to avoid the power cost of running
at 3 GHz at typical utilizations, but then transition up to 3 GHz when demand increases.

Note ■ it is recommended that both turbo and p-states be controlled through the operating
system and not through the BioS. this provides significant flexibility for a longer term to
changes in decisions without requiring system reboots (which can be very undesirable in
large-scale deployments).

The BIOS does have the ability to disable Turbo, and many BIOS designers expose
this option to end users. However, there is no way to disable frequency transitions in the
system. Some BIOSes include an option to disable EIST (Enhanced Intel Speedstep, but
this will only change how P-states are enumerated to the OS in ACPI.

Note ■ Some oems have proprietary mechanisms for managing frequency that exist
between the oS and the CpU by leveraging capabilities made possible by aCpi. Special care
may be necessary if these capabilities are enabled in the oem’s BioS.

Frequency Control in Windows

In Windows, frequency can be managed through the Power Options control panel as
well as by using the powercfg command line utility. The High Performance tuning
option (available both in the control panel and through powercfg) will instruct the OS to
request the maximum frequency at all times. By default, the Balanced mode will request
frequencies across the spectrum, including Turbo if it was enabled by the BIOS.2 Under
the Advanced Settings options, you can find additional tuning options to control the
range of frequencies that are selected (see the Minimum Processor State and Maximum
Processor State configuration options). Note that these options do not control actions in
the Turbo range.

The powercfg utility can also be used to manage both frequency selection and Turbo.3
Turbo can be disabled with the following command line (or enabled by changing the 0 to a 1):

powercfg -setacvalueindex scheme_current sub_processor PERFBOOSTMODE 0
powercfg -setactive scheme_current

2Note that Intel processors prior to the Westmere generation had Turbo disabled by default in the
Windows Balanced configuration mode.
3See the Performance Tuning Guidelines for more details about powercfg. https://msdn.
microsoft.com/en-us/library/windows/hardware/dn529134.

https://msdn.microsoft.com/en-us/library/windows/hardware/dn529134
https://msdn.microsoft.com/en-us/library/windows/hardware/dn529134

Chapter 8 ■ CharaCterization and optimization

288

Frequency selection outside the Turbo range can also be controlled with powercfg:

powercfg -setacvalueindex scheme_current sub_processor PROCTHROTTLEMIN 60
powercfg -setacvalueindex scheme_current sub_processor PROCTHROTTLEMAX 100
powercfg -setactive scheme_current

The current system configuration can be dumped from powercfg with this
command:

powercfg -Q,

Frequency Control in Linux

The Intel P-state Linux driver provides a mechanism for constraining the requested
frequencies in sysfs.4 These are located today in

/sys/devices/system/cpu/intel_pstate/

The max_perf_pct, min_perf_pct, and no_turbo files can be used to configure the
desired P-state behavior on a per-logical-processor granularity. The percentage values
that are configured here include control in the Turbo range, making it possible to limit
the maximum frequency used even in the Turbo range. Although it is not possible to
determine which part of the range is for Turbo today using the sysfs interface, you can
disable Turbo at runtime by executing the following (as root):

echo 1 >> /sys/devices/system/cpu/intel_pstate/no_turbo

The algorithms that select frequency can be further tuned using debugfs. However,
most users have generally reported minimal benefit by moving away from the default
configurations.

Prior to the introduction of the intel_pstate driver, the acpi_freq driver was used
by default to manage frequency in Linux. Little effort has been spent in recent years to
optimize this driver to work well in a server environment, and it is not recommended.
One drawback of the intel_pstate driver is that support is required in the actual kernel
for it. It is not possible to load the driver as a module on an older kernel. Note that it is
possible to fall back to the older acpi_freq driver on kernels that include support for
intel_pstates using the boot-time kernel parameter intel_pstate=disable. ,

The Linux kernel also supports the concept of P-state “governors,” which control
the aggressiveness of the frequency selection algorithm. With acpi_idle, the ondemand
and performance governors were common in server deployments. The performance
governor simply requested the max performance at all times, whereas ondemand
attempted to change the frequency based on system utilization. Many users experienced
performance issues with the ondemand governor, pushing them to use the performance
governor (which effectively disabled P-states outside of Turbo). With intel_pstates,

4See www.kernel.org/doc/Documentation/cpu-freq/intel-pstate.txt for details.

http://www.kernel.org/doc/Documentation/cpu-freq/intel-pstate.txt

Chapter 8 ■ CharaCterization and optimization

289

ondemand is no longer an option. Instead, intel_pstates provides the performance and
powersave options. The performance governor operates like it used to—the system will
request the max frequency at all times. The powersave governor replaces ondemand and
provides a new algorithm (compared to acpi_freq), which is intended to provide power
savings without some of the performance drawbacks that were observed with acpi_freq
ondemand.

Turbo Ratio Limit

As described in Chapter 2, processors generally have varied maximum Turbo frequencies
based on the number of active cores. These limits are fused into each unit and are fixed
across a given processor SKU. Users can, at runtime, reduce the maximum allowed Turbo
frequencies based on the number of active cores using MSRs 0x1AD, 0x1AE, and 0x1AF.
The exact semantics of thee MSRs is processor specific (and summarized in Figure 8-6).

MSR Bits MSR Bits MSR Bits
1 1AD [7:0] 1AD [7:0] 1AD [7:0]
2 1AD [15:8] 1AD [15:8] 1AD [15:8]
3 1AD [23:16] 1AD [23:16] 1AD [23:16]
4 1AD [31:24] 1AD [31:24] 1AD [31:24]
5 1AD [39:32] 1AD [39:32] 1AD [39:32]
6 1AD [47:40] 1AD [47:40] 1AD [47:40]
7 1AD [55:48] 1AD [55:48] 1AD [55:48]
8 1AD [63:56] 1AD [63:56] 1AD [63:56]
9 - - 1AE [7:0] 1AE [7:0]
10 - - 1AE [15:8] 1AE [15:8]
11 - - 1AE [23:16] 1AE [23:16]
12 - - 1AE [31:24] 1AE [31:24]
13 - - 1AE [39:32] 1AE [39:32]
14 - - 1AE [47:40] 1AE [47:40]
15 - - 1AE [55:48] 1AE [55:48]
16 - - - - 1AE [63:56]
17 - - - - 1AF [7:0]
18 - - - - 1AF [15:8]

Semaphore - - 1AE [63] 1AF [63]

Sandy Bridge Ivy Bridge HaswellCores
Active

Figure 8-6. Turbo ratio limit configuration

Starting with the Sandy Bridge generation, specific Turbo frequencies could be
requested directly by the operating system. As a result, controlling Turbo frequencies with
these MSRs may not be necessary in all conditions. As an example, if you are simply looking
to set a maximum requested frequency with intel_pstates, this can be done with sysfs
(as described previously). However, in other OSs where ACPI is used, there may not be a user
interface to the OS for this level of control. In such situations, these MSRs can be used.

Chapter 8 ■ CharaCterization and optimization

290

These MSRs can also be used for fine tuning the Turbo levels based on the number of active
cores. However, in practice, such configuration is generally not needed. On Sandy Bridge
servers, MSR 0x1AD was sufficient to control the limits. Each byte in the register specified the
ratio for a given core count. There was a maximum of 8 cores, so the 64-bit MSR was sufficient.

Ivy Bridge servers support up to 15 cores. MSR 0x1AE was added in order to provide
1 Byte per core. The user was required to first configure MSR 0x1AD and then 0x1AE.
When writing to MSR 0x1AE, bit [63] needed to be set to 1 to instruct the hardware to take
the configuration.

Haswell servers supported up to 18 cores. MSR 0x1AF was added, and the
semaphore bit was moved out to MSR 0x1AF [63].

Note that these MSRs are package-scoped, meaning that one copy is shared across
all cores on a given socket. When writing these registers, you should generally perform
the writes from one logical processor on each socket in the system.

Turbo Ratio Limit provides a mechanism for users to find a “compromise” between
enabling and disabling Turbo. For example, a user may find that using all of Turbo results
in undesirable frequency transitions, but disabling Turbo significantly reduces peak
performance and throughput. By reducing all maximum Turbo ratios to some level in
between P1 and P0n, the user may be able to find a sustainable Turbo frequency (on a
given workload) that does not generate any frequency transitions. This can be a useful
compromise between completely disabling Turbo and using the full Turbo capabilities.

On Haswell processors, the use of AVX instructions could reduce the maximum
Turbo frequencies. The user could use Turbo Ratio Limits to set the max Turbo
frequencies to match the levels achieved with AVX, providing more consistent frequency
as workloads transitioned between AVX sections.

Note that due to scalability concerns, this approach may be discontinued on future
processor generations and replaced with an adapted interface.

Uncore Frequency Scaling

Uncore Frequency Scaling (UFS) was introduced on Haswell E5/E7. This feature
autonomously controls the frequency of the uncore based on a variety of metrics inside
the CPU. UFS not only saves power, but also works to share power with the cores in order
to provide higher frequency and improved performance. UFS transitions block all system
traffic for about 20 ms today. As a result, these transitions have been tuned to be rare
(milliseconds between transitions).

The UFS frequency algorithm can be controlled using the non-architectural MSR
0x620. [7:0] controls the minimum ratio; [15:8] controls the max. With these two fields, the
algorithm can be bounded. The internals of the algorithm cannot be configured and may
change from generation to generation.

The base (untuned) UFS algorithm has been tuned for performance on most
enterprise workloads. A common (and simple) alternative configuration is to set this
MSR to 0x3F3F, which will attempt to lock the uncore at the highest frequency allowed
by the processor SKU. This configuration is useful for latency-sensitive usage models.
Many networking users have also found this configuration to be desirable for their
usage models. Note that the TDP frequency assumptions assume that UFS is allowed
to be dynamically managed, and locking the frequency at the maximum may result in
frequency reduction below P1 on very high-power workloads. In practice, this is not
observed on real workloads.

Chapter 8 ■ CharaCterization and optimization

291

Core C-States
In addition to P-states and frequency controls, Core C-states provide some of the biggest
impact CPU power across a range of system utilizations. As described in Chapter 2, it is
important to remember that Core C6 can provide a significant performance boost when
paired with Turbo by allowing periods of time where only a few threads are active to
operate at higher frequencies. This can be valuable in certain parallel workloads where
Amdahl’s Law5 is at work.

Unlike P-states, which slow down the rate that instructions are executed, C-states
provide power savings at the cost of a “wake-up” when execution is resumed. These wake
latencies are typically in the tens of microseconds for C6 and about a microsecond for C1.
Just like P-states, this will ultimately manifest itself as an increase in response time.

The core will enter the C1 state when the HLT (halt) instruction is executed. This is
part of the instruction set and C1 cannot be disabled in hardware. Core C1e can similarly
not be directly disabled by hardware. However, there is a configuration bit that the BIOS
can set that causes C1 requests to be promoted into C1e requests. This is frequently
documented as “C1e Enable,” but that definition is not strictly true. C1e on Windows is
generally enabled and disabled using this bit as a result of the way that ACPI enumerates
C-states to the operating system. This is also the case with older versions of Linux
using the ACPI idle driver. The Linux intel_idle driver will automatically disabled the
promotion of C1 to C1e independent of BIOS configuration so that it can autonomously
select between those two states based on the system behavior (C1 is used when a short
idle period is predicted, whereas C1e will be used for slightly longer idle periods).

Core C6 is used when MWAIT(C6) is executed by the operating system. There is no
hardware disable for Core C6 on current processors. The BIOS has the option of selecting
which C-states are enumerated to the operating system using ACPI. Different BIOS
designers expose this to the customer in different manners. Disabling C6 through the
BIOS will effectively disable it on both Windows and older versions of Linux using the
acpi_idle driver.

Linux with the intel_idle driver today will not look at the BIOS configuration
when deciding what C-states to use. Because intel_idle does not look at ACPI, it is not
possible for the BIOS to communicate this information to the driver. Instead, it uses the
intel_idle.max_cstates kernel parameter to control the level of C-states used. This
definition is product- (and even kernel-) specific, so some experimentation may be
required. Note that setting this to a value of 0x0 will disable the driver rather than disable
C-states, so values greater than 0x0 are recommended

There is also a demotion algorithm that can autonomously decide to use a shallower
C-state than what the OS has selected. In general, it is not recommended that users
manipulate this configuration.

Note ■ today the CpU will not autonomously grant a deeper C-state than the one that the
operating system requested.

5The speed-up of parallel computing is limited by the percentage of a workload that is run in a
serial manner.

Chapter 8 ■ CharaCterization and optimization

292

Runtime Core Disable
C-states can provide a performance boost by providing access to higher Turbo
frequencies and also by saving power in a power-constrained environment. Although
C-states will autonomously be requested by the operating system if no work is pending
for that core, it is also possible to provide a hint to the OS that a given CPU should not be
used. This will prevent the OS from scheduling tasks to that core so that it can stay in a
deep C-state. Note that this behavior is not 100% robust, because cores can still be woken
up in certain cases (e.g., a broadcast thermal interrupt). However, in practice, they tend to
be very effective.

On Linux, this is called core offline and can be done on an individual core basis
using sysfs.

#echo 0 > /sys/devices/system/cpu/cpuX/online

On Linux, the logical processors to physical core mapping (including sockets and
hyperthreads) is technically controlled by the BIOS. The topology can be discovered using
sysfs:

/sys/devices/system/cpu/cpu*/topology/*

Although it is recommended that the topology be discovered and decoded, it
is useful to understand what to expect in general. In practice, the mapping is mostly
consistent across generations and configurations and is best described with an example
(see Figure 8-7 for an illustration). Consider a two-socket system with two four-core
processors that each support HT. The logical processors that are enumerated in sysfs will
be enumerated as follows:

Logical processors 0 to 3 represent the first thread on cores 0 to 3 •	
on socket 0.

Logical processors 4 to 7 represent the first thread on cores 0 to 3 •	
on socket 1.

Logical processors 8 to 11 represent the second thread on cores 0 •	
to 3 on socket 0.

Logical processors 12 to 15 represent the second thread on cores 0 •	
to 3 on socket 1.

Chapter 8 ■ CharaCterization and optimization

293

Windows has a related feature called Core Parking. This feature is a bit different from
the offlining support that is available in Linux, and it does not provide a mechanism to
force certain cores to stay turned off. Core Parking is no longer recommended in server
deployments by Microsoft6 and has been disabled by default.

Although Windows does not have a way to force specific logical processors to turn
off across the operating system, specific applications can be affinitized to a set of logical
processors. In conjunction with OS requested C-states, the user can use affinity control
to encourage the OS to not use specific cores, allowing them to enter into a deep C-state.
The logical processor to physical core mapping can be decoded using the coreinfo7
utility. Affinity control is beyond the scope of this book.

Package C-States
Unlike Core C-states, which are under the control of the operating system, package
C-states today are autonomously managed by the CPU. See Chapter 2 for more details on
package C-States. Package C-states save additional power when all of the cores are in a
deep C-state by taking additional power savings steps that would not be possible if cores
were active. These states are generally only possible at very low system utilizations, and
their residencies can be monitored with software, as described in Chapter 7.

One of the biggest impacts of package C-states is that they increase the latency for
external devices to communicate with DDR memory. In order to access memory, the CPU
must wake from the package state, which typically takes tens of microseconds.

When it uses package C-states, the idle power of the Xeon E5 CPU is on the order of
10-15 W. With Core C-states enabled and package C-states disabled, the CPU power will
increase by a moderate amount (the amount is dependent on the processor generation).
Note that this power increase will be amplified by power delivery efficiency losses
(see Chapter 4), since power delivery tends to be less efficient at lower power levels.
A rough rule of thumb is a ~1.5–2 times increase.

