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Chapter 1: From Physics to Electric Circuits

Overview

Prerequisites:

- Knowledge of university physics: electricity and magnetism

Objectives of Section 1.1:

- Show that the electric voltage and the electric potential may be treated as two

equivalent quantities

- Define the electric voltage—work per unit charge—in the form of a line integral and

show its independence on the integration path for conservative fields

- Relate voltage to the potential energy of the electric field

- Introduce three-dimensional potential distributions and realize the guiding function

of metal wires

- Formulate and understand major conditions of electrostatics of conductors

- Visualize surface charge distributions in the electrostatic case

Objectives of Section 1.2:

- Introduce electric current density as a function of the applied electric field

- Visualize steady-state current flow in a single conductor along with the associated

electric potential/voltage distribution

- Visualize electric and magnetic-field distributions for a two-wire DC transmission

line

- Obtain initial exposure to the Poynting vector

- Realize that electric power is transferred via Poynting vector even in DC circuits

- Indicate a path toward circuit problems where the field effects become important

Objectives of Section 1.3:

- Review basic hydraulic (fluid mechanics) analogies for DC circuit elements

- Present major hydraulic analogies for dynamic circuit elements in AC circuits

- Briefly discuss hydraulic analogies for semiconductor components

Application Examples:

- Human body subject to applied voltage

- Human body in an external electric field
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Section 1.1 Electrostatics of Conductors

This introductory chapter is optional in the sense that the reader does not need its content

as a prerequisite for the subsequent chapters. The aim of this chapter is to illustrate why

electric circuits trace their origin to electromagnetic fields. The chapter highlights several

field concepts which form the theoretical foundation of electric circuits. At the same time

it makes clear why, for the majority of electric circuits, the electric and magnetic fields are

often ignored without affecting the final results. When this is the case, the electric circuits

and components follow useful and simple hydraulic analogies discussed below.

1.1.1 Charges, Coulomb Force, and Electric Field

Electric Charges
The smallest electric charge is known as the elemental charge of an electron,

q ¼�1:60218� 10�19C (coulombs). In electrical engineering, we deal with much

larger charges, which, for this reason, are assumed to be infinitely divisible. There are no

positive movable charges in metal conductors. Therefore, when we talk about positive

charges, it is implied thatwe have a lack of electrons at a certain location, e.g., at the surface.

Oppositely, the negative charge is the excess of electrons at a certain location.

Definition of the Electric Field

Electrostatics plays a key role in explaining the operations of electric capacitors and all

semiconductor devices. The word electricity is derived from the Greek word for amber.

Probably Thales of Miletus was the first who discovered, about 600 B.C., that amber,

when rubbed, attracts light objects. An electrostatic force acting on a charge q is known as

the Coulomb force. This Coulomb force is a vector; it is measured in newtons (or N)

~F ¼ q~E N½ � ð1:1Þ

Equation (1.1) is the definition of the electric field intensity vector, ~E, often called the

electric field. This electric field is created by other (remote or nearby) charges. In the

general case, the electric field exists both in free space and within material objects,

whether conductors or dielectrics. The electric field ~E is measured in volts (V) per

meter (V/m). The field magnitude,E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E2
x þ E2

y þ E2
z

q

¼ ~E
�

�

�

�, has the same units. From

Eq. (1.1),

1V ¼
1 N� 1m

1 C
¼

1 J

1 C
ð1:2Þ
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Electric Field of a Laboratory Power Source

As an example, we consider an electric field generated by a laboratory voltage source

turned on. Figure 1.1 shows the realistic electric field distribution modeled numerically.

The power supply has two output terminals shaped as two metal cylinders. The plastic

cover is ignored. Nothing is connected to the terminals yet. Still, the power supply

already performs a “charge separation”: the plus (+) terminal is charged positively

(total charge is +Q), whereas the minus (�) terminal is charged negatively (total charge

is�Q). Those charges are schematically shown in Fig. 1.1. As a result, an electric field is

created. The electric field in Fig. 1.1 is directed along particular lines, which we call lines

of force. This electric field surrounds the power supply terminals. Every line of force

starts at the positive terminal and ends at the negative terminal. The strength of the

electric field everywhere in space is linearly proportional to the supply voltage as studied

next. However, the field shape always remains exactly the same.

1.1.2 Electric Potential and Electric Voltage

The electric potential φ measured in volts (V) and electric voltage V measured in volts

(V) are two identical quantities once they refer to the same observation point A and to the

same reference point A0. Both terms may be used; the electric potential is frequently

denoted by V. The potential is more common in physics. Work is done against the electric

forces when a charge is moved in an electric field. The electric potential or electric

voltage V
AA

0 between points A (#1) and A0 (#2) is work in joules per coulomb (per unit

charge) to bring a positive charge from reference point A0 (#2) to observation point A (#1),

i.e., against the electric field—see Fig. 1.1. The work per unit charge over a short straight

vector distance d~l is

plus (+) terminal

minus ( ) terminal- A’

A

voltage power
supply

+ + +

++ ++

- - -

- ---

y

0

+Q

-Q

+

-

VAA’

E

+Q

-Q

x

lines of force

Fig. 1.1. Electric field emanating from a voltage supply with open-circuit output terminals.
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�
1

q
~F � d~l ¼ �~E � d~l ¼ �Edl cos θ ð1:3Þ

where θ is the angle between ~E and d~l, E ¼ ~E
�

�

�

� , and dl ¼ d~l
�

�

�

�

�

�. The total work or V
AA

0 is

the sum of all such small contributions conventionally written in the form of an integral

V
AA

0 ¼ �

ð

A

A
0

~E � d~l ¼

ð

A
0

A

~E � d~l ð1:4Þ

The integral in Eq. (1.4) is a line integral, also called a contour integral. In the general

case, it is evaluated along a curve connecting points A and A0. In the particular case of

Fig. 1.1, this curve is just a straight line.

Exercise 1.1: Assume for simplicity that the electric field along the line of force from A to

A0 in Fig. 1.1 is strictly uniform and has the magnitude of 50 V/m. The line length is

0.02 m. Find voltage (or potential) V
AA

0 .

Answer: V
AA

0 ¼ �

ð A

A
0

~E � d~l ¼ �

ð0:02m

0

50� cos π � dl ¼ 50
V

m
� 0:02 m ¼ 1 V.

The electrostatic field (and any slowly varying electric field) is called a conservative

field. There are two equivalent definitions of a conservative field:

1. Electric voltage or electric potentialV
AA

0 is path independent; it only depends on the

position of A and A0, but not on the shape of the curve between A and A0.

2. The line integral in Eq. (1.4) over any closed contour is zero.

The equivalence of these definitions is proved by treating two different integration

contours between A and A0 as two parts of one closed contour. The independence of the

integration path suggests that the voltage is equal to the potential energy of a unit charge

in the electric field. Strictly speaking, it is the change in the potential energy.

1.1.3 Electric Voltage Versus Ground

The voltage between two arbitrary points V
AA

0 (e.g., between two terminals of a resistor) is

a convenient measure when analyzing electric circuits with discrete circuit components.

In this case, it is called the voltage drop (or voltage difference) across a circuit element. At

the same time, it is equally convenient to define the “global” or absolute voltage between

an arbitrary point in space A and some fixed point A0, which is assigned the voltage value

zero. This fixed point (or the set of points) is called the ground reference. In general, the

ground reference may be chosen arbitrarily. In physics of localized conductors, it is
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customary to choose the ground at infinity. In electrical engineering, the ground reference is

either the physical (earth) ground or some neutral (common) conductor assigned to zero

volts. Thus, the absolute voltage versus ground denoted byV ~rð Þ is still defined by Eq. (1.4)
where point A is now characterized by the position vector~r. By definition, it becomes zero

when ~r approaches ground, i.e., A0. The equivalent representation of Eq. (1.4) for

conservative fields may be shown to be

~E ~rð Þ ¼ �gradV ~rð Þ ¼ �∇V ~rð Þ ð1:5Þ

Thus, the electrostatic field is expressed as the gradient of the electric potential or of

the (absolute) electric voltage everywhere in space. In other words, it means the

electric field does not have closed loops, but starts and ends at the charges. Equation

(1.5) is of significant value since it replaces a complicated vector ~E by the single scalar

voltage V.

Exercise 1.2: Electric voltage/potential with respect to ground is given in Cartesian

coordinates by V ~rð Þ ¼ �y V½ �. Determine the electric field everywhere in space.

Answer: Ey ¼ 1V=m, Ex ¼ Ez ¼ 0.

As an example, we choose the x-axis in Fig. 1.1 as the ground reference. The positive

supply terminal is chosen to have a voltage equal to +0.5 V versus ground, and the

negative terminal is assigned a voltage equal to �0.5 V versus ground. Those values will

uniquely determine charges �Q in Fig. 1.1. The function V ~rð Þ is now plotted using the

lines of equal potential, or equipotential lines. The result is shown in Fig. 1.2. It will be

proved next that the surface of any metal (or other) conductor in electrostatics is an

equipotential surface. All points on this surface have the same value of the electric

potential: +0.5 V for the plus terminal and �0.5 V for the minus terminal in Fig. 1.2.

Using Eq. (1.5) it can be verified that the equipotential lines and the lines of force are

always perpendicular to each other; you can see this in Fig. 1.2.

Chapter 1 From Physics to Electric Circuits

I-6



Exercise 1.3: In Fig. 1.2, determine voltage differences: V
BB

0 , V
A
0
A
, VAB, VAC, VB

0
C
.

Answer: V
BB

0 ¼ 1 V, V
A
0
A
¼�1 V, VAB ¼ 0 V, VAC ¼ 0:5 V, V

B
0
C
¼ �0:5 V.

1.1.4 Equipotential Conductors

Consider a conductor, which is characterized by a sufficient number of free charges. The

conductor is subject to an applied electric voltage, or to an applied electric field, or to

those effects combined. The charge density in the conductor is the difference between the

concentration of ions (positive charges) and electrons (negative charges) multiplied by

the charge of an electron. The charge density can be either volumetric, measured in C/m3,

or surface, measured in C/m2. The following is true when dealing with electrostatics:

1. The electric field everywhere within the conductor is zero, ~E ¼ ~0. Otherwise, the
Coulomb force given by Eq. (1.1) will act on free charges and cause permanent

charge motion (current flow), which is impossible.

2. The volumetric charge density everywhere within the conductor is zero. If this were

not true, then according to Gauss’ theorem, there would be a nonzero electric field

within the conductor, which is impossible based on statement #1.

3. The surface charge density is not zero. In fact, the surface charge is distributed so as

to assure that statement #1 is satisfied.

4. For the electric field given by Eq. (1.5), the tangential component of the electric

field ~Et is continuous across an interface. Since ~Et ¼ ~0 inside the conductor, ~Et

x

plus (+) terminal

minus ( ) terminal-

voltage power
supply

y

0

+Q

-Q

+Q

-Q

0.1 V

0.2 V

0.3 V
0.4 V

-0.1 V

-0.2 V

-0.3 V
-0.4 V

A’

A

B’

B

0 V

+ + +

++ ++

B
- ---

C

E

lines of force

equipotential lines

Fig. 1.2. Electric field and electric potential (electric voltage) of a 1-V voltage supply. Equipo-

tential lines are thin solid curves, while the lines of force are the thicker curves.
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must be zero over the entire surface of the conductor too. This is seen in Figs. 1.1

and 1.2 where the lines of force are perpendicular to the conductor surface.

5. Since ~Et ¼ ~0 on the conductor surface, any line integral between two points on this

surface is zero. Consequently the potential or voltage remains the same for any point

on this surface. The conductor surface is thus an equipotential surface.

These statements have an immediate practical application. Consider two conductors

(wires) attached to the power supply terminals as seen in Fig. 1.3.

Everywhere along the upper wire, the voltage is +0.5 V with respect to ground.

Furthermore, along the lower wire, the voltage is �0.5 V with respect to ground.

Everywhere in space the voltage difference between the two wires is therefore 1 V. The

wires may be extremely long. The charge �Q
0

required to maintain the corresponding

voltage difference of 1 V increases when the combined area of the metal conductors

increases. The conducting wires thus “guide” the electric field to a remote point. Without

the attached wires, the field would be spread out in space as seen in Figs. 1.1 and 1.2.

Exercise 1.4: In Fig. 1.3, two wires happen to be very close to each other at a certain

location; they are separated by 1 mm. What is approximately the electric field strength at

this location?

Answer: On the order of 1000 V/m, the wire isolation has little influence.

Exercise 1.5: In Fig. 1.3, a human body is in contact with the upper wire. What is the

body’s voltage versus ground?

Answer: Since the human body is still a conductor, its voltage is +0.5 V.

0.5 V0.5 V

-0.5 V

0.5 V

-0.5 V

+

-

1 V

+

-

1 V

+

-

1 V

0.5 V

-0.5 V

0.5 V
plus (+) terminal

minus ( ) terminal-
-0.5 V

voltage power
supply

+Q’>Q

-Q’<-Q

Fig. 1.3. Voltage source from Fig. 1.2 with two wires connected. There is still no current flow.
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1.1.5 Use of Coulomb’s Law to Solve Electrostatic Problems

The theory of electrostatics solely relies upon the distribution of surface charges, since no

other charges exist. An important case is a conductor subject to voltage V applied from

one terminal of the voltage source; the connection position does not matter. The other

terminal is usually located very far away, ideally at infinity; it is customarily assigned a

value of 0 V. As a result, the conductor acquires an extra positive chargeQ if V is positive.

The quantities of interest are the value of Q itself and the resulting surface charge

distribution. The ratio Q/V is the self-capacitance of the conductor. Consider a compli-

cated conductor—a human body. The idea of the solution is simple and elegant.

The entire body surface is divided into many small elements with a constant

charge density each. We assign an unknown charge qi to every such element with number

i (i ¼ 1, . . . ,N ) and center position ~ri. Charge qi is very similar to the point charge.

It follows from Coulomb’s law that it generates the electric potential in space given by

V ~rð Þ ¼
qi

4πε0 ~r �~rij j
ð1:6Þ

Here, ε0 ¼ 8:85419� 10�12 F=m is the electric permittivity of air. The net voltage of the

jth element is the sum of all such voltage contributions, i.e.,

V ~r j
� �

¼
X

N

i¼1

qi

4πε0 ~r j �~ri
�

�

�

�

¼ 1 V, j ¼ 1, ::,N ð1:7Þ

Equation (1.7) forms a system of N equations for N unknown charges. The diagonal terms

need a special treatment. By solving this algebraic system of equations using linear

algebra, we obtain the unknown charges; their sum is the net charge Q. Figure 1.4

shows the surface charge distribution found this way for two human subjects. Emphasize

that the charge (and the strongest electric field) concentrates at the sharpest parts of the

body: elbows, hands, feet, and the head. The total excess body charge Q in both cases is

approximately 50� 10�12 C. This is a very small charge; the same charge is stored in a

50 pF capacitor at 1 V. The method of this example is widely used in electrostatic

simulations including modeling electrostatic discharge and its effect on integrated

circuits.
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A human beneath the power line is subject to an electric field. A similar solution applies

given that the body surface is still the equipotential surface. Figure 1.5 shows the surface

charge distribution for two human subjects in a vertical electric field of 1 V/m. The negative

charges concentrate close to the head, whereas the positive charges concentrate in the lower

body. Figure 1.5 also shows the electric potential distribution around the body. Dense

equipotential lines mean a high local electric field. The local field may exceed the external

field by a factor of 10 or more. All results are linearly scaled with the applied electric field.

8

6

4

2

0

-2

-4

-6

-8

-10

x10  C/m
-11 2

0.2 V

0.3 V

0.4 V

0.5 V

0.6 V

0.7 V

0.8 V

0.9 V

1.0 V

1.1 V

1.2 V

1.3 V

1.4 V

1.5 V

1.6 V

a)

0.1 V

0.2 V

0.3 V

0.4 V

0.5 V

0.6 V

0.7 V

0.8 V

0.9 V

1.0 V

1.1 V

1.2 V

1.3 V

1.4 V

1.5 V

1.6 V

surface charge
density

b)

Fig. 1.5. Human body subject to an applied electric field: surface charge and potential distribution.

1

2

3

4

5

6

x10  C/m
-11 2

a) b)surface charge density

Fig. 1.4. Surface charge distribution over the human body based on an applied voltage of 1 V. Both

subjects are ECE graduate students.
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Section 1.2 Steady-State Current Flow and Magnetostatics

1.2.1 Electric Current

An electric current in a material is the directed motion of free positive charges. Conse-

quently, the electrons, which are often the only free charges in the conductor, move in the

opposite direction. The electric current density~j everywhere in the material is a vector, and

it is measured in amperes per meter square, i.e., A/m2. The total current I through a

conductor with the uniform current density is the product of the current density magnitude

and the conductor cross section A; I is measured in amperes. Circuits with lumped

components deal with the total currents only. The current density (and the total current)

is directly proportional to the applied electric field,

~j ~rð Þ ¼ σ~E ~rð Þ ð1:8aÞ

at any point of interest~r. Here, σ is the material conductivity with units of siemens/m, i.e.,

S/m. Note that 1 S¼ 1/Ω. If there is no electric field, there is no electric current in the

material and vice versa. In metals, the conductivity σ is very high. Therefore, even a

vanishingly small electric field inside a metal conductor creates a large electric current.

Exercise 1.6: An AWG #00 (American Wire Gauge) aluminum wire has the conductivity

of 4.0� 107 S/m and the diameter of 9.266 mm. Determine the total current in the wire

when the electric field inside the wire is 0.01 V/m. This value is more than 10,000 times

less than the field between the terminals of a 5-V laboratory supply separated by 2 cm.

Answer: 27 A.

For steady-state current flow, an electrostatic potential exists; it is given by Eq. (1.5).

Therefore, the current density can be expressed as the gradient of the potential,

~j ~rð Þ ¼ �σ∇V ~rð Þ ð1:8bÞ

1.2.2 Difference Between Current Flow Model and Electrostatics

In electrostatics, there are no charges and there is no electricfieldwithin conductors; only the

surface charges exist. The steady-state current problem is quite different. The volumetric

uncompensated charge density still does not exist within the conductor, but the electric field

does. Along with this, the surface charge density is always present, similar to electrostatics.

Physically, the difference arises from the different boundary conditions. The conductor

surface is divided into two distinct parts: the surface of electrodes, Se, where the voltage

(or current) is applied, and the rest of conductor surface, Sc, which is in contact with air. The

following is true for the steady-state current flow:
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1. Everywhere on the surface Sc, the current density component perpendicular to the

surface is zero, i.e.,~j � ~n ¼ 0, where ~n is the unit normal vector to the surface, and

dot denotes the scalar product of two vectors. In other words, no current can flow

from the conductor into air.

2. On the surface of electrodes Se, the voltage is given: for example, +0.5 Von the left

electrode and �0.5 V on the right electrode. Alternatively, the inflowing current,

~j � ~n, may be given.

How Does the Conductor “Guide” the Electric Field?

We consider the current flow in a conducting cylinder with two circular electrodes shown

in Fig. 1.6b. The electrostatic counterpart of the problem is given by the same coaxial

electrode pair in air, see Fig. 1.6a. The electrodes have the radius a; they are separated by

25a. The electrode voltages are�0.5 V. The exact value of the cylinder conductivity does

not matter; the same results will be obtained. The electrostatic problem and the steady-

state current problem are both solved as described in the previous section. Results of both

solutions are given in Fig. 1.6 where the equipotential lines and the electric field vectors

are plotted. Some general observations from this figure are worthy of note:

1. The current-carrying conductor “guides” the electric field as shown in Fig. 1.6a

which, otherwise, would be spread out in space; see Fig. 1.6b.

2. In the long conductor, the electric field and the electric current are both directed

along the conductor axis; they are uniform across any conductor cross section,

which is simultaneously an equipotential surface. In other words, current flow in the

long conductor is one dimensional, like water flow in a pipe. This is also true if the

conductor is bent or has a noncircular cross section

3. The voltage decreases linearly along the conductor from the most positive to the

most negative value. The voltage drop per unit length is constant; it is only a

function of the applied voltage.

It is seen from Fig. 1.6b that within in a current-carrying conductor of length l:

E ¼
V

l
ð1:9Þ

where E is the magnitude of the electric field (its direction is along the conductor axis), and

V is the voltage across the conductor (1 V in the present case). Equation (1.9) is a simplified

version of Eq. (1.4) for uniform fields. In many textbooks, it is used to derive Ohm’s law.

Note that the electric field in Fig. 1.6b is not continuous across the conductor-air

interface. A component of the electric field perpendicular to the conductor boundary

suddenly appears. This component is due to the surface charges on the conductor–air

interface (not shown in the figure).
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Exercise 1.7: A common AWG #22 copper wire is used in the laboratory to form a coil

with the radius of 0.1 m and 100 turns. This coil is subject to an applied voltage of 0.5 V.

Determine the total current in the wire if its diameter is 0.64516 mm; the copper conduc-

tivity is 5.8� 107 S/m. Hint: find the electric field in the wire first.

Answer: 0.1509 A.

1.2.3 Physical Model of an Electric Circuit

Thus far, we have considered the current flow in only one wire. However, a simple

electric circuit uses two wires and it includes at least three elements:

1. A voltage power supply, which in steady-state (direct current or DC) case generates

a constant voltage between its terminals.

2. An electric load that consumes electric power. The load may be modeled as a

resistant material of a much smaller conductivity.

3. Two wires, which extend from the source to the load. Those wires form a transmis-

sion line. In laboratory settings, both wires may be arbitrarily bent.

y
/a 0

5

-5

0 V0.1 V0.2 V0.3 V0.4 V -0.1 V -0.2 V -0.3 V -0.4 V

0.5 V -0.5 V

5

x/a

10 150-5-10-15

0.5 V -0.5 V
0.1 V

0.2 V

-0.1 V

-0.2 V

E E

a)

b)

E E

y
/a 0

5

-5

ScSe Se

Fig. 1.6. (a) Two electrodes subject to �0.5 V in free space; (b) the same electrodes but with a

conducting cylinder between them. Equipotential lines and electric field vectors are shown.
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Figure 1.7 shows a physical model of the simple circuit. We study its electric part first.

In Fig. 1.7a, the highest electric field magnitude is observed exactly between the two

conducting wires, at the line connecting its centers. At the same time, the electric field in

the wires is usually very small. Still, sufficient current flows there due to the high material

conductivity; see Eq. (1.8a). However, the electric field in the load cylinder is not small.

This is indicated by denser equipotential surfaces. In Fig. 1.7a, the equipotential surfaces

are all separated by 0.05 V. There is a net voltage drop of 0.3 V along each wire and the

voltage drop of 0.4 V across the load, resulting in a total potential drop of 1 V. This

equality is KVL (Kirchhoff’s voltage law). Ideally, when the conductivity of the wires is

infinitely high, the entire source voltage appears across the load cylinder. The field in the

wires becomes vanishingly small, but enough current still flows. The wire of infinite

conductivity, or the ideal wire, is a useful abstraction.

Exercise 1.8: If the voltage drop along each wire in Fig. 1.7a were 0.01 V, what would be

the value of the voltage across the load?

Answer: 0.98 V.

Exercise 1.9: In contrast to Fig. 1.7b, the field within the wire in Fig. 1.6b is not small,

regardless of its conductivity. Why is it so?

Answer: There is no load in Fig. 1.6b; the entire voltage drop is purposely forced to occur

across the wire.

1.2.4 Magnetostatics and Ampere’s Law

We next study the magnetic part of the circuit in Fig. 1.7b. The same electric current

I flows in the entire circuit. The current in one of the conductors in Fig. 1.7b creates the

magnetic field (magnetic-field intensity) ~H with units of A/m around the conductor.

If the conductors are considered to be sufficiently long, the magnitude (absolute value)

of the field ~H ~rð Þ anywhere in space, except within the conductor, is given by

H ~rð Þ ¼
I

2π ~rj j
ð1:10Þ

Equation (1.10) is a particular form of Ampere’s law for an infinite straight wire of the

total current I. The vector ~H forms concentric circles around the wire; its direction follows

the right-hand rule. When two wires are present, as in Fig. 1.7b, the resulting combined

magnetic field is the vector sum of two solutions given by Eq. (1.10) for two conductors
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load
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a) Electric field and equipotential surfaces
for direct current flow

 b) Electric/magnetic fields and
direct current flow

Fig. 1.7. Accurate physical model of an electric circuit.
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having the opposite current directions, respectively. The lines of the combined magnetic

field are shown in Fig. 1.7b. They are always perpendicular to the lines of force for the

electric field. The magnetic-field magnitude in Fig. 1.7b also has its maximum exactly

between the two conducting wires, at the line connecting its centers.

Exercise 1.10: Determine the magnetic-field magnitude in the middle between two

parallel long wires carrying current of �1 A each and separated by 2 cm.

Answer: H ~rð Þ ¼ 31.8 A/m.

Another useful form of Ampere’s law is the magnetic field of an infinite “current

sheet,” i.e., when current flows in a thin conducting sheet in one direction. The sheet may

be thought of as an infinite number of parallel thin wires carrying the same current. If

j [A/m] is the current density per unit of sheet width, then the resulting constant field is

H ¼
1

2
j ¼ const ð1:11Þ

1.2.5 Origin of Electric Power Transfer

We know from physics classes that electric power P delivered to the load is given by the

product P ¼ VI where V is the voltage across the load and I is the current through it. How

exactly is this power transferred to the load? To answer this question, we assume a

transmission line in the form of two parallel sheets of width W and spacing l shown in

Fig. 1.8. Each sheet carries current density with the magnitude j per unit of sheet length.

When the material conductivity is infinite, the voltage between the two sheets is the

load voltage V. For l=W << 1, Eq. (1.9) yields the electric field within the transmission

line,E ¼ V=l. The magnetic field is found using Eq. (1.11). The result isH ¼ j since both

sheets contribute to the field within the line. Next, we define a vector

magnetic field (H)

electric field (E)

V

+

-

Poynting vector (S)

to load

W j

Fig. 1.8. Transmission line in the form of two current sheets.
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~S ¼ ~E � ~H ð1:12Þ

where the symbol� stands for the cross product or vector product. The vector ~S is called
the Poynting vector; it is shown in Fig. 1.8. The units for the Poynting vector are given by

power per unit area, i.e., 1V=m� 1 A=m ¼ 1 W=m2. Thus, the Poynting vector char-

acterizes the directional energy flux density in space. Its magnitude in Fig. 1.8 is given by

S ¼ EH ¼ V j=l ¼ VI= lWð Þ where I ¼ jW is the net current in every conductor.

Multiplying the Poynting vector by the area A ¼ lW where the fields are concentrated,

we obtain the remarkable result,

AS ¼ VI ¼ P ð1:13Þ

In other words, the power is transferred by the fields. This result is perhaps less important

for wired circuits where the fields are directly linked to charges and currents. However, it

is important for the transition from wired to wireless circuits. At a sufficiently high

frequency, significant electric and magnetic fields will be radiated by an antenna into

empty space. These fields will carry power flux density given by Eq. (1.12).

Exercise 1.11: Two conductors extending from the source to the load are parallel

1-cm-wide perfectly conducting sheets separated by 1 mm. The (vertical) electric field

between the plates is 100 V/m; the (horizontal) magnetic field is 100 A/m. Determine

electric power delivered to the load. Assume no field fringing.

Answer: P ¼ 0:1W.
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Section 1.3 Hydraulic and Fluid Mechanics Analogies

1.3.1 Hydraulic Analogies in the DC Steady State

In DC and low-frequency alternating circuits, the electric and magnetic fields outside

conductors may be ignored without affecting the final results. When this is the case, the

electric circuits follow rather precisely useful fluid mechanics (or hydraulic) analogies.

Major hydraulic analogies are depicted in Fig 1.9. Let us consider a water pump

connected to a filter in Fig. 1.9a—left. The water pump creates a constant pressure

difference p between its terminals, which forces water to move through the filter.

Although the constant pressure (torque) pump is less common than a water pump of

constant flux, we can use it as an analogy since it exactly corresponds to the voltage

source, which maintains constant voltage difference V in Fig. 1.9a—right. The filter can

be thought of as an electric resistance: it opposes the water flow, and a certain pressure

difference, or voltage, is required to overcome this resistance. Electric current corre-

sponds to fluid velocity times the tube cross section which constitutes the total water flux.

For the entirely closed pumping system in Fig. 1.9a, the water pressure inside the system

can have an arbitrary reference level p0. This level may be quite different from the

ambient atmospheric pressure. Similarly, an isolated electric circuit may have an arbitrary

voltage V0 versus ground, due to static charge accumulation.

The condition V 0 ¼ 0 will be achieved by grounding the circuit. Figure 1.9b–d also

specifies hydraulic analogies for the separate circuit elements. We consider steady-state

flow of incompressible fluid. Emphasize that the DC voltage source in Fig. 1.9c is

analogous to a constant-torque water pump, which creates a constant pressure difference

+

-

sand filter

constant torque pump

constant speed pump

resistance

voltage source

current source

b)

c)

d)

+
-Vp +

-

Water pump
(pressure drop) filter

p+p0

I

V+V0

V0

resistance
(load)

velocity

Ivelocity

a)

p0

Fig. 1.9. Hydraulic analogies in the DC steady state.
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between its terminals, whereas a DC electric current source in Fig. 1.9d is similar to a

constant-speed water pump, which creates constant fluid flux.

1.3.2 Analogies for Alternating-Current (AC) Circuits

This case illustrated in Fig. 1.10 corresponds to alternating flow of incompressible fluid in a

piping system. The AC voltage source corresponds to a harmonically (sinusoidally)

oscillating piston in Fig. 1.10a, with a constant-torque amplitude. A capacitance in

Fig. 1.10b is represented by a flexible membrane. The capacitance value, C, corresponds

to the inverse stiffness, 1/k, of the membrane, also called the compliance. Whenk ! 1 and

C ! 0 (a rigid membrane), the capacitance value tends to zero. The membrane becomes a

solid wall, which blocks the alternating fluid flow entirely. In another limiting case (k ! 0

orC ! 1), the membrane has no effect on the fluid flow. Intermediate cases correspond to

a partial blocking. A massive wheel with a rotational inertia in Fig. 1.10c represents an

inductance. The inductance value, L, corresponds to the mechanical mass m of the wheel.

Whenm ! 1orL ! 0, the wheel does not respond to fluid oscillations and blocks the

alternating fluid flow entirely. In the opposite case (m ! 0 or L ! 1), the wheel has no

effect on the fluid flow. Intermediate cases correspond to a partial blocking. An electric

inductance

capacitance

a)

massive wheel
of mass m

AC voltage source

flexible membraneb)

c)

oscillating piston

D1

d) electric transformer

D2primary secondary

N N

e)

pivot

electric transformer

Fig. 1.10. Hydraulic analogies for alternating-current (AC) circuit elements.
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transformer shown in Fig. 1.10d operates with alternating currents. One mechanical

analogy is a gear transmission or gearbox. In terms of angular speed ω [rad/s] and

developed torque T N �m½ �, one has T2 ¼ D2=D1ð ÞT 1, and ω2 ¼ D1=D2ð Þω1, where

D1,2 are pitch diameters of gear wheels. Here, torque is the voltage and speed is the

current.D1,2 are similar to the number of turns, N1,2, of the primary and secondary coils of

the transformer, respectively. This analogy ignores the field effect—magnetic coupling

between the coils. Therefore, it will fail in the DC case. A more realistic transformer

analogy is shown in Fig. 1.10e. The model with four pistons transforms power from one

circuit to another in the AC case only. It is drawn for a 1:1 transformer. When a

transformer with a turn ratio of 2:1 is required, the area of output pistons is doubled.

This doubles the output current, but the output voltage (the force) will be halved.

1.3.3 Analogies for Semiconductor Circuit Components

Semiconductor circuit components are similar to fluid valves, which are either externally

controlled or are controlled by the fluid-flow pressure itself. Figure 1.11a shows a hydraulic

analogy for a diode. This picture highlights its major function: a one-way valve. Fig. 1.11b

illustrates the operation of an n-channel metal-oxide-semiconductor field-effect transistor,

or NMOS transistor. This transistor is a valve controlled by a third voltage terminal. For

another bipolar junction transistor or BJT in Fig. 1.11c, not only the control voltage but

also the control current is important. In other words, to keep the valve open, we must also

supply a small amount of current (fluid) at the control terminal.

NMOS transistor

a)

semiconductor diode

b)

+ -

higher pressure lower pressure

flexible membrane

control pressure

control voltage

junction transistor
c) control pressure/current

control voltage/current

Fig. 1.11. Analogies for semiconductor circuit components.
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Summary

Electrostatics

Electric voltage/electric potential V
AA

0 ¼ 1 V)Work of 1 J is necessary to bring the 1 C of

charge from point A0 to point A against the field;

V
AA

0 ¼ �

ð

A

A
0

~E � d~l for any contour 1, 2, or 3;

~E ~rð Þ ¼ �gradV ~rð Þ ¼ �∇V ~rð Þ for potential V ~rð Þ
everywhere in space including materials;

V ¼ lE in uniform fields (most important).

Coulomb force on charge q ~F ¼ q~E [N]

The force is directed along the field for positive charges and

against the field for negative charges

Gauss law Total flux of the electric field through closed surface S times

the permittivity is the total charge enclosed by S.

Q

ε0
¼

ð

S

~E � ~n dS (ε0 =8.854�10�12 F/m)

Equipotential conductors Within conductor(s) with applied voltage:

– Electric field is exactly zero;

– Volumetric charge density (C/m3) is exactly zero.

On surface(s) of conductor(s) with applied voltage:

– Every point has the same voltage (conductor surface is

equipotential surface);

– Surface charge density (C/m2) exists;

– Emanating electric field is perpendicular to the surface

(tangential field is zero: ~Et ¼ 0)

Outside conductor(s):

– Equipotential lines and lines of force are perpendicular

to each other

Voltage between two wires –Metal wires “guide” the electric field/voltage to a remote

point

– Given the same voltage, charges on wires increase when

their length increases.

Electrical induction in electrostatics – Conductors 1 and 2 are subject to applied voltages V1, V2;

– Conductor 3 has zero net charge;

– Conductor 3 acquires certain voltage V3;

– Surface charges in conductor 3 are separated as shown in

the figure.

(continued)
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Steady-state current flow

Associated electric field – Current density (A/m2) and total current I exist if and

only if there is an electric field within the material;
~j ~rð Þ ¼ σ~E ~rð Þ;

– There is little field in the conductor wires of a high

conductivity;

– The field is high in air gap between two wires;

– The field is equally high within the load;

– Both wires carry total surface charges �Q defined by

supply voltage, wire separation, and wire length

Simple formulas for wire con-

ductors

I ¼ AEσ

I ¼ π r2Eσ

E ¼ V 1 � V 2ð Þ=l

Non-uniform current flow Compare:

In the steady-state current-flow model:

– Electric field within the conductor is not zero;

– The conductor surface is not the equipotential surface

In the electrostatic model:

– Electric field within the conductor is zero;

– The conductor surface is the equipotential surface.

Current conservation law
ð

S

~j � ~n dS ¼ 0

There are no sources and sinks of electric current within a

conductor except the surface electrodes

Magnetostatics

Ampere’s law in a general form Line integral of the magnetic field over a closed contour is

the total current enclosed by this contour

ð

S

~H � d~l ¼

ð

S

~j � ~n dS ¼ I enc, j is measured in A/m2

Particular forms of Ampere’s

law
Wire: H ~rð Þ ¼ I

2π r
, r ¼ ~rj j (particular form)

Sheet of current: H ¼
j

2
¼ const, j is in A/m

Chapter 1 From Physics to Electric Circuits

I-22



Problems
1.1 Electrostatics of

Conductors
1.1.2 Electric Potential and Electric

Voltage

1.1.3 Electric Voltage Versus Ground

1.1.4 Equipotential Conductors

Problem 1.1. Determine voltage (or potential)

VAB and VBA (show units) given that the electric

field between points A and B is uniform and has

the value of 5 V/m. Point A has coordinates

(0, 0); point B has coordinates (1, 1).

E
A

B

Problem 1.2. Determine voltages VAB, VBD,

and VBC given that the electric field shown in

the figure that follows is uniform and has the

value of (A) 10 V/m, (B) 50 V/m, and

(C) 500 V/m.

0 cm

E

5 cm

10 cm
A

B

C

D

Problem 1.3. Assume that the electric field

along a line of force AA0 has the value 1�lV/

m where 0 � l � 1 m is the distance along the

line. Find voltage (or potential) V
AA

0 .

Problem 1.4. The electric potential versus

ground is given in Cartesian coordinates by V

~rð Þ ¼ �xþ y� z [V]. Determine the

corresponding electric field everywhere in space.

Problem 1.5. The figure below shows the

electric potential distribution across the semi-

conductor pn-junction of a Si diode. What

kinetic energy should the positive charge

(a hole) have in order to climb the potential

hill from anode to cathode given that the hill

“height” (or the built-in voltage of the

pn-junction) is V bi ¼ 0:7 V? The hole charge

is the opposite of the electron charge. Express

your result in joules.

Vbi

anode cathode

Problem 1.6. Is the electric field shown in the

figure that follows conservative? Justify your

answer.

0

E

1 cm

2 cm
A

B

C

D

Problem 1.7. List all conditions for voltage and

electric field used in electrostatic problems.

Problem 1.8. The figure below shows a 345 kV

power tower used in MA, USA—front view. It

also depicts electric potential/voltage and elec-

tric field distributions in space:

A. Determine which figure corresponds to

the electric potential and which to the

magnitude of the electric field.

B. Provide a detailed justification of your

answer.
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a)

symmetry plane

281.7 kV conductors

3.15 m

2.84 m

99%
92%
85%
78%

71%

64%
57%
50%

43%

36%

28%

21%

14%

7%

132
85

54

35

206

85

85

b) V =281.7 kVpeak

grounded pole

steel bar

c) V =281.7 kVpeak

b)

c)

Problem 1.9. Figure that follows shows some

isolated conductors. Determine the following

voltage differences: VAB, VAC, VCB.

B

A

0.5 V

3 V
C

0.5 V

Problem 1.10. In your circuit, two wires

connected to a 10-V voltage supply happen to

be very close to each other at a certain location;

they are separated by 2 mm.

A. What is the voltage between the wires at

this location?

B. What is approximately the electric field

strength at this location?

Problem 1.11. Is the figure that follows cor-

rect? Black curves indicate metal conductors.

Why yes or why not?

2 V

1 V

+

-1 V

1.2 Steady-state Current

Flow and Magnetostatics
1.2.1 Electric Current

1.2.2 Difference Between Current Flow

Model and Electrostatics

1.2.3 Physical Model of an Electric

Circuit

Problem 1.12. List the conditions for voltage

and electric field used in the steady-state elec-

tric current problems.

Problem 1.13. Figure that follows shows the

lines of force and equipotential lines for a DC

current flow in a conductor due to two elec-

trodes. List all mistakes of this drawing.

2 V
1 V

equipotential
lines

lines of force

Problem 1.14. An AWG #10 (American Wire

Gauge) aluminum wire has the conductivity of

4.0�107 S/m and the diameter of 2.58826 mm.
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Determine the total current in the wire when the

electric field inside the wire is (A) 0.001 V/m;

(B) 0.005 V/m.

Problem 1.15. A copper wire (AWG #24) in

the form of a coil with the radius of 0.1 m and

1000 turns is subject to applied voltage of 5 V.

Determine the total current in the wire if its

diameter is 0.51054 mm; the copper conductiv-

ity is 5.8� 107 S/m.

Problem 1.16. The figure below shows a

conducting cylinder of radius R ¼ 1 cm, length

L ¼ 5 cm, and conductivityσ1 ¼ 1:0 S=min air.

Two electrodes are attached on both cylinder

sides; the electrode radius is exactly the cylinder

radius. Electrode voltages are exactly �1 V:

electrode #1

V =1V1 V =-1V2
z

electrode #2R

y

L

A. Determine and sketch to scale the elec-

tric potential everywhere inside the cyl-

inder and on its surface.

B. Determine and sketch to scale the elec-

tric field everywhere inside the cylinder.

C. Attempt to sketch the electric potential

distribution outside the cylinder.

D. Repeat tasks A and B when the voltage

electrodes are replaced by current elec-

trodes with the applied electric current

density of �1 A/m2.

1.2.4 Magnetostatics/Ampere’s Law

1.2.5 Origin of Electric Power Transfer

Problem 1.17. A DC magnetic field of

1000 A/m is measured between two parallel

wires of an electric circuit separated by 0.5 m.

What is the circuit current?

Problem 1.18. Two conductors running from the

source to the load are two parallel 0.5-cm-wide

thin plates of infinite conductivity. The (vertical)

electric field between the plates is 100 V/m; the

(horizontal) magnetic field between the plates is

100 A/m. The load power is 0.1W. Assuming no

field fringing, determine (A) plate separation,

(B) load voltage, and (C) load current.

Problem 1.19. Repeat the previous problem

when the electric field between the plate elec-

trodes increases by a factor of two, but the

magnetic field decreases by a factor of two.

1.3 Hydraulic and fluid

mechanics analogies
Problem 1.20. For the hydraulic setup shown

in the figure, draw its electrical counterpart

(an electric circuit) using the circuit symbols.

constant
speed pump

filter

Problem 1.21. For the hydraulic setup shown

in the figure, present its electrical counterpart

(an electric circuit). Note a connection to a large

reservoir with atmospheric pressure.

filter

0

constant
torque pump

reservoir at atmospheric pressure
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Part I

DC Circuits: General Circuit
Theory—Operational Amplifier



Chapter 2: Major Circuit Elements

Overview

Prerequisites:

- Knowledge of university physics: electricity and magnetism (optional)

- Knowledge of vector calculus (optional)

Objectives of Section 2.1:

- Realize the difference between circuit elements and circuit components

- Review (derive) Ohm’s law

- Become familiar with the �-i characteristic of the resistance including limiting cases

- Realize the importance of ohmic losses in long cables

- Become familiar with discrete fixed resistors and with resistive sensing elements

Objectives of Section 2.2:

- Realize the meaning of a passive nonlinear circuit element and its �-i characteristic
- Define two resistance types (static and dynamic) for a nonlinear passive circuit

element

- Present two examples of nonlinear elements: ideal diode and a threshold switch

Objectives of Section 2.3:

- Introduce the concept of independent voltage and current sources and become

familiar with their �-i characteristics
- Introduce the concept of practical voltage/current sources including their

�-i characteristics
- Obtain initial exposure to the operation principles of voltage sources including

specific examples

Objectives of Section 2.4:

- Become familiar with the concept of a dependent source

- Become familiar with four major types of dependent sources

- Obtain initial exposure to transfer characteristics of dependent sources

- Become familiar with ideal time-varying and AC sources

Chapter 2
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Objectives of Section 2.5:

- Formalize the meaning of voltmeter and ammeter from the viewpoint of open and

short circuits

- Obtain a clear understanding of the circuit ground and its role in the circuit

- Review different ground types

Application Examples:

- Power loss in transmission lines and cables

- Resistive sensing elements

- DC voltage generator with permanent magnets

- Chemical battery

Keywords:

Circuit elements, Circuit components, υ-i characteristic, Resistance, Polarity, Voltage difference,

Voltage drop, Voltage polarity, Passive reference configuration, Ohm’s law, Linear passive circuit

element, Conductance, Siemens, mho, Short circuit, Open circuit, Ohmic conductor, Mobility of
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Section 2.1 Resistance: Linear Passive Circuit Element

2.1.1 Circuit Elements Versus Circuit Components

Circuit Elements
Similar to mechanical mass, spring, and damper used in analytical dynamics, circuit

elements are simple hypothetic ideal models. Every circuit element is characterized by its

unique voltage/current dependence called the υ-i characteristic. Most of the υ-i charac-

teristics reflect general physical laws. A list of the circuit elements includes:

1. Resistance

2. Capacitance

3. Inductance

4. Ideal electric transformer

5. Voltage source (independent and dependent)

6. Current source (independent and dependent)

7. Ideal switch

8. Ideal (Shockley) diode

9. Logic gates (NOT, AND, OR).

Circuit elements may be linear (resistance) or nonlinear (ideal diode), passive (resis-

tance) or active (voltage source), static (resistance) or dynamic (capacitance/inductance),

or both. Although all circuit elements studied here are static ones, the extension to the

case of time-varying voltage and current is often trivial.

Circuit Components

Circuit components are numerous hardware counterparts of the circuit elements. Exam-

ples of the circuit components include resistor, capacitor, inductor, battery, etc. The circuit

components may be modeled as combinations of the ideal circuit elements with one

dominant desired element (e.g., resistance) and several parasitic ones (e.g., parasitic

inductance and capacitance of a physical resistor). Another example is a battery, which

is modeled as an ideal voltage source in series with a (small) resistance. In practice, we

attempt to model any existing or newly discovered circuit component as a combination of

the well-known circuit elements. The same is valid for more complicated structures

targeted by electrical, mechanical, and biomedical engineers. An example is a human

body, the response of which is modeled as a combination of resistance and capacitance.

2.1.2 Resistance

Symbols and Terminals
Figure 2.1 shows the circuit symbol for resistance with current direction and voltage

polarity: positive voltage applied to the left terminal and a negative voltage applied to the

right terminal cause a current to flow from left to right, as depicted in Fig. 2.1b. As a

circuit element, the resistance is fully symmetric: terminals 1 and 2 in Fig. 2.1 may be

interchanged without affecting its operation. Thus, the resistance does not have a polarity.
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Voltage Across the Resistance

The voltage difference (or voltage drop or simply voltage) across the resistance, V, in

Fig. 2.1 is a signed quantity. The voltage is measured in volts (V), named in honor of

Italian physicist Alessandro Volta (1745–1827), who invented the first battery. Plus and

minus signs across the resistance indicate the voltage polarity. Specifically, a plus sign

denotes a (presumably) higher absolute voltage level versus ground than the minus sign;

see Fig. 2.1b. For example, let us assume that the value V in Fig. 2.1a is positive and equal

to 1 V. This means that the electric field spends positive work equal to

1V� 1C ¼ 1J ð2:1Þ

when moving the charge of 1 C through the resistance from left to right in Fig. 2.1a.

Similarly, the positive work of one joule is to be spent by an external force to move one

coulomb of charge across a potential difference of one volt against the electric field. In

power electronics, quantities of 1 kV (1000 V), even 1 MV (106 V) for voltage, are

customary. In sensors and cellular phone circuits, for example, voltages are usually much

lower. Values of 1 mV (10�3 V) or even 1 μV (10�6V) may be recorded. Voltage applied

to the resistance causes electric current flow.

Current Through Resistance: Passive Reference Configuration

The net current I flowing through the resistance is shown in Fig. 2.1a by an arrow.

The current is measured in amperes (A), named in honor of French physicist and mathe-

matician André-Marie Ampère (1775–1836). For example, the value of I in Fig. 2.1a is

1 A. This means that one coulomb of charges passes through the resistance in one second:

1A� 1s ¼ 1C ð2:2Þ

The electric current flow through the resistance (and any other circuit element) is a

directed quantity; the arrow shows its direction. A useful fluid mechanics analogy for

the resistance is water (electric current) that flows down the “voltage” hill in Fig. 2.1b.

The relation between voltage polarity and current direction depicted in Fig. 2.1b is

known as the passive reference configuration. It is commonly used for all passive circuit

elements such as resistances, diodes, capacitances, and inductances. Physically, the passive

reference configuration means that the resistance consumes electric power, but does not

create it. In power electronics, currents of several A, even kA (1000 A), are customary.

I

+

V+

-a) b)

1 2

-

Fig. 2.1. Resistance symbol along with the voltage and current.
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In digital and communication circuits, however, currents are usually low; therefore, units

of 1 μA (10�6A) or 1 mA (10�3A) are commonly used.

Ohm’s Law: Resistance and Conductance

According to Ohm’s law, the voltage V across the resistance and the current I through the

resistance are related by a simple linear expression

V ¼ RI ð2:3Þ

with the proportionality constant R known as the resistance. This expression was first

established by German mathematician and physicist Georg Simon Ohm (1789–1854) in

1827 but was coldly received by the scientific community at that time. It took nearly

14 years before the Royal Society of London finally recognized his work and his

discovery is now known as Ohm’s law. The unit of resistance R carries his name ohm

and the Greek symbol Ω. The unit follows from Eq. (2.3) as volt over ampere:

1 Ω ¼ 1 V

1 A
ð2:4Þ

The resistance is the linear passive circuit element. Resistance values vary typically

between 1 Ω and 100 MΩ. The reciprocal of the resistance is the conductance, G:

G ¼ 1

R
ð2:5Þ

The unit of conductance, Ω�1, is called siemens (S) in honor of Ernst Werner von Siemens

(1816–1892), a German inventor and the founder of what is today Europe’s largest

electrical engineering company (Siemens AG). An older American equivalent of that unit

is mho (

Ω

) or ohm spelled backwards! Conductance is useful in the circuit analysis.

Exercise 2.1: A voltage of 20 V is applied to a 1-MΩ resistance. Determine the current

through the resistance.

Answer: 20 μA.

Exercise 2.2: A voltage of 20 V is applied to a 1-mS conductance. Determine current

through the conductance.

Answer: 20 mA.
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2.1.3 υ-i Characteristic of the Resistance: Open and Short Circuits

Figure 2.2 plots the linear dependence given by Eq. (2.3) for two distinct resistances. The

corresponding plot is known as the υ-i characteristic (or the υ-i dependence). We use

small letters υ-i to maintain consistency with the following study of time-varying circuits.

The υ-i characteristic is the “business card” of the circuit element—every circuit element

has its own υ-i characteristic. Once the υ-i characteristic is known, the circuit element is

characterized completely. The following is true with reference to Fig. 2.2a:

1. The slope of the υ-i dependence for the resistance is equal to 1/R or G.

2. Smaller resistance leads to a stepper υ-i dependence (large currents).

3. Larger resistance leads to a flatter υ-i dependence (small currents).

4. The negative part of the υ-i dependence simply means simultaneous switching

voltage polarity and current direction, respectively, in Fig. 2.1.

Open and Short Circuits

Two limiting cases of the resistance υ-i characteristics are the short circuit and the open

circuit, as seen in Fig. 2.3.

When R ! 0, the resistance becomes a short circuit, or an ideal wire. There is no

voltage drop V across the wire, but any current I can flow through it. Therefore, the υ-i

characteristic of the short circuit is the straight vertical line in Fig. 2.2b. When R ! 1,

the resistance becomes an open circuit, or an ideal vacuum gap. There is no current

I through the gap at any value of the applied voltage V. Therefore, the υ-i characteristic of

the open circuit is the straight horizontal line in Fig. 2.2b.

I

V

0

smaller

resistance

larger

resistance

I

V

0

short

circuit

open

circuit

a) b)

Fig. 2.2. υ-i Characteristics for resistances and for the short and open circuits, respectively.

R 0
short circuit

open circuitR

Fig. 2.3. Transformation of resistance to a short and an open circuit, respectively.
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Exercise 2.3: Every vertical division in Fig. 2.2a is 0.1 A; every horizontal division is 1 V.

Find resistances for two υ-i dependencies in the figure.

Answer: R ¼ 4 Ω and R ¼ 25Ω, respectively.

Exercise 2.4: An ideal switch is open when V < 0 and is closed when V � 0. Plot the υ-i

characteristic given that only a positive current I > 0 can flow.

Answer: Horizontal line I ¼ 0 when V < 0 and vertical line V ¼ 0 when I > 0.

2.1.4 Power Delivered to the Resistance

Voltage V across the resistance is work in joules necessary to pass 1 C of charge through

the resistance. Since there are exactly I coulombs passing through the resistance in one

second, the power P delivered to the resistance must be the product of work per unit

charge and the number of charges passing through the element in one second: P ¼ VI .

The power P has indeed the units of watts (1V� 1A ¼ 1 J=1 s ¼ 1W). When the υ-i

characteristic of the resistance is examined, the power is equal to the area of the shaded

rectangles in Fig. 2.4. Using Ohm’s law, Eq. (2.3) gives us three equivalent definitions of

the absorbed power by a resistance:

P ¼ VI Basic definition, valid for any passive circuit element ð2:6Þ

P ¼ V 2

R
Power for resistance in terms of voltage ð2:7Þ

P ¼ RI2 Power for resistance in terms of current ð2:8Þ

I

V
0

smaller

resistance

larger

resistance

P1

P2

Fig. 2.4. υ-i Characteristics for the resistances and power rectangles. P1,2 are absorbed powers.
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Despite their obvious nature, all three equations are useful in practice. In particular,

Eq. (2.7) indicates that a small resistance absorbs more power than the large resistance at

the same applied voltage; this is seen in Fig. 2.4. Imagine for a moment that we know the

voltage across the resistance, but do not know the current. This happens if a number of

circuit elements are connected in parallel to a known voltage source. Then Eq. (2.7) is

used to find the power. However, if the current is known, but the voltage is not (a number

of elements connected in series to a current source), then Eq. (2.8) is employed.

Example 2.1: Avoltage of 10 V is applied to a 2.5-Ω resistance. Determine the absorbed

electric power in three possible ways as stated by Eqs. (2.6) through (2.8).

Solution: To apply two of the three equations, current through the resistance is needed.

From Ohm’s law, I ¼ V=R ¼ 4 A. The electric power delivered to the resistance can

thus be determined in three ways:

P ¼ VI ¼ 40W Basic power definition, passive reference configuration

P ¼ V 2

R
¼ 40W Power for resistance in terms of voltage

P ¼ RI2 ¼ 40W Power for resistance in terms of current

2.1.5 Finding Resistance of Ohmic Conductors

An ohmic conductor satisfies Ohm’s law given by Eq. (2.3). Finding its resistance is

equivalent to the derivation of Ohm’s law under certain assumptions. Let us consider a

conducting circular cylinder subject to an applied voltage V in Fig. 2.5. The cylinder has

length l and a cross-sectional area A.

Finding Total Current

The net electric current in a metal or other conductor is defined as the net flux of positive

charge carriers directed along the conductor axis x:

A

equipotential

surfaces

+

electric field

E

V

+
+
+
+
+

+

-V/4

II

-

x

Fig. 2.5. Finding the resistance of a conducting cylinder.
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I ¼ Aqn υ ð2:9Þ

Here, nq is the volumetric charge density of free charges q with concentration n in

coulombs per cubic meter, C/m3, and υ is the magnitude of the average charge velocity in

m/s. In the one-dimensional model of the current flow, the average velocity vector is

directed along the x-axis seen in Fig. 2.5. Since the electrons have been historically

assigned a negative charge, the electric current direction is opposite to the direction of

electron motion in a conductor. The electron carries an elemental charge of �q ¼
�1.60218� 10�19 C. Because A and nq are constants for a given conductor, the electric

current is simply associated with the charge’s mean velocity υ.

Finding Average Carrier Velocity

In order to find υ, we use the following method. The total voltage drop V applied to a

sufficiently long, conducting cylinder is uniformly distributed along its length following

the equally spaced equipotential surfaces; this is schematically shown in Fig. 2.5. This

fact has been proved in Chapter 1. Such a voltage distribution corresponds to a constant

uniform electric field within the cylinder, which is also directed along the cylinder axis.

The magnitude of the field, E, with the units of V/m, is given by

E ¼ V=l ð2:10Þ

The electric field creates a Coulomb force acting on an individual positive charge q. The

Coulomb force is directed along the field; its magnitude F is given by

F ¼ qE ð2:11Þ

The key is a linear relation between the charge velocity υ and force F or, which is the same,

a linear relation between the charge velocity υ and the applied electric field E, i.e.,

υ ¼ μE ð2:12Þ

where μ is the so-called mobility of charge carriers, with the units of m2/(V�s).
Carrier mobility plays an important role in semiconductor physics. With the help

of Eqs. (2.10) and (2.12), the expression for the total current Eq. (2.9) is transformed to

V ¼ l

Aqnμ

� �

I ¼ l

Aσ

� �

I ¼ RI , σ ¼ qnμ, R ¼ l

Aσ
ð2:13Þ

This is the expression for the resistance of a cylindrical conductor. Material conductivity

σ is measured in S/m. Its reciprocal is the material resistivity ρ ¼ 1=σ measured in

Ω�m.
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Example 2.2: Estimate resistanceR of a small doped Si diskwith the length l of 5 μm, cross

section of A¼ 10�4 cm2, uniform electron, concentration (carrier concentration) of

n ¼ 1017 cm�3, and carrier mobility of μn ¼ 1450 cm2/(V�s).
Solution: Resistance calculations are usually simple when the one-dimensional model of a

conducting cylinder or a disk is used. However, one must be careful with the units. Units of

cm are customary in semiconductor physics. Therefore, one should first convert all different

units of length to meters (or to centimeters). After that, we use the definition of the resistance

given by Eq. (2.13) and obtain (units of meters are used):

R ¼ l

Aqnμn
¼ 5� 10�6

10�8 � 1:602� 10�19 � 1023 � 0:145
¼ 0:215 Ω ð2:14Þ

Table 2.1 lists conductivities of common materials. What is the major factor that

determines the conductivity of a particular conducting material? According to

Eq. (2.13), there are two such parameters: charge concentration and charge mobility.

Table 2.1. DC conductivities of conductors, semiconductors, and insulators (25 �C, multiple

sources).

Material Class σ (S/m) Material Class σ (S/m)

Silver Conductor 6.1�107 Seawater Semiconductor 4

Copper Conductor 5.8� 107 Human/ani-

mal tissues

Semiconductor 0.1–2.0

Gold Conductor 4.1�107 Germanium Semiconductor 2

Aluminum Conductor 4.0� 107 Fresh water Semiconductor 0.01

Brass Conductor 2.6� 107 Wet soil Semiconductor 0.01–0.001

Tungsten Conductor 1.8 � 107 Dry soil Semiconductor 0.001–0.0001

Zinc Conductor 1.7� 107 Intrinsic sili-

con (Si)

Semiconductor 4.4�10�4

Nickel Conductor 1.5� 107 Gallium arse-

nide (GaAs)

Semiconductor 10�6

Iron Conductor 1.0� 107 Glass Insulator 10�12

Tin Conductor 0.9� 107 Porcelain Insulator 10�14

Lead Conductor 0.5� 107 Hard rubber Insulator 10�15

Graphite Conductor 0.003� 107 Fused quartz Insulator 10�17

Carbon Conductor 0.003� 107 Teflon Insulator 10�23

Magnetite Conductor 0.002� 107
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It is mostly the different concentration of free charge carriers n that makes the resistance

of two materials quite different. For example, n ¼ 8:46� 1028m�3 in copper (a good

conductor), whereas it may be n ¼ 1016m�3 in a moderately doped silicon crystal (doped

semiconductor). However, it is also the difference in mobility μ that represents the

“friction” experienced by the “gas” of free charges with density n that is moving through

the solid or liquid conductor under the applied voltage (electric field).

Exercise 2.5: Using Table 2.1 in chapter’s summary, determine the total resistance of an

aluminum wire having a length of 100 m and a cross-sectional area of 1 mm2.

Answer: 2.5 Ω.

2.1.6 Application Example: Power Loss in Transmission Wires and Cables

All metal wires and cables are ohmic conductors. Electric power absorbed by an ohmic

conductor is transformed into heat. This is known as electric power loss. We can apply

Eqs. (2.6)–(2.8) and Eq. (2.13) in order to determine the loss of electric power in

transmission lines and/or cables. This question has significant practical importance.

Figure 2.6 outlines the corresponding electric circuit. The electric circuit is a closed

path for electric current. Resistance RL characterizes the load. Only Ohm’s law is used

to analyze this circuit, along with the current continuity. No other circuit laws are

necessary. We also consider a voltage source in Fig. 2.6. The voltage sources will be

studied next.

According to Eq. (2.13), the wire resistance is inversely proportional to its diameter.

In the USA, the American Wire Gauge (AWG) system was developed to classify the wire

diameters of conductors. You probably have heard an electrician refer to a gauge

12 household wiring. This implies a wire diameter of about 2 mm, or 0.0800. Table 2.2

reports common AWG numbers and maximum current strengths.

+
-

RL

I

a

b
20 km

II

II
I

source transmission line (TL) load

+

-
V

Fig. 2.6. A long transmission power line carrying a steady-state current I to the load resistance.

Chapter 2 Section 2.1: Resistance: Linear Passive Circuit Element

II-39



Example 2.3: An AWG 0 aluminum transmission grid cable schematically shown in

Fig. 2.6 has a wire diameter of 8.25 mm and a cross-sectional area of 53.5 mm2.

The conductivity of aluminum is 4.0� 107 S/m. The total cable length (two cables must

run to a load) is 40 km. The system delivers 1 MWof DC power to the load. Determine the

power loss in the cable when load voltage V and load current I are given by:

1. V ¼ 40 kV and I ¼ 25 A

2. V ¼ 20 kV and I ¼ 50 A

3. V ¼ 10 kV and I ¼ 100 A

Why is high-voltage power transmission important in power electronics?

Solution: We find the total cable resistance from Eq. (2.13):

R ¼ ρ
L

A
¼ L

σA
¼ 40� 103

4:0� 107 � 53:5� 10�6
¼ 18:7Ω ð2:15Þ

The same load current I flows through the load modeled by a resistor RL and through the

cables in Fig. 2.6. Therefore, power loss in the cables may be found using Eq. (2.8).

Knowing the load voltage (or the voltage across the cable) is not necessary. The power

loss in the cables is thus given by P ¼ RI2. For the three different cases corresponding to

the same load power, we obtain

Table 2.2. American Wire Gauge (AWG) wire parameters. The maximum current is given for

solid copper (Source: Handbook of Electronic Tables and Formulas for American Wire Gauge).

AWG #

Diameter

(inches)

Diameter

(mm)

Resistance per

1000 ft

or 304.8 m (Ω)

Maximum current

in (A)

for power transmission

24 0.0201 0.51054 25.67 0.577

22 0.0254 0.64516 16.14 0.92

20 0.0320 0.81280 10.15 1.50

18 0.0403 1.02362 6.385 2.30

16 0.0508 1.29032 4.016 3.70

14 0.0640 1.62814 2.525 5.90

12 0.0808 2.05232 1.588 9.30

10 0.1019 2.58826 0.999 15.0

Gauges 10 through 1 are not shown

0 (1 aught) 0.3249 8.252 0.09827 150

00 (2 aught) 0.3648 9.266 0.07793 190

000 (3 aught) 0.4096 10.404 0.06180 239

0000 (4 aught) 0.4600 11.684 0.04901 302
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Example 2.3 (cont.):

1. P ¼ RI2 ¼ 11:7kW or 1.17 % of the load power

2. P ¼ RI2 ¼ 46:8kW or 4.68 % of the load power (2.16)

3. P ¼ RI2 ¼ 187kW or 18.7 % of the load power

Clearly, the high-voltage power transmission allows us to reduce the power loss in long

cables very significantly while transmitting the same power to the load. Therefore, the

high-voltage transmission lines passing through the country have typical voltages between

100 kV and 800 kV.

In circuit analysis in the laboratory, we usually consider ideal or perfectly conducting

wires whose resistance is zero. This is justified since the wire lengths for most practical

circuit applications are so short that the voltage drop is negligibly small.

2.1.7 Physical Component: Resistor

Fixed Resistors
Resistance is constructed intentionally, as a separate circuit component. This component

is called the resistor. A common axial leaded carbon film 0.25-W resistor deployed on a

solderless protoboard is seen in Fig. 2.7a. Those carbon film resistors are typically

manufactured by coating a homogeneous layer of pure carbon on high-grade ceramic

rods. After a helical groove is cut into the resistive layer, tinned connecting leads of

electrolytic copper are welded to the end-caps. The resistors are then coated with layers of

tan-colored lacquer. The common Surface Mount Device (SMD) thin-film resistor is

shown in Fig. 2.7b. Manufacturing process variations result in deviations from the normal

resistor values; they are known as tolerances and reported to the end user through an extra

color ring (for leaded axial resistors) or an extra digit (for SMD resistors). Typical power

ratings for the axial resistors are 1/6 W, ¼W, ½W, 1 W, 2 W, and 3 W. When the power

delivered to the resistor considerably exceeds the particular rating, the resistor may burn

out, releasing a prominent “carbon” smell. The axial resistors have color codes shown in

Fig. 2.7c. To find the value of the resistor depicted in Fig. 2.7a, we first encounter the

tolerance code, which will typically be gold, implying a 5 % tolerance value. Starting

from the opposite end, we identify the first band, and write down the number associated

with that color; in Fig. 2.7a it is 9 (white). Then, we read the next band (brown) and

record that number; it is 1. After this we read the multiplier black, which is 0. The resistor

value in Fig. 2.7a is consequently R ¼ 91� 100 ¼ 91 Ω.