Figure 8-7. Example logical processor bitmask with two-socket, four-core CPUs on Linux

6See http://support.microsoft.com/kb/2814791.
7See https://technet.microsoft.com/en-us/sysinternals/cc835722.aspx.

http://support.microsoft.com/kb/2814791
https://technet.microsoft.com/en-us/sysinternals/cc835722.aspx

Chapter 8 ■ CharaCterization and optimization

294

Package C-states can also impact platform power. This impact can be even larger
than what is observed on the CPU die. The most notable impact comes from memory
self-refresh. If opportunistic self-refresh is disabled, then disabling package C-states will
result in memory only using CKE to save power. This can have a large impact on platform
idle power savings, particularly on systems with a large memory capacity.

As described earlier in this chapter in the “Idle Workloads” section, one limitation
with package C-states is that it is common for the software that continuously runs on
them to result in an “active idle” state that is not truly idle. These states are most effective
when the system is able to achieve a truly idle state across all sockets in the node. This
is different from many consumer usage models, which are aggressively optimized and
tuned for idle power due to battery life concerns. In order to take full advantage of idle
power savings opportunities, additional work may be required to tune (or stop) software
that prevents the system from becoming truly idle.

If a user has a system that spends a notable amount of time at idle, then enabling
package C-States can save a notable amount of system power. This is particularly true of
systems with large memory capacities. Package C-states are typically controlled by the
BIOS. The OS does not have direct control over these states today. It is also possible to
disable them by writing 0x0 into MSR 0xE2 [2:0] (CST_CONFIG_CONTROL).

Energy Performance Bias
A number of power management algorithms manage different power and performance
tradeoffs in the system. Some of these algorithms are internal and their tunings are not
externally visible. Energy Performance Bias (EPB) provides a mechanism for software
to provide a hint to the CPU about how the user would like the system to make these
tradeoffs. Today, this is an architectural MSR that provides 4 bits to select from up to 16
different operating modes. Smaller values represent more performance whereas larger
values save more power. Rather than requiring users to attempt to tune 10 different
features that could have different tunings on each project, this feature is intended to
provide a simple interface for tuning CPU power management algorithms.

On Xeon E5/E7 processors starting with Sandy Bridge, EPB supported four modes
of operation and the two least significant bits of the MSR were ignored. In practice, only
two modes have ultimately shown significant value: a Performance mode (EPB values 0 to
3) and a Balanced Performance mode (EPB values 0 to 7). Two deeper modes (Balanced
Energy and Energy Efficient) exist, but in practice, it has been difficult to distinguish them
from the Balanced Performance mode. Table 8-1 provides an overview of some of the key
features that are managed by EPB.

Table 8-1. EPB Feature Control Summary

Feature Performance Balanced Performance

Turbo demotion Disabled Enabled

Memory CKE Disabled Enabled

QPI L0p Disabled Enabled

Internal algorithms Performance tunings Power savings

Chapter 8 ■ CharaCterization and optimization

295

Dynamic switching is another feature that was introduced on Sandy Bridge E5 that
automatically transitions the system into the Performance mode when the CPU detects
that high performance is desired. It is recommended that this remain enabled. Some users
may desire to override some of these decisions that are typically controlled by EPB and
Dynamic EPB Switching, and these limited opportunities will be discussed later in this
chapter. Note that dynamic switching will not occur on systems that have disabled Turbo,
so selecting the right EPB mode is more important on such systems. Users who configure
the system to request Turbo 100% of the time (such as the Windows or Linux performance
governors) will also switch the system into Performance EPB mode 100% of the time.)

EPB has not been optimized on Atom servers or on Xeon E3 servers like it has been
on the E5/E7 product lines. The dynamic switching algorithm is also only productized
on E5/E7.

When it was initially architected, EPB was placed in control of the operating system
with 0x1B0 IA32_ENERGY_PERF_BIAS. On Windows, the Power Options control panel
Performance mode will automatically select the EPB Performance mode. On Linux, the
easiest option is to simply write directly to the MSR on all threads. EPB is not managed
dynamically on Linux.

On Sandy Bridge, a configuration bit was added so that the BIOS could take control
of EPB away from the operating system. This is controlled by the non-architectural MSR
0x1FC (MSR_POWER_CTL). If bit [25] is 0, then the EPB is controlled by the OS and MSR
0x1B0. Otherwise, the OEM is in control. In these cases, EPB may be controlled through
some existing BIOS option to further simplify the process for end users.

One of the biggest impacts of EPB is the Turbo demotion algorithm. Turbo demotion
has no impact for customers that have disabled Turbo. In such a situation, using the EPB
Performance mode may be the best choice. However, such a configuration will result in
CKE being disabled, which may be undesirable. Overrides are available for CKE to ensure
that it will be used. This will be discussed later in the chapter.

For customers that are making use of Turbo, the Balanced Performance mode has
been shown to effectively save power with minimal impact to performance on most
workloads due to dynamic switching. One drawback to this situation occurs when there
is a spike in system demand. Similar to the operating system, it will take time (tens to
hundreds of milliseconds) to detect the spike in demand and react accordingly.

Note that recent versions of the Linux kernel will detect an EPB boot configuration of
0x0 (Performance) and reprogram it automatically to 0x6 (Balanced Performance). As such,
you may want to configure this mode using the operating system instead of the BIOS.)

Hyperthreading
Hyperthreading (HT) allows two logical processors to share a single core. By sharing a
core, they frequently reduce their thread performance in order to achieve higher overall
throughput and higher system performance. The act of enabling HT has almost zero
impact on power by itself. However, by having multiple threads share the resources
of a core and increase the overall performance and throughput of the core, power is
frequently increased. Running a core with HT enabled, but having the scheduler only
use one of the two logical processors on that core, will result in an almost identical power
consumption to disabling HT.

Chapter 8 ■ CharaCterization and optimization

296

Although HT will frequently increase the power consumption of a core, it almost
always does so in a power efficient manner. It is typically one of the most power efficient
performance optimizations that exists; however, some workloads that do not benefit from
HT do exist. Workloads that are very sensitive to memory bandwidth are a good example.
Such workloads may see a slight efficiency loss by executing them with HT. However, in
practice, disabling HT in order to improve power efficiency is very rarely an optimization
that pays dividends.

HT can frequently be disabled in the BIOS. It is also possible to instruct Linux not
to use HT threads using the same mechanism as core offlining. This provides effectively
the same behavior as the BIOS disable. The /affinity flag can be used in Windows for a
similar effect.

Prefetchers
Prefetchers can provide significant performance boosts on certain types of workloads. On
others, they provide little value. Some workloads even lose performance with prefetchers,
but this has become much less common over the years as memory bandwidth has
improved and the state of the art has improved with prefetcher design.

Prefetchers almost always increase the amount of memory bandwidth being
consumed by the system. Even workloads that see no performance benefit from prefetching
may observe a measurable increase in memory bandwidth. This memory bandwidth will
increase platform power. As a result, users may see power efficiency improvements by
disabling prefetchers on workloads that exhibit little or no performance upside.

MSR 0x1A4 can be used to configure prefetchers on many server processors. Bits
[3:0] are generally mapped to different types of prefetchers in the system. By setting these
bits to a 1, the corresponding prefetcher(s) are disabled. Setting all four bits to 0xF is an
effective way to disable prefetching. This can be performed at runtime in order to enable
easy testing or deployment. Some BIOSes also provide an interface to disable prefetchers
and use the same interface. MSR 0x1A4 is not an architectural MSR and therefore may
change in the future.

PCIe
The primary power saving feature for PCIe is L1. L1 enabling has generally struggled in
the server ecosystem over the years. It saves a relatively small amount of power (on the
order of ~1 W for an x8 connection on the CPU, with additional savings on the connected
device) at the expense of increased latency for PCIe devices that make use of the feature.

On some Haswell E5 platforms, PCIe L1 has a larger impact on idle power than
previously observed on Sandy Bridge and Ivy Bridge. On some platforms, additional
platform-level power optimizations depend on all links being in the L1 state. This can
change L1 from a 1 W feature into a 10 W feature. Users should experiment with L1 to best
understand the tradeoffs on a given system.

ASPM L1 enabling is controlled by the BIOS. However, the operating system can also
be used to disable ASPM. Enabling ASPM from the OS if it was not enabled by the BIOS is
generally not recommended.

Chapter 8 ■ CharaCterization and optimization

297

In Linux, ASPM can be disabled using the pcie_aspm=off kernel parameter. ASPM
can also be disabled using sysfs:

/sys/modules/pcie_aspm/parameters/policy

One can ascertain the current ASPM configuration using the following:

> lspci -vvvv | grep ASPM

In Windows, you can determine if ASPM is enabled or not with powercfg /energy
report. ASPM can be configured with powercfg (assuming it was enabled by the BIOS).
The following will disable ASPM:

powercfg -setacvalueindex scheme_current sub_pciexpress aspm 0

Customers who are concerned about PCIe latencies should investigate L1 disable.
Others who are more power conscious should evaluate ASPM L1, particularly if their
deployments are already making use of package C-states.

QPI
QPI supports two main power management features: L1 and L0p (as described in
Chapter 3). QPI L1 is only utilized during package C-states and has zero cost due to the
fact that the L1 wake-up is done in parallel with other longer latency operations. L0p is
used at runtime and does result in some power and performance tradeoffs.

Starting with Ivy Bridge E5/E7, L0p was disabled automatically by dynamic switching
or when the EPB performance mode was selected. L0p increases cross-socket data
movement latencies by ~10 ns. This can result in a small decrease in performance
(up to ~1%). Users that have disabled Turbo and desire maximum performance should
consider setting EPB in performance mode.

QPI can be configured to run at lower frequencies. The QPI voltage is fixed and
the power savings from running at lower frequencies tends to be relatively small.
Bandwidth across the link is directly proportional to the QPI frequency, and there is
also a small latency cost (<10 ns) when QPI is run at low frequencies. In practice, the
power savings from running QPI at lower frequencies is not worth the performance and
flexibility impact.

On some systems (particularly two-socket platforms), multiple links exist between
sockets. It is possible to disable links in order to save notable power (on the order of ~10
W at low, but non-idle utilizations) at the expense of a significant decrease in cross-
socket communication bandwidth. This can lead to severe performance loss on some
workloads. However, a subset of workloads, such as those that primarily execute out
of the cache or have extremely good NUMA optimizations and locality, may observe
minimal performance loss. By monitoring the QPI link bandwidth, you may be able to
determine whether this could be a good opportunity for power savings. It is not possible
to enable or disable links at runtime.

Chapter 8 ■ CharaCterization and optimization

298

Memory
Memory can be a large contributor to overall platform power in deployments with large
memory capacities. Memory naturally has a wide power dynamic range, because a large
percentage of the power is a function of the memory bandwidth (independent of power
management actions like CKE and self-refresh). A good rough estimate of memory
power is a simple linear function where both the slope and y-intercept are a function of
the type of memory deployed (capacity, ranks, process generation, etc.). Memory power
management and the power characteristics of different types of memory technologies are
discussed in Chapter 3. In addition to the inherent power scaling that exists in memory,
additional CPU-driven power management capabilities can be tuned and configured to
provide different power and performance characteristics.

As a general rule, users with small memory capacities likely need not get overly
aggressive with memory power management, whereas those who are loading up the
DIMM slots should carefully consider their options here. “Small” is a difficult term
to formally define in this case. With the transition to DDR4, power consumption has
significantly improved, making aggressive power management somewhat less important.
On low-power servers with TDPs that are less than about 50 W, the contribution
of memory power is proportionally larger, and a quick look at the memory power
management configuration is advisable. For higher power servers, users who are
deploying x4 devices in 2DPC configurations (or larger) should evaluate their options.
Users with small deployments, such as a 1DPC x8 population, may want to look at other
opportunities for power savings first.

CKE
CKE provides moderate levels of power savings with minimal performance penalty. As
a result, it is commonly used while applications are active to save power during short
idle periods. Using CKE while performance benchmarking generally results in a peak
performance decrease of ~1% and a minimal impact on response times because it only
costs ~10 ns to wake up memory from this state. Memory latency benchmarks suffer
from CKE though, particularly because the PPD variety forces a page close. This latency
increase is not representative of the performance impact on real workloads.

On systems that support dynamic switching and EPB (such as Xeon E5/E7 class
servers starting with Sandy Bridge), CKE is disabled automatically in the Performance
mode (or after a dynamic switch). Using EPB Balanced Performance with dynamic
switching enabled is effective at avoiding the 1% peak throughput decrease while saving
power at lower system utilizations for systems that have Turbo enabled and have not
configured their OS to request max frequency 100% of the time. Users who configure
their system to use EPB Performance mode or request maximum frequency 100% of the
time should consider enabling CKE at all times if they have a large memory topology and
are willing to trade off ~1% peak throughput. This configuration must be done through
the BIOS, and different BIOS OEMs may make such a configuration available through
different mechanisms.

Chapter 8 ■ CharaCterization and optimization

299

Some platforms have provided options for both APD and PPD modes.8 In practice, the
difference between these two modes of operation is not a first order impact on either power
or performance. APD, for example, sounds like it should have slightly better performance
characteristics (at slightly higher power), but in practice, it is largely not significant. As a
result, tuning these modes is only recommended for users who are looking to fine-tune
their system to a specific workload, and only after they exhaust other tuning opportunities.

On Avoton/Rangeley, EPB and dynamic switching do not control CKE. It must
be statically configured by the BIOS. Due to the low SoC TDP power of these systems,
smaller memory capacities will have a larger contribution to platform power, and users
should consider their options with respect to CKE. One big exception here is with storage
deployments that have a large number of HDDs. In this case, the memory power is
frequently dwarfed by the drive power, making CKE less important overall.

Self-Refresh
Self-refresh provides much larger power savings than CKE at the cost of significant wake-up
latencies (generally on the order of a few microseconds). As a result, it is typically targeted
at large idle periods, such as when all cores are asleep. Aggressive use of self-refresh can
result in performance loss and even an energy increase for completing a set of work.

Conceptually, there are two ways to use self-refresh. First, it can be used during deep
package C-states. In this situation, the latency cost is effectively zero, since the wake-up
can be done in parallel with other actions. We will refer to this as ForceSR for simplicity.
Secondly, it can be used outside of package C-states. This is referred to as Opportunistic
Self-Refresh (OSR). Because self-refresh is typically “free” during package C-states,
controls for this capability are not made available for the user. OSR configuration is
separate from the Package State configuration.

Unlike CKE, OSR (and Force SR) is not automatically disabled by EPB Performance
or dynamic switching. This decision must be made in the BIOS. By default, OSR is
configured to be very unaggressive. It is intended to target very long idle periods where
package C-states are not active, such as in a system with very good NUMA optimizations
or when package C-states have been disabled. It can also be useful in saving power in
multi-socket systems at idle that are running software that prevents high package C-states
residency but does not actually frequently access memory on all channels/sockets during
the spurious events that are preventing package C-states. Tuning the aggressiveness of the
algorithm is possible through the BIOS, but this is not recommended.

Recall from Chapter 3 that the CK behavior is an option for how deep of a self-refresh
to use. The clocks can stay active, which significantly shortens the wake latency but
also reduces the power savings effectiveness. In practice, self-refresh with the CK active
has minimal power savings benefits over CKE. As a result, this is the option that is less
interesting than the Enable/Disable decision.

In practice, for most users, the base OSR configuration is effective at saving power
without an observable impact to responsiveness or throughput. However, latency-
sensitive users who are concerned about block times on the order of ~5-10 ms should
disable OSR in addition to package C-states.

8Haswell E5/E7 only productized the APD state.

Chapter 8 ■ CharaCterization and optimization

300

Patrol Scrub
Patrol Scrub is a reliability feature that steps through memory-reading each line and
writing it back. The intention is to detect correctable errors (and correct them) before
they can degrade into uncorrectable errors. The bandwidth cost of Patrol Scrub is quite
small and does not materially impact the power of the system at runtime. However, Patrol
Scrub does prevent OSR. Only a subset of channels on a socket is scrubbed at a time,
though, so OSR is still possible on the remaining channels. Patrol Scrub is a very effective
feature for avoiding uncorrectable errors, and it is not recommended that it be disabled. If
a user observes that certain channels just won’t enter OSR, the likely explanation is Patrol
Scrub. Package C-states have been optimized to provide self-refresh (across all channels)
while also maintaining a good average scrub rate.

NIC
Chapter 4 discusses some of the network interface card (NIC) power management
options. Table 8-2 provides an overview of these capabilities. NICs can be connected into
any system, and therefore the power management configuration is managed by the driver
and not by the BIOS. This configuration can typically be managed at runtime.

Table 8-2. NIC Optimization Summary

Feature Potential Savings Cost Description

Media Speed Up to a few watts Significant
throughput loss
and latency
increase
potential

The speed of NIC links can
sometimes be reconfigured
to save power at the
expense of bandwidth. This
can be done at runtime
by software drivers, but it
takes significant time to
do so (during which time
the network connection
is blocked) and therefore
it cannot be performed
aggressively.

Energy Efficient
Ethernet

~400 mW to ~2 W <~16 ms Idle power management
feature for the network.

Interrupt
Moderation

Platform
dependent

Configurable,
typically
~100-200 ms

Rate limits delivery of
interrupts to the CPU,
frequently resulting in
power savings, improved
throughput, or both, at the
expense of latency.

Chapter 8 ■ CharaCterization and optimization

301

Interrupt moderation is one of the most interesting features for the NIC. It is
common for users to concern themselves with features like P-states, which can induce
latency bubbles on the order of 10 microseconds, while ignoring interrupt moderation,
which can cause 10 times larger latency increases. Although this feature does increase
latency, it is effective at both saving power and improving network throughput. Latency-
sensitive users should consider changing the latency tuning parameter or even disabling
this feature, but they should be aware that this will increase the demand on the CPU.)

DMA coalescing is another NIC feature. This feature has shown minimal
effectiveness in server deployments. It is not enabled by default and is not generally
recommended in servers.

Storage
Storage power management is made up of two components: the storage controller PHY
and the device (HDD/SSD). These power management capabilities are standardized
across both server storage subsystems as well as those found in consumer devices, and
are discussed in Chapter 4.

As described in Chapter 4, SATA devices support four power savings modes:
Working, Idle, Standby, and Sleep. Both Standby and Sleep can take significant time
(seconds) to wake, and therefore they may not be desirable for server deployments.
The Idle state, on the other hand, has minimal latency costs, and therefore it can be left
enabled. For storage deployments where long latency wake-ups are acceptable, allowing
the Standby state, or explicitly using the Sleep state, can help achieve very low idle power.
Both SATA and SAS drives can enter a power management state either autonomously
(after a configurable timer expires) or based on a command from the host. Table 8-3
provides an overview of this control. Remember that with HDDs, power consumption is
heavily dependent on the use of power management actions, whereas with SSDs, power
will automatically scale with bandwidth consumption.

Table 8-3. SATA/SAS Drive Power Management Configuration

Type Host Request Timer Configuration

SATA Set Features: Go To Power Condition Set Features: Extended Power Condition

SAS Start/Stop Unit (SSU) command Power Condition Mode page

In Linux, the sdparm and hdparm tools can be used to control these options. The
sdparn --all command is useful for discovering if the drive supports mode pages for
power management. Not all drives support the full set of configuration options, and the
–enumerate flag is useful for exploring common mode pages (independent of a specific
drive). For hdparm, the -B, -S, and -M flags can be used to control the power management
aggressiveness of some drives. Other flags exist for requesting a drive to enter into a
low-power state.

Chapter 8 ■ CharaCterization and optimization

302

Smartmontools is another set of utilities that can be used to manage drives.9 smartctl
is one frequently-used utility that is part of this package. These utilities are commonly
available on Linux but can also be used on Windows.

In Windows, the idle time before spinning down a drive can be set with powercfg
(setting it to a value of 0 will disable putting the drive to sleep):

powercfg /Change disk-timeout-ac 15

The SATA Aggressive Link Power Management (ALPM) power state of Partial is able
to achieve low idle power (~100 mW) with a wake-up latency of <10 ms. The deeper states
have minimal power savings benefits in most servers and can cause significant latency.
Users who are very latency sensitive can consider disabling all these states, but Partial
provides a good compromise between latency and power savings.

In Linux, the tlp and tuned-adm tools are available (depending on the distro)
for managing a wide range of power management options, including link power
management.10

Note ■ the tlp and tuned-adm utilities are useful for managing a variety of power
management options in Linux.

In Windows, the link power management is controlled by powercfg in the disk
subgroup. These options are hidden (not named) today. You can explore the current
configuration using the following command. By doing this, you can ascertain the GUID
associated with the hidden features and configure it in a manner similar to some of the
previous command lines.

powercfg -qh scheme_current sub_disk

Thermal Management
CPU thermal management is configured to protect the system and is not tunable by
consumers. Platform thermal management is managed be proprietary OEM algorithms,
and therefore the specifics are beyond the scope of this book. OEMs commonly
make different thermal management options available. More aggressive thermal
management algorithms result in higher system temperatures and the potential for
brief thermal throttling events and slight reductions in Turbo performance. In practice,
these algorithms can save significant platform power without materially impacting the
performance of the system.

9See www.smartmontools.org.
10See http://linrunner.de/en/tlp/tlp.html.

http://www.smartmontools.org/
http://linrunner.de/en/tlp/tlp.html

Chapter 8 ■ CharaCterization and optimization

303

Cooling a processor to very low temperatures tends to be cost prohibitive and
unnecessary. Lower temperatures save leakage power and thereby improve Turbo
performance of some workloads, but this effect is exponential and the benefits decrease
rapidly as temperatures drops. The decrease in CPU leakage power typically is much
smaller than the increase in cooling power.

Optimization at a Glance
This chapter has discussed a wide variety of different optimization opportunities, and it
can be daunting to determine where to begin. What features should be enabled? Which
should be disabled? Different users have different constraints and goals for what they
are trying to achieve. This section provides a high-level summary of the various features
that have been discussed. Before the optimizations are discussed, Table 8-4 provides
a summary of some of the different types of impacts that these optimizations can
have on the system. Tables 8-5 through 8-8 summarize a selection of the optimization
opportunities, including the priority in which users may want to focus their efforts first.

Table 8-4. Performance Metrics

Metric Description

Response time Average time to complete a request from an external agent. Users
of transaction processing workloads should note these.

Peak throughput The feature may reduce (or improve) the peak throughput of the
system. This could also be called “peak performance.”

Execution block This feature may result in short periods of time (microseconds,
unless noted otherwise) in which core execution may be blocked.

Device block This feature may result in short periods of time (microseconds,
unless noted otherwise) in which an external device may be
blocked from access to memory.

Chapter 8 ■ CharaCterization and optimization

304

Ta
bl

e
8-

5.
 C

P
U

 O
pt

im
iz

at
io

n
 S

u
m

m
ar

y

Fe
at

ur
e

Po
w

er
 Im

pa
ct

Pr
im

ar
y

Pe
rf

or
m

an
ce

 Im
pa

ct
s

U
til

iz
at

io
n

Ta
rg

et
s

C
on

tr
ol

Pr
io

rit
y

P-
st

at
es

Te
n

s
of

 w
at

ts
R

es
p

on
se

 ti
m

e,
ex

ec
u

ti
on

b

lo
ck

,d
ev

ic
e

b
lo

ck
L

ow
 to

 m
od

er
at

e
O

S,
 B

IO
S

H
ig

h

Tu
rb

o
Te

n
s

of
 a

tt
s

P
ea

k
th

ro
u

gh
p

u
t,

ex
ec

u
ti

on

b
lo

ck
, d

ev
ic

e
b

lo
ck

H
ig

h
O

S,
 B

IO
S

H
ig

h

U
FS

Te
n

s
of

 w
at

ts
La

te
n

cy
 b

lo
ck

s,
 e

xe
cu

ti
on

 b
lo

ck
,

d
ev

ic
e

b
lo

ck
Fo

cu
s

on
 lo

w

u
ti

liz
at

io
n

s
B

IO
S,

 M
SR

M
ed

iu
m

C
or

e
C

-s
ta

te
s

Te
n

s
of

 w
at

ts
R

es
p

on
se

 ti
m

e,
 e

xe
cu

ti
on

 b
lo

ck
L

ow
 to

 m
od

er
at

e
B

IO
S,

 O
S

H
ig

h

Pa
ck

ag
e

C
-s

ta
te

s
W

at
ts

R
es

p
on

se
 ti

m
e,

 e
xe

cu
ti

on
 b

lo
ck

Id
le

B
IO

S,
 M

SR
H

ig
h

C
or

e
D

is
ab

le
W

at
ts

P
ea

k
th

ro
u

gh
p

u
t

A
ll

B
IO

S,
 O

S
M

ed
iu

m

E
P

B
Te

n
s

of
 w

at
ts

R
es

p
on

se
 ti

m
e,

 p
ea

k
th

ro
u

gh
p

u
t

M
od

er
at

e
to

 h
ig

h
B

IO
S,

 O
S

H
ig

h

H
T

Fu
n

ct
io

n
 o

f
p

er
fo

rm
an

ce
 c

h
an

ge
P

ea
k

th
ro

u
gh

p
u

t
H

ig
h

B
IO

S,
 O

S
M

ed
iu

m

P
re

fe
tc

h
er

s
W

or
kl

oa
d

 d
ep

en
d

en
t

P
ea

k
th

ro
u

gh
p

u
t

A
ll

B
IO

S,
 M

SR
M

ed
iu

m

Q
P

I f
re

q
u

en
cy

M
in

im
al

P
ea

k
th

ro
u

gh
p

u
t

A
ll

B
IO

S
L

ow

Q
P

I l
in

k
d

is
ab

le
W

at
ts

P
ea

k
th

ro
u

gh
p

u
t

A
ll

B
IO

S
L

ow

P
C

Ie
 A

SP
M

 L
1

W
at

ts
R

es
p

on
se

 ti
m

e,
 d

ev
ic

e
b

lo
ck

L
ow

B
IO

S,
 O

S
M

ed
iu

m

Chapter 8 ■ CharaCterization and optimization

305

On many systems, the CPU is a significant component of the overall platform power.
Table 8-5 provides some highlights from the CPU power optimizations that have been
discussed. Note that the power impact shown here is for a typical high-TDP Xeon E5/E7
system. Not all systems will exhibit these impacts; the details are discussed in earlier sections.

Systems with large memory capacities or low-power CPUs may have large
contributions for memory power. Table 8-6 provides a summary of some of the
optimizations available for memory power savings. Users who are very latency sensitive
will want to disable OSR, but typical users likely will not be exposed to it.

Networking cards themselves do not contribute a large percentage of platform
power in most systems. However, Interrupt Moderation is a key feature that provides
tradeoffs between CPU utilization, power consumption, and latency. Tuning this feature
to suit a user’s needs can have a significant impact on the power/performance/latency
characteristics of a system.) Table 8-7 provides a summary of some of the key NIC
optimizations.

Table 8-6. Memory Optimization Summary

Feature Primary Performance Impact Utilization Targets Control Priority

CKE Enable Peak throughput All BIOS Medium

OSR Response time, execution
block, device block

Idle BIOS Low

Table 8-7. NIC Optimization Summary

Feature Power Impact Primary
Performance
Impacts

Utilization
Targets

Control Priority

Media speed Watts Peak throughput,
response time

All Driver Low

EET Watts Response time,
device block

Idle Driver Low

Interrupt
moderation

Watts to tens
of watts

Peak throughput,
response time,
device block

All Driver High

In compute servers with only one or two drives, storage power is generally not a large
contributor to overall platform power. In storage nodes, on the other hand, HDD and/or
SDD power can dominate the power consumption of the platform. Table 8-8 provides a
summary of the storage power optimization opportunities for a storage node. For compute
nodes, it may be desirable to disable or “turn down” many of these features. Some can add
considerable latency with minimal power savings. The Slumber state, for example, saves
minimal power in a server environment but can result in millisecond wake latencies.

Chapter 8 ■ CharaCterization and optimization

306

Summary
Power optimization can have a significant impact on both power consumption and
performance in a platform. Users should start by characterizing their system behavior
and power consumption so that they can decide which areas to focus on. There is no
need to spend weeks attempting to optimize drive power if it is only consuming 5% of the
overall platform power. Next, users need to identify a repeatable workload that can be
used to best understand the power and performance tradeoffs of different optimizations.
Once this is complete, users can identify targeted experiments on specific configuration
changes based on the guidance provided in this chapter, and they can then identify the
optimal configuration based on the their constraints and goals.

Finally, there are a few key things to remember when performing optimizations:

P-states need not be an all-or-nothing decision. Enabling a small •	
to moderate frequency range can save significant power with
minimal exposure to performance problems. These decisions are
best made in the OS and not with the BIOS.

Higher frequencies can, in many cases, provide better platform •	
power efficiency.

C-states can provide significant performance improvements when •	
paired with Turbo in addition to saving power.

Interrupt moderation tunings can have a significant impact on •	
response time, power efficiency, and throughput. Improved
throughput and better power efficiency can be traded for faster
response times.

Table 8-8. Storage Optimization Summary

Feature Power Impact
(per drive)

Primary
Performance
Impacts

Utilization
Targets

Control Priority

PHY power state
(Partial/Slumber)

Hundreds
of mW

Response time,
execution block,
peak throughput

Idle Driver Medium

Device power
savings

Watts Response time,
execution block,
peak throughput

Idle Driver Medium

307

Chapter 9

Data Center Management

In prior chapters we discussed the optimization of the computing infrastructure inside
the data center for energy efficiency. However, within the framework of the entire data
center, this is only part of the energy story.

Data Center Management and Power Distribution
As mentioned in Chapter 1, the infrastructure surrounding computers in the data
center is equally important to consider in the context of overall energy efficiency. If the
infrastructure is required to support the computing, it needs to be included in the overall
energy equation. Data center infrastructure itself has multiple missions; along with
sheltering the computers from natural elements like humidity, extreme temperatures,
and natural disasters, it provides office space for the engineers and technicians who
operate the data center, and it manages the computing resources. The data center
infrastructure handles energy delivery to the computing resources and the disposal of
waste heat from them. It also fulfills a mission of resiliency by providing both physical
security and some form of survivability planning in the event of power outages.

In this chapter, we will touch on many of these aspects, especially as they pertain to
energy management in the data center.

Data Center Facilities
Data center facilities vary widely in form, scale, and architecture, depending on local
conditions, economics, and data center requirements. For instance, data centers can
be housed in large purpose-built structures, as special purpose spaces within existing
buildings, or in previously existing buildings adapted for a new purpose.