The surface mount resistors, also known as SMD resistors, do not have color codes.

The SMD resistors are labeled numerically as 102 ¼ 10� 102 ¼ 1 kΩ, 271 ¼ 27�
101 ¼ 270 Ω, etc. Along with this, the SMD resistors, similar to other SMD compo-

nents, do have codes corresponding to their geometry size. Each size is described as a

four-digit number. The first two digits indicate length, and the last two digits indicate
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width (in 0.0100, or 10 mils units). Some popular SMD resistor sizes are 0603

(0.0600� 0.0300, or 60� 30 mils, or 1.6� 0.8 mm), 0805 (0.0800� 0.0500), and 1206

(0.1200� 0.0600).

Variable Resistors (Potentiometers)

The simplest variable resistor is a potentiometer. A picture is shown in Fig. 2.8a along

with its equivalent electric schematic in Fig. 2.8b. The potentiometer is used either as a

voltage divider, discussed later in the text, or as a variable resistor. By rotating the

potentiometer shaft, it is possible to obtain any resistance value up to the maximum

potentiometer value. The adjustable resistance is obtained between terminals 1 and 2 or

2 and 3 of the potentiometer, respectively. You should remember that the potentiometer

is a nonpolar device. This means that it can be placed into the circuit in any orientation.

With this knowledge the joking engineer telling you that “all resistors in your circuit are

backwards” should not cause any fear.

2.1.8 Application Example: Resistive Sensors

There are a variety of sensor types—resistive sensors—which use electric resistance

variation to measure a mechanical or a thermal quantity. Some of them are shown in

Fig. 2.9. As a first example, we consider a temperature sensor based on a thermistor

(a resistor), with a resistance that varies when ambient temperature changes; see Fig. 2.9a.

a) axias leaded resistor b) SMD thin-film resistor

Black Brown Red Orange Yellow Green Blue Violet Gray White

0 1 2 3 4 5 6 7 8 9

c) Color codes for axial resistors

Fig. 2.7. (a) A leaded axial resistor, (b) a thin-film resistor, and (c) color codes for leaded resistors.

1

2

3

25 kΩ

1 2 3

a) b)

Fig. 2.8. A rotary 25-kΩ potentiometer rated at 0.25 W and its equivalent circuit schematic.
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The word thermistor is a contraction of the words “thermal” and “resistor.” As a second

example of a resistance subject to ambient conditions, we will consider a photoresistor

(photocell) shown in Fig. 2.9b. The final example is a strain gauge shown in Fig. 2.9c.

Thermistor

The thermistor changes its resistance as temperature increases or decreases. General-

purpose thermistors are made out of metal oxides or other semiconductors. Successful

semiconductor thermistors were developed almost simultaneously with the first transis-

tors (1950s). For a metal-oxide thermistor, its resistance decreases with increasing

temperature. Increasing the temperature increases the number of free carriers (electrons)

and thus increases the sample conductivity (decreases its resistance). Shown in Fig. 2.9a

is a very inexpensive NTC—negative temperature coefficient—leaded thermistor.

According to the manufacturer’s datasheet, it reduces its resistance from approximately

50 kΩ at room temperature (about 25 �C) by 4.7 % for every degree Celsius (or Kelvin)

and reaches about 30 kΩ at body temperature according to the thermistor equation:

R1 ¼ R2 exp B
1

T 1

� 1

T 2

� �� �

ð2:17Þ

where T1, T2 are two absolute temperatures always given in degrees K. Temperature T2
corresponds to a room temperature of 25 �C so that R2¼R25�C, temperature T1 is the

observation temperature, and B is the thermistor constant, which is equal to 4200 K in the

present case. Equation (2.17) is a nontrivial result of the solid-state physics theory. We

emphasize that Eq. (2.17) is more accurate than the temperature coefficient of the

thermistor—the above referenced value of �4.7 %. Typical applications include temper-

ature measurement, control, compensation, power supply fan control, and printed circuit

board (PCB) temperature monitoring. Inexpensive thermistors operate from �30 �C to

approximately +130 �C. At higher temperatures, thermocouples should be used.

Thermocouple

Figure 2.9 does not show one more important temperature sensor—the thermocouple—

which is used to measure large temperatures and large temperature differences. It operates

Fig. 2.9. Sensing elements which change their resistances when ambient conditions change.

Chapter 2 Section 2.1: Resistance: Linear Passive Circuit Element

II-43



based on a completely different principle. The thermocouple does not significantly

change its resistance when temperature changes. Instead, it generates an electric current

and the associated voltage, when the junction of the two metals is heated or cooled,

known as the Peltier-Seebeck effect; this voltage can be correlated to temperature.

Therefore, the thermocouple, strictly speaking, is not a resistive sensor.

Photoresistor (Photocell)

An idea similar to the thermistor design applies. Quanta of light incident upon the

photocell body create new free charge carriers—new electron-hole pairs in a semicon-

ductor. If the concentration of free charges increases, the resistance of the sample

decreases according to Eq. (2.13). The resistance is inversely proportional to the concen-

tration. The photocell in Fig. 2.9b is characterized by very large nonlinear variations of

the resistance in response to ambient light.

Strain Gauge

The strain gaugemeasures mechanical strain. The operation is based on Eq. (2.13), which

defines the resistance through material conductivity σ, the length of the resistor l, and its

cross section A. When the resistor, which may be a trace on the base of a metal alloy, is

stretched, its length l increases and its cross section A decreases. Hence, the resistance

R increases due to both of these effects simultaneously; changes in the resistance may be

made visible for small strains. Shown in Fig. 2.9c is an inexpensive uniaxial strain gauge

with a nominal resistance of 350Ω; typical resistances are 120, 350, 600, 700, and 1000Ω.

The gauge changes its resistance R in proportion to the strain sensitivity SG of the wire’s

resistance, also called the gauge factor (GF). For a strain gauge, the relative resistance

variation, ΔR/R, is estimated based on known values of the strain sensitivity, SG, and

strain, ε. The strain gauge equation has the form

ΔR=R ¼ SGε ð2:18Þ

The dimensionless strain sensitivity SG varies around 2. The strain (a relative elongation)

is a dimensionless quantity. It is measured in micro-strains, με, where one με is 10�6.

Typical strain values under study are on the order of 1000 με. Using Eq. (2.18) this yields

a relative resistance variation as small as 0.2 %. Because of this, the circuits for the strain

measurements should be designed and built with great care. Temperature compensation

efforts are also required. Since the relative resistance changes are very small, the strain

gauge is a linear device: the strain is directly proportional to resistance variations.

Potentiometric Position Sensor

Another general resistive sensor is a potentiometric (or potentiometer) position sensor. Its

operation becomes apparent when we rotate the potentiometer dial in Fig. 2.8a. A change

in the resistance is directly proportional to the rotation angle. The resistance variation can
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be converted to voltage variation and then measured. Similar potentiometer sensors for

measuring linear motion also exist.

Sensitivity of Resistive Sensors

One major difference between different resistive sensing elements is a very different

degree of the relative resistance variations. For the photocell, the resistance variation is up

to 100 times. For the thermistor, the resistance variation can be as much as 50 %. For the

strain gauge, the resistance variations do not exceed 0.5 %.

Circuit Symbols

There are several similar but not identical standards for circuit symbols related to

resistance: International standard IEC 60617, American ANSI standard Y32 (IEEE Std

315), etc. Figure 2.10 shows popular circuit symbols for variable resistances.

generic variable

resistor

a) b) c) d) e)potentiometer thermistor photoresistor strain gauge

Fig. 2.10. Circuit symbols for variable resistances: (a) generic variable resistance,

(b) potentiometer, (c) thermistor, (d) photoresistor, and (e) strain gauge.
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Section 2.2 Nonlinear Passive Circuit Elements

2.2.1 Resistance as a Model for the Load

It might appear at first glance that the resistance causes mainly power loss and heating.

However, the concept of heating elements in household appliances or power losses in

long cables covers only a small subset of applications. Important resistance applications

are related to the resistive sensors studied previously. Resistances are widely used in the

circuits to provide different voltage values, i.e., bias circuit components such as diodes

and transistors. Last but not least, resistances model an arbitrary power-absorbing device,

the load, which can be mechanical, acoustical, microwave, optical, etc. From a circuit

point of view it does not matter how the electric power supplied to a load is eventually

transformed. The circuit delivers certain power to the load, but cares little about whether

the power is converted into heat to warm a heating pan, light to illuminate our house,

mechanical power to drive a motor, or electromagnetic radiation generated by a cell

phone. Circuit analysis is concerned with the power delivered to a power-absorbing

device, the load, leaving its utilization and conversion to other engineering disciplines.

Therefore, many practical loads can be replaced by a simple load resistance RL. Such a

resistance is often called the equivalent resistance, RL ¼ Req. It is also valid for AC

circuits. For AC circuits it is convenient to use rms (root mean square) voltages, which are

equivalent to DC voltages and thus provide us with the same power value delivered to the

load. Figure 2.11 shows two examples of the load replacement with the equivalent

resistance: a light source radiating visible light and an antenna radiating microwaves.

Example 2.4: A small commercial monopole antenna shown in Fig. 2.11a is rated at Req

¼ 50 Ω in the ISM band of 902–928 MHz. When an rms voltage of 10 V is applied to the

antenna, what is the total amount of power radiated by the antenna?

b

a

monopole
antenna

ground plane

coaxial cable

RL

a

b

RL

a

b

a

b

a)

b)

Fig. 2.11. (a) Radiating monopole antenna is modeled as a resistance. (b) Light source is

approximately modeled as a resistance.
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Example 2.4 (cont.):

Solution: We use Eq. (2.7) and obtain P ¼ V 2
rms=Req ¼ 2 W. All of this power is radiated

in the form of an outgoing electromagnetic wave. There is no heat loss. The resistance Req

is called the radiation resistance in such a case. The above analysis is valid only in a

certain frequency range.

A load that exactly follows Ohm’s law Eq. (2.3) is called the linear load. While the

transmitting antenna in Fig. 2.11a is a linear load, an incandescent light bulb in Fig. 2.11

is not. Most of the loads deviate from the linear Ohm’s law.

2.2.2 Nonlinear Passive Circuit Elements

Nonlinear passive circuit elements do not satisfy Ohm’s law with the constant resistance

R over a wide range of voltages. Therefore, they are also called non-ohmic circuit elements.

The non-ohmic elements may be described by a similar expression:

V ¼ R Vð ÞI , R Vð Þ � V

I Vð Þ ð2:19Þ

but with a variable resistance R(V). For passive elements,R Vð Þ > 0. The resistance R(V)

is known as the static or DC resistance. Figure 2.12 depicts the υ-i characteristics for

three distinct passive circuit elements.

The first element is an ohmic element (ohmic conductor) with a constant resistance R.

The corresponding υ-i characteristics is a straight line—the circuit element is linear. The

second element corresponds to an incandescent light bulb. Its resistance R increases when

the applied voltage V increases (the conductivity of the radiating filament of wire decreases

with increasing absorbed power and wire temperature). Hence, the υ-i characteristic bends

down and deviates from the straight line—see Fig. 2.12b. This element only approximately

I

V

0

ohmic conductor

I

V

0

incandescent light bulb
b)a) c) I

V

0

ideal (Shockley) diode

Fig. 2.12. Three υ-i characteristics: (a) linear—resistance; (b) nonlinear—incandescent light bulb;

and (c) nonlinear—ideal or Shockley diode.
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follows Ohm’s law. It is therefore the nonlinear circuit element. The third element in

Fig. 2.12 corresponds to an ideal (Shockley) diode. The diode does not conduct at negative

applied voltages. At positive voltages, its υ-i characteristic is very sharp (exponential).

The diode is also the nonlinear circuit element. Strictly speaking, the υ-i characteristic of the

incandescent light bulb does not belong to the list of circuit elements due to its limited

applicability. However, the ideal diode is an important nonlinear circuit element. The

nonlinear elements are generally polar (non-symmetric) as Fig. 2.12c shows.

2.2.3 Static Resistance of a Nonlinear Element

Once the υ-i characteristic is known, we can find the static resistance R(V) of the nonlinear

circuit element at any given voltage V0. For example, the υ-i characteristic of the ideal

diode shown in Fig. 2.12c is described by the exponential Shockley equation:

I ¼ IS exp
V

V T

� �

� 1

� �

ð2:20Þ

In Eq. (2.20), the constant IS [A] is the diode saturation current. The saturation current is

very small. The constant VT [V] is called the thermal voltage.

Example 2.5: Give a general expression for the diode resistance R(V) using Eq. (2.20)

and find its terminal values atV ! 0andV ! 1, respectively. Then, calculate static diode

resistance R0 and diode current I0 when the voltage across the diode is V0¼ 0.55 V.

Assume that IS ¼ 1� 10�12 A and VT ¼ 25:7mV.

Solution: Using Eq. (2.20) we obtain

R Vð Þ ¼ V

IS exp
V

VT

� �

� 1

� �

ð2:21Þ

WhenV ! 0, we can use a Taylor series expansion for the exponent. Keeping only the first

nontrivial term, one has exp V=VTð Þ � 1þ V=V T. Therefore,

R Vð Þ ! VT

IS
when V ! 0 or V=V T << 1ð Þ ð2:22Þ

This value is very large, in excess of 1 GΩ. The diode is thus the open circuit with a good

degree of accuracy.

On the other hand, at large V, the exponential factor in Eq. (2.21) greatly increases.

Therefore,

R Vð Þ ! 0 when V ! 1 ð2:23Þ
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Example 2.5 (cont.):

The diode becomes virtually a short circuit as indicated by the almost vertical slope in

Fig. 2.12c. Finally, we obtain the particular values for V 0 ¼ 0:55V:

R0 ¼ 275 Ω, I0 ¼ 2:00 mA ð2:24Þ

2.2.4 Dynamic (Small-Signal) Resistance of a Nonlinear Element

Equally, and perhaps even more important, is the concept of a dynamic (or small-signal)

resistance, r, of the nonlinear circuit element. Other equivalent names include differential

resistance or incremental resistance. Quite often the voltage across the element and the

current through it are given by

V ¼ V 0 þ υ, I ¼ I0 þ i ð2:25Þ
where V0 and I0 are the DC (constant-value) voltage and current related to each other

through the static resistance, V 0 ¼ R0I0. These values are set with the help of an external

DC circuit. On the other hand, quite small components υ and i describe a very weak time-

varying (AC or pulse) signal. Though weak, this signal contains the major information to

be processed. A receiver circuit in your cell phone is an example. Now, how are υ and

i related to each other? The answer is still given by Ohm’s law but written in terms of the

dynamic resistance, i.e.,

υ ¼ r i, r � dV

dI

�

�

�

�

V¼V 0, I¼I0

ð2:26Þ

This derivative is to be evaluated at the operating point V0, I0 (also called the quiescent

point or Q-point). Figure 2.13 provides a graphical proof of Eq. (2.26) using the example

of an ideal diode. The zoomed-in version of Fig. 2.12c has been used. The dynamic

(small-signal) resistance is thus the inverse slope of the υ-i characteristic at the operating

point. The exact mathematical proof is performed using a Taylor series expansion.

Exercise 2.6: Determine the small-signal resistance r for the ohmic circuit element with

V ¼ RI , R ¼ const.

Answer: r ¼ R for any operating point.

The dynamic diode resistance plays a decisive role in the design of amplifiers based

on junction transistors. The ideal-diode circuit element becomes a part of the transistor

circuit model. The dynamic resistance is also critical for amplifiers which use other

transistor types. From the mathematical point of view, finding the static and dynamic

resistance is simply finding the function and its first derivative at the operating point.
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Example 2.6: Give a general expression for the dynamic diode resistance r using

Eq. (2.20) at an arbitrary operating point with current I0. Then, calculate the dynamic

diode resistance r when the voltage across the diode is V0 ¼0.55 V. Assume that IS ¼ 1

�10�12 A and VT ¼ 25:7 mV.

Solution: Using Eq. (2.20) we obtain

V ¼ V Tln 1þ I

IS

� �

) r Ið Þ ¼ V T

I þ IS
) r � V T

I0
ð2:27Þ

since the saturation current IS may be neglected. At V0¼ 0.55 V we obtain I0¼ 2.00 mA—

see Eq. (2.24). Therefore,

r ¼ 12:8 Ω when V 0 ¼ 0:55 V: ð2:28Þ

2.2.5 Electronic Switch

In an electronic switch (or a solid-state switch), an electric quantity (voltage or current)

acts as a stimulus—it opens and closes the switch. The electronic switch is inherently a

nonlinear device. Figure 2.14 shows a two-terminal switch and its (idealized) υ-i charac-

teristic. The voltage across the switch V is generated by the main circuit. When this voltage

reaches a certain switch threshold voltage VTh, the switch becomes closed, it can conduct

any current. Further, the voltage across the switch does not change. Switches of this type

usually involve pn-junction diodes. For example, the diode υ-i characteristic from

Fig. 2.12c may approximate the step function in Fig. 2.14b. The unidirectional switch

shown in Fig. 2.14 can pass the current only in one direction. Bidirectional switches can

pass current in both directions.

Operating point

or Q-point

i

0.5
0

2.5

5

1/r

tangent at Q

I0

I, mA

V, voltsv
V0

0.6

2.0

Fig. 2.13. Finding dynamic resistance for an ideal diode.
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Figure 2.15 shows another, three-terminal electronic switch. The voltage V controlling

the switch operation is now generated by a separate (control) circuit. It is still referenced

to the common circuit ground. When the control voltage reaches a certain switch

threshold voltage VTh or exceeds it, the switch closes. The switches of this type involve

transistors, either junction or field effect. A distinct feature of the switch in Fig. 2.15 is

that the control voltage may have arbitrary values, including V > VTh. Therefore, its υ-i

characteristic involves all states to the right of the vertical line in Fig. 2.14.

The switch shown in Fig. 2.15 and its pull-up counterpart are the “heart” of any digital

circuit, which is essentially a nonlinear switching circuit. Chapter 15 provides an

introduction to digital switching circuits.

Exercise 2.7: Based on conditions of example 2.5, determine when a diode switch closes.

This condition approximately corresponds to the diode current of 10 mA.

Answer: The diode voltage should be equal to 0.594 Vor approximately 0.6 V.

Rest of the circuit

Open when V<V Th

Closed when V=V Th

a

I

V

0

VTh

V

+

-

Rest of the circuit
b

I

I

a) b)

Fig. 2.14. (a) Two-terminal unidirectional threshold switch and (b) its ideal υ-i characteristic.

V

0V

Rest of the circuit

Open when V<VTh

Closed when V>VTh

a
I

I

Fig. 2.15. Three-terminal unidirectional threshold switch (pull-down switch).
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Section 2.3 Independent Sources

2.3.1 Independent Ideal Voltage Source

An independent ideal voltage source is an important circuit element. Figure 2.16a shows

the corresponding circuit symbol for the DC (steady-state) source. As a circuit element,

the voltage source is not symmetric: terminals 1 and 2 (commonly labeled as plus and

minus or red and black) may not be interchanged without affecting its operation. In other

words, the voltage source is a polar device. The voltage source generates a positive

voltage difference (or voltage drop or simply voltage) across its terminals, V S > 0, the

polarity of which is shown in Fig. 2.16. The term independentmeans that voltage VS does

not vary because of different parameters of an electric circuit (not shown in the figure),

which is implied to be connected to the voltage source.

Current Through the Voltage Source: Active Reference Configuration

The current I flowing through the voltage source is shown in Fig. 2.16 by an arrow. The

relation between voltage polarity and current direction depicted in Fig. 2.16 is known as

the active reference configuration. It is commonly used for all active circuit elements such

as voltage and current sources, either dependent or independent. A useful fluid mechanics

analogy for the voltage source is water (electric current) that is pushed up the “voltage”

hill in Fig. 2.16b by external means. Alternatively, one may think of a water pump that is

characterized by a constant pressure drop. The active reference configuration means that

the voltage source supplies electric power to the circuit. This configuration is the opposite

of the passive reference configuration for the resistance.

υ-i Characteristic of the Voltage Source

Figure 2.17a plots the υ-i characteristic of the ideal voltage source. The term ideal

literally means that the υ-i characteristic is a straight vertical line: the ideal voltage source

is capable of supplying any current to any circuit while keeping the same voltage VS

across its terminals. In reality, it is not the case since the high currents mean high powers.

Therefore, a laboratory power supply—the physical counterpart of the ideal voltage

source—will be eventually overloaded as shown in Fig. 2.17b. Figure 2.17c shows a

common way of drawing the υ-i characteristic for the voltage source with the axes

interchanged. For the purposes of consistency, the x-axis will always be used as the

voltage axis throughout the text.

I

+

-

a) b)

1 2+

-

VS

Fig. 2.16. Symbol for an ideal voltage source along with the voltage and current behavior.
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Symbols for Independent Voltage Source

Multiple symbols may be used in a circuit diagram to designate the independent ideal

voltage source—see Fig. 2.18. All these symbols are equivalent from the circuit point of

view, as long as we imply the ideal source. However, their physical counterparts are quite

different. The general symbol in Fig. 2.18a implies either an AC to DC converter (the

laboratory power source) or a battery. The symbol in Fig. 2.18b relates to a battery and

Fig. 2.18c–d depicts battery banks.

Example 2.7: Solve an electric circuit shown in Fig. 2.19—determine circuit current I and

voltage across the resistance V.

Solution: We use the graphical solution—plot the υ-i characteristic of the 2 kΩ resistance

and the υ-i characteristic of the voltage source on the same graph to scale—see Fig. 2.19b.

The intersection point is the desired solution: V ¼ 3 V, I ¼ 1:5 mA. Indeed, this simple

solution implicitly uses circuit laws (KVL and KCL) studied next.

I

V

0

a) I

V

0

b) overload

VS VS

0

c)

overload

VS

I

V

Fig. 2.17. υ-i Characteristics for (a) ideal voltage source used in the circuit analysis and (b) its

physical counterpart—a regulated laboratory power supply. (c) Typical way of drawing the υ-i

characteristic for the voltage source with the axes interchanged.

+

-

5V

+

-5V

+

-5V

+

-5V

= ==

a) b) c) d)

Fig. 2.18. (a) Generic DC voltage source, (b) single battery, and (c) and (d) battery banks. All

symbols in the circuit diagram are equivalent.
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2.3.2 Circuit Model of a Practical Voltage Source

Any practical voltage source is modeled as a combination of an ideal voltage source VS

and an ideal resistance R in series—see Fig. 2.20a. The resistance R reflects the non-ideality

of the practical source: it limits the maximum available source current and the maximum

available source power by (similar to the current-limiting resistor):

Imax ¼ V S=R, Pmax ¼ V SImax ¼ V 2
S=R ð2:29Þ

Voltage VS is called the open-circuit voltage of the source for an obvious reason.

Similarly, current Imax is called the short-circuit current of the source. Once both

quantities are measured in laboratory, resistance R (called the internal source resistance)

may be found using Eq. (2.29).

Exercise 2.8: The open-circuit voltage of a voltage source is 9 V; the short-circuit current

is 2 A. Determine the internal source resistance.

Answer: 4.5 Ω.

S

I

V

+

-

+
-

3 V = VS

I

I, mA

V,  volts

0

b)

V
R=2 kW

1

2

2

-1

-2

40-4 -2

a)

Fig. 2.19. Electric circuit solution in graphical form.

V

+

-

+
-

VS

I

V

b)

VS

R

a)

I

practical voltage source

Fig. 2.20. Circuit model of a practical voltage source and its υ-i characteristic.
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The υ-i characteristic of the practical voltage source is the plot of source current I versus

voltage V available from the source in Fig. 2.20a. This voltage is generally less than VS

since any nonzero current I causes a voltage drop of RI across resistance R. One has

V ¼ V S � RI ) I ¼ V S � V

R
ð2:30Þ

This υ-i characteristic is plotted in Fig. 2.20b by a solid line. The deviation from the

straight vertical line characterizes the degree of non-ideality. Emphasize that any labora-

tory power supply is indeed a practical voltage source. However, using a special circuit,

its input is regulated so that the output voltage does depend on the output current, at least

over a reasonable range of currents. Therefore, instead of Fig. 2.20b we arrive at a more

reliable voltage source from Fig. 2.17b.

Exercise 2.9: Determine internal source resistance for the source illustrated in Fig. 2.20b

given that every horizontal division is 3 V and every vertical division is 1 A.

Answer: 0.6 Ω.

2.3.3 Independent Ideal Current Source

An independent ideal current source is dual of the ideal voltage source. Figure 2.21a shows

the corresponding circuit symbol for the DC (constant-current) source. As a circuit

element, the constant-current source is directional: terminals 1 and 2 indicate the direction

of the current flow. The current source generates a positive constant current, IS > 0, which

flows from terminal 2 to terminal 1 in Fig. 2.21. The term independentmeans that current IS
does not vary because of different parameters of an electric circuit (not shown in thefigure),

which is implied to be connected to the current source.

Voltage Across the Current Source: Active Reference Configuration

Once the current source is connected to a circuit, a voltage V will be created across it. The

voltage polarity is indicated in Fig. 2.21a. The relation between voltage polarity and

current direction shown in Fig. 2.21 is again the active reference configuration, similar to

the voltage source. A useful fluid mechanics analogy for the electric current source is a

+

-

a) b)

1 2

IS

V+

-

Fig. 2.21. Symbol for the ideal current source along with voltage and current designations.
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water pump that creates a constant water supply (e.g., 0.5 ft3/s). Indeed, this water pump

will be characterized by a certain pressure difference across its terminals, which is the

analogy of voltage V in Fig. 2.21.

υ-i Characteristic of the Current Source

Figure 2.22a plots the υ-i characteristic of an ideal current source. Compared to the ideal

voltage source, the graph is rotated by 90 degrees. The term ideal again means that the υ-i

characteristic is the straight horizontal line: the ideal current source is capable of creating

any voltage across its terminals while keeping the same current IS flowing into the circuit.

In reality, it is not the case since high voltages mean high powers. Therefore, a laboratory

current power supply—the physical counterpart of the ideal current source—will even-

tually be overloaded as shown in Fig. 2.17b. The current laboratory supplies are rarely

used (one common use relates to transistor testing); they are less common than the

voltages supplies. However, the current sources are widely used in transistor circuits,

both integrated and discrete. There, the current sources are created using dedicated

transistors. Furthermore, photovoltaic sources are essentially current sources.

Symbols for Independent Current Source

A few equivalent symbols may be used in a circuit diagram to designate the independent

ideal current source; see Fig. 2.23. All these symbols are equivalent as long as we imply the

ideal source. The symbol in Fig. 2.23a is used in North America, the symbol in Fig. 2.23b is

European, and the symbol in Fig. 2.23 may be also found in older texts.

I

V

0

a) I

V

0

b)

overload
IS IS

Fig. 2.22. υ-i Characteristics of (a) an ideal current source and (b) its physical counterpart.

a) b) c)

1 mA

=

1 mA 1 mA

=

Fig. 2.23. Equivalent symbols of the current source in the circuit diagram.

Chapter 2 Major Circuit Elements

II-56



Example 2.8: Solve an electric circuit shown in Fig. 2.24—determine voltage Vacross the

source and the resistance.

Solution: Similar to the voltage source, we use a graphical solution—plot the υ-i charac-

teristic of the 2-kΩ resistance and the υ-i characteristic of the current source on the same

graph to scale; see Fig. 2.24b. The intersection point gives us the desired solution:

V ¼ 3 V. Note that the solutions for this example and the solution for Example 2.7

coincide. This means that, under certain conditions, we can interchange both sources

without affecting the circuit performance. Indeed, the graphical solution implicitly uses

the circuit laws (KVL and KCL) studied in detail next.

2.3.4 Circuit Model of a Practical Current Source

Any practical current source is modeled as a combination of the ideal current source IS
and the ideal resistance R in parallel—see Fig. 2.25a. The resistance R reflects the

non-ideality of the practical source: it limits the maximum available source voltage and

the maximum available source power by

Vmax ¼ RIS, Pmax ¼ VmaxIS ¼ RI2S ð2:31Þ

Voltage Vmax is again called the open-circuit voltage of the source. Similarly, current IS is

called the short-circuit current of the source. Once both the quantities are measured,

resistance R (called the internal source resistance) may be found using Eq. (2.31).

Exercise 2.10: The open-circuit voltage of a current source is 9 V; the short-circuit current

is 2 A. Determine the internal source resistance.

Answer: 4.5 Ω.

V

+

-

1.5 mA = IS

I, mA

V, volts
0

b)

IS

R=2 kW 1

2

2

-1

-2

40-4 -2

a)

V

+

-

IS

IS

Fig. 2.24. Electric circuit solution in the graphical form.
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The υ-i characteristic of the practical current source is the plot of current

I available from the source versus voltage V across the source in Fig. 2.25b. This current

is generally less than IS since a portion of IS flows through the internal resistance R, i.e.,

I ¼ IS �
V

R
ð2:32Þ

This υ-i characteristic is plotted in Fig. 2.25b by a solid line. The deviation from the

straight horizontal line characterizes the degree of non-ideality.

Exercise 2.11: Determine the internal source resistance for the source illustrated in

Fig. 2.25b given that every horizontal division is 3 V and every vertical division is 1 A.

Answer: 15 Ω.

2.3.5 Operation of the Voltage Source

Operation of a voltage power supply of any kind (an electric generator, a chemical

battery, a photovoltaic cell, etc.) might be illustrated based on the charge separation

principle very schematically depicted in Fig. 2.26. We need to deliver electric power to a

load modeled by an equivalent resistance RL. First, we consider in Fig. 2.26 a charged

capacitor with a charge Q connected to a load resistor RL at an initial time moment. The

capacitor voltage V is related to charge by V ¼ Q=C where C is the (constant) capaci-

tance. The capacitor starts to discharge and generates a certain load current IL. At small

observation times, the change in Q is small, so is the change in V. Therefore, the capacitor

initially operates as a voltage power supply with voltage V. However, when time pro-

gresses, the capacitor discharges and the voltage V eventually decreases.

V

+

-

IS

V

b)

IS

R

a)

I

practical current source
I

Fig. 2.25. Circuit model of a practical current source and its υ-i characteristic.
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How could we keep V constant, i.e., continuously charge the capacitor? A charge

separation mechanism should be introduced between the hypothetic capacitor plates to

continuously compensate for the charge leakage. That mechanism may have the forms:

1. For an electromechanical generator, this is the Lorentz force that acts on individual

electrons in a conductor and pushes them to one conductor terminal while creating

the opposite charge density on the opposite conductor terminal. The macroscopic

effect of the Lorentz force is the Faraday’s law of induction.

2. For a battery, these are chemical reactions at the electrodes which cause a charge

separation, i.e., positive metal ions dissolve in the electrolyte and leave excess

electrons in the metal electrode on the left in Fig. 2.26.

3. For the photovoltaic cell, this is a built-in potential of the semiconductor

pn-junction that separates light-generated negative carriers (electrons) and positive

carriers (holes) as shown in Fig. 2.26.

Indeed, the capacitor analogy in Fig. 2.26 is only an illustrative approach, especially for

electromechanical power generation. Below, we will consider a few specific examples.

2.3.6 Application Example: DC Voltage Generator with Permanent

Magnets

A realistic electromechanical voltage source—a basic DC generator with permanent mag-

nets—is shown in Fig. 2.27. This generator setup makes use of the Lorentz force:

~f � q ~υ� ~B
� �

ð2:33Þ

The Lorentz force acts on charge qmoving with a velocity~υ in an external magnetic field

with the vector flux ~Bmeasured in tesla (T). The force itself is measured in newtons. The

cross symbol in Eq. (2.33) denotes the vector product of two vectors evaluated according

to the right-hand rule. Shown in Fig. 2.27a are two permanent magnets (stator of the

generator) responsible for creating the magnetic flux ~B emanating from the north pole

+
+

+
+

+
+

+

-
-
-
-
-
-

Charge separation mechanism

+Q

-Q

+

-

RL

IL IL

IL

V

-

Fig. 2.26. Power source schematically represented as a capacitor continuously charged by a charge

separation mechanism—the charge pump.
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(N) and terminating at the south pole (S). The armature (rotor) rotates clockwise in

Fig. 2.27b with the armature velocity ~υ.

When the flux density ~B is applied, every positive charge +q in the armature segment

l will experience a Lorentz force with the magnitude f ¼ þqυB which will move this

charge toward the right terminal of the armature in Fig. 2.27b. Similarly, every negative

charge –q in the armature would experience the equal but oppositely directed Lorentz

force f ¼ �qυB which will move this charge toward the left terminal. Hence, a charge

separation occurs along the armature which will give rise to an induced voltage V. Total

work W of the Lorentz force on a charge q along the entire armature path in Fig. 2.27b is

given byW ¼ 2lf . This work divided by the amount of charge determines the equivalent

voltage that will be developed on the generator terminals, i.e., the instantaneous gener-

ator voltage V ¼ W=q ¼ 2lυB. If the armature rotates at an angular speed ω (rad/s), the

charge velocity perpendicular to the field is given by υ ¼ d=2ω cos θ (m/s). Plugging in

this expression and averaging over angles θ from 0 to π/2, we obtain the average

generator voltage in the form

V ¼ ldB cos θh i ¼ 2=πð ÞABω V½ 	 ð2:34Þ

where A is the armature area. If the rotor has N turns, the result is multiplied by N. The

same expression for the voltage is obtained using the Faraday’s law of induction. A

regulator circuit is necessary to obtain a flat DC voltage without ripples. Any brushed DC

motor operates as a generator when its shaft is rotated with a certain speed. The generated

open-circuit voltage may be observed in laboratory with the oscilloscope.

Exercise 2.12: Determine average open-circuit generator voltage in Fig. 2.27 given

A ¼ 0:1 m2, B ¼ 0:2 T, ω ¼ 20 rad/s (191 rpm), and the armature with 20 turns.

Answer: 5.1 V.
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v A= d
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Fig. 2.27. Charge separation in a DC electromechanical generator.
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2.3.7 Application Example: Chemical Battery

A chemical reaction in a battery induces a continuous charge separation. The “charge

pump” so constructed, once connected to a load, is able to create a continuous electric

current into a load and a voltage difference across it. You are probably aware of the quest

to improve the venerable battery. Extensive coverage in the media and in technical

journals frequently reports on new chemical compounds and control circuits. They target

smaller, more powerful rechargeable batteries for such diverse devices as portable

computers, cell phones, sensors, and automobiles. Specifically, it is the automotive sector

which implements hybrid vehicle technology where powerful electro motors in conjunc-

tion with high-performance batteries are supplementing, even completely replacing,

conventional combustion engines. For a standard chemical battery, the two important

parameters are battery voltage and battery capacity. The capacity, Q, is a new quantity

that is needed because of a battery’s inability to provide constant current and power for an

infinite time duration. How a battery behaves over time is illustrated in Fig. 2.28 where

we monitor the power and current as a function of time. A key time constant is the

so-called discharge time, which is critically dependent on the attached load.

When a load of resistance RL is connected to the battery, and the battery’s internal

resistance R is negligibly small compared to that resistance, the circuit current, IB, and the

power delivered by the battery, PB, are determined based on Ohm’s law:

IB ¼ VB

R
, PB ¼ VBIB ð2:35Þ

The total energy, EB, stored in the battery and then delivered to the circuit is a fixed

constant. Its value depends on the battery type and size. The total energy in joules is given

by the time integral of delivered power over time, i.e.,

EB ¼
ð

1

0

PB t 0ð Þdt 0 ð2:36Þ

We can assume that the total energy is a finite constant; it follows from Eq. (2.36) that the

delivered power must drop to zero at a finite time T. This is schematically shown in

t

P
B
, W

t

#1

#2

a) b)
I
B
, A

T
1

T
2

#1

#2

T
1

T
2

#1

#2

T
1

T
2

Fig. 2.28. Generic plots of delivered power, PB, and electric current, IB, for two different loads

labeled #1 and #2. The discharge times T1 and T2 correspond to the loads #1 and #2, respectively.
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Fig. 2.28 for two different load resistances, #1 and #2, which require two different circuit

currents. Even though the two power curves in Fig. 2.28a are different, the area under

those curves, denoting the total energy stored in the battery, remains the same to a

sufficient degree of accuracy. The battery’s terminal voltage VB also remains approxi-

mately constant over the entire operation cycle and even afterwards. It is the battery’s

current IB that finally sharply decreases with time and causes a drop in power, as seen in

Fig. 2.28b. Let us consider the simplest case where the current is a constant for t < T and

at t¼ T drops to zero and stays zero for t> T. From Eq. (2.36), it follows that

EB ¼
ð

1

0

PB t 0ð Þdt0 ¼
ð

T

0

VBIBdt
0 ¼ TIB½ 	VB ð2:37Þ

The expression in the square brackets is the definition of the battery capacity, Q:

Q � TIB ¼ EB

VB

ð2:38Þ

Since the battery terminal voltage is always known, its capacity determines the total

energy stored in the battery. The capacity is measured in A·h (Ah) or for small batteries in

mA·h (mAh). The capacity rating that manufacturers print on a battery is based on the

product of 20 h multiplied by the maximum constant current that a fresh battery can

supply for 20 h at 20�C while keeping the required terminal voltage. The physical size

of batteries in the USA is regulated by the American National Standards Institute

(ANSI) and the International Electrotechnical Commission (IEC). Table 2.3 lists the

corresponding parameters of some common batteries.

Example 2.9: A 12-V battery rated at a capacity of Q¼ 100 A·h may deliver 5 A over a

20-h period, 2.5 A over a 40-h period, or 10 A over a 10-h period. Find the total energy

delivered by the battery provided that its internal resistance is negligibly small.

Solution: The total energy delivered by the battery is equal to

EB ¼ VBQ ¼ 12 � 100 V � A � h ¼ 1200 W � h ¼ 4:32MJ ð2:39Þ

It remains constant for each case. This example shows that the electric energy can be

measured either in joules or in Wh or more often in kWh. Clearly, 1 Wh¼ 3600 J.

Circuit Model of a Battery

As a practical voltage source, a battery always has a small, but finite internal resistance,

R. Battery’s equivalent circuit therefore includes the ideal voltage source and the internal

resistance in series—see Fig. 2.29. Even though the values of R are small, the internal

resistance has critical implications affecting both the battery’s efficiency and its ability to

provide a high instantaneous power output. In general, it is difficult to directly measure
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the internal resistance of batteries, you would need a calibrated load resistor and sophis-

ticated measurement equipment to precisely measure voltages and currents.

Exercise 2.13: A 12-V battery has an internal resistance of 10 Ω. What are the maximum

current and the maximum power that the battery can output?

Answer: Imax ¼ 1:2 A, Pmax ¼ 14:4 W

Many battery types have been developed for a wide range of applications. They differ

both in battery energy storage per kg of weight, or unit volume, and in power delivery per

kg of weight, or per unit volume. In particular, modern heavy-duty, deep-cycle batteries

may sport the following properties:

Energy storage : 150W � h=l; ð2:40Þ
Power density : 2 kW=l: ð2:41Þ

You can compare Eqs. (2.40) and (2.41) with the last row of Table 2.3 and establish the

approximate density of the battery device.

+-

9V
= +

-9 V

R

Fig. 2.29. Circuit model of a battery: the ideal voltage source in series with an internal resistor.

Table 2.3. Characteristics of batteries (from multiple datasheets).

Battery size/type Rechargeable

Voltage

(cell) Capacity (A�h) Resistance (R)

AAA No 1.5 1.3 100–300mΩ for

alkaline battery

per cell
AA No 1.5 2.9

C No 1.5 8.4

D No 1.5 20.5

9 V No 9.0 0.6 ~400 mΩ

Lithium batteries Yes 3.6–3.7 0.7–1.5 ~300 mΩ

Lead acid starter bat-

tery (automotive, deep

cycle)

Yes 12.6 ~600A for 30 s at 32 �F
before voltage drops to

7.20 V

<100 mΩ

Deep-cycle marine,

electric vehicles

Yes Variable: ~ 30 W�h per kg of weight,
or ~ 108 kJ per kg of weight

~200 mΩ
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Section 2.4 Dependent Sources and Time-Varying Sources

2.4.1 Dependent Versus Independent Sources

If the strength of the source (voltage or current) does not vary because of variation of the

circuit parameters, the source is an independent source. The voltage and current sources

considered previously are the independent sources. However, if the strength of the source

is controlled by some dedicated circuit parameters, the sources are called dependent

sources. Figure 2.30 shows circuit symbols (diamonds) for the dependent voltage and

current sources. The ideal dependent sources are the important circuit elements, along

with the independent sources. We explain the notations in Fig. 2.30 as follows.

1. The ideal independent and dependent sources may generate not only the steady-

state (DC) voltages and currents, but also arbitrary time-varying voltages and

currents. To underscore this fact, we will use the lowercase notations for voltages

and currents, respectively.

2. The dependent sources generate (or output) voltage or current in response to some

input voltage or current—the stimulus. To underscore this fact, we will use the

subscript OUT for the generated voltage or current strengths. This is in contrast to the

subscript S, which always denotes the independent sources.

3. The stimulus voltage and the stimulus current (not yet shown in Fig. 2.30) will be

denoted by υin and iin, respectively.

2.4.2 Definition of Dependent Sources

The stimulus voltage υin is the voltage across a certain resistance. Likewise, the stimulus

current iin is the current through a certain resistance. Figure 2.31 shows four major types

of dependent sources where the stimulus and the response are combined into one block—

the shaded rectangle. Such a combination reflects the physical reality since this block

usually corresponds to a single circuit component—a transistor or an amplifier. Empha-

size that the resistances in Fig. 2.31 may be reduced to an open circuit for dependent

voltage sources or to a short circuit for dependent current sources, respectively, if

required. Also note that another circuit element may be present in place of the resistance,

iS+
-

+
-

vS vout iout

voltage sources current sources

Fig. 2.30. Circuit symbols for ideal independent and dependent sources, respectively. Lowercase

notations for voltages and currents are used to underscore possible time variations.
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for example, the ideal diode. The bottom (ground) nodes in every circuit in Fig. 2.31 may

be interconnected to emphasize the same voltage reference.

Voltage-Controlled Voltage Source

This dependent source is shown in Fig. 2.31a. The source voltage or the output voltage

follows the input voltage according to a linear law

υout ¼ Aυin ð2:42Þ

where the dimensionless constant A is called the open-circuit voltage gain of the

dependent source. However, units of V/V or V/mV are often used. For example, the

expressions A ¼ 5 V=mV and A ¼ 5000 are equivalent. Equation (2.42) is valid

irrespective of the circuits connected to the dependent source to the right and to the left

in Fig. 2.31a. In this sense, the voltage-controlled voltage source is the ideal circuit

element. Such a source is a voltage amplifier.

Voltage-Controlled Current Source

This dependent source is shown in Fig. 2.31b. The source current or the output current

follows the input voltage according to a linear law:

iout ¼ Gυin ð2:43Þ

where the constant G with units of A=V ¼ Ω�1 ¼ S is called the transconductance of

the dependent source, similar to the name conductance. For example, the expressions

+

-

vin
+
- v =Avout in

iin
+
- v =Riout in

voltage-controlled voltage source

current-controlled voltage source

i =Gvout in

iin

i =Aiout in

voltage-controlled current source

current-controlled current source

a)

c)

b)

d)

+

-

vin

Fig. 2.31. Four major types of dependent sources.
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G ¼ 0:5 A=mV and G ¼ 500 S are equivalent. Emphasize that the transconductance

has nothing in common with the conductance (inverse resistance) of a passive resistor.

Equation (2.43) is also valid irrespective of the circuits connected to the dependent source

to the right and to the left in Fig. 2.31b. In this sense, the voltage-controlled current source

is again the ideal circuit element. Such a source is a transconductance amplifier.

Current-Controlled Voltage Source

This dependent source is shown in Fig. 2.31c. The source voltage or the output voltage

follows the input current through the resistance in Fig. 2.31c according to a linear law:

υout ¼ Riin ð2:44Þ

where the constant Rwith units ofV=A ¼ Ω is called the transresistance of the dependent

source, similar to the name resistance. For example, the expressions R ¼ 5V=mA and

R ¼ 5000 Ω are equivalent. Emphasize that the transresistance has nothing in common

with the resistance of a passive resistor. Equation (2.44) is again valid irrespective of the

circuits connected to the dependent source to the right and to the left in Fig. 2.31c. In this

sense, the current-controlled voltage source is also an ideal circuit element. Such a source

is a transresistance amplifier.

Current-Controlled Current Source

The last dependent source is shown in Fig. 2.31d. The source current or the output current

follows the input current according to a linear law:

iout ¼ A iin ð2:45Þ

where the dimensionless constant A is called the short-circuit current gain of the

dependent source. However, units of A/A or A/mA are often used. For example, the

expressions A ¼ 0:5 A=mA and A ¼ 500 are equivalent. We repeat that Eq. (2.45) is

valid irrespective of the circuits connected to the dependent source to the right and to the

left in Fig. 2.31d—the voltage-controlled voltage source is the ideal circuit element. Such

a source is a current amplifier.

2.4.3 Transfer Characteristics

The dependent sources do not possess the υ-i characteristic. Instead, a transfer charac-

teristic of the source is used, which relates the output voltage or current to the input

voltage or current. For example, the transfer characteristic of the voltage-controlled

voltage source follows Eq. (2.42). It is a straight line in the υin, υout plane (the xy-

plane), with the slope equal to A. Other linear transfer characteristics are obtained

similarly.
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Example 2.10: Solve a circuit shown in Fig. 2.32a—determine current i through the 1-kΩ

resistance. The independent voltage source is given by υS ¼ 0:5þ 2 cos 2t V½ 	 ; the open-
circuit voltage gain of the dependent voltage source is 5 V/V.

Solution: The input voltage is simply the independent-source voltage,υin ¼ υS. The output

voltage is υout ¼ 5υin ¼ 5υS. The output current follows Ohm’s law:

i ¼ υOUT

1 kΩ
¼ 2:5þ 10 cos 2t mA½ 	 ð2:46Þ

Note that all circuit parameters now become time dependent. However, this does not

change the solution compared to the steady-state case.

Exercise 2.14: Solve an electric circuit shown in Fig. 2.32b—determine current i through

the 1-kΩ resistance. The independent current source is given by iS ¼ 0:5þ 2 cos 2t mA½ 	;
the open-circuit voltage gain of the dependent source is 5 V/V. The leftmost resistance in

Fig. 2.32b (often called the input resistance) is 1 kΩ.

Answer: i ¼ 2:5þ 10 cos 2t mA½ 	 (the same answer as in Example 2.10).

2.4.4 Time-Varying Sources

Figure 2.33 shows a number of commonly used symbols for the voltage source—the ideal

circuit element—which differentiate its time-related behavior. Figure 2.33a shows the

steady-state ideal DC voltage source. Figure 2.33b indicates an arbitrary (either steady-

state or variable) ideal voltage source. Figure 2.33c–d indicates a time-harmonic ideal AC

(alternating current) voltage source described by a cosine function in the form

υS tð Þ ¼ Vm cos ω t þ φð Þ V½ 	 ð2:47Þ

where Vm is the AC source amplitude with the units of volts, ω is the AC source angular

frequency, and φ is the phase in degrees or radians. The AC current sources do not have

special symbols—the symbols from Fig. 2.30 are used. The same is valid for the

dependent AC sources, both voltage and current.

1 kW

+

-

vin
+
-

iS vout i1 kW

+

-

vin
+
-

vS vout i

a) b)

+
-

Fig. 2.32. Two circuits with the dependent voltage-controlled voltage source.
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AC Source Polarity

Since the voltage in Eq. (2.47) is alternating, the polarity of the AC voltage source is also

variable. This circumstance is reflected in Fig. 2.33d where the source polarity is not

shown at all. However, for reference purposes, and when the multiple sources of the same

frequency are present in the circuit, it is always useful to designate the source polarity.

Reversing the AC source polarity means changing the phase in Eq. (2.47) by 
180�.

+
-

VS
+
-

vS vS
+
-

vS

a) b) c) d)

Fig. 2.33. Symbols for independent voltage source which imply (a) the DC source (capital VS), (b)

an arbitrary source (lowercase υS), and (c) and (d) AC time-harmonic sources (lowercase υS).
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Section 2.5 Ideal Voltmeter and Ammeter: Circuit Ground

2.5.1 Ideal Voltmeter and Ammeter

The ubiquitous voltmeter and ammeter are devices designed to measure voltages and

currents. Both devices are usually assembled in one unit known as a digital multimeter

(DMM). From the circuit point of view, the ideal voltmeter is an open circuit which

conducts zero current as shown in Fig. 2.34. An ideal ammeter is a short circuit which

conducts any current with zero resistance—see the same figure. In reality, the voltmeter

will conduct a small leakage current, and the ammeter will exhibit a small resistance.

These features guarantee that the connection of the measurement device will not

change the circuit operation. Figure 2.35 shows the proper connection of the voltmeter and

ammeter to measure current through circuit element A and voltage across this element.

The ammeter is always connected in series with element X. In other words, to connect

the ammeter we must break the circuit either before or after element X. Since the ammeter

has no resistance, it acts just like an ideal wire and thus does not perturb the electric

circuit. On the other hand, the voltmeter is always connected in parallel with element X.

The circuit current I in Fig. 2.35 cannot flow through the voltmeter, which acts as an open

circuit. As required, it will flow through element X. We conclude that an ideal voltmeter

does not perturb the circuit either. Generally, voltage measurements are simpler to

perform than current measurements.

Wrong Connections of Ammeter and Voltmeter

The ammeter connected in parallel will short out the element A: the current will flow

through the ammeter. If the element A were a load, there would no longer be a load

resistance in the circuit. And with no attached load, the power supply will deliver the

A+ -

V+ -

a b

a b a

a b

bopen circuit

short circuit

Fig. 2.34. Circuit equivalencies for ideal voltmeter and ammeter.

A+ -

V+ -

X

II

V

+

-

Fig. 2.35. Correct connection of voltmeter and ammeter for voltage and current measurements.
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largest possible current, which will likely burn out the ammeter fuses or destroy other

circuit elements. The voltmeter is an open circuit. Connecting it in series is equivalent to

physically breaking the circuit. The circuit will no longer properly function.

2.5.2 Circuit Ground: Fluid Mechanics Analogy

Consider first a fluid mechanics analogy of an ungrounded electric circuit shown in

Fig. 2.36a.

A water pump creates a constant pressure difference p between its terminals, which

forces water to move through the filter. The pressure water pump is less common than a

water pump of a constant flux; however, it exactly corresponds to the voltage power

supply of the electric circuit. For entirely closed (isolated) pumping systems, such as

those shown in Fig. 2.36a, the water pressure inside the system can in principle have an

arbitrary pressure deviation p0 from the ambient atmospheric pressure. A large p0 is in

practice undesirable since if the system breaks, then a large pressure difference with

regard to atmospheric pressure will cause high-speed water leakage. Similarly, an isolated

electric circuit may have an arbitrary voltage V0 versus ground voltage, due to static

charge accumulation. We could make the reference level equal to atmospheric pressure

(make p0 equal to zero) if we connect tubing to a large water reservoir at atmospheric

pressure as shown in Fig. 2.36b. There is indeed no water flow through such a connection;

but the pressure level is normalized. A similar situation takes place for the electric ground

shown in Fig. 2.36b. By connecting a point in the circuit to a ground, we normalize the

circuit voltage to the earth’s voltage level, which we define to be 0 V, and eliminate any

static charges. There is no current flow through the ground connection, except, maybe, for

the first time moment. Therefore, this connection is only a voltage reference point. A

similar analogy holds for a current source (pump of a constant flux).

+
-Vp +

-

Water pump
(pressure drop) filter

p+p0

I

p0

V+V0

V0

resistance
(load)

velocity

a)

0 V

I

+
-Vp +

-

Water pump
(pressure drop) filter

p

I

V

resistance
(load)

velocity

b)

I

0

Fig. 2.36. A large reservoir at atmospheric pressure attached to a pumping system serves as an

analogy to the ground connection in an electric circuit.
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2.5.3 Types of Electric Ground

Figure 2.37 shows three different types of electric ground connections. The first one is the

earth ground. A true earth ground, as defined by the National Electrical Code (USA),

physically consists of a conductive pipe or rod driven into the earth to a minimum depth

of 8 feet. Obviously, it is not always possible to physically connect the circuit directly to

the earth. Some examples include a cell phone, an automobile, or an airplane.

The second ground type is the chassis ground. It is the physical metal frame or structure

of an automobile, an airplane, a desktop computer, a cell phone, or other electrical devices;

the term case is very similar in meaning. The chassis ground primarily involves a connec-

tion to the metal case. It is implied that the case should eventually discharge due to contact

with other objects or with earth. The term ground plane for planar printed circuits, which is

usually the copper bottom of a printed circuit board, is equivalent to chassis ground. The

third ground type in Fig. 2.37 is the common terminal or common ground. The word

common is typical for many circuits including the amplifier circuits considered next, when a

dual-polarity power supply is used. Here two identical batteries are connected in series, plus

to minus. The common terminal of the dual power supply so designed serves as the

reference ground; even a metal case is not necessarily required. The AC analog of the

common ground is the neutral terminal of your wall plug. Frequently, different ground

types may be interconnected. For example, the neutral terminal of the wall plug should be

connected to earth ground at a certain location. The chassis ground of a large truck may be

connected to the physical ground by a little flexible strip nearly touching the asphalt.

2.5.4 Ground and Return Current

We have already seen that electric current in a circuit always flows in closed loops. This

is a simple and yet a very critical property of an electric circuit. The steady-state current

that flows to a load is sometimes called forward current, whereas the current that returns

to the power supply is the return current. Can the chassis ground itself be used as a part

of this loop for the return current? The answer is yes, and Fig. 2.38a depicts this

situation as an example. Here a 9 V battery is powering an incandescent light bulb.

For the chassis ground in Fig. 2.38a, the circuit is correctly drawn, but putting two wires

into the soil, as shown in Fig. 2.38b, will fail owing to the high resistance of the earth.

The use of the ground to establish a path for the return current is quite common for the

chassis ground (automotive electronics) and also for the common ground. However, it

should not be attempted for the earth ground connection. Emphasize that, in many

Earth ground

0 V 0 V

Common (neutral)

ground

Chassis ground

0 V

Fig. 2.37. Different ground types: earth ground, chassis ground, and common (neutral) ground.
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circuit diagrams, the difference between the chassis ground, the common ground, and

the true earth ground is often ignored. Namely, the symbol of the earth ground used in

the circuit often implies either the chassis ground or the common ground, i.e., the

(physically grounded or not) current return path.

2.5.5 Absolute Voltage and Voltage Drop Across a Circuit Element

The electric ground serves as a voltage reference point in a circuit. It allows us to use two

types of voltages in the circuit:

1. The absolute voltage at a certain circuit node

2. The voltage drop or simply the voltage across a circuit element

Figure 2.39 shows the concept. Voltages Va,b,c,d are absolute voltages measured versus

ground at nodes a, b, c, d in Fig. 2.39. Voltages VA,B,C give the voltage drop across the

circuit elements A, B, and C. Indeed, the ideal wires remain the equipotential surfaces

(have the same absolute voltage). Taking into account the polarity of the voltages VA,B,C
shown in Fig. 2.39, one has for the node voltages

V a¼ 0 V, V b ¼V aþVA ¼ 10 V, V c¼V b�VB¼ 5 V, V d¼V c�VC¼ 0 V ð2:48Þ

Note that both voltage types—absolute voltage and voltage across a circuit element—are

often denoted by the same letter V (in the DC case) and may be easily misplaced. Both of

them are widely used in electric circuit analyses. The hint is that the voltage across a circuit

element always has the polarity labeled with 
 sign, whereas the absolute voltage often

has not.

+-

9V

0V

I

0V

+-

9V

I

open circuit

+-

9V

I

+-

9V

short circuit

physical ground (soil)

metal chassis

a)

b)

=

=

Fig. 2.38. (a) The return current path for the chassis ground is metal; it can be replaced by a wire.

(b) There is no current return path, since soil (dry or wet) is a very poor conductor. The circuit is

therefore open and not functioning.
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Exercise 2.14: Determine the absolute voltages at nodes 1 through 6 in the circuit shown

in Fig. 2.40.

Answer: Clearly, V 1 ¼ 0V since node 1 is directly connected to ground. Then,

V 2 ¼ V 1 þ VA ¼ 6 V, V 3 ¼ V 2 þ VB ¼ 12 V, V 4 ¼ V 3 � VC ¼ 9 V,

V 5 ¼ V 4 � VD ¼ 3 V,V 6 ¼ V 5 � VE ¼ 0 V

0 V

A

B

C

V =5 VB+

-

V =5 VC

+

-

V =10 VA

+

-

V =0 Va

V =10 Vb V =5 Vc

V =0 Vd

cb

da

Fig. 2.39. Absolute voltages measured versus ground in a grounded electric circuit and voltages

across individual circuit elements. Note that there is no voltage drop across ideal wires.

0 V

A

C

E

V =3 VC+

-

V =3 VE

+

-

V =6 VA

+
-

1

B D V =6 VD

+

-

V =6 VB

+

-

2

3

6

5

4

Fig. 2.40. Voltages across circuit elements in a grounded electric circuit.
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Summary

Passive circuit elements

Name and symbol υ–i Characteristic Physical counterpart (component)

Resistance Resistor

V ¼ RI , σ ¼ qnμ, R ¼ l
Aσ

P ¼ VI ¼ RI2 ¼ V 2=R

Short circuit: Short wire of almost zero

resistance

Ammeter

Open circuit: Air gap of almost infinite

resistance

Voltmeter

Ideal diode Electronic diode

Transistor junctions

Solar cell

I ¼ IS exp V
V T

	 


� 1
h i

Static resistance: R0 � V 0=I V 0ð Þ
Dynamic resist.: r� dV=dI jV 0, I0

Threshold switch Diode

Transistor

Open circuit when V < V Th

Short circuit when V ¼ V Th

(continued)
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Active circuit elements

Name and symbol υ–i Characteristic Physical counterpart (component)

Independent voltage

source

Practical voltage source

Independent current

source

Practical current source

Voltage-controlled

voltage source

Transistor

Amplifier

υout ¼ Aυin
A—open-circuit voltage gain

[V/V, V/mV] (dimensionless)

Current-controlled

voltage source

Transistor

Amplifier

υout ¼ Riin
R—transresistance [V/A, V/mA]

(units of resistance, Ω)

Voltage-controlled

current source

Transistor

Amplifier

iout ¼ Gυin
G—transconductance [A/V]

(units of conductance, Ω�1)

Current-controlled

current source

Transistor

Amplifier

iout ¼ Aiin
A—short-circuit current gain

[A/A, A/mA] (dimensionless)
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Problems
2.1 Resistance: Linear

Passive Circuit Element

2.1.2 Resistance

2.1.3 υ-iCharacteristic of the Resistance:

Open and Short Circuits

2.1.4 Power Delivered to the Resistance

2.1.5 Finding Resistance of Ohmic

Conductors
Problem 2.1. Plot υ-i characteristics of the

following resistances: (A) 8 kΩ, (B) 2 kΩ,

(C) 1 kΩ, and (D) 500 Ω. Clearly label each

characteristic.

I, mA

V, volts
0

1

2

2

-1

-2

40-4 -2

Problem 2.2. Plot υ-i characteristics of the

following resistances: (A) 1.667 Ω. (B) Open

circuit on the same graph.

R=1.667 W

I, A

V, volts

0 5-5

0

5

-5

open circuit

Problem 2.3. Plot υ-i characteristics of the

following resistances: (A) 2.5 Ω. (B) Short cir-

cuit on the same graph.

I, A

V, volts

-5

0

5

-5

short circuitR=2.5 W

I, A

V, volts

0 5-5

0

5

-5

Problem 2.4. Given υ-i characteristics of a

resistance determine the corresponding con-

ductance. Show units.

I, mA

V, volts
0

3

6

2

-3

-6

40-4 -2

a)

I, mA

V, volts
0

3

6

2

-3

-6

40-4 -2

b)

Problem 2.5. An incandescent energy-saving

light bulb (“soft white”) from General Electric is

rated to have the wattage of 57 W when the

applied AC voltage is 120 V rms (root mean

square). This means that the corresponding DC

voltage providing the same power to the load is

exactly 120 V. When the bulb is modeled as a

resistance,what is the equivalent resistance value?

+
-

120 V
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Problem 2.6. The power absorbed by a resistor

from the ECE laboratory kit is 0.2 W. Plot the

υ-i characteristics of the corresponding resis-

tance to scale given that the DC voltage across

the resistor was 10 V.

I, mA

V, volts
0

4

8

2

-4

-8

40-4 -2

Problem 2.7. The number of free electrons in

copper per unit volume is n ¼ 8:46� 1028 1
m3.

The charge of the electron is�1.60218� 10�19

C. A copper wire of cross section 0.25 mm2 is

used to conduct 1A of electric current.

A. Sketch the wire, the current direction,

and the direction of electron motion.

B. How many coulombs per one second is

transported through the conductor?

C. How fast do the electrons really move?

In other words, what is the average elec-

tron velocity?

Problem 2.8. Repeat the above problem when

the conductor’s cross section is increased to

5 mm2.

Problem 2.9. A copper wire having a length of

1000 ft and a diameter of 2.58826 mm is used

to conduct an electric current of 5 A.

A. What is wire’s total resistance? Compare

your answer to the corresponding result

of Table 2.2.

B. What is the power loss in the wire?

Problem 2.10

A. A copper wire having a length of 100 m

and a cross section of 0.5 mm2 is used to

conduct an electric current of 5 A. What

is the power loss in the wire? Into what is

this power loss transformed?

B. Solve task Awhen the wire cross section

is increased to 2.5 mm2.

Problem 2.11.Determine the total resistance of

the following conductors:

A. A cylindrical silver rod of radius

0.1 mm, length 100 mm, and conductiv-

ity 6.1�107 S/m.

B. A square graphite bar with the side of

1 mm, length 100 mm, and conductivity

3.0�104 S/m.

C. A semiconductor doped Si wafer with

the thickness of 525 μm. Carrier mobility

is μ ¼ 0:15 m2/(V�s). Carrier concentra-
tion is n ¼ 1023 m�3. Carrier charge is

1.6� 10�19 C. The resistance is mea-

sured between two circular electrodes

with the radius of 1 mm each, which

are attached on the opposite sides of the

wafer. Assume uniform current flow

between the electrodes.

a)

b)

c)

Problem 2.12. A setup prepared for a basic

wireless power-transfer experiment utilizes a

square multi-turn loop schematically shown in

the figure, but with 40 full turns. A #22 gauge

copper wire with the diameter of 0.645 mm is

used. Total loop resistance, R, is needed. Please

assist in finding the loop resistance (show units).