Large purpose-built data centers—such as those built by large Internet companies
like Google, Apple, Facebook, and Microsoft—tend to be located in geographies that
provide low-cost power and have close proximity to large populations centers (with
proximity generally measured by ping times of less than 10–20 milliseconds) they serve.
These data centers may be built with facility powers ranging from approximately
1 to 20 megawatts.

Chapter 9 ■ Data Center ManageMent

308

By way of contrast, many special purpose and general purpose data centers are
housed within existing buildings. These data centers tend to be smaller and tend to be
built to serve local or specialized purposes. Although smaller data centers can be built
to high efficiency energy efficiency standards, in many cases these are of secondary
importance to other considerations such as security, proximity to a specific physical
location, or simply convenience.

Among the most interesting facilities are those built in buildings either renovated or
adapted from another purpose. For instance, Google recently built a data center inside
a converted paper mill in Finland.1 Because of changing demand for paper due to shifts in
reading habits and the increased use of tablet computers, obsolete or excess paper mills,
which are fitted to supply large amounts of electricity and cooling water, can make good
candidates for alternative sites for data centers.2

Other data centers have been built inside of underground caves3 or on mountain
tops,4 and some have even been proposed to float in off-shore barges.5 In each case,
although the physical infrastructure of these facilities is quite different, the need to supply
large amounts of electricity and ample capacity to remove the energy as waste heat are
always common factors. It is the engineering of the power and cooling infrastructure that
really distinguishes the efficiency of the data center.

Power Infrastructure
Although data centers may differ in mission, from providing network edge services to
core compute to providing highly secure data processing and storage, in almost all cases,
they require highly conditioned uninterruptable power to meet the high availability
requirements their customers demand. The power to the data center needs to be highly
conditioned to protect the servers, storage systems, and networking equipment in the
data center from power transients. Both low-power conditions and power surges can
cause equipment reliability issues and extended equipment downtime depending on
duration and severity. Figure 9-1 shows a highly schematic layout of the connection
of the electrical grid to the data center. When electrical grid power is interrupted, the
uninterruptable power supply (UPS) assumes the load of the data center until the back-up
generators can be started and reach full capacity. Due to cost constraints, it’s typical to
support only the computing equipment on an uninterruptable basis.

1See “Hamina, Finland,” www.google.com/about/datacenters/inside/locations/hamina/.
2See Bart King, “Tablets are Significantly Reducing Media Industry’s Paper Use” (2011),
www.sustainablebrands.com/news_and_views/articles/tablets-are-significantly-
reducing-media-industry%E2%80%99s-paper-use.
3See Nick Booth, “Green Mountain Puts Data Centre In NATO’s Norwegian Cave” (2013),
www.techweekeurope.co.uk/workspace/green-mountain-data-centre-norway-120063.
4See Rich Miller, “The World’s Highest Data Center” (2013),
www.datacenterknowledge.com/archives/2013/04/05/the-worlds-highest-data-center/.
5See Rich Miller, “Google Planning Offshore Data Barges” (2008),
 www.datacenterknowledge.com/archives/2008/09/06/google-planning-offshore-data-barges/.

http://www.google.com/about/datacenters/inside/locations/hamina/
http://www.sustainablebrands.com/news_and_views/articles/tablets-are-significantly-reducing-media-industry%E2%80%99s-paper-use
http://www.sustainablebrands.com/news_and_views/articles/tablets-are-significantly-reducing-media-industry%E2%80%99s-paper-use
http://www.techweekeurope.co.uk/workspace/green-mountain-data-centre-norway-120063
http://www.datacenterknowledge.com/archives/2013/04/05/the-worlds-highest-data-center/
http://www.datacenterknowledge.com/archives/2008/09/06/google-planning-offshore-data-barges/

Chapter 9 ■ Data Center ManageMent

309

Power Distribution Efficiency
Although most of this book has concerned itself with the energy efficiency of the servers
themselves, a key factor in overall data center efficiency is the energy loss in getting energy
to the servers themselves. So-called distribution losses (bringing power from a remote
generation facility to the site of use) can range from a few percent in cases where the load is
close to the generating capacity—such as the large data centers in Quincy, Washington, and
The Dalles, Oregon, which are within a few miles of hydroelectric energy sources—to 10%–20%
when data centers are several hundred miles from electricity generation. Although these
losses can be extremely important in overall efficiency, addressing them relies primarily on
the siting of the data center facility, which is outside the scope of this book.

Power Conditioning
Power conditioning for the data center is among the most important missions of the
facility. The power for the servers needs to be both “clean,” meaning free from spikes
or interruptions that might affect the availability of the servers in the data center, and
economical, so the data center can achieve its mission at the lowest feasible cost. In this
section, we’ll look at the high-level topologies of two ways this can be achieved, in what
are called AC and DC power distribution.

In AC power distribution, power to the server is supplied as AC voltage, typically at
208 VAC in the United States. AC power distribution is by far the most dominant in the
industry. The flow of energy from the grid first powers the UPS system and then goes to
the rack and row-level power distribution units (PDUs), where power is metered to the
individual servers while at the same time protecting adjacent servers from electrical faults
at any individual server.

Figure 9-2 shows a typical power distribution diagram for an AC data center. Power
from the electrical grid feeds the UPS), which in turn provides clean uninterrupted power
to the rack or row-level PDUs. These units convert power to levels usable by the servers
while at the same time protecting the facility from faults at individual servers. The power
and voltage conversions are highlighted. The UPS is shown with a bypass to allow more
efficient operation.

Back-up
Generating

Capacity

Uninterruptable
Power Supply

(UPS)

Electrical
Grid

Power Switching
and

Conditioning

Data Center

Office and Lighting
HVAC

Computing
Equipment

Figure 9-1. Schematic of the connection of the electrical grid to the data center

Chapter 9 ■ Data Center ManageMent

310

One significant concern with this standard topology is the repeated conversion between
AC and DC voltages between the grid and the server. Each conversion can results in a several
percentage point sacrifice in efficiency, which can contribute to higher electricity costs.

Two of the conversions in the UPS—AC to DC and then back from DC to AC—can
be eliminated by using a bypass or, more colloquially, eco-mode of the UPS. Although
there may be concerns about the switch over time between the bypass and battery power
in the event of a power failure, these concerns have been largely mitigated by technical
development of suppliers. Typical switch-over times are now about one quarter of a
power cycle, far below the damage threshold for the IT equipment in the data center. The
Green Grid has adopted the use of a bypass as a “best known method.”6

As an alternative to AC, there is compelling evidence that DC power to the data
center can improve overall efficiency.7 The primary efficiency gains come from the
elimination of inefficient conversions from AC to DC. An example topology for this
is shown in Figure 9-3. Power from the electrical grid feeds a converted PDU, which
provides 48 VDC to the batteries and the servers. Voltage and AC to DC conversion steps
are highlighted.

Figure 9-2. A typical power distribution diagram for an AC data center

Converter

Electrical
Grid

Server

AC to DC

Battery

PDU

DC to DC

48
 V

DC

DC

48
0

VA
C

48
 V

DC

Figure 9-3. A typical power distribution diagram for a DC data center

6See “Evaluation of Eco Mode in Uninterruptible Power Supply System” (2012),
www.thegreengrid.org/en/Global/Content/white-papers/WP48-EvaluationofEcoModeinUn
interruptiblePowerSupplySystems.
7See My Ton, Brian Fortenbery, and William Schudi, “DC Power for Improved Data Center Efficiency”
(2008), http://hightech.lbl.gov/documents/data_centers/DCDemoFinalReport.pdf.

The DC power infrastructure is inherently simpler than the AC power infrastructure
because the number of required conversions, and hence expensive high-reliability
high-power electrical gear, is reduced. However, the supply and experience base for AC
power equipment is much larger since AC has been and remains the dominant industry

http://www.thegreengrid.org/en/Global/Content/white-papers/WP48-EvaluationofEcoModeinUninterruptiblePowerSupplySystems
http://www.thegreengrid.org/en/Global/Content/white-papers/WP48-EvaluationofEcoModeinUninterruptiblePowerSupplySystems
http://hightech.lbl.gov/documents/data_centers/DCDemoFinalReport.pdf

Chapter 9 ■ Data Center ManageMent

311

standard. For instance, although DC can and has been used safely for years in the
communications world, technicians in more traditional data centers are not currently
trained to use it. Thus, although there may be some theoretical advantages of one
approach over the other, the reality is that both high efficiency and low total cost can be
achieved in both approaches provided the proper engineering practices, such as the use
of UPS bypass in the AC case, are implemented.

Back-up Systems
Data center services need to be maintained even in the event of a power outage. For this,
data centers rely on back-up power systems comprised, generally, of a short-term and
longer term backup system. The short-term system is put into place to react quickly to
fluctuations in supply and provide power, often for only a few minutes, until the high
capacity longer term backup system can take over the full electrical load of the data center.

Uninterruptable power supplies (UPS) have long been built using large arrays of
lead-acid batteries, and many data centers still use this simple but reliable technology.
Lead-acid batteries, which are essentially like the battery in as typical automobile,
can be purchased on the open market. The technology is mature and has not changed
significantly in years. A downside to using batteries is that they need to be maintained and
replaced on a regular basis to provide the intended high reliability of a back-up system.8

As a result, data center operators have sought and implemented alternative UPS
schemes. One popular alternative is a high-speed rotating fly wheel system. In this
case, rather than storing energy chemically, as in a battery, energy is stored kinetically
through a high-speed, high-mass rotating flywheel. Flywheel systems take up less space
than a battery system and require significantly less maintenance. But they also provide
only a few seconds (in the range of 10–20, though this can vary depending on the size
of the installation and load) of autonomy, implying that the back-up generators need
to start up properly the first time. In addition, the size of the back-up generators needs
to be increased slightly because, in addition to running the data center, they must also
re-energize the flywheel system in a short amount of time to restore facility back-up.9
Flywheel systems have the additional advantage that they run on AC supply, eliminating
the needs for DC conversion.

The most common type of long-term back-up power for a data center is a diesel
generator. The use of diesel generators is very common not only in data centers but
also in other critical facilities such as hospitals, and thus they have a well-understood
maintenance record and it is easy to find repair experts. Typically, diesel generators can
represent about 10% of the capital cost of a data center. Although some proposals for
reducing the cost of the generator capacity through intelligent IT have been made, these
have not been widely adopted.10

8See “Implementing the Best Battery Maintenance Practices to Avoid Data Center Downtime” (2014),
 www.datacenterknowledge.com/archives/2014/05/05/implementing-best-battery-
maintenance-practices-avoid-data-center-downtime/.
9See “Flywheel versus Battery in the Data Center” (2012),
 www.datacenterdynamics.com/focus/archive/2012/11/flywheel-versus-battery-data-center.
10Ibid.

http://www.datacenterknowledge.com/archives/2014/05/05/implementing-best-battery-maintenance-practices-avoid-data-center-downtime/
http://www.datacenterknowledge.com/archives/2014/05/05/implementing-best-battery-maintenance-practices-avoid-data-center-downtime/
http://www.datacenterdynamics.com/focus/archive/2012/11/flywheel-versus-battery-data-center

Chapter 9 ■ Data Center ManageMent

312

There has been some innovation in backup power systems in data centers to avoid
both cost and some of the downsides of having to operate large diesel generating plants
(with the concomitant exhaust and noise) on a regular basis. For instance, the Facebook
data center in Sweden forgoes about 70% of the typical back-up generator capacity
because they are able to take advantage of redundant electrical grids in the area. This
approach is brilliant and easily provides very high reliability to the power network at a
very economical cost scale. However, redundant electrical grids are not common and
thus this approach is of limited use in most cases.

Another alternative to diesel generators are fuel cells. Fuel cells convert fuel
(typically either hydrogen or methane) to energy in an electrochemical reaction. Fuel
cells have many advantages over other power sources. In addition to be relatively
compact and clean, they can be brought close to the load, eliminating grid and
distribution losses. Indeed, some data center operators have considered eliminating grid
energy entirely for this reason, reporting favorable overall total cost of ownership under
assumptions for realistic cost parameters.11

The eBay data center in Utah, commissioned in 2013,12 gets most of its power from
natural gas fuel cells built by Bloom Energy. According to eBay, the fuel cells reduce CO2
emissions about 50% and also increase the reliability of the data center. Indeed, the fuel
cells are the primary source of energy for the data center, reducing costs associated with
back-up generators and UPS systems.

Cooling Infrastructure
Providing power to the servers is an important side of the data center energy equation.
On the opposite side, equally important, is the removal of all the waste heat generated by
the servers. It’s important to note that all the energy used to run the servers (and all the
other equipment in the data center) needs to be removed as waste heat. That implies, for
instance, that for a 10 megawatt data center load, exactly 10 megawatts of waste heat need
to be dissipated to balance the energy input to the facility.

It’s instructive to understand the evolution of data center cooling since it tells a
strong story about advancing the infrastructure side of overall data center efficiency.
Typical data centers build in the 1990s mainly relied on central computer room air
conditioning (CRAC) units to provide cooling. Warm air coming from racks from
servers was pulled into the CRAC units, chilled to temperatures as low as 60 degrees
Fahrenheit, and pushed back out into the room through perforated raised floor tiles.
This served adequately, though hot spots did turn up (often due to the poor uniformity
of air circulation), which required special treatment. In addition, cold air entering the
computer room was instantly mixed with warmer air, reducing the effectiveness of the
cooling units.

11See “No More Electrical Infrastructure” (2013),
http://research.microsoft.com/pubs/203898/FCDC.pdf.
12See “Introducing Our Salt Lake City Data Center” (2013),
http://blog.ebay.com/introducing-our-salt-lake-city-data-center-advancing-our-
commitment-to-cleaner-greener-commerce/.

http://research.microsoft.com/pubs/203898/FCDC.pdf
http://blog.ebay.com/introducing-our-salt-lake-city-data-center-advancing-our-commitment-to-cleaner-greener-commerce/
http://blog.ebay.com/introducing-our-salt-lake-city-data-center-advancing-our-commitment-to-cleaner-greener-commerce/

Chapter 9 ■ Data Center ManageMent

313

Figure 9-4 shows the layout of two data center types. The top figure is a typical
“ballroom” configuration typical prior to the year 2000. Newer data centers, such as
the one shown on the bottom of Figure 9-4, segregate warm and cold air and use local
ambient air to economize operations.

Server Rack CRAC unit

Raised Floor
Cold Air

Warm Air Return

Air Circulation
and FiltrationCold Air

Warm Air Exhaust

Cold Air
Intake

Figure 9-4. Two data center types: A typical, old “ballroom” configuration (top), and today’s
data center (bottom)

Starting in the early 2000s, engineers realized that segregating warm and cold air
from each other by pushing cold air up and behind the server and then pulling the warm
air out through the front of the server could improve the efficiency of the cooling units
significantly. For instance, a study by T-Systems and Intel found that segregating hot and
cold air could reduce the power usage effectiveness (PUE) of a model data center from
a rating of 1.8 to around 1.3, a significant reduction in infrastructure energy use.13 The
work showed that even small air leaks, if not controlled, could have a significant effect on
reducing the efficiency of the infrastructure.