Problem 2.13. Estimate resistance, Rn (show

units), of the n-side of a Si pn-junction diode in
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the figure that follows. We model the n-side by

a Si bar having the following parameters:

1. Length of L¼ 0.0005 cm¼ 5 μm.

2. Cross section of A¼ 0.01 cm�
0.01 cm¼ 1�10�4 cm2.

3. Uniform electron concentration (carrier

concentration) of n ¼ 1017 cm�3. This

value is typical for a Si diode

pn-junction. Carrier mobility is

μn ¼ 1450 cm2/(V�s).

anode cathode
V+

-

=
p n

+

-

V

Problem 2.14. Estimate resistance, Rp (show

units), of the p-side of a Si pn-junction diode in

the figure that follows. We model the p-side by

a Si bar having the following parameters:

1. Length of L¼ 0.0005 cm¼ 5 μm.

2. Cross section of A¼ 0.01 cm�
0.01 cm¼ 1�10�4 cm2.

3. Uniform hole concentration (carrier con-

centration) of n ¼ 1017 cm�3. This value

is typical for a Si diode pn-junction. Car-

rier mobility is μn ¼ 500 cm2/(V�s).

anode cathode
V+

-

=
p n

+

-

V

Problem 2.15. A cross section of the most

popular NMOS transistor is shown in the

following figure.

Gate

+
+
+
+
+
+

Source

VGS+

-

L

0

x

ID

0 V

Drain

Channel with
electron carriers

VGS

VDS

The transistor has three terminals (metal con-

tacts): drain (with voltage VDS > 0 vs. source),

gate (with voltage VGS > 0 vs. source), and

source itself (grounded). The source is also

connected to a metal conductor on the other

side of the semiconductor body. Accordingly,

there are two types of the electric field within

the semiconductor body: the horizontal field

created by VGS, and the vertical field created

by VDS. The horizontal field fills a conducting

channel between the drain and the source with

charge carriers, but has no effect on the vertical

charge motion. The resulting carrier concen-

tration in the channel is given by n ¼ N VGS�ð
VThÞ > 0, N ¼ const, V Th ¼ const: The indi-

vidual carrier charge is q. Given the channel

cross section A, the carrier mobility μ, and

the channel length L, determine transistor

current ID and transistor resistance (drain-to-

source resistance) RDS. Express both results in

terms of quantities listed above including VGS
and VTh.

2.1.6 Application Example: Power Loss

in Transmission Wires and Cables
Problem 2.16. An AWG 0000 aluminum trans-

mission grid cable has the wire diameter of

11.68 mm and the area of 107 mm2. The con-

ductivity of aluminum is 4.0� 107 S/m. The

total cable length (two cables must run to a

load) is 100 km. The system delivers 10MW

of DC power to a load. Determine the power

loss in the cable (show units) when load voltage

and current are given by:

1. V¼ 200 kV and I¼ 50 A

2. V¼ 100 kV and I¼ 100 A

3. V¼ 50 kV and I¼ 200 A

Why do you think the high-voltage power trans-

mission is important in power electronics?

+
-

RL

I

a

b

50 km

II

II

source transmission line (TL) load
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Problem 2.17. Solve the previous problem

when the total cable length (two cables must

run to a load) is increased to 200 km.

Problem 2.18. An AWG 00 aluminum trans-

mission grid cable has the wire diameter of

9.266 mm. The conductivity of aluminum is

4.0� 107 S/m. A power transmission system

that uses this cable is shown in the figure that

follows. The load power is 1 MW. Determine

the minimum necessary load voltage V that

guarantees us a 1 % relative power loss in the

cables.

V?
I

100 km

II

II

source transmission line (TL) load

+

-

+
-

Problem 2.19. An AC-direct micro-

hydropower system is illustrated in the figure

that follows.

+
-

RL

I

1 km

II

II

source transmission line (TL) to each house load

Reprinted from Micro-Hydropower Systems

Canada2004, ISBN0-662-35880-5.

The system uses a single phase induction gen-

erator with the rms voltage (equivalent DC

voltage) of 240 V. The system serves four

small houses, each connected to the generator

via a separate transmission line with the same

length of 1000 m. Each line uses AWG#10

aluminum wire with the diameter of 2.59 mm.

The conductivity of aluminum is 4.0� 107 S/

m. The house load is an electric range with the

resistance of 20 Ω. Determine total power

delivered by the generator, Ptotal, total power

loss in the transmission lines, Ploss, and total

useful power, Puseful (show units).

2.1.7 Physical Component: Resistor
Problem 2.20. A leaded resistor has color

bands in the following sequence: brown,

black, red, gold. What is the resistor value?

Problem 2.21. Potentiometer operation may be

schematically explained as moving sliding con-

tact #2 in the following figure along a uniform

conducting rod with the total resistance of

20 kΩ. Determine resistance between terminals

1 and 2 as well as between terminals 2 and 3 of

the potentiometer, when the sliding contact is at

one fifth of the rod length.

1

2
3

20 kW

a) 1

2
3

20 kW

b)

1/5

4/5

2.2 Nonlinear Passive Circuit

Elements

2.2.2NonlinearPassiveCircuitElements

2.2.3 Static Resistance

2.2.4Dynamic(Small-Signal)Resistance

2.2.5 Electronic Switch
Problem 2.22. A nonlinear passive circuit ele-

ment—the ideal diode—is characterized by

the υ-i characteristic in the form

I ¼ IS exp V
VT

	 


� 1
h i

with IS ¼ 1� 10�13 A

and V T ¼ 25:7 mV. Find the static diode resis-

tance R0 and the diode current I0 when

(A) V0¼ 0.40 V, (B) V0¼ 0.50 V,

(C) V0¼ 0.55 V, and (D) V0¼ 0.60 V.
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Problem 2.23. Find the dynamic (small-signal)

resistance r of a nonlinear passive circuit ele-

ment—the ideal diode—when the operating

DC point V0, I0 is given by the solutions to

the previous problem. Consider all four cases.

Problem 2.24. A nonlinear passive circuit ele-

ment is characterized by the υ-i characteristic in

the form I ¼ IS
V=V S
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ V=V Sð Þ2
p with IS ¼ 1 A and

V S ¼ 1 V. Plot the υ-i characteristic to scale.

Next, find the static element resistance R0, the

element current I0, and the corresponding

dynamic element resistance r when

(A) V0¼ 0.1 V, (B) V0¼ 1.0 V, and

(C) V0¼ 5.0 V.

I, A

V, volts

0 5-5

0

1

-1

Problem 2.25. Repeat the previous problem

when IS ¼ 0:5 A and V S ¼ 0:5 V. All other

parameters remain the same. Consider the follow-

ing DC operating points: (A) V0¼ 0.05 V,

(B) V0¼ 0.50 V, and (C) V0¼ 2.50 V.

Problem 2.26. A DC circuit shown in the

following figure includes two interconnected

passive elements: an ideal diode and a resis-

tance. One possible circuit solution is given by

an intersection of two υ-i characteristics marked

by a circle in the same figure. This solution pre-

dicts a non-zero circuit current and a positive

voltage across both circuit elements.

A. Is this solution an artifact (a mistake has

been made somewhere)?

B. Is this solution true (the circuit so

constructed might function)?

Justify your answer.

I

V

0

+

-

V

+

-

V

I

2.3 Independent Sources

2.3.1 Independent Ideal Voltage Source

2.3.2 Circuit Model of a Practical Volt-

age Source
Problem 2.27. In the following figure, deter-

mine if the element is a resistance or a voltage

source. Find the power delivered to element

A or taken from element A in every case.

V =20 VA+

-

A

1 mA

V =20 VA

+

-

A

-1 mA

V =-20 VA+

-

A

-1 mA

A)

B)

C)

Problem 2.28. Based on voltage and current

measurements, determine if the circuit element

is a resistance or a voltage source. Readings of

the ammeter and voltmeter are shown in the

following figure.
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-5 V

A+ -

V+ -

+1 A

-5 V

A+ -

V+ -

-1 A

+5 V

A+ -

V+ -

-1 A

A)

B)

C)

Problem 2.29. The figure that follows shows a

circuit with a passive nonlinear circuit element

shown by a rectangle.

I

V

+

-

+
-

3 V = VS

I

a)

I, A

V, volts

0 5-5

0

1

-1

b)

+

The polarity (direction of current inflow for

passive reference configuration) of the

element is labeled by a sign plus. The υ-i

characteristic of the element is also shown in

the figure. Determine current I and voltage V.

Problem 2.30. Repeat the previous problem for

the circuit shown in the figure that follows.

I

V

+

-

+
-

3 V = VS

I

a)

I, A

V, volts

0 5-5

0

1

-1

b)

+

Problem 2.31. Plot to scale the υ-i characteris-

tic of the practical voltage source shown in the

following figure.

V

+

-

+
-

3 V

1 W

a)
I

practical voltage source

I, A

V, volts

0 5-5

0

1

-1

b)

Problem 2.32. The following figure shows a

circuit with a passive nonlinear circuit element

labeled by a rectangle. Element’s polarity

(direction of current inflow for passive refer-

ence configuration) of the element is indicated

by a sign plus. The υ-i characteristic of the
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element is also shown in the figure. Determine

circuit current I.

I

V

+

-

+
-

4 V = VS

I

a)

I, A

V, volts

0 5-5

0

1

-1

b)
+

R=2 W

2.3.3 Independent Ideal Current Source

2.3.4 Circuit Model of a Practical

Current Source
Problem 2.33. Readings of the ammeter and

voltmeter are shown in the following figure.

-5 V

A +-

V+ -

+2 mA

+10 V

A+ -

V +-

-0.5 A

+10 V

+1 A

A)

B)

C)
A +-

V +-

Based on voltage and current measurements,

determine if the element is a resistance or a

current source. Then, find the power delivered

to the circuit element or taken from it in

every case.

Problem 2.34. The following figure shows a

circuit with a passive nonlinear circuit element

shown by a rectangle. Element’s polarity

(direction of current inflow for passive refer-

ence configuration) of the element is labeled by

a sign plus. The υ-i characteristic of the element

is also shown in the figure. Determine current

I and voltage V.

I

I

a)

I, A

V, volts

0 5-5

0

1

-1

b)

600 mA = IS V

+

-

+
Problem 2.35. Repeat the previous problem for

the circuit shown below.

a)

I, A

V, volts

0 5-5

0

1

-1

b)

600 mA = IS V

+

-

+
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Problem 2.36. Plot to scale the υ-i characteris-

tic of the practical current source shown in the

following figure.

I, A

V, volts

0 5-5

0

1

-1

b)

V

+

-

0.8 A

a)
I

practical current source

8.33 W

Review Problems
Problem 2.37. For every circuit element shown

in the following figure, plot its υ-i characteristic

on the same graph.

+
-

4 V= VS

I, A

V, volts

0 5-5

0

1

-1

R=5 W

600 mA= IS

Problem 2.38. Repeat the previous problem:

for every circuit element shown in the figure

below, plot its υ-i characteristic on the same

graph.

+
-

3 V= VS

I, A

V, volts

0 5-5

0

1

-1

R=2 W

800 mA= IS

2.3.7 Application Example: Chemical

Battery
Problem 2.39. The electronics aboard a certain

sailboat consume 96 W when operated from a

24 V source.

A. If a certain fully charged deep-cycle

marine battery is rated for 24 V and

100 A h, for how many hours can the

electronics be operated from the battery

without recharging? (The ampere-hour

rating of the battery is the battery capac-

ity—the operating time to discharge the

battery multiplied by the current).

B. How much energy in kilowatt hours is

initially stored in the battery?

Problem 2.40. A motor of a small, unmanned

electric vehicle consumes 120 W and operates

from a 24-V battery source. The source is rated

for 200 Ah.

A. For how many hours can the motor be

operated from the source (a battery bank)

without recharging?

B. How much energy in kilowatt hours is

initially stored in the battery source?

Problem 2.41. A certain sensing device

operates from a 6-V source and consumes

0.375 W of power over a 20-h time period.

The source is a combination of four fully

charged AAA batteries, 1.5 Veach, assembled
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in series. The batteries discharge by the end of

the 20-h period.

A. What is the expected capacity of a typ-

ical AAA battery used, in mAh?

B. How much energy in Joules was stored

in each AAA battery?

Problem 2.42. How many Joules are in 1 kWh

and how many N�m does this correspond to?

2.4 Dependent Sources

and Time-Varying Sources

2.4.1 Dependent Versus Independent

Sources

2.4.2 Definition of Dependent sources

2.4.3 Transfer Characteristics

2.4.4 Time-Varying Sources
Problem 2.43. Draw circuit diagrams for four

major types of dependent sources, label stimu-

lus voltage/current and output voltage/current.

Describe operation of each dependent source.

Problem 2.44. Solve an electric circuit shown

in the following figure—determine current

i through the 2-kΩ resistance. The independent

current source is given by iS ¼ 0:2� 1:5 cos 5
t mA½ 	 ; the open-circuit voltage gain of the

dependent source is 12 V/V.

1 kW+

-

vin
+
-

iS vout i

3 kW

Problem 2.45. Solve an electric circuit shown

in the following figure—determine current

i through the 2-kΩ resistance. The independent

voltage source is given by υS ¼ �0:3þ 0:7 cos
6t V½ 	 ; the transresistance of the dependent

source is 250 V/A.

2 kW

+
- vout i

iin
vS +

-

40 W

Problem 2.46. Solve an electric circuit

shown in the following figure—determine volt-

age υ through the 30-Ω resistance. The inde-

pendent current source is given by

iS ¼ �0:05� 0:2 cos 2t mA½ 	 ; the transcon-

ductance of the dependent source is 10 A/V.

30 W

iout

+

-

vin

+

-

v
iS

0.1 kW

Problem 2.47. Solve an electric circuit

shown in the following figure—determine volt-

age υ through the 1-kΩ resistance. The inde-

pendent voltage source is given by

υS ¼ 0:05þ 0:1 cos 4t V½ 	 ; the short-circuit

current gain of the dependent source is 10 A/A.

1 kW

iout

+

-

v

iin
vS +

-

50 W

Problem 2.48. Solve an electric circuit

shown in the following figure—determine cur-

rent i through a nonlinear passive circuit ele-

ment shown by a rectangle. Element’s polarity

(direction of current inflow for passive

reference configuration) is labeled by a sign

plus. The υ-i characteristic of the element is

also shown in the figure. The independent

current source is given by iS ¼ 0:1 A ; the

open-circuit voltage gain of the dependent

source is 5 V/V.
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+

-

vin
+
-

iS vout i

6 kW

I, mA

V, volts

0 5-5

0

1

-1

b)

+

a)

Problem 2.49. Solve the electric circuit shown

in the following figure—determine voltage υ

across the 1-kΩ resistance.

1 kW

I, mA

V, volts

0 1.5-1.5

0

0.1

-0.1

b)

+

a)

iout

-

v

iin
vS +

-

+

A nonlinear passive circuit element is shown by

a rectangle. Element’s polarity (direction of cur-

rent inflow for passive reference configuration)

of the element is labeled by a sign plus. The υ-i

characteristic of the element is also shown in the

figure. The independent voltage source is given

by υS ¼ 0:6 V; the short-circuit current gain of

the dependent source is 100 A/A.

2.5 Ideal Voltmeter

and Ammeter: Circuit

Ground

2.5.1 Ideal Voltmeter and Ammeter

2.5.3 Types of Electric Ground

2.5.4 Ground and Return Current
Problem 2.50. You attempt to measure electric

current through a resistance as part of a circuit.

Is the following figure appropriate? What is the

current across the 51-Ω resistor?

I

51 W

A+ -

Problem 2.51. You attempt to measure voltage

across a resistance in the circuit. Is the follow-

ing figure correct? What is the voltmeter’s read-

ing, assuming an ideal instrument?

I=20 mA

51 W

V+ -

Problem 2.52. Two circuits with an incandes-

cent light bulb are shown in the following

figure. Will they function? Explain.

a)

b)

+

-

5 V

+

-

5 V

Problem 2.53. A 9-V battery is connected to a

7.5-kΩ resistor shown in the following figure.
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Find current I in every case. (a) The negative

terminal is left disconnected; (b) the negative

terminal is connected to the positive terminal

through the resistor; (c) both terminals are

connected to chassis ground.

+-

9V

7.5 kW

0 V

I

+-

9V

7.5 kW

+-

9V

7.5 kW

a)

b)

c)

I

I

Problem 2.54. What is the voltmeters’ (amme-

ter’s) reading in the figure below?

+
-5 V A

+

-

10 W

0 V

+
-5 V

10 W

0 V

a)

b)

V+ -

V
+

-

V+ -

#1 #2

#1
#2

2.5.5 Absolute Voltage and Voltage Drop

Across a Circuit Element
Problem 2.55. Determine if the circuit element

shown in the following figure is a resistance, a

voltage source, or a wire (short circuit). Absolute

voltages at points a and b are measured versus

ground.

I
Va Vb

a b

0 V

1. V a ¼ 3V, V b ¼ 3V, I ¼ 1A

2. V a ¼ 3V, V b ¼ 1V, I ¼ �1A

3. V a ¼ �2V, V b ¼ �5V, I ¼ 2A:

Problem 2.56. Determine if the circuit element

shown in the following figure is a resistance, a

voltage source, or a wire (short circuit). Absolute

voltages at points a and b are measured versus

ground.

I
Va Vb

a b

0 V

1. V a ¼ 6V, V b ¼ 3V, I ¼ 1A

2. V a ¼ 1V, V b ¼ 1V, I ¼ �1A

3. V a ¼ �7V, V b ¼ �5V, I ¼ �2A:
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Problem 2.57. Determine absolute voltages at

nodes 1 through 6 in the circuit shown in the

following figure.

0 V

A

C

E

V =4 VC+

-

V =7 VE

+

-

V =5 VA

+

-

1

B D V =4 VD

+

-

V =10 VB

+

-

2

3

6

5

4

Problem 2.58. Determine voltages across cir-

cuit elements A, B, C, D, and E in the circuit

shown in the following figure.

0 V

A

C

E

VC+

-

VE

+

-

VA

+

-

0 V

B D VD

+

-

VB

+

-

5 V

7 V

0 V

6 V

12 V
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Chapter 3: Circuit Laws and Networking

Theorems

Overview

Prerequisites:

- Knowledge of circuit elements, their υ-i characteristics, and Ohm’s law (Chapter 2)

Objectives of Section 3.1:

- Understand the meaning of an electric network and its topology (nodes,

branches, loops, meshes)

- Review the Kirchhoff’s current law, its use and value

- Review the Kirchhoff’s voltage law, its use and value

- Become familiar with the Tellegen’s theorem and Maxwell’s minimum heat

theorem

Objectives of Section 3.2:

- Be able to combine sources and resistances in series and parallel

- Practice in the reduction of resistive networks using series/parallel equivalents

- Realize the function and applications of the voltage divider circuit

- Realize the function of the current divider circuit

- Understand the function and applications of the Wheatstone bridge

Objectives of Section 3.3:

- Understand the role and place of linear circuit analysis

- Learn the superposition theorem

- Understand the decisive value of superposition theorem for linear circuit analysis

- Learn about immediate applications of the superposition theorem

- Obtain the initial exposure to Y and Δ networks and to T and Π networks

Application examples:

- Voltage divider as a sensor circuit

- Voltage divider as an actuator circuit

- Superposition theorem for a cell phone
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Keywords:

Electric network, Branches of electric network, Nodes of electric network, Loops of electric

network, Meshes of electric network, Essential mesh, Branch currents, Branch voltages, Series

connection, Parallel connection, Shunt connection, Kirchhoff’s current law, Kirchhoff’s voltage

law, Maxwell’s minimum heat theorem, Tellegen’s theorem, Power conservation law for electric

networks, One-port network, Equivalent electric networks, Equivalent electric circuits, Series

battery bank, Battery pack, Dual-polarity power supply, Common ground of the dual-polarity

power supply, Virtual ground of the dual-polarity power supply, Parallel battery bank, Series and

parallel combinations (of resistances of conductances), Equivalent resistance, Equivalent circuit

element, Reduction of resistive networks, Voltage divider circuit, Voltage division rule, Sensor

circuit sensitivity, Maximum sensitivity of the voltage divider circuit, Current limiter, Current-

limiting resistor, Current divider circuit, Current division rule, Wheatstone bridge (definition of

difference signal difference voltage balanced), Linear circuit (definition of homogeneity additivity

superposition), Nonlinear circuit (definition of linearization dynamic or small-signal resistance),

Superposition theorem, Superposition principle, Y network, Δ network, Two-terminal networks,

Three-terminal networks, Conversion between Yand Δ networks, Replacing a node by a loop, Δ

to Y transformation, Y to Δ transformation, Balanced Y network, Balanced Δ network, Star to

delta transformation, T network, T pad, Π network, Π pad, Two-terminal network (definition of

input port output port)
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Section 3.1 Circuit Laws: Networking Theorems

Electric components are interconnected to design functional electric circuits that can

perform specific tasks like driving a motor or monitoring a power plant. Interconnected

circuit components form an electric network. In turn, any electric network is solved using

two simple yet very general laws: Kirchhoff’s current law (KCL) and Kirchhoff’s voltage

law (KVL). Series, parallel, and other combinations of any circuit elements, whether

linear or not, can be explained and solved using these laws.1 They were established by

Gustav Kirchhoff (1824–1887), a German physicist and mathematician, in 1845, while

Kirchhoff was a 21-year-old student at the University of Koenigsberg in East Prussia. The

circuit analysis of all circuits is based on KCL and KVL.

3.1.1 Electric Network and Its Topology

An electric network can be studied from a general mathematical point of view. If the

specific electrical properties are abstracted, there remains a geometrical circuit, charac-

terized by sets of nodes, branches, and loops. These three items form the topology of an

electric network, and the interconnection of its elements can be represented as a graph.

The study of electric network topology makes it possible to:

A. Identify identical circuit blocks in electric circuits which might be drawn in a

variety of ways. Examples include series/parallel connections, as well as wye

(Y or T) and delta (Δ or Π) blocks as considered in this chapter.

B. Analyze general properties of very large electric circuits such as electric power

grids. For example, there are important relationships between the power grid

topology and risk identification and mitigation.

C. Relate electric circuits to other disciplines. For example, there is a remarkable

ability of electric networks to model the dynamical behavior of complicated

biological systems.

Nodes, Branches, Loops, and Meshes

Consider an electric network with four arbitrary circuit elements A to D shown in

Fig. 3.1a. A branch is a two-terminal circuit element. All four two-terminal elements in

Fig. 3.1a are therefore branches.

1The KCL and KVL concepts are so powerful they even find applications in equivalent form in magnet systems such as

transformers and motors. For example, the magnetic flux in a yoke with air gaps can be modeled according to KCL

and KVL.
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A node is a point of interconnection of two or more branches. All six circles in

Fig. 3.1a are formally identified as nodes. Every node i can be assigned a certain voltage

Vi with respect to circuit ground. If a short circuit (a connecting wire) connects two or

more nodes, these nodes constitute a single node since they have the same voltage. The

circuit may be redrawn to reduce the number of nodes and keep only the meaningful

nodes (single nodes) with the distinct voltages as shown in Fig. 3.1b. The circuits in

Fig. 3.1a and b are identical. A loop is any closed path between two or more branches.

There are three loops in Fig. 3.1b. A mesh (or essential mesh) is a loop that does not

contain any other loops within it. There are two meshes in Fig. 3.1b. A planar

(or two-dimensional) electric network with b branches, n nodes, and m meshes satisfies,

after keeping only nodes with distinct voltages (single nodes), the equality

C

B

A D

node 3

node 2

V2

V3

node 1

C

B

A D

node 3

node 2

V3

node 1

V1

V2V1

a)

b)

C

B

A E

node 3

node 2

V3

node 1

V2V1

c)

C

B

A D

node 3

node 2

V3

node 1

V2V1 IB

IA IC ID

C

B

A E

node 3

node 2

V3

node 1

V2V1

C

B

A D

node 3

node 2

V3

node 1

V2V1 VB

VA

+

-

+

-

VC

+
-

VD

+

-

d)

original circuit

reducing nodes

assigning currents

assigning voltages

branches

nodes

loops

Fig. 3.1. An electric network and assigning branch voltages/currents.
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b ¼ nþ m� 1 ð3:1Þ

which is sometimes called the fundamental theorem of network topology. It is proved by

considering the electric network as a polygonal graph in two dimensions, where each

edge is a branch and each single node is a vertex.

Branch Currents and Voltages

The branch currents and their directions may be assigned arbitrarily; see Fig. 3.1c. The

physical currents either coincide with them or are directed in opposite directions. This can

easily be found by checking the sign of the current value once the analysis is complete. If

the branch voltage polarities have to be assigned afterward, they should satisfy the same

reference configuration for all branches. Let us say the passive reference configuration

with regard to the previously assigned current directions is seen in Fig. 3.1d. The branch

voltages (voltage drops) in Fig 3.1d are expressed through the node voltages according to

VA ¼ V 1 � V 3, VB ¼ V 1 � V 2, VC ¼ VD ¼ V 2 � V 3 ð3:2Þ

Conversely, the branch voltages may be assigned arbitrarily at first. If the directions of

the branch currents have to be assigned afterward, they should again satisfy the same

reference configuration.

Exercise 3.1: Establish whether or not the networks in Fig. 3.1a and b satisfy Eq. (3.1).

Answer: The answer is yes for both figures if we consider single nodes. However, if we

consider every small circle in Fig. 3.1a as a node, Eq. (3.1) will not be satisfied.

Series and Parallel Connections

Two or more branches (circuit element) are in series if they exclusively share a common

node. Elements A and B in Fig. 3.1d are in series. Elements B and C are not since node 2 is

also shared by element D. Two or more branches (circuit elements) are in parallel if they

are connected to the same two nodes. Elements C and D in Fig. 3.1d are in parallel. The

parallel connection is also called the shunt connection; the parallel element may be called

shunt (or shunting) elements.

3.1.2 Kirchhoff’s Current Law

Let us begin our investigation with KCL. KCL specifically applies to the nodes in an

electric network. The Kirchhoff’s current law simply states that the net current entering

the node is zero. In other words, the sum of inflowing currents is equal to the sum of

outflowing currents. This statement is also known as the current conservation law, which
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is the electrical counterpart of the mass conservation law in fluid mechanics. For

N currents entering a node, KCL can be cast in the form

X

N

i¼1

I i ¼ 0 ð3:3Þ

where N denotes the total number of nodal currents. The current directions may be

assigned arbitrarily; the same results will eventually be obtained. The nodal current is

taken with a plus sign if it is entering the node, i.e., the current arrow is directed toward

the node. It carries a minus sign if it is leaving the node, i.e., the current arrow points in

the opposite direction. The current value itself (positive or negative) is substituted

afterward. If this law did not hold, an uncompensated charge could accumulate in a

node over time. This uncompensated charge and its associated Coulomb force would

eventually destroy the operation of an underlying electric circuit. To illustrate the use of

KCL, we consider Fig. 3.2 with four different node types for a collection of branches A,

B, C, and D which could be arbitrary circuit elements.

While the node in Fig. 3.2a is simple, more complicated node configurations may

be observed in a circuit—see the following figures. You should note that, in a node, we

may move individual joints to one common joint without affecting the circuit operation.

A node transformation to a single joint is a convenient tool used when working with more

complicated nodes.

A B

C

node
I =4 AB

I =1 AC

A

I =3 AA

B

C

node I =5 AB

I =1 AC

D I =-1 AD

a)

I =3 AA

I =3 AA

A B

C
D

node

I =3 AB

I =1 AC I =5 AD

C

A

5 A

iC

B

E

2 A

iE

node

b)

c) d)

Fig. 3.2. Different types of the nodes in an electric network subject to KCL.
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Exercise 3.2: Write KLC for the nodes shown in Fig. 3.2.

Answer: In the case of Fig. 3.2a, IA þ IC ¼ IB for any values of IA, IB, IC. In the case of

Fig. 3.2b, IA þ IC ¼ IB þ ID for any values of IA, IB, IC, ID. In the case of Fig. 3.2c, IA
þIB ¼ IC þ ID for any values of IA, IB, IC. In the case of Fig. 3.2d, 2Aþ IC ¼ 5Aþ IE for

any values of IC, IE.

Example 3.1: In some cases, the use of KCL may be sufficient to determine all currents in

an electric network. Solve for the unknown currents IA, IC, ID in the network shown in

Fig. 3.3.

Solution: First, we note that the wire connection on the left states that the current along the

wire is preserved. This implies IA ¼ �1 A. KCL for node 1 gives

1Aþ IC ¼ 5 A ) IC ¼ 4 A ð3:4aÞ

Next, KCL applied to node 2 yields

5 A ¼ ID þ 2A ) ID ¼ 3 A ð3:4bÞ

Thus, the circuit is solved. Node 3 has not been used; it can be employed to check the

correction of the solution: IA þ ID þ 2A ¼ IC or 4 A ¼ 4 A.

3.1.3 Kirchhoff’s Voltage Law

KVL specifically applies to the loops in an electric network. Kirchhoff’s voltage law

states that the sum of voltages for any closed loop is zero. In other words, the total amount

of work needed to move a unit electric charge one loop turn is zero.2 If this law were not

C

B

A E

5 A node2

node3

IA

1 A

IC D

ID

node1

2 A

Fig. 3.3. Solving in a network using KCL.

2The physical counterpart of KVL is Faraday’s law of induction in the static case. When there is a variable magnetic field

penetrating a wire loop, KVL is no longer valid.
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applicable, a charge moving in a closed loop would constantly accelerate and eventually

escape the circuit or constantly decelerate and eventually stop moving. In order to

formulate KVL for a closed loop, we need to identify the loop direction. It is usually

chosen to be clockwise, see the dotted arrows in Figs. 3.4 and 3.5. KVL in its general

form reads

X

N

i¼1

V i ¼ 0 ð3:5Þ

where N is the total number of circuit elements in a loop. The voltage Vi is taken with a

plus sign if the loop arrow is entering the positive voltage polarity and with a minus sign

otherwise. The polarities of voltages Vi may be assigned arbitrarily; the same result will

eventually be obtained. To demonstrate this fact, we consider a simpler network with

different voltage polarities in Fig. 3.4 first. One network branch is purposely designated

as a voltage source, the rest are arbitrary circuit elements.

Example 3.2: Write KVL for the circuit shown in Fig. 3.4 which includes an ideal voltage

source and three other circuit elements.

Solution: In the case of Fig. 3.4a, we start with the source and strictly apply our convention

of positive and negative polarity based on the prescribed loop arrow direction:

�5Vþ VA þ VB � VC ¼ 0 ð3:6aÞ
In the case of Fig. 3.4b, we have to change signs of VA,VB,VC, and thus obtain

�5V� VA � VB þ VC ¼ 0 ð3:6bÞ

Note that these two cases only differ by voltage polarities.

Since reversing voltage polarities in Fig. 3.4b was taken into account by changing the sign

of the voltage, both figures yield the identical result after substituting numbers:

B

A

C

+
-

5 V=VS

V =+3 VA+

-

V =+1 VC+

-

+

-

V =+3 VB B

A

C

+
-

5 V=VS

V =-3 VA +

-

+
-

V =-3 VB

V =-1 VC +

-

a) b)

Fig. 3.4. KVL applied to a closed loop with one voltage source and three passive circuit elements.

The dotted arrow indicates current flow in clockwise direction.
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Example 3.2 (cont.):

�5 Vþ 3 Vþ 3 V� 1 V ¼ 0 ð3:6cÞ

This observation highlights the fact that the voltage polarities for circuit elements may

initially be assigned arbitrarily: applying KVL will ultimately lead to the correct signs of

the voltage values.

Figure 3.5 shows another electric network with all branches now consistently labeled;

the voltages in red denote the actual values with respect to the initially assigned directions.

Exercise 3.3: Determine the number of branches, nodes, loops, and meshes in the network

in Fig. 3.5.

Answer: There are five branches, four nodes, three loops, and two meshes.

Example 3.3: In some cases, the use of KVLmay be sufficient to determine all voltages in

an electric network. Solve for the unknown voltages in the network shown in Fig. 3.5.

Solution: KVL for loop 1 (mesh 1) has the form

�5V� 7Vþ VC ¼ 0 ) VC ¼ 12V ð3:6dÞ

KVL for loop 2 (mesh 2) has the form (VC is already known)

�12Vþ 6Vþ VE ¼ 0 ) VE ¼ 6V ð3:6eÞ

KVL for loop 3 is the solution check:

�5 V� 7 Vþ 6 Vþ 6 V ¼ 0 ð3:6f Þ

C

B

V =-7 VB+

-

+

-

VC E

D

V =+6 VD+

-

VEA

+

-

V =+5 VA
loop 1 loop 2

loop 3

+

-(mesh 1) (mesh 2)

Fig. 3.5. KVL applied to a network with three loops, two meshes, and five circuit elements.
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Example 3.3 (cont.):

If at least one of the voltages VA,VB,VD in Fig. 3.5 is unknown, then a unique solution does

not exist. Through the use of KCL, more information must be acquired.

3.1.4 Power-Related Networking Theorems

The results of this section would be incomplete without an introductory discussion of two

power-related networking theorems. The first one is Maxwell’s minimum heat theorem

formulated by James Clerk Maxwell in 1891. It states that, for a linear electric network of

resistive circuit elements and voltage/current sources, the currents distribute themselves in

such a way that the total dissipated power (generated heat) in the resistances is aminimum. If

there are NR resistive circuit elements, we can state

X

NR

i¼1

V iI i ¼
X

NR

i¼1

RiI
2
i ¼

X

NR

i¼1

V 2
i

Ri

¼ min ð3:7aÞ

where voltages Vi and currents Ii must all satisfy the passive reference configuration.

Indeed, Eq. (3.7a) is equivalent to the condition that the net power generated by all

sources is also minimized. Maxwell’s minimum heat theorem can be proved using KCL,

KVL, and Ohm’s law. The second theorem is Tellegen’s theorem formulated by Bernard

D. H. Tellegen in 1952. It postulates that, for an arbitrary electric network with total

N circuit elements of arbitrary (linear or nonlinear, passive or active) nature, the equality

X

N

i¼1

V iI i ¼0 ð3:7bÞ

must hold if all voltages Vi and currents Ii satisfy one (let’s say the passive) reference

configuration. Tellegen’s theorem serves as a power (or energy) conservation law for all

electric networks. It can be proved based on KCL and KVL only. Tellegen’s theorem has

other important implications and generalizations. To illustrate both theorems, we consider

two simple examples.

Example 3.4: Use Maxwell’s minimum heat theorem and determine the unknown current

x through resistance R1 in Fig. 3.6a.

Solution: Eq. (3.7a) yields

R1x
2 þ R2 x� ISð Þ2 ¼ min ð3:8aÞ

This function is minimized when its derivative with respect to x is zero. Therefore,
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Example 3.4 (cont.):

x ¼ R2

R1 þ R2

IS ð3:8bÞ

which is the current division principle studied in the next section. The voltage division

principle may be established similarly.

Example 3.5: Prove Tellegen’s theorem for the network shown in Fig. 3.6b.

Solution: Both elements follow the passive reference configuration. By KCL we conclude

IB ¼ �IA. By KVL, VB ¼ VA. Therefore, VAIA þ VBIB ¼ 0, which is the simple proof.

In practice, element Amay be a voltage source, and element Bmay be a resistance. We can

also use the active reference configuration for the source but need to define its power to be

negative in such a case.

3.1.5 Port of a Network: Network Equivalence

So far we have studied only the closed electric networks. An electric network may have a

port, through which it is interconnected to another network as shown in Fig. 3.7. The

network may be active or passive. This network has two (input or output) terminals a and

b, which form a single port. The network in Fig. 3.7 is a one-port network. All series/

parallel combinations of the sources and resistances are one-port networks.

Two arbitrary one-port networks in the form of Fig. 3.7 are said to be equivalent

networks (or equivalent electric circuits) when their υ-i characteristics at terminals a and b

coincide. This means that for any given voltage, there is the same current into the network

or out of it and vice versa. Therefore, these networks are non-distinguishable.

B

+

-

VB
IBIAIS R1 R2

I -xSx

a) b)

A

+

-

VA

Fig. 3.6. Examples for Maxwell’s minimum heat theorem and Tellegen’s theorem.

a

b

I

V

+

-

I

arbitrary electric
network

Fig. 3.7. Generic system for establishing a network equivalence.
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Section 3.2 Series and Parallel Network/Circuit Blocks

3.2.1 Sources in Series and in Parallel

Series-Connected Battery Bank
The simultaneous use of KCL and KVL allows us to analyze the behavior

of combinations of active circuit elements and establish their equivalence. The physical

counterparts are various battery banks, which are interconnections of the identical

batteries. Figure 3.8 shows a series battery bank, also called a battery pack, with two

or more batteries connected in series. The battery symbol implies an ideal voltage source.

We intend to find the resulting voltage and current of this combination. To determine

the equivalent voltage, we close the circuit loop shown in Fig. 3.8a by introducing a

virtual circuit element with terminals a and b, with an unknown voltage V between these

terminals. This element simulates the rest of the circuit, which closes the current path.

KVL for the loop shown in Fig. 3.8a results in

�V þ 9 Vþ 9 V ¼ 0 ) V ¼ 18 V ð3:9Þ

Using KCL, we obtain the same current flows throughout the left-handed circuit of

Fig. 3.8a; this current is exactly equal to IB.
3 Therefore, the series combination of two

batteries in Fig. 3.8a is equivalent to one battery bank that provides double the voltage, or

18 V, compared to the unit cell. However, it delivers a current of a single cell. The same

+

-9 V

+

-

V

+

-9 V

IB

IB

IB

IB

a

b

+

-18 V IB

a

b

1.5 V+

-

V

a

b

+

-6 V IB

a

b

1.5 V

1.5 V

1.5 V

a)

b)
IB

IB

Fig. 3.8. Series combinations of battery cells and their equivalent representations.

3 If the realistic battery cells are capable of delivering different currents when short circuited, then the lowest cell current

will flow under short circuit condition.
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method can now be applied to multiple battery cells connected in series; one such battery

bank is shown in Fig. 3.8b.

Dual-Polarity Voltage Power Supply

Two batteries, or other voltage sources, connected in series can be used as a dual-polarity

power supply as shown in Fig. 3.9. The middle terminal gives us the virtual ground for

the circuit or the common ground. Both negative and positive voltages with respect to the

common port can now be created in the circuit. Such a source is of particularly impor-

tance for operational amplifier circuits and for transistor circuits. Every multichannel

laboratory power supply may operate as a dual power supply. The common terminal may

(but does not have to) additionally be connected to the earth ground.

Parallel-Connected Battery Bank

As an alternative to the series-connected battery bank, we also investigate the parallel

battery bank shown in Fig. 3.10. To determine the equivalent voltage of the combination,

we again close the circuit loop by introducing a virtual circuit element with terminals

a and b and with an unknown voltage V between these terminals. The use of KVL gives

V ¼ 9 V ð3:10Þ
Thus, the voltage of the battery bank in Fig. 3.10 is still equal to the unit cell voltage.

However, applying KCL to both nodes shown in black in Fig. 3.10 indicates that the current

doubles. Therefore, the parallel combination of two batteries is equivalent to one battery

bank that provides the same voltage of 9 Vas one unit cell but at twice the current strength.

+

-9 V

+

-9 V

IB

IB

+

-

common

=

Fig. 3.9. A dual-polarity power supply constructed with two battery cells.

+

-9 V

2IB

a

b

+

-9 V 2IB

a

b

+

-9 V

+

-

V

IB IB

2IB

Fig. 3.10. A parallel combination of battery cells and its equivalent single battery representation.
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Series Versus Parallel Connection

What is the difference between series and parallel combinations of two 9-V batteries?

First, let us find the power delivered to the circuit. We assume IB ¼ 1 A in both cases,

even though the specific value of the current is not really important. For the series

combination in Fig. 3.8a, the delivered power is 18 V� 1 A¼ 18 W. For the parallel

combination in Fig. 3.10, the delivered power is again 9 V� 2 A¼ 18 W. Thus, as far as

the power rating is concerned, there is no difference. You should, however, remember that

we always deliver power to a load. For the series combination, the implied load resistance

is 18 V/1 A¼ 18 Ω. For the parallel combination, the anticipated load resistance should

be 9 V/2 A¼ 4.5 Ω. Thus, it is the load resistance that determines which combination

should be used. This question is of great practical importance.

Combinations of Current Sources

Combinations of current sources are studied similarly. They are important for photovol-

taic and thermoelectric semiconductor devices.

3.2.2 Resistances in Series and in Parallel

Series Connection
After the sources have been analyzed, we turn our attention to series and parallel

combinations of resistances (or conductances). Their physical counterparts are various

circuit loads, for example, individual households connected to the same power grid or

individual motors driven by the same source. Figure 3.11 depicts the series combination

of two resistances R1 and R2.

Note that the current direction for both resistances corresponds to a passive reference

configuration: current flows “down the voltage hill.” Again, we close the circuit loop by

introducing a virtual circuit element with terminals a and b and with an unknown voltage

V between those terminals. This virtual circuit element, which simulates the rest of the

circuit, allows us to close the current path. KVL for the loop shown in Fig. 3.11 results in

V ¼ V 1 þ V 2 ¼ IR1 þ IR2 ¼ I R1 þ R2ð Þ ¼ IReq ) Req ¼ R1 þ R2 ð3:11aÞ

-

V

+
R1

R2

+

-

V1

V2

+
-

a

b

I

I

Req=R1+R2

+

-

V

I

I

Fig. 3.11. Two resistances in series and their equivalent single resistance representation.
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Thus, two resistances can be replaced by one equivalent resistance, which is the sum of

the individual resistances. It follows from Eq. (3.11a) that the equivalent resistance gives

us the same circuit current (and the same power into the load) as the original resistance

combination does, for any applied voltage. This is the formal description of the equivalent

resistance to be generalized later. Equation (3.11a) can easily be extended to any arbitrary

number of resistances connected in series. Equation (3.11a) may also be formulated in

terms of conductances, the reciprocals of resistances,

1

Geq

¼ 1

G1

þ 1

G2

ð3:11bÞ

Parallel Connection

Next, we consider the parallel combination of resistances shown in Fig. 3.12. KVL for the

loop shown in the figure and for another loop between two resistances indicates that the

voltages across every resistance are equal to V. KCL applied to either node shown in black

results in

I ¼ I1 þ I2 ¼
V

R1

þ V

R2

¼ V

Req

) 1

Req

¼ 1

R1

þ 1

R2

) Geq ¼ G1 þ G2 ð3:12Þ

Therefore, the parallel combination of two resistances is equivalent to one resistance,

which has a value equal to the reciprocal of the sum of the reciprocal values of both. The

equivalent resistance again gives us the same circuit current as the original resistance

combination does, for any applied voltage. Emphasize that the equivalent resistance is

always smaller in value than each of the resistances to be combined in parallel. Note that

the conductances simply add up for the parallel combinations. Equation (3.12) can again

easily be extended to any arbitrary number of resistances connected in parallel.

Meaning of Equivalent Circuit Element

In summary, the study of series/parallel active and passive circuit elements leads us to the

following simple definition of an equivalent circuit element, either passive or active.

The equivalent circuit element possesses the same υ-i characteristic as the υ-i

+

-
V R =R R /(R +R )eq 1 2 1      2

+

-
V

I

I

R2

+

-
V R1

+

-
V

I

I

I1 I2

Fig. 3.12. Two resistances connected in parallel and the equivalent resistance.
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characteristic of the original circuit, for which voltage and current are acquired at its

terminals a and b.

3.2.3 Reduction of Resistive Networks

The reduction of a network of many resistances to a single equivalent resistance is a topic

of practical importance. There are many examples of distributed resistive networks.

A contemporary example is a rear window defroster in an automobile, which is a

distributed resistive heater. The corresponding solution is usually based on

1. Step-by-step use of series/parallel equivalents

2. Moving, splitting, or reducing modes

3. Reliance on fluid mechanics analogies, which may be helpful for resistive networks

Although a unique solution always exists, its practical realization may be quite difficult.

The following examples outline the procedure for the reduction of resistive networks.

Example 3.6: Find the equivalent resistance between terminals a and b for the resistive

network shown in Fig. 3.13a.

Solution: We should not start with terminals a and b, but with the opposite side of the

circuit. First, the three resistances furthest to the right are combined in series in Fig. 3.13a.

The next step is the parallel combination of the resulting resistance and the 1.5 kΩ resistance

in Fig. 3.13b. The final step is another series combination; this results in the final equivalent

resistance value of 1875 Ω. We need to point out again that it is impossible to:

1. Combine in series two resistances separated by a node.

2. Move the resistance through a node or move the node through a resistance.

Those observations hold for other than resistance circuit elements.

500

400

10

1500

a

b 901 k

series

500

5001500

a

b 1 k

parallel 500

375

a

b 1 k

series

a)

b) c)

Fig. 3.13. Step-by-step circuit reduction via series and parallel resistance combinations.
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Example 3.7: Find the equivalent resistance between terminals a and b for the resistive

network shown in Fig. 3.14a.

Solution: First, we can split and move a node along the wire, leading to a circuit shown in

Fig. 3.14b. Next, we combine two pairs of resistances in parallel. The next step, in

Fig. 3.14c, is the series combination of three resistances. The last step is the solution of

a parallel circuit, leading to the equivalent resistance of 66.67 Ω.

Exercise 3.4: Using a fluid-mechanics analogy of identical water flow in two symmetric

channels, find the equivalent resistance of the network shown in Fig. 3.15.

Answer: 2.5 kΩ.

3.2.4 Voltage Divider Circuit

The purpose of the voltage divider circuit is to provide a voltage different from the supply

voltage. The voltage divider circuit is associated with resistances in series. It is perhaps the

50 W

150 W

150 W

300 W

300 W

150 W

150 W

50 W

50 W 50 W50 W 50 W

300 W

300 W

a

a

b

b

parallel parallel
a

100 W

100 W

b

series

a)

b) c)

Fig. 3.14. Step-by-step circuit reduction to a single equivalent resistance.

2 kW

R

2 kW

3 kW3 kW

a

b

Fig. 3.15. The resistive network discussed in Exercise 3.4.
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most important basic electric circuit or a block of another circuit. The voltage division

principle is used in sensor circuits, actuator circuits, and bias circuits. Furthermore, any

input and output port of a (transistor) amplifier is essentially a voltage divider. We consider

a particular voltage divider form, shown in Fig. 3.16, connected to a DC voltage supply.

This circuit, as with any other electric circuit, can be analyzed by using KCL and KVL

simultaneously. We prefer using this method, although the combination of two resistances

in series will provide an equivalent solution.

KCL states that the current I through both resistance and the voltage supply is the

same. Applying KVL to the circuit loop allows us to find the circuit current

�V S þ V 1 þ V 2 ¼ 0 ) V S ¼ V 1 þ V 2 ¼ I R1 þ R2ð Þ ) I ¼ V S

R1 þ R2

ð3:13Þ

Once the circuit current I is known, then Ohm’s laws can be used. This yields the voltage

division rule

V 1 ¼
R1

R1 þ R2

V S, V 2 ¼
R2

R1 þ R2

V S ð3:14Þ

Equation (3.14) says that the major function of the voltage divider is to divide the voltage

of the power source between two resistances in a direct proportion so that:

1. The larger resistance always acquires a higher voltage, and the smaller resistance

acquires a smaller voltage.

2. The individual voltages always add up to the supply voltage, i.e., V 1 þ V 2 ¼ V S.

Exercise 3.5: A voltage divider circuit uses a 10 V DC source and two resistances: R1

¼ 5 Ω and R2 ¼ 100 Ω. What are the voltages V1, V2 across the resistances?

Answer: V 1 ¼ 0:48 V, V 2 ¼ 9:52 V, V 1 þ V 2 ¼ 10 V.

R1

R2

+

-

V1

V

+

-

V2

I

I

+
-VS

Fig. 3.16. A conventional voltage divider consists of two resistances and an ideal voltage source.
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The voltage divider with multiple resistances R1,R2, . . .,RN is solved in the form

V S ¼ V 1 þ V 2 þ . . .þ VN ) I ¼ V S

R1 þ R2 þ . . .þ RN

and V i ¼
Ri

R1 þ R2 þ . . .þ RN

V S

ð3:15Þ

3.2.5 Application Example: Voltage Divider as a Sensor Circuit

Consider a resistive sensing element (thermistor, strain gauge, photoresistor, etc.) denoted

by R2(x) in Fig. 3.17. The element changes its resistance R2(x) when an external

parameter x changes. Parameter x could be temperature, pressure, humidity, solar radia-

tion, or any other physical parameter that undergoes process changes. A simple sensor

configuration is a direct connection to a voltage source and to the DMM for voltage

measurements; see Fig. 3.17a. No matter how the sensor resistance changes, the sensor

will always output the source voltage. A solution to the third problem is a voltage divider

circuit shown in Fig. 3.17b. The extra resistance R1 is fixed. According to Eq. (3.14),

voltage V2 in Fig. 3.17b varies depending on the influence of R2(x);

V 2 ¼ V 2 xð Þ ¼ R2 xð Þ
R1 þ R2 xð ÞV S ð3:16Þ

The variable voltage V2(x) is measured by the voltmeter. The dependence of V2 on R2 is

clearly nonlinear in Eq. (3.16). Although Eq. (3.16) can be linearized by choosing a

sufficiently large R1 to make the denominator nearly constant, we will show later that

such an operation greatly decreases device sensitivity. Let us assume that the external

parameter x in Eq. (3.16) changes from a lower limit x1 to an upper limit x2, i.e.,

x1 � x � x2. As a result, the sensing resistance changes monotonically, but not necessar-

ily linearly, from R0 ¼ R2 x1ð Þ to R00 ¼ R2 x2ð Þ. We also assume that if x1 � x � x2 then

R0 > R00. The sensor circuit’s sensitivity, S, is given by

+

-

+

-

R2

+

-

V2=VS
+
- V

+

-
VS

VS +
-S

R1 V1

V2
R2

a) b)

V
+

-

Fig. 3.17. (a) Incorrect sensor circuit. (b) A sensor circuit on the basis of a resistive voltage divider

where R2(x) changes its resistance depending on the process parameter x.
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S ¼ V 2 x1ð Þ � V 2 x2ð Þ
x2 � x1

V

units of x

� �

ð3:17Þ

The sensitivity is expressed in terms of voltage variation per one unit of x. A higher

sensitivity implies a larger voltage variation and thus provides a better sensor resolution

and improved robustness against noise.

Design of the Sensor Circuit for Maximum Sensitivity

Let us pose the following question: what value should the fixed resistance R1 assume in

order to achieve the highest sensitivity of the voltage divider sensor? It is clear that R1

cannot be very small (otherwise the voltage reading will always be VS and the sensitivity

will be zero) and that R1 cannot be very large (otherwise the voltage reading will be

always 0 Vand the sensitivity will be zero). The sensitivity is thus a positive function that

is zero at R1 ¼ 0 and at R1 ¼ 1. According to the extreme value theorem, a global

maximum should exist between these two values. We denote the unknown resistance R1

with variable t, substitute V2 from Eq. (3.14), and rewrite Eq. (3.17) in the form

S ¼ V S

x2 � x1

R0

t þ R0 �
R00

t þ R00

� �

ð3:18aÞ

It is convenient to transform this result into a simpler expression S ¼ V SS0f tð Þ, where a
constant S0 is called the intrinsic sensitivity of the resistive sensing element, and f(t) is the

sole function of the first resistance, i.e.,

S0 ¼
R0 � R00

x2 � x1

� �

, f tð Þ ¼ t

R0 þ tð Þ R00 þ tð Þ ð3:18bÞ

This function f(t) is to be maximized. At the function’s maximum, the derivative of f(t)

versus t should be zero. Using the quotient rule for the differentiation of a fraction, it

follows from Eq. (3.18b) that

f 0 tð Þ ¼ R0R00 � t2

R0 þ tð Þ2 R00 þ tð Þ2
ð3:18cÞ

The final result following from the condition f 0 tð Þ ¼ 0 is surprisingly simple

t ¼ R1 ¼
ffiffiffiffiffiffiffiffiffi

R0R00
p

ð3:18dÞ

In other words, the fixed resistance of the voltage divider circuit should be equal to the

geometric mean of two extreme resistances of the sensing element itself.
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Example 3.8: For the NTC-503 thermistor sensing element, x1 ¼ 25 �C (room tempera-

ture), x2 ¼ 37 �C (approximate temperature of a human body), R0 ¼ 50 kΩ, and

R00 ¼ 30 kΩ. What is the sensitivity of the voltage divider sensor if V S ¼ 9 V and (A)

R1 ¼ 5 kΩ, (B) R1 ¼ 500 kΩ, and (C) R1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

30 � 50
p

� 39 kΩ?

Solution: We substitute the numbers in Eq. (3.18) and find the sensitivity.

The corresponding sensitivity plot as a function of R1 is given in Fig. 3.18a. The particular

sensitivity values are:

(A) S ¼ 39 mV/�C, (B) S ¼ 26 mV/�C, and (C) S ¼ 95 mV/�C.

Example 3.9: For the SGT-1/350-TY11 strain gauge, the nominal resistance is 350Ω. The

resistance variation of �0.1 % for the tensile strain ε is observed; the intrinsic device

sensitivity is S0 ¼ 700 Ω=ε. What is the sensitivity of the voltage divider sensor if V S

¼ 4:5 V and (A) R1 ¼ 50 Ω, (B) R1 ¼ 5 kΩ, and (C) R1 ¼ 350 Ω ? For positive

sensitivity numbers, interchange x1,2 in Eq. (3.18).

Solution: In this example, R0 ¼ 350:35 Ω and R00 ¼ 349:65 Ω. We use Eq. (3.18b) and

plot the sensitivity as a function of R1 is in Fig. 3.18b. The particular values are (με are the

micro-strain units):

(A) S ¼ 0:24mV/1000με, (B) S ¼ 0:55mV/1000με, and (C) S ¼ 2:25mV/1000με.

3.2.6 Application Example: Voltage Divider as an Actuator Circuit

The circuit shown in Fig. 3.19 contains a voltage divider circuit block with one resistive

sensing element; it is resistance R1 in the present case. The block is connected to a

three-terminal electronic switch (a transistor). A variable voltage V controlling the switch

R , k10 100
0
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0.08

0.1
S, V/grad

R’R’’

200 300

thermisor sensor sensivity curve

0 1000 2000 3000
0

0.4

0.8

1.2

1.6

2

2.4
x 10
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S, V/1000

R ,1
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R R’~ ’’

a) b)

Fig. 3.18. Sensitivity curves for the divider sensor circuits with a thermistor and a strain gauge.
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operation is created by the voltage divider. When the control voltage V reaches a certain

switch threshold voltage VTh or exceeds it, the switch closes. A DC motor is now

connected to the source; it starts to spin. The switches of this type involve field-effect

transistors. We emphasize that there is no current into the control switch terminal, only

the control voltage counts. If R1 is a thermistor and the DC motor is a fan motor, the entire

circuit may operate as a basic temperature controller in an enclosure or in a room. The

control voltage versus circuit ground, the reference point, is given by (cf. Eq. (3.16))

V xð Þ 	 V 2 xð Þ ¼ R2

R1 xð Þ þ R2

V S ð3:19Þ

where variable x corresponds to the ambient temperature.

Example 3.10: The circuit in Fig. 3.19 uses the NTC-503 thermistor sensing element with

R1 ¼ 50 kΩ at 25 �C (room temperature), and R1 ¼ 30 kΩ at 37 �C. The fixed resistance

is R2 ¼ 12 kΩ. The threshold voltage of the switch is VTh ¼ 2 V. The supply voltage is

9 V. Determine circuit behavior at 25 �C and at 37 �C, respectively.

Solution: According to Eq. (3.19), the control voltage at 25 �C is equal to 1.74 V. This

value is below the threshold voltage. The switch is open; the motor is not connected to the

source. However, the control voltage at 37 �C is 2.57 V. This value is above the threshold

voltage. The switch is closed; the motor is connected to the source and is spinning.

Figure 3.20 shows the corresponding laboratory setup. Note that in reality the threshold

voltage of the transistor switch is not quite constant; it depends on the motor current.

Open when V<VTh

Closed when V>VTh

DC Motor

+
-

+

-

R1

R2

V1

V2

+

-

VS
+
- V

0 V 

Fig. 3.19. An actuator circuit based on the voltage divider principle.
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3.2.7 Current Limiter

The current limiter (or simply the current-limiting resistor) is a particular case of the

voltage divider circuit with significant practical importance. Its concept is shown in

Fig. 3.21. A load resistance RL is connected to the ideal voltage source in series with

another (smaller) resistance R, the physical counterpart of which is the current-limiting

resistor.

If the load resistance is fixed at a rather high value, the circuit in Fig. 3.21 does not pose

any problem, and the current-limiting resistance of 10Ω becomes redundant. For example,

in Fig. 3.21 the circuit current is 100 mA in the absence of the first resistance R. The power

delivered to the load resistance is P ¼ RLI
2 ¼ 1 W. However, the load resistance may be

variable, and it may attain really small values. When this happens, the circuit current

increases. In Fig. 3.21, it becomes equal to 10 A when the load resistance decreases to

1 Ω and the current-limiting resistor is missing. The power delivered to the load resistance

also increases:P ¼ 10 W. This large powermay overheat and eventually destroy the small-

scale load (a thermistor is one example). The role of resistance R is to limit the total circuit

current when the load resistance is either variable or constant but small. For example, in the

circuit from Fig. 3.21, the maximum possible circuit current is

DC motor

IRL520 power
MOSFET

thermistor

fixed resistor

a) b)

voltage
divider

Fig. 3.20. Laboratory realization of the circuit shown in Fig. 3.19.

RL=100+
-10 V=VS

R=10 I

Fig. 3.21. Voltage divider circuit in the current-limiting configuration. The 10-Ω resistance is used

to limit the circuit current.
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I ¼ V S

Rþ RL

<
V S

R
¼ 1A ð3:20Þ

irrespective of the value of the load resistance. Therefore, the power delivered to a

1 Ω-load becomes always less than 1 W instead of the initial value of 10 W.

3.2.8 Current Divider Circuit

The current divider circuit shown in Fig. 3.22 is associated with resistances in parallel. It

is dual to the voltage divider circuit in the sense that the roles of voltage and current are

interchanged. Figure 3.22 shows the concept.

To solve the circuit, we again prefer to use KCL and KVL simultaneously. KCL gives

IS ¼ I1 þ I2 ð3:21Þ

Based on KVL for both loop 1 and loop 2, the voltage across the current source (voltage

between its terminals a and b) is equal to the voltage across either resistor and is equal to

V. Application of Ohm’s law gives the expression for this voltage,

IS ¼
V

R1

þ V

R2

) V ¼ IS
1
R1
þ 1

R2

¼ R1R2

R1 þ R2

IS ð3:22Þ

Therefore, we obtain the current division rule in the form:

I1 ¼
V

R1

¼ R2

R1 þ R2

IS, I2 ¼
V

R2

¼ R1

R1 þ R2

IS ð3:23Þ

Equation (3.23) teaches us that the major function of the current divider is to divide the

current of the power source between two resistances in an inverse proportion so that:

1. The larger resistance always acquires a smaller current, and the smaller resistance

acquires a larger current.

2. The individual currents add up to the source current, i.e., I1 þ I2 ¼ IS.

a

b

I2I1

R1 R2loop1 loop2

+

-

V

+

-

V

+

-

V

IS

IS

Fig. 3.22. A current divider circuit with an ideal current source.
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In other words, the electric current always chooses a path of least resistance. If one

resistance is replaced by a wire, the entire source current will flow through the wire; the

second resistance will be shorted out by the wire.

Exercise 3.6: A current divider uses a 3-mA current source and two resistances:R1 ¼ 200

Ω and R2 ¼ 600 Ω. What are the currents I1, I2 through the resistances?

Answer: I1 ¼ 2:25 mA, I2 ¼ 0:75 mA. The smaller resistance acquires the larger

current.

Example 3.11: The current divider circuit can be assembled with a voltage source as

shown in Fig. 3.23. Find currents I1, I2 and the total circuit current I.

Solution: The circuit in Fig. 3.23 can be analyzed in a number of ways. Perhaps the

simplest way is to recognize that, according to KVL, the voltages across all three elements

in Fig. 3.23 are equal to each other and equal to 10 V. Therefore,

I1 ¼
10V

R1

, I2 ¼
10V

R2

, I ¼ I1 þ I2 ¼
10V

Req

, Req ¼
R1R2

R1 þ R2

ð3:24Þ

Another way to solve the same circuit is to combine resistances in parallel, find the circuit

current I, and then apply the current division principle.

3.2.9 Wheatstone Bridge

The Wheatstone bridge was invented by the British scientist and mathematician, Samuel

Christie (1784–1865) and first used for resistance measurements by Sir Charles Wheat-

stone in 1843. It is shown in Fig. 3.24. From Fig. 3.24, we can recognize that the

Wheatstone bridge is, in fact, a combination of two independent voltage divider blocks:

one with two fixed resistances R1, R2 and another with one fixed resistance R3 and some

other resistance R4 denoted here by R4 ¼ R xð Þ. When the resistance measurements are

implied, R4 is the fixed unknown resistance. However, common modern applications use

the Wheatstone bridge as a part of the sensor circuit. In this case, R(x) is a variable

10 V

I

I2I1

R1 R2+
-

Fig. 3.23. A current divider circuit with the voltage source.
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resistance (a sensing element), where x is a physical quantity to be measured. The second

voltage divider is the voltage divider sensor circuit; the first voltage divider is fixed.

Circuit ground (absolute voltage reference) may be introduced as shown in Fig. 3.24.

It was shown that the voltage divider circuit is already a basic sensor circuit. Now, why

do we need two voltage dividers? The answer to this question will be based on the fact

that, with the help of the fixed divider, we can eliminate a DC voltage offset in the sensor

voltage reading of the “master” voltage divider and thus enable the use of a difference

signal (and a difference amplifier) to amplify the likely very weak sensor voltages. The

key point is that the output voltage of the Wheatstone bridge is not Va or Vb but the

differential voltage between terminals a and b in Fig. 3.24, V ab ¼ V a � V b.

Example 3.12:

A. A simple voltage divider circuit withR3 ¼ 350 Ω andR xð Þ ¼ 350 Ω� 0:1%
(the strain gauge) in Fig. 3.24b is used for strain measurements with a 4.5 V

voltage power supply. What is the output voltage Vb of the sensor circuit?

B. The same voltage divider circuit is augmented with another fixed

voltage divider having R1 ¼ R2 ¼ 350 Ω to form the Wheatstone bridge

shown in Fig. 3.24c. What is the output voltage Vab of the sensor circuit now?

R1

R(x)

+
-VS

a b

R3

R2

R(x)

+
-

VS

R3R1

+
-
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R2

+

+

-V1

+

-V3

+

-V2

+

-V
x

=

0 V

+

-

Vab

Va Vb

a) b)

c)

0 V 0 V

a b
Va

Vb

Fig. 3.24. The Wheatstone bridge is a combination of two independent voltage dividers connected

to the same voltage source. The second voltage divider is a sensor circuit.
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Example 3.12 (cont.):

Solution: In case A, we use the voltage division rule and obtain

V b ¼ 2:25 V� 1:125 mV ð3:25aÞ

It is difficult to process such voltages since we cannot easily amplify them. Amplification

of 2.251125 V by a factor of 100 gives 225.1125 V; such a large voltage simply cannot be

obtained with common amplifier circuits. In case B, however, the value of Vb should be

subtracted from V a ¼ 2:25 V, which yields the sensor voltage in the form

V ab ¼ 
 1:125 mV ð3:25bÞ

If we now amplify 1.125 mV by a factor of 100, a conventional value of 0.1125 V would be

obtained. Along with this fact, the differential sensor voltage has another significant

advantage, which is its immunity against circuit noise.

General Model of Wheatstone Bridge

Using the voltage division rule twice, the differential voltage Vab of the Wheatstone

bridge in Fig. 3.24c becomes (R4 ¼ R xð Þ)

V ab ¼
R2

R1 þ R2

� R4

R3 þ R4

� �

V S ð3:26Þ

The Wheatstone bridge is balanced when V ab ¼ 0. From Eq. (3.26) one obtains the

necessary and sufficient condition for the balanced Wheatstone bridge,

R1

R2

¼ R3

R4

ð3:27Þ
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Section 3.3 Superposition Theorem and Its Use

3.3.1 Linear and Nonlinear Circuits

Linear Circuit
The superposition theorem studied in this section is only valid for linear circuits. A linear

circuit is a circuit that includes only linear circuit elements (elements with a linear or

straight υ-i characteristic):

1. Resistance

2. Capacitance (υ-i relationship is time-dependent but still linear)

3. Inductance (υ-i relationship is time-dependent but still linear)

4. Voltage source (independent and linear dependent)

5. Current source (independent and linear dependent)

Every linear circuit satisfies both the homogeneity and additivity properties. To explain

those properties, we consider a linear circuit with an input parameter x (input voltage or

current) and an output parameter f(x) (output voltage or current). A function f is the

characteristic of the circuit itself; it must be a linear function. Namely, when an input

parameter is a linear superposition ax1 þ bx2 of two individual stimuli x1, x2, the output is

also a linear superposition of two individual responses, i.e.,

f ax1 þ bx2ð Þ ¼ af x1ð Þ þ bf x2ð Þ ð3:28Þ

For example, if we double all source strengths in a linear circuit, voltages across every

passive circuit element and currents through every circuit element will also double.

Nonlinear Circuit and Circuit Linearization

A nonlinear circuit will include nonlinear circuit elements, e.g. elements with a nonlinear

υ-i characteristic. Any circuit with semiconductor components (such as diodes, transis-

tors, solar cells) is a nonlinear circuit. Since the vast majority of electronic circuits include

semiconductor components, a legitimate question to ask is what value do the linear

circuits have in this case? One answer is given by a linearization procedure, which

makes it possible to reduce the nonlinear circuit to a linear one, in a certain domain of

operating parameters. Mathematically, circuit linearization means that a nonlinear rela-

tionship V(I) is expanded into a Taylor series,

V Ið Þ ¼ V 0 þ
dV

dI

�

�

�

�

V¼V 0, I¼I0

I � I0ð Þ þ . . . ð3:29Þ

about a certain operating point V0, I0, where only the constant and the linear terms are

retained. The derivative in Eq. (3.29), the so-called dynamic or small-signal resistance r, is

now used in place of the familiar resistance R for the linear ohmic circuit elements.
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3.3.2 Superposition Theorem or Superposition Principle

The superposition theorem, often called the superposition principle, applies to circuits

with more than one voltage and/or source. It states that the complete circuit solution is

obtained as a linear superposition of particular solutions, for every power source

separately. In other words, we are zeroing (or turning off) all the power sources except

for one, find the solution, and then add up all such solutions. The following rules apply:

1. To turn off a voltage source, we replace it by a short circuit or an ideal wire—see

Fig. 3.25. The voltage across the ideal wire is exactly 0 V.

2. To turn off a current source, we replace it by an open circuit or an air gap—see

Fig. 3.26. The current through the gap is exactly 0 A.

3. The dependent sources do not need to be zeroed. They remain the same for every

particular solution and may affect every particular solution.

Example 3.13: Find current I1 in the circuit shown in Fig. 3.25.

Solution: The first step is shown in the figure; we apply the superposition theorem and

obtain two simpler circuits. Each of those circuits is solved using series/parallel equiva-

lents. For the circuit with the 15-V power source,

Req ¼ 1 kΩþ 3 kΩþ 0:75 kΩ ¼ 4:75 kΩ ð3:30Þ
The circuit current is 3.1579 mA; i1 is 75 % of this value (from current division). For the

circuit with the 10 V source, Req ¼ 3:8 kΩ and i2 is 2.1053 mA. Thus,

I1 ¼ i1 þ i2 ¼ 4:4737 mA ð3:31Þ
Circuit voltages across every resistance may be found by addition as well.

I1

+
-15 V 1 kW

1 kW

3 kW

+
- 10 V

1.5 kW

1.5 kW

i1

+
-15 V 1 kW

1 kW

3 kW

1.5 kW

1.5 kW

1 kW

1 kW

3 kW

+
- 10 V

1.5 kW

1.5 kW

+

i2

Fig. 3.25. Application of the superposition principle to voltage sources.
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Example 3.14: Find current I1 in the circuit shown in Fig. 3.26.

Solution: The first step is shown in the figure; we apply the superposition theorem and

obtain two simpler circuits by disconnecting current sources. The first circuit predicts

i1 ¼ 15 mA, while the second circuit predicts i2 ¼ 10 mA. Therefore,

I1 ¼ i1 þ i2 ¼ 25mA ð3:32Þ

In other words, each of the currents i1, i2 flows in its own loop. The solution does not

depend on any particular resistor value.

The superposition theorem is a direct consequence of circuit linearity. Interestingly, the

superposition theorem is applicable not only to DC circuits but also to AC circuits. The

superposition theorem does not hold for electric power, since power is the product of

voltage and current. The circuit power and the power delivered to individual elements

may be correctly obtained only from the final solution.

Application Example: Superposition Theorem for a Cell Phone

Why do we ultimately need to solve circuits with multiple sources? Look at your cell

phone. There is a circuit inside, which receives a very weak radio frequency input voltage

signal from the antenna. This is the first source. The signal is processed and amplified by

transistors powered by the cell phone battery. This is the second source (or sources). The

signal is then demodulated by interaction with an internal high-frequency generator. This

is the third source. Moreover, every component in that circuit is in fact “noisy”; it creates

I1

15 mA 1 kW

1 kW

3 kW

10 mA

1.5 kW

1.5 kW

i1

1 kW

1 kW

3 kW

1.5 kW

1.5 kW

1 kW

1 kW

3 kW

1.5 kW

1.5 kW

+

i2

15 mA

10 mA

Fig. 3.26. Application of the superposition principle to current sources.
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a small thermal noise voltage, which is modeled by its own tiny voltage source. A careful

solution of the entire circuit with multiple voltage and current sources, including noise

sources, is done by superposition. This solution allows electrical engineers to extract the

weak input signal from otherwise overwhelming noise and properly design the cell phone

circuitry.

3.3.3 Y (Wye) and Δ (Delta) Networks: Use of Superposition

The series and parallel resistance configurations are not the only meaningful network

blocks. Situations often arise when the resistances are neither in parallel nor in series. In

Fig. 3.27a, b, we introduce two new networking blocks, which have the value second to

the series/parallel equivalents.

The first block is known as the Y (wye) network. It represents a nodal connection

of three arbitrary resistances. The second block is known as the Δ (delta) network.

It represents a loop connection of three arbitrary resistances. Both Y and Δ networks

have three terminals 1, 2, and 3; they are known as three-terminal networks. This is in

contrast to series/parallel resistance circuits, which are usually two-terminal networks.

The Y and Δ networks occur either independently or as part of a larger network.

Important applications include three-phase power electronics circuits, filter circuits,

and impedance-matching networks in high-frequency circuits. The theory that follows

holds for AC circuits too, when the resistances become general impedances.

R1 R2

R3

Ra

Rc

Rb

1 3

2

1 3

2

I3

I2I1 I2I1

R1 R2

R3

Ra

Rc

Rb

1 3

2

1 3

2

a) b)

c) d) I3

Fig. 3.27. (a) Y (wye) and (b) Δ (delta) networks; (c) and (d) applying the superposition theorem

to establish network equivalence.
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Conversion Between Y and Δ Networks

A problem of significant practical importance is the conversion between the Y and Δ

networks in Fig. 3.27a, b. This conversion is equivalent to replacing a node by a loop

(strictly speaking, by a mesh) and vice versa in a more complicated circuit or network.

Such a replacement may significantly simplify the overall circuit analysis. The conver-

sion is established based on the superposition theorem. Two arbitrary networks are

equivalent if their υ-i characteristics are the same. In other words, by connecting three

arbitrary sources to terminals 1, 2, and 3 of the Y network, we must obtain terminal

voltages and currents identical to those of theΔ network with the same sources. We select

three current sources I1, I2, I3 in Fig. 3.27c, d. The solution with three sources is obtained

as a superposition of three partial solutions, with two sources open-circuited at a time.

Let’s keep the source I1 and replace I2, I3 by open circuits first. Voltages V12 for both

networks will be the same when the equivalent resistances R12 between terminals 1 and

2 will be the same. A similar treatment holds for terminals 1 and 3 (source I3 is kept)

and terminals 2 and 3 (source I2 is kept), respectively. Therefore, with reference to

Fig. 3.27c, d, we have

R12 ¼ R1 þ R3 ¼ Rb

�

�

�

� Ra þ Rcð Þ ¼ Rb Ra þ Rcð Þ
Ra þ Rb þ Rc

ð3:33aÞ

R13 ¼ R1 þ R2 ¼ Rc

�

�

�

� Ra þ Rbð Þ ¼ Rc Ra þ Rbð Þ
Ra þ Rb þ Rc

ð3:33bÞ

R23 ¼ R2 þ R3 ¼ Ra

�

�

�

� Rb þ Rcð Þ ¼ Ra Rb þ Rcð Þ
Ra þ Rb þ Rc

ð3:33cÞ

Next, we add Eq. (3.33a) and Eq. (3.33b) and subtract from this result Eq. (3.33c). This

gives us the expression for R1. To obtain R2, we add Eq. (3.33b) and Eq. (3.33c) and

subtract Eq. (3.33a). R3 is obtained by adding Eq. (3.33a) and Eq. (3.33c) and subtracting

Eq. (3.33b). The result has the form of Δ to Y transformation:

R1 ¼
RbRc

Ra þ Rb þ Rc

, R2 ¼
RaRc

Ra þ Rb þ Rc

, R3 ¼
RaRb

Ra þ Rb þ Rc

ð3:34Þ

The inverse transformation, Y to Δ transformation, follows

Ra ¼
R1R2 þ R1R3 þ R2R3

R1

, Rb ¼
R1R2 þ R1R3 þ R2R3

R2

,

Rc ¼
R1R2 þ R1R3 þ R2R3

R3

ð3:35Þ
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Balanced Y and Δ Networks

When all resistances of the Y network are equal to RY, the Y network is said to be

balanced. When all resistances of the Δ network are equal to RΔ, the Δ network is also

balanced. For balanced networks, two previous equations reduce to

RY ¼ RΔ

3
, RΔ ¼ 3RY ð3:36Þ

Example 3.15: Find equivalent resistance of a network between terminals a and b in

Fig. 3.28a.

Solution: To simplify the network, we use the Δ to Y transformation and obtain the

network shown in Fig. 3.28b. Since all resistances of the bottom Δ network are equal, we

can use the simplified Eq. (3.36) to find the new resistance values. The remaining circuit is

solved using series/parallel combinations, which give us: Req ¼ 2:2 kΩ.

The conversions between Y and Δ networks go back to Arthur E. Kennelly

(1861–1939), an Indian American engineer who established them in 1899. Note that the

transformation between Y and Δ networks is also called the star to delta transformation.

3.3.4 T and Π Networks: Two-Port Networks

The YandΔ networks are equivalent to TandΠ networks, respectively, which are shown in

Fig. 3.29. The T and Π networks are predominantly used as two-port networks or two-port

networking blocks. Every port should have two terminals. To create the two ports with two

terminals each, we simply split terminal 2 in Fig. 3.29a, c into two terminals: 2 and 4 in

Fig. 3.29b, d, respectively. Port #1 is the input port to the network. Port #2 is the output port

of the network. Multiple two-port networks may be connected in chains. Equations (3.34),

(3.35), and (3.36) allow us to establish the connections between the TandΠ networks,which

are the same as the connections between the Y and Δ networks. Hence, any two-port

a

3 kW

a)

3 kW 3 kW

1 kW 2 kW 1 kW 2 kW

b)

b

a

b

1 kW 1 kW

1 kW

Fig. 3.28. Network simplification using Δ to Y transformations.
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T network may be replaced by the two-port Π network and vice versa. The T network is

sometimes called the T pad and the Π network the Π pad. Both networks are used as

attenuators, filters, and antenna tuners. In the last two cases, capacitances and inductances

replace resistances.

Exercise 3.7: A two-port T network in Fig. 3.29c is characterized by R1 ¼ 3 kΩ,

R2 ¼ R3 ¼ 5 kΩ. Establish resistance values for the equivalent Π network in Fig. 3.29d.

Answer: Ra ¼ 18:33 kΩ, Rb ¼ Rc ¼ 11 kΩ.

3.3.5 General Character of Superposition Theorem

The superposition theorem makes it possible to analyze not only two-port

electric networks but also various networks with multiple ports such as sensor arrays,

antenna arrays, multiple-input and multiple-output (MIMO) communications systems,

arrays of magnetic resonance imaging (MRI) coils, etc. It is so widely used that, quite

often, we do not even mention its name and consider the corresponding result as

“obvious.”

R1 R2

R3

R3

R1

1
1 3

2

a) b)

Ra

Rc

Rb

R2

x

x

port #1 port #2

Ra

Rc

Rb

1 3

2

1 3

3

42

42

port #1 port #2

Y network Two-port T network

network
Two-port networkc) d)

ground connection

ground connection

Fig. 3.29. Conversion of Y and Δ three-terminal networks to equivalent T and Π two-port, four-

terminal networks.
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Summary

Name Circuit Meaning

Network

topology

– Any electric network consists

of b branches,

n single nodes (with distinct

voltages),

l loops,

and m (essential) meshes

(loops that do not contain any

other loops)

Network

topology

theorem

b ¼ nþ m� 1

Valid for two-dimensional

(planar) electric networks

Kirchhoff’s

Current Law

(KCL)

All currents flowing into a

circuit node add to zero:

X

N

i¼1

I i ¼ 0

Valid for all circuits: linear

and nonlinear, passive and

active

Kirchhoff’s

Voltage Law

(KVL)

All voltage drops over the ele-

ments in a loop add to zero:

X

N

i¼1

V i ¼ 0

Valid for all circuits: linear

and nonlinear, passive and

active

Maxwell’s

minimum heat

theorem

Tellegen’s

theorem

X

NR

i¼1

RiI
2
i ¼

X

NR

i¼1

V 2
i =Ri ¼ min

Valid only for lin. circuits

X

N

i¼1

V iI i ¼0

Valid for all circuits

One-port

network and

network

equivalence

Two electric one-port networks

are equivalent when their

complete υ-i characteristics

coincide

Valid for all circuits: linear

and nonlinear, passive and

active

(continued)
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Name Circuit Meaning

Series and

parallel source

combinations

(one-port

networks)

– Voltages are added for

series combinations;

– Currents are added for

parallel combinations;

– Current sources are combined

similarly

Valid only for ideal voltage

and current sources—circuit

elements

Series and

parallel

resistance or

conductance

combinations

(one-port

networks)

Series combinations:

Req ¼ R1 þ R2 þ . . .RN

1

Geq

¼ 1

G1

þ 1

G2

þ . . .þ 1

GN

Parallel combinations:
1

Req

¼ 1

R1

þ 1

R2

þ . . .þ 1

RN

Geq ¼ G1 þ G2 þ . . .GN

Voltage

divider circuit

V 1 ¼
R1

R1 þ R2

VS

V 2 ¼
R2

R1 þ R2

VS

V 1 þ V 2 ¼ VS

May also be used with

arbitrary circuit elements

Voltage

divider circuit

as a sensor

Variable sensor voltage:

V 2 ¼ V 2 xð Þ ¼ R2 xð Þ
R1 þ R2 xð ÞVS

Maximum sensitivity:

R1 ¼
ffiffiffiffiffiffiffiffiffi

R
0
R

00p
, R

0
< R2 < R

00

Current-

limiting

resistor

Maximum circuit current at

arbitrary load resistance:

I <
V S

R
Valid for all circuits

Current

divider circuit

I1 ¼
V

R1

¼ R2

R1 þ R2

IS

I2 ¼
V

R2

¼ R1

R1 þ R2

IS

I1 þ I2 ¼ IS

(continued)
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Name Circuit Meaning

Wheatstone

bridge

Bridge equation (from two

voltage dividers):

V ab ¼
R2

R1 þ R2

� R4

R3 þ R4

� �

V S

Balanced:
R1

R2

¼ R3

R4

Linear circuits Linear response:

f ax1 þ bx2ð Þ ¼ af x1ð Þ þ bf x2ð Þ
Circuits with resistances,

independent sources, and

linear dependent sources

Superposition

theorem

(central

theorem in

linear circuit

analysis)

Complete circuit solution is

obtained as a linear superposition

of particular solutions, for every

source separately. We turn off all

the sources expect for one, find

the solution, and then add up all

such solutions

Valid only for lin. circuits

Y (Wye or

star) and Δ

(Delta) three-

terminal

network

equivalence

R1 ¼
RbRc

Δ
, R2 ¼

RaRc

Δ
,

R3 ¼
RaRb

Δ
, Δ ¼ Ra þ Rb þ Rc

Ra ¼
Δ

R1

, Rb ¼
Δ

R2

, Rc ¼
Δ

R3

Δ ¼ R1R2 þ R1R3 þ R2R3

Node to loop transformation

T and Π

two-port

networks—

derivatives

of Y and Δ

networking

blocks

R1 ¼
RbRc

Δ
, R2 ¼

RaRc

Δ
,

R3 ¼
RaRb

Δ
, Δ ¼ Ra þ Rb þ Rc

Ra ¼
Δ

R1

, Rb ¼
Δ

R2

, Rc ¼
Δ

R3

Δ ¼ R1R2 þ R1R3 þ R2R3

Conversion is the same as for

Y to Δ networks
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Problems
3.1 Circuit Laws: Network-

ing Theorems

3.1.1 Electric Network and Its Topology
Problem 3.1. In the network graph shown in

the figure below:

A. Find the number of branches, single

nodes (nodes with distinct voltages),

and meshes.

B. Prove the equality b ¼ nþ m� 1 for the

number of branches b, meshes m, and

single nodes n.

branches

Problem 3.2. Repeat problem 3.1 for the cir-

cuits shown in the following figure:

R1
R3IS1

+

-

R2

IS2

VS

R4

R1
R3IS1

+

-

R2

IS2

VS

R4

a)

b)

Problem 3.3. Repeat problem 3.1 for the cir-

cuit shown in the following figure. Each

straight segment is now a branch.

branches

3.1.2 Kirchhoff’s Current Law
Problem 3.4. Find current IB for the node

shown in the following figure:

A

I =-3AA

B

C

node IB

I =5AC

D I =-1AD

Problem 3.5.

A. Find current ID for the node shown in the

following figure.

B. Redraw this node (and the circuit

between terminals a and b) in an equiv-

alent form eliminating the

horizontal wire.

I =-2AA

A B

C
D

node

I =3AB

I =1AC ID

a

b

Problem 3.6. Determine current iC for the cir-

cuit shown in the following figure:
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B E

C

DA

iA i =2AD

iC

iEi =3AB

Problem 3.7. Find a relation between currents

iC, iE for the circuit shown in the following

figure. Does the problem have a unique

solution?

C

B

A F

5A

iC

D

E

2A

iF

iE

Problem 3.8. Find currents iA, iB, iD, iH for the

circuit shown in the following figure:

i
D

C F

H

A D

EB

i
A

i
B

i =5A
E

i
H

i =1A
F

i =3A
C

Problem 3.9. Determine currents iC, iF, iH for

the circuit shown in the following figure:

D G

C

EB

i =5AB i =2AE

iC

i =5AG

FA H

iF
iH

Problem 3.10. Determine currents iC, iF, iH in

the following figure:

D G

C

EB

i =5AB i =2AE

iC i =5AG

FA
H

iFiH

Problem 3.11. Find all unknown currents for

the circuit shown in the following figure:

iD

C F

H

A D

EB

iA

iB i =5AE

iH

i =1AFi =3AC

3.1.3 Kirchhoff’s Voltage Law (KVL)
Problem 3.12.

A. Find voltage VC for the circuit shown in

the following figure.

B. How would the solution change if VD

were equal to 0 V?

C. Could the value VE¼ 0 V be used in this

problem?
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B E

C

DA

V =5 VA+

-

V =7 VB +

-

VE+

-

V =2 VD +

-

+

-

VC

Problem 3.13. Determine voltage VF in the

circuit shown in the figure below.

F

A C

D

EB

V =5 VA+

-

V =2 VC +

-

V =8 VB +

-

VF+

-

Problem 3.14. Find the unknown voltages VA,

VB,VG,VH for the circuit shown in the figure

below.

C F

H

A D

G

EB

+

-

V =12 VD+

-

VB +

-

V =-9VC +

-

V =9 VF +

-
+

-

VH

+

-

VG

V =6 VE+

-

VA

Problem 3.15. Determine voltage VE for the

circuit shown in the following figure.

C F

H

A D

G

EB

V =5 VA+

-

V =-16 VD+

-

V =7 VB +

-

VE+

-

VC +

-

V =6 VF+

-

+

-

VH

+

-

VG

Problem 3.16. Equipotential lines for a human

body subject to a vertical electric field with the

strength of 1 V/m are shown in the following

figure.

A. Determine voltages VAB, VBC, VCA.

B. Establish the KVL loop and formulate

KVL for these three voltages.

0.1 V

0.2 V

0.3 V

0.4 V

0.5 V

0.6 V

0.7 V

0.8 V

0.9 V

1.0 V

1.1 V

1.2 V

1.3 V

1.4 V

1.5 V

1.6 V

B

A

C

3.1.4 Power-related theorems
Problem 3.17. For the circuit shown in the

following figure:
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1. Determine which circuit elements are the

resistances and which are the sources.

2. Find the power (delivered to the circuit or

taken from the circuit) for every circuit

element.

3. Assuming that the powers of the sources

are negative, find the sum of all powers in

the circuit.

D

C

B

V =5 VD +

-

A E

V =3 VB +

- 2A

3A

+

-

5V

V =3 VB

Problem 3.18. For the circuit shown in the

figure below:

1. Use KVL and KCL to solve for unknown

currents and voltages.

2. Find the power (delivered to the circuit or

taken from the circuit) for every circuit

element.

3. Assuming that the powers of the sources

are negative, find the algebraic sum of all

powers in the circuit.

V =10 V
B+

-

B

+

-

A

+

-

C

V
D+

-

D

V =5 V
E+

-

E

V =5 V
C

i
C

i
E

i =1A
D

i =2A
B

V
A

i
A

Problem 3.19. For the circuit shown in the

figure below:

1. Use KVL to solve for unknown voltages.

2. Use KCL to solve for unknown currents.

3. For each of six circuit elements, deter-

mine if the element is a resistance or a

source.

4. Assuming that the source powers are

negative, find the algebraic sum of all

powers in the circuit.

V =10 V
B+

-

B

+

-

A

+

-

C

V
D

+

-
D

V =5 V
E

E

V =5 V
C

i
C

i
E

i =1A
D

i =2A
B

V
A

i
A

+

- V =1 V
F

F

i
F

+

-

3.2 Series and Parallel

Network/Circuit Blocks

3.2.1 Sources in Series and in Parallel
Problem 3.20. The electronic circuits onboard

an 18-foot long Parker motor boat consume

96 W when operated from a 24-V source. The

source is a combination of two fully charged

deep-cycle batteries, each of which is rated for

12 V and 100 ampere hours:

1. Should the batteries be connected in

series or in parallel?

2. For how many hours can the electronics

be operated from the battery bank with-

out recharging?

3. How much energy in kilowatt hours is

initially stored in each battery?

Problem 3.21. A certain sensing device con-

sumes 0.375 Wof power over a 20-hour period

and operates from a 6-V source. The source is a

combination of four fully charged AAA batte-

ries, 1.5 V each. The batteries discharge by the

end of the 20-h period:
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1. Should the batteries be connected in

series or in parallel?

2. What is a typical capacity of the AAA

battery?

3. How much energy in watt hours is ini-

tially stored in each battery?

Problem 3.22. A load has the resistance of

1.5 Ω and requires the applied voltage of 3 V.

A number of battery cells are given, each of

which is rated for 1.5 V. Each cell may deliver

no more than 1 A of current:

1. Construct and draw a battery bank that

could be used to drive the load.

2. Is the solution to the problem unique?

Problem 3.23. Repeat the previous problem

when the required load voltage is changed to

6 V.

3.2.2 Resistances in Series and in

Parallel

3.2.3 Reduction of Resistive Networks
Problem 3.24. Determine the equivalent resis-

tance between terminals a and b.

3 kW3 kW3 kW1 kW

a

b

1 kW1 kW1 kW

a

b

a)

b)

Problem 3.25. The equivalent electric

circuit for a car rear window defroster is

shown in the figure. All resistances are equal:

R1 ¼ . . . ¼ R15 ¼ 10 Ω. Determine the heat

power (power delivered to the defroster).

V+ -

R1

R2

R13

R14

R15

...

12 V

Problem 3.26. Find the equivalent resistance

between terminals a and b.

200 W

100 W

200 W

a

b

Problem 3.27. Find the equivalent resistance

between terminals a and b.

100 W150 W

100 W

100 W

a

b

Problem 3.28. Find the equivalent resistance

between terminals a and b.

1kW

1 kW

500 W

2 kW

a

b

500 W1kW

Problem 3.29. Determine the equivalent resis-

tance between terminals a and b.
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18 kW

50 kW

20 kW

20 kW30 kW

a

b

Problem 3.30. Find the equivalent resistance

between terminals a and b.

25 W

500 W300 W150 W

25 W

500 W

a

b

Problem 3.31. Determine the equivalent resis-

tance (resistance between ports a and b) of the

network shown in the following figure:

250 W

2 kW500 W500 W

1 kW

1 kW1 kW

a

b

Problem 3.32. Determine the equivalent resis-

tance between terminals a and b.

3 kW6 kW

4 kW4 kW

a b

Problem 3.33. Find the equivalent resistance

between terminals a and b.

30 W20 W

40 W60 W

a

b

Problem 3.34. Determine the equivalent resis-

tance of the network (resistance between termi-

nals a and b) shown in the following figure:

10 W

10 W

5 W

5 W

5 W

ba

Problem 3.35. Determine the equivalent resis-

tance between terminals a and b (show units).

1 kW

6 kW

1 kW

5 kW5 kW

a

b

Problem 3.36. A network shown in the figure

below is known as a ladder. The ladder network

includes one particular section with a series (R1

¼ 1 Ω ) and a shunt ( R2 ¼ 1 Ω ) resistance,

known as the L-section. This section is then

repeated an infinite number of times to the right.

Determine the equivalent resistance between ter-

minals a and b of the ladder network.

R1a

b

R2

R1

R2

section 1 section 2

R1

R2

...

...

Chapter 3 Problems

III-131



Hint: For the semi-infinite ladder network in

the previous figure, the equivalent resistance

Req will not change after adding a new section

up front as shown in the figure that follows:

R1a

b

R2

new section

ladder network

Req Req

Problem 3.37.

A. Repeat the previous problem for the

semi-infinite ladder network circuit

shown in the same figure when

R1 ¼ R3 ¼ 10 Ω, R2 ¼ 25 Ω.

B. How different is your result from the

equivalent resistance of the finite ladder

network with only four sections?

Problem 3.38. Another important ladder net-

work type (with the T-section) is shown in the

following figure.

A. Determine the equivalent resistance

between terminals a and b of the ladder

network when R1 ¼ 2R3 ¼ 10 Ω,

R2 ¼ 10 Ω.

B. How different is your result from the

equivalent resistance of the finite ladder

network with only four sections?

R1a

b

R2

section 1 section 2

...

...

R3 R1

R2

R3

R1

R2

R3

3.2.4 Voltage Divider Circuit
Problem 3.39. Redraw the circuit shown in the

figure below and plot the distribution of the

circuit voltage versus ground reference point

to scale between two circuit points a and b as

a function of distance x from point a.

10V

+
-

a b

0V

10V

5V

x

0

5k 5k 5k

voltage

Problem 3.40. Repeat the task of the previous

problem for the disconnected circuit shown in

the following figure:

10V

+
-

a b

0V

10V

5V

x

0

5k 5k 5k

voltage

Problem 3.41. For the circuit shown in the

following figure, use the voltage division prin-

ciple to calculate V1,V2,V3.

+
-5V

25 kW

75 kW

100 kW

V
1+

-

V2

+

-

V
3+

-

Chapter 3 Circuit Laws and Networking Theorems

III-132



Problem 3.42. For the circuit shown in the

figure below:

A. Calculate V1,V2,V3.

B. Find the voltage across the current

source.

a

40 kW

25 kW

15 kW

V
1+

-

V2

+

-

V
3+

-b

2 mA

Problem 3.43. For the circuits shown in the

following figure, determine voltages V1,V2,

absolute voltage Va at node a versus ground

(show units), and circuit current I.

1kW

+

-

V1

+

-

V2

I

I

+
-10V=VS

0V

Vaa

4kW

2kW

+

-

V1

+

-

V2

I

I

+
-9V=VS

0V

Va
a

8kW 8kW

Va

15kW

V1+

-

V2

I

0V

5kW

+
-30V=VS

+

-

I

a

a)

b)

c)

3.2.5 Application Example: Voltage

Divider as a Sensor Circuit

3.2.6 Application Example: Voltage

Divider as an Actuator Circuit
Problem 3.44. An NTC thermistor-based tem-

perature sensor should operate between 25 �C
and 65 �C from a 6-V DC power supply. The

thermistor’s resistance changes from R0 ¼ 50 kΩ

to R00 ¼ 20 kΩ in this temperature range:

A. Present a circuit diagram for the simple

temperature sensor.

B. Determine the value of the unknown

resistance for the maximum circuit

sensitivity.

C. Determine the maximum circuit

sensitivity.

D. What is the circuit sensitivity when the

unknown resistance is set to 1 kΩ?

Problem 3.45. In the previous problem, using

software of your choice (MATLAB is

recommended), plot the circuit sensitivity to

scale as a function of the value of the unknown

resistance in the range from 1 kΩ to 100 kΩ.

Problem 3.46. A strain gauge with nominal

resistance of 120 Ω is used in conjunction with

a 2.5-V DC voltage source. Its nominal resis-

tance changes by �0.2 % when the gauge

operates in the permissible strain range, which

is �1000με:

A. Present a circuit diagram for the simple

strain gauge sensor.

B. Determine the value of the unknown

resistance for the maximum circuit

sensitivity.

C. Determine the maximum circuit

sensitivity.

D. What is the circuit sensitivity when the

unknown resistance is set to 1 kΩ?

Problem 3.47. In the previous problem, using

software of your choice (MATLAB is

recommended), plot the circuit sensitivity to
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scale as a function of the value of the unknown

resistance in the range from 10 Ω to 1000 Ω.

Problem 3.48. Avoltage divider circuit with R1

¼ 700 Ω (the fixed resistance) and R2 ¼ 700 Ω

� 0:1% (the strain gauge) is used. The voltage

power supply is rated at 4.5 V:

A. Show that voltage across the strain

gauge varies in the range 2.25 V�
1.125 mV.

B. Could you derive an analytical formula

that gives the voltage variation across R2

¼ R1 � Δ as a linear function of an

arbitrary (but very small) resistance var-

iation Δ?

[Hint: use your calculus background—the

Maclaurin series versus a small parameter].

3.2.7 Current Limiter
Problem 3.49. A thermistor is connected to an

ideal voltage power source of 9 V. Determine

the value of the current-limiting resistor

R based on the requirement that the power

delivered to the thermistor should be always

less than 0.1 W. The lowest possible value of

R should be chosen. Consider two cases:

1. Thermistor resistance is exactly 100 Ω.

2. Thermistor resistance changes from

200 Ω to 100 Ω.

R =100WL
+
-9V=VS

R

I

3.2.8 Current Divider Circuit
Problem 3.50. For the circuit shown in the

following figure:

A. Calculate the voltage between terminals

a and b. Show its polarity on the figure.

B. Use the current division principle to cal-

culate branch currents i1, i2.

3 A 1 M 1 M

a

b

i2i1

Problem 3.51. Find branch currents i1, i2 for

the circuit shown in the following figure:

i2i1

+
-10 V 1 kW 1 kW

Problem 3.52. Find branch currents i1, i2 for

the circuit shown in the following figure:

i2i1

3 kW 5 kW10mA

Problem 3.53. Find the voltage between termi-

nals a and b (voltage across the current power

source) for the circuit shown in the following

figure:

5 kW

1 W

5 kW

1 kW1 kW

3A

a

b

Problem 3.54. The voltage source in the circuit

is delivering 0.2 W of electric power. Find R.

+
-10 V

1 kW

RR
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3.2.9 Wheatstone Bridge
Problem 3.55. Describe in your own words the

function and the scope of the Wheatstone

bridge.

Problem 3.56. Find the voltage between termi-

nals a and b for the circuit shown in the figure

that follows:

600 W6 kW

1 kW10 kW

+
-16V

a b

Problem 3.57. Find the voltage between termi-

nals a and b for the circuits shown in the figure

that follows:

700 W6 kW

0.9 kW10 kW

+
-16V

0V

6 kW

10 kW

+
-32V

a b

a b

0V

A)

B)

700 W

0.9 kW

Problem 3.58. You are given:

1. A photoresistor that changes its resis-

tance from 20 kΩ for brightness to

500 kΩ for darkness

2. A 9-V battery

3. A voltmeter (DMM)

4. Any other necessary precise resistors

Construct (present the circuit diagram) a

Wheatstone bridge sensor circuit that:

1. Has zero voltage reading for brightness

2. Has maximum possible voltage reading

for darkness (has maximum sensitivity)

Problem 3.59. You are given:

1. A SGT-1/350-TY11 uniaxial strain gauge

with the nominal resistance of 350 Ω

(no strain)

2. A 4.5-V voltage source

3. Any number of precise resistors, of any

value

When tensile strain is applied, the resistance

variation up to +0.1 % is observed. Present

the circuit diagram for the Wheatstone bridge

sensor circuit that:

1. Has zero voltage reading at no strain

2. Has maximum possible voltage response

when strain is present (has maximum

sensitivity)

3. Outputs positive voltages when the resis-

tance of the strain gauge increases

Problem 3.60. Resistance of a strain gauge

increases when its length increases (a bended

surface under test becomes convex) and

decreases when its length decreases (a bent sur-

face under test becomes concave). The

corresponding strains are the tensile strain and

the compressive strain. You are given two strain

gauges (#1 and #2), which are attached to oppo-

site sides of a thin bent surface under test, at the

same position. The gauge resistance at normal

conditions (no bending) is R¼ 100 Ω. You are

also given any number of fixed resistors, of any

value:

1. Suggest and sketch a sensor circuit which

will convert changes in the resistance into

measurable voltage changes. This circuit

should possibly have:

(a) Zero sensor output voltage at normal

sensor conditions (no bending)

(b) Maximum voltage sensitivity to

changes in resistance (sensitivity to

the strain)

2. Label one (or two) strain gauge used, and

specify the values of all used resistances.

3. Show power supply and DMM

connections.
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Combined Voltage and Current Dividers
Problem 3.61. For the circuit shown in the

following figure:

A. Find currents i, i1, i2 (show units).

B. Find power P delivered by the voltage

source to the circuit.

C. Find voltages V1,V2.

+
-10 V 4 kW 4 kW

8 kW

V2
+

-

V1+

-

i

i1 i2

Problem 3.62. Find voltage Vacross the 20-kΩ

resistance and current i for the circuit shown in

the following figure:

20 kW

5 kW

30 kW

5 kW

+

-

25 V

i
V

+

-

Problem 3.63. For the circuit that follows,

determine:

A. Current i2 through the 0.25 kΩ resistance

B. Power P absorbed by the 600 Ω

resistance

i2i1

+
-15 V 1 kW 0.25 kW

600 W

700 W

P=?

Problem 3.64. For the circuit shown in the

figure below, determine:

A. Current i2 through the 0.25-kΩ

resistance

B. Power P absorbed by the 0.3-kΩ

resistance

i2i1

+
-15 V 1 kW 0.25 kW

1 kW

0.3 kW

P=?

Problem 3.65. Determine current

i (show units) in the circuit that follows:

20 kW

5 kW

20 kW

5 kW6 kW

+

-

20 V

2 kW
i

Problem 3.66. Determine current i and voltage

υ for the circuit shown in the figure (show units).

3 k

5 k

10 k

1 k5 k

+

-

24 V

30 ki

+

-

3.3 Superposition Theorem

and Its Use

3.3.2 Superposition Theorem or Super-

position Principle
Problem 3.67. For the circuit shown in the

figure below, determine the absolute voltage

(versus chassis ground) and the electric current

at the circuit point a.
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+
-15V

+
-15V

50 kW

100 kW

10 kW

a

0V

i

Problem 3.68. Determine the absolute voltage

(versus chassis ground) and the current i at the

circuit point a.

+
-15V

+
-15V

50 kW

100 kW

10 kW

a

0V

i

Problem 3.69. For the circuit shown in the

figure below, find the current across the 10-Ω

resistance. Show its direction on the figure.

+

-

10V

1A

5 W

10 W5 W

Problem 3.70. Determine the unknown current

I in the circuit (solve by superposition).

I

+
- 15 V 1 kW

1 kW

3 kW

+
-

10 V

1.5 kW

1.5 kW

1 kW

Problem 3.71. Determine the unknown current

I in the circuit (solve by superposition).

I

1.5 mA 1 kW

1 kW

1 kW

1mA

1.5 kW

1.5 kW

1 kW

3.3.3 Y (Wye) and Δ (Delta) Networks:

Use of Superposition

3.3.4 T and Π Networks: Two-Port

Passive Networks
Problem 3.72. Convert the network shown in

the following figure from Y to Δ:

A. Draw the corresponding Δ network.

B. Label its terminals.

C. Determine and label the corresponding

resistance values in the figure.

1 3

2

10 kW 20 kW

10 kW

Problem 3.73. Convert the network shown in

the following figure from Δ to Y:
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A. Draw the corresponding Y network.

B. Label its terminals.

C. Determine and label the corresponding

resistance values.

1 3

2

10 kW

20 kW 10 kW

Problem 3.74. Convert the two-port network

shown in the following figure from T to Π:

1. Draw the corresponding Π network.

2. Label its terminals and ports.

3. Determine and label the corresponding

resistance values.

1 3

42

port #1 port #2

ground connection

25 kW 20 kW

10 kW

Problem 3.75. Convert the two-port network

shown in the following figure from Π to T:

A. Draw the corresponding T network.

B. Label its terminals and ports.

C. Determine and label the corresponding

resistance values.

1 3

42

port #1 port #2

ground connection

25 kW10 kW

20 kW

Problem 3.76. For the bridge network shown

below, determine the equivalent resistance

between terminals a and b.

10 kW

10 kW

20 kW

2.5 kW 5 kW

3.75 kW

a

b
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Chapter 4: Circuit Analysis and Power

Transfer

Overview

Prerequisites

- Knowledge of major circuit elements, their �-i characteristics, and Ohm’s law

(Chapter 2)

- Knowledge of basic networking theorems (Chapter 3)

Objectives of Section 4.1:

- Become familiar with the nodal analysis and be able to apply it to solve in arbitrary

linear circuits

- Become familiar with the mesh analysis and be able to apply it to solve in arbitrary

linear circuits

Objectives of Section 4.2:

- Become familiar with the method of short/open circuit

- Establish and prove the source transformation theorem

- Establish and prove Thévenin’s and Norton’s theorems

Objectives of Section 4.3:

- Establish the maximum power theorem and become familiar with the power

efficiency concept

- Be able to apply the concepts of Thévenin and Norton’s equivalents and maximum

power theorem in practice

Objectives of Section 4.4:

- Obtain an initial exposure to nonlinear circuit analysis

- Be able to solve in a simple nonlinear circuit

Application examples:

Reading and using data for solar panels

Power radiated by a transmitting antenna

Maximum power extraction from solar panel

Solving the circuit for a generic solar cell

Chapter 4
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Keywords:

Nodal analysis, Mesh analysis (mesh-current analysis), Supernode, Supermesh, Method of short/

open circuit (definition of, open-circuit network voltage, short-circuit network current), Source

transformation theorem, Circuit equivalent (see equivalent circuit), Thévenin’s theorem

(formulation, proof, special cases), Thévenin equivalent, Norton’s theorem, Norton equivalent,

R-2R ladder network, Negative equivalent (Thévenin) resistance, Maximum power theorem

(principle of maximum power transfer), Power efficiency, Analysis of nonlinear circuits, Load

line (definition, method of), Iterative method for nonlinear circuits (definition of, explicit iterative

scheme, implicit iterative scheme), Solar cell (c-Si, open-circuit voltage, short-circuit

photocurrent density, fill factor, characteristic equation of), Solar panel (series cell connection,

open-circuit voltage, short-circuit photocurrent, fill factor, maximum power load voltage,

maximum power load current)
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Section 4.1 Nodal/Mesh Analysis

4.1.1 Importance of Circuit Simulators

The series and parallel equivalents along with YandΔ transformations provide a practical

tool for solving simple circuits involving typically only a few elements. However, for

more elaborate circuits, circuit simulators such as SPICE (Simulation Program with

Integrated Circuit Emphasis) and its various modifications become indispensable tools

for the professional engineer. SPICE was developed by the Electronics Research Labo-

ratory at the University of California, Berkeley, and first presented in 1973. These circuit

simulators are quite general and allow us to model circuits with passive and active

elements including semiconductor components such as diodes, transistors, and even

solar cells. Since those elements typically exhibit nonlinear current–voltage behaviors,

elaborate solution strategies are needed. The circuit simulators use quite interesting

algorithms: they often operate in the time domain, even for DC circuits. For example, a

solution for a DC circuit is obtained as the steady-state limit of a transient solution, for

voltage and/or current sources turned on at a certain time instance. The key of the time-

domain approach is its inherent ability to solve nonlinear problems, with passive and

active circuit elements. In this section, we are unable to discuss in detail the principles of

the numerical circuit simulation. However, we will provide the foundation of the nodal

analysis (or node analysis) and the mesh analysis (or the mesh-current analysis), which

are two important features of a professional circuit simulator. The nodal and mesh

analyses in its pure form do not involve time-domain methods. They are primarily

applicable only to linear circuits, also referred to as linear networks.

4.1.2 Nodal Analysis for Linear Circuits

The nodal analysis is a general method of solving linear networks of arbitrary complex-

ity, which is based on KCL and Ohm’s law. Let us consider a circuit shown in Fig. 4.1a,

which is a resistive bridge circuit with a bridging resistance. This circuit may be solved

using Δ to Y conversion; see, for instance, example 3.15 of Chapter 3. Here, we prefer to

use the nodal analysis directly. The nodal analysis operates with the absolute values of the

node voltages in the circuit with respect to ground reference. It may be divided into a

number of distinct steps:

1. A ground reference needs to be assigned first: a node where the voltage is set to 0 V.

To this end, we ground the negative terminal of the voltage power supply.

2. Next, we select nontrivial (also called non-reference) nodes for which we do not

know the voltages. These are nodes 1 and 2 in Fig. 4.1b. The two additional nodes

are eliminated from the analysis since the voltages there are already known.

3. We label absolute node voltages versus ground reference as V1,V2—see Fig. 4.1c.
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4. We label currents for every nontrivial node, assuming that all currents are

outflowing; see Fig. 4.1c. The last condition may be replaced by all inflowing

currents.

5. Next, KCL is written for every nontrivial node. We express the currents as the

difference of two absolute voltages: the voltage at the beginning of the current arrow

(voltage at the master node) minus the voltage at the end of the current arrow

(voltage at any other node) and then divide this difference by the appropriate

resistance. Hence, we arrive at a system of linear equations for the nodal voltages.

Currents are no longer involved.

6. After the resulting system of linear equations is solved, all circuit parameters are

determined as necessary.

The following two examples will apply the nodal analysis to a circuit with a voltage

source.

1 kW

1 kW

1 kW

1 kW3 kW

0 V

+
-5 V 21

1 kW

1 kW

1 kW

1 kW3 kW

+
-5 V

5 V

0 V

1 kW

1 kW

1 kW

1 kW3 kW

0 V

+
-5 V

5 V

0 V

V1
V2

a)

b)

c)

1. Select ground reference
2. Select and label nodesnontrivial

5. Write KCL for each node
in terms of node voltages

6. Solve the resulting system
of equations

3. Label unknown node voltages
4. Label outflowing currents

for each node

Fig. 4.1. Major steps of the nodal analysis applied to a bridge circuit.
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Example 4.1: Solve the circuit shown in Fig. 4.1a using the nodal analysis—find the
supply current.

Solution: Steps 1–4 are indicated in Fig. 4.1b, c. Applying KCL to node 1 and then to node
2 (order is not important), one has

V 1 � 5 V

1 kΩ
þ
V 1 � 0 V

3 kΩ
þ
V 1 � V 2

1 kΩ
¼ 0 ð4:1aÞ

V 2 � 5 V

1 kΩ
þ
V 2 � 0 V

1 kΩ
þ
V 2 � V 1

1 kΩ
¼ 0; ð4:1bÞ

i.e., a system of the linear equations for two unknown voltages. Its simplification

7=3V 1 � V 2 ¼ 5 V ð4:2aÞ

3V 2 � V 1 ¼ 5 V ð4:2bÞ

is solved via Gaussian elimination of unknowns, which yields

V 1 ¼ 3:33 V and V 2 ¼ 2:78 V ð4:3Þ

The circuit current (current of the voltage source) is

5 V� V 1ð Þ=1 kΩþ 5 V� V 2ð Þ=1 kΩ ¼ 3:89 mA:

Example 4.2: Solve the circuit shown in Fig. 4.2a using the nodal analysis.

Solution: Steps 1–4 are indicated in Fig. 4.2b. Applying KCL to node 1 and then to node
2, one obtains a system of equations with two unknown voltages:

V 1 � 10 V

1 kΩ
þ
V 1 � 0 V

1 kΩ
þ
V 1 � V 2

1 kΩ
¼ 0 ð4:4aÞ

+
-

10 V

1 kW

1 kW

1 kW 1 kW

1 kW

a)

+
-

1 kW

1 kW

1 kW 1 kW

1 kW

0 V

V1
V210 V

0 V 0 V

21

b)

10 V

Fig. 4.2. Major steps of the nodal analysis applied to a circuit with a voltage source.
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Example 4.2 (cont.):

V 2 � 10 V

1 kΩ
þ
V 2 � 0 V

1 kΩ
þ
V 2 � V 1

1 kΩ
¼ 0 ð4:4bÞ

In setting up the equations, it does not matter which sequence of nodes are selected.
Simplifying Eq. (4.4) gives

3V 1 � V 2 ¼ 10 V ð4:5aÞ

3V 2 � V 1 ¼ 10 V ð4:5bÞ

The solution is obtained by symmetry, i.e., V 1 ¼ V 2 ¼ 5 V. The circuit current provided
by the power supply is 10 mA. All other branch currents can then be found using Ohm’s
law. An interesting feature of the circuit shown in Fig. 4.2a is that the marked 1-kΩ resistor
can be considered as “dead,” since there is no current flowing through it (the voltage
difference across this resistor is exactly zero). This resistor can be removed from the circuit
without affecting the behavior of the circuit in terms of voltages and currents. It might
appear at first sight that the circuits shown in Figs. 4.1 and 4.2 have a different network
topology. In fact, they do not. To prove this, attempt to redraw the circuit in Fig. 4.2a; the
result will coincide with the circuit in Fig. 4.1a.

Circuits with a Current Source

When a current source is present in a circuit, the solution becomes even simpler: one makes

use of the existing current and substitutes its value into KCL equation written for a certain

node. For example, KLC for node 1 in Fig. 4.3 includes the outflowing current of�1 mA.

The current sign must be taken into account. The same idea may be applied to circuits with

multiple current power supplies.When only the current sources are present, the groundmay

be connected to the incoming terminal of a current source.

Exercise 4.1: Determine voltage across the current source in Fig. 4.3 using the nodal
analysis.

Answer: 8.6 V.

+
-10 V

1 kW

1 kW 1 kW

1 kW1 mA

21

Fig. 4.3. A circuit with a current source solved via nodal analysis.
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4.1.3 Supernode

The nodal analysis requires a “good” eye to see possible simplifications when labeling the

nodes. Let us examine a particular case and point out a few useful subtleties.1 Figure 4.4a

depicts a network with two voltage sources. The property of the 5 V source is such that it

is not fixed to a particular ground connection—we therefore call it a floating source.

Setting up the node method becomes a little tricky, since we do not know the current

through this source. However, a supernode may be formed as shown in Fig. 4.4b.

KCL may be applied to any closed contour around the supernode: the net current must

still be zero in such a case. With reference to Fig. 4.4b, this yields

V 1 � 10 V

1 kΩ
þ
V 1 � 0 V

1 kΩ
þ
V 2 � 0 V

1 kΩ
þ
V 2 � 10 V

1 kΩ
¼ 0 ð4:6aÞ

What is the second equation for two unknowns V1 and V2 (just the relation between

the supernode voltages themselves)? Since V 2 � V 1 is the voltage of the power source,

one has

V 2 ¼ V 1 þ 5 V ð4:6bÞ

Equations (4.6) can now be solved even without a calculator, eliminating one of the

unknowns yields

5V

+
-10 V

1 kW

1 kW

1 kW

1 kW

a)

+
-10 V

1 kW

1 kW

1 kW

1 kW

0 V

b)

V1
V210 V

0 V 0 V

+
-

5V

supernode

+

-

Fig. 4.4. A network with a floating voltage source between nodes 1 and 2.

1 Subtleties are often euphemism for “playing” around with the circuit, like redrawing the wire connections and

rearranging the circuit elements. This is done to find simpler solution approaches.
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V 1 ¼ 2:5 V, V 2 ¼ 7:5 V ð4:7Þ

The circuit is solved. All currents are found using the node voltages and Ohm’s law.

Example 4.3: Now, solve the circuit shown in Fig. 4.4a using the standard nodal analysis,
without the supernode concept.

Solution:We have to specify an unknown current Ix through the 5-V source, which flows,
say, from left to right in Fig. 4.4a. It results in the following two nodal equations for the two
nodes:

V 1 � 10 V

1 kΩ
þ
V 1 � 0 V

1 kΩ
þ Ix ¼ 0 ð4:8aÞ

V 2 � 0 V

1 kΩ
þ
V 2 � 0 V

1 kΩ
� Ix ¼ 0 ð4:8bÞ

Now, we can add both equations and thereby eliminate Ix. The result is exactly Eq. (4.6a)
for the supernode. We must add one more condition to solve this equation. Equation (4.6b)
is the only choice, i.e.,

V 2 ¼ V 1 þ 5 V ð4:8cÞ

With this in mind, we arrive at the supernode concept again but in a more complicated way.
This is why the supernode approach is a useful tool.

4.1.4 Mesh Analysis for Linear Circuits

The mesh analysis (or the mesh-current analysis) is using loops instead of nodes.

Only loops that do not contain any other loops—the meshes—are employed. The meshes

as elements of the networking topology were defined in Section 3.1. Accordingly, instead

of KCL, the mesh analysis makes use of KVL. Hence, we need to choose mesh

currents for every mesh. Figure 4.5 depicts the concept for a circuit with three meshes.

Note that this circuit is identical to the circuit from Fig. 4.1. A ground connection does

not have to be introduced for the mesh method. Let us denote the mesh current for

mesh 1 in Fig. 4.5 by I1, the mesh current for mesh 2 by I2, and the mesh current for mesh

3 by I3.

1 kW

1 kW

1 kW

1 kW3 kW

+
-5 V

mesh #1

I1

mesh #2

I2

I3

mesh #3

Fig. 4.5. Circuit solution using the mesh analysis. Circuits in Figs. 4.5 and 4.1 coincide.
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KVL equations for the three meshes are based on Ohm’s law for this passive reference

configuration. We do not need the fourth (large) loop encompassing the entire circuit. For

resistances that are shared by two adjacent meshes, we combine either the difference or

the sum of the two adjacent-mesh currents. The mesh equations become

Mesh 1 : 1 kΩ � I1 � I3ð Þ þ 1 kΩ � I1 þ 1 kΩ � I1 � I2ð Þ ¼ 0 ð4:9aÞ

Mesh 2 : 3 kΩ � I2 � I3ð Þ þ 1 kΩ � I2 � I1ð Þ þ 1 kΩ � I2 ¼ 0 ð4:9bÞ

Mesh 3 : �5Vþ 1 kΩ � I3 � I1ð Þ þ 3 kΩ � I3 � I2ð Þ ¼ 0 ð4:9cÞ

We have arrived at a system of three equations for the three unknown mesh currents I1, I2,

and I3. It is simplified to (after division by 1 kΩ and combining similar terms)

Mesh 1 : þ3I1 � I2 � I3 ¼ 0 ð4:10aÞ

Mesh 2 : �I1 þ 5I2 � 3I3 ¼ 0 ð4:10bÞ

Mesh 3 : �I1 � 3I2 þ 4I3 ¼ 5 mA ð4:10cÞ

In contrast, the nodal analysis applied to the same circuit requires only two

equations for two unknown node voltages; see Example 4.1. The final solution is indeed

the same. Thus, the nodal analysis is more beneficial for small networks when a voltage

source or sources are present. If, however, a current source were present in Fig. 4.5

instead of the voltage source, the nodal analysis would require three equations. At the

same time, the mesh analysis would require only two equations, because I3 is defined by

the current source. Reasoning like this gives us clues which method is most suitable.

When mixed power supplies like voltage and current sources are involved, there is

usually no real difference between the two methods. The choice often becomes a matter

of taste.

Exercise 4.2: Determine mesh currents for the circuit in Fig. 4.5.

Answer: I1 ¼ �0:833 mA, I2 ¼ þ0:833 mA, I3 ¼ þ1:667 mA.

4.1.5 Supermesh

Consider a circuit shown in Fig. 4.6. The straightforward mesh analysis should use KVL

written for meshes 1 and 2. However, KVL cannot be formulated directly since we do not

know the voltage across the current source. A solution is to combine meshes 1 and 2 into a

supermesh and write KVL around its periphery. Mesh equations become

Supermesh : 1 kΩ � I1� I3ð Þþ1 kΩ � I1þ1 kΩ � I2þ3 kΩ � I2� I3ð Þ¼ 0 ð4:11aÞ

Mesh 3 : �5 Vþ 1 kΩ � I3 � I1ð Þ þ 3 kΩ � I3 � I2ð Þ ¼ 0 ð4:11bÞ

KCL for the central branch of the source:
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I1 � I2 ¼ 1 mA ð4:11cÞ

After division by 1 kΩ and combining similar terms, the system of equations (4.11) is

simplified to

þ2I1 þ 4I2 � 4I3 ¼ 0

�I1 � 3I2 þ 4I3 ¼ 5 mA

þI1 � I2 ¼ 1 mA

ð4:12Þ

Exercise 4.3: Determine mesh currents for the circuit in Fig. 4.6.

Answer: I1 ¼ 2:5 mA, I2 ¼ þ2:5 mA, I3 ¼ 3:75 mA.

Example 4.4: Outline the solution approach for the circuit shown in Fig. 4.6 using the
standard mesh analysis, without the supermesh concept.

Solution: The voltage across the current source is introduced as an extra unknown, Vx.
Then, we write three KVL equations for three meshes in Fig. 4.6, which will contain four

unknowns: I1, I2, I3, and Vx. An extra equation is needed, which is KCL for the central
branch: I1 � I2 ¼ 1 mA. Now, we need to solve a system of four simultaneous equations.
This is considerably more work than in the previous case. This is why the supermesh
approach is a useful tool for the mesh analysis.

1 kW1 kW

1 kW3 kW

+
-5 V

I1

I2

I3
1 mA

mesh #1

mesh #2

mesh #3

Fig. 4.6. Circuit solved with the supermesh method.

Chapter 4 Circuit Analysis and Power Transfer

IV-148



Section 4.2 Generator Theorems

4.2.1 Equivalence of Active One-Port Networks: Method

of Short/Open Circuit

In Chapter 3, we considered passive linear networks with only resistances, and we have

transformed them into equivalent circuits. Active linear networks, which include sources

and resistances simultaneously, can undergo similar transformations. We know that two

electric single-port networks are equivalent when their terminal υ-i characteristics are

identical. For passive resistive networks studied in Chapter 3, we connected arbitrary

source(s) across the network terminals and checked the resulting υ-i characteristics. For

active networks with sources and resistances, we can use the same method. Alternatively,

we could connect arbitrary resistance(s) across the network terminals and check either the

resulting voltage or current. A test resistance to be connected will be denoted here by R. If

for two networks the voltages across the resistance R (or currents through it) coincide for

all values of R, the networks are equivalents.

Method of Short/Open Circuit

In general, testing all possible values of resistance R connected to terminals a and b of a

network in Fig. 4.7 is not necessary. Note that an active linear network may ultimately

have only two elements: a source and a resistance. To uniquely determine the two

elements (their values), only two equations are necessary. It is therefore customary to

check only two (limiting) values of the test resistance:

R ! 1 and R ¼ 0 ð4:13Þ

Conveniently, this corresponds to open- and short-circuit conditions. In the first case, the

voltage between terminals a and b is the open-circuit network voltage VOC. In the second

case, the current flowing from terminal a to terminal b is the short-circuit network current

ISC. The pair VOC, ISC is key for the method of short/open circuit. This method states that

two active linear circuits are equivalent when their VOC and ISC coincide. Network

equivalency relates not only to the linear active networks with two components, but, as

will be shown soon, it is valid for all active linear networks.

a

b

+
-

arbitrary electric
network

VOC

a

b

arbitrary electric
network

ISC

test of open-circuit voltage test of short-circuit current

Fig. 4.7. Method of short/open circuit for an active, one-port network.
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4.2.2 Application Example: Reading and Using Data for Solar Panels

The method of short/open circuit is also very useful for active nonlinear networks,

including nonlinear sources. An example is a solar cell or a combination thereof, a solar

panel. Every solar panel has the measured data for VOC and ISC listed on its backside.

The short-circuit current is simultaneously the photocurrent of the solar cell. Table 4.1

collects this data for common crystalline silicon (or c-Si) solar panels. It is organized in

such way that VOC is given per cell in the panel and ISC is given in terms of photocurrent

density, JP, per unit cell area. The cells in the panel are connected in series.

Table 4.1 demonstrates that c-Si solar cells have approximately the same open-circuit

voltage of 0.6 V per cell. The open-circuit voltage does not depend on the area of the cell.

The short-circuit photocurrent density is also approximately the same for c-Si solar cells

from different manufacturers. On average, it is given by J P ¼ 0:03 A=cm2. These values

correspond to an incident light intensity of 1000 W/m2 at T ¼ 25 �C. The photocurrent

density does not depend on the area of the cell. However, the total photocurrent does.

Exercise 4.4: A c-Si solar panel (or solar module) has the open-circuit voltage of 23.4 V?
How many individual solar cells does it have?

Answer: Approximately 39.

Exercise 4.5: A c-Si solar panel is needed with the open-circuit voltage of 12 V and the
short-circuit current of 3 A. Design the panel: find the number of cells to be connected in
series and the required unit cell area.

Answer: 20 cells with the area of 100 cm2 (10� 10 cm) each.

Table 4.1. Manufacturers’ specified parameters for different c-Si solar panels from five different
manufacturers (1–230 W output power range). The cell area is either measured directly or
extracted from the datasheet.

Solar panel Cells, N VOC/N, V Cell area A, cm2
JP ¼ ISC=A

A/cm2

1-W BSPI-12 Power Up c-Si panel 36 0.59 2.36 0.030

10-W BSP-1012 Power Up c-Si panel 36 0.59 ~22.0 0.030

65-W BSP-1012 Power Up c-Si panel 36 0.61 121.7 0.032

230-W Sharp ND-U230C1 c-Si panel 60 0.62 241.0 0.034

175-W BP Solar SX3175 c-Si panel 72 0.61 156.25 0.033

6-W Global Solar GSE-6 c-Si panel 44 0.52 16.6 0.027

200-W GE Energy GEPVp-200 c-Si panel 54 0.61 249.3 0.032

Average NA 0.593 NA 0.0311
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4.2.3 Source Transformation Theorem

The most fundamental transformation of active linear networks is the subject of the

source transformation theorem. The source transformation theorem is a substitution of an

independent voltage source VT in series with resistance RT for an independent current

source IN with resistance RN and vice versa; see Fig. 4.8a, b. The meaning of indexes

N and T will become apparent soon. The identical theorem applies to the dependent

sources shown in Fig. 4.8c, d.

Let us prove this theorem by establishing the circuit equivalence. The pair VOC, ISC is

to be found for every network. For the two networks in Fig. 4.8a, b, we have

VOC ¼ VT, ISC ¼
VT

RT

ð4:14aÞ

VOC ¼ RNIN, ISC ¼ IN ð4:14bÞ

Equation (4.14) has a unique solution in the form of the source transformation theorem

RN ¼ RT, IN ¼
V T

RT

ð4:15Þ

If Eq. (4.15) is satisfied, both networks in 4.8a, b have equal VOC and ISC. This ensures

that their entire υ-i characteristics are also the same. To confirm this fact, an arbitrary

resistance R could be connected across the port. The resulting voltages may be found

directly, by solving the voltage divider and the current divider circuits, respectively. Both

voltages are equal to VTR= Rþ RTð Þ. Thus, the source transformation theorem is proved.

+
-

VT

a

b

IN

a

b

a) b)

a

b

a

b

c) d)

+
-

RT

RN

vT iN

RT

RN

Fig. 4.8. Transformation of dependent and independent sources.
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Exercise 4.6: A network has a 10-V voltage source in series with a 20-Ω resistance. It is
replaced by a current source IN in parallel with resistance RN. Find IN and RN.

Answer: IN ¼ 0:5 A, RN ¼ 20 Ω.

Exercise 4.7: A linear active circuit measures the open-circuit voltage of 5 V and the
short-circuit current of 1 mA. Determine its equivalents in the form of a voltage source in
series with a resistance and in the form of a current source in parallel with a resistance.

Answer: V T ¼ 5 V, RT ¼ 5 kΩ and IN ¼ 1 mA, RN ¼ 5 kΩ.

Often, the source transformation theorem allows us to simplify the circuit analysis

through network manipulations.

Example 4.5: Find current I1 in the circuit shown in Fig. 4.9a.

Solution: The circuit may be solved using the superposition theorem. Another way is
to use the source transformation theorem. The corresponding steps are outlined in
Fig. 4.9b, c. We use the source transformation three times and end up with the parallel
combination of two current sources and three resistances. The three resistances in parallel
are equivalent to the 0:75 kΩ resistance; the voltage across every element in parallel is then
0:75 kΩ� 2 mA ¼ 1:5 V. Therefore, I1 ¼ 0:75 mA.

+
- 2 V

a)

6 mA0.5 

2.5 kW

I1

2 kW

2 kW

2.5 kW

I1

2 kW 1 mA+
-

2 kW

0.5 kW

I1

2 kW 1 mA2 kW

3 V

1 mA 3 kW

b)

c)

kW

Fig. 4.9. Circuit modifications using the source transformation theorem.
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Example 4.6: The circuit in Fig. 4.10a includes a current-controlled voltage source with
the strength of 4000ix [V]. Find current ix using the source transformation.

Solution: The corresponding circuit transformation is shown in Fig. 4.10b. The circuit with
the current-controlled current source in Fig. 4.10b is solved using KCL and KVL. KCL
written for the bottom node states that the current of 3 mAþ 3ix flows through the
rightmost 1-kΩ resistance (directed down). Since, by KVL, the voltages across both resis-
tances must be equal, one has

3mAþ 3ix ¼ ix ) ix ¼ �1:5mA ð4:16Þ

Alternatively, one might convert the independent current source to the independent voltage
source. However, this method would hide ix.

4.2.4 Thévenin’s and Norton’s Theorems: Proof Without Dependent

Sources

The origin of Thévenin’s theorem is due to Léon Charles Thévenin, a French engineer

(1857–1926). The theorem is illustrated in Fig. 4.11a, b and can be expressed in the

following form:

1. Any linear network with independent voltage and current sources, dependent linear

sources, and resistances, as shown in Fig. 4.11a, can be replaced by a simple

equivalent network: a voltage source VT in series with resistance RT.

2. The equivalent network in Fig. 4.11b is called the Thévenin equivalent.

3. Voltage VT is the open-circuit voltage VOC of the original network.

4. When dependent sources are not present, Thévenin resistance RT is an equivalent

resistance Req of the original network with all independent sources turned off

(voltage sources are replaced by short circuits and current sources by open circuits).