The third major step in the evolution of data center infrastructure was the advent
of what is called free-air cooling or the use of outside air to cool the data center. In many
climate locations, outside air temperatures and humidity levels are low enough to
effectively cool severs without additional help from air conditioners, provided air flows are
maintained. There are many examples of data centers built to these standards, including
the famous “chicken coop” data center, which relies on the tendency of warm air to rise
where cross winds are, and then these move the warm air out of the building.14 The industry

13See www.t-systems.com/news-media/white-papers/827826_2/blobBinary/White-Paper_
Data-Center-2020-I.pdf.
14See David Filo, “Serving Up Greener Data Centers” (2009), https://yodel.yahoo.com/blogs/
product-news/serving-greener-data-centers-1853.html.

http://www.t-systems.com/news-media/white-papers/827826_2/blobBinary/White-Paper_Data-Center-2020-I.pdf
http://www.t-systems.com/news-media/white-papers/827826_2/blobBinary/White-Paper_Data-Center-2020-I.pdf
https://yodel.yahoo.com/blogs/product-news/serving-greener-data-centers-1853.html
https://yodel.yahoo.com/blogs/product-news/serving-greener-data-centers-1853.html

Chapter 9 ■ Data Center ManageMent

314

has studied the capacity of different climates to support natural air cooling and studies
have been published by the Green Grid where the effects of an updated AHRAE standard
to allow wider temperature and humidity ranges were considered.15

The final stage of data center facility evolution is the advent of the high-temperature
data center. Silicon and computer hardware components can tolerate higher
temperatures than humans can. Studies have shown that even off-the-shelf components
can operate safely at 40°C.16 To further reduce cooling, there is a push to provide
operational capability at 50°C.

Simplified Total Cost Models of Cost and
Compute Infrastructure
A significant amount of work is available on total cost of ownership (TCO) models,
including an excellent (and publicly available) one developed by Jonathan Koomey that
gives significant detail for determining accurate cost benchmarks.17

In this section, rather than provide detailed models, we focus on a higher level
perspective to help you understand the larger trends in cost. There is an inherent
danger in using simplified models to make what can be relatively complex business
decisions, but using them to help shape insight and recognize macroscopic trends
can be useful.

Figure 9-5 shows a simplified TCO model of a 10,000 square foot data center.
The model calculates the overall TCO of the entire data center, including building,
infrastructure, and IT equipment costs. As important as what is in the model is
what is not included. Important cost parameters like architectural choices, software
licenses, labor and warranty coverage, insurance, and taxes could tip the conclusions
of the model substantially and would need to be added for any responsible
business decision.

15See “Updated Air-Side Free Cooling Maps” (2012), www.thegreengrid.org/en/Global/
Content/white-papers/WP46-UpdatedAirsideFreeCoolingMaps-TheImpactofASHRAE2011All
owableRanges.
16See “The Efficient Datacenter” (2011), www.intel.com/content/dam/doc/technology-brief/
efficient-datacenter-high-ambient-temperature-operation-brief.pdf.
17See Jonathan Koomey, “A Simple Model for Determining TCO for Data Centers” (2007),
http://wdminc.com/whitepapers/SimpleModelDetermingTrueTCO.pdf.

http://www.thegreengrid.org/en/Global/Content/white-papers/WP46-UpdatedAirsideFreeCoolingMaps-TheImpactofASHRAE2011AllowableRanges
http://www.thegreengrid.org/en/Global/Content/white-papers/WP46-UpdatedAirsideFreeCoolingMaps-TheImpactofASHRAE2011AllowableRanges
http://www.thegreengrid.org/en/Global/Content/white-papers/WP46-UpdatedAirsideFreeCoolingMaps-TheImpactofASHRAE2011AllowableRanges
http://www.intel.com/content/dam/doc/technology-brief/efficient-datacenter-high-ambient-temperature-operation-brief.pdf
http://www.intel.com/content/dam/doc/technology-brief/efficient-datacenter-high-ambient-temperature-operation-brief.pdf
http://wdminc.com/whitepapers/SimpleModelDetermingTrueTCO.pdf

Chapter 9 ■ Data Center ManageMent

315

At the most basic level, a cost model takes into account the capital costs (generally
assumed to be incurred once and then amortized over some standard depreciation
period to annualize the expense) and ongoing operating expense, which are paid on an
as-used basis. Important parameters are highlighted in Figure 9-5. Figure 9-6 shows that
operational electrical costs are a sizeable fraction of the overall TCO of a data center.
Both the annual electrical energy cost and the electrical and cooling infrastructure scale
directly with the watts consumed by the servers, thus a net reduction in server power can
save on both operational and capital costs in the data center.

Unit Estimated Cost Annualized Cost

Data Center

Electrical and Cooling Cost/Watt $ 15 $4.0 M

10,000 Square Foot Building Cost/Square Foot $ 300 $0.20 M

Facility Depreciation Years 15 --

PUE (Unitless) 1.5 --

Server Cost per Server $ 5000 $5.0 M

Server Refresh Lifecycle Years 5 --

Electricity Cost per Kwh $ 0.10 --

Server Average Power Watts 300 $3.1 M

TOTAL -- -- $12.3M

Figure 9-5. A simplified TOC model of a 10,000 square foot data center calculated for
nominal value

Figure 9-6. The operational electrical costs are a sizeable fraction of the overall TCO of a
data center

Chapter 9 ■ Data Center ManageMent

316

The ranges of electrical infrastructure cost depend primarily on architectural choices
as mentioned earlier. Decisions, such as the kind and number of back-up generators,
electrical redundancy, layout, and location, can all affect the choices of costs widely.
In general, the range of $8.00 to $20.00 per watt represents reasonable estimated bounds,
though deviations both above and below this range are possible.

Data center efficiencies in the range from PUE = 1.1 up to 3.0, where PUE is the
power usage effectiveness, as defined in Chapter 1, are known in the industry. Generally
the PUE in older facilities is much higher than it is in more modern facilities that use
ambient cooling to reduce overhead costs.

Performance per Watt per Dollar
It’s common to hear people concerned about data center costs talk in terms of
“performance per watt per dollar,” yet there seems to be no good description of this
phrase in published literature. In this section, we briefly discuss where terms with the
units of performance per watt per dollar come in to the cost of ownership equations.

In order for you to understand this, we need to add one more dimension, which
we call computational work. Computational work is not the same a physical work, but it
can nevertheless be thought of in a similar way—making a physical change on a system
(in the case of a computer, the bits). This physical change requires energy, and thus the
energy required to make the change can be equated to work done.

For the sake of the present case, we’ll consider the computational work rate to
be done by a data center as a number, T, of transactions per second. The specific type
of transaction isn’t important, and we’ll make a simplifying assumption that these
transactions are uniform. If the capacity of the server, called its performance, is p
transactions per second, then the number of servers, N, required in the data center is just

N = T/p

Now the total power use of the data center, P
total

 , will be the power required by the
server, P

server
 , plus the power used by the infrastructure, or

P

total
 = N * P

server
 * PUE

Which, upon substituting the relationship above, becomes

P

total
 = T * P

server
 * PUE/p

Noting that Energy equals Power * Time, we can annualize the costs by considering

the Power and the transactions rate, T, over a standard interval of time, which we’ll take to
be one year. When you perform some simple algebra, it is easy to calculate cost efficiency
in terms of transaction per dollar of operational energy cost:

T/(P
total

 * Energy Cost) = p/(P
server

 * Energy Cost * PUE)

Chapter 9 ■ Data Center ManageMent

317

Note that the period of time over which the costs are averaged cancels in both the
numerator and denominator, as we’d expect. The right-hand side has units of performance
per watt per dollar. This equation has intuitive appeal. To maximize operational efficiency,
you would want to maximize the transactions per energy cost. The equation highlights
that this is achieved by maximizing system performance; minimizing server power and
energy costs; and maximizing the data center infrastructure efficiency. Maximizing
performance per watt per dollar minimizes the cost per transaction.

Summary
In this chapter we have shown that maximizing data center efficiency resolves to
maximizing both the energy efficiency of the servers and the data center infrastructure.
Power distribution plays a large role in the management of overall data center efficiency.
Although AC dominates the current design and distribution of power to data centers,
DC offers equivalent efficiency with fewer power conversions. As data centers move to
alternative power sources like solar and fuel cells, which inherently provide DC power,
we can expect to see a greater foothold of DC in data center design.

Finally, we have shown that total cost of ownership can offer a complex set of
trade-offs in optimizing overall data center design, with both server performance and
efficiency gains offering some of the most powerful variables in the overall optimization.
This optimization reduces to maximizing “performance per watt per dollar” in order to
achieve maximum cost efficiency.

319

Appendix A

Technology and Terms

AC Alternating current.

ACNT A term commonly used to describe the IA32_APERF MSR
used to calculate average frequency over a user-defined
time window.

ACPI The Advanced Configuration and Power Interface is used by
BIOS to expose platform power management capabilities.

APIC Advanced Programmable Interrupt Controller.

AR The application ratio is used to describe the CPU logic
switching rate of a workload.

ASHRAE American Society of Heating, Refrigerating, and
Air-Conditioning Engineers.

ASPM Active State Power Management is a feature used to
manage the power of PCIe links.

Avoton Codename for Atom C2000-series SoC that follows
Centerton.

AVX Advanced vector extensions are integer and floating-point
instructions used to improve performance.

Bin A term used to describe the increase in frequency between
any two P-states Pn and Pn-1.

BIOS Basic Input/Output System refers to the firmware used to
initialize a server.

BMC The baseboard management controller is a dedicated
microcontroller that provides remote monitoring and
management functionality.

CC0/CC1/CC3/CC6 Describes a specific core-level C-state.

Centerton Codename for Atom S1200-series processor.

(continued)

Appendix A ■ Technology And Terms

320

CKE The clock enable signal is commonly used to identify
rank-level power down modes for memory.

CLST Closed Loop System Throttling is a power management
feature that enables hardware protection using Node
Manager and a PMBus power supply.

CLTT Closed Loop Thermal Throttling utilizes temperature
monitoring to manage memory thermal throttling.

CPI Cycles per instruction is a basic performance metric.

CPU Central processing unit.

CPUID CPU identification instruction used to discover processor
type and features.

CRAC Computer room air conditioner.

CRAH Computer room air handler.

CSR A control and status register frequently used for power
management monitoring or control.

C-state An idle state where the processor has halted execution of
instructions.

DC Direct current.

DPC The DIMMs per channel is a ratio used to describe the
memory population of a platform.

DRAM Dynamic Random Access Memory.

D-state A low-power idle state for devices (PCIe, SATA).

DTSMAX The maximum allowed temperature of the processor.

Dynamic Switching A processor power management feature that automatically
switches a platform to performance mode when capacity
is high.

EBS Event-based sampling is a monitoring technique that
allows operators to associate power and performance
events with the specific modules, functions, and lines of
code that caused them.

ECC Memory error correction used to provide protection from
both transient errors and device failures.

EDP The electrical design point

EEE Energy efficient Ethernet is a low power mode that
reduces PHY power.

Appendix A ■ Technology And Terms

321

EN Identifies a platform or processor as Entry Level
(Xeon E3 for one-socket servers).

Energy Perf Bias A model-specific register used to control how aggressively
power management features will be used.

Entry Latency The time it takes to transition from an active to idle state
(typically measured in microseconds).

EP Identifies a platform or processor as efficient performance
(Xeon E5 for two- to four-socket servers).

EPA Environmental Protection Agency, responsible for the
Energy Star program.

EX Identifies a platform or processors as expandable
(Xeon E7 for 4-socket and larger servers).

Exit Latency The time it takes to transition from an idle to active state
(typically measured in microseconds).

FIVR A Fully Integrated Voltage Regulator is a high-current
switching regulator integrated into the processor.

G-state A global state that identifies the overall power state of
a platform.

Haswell Codename for the Xeon E5 v3 processor that follows
Ivy Bridge.

HDD A hard disk drive is a traditional spinning hard drive.

HIS Integrated heat spreader.

HLT Halt instruction used by an operating system to enter a C1 state.

HPC High performance computing.

HSC Hot swap controller.

HT Hyper-Threading technology is Intel’s implementation of
simultaneous multithreading.

I/O Input/output is used to describe capabilities for
communication such as DDR, PCIe, and coherent
interconnects such as QPI.

IA The Intel Architecture term is commonly used to identify
a hardware feature unique to Intel products.

IB InfiniBand is a low-latency and high-throughput
communications link frequently used in high performance
computing.

(continued)

Appendix A ■ Technology And Terms

322

ICCMAX The maximum current power delivery a platform can
supply.

IMON A voltage regulator current monitor used to measure
power.

IPMI The Intelligent Platform Management Interface is a
specification and operating system independent interface
for remote management.

ITD Inverse temperature dependence.

Ivy Bridge Codename for the Xeon E5 v2 processor that follows
Sandy Bridge.

LDO Low-dropout regulators used to provide variable voltages
across cores in a processor with a single input voltage.

Linpack An HPC benchmark derived from a collection of Fortran
linear algebra routines.

L-state A low-power idle state for interconnects (PCIe, DMI, QPI).

MBVR A motherboard voltage regulator.

MCNT A term commonly used to describe the IA32_MPERF MSR
used to calculate average frequency over a user-defined
time window.

MCP A multi-chip package is where multiple chips are
integrated together in the same package.

ME The (Intel) Management Engine in the Platform Controller
Hub used for monitoring, power capping, and hardware
protection.

MMIO Memory mapped I/O.

MSR A model-specific register frequently used for power
management monitoring or control.

MWAIT A Monitor Wait instruction used by an operating system to
enter a C1 or deeper C-state.

Nehalem Codename for the Xeon 5500 processor.

NTB Non-transparent bridging is a support technology used to
create non-coherent interconnects between nodes
using PCIe.

NUMA Non-uniform memory access allocation provides contiguous
memory regions for each processor’s local memory.

Appendix A ■ Technology And Terms

323

NVMe Non-Volatile Memory Express is a specification for directly
connecting SSDs on PCIe that provides lower latency and
higher performance than SAS and SATA.

OEM Original equipment manufacturer.

OLTP Online transaction processing.

OLTT Open loop thermal throttling utilizes a static bandwidth
limit to manage memory thermal throttling.

OS Operating system.

OSPM Operating system power management is a term commonly
used to describe operating system power management
policies and device drivers.

P1 frequency Represents the CPU base frequency, guaranteed
frequency, or the marked frequency of a CPU.

Path Length Path length is a basic performance metric that measures
the average number of instructions it takes to complete
a single unit of work.

PC0/PC1/PC2/ PC3/PC6 Describes a specific package-level C-state.

PCH Also known as South Bridge, Platform Controller Hub is a
chipset connected to the processor that integrates many
features that would otherwise require discrete controllers
(such as storage, network, USB, management, and legacy).

PCIe Peripheral Component Interconnect Express is a
high-speed serial communication bus.

PCM Performance Counter Monitor is a set of stand-alone tools
used to collect core and uncore power and performance
events.

PCPS Per-core P-states allows individual cores that can each
operate at their own frequency and voltage independent
of what P-state other cores are in.

PCU The power control unit is an internal microcontroller used
to facilitate CPU power management.

PECI The Platform Environment Control Interface is an
interface for management controllers to communicate
with the CPU.

PL1/PL2/PL3 A power level indicates a specific power limit used for
power capping and power delivery protection.

(continued)

Appendix A ■ Technology And Terms

324

P-Limit (I/O) A power management feature that allows the uncore to
autonomously increase its uncore P-state to improve
PCIe performance.

P-Limit (perf) A power management feature that allows an idle socket to
increase its uncore P-state to improve snoop and
memory latency.

PLL Phase-locked loop used to drive clocks.

PMBus Power Management Bus is an open standard protocol
used for power management of power supplies.

PMIC A power management integrated circuit is applied to
integrated circuits that have multiple power conversion
controllers in one small package.

Pn frequency Represents the lowest frequency P-state or the most
energy efficient frequency.

P-state A performance state is an active state that represents a
fixed frequency and voltage operating point.

PSU Power supply unit.

PUE Power usage effectiveness is defined as the ratio of the
total energy use by the datacenter to that of the energy
used by the IT equipment.

PWM Pulse-width modulation.

QPI QuickPath Interconnect is used for multi-socket
communication.

RAPL Running Average Power Limit is a power management
feature used to maximize performance while meeting a
specific thermal or power constraint.

RDTSC Read time stamp counter instruction used by software to
measure time.

Sandy Bridge Codename for the Xeon E5 processor that follows
Westmere.

SAS Serial attached SCSI is a common protocol for connecting
disks to a storage controller.

SATA Serial ATA is a common protocol for connecting disks to a
storage controller.

SEL The System Event Log is a centralized event log used by
management firmware.

Appendix A ■ Technology And Terms

325

Self-refresh A low power memory power state where the DIMM itself is
responsible for handling refresh.

SKU The stock keeping unit term is commonly used to identify
a CPU by its specific features (microarchitecture, core
count, frequency, TDP).

SmaRT Smart Ride Through is a technology that allows a server to
function through momentary loss of AC power.

SMBus The System Management Bus enables lightweight
communication between platform devices.

SMT Simultaneous multithreading.

SoC A system on a chip is the coupling of the CPU with
special-function hardware components in the same die.

SPEC The Standard Performance Evaluation Corporation
creates and maintains server benchmarks.

SRAM Static random access memory.

SSD Solid-state disk drive is a high-performance hard drive
that stores data in flash memory chips.

S-state A sleep state that powers down most platform
components.

SVID Serial VID is a serial communication bus between the
processor package and the voltage regulator controllers.

TC0/TC1/TC3/TC6 Describes a specific thread-level C-state.

TCO Total cost of ownership is a metric that estimates both the
direct and indirect costs of a system.

TDP A thermal design point specifies the amount of power that
the CPU can consume, and therefore the amount of heat
that the platform must be able to remove in order to avoid
thermal throttling conditions.

THERMTRIP A term used to describe the catastrophic trip temperature
that, when exceeded, will result in immediate hardware
shutdown.

TIM Thermal interface material fills the air gaps between the
component being cooled and a heat sink.

Tj The junction temperature describes the internal
temperature of the die.

TPC The Transaction Processing Performance Council creates
and maintains server benchmarks.

(continued)

Appendix A ■ Technology And Terms

326

TSC Time Stamp Counter.

TSOD Thermal sensor on die is a thermal sensor used in
memory to measure temperature.

T-state An active state where core execution is duty-cycled at a
fixed interval for thermal, electrical, or power reasons.

Turbo frequency Represents opportunistic frequency range about the CPU
base frequency.

UFS Uncore Frequency Scaling describes a power
management feature that allows the uncore to maintain its
own P-state.

UMA Uniform memory access allocation interleaves every other
cache line across each processor’s local memory.

Uncore A term commonly used to describe processor on-die logic
outside of the cores.

USB Universal Serial Bus.

Vmin The minimum voltage used for the lowest frequency P-state.

VMM Virtual machine monitor.

VR Voltage regulator.

Vret The retention voltage required to maintain state in a
circuit.

VT Virtualization technology is a term commonly used to
describe technologies used to improve performance in a
virtualized environment.

Westmere Codename for the Xeon 5600 processor that follows
Nehalem.

Xeon E3 Processor type used in one-socket servers for workloads
with low compute requirements.

Xeon E5 Processor type used in two-socket servers for most
workloads.

Xeon E7 Processor type used in 2-socket to 256-socket servers for
mission critical and scale-up workloads.

Xeon Phi Coprocessors used to accelerate workstation and cluster
performance typically used in HPC.

A���������
AC/DC power supply

boost stage, 123
converter, 122
isolated buck stage, 123
MOSFETs, 123
PDUs, 309
PMBus, 124
redundance, 124
shared power, 124

ACPI. See Advanced configuration and
power interface (ACPI)

ACPI interfaces
C-states (CST), 162
FFH, 161
get hardware limit (GHL), 171
original equipment manufacturer

(OEM), 161
OSC and PDC, 159
performance control (PCT), 161
performance supported states (PSS), 160
power averaging interval (PAI), 171
power impact, 161
power meter capabilities (PMC), 171
power meter measurement (PMM), 171
power trip points (PTP), 171
P-state domain (PSD), 160
set hardware limit (SHL), 171

Active power down (APD), 79
Active State Power Management (ASPM), 110
Advanced configuration and power

interface (ACPI), 154, 156
Aggressive Link Power Management

(ALPM), 302
APD. See Active power down (APD)
Architecture, Turbo

consumer devices, 54

C-states, 55–56
electrical protection, 55
fused frequencies, 56
power/thermal limits, 54
thermal protection, 54

ASHRAE, 5
ASPM. See Active State Power Management

(ASPM)

B���������
Baseboard management controller

(BMC), 155, 230–231
Basic input/output system (BIOS), 285
BIOS firmware

ACPI power states and transitions, 157
BMC, 155
CPUID, 155
CSRs, 154
C-states, 158
definition, 154
D-states, 159
IPMI, 154
microcode update, 155
MMIO, 154
MSRs, 154
operating system (OS), 154
PCU, 154
PMCSR, 159
P-states, 158
RDMSR and WRMSR, 154
setup utility, 162
S-states, 157
TLBs, 156

BL8. See Burst-Length 8 (BL8)
BMC. See Baseboard management

controller (BMC)
Burst-Length 8 (BL8), 72

Index

327

■ index

328

C���������
Central processing unit (CPU)

optimization, 305
power management, 285
thermal management, 302

Chipset integration, 96
Clock-enabled (CKE) power savings, 298
Closed loop system protection (CLST), 163
Closed loop system throttling (CLST), 135
Closed-loop thermal throttling (CLTT), 84
CLTT. See Closed-loop thermal

throttling (CLTT)
Computer room air conditioning

(CRAC) units, 312
Control and status registers (CSRs), 154
Core offline, 292
Core Parking, 293
CPU architecture

8c Atom Avoton and 10c Xeon Ivy
Bridge EP, 26

Avoton SoC and Sandy Bridge
packages, 27

cache hierarchies, 25
components, 22
digital synchronous logic and clocks, 31
external communication, 29
Intel server processors, 33
I/O circuits, 32
on-die fabrics and uncore, 27–28
power control unit (PCU), 28–29
SRAM and eDRAM, 32
thermal design, 30
threads, cores and modules, 23
total cost of ownership (TCO), 21

CPU integration, 95–96
CPU power management

breakdown
I/O devices, 35
logic power, 35

common terms, 34
C-states

core C-states, 44–45, 47
module, 49
package, 47
thread, 44

description, 33, 41
frequency, voltage and

temperature, 36–37

P-states
base clock frequency (bclk), 49
per core P-states (PCPS), 51–52
per socket P-states (PSPS), 51
server generations, 50
uncore frequency scaling, 53
voltage regulators (VRs), 50
web server, 49

S0ix, 58
S-states and G-states, 57
T-states, 56
Turbo (see Architecture, Turbo)

CPU sockets
DP platforms, 97
MP nodes, 97
node controllers, 98–99
UP server systems, 98

CPU thermal management, 66, 68–69
CSRs. See Control and status

registers (CSRs)
C-states

BIOS, 291
core parking, 293
DDR memory, 293
Linux, 291
logical processors, 292
operating system, 293
power savings, 291
system utilizations, 291
turbo frequencies, 292
workloads, idle, 294

Customer relationship management
(CRM) systems, 275

D���������
Data centers

AC power distribution, 309
air flow management systems, 5
ASHRAE, 5
back-up power systems, 311–312
“bottoms-up” methodology, 2
chicken coop, 313
computational work, 316
cooling systems, 5, 312–314
DC power distribution, 310
diesel generators, 311
digital economy, 1
eBay, 1

■ index

329

electrical grid connection, 308–309
energy consumption, 19
energy efficiency and cost, 16, 307–308
energy proportional computing, 5–6
Facebook, 1
fly wheel system, 311
free-air cooling, 5, 313
fuel cells, 312
Green Grid, 4
Internet, 2
IT equipment, 3
lead-acid batteries, 311
Moore’s law, 19
natural disasters, sheltering, 307
network edge services, 308
power and cooling

infrastructure, 18, 308
power back-up systems, 2
power conditioning, 309–311
power consumption, 3
power transients, 308
PUE, 4, 18, 313, 316
scale and architecture, 307
server, heat removal, 312
servers, 2
TCO models, 16, 18
total power, 316
underground caves/mountain

tops, 308
UPS, 308, 311

Data manipulation, 173
DC to DC power converters

motherboard linear regulators, 127
motherboard multiphase buck

converters, 125–126
PMIC, 128
single-phase buck converters, 125
SVID, 126
voltage regulators, 127–128

DDR thermal management
CLTT, 84
MEMHOT, 84
memory throttling, 83
OLTT, 83
SMBus, 83
monitoring, 83
TSOD, 83

Device drivers, 193–194
DIMMs, 71–74, 77, 80–82, 84

Distributed power management
(DPM), 206

Distribution losses, 309
DMA coalescing, 301

E���������
ECC. See Error correcting code (ECC)
EEE. See Energy Efficient Ethernet (EEE)
Energy efficiency programs, 275
Energy Efficient Ethernet (EEE), 109
Energy Performance Bias (EPB), 294–295
Enterprise resource planning (ERP)

systems, 275
Environmental Protection Agency (EPA),

6–8, 275
Error correcting code (ECC), 72
Exascalar method, 14, 16
Execution consolidation

energy efficiency, 190
power capping, 191
single-threaded performance, 191

F���������
FFH. See Functional fixed hardware (FFH)
FIVR. See Fully Integrated Voltage

Regulator (FIVR)
Frequency management algorithms, 286
Fully Integrated Voltage

Regulator (FIVR), 127–128
Functional fixed hardware (FFH), 161

G���������
Green Grid, 4, 310, 314

H���������
Hard disk drives (HDDs), 114
Hardware-controlled performance

(HWP), 180–181
Hardware monitoring

core performance monitors, 210–211
counter access and constraints, 214
CPI, 215
C-state statistics, 222–223
edge detection and average time,

state, 212

■ index

330

energy use, 215–216
events and metrics, 214
fixed counters, 210
frequency and voltage, 219–221
global freeze/unfreeze, 212
IPMItool, 262, 264–265
Linux perf, 259

Eclipse perf/sysprof, 258
integrated profiling and tracing

subsystem, 258
logical processor activity, 260
malloc function, 261
perf top, 259
qemu-system process, 261
software thread activity, 260–261
Xeon E5/E7 processors, 262

memory power and performance
statistics, 225

path length, 215
PCIe power management, 226
PCM. See Intel performance counter

monitor (PCM)
QPI power management and

performance, 226, 228–229
RDTSC, 215
standard and occupancy events, 213
status snapshots, 213
temperature, 217–218
types, 210
uncore performance monitoring, 212

HDDs. See Hard disk drives (HDDs)
High performance computing (HPC)

DNA decoding, 14
exascalar method, 14–16
Green500, 14
power consumption, 14
TCO, 15

HPC Linpack, 8
Hyperthreading (HT), 295

I���������
Industry workloads

ERP and CRM systems, 276
network based, 275
server, characterization and

optimization, 275
SPECpower, 276
TPC, 276

Integrated graphics, 194
Intelligent platform management

interface (IPMI), 154, 200
Intel Memory Latency Checker (Intel

MLC) tools, 273
Intel performance counter monitor (PCM)

four-socket system, 255–256
frequency clipping cause, 257
frequency transitions, 257
Xeon E5/E7 processors, 256–257

Intel server processors, 33
Intel software developers manual

(SDM), 210
Intel Xeon processors, 9
Interrupt moderation, 110
IPMI. See Intelligent platform

management interface (IPMI)

J, K���������
Java Virtual Machine (JVM), 274

L���������
LAN power management

ASPM, 110
balance network traffic, 109
EEE, 109
interrupt moderation, 110
media speed, 109
WoL, 110

Linux distributions
CPUidle infrastructure, 204
IA32_ENERGY_PERF_BIAS, 204
Intel, 204
kernel version, 205
ondemand, 203–204

Linux kernels, 182, 205
Load line, 274

M���������
Management controllers monitoring

BMC and ME, 230
power sensors, 230
sensors, 231–235
synthetic sensors, 231

Management Engine (ME), 230
Management firmware

BMC, 163

Hardware monitoring (cont.)

■ index

331

CLST, 163
definition, 163
hardware protection, 163
IPMI, 168
node manager (see Node manager)
power capping, 164
sensor model (see Sensor model)
smart ride through (SmaRT), 163
system event log (SEL), 169

Memory
buffer chips, 99
capacities, 99
DRAM devices, 145
management, 192–193
optimization, 305
power management, 298
reliability features, 85
risers, 99
thermal sensors, 144

Memory-mapped input/output
(MMIO), 154

Microservers, 96
Microsoft Windows Server

core parking, 202
C-state policy, 201
memory cooling, 202
power management features and

improvements, 202
power saver, balanced and high

performance, 201
P-state policy, 201

MMIO. See Memory-mapped input/
output (MMIO)

Model specific registers (MSRs), 154
Monitoring

description, 209
management firmware

hot swap controllers (HSCs), 163
power supply units (PSUs), 163
voltage regulators (VRs), 163

sensor measurements, 209
system and subcomponent

monitoring, 209
Moore’s law, 19
Motherboard linear regulators, 127
Motherboard multiphase buck

converters, 125–126
Motherboard voltage regulators (VRs)

burst mode, 132
diode emulation mode, 132

losses, 131
phase shedding, 131–132
power losses, 129
single-phase buck converter, 129–130

MSRs. See Model specific
registers (MSRs)

Multi-chip package (MCP), 27

N���������
Networking

ambient temperature, 106
attached media, 108–109
description, 105
frequency/voltage, 112
LAN component power, 106
LAN power management features

(see LAN power management)
link power states, 111–112
TDP, 107
thermal management, 106, 108
USB connectivity, 111

Network interface card (NIC), 300–301, 305
Node manager

API, 170
attributes of, 166
BMC, 163
capabilities, 163
external interfaces and

components, 165
high performance computing (HPC)

environments, 170
policies, 165

Non-uniform memory access
(NUMA), 78, 189, 246

Non-volatile memory express
(NVMe), 117–118

NUMA. See Non-uniform memory access
(NUMA)

NVMe. See Non-volatile memory express
(NVMe)

O���������
OLTT. See open-loop thermal throttling

(OLTT)
On-die termination (ODT), 80
Open-loop thermal throttling (OLTT), 83
Operating system capabilities (OSC), 159
Operating system (idle), 276–277

■ index

332

Operating system monitoring tools
Perfmon and Logman, 266–268
SAR, 265–266

Operating system power
management (OSPM)

collaborative interface, 180–181
C-state control, 174
C-state policy, 176–177
firmware control, 182–183
IA32_ENERGY_PERF_BIAS MSR, 187
IA32_PERF_CTL MSR (0x199), 179
IA32_PERF_STATUS MSR, 179–180
MWAIT, 175
performance capacity

(see Performance capacity)
performance impact, 174
phones and tablets, 174
power state coordination, 186
processor utilization, 178
process scheduling, 188
P-state policy, 183
timer tick frequency, 189
topology and capability

awareness, 188
T-state control, 187
Windows Server control panel, 187

Opportunistic self-refresh (OSR), 299
OSPM. See Operating system power

management (OSPM)