5. When both dependent and independent sources are present, the independent sources

are not turned off. Resistance RT is given by RT ¼ VOC=ISC, where ISC is the short-

circuit current of the original network.

a)

3 mA 1 kW

1 kW

b)

+
- 4000ix

ix

3 mA 1 kW 4ix

ix

1 kW

Fig. 4.10. Using source transformation for a circuit with dependent sources.
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6. When only the dependent sources are present, a current (or voltage) source is

connected to the network terminals. Thévenin or equivalent resistance is given by

RT ¼ V=I where I is the source current and V is the voltage across the source.

Thévenin voltage is, strictly speaking, not defined in this case.

The Norton’s theorem is dual to the Thévenin’s theorem. It was named in honor of

Edward L. Norton (1898–1983), an engineer at Bell Labs in New Jersey.2 Norton’s

theorem is illustrated in Fig. 4.11c, d. The equivalent circuit (Norton’s equivalent) is

now the current source in parallel with the resistance as shown in Fig. 4.11d. Since the

equivalence of both networks in Fig. 4.11b, d has already been established, the Norton’s

theorem will follow from the Thévenin’s theorem and vice versa.

Proof of Thévenin’s Theorem for Active Networks Without Dependent Sources

The proof is based on circuit linearity. The υ-i characteristics of both networks will

be established using a current source of strength I connected as shown in Fig. 4.12.

+
-

VT

a

b

a

b

a)

RT

a

b

c)

any linear network of
sources (independent
and linear dependent)
and resistances

any linear network of
sources (independent
and linear dependent)
and resistances

b)

d)

IN

a

b

RN

Thevenin

Norton

Fig. 4.11. Thévenin’s and Norton’s theorems: replacing linear active circuits by its Thévenin and
Norton equivalents.

+
-

VT

a

b

a

b

a)

RTany linear network of
sources (independent
and linear dependent)
and resistances

b)

V

+

-

V

+

-

II

Fig. 4.12. Derivation of Thévenin’s theorem by establishing the υ-i characteristics.

2The first publication that discusses this equivalent circuit concept is actually due to Hans F. Mayer (1895–1980) who

made the discovery in 1926 while a researcher at Siemens Company.
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Since the entire circuit is still linear, the υ-i characteristic of the current source in

Fig. 4.12a must have the form of a linear function,

V ¼ AI þ B; ð4:17Þ

where V is the voltage across the current source. A and B are some “constant” coefficients,

which do not depend on I, but do depend on the network parameters. Our goal is to find

A and B, respectively. First, we check the value I ¼ 0 when the external current source is

turned off, i.e. replaced by an open circuit. From Eq. (4.17), voltage V equals B. On the

other hand, it equals of VOC the original network. Therefore,

B ¼ VOC ð4:18Þ

Now, let us turn off all the internal sources. The network becomes an equivalent

resistance Req. The constant B (its open-circuit voltage) is zero. Equation (4.17) therefore

yieldsV ¼ AI , for any value of I. On the other hand, for the current source I connected to

the resistance Req, it must be V ¼ ReqI . Comparing the two expressions, we obtain

A ¼ Req ð4:19Þ

The simpler network in Fig. 4.12b is also described by the υ-i characteristic in the form of

Eq. (4.17). In this case, B ¼ VOC ¼ VT, A ¼ Req ¼ RT. We finally compare two υ-i

characteristics,

V ¼ ReqI þ VOC for linear active network and

V ¼ RTI þ VT for Th�evenin equivalent;
ð4:20Þ

and establish the Thévenin’s theorem. A test voltage source could be used in place of the

current source in Fig. 4.12, with the same result obtained. The physical background of the

Thévenin’s theorem is thus the fact that the terminal response of any linear network is a

linear υ-i characteristic—a linear function with only two independent coefficients, A and

B. A simpler network with exactly two independent parameters—VT and RT – is just right

to model this response.

Equivalence of Arbitrary Linear Networks with Identical VOC, ISC
On one hand, linear active networks with only two elements (a source and a resistance)

are equivalent when their VOC, ISC coincide. On the other hand, any active linear network

is equivalent to a linear network with only two elements. Therefore, we conclude that two

arbitrary linear networks are equivalent when their VOC and ISC coincide.
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Exercise 4.8: Establish Thévenin equivalent circuits for the two networks shown in
Fig. 4.13. In the first case, R1 ¼ R2 ¼ R3 ¼ 1 kΩ and V S ¼ 10 V. The second network
is a battery bank—a network of series-connected practical voltage sources—with
RB1 ¼ RB2 ¼ RB3 ¼ 1 Ω, VB1 ¼ V B2 ¼ VB3 ¼ 6 V.

Answer: V T ¼ 5 V, RT ¼ 0:5 kΩ and VT ¼ 18 V, RT ¼ 3 Ω, respectively.

Example 4.7: A two-terminal network shown in Fig. 4.14a is a two-bit R-2R ladder

network used for digital-to-analog conversion. Express

1. Thévenin (or equivalent) voltage VT

2. Thévenin (or equivalent) resistance RT

in terms of (digital) voltages D0,D1 and resistance R.

Solution: One way to solve this problem is to find VT and RT directly from the circuit in
Fig. 4.14a. While the solution for RT is straightforward, finding VT requires more work. Yet
another method is to apply the Thévenin equivalent to the leftmost section of the ladder
network first. The result is the circuit shown in Fig. 4.14b. The final Thévenin equivalent

has the form RT ¼ R, VT ¼ D1

2
þ D0

4
.

This method may be applied to ladder networks with multiple sections.

Exercise 4.9: Repeat the previous example for the ladder shown in Fig. 4.14c.

Answer: RT ¼ R, V T ¼ D2

2
þ D1

4
þ D0

8
.

R1
+
-

VS

R2

R3

a

b

+
-

RB2

+
-

RB3

+
-

VB1

RB1

a

b

VB2

VB3

a) b)

Fig. 4.13. Two active linear networks.
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Example 4.8: Find Thévenin and Norton equivalent circuits for the network in Fig. 4.15a.

Solution: The network includes a voltage-controlled voltage source. Therefore, its analysis
should be performed in a general form, by finding the pair VOC, ISC. The short-circuit
current ISC is found straightforwardly. Since the rightmost resistance is shorted out, υx ¼ 0,
and ISC ¼ 10 mA. To find the open-circuit voltage, which is equal to υx, we use the source
transformation theorem and arrive at the equivalent circuit in Fig. 4.15b. Next, we solve
this circuit. By KVL, the voltage across the leftmost resistance is equal to 10V� 4υx.
By KCL, the currents through both resistances must be the same. Since the resistances are
equal, we obtain the equality 10V� 4υx ¼ υx so that υx ¼ 2V. The open-circuit voltage
has the same value. Thévenin and Norton equivalents are

V T ¼ VOC ¼ 2 V, RT ¼
VOC

ISC
¼ 200 Ω ð4:21aÞ

IN ¼ ISC ¼ 10 mA, RN ¼
VOC

ISC
¼ 200 Ω ð4:21bÞ
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-
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2R
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+
-

a

b
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2R

+
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Rc)

D2

2R

+
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R

Fig. 4.14. Two-bit and three-bit R-2R ladder networks.
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Fig. 4.15. A network with dependent sources to be converted to its equivalent forms.
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4.2.5 Application Example: Generating Negative Equivalent Resistance

Consider a circuit shown in Fig. 4.16a. It includes only a dependent source: the voltage-

controlled voltage source; it does not have independent sources. Therefore, the circuit

analysis has to be done by connecting a current (or voltage) source between terminals a and

b as shown in Fig. 4.16b. Quantity of interest is Thévenin (or equivalent) resistance. KVL

for the circuit in Fig. 4.16b gives �Aυx � RI þ υx ¼ 0. Therefore, by definition,

RT �
υx

I
¼

R

1� A
ð4:22Þ

As long as the open-circuit voltage gain of the dependent source, A, is greater than one,

Eq. (4.22) states the negative equivalent or Thévenin resistance. Physically, this means

that the Thévenin equivalent circuit is delivering power instead of absorbing it.

Construction and Use of Negative Equivalent Resistance

A circuit block, which is equivalent to the negative resistance, may be constructed using the

operational amplifier studied in the next chapter. This block may be used for different

purposes including signal generation. The difference between the negative resistance and

the power source is that the negative resistance may supply power of any type (DC, AC, or

an arbitrary waveform), i.e., support the self-oscillating circuits. Figure 4.16c summarizes

Thévenin resistances generated by the basic networks with the only dependent sources. The

same method of analysis (simultaneous use of KCL and KVL) has been applied to every

network. Although all of the networks may in principle generate negative equivalent

resistance values, the realization of some particular circuits may be difficult.
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Fig. 4.16. Thévenin equivalent circuits for basic networks with dependent sources.
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4.2.6 Summary of Circuit Analysis Methods

In summary, a linear circuit can be solved using any of the methods studied in this and in

the previous chapters:

- Superposition theorem

- Nodal/mesh analysis

- Source transformation theorem

- Thévenin and Norton equivalent circuits

or a combination of those. While the nodal/mesh analysis is always applicable, other

methods may even be more useful since they often provide physical insight into the

circuit behavior.

Exercise 4.10: How could you find the open-circuit voltage Vab in Fig. 4.14a?

Answer:

A. When the superposition theorem is applied, shorting out D0 gives V ab ¼ D1=2.
Shorting out D1 gives V ab ¼ D0=4.

B. When the nodal analysis is applied, we ground negative terminals of both sources
and find the unknown voltage of the upper left node via the KCL. Only one equation
needs to be solved. This is perhaps the simplest solution method.

C. The source transformation theorem can hardly be applied.
D. The method of Thévenin equivalent circuits has been described in Example 4.7.
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Section 4.3 Power Transfer

4.3.1 Maximum Power Transfer

The principle of maximum power transfer from a source to a load will now be quantified.

This principle is also known as a maximum power theorem. The circuit under study is

shown in Fig. 4.17. It involves an arbitrary linear source (a battery, generator, etc.), which

is represented by its Thévenin equivalent, and a load, which is characterized by its

equivalent resistance RL. All other load parameters (dynamic, mechanical, and thermal)

are implicitly included in the load’s resistance.

The key question you have to ask yourself is this: for a given ideal voltage source VT

and a given internal resistance RT, can the electric power delivered to the load be

maximized, and at which value of RL does the maximum occur? The answer is found

by solving the circuit in Fig. 4.17. First, the current is determined from the given voltage

source VT and the total resistance using the series equivalent,

I ¼
VT

RT þ RL

ð4:23Þ

This allows us to compute the power at the load based on

PL ¼ RLI
2 ¼

RLV
2
T

RT þ RLð Þ2
ð4:24Þ

When VT and RT are fixed, the magnitude of the load resistance determines the delivered

power PL. This power tends to zero when RL ! 0 or RL ! 1; moreover, it is always

positive. Therefore, according to Rolle’s theorem of calculus, the power must have a

maximum at a certain value of RL. For example, Fig. 4.18 shows a plot of the load power

as a function of RL when VT¼9 V and RT¼5 Ω.

+-
+
-

VT

a

b

RT

RL

Fig. 4.17. A battery (or another practical voltage source) connected to a load.
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We will find the maximum of the load power analytically. We treat PL in Eq. (4.24) as a

function of RL, i.e., PL ¼ PL RLð Þ. It is known that a function has a maximum when its

first derivative is zero. Consequently, differentiating PLwith respect to RL gives

dPL

dRL

¼ V 2
T

1

RT þ RLð Þ2
� 2

RL

RT þ RLð Þ3

" #

¼ V 2
T

RT � RL

RT þ RLð Þ3

" #

¼ 0 ð4:25Þ

The necessary and sufficient condition for Eq. (4.25) to hold is

RL ¼ RT ) PL ¼ 0:25V 2
T=RT ð4:26Þ

This result is of significant practical value despite, or maybe thanks to, its simplicity. The

maximum output power is achieved when the load resistance is equal to the internal

resistance of the power source. In other words, the load is matched to the source; it is

called the matched load. In power engineering and in RF and microwave engineering, the

problem of load matching is very important. However, it must be clearly stated that no

more than 50 % of the total circuit power can be extracted even in the best case. This

statement makes sense if we again examine the circuit in Fig. 4.17 with two equal

resistances. The power is divided equally; half of the total power is spent to heat up

the power source. The power maximum in Fig. 4.18 is relatively flat over the domain

RL > RT; however, the power drops sharply whenRL < RT. This last condition should be

avoided if at all possible.

Example 4.9: An audio amplifier produces an rms output of 20 V. Amplifier’s output
resistance is rated at 4 Ω. You are given four 4-Ω speakers. How should you connect the
speakers for the maximum acoustic power—in series, parallel, or a single speaker only?
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Fig. 4.18. Load power as a function of the load resistance for fixed VT ¼ 9 V, RT ¼ 5 Ω.
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Example 4.9 (cont.):

Solution: The rms voltage simply means the equivalent DC voltage that provides the same
power to the load as the average power of the primary AC voltage. Hence, the sophisticated
AC audio amplifier circuit is essentially replaced by its DC Thévenin equivalent with
VT¼ 20 V and RT¼ 4 Ω. Similarly, the dynamic speakers are replaced by a DC load with
RL¼ 16 Ω if connected in series combination or with RL¼ 1 Ω if connected in parallel or
with RL¼ 4 Ω if only a single speaker is employed. The output (audio) powers are as
follows:

PL ¼
1� 400

4þ 1ð Þ2
¼ 16 W four speakers in parallel ð4:27aÞ

PL ¼
4� 400

4þ 4ð Þ2
¼ 25 W single speaker ð4:27bÞ

PL ¼
16� 400

4þ 16ð Þ2
¼ 16 W four speakers in series ð4:27cÞ

The best (loudest) choice would be surprisingly one single speaker.

4.3.2 Maximum Power Efficiency

A power analysis would be incomplete without discussing the efficiency of the power

transfer. Consider an electric boat driven by a marine battery. The optimization of the

battery-motor system for maximum power transfer implies that we will move fast but

perhaps not very far. Another optimization is possible for maximum power efficiency. In

this case, we could tolerate a smaller speed in order to travel a longer distance. The circuit

to be analyzed is again shown in Fig. 4.17. The useful power delivered to the load is given

by Eq. (4.24). The total power delivered by the source is

P ¼ RT þ RLð ÞI2 ¼
V 2

T

RT þ RL

ð4:28Þ

The power efficiency E is defined as the ratio of the useful power to the total power:

E ¼
PL

P
¼ RT þ RLð ÞI2 ¼

RL

RT þ RL

ð4:29Þ

Thus, the power efficiency is a simple function of the load resistance and the source

resistance. It does not depend on the source voltage. The efficiency is zero when the load

resistance is zero. It monotonically increases and approaches maximum (the maximum

value is unity, which corresponds to an efficiency of 100 %) when the load resistance

becomes large enough when compared to the source resistance. For example,
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Fig. 4.19 augments the load power graph from Fig. 4.18 with the corresponding effi-

ciency curve.

Example 4.10: A battery with the stored energy of EB¼ 0.1 MJ, VT¼ 12 V, and RT¼ 5 Ω
delivers its entire energy during the time period 0 � t � T and discharges with a constant
output voltage/current. Two loads are used: RL¼ 5 Ω and RL¼ 50 Ω. Determine discharge
time T and total energy delivered to the load in each case.

Solution: The discharge time, T ¼ EB=P, is determined first where the total power
P follows Eq. (4.28). Assuming constant battery discharge rate, we obtain

T � 1:9 h for the 5 Ω load and

T � 10:6 h for the 50 Ω load
ð4:30Þ

The total energy delivered to the load, E ¼ TPL, in each case is given by

E5Ω ¼ 50 kJ for the 5 Ω load and

E50Ω ¼ 91 kJ for the 50 Ω load
ð4:31Þ

Thus, the total energy extracted from the battery is nearly twice as high in the second case.
However, it takes about five times longer to extract this energy.

4.3.3 Application Example: Power Radiated by a Transmitting Antenna

A transmitting antenna in a radio handset features a monopole antenna. It is connected to

a source that has the same basic form as in Fig. 4.17 but with an AC generator instead of

the DC source and with an internal (generator) resistance of 50 Ω. The antenna as a load

also has a “radiation” resistance of 50 Ω. This resistance describes power loss in terms of
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Fig. 4.19. Load power and power efficiency for fixed VT ¼ 9V , RT ¼ 5Ω.
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electromagnetic radiation from the antenna. Thus, the antenna, if properly matched to the

power source, will radiate 50 % of the total power as electromagnetic waves into space.

Now a young electrical engineer decides to “modify” the handset by cutting the mono-

pole antenna and leaving only one third of its length. In this case, the antenna’s radiation

resistance is reduced to one ninth of its original value. How does this affect the radiated

signal? To answer this question, we find the instantaneous load power, which also follows

Eq. (4.24), i.e.,

PL tð Þ ¼
RLV

2
T tð Þ

RT þ RLð Þ2
ð4:32Þ

The ratio of the power levels for the two antenna configurations does not depend on time:

PL�short

PL�original

¼
50=9

50þ 50=9ð Þ2
=

50

50þ 50ð Þ2
¼

0:0018

0:0050
¼ 0:36 ð4:33Þ

Thus, for the shorter antenna, we will only achieve about 36 % of the radiated power

compared to the original handset. In practice, this estimate becomes even lower due to the

appearance of a very significant antenna capacitance.

4.3.4 Application Example: Maximum Power Extraction from Solar Panel

Every solar panel has the measured data for VOC and ISC listed on its backside. For linear

circuits, V T ¼ VOC, RT ¼ VOC=ISC. If the solar panel were a linear circuit, the max-

imum extracted power would be exactly equal to 0.25VOCICS according to Eq. (4.26).

Fortunately, this is not the case. The maximum extracted power is significantly greater

than this value. However, it is still less than the “best” possible value of VOCICS. To

quantify the maximum power output, every solar panel has another set of measured data,

VMP and IMP, also listed on its backside. VMP stands for maximum power load voltage and

IMP stands for the maximum power load current. The maximum extracted power is the

product VMPIMP, which is always less than VOCICS. The ratio of these two powers,

F ¼
VMPIMP

VOCISC
< 1; ð4:34Þ

is known as the fill factor of the solar panel (or solar module). We will derive the

theoretical value of the fill factor in the next section. Table 4.2 lists some experimental

data for crystalline (c-Si) solar panels. The experimental fill factor not only accounts

for the nonlinear physics of the cell, but it also includes some resistive losses in an

individual cell and in the entire solar module. Equation (4.34) approximates the fill factor

of a cell too.
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Exercise 4.11: A REC SCM220 220 Watt c-Si solar panel has the following readings on
the back: the short-circuit current of 8.20 A, the open-circuit voltage VOC of 36.0 V, the
maximum power voltage of 28.7 V, and the maximum power current of 7.70 A. Estimate
the load resistance required for the maximum power transfer to the load.

Answer: 3.72Ω.

Table 4.2 demonstrates that different c-Si solar cells have approximately the same values

of VMP/VOC, IMP/ISC, and the same fill factor. Using the photocurrent density estimate and

the open-circuit cell voltage estimate given at the beginning of this section, we may assume

approximate generic values for c-Si solar cells at normal irradiation conditions:

VMP ¼ 0:8VOC, IMP ¼ 0:9ISC, F ¼ 0:72, VOC ¼ 0:6 V cellð Þ,
JP ¼ 0:03 A=cm2 ð4:35Þ

These values are not exact; they are meant as a convenient tool for engineering estimates.

Equation (4.35) may be used to address an important task: identify the proper panel

configuration and its approximate size in order to provide enough power for a given load.

Example 4.11: A 3-Ω load (for instance, a hot plate in a camp) is rated at 23 Vand is to be
powered by a solar panel. A c-Si photovoltaic sheet material is your material of choice.
Outline parameters of a solar module that is capable of powering the load and estimate the
overall module size.

Table 4.2. Manufacturer-provided circuit parameters for twelve different c-Si solar panels from
five different manufacturers (1-W to 230-W output power range).

Solar panel Cells (series) VMP/VOC

IMP/

ISC F

$/Watt

(2010)

1-W BSPI-12 Power Up c-Si panel 36 0.81 0.86 0.70 24.00

10-W BSP-1012 Power Up c-Si panel 36 0.81 0.88 0.71 8.80

65-W BSP-1012 Power Up c-Si panel 36 0.80 0.94 0.75 6.35

80-W Sharp NE-80EJEA c-Si panel 36 0.80 0.88 0.70 4.29

176-W Sharp ND-176U1Y c-Si panel 48 0.80 0.91 0.73 4.68

230-W Sharp ND-U230C1 c-Si panel 60 0.82 0.92 0.75 3.51

5-W BP Solar SX-305M c-Si panel 36 0.80 0.90 0.72 15.00

20-W BP Solar SX-320M c-Si panel 36 0.80 0.92 0.74 8.30

175-W BP Solar SX3175N c-Si panel 72 0.83 0.92 0.76 4.19

65-W Kyocera KC65T c-Si panel 36 0.80 0.94 0.75 5.22

165-W SolarWorld SW230 c-Si panel 72 0.80 0.90 0.72 4.72

230-W SolarWorld SW230 c-Si panel 60 0.80 0.92 0.74 3.18

Average 0.806 0.908 0.73 NA
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Example 4.11 (cont.):

Solution: First, we need to find the required load current. It is given by
I ¼ 23 V=3 Ω ¼ 7:67 A. Thus, the maximum power parameters of the module must
be equal toVMP ¼ 23 V and IMP ¼ 6:67 A. Next, we the find the measurable parameters,
VOC, ISC of the module. According to Eq. (4.35),

VOC ¼
VMP

0:8
¼ 28:75V, ISC ¼

IMP

0:9
¼ 8:52A ð4:36Þ

Then we find the number of cells N and the area of an individual cell A, assuming a series
combination of individual cells:

N ¼
VOC

0:6V
¼ round 47:9ð Þ ¼ 48, A ¼

ISC

0:03A=cm2
¼ 284cm2 ð4:37Þ

The overall module (panel) size for closely spaced cells is then 1.36 m2.

Example 4.12: Compare the theoretical design of Example 4.11 with a real solar module
having nearly the same output power (176 W) and nearly the same maximum power
voltage (23 V).

Solution: We choose a Sharp ND-176U1Y, 176-watt solar panel from Table 4.2 for
comparison. Its maximum power voltage is 23.4 V. Table 4.3 lists the parameters of both
panels. The designs agree with the number of cells and with the size of the unit cell. The
overall panel size for closely spaced cells is also quite similar: 1.36 m2 versus 1.32 m2.

Table 4.3. Parameters of a theoretically designed 176 W solar panel versus the
corresponding 176 W hardware prototype.

Example 4.11 (theory estimates) 176-watt Sharp ND-176U1Y panel

VMP ¼ 23:0V, PL ¼ 176W VMP ¼ 23:4V,PL ¼ 176W

No. of cells: 48 No. of cells: 48

Unit cell area: 284 cm2 Unit cell area: 275 cm2

Exercise 4.12: A 9.6 W DC motor in an autonomous robot is rated at 17 V and is to be
powered by a solar panel. A c-Si photovoltaic sheet material is your material of choice.
Outline parameters of a solar module that is capable of powering the load and estimate the
overall module size.

Answer: The module should include 36 cells in series, with the area ofA ¼ 21:0cm2 each.
The overall module (panel) size for closely spaced cells is then 0.0756 m2.
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Section 4.4 Analysis of Nonlinear Circuits: Generic

Solar Cell

4.4.1 Analysis of Nonlinear Circuits: Load Line Method

Consider a nonlinear passive circuit element which possesses a particular υ-i characteristic.

It is shown in Fig. 4.20 by a rectangle. Examples of such elements were given in Chapter 2.

Element’s polarity (direction of current inflow for passive reference configuration) is labeled

by a plus sign. Figure 4.20 presents four basic nonlinear circuits (networks) encountered in

practice: a linear active network given by its Thévenin equivalent and connected to a

nonlinear load, a practical nonlinear voltage source connected to a linear load, a linear

active network in the form of the Norton equivalent connected to a nonlinear load, and a

practical nonlinear current source connected to a linear load. Interchanging the place of the

nonlinear element and resistance if necessary and using the source transformation theorem,

we can state that all four circuits in Fig. 4.20 are topologically equivalent. Therefore, only

one of them will be studied, for example, the network shown in Fig. 4.20a. The υ-i

characteristic of the practical voltage source between terminals a and b in Fig. 4.20a is

given, according to KVL, by

I ¼
V T � V

RT

ð4:38Þ

This linear function given by Eq. (4.38) is known as the load line. It is plotted in Fig. 4.21

and intersects the voltage axis at V ¼ VT and the current axis at I ¼ VT=RT. The υ-i

characteristic of a nonlinear element is plotted in the same figure. Both υ-i characteristics

must give the identical values of voltage and current. Thus, the intersection of the load line

with the υ-i characteristic is the circuit solution. This is the essence of the load line method.
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Fig. 4.20. Four basic nonlinear circuits.
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Though primarily graphical, the load line method provides a great insight into the

problem under study.

Example 4.13: The circuit in Fig. 4.20a is characterized by V T ¼ 3 V, RT ¼ 1 kΩ. The
υ-i characteristic of the nonlinear element (the ideal Shockley diode) is

I ¼ 1� 10�9 exp V
0:0257 V

� �

� 1
� �

A½ 	. The goal is to solve the circuit using the load line

method.

Solution: Figure 4.22 plots two dependencies: the load line of Eq. (4.38) and the υ-i

characteristic of the ideal diode specified by the present example. Using visual inspection,
the intersection is evaluated as I � 2:6 mA,V � 0:4 V. This is the solution for the circuit
current and for the load voltage, respectively. The solution accuracy improves when the
scale of the plot is adjusted. In particular, we usually do not have to extend the voltage axis
all the way from 0 V to the supply voltage; only a small interval may be sufficient.
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Fig. 4.21. Load line method for a nonlinear circuit.
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Fig. 4.22. Load line method applied to a nonlinear circuit with an ideal diode.
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4.4.2 Iterative Method for Nonlinear Circuits

Assume that the nonlinear circuit element is characterized by an explicit function

I ¼ I Vð Þ. Then, according to Eq. (4.38), the load line method is equivalent to the

graphical solution of the transcendental algebraic equation in the form

VT � V

RT

¼ I Vð Þ ) V ¼ V T � RTI Vð Þ ð4:39Þ

An alternative is to solve this equation iteratively, starting with some initial guess V ¼ V 0.

The iterative method for nonlinear circuits may be formulated as follows. Two iterative

schemes (explicit and implicit) may formally be used. The first (explicit) scheme follows

from the second Eq. (4.39), and the second (implicit) scheme from the first Eq. (4.39):

V nþ1 ¼ VT � RTI V nð Þ, n ¼ 0, 1, 2, . . . or

V nþ1 ¼ I�1 VT � V n

RT

� �

, n ¼ 0, 1, 2, . . .
ð4:40Þ

where I�1 denotes the inverse function of I(V). The first (explicit) scheme is simpler when

I(V) is given. However, only the second scheme is recommended in practice since the first

scheme may not converge for typical nonlinear circuit elements, which model semicon-

ductor devices.

Example 4.14: Solve the previous example using the iterative solution of the transcen-
dental circuit equation.

Solution: We find the inverse υ-i characteristic of the nonlinear element first. It is

V ¼ 0:0257� ln
I

1� 10�9 A
þ 1

� 	

V½ 	, I ¼
3 V� V

1 kΩ
ð4:41Þ

The iterative scheme has the form (the second method of Eq. (4.40) is used)

V nþ1 ¼ 0:0257� ln
3 V� V n

1� 10�6 V
þ 1

� 	

, n ¼ 0, 1, 2, . . . ð4:42Þ

with the initial guess V 0 ¼ 0 V. It converges very fast; the corresponding iterations are

V 0 ¼ 0 V, V 1 ¼ 0:3833 V, V 2 ¼ 0:3798 V, and V 3 ¼ 0:3798 V.
Therefore, only a few iterations are usually sufficient. The final result is I ¼ 2:62 mA,

V ¼ 0:380 V, which improves the solution obtained with the load line method—see the
previous example. The initial guess of the iterative solution may vary widely, but it should
not exceed the source voltage.
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4.4.3 Application Example: Solving the Circuit for a Generic Solar Cell

Figure 4.23a shows a simplified physical composition of the solar cell in the form of a

pn-junction (a junction of two semiconductor materials), which essentially forms a

semiconductor diode.

Free charge carries generated by sunlight are separated by a built-in voltage or

potential φ(x) within the diode, which is the cause of an equivalent current source—the

photocurrent of the solar cell IP. The photocurrent mostly flows through the load. At the

same time, a certain portion of it, ID, could still flow through the pn-junction diode itself

as a forward diode current. Therefore, the load current I in Fig. 4.23 is less than the

photocurrent. Figure 4.23b shows a simplified equivalent circuit of a solar cell. This

circuit coincides with the nonlinear circuit in Fig. 4.20d and can be solved in the same

way once the υ-i characteristic of the equivalent diode is known. It is often given by

ID ¼ IS exp
V

nVT

� �

� 1

� 	

, VT ¼ 0:0257 V ð4:43Þ

with an effective ideality factor n and an effective saturation current IS of the

corresponding diode. The characteristic equation of the cell is the KCL in Fig. 4.23b:

I ¼ IP � IS exp
V

nVT

� �

� 1

� 	

ð4:44Þ

Figure 4.24 plots the I(V) dependence of the characteristic equation (4.44). The horizontal

straight asymptote is the photocurrent IP or the short-circuit current ISC. The vertical

straight asymptote is the open-circuit voltage VOC, VOC � VTnln IP=ISð Þ when

IP=IS >> 1. The area of the shaded rectangle is the load power; it is clearly maximized

at a certain operating point Q, where V ¼ VMP, I ¼ IMP.
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Fig. 4.23. (a) Simplified physical composition of the solar cell in the form of a pn-junction—a
semiconductor diode. (b) Simplified (lossless single-diode) equivalent circuit.
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Finding maximum power parameters is a straightforward but lengthy procedure. The

load power is found as a function of V; its derivative must be equal to zero to maximize

the load power. This is essentially the maximum power theorem for nonlinear circuits.

The final expressions are

VMP ¼ VOC � nVTln 1þ
VOC

nVT

� �

, IMP ¼ ISC 1�
nV T

VMP

� �

� 90% of ISC ð4:45Þ

Forn ¼ 1:75andVOC ¼ 0:6V,VMP � 80% of VOC, IMP � 90% of ISCwhich is close to

the data from Table 4.2 given that the fill factors for the cell and the panel are approx-

imately the same. Note that the load resistance is finally found as RL ¼ VMP=IMP.
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Fig. 4.24. Finding operating point Q of the solar cell for the maximum power transfer.
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Summary

Circuit analysis techniques: nodal/mesh analysis

Nodal

analysis

Based on KCL and Ohm’s law:

V 1�V S

R1
þ V 1�0 V

R3
þ V 1�V 2

R2
¼ 0

V 2�V S

R5
þ V 2�0 V

R4
þ V 2�V 1

R2
¼ 0

Supernode

KCL for the supernode:

V 1 � V S

R1

þ
V 1

R3

þ
V 2

R4

þ
V 2 � V S

R5

¼ 0

plus KVL: V 2 ¼ V 1 þ V 0

Mesh

analysis

Based on KVL and Ohm’s law:

R1 I1� I3ð ÞþR3I1þR5 I1� I2ð Þ¼ 0

R2 I2� I3ð ÞþR5 I2� I1ð ÞþR4I2 ¼ 0

�V S þR1 I3� I1ð ÞþR2 I3� I2ð Þ¼ 0

for meshes 1, 2, and 3

Supermesh

KVL for the supermesh:

R1 I1 � I3ð Þ þ R3I1 þ R4I2þ

R2 I2 � I3ð Þ ¼ 0

plus Eq. for mesh 3 and the

KCL: I1 � I2 ¼ IS

Circuit analysis techniques: source transformation theorem

Source

transfor-

mation

theorem

Substitution of voltage source VT in

series with resistance RT for current

source IN with resistance RN:

RN ¼ RT , IN ¼
VT

RT

VOC ¼ VT , ISC ¼
V T

RT

(continued)
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Circuit analysis techniques: Thévenin/Norton theorems/equivalents

Thévenin

and Norton

theorems

Any linear network with indepen-

dent sources, dependent linear

sources, and resistances can be

replaced by a simple equivalent

network in the form:

i. a voltage source VT in series

with resistance RT;

ii. a current source IN in parallel

with resistance RN

Summary of major circuit analysis methods (linear circuits)

– Superposition theorem (previous chapter);

– Nodal/mesh analysis (this chapter);

– Source transformation theorem (this chapter);

– Thévenin and Norton equivalent circuits (this chapter)

Linear networks: measurements/equivalence

Method

of short/

open

circuit

– Two arbitrary linear networks are

equivalent when their VOC and ISC
coincide.

– This method is also used for

nonlinear circuits

Linear networks: maximum power theorem

Maximum

power the-

orem (load

matching)

– Power delivered to the load is

maximized when RL ¼ RT;

– For high-frequency circuits it also

means no “voltage/current wave

reflection” from the load

Linear networks: maximum power efficiency

Power effi-

ciency is

maximized

when the

load resis-

tance is

very high

(load

bridging)

Power transfer efficiency:

E ¼
PL

P
¼

RL

RT þ RL

(continued)
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Linear networks: dependent sources and negative equivalent resistance

Equivalent

resistances

of basic

linear net-

works with

dependent

sources

Case a): RT ¼ R
1�A

Case b): RT ¼ R� Z

Case c): RT ¼ R
1�GR

Case d): RT ¼ R 1� Að Þ
Equivalent resistance may become

negative

Nonlinear networks: four basic topologies

Basic

nonlinear

circuits

– Linear voltage source connected

to a nonlinear load (diode circuit);

– Linear current source connected

to a nonlinear load;

– Nonlinear voltage source

connected to a linear load;

– Nonlinear current source

connected to a linear load

(photovoltaic circuit)

Nonlinear networks: circuit analysis via load line method

Load line

method

Solution: The load line (υ-i charac-

teristic of the linear source, which

is I ¼
VT�V
RT

) intersects the υ-i

characteristic of the nonlinear

load, I(V)

Nonlinear networks: iterative solution

Finding the

intersection

point

iteratively

For the circuit in the previous row:

I Vð Þ ¼
VT � V

RT

) V nþ1 ¼ I�1 VT � V n

RT

� �

,

n ¼ 0, 1, . . .

Implicit scheme:

initial guess V0may be 0 V

Nonlinear networks: finding resistive load for maximum power extraction

Finding

maximum

load power

for the

equivalent

model of a

solar cell

Load power is computed as

PL ¼ V � I Vð Þ. Then, it is maxi-

mized, which is equivalent to solving

equation:
dPL

dV
Vð Þ ¼ 0

for unknown voltage V

(continued)
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Some useful facts about power extraction from solar cells/modules

Typical values of open-circuit voltage VOC and

photocurrent density JP of a c-Si cell

Crystalline silicon or c-Si cell:

VOC � 0:6 V; JP � 0:03 A=cm2

– Open-circuit module voltage is N times the

cell voltage, N � VOC

– Short-circuit module current ISC is the cell

short-circuit current ISC ¼ AJP where A is

cell area

Typical values of maximum-power parameters

and fill factor for c-Si cells/modules; the load

resistance must be RL ¼ VMP=IMP

Fjmodule ¼
VMPIMP

VOCISC
� Fjcell (for low-loss

modules)

VMP � 0:8VOC, IMP � 0:9ISC, F � 0:72

Lossless single-diode model of a solar cell:

IP ¼ AJP—photocurrent (A);

A—cell area (cm2);

VT—thermal volt. (0.0257 V);

n—ideality factor (1 < n < 2);

IS � IPexp �
VOC

nV T

� �

(A)
I ¼ IP � IS exp

V

nVT

� �

� 1

� 	

Maximum-power analytical solution for loss-

less single-diode model of a solar cell
VMP � VOC � nVTln 1þ

VOC

nVT

� �

,

IMP ¼ ISC 1�
nVT

VMP

� �
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Problems
4.1 Nodal/Mesh Analysis

4.1.2 Nodal analysis
Problem 4.1.

A. Using the nodal analysis, determine the
supply current I for the circuit shown in
the figure.

B. Show the current directions for every
resistance in the circuit.

1 kW

1 kW

1 kW

2 kW3 kW

+
-5 V

I

Problem 4.2.

A. Using the nodal analysis, determine the
total circuit current I for the circuit
shown in the following figure.

B. Show the current directions for every
resistance in the circuit.

+
- 10 V

1 kW

5 kW

1 kW 1 kW

1 kW

I

Problem 4.3. Introduce the ground termina-
tion, write the nodal equations, and solve for
the node voltages for the circuit shown in the
following figure. Calculate the current I shown
in the figure.

+
-10 V

1 kW

1 kW 1 kW

1 kW

1 mA
I

Problem 4.4. Introduce the ground termina-
tion, write the nodal equations, and solve for
the node voltages for the circuit shown in the
figure. Calculate the current through the resis-
tance Rx and show its direction in the figure.

1 AR =1 Wx

1 W

+
-

5 V 1 W

1 W

Problem 4.5. For the circuit shown in the
following figure,

1. Determine current ix through resistance
Rx.

2. Show its direction on the figure.

1 kW

R =1 kWx

1 kW

4 kW3 kW

0 V

+
-10 V

Problem 4.6. For the circuit shown in the
following figure,

A. Write nodal equations and solve for the
node voltages. Then, find the value of i1.

B. Could this problem be solved in another
(simpler) way?

1 A

10 W

20 W 5 W 2 A
i1

Problem 4.7.

A. Write the nodal equations and solve for
the node voltages for the circuit shown in
the following figure. Then, find the value
of i1.

B. Use MATLAB or other software of your
choice for the solution of the system of
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linear equations; attach the code to the
solution.

+
-

10 V

1 kW

5 kW

1 kW 1 kW

1 kW

I

1 kW 1 kW

Problem 4.8. The following figure shows the
DC equivalent of a residential three-wire sys-
tem, which operates at 240 V rms (do not
confuse it with the three-phase system, which
carries a higher current). Two 120-V rms
power supplies are connected as one dual-
polarity power supply, i.e., in series. The
10-Ω load and the 20-Ω load are those driven
by the two-wire (and one ground) standard
wall plug with 120 V rms—the lights, a TV,
etc. The 6-Ω load consumes more power and it
is driven with 240 V rms using a separate
bigger wall plug (+/� and neutral (not
shown))—the stove, washer, dryer, etc. Deter-
mine the power delivered to each load. Hint:
Use a calculator or software of your choice for
the solution of the system of linear equations
(MATLAB is recommended).

+
- 120 V 10 W

0.1 W

+
- 120 V

0.1 W

0.1 W

20 W

6 W
neutral

hot

hot

4.1.3 Supernode
Problem 4.9. Introduce the ground terminal,
write the nodal equations, and solve for the

node voltages for the circuit shown in the fig-
ure. Calculate the current I shown in the figure.

+
-15 V

1 kW

1 kW

1 kW

1 kW

+

-

5 V

I

Problem 4.10. Introduce the ground terminal,
write the nodal equations, and solve for the node
voltages for the circuit shown in the figure.
Calculate the current I shown in the figure.

+
-10 V

1 kW

1 kW

1 kW

1 kW

+

-

5 V

I

5 kW

4.1.4 Mesh analysis

4.1.5 Supermesh
Problem 4.11. For the circuit shown in the
figure, determine current i1

A. Using the mesh analysis
B. Using the nodal analysis

Which method is simpler?

2 mA

5 W

20 W 5 W 3 mA
i1

Problem 4.12. For the circuit shown in the
figure, determine voltage Vx

A. Using the mesh analysis
B. Using the nodal analysis
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Which method appears to be simpler?

2 kW

1 kW

1 kW

2 kW3 kW

1mA

+

-

Vx

Problem 4.13. For the circuit shown in the
figure

A. Determine the circuit current I using
either the nodal analysis or the mesh
analysis.

B. Explain your choice for the selected
method.

1 kW

5 kW

1 kW 1 kW

1 kW

I

+
- 10 V

Problem 4.14. For the circuit shown in the
figure, determine its equivalent resistance
between terminals a and b. Hint: Connect a
power source and use a mesh-current analysis
or the nodal analysis.

1 kW

1 kW

1a  kW

1 kW

1 kW 1 kWb

1 kW

Problem 4.15. For the circuit shown in the
figure, determine the current i1 of the 20-V
voltage source.

20 V

9 W

10 W 4 W 0.5 A

i1

+
-

2 W 8 W

Problem 4.16. Determine voltage across the
current source for the circuit shown in the fig-
ure that follows using the mesh analysis and the
supermesh concept.

1 kW2 kW

1 kW3 kW

+
-10 V

2 mA

1 kW

4.2 Generator Theorems

4.2.1 Equivalence of Active One-Port

Networks. Method of Short/Open

Circuit
Problem 4.17. A linear active network with
two unknown circuit elements measures
VOC ¼ 5 V, ISC ¼ 10 mA.

A. Determine parameters VT, RT and IN, RN

of two equivalent networks shown in the
figures below.

B. Could you identify which exactly net-
work is it?

+
-

VT

a

b

IN

a

b

a)

b)

RT

RN

Problem 4.18. Given two networks shown in
the figure that follows:

A. Determine their open-circuit voltage VOC

and short-circuit current ISC for each
of them.

B. Are the networks equivalent?
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+
-

3 V

a

b

a

b

a)

b)

1 kW

6 mA

0.5 kW

4.2.2 Application example: reading and

using data for solar panels
Problem 4.19. The area of a single cell in the
10-W BSP-1012 Power Up c-Si panel is
~22 cm2. Predict:

A. Open-circuit voltage of the solar cell,
VOC

B. Photocurrent density of the cell, JP
C. Short-circuit current of the cell, ISC

Compare the above value with the value ISC
¼ 0:66 A reported by the manufacturer.

Problem 4.20. The area of a single cell in the
175-W BP Solar SX3175 c-Si panel is
156.25 cm2. Predict:

A. Open-circuit voltage of the solar cell,
VOC

B. Photocurrent density of the cell, JP
C. Short-circuit current of the cell, ISC

Compare the above value with the value ISC
¼ 5:1A reported by the manufacturer. What
value should the photocurrent density have in
order to exactly match the short-circuit current
reported by the manufacturer?

Problem 4.21. Are the solar cells in the solar
module connected in parallel or in series? Why
is one particular connection preferred?

Problem 4.22. You are given three c-Si solar
cells shown in the figure that follows, each of
area A/3. Draw wire connections for a cell
bank, which has the performance equivalent to
that of a large solar cell with the area A.

n

p

n

p

n

p

a

b

c

d

e

f

A/3

A/3

A/3

Problem 4.23. Individual solar cells in the fig-
ure to the previous problem are to be connected
into a standard solar module. Draw the
corresponding wire connections.

Problem 4.24.A 10-WBSP1012 PV c-Si mod-
ule shown in the figure has 36 unit cells
connected in series, the short-circuit current of
0.66 A, and the open-circuit voltage of 21.3 V.
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A. Estimate the area of the single solar cell
using the common photocurrent density
value for c-Si solar cells.

B. Estimate the open-circuit voltage for the
single cell.

Problem 4.25.A 20-WBSP2012 PV c-Si mod-
ule shown in the figure has 36 unit cells
connected in series, the short-circuit current of
1.30 A, and the open-circuit voltage of 21.7 V.

A. Estimate the area of the single solar cell
using the common photocurrent density
value for c-Si solar cells.

B. Estimate the open-circuit voltage for the
single cell.

Problem 4.26. A c-Si solar module is needed
with the open-circuit voltage of 10 V and the
short-circuit current of 1.0 A. A number of
individual solar cells are available; each has
the area of 34 cm2, the open-circuit voltage of
0.5 V, and the short-circuit current of 1.0 A.
Identify the proper module configuration (num-
ber of cells) and estimate the module’s
approximate size.

Problem 4.27. A c-Si solar module is needed
with the open-circuit voltage of 12 V and the
short-circuit current of 3.0 A. A number of
individual solar cells are available; each has
the area of 34 cm2, the open-circuit voltage of
0.5 V, and the short-circuit current of 1.0 A.

Identify the proper module configuration
(number of cells) and estimate the module’s
approximate size.

4.2.3 Source Transformation Theorem
Problem 4.28. Find voltage V in the circuit
shown in the figure that follows using source
transformation.

+
- 2 V3 mA 1 kW

1 kW 2 kW

2 kW

+

-
V

Problem 4.29. The circuit shown in the follow-
ing figure includes a current-controlled voltage
source. Find current ix using source
transformation.

3 mA 1 kW

5 kW

+
- 4000ix

ix

Problem 4.30. The circuit shown in the follow-
ing figure includes a voltage-controlled voltage
source. Find voltage υx using source
transformation.

2 mA 1 kW

2 kW

+
2vx

+

-

vx
-

Problem 4.31. Repeat the previous problem for
the circuit shown in the figure below.

3 mA 1 kW

2 kW 

+
- 2vx

+

-

vx
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4.2.4 Thévenin’s and Norton’s Theorems
Problem 4.32. Find:

1. Thévenin (or equivalent) voltage
2. Thévenin (or equivalent) resistance

for the two-terminal network shown in the fig-
ure that follows. Assume three 9-V sources
separated by resistances of 1 Ω each.

+
-

VB1

RB1

+
-

VT

RT

+
-

RB2

+
-

RB3

a

b

a

VB2 VB3

b

Problem 4.33. Find:
1. Thévenin (or equivalent) voltage
2. Thévenin (or equivalent) resistance

for the two-terminal network shown in the fig-
ure that follows (three practical voltage sources
in series) when

RB1 ¼ 2Ω,RB2 ¼ 3 Ω,RB3 ¼ 0:5Ω,

VB1 ¼ 3 V, VB2 ¼ 6 V,V B3 ¼ 3 V:

+
-

VT

RT

a

b

+
-

RB2

+
-

RB3

+
-

VB1

RB1

a

b

VB2

VB3

Problem 4.34. Find:
1. Thévenin (or equivalent) voltage;
2. Thévenin (or equivalent) resistance

for the two-terminal networks shown in the
following figures.

+
- 48 V 20 W 16 W

5 W
a

4 W

b

a

b

1 mA

1 kW

3 kW

6 kW

b)

c)

+
-

a

b

10 V

2 kW

2 kW

6 kW1 kW

a)

+
-

a

b

10 V

1 kW

3 kW

6 kW

d)

Problem 4.35. Find:
1. Thévenin voltage
2. Thévenin resistance

for the two-terminal network shown in the fol-
lowing figure when
R1 ¼R2 ¼R3 ¼ 1kΩ,V S1 ¼V S2 ¼ 10 V:

R1
+
-

VS1

+

-

VS2

R2

R3

a

b

Problem 4.36. A two-terminal network shown
in the figure is a starting section of a ladder
network used for digital-to-analog conversion.
Express:

1. Thévenin (or equivalent) voltage
2. Thévenin (or equivalent) resistance
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in terms of (digital) voltage D0 and
resistance R.

D0

2R
2R

+
-

a

b

Problem 4.37. A two-terminal circuit network
in the figure is a two-bit ladder network used
for digital-to-analog conversion. Express
parameters of the corresponding Norton equiv-
alent circuit in terms of (digital) voltagesD0,D1

and resistance R.

D0

2R
2R

+
-

a

b

D1

2R

+
-

R

Problem 4.38. A two-terminal network shown
in the figure is a four-bit ladder network used
for digital-to-analog conversion. Express:

1. Thévenin (or equivalent) voltage
2. Thévenin (or equivalent) resistance

in terms of four (digital) voltagesD0,D1,D2,D3

and resistance R.

D0

2R

D1 D2 D3

R R R

2R

+
-

2R

+
-

2R

+
-

+
-

2R

1

2

Problem 4.39. Determine the Norton equiva-
lent for the circuit shown in the figure. Express
your result in terms of I and R.

I R

a

b

I R

Problem 4.40. Each of three identical batteries
is characterized by its Thévenin equivalent cir-
cuit withV T ¼ 9 VandRT ¼ 1 Ω. The batteries
are connected in parallel. The parallel battery
bank is again replaced by its Thévenin equiva-
lent circuit with unknown VTBank and RTBank.
Find those parameters (show units). Hint:

This is a tricky problem; double-check the
connecting nodes when drawing the circuit
diagram.

Problem 4.41. Establish Thévenin and Norton
equivalent circuits for the network shown in the
following figure.

-2vx

1 

a

b

+
-

+

-

vx2 kW kW0.1 mA

4.2.5 Application Example: Generating

Negative Equivalent Resistance
Problem 4.42. Establish the equivalent
(Thévenin) resistance for the network shown
in the following figure. Carefully examine the
sign of the equivalent resistance.

a

b

+

-

Avx
+
-

+

-

vx

R1

R2
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Problem 4.43. Derive the equivalent
(Thévenin) resistance for the networks shown
in the figure that follows (confirm Fig. 4.16 of
the main text).

a)

R+

-

Avx
+
-

+

-

vx

R

+

-

Gvx

+

-

vx

R+

-

+
-

R

+

-

Aix

ix

ix

Zix

b)

c)

d)

4.2.6 Summary of Circuit Analysis

Methods
Problem 4.44. Solve the circuits shown in the
following figure—determine current I (show
units). You can use any of the methods studied
in class:

- Superposition theorem
- Nodal/mesh analysis
- Source transformation theorem
- Thévenin and Norton equivalent circuits

Attempt to apply two different methods of your
choice to every circuit.

1 mA 2 kW 1 kW

+

-

5 mA

3 V

I

1 mA 2 kW 1 kW

+

-

4 mA

3 V

I

a)

b)

+
-

6 V

2 kW6 kW

+
-

3 V3 kW

I

c)

Problem 4.45. Solve the circuits shown in the
following figure—determine unknown voltage
V or current I (show units). You can use any of
the methods studied in class:

- Superposition theorem
- Nodal/mesh analysis
- Source transformation theorem
- Thévenin and Norton equivalent circuits

a)

b)

c)

6 mA

1 kW 2 kW

2 kW+

-
V+

- 4 V

I
+
- 70V 1 kW

0.5kW

0.5kW

+
- 14V

1.5 kW

1.5 kW

2 A1 W

1 W

+

-

10 V 1 W

1 W

I
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4.3 Power Transfer

4.3.1 Maximum Power Transfer

4.3.2 Maximum Power Efficiency
Problem 4.46. A deep-cycle marine battery is
modeled by an ideal voltage source of 24 V in
series with a 1-Ω resistance shown in the figure
that follows. The battery is connected to a load,
and the load’s resistance, RL, needs to be opti-
mized. Power delivered to the load has a maxi-
mum at exactly one value of the load resistance.
Find that value and prove your answer graphi-
cally using software of your choice (MATLAB is
recommended).

+
-

RL?24V

1 W

Problem 4.47. A power supply for an electric
heater can be modeled by an ideal voltage source
of unknown voltage in series with the internal
resistance RT ¼ 4 Ω.

A. Can you still determine when the power
delivered to a load (a heating spiral with
resistance RL) is maximized?

B. Does the answer depend on the source
voltage?

Problem 4.48. For the circuit shown in the
figure, when is the power delivered to the load
maximized?

RL?

1.5 W

1.5 W

+
-12 V

Problem 4.49. A battery can be modeled by an
ideal voltage source VT in series with a resis-
tance RT.

+
-

RL?

RT

VT

1. For what value of the load resistance RL

is the power delivered to the load
maximized?

2. What percentage of the power taken from
the voltage source VT is actually deliv-
ered to a load (assuming RL is chosen to
maximize the power delivered)?

3. What percentage of the power taken from
the voltage source VT is delivered to a
load when RL ¼ 0:1RT?

Problem 4.50. A micro-power photovoltaic
device can be modeled under certain conditions
as an ideal current power source and a resistance
in parallel—see the figure that follows. At which
value of the load resistance, RL, is the power
delivered to the load maximized?

5 mA 50 kW RL

Problem 4.51. A low-cost polycrystalline
Power Up BSP1-12 1-W solar panel lists rat-
ings for the output voltage and current, which
give maximum load power: VLmax¼ 17.28 V,
ILmax¼ 0.06 A. Based on these cell specifica-
tions, which value of the equivalent resistance
should the load to be connected to the solar cell
have for maximum power output?

Problem 4.52. The solar panel from the previ-
ous problem generates a significant voltage of
~13 V in a classroom without direct sunlight,
but the resulting current is small, ~1 mA.

A. Now, what value of the equivalent resis-
tance should the load have for maximum
power output?
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B. How is the maximum load power differ-
ent, compared to the previous problem?

Problem 4.53. The heating element of an elec-
tric cooktop has two resistive elements, R1 ¼
50 Ω and R2 ¼ 100 Ω, that can be operated
separately, in series, or in parallel from a certain
voltage source that has a Thévenin (rms) volt-
age of 120 Vand internal (Thévenin) resistance
of 30 Ω. For the highest power output, how
should the elements be operated? Select and
explain one of the following: 50 Ω only,
100 Ω only, series, or parallel.

Problem 4.54. You are given two speakers
(rated at 4 Ω and 16 Ω, respectively) and an
audio amplifier with the output resistance
(impedance) equal to 8 Ω.

16 W4 W8 W

A. Sketch the circuit diagram that gives the
maximum acoustic output with the avail-
able components. Explain your choice.

B. Sketch the circuit diagram for the maxi-
mum power efficiency. Explain your
choice.

4.3.4 Application Example: Maximum

Power Extraction from Solar Panel
Problem 4.55.

A. Describe in your own words the meaning
of the fill factor of a solar cell (and solar
module).

B. A 200-W GE Energy GEPVp-200 c-Si
panel has the following reading on its
back: VOC ¼ 32:9 V, ISC ¼ 8:1 A,
VMP ¼ 26:3 V, and IMP ¼ 7:6 A.
What is the module fill factor? What is
approximately the fill factor of the indi-
vidual cell?

Problem 4.56. Using two Web links
http://powerupco.com/site/
http://www.affordable-solar.com/,
identify the solar panel that has the greatest fill
factor to date.

Problem 4.57.A 10-WBSP1012 PV c-Si mod-
ule shown in the figure has 36 unit cells
connected in series, the short-circuit current of
0.66 A, and the open-circuit voltage of 21.3 V.
The maximum power parameters are
VMP ¼ 17:3 V and IMP ¼ 0:58 A.

A. Estimate the area of the single solar cell
using the common photocurrent density
value for c-Si solar cells (show units).

B. Estimate the open-circuit voltage for the
single cell.

C. Estimate the fill factor of the module and
of the cell.

D. Estimate the value of the equivalent load
resistance R required for the maximum
power transfer from the module to
the load.

Problem 4.58.A 20-WBSP2012 PV c-Si mod-
ule shown in the figure has 36 unit cells
connected in series, the short-circuit current of
1.30 A, the open-circuit voltage of 21.7 V, the
maximum power voltage VMP of 17.3 V, and
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the maximum power current IMP of 1.20 A.
Repeat the four tasks of the previous problem.

Problem 4.59. A REC SCM220 220-watt 20V
c-Si solar panel shown in the figure has the
following readings on the back: the short-
circuit current ISC of ~8.20 A, the open-circuit
voltage VOC of ~36.0 V, the maximum power
voltage VMP of ~28.7 V, and the maximum
power current IMP of ~7.70 A. Repeat the four
tasks of problem 4.57.

Problem 4.60. A 14.4-W load (a DC motor)
rated at 12 V is to be driven by a solar panel. A
c-Si photovoltaic sheet material is given, which
has the open-circuit voltage of 0.6 V and the

photocurrent density of JP ¼ 0:03 A=cm2.

Outline parameters of a solar module (number
of cells, cell area, and overall area) which is
capable of driving the motor at the above con-
ditions and estimate the overall panel size.

Problem 4.61. A custom 100-W load (a DC
motor) rated at 24 V is to be driven by a solar
panel. A c-Si photovoltaic sheet material is
given, which has the open-circuit voltage of
0.6 V and the photocurrent density of JP ¼
0:03 A=cm2. Outline parameters of a solar mod-
ule (number of cells, cell area, and overall area)
which is capable of driving the motor at the
above conditions and estimate the overall
panel size.

Problem 4.62. You are given: the generic fill
factor F ¼ 0:72 for a c-Si solar panels, the
generic open-circuit voltage VOC ¼ 0:6V of a
c-Si cell, and the generic photocurrent density

JP ¼ 0:03 W=cm2.
A. Derive an analytical formula that

expresses the total area Amodule in cm2

of a solar panel, which is needed to
power a load, in terms of the required
load power PL.

B. Test your result by applying it to the
previous problem.

Problem 4.63. You are given a low-cost
low-power flexible (with the thickness of
0.2 mm) a-Si laminate from PowerFilm, Inc.,
with the following parameters: a fill factor of
F ¼ 0:61, a single-cell open-circuit voltage of
VOC ¼ 0:82 V, and a photocurrent density of

JP ¼ 0:0081 A=cm2.
A. Derive an analytical formula that expres-

ses the total module area Amodule in cm2,

Chapter 4 Circuit Analysis and Power Transfer

IV-186



which is needed to power a load, in terms
of the required load power PL.

B. Compare your solution with the solution
to the previous problem.

4.4 Analysis of Nonlinear

Circuits. Generic Solar Cell

4.4.1 Analysis of Nonlinear Circuits:

Load Line Method

4.4.2 Iterative Solution for Nonlinear

Circuits
Problem 4.64.A circuit shown in the following
figure contains a nonlinear passive element.
Using the load line method, approximately
determine the voltage across the element and
the current through it for the two types of the υ-i
characteristic, respectively.

I, mA

V, volts

00

0

1

-1

+
-

9.5 V

a

b

10.55 kW

V

+

-

v-i

I

+

a)

I, mA

V, volts

5 1

5 100

0

1

-1

b)

Problem 4.65.A circuit shown in the following
figure contains a nonlinear passive element as
part of a current source. Using the load line
method, approximately determine the voltage
across the element and the current through it for
the υ-i characteristic of the nonlinear element
shown in the same figure.

I, mA

V, volts

5 100

0

10

-10

a

b

V

+

-

v-i

+9 mA

667 W

Problem 4.66. Repeat the previous problem for
the circuit shown in the following figure.

I, mA

V, volts

5 100

0

10

-10

a

b

V

+

-

v-i

+8 mA
1 kW

Problem 4.67.A circuit shown in the following
figure contains a nonlinear passive element.
The υ-i characteristic of the nonlinear element
(the ideal Shockley diode) is
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I ¼ 5�10�10 exp
V

0:025 V

� �

�1

� 	

A½ 	:

Using the iterative solution, determine the volt-
age across the element and the current through it.

+
-

1 V

a

b

100 W

V

+

-

v-i

I

+

Problem 4.68. Repeat the previous problem
for the circuit shown in the following figure.
The υ-i characteristic of the nonlinear element
is the same.

a

b

V

+

-

v-i

+8 mA
1 kW

4.4.3 Application Example: Solving the

Circuit for a Generic Solar Cell
Problem 4.69. The I(V) dependence for a resis-
tive load in a circuit is shown in the figure that
follows.

I, A

V, Volts

PL

10V

16A

0

A. At which value of the load voltage is the
power delivered to the load maximized?

B. What is the related value of load
resistance?

Problem 4.70. A hypothetic thermoelectric
engine developed by the US Navy has the
I(V) dependence shown in the figure that
follows.

I, A

V, Volts

PL

2V

14.1A

0

10(2-V)
1/2

I, A

V, Volts

PL

3V

17.3A

0

10(3-V)
1/2

a)

b)

1. At which value of the load voltage is the
power, PL, delivered to the load
maximized?

2. What is the related value of load resis-
tance for maximum power transfer?

Problem 4.71. Estimate the values of VMP and
IMP versus VOC and ISC for a set of generic c-Si
solar cells. Every cell has V T ¼ 0:026V (room
temperature of 25 �C) and VOC ¼ 0:6 V. The
ideality factor n in Eqs. (4.43)–(4.45) is
allowed to vary over its entire range as shown
in the table that follows.

n VMP/VOC,% IMP/IOC,% F

1.00

1.25

1.50

1.75

2.00

Chapter 4 Circuit Analysis and Power Transfer

IV-188



Chapter 5: Operational Amplifier

and Amplifier Models

Overview

Prerequisites:

- Knowledge of major circuit elements (dependent sources) and their �-i
characteristics (Chapter 2)

- Knowledge of basic circuit laws (Chapter 3) and Thévenin equivalent (Chapter 4)

Objectives of Section 5.1:

- Learn and apply the model of an operational amplifier including principle

of operation, open-circuit gain, power rails, and input and output resistances

- Correlate the physical operational amplifier with the amplifier circuit model

- Establish the ideal-amplifier model

- Learn the first practical amplifier circuit—the comparator

Objectives of Section 5.2:

- Understand and apply the concept of negative feedback to an operational amplifier

circuit

- Construct three canonic amplifier circuit configurations with negative feedback: the

non-inverting amplifier, the inverting amplifier, and the voltage follower

- Understand the current flow in the amplifier circuit including the power transfer

from the power supply to the load

Objectives of Section 5.3:

- Choose the proper resistance values for the feedback loop and learn how to cascade

multiple amplifier stages

- Learn about input/output resistances of the amplifier circuit and establish load

bridging and load matching conditions important in practice

- Find ways to eliminate the DC imperfections of the amplifier that become very

apparent at high amplifier gains

- Use an amplifier IC with a single voltage supply (a battery)

Objectives of Section 5.4:

- Obtain the initial exposure to differential signals and difference amplifiers

- Build an instrumentation amplifier

- Connect an instrumentation amplifier to a resistive sensor
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Objectives of Section 5.5:

- Learn a general feedback system including closed-loop gain and error signal

- Apply the general feedback theory to voltage amplifier circuits

- Construct current, transresistance, and transconductance amplifiers with the negative

feedback

Application Examples:

Operational amplifier comparator

Instrumentation amplifier in laboratory

Keywords:

Operational amplifier: (abbreviation op-amp, integrated circuit, dual in-line package, non-

inverting input, inverting input, output terminal, power terminals, offset-null terminals,

differential input voltage, open-circuit voltage gain, open-loop voltage gain, open-loop

configuration, closed-loop configuration, power rails, voltage transfer characteristic, rail-to-rail,

comparator, digital repeater, zero-level detector, circuit model, input resistance, output resistance,

ideal amplifier, ideal-amplifier model, marking, summing point, common-mode input signal,

differential input signal, summing-point constraints, first summing-point constraint, second

summing-point constraint, sourcing current, sinking current, DC imperfections, input offset

voltage, input bias current, input offset currents), Negative feedback, Feedback loop, Feedback

as a dynamic process, Non-inverting amplifier, Inverting amplifier, Voltage follower (buffer)

amplifier, Summing amplifier, Digital-to-analog converter, Binary counter, DC-coupled

amplifier, AC-coupled amplifier, Capacitive coupling of an amplifier, Gain tolerance of an

amplifier, Circuit model of a voltage amplifier, Input resistance of amplifier circuit, Output

resistance of amplifier circuit, Load bridging (impedance bridging), Load matching (impedance

matching), Cascading amplifier stages, Virtual-ground (integrated) circuit, Differential voltage of

a sensor, Common-mode voltage of a sensor, Differential sensor, Single-ended sensor, Difference

amplifier, Differential amplifier circuit gain, Common-mode amplifier circuit gain, Common-

mode rejection ratio (CMRR), Unity common-mode gain stage, Instrumentation amplifier, Load

cell, Current amplifier using op-amp, Transconductance amplifier using op-amp, Transresistance

amplifier using op-amp, Howland current source (Howland current pump)

Linear feedback system: (forward gain? open-loop gain, feedback gain, feedback factor,

summing node, difference node, closed-loop gain, error signal)

Chapter 5 Operational Amplifier and Amplifier Models

V-190



Section 5.1 Amplifier Operation and Circuit Models

The low-power amplifier integrated circuit (IC) is arguably the most widely employed

discrete circuit component encountered in common electronic audio, control, and com-

munication systems. Among amplifiers, the differential input, high-gain amplifier called

the operational amplifier (or simply op-amp) has become a popular choice in many

circuit applications. At this point, it is impossible for us to understand the internal

operation of the amplifier IC without basic knowledge of semiconductor electronics,

especially the junction transistor studied in the following chapters. Fortunately, the circuit

model of an operational amplifier does not require knowledge of the IC fabrication steps,

nor does it require an understanding of the internal transistor architecture. Conceptually,

operational amplifiers can be introduced early in the book, which enables us to immedi-

ately proceed toward our goal of designing and building practical circuits.

5.1.1 Amplifier Operation

Symbol and Terminals
After the amplifier chip is fabricated as an integrated circuit and the bond wires are

attached, it is permanently sealed in a plastic package. Often the encasing is done in a

dual in-line (DIP-N) package with N denoting the number of IC pins. Figure 5.1 on the

right shows an example of a DIP package. One IC chip may contain several independent

individual amplifiers. We start analyzing the amplifier model by first labeling the termi-

nals and introducing the amplifier circuit symbol (a triangle) as shown in Fig. 5.1 on the

left. The amplifier is typically powered by a dual-polarity voltage power supply with

three terminals: �VCC and common (ground) port of 0 V, see Section 3.2. The index

C refers to the collector voltage of the internal transistors.

The amplifier has a total of five terminals, notably:

1. A non-inverting input with the input voltage υþ with respect to common

2. An inverting input with the input voltage υ� with respect to common

3. An output terminal with the output voltage υout with respect to common

+
-

vout

common

+

-

+VCC

-VCC

common

+ =

-VCC

+VCC voutNC
offset null

v+

v-

v- v+

Fig. 5.1. Terminals of the operation amplifier (left); they also denote pins of the amplifier IC

package (see a common LM 741 chip on the right). All voltages are referenced with respect to a

common port of the dual-polarity voltage supply.
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4. Power terminal þVCC with a positive voltage VCC (+9 V) with respect to common

5. Power terminal �VCC with the negative voltage �VCC (�9 V) with respect to

common

Each of the five terminals corresponds to a particular metallic pin of the IC package. All

of the amplifier’s terminals are used in an amplifier circuit and none of them should be left

disconnected. However, the chip itself could have some not connected (NC) terminals

that maintain symmetry and which are used as heat sinks, see Fig. 5.1 on the left. Also

note that a number of amplifier ICs, including the LM74, may have extra terminals or

pins, the so-called offset or offset-null terminals. These terminals are used to control the

input offset voltage (an imperfection) of the amplifier.

Historical: The abbreviation for the operational amplifier is op-amp; this abbreviation is

not quite official but is used by most practitioners. The term operational amplifier first

appeared in a 1943 paper by John R. Ragazzini, an American electrical engineer and ECE

professor. One of his students introduced the terms inverting and non-inverting inputs. One

of his most notable students was Rudolf Kalman who became famous for the invention of

the Kalman filters.

Open-Circuit or Open-Loop Voltage Gain

Once the amplifier chip is properly powered, its operation is quite simple: the output

voltage is expressed through the two input voltages in the form

υout ¼ A υþ � υ�ð Þ ð5:1Þ

which is identical to the operation of the voltage-controlled voltage source introduced in

Section 2.4.Here,υþ � υ� is thedifferential input voltage to the amplifier. Thedimensionless

constant A is called the open-circuit voltage gain of the amplifier. Quite frequently, the term

open-loop gain is used and A is replaced by AOL. Equation (5.1), which will be called the

amplifier equation, is always valid. It does not matter if the amplifier is in the open-loop

configuration, (i.e., no feedback loop ispresent) or in a closed-loopconfiguration (a feedback

loop is present; see the next section). The amplifier IC is intentionally built in such away as to

provide the highest possible open-circuit gain; it is achieved using transistors connected in

series such as the Darlington pair. Typically,

A � 105 � 108 ð5:2Þ

The exact gain value cannot be controlled precisely due to manufacturing tolerances. The

open-circuit gain is often measured in V/mV. For example, the value of 160 V/mV

corresponds to the gain value of 160,000. The open-circuit gain is difficult to measure.
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Power Rails and Voltage Transfer Characteristic in the Open-Loop

Configuration

Two power interconnects of the amplifier are often called rails. The term “rail” appears

simply because the power interconnections are represented by two long horizontal wires

in the circuit diagram connected to þVCC and �VCC, respectively, which resemble long

metal rails. The positive rail is þVCC, and the negative rail is �VCC. The power rails are

interfaced to a laboratory dual-polarity voltage power supply that also provides a

common (ground) port to be used later. The output amplifier voltage can never exceed

the positive rail voltage or be less than the negative rail voltage. In other words,

�VCC � υout � VCC ð5:3Þ

Should the output voltage found in Eq. (5.1) exceed VCC, it will be forced to VCC.

Likewise, should the output voltage drop to less than �VCC, it will be forced to �VCC.

In view of these physical constraints, Eq. (5.1) may be rewritten in the form

υout ¼ A υþ � υ�ð Þ, υoutj j < VCC

υout ¼ þVCC, A υþ � υ�ð Þ > þVCC

υout ¼ �VCC, A υþ � υ�ð Þ < �VCC

ð5:4Þ

Example 5.1: Plot to scale the output voltage of an operational amplifier with an open-

circuit gain of A ¼ 105 when the non-inverting input voltage υþ changes from �1 mV to

+1 mVand the inverting input voltage υ� is set to zero. The amplifier is powered by a�16-

V dual voltage supply. This plot will give us the voltage transfer characteristic of the open-

loop amplifier.

Solution: Amplifier Eq. (5.4) gives the result shown in Fig. 5.2 by a thick piecewise-linear

curve. Due to the extremely high open-loop gain, the amplifier output is almost always

saturated. This means that, except for a very narrow domain of input voltages on the order

of �0.2 mV, the output simply follows the power rail voltage, either positive or negative.

This is a very remarkable feature of the open-loop amplifier.

Power Rails in Practice

The power rail(s) of the amplifier or the supply voltage is specified in the datasheet. For

example, the LM358 amplifier IC operates using a single supply 3 V to 32 V or dual

supplies�1.5 V to�16 V. As we can see from this data, the amplifier does not necessarily

operate using a dual voltage supply; a single supply (“single rail”) can be used as well. The

same amplifier chip (e.g., LM358) can be used either with the single voltage supply or with

a dual supply. This question, although less important in theory, is very important in practice.

Also note that, in practice, the output never exactly reaches the positive or negative rail
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voltages; there is always a voltage offset; it can vary from a minimum value of between

0.01 Vand 0.05 V for certain special ICs (called the rail-to-rail amplifiers) all the way up to

1.8 V for common amplifiers (e.g., LM741).

5.1.2 Application Example: Operational Amplifier Comparator

A comparator is a circuit or a device that compares two input voltages and outputs a digital

voltage (e.g., �10 V) as an indication of which input voltage is larger. Due to a very high

gain, the operational amplifier in the open-loop configuration shown in Fig. 5.3a may

operate as a basic comparator. Figure 5.3b shows one possible application of the compar-

ator: a digital repeater. We assume that υ� ¼ V threshold ¼ 0. The input voltage to the

comparator υþ tð Þ is a weak noisy digital signal shown in Fig. 5.3b. This signal is

compared to a threshold level of zero volts (the threshold voltage in Fig. 5.3).

When the amplifier open-circuit gain tends to infinity (the transfer characteristic in Fig. 5.2

becomes a straight vertical line), Eq. (5.4) applied to the present case is reduced to

v , Vout

+VCC

-0.8 -0.4 0 0.4 0.8
-20

-10

0

10

20

-VCC

positive power rail

negative power rail

v  , mV+

Fig. 5.2. Amplifier output voltage in the open-loop configuration. The open-loop gain is AOL

¼ 105 and the supply voltage is �16 V. Note that the scale for the input voltage is in mV.

vout
+
-

Vthreshold

A =1,000,000

Output voltage (t), Vvout

0

5

10

15

-5

-10

-15

0 10 20 30 40 50

time, µs

0 V

a) b)
V =0 Vthreshold

v  (t)+

Input voltage v  (t), V+

Fig. 5.3. A simple operational amplifier as a voltage comparator.
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υout ¼ þVCC, υþ tð Þ > 0

υout ¼ �VCC, υþ tð Þ < 0
ð5:5Þ

Figure 5.3b shows the resulting output voltage for VCC ¼ 10 V. The weak input digital

signal will thus be amplified and cleaned from noise, which is one major function of a

digital repeater. In practice, dedicated comparators are used instead of this simple setup,

which are much faster and have useful additional features. The comparator amplifier may

also be employed for other purposes such as a zero-level detector.

Exercise 5.1: In Fig. 5.3, the threshold voltage of the comparator amplifier is changed to

+5 V. What will be the output of the comparator circuit?
Answer: �10 V at any time instant.

5.1.3 Amplifier Circuit Model

Circuit Model
An equivalent circuit model of an amplifier is shown in Fig. 5.4. This circuit model is a

two-port electric network. It includes three single circuit elements: an ideal voltage-

controlled voltage source A υþ � υ�ð Þ (Section 2.4), input resistance Rin of the amplifier,

and output resistance Rout of the amplifier.

Analysis of the Amplifier Circuit Model: Effect of Input/Output Resistances

The input/output resistances of an amplifier in Fig. 5.4 impose rather severe limitations on

its desired operation. First, a large but finite input resistance always implies that some input

current, iin ¼ υþ � υ�ð Þ=Rin, will flow into the amplifier as long as the input voltage signal

is different from zero. Consequently, the amplifier would require not only the input voltage

but also a certain amount of input power. As a result, the amplifier may appreciably load a

sensor connected to its input, i.e., require more power than (a tiny) sensor can actually

provide. Second, a finite output resistance limits the output current iout to the amplifier; this

resistance operates as a current limiting resistor which is studied in Chapter 3. Along with

+

-

vout=

Rout

Rin

+

-

+
-

Amplifier

v+

v-

- v- A(v v )-+ -

v+

A(v v )-+ -

Fig. 5.4. Equivalent circuit model of an amplifier is in the shadow box as a two-port network. No

load is connected. The ground of the output terminal is the common port.
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this, it also leads to the fact that the voltage across any load connected to the amplifier’s

output will not be equal to the desired output voltage given by Eq. (5.1), except for an open

circuit. These limitations are quantified when we consider a circuit shown in Fig. 5.5. The

circuit includes the amplifier model, an arbitrary source represented by its Thévenin

equivalent υS, RS, and a load represented by its equivalent resistance RL.

Using the voltage division principle twice, the output voltage in Fig. 5.5 is expressed as

υout ¼ υS �
Rin

Rin þ RS

� �

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

υX

�A�
RL

RL þ Rout

� �

ð5:6Þ

This result is quite different from the ideal behavior of the amplifier described by the

perfect amplification of the source signal

υout ¼ AυS ð5:7Þ

using the available open-circuit gain A of the amplifier.

Exercise 5.2: For the amplifier circuit in Fig. 5.5 with A ¼ 1000, determine the output

voltage given that υS ¼ 1 mV, RS ¼ 50 Ω, and RL ¼ 50 Ω for two cases:

A. Rin ¼ 1 MΩ and Rout ¼ 1 Ω.

B. Rin ¼ 50 Ω and Rout ¼ 50 Ω.

Answer:

Case A: υout ¼ 0:98 V (which is close to the ideal behavior, υout ¼ 1:00 V).

Case A: υout ¼ 0:25 V (three quarters of the voltage gain are lost).

According to Eq. (5.6),υout < AυS for any positive finite values of Rin and Rout. In order

to make use of the full available open-circuit gain A of the amplifier, we should:

Rout

Rin

+

-
Avx

vx
+
-

RS

vS RL

+

-

vout

iin iout

+
-

Amplifier

Fig. 5.5. Amplifier circuit model with connected source and load resistances.
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1. Design Rin as large as possible, ideally an open circuit, that is,

Rin ¼ 1 ð5:8Þ

2. Design Rout as small as possible, ideally a short circuit, that is,

Rout ¼ 0 ð5:9Þ

In this and only this case, the equality υout ¼ AυS will be satisfied exactly.

5.1.4 Ideal-Amplifier Model and First Summing-Point Constraint

The amplifier IC can then be described with a high degree of accuracy by using the

so-called ideal-amplifier model. It is based on the best possible choices for input/output

resistances as described by Eqs. (5.8) and (5.9), respectively. It is also based on the

assumption that the open-loop gain in Eq. (5.1) is made as high as possible, i.e., equal to

infinity. The ideal-amplifier model is an important theoretical and practical tool for the

analysis of microelectronic amplifier circuits. This model will be used in the following

sections of this chapter and in subsequent chapters. We can summarize the model of an

ideal operational amplifier in concise form:

1. No current can flow into the amplifier (into either input terminal).

2. The open-loop gain A is infinitely high.

3. The input resistance Rin is infinitely high.

4. The output resistance Rout is zero.

Property 1 follows from property 3 and vice versa. One more condition of the ideal-

amplifier model could be added, namely, that the power rails �VCC are exactly reached

when operated in saturation. The ideal-amplifier model does not use the accurate internal

amplifier circuit shown in Fig. 5.4 or in Fig. 5.5, respectively. Instead, a simple triangle

symbol may be used for the ideal amplifier, which is shown in Figs. 5.1 and 5.3.

Exercise 5.3: Solve the previous exercise for the ideal-amplifier model.

Answer: Case A, B: υout ¼ 1:00 V.

First Summing-Point Constraint

The summing point of an amplifier is the connection of the two inputs to the amplifier.

The common-mode input signal is the half sum of the two input voltages, υþ þ υ�ð Þ=2.
The differential input signal is the input voltage difference, υx ¼ υþ � υ�. Conditions

applied to the amplifier’s input are called summing-point constraints. The first summing-

point constraint is applied to the ideal-amplifier model. It states that no current can flow

into either of the amplifier terminals as shown in Fig. 5.6.

This is consistent with an infinitely high input resistance. The condition of no input

current into the amplifier means that virtually no input power is necessary. For example,
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a tiny sensor, which does not deliver any appreciable power, could directly be connected

to the input. The voltage from the sensor will still be accepted as the input of the amplifier.

This condition is a convenient abstraction of the ideal-amplifier model. In reality, a very

small input current does exist, typically on the order of nanoamperes (nA) for common

amplifier ICs or picoamperes (pA) for ICs with an input JFET stage.

Realistic Values of Input/Output Resistances and Output Current

How far off from reality is the assumption of infinite input resistance? A review of the

datasheets reveals that the input resistance of the common amplifier IC (e.g., LM741,

LM1458) varies from 0.3 to 6 MΩ. The input resistance of JFET-input stage amplifiers

(TL082) is on the order of 1 TΩ (1012 Ω). Now, how realistic is the assumption of zero

output resistance? Note that if the output resistance were exactly zero, the amplifier would

be able to source an infinite current (power) into a low-resistance load. Clearly, we cannot

expect a large output power from a physically small amplifier IC. Therefore, we have to

introduce a small internal output resistance, which appears to be on the order of 1–100 Ω.

The corresponding output short-circuit current of the common amplifier ICs (LM741,

LM1458, LM358) cannot exceed 40–60 mA; the current into a load is smaller. The output

current of faster amplifier ICs (TL082) is even smaller. If the load requires more current

than the chip can provide, then the output voltage will notably be clipped.

+
-

vout

summing point

v+

v-

i +

i -

Fig. 5.6. The first summing-point constraint stipulates that no current flows into the ideal amplifier.
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Section 5.2 Negative Feedback

In most practical circuits, the amplifier IC is not used in open-loop configuration.

Engineers have modified the open-loop condition into a negative feedback loop in

order to set the gain to a desired value and ensure the amplifier’s stability. This section

provides you with all the essential knowledge needed to design an amplifier with negative

feedback. The mathematical model introduced in this section is based on two conditions

imposed at the amplifier’s input; we term them the summing-point constraints:

a) No electric current flows into or out of the amplifier inputs.

b) The differential voltage at the amplifier’s input is zero.

The first summing-point constraint has already been introduced in the previous section.

The second summing-point constraint has yet to be derived. We will show that the two

summing-point constraints, along with KCL and KVL, will enable us to solve any

amplifier circuit that involves a negative feedback, no matter what the specific nature

of the feedback loop is and regardless of whether it is DC, AC, or a transient circuit.

5.2.1 Idea of the Negative Feedback

The idea of the negative feedback goes way back—we may say almost to the Stone Age.

Take a wooden rod of 1–2 feet in length. Hold the rod in the vertical position at the tip of

your finger. You will probably succeed. Now, close your eyes and try to do the same. You

will most likely fail. The reason for the failure is a breakdown of the feedback loop. This

loop is created by visual control of the rod’s position; you automatically apply a

compensating acceleration to the bottom tip of the rod when it begins to fall. Another

good example is driving a car and trying to stay in the center of the lane. The negative

feedback for electronic amplifiers was first invented and realized by Harold S. Black

(1898–1983), a 29-year-old American electrical engineer at Bell Labs. To many electrical

engineers, this invention is considered perhaps the most important breakthrough of the

twentieth century in the field of electronics because of its wide applicability. We will

construct simple amplifier circuits of a given gain, using a resistive feedback loop. Being

able to perform this task is already critical from the practical point of view.

5.2.2 Amplifier Feedback Loop: Second Summing-Point Constraint

We construct the feedback loop, as shown in Fig. 5.7, by connecting the output to the

inverting input terminal. This was exactly the idea of Harold Black. The shadowed box in

the feedback loop may represent one or more circuit elements. The feedback loop may be

a simple wire, a resistance, a network of circuit elements (resistances, inductances,

capacitances), etc. The negative feedback simply means that the output voltage, or rather

a portion of it, is returned back to the inverting input.
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Feedback as a Dynamic Process

According to Eq. (5.1) of the previous section, the output voltage is proportional to

υx ¼ υþin � υ�in ð5:10Þ

where υx is the differential input voltage. Hence, υx or υx multiplied by a constant is

returned to the input during a very short period of time. The feedback effect is inherently a

very fast dynamic process, which leads to a static solution with quite remarkable

properties. In the example that follows, we will attempt to model the effect of the

feedback loop using several very simplifying assumptions.

Example 5.2: An amplifier with a feedback loop in Fig. 5.7 has υþ fixed at +10 V. υ� is

equal to 0 Vat t ¼ 0. We shall assume that 50 % of υþ is returned back to the input in 1 μs.

How does the differential voltage υx change with time?

Solution:

1. At t ¼ 0, υx ¼ 10V� 0V ¼ 10V. Next, 50 % of 10 V is returned in 1 μs. The

voltage υ� becomes equal to 0Vþ 5V ¼ 5V after 1 μs.

2. At t ¼ 1 μs, υx ¼ 10V� 5V ¼ 5V. Next, 50 % of 5 V is returned in 1 μs.

The voltage υ� becomes equal to 5Vþ 2:5V ¼ 7:5V after 2 μs.

3. At t ¼ 2 μs, υx ¼ 10V� 7:5V ¼ 2:5V. Next, 50 % of 2.5 V is returned in 1 μs.

The voltage υ� becomes equal to 7:5Vþ 1:25V ¼ 8:75V after 3 μs.

The process further continues so that voltage υx halves every microsecond. The process

dynamic is shown in Table 5.1 and visualized in Fig. 5.8.

+
-

vout

+

-
vx

v+

v-

Fig. 5.7. A feedback loop around an amplifier.

Table 5.1. Dynamics of the differential input voltage as a function of

time for Example 5.2.

Time, μs υþ υ� υx ¼ υþ � υ�

0 10 V 0 V 10 V

1 10 V 5 V 5 V

2 10 V 7.5 V 2.5 V

3 10 V 8.75 V 1.25 V

4 10 V 9.375 V 0.625 V
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Both Table 5.1 and Fig. 5.8 make clear that the differential voltage υx decays to zero

very rapidly, once the feedback loop is introduced. Hence we arrive at the second

summing-point constraint, which is valid only for the amplifiers with the negative

feedback loop: the differential input voltage to the amplifier is exactly equal to zero.

The second summing-point constraint is a close approximation to reality. Its accuracy

depends on the value of the open-loop gain of the amplifier. If the open-loop gain were

infinite, the second summing-point constraint would be exact.

5.2.3 Amplifier Circuit Analysis Using Two Summing-Point Constraints

Next, we will solve an amplifier circuit with negative feedback using the two summing-

point constraints (SPC): (i) no current into or out of the input amplifier terminals and

(ii) the differential input voltage is zero. The method of two summing-point constraints is

an accurate solution method for a wide variety of amplifier circuits with the negative

feedback. For amplifier circuits with a single input, we will denote the input voltage to the

amplifier circuit by υin. Voltage υin may be equal to υþ or to υ�, depending on amplifier

type to be used.

Non-inverting Amplifier

The first amplifier configuration is the so-called non-inverting amplifier shown in

Fig. 5.9. The feedback loop contains one resistance R2. Another resistance R1 shunts

the inverting input to ground. The input voltage to the amplifier circuit is the voltage υin
with respect to ground, or common in this case, which implies the use of the dual-polarity

voltage power supply. The output voltage with respect to common is υout. We apply the

first summing-point constraint and KCL to the node “*” in Fig. 5.9 and obtain

i1 ¼ i2 ð5:11Þ

Equation (5.11) is further transformed using Ohm’s law in the form

υ*� 0

R1

¼
υout � υ*

R2

ð5:12Þ

10V

5V

0V
0 1 2

2.5V

vx

time, µs3

Fig. 5.8. Dynamics of the differential input voltage as a function of time.
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The second summing-point constraint yields

υ* ¼ υin ð5:13Þ

since υx ¼ 0. Equation (5.12) thus reads

υin

R1

¼
υout � υin

R2

)
υout

R2

¼
υin

R1

þ
υin

R2

ð5:14Þ

As a result, we find that the voltage input-to-output relation becomes

υout ¼ 1þ
R2

R1

� �

υin ð5:15Þ

The amplifier circuit is solved: we have expressed the output voltage in terms of the input

voltage and a resistor ratio. Equation (5.15) is the basic result in amplifier theory. It shows

that the feedback loop allows us to precisely control the gain with two arbitrary resis-

tances. One chooses the proper resistance combination to achieve any finite gain between

one (setting R2¼ 0) and the open-loop (infinite) gain (setting R1¼ 0). In the last case, the

negative input terminal becomes grounded; the feedback loop is irrelevant and can be

replaced by an open circuit so that the amplifier again becomes the comparator. The gain

expression

ACL ¼ 1þ
R2

R1

� �

� 1 ð5:16Þ

is called the closed-loop gain of the amplifier; it clearly relates the output voltage to the

input voltage. Equation (5.16) is a dramatic illustration of the negative feedback. We

started with an amplifier having a very large yet loosely predictable open-loop gain.

Through applying the negative feedback, we arrived at a gain that is much smaller than

the open-loop gain; however, it is controllable and stable. Equation (5.16) can be derived

more simply using the voltage divider concept. Namely, resistors R1, R2 form a voltage

divider between 0 Vand the output voltage. Hence, the voltage at node (*) may be found.

Equating this voltage to the input voltage gives us Eq. (5.16).

vin +
-

common

R2

R1

vout

common

+

-

+

-
vx

i2

i1

v*

common

Fig. 5.9. Circuit diagram of the non-inverting amplifier. A dual power supply is not shown.
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Exercise 5.4: Solve the circuit shown in Fig. 5.10, i.e., find the output voltage υout with

respect to common.

Answer: υout ¼ 1þ
R2

R1

� �

υin ¼ 1þ
1� 106

5:1� 103

� �

� 1 mV ¼ 197 mV.

Inverting Amplifier

The next amplifier circuit configuration is the inverting amplifier shown in Fig. 5.11. Note

that the input terminals are nowflipped. The negative feedback loop is still present; it involves

resistance R2. Another resistance, R1, shunts the non-inverting input to ground.

The input voltage to the amplifier circuit is the voltage υin with respect to ground or

common. The output voltage with respect to common is υout. To solve the amplifier

circuit, we use the same solution procedure as for the non-inverting amplifier. However,

the final result will be quite different. We apply the first summing-point constraint and

KCL to the node labeled “*” in Fig. 5.11 and again obtain

i1 ¼ i2 ð5:17Þ

Equation (5.17) is transformed using Ohm’s law,

υin � υ*

R1

¼
υ*� υout

R2

ð5:18Þ

R =1 MW2

R =5.1 kW1

+

-
1 mV

+
-

vout

+

-

Fig. 5.10. A non-inverting amplifier circuit with an input voltage of 1 mV.

+
-

common

R2

R1

vout

+

-

common

+

-
vx

v*
vin

i2

i1

Fig. 5.11. Circuit diagram of the inverting amplifier; a dual power supply is used (not shown).
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The second summing-point constraint yields υ* ¼ 0 since υx ¼ 0. Equation (5.18) then

gives

υout ¼ �
R2

R1

υin ð5:19Þ

The amplifier circuit is solved: we have expressed the output voltage in terms of the input

voltage. Equation (5.19) is another key result in amplifier theory. The expression

ACL ¼ �
R2

R1

ð5:20Þ

is also called the closed-loop gain of the inverting amplifier; the gain again relates the

output voltage to the input voltage. It is now negative, which means that the output

voltage is inverted. This circumstance is hardly important for the AC signals where the

voltage inversion is equivalent to a phase shift of π radians or 180 degrees. The feedback

loop of the inverting amplifier also enables us to control the gain of the amplifier with two

standard resistors. We can choose the proper resistance combination to achieve any finite

gain between zero (R2¼ 0) and negative infinity (R1¼ 0). In Fig. 5.11 we clearly see how

the amplifier gain is controlled by the voltage divider with resistors R1 and R2.

Exercise 5.5: Solve the inverting-amplifier circuit shown in Fig. 5.12, i.e., find the output

voltage υout with respect to common.

Answer: υout ¼ �
R2

R1

υin ¼ �
1� 104

51
� 1 mV ¼ �196 mV.

Voltage Follower or Buffer Amplifier

The third important member of the amplifier family is the voltage follower or buffer

amplifier whose circuit is shown in Fig. 5.13. The negative feedback loop is just a wire.

R =10 2

R =511

+

-
1 mV

+
-

vout

+

-

Fig. 5.12. An inverting amplifier circuit with an applied input voltage of 1 mV.
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The use of the second summing-point constraint immediately leads to

υout ¼ υin, ACL ¼ 1 ð5:21Þ

so that the gain of this amplifier type is simply unity. Why do we need a unity-gain

amplifier? The reason is that, while the buffer amplifier in Fig. 5.13 passes the voltage

without change, it requires virtually no current at the input (virtually no input power) but,

at the same time, could source a significant current (on the order of 20–40 mA) at the

output, i.e., provide significant output power. In order words, it becomes in a certain sense

a power amplifier. A simple example would be a capacitive sensor that cannot deliver

currents on the order of 10 mA or even smaller currents; otherwise, the corresponding

capacitor would immediately discharge. Such a sensor cannot directly be connected to an

LED indicator that requires at least 10 mA. However, this sensor may deliver significant

voltages, on the order of 1–5 V, which do not need to be amplified. The use of a buffer

amplifier can nicely solve this connection problem. The above discussion directly leads

us to the concept of input resistance of the amplifier circuit studied in the next section.

Exercise 5.6: Solve the voltage-follower circuit shown in Fig. 5.13, i.e., find the output

voltage υout with respect to common when the input voltage with respect to common is a)

1 V and b) 10 V. The amplifier is powered by a �6-V dual supply.

Answer: a) υout ¼ 1 V; b) υout ¼ 6 V.

5.2.4 Mathematics Behind the Second Summing-Point Constraint

The second summing-point constraint might appear to be mysterious, at least at first

sight. How does the amplifier accept the input signal if there is no current at the input

and the differential input voltage is zero? Can we avoid using the second SPC, and at

what cost? We will show that the second SPC is nothing but a handy tool to solve the

amplifier circuit with the negative feedback, with a high degree of accuracy. Mathe-

matically, the second SPC gives a leading (and usually very accurate) term of what is

known as an asymptotic expansion with regard to a small parameter, here the inverse

open-loop gain A�1. Let us now ignore the second SPC and derive the gain equation for

the buffer amplifier exactly. A similar derivation for the non-inverting amplifier is given

as a homework problem. Looking at Fig. 5.13, we conclude that υ� ¼ υout since the

+
-

vout

common

+

-

vin
+

-
vx

common

Fig. 5.13. Circuit diagram of the buffer amplifier; a dual power supply is used.
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negative amplifier terminal is directly connected to the output. According to the

amplifier equation, Eq. (5.1) of the previous section, we have

υout ¼ A υþ � υ�ð Þ ¼ A υin � υoutð Þ ð5:22Þ

Solving Eq. (5.22) for the output voltage yields

υout ¼ A υþin � υ�in
� �

¼
A

1þ A
υin ð5:23Þ

Using a Maclaurin series expansion, we obtain with A >> 1 the result

A

1þ A
¼

1

1þ 1=A
� 1� 1=A � 1 ð5:24Þ

which is consistent with Eq. (5.21) and is very accurate since typicallyA > 105. A similar

derivation holds for the non-inverting (or the inverting) amplifier configuration. With this

in mind, the second SPC is clearly optional. Instead, the amplifier definition Eq. (5.1) may

be used, along with the condition of the high open-loop gain. However, it is rather tedious

to repeat the asymptotic analysis every time; so we prefer to use the accurate and simple

summing-point constraint. The finite value of the open-circuit gain A becomes important

for high-speed amplifiers with the feedback loop; see Chapter 10.

5.2.5 Current Flow in the Amplifier Circuit

The current flow in the complete amplifier circuit is illustrated in Fig. 5.14. The output

current through the load resistance RL of the amplifier circuit in Fig. 5.14 is provided

by the dual-polarity power supply. In this sense, the amplifier is also a “valve” (similar

to its building block, the transistor), which “opens” the power supply in response to

the low-power (or virtually no-power) input voltage signal. In Fig. 5.14, you should

note that standard resistor values (5 % or 1 % tolerance) may be slightly different from

the values used in this figure for convenience. We consider the positive input voltage

of 100 mV in Fig. 5.14a first. The non-inverting amplifier has a closed-loop gain ACL

equal to 50. The output voltage is thus +5 V, which is the push mode. The load current

of 10 mA is found from Ohm’s law. The feedback current of 0.1 mA is found using the

second SPC and Ohm’s law. The power supply current is the sum of both. The

feedback current controls the gain of the amplifier, and the load current drives the

load. The overall amplifier circuit efficiency (neglecting the loss in the IC itself)

depends on the ratio of these two currents. Therefore, we should keep the feedback

current small. The power current path is shown in Fig. 5.14a by a thick trace. The current

at node A can only enter the upper power supply. Thus, it is the upper power supply

being used. The amplifier is operating in the “push” mode, i.e., the amplifier sources

the current. When the input voltage is negative as in Fig. 5.14b, the lower power supply is

delivering power. Now, the amplifier sinks the current; it is operating in the “pull” mode.
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However, the ratio of the load current and feedback loop current remains the same, at least

for the ideal amplifier. Similar results are obtained for the inverting amplifier and the

voltage follower, respectively.

5.2.6 Multiple-Input Amplifier Circuit: Summing Amplifier

Figure 5.15 shows an important amplifier type on the basis of the inverting amplifier—the

summing amplifier. A summing amplifier performs a simplemathematical operation: it sums

several weighted input voltages. The summing amplifier is a prototype of the binary-

weighted-input digital-to-analog converter studied in Chapter 14. According to the KCL

and to the first summing-point constraint, one has with reference to Fig. 5.15

iF ¼ i1 þ i2 þ i3 ð5:25Þ

On the other hand, the second summing-point constraint (the differential voltage to the

amplifier is zero and the inverting input is the common or virtual ground) yields

+
-

common

R =49 k2

R =1 k1

vout=5 V
vin

common

+

-
100 mV

+

-

common +

-

0.1mA

R =500L

not used

9V

0.1mA

100 mV

0 V

10mA

10.1mA

0.1mA

10.1mA

9V

10.1mA

10.1mA

0.1mA

A

a) positive input voltage - “push”

b) negative input voltage - “pull”

+
-

common

R =49 k2

R =1 k1

vin

common

-

+
-100 mV

+

-

common +

-

R =500L

not used

10.1mA

10mA

0.1mA

10.1mA

10.1mA0.1mA

vout=-5 V

-100 mV

9V

0 V

9V

A

Fig. 5.14. Current flow in the non-inverting amplifier circuit operating in the (a) push mode and

(b) pull mode. The path of the (relatively high) load current is marked in bold.
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i1 ¼
υ1

R1

, i2 ¼
υ2

R2

, i3 ¼
υ3

R3
ð5:26Þ

in terms of input voltages υ1, υ2, υ3. Therefore, voltage υout in Fig. 5.15 found from

Eq. (5.25) is now written in the form

iF ¼
0� υout

RF

¼ i1 þ i2 þ i3 ¼
υ1

R1

þ
υ2

R2

þ
υ3

R3

� �

) υout ¼ �
RF

R1

υ1 �
RF

R2

υ2 �
RF

R3

υ3 ð5:27Þ

Example 5.3: An input to the amplifier circuit in Fig. 5.15a is a timing sequence shown in

Fig. 5.15b. Such a sequence is known as a binary counter; it represents all three-bit binary

numbers in an ascending order, with the time interval of 1 μs. The amplifier circuit is

characterized by RF ¼ 2 kΩ, R1 ¼ 40 kΩ, R2 ¼ 20kΩ, and R3 ¼ 10kΩ. Plot the absolute

output voltage to scale.

Solution: After plugging in the numbers, Eq. (5.27) is transformed to

υoutj j ¼ 0:05υ1 þ 0:1υ2 þ 0:2υ3 ð5:28Þ

Figure 5.15c shows the result. This is a staircase approximation of the straight line.

A large collection of practical amplifier circuits with the negative feedback exists.

Some of them are DC-coupled amplifiers (considered here), some are intended for ampli-

fication of AC voltage signals with zero mean (the so-called AC-coupled amplifiers).

+
-

RF

R2

vout
+
-R3

0 V

R1

v2

v3

v1
iFi1

i2

i3

v1

0 1 2 3 4 5 6 7 8
0 V

5 V

0 V

5 V

0 V

5 V

v2

v3

Input

time, s

b)

2 V

1 V

0 V

Output

V =2.5e5*tout

c)

0 1 2 3 4 5 6 7 8
time, s

a)

Fig. 5.15. (a) Circuit diagram of a summing amplifier. (b) and (c) Typical input and output

voltages.
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Section 5.3 Amplifier Circuit Design

Now that the theory of the negative feedback loop has been established, we can turn our

attention to the laboratory. Our hope is to be immediately successful with our designs.

However, a number of questions will arise almost instantly. They raise issues such as how

to choose the resistor values, how to connect the sensor as part of the input load, and how

to use an amplifier chip with a single power supply (a battery).

5.3.1 Choosing Proper Resistance Values

There are several rules regarding how to choose resistances R1,R2 controlling the

feedback loop in both non-inverting and inverting configurations. They are:

1. Resistances R1,R2 cannot be too small. Imagine that in Fig. 5.14 of Section 5.2, the

resistor values are changed to R1 ¼ 1 Ω, R2 ¼ 49 Ω. The same non-inverting gain

will be achieved and the same output voltage will be obtained. However, the feedback

loop current now becomes 100 mA instead of 0.1 mA. The general-purpose op-amp

chips are not capable of delivering such large currents. Furthermore, the ohmic losses

in the feedback loop become high. Therefore, one should generally use

R1,R2 � 50� 100 Ω ð5:29aÞ

2. Resistances R1,R2 cannot be too large. Let us assume that resistance R2 equals

100MΩ. This means that this physical resistor and the feedback loop represent almost

an “open circuit.” Unwanted electromagnetic signals may couple into such a circuit

through the related electric field difference across its terminals. This effect is known as

capacitive coupling. Furthermore, the very large resistances increase the parasitic

effect of the input offset current. Plus, very large resistances are unstable—their values

depend on moisture, temperature, etc. Therefore, one should generally use

R1,R2 � 1MΩ ð5:29bÞ

3. When a precision design is not warranted, inexpensive 5 % tolerance resistors may be

used. Otherwise, 1% or even 0.1% tolerance resistors are employed.Moreover, in lieu

of fixed resistors, we may use one or two potentiometers to make the gain adjustable.

4. The load resistance should be sufficiently large in order not to overdrive the

amplifier. A good choice is

RL � 100Ω ð5:29cÞ

This requires an output current of 20 mA at υout ¼ 2Vwhen RL is exactly 100Ω.

IfRL < 100 Ω, the amplifier output voltage may decrease compared to the expected

value due to amplifier’s inability to source/sink sufficient current.
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Example 5.4: A non-inverting amplifier circuit with a gain of 11 is needed in the

configuration depicted in Fig. 5.16. Identify one set of proper resistance values.

Solution:

To satisfy Eq. (5.29), we simply choose the round numbers

R1 ¼ 1 kΩ, R2 ¼ 10 kΩ, RL ¼ 100 Ω ð5:30Þ

However, other choices are indeed possible. For example, the set

R1 ¼ 100 kΩ, R2 ¼ 1 MΩ, RL ¼ 100 Ω ð5:31Þ

will solve the problem too.

Discrete Resistance Values and Potentiometers

To achieve a proper gain, we sometimes have to use “strange” resistor values like 49 kΩ

(Fig. 5.14 of Section 5.2). Do such resistors really exist? For 5% tolerance resistors, they do

not. However, for 1% tolerance resistors, you can find the standard value of 48.7 kΩ, which

is close to the above value.When the exact resistor values are not available, a potentiometer

can be used as a variable resistor. Furthermore, an externally controlled potentiometer in the

feedback loop is also important when a variable-gain amplifier is needed, for example, for

applications that require automatic gain control.

Gain Tolerance

What about the gain tolerance? The feedback resistor tolerances indeed determine the

gain tolerance. If the resistor tolerance is X, then the gain tolerance is 2X. This result is

valid for both the inverting and the non-inverting amplifier. The corresponding proof uses

an asymptotic expansion for the gain about its unperturbed value. We consider the worst-

case scenario for the inverting amplifier and obtain

+
-

R2

R1

vout

+

-

-100 mV< <+100 mVvin

RL

+

-

Fig. 5.16. A non-inverting amplifier with unknown resistance values.
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ACL ¼ �
R2 1þ Xð Þ

R1 1� Xð Þ
� �

R2

R1

1þ Xð Þ 1þ Xð Þ � �
R2

R1

1þ 2Xð Þ for X << 1 ð5:32Þ

The non-inverting gain is treated similarly. For example, if two resistors of an inverting

amplifier circuit are R1 ¼ 1 kΩ, R2 ¼ 100 kΩ and both resistors have 5 % tolerances,

then the amplifier gain is equal to �100 with tolerance of 10 %. Similarly the gain of the

non-inverting amplifier circuit becomes 101 with tolerance of slightly less than 10 %.

5.3.2 Model of a Whole Voltage Amplifier Circuit

Any voltage amplifier circuit with the negative feedback loop may be modeled in a form

similar to Fig. 5.5. The corresponding model is shown in Fig. 5.17.

First, the open-circuit gain A of the amplifier is replaced by the closed-loop gain

ACL << A. Second, the differential input voltage υx is replaced by υin. Third, resistances

Rin and Rout in Fig. 5.17 now become input and output resistances of the amplifier circuit,

not the amplifier itself. This difference may be quite important in practice.

Input/Output Resistances of Basic Amplifier Circuits Using

Ideal-Amplifier Model

The solution simplifies for the ideal-amplifier model; it is shown in Fig. 5.18. We assume

ideal operational amplifiers in all three cases. If there were no feedback loop, Rinwould be

exactly equal to the input resistance of the amplifier itself; this is for an ideal operational

amplifier Rin ¼ 1. When the feedback loop is present, a more general definition should

be used, namely,

Rin �
υin

iin
; ð5:33Þ

where υin is the amplifier’s circuit input voltage and iin is now the current into the

amplifier’s circuit with the feedback loop. Figure 5.18 illustrates the corresponding

calculation for the three basic amplifier types. For both the non-inverting amplifier and

the voltage follower circuits, we have Rin ¼ 1, Rout ¼ 0. However, for the inverting

amplifier circuit, Rin ¼ R1, Rout ¼ 0, since an input current can still flow into the

Amplifier circuit
with the feedback loop

Rout

Rin

+

-
ACL invvin

+
-

RS

vS RL

+

-

vout

iin iout

+
-

Fig. 5.17. Equivalent model of an amplifier circuit with a negative feedback loop.
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feedback loop but not into the amplifier itself. Thus, the inverting amplifier circuit

potentially provides greater flexibility in the input resistance simply by varying R1. To

ensure the necessary gain, R2 has to be chosen accordingly.

5.3.3 Voltage Amplifier Versus Matched Amplifier

A sensor (input load to an amplifier circuit) “sees” an amplifier circuit as a simple

resistance Rin as depicted in Fig. 5.19. The sensor is represented by its Thévenin

equivalent circuit.

Input Load “Bridging”

The general-purpose operational amplifier is a voltage amplifier (also called a signal

amplifier) and not a power amplifier. The input voltage matters, not the input power. For

the voltage divider circuit in Fig. 5.19, the input voltage υin to the amplifier circuit is

maximized when Rin is maximized. Therefore, Rin must satisfy the inequality

vin +
-

R2

R1

vout

iin

+
-

R1

vout

+
-

vout
vin

vin

0 V

i =V /Rin in in

iin

non-inverting op-amp

inverting op-amp

voltage follower (buffer)

R =0out

R =v /i =infin in in

R =0out

R =v /i =Rin in in 1

R =0out

R =v /i =infin in in

R2

Fig. 5.18. Input and output resistances of amplifier circuits with the ideal operational amplifier.

Rin

+

-

vin

RS

vS

iin

+
-

Amplifier with the feedbackcircuit

loop as seen from the sensor

Fig. 5.19. Sensor’s equivalent circuit and amplifier’s equivalent circuit as seen from the sensor.
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Rin >> RS ð5:34Þ

An appropriate value would be Rin ¼ 100RS, for example. Equation (5.34) is sometimes

called load bridging (or impedance bridging) condition, where the “load” resistance Rin

seen by the Thévenin source is much larger than the source resistance RS. The load

bridging is automatically satisfied for the non-inverting amplifier or for the voltage

follower. For the inverting amplifier, one should use large values of R1, for instance,

R1 ¼ 100RS ð5:35Þ

Bridging connections are used to maximize the voltage transfer from a sensor to an

amplifier. Even more importantly, the amplifier does not appreciably load the sensor.

Example 5.5: A sensor is given by its Thévenin equivalent circuit in Fig. 5.19 where the

sensor voltage υS is small. The sensor’s equivalent resistance RS is 100 Ω. An inverting

amplifier circuit is needed to generate an amplified version of the sensor’s voltage. The

output voltage should be � �100υS.

Solution: The corresponding circuit is shown in Fig. 5.20. The input voltage to the

amplifier circuit is computed by voltage division:

υin ¼
R1

R1 þ RS

υS ð5:36Þ

If RS ¼ 100 Ω, R1 ¼ 10 kΩ, then υin � υT and there is almost no loss of voltage signal

strength across resistance RS. Therefore, a pair of resistors with R1 ¼ 10 kΩ, R2 ¼ 1 M

Ωwill solve the problem, with the amplifier voltage gain of �100. If, however, we choose

R1 ¼ 0:25RS ¼ 25Ω, then υin ¼ 0:2υS and 80 % of available voltage signal strength will

be lost! Even if the remaining voltage signal is still appreciable (above the sensitivity

threshold of the amplifier), the necessary amplifier gain becomes not �100, but �500. An

increase in gain leads to an increase in additive voltage noise at the output. Therefore, in

the best case, the amplified signal will be a noisier version of the corresponding signal in

the previous design.

+
-

R2
R1 vout

vin

RL

+
-

vS

RS
0 V=100

Fig. 5.20. A 100 Ω sensor connected to the inverting amplifier. Note the common connections.
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Example 5.6: A sensor is given by its Thévenin equivalent in Fig. 5.19 where the sensor

voltage υS is small. The sensor’s equivalent resistance RS may vary in time but is always

less than 100 Ω. An inverting amplifier is needed that generates an amplified version of the

sensor’s voltage, which is � �100υS.

Solution: With reference to Fig. 5.20, the input voltage to the amplifier is again given by

Eq. (5.36). This equation is further transformed to

υin ¼
R1

R1 þ RS tð Þ
υS � υS ð5:37Þ

if we choose R1 ¼ 100max RS tð Þð Þ ¼ 10kΩ. In other words, not only have we provided

amplification but we also eliminated the effect of the sensor’s resistance variation by proper

load bridging. Therefore, a pair of resistors with R1 ¼ 10 kΩ, R2 ¼ 1 MΩ will solve the

problem, with the amplifier output of � �100υS, irrespective of the specific value of RS.

Input Load Matching

And yet, in many modern applications related to radio-frequency (RF) circuits, the load

matching (but not the load bridging) may be a critical condition. RF amplifiers are internally

designed for matching to a precise 50Ω load at both the input and the output—see Fig. 5.21.

The reason is that voltage and current signals in conductors behave like propagating

electromagnetic waves at high frequencies. If there is no matching, then multiple wave

reflections between the amplifier and its input and/or output loads can occur, resulting in

superimposing the previous signal onto the next signal.

Therefore, the amplifier circuit optimized for proper load matching (which also

achieves maximum power transfer from the input load to the amplifier circuit, see the

generator theorems) may still be critical in many high-frequency applications.

Example 5.7: Construct an amplifier circuit matched to an input source with RS ¼ 50 Ω.

The amplifier’s voltage gain is ACLj j ¼ 20. The sign of ACL (either positive or negative) is

not important since an AC input signal is assumed.

Fig. 5.21. A RF amplifier to be matched to a 50 Ω at both the input and output.
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Example 5.7 (cont.):

Solution: Two possible solutions are shown in Fig. 5.22. In the first case, we use the

inverting amplifier; in the second case, a smart trick is employed: a non-inverting amplifier

with a 50-Ω shunt resistor. You should note that the maximum power transfer will be

achieved for the entire amplifier circuit, including the shunt resistor.

5.3.4 Cascading Amplifier Stages

Assume that we need an inverting amplifier with an overall gain of �1000. The input to

the amplifier is a sensor as in Fig. 5.19 with the equivalent resistance given byRS ¼ 1kΩ.

If we require load bridging according to Eq. (5.35), we arrive at

R1 ¼ 100RS ¼ 100kΩ ð5:38Þ

This yields

R1 ¼ 100 kΩ ) R2 ¼ 100 MΩ ð5:39Þ

Such a resistance value is too large to satisfy Eq. (5.29b); it perhaps will not even be

included in your laboratory kit (although the ECE shop may still have such resistors).

What should we do? The answer lies in cascading the amplifier stages as shown in

Fig. 5.23. We use the non-inverting amplifier with a gain of 10 as the first stage; this

simultaneously provides the load bridging condition. We use the inverting amplifier with

a gain of �100 and with the reasonable resistor values as the second stage. The key point

of cascading is to realize that the overall gain of the cascade amplifier is given by the

product (not the sum!) of the individual stage gains, i.e.,

ACL ¼ ACL1 � ACL2 ¼ 10� �100ð Þ ¼ �1000 ð5:40Þ

a) b)

vin

+
-

vout

50

1 k

19 k

+
-vin

50 1 k
vout

Fig. 5.22. Two possible amplifier configurations matched to a 50-Ω input resistance.
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The same result is valid for more than two stages. The proof for two stages is simple:

ACL �
υout

υin
¼

ACL2υ
1
out

υin
¼

ACL1ACL2υin

υin
¼ ACL1ACL2 ð5:41Þ

The cascading of individual amplifier stages is a simple and powerful tool to build high-

gain amplifier circuits. Cascading has a number of remarkable features, some of which

are studied here:

1. The gains of the individual stages multiply.

2. The gain per stage generally should not exceed 100 (absolute value) in order to

avoid instability.

3. The first stage in Fig. 5.23 sees R1 of the second stage as its output load resistance.

Therefore, R1 should be large enough.

4. The amplifier ICs usually include two (dual op-amp) or even four (quad op-amp)

individual amplifiers in one package. Therefore, they are ideally suited for building

multistage amplifiers.

5. The effect of an input offset voltage (an amplifier imperfection studied next) is

primarily important for the first stage, but it then loses its significance with every

subsequent stage.

Note that cascading is equivalent to a series combination of individual amplifiers.

Parallel configurations also exist, particularly in analog-to-digital converters.

Example 5.8: The input to the amplifier is a sensor in Fig. 5.19 with an equivalent

resistance given by RS ¼ 100 Ω and an equivalent sensor voltage, υS. An amplifier circuit

is needed that generates ~10,000 υS at its output. The load bridging condition must be

satisfied.

+
-

9 k =R21 k =R1

vin

+
-

100 k =R21 k =R1

vout

+

-

Stage 1 A =10CL

vout

1

Stage 2 A =-100CL

Fig. 5.23. Cascading two amplifier stages into a high-gain circuit. The first stage is a non-inverting

amplifier with a gain of 10; the second stage is an inverting amplifier with a gain of �100. The

overall gain is therefore �1000.
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Example 5.8 (cont.):

Solution:

A. A single-stage, non-inverting amplifier with R1 ¼ 100 Ω, R2 ¼ 1 MΩ might do

the job, including load bridging. However, the gain per stage (10,000) is far too high

for stable operation.

B. A series combination of two inverting stages will do a much better job: the first

inverting op-amp assures load bridging, and it consists of

R1 ¼ 10 kΩ, R2 ¼ 1 MΩ. The second inverting amplifier has exactly the same

resistor values: R1 ¼ 10 kΩ, R2 ¼ 1 MΩ. And the overall gain is given by

ACL ¼ �100ð Þ � �100ð Þ ¼ 10, 000.

C. A series combination of two non-inverting stages will perform equally well: we

choose R1 ¼ 10 kΩ, R2 ¼ 1 MΩ for the first stage and R1 ¼ 10 kΩ, R2 ¼ 1 M

Ω for the second stage. The overall gain then yields ACL ¼
101� 101 ¼ 10, 201 � 10, 000.

5.3.5 Amplifier DC Imperfections and Their Cancellation

In general, DC imperfections of the operational amplifier can have a severe influence on

its performance for high-gain amplifiers. Below, we study two types of imperfections, the

input offset voltage VOS and the input (bias and offset) currents, and provide a simple way

of how to cancel the corresponding output offset voltage.

Input Offset Voltage

The input offset voltage results in a nonzero output voltage when the two input terminals

of the amplifier are shorted out. It arises due to a small asymmetry in the input differential

transistor stage inside the amplifier chip. It is fixed for a certain chip but varies from chip

to chip. General-purpose amplifiers have the input offset voltage VOS in the range of

1 mV� 6 mV. The offset can be modeled as a small DC source of strength, VOS, in

series with one of the input terminals to the amplifier as shown in Fig. 5.24. The input

offset voltage produces a similar effect for any amplifier configuration, including the

comparator where its effect becomes most dramatic. A large triangle in Fig. 5.24 indicates

the actual amplifier chip, whereas the small triangle is the ideal amplifier without DC

imperfections. The circuit in Fig. 5.24 is analyzed using the two summing-point con-

straints. Since the negative feedback is present, υx must be zero, which yields

υin þ VOS ¼ υ* ¼
R1

R1 þ R2

υout ) υout ¼ ACL υin þ VOSð Þ, ACL ¼ 1þ
R2

R1

ð5:42Þ
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Exercise 5.7: The amplifier circuit in Fig. 5.24 has the closed-loop gain ofACL ¼ 100 and

an input offset voltage of VOS ¼ 5 mV. What is the general expression for the output

voltage?

Answer:

υout ¼ 100υin þ 0:5 V ð5:43Þ

where 0.5 V is the resulting output offset voltage to the amplifier.

Canceling the Output Offset Voltage

In some amplifiers like the LM741, special offset-null terminals are available for trim-

ming the output DC voltage to zero. Figure 5.25a shows the concept. The wiper of the

potentiometer is to be connected to the negative supply rail. Both inputs to the amplifier

should be connected to the common port during the adjusting procedure, which implies

that the output voltage is trimmed to zero. If the offset-null terminals are not available, the

voltage at the common port, which controls the feedback loop, might be subject to a small

offset. Figure 5.25b shows a circuit that can be used to eliminate the DC imperfections for

a particular non-inverting amplifier in the laboratory. A compensating voltage offset is

introduced by means of an adjustable voltage divider with a potentiometer. To achieve a

good degree of accuracy, one should set

RP << R ð5:44Þ

Furthermore, R1 should be considerably larger than R. This condition can be avoided by a

further modification of the present voltage divider. The output offset voltage is trimmed to

zero when the input to the amplifier in Fig 5.26b is connected to the common port (circuit

ground). This ensures that the effect of the input offset voltagewill be eliminated entirely, for

any value of the input voltage. Note that such an adjustment has to be done for every discrete

temperature point, since VOS depends on temperature.

actual op-amp

R2

R1

vout

+

-

+

-
Vx

v*

+
-

+

-

ideal op-amp

VOS

vin

Fig. 5.24. Circuit for the non-inverting amplifier with an input offset voltage.
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Input Bias and Offset Currents

In reality, for the op-amp to operate, there will be very small currents into the input

terminals (into transistor bases), typically on the order of 100 nA. When those currents

flow through the feedback resistances, they create corresponding voltages which appear

as an output offset voltage as well. Let a current of 100 nA flow into the negative terminal

of the amplifier in Fig. 5.24. If the input to the amplifier is grounded, this current must

flow through resistance R2. Therefore, it will create the extra output DC voltage of

υout ¼ þ 100 nA� R2 ð5:45Þ

when the input voltage to the amplifier υin is exactly zero. To appreciate its value, we can

use a resistance R2 ¼ 1 MΩ as an example. This yields

υout ¼ 0:1 V ð5:46Þ

at the output. Fortunately, the currents flowing into the amplifier are nearly the same for

either terminal. Therefore, their average (the input bias current) considerably exceeds their

difference (the input offset current). There is a way to eliminate the larger effect of the

input bias current. It consists of modifying the circuits for the non-inverting and inverting

amplifier by adding one extra resistance R ¼ R1

�
�
�
�R2 as shown in Fig. 5.26.

+
-

-VCC

+VCC

10 k

1
5

vin +
-

R2

R1

vout

+

-

-VCC +VCC

RP RR

)b)a
LM741

Fig. 5.25. (a) Output DC offset voltage for the LM741 is reduced to zero by adjusting the

potentiometer placed between its offset-null pins and (b) a similar operation performed with the

virtual ground of the feedback loop.
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Fig. 5.26. Cancellation of the effect of input bias currents.
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From the amplifier’s gain point of view, the resistance R has a negligible, if any, effect.

The proof of the cancellation effect for the non-inverting amplifier circuit is as follows.

When both the input and output to the amplifier in Fig. 5.26a are grounded (connected to

the common port), the input current source at the non-inverting input sees resistance

R and the input current source at the inverting input sees the parallel combination of R1,

R2, respectively. Making R equal toR1

�
�
�
�R2 yields an offset differential voltage that is zero.

5.3.6 DC-Coupled Single-Supply Amplifier: Virtual-Ground Circuit

A single voltage supply is a battery. We consider the non-inverting amplifier circuit

driven by a 9-V battery. To handle the problem of not being able to generate negative

voltages, a virtual-ground circuit may be used as shown in Fig. 5.27. We simply divide

the voltage of the battery by two, with two large, equal resistances R, and assign this

voltage of 4.5 V to the common port. The battery terminal voltages then formally become

�4.5 V versus the common port. The power supply so constructed is unfortunately not

exactly the dual-polarity voltage power supply. Namely, both resistances R have to be

large to avoid ohmic losses in the virtual-ground circuit. If they are, we cannot source/

sink an appreciable output current into the common terminal since these resistances

simultaneously operate as current limiters. An alternative solution is to reference the

output to ground (which is the negative terminal of the battery), but not to the virtual

ground of 4.5 V. When referenced to ground, the circuit in Fig. 5.27 has one remarkable

property. Namely, if the input vs. ground is the (small) sensor voltage υin plus 4.5 V, then

the output vs. ground is the amplified sensor voltage, ACLυin, plus the same 4.5 Voffset.

In other words, the offset voltage of the virtual ground is not amplified! This statement is

proved in the following example.

0 V

+
-

4.5 V+vin

+
-

R2

R1

+
-

9 V=VCC

R

sensor

virtual-ground circuit

R

0 V

4.5 V 4.5 V

out CL in=4.5 V+A9 V=VCC

v*

0 V
RS

vS

vv

Fig. 5.27. A non-inverting amplifier driven by a single voltage supply, a battery. Absolute voltages

versus ground (negative terminal of the battery) are shown.
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Example 5.9: Solve the circuit in Fig. 5.27.

Solution: The solution is based on the two summing-point constraints. There is no current

into the input terminals so that resistances R1 and R2 again form a voltage divider but now

between υout and 4.5 V. By voltage division, the voltage at node (*) becomes

υ* ¼ 4:5 Vþ
R1

R1 þ R2

υout � 4:5 Vð Þ ð5:47Þ

At the same time, using the second summing-point constraint for the amplifier with

negative feedback, we obtain:

υ* ¼ 4:5 Vþ υin ð5:48Þ

Equating Eqs. (5.47) and (5.48), we arrive at the expected result:

υout ¼ 4:5 Vþ ACLυin, ACL ¼ 1þ
R2

R1

ð5:49Þ

Feedback resistances R1,R2 should be much larger than resistance R in Fig. 5.27, in order

to assure a flawless circuit operation. Yet another solution is to use (Zener) diodes in the

bias circuit. Special virtual-ground integrated circuits exist that support single-supply

amplifier operation. They generate an output precisely midway between the two supply

rails.
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Section 5.4 Difference and Instrumentation Amplifiers

5.4.1 Differential Input Signal to an Amplifier

Consider a sensing element that is a variable resistance. The sensor configuration is a

Wheatstone bridge (Section 3.3) as seen in Fig. 5.28. Since the amplifier is powered by a

dual supply with three terminals, �VCC, and common (ground) port, the same power

supply is connected to the bridge. We will use the positive rail and the ground rail in

Fig. 5.28 since the sensor (e.g., the strain gauge) may require lower voltages than the

amplifier chip itself.

Both voltages υa, υb have to be used when reading sensor information. They may be

written in terms of the other two voltages υD, υCM:

υa ¼ υCM þ
1

2
υD, υb ¼ υCM �

1

2
υD ð5:50aÞ

υD ¼ υa � υb, υCM ¼ 0:5 υa þ υbð Þ ð5:50bÞ

Here, υD is the differential component of the combined input signal or the differential

voltage and υCM is the sum component of the combined input signal or the common-mode

voltage. Only the differential voltage is usually important for sensor reading; the

common-mode voltage does not carry any information. When the bridge is exactly

balanced, i.e., when

R1

R2

¼
R3

R xð Þ
; ð5:51aÞ

the differential voltage is exactly zero:

υD ¼ 0 ð5:51bÞ

Still, the common-mode DC voltage given by

R1

R(x)

a b

R3

R2

+

-

+VCC

0 V

va vb

vD

Fig. 5.28. AWheatstone bridge sensor to be connected to an amplifier circuit.
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υCM ¼ υCC
R2

R2 þ R1

� �

ð5:51cÞ

can have any large positive value. For example, it is υCC/2 when all resistances are equal.

Even if the bridge in Fig. 5.28 uses �VCC power rails, it is hardly possible that the

common-mode voltage is set to zero since absolutely identical resistors do not exist.

Exercise 5.8: In the Wheatstone bridge in Fig. 5.28, we assume R2 ¼ 1:1R1,

R xð Þ ¼ 1:1R3, and VCC ¼ 6 V. What are the differential and common-mode voltages?

Answer: υD ¼ 0, υCM ¼ 3:14V.

5.4.2 Difference Amplifier: Differential Gain and Common-Mode Gain

The sensor in Fig. 5.28 is the differential sensor with three terminals: a, b, and ground.

How do we amplify the differential voltage? Reviewing the inverting and non-inverting

amplifier types reveals that they are not appropriate for this purpose: we simply do not

have two input terminals to be connected to nodes a and b in Fig. 5.28. Only one input

terminal referenced to common (ground) is available. Note that single-ended sensors

with two terminals (plus and ground) indeed exist and may be used. In that case, inverting

or non-inverting amplifiers will function well. However, the overall design accuracy

may deteriorate compared to the differential design. Therefore, a new amplifier type

with two input terminals should be introduced. It is the difference amplifier shown in

Fig. 5.29.

Both inputs to this amplifier are referenced to common (ground) port. First, we see that

the difference amplifier is an inverting amplifier with the negative feedback loop. However,

the second input signal is now added to its positive terminal through a voltage divider. The

analysis of this amplifier type is done using two summing-point constraints. A shortcut is to

recognize, with the help of the first SPC, that in Fig. 5.29 we have two voltage dividers: one

between resistances R1,R2 and another between resistances R3,R4. Therefore, for the

voltage at node (*), one has, using the first voltage divider,

+
-

R2
R1

vout

+

-

v*

0 V

vb

v*
va

R3

R4

0 V

0 V

Fig. 5.29. A difference amplifier.
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υ* ¼ υb þ
R1

R1 þ R2

υout � υbð Þ ð5:52aÞ

and, according to the second voltage divider,

υ* ¼ υa þ
R3

R3 þ R4

0 V� υað Þ ð5:52bÞ

Both expressions must be equal to each other due to the second SPC (the differential input

voltage in a negative feedback amplifier is zero). Therefore,

υb þ
R1

R1 þ R2

υout � υbð Þ ¼ υa �
R3

R3 þ R4

υa )

R1

R1 þ R2

υout ¼
R1

R1 þ R2

� 1

� �

υb �
R3

R3 þ R4

� 1

� �

υa

ð5:52cÞ

To create a voltage difference, i.e., υa � υb, between the input voltages on the right-hand

side of Eq. (5.52c), we select

R2

R1

¼
R4

R3

ð5:52dÞ

as the necessary condition. Then, both factors in parentheses on the right-hand side of

Eq. (5.52c) become equal. This yields the basic equation of the difference amplifier,

υout ¼
R2

R1

υa � υbð Þ ¼
R2

R1

υD ð5:53Þ

Equation (5.53) is a simple, yet highly useful result for amplifier circuit design. Namely,

once the amplifier in Fig. 5.29 is connected to the sensor in Fig. 5.28, the differential

voltage υD ¼ υa � υb is amplified with the gain of R2/R1 (the differential amplifier circuit

gain). At the same time, the undesired common-mode voltage υCM ¼ 0:5 υa þ υbð Þ is

completely rejected, i.e., amplified with a gain of 0, no matter what specific values the

input voltages have versus ground. In other words, the common-mode amplifier circuit

gain is zero. Note that the ratio of two gains (differential gain versus common-mode gain)

is an important characteristic of the difference-amplifier circuit. It is called the common-

mode rejection ratio (CMRR). In our case, this ratio is clearly infinity. Unfortunately, in

reality, this value is finite though quite large. One obvious reason is a possible mismatch

in resistance ratios in Eq. (5.52d), which will not allow us to obtain Eq. (5.53) exactly.

A certain portion of υCM ¼ 0:5 υa þ υbð Þ will be present at the output.
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Example 5.10: Find the output voltage of the amplifier circuits shown in Fig. 5.30 below.

Assume the ideal amplifier and exact resistance values.

Solution: We check Eq. (5.52d) first and conclude that the circuit in Fig. 5.30 is a true

difference amplifier: it rejects the common-mode voltage. The differential voltage to the

amplifier is �0.01 V. Using Eq. (5.53) gives us an output voltage of υout ¼ �0:1 V. If the

resistance ratios were not equal to each other, a common-mode signal would be present at

the output. In that case, the complete amplifier equation (5.52c) should to be used.