P���������
Patrol Scrub, 300
PCM. See Intel performance counter

monitor (PCM)
Performance capacity

average utilization, 184
frequency, 184
processor utilization, 183
P-states, 186

Performance metrics, 283–285, 303
Performance per watt per dollar, 316
Peripheral Component Interconnect

Express (PCIe), 296–297
Physical address (PA), 72
Platform Controller Hub (PCH)

architecture block diagram, 101
capabilities, 100
components, 101–102
PCIe, 105
phase-locked loop, 105

platform power management, 102, 104
and TDP power, 104
thermal management, 105
three-chip solution, 100
two-chip Xeon Intel Architecture, 100
usage configurations, 104

Platform power components, 93–95
PMCSR. See Power management control

and status register (PMCSR)
PMIC. See Power Management Integrated

Circuit (PMIC)
Power conversion losses

energy transmission, 128
fixed losses, 128
motherboard VRs, 129–132
proportional losses, 128
system power supplies, 133–137
types, 129

Power delivery
AC/DC power supply

(see AC/DC power supply)
block diagram—loads, 121
components, 120
conversion losses

(see Power conversion losses)
DC/DC power

converters, 120, 124–128
description, 118
dual socket power conversion, 119
energy transmitting, 122
motherboard, 122

Power distribution. See Data centers
Power management

algorithms, 285
APD, 79
CKE generation, 81
CKE power savings, 79
definition, 71
device power characteristics, 75
D-states, 90
hot-add flows, 90
link frequency/voltage, 89
link power states, 86
link width, 90
ODT, 80
PCIe, 87
performance, 79
PPD, 79
RAPL, 84
self-refresh, 81
voltage/frequency, 82

■ index

333

Power management control and status
register (PMCSR), 159

Power management integrated circuit
(PMIC), 128

Power metrics, 281–283
Power-saving techniques

strategies, 40
turn it down, 39
turn it off, 38

Power usage effectiveness (PUE), 4, 313
PPD. See Precharge power down (PPD)
Precharge power down (PPD), 79
Prefetchers, 296
Processor driver capabilities (PDC), 159
Process scheduling, 188
Prochot, 69
P-states. See Turbo
PUE. See Power usage

effectiveness (PUE)

Q���������
Quick path interconnect (QPI), 297

R���������
RAPL. See Running average power

limit (RAPL)
Reliability, availability and serviceability

(RAS) features, 269
Running average power

limit (RAPL), 84
capabilities, product

generations, 59–60
components/constraints, 58–59
DRAM, 65
IMON and digital power meter, 62
Linpack (HPL), 63–64
power-throttling, Turbo 2.0, 60–61
Sandy Bridge, 60

S���������
SAS. See Serial attached SCSI (SAS)
SATA. See Serial advanced technology

attachment (SATA)
Self-refresh, 299
Sensor model

field replaceable unit (FRU), 169
sensor data records (SDRs), 169

Serial advanced technology attachment
(SATA), 114–116

Serial attached SCSI (SAS), 114–116
Server chipsets

description, 100
legacy capabilities, 100
PCH (see Platform Controller Hub

(PCH))
SoCs integrate, 100

Server CPU architecture. See CPU
architecture

Server Efficiency Rating Tool
(SERT), 273, 275

Servers
hardware and software

configuration, 269
I/O devices, 269
operating systems, 269
optimizing steps, 270–271
RAS features, 269

Server-side Jave operations (ssj_ops), 11–12
Server system on a chip (SoC), 96
Silicon process technology, 11, 13
Simultaneous multi-threading (SMT), 188
Single-phase buck converters, 125, 129
SMBus. See System Management Bus

(SMBus)
Software components, power

management, 153
Software computation, 173
Software monitoring

applications, 235
C-state events, 242
frequent network interrupt

handling, 236
hardware C-state residency, 241
interruption, 244–245
I/O performance, 247, 249
kernel time, 235
logical processor level, 241
memory, 245–246
Powercfg (Windows), 253–254
PowerTOP (Linux), 251
products and versions, 236
P-state events, 242–243
scheduler, processes and

threads, 243–244
simultaneous multithreading

(SMT), 238–239
software C-state residency, 240

■ index

334

Turbostat (Linux), 250–251
utilization and processor

time, 236–238
Solid state drives (SSDs), 114
SPEC. See Standard Performance

Evaluation Corporation (SPEC)
SPECPower

dual socket servers, 9
Intel’s “tick-tock” model, 11
Java, 8
load line, 8, 10
power ratios, 8
server, 8

SRAM. See Static random-access memory
SSDs. See Solid state drives (SSDs)
Standard Performance Evaluation

Corporation (SPEC), 8, 274
Static random-access memory (SRAM), 32
Storage

cold storage system, 113
compute nodes, 112
description, 113
frequency/voltage, 116–117
HDDs and SSDs, 114
NVMe power states, 117–118
power consumption, 113
SAS and SATA, 114–117
servers, 113

Storage optimization, 305
Storage power management, 301–302
System characterization

analysis, 281
collection frequency, 279
data collection, 278–279
event ordering and groups, 280
methodology, 280–281
steady state vs. non-steady

state, 277–278
tools, 280

System Management Bus (SMBus), 83
System memory

architecture, 71
BL8, 72
capacity, 74
CPU DDRIO, 84
CPU interconnect (QPI), 85
CPU I/Os, 85
DDR channels, 73
DDR, CPU platform, 72

DDR3 and DDR4, 76
DDR4 DIMM, 75
DDR generation, 76
definition, 71
devices, 72
dual-ranked (DR), 73
ECC, 72, 74
imbalanced memory, 78
LRDIMMs, 77
memory thermal management

techniques, 83
NUMA, 78
oct-rank (OR), 73
PA, 72
quad-ranked (QR), 73
RDIMMs, 77
SODIMMs, 77
UDIMMs, 77
UMA, 78

System power supplies
CLST, 135
cold redundancy, 137
different size, 134–135
losses, 133, 135–136
750 W PSU efficiency, 133–134
750 W PSU losses, 133
wattage ratings, 133

T���������
TCO. See Total cost of ownership (TCO)
TDP Xeon processors, 286
Technology and terms, 319–325
Thermal control inputs—sensors

layout, 148
platform component, 147
power supplies, 149
types, 146
voltage regulators, 148–149

Thermal gradient, 84
Thermal management

air-cooled system, 140
air heating, 139
component temperature

specifications, 137
CPU packaging, 140
customer’s requirements, 145
equation, 140
fan speed control, 149–150
heating types, 138

Software monitoring (cont.)

■ index

335

heat sink, 140–141
heat transfer terms, 139
IHS, 139
inputs—sensors, 146–149
local ambient, 139
memory, 144–145
natural temperature variation, 145
processors, 143–144
server cooling system, 137
system considerations, 141–143
TIM, 139
VRs, 149
worst-case corner, 138

Thermal sensor on-die (TSOD), 83, 217
Total cost of ownership (TCO)

models, 15, 314–316
Transaction Processing Performance

Council (TPC), 276
TSOD. See Thermal sensor on-die (TSOD)
Turbo

BIOS, 287
“burst” performance, 286
frequency control

Linux, 288
Windows, 287–288

modern operating systems, 286
ratio limits, 289–290
UFS, 290
voltage and frequency, 286

U���������
UMA. See Uniform memory access (UMA)
Uncore frequency scaling (UFS), 290
Uniform memory access (UMA), 78
Uninterruptable power

supply (UPS), 308–309, 311

V���������
Virtual machine monitor (VMM)

energy efficiency, 198
hypervisor model, 195
idle scenarios, 195–196
logical processor utilization, 197–198
migration, 199–200
power state control, 195
server consolidation, 198
software/hardware

enhancements, 198
VMM. See Virtual machine monitor

(VMM)
VMWare ESX/ESXi, 206–207

W, X, Y, Z���������
Wake on LAN (WoL), 110
WoL. See Wake on LAN (WoL)
Workloads

characterization and
optimization, 272

data collection, 271
energy efficiency, 273
Intel MLC, 273
JVM, 274
load line, 274
NetPIPE, 273
power and performance, 272–273
SERT, 275
software services, 271
SPECpower, 274
testing tools, 273
transactions/computations, 272
types, 273
virtual machines, 272

Energy Efficient
Servers

Blueprints for Data Center
Optimization

Corey Gough

Ian Steiner

Winston Saunders

Energy Efficient Servers: Blueprints for Data Center Optimization

Corey Gough, Ian Steiner, Winston Saunders

Copyright © 2015 by Apress Media, LLC, all rights reserved

ApressOpen Rights: You have the right to copy, use and distribute this Work in its entirety,
electronically without modification, for non-commercial purposes only.

License for Distribution of the Work: This Work is copyrighted by Apress Media, LLC, all
rights reserved. Use of this Work other than as provided for in this license is prohibited. By
exercising any of the rights herein, you are accepting the terms of this license. You have the
non-exclusive right to copy, use and distribute this English language Work in its entirety,
electronically without modification except for those modifications necessary for formatting
on specific devices, for all non-commercial purposes, in all media and formats known now
or hereafter. While the advice and information in this Work are believed to be true and
accurate at the date of publication, neither the authors nor the editors nor the publisher can
accept any legal responsibility for any errors or omissions that may be made. The publisher
makes no warranty, express or implied, with respect to the material contained herein.

ISBN-13 (pbk): 978-1-4302-6637-2

ISBN-13 (electronic): 978-1-4302-6638-9

Trademarked names, logos, and images may appear in this book. Rather than use a
trademark symbol with every occurrence of a trademarked name, logo, or image we use the
names, logos, and images only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms,
even if they are not identified as such, is not to be taken as an expression of opinion as to
whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the
date of publication, neither the authors nor the editors nor the publisher can accept any
legal responsibility for any errors or omissions that may be made. The publisher makes no
warranty, express or implied, with respect to the material contained herein.

Managing Director: Welmoed Spahr
Lead Editors: Steve Weiss (Apress); Patrick Hauke (Intel)
Coordinating Editor: Kevin Walter
Development Editor: Michael Koch
Cover Designer: Crest Premedia

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201)
348-4505, e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

http://orders-ny@springer-sbm.com
www.springeronline.com
http://rights@apress.com
www.apress.com

iii

About ApressOpen

What Is ApressOpen?
ApressOpen is an open access book program that publishes •	
high-quality technical and business information.

ApressOpen eBooks are available for global, free, •	
noncommercial use.

ApressOpen eBooks are available in PDF, ePub, and Mobi formats.•	

The user friendly ApressOpen free eBook license is presented on •	
the copyright page of this book.

vii

Contents

About the Authors �� xv

About the Technical Reviewers ��� xvii

Contributing Authors �� xix

Acknowledgments �� xxi

Chapter 1: Why Data Center Efficiency Matters ■ �����������������������������1

An Industry’s Call to Action�� 2

Data Center Infrastructure Energy Use ��3

Energy Proportional Server Efficiency ���5

Regulatory Environment ���6

Measuring Energy Efficiency ��� 8

SPECPower ���8

High Performance Computing Efficiency ��� 14

Energy Efficiency and Cost �� 16

Summary ��� 20

Chapter 2: CPU Power Management ■ ���21

Server CPU Architecture/Design ��� 21

CPU Architecture Building Blocks ���22

CPU Design Building Blocks ���31

Intel Server Processors ��32

viii

■ Contents

Introduction to Power ��� 33

CPU Power Breakdown ��� 34

Frequency, Voltage, and Temperature Interactions ��� 36

Power-Saving Techniques ��� 38

Turn It Off �� 38

Turn It Down ��� 39

Power-Saving Strategies �� 39

CPU Power and Performance States ��� 41

C-States �� 43

P-States �� 49

T-States �� 56

S-States and G-States �� 57

S0ix ��� 57

Running Average Power Limit (RAPL) ��� 58

CPU Thermal Management ��� 66

CPU Power Management Summary �� 69

Summary ��� 70

Chapter 3: Memory and I/O Power Management ■ �������������������������� 71

System Memory �� 71

Memory Architecture Basics ��� 71

Devices and Ranks ��� 72

Memory Error Correction (ECC) ��� 74

Memory Capacity �� 74

Device Power Characteristics �� 75

DDR3 vs� DDR4 ��� 76

RDIMMs, UDIMMs, SODIMMs, and LRDIMMs �� 77

Memory Channel Interleave and Imbalanced Memory Configurations ������������������� 78

ix

■ Contents

Power and Performance States ��� 79

CKE Power Savings ��� 79

Self-Refresh �� 81

Voltage/Frequency ��� 82

DDR Thermal Management ��� 83

Monitoring Temperature ��� 83

Memory Throttling �� 83

CPU DDRIO ��� 84

Workload Behavior �� 85

Memory Reliability Features�� 85

CPU I/Os��� 85

CPU Interconnect (QPI) �� 85

PCIe �� 87

Summary ��� 90

Chapter 4: Platform Power Management ■ ������������������������������������� 93

Platform Overview ��� 93

Common Platform Components �� 93

Integration �� 95

Platform Manageability �� 97

CPU Sockets �� 97

Node Controllers ��� 98

Memory Risers and Memory Buffer Chips �� 99

Server Chipsets ��� 100

PCH and Platform Power Management �� 102

PCH Power Management �� 104

PCIe in Chipsets �� 105

PCH Thermal Management ��� 105

x

■ Contents

Networking �� 105

Ambient Temperature, TDP, and Thermal Management �� 106

Attached Media ��� 108

LAN Power Management Features ��� 109

USB �� 111

Link Power States ��� 111

Link Frequency/Voltage �� 112

Storage �� 112

Storage Servers and Power Management �� 113

HDDs and SDDs �� 114

SATA and SAS Drive Power Management ��� 114

Frequency/Voltage �� 116

NVMe Drive Power Management �� 117

Power Delivery �� 118

Overview of Power Delivery�� 118

Power Converter Basics ��� 122

Power Conversion Losses ��� 128

Thermal Management ��� 137

System Considerations ��� 141

Component Thermal Management Features �� 143

Platform Thermal Management �� 145

Fan Speed Control and Design ��� 149

Summary ��� 151

Chapter 5: BIOS and Management Firmware ■ ����������������������������� 153

BIOS Firmware �� 154

Microcode Update��� 155

Advanced Configuration and Power Interface �� 156

Setup Utility �� 162

xi

■ Contents

Management Firmware ��� 163

Node Manager Capabilities ��� 163

IPMI ��� 168

ACPI Power Metering Objects ��� 171

Summary ��� 171

Chapter 6: Operating Systems ■ �� 173

Operating Systems �� 174

C-state Control ��� 174

C-state Policy �� 176

P-state Control �� 178

P-state Policy �� 183

T-state Control �� 187

Global Power Policy �� 187

Process Scheduling �� 188

Memory Management �� 192

Device Drivers �� 193

Virtualization ��� 195

Power State Control �� 195

Consolidation �� 198

VM Migration �� 199

Comparison of Operating Environments �� 201

Microsoft Windows Server (including Hyper-V) �� 201

Linux Distributions (including KVM) �� 203

VMWare ESX ��� 206

Summary ��� 207

xii

■ Contents

Chapter 7: Monitoring ■ ��� 209

Hardware Monitoring ��� 209

Fixed Counters �� 210

Core Performance Monitors �� 210

Uncore Performance Monitors �� 211

Status Snapshots �� 213

Counter Access and Counter Constraints �� 214

Events and Metrics ��� 214

Management Controller Monitoring �� 230

Component Power Sensors �� 230

Synthetic Sensors ��� 231

Sensors and Events �� 231

Software Monitoring �� 235

Utilization and Processor Time �� 236

Processor Power State Requests ��� 240

Scheduler, Processes, and Threads �� 243

Interrupts �� 244

Memory ��� 245

I/O ��� 247

Tools �� 249

Health Checks ��� 249

Hardware Monitoring Tools ��� 254

Operating System Monitoring Tools �� 265

Summary ��� 268

xiii

■ Contents

Chapter 8: Characterization and Optimization ■ ��������������������������� 269

Workloads ��� 271

Identifying Suitable Workloads ��� 272

Workload Types ��� 273

System Characterization ��� 277

Steady State vs� Non-Steady State ��� 277

Data Collection ��� 278

Methodology ��� 280

Analysis �� 281

Optimization �� 285

CPU Power Management �� 285

Memory �� 298

NIC ��� 300

Storage ��� 301

Thermal Management �� 302

Optimization at a Glance ��� 303

Summary ��� 306

Chapter 9: Data Center Management ■ �� 307

Data Center Management and Power Distribution ������������������������������ 307

Data Center Facilities �� 307

Power Infrastructure ��� 308

Cooling Infrastructure ��� 312

Simplified Total Cost Models of Cost and Compute Infrastructure ������ 314

Performance per Watt per Dollar ��� 316

Summary ��� 317

Appendix A: Technology and Terms ■ �� 319

Index �� 327

xv

About the Authors

Corey Gough is a principal engineer focused on
server energy efficiency in Intel’s Data Center Group.
He currently leads efforts in power and performance
analysis, system optimization, and new technology
development with over 17 years of expertise in power/
performance. Corey lives in Portland, Oregon, and
earned his BS in Computer Science from the University
of Oregon.