To minimize the effect of bias currents (Section 5.3), we should choose

R1 ¼ R3, R2 ¼ R4 ð5:54Þ

5.4.3 Application Example: Instrumentation Amplifier

Motivation for an Instrumentation Amplifier
Figure 5.31 shows a 700-Ω uniaxial strain gauge. The strain gauge is attached to an

aluminum slab. Figure 5.31 also shows a Wheatstone bridge intended for strain measure-

ment with the present device. The dual-polarity supply voltage is �7.5 V. You may build

the Wheatstone bridge according to Fig. 5.31a and connect it to a DMM, with the DMM

leads attached to terminals a and b, respectively. In this configuration, the DMM

measures the differential voltage υD. Using the potentiometer, you may balance the

bridge, i.e., reduce voltage υD at no strain to a minimum, which should be within the

range 0 V� 3 mV. The highest DMM resolution should be used. Now, by applying a

strong bending force to the slab with two hands, you probably could obtain a maximum

voltage change of �2 mV.

+
-

10 k

+

-

1 V

1.01 V

10 k

100 k

100 k

vout

0 V

0 V

0 V

Fig. 5.30. Difference amplifier for Example 5.10.
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The positive voltage change corresponds to one bending direction, the negative change,

to the opposite direction. Next, you may connect an oscilloscope instead of the DMM and

use the DC-coupled settings and the highest voltage resolution of 20 mV per division. You

will find that the noisy signal line on the screen hardly changes when you try your best. So

are you not strong enough? Well, no. These are the realistic differential voltages for strain

gauges which correspond to gauge resistance changes on the order of 1 Ω. Even smaller

voltage changes are often encountered in practice. Therefore, an accurate amplification of

an extremely small differential voltage should be done while rejecting the large common-

mode voltage (3.75 V in the present case). This nontrivial task is accomplished by an

instrumentation amplifier.

How to Build an Instrumentation Amplifier?

The initial guess is probably to use the difference amplifier from Fig. 5.30. For this

amplifier, R1 ¼ R3 ¼ 10 kΩ, R2 ¼ R4 ¼ 100 kΩ. However, we encounter two prob-

lems. The first one is that the amplifier should not perturb the sensor operation. In other

words, the amplifier’s input resistance must be large compared to any of the resistances in

theWheatstone bridge. The differential-mode input resistance to the amplifier in Fig. 5.30

is Rin ¼ 2R1 ¼ 2R3 (check problem 5.82 at the end of this chapter). Therefore, we may

wish to increase R1 ¼ R3 by a factor of 10, i.e., choose R1 ¼ R3 ¼ 100 kΩ. The second

problem is the amplifier gain. An overall gain of 1000 is required in Eq. (5.53) in order to

obtain appreciable output voltages on the order of � 2 V. This gain is too high;

prohibitively large resistor values R2 ¼ R4 ¼ 100 MΩ would be needed in Fig. 5.30.

Concept of an Instrumentation Amplifier

Thus, the solution for at least one problem is clear: we need to add an extra amplifier

stage. One way of doing so is shown in Fig. 5.32. Two non-inverting amplifiers are added

to both inputs of the difference amplifier. This design achieves two goals simultaneously.

First, it isolates the amplifier circuit from the Wheatstone bridge since the non-inverting

amplifiers have an infinite input resistance and do not sink any current from the bridge.

Second, it adds the extra gain; in other words, it eases the burden on the difference

10 k

700 strain gage

a b

1 k
potentiometer

10 k

va vb

+

-

vD

7.5 V=VCC

0 V

Fig. 5.31. AWheatstone bridge sensor where the strain gauge forms one of the four resistors.
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amplifier in the second stage. The difference amplifier becomes mainly responsible for

rejecting the common-mode signal and the amplification of the differential signal.

However, another problem arises there. The two non-inverting amplifiers amplify

voltages υa, υb (close to 3.75 V in the present case). Therefore, at any appreciable gain

(say, ACL ¼ 1þ R4=R3 ¼ 10), they simply saturate and will not function! To avoid this

issue, we use a simple yet critical change shown in Fig. 5.33 where we remove the

common-port connection from the non-inverting stage. The circuit in Fig. 5.33 behaves

completely differently compared to the original circuit in Fig. 5.32. We no longer have the

output voltages υ	a , υ
	
b given by

υa* ¼ ACLυa, υa* ¼ ACLυa, ACL ¼ 1þ
R4

R3

ð5:55Þ

Instead, those voltages now become

υa* ¼ υa þ
R4

2R3

υa � υbð Þ, υb* ¼ υb �
R4

2R3

υa � υbð Þ ð5:56Þ

The details of the derivation are seen in Fig. 5.33. The currents and voltages labeled in

this figure are obtained using two summing-point constraints. The key observation is that

the absolute voltages υa, υb are no longer amplified but are simply passed through. Only

the differential voltage υD ¼ υa � υb is amplified. The circuit in Fig. 5.33 is also a

“difference amplifier,” and it may be called the unity common-mode gain stage. The

final step in the construction of the instrumentation amplifier is to connect both stages

together. Figure 5.34 gives the final circuit that can be employed in conjunction with the

Wheatstone bridge for the strain gauge shown in Fig. 5.31. Here, a quad op-amp chip

(LM148 series) is used; it has four individual amplifiers inside the chip. For our circuit,

we need three of them. The circuit is powered by a �7:5� V dual supply. According to

Eqs. (5.53) and (5.56), the overall (differential) gain in Fig. 5.34 becomes

+
-

vout

+

-

0 V

+
-

R4R3

+
-

R4

R3

R1

R1

R2

R2

vb

va

0 V

vb

va

*

*

Fig. 5.32. An important step toward the instrumentation amplifier: we add non-inverting ampli-

fication stages at the input.
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υout ¼
R2

R1

1þ
R4

R3

� �

υa � υbð Þ ¼
R2

R1

1þ
R4

R3

� �

υD, ACL ¼
R2

R1

1þ
R4

R3

� �

ð5:57Þ

The overall common-mode gain is exactly zero (ideal resistances). Choosing resistance

values from Fig. 5.34 gives us an overall differential gain of 1010. We retain a certain

gain (10) of the differential stage in order to have the gain of no more than 100 per stage.

5.4.4 Instrumentation Amplifier in Laboratory

The operation of the circuit in Fig. 5.34 is shown in Fig. 5.35. The oscilloscope resolution

is 1 V per division. At no applied strain, the oscilloscope connected to the amplifier

output (the ground terminal of the oscilloscope is connected to circuit ground) shows a

relatively small output voltage signal. When a bending moment is applied, as shown in

Fig. 5.35a, the output voltage rises to approximately 2 V. This voltage is sufficient to light

up a yellow LED (light-emitting diode) indicator connected between the output port and

common port. When the opposite bending moment is applied, as in Fig. 5.35b, the output

voltage drops to approximately –2 V. This voltage, taken with a negative sign, is again

sufficient to light up a red LED connected from the common port to the output port.

+
-

R4R3

+
-

R4

R3

vb

va

vb

va

*

*

vb

va

v -R ib 4

v +R ia 4

+ -

+-

v -va b

2R3

= i

Fig. 5.33. Next step toward the instrumentation amplifier: we convert the non-inverting stage to a

unity common-mode gain amplifier.
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Fig. 5.34. The complete instrumentation amplifier for the strain gauge testing.
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The states in Fig. 5.35 have been achieved by a proper tuning of the potentiometer in

the Wheatstone bridge. Thus, we have built a simple, yet useful, uncalibrated, uniaxial,

stress-monitoring system. Frequently, the output of an instrumentation amplifier is

connected to an analog-to-digital converter (ADC) and then to a computer system.

Load Cell and Other Uses

The circuit in Fig. 5.34 gives us the idea of a commercial load cell. Strain gauges are

commercially available in prefabricated modules such as load cells that measure force,

tension, compression, and torque. All four resistors of the Wheatstone bridge may be

strain gauges. Load cells typically use a full-bridge configuration and contain four leads

for bridge excitation and measurement. The manufacturers provide calibration and

accuracy information. However, the load cells do not normally include the instrumenta-

tion amplifier itself. Another mechanical engineering example where the differential

amplifier is quite useful is a thermocouple. When measuring a thermocouple in a noisy

environment, the noise from the environment appears as an offset on both input leads,

making it a common-mode voltage signal. Many other examples indeed exist, particularly

in biomedical engineering. The instrumentation amplifier is used to amplify an output

signal from virtually any analog differential sensor instrument. Also note that instrumen-

tation amplifiers with precision resistors are available as separate integrated circuits.

Those ICs have a much better performance than an instrumentation amplifier wired on

the protoboard. Other instrumentation amplifier types exist, which are different from the

topology of the instrumentation amplifier circuit in Fig. 5.34. In principle, it is possible

to design an instrumentation amplifier circuit with only two amplifier gain stages. The

summary to this chapter provides an example used in practice.

Fig. 5.35. Operation of the instrumentation amplifier with the strain gauge attached to a metal slab.

(a) A “positive” bending moment is applied and (b) a “negative” bending moment is applied. The

oscilloscope resolution is 1 V per division in every case.
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Section 5.5 General Feedback Systems

5.5.1 Signal-Flow Diagram of a Feedback System

Although the negative feedback was first quantified by electrical engineers, it is extensively

observed, studied, and employed in many mechanical, biomedical, chemical, and other

systems. Figure 5.36 shows a generic structure of a linear feedback system.

Figure 5.36 is a simplified signal-flow diagram or controls block diagram. The

variable x is a signal; it may be voltage, current (electrical engineering) or displacement,

velocity (mechanical engineering), etc. These three blocks have special names in control

theory:

1. The first block (basic voltage amplifier in terms of ECE) is called the forward or

open-loop gain A (often denoted by AOL). It operates according to the ideal-

amplifier rule

xo ¼ Axe, A ¼ const > 0 ð5:58Þ

2. The second block is called the feedback gain. It operates according to a linear rule

xf ¼ βxout, β ¼ const > 0 ð5:59Þ

where β is called the feedback factor.

3. The block where the input signal and feedback signal are compared and subtracted

from one another is called the summing (or difference) node.

5.5.2 Closed-Loop Gain and Error Signal

Mathematically, from Eq.(5.59), one has

xe ¼ xin � xf ¼ xin � βxout ð5:60Þ

According to Eqs. (5.58) and (5.60), we obtain

xout ¼ Axe ¼ A xin � βxoutð Þ ð5:61Þ

Solving for xout gives us the closed-loop gain ACL (sometimes denoted by G or Af)

Source A
+

-

xin xe xout

xoutxf

Fig. 5.36. A negative feedback loop for an arbitrary system (signal-flow diagram).
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xout ¼
A

1þ Aβ
xin ) ACL ¼

A

1þ Aβ
ð5:62Þ

If the open-loop gain A is made arbitrarily large (ideally approaching1), then the closed-

loop gain approaches

ACL �
1

β
ð5:63Þ

The significance of Eq. (5.63) cannot be overstated. It means that as long as the open-loop

gain A is large enough, the closed-loop gain ACL will approach the constant value 1/β,

which is precisely controlled by an external passive feedback network. In other words,

manufacturing uncertainties in A and the potential nonlinear behavior of A are eliminated

since A itself is eliminated. The price for this operation is a significant reduction of the

overall system gain. Equation (5.63) implies that

Aβ >> 1 ) ACL ¼
1

β
<< A ð5:64Þ

Clearly, the feedback loop reduces the initial gain substantially. And yet, despite this

drawback, the closed-loop gain ACL may still be large enough and sufficient for ampli-

fication as long as A is made very large. Thus, the feedback loop in Fig. 5.36 is a simple

and powerful means to control the operation of an arbitrary high-gain system.

Exercise 5.9: The open-loop gain A in Fig. 5.36 varies between two extreme values of

A ¼ 1000� 200 (�20 % gain variation) depending on the system parameters. The forward

gain block is used in the closed-loop configuration with the feedback factor β of 0.1.

Approximate the two extreme values of the closed-loop gain, ACL.

Answer: ACL ¼ A= 1þ Aβð Þ ¼ 9:90� 0:02 or � 0:2% closed-loop gain variation.

Error Signal

The second question of interest is finding the error signal, xe, in Fig. 5.36, which

corresponds to the differential input voltage for an amplifier circuit with the negative

feedback. Substitution of Eq. (5.62) into Eq. (5.60) yields

xe ¼ xin � β
A

1þ Aβ
xin ¼

1

1þ Aβ
xin ð5:65Þ

When the open-loop gain A is large and furthermore Aβ >> 1, one obtains

xe � 0 ð5:66Þ
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As applied to the amplifier circuits, Eq. (5.66) is exactly the second summing-point

constraint or the condition of the zero differential input amplifier voltage under presence

of the negative feedback.

Exercise 5.10: The open-loop gain A in Fig. 5.36 is 10,000. The forward gain block is

used in the closed-loop configuration with the feedback factor β of 0.1. Determine the error

signal xe if the input voltage signal is 1 mV.

Answer: xe ¼ 0:999 μV � 1 μV.

5.5.3 Application of General Theory to Voltage Amplifiers with Negative

Feedback

Two circuits shown in Fig. 5.37 are the buffer amplifier circuit and the non-inverting

amplifier circuit, respectively. The goal is to find the closed-loop gain ACL of the amplifier

circuit when the given open-circuit voltage gain A is large but finite. In this case, the

second summing-point constraint cannot be applied. Therefore, simple Eqs. (5.16) and

(5.21) obtained previously need to be modified.

Both circuits from Fig. 5.37 have the form of the feedback system as in Fig. 5.36. The

feedback network is indicated by a shaded rectangle. The signal x is now the voltage.

Since A is given, the only problem is to find the feedback factor, β. For the buffer

amplifier, the feedback factor is clearly one. For the non-inverting amplifier circuit, the

feedback loop is the voltage divider, where β is determined by the resistance ratio. Note

that the voltage divider model implies no current into amplifier’s input terminals.

Specifically, βυout is equal to R1= R1 þ R2ð Þυout. Therefore,

β ¼ 1 � buffer ampl: circuit; β ¼
R1

R1 þ R2

� non-inv: ampl: circuit ð5:67Þ

Substitution into Eq. (5.62) gives us two expressions for the closed-loop gain:

ACL¼
A

1þA
� buffer ampl: circuit; ACL¼

A

1þA R1

R1þR2

� non-inv: ampl: circuit ð5:68Þ

R2

R1

+
- vout

vin vout

+
- vout

vin vout

)b)a

Fig. 5.37. Two amplifier circuits with negative feedback networks indicated by a shaded rectangle.
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The first equation (5.68) coincides with Eq. (5.23) obtained in Section 5.2 using the

accurate circuit analysis. So does second equation (5.68) when we repeat the same

analysis for the non-inverting amplifier configuration. If A ! 1, then the simple gain

expressions—Eqs. (5.16) and (5.21)—derived with the help of the second summing-point

constraint are obtained from Eqs. (5.68). The analysis of the inverting amplifier requires

more efforts since this amplifier type is not exactly the voltage amplifier but rather a

transresistance amplifier considered next.

Exercise 5.11: The open-loop (open-circuit) gain A of a non-inverting amplifier circuit

with R1 ¼ 1kΩ,R2 ¼ 9kΩ is 10,000. Determine the closed-loop gain.

Answer: ACL ¼ 9:99, which is by 0.1 % different from ACL ¼ 1þ R2

R1
¼ 10.

Last but not least, we emphasize another significant advantage of the negative feed-

back. When the input and output resistances of the amplifier model in Fig. 5.5 have finite

values (which occurs in practice), the negative feedback loop effectively increases the

input resistance and decreases the output resistance, i.e., makes the entire amplifier circuit

look closer to the ideal-amplifier model.

5.5.4 Voltage, Current, Transresistance, and Transconductance Amplifiers

with the Negative Feedback

At the end of this short section, we consider four basic amplifier circuits with negative

feedback, which correspond to the four basic dependent sources studied in Chapter 2:

voltage amplifier, transconductance amplifier, transresistance amplifier, and current

amplifier. Figure 5.38 shows the corresponding circuit diagrams. Load resistance RL is

introduced for the transconductance amplifier and the current amplifier, respectively,

where the output is the load current. Although every amplifier circuit may be represented

in the form similar to the feedback diagram in Fig. 5.36 and analyzed accordingly, only a

simplified treatment will be given here. It utilizes the condition A ! 1 and the resulting

second summing-point constraint. Using the both summing-point constraints, we may

obtain, with reference to Fig. 5.38,

υout ¼ 1þ
R2

R1

� �

υin voltage amplifier ð5:69aÞ

iout ¼ GFυin, GF ¼ 1=RF transconductance amplifier ð5:69bÞ

υout ¼ �RFiin transresistance amplifier ð5:69cÞ
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iout ¼ 1þ
R2

R1

� �

iin current amplifier ð5:69dÞ

Note that other more elaborate circuits may be considered; some of them are analyzed in

the corresponding homework problems.

R2

R1

+
- vout

vin

a)

+
-

RF

+
-

iout

vin

b)

+
-

RL

+
-

iin

RF

vout

+
-

iin

R2

RL

R1

iout

c) d)

voltage amplifier

transresistance amplifier

transconductance amplifier

current amplifier

Fig. 5.38. Four basic amplifier types with negative feedback.
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Summary

Amplifier circuit Operation Formulas

Open-loop operational amplifier

(comparator)

Operation with �VCC power rails:

υout ¼ A υþ � υ�ð Þ, υoutj j < VCC

Open-circuit (open-loop) gain A is

very high

Amplifier circuit model – Valid for any voltage amplifier or

voltage amplifier circuit, but Rin,

Rout, A are different in every case;

– Ideal amplifier model (useful sim-

plification):

Rin ¼ 1, Rout ¼ 0, A ¼ 1

Negative feedback for the ideal-amplifier model: differential input voltage is zero (2nd SPC)

Non-inverting amplifier For ideal-amplifier model:

υout ¼ ACLυin, ACL ¼ 1þ
R2

R1

Rin ¼ 1, Rout ¼ 0

Exact: ACL ¼ A 1þ A
R1

R1 þ R2

� ��1

Voltage follower (buffer)

amplifier

For ideal-amplifier model:

υout ¼ ACLυin, ACL ¼ 1

Rin ¼ 1, Rout ¼ 0

Exact: ACL ¼
A

1þ A

Inverting amplifier For ideal-amplifier model:

υout ¼ ACLυin, ACL ¼ �
R2

R1

Rin ¼ R1, Rout ¼ 0

Exact: ACL ¼ �
R2

R1

A Aþ 1þ
R2

R1

� ��1

(continued)
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Cascaded amplifier – Gains of individual stages multiply;

– Input resistance of the amplifier cir-

cuit is the input resistance of stage 1;

– Individual stage gain should not

exceed 100

Input load bridging versus input load matching

Load bridging – Source (sensor) sees the amplifier as

an open circuit:

υout ¼ υS � ACL

– No current from the source can flow

into amplifier circuit

Load matching – Source (sensor) sees the amplifier as

resistance Rin ¼ R1:

υout ¼
Rin

RS þ Rin

υS � ACL

– Matching condition RS ¼ Rin is

important for high-freq. circuits

DC imperfections and their cancellation

Non-inverting amplifier – Short-circuited output voltage may

be trimmed to zero using the offset

null terminal

– Short-circuited output voltage may

be trimmed to zero by adjusting

common-terminal voltage;

– Extra resistance R eliminates the

effect of the input bias current

Inverting amplifier The same as above

(continued)
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Multiple-input amplifier circuits

Summing amplifier – The summing amplifier sums several

weighted input voltages:

υout ¼ �
RF

R1

υ1 �
RF

R2

υ2 �
RF

R3

υ3

– Used as a prototype of the digital

to analog converter

Difference amplifier – True difference amplifier:

R2

R1

¼
R4

R3

, υout ¼
R2

R1

υa � υbð Þ

– Rejects common-mode voltage

– For the general difference amplifier

circuit see Eq. (5.52c)

Unity common-mode gain stage – Differential gain:

υa*� υb* ¼ AD υa � υbð Þ

AD ¼ 1þ
R4

R3

– Common-mode gain:

υa*þ υb* ¼ ACM υa þ υbð Þ

ACM ¼ 1

Instrumentation amplifier Output voltage:

υout ¼
R2

R1

1þ
R4

R3

� �

υa � υbð Þ

Closed-loop differential gain:

ACL ¼
R2

R1

1þ
R4

R3

� �

– Rejects common-mode voltage

Simpler instrumentation

amplifier

Output voltage:

υout ¼ 2
R2

RG

þ 1þ
R2

R1

� �� �

υa � υbð Þ

– Closed-loop differential gain:

ACL ¼ 2
R2

RG

þ 1þ
R2

R1

� �

– Rejects common-mode voltage

(continued)
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General feedback systems and amplifiers with negative feedback

Signal—flow diagram Closed-loop gain:

xout ¼ ACLxin, ACL ¼
A

1þ Aβ
�

1

β

Error signal:

xe ¼
1

1þ Aβ
xin � 0

Transconductance amplifier Closed-loop operation:

iout ¼ GFυin, GF ¼ 1=RF

Variations of this simple circuit are

possible

Transresistance amplifier Closed-loop operation:

υout ¼ �RFiin

Variations of this simple circuit

are possible

Current amplifier Closed-loop operation:

iout ¼ 1þ
R2

R1

� �

iin

Variations of this simple circuit

are possible

Howland amplifier (current

pump)

Closed-loop operation:

(R1=R3 ¼ R2=R4)

iout ¼ GF υa � υbð Þ, GF ¼ 1=R2

Variations of this clever circuit

are possible

Chapter 5 Operational Amplifier and Amplifier Models

V-238



Problems
5.1 Amplifier operation

and circuit models

5.1.1 Amplifier Operation
Problem 5.1. An operational amplifier has five

terminals.

A. Sketch the amplifier symbol.

B. Name each of the op-amp terminals and

describe its function in one sentence per

terminal.

C. Can the amplifier IC have more than five

terminals? Explain.

Problem 5.2.Youmay wonder about the mean-

ing of the two letters preceding amplifier mark-

ing, e.g., LM741. Each of the semiconductor

companies has its own abbreviation, e.g., LM

for an amplifier designed and manufactured by

the National Semiconductor Corporation

(acquired by Texas Instruments in 2011), AD

for an amplifier manufactured by Analog

Devices, MC for STMicroelectronics, TL for

Texas Instruments, etc. The same chip, e.g.,

LM741, may be manufactured by several semi-

conductor chip makers. The part number is

given by a numerical code that is imprinted on

the top of the package. An MC1458 amplifier

IC chip is shown in the figure below. This IC is

a dual operational amplifier. In other words,

one such IC package contains two separate

operational amplifiers.

A. Download the amplifier’s datasheet from

http://www.datasheetcatalog.com

B. Redraw the figure to this problem in

your notes and label the pins for the

non-inverting input, the inverting input,

and the output of the operational amplifier

#1.

C. Label pins for þVCC and �VCC.

Problem 5.3. What is the minimum number of

pins required for:

A. The dual operational amplifier (the

corresponding IC package contains two

separate operational amplifiers)?

B. The quad operational amplifier (the

corresponding IC package contains four

separate operational amplifiers)?

Problem 5.4. An operational amplifier has an

open-circuit gain ofA ¼ 2� 105 and is powered

by a dual source of �10 V. It is operated in the

open-circuit configuration. What is the ampli-

fier’s open-circuit output voltage υout if

A. υþ ¼ 0V, υ� ¼ 0V

B. υþ ¼ þ1V, υ� ¼ þ1V

C. υþ ¼ þ1V, υ� ¼ 0V

D. υþ ¼ 0V, υ� ¼ �1V

E. υþ ¼ þ1mV, υ� ¼ 0V

F. υþ ¼ �1mV, υ� ¼ 0V

G. υþ ¼ 10μV, υ� ¼ 0V

H. υþ ¼ 0V, υ� ¼ 10μV

Problem 5.5. Based on the solution to Problem

5.4, why do you think the operational amplifier

is seldom used in the open-loop configuration,

at least in analog electronics?

Problem 5.6. Using the website of the National

Semiconductor Corporation, determine the

maximum and minimum supply voltages (oper-

ating with the dual-polarity power supply) for

the following amplifier’s ICs:

A. LM358

B. LM1458

C. LM741

Which amplifier IC from the list may be

powered by two AAA batteries?

Problem 5.7. Plot to scale the output voltage of

the operation amplifier with an open-circuit gain

A ¼ 5� 104 when the non-inverting input volt-

age υþ changes from �2 mV to +2 mVand the

inverting input voltageυ� is equal to�1mV. The

amplifier is powered by a �12-V dual voltage

supply. Label the axes.
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Problem 5.8. Repeat the previous problem for

A ¼ 5� 105.

5.1.2 Operational Amplifier

Comparator
Problem 5.9. In a circuit shown in the figure

below, an operational amplifier is driven by a

�10-V dual power supply (not shown). The

open-circuit DC gain of the amplifier is

A ¼ 1, 000, 000. Sketch to scale the output

voltage to the amplifier when

a) V threshold ¼ �30 mV

b) V threshold ¼ þ30 mV

Assume that the amplifier hits the power rails in

saturation.

vout

+
-

Vthreshold

0 10 20 30 40 50

Input voltage     , mV

time, ms

0

20

40

60

80

-20

-40

A=1,000,000

Output voltage v , Vout
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-5

-10

-15
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time, ms

a)

Output voltage v , Vout

0

5

10

15

-5

-10

-15
0 10 20 30 40 50

time, ms

b)

V =-30mVthreshold

V =+30mVthreshold

0 V

v+

v+

Problem 5.10. Based on the solution to the

previous problem, why do you think the oper-

ational amplifier in the open-loop configuration

may be useful for digital circuits?

Problem 5.11. Solve Problem 5.9 when the

input voltage is applied to the inverting input

and the threshold voltage is applied to the

non-inverting input.

Problem 5.12. The circuit shown in the figure

is a zero-level detector. An operational ampli-

fier in the open-loop configuration is driven by

a �10-V dual power supply (not shown). The

open-circuit amplifier gain is 100,000. Sketch

the output voltage to scale. Assume that the

amplifier hits the power rails in saturation.

vout

vin

+
-

A =100,000

Input and output voltages, V

0

5

10

15

-5

-10

-15
0 10 20 30 40 50

time, ms

vin

Problem 5.13. In a circuit shown in the figure

below, an operational amplifier is driven by a

�15-V dual power supply (not shown). The

open-circuit gain of the amplifier is

A ¼ 100, 000. Sketch to scale the output volt-

age to the amplifier when

a) V threshold ¼ 0 mV

b) V threshold ¼ þ4 mV
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Assume that the amplifier hits the power rails in

saturation.

vout

+
-

Vthreshold

0 10 20 30 40 50

time, ms

0

2

4

6

8

-2

-4

A =100,000

Output voltage v , Vout

0

5

10

15

-5

-10

-15

time, ms

a)

Output voltage v , Vout

0

0

10 20 30 40 50

10 20 30 40 50
time, ms

b)

V =0 mVthreshold

V =+4 mVthreshold

0 V

0

5

10

15

-5

-10

-15

Input voltage     , mV

v+

v+

5.1.3 Amplifier Circuit Model

5.1.4 Ideal-Amplifier Model

Problem 5.14

A. Draw the circuit model of an operational

amplifier.

B. Describe the meaning of the amplifier as

the voltage-controlled voltage source in

your own words.

Problem 5.15. For an equivalent amplifier cir-

cuit with A ¼ 1500 shown in the figure below,

determine the output voltage given that

υS tð Þ ¼ 1 cosω t mV½ 
, RS ¼ 50 Ω, RL ¼ 50

Ω for three cases:

A. Rin ¼ 100 kΩ and Rout ¼ 2 Ω.

B. Rin ¼ 50 Ω and Rout ¼ 25 Ω.

C. Rin ¼ 1 and Rout ¼ 0.

Rout

Rin

+

-
Avx

vx
+
-

+
-

RS

vS

RL+

-

vout

iin iout

Problem 5.16. Name one reason why we

should attempt to:

A. Make the input resistance (impedance)

to the amplifier as high as possible.

B. Make the output resistance (impedance)

to the amplifier as low as possible.

Problem 5.17

A. List all conditions of the ideal-amplifier

model.

B. What is the short-circuit output current

of the ideal amplifier?

Problem 5.18

A. What is thefirst summing-point constraint?

B. What is the equivalent formulation of the

first summing-point constraint in terms

of the input resistance (impedance) to the

amplifier?

Problem 5.19. An amplifier circuit is shown in

the figure below. The first summing-point con-

straint applies. Determine current i2.

+
-

common

R =500 W2

R =100 W1

vout

0 V1 V

i2

Problem 5.20. An amplifier circuit is shown in

the figure below. The first summing-point con-

straint applies. An ideal operational amplifier

has an open-circuit gain of A ¼ 2� 105.
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Determine the output voltage, Vout. You are not

allowed to use any of the materials of the next

section!

Hint: Denote the unknown voltage at node * by

υ*, express υ* in terms of υout, and then solve

for υout.

+
-

common

R =5002

R =1001
vout

1 V

i2

i1

Problem 5.21. An ECE laboratory project uses

the LM358 amplifier IC.

A. What semiconductor company has

developed this chip?

B. Is the chip from the lab project necessarily

manufactured by this company? (See

http://www.datasheetcatalog.com/ for

manufacturers’ datasheets related to this

product.)

C. Use the Digi-Key distributor’s website and

estimate average cost for this amplifier

chip (DIP-8 package) in today’s market.

Problem 5.22. An ECE laboratory project uses

the TL082 amplifier IC.

A. What semiconductor company has

developed this chip?

B. Is the chip from the lab project necessarily

manufactured by this company? (See

http://www.datasheetcatalog.com/ for

manufacturers' datasheets related to this

product.)

C. Use the Digi-Key distributor’s website to

estimate the average cost for this amplifier

chip (DIP-8 package) in today’s market.

5.2 Negative Feedback

5.2.2 Amplifier Feedback Loop. Second

Summing-Point Constraint

5.2.3 Amplifier Circuit Analysis Using

Two Summing-point Constraints

Problem 5.23

A. Name the two summing-point con-

straints used to solve an amplifier circuit.

B. Which summing-point constraint remains

valid without the negative feedback?

Non-inverting Amplifier

Problem 5.24

A. Draw the circuit diagram of the basic

non-inverting amplifier configuration.

B. Accurately derive the expression for the

amplifier gain in terms of the resistances,

assuming an ideal operational amplifier.

Problem 5.25. Using the two summing-point

constraints, solve the ideal-amplifier circuit

shown in the figure if the input voltage has the

value of 2 mV.

A. Label and determine the currents in the

feedback loop.

B. Determine the output voltage of the

amplifier versus the common port.

vin

+
-

common

R =51 kW2

R =100 W1

vout

common

+

-
2 mV +

-

+

-
vx

pin 5

pin 7

pin 6

pin layout - LM1458(#2)
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Problem 5.26. Determine the output voltage

of the ideal operational amplifier shown in the

figure. The amplifier is driven by a �10-V dual

power supply.

vin

+
-

common

R =100 kW2

R =1 kW1

vout

common

+

-
0.5 V +

-

+

-
vx

pin 3

pin 1

pin 2

pin layout - LM1458 (#1)

Inverting Amplifier

Problem 5.27

A. Draw the circuit diagram of the basic

inverting amplifier configuration.

B. Give the expression for the amplifier

gain in terms of the resistances, assum-

ing an ideal operational amplifier.

Problem 5.28. Using the two summing-point

constraints, solve the ideal-amplifier circuit

shown in the figure that follows if the input

voltage is 1 mV.

A. Label and determine the currents in the

feedback loop.

B. Determine the output voltage of the

amplifier versus the common port.

+
-

common

R =10 kW2

R =100 W1
vout

+

-

common

+

-
1 mV

vin
pin 6

pin 7

pin 5

pin layout - LM1458 (#2)

Problem 5.29. Determine the output voltage of

the ideal operational amplifier shown in the

figure. The amplifier is driven by a �10-V

dual power supply.

+
-

common

R =33 kW2

R =1 kW1 vout

+

-

common

+

-
0.5V

vin
pin 2

pin 1

pin 3

pin layout - LM1458 (#1)

Voltage Follower

Problem 5.30

A. Using only the first summing-point con-

straint (SPC), solve the circuit shown

in the figure, i.e., determine the output

voltage of the amplifier versus the

common port.

B. What function does this amplifier have?

Why is it important?

+
-

vout

common

+

-
1 mV

+

-

vin
pin 3

pin 1

pin 2

pin layout - LM1458 (#1)

Exercises on the Use of the Negative

Feedback
Problem 5.31. (A review problem) For three

basic ideal-amplifier circuits:

Inverting amplifier

Non-inverting amplifier

Voltage follower

(each includes negative feedback) present

1. A circuit diagram

2. Expression for the amplifier gain

Problem 5.32. Determine the output voltage of

amplifier configurations shown in the figure

that follows. The amplifier is powered by a

�9-V dual-polarity voltage power supply.

Assume an ideal operational amplifier.
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+
-

common

voutvin

common

+

-
1 mV

+

-

+
-

common
common

+

-
-1 mV

+

-

b)

a)

voutvin

Problem 5.33. Each of the circuits shown in the

figures below employs negative feedback. Find

the output voltage υout vs. ground (or common).

Hint: The ground symbol in an amplifier circuit

usually has the same meaning as the common

port.

1 kW

+

- 3 V

3 mA

3 kWa)

2 mA

b)

c)

2 mA 3 kW

1 V

d)

2 kW 1 kW

5 kW

+
-

+
-

+
-

+
-

vout

+

-

vout

+

-

vout

+

-

vout

+

-

Problem 5.34. Each of the circuits shown in the

figures below employs negative feedback. Find

the output voltage Vout vs. ground

(or common). Hint: The ground symbol in the

amplifier circuit usually has the same meaning

as the common port.

1 kW

+

- 7V

2 mA

4 kWa)

1 V

b)

c)

3.5 mA 2 kW

1 V

d)

50 W 1 kW

5 kW

+
-

+
-

+
-

+
-

+
-

1 kW

vout

+

-

vout

+

-

vout

+

-

vout

+

-

Problem 5.35. Each of the circuits shown in the

figures below employs an inverting amplifier.

1. Solve each circuit (find υout) with an

input voltage of 1 mV.

2. Based on this solution, find the closed-

loop voltage gain ACL of the

corresponding amplifier circuit.

Chapter 5 Operational Amplifier and Amplifier Models

V-244



+
-

R =5.1 kW2

R =100 W1 voutvin

+
-

R =5.1 kW2

R =100 W1

+
-

R =5.1 kW2

R =100 W1

R =100 W1

+
-

R =5.1 kW2

R =100 W1

R =100 W1

R =51 WL

R =51 WL

R =51 WL

a)

b)

c)

d)

voutvin

voutvin

voutvin

Problem 5.36. An inverting amplifier that

achieves high-gain magnitude with a smaller

range of resistance values is shown in the figure

below. Find its output voltage υout vs. ground

(or common port) and the resulting amplifier

gain.

1 kW

1 kW

10 kW 10 kW

+
-

v =1 mVin vout

Problem 5.37. The amplifier circuit shown in

the figure employs negative feedback.

A. Find the value of the output current iout if

the input current is 1 mA,

R1 ¼ 9 kΩ, R2 ¼ 1 kΩ.

B. Why do you think this amplifier type is

known as the current amplifier? To

answer this question quantitatively, ana-

lytically express the output current iout
(current through the load) in terms of

the unknown input current iout and two

arbitrary resistor values, R1,2.

iin

R1

R2

RL iout

+
-

5.2.4 Mathematics Behind the Second

Summing-Point Constraint

Problem 5.38

A. Derive an expression for the closed-loop

gain of the non-inverting amplifier based

only on the definition of the output voltage

υout ¼A υþin � υ�in
� �

, without using the sec-

ond summing-point constraint.

B. Determine the exact gain value when

A¼ 2�105

R1¼ 1 kΩ,R2¼ 9 kΩ

+
-

R2

R1

vout

+

-
v*

vin

*

Problem 5.39

A. Derive an expression for the closed-loop

gain of the inverting amplifier based only

on the definition of the output voltageυout
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¼ A υþin � υ�in
� �

, without using the second

summing-point constraint.

B. Determine the exact gain value when

A¼ 2�105

R1¼ 1 kΩ,R2¼ 10 kΩ

5.2.5 Current Flow in the Amplifier

Circuit
Problem 5.40. The amplifier circuit shown in

the figure below is powered by a �9-V dual-

polarity voltage power supply.

A. Redraw the amplifier schematic in your

notes.

B. Show the current direction in every wire

of the circuit by an arrow and write the

corresponding current value close to

each arrow.

Hint: Change the polarity of the input voltage

and the voltage sign if you have trouble oper-

ating with negative values.

+
-

R =49 kW2

R =1 kW1

vout

+

-
-100 mV

+

-

+

-

R =500 WL

common 0 V

Problem 5.41. Repeat the previous problem for

the circuit shown in the figure below.

+
-

R =4 kW2

R =1 kW1

vout

v =1 Vin

+

-

+

-

R =100 WL

common 0 V

Problem 5.42. The amplifier shown in the fig-

ure below is powered by a �9-V dual-polarity

voltage power supply.

A. Redraw the amplifier schematic in your

notes.

B. Show the current direction in every wire

of the circuit by an arrow and write the

corresponding current value close to

each arrow.

+
-

R =1 kW1 vout

vin

+100 mV

+

-

+

-

R =100 WL

R =10 kW2

Problem 5.43. Repeat the previous problem

when the input voltage to the amplifier is

�100 mV.
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5.2.6 Multiple-Input Amplifier Circuit:

Summing Amplifier
Problem 5.44. By solving the amplifier circuit

shown in the figure, fill out the table that fol-

lows. Assume that R0 ¼ RF, R1 ¼ RF=2, and
R2 ¼ RF=4.

+
-

RF

R1
vout

+

-
R2

0 V

R0

D1

D2

D0

common common

D2, V D1, V D0, V υout, V

0 0 0

0 0 5

0 5 0

0 5 5

5 0 0

5 0 5

5 5 0

5 5 5

Problem 5.45. The amplifier circuit shown

in the figure below employs negative feedback.

This configuration is known as a three-bit dig-

ital-to-analog converter (DAC) on the base of

an R/2R ladder. By solving the amplifier cir-

cuit, determine its output voltage in terms of

resistances R,RF, given the input voltages D0

¼ 0 V,D1 ¼ 0 V, D2 ¼ 5 V.

vout

D =0 V0

+
-

RF

0 V

0V

iF

2R 2R2R

D =0 V1 D =5 V2

0 V

2R R R
a b c

Problem 5.46. By solving the amplifier

circuit shown in the following figure,

determine its output voltage in terms of resis-

tances R,RF, given the input voltages

D0 ¼ 0 V,D1 ¼ 5 V,D2 ¼ 0 V.

vout

D0

+
-

RF

0 V

0V

iF

2R 2R2R

D1 D2

0 V

2R R R
a b c

5.3 Amplifier Circuit Design

5.3.1 Choosing Proper Resistance Values
Problem 5.47. State the limitations on the feed-

back resistances and the output load resistance

of an amplifier circuit.

Problem 5.48. The non-inverting amplifier

shown in the figure below has been wired in

laboratory.

A. Do you have any concerns with regard to

this circuit?

B. If you do, draw the corrected circuit

diagram.

+
-

10

vout

+

-

common

vin=100mV

10

1

5.3.2Model of aWhole Amplifier Circuit

5.3.3 Input Load Bridging or Matching
Problem 5.49. For three basic amplifier circuits

Inverting amplifier

Non-inverting amplifier

Voltage follower

Chapter 5 Problems

V-247



(each includes negative feedback), present

1. A circuit diagram

2. An expression for the closed-loop ampli-

fier circuit gain

3. An expression for the input resistance

(impedance)

4. An expression for output resistance

(impedance)

Problem 5.50

A. Explain in your own words the concept

of load bridging (impedance bridging).

B. Which amplifier, the non-inverting or

inverting, should be subject to load

bridging?

Problem 5.51. An electromechanical sensor is

given by its Thévenin equivalent wherein the

sensor voltage υS is small. The sensor’s equiv-

alent resistance RS may vary in time; but it is

always less than 1 kΩ. An inverting amplifier is

needed that generates an amplified version of

the sensor’s voltage. The output voltage should

be � �100υS. Draw the corresponding circuit

diagram and specify one possible set of resistor

values.

Problem 5.52. Construct an amplifier circuit

matched to a 100-Ω load. The amplifier’s gain

is ACLj j ¼ 100. The sign of the gain (positive or

negative) is not important and the input AC

signal.

Hint: Multiple solutions many exist. Present at

least two solutions.

Problem 5.53. Find the input resistance

(impedance) to the amplifier circuit shown in

the figure below.

vin

+
-

200

200

R =51 k2

R =1 k1

Problem 5.54. Find the input resistance

(impedance) to the amplifier circuit shown in

the figure below.

+
-

R =5.1 kW2

R =100 W1 voutvin

R*=100 W R =51 WL

5.3.4 Cascading Amplifier Stages
Problem 5.55. For the amplifier circuit shown

in the figure, find the output voltage and the

input resistance (show units).

+
-

R =1001

1 mV=vin

R =10 k2

+

-

+
-

R =1 k3

vout

R =10 k4

+
-

Problem 5.56. A sensor with Thévenin

voltage (source voltage) υS ¼ 2:5 mV shown

in the figure is to be connected to an amplifier

circuit. An amplified replica of the sensor’s

voltage, υout � 1000 υS, is needed at the cir-

cuit’s output.

A. Present one possible circuit diagram and

specify all necessary resistor values.

B. Present another (distinct) circuit diagram

and specify all necessary resistor values.

+
-

vS

RS=25 kW

0 V

Problem 5.57. An amplifier in the configura-

tion shown in the figure below is connected to a
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sensor with Thévenin (source) voltage

υS ¼ 25 mV. An amplified replica of the sen-

sor’s voltage, υout � �100 υS, is needed at the

output.

A. Do you have any concerns with regard to

this circuit?

B. If you do, draw an appropriate circuit

diagram.

+
-100 k

vout

1

10 M

+
-

vS

RS=50 k

0 V

vin

Problem 5.58. An amplifier circuit is needed

with the closed-loop gain ACL ¼ þ1000. The

input resistance (impedance) to the circuit should

be 5 kΩ. Present two alternative circuit dia-

grams and specify the necessary resistor values.

The first circuit must use inverting amplifiers

and the second circuit-non-inverting amplifiers.

Problem 5.59. An amplifier circuit is needed

with the closed-loop gainACL ¼ þ10, 000. The

input resistance (impedance) to the circuit

should be as high as possible. Present the

corresponding circuit diagram and specify the

necessary resistor values.

Problem 5.60. An amplifier circuit is needed

with a positive gain of 1000� 20 %. The input

resistance (impedance) to the circuit should be

1 kΩ. Present the circuit diagram and specify the

necessary resistor values including tolerance.

Problem 5.61. An amplifier circuit is needed

with a positive gain of 5000� 5 %. The input

resistance (impedance) should be as high as

possible. Present one possible circuit diagram

and specify the necessary resistor values

including tolerance.

5.3.5 Amplifier DC Imperfections and

Their Cancellation
Problem 5.62. Determine the output voltage to

nonideal operational amplifier circuits (with

the nonzero input offset voltage) shown in the

figures below.

actual op-amp

5 kW=R2

1 kW=R1

vout

+

-

+
-

+

-

ideal op-amp

-1mV10mV

+

-

a)

actual op-amp

5 R2

1 

kW=

kW=R1

vout

+

-

+
-+

-

ideal op-amp

5mV

10mV

+

-

b)

Problem 5.63. Determine the output voltage to

nonideal operational amplifier circuits (with

nonzero input currents) shown in the figures

below. The input terminal is connected directly

to the common terminal (grounded). The

strength of every bias current source is 100 nA.

Hint: The upper bias current source does not

contribute to the solution.
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actual op-amp

10 k

2 kW

vout

+

-

+
-

ideal op-amp

0 V

actual op-amp

10 kW

2 kW

vout

+

-

+
-

ideal op-amp

0 V 5/3 kW

a)

b)

Problem 5.64. For the amplifier circuit shown

in the figure below, determine the output volt-

age. Use R1 ¼ R2 ¼ 1 kΩ.

1 mV=vin

+
-

R2

R1

vout

+

-

0 V
0 V

2mV

+

-

Problem 5.65. In the previous problem, denote

the terminal voltage of 2 mV by Voff, the input

voltage of 1 mV by υin, the output voltage by

υout, and the amplifier gain by ACL. Derive an

analytical formula that determines Voff in terms

of Vin given that the output voltage υout to the

amplifier is exactly zero.

Problem 5.66. For the amplifier circuit

shown in the figure below, determine

the output voltage. Use R1 ¼ 1 kΩ and

R2 ¼ 4 kΩ.

R15 mV=vin

+
-

R2

vout

+

-

0 V
0 V4 mV

Problem 5.67. In the previous problem, denote

the terminal voltage of 4 mV by Voff, the input

voltage of 5 mV by υin, the output voltage by

υout, and the amplifier gain by ACL. Derive an

analytical formula that determines Voff in terms

of υin given that the output voltage to the ampli-

fier is exactly zero.

Problem 5.68. For the circuit shown in the

figure below:

A. Determine the output voltage of the

nonideal operational amplifier circuit

(with the nonzero input offset voltage).

B. Does the amplifier circuit really follow

the ideal-amplifier circuit law:

υout ¼ ACLυin?

C. What happens if the input voltage

changes from 10 mV to 20 mV?

actual op-amp

5kW=R2

1 kW=R1

vout

+

-

+
-

+

-

ideal op-amp

5mV10 mV

0 V

+

-

6 mV

0 V

Problem 5.69. Solve the previous problem

with the offset voltage in the feedback loop

changed from 6 mV to 5 mV.

Problem 5.70. In problem 5.68, denote the

terminal voltage of 6 mV by Voff, the input
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voltage of 10 mV by υin, the input offset volt-

age by VOS, the output voltage by υout, and the

amplifier gain by ACL. Derive an analytical

formula that determines Voff in terms of VOS

given that the output voltage υout to the ampli-

fier must exactly follow the ideal-amplifier gain

law: υout ¼ ACLυin.

actual op-ampR2

R1

vout

+

-

+
-

ideal op-amp

0 V

+

-

+

-

vin

Voff

VOS

0 V

Problem 5.71. For two nonideal operational

amplifier circuits (with the nonzero input offset

voltage) shown in the figures below, determine

the necessary offset voltage, Voff, which ensures

that the output voltage, υout, to the amplifier

exactly follows the ideal-amplifier gain law:

υout ¼ ACLυin. You need to express this voltage

in terms of other circuit parameters that are

given in figures a) and b).

actual op-ampR2

R1
vout

+

-

+
-

ideal op-amp

+

-

+
-

vin VOS

actual op-ampR2

R1
vout

+

-

+
-

ideal op-amp

0 V

+

-

+

-

vin

Voff

VOS

a)

b)

0 V

0 V

Voff0 V

5.3.6 DC-Coupled Single-Supply

Amplifier
Problem 5.72. For the single-supply amplifier

circuit shown in the figure:

A. Determine the output voltage versus cir-

cuit ground (the negative terminal of the

voltage power supply).

B. What potential problem do you see with

this circuit? How could you fix it?

0 V

+
-

100 mV=vS

100 =RS

+
-

0.9 M

100 k

+
-

9 V=VCC

2 k

virtual ground circuit 1 k

0 V

9 V=VCC vout

+ -

Problem 5.73. For the single-supply amplifier

circuit shown in the figure:

A. Determine the output voltage versus cir-

cuit ground (the negative terminal of the

voltage power supply).

B. Do you see any problem with this

circuit?

0 V

+
-

1 mV=vS

100 =RS

+
-

0.9 M

1 k

+
-

12 V=VCC

100 k

virtual ground circuit
100 k

0 V

12 V=VCC vout

+ -

vx
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5.4 Difference and

Instrumentation

Amplifiers

5.4.1 Differential Input Signal to an

Amplifier
Problem 5.74. The model of an input signal

from a three-terminal sensing device is shown

in the figure below. What are the differential

and common-mode voltages at terminals a and

b?

0 V

+
-1 V

0.1 V

+
-

+
-

0.1 V

a

b

Problem 5.75. The Wheatstone bridge in

Fig. 5.27 is connected to �VCC rails instead

ofþVCC and ground. Furthermore,R2 ¼ 1:1R1,

R xð Þ ¼ 1:1R3, and VCC ¼ 6V. What are the

differential and common-mode voltages?

Problem 5.76. The Wheatstone bridge in

Fig. 5.27 is connected to ground and �VCC

rails instead of þVCC and ground. Given that

R2 ¼ 1:05R1, R xð Þ ¼ 1:05R3, and VCC ¼ 6 V,

determine the differential and common-mode

voltages.

5.4.2 Difference Amplifier
Problem 5.77. Design a difference amplifier

with a differential gain of 20. Present the circuit

diagram and specify one possible set of resistor

values. In the circuit diagram, label the input

voltages as υa, υb and express the output voltage

in terms of υa, υb.

Problem 5.78. Repeat the previous problem for

a differential gain of 100.

Problem 5.79. Find the output voltage to the

difference-amplifier circuits shown in the fig-

ures below. Assume the ideal-amplifier model

and exact resistance values.

+
-

5 kW

1 kW
vout

+

-

1 V

0.5 V

0 V

10 kW

50 kW

+
-

5 kW

1 kW

+

-

1 V

10 kW

25 kW

a)

b)

1 V

0 V

vout

Problem 5.80.Your technician needs to control

a process using two sensors with output volt-

ages υ1 and υ2, respectively. The weighted dif-

ference in sensor reading, υ ¼ 1υ1 � 0:5υ2, is
critical for the product quality. The technician

reads voltage υ1 and then voltage υ2 and then

uses a calculator to find υ. Help the technician,

i.e., sketch for him a difference-amplifier circuit

that will directly output υ to the DMM. The

negative terminal of the DMM is always

grounded. Specify one possible set of resistor

values.

Problem 5.81. Repeat the previous problem

when the weighted difference in sensor reading,

υ ¼ 10υ1 � 5υ2, needs to be processed.

Problem 5.82. For the circuit shown in the

figure, find the output voltage if the input volt-

ages areυb ¼ 1Vandυa ¼ 1:01V, respectively.
Assume the ideal-amplifier model and exact

resistance values.
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+
-

10RR
vb

10RR

va

+

-

0 V

vout

Problem 5.83

A. For the circuits shown in the figures

below, find the output voltage if the

input voltages are υa ¼ 1V and

υb ¼ 1V, respectively Assume the ideal

amplifier and exact resistance values.

B. What is the value of the common-mode

gain in every case?

+
-

2RR

2R1.05R

+

-

a)

+
-

2R1.05R

2RR

+

-

b)

0 V

vb

va

vb

va

vout

vout

0 V

Problem 5.84. For the difference-amplifier cir-

cuit shown in the figure below, find the differ-

ential-mode resistance (impedance) to the

amplifier. The differential-mode resistance is

defined as the ratio of a voltage of a power

supply placed between terminals a and b to

the current that flows through this power

supply.

+
-

XRR

XRR

vout

+

-

0 V

5.4.3 Instrumentation Amplifier

Problem 5.85

A. Why is the original difference amplifier

not used as an instrumentation amplifier?

B. Why is the circuit in Fig. 5.31 not used as

the instrumentation amplifier?

Problem 5.86

A. Find the differential gain and the

common-mode gain for the amplifier cir-

cuit shown in Fig. 5.32. The differential

output voltage is υa*� υb*, and the

common-mode output voltage is

0:5 υa*þ υb*ð Þ.
B. Find the differential gain and the

common-mode gain for the amplifier cir-

cuit shown in Fig. 5.31.

Problem 5.87. Design an instrumentation

amplifier with a differential gain of 210. Present

the corresponding circuit diagram and specify

one possible set of resistance values. In the

circuit diagram, label the input voltages as

υa, υb and express the output voltage in terms

of υa, υb.

Problem 5.88. Design an instrumentation

amplifier with a differential gain of 1010. Present

the corresponding circuit diagram and specify

one possible set of resistor values. In the circuit

diagram, label the input voltages as υa, υb and

express the output voltage in terms of υa, υb.

Problem 5.89. The following voltages are mea-

sured: υa ¼ 3:750 V and υb ¼ 3:748 V. Find

voltages versus circuit ground (common port of

the dual supply) for every labeled node in the

circuit shown in the figure below. The amplifier

circuit is powered by a �10� V dual supply.

Assume exact resistance values and the ideal-

amplifier model.
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+
-

+
-

100 kW

1 kW

+
-
100 kW

1 kW

10 kW

10 kW

100 kW

100 kW

vb

va

1

2

3

4

5

6

Problem 5.90. Repeat the previous problem

when node 1 is grounded.

Problem 5.91. The following voltages are mea-

sured: υa ¼ 5:000V and υb ¼ 5:001 V. Find

voltages versus circuit ground (common port of

the dual supply) for every labeled node in the

circuit shown in the figure below. The amplifier

circuit is powered by a �10� V dual supply.

Assume exact resistance values and the ideal-

amplifier model.

+
-

100 kW

1 kW

+
-
100kW

1 kW

1

3

+
-

2

5

4

6

1 kW

1 kW

25 kW

25 kW

vb

va

Problem 5.92. Repeat the previous problem

when node 1 is grounded.

Problem 5.93. The following voltages are mea-

sured: υa ¼ 5:000 V and υb ¼ 5:001 V. Find

voltages versus circuit ground (common port of

the dual supply) for every labeled node in the

circuit shown in the figure below. The amplifier

circuit is powered by a �10� V dual supply.

Assume exact resistance values and the ideal-

amplifier model.

+
-

100 kW

0.95 kW

+
-
100kW

1.05 kW

1

3

+
-

2

5

4

6

1 kW

1 kW

25 kW

25 kW

vb

va

Problem 5.94

A. Find the output voltage for the amplifier

circuit shown in the figure below.

B. Denote the input voltage of 0.1 V by υa,

the input voltage of 0.08 V by υb, the

10-kΩ resistor by R1, the 40-kΩ resistor

by R2, and the 10-kΩ resistor by RG.

Express the output voltage in the general

form, in terms of two input voltages and

the resistances.

+
-

+
-

0.1 V vout

40 kW

10 kW

10 kW40 kW

4 kW

0.08 V

5.5 General Feedback

Systems

5.5.1 Signal-flow Diagram of a Feedback

System

5.5.2 Closed-Loop Gain and Error

Signal
Problem 5.95. The block diagram of Fig. 5.35

is applied to a voltage amplifier.
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A. Given the input signal xin ¼ 10 mV, the

error signal xe ¼ 1 μV, and the output

signal xout ¼ 1 V, determine the open-

loop gain and the feedback factor.

B. Given the ratio of input to error signal xin
=xe ¼ 100 and the feedback factor of 0.1,

determine the open-loop gain.

Problem 5.96. The open-loop gain A in

Fig. 5.35 varies between two extreme values

ofA ¼ 10, 000� 2, 000 (�20 % gain variation)

depending on the system parameters. The for-

ward gain block is used in the closed-loop

configuration with the feedback factor β of

0.1. Determine the two extreme values of the

closed-loop gain, ACL.

Problem 5.97. The open-loop gain A in

Fig. 5.35 is 100,000. The forward gain

block is used in the closed-loop configuration

with the feedback factor β of 1. Determine

the error signal, xe, if the input voltage signal

is 1 mV.

Problem 5.98. The closed-loop gain of a

non-inverting amplifier circuit with R1 ¼ 1kΩ,

R2 ¼ 100 kΩ is 99. Determine the open-circuit

gain A of the amplifier chip.

5.5.3 Application of General Theory to

Voltage Amplifiers with Negative

Feedback

5.5.4 Voltage, Current, Transresistance,

and Transconductance Amplifiers with

the Negative Feedback
Problem 5.99. Derive the gain Eq. (5.69) for

the amplifier circuits shown in Fig. 5.37.

Problem 5.100. The circuit shown in the figure

that follows is a feedback transconductance

amplifier. Express iout in terms of υin.

RF

+
-

iout

vin
+
-

RL
R2

transconductance amplifier

R1

Problem 5.101. The amplifier circuit shown in

the figure that follows is the Howland current

source widely used in biomedical instrumenta-

tion; its output is the current through the load

resistance.

A. Classify the amplifier circuit in terms

of four basic amplifier topologies and

mention the most important circuit

features.

B. Derive its gain equation iout ¼ υa � υbð Þ
=R2 given that R1=R3 ¼ R2=R4.

+
-

R1

R2

R3

RL

vb

va

R4i =iout L
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Part II

Transient Circuits



Chapter 6: Dynamic Circuit Elements

Overview

Prerequisites:

- Knowledge of basic circuit theory (Chapters 2 and 3)

- Knowledge of operational amplifiers with negative feedback (Chapter 5)

Objectives of Section 6.1:

- Define types of capacitance encountered in electric circuits

- Define self-inductance and mutual inductance from the first principles

- Define field energy stored in a capacitor/inductor

- Be able to combine capacitances/inductances in series and in parallel

- Understand construction of practical capacitors/inductors

- Understand fringing effect and its use in sensor circuits

Objectives of Section 6.2:

- Derive dynamic equations for capacitance/inductance from the first principles

- Establish how the capacitance may create large transient currents

- Establish how the inductance may create large transient voltages

- Define instantaneous energy and power of dynamic circuit elements

- Establish the behavior of dynamic circuit elements in the DC steady state and at a

very high frequency

Objectives of Section 6.3:

- Obtain initial exposure to bypass/blocking capacitor and decoupling inductor

- Obtain initial exposure to amplifier circuits with dynamic circuit elements

Application Examples:

Electrostatic discharge and its effect on integrated circuits

How to design a 1-F capacitor? How to design a 1-mH inductor?

Capacitive touchscreens

Bypassing a DC motor

Chapter 6
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Keywords:

Capacitance, Capacitance of two conductors, Self-capacitance, Capacitance to ground,

Capacitance of two equal conductors separated by large distances, Energy stored in a

capacitance, Electrostatic discharge (ESD), ESD effect on integrated circuits, Device under test

(DUT), Parallel-plate capacitor (base formulas, fringing effect, fringing fields), Capacitor

(absolute dielectric permittivity, relative dielectric permittivity, dielectric strength, normalized

breakdown voltage, electrolytic, tantalum, ceramic, marking, set of base values), Capacitive touch

screens (self-capacitance method, mutual-capacitance method), Magnetic flux density, Magnetic

field, Absolute magnetic permeability, Relative magnetic permeability, Magnetic induction,

Magnetic flux, Self-inductance, Inductance, Mutual inductance, Energy stored in an inductance,

Solenoid (air core, toroidal magnetic core, straight magnetic core, short, fringing fields), Inductor

(marking, set of base values, also see solenoid), Dynamic equation for capacitance (definition,

derivation, fluid mechanics analogy), Capacitance (instantaneous energy, instantaneous power,

behavior in the DC steady state, behavior at very high frequencies), Dynamic equation for

inductance (definition, derivation, fluid mechanics analogy), Inductance (instantaneous energy,

instantaneous power, behavior in the DC steady state, behavior at very high frequencies), Bypass

capacitor, Decoupling capacitor, Shunt capacitor, Snubber RC circuit, Decoupling inductor,

Inductor choke, Transient circuit, Amplifier circuits with dynamic circuit elements, Active

filters, Miller integrator (circuit, DC gain, compensation, time constant), Analog pulse counter,

Analog computer, Differentiator amplifier (circuit, gain at very high frequencies), Active

differentiator
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Section 6.1 Static Capacitance and Inductance

6.1.1 Capacitance, Self-Capacitance, and Capacitance to Ground

Capacitance reflects the ability of arbitrary conductors to store electric charge and,

simultaneously, the store energy of the electric field in the surrounding space. When no

dielectric is present, capacitance is determined entirely by the geometry of conductors.

When a dielectric material is present, its permittivity becomes important. Capacitance

definitions will be given with reference to Fig. 6.1.

1. Capacitance, C, of Two Conductors. Two arbitrary insulated conductors near together

in Fig. 6.1a constitute a simple capacitor. Its capacitance, C, is found with the help of

electrostatic theory. Further, it is used in various dynamic models. Capacitance C of

two insulated conductors 1 and 2 is defined by the ratio

C � Q

V
> 0 ð6:1aÞ

where Q > 0 is the (absolute) net charge of either conductor given that the net

charge of the system with both conductors is zero and V is the potential difference or

voltage between two conductors 1 and 2, i.e., V ¼ V 1 � V 2. This ratio does not

depend on V; it is always taken so as to make the capacitance positive.

2. Self-Capacitance, Cself, of a Conductor. When an electric charge Q is added to a

single isolated conductor in Fig. 6.1b, its surface will possess a certain absolute

voltage V versus 0 V at infinity. The ratio

Cself �
Q

V
> 0 ð6:1bÞ

is the self-capacitance of the conductor. The self-capacitance is the capacitance

when the second conductor is a hollow conducting sphere of infinite radius subject

to 0 V.

3. Capacitance to Ground, C, of a Conductor. For conductor 1 in Fig. 6.1c with charge

þQ, its capacitance to ground is the capacitance when the second conductor is an

infinite conducting ground plane in Fig. 6.1c subject to 0 V (and charged to –Q).

+Q

-Q

a)

+
V

-

+Q

b)

V

V1

V2

V=0

+Q

V

V=0

d

-Q
- - - - - - - - - - -

c) +Q

-Q

d

+V

-V

d)

1

2

1

1
1

2

Fig. 6.1. Conductor geometry for capacitance definitions.
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Capacitance to ground, C, is always greater than the self-capacitance, Cself; their

ratio becomes quite large when the separation distance d from the plane is small. On

the other hand,

C ! Cself when d ! 1 in Fig: 6:1c: ð6:1cÞ
4. Capacitance, C, of Two Equal Conductors Separated by Large Distances. For

conductors 1 and 2 in Fig. 6.1d, the capacitance approaches

C ! 1

2
Cself when d ! 1 in Fig: 6:1d: ð6:1dÞ

The separation distance d must be large compared to the conductor’s size.

Equation (6.1d) will be proved shortly.

The capacitance is recorded in units of farads or F. This unit is named in honor of

Michael Faraday (1791–1867), a British physicist and chemist, who was known to many

as “the best experimentalist in the history of science.” Typical capacitance values in

electronics are pF (picofarad or simply paf), nF (nanofarad), and μF (microfarad). In

power electronic circuits, larger capacitances might be used. The capacitance unit is

linked to other MKS units as follows:

1 F ¼ 1
A � s
V

¼ 1
J

V2
¼ 1

C

V
ð6:2Þ

where C is the unit of coulomb. The total electric field energy stored between two

conductors and in the surrounding space is given by

E ¼ 1

2
CV 2 ð6:3Þ

This result can be derived from the definition of the electric potential (voltage). The

energy is equal to work, which is necessary to put all charges of the capacitor in place.

Equation (6.3) is valid for any configuration shown in Fig. 6.1.

Example 6.1: Prove Eq. (6.1d).

Solution: For a conductor in Fig. 6.1b, the stored electric energy is given by

Eself ¼
1

2
CselfV

2 ð6:4aÞ

For two conductors in Fig. 6.1d separated by a very large distance d, the stored electric

energy is approximately given by
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Example 6.1 (cont.):

E ¼ 2Eself ¼
1

2
C 2Vð Þ2 ð6:4bÞ

Comparing Eqs. (6.4a) and (6.4b) we obtain the necessary result.

Exercise 6.1: A metal circle or radius r ¼ 0:1m has the self-capacitance Cself ¼ 8ε0 r

where ε0 ¼ 8:85419� 10�12 F=mis the permittivity of vacuum. Estimate capacitance of a

capacitor formed by two coaxial circles separated by 1 m.

Answer: ~3.54 pF from Eq. (6.1d). A precise numerical solution predicts 3.77 pF.

Exercise 6.2: How large is the stored energy in a 100-μF laboratory capacitor at 10 V?