Winston Saunders has worked at Intel for nearly two decades and currently leads
Security Technology Execution Initiatives in the Data Center Group there. Winston is a
graduate of the University of California, Berkeley (UC Berkeley), and the University of
Washington. You can follow him online @WinstonOnEnergy on Twitter.

Ian Steiner has worked at Intel on the CPU architecture
team for nearly a decade and is currently a member of
the Product Development Group. His primary focus
is on power management and power/performance
optimization across the server product line. Ian lives
in Portland, Oregon, and earned his MS in Electrical
Engineering from the University of Illinois at
Urbana-Champaign.

xvii

About the Technical
Reviewers

Jonathan Koomey is a research fellow at the Steyer-
Taylor Center for Energy Policy and Finance at Stanford
University, has worked for more than two decades at
Lawrence Berkeley National Laboratory, and has been
a visiting professor at Stanford University (2003-4 and
Fall 2008), Yale University (Fall 2009), and UC Berkeley’s
Energy and Resources Group (Fall 2011). He was a
lecturer in management at Stanford’s Graduate School
of Business in Spring 2013. Dr. Koomey holds MS and
PhD degrees from the Energy and Resources Group
at UC Berkeley, and an AB in History of Science from
Harvard University. He is the author or coauthor of
9 books and more than 200 articles and reports. He’s
also one of the leading international experts on the

economics of reducing greenhouse gas emissions, the effects of information technology
on resource use, and the energy use and economics of data centers. He’s the author of
Turning Numbers into Knowledge: Mastering the Art of Problem Solving (which has been
translated into Chinese and Italian) and Cold Cash, Cool Climate: Science-Based Advice for
Ecological Entrepreneurs (both from Analytics Press).

Liqun Cheng is a performance lead at Google, where
he does large scale computing platform design,
analysis, and tuning. His interests range from
distributed system software infrastructure to energy
proportional computing. He received his BS degree
from Shanghai Jiao Tong University and his PhD degree
from the University of Utah.

xix

Contributing Authors

Brian Griffith has been a power delivery engineer with Intel for 20 years working in
the area of server power delivery and power management. Over this time period, he
has developed power delivery solutions for multiple generations of server systems, has
published requirements for server power supplies, and has been representing Intel in the
PMBus forum. He has an MS degree in Electrical Engineering from Illinois Institute of
Technology.

Andi Kleen is a software engineer in Intel’s Open Source Technology Center. He is a
long term Linux kernel contributor. He currently works on scalability to many cores and
performance analysis.

Pankaj Kumar is the chief storage architect and a principal engineer with the Intel
Storage Group, part of Intel’s Data Center Group. Pankaj is responsible for the storage
architecture vision, the future storage technology direction, and the platform storage
extension roadmap. He has over 23 years of experience in the areas of storage, networking
industry, and CPU/SoC design and architecture. Mr. Kumar holds a BS degree in
Electronical Engineering and Communication from the National Institute of Technology
Hamirpur (HP), India.

Eric Mann has been with the Intel Networking Division for over 17 years. He has
contributed to various energy efficiency industry standards and regulatory bodies such
as IEEE, Energy Star, and ECMA. He is a graduate of the University of Illinois-Urbana
Champaign (94) with a BS in Computer Science.

Mariusz Oriol has been with Intel since 1999 and is currently working on
manageability firmware for servers. His focus is on Node Manager power capping
technology, including component enabling of operating systems, PSU, VR, and hot swap
controllers. Mariusz received his MS in Software Engineering from Gdańsk University of
Technology from the Faculty Electronics, Telecommunications and Informatics (ETI).
He started his career at CrossComm (Boston, MA) in the division designing multiprotocol
routers to support heterogeneous bridging and multiple routing protocols for computer
networks. Mariusz lives and works in Poland.

Robin Steinbrecher is a server and data center thermal architect in Intel’s Data
Center Group. He is responsible for cooling architecture for server products including
thermal management, cooling capability, and power/thermal optimization. Robin has
over 30 years of experience in electronics cooling technologies at Intel and IBM, and now
he focuses on integrating these technologies in data center applications.

Malay Trivedi is a silicon hardware architect at Intel specializing in Server PCH
architecture. Prior to that, he worked on high frequency power conversion and power
management. He earned his PhD from the University of Illinois, and has 20 patents.

Thomas Willhalm is a software engineer in Intel’s Developer Relations Division.
In this role, he helps independent software vendors optimize their software for Intel
hardware and take advantage of its latest features. He is also one of the authors of Intel
Performance Counter Monitor documentation.

xxi

Acknowledgments

We would like to thank technical and content reviewers who significantly improved the
quality of the book. This includes Ameya Ambardekar, Avinash Ananthakrishnan,
Len Brown, Bill Carter, Gaurav Khanna, Naren Meadem, Kuljit Bains, Raghunathan
Srinivasan, Ankush Varma, Vish Viswanathan, Sujal Vora, Brad Whyms, and Henry Wong.

We would also like to thank Dan Kingsley, Harry Li, Yingqi (Lucy) Lu, and Shubin
Zhao for providing the measurement data from data center workloads we used to
illustrate concepts discussed in the book.

Wes Perdue and Knut Grimsrud provided key insights into HDD and SSD power
management characteristics and trends.

Thanks to our editors and the people at Apress for their support and patience.
Finally, the authors would like to thank our families for their support while the

authors spent nights, weekends, and vacations to make this book happen.

	Contents at a Glance
	Contents
	About the Authors
	About the Technical Reviewers
	Contributing Authors
	Acknowledgments
	Chapter 1: Why Data Center Efficiency Matters
	An Industry’s Call to Action
	Data Center Infrastructure Energy Use
	Energy Proportional Server Efficiency
	Regulatory Environment

	Measuring Energy Efficiency
	SPECPower

	High Performance Computing Efficiency
	Energy Efficiency and Cost
	Summary

	Chapter 2: CPU Power Management
	Server CPU Architecture/Design
	CPU Architecture Building Blocks
	Threads, Cores, and Modules
	Caches and the Cache Hierarchy
	Dies and Packages
	On-die Fabrics and the Uncore
	Power Control Unit
	External Communication
	Thermal Design

	CPU Design Building Blocks
	Digital Synchronous Logic and Clocks
	SRAM and eDRAM
	I/O

	Intel Server Processors

	Introduction to Power
	CPU Power Breakdown
	Logic Power
	I/O Power

	Frequency, Voltage, and Temperature Interactions

	Power-Saving Techniques
	Turn It Off
	Turn It Down
	Power-Saving Strategies
	Race to Idle vs. Slow Down

	CPU Power and Performance States
	C-States
	Thread C-States
	Core C-States
	Core C0
	Core C1 and C1e
	Core C3
	Core C6
	Core C7 (and up)
	C-State Demotion

	Package C-States
	Module C-States

	P-States
	Per Socket P-States
	Per Core P-States
	Uncore Frequency Scaling
	Turbo
	Turbo Architecture
	Power/Thermal Limits
	Thermal Protection
	Electrical Protection

	C-States and Turbo
	Fused Turbo Frequencies

	T-States
	S-States and G-States
	S0i x
	Running Average Power Limit (RAPL)
	IMON and Digital Power Meter
	Linpack Example
	DRAM (Memory) RAPL

	CPU Thermal Management
	Prochot

	CPU Power Management Summary

	Summary

	Chapter 3: Memory and I/O Power Management
	System Memory
	Memory Architecture Basics
	Devices and Ranks
	Memory Error Correction (ECC)
	Memory Capacity
	Device Power Characteristics
	DDR3 vs. DDR4
	RDIMMs, UDIMMs, SODIMMs, and LRDIMMs
	Memory Channel Interleave and Imbalanced Memory Configurations

	Power and Performance States
	CKE Power Savings
	Self-Refresh
	Voltage/Frequency

	DDR Thermal Management
	Monitoring Temperature
	Memory Throttling

	CPU DDRIO
	Workload Behavior
	Memory Reliability Features
	CPU I/Os
	CPU Interconnect
	Link Power States

	PCIe
	Link Power States
	Link Frequency/Voltage
	Link Width
	Hot Add
	D-states

	Summary

	Chapter 4: Platform Power Management
	Platform Overview
	Common Platform Components
	Integration
	CPU Integration
	Chipset Integration
	Microservers and Server SoCs

	Platform Manageability

	CPU Sockets
	Node Controllers

	Memory Risers and Memory Buffer Chips
	Server Chipsets
	PCH and Platform Power Management
	PCH Power Management
	PCIe in Chipsets
	PCH Thermal Management

	Networking
	Ambient Temperature, TDP, and Thermal Management
	Attached Media
	LAN Power Management Features
	Media Speed
	Energy Efficient Ethernet
	Wake on LAN
	Active State Power Management (ASPM)
	Interrupt Moderation

	USB
	Link Power States
	Link Frequency/Voltage

	Storage
	Storage Servers and Power Management
	HDDs and SDDs
	SATA and SAS Drive Power Management
	Frequency/Voltage
	NVMe Drive Power Management

	Power Delivery
	Overview of Power Delivery
	Power Converter Basics
	System AC/DC Power Supply
	PSUs and the Boost Stage
	PSUs and the Isolated Buck Stage
	Redundant Power Supplies
	Shared Power Supplies
	PMBus

	DC to DC Power Converters
	Single-Phase Buck Converters
	Motherboard Multiphase Buck Converters
	SVID
	Motherboard Linear Regulators
	Integrated Voltage Regulators
	Power Management Integrated Circuit

	Power Conversion Losses
	Motherboard VRs
	Single-Phase Buck Converter
	Multiphase VR Losses
	Phase Shedding
	Diode Emulation and Burst Mode

	System Power Supplies (AC/DC)
	Right-Sizing Power Supplies
	Closed Loop System Throttling (CLST)
	Losses in Redundant Power Supplies
	Power Supply Cold Redundancy

	Thermal Management
	System Considerations
	Component Thermal Management Features
	Processors
	Memory

	Platform Thermal Management
	Thermal Control Inputs—Sensors
	Voltage Regulators
	Power Supplies

	Fan Speed Control and Design

	Summary

	Chapter 5: BIOS and Management Firmware
	BIOS Firmware
	Microcode Update
	Advanced Configuration and Power Interface
	S-states
	C-states
	P-states
	D-states
	ACPI Interfaces

	Setup Utility

	Management Firmware
	Node Manager Capabilities
	Hardware Protection
	Monitoring
	Power Capping
	Node Manager Policies

	IPMI
	Sensor Model
	System Event Log
	Node Manager API

	ACPI Power Metering Objects

	Summary

	Chapter 6: Operating Systems
	Operating Systems
	C-state Control
	MWAIT
	HLT

	C-state Policy
	Processor Utilization

	P-state Control
	Software Controlled Interface
	Collaborative Interface
	Firmware Control

	P-state Policy
	Performance Capacity
	P-state Coordination

	T-state Control
	Global Power Policy
	Process Scheduling
	Topology and Capability Awareness
	Timer Tick Frequency
	Execution Consolidation (Core Parking)
	Energy Efficiency
	Power Capping
	Single-Threaded Performance

	Memory Management
	Device Drivers
	PCIe, SATA, and USB
	Graphics

	Virtualization
	Power State Control
	Idle Considerations
	Active Considerations

	Consolidation
	VM Migration

	Comparison of Operating Environments
	Microsoft Windows Server (including Hyper-V)
	Linux Distributions (including KVM)
	VMWare ESX and ESXi

	Summary

	Chapter 7: Monitoring
	Hardware Monitoring
	Fixed Counters
	Core Performance Monitors
	Uncore Performance Monitors
	Global Freeze/Unfreeze
	Edge Detection and Average Time in State
	Standard Events and Occupancy Events

	Status Snapshots
	Counter Access and Counter Constraints
	Events and Metrics
	Time (RDTSC)
	Basic Performance
	Energy Use
	Temperature
	Frequency and Voltage
	C-States
	Memory Power and Performance
	PCIe Power Management
	QPI Power Management and Performance

	Management Controller Monitoring
	Component Power Sensors
	Synthetic Sensors
	Sensors and Events

	Software Monitoring
	Utilization and Processor Time
	Simultaneous Multithreading (SMT)
	Virtualization

	Processor Power State Requests
	Scheduler, Processes, and Threads
	Interrupts
	Memory
	I/O

	Tools
	Health Checks
	Turbostat (Linux)
	PowerTOP (Linux)
	Powercfg (Windows)

	Hardware Monitoring Tools
	Intel Performance Counter Monitor (PCM)
	Linux Perf
	IPMItool

	Operating System Monitoring Tools
	SAR
	Perfmon and Logman

	Summary

	Chapter 8: Characterization and Optimization
	Workloads
	Identifying Suitable Workloads
	Workload Types
	Testing Tools
	Energy Efficiency Workloads
	SPECpower
	The Server Efficiency Rating Tool (SERT)

	Industry Workloads
	Idle Workloads

	System Characterization
	Steady State vs. Non-Steady State
	Data Collection
	Collection Duration
	Collection Frequency
	Event Ordering and Event Groups
	Multiple Tools

	Methodology
	Analysis
	Power Metrics
	Performance Metrics

	Optimization
	CPU Power Management
	P-States and Turbo
	Frequency Control in Windows
	Frequency Control in Linux
	Turbo Ratio Limit
	Uncore Frequency Scaling

	Core C-States
	Runtime Core Disable
	Package C-States
	Energy Performance Bias
	Hyperthreading
	Prefetchers
	PCIe
	QPI

	Memory
	CKE
	Self-Refresh
	Patrol Scrub

	NIC
	Storage
	Thermal Management
	Optimization at a Glance

	Summary

	Chapter 9: Data Center Management
	Data Center Management and Power Distribution
	Data Center Facilities
	Power Infrastructure
	Power Distribution Efficiency
	Power Conditioning
	Back-up Systems

	Cooling Infrastructure

	Simplified Total Cost Models of Cost and Compute Infrastructure
	Performance per Watt per Dollar
	Summary

	Appendix A: Technology and Terms
	Index