Answer: 0.005 J or, which is the same on the power basis, 5 mWof power delivered during

one second. However, this power will not be delivered uniformly.

Exercise 6.3: How large is the stored energy in a 20-F ultracapacitor charged to 25 V?

Answer: 6250 J or 6.25 kJ. This is certainly a significant value. At the same time, the

discharge rate (available current or power) is much less in this case than the current or

power delivered by laboratory electrolytic capacitors.

6.1.2 Application Example: ESD

Self-capacitance results may be applied for the prediction of ESD (electrostatic dis-

charge) effects on integrated circuits (ICs). One of the most common causes of electro-

static damage is the direct transfer of electrostatic charge through a significant series

resistor from the human body or from a charged material to the electrostatic discharge-

sensitive (ESDS) device. The concept is shown in Fig. 6.2a. A metal ground plane and the

highly conducting human body naturally form a capacitor. The body capacitance C in

Fig. 6.2b is defined as the capacitance between the body, assumed to be a conductor, and

the large (ideally infinite) ground plane. Its value depends significantly on the posture of

the body with respect to the ground surface. The typical separation distance is 2 cm. It may

be shown that, at such distances, C � 2Cself . Therefore, instead of calculating C directly,

we can find the self-capacitance of the human body, Cself, and then multiply it by 2.
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Typical self-capacitances of a 177-cm-tall male student are indicated in Fig. 6.3. These

values were obtained by the method described in Chapter 1.

The simplifying assumption C � 2Cself and Fig. 6.3 predict body capacitances in the

range 86–95 pF. These values are in a good agreement with the generally accepted human

body model (HBM), which, with reference to Fig. 6.2b, uses

R ¼ 1:5 kΩ, C ¼ 100 pF ð6:5Þ

6.1.3 Parallel-Plate Capacitor

Consider a parallel-plate capacitor shown in Fig. 6.4a, b. Both infinitely thin conducting

square plates with the side a and area A ¼ a2 are separated by distance d. The upper plate

has a total charge +Q; the lower plate has the opposite charge –Q; the net charge of the

capacitor is zero. Feeding conductors are implied to be disconnected; they are excluded

from consideration. Assuming that the entire electric field is concentrated only within the

capacitor and that it is uniform in space (equal to V/d), the approximate capacitance is

established as

=

t=0

series body
resistance

charged body to
ground capacitance

a) b)

t=0

DUT

C

R

Fig 6.2. Equivalent circuit for understanding ESD and its effect on a device under test (DUT).

C =47.2 pFself C =43.4 pFselfC =44.3 pFself C =43.2 pFself

Fig 6.3. Typical self-capacitance values for a 177-cm-tall male person. Note how the self-

capacitance changes when the body poses change.
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C ¼ ε0A

d
ð6:6Þ

where ε0 is the dielectric permittivity of vacuum if the capacitor is situated in vacuum. For

Eq. (6.6) to hold, the plates do not have to be square. If the capacitor does not have a high-ε

dielectric inside, Eq. (6.6) is a good approximation only if d is very small compared to the

dimensions of the plates. Otherwise, the fringing effect must be taken into account. The

fringing effect is illustrated in Fig. 6.4a, b. Fringing means that the electric field extends

outside the physical capacitor. The electric field outside the capacitor possesses certain

extra energy. Therefore, according to Eq. (6.3) where voltage V is fixed, the capacitance

must increase compared to the non-fringing case. Figure 6.4c in the summary of this

chapter present numerically found capacitance valuesCexact for the parallel-plate capacitor

with fringing. These values have been accurately computed using a rigorous numerical

adaptive procedure. Figure 6.4c predicts a nearly linear increase of the ratio Cexact/C as

a function of the separation distance. Therefore, the wrong result,C ! 0 when d ! 1,

which is predicted by Eq. (6.6), is corrected. Instead, one will have

C ! 0:5Cself when d ! 1.

The fringing field of capacitors is utilized in capacitive touch screens. In this case, the

significant fringing field is a desired effect. Therefore, configurations other than the

parallel-plate capacitor are used. These configurations will be studied later in this section.

lines of force
( -field)E

0.5

0.4

0.6

0.7

0.8

0.9

0.3

-0.5

-0.4

-0.3

-0.6

-0.7

-0.8

-0.9

equipotential
lines

Potential (voltage) distribution, V
a)

0 0.2 0.4 0.6 0.8 1
1

1.5

2

2.5

3

3.5

d/a

C /Cexact

+1 V

-1 V

b)

c)

Fig. 6.4. (a) Equipotential lines and lines of force for a capacitor with d=a ¼ 0:2 in the central

cross-sectional plane (the plates are at �1 V). (b) Fringing electric field for the same capacitor

observed in the central cross-sectional plane (the plates are at �1 V). (c) Ratio of the accurate

capacitance values (found numerically) to the values predicted by Eq. (6.6).
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When a dielectric material of relative permittivity εr > 1 is inserted between the

capacitor plates, a substitution ε0 ! εrε0 has to be made in Eq. (6.6). The fringing effect

is less apparent for higher values of εr.

Exercise 6.4: Estimate the static capacitance of a parallel-plate capacitor with a ¼ 1 cm2

and d ¼ 1:57 mm using the basic formula. The substrate material is Rogers 4003 laminate

with εr ¼ 3:55.

Answer: 2.00 pF.

6.1.4 Circuit Symbol: Capacitances in Parallel and in Series

Figure 6.5 shows the capacitances in parallel and in series, along with the capacitance

circuit symbol. This symbol is reserved for the capacitance as a circuit element. Such an

element is an ideal capacitor excluding manufacturing imperfections (parasitic resistance

and inductance). In the following text, we will frequently employ both words—capaci-

tance and capacitor—to denote the same ideal circuit element. The parallel and series

connections of capacitances are opposite when compared to the resistances. To establish

this fact we consider two combinations in Fig. 6.5.

For the parallel configuration in Fig. 6.5a, the same voltage VC is applied to every

capacitance. One has for the charges on the capacitor plates,

Q1 ¼ C1VC, Q2 ¼ C2VC, Q3 ¼ C3VC ) Q1 þ Q2 þ Q3 ¼ Qtotal

¼ C1 þ C2 þ C3ð Þ VC ð6:7Þ

a) C1

C2

C3

+ -vC1

b)

C2C1 C3

+ -vC2 + -vC3

BA BA

+ -VC
+ -VC

+Q1 -Q1 +Q2 -Q2 +Q3 -Q3

Fig. 6.5. Capacitances in parallel and in series: (a) capacitances in parallel are added; they behave

similarly to resistances in series and (b) capacitances in series are combined in the same way as

resistances in parallel.
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Thus, the capacitances connected in parallel behave like a single capacitance Ceq,

Ceq ¼ C1 þ C2 þ C3 ð6:8Þ

Equation (6.8) also makes intuitive sense if we take a closer look at Fig. 6.5a where the

three individual capacitors visually form a bigger capacitor comprised of larger plate

areas. This clearly increases the capacitance accordingly. In Fig. 6.5b, however, the

situation is different. The thicknesses of each capacitor add together, which decreases

the overall capacitance since thickness varies inversely with capacitance. Assume that

every capacitor was initially uncharged and apply voltage VC between terminals A and B.

Since each pair of inner conductors in Fig. 6.5b has remained insulated,

Q1 ¼ Q2 ¼ Q3 ¼ Q. Next, by KVL,

VC ¼ V 1 þ V 2 þ V 3 ¼
Q1

C1

þ Q2

C2

þ Q3

C3

¼ 1

C1

þ 1

C2

þ 1

C3

� �

Q ¼ Q

Ceq

ð6:9Þ

and for the series combination of the capacitances, one has

1

Ceq

¼ 1

C1

þ 1

C2

þ 1

C3
ð6:10Þ

Exercise 6.5: Find the equivalent capacitance of the circuit shown in Fig. 6.6.

Answer: Ceq ¼ 44 μF

6.1.5 Application Example: How to Design a 1-μF Capacitor?

Let us to design a capacitor. Our modest goal is a 1-μF capacitor. We consider two

aluminum plates separated by 1 mm. Equation (6.6) then allows us to predict the required

plate area:

A ¼ dC

ε0
¼ 10�3 � 10�6

8:854� 10�12
¼ 113 m2

! ð6:11aÞ

a

b

33 F

33 F

33 F33 F

Fig. 6.6. A capacitive network which includes series and parallel combinations of capacitances.
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Well, such a capacitor will certainly occupy a significant fraction of a lecture hall and is

hardly practical. How, then, do manufactures design a capacitor of 1 μF? The first step

is to use a dielectric material sandwiched within the capacitor. A dielectric medium

increases charges stored on the two metal capacitor plates depending on εr � 1, the

relative dielectric permittivity of the dielectric medium. Table 6.1 gives us a list of

permittivities for a number of dielectric materials. For each material, a dielectric strength,

or normalized breakdown voltage, is also given. This is actually the maximum electric

field (notice the unit of V/m) that the capacitor can handle. It is for this reason that

capacitors carry a voltage rating that you should not exceed in your circuit. From a

practical point of view, the higher the capacitance, the lower the voltage rating. The well-

known dilemma with the capacitor is that a decrease in the separation distance increases

the capacitance and the stored energy. However, as already mentioned, it simultaneously

decreases the maximum applied voltage due to the dielectric breakdown effect. For our

capacitor, we will again use the mica dielectric material listed in Table 6.1. Equation (6.6)

now transforms to

A ¼ dC

ε0εr
¼ 10�3 � 10�6

8:854� 10�12 � 7
¼ 16 m2 ð6:11bÞ

Even though the result looks a bit better, it is still far from practical. However, what if we

try to make the dielectric layer very thin? An oxide is a dielectric, so could we just oxidize

one top aluminum plate with a very thin (i.e., d ¼ 10μm) oxide layer and press-fit it to

Table 6.1. Relative dielectric permittivity and dielectric strength of some common materials.

Material Relative permittivity Dielectric strength in V/m

Air 1.0 0.4–3.0� 106

Aluminum oxide 8.5 Up to 1000� 106

Fused silica (glass) 3.8 470–670� 106 (or lower)

Gallium arsenide (GaAs) 13

Germanium (Ge) crystal 16 ~10� 106

Mica 7.0 Up to 400� 106

Nylon 3.8 ~20� 106

Plexiglas 3.4 ~30� 106

Polyester 3.4

Quartz 4.3 8� 106 (fused quartz)

Rutile (titanium dioxide) 100–200 10–25� 106

Silicon (Si) crystal 12 ~30� 106

Styrofoam 1.03–1.05

Teflon 2.2 87–173� 106

Water (distilled, deionized) ~80 65–70� 106
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the second plate? The result becomes (the relative dielectric constant of 8.5 is now that

for aluminum oxide from Table 6.1)

A ¼ hC

ε0εr
¼ 10�5 � 10�6

8:854� 10�12 � 8:5
¼ 13 cm2 ð6:11cÞ

Electrolytic Capacitors

Once such a thin film is rolled into a cylinder, it will clearly become a compact design,

similar in size to a 1-μF electrolytic capacitor routinely used in the laboratory. Unfortu-

nately, one problem still remains: the permanent oxide layer is fragile and rough in shape.

A better idea is to chemically grow such a layer using a so-called anodization process.

This process occurs when the aluminum foil is in contact with an electrolyte as a second

conductor and an appropriate voltage is applied between them. This is the smart idea

behind an electrolytic capacitor. And this is also the reason why an electrolytic capacitor

is polarized. The term electrolytic capacitor is applied to any capacitor in which the

dielectric material is formed by an electrolytic method; the capacitor itself does not

necessarily contain an electrolyte. Along with aluminum capacitors, tantalum capacitors

(both wet and dry) are also electrolytic capacitors.

Ceramic Capacitors

A competitor to the electrolytic capacitor is a non-polarized ceramic capacitor. Ceramic

capacitors consist of a sandwich of conductor sheets alternated with ceramic material. In

these capacitors the dielectric material is a ceramic agglomerate whose relative static

dielectric permittivity, εr, can be changed over a very wide range from 10 to 10,000 by

dedicated compositions. The ceramic capacitors with lower εr values have a stable

capacitance and very low losses, so they are preferred in high-precision circuits and in

high-frequency and RF electronic circuits. Typically, these “fast” ceramic capacitors have

very small capacitances, on the order of pF and nF, and they can hold a high voltage. At

the same time, the “slow” ceramic capacitors may have values as high as 1 μF. Therefore,

the task of the above example can be solved with the ceramic capacitor as well.

Capacitor Marking

Figure 6.7 shows two examples of ceramic capacitors, with 100-pF and 1.0-μF capa-

citance from two different companies. To read the capacitance in the figure, we use the

following rule: 101 ¼ 10� 101 pF ¼ 100 pF, and 105 ¼ 10� 105pF ¼ 1μF. Indeed,

473 ¼ 47� 103pF ¼ 47 nF, and so forth. The tolerance letters may be present:

F¼ 1 %, G¼ 2 %, J¼ 5%, K¼ 10 %, and M¼ 20 %. Also, the voltage rating should

be given.

Chapter 6 Section 6.1: Static Capacitance and Inductance

VI-269



A standardized set of capacitance base values is defined in the industry. The capacitance

of any (electrolytic or not) capacitor can then be derived by multiplying one of the base

numbers 1.0, 1.5, 2.2, 3.3, 4.7, or 6.8 by powers of ten. Therefore, it is common to find

capacitors with capacitances of 10, 15, 22, 33, 47, 68, 100, 220 μF, and so on. Using this

method, values ranging from 0.01 to 4700 μF are customary in most applications. The

value of the capacitance and the allowed maximum voltage are prominently written on the

case of the electrolytic capacitor so reading those does not constitute any difficulties.

6.1.6 Application Example: Capacitive Touchscreens

Capacitive touchscreens use the fringing field of a capacitor studied previously. Many

small capacitors with a significant fringing field are involved. If a conducting finger

(an extra conductor) is placed in the fringing field, the corresponding capacitance

changes. There are two possible solutions called the self-capacitance method and the

mutual-capacitance method, respectively. The difference is in the measurement nodes for

the capacitance. In the first case, the capacitance is measured between the touch pad

electrode and a ground. In the second case, the capacitance is measured between two pad

electrodes, neither of which is grounded. Both methods may be combined.

Self-Capacitance Method

Consider a human finger in the proximity of a touchscreen as shown in Fig. 6.8a. The

touchscreen itself may be a lattice of circular touch pads surrounded by a ground plane

and separated from it by an air-gap ring—see Fig. 6.8b. When the finger is not present,

each pad has capacitance CP to ground, which is called a parasitic capacitance. When the

(grounded) finger appears in the vicinity of the touchpad, there appears another capacitance,

CF, which is called the finger capacitance. Figure 6.8a indicates that both capacitances are

in parallel so that the resulting ground capacitance increases as

CP ! CP þ CF > CP ð6:12Þ

Fig. 6.7. Left, ceramic capacitors of 100 pF. Right, radial leaded ceramic capacitors of 1.0 μF.
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This change in capacitance is recorded. Physically, the presence of the finger (or hand)

increases the size of the ground conductor and thus increases the resulting capacitance.

Typical values of CP are on the order of 100 pF; CF is on the order of 1–0.1 pF. Now

assume that the desired resolution along one dimension of the screen is N. Then, N2

individual touch pads are needed including the corresponding sensing circuitry. This may

be a significant disadvantage of the self-capacitance method.

Mutual-Capacitance Method

The electrodes are typically interleaving rows and columns of interconnected square

patches, which are shown in Fig. 6.9. Neither of them is connected to circuit ground (the

third conductor) or to each other. When a finger touches the panel, the mutual capacitance

CM between the row and column, which mostly concentrates at the intersection, decreases,

in contrast to the previous case. This change in capacitance is recorded. Assume again that

the desired resolution along one dimension of the screen is N. Then, only 2N individual

touch pads (electrodes) are needed including the corresponding sensing circuitry. This is a

significant advantage of the mutual-capacitance method.

b)

0 V
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CF
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P

C
P
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ground plane

pad

0 V

Fig. 6.8. Self-capacitance method for a capacitive touchscreen. The touchscreen is enlarged.

driven row

CM

sensing column

finger position

Fig. 6.9. Mutual-capacitance method for a capacitive touchscreen. Surface charge distribution is

illustrated when the driven row is subject to an applied voltage. Finger projection is a circle.
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6.1.7 Self-Inductance (Inductance) and Mutual Inductance

As long as the physical capacitor stores energy of the electric field, a physical inductor

stores energy of the magnetic field. The inductor stores magnetic-field energy only when

an electric current I flows through it. This is in contrast to a capacitor, which, once

charged, stores the electric field energy in vacuum indefinitely, even when disconnected

from the charging circuit. To use the inductor as an energy-storage element, one therefore

needs to maintain a current in the circuit. The primary quantity is the magnetic flux

density,~B, which is measured inwebers per m2, or tesla (1 T ¼ 1 Wb=m2 ¼ 1 V � s=m2).

The magnetic flux density is related to the magnetic field, ~H , by ~B ¼ μ~H where μ is

magnetic permeability. In older power electronics texts, ~B, may be called magnetic

induction. In Fig. 6.10, the magnetic flux density ~B is created by circuit #1 (a closed loop

of current I). Instead of the vector field ~B, it is convenient to use a simpler scalar quantity

known as magnetic flux or simply flux,Φ. For a constant ~B, which is strictly perpendicular
to the plane of circuit #1 with area A, the magnetic flux would be equal to

Φ ¼ AB ð6:13Þ

where B is the magnitude (length) of vector ~B. The flux is measured in webers or in V � s
(1 Wb ¼ 1 V � s).

Generally, Eq. (6.13) is only approximately valid for circuit #1 in Fig. 6.10. The exact

flux is given by a surface integral over the area of the circuit,

Φ ¼
ð ð

A

~B � ~nda ð6:14Þ

where~n is a unit normal to the surface A. Flux is an algebraic quantity and hence could be

positive or negative depending on the chosen direction of ~n. We assume that positive

current in the circuit produces positive flux—see Fig. 6.10. The self-inductance of circuit

lines of magnetic flux ( )B= H

circuit #1

I

A

circuit #2

Fig. 6.10. Magnetic flux density generated by circuit #1.
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#1 in Fig. 6.1 is its inductance; both terms have the same meaning. The inductance, L, of

circuit #1 is given by

L � Φ

I
> 0 ð6:15Þ

Thus, the inductance is the magnetic flux through circuit #1 produced by a unit current

in the same circuit. The mutual inductance, M, between circuits #2 and #1 in Fig. 6.10 is

the magnetic flux, Φ0, through circuit #2 produced by unit current in circuit #1, i.e.,

M � Φ
0

I
ð6:16Þ

Both L and M have the units of henry, or H. This unit is named in honor of Joseph Henry

(1797–1878), an American scientist. Typical inductance values in electronics are nH

(nanohenries) and μH (microhenries). In power electronics, larger inductances may be

used. Henry is converted to V, A, and energy, J, as follows:

1 H ¼ 1
V � s
A

¼ 1
J

A2
ð6:17Þ

One may observe a close similarity between Eqs. (6.17) and (6.2). Both equations

become identical if we interchange Vand A. Equation (6.17) also has a number of simple

and important implications related to energy and power. Total magnetic-field energy

stored in space surrounding circuit #1 in Fig. 6.10 is given by

E ¼ 1

2
LI2 ð6:18Þ

Equation (6.18) may be considered as another definition of self-inductance

(or inductance). As such, it is frequently used in practice.

Exercise 6.6: A flux linking the circuit is 0.1 Wb. Find the circuit’s inductance and

magnetic-field energy stored if the circuit current is 1 A.

Answer: L ¼ 100 mH, E ¼ 0:05 J.

6.1.8 Inductance of a Solenoid With and Without Magnetic Core

Consider a solenoid (a long helical coil of length l) with applied current I shown in Fig. 6.11.

The case of air-filled coil in Fig. 6.11a is studied first. Magnetic flux density ~B within the

solenoid is nearly uniform and is directed along its axis. Therefore, the flux through one turn

of the coil (one loop) is given by Eq. (6.13). It is equal to AB, where A is the loop area. The

netfluxΦ through the entire solenoid isAB times the number of turns comprising the coil,N.

The inductance is therefore obtained from Eq. (6.15) as
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L ¼ N
AB

I
ð6:19Þ

The magnetic flux, B, within the solenoid is found in physics courses:

B ¼ μ0N I

l
ð6:20Þ

where the natural constant μ0 ¼ 4π � 10�7 H=m is the magnetic permeability of

vacuum (or air, which is very close to a vacuum with regard to magnetic properties).

Substitution of Eq. (6.20) into Eq. (6.19) yields a simple equation for the inductance

L ¼ μ0AN
2

l
H½ 	 ð6:21Þ

Thus, strong inductances can be created by a large number of turns (a quadratic depen-

dence), a large coil cross section, and a smaller coil length. Equation (6.21) also holds for

various bent solenoids (such as toroidal coils). Equation (6.21) makes clear that the

inductance, like capacitance and resistance, is independent of externally applied circuit

conditions.

The above derivation is only valid for a solenoid that is long compared to its diameter.

When this is not the case, a modification to Eq. (6.22) is made, namely,

L ¼ μ0AN
2

l
1� 8w

3π
þ w2

2
� w4

4

� �

, w ¼ r

l
< 1 ð6:22Þ

where r is the radius of the coil. Other handy formulas for short solenoids exist. Equation

(6.22) describes the fringing effect in practical inductors, which may also be used for

sensor purposes, similar to the fringing fields for the capacitor. The inductance of the

solenoid increases when it has a core with a magnetic material within the coil, as shown in

Fig. 6.11b, c. This material is called a magnetic core and inserting it into the coil increases

the magnetic-field energy stored in the inductor. When the magnetic core is closed, i.e.,

has the form of a toroid as in Fig. 6.11b, Eq. (6.21) is transformed to

I

magnetic core ( )r

a)

N

B= H0 r

A

I

B= H0 I

I

N

A

magnetic core ( )r

b) c)I

Fig. 6.11. Three types of a solenoid.
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L ¼ μ0μrAN
2

l
ð6:23Þ

where μr � 1 is known as the relative magnetic permeability of a magnetic material.

Emphasize that Eq. (6.23) is not valid for the straight cylindrical core in Fig. 6.11c. The

calculation of inductance for the straight core becomes a nontrivial theoretical exercise.

We present here a useful theoretical result, which is only valid for a high-permeability

magnetic core, with approximately μr � 100. The resulting inductance has the form

L � 0:5πμ0l
*N 2

ln l*

r
� 1

h i 1� l

2l*

� �

H½ 	 ð6:24Þ

where l, l* are indicated in Fig. 6.11c and r is the radius of the coil (core). The resulting

inductance does not explicitly depend on the specific value of μr as long as this value is

sufficiently large. Equation (6.24) holds only for the situations where the core length-to-

diameter ratio is considerably smaller than the relative magnetic permeability, μr. It

predicts inductances that are much lower than those found by using Eq. (6.23).

Exercise 6.7: A solenoid coil in Fig. 6.11a, b, and c has r ¼ 0:45cm, N ¼ 110,

l ¼ 2:15 cm. Determine the coil inductance in all three cases. In cases b and c, respectively,

μr ¼ 100. Furthermore, l* ¼ 8:90 cm in Fig. 6.11c.

Answer: L ¼ 45 μH (air-core coil); L ¼ 4500 μH (toroidal coil); L ¼ 640 μH (straight-

magnetic-core coil).

6.1.9 Circuit Symbol: Inductances in Series and in Parallel

Figure 6.12 shows the inductances in series and in parallel, along with inductance circuit

symbol. This symbol is reserved for the inductance as a circuit element. Such an element

is an ideal inductor excluding manufacturing imperfections (parasitic resistance and

capacitance). In the following text, we will frequently employ both words—inductance

and inductor—to denote the same ideal circuit element. The series and parallel connec-

tions of inductances are identical when compared to the connections of resistances. To

establish this fact we consider two combinations shown in Fig. 6.12.

b) L1a)

L2L1 L3 BABA

II

L2

L3

I I

Fig. 6.12. Inductances in series and in parallel.
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For the series configuration in Fig. 6.12a, the same current I is applied to every

inductance. Given that the equivalent inductance is also subject to current I and must

possess the same magnetic-field energy defined by Eq. (6.18), one has

E ¼ 1

2
LeqI

2 ¼ 1

2
L1I

2 þ 1

2
L2I

2 þ 1

2
L3I

2 ) Leq ¼ L1 þ L2 þ L3 ð6:25Þ

The parallel configuration in Fig. 6.12b may be analyzed given the condition of equal

magnetic flux through each inductance. Since this condition is related to Faraday’s law of

induction, we postpone the corresponding discussion until the next section.

6.1.10 Application Example: How to Design a 1-mH Inductor?

Again, after this theoretical excursion, let us design a practical inductor. Our goal is to

construct a 1-mH inductance. According to Eq. (6.21) the required number of turns is

N ¼
ffiffiffiffiffiffiffiffi

Ll

μ0A

s

ð6:26Þ

We will select a coil length of l ¼ 5 cm and an (average) coil radius of r ¼ 1 cm.

Equation (6.26) then yields

N ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

10�3 � 5� 10�2

4π2 � 10�7 � 10�4

s

¼ 356 ð6:27Þ

Such a coil can be wound on a former in the laboratory with a sufficiently thin wire, say

AWG 28. A different approach to reducing the number of turns while maintaining, or

even increasing, the inductance is to use a magnetic material within the coil, as shown in

Fig. 6.11. Table 6.2 lists the magnetic permeability for a number of magnetic materials.

The simplest magnetic core is an iron core. However, it is lossy since an alternating

magnetic field creates so-called eddy currents in the conducting core, which are dissi-

pated into heat. One solution to this problem is to use thin insulated sheets of iron, or

laminations. Various ferrites (oxides of iron, or other metals) are an alternative to iron,

which are ceramics and known as good electric insulators. Other types of losses may

occur there, explanations of which go beyond the scope of our text. Once a soft ferrite

with μr 
 100 is used in the design of the 1-mH inductor, the number of turns necessary

to achieve the same inductance decreases by
ffiffiffiffi
μr

p ¼ 10. In our example, it becomes

equal to 36 turns instead of over 300 turns. However, the magnetic core cannot be a short

rod like that shown in Fig. 6.11c; it must form a closed loop shown in Fig. 6.11b.
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Inductor Marking

Leaded inductors have color codes, similar to resistors. A standardized set of inductance

base values is defined in the industry. The inductance of any inductor can then be derived

by multiplying one of the base numbers 1.0, 1.1, 1.3, 1.5, 1.9, 2.2, 2.7, 3.3, 3.9, 4.7, 5.8,

6.8, or 8.2 by powers of ten. Therefore, it is common to find inductances with values of

1.0, 2.7, 6.8 μH, and so on. Using this method, values ranging from 0.01 to 100 μH are

customary in most applications.

Table 6.2. Relative permeability of some common materials.

Material Relative static permeability

Air 1.0

Magnetic iron 200

Iron powder 2–75

Nickel 100

Permalloy (78.5 % nickel + 21.5 % iron) 8000

Soft ferrites with low losses at frequencies up to 100 MHz 20–800

Hard ferrites with low losses up to 1 MHz 1000–15,000

Chapter 6 Section 6.1: Static Capacitance and Inductance

VI-277



Section 6.2 Dynamic Behavior of Capacitance

and Inductance

6.2.1 Set of Passive Linear Circuit Elements

The three elements, resistance, capacitance, and inductance, constitute the fundamental

set of passive circuit elements for any linear electric circuit. This is very similar to a

mechanical system consisting of dashpot, spring, and mass, which form the basic set of

any linear kinematic system. Having discussed the underlying DC concepts of capaci-

tance and inductance, we now turn our attention to their dynamics. A simple example of

dynamic behavior is given by a vacuum cleaner. If one manually unplugs the working

vacuum cleaner from the wall outlet (please avoid doing so), a profound spark may

appear. On the other hand, turning off the vacuum cleaner normally produces no spark.

The reason for the spark is that breaking the current through a dynamic circuit element—

an inductance—which models the coil of the motor, creates very large transient voltages.

One reason for studying transients is the wish to avoid such sparks and to properly design

the electric switch. The use of two dynamic circuit elements—the capacitance and

inductance—is enormous, especially in power systems. Every electric motor is basically

an inductance; most power motors need a power correction circuit that in turn requires a

shunt capacitance. Some motors need starting capacitors or surge capacitors for large

motors. On the other hand, the capacitance of logic gates is responsible for the so-called

propagation delay. This delay determines a very important measure of the performance of

a digital system, such as a computer, which is the maximum speed of operation. Thus, the

capacitances and inductances are just everywhere, like mass and spring systems present

everywhere in mechanical engineering. However, they are becoming most apparent when

we consider a transient behavior, an alternating current, or high-frequency digital and

communication circuits.

6.2.2 Dynamic Behavior of Capacitance

Both capacitance and inductance are passive circuit elements, which means that, like

resistance, they do not deliver a net power increase to the circuit. Indeed, after charging,

the capacitor is able to power a circuit, usually for a short period of time. At the end of the

discharge cycle, it needs to be recharged. Therefore, we use the passive reference

configuration for the capacitance in Fig. 6.13a. Lowercase letters denote time-varying

voltage and current. The dynamic behavior of the capacitance is described by the well-

known voltage-to-current relation (dynamic equation), which plays the role of “Ohm’s

law” for the capacitance

iC ¼ C
dυC

dt
ð6:28Þ
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Equation (6.28) follows from the capacitance definition, qC ¼ CυC, given in the previous

section. It is obtained after differentiation and using the equality

dqC
dt

¼ iC ð6:29Þ

A fluid mechanics analogy of the dynamic capacitance effect corresponds to alternating

fluid motion in Fig. 6.13b. A capacitance is represented by a flexible membrane. The

capacitance value, C, corresponds to the inverse stiffness, 1/k, of the membrane. When

k ! 1 and C ! 0 (a rigid membrane), the capacitance value tends to zero. The

membrane becomes a solid wall, which blocks the alternating flow entirely. In another

limiting case (k ! 0 orC ! 1), the membrane moves with fluid and has no effect on the

fluid flow. Intermediate cases correspond to a partial blocking. The electric current in

Eq. (6.28) is not the DC conduction current, but the displacement current which was first

introduced by Sir James Clerk Maxwell to complete Maxwell’s equations. This current

can flow through empty (or free) space between two capacitor plates. It is not supported by

directional motion of free charges, in contrast to the DC conduction current. The capacitor

itself was invented yet in 1745 by Ewald Georg von Kleist (1700–1748), German lawyer

and physicist, and by Dutch scientist Pieter Van Musschenbroek (1692–1761). Some also

believe the Biblical Ark of the Covenant was protected by a first capacitor—the Leyden

jar—capable of producing thousands of volts of static electricity.

Example 6.2: The voltage across a 100-μF capacitor is shown in Fig. 6.14 that follows by

a solid curve. At t ¼ 0, the voltage is zero. Sketch the current through the capacitor to scale

versus time.

Solution: We use Eq. (6.28) to find the current. In Fig. 6.14, υC tð Þ ¼ 105 t � 10�6
� �

V

when t changes from 1 to 2 μs, and υC tð Þ ¼ 0 at t < 1 μs. At t > 2 μs, the voltage is

100 mV. Therefore, the current is found in the form: iC tð Þ ¼ 10�4 � 105 ¼ 10 A when

t changes from 1 to 2 μs and iC tð Þ ¼ 0 otherwise. The result is shown in Fig. 6.14 by a dashed

curve.Weobserve a strong current spikewhen the voltage across the capacitor changes rapidly,

and we observe no current flow when the voltage across the capacitor remains constant.

Note that the relatively small voltage on the order of 100 mV in Fig. 6.14 leads to a very

large current spike of 10A(!) through the capacitance. The key point here is that the current

iC

vC+ -
capacitance C

flexible membranea) b)

Fig. 6.13. Passive reference configuration for capacitance and its fluid mechanics analogy.
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increase is due to the rapid change in voltage. Such a change can be created when the

capacitor discharges through a small resistance. This is the reason why capacitors are

routinely employed to deliver large currents, or high power levels, for a very short period

of time. The high currents are common in motor starting circuits, in electronic flashes, in

solenoids, and in various electromagnetic propulsion systems.

The capacitor is charged with an electric current. The voltage across the capacitor, from

Eqs. (6.28) and (6.29), is given by

υC ¼ 1

C

ðt

0

iC t0ð Þdt0 ¼ qC tð Þ
C

ð6:30Þ

Equation (6.30) tells us that the capacitor voltage is equal to zero at the initial time, i.e., at

t ¼ 0. Once the current iC(t) is known, the voltage at any point in time is obtained by

carrying out the integration in Eq. (6.30). At any time instant, the voltage is equal to the

instantaneous stored charge qC(t) divided by capacitance. The current in Eq. (6.30) is

either predefined or found from circuit considerations. The example that follows illus-

trates voltage calculations.

Example 6.3: A 1-μF capacitor is charged with an electric current, iC tð Þ ¼ 1 � t mA½ 	. The
capacitance voltage is equal to zero at the initial time instance t ¼ 0. When will the

capacitor be charged to 10 V?

Solution: The integration yields

υC ¼ 1

C

ðt

0

iC t0ð Þdt0 ¼ 0:001

C
t2 ¼ 10 ) t ¼ 0:1 s ð6:31Þ

100 F capacitance

+ -

iC

vC

v , VC

t, s

0 1 2

0.1

0.2

i , AC

5

10

3

Fig. 6.14. Applied voltage across the capacitor (solid curve) and resulting current (dashed curve).
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6.2.3 Dynamic Behavior of Inductance

We use the passive reference configuration for the inductance in Fig. 6.15a. Lowercase

letters denote time-varying voltage and current. The dynamic behavior of the inductance

is described by the well-known voltage-to-current relation (dynamic equation), which

plays the role of “Ohm’s law” for the inductance:

υL ¼ L
d iL

dt
ð6:32Þ

Equation (6.32) follows from the inductance definition, Φ ¼ LiL, given in the previous

section. We obtain Eq. (6.32) after differentiation and using the Faraday’s law of

induction for the time derivative of the magnetic flux (the plus sign is used in Faraday’s

law to be consistent with the passive reference configuration):

dΦ tð Þ
dt

¼ υL ð6:33Þ

A fluid mechanics analogy of the dynamic inductance effect is given here in terms

of alternating current, which corresponds to alternating fluid motion in Fig. 6.15b.

A massive wheel with rotational inertia in Fig. 6.15b represents inductance.

The inductance value, L, corresponds to the mechanical mass m of the wheel. When

m ! 1 or L ! 0, the wheel does not responds to fluid oscillations and blocks

the alternating fluid flow entirely. In the opposite case (m ! 0 or L ! 1), the wheel

has no effect on the fluid flow. Intermediate cases correspond to a partial blocking.

Example 6.4: The current through a 2-mH inductor is shown in Fig. 6.16 by a solid curve.

At t ¼ 0, the current is zero. Sketch the voltage across the inductance to scale versus time.

Solution: We use Eq. (6.32) to find the voltage across the inductance. In Fig. 6.16, iL tð Þ
¼ 103 t � 10�6

� �
A when t changes from 1 to 2 μs and iL tð Þ ¼ 0 at t < 1 μs. At t > 2 μs,

the current is 1 mA. Therefore, the voltage is found in the form: υL tð Þ ¼ 2� 10�3 � 103

¼ 2 V when t changes from 1 to 2 μs and υL tð Þ ¼ 0 otherwise. The result is shown in

Fig. 6.16 by a dashed curve.

inductance L

massive wheel
of mass m

iL

vL+ -

b)a)

Fig. 6.15. Passive reference configuration for inductance and its fluid mechanics analogy.
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Note that relatively small current, on the order of 1 mA, leads to a large voltage spike

of 2 Vacross the inductance in Fig. 6.16. The key point here is again the rapid change in

the current. If the current in the present example were on the order of 1 A, a voltage spike

of 2000 V would be observed. This is the reason why inductors are routinely used to

boost the voltage to a higher level. These high voltages are common in electric and

electronic ignition systems including the most common car ignition plug. From

Eqs. (6.32) and (6.33) the current through the inductance is given by

iL ¼ 1

L

ðt

0

υL t0ð Þdt0 ¼ Φ tð Þ
L

ð6:34Þ

Equation (6.34) implies that the current is equal to zero at the initial time, i.e., at t ¼ 0.

Once the voltage is known as a function of time, the current through the inductance at any

time moment is obtained by the calculation of the integral in Eq. (6.34). At any time

instant, the current is equal to the instantaneous magnetic fluxΦ(t) divided by inductance.

Example 6.5: A 1-mH inductor is subject to applied voltage, υL tð Þ ¼ 1 � t mV½ 	. The
inductance current is equal to zero at the initial time instance t ¼ 0. When will the

magnetic-field energy stored in the inductance reach 1 J?

Solution: The integration in Eq. (6.34) and using Eq. (6.18) for the energy stored in the

inductor yield

iL ¼ 1

L

ðt

0

υC t0ð Þdt0 ¼ 0:001

L
t2 ¼ t2 A½ 	 ) 1

2
L t2
� �2 ¼ 1 J ) t ¼ 6:7 s ð6:35Þ

v , VL

t, µs
0 1 2

1

2

i , mAL

1

2

3

+ -

iL

vL

2 mH inductance

Fig. 6.16. Impressed current through an inductance (solid curve) and resulting voltage across the

inductance (dashed curve).
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So, if the capacitance is associated with a spring, the inductance is associated with the

mass, and the resistance is associated with a dash pot (damping element), then the entire

electric circuit containing dynamic elements is nothing else but a mechanical system. Is

this correct? Clearly the same analysis methods are applicable to both systems, electrical

and mechanical! The model of an entire building in terms of lumped mechanical elements

is in theory the same as the model of a complicated electric circuit. Both models can be

analyzed by using the theory of linear systems, and both models follow the same control

theory. A more difficult issue is related to nonlinear circuit elements.

6.2.4 Instantaneous Energy and Power of Dynamic Circuit Elements

An elegant derivation of the energy stored in a capacitance can also be obtained by

integrating the power delivered (or taken) by the capacitance. The instantaneous electric

power pC(t) can be written in the form

pC tð Þ ¼ υCiC ¼ υCC
dυC

dt
¼ 1

2
C
dυ2C
dt

ð6:36Þ

The stored energy is then the time integration of the power, i.e.,

EC tð Þ ¼
ðt

0

pC t0ð Þdt0 ¼
ðt

0

1

2
C
dυ2C
dt0

dt0 ¼ 1

2
C υ2C tð Þ � υ2C 0ð Þ
� �

ð6:37Þ

where the lower limit, υC(0), is the initial state of the capacitance. Suppose thatυC 0ð Þ ¼ 0,

i.e., the capacitance is initially uncharged and has zero stored energy. Then,

EC tð Þ ¼ 1

2
Cυ2C tð Þ ð6:38Þ

Equation (6.38) is the formal proof of the corresponding static result, Eq. (6.3), postulated

in the previous section. We can derive the energy stored in the inductance using the same

method—by integrating the power. The instantaneous power supplied to or obtained from

the inductance has the form

pL tð Þ ¼ υLiL ¼ iLL
diL

dt
¼ 1

2
L
di2L
dt

ð6:39Þ

The energy stored in the inductance is the integral of Eq. (6.39), i.e.,

EL tð Þ ¼
ðt

0

pL t0ð Þdt0 ¼
ðt

0

1

2
L
di2L
dt0

dt0 ¼ 1

2
L i2L tð Þ � i2L 0ð Þ
� �

ð6:40Þ

Suppose that iL 0ð Þ ¼ 0, i.e., the inductance is initially “uncharged” or has no stored

energy. Then,
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EL tð Þ ¼ 1

2
Li2L tð Þ ð6:41Þ

Equation (6.41) is the formal proof of the corresponding static result, Eq. (6.18), postu-

lated in the previous section. The series and parallel combinations of inductances and

capacitances may also be analyzed using the dynamic element equations; the laws

obtained in the previous section will be confirmed.

Exercise 6.8: Determine instantaneous power supplied to the capacitance in Fig. 6.14 at

A. t ¼ 2 μs and B. t ¼ 1 μs.

Answer: 1 W and 0 W, respectively.

Exercise 6.9: Repeat the previous exercise for the inductance shown in Fig. 6.16.

Answer: 0.002 W and 0 W, respectively.

6.2.5 DC Steady State

According to Eq. (6.28) when voltage across the capacitance does not change with

time, the capacitance becomes an open circuit (no current) under DC steady-state

condition, i.e.,

dυC

dt
¼ 0 ) iC ¼ C

dυC

dt
¼ 0 ð6:42Þ

This is to be expected since a DC current cannot flow through empty space between two

capacitor plates. Similarly, according to Eq. (6.32) the inductance becomes a short circuit

for the DC steady state when current across the inductance does not change in time, i.e.,

diL

dt
¼ 0 ) υL ¼ L

diL

dt
¼ 0 ð6:43Þ

In other words, there is no voltage drop across a (long) bent piece of wire, which is the

inductor, for DC currents. Equations (6.36) and (6.37) allow us to establish the behavior

of any transient electric circuit in the long run, after the circuit behavior has been

stabilized. The transient circuit is a circuit with dynamic elements and a switch.

Figure 6.17 shows one such circuit that consists of a number of dynamic (and static)

elements and a switch. The switch connects the voltage source to the rest of the circuit as

the switch closes at t ! 0.
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Example 6.6: Find current I in Fig. 6.17 at t ! 1, i.e., under DC steady state.

Solution: Immediately after the switch in Fig. 6.17 closes, the voltages and currents in the

circuit may be subject to a complicated response. In particular the voltage across certain

dynamic elements may be higher than the voltage of the power supply of 5 V. However, in

the long run as t ! 1, the circuit behavior stabilizes and we reach the DC steady state. The

capacitance in Fig. 6.17 becomes an open circuit and may be ignored. Both inductances

can be replaced by a wire (short circuit). The resulting DC circuit is shown in Fig. 6.18.

Thus, we obtain

I ¼ 5 V

40 Ω
¼ 125 mA ð6:44Þ

Other more complicated circuits can be analyzed in exactly the same way.

6.2.6 Behavior at Very High Frequencies

At very high frequencies, the behavior of the two dynamic circuit elements is exactly the

opposite: the capacitance becomes a short circuit, whereas the inductance becomes an

open circuit. To establish this fact, we can either use the fluid mechanics analogies or the

dynamic equations themselves. For example, the inertia of a massive wheel (inductance)

will prevent any very fast movements of it so that the oscillating fluid flow will be entirely

blocked when the oscillation frequency tends to infinity. On the other hand, the forces on

a flexible membrane of zero mass will be so high for a rapidly oscillating fluid flow that

its finite stiffness no longer matters. The membrane will simply be moving along with

the fluid, which means the full transmission through its counterpart—the capacitance.

I

1 H

40

+
-5 V

t=0

1 F

10 H

Fig. 6.17. A circuit is used to study the DC steady state. The switch closes at t ¼ 0. The behavior

of the circuit at t ! 1 is sought after the circuit has stabilized.

I 40+
-5 V

Fig. 6.18. A DC equivalent of the circuit in Fig. 6.17 under steady-state conditions.

Chapter 6 Section 6.2: Dynamic Behavior of Capacitance and Inductance

VI-285



The behavior of dynamic elements at very high frequencies is exactly as important as the

behavior at DC; it will be studied quantitatively in Chapter 9.

Example 6.7: Illustrate how is the capacitance becoming a short circuit at very high

frequencies using the capacitor’s dynamic equation as a starting point.

Solution: Assume that there is a periodic current with the amplitude of 1 A,

iC tð Þ ¼ 1 A cosω t through a 10-μF capacitance. The resulting capacitor voltage is given

by Eq. (6.30), υC tð Þ ¼ 1= ωCð Þ sinω t. When ω ¼ 108 rad=s, the capacitor voltage has the
amplitude of 1 mV. This small voltage approximately corresponds to a short circuit. When

ω increases, the voltage amplitude is reduced even further.
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Section 6.3 Application Circuits Highlighting Dynamic

Behavior

6.3.1 Bypass Capacitor

Let us consider the circuit shown in Fig. 6.19a. It includes a voltage source represented by

its Thévenin equivalent and a load represented by its equivalent resistance RL. The source

generates a voltage in the form of a (large) DC component VS and superimposed (small)

AC signal υS(t). This setup could model a nonideal DC voltage power supply, which does

not create the exactly DC voltage. In fact, a weak AC component may be present. This

AC component (also called the noise component) has a frequency of either 60� n Hz,

where n is an integer (USA, Canada, parts of South America, Saudi Arabia, etc.), or

50� n Hz (the rest of the world) and appears due to a not quite perfect rectification of the

primary AC power. As an aside, switching power supplies create noise spikes at much

higher frequencies. The weak AC component may lead to circuit oscillations, especially

when dealing with high-gain amplifiers. It therefore should be removed from the load, or

“filtered out” as engineers often say. The idea is to use a capacitor C in parallel with the

(imperfect) power supply and in parallel with the load, the so-called bypass capacitor.

This capacitor ideally becomes a short circuit for the high-frequency noise component of

the source and shorts it out (or bypasses). The corresponding circuit diagram is shown in

Fig. 6.19b. An electrolytic capacitor is typically used as the bypass capacitor.

In many cases, the undesired noise source in a circuit is not a low-frequency noise

source of a nonideal power supply, but rather a high-frequency noise generator. Examples

include high-speed DC motors, analog-to-digital converters, and other digital circuits.

Radio-frequency (RF) high-speed amplifiers are also very sensitive to RF noise that is

created by connectors and wires which can act like antennas. By placing a bypass

capacitor as closely as possible to the power supply pins of every chip, such RF noise

sources may be eliminated. Bypass capacitors are so prevalent that they are encountered

in virtually every working piece of electronic equipment.

RL

RS

source
load

+
-

v (t)S
+
-

VS

CDC

AC RL

RS

source
load

+
-

v (t)S
+
-

VS

DC

AC

a) b)

Fig. 6.19. Model of a voltage source connected to a load with a bypass capacitor.
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Example 6.8: Explain the operation of bypassing a DC motor.

Solution: A DC motor with a bypass capacitor is also described by the model shown in

Fig. 6.19b. In this case, the source voltage V S þ υS tð Þ becomes the induced electromotive

force (emf), E, of the motor, The induced emf is still a DC voltage but with quite a significant

high-frequency noise component created by the spinning rotor comprised of a finite number

of individual switched coils. The source resistance becomes the armature and brush resis-

tance RM, that is, RS ¼ RM. The load resistance RL may, for example, be the oscilloscope

resistance. We consider a small DC fan motor directly connected to a 5-V power supply

shown in Fig. 6.20. The motor creates a substantial high-frequency noise seen on the

oscilloscope in Fig. 6.20, left (with 100 mV per division resolution). The oscilloscope

measures the voltage across the motor, which is the 5-V DC component plus the noise

component. Once a 1000-μF capacitor is connected in parallel with the motor (one may call it

a shunt capacitor), the resulting voltage becomes a highly stable 5-V DC (see Fig. 6.20,

right).

The bypass capacitor in Fig. 6.20 may be considered as a part of the snubber RC

circuit, which includes a capacitance and a small series resistance. The snubber circuits

are used to suppress high-voltage spikes in inductive switching systems like electric

motors.

Fig. 6.20. Effect of bypass capacitor on the high-frequency noise created by a DC motor.
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6.3.2 Blocking Capacitor

Quite often, an opposite scenario is desired—we want to block a DC component at the

load—see Fig. 6.21. An example is an audio amplifier (the source) connected to a speaker

(the load). The audio amplifier may generate an unwanted DC component, which may

overheat the speaker coil made of a very thin wire. The idea is to use a capacitor C in

series with the (imperfect) amplifier and in series with the load. This blocking or

decoupling capacitor will block the DC current at the load as shown in Fig. 6.21b.

6.3.3 Decoupling Inductor

A decoupling inductor is the complement of the bypass capacitor. Consider the circuit

shown in Fig. 6.22a. It includes a source represented by its Norton equivalent IS þ iS tð Þ,
RS and a load with an equivalent resistance RL. The source generates an electric current

in the form of a DC component and a superimposed AC signal. Assume that we would

like to have only the direct current at the load. The idea is to use an inductor L in series

with the load, the so-called decoupling inductor as shown in Fig. 6.22b. At a sufficiently

high frequency, this inductor will block the AC component at the load.

A common application of the decoupling inductor is the so-called radio-frequency

(RF) inductor choke. Here, we’d rather intend to redirect the alternating current. The

inductor choke prevents the very weak alternating current received by an antenna to be

lost in the low-resistance DC power supply, which powers an amplifier. Instead, it forces

the current to flow directly into the input port of the amplifier. In order to model the choke

effect in Fig. 6.22, we should in fact interchange the role of two resistances: we consider

the load resistance as the DC supply resistance and the source resistance as the desired

input resistance of the amplifier.

RL

RS

source
load

+
-

v (t)S
+
-

VS

C

DC

AC RL

RS

source
load

+
-

v (t)S
+
-

VS

AC

a) b)

Fig. 6.21. Model of a voltage source connected to a load with a blocking capacitor.

source load

i (t)S

RS RL

AC

a) b)

IS

source load

i (t)S

RS RL

L

AC

IS

Fig. 6.22. Model of a current source connected to a load with a decoupling inductor.
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6.3.4 Amplifier Circuits With Dynamic Elements: Miller Integrator

Amplifier circuits with the dynamic elements in the negative feedback loop can serve

different purposes. In particular, they operate as active filters. Here, we will introduce the

operation concept and present simple examples. The Miller integrator circuit is an

inverting-amplifier circuit considered in Chapter 5, but with the feedback resistance R2

replaced by a capacitanceC—see Fig. 6.23. Given a time-varying input voltage signal, the

capacitor will conduct a current. Therefore, the negative feedback is still present, even

though we now have a capacitance instead of the resistance in the feedback loop.

The circuit analysis uses two summing-point constraints: no current into the amplifier

and zero differential input voltage. Therefore, the node voltage υ * in Fig. 6.23 is also

zero. The currents i1 ¼ iR and i2 ¼ iC in Fig. 6.23 are equal to each other. This yields

C
dυC

dt

zfflffl}|fflffl{

iC

¼ C
d υ*� υoutð Þ

dt
¼ �C

dυout

dt
¼ υR

R

z}|{
iR

¼ υin � υ*

R
¼ υin

R
)

�C
dυout

dt
¼ υin

R
) υout ¼ � 1

RC

ðt

0

υin t0ð Þdt0 � VC ð6:45Þ

where VC is a constant (the initial voltage across the capacitor at t ¼ 0). Thus, an integral

of the input voltage (weighted by �1= RCð Þ) is provided at the output. Interestingly, the

time constant τ of the integrator, τ ¼ RC, has the unit of seconds.

Example 6.9: The analog pulse counter is an integrator circuit shown in Fig. 6.23 that

counts monopolar voltage pulses simply by integrating the input voltage as time pro-

gresses. Assume that the input to the amplifier is the voltage shown in Fig. 6.24, where

every rectangular voltage pulse of 10-ms duration corresponds to a car passing through a

gate. Given that R ¼ 10 kΩ, C ¼ 0:1 μF, and that the initial value of the output voltage is
reset to zero, how many cars should pass the gate in order to reach the output voltage

threshold of �6 V?

Solution: The time constant τ of the integrator, τ ¼ RC, is equal to 1 ms.

+
-R vout

+
-

+

-
vx

v*
vin i2

i1

+ -

+

-

vC

Fig. 6.23. Miller integrator circuit.
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Example 6.9 (cont.):

According to Eq. (6.45),

υout ¼ �1000 s�1
XN

n¼1

�
0:06 V� 0:01 s

�
¼ �N � 0:6 V ð6:46Þ

where N is the number of pulses (cars). Equating the above expression to �6 V gives

N ¼ 10. The time interval between passing cars is not important.

Along with Example 6.9, other applications of the Miller integrator include various

wave-shaping circuits.

6.3.5 Compensated Miller Integrator

The circuit in Fig. 6.23 will not function in the laboratory, when a realistic amplifier chip

is used that is different from the ideal-amplifier model. The reason is that the capacitance

is equivalent to an open circuit at DC. Therefore, the feedback loop is simply missing in

the Miller integrator at DC, and the entire amplifier circuit becomes a comparator with a

very high open-loop gain. A small random input offset voltage, VOS, which is present for

0 10 20 30 40 50

Input voltage, mV

time, ms

0

20

40

60

80

Fig. 6.24. Input signal to the amplifier in Example 6.9.

actual op-amp

vout

+

-

+
-

ideal op-amp

+

-

VOS

R

open circuit

Fig. 6.25. Effect of the input offset voltage on the integrator circuit at DC.
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any realistic amplifier IC, will saturate the amplifier toward one of the power rails

(depending on the sign of VOS) even if its input is at zero volts (grounded)—see Fig. 6.25.

Note that the input offset voltage source, VOS, may be added to either amplifier

terminal. Hence, the voltage across the capacitance will approach the rail voltage and

the capacitance itself will become permanently charged. The dynamics of this process

can be analyzed explicitly, starting with some initial voltage value, say υC ¼ 0V.

In this case, we are allowed to use the negative feedback. For example, given that

R ¼ 10 kΩ, C ¼ 0:1μF, VOS ¼ 5 mV; it takes exactly 1 s to reach the output voltage

of 5 V! A similar effect is created by input bias currents to the amplifier. To overcome

this issue, a large resistance, RF, is introduced in parallel with C in order to maintain the

negative feedback at DC and discharge the capacitance as needed—see Fig. 6.26. If, for

example, RF ¼ 10 MΩ, then the capacitance will discharge over time on the order of

RFC ¼ 1 s. This estimate is comparable with the estimate for the charging time. As a

result, a balance will be established that results in a certain nonzero υout with the output

of the amplifier grounded. A further quantitative discussion may be carried out.

6.3.6 Differentiator and Other Circuits

When the resistance and the capacitance in Fig. 6.23 are interchanged, a differentiator

amplifier circuit (or active differentiator) is obtained; its output signal is a derivative of

the input signal. The corresponding solution is studied in one of the homework problems.

The differentiators are rarely used in practice since they attempt to amplify any input

noise (they become “noise magnifiers”). The reason for this is an infinitely high gain of

the amplifier circuit at high frequencies, when the capacitance becomes a short circuit.

A small resistance added in series with the capacitance reduces this effect and assures the

finite gain similar to the standard inverting amplifier.

Exercise 6.10: Draw an integrator circuit with an inductance instead of the capacitance.

Answer: The circuit in Fig. 6.23 but with the resistance replaced by an inductance and with

the capacitance replaced by the resistance.

+
-R vout

+

-

v*
vin

+

-

RF

C

Fig. 6.26. Miller integrator improved with a large resistance, RF, in the feedback loop.
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Inductances might be used instead of capacitances; the amplifier circuits so constructed

will be either a differentiator or an integrator. We again pass the corresponding analysis to

the homework exercises. However, the physical inductors tend to have a significant series

resistance and are more bulky. Last but not least, we may ask ourselves a question: as

long as the amplifier circuits can perform multiplication, addition (or subtraction), and

integration (or differentiation), can we now build an analog computer, which operates

with analog voltages and replaces its digital counterpart at least for simple computational

tasks? The answer is yes, we can. In fact, this was done a long time ago, in the mid-1960s.
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Summary

Static capacitance and inductance

Property Capacitance Inductance

Definition
C ¼ Q

V
> 0

Q—charge of either conductor;

V—volt. between two conductors

Units: F ¼ C=V

L ¼ Φ

I
> 0

Φ—magnetic flux through the

circuit; I—circuit current

Units: H ¼ V � sð Þ=A
Physical meaning Charge on either conductor

produced by 1 V voltage difference

between the two conductors

Magnetic flux through the

circuit produced by 1 A of

current in the same circuit

Stored energy,

J (static or dyn.)
E ¼ 1

2
CV 2 or E tð Þ ¼ 1

2
Cυ tð Þ2 E ¼ 1

2
LI2 or E tð Þ ¼ 1

2
Li tð Þ2

Series/parallel

combinations

1

Ceq

¼ 1

C1

þ 1

C2

þ 1

C3

in series

Ceq ¼ C1 þ C2 þ C3 in parallel

Leq ¼ L1 þ L2 þ L3 in series

1

Leq
¼ 1

L1
þ 1

L2
þ 1

L3
in parallel

Basic models

(no fringing fields)

C ¼ ε0A

d
or C ¼ εrε0A

d
(diel.

material inside)

A ¼ ab, ε0 ¼ 8:854187� 10�12 F=m

L ¼ μ0AN
2

l
or L ¼ μ0μrAN

2

l
(closed magnetic core )

μ0 ¼ 4π � 10�7 H=m

Models with fringing

Capacitance of a

parallel-plate

square capacitor

(Table 6.1)

Inductance of a

finite-radius

solenoid

Lexact ¼ L 1� 8w

3π
þ w2

2
� w4

4

� �

, w ¼ r

l
< 1; r is the radius of the coil

Inductance of a

solenoid with a

finite core

L � 0:5πμ0l
*N 2

ln l*

r
� 1

h i 1� l

2l*

� �

, μr � 100, see Fig. 6.12c

(continued)
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Dynamic behavior

Property Capacitance Inductance

Dynamic model-

Passive ref. conf.

Dynamic model-

υ–i characteristic
iC ¼ C

dυC

dt
υL ¼ L

diL

dt

Dynamic model-

charge and flux

dqC
dt

¼ iC
dΦ tð Þ
dt

¼ υL (passive ref. conf.)

Behavior at DC

Behavior at very

high frequencies

Bypassing/Decoupling

Bypass capacitor

Blocking

capacitor

Decoupling

inductor

Amplifier circuits with capacitor/inductor

Property Capacitance Inductance

Miller Integrator

(open-loop

amplifier at DC)

Time-domain

operation

dυout

dt
¼ �υin

τ
, τ ¼ RC

dυout

dt
¼ �υin

τ
, τ ¼ L

R

(continued)
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Compensated

integrator with a

finite gain at DC

Time-domain

operation

dυout

dt
þ υout

RfC
¼ �υin

τ
, τ ¼ RC

dυout

dt
þ Rin

L
υout ¼ �υin

τ
, τ ¼ L

R

Differentiator cir-

cuit (infinite gain

at very high

frequencies)

Time-domain

operation
υout ¼ �τ

dυin

dt
, τ ¼ RC υout ¼ �τ

dυin

dt
, τ ¼ L

R

Differentiator with

a finite gain at very

high frequencies

Time-domain

operation
RinC

dυout

dt
þ υout ¼ �τ

dυin

dt
, τ ¼ RC

L

Rf

dυout

dt
þ υout ¼ �τ

dυin

dt
, τ ¼ L=R
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Problems
6.1 Static Capacitance

and Inductance

6.1.1 Capacitance, Self-capacitance, and

Capacitance to Ground

6.1.2 Application Example: ESD
Problem 6.1.

A. Describe in your own words the physical

meaning of capacitance.

B. Suggest a way to memorize the expres-

sion for the capacitance of two

conductors.

C. What is approximately the self-

capacitance of a human body?

D. What is approximately the capacitance

of a human body (to ground)?

E. How does the human-body self-capaci-

tance change in embryo pose (yoga)?

Problem 6.2. A metal square plate with the

side of 10 mm has the self-capacitance

Cself ¼ 0:41 pF.

A. Estimate the capacitance of a capacitor

formed by two such parallel plates sepa-

rated by 30 mm. Compare this value to

the exact result of 0.23 pF.

B. Estimate the capacitance of the plate to

ground when the separation distance is

30 mm. Compare this value to the exact

result of 0.43 pF.

Problem 6.3. Draw the basic electric-circuit

model of a human body and specify the generic

element values.

6.1.3 Parallel-Plate Capacitor

6.1.4 Capacitances in Parallel and

in Series
Problem 6.4. For the parallel-plate capacitor

schematically shown in the figure,

a ¼ 10 cm, b ¼ 20 cm,

h ¼ 1 mm, εr ¼ 12

a

b+

h

E

vC

0 r

A. Determine capacitance of the

capacitor, C.

B. Determine the electric field strength,

E (in V/m), within the capacitor volume

and total charge, Q, on either capacitor

plate if the applied voltage is 25 V.

C. Determine the electric field energy stored

in the capacitor if the applied voltage is

25 V.

Problem 6.5. Solve the previous problem when

the separation distance, h, between the plates is

reduced to 100 μm.

Problem 6.6. For the enclosed-cylinder capac-

itor shown in the figure, a ¼ 10cm, b ¼ 9:99
cm, H ¼ 5cm, εr ¼ 16, the electrodes are the

inner and outer cylinder surfaces, respectively.

A. Determine the capacitance of the

capacitor, C.

B. Determine the electric field strength,

E (in V/m), within the capacitor volume

and total charge, Q, on either capacitor

plate if the applied voltage is 50 V.

C. Determine the electric field energy stored

in the capacitor if the applied voltage is

25 V.

Hint: The capacitance per unit area of the

device is that of the parallel-plate capacitor.

+ VC

H

-

a

b

0 r
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Problem 6.7. Solve the previous problem when

the separation distance between the two elec-

trodes is reduced to 25 μm.

Problem 6.8. A cross section of the rolled

capacitor is approximated by a rational spiral

shown in the figure. Here,

a ¼ 0:25 cm, εr ¼ 10, the separation distance

between the two conductors is 20 μm, and the

height of the entire roll is 1.5 cm.

A. Determine capacitance of the

capacitor, C.

B. Determine the electric field strength,

E (in V/m), within the capacitor and

total charge, Q, on either capacitor plate

if the applied voltage is 12 V.

C. Determine the electric field energy stored

in the capacitor if the applied voltage is

12 V.

Hint: The capacitance per unit area of the

device is that of the parallel-plate capacitor.

+
VC

a

-

0 r

Problem 6.9. Determine the capacitance of the

three leaded capacitors shown in the figure

(from left to right).

Problem 6.10. Find the equivalent capacitance

for the circuit shown in the following figure.

a

b

47 F

47 F

47 F47 F

Problem 6.11. Find the equivalent capacitance

for each circuit shown in the figure below.

10 Fa

b

a

b

a)

b)

10 F

15 F
15 F47 F

10 F 10 F

47 F

15 F

15 F15 F

Problem 6.12. Find the equivalent capacitance

for each circuit shown in the following figure.

a b

a

b

a)

b)

33 nF 33 nF

33 nF 33 nF

2.2 pF 2.2 pF

2.2 pF 2.2 pF

Problem 6.13. Two 1-μF capacitances have an

initial voltage of 10 V and 0 V, respectively

(before the switch is closed), as shown in the

figure. Find the total electric energy stored in

the system before the switch is closed. Find the
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voltage across each capacitance and the total

stored energy after the switch is closed. What

could have happened to the missing energy?

t=0

1 F1 F
+

-
10 V

+

-
0V

6.1.7 Self-inductance (Inductance) and

Mutual Inductance

6.1.8 Inductance of a Solenoid With and

Without Magnetic Core

6.1.9 Circuit Symbol. Inductances in

Series and in Parallel
Problem 6.14.

A. Describe in your own words the physical

meaning of inductance.

B. Do you think a straight wire has a certain

inductance per unit length? You might

want to ask the TA and/or browse the

Web and present the corresponding

expression (if any).

Problem 6.15. Three air-core inductors of the

same cross section are shown in the following

figure. The inductor length is proportional to

the number of turns. Find the ratios of induc-

tances: L2/L1, L3/L2, L3/L1.

+

-

+

-

+

-

L1 L2 L3

Problem 6.16. The solenoid shown in the fig-

ure has a diameter d ¼ 1 cm and a length

l ¼ 10 cm.

A. Find the solenoid’s inductance, L, using

the common assumption d=l << 1.

B. Determine the magnetic field energy

stored within the inductance and in the

surrounding space if the applied current,

IL, is 0.5 A.

Problem 6.17.

A. Obtain more accurate answers to the pre-

vious problem using the precise expres-

sion for the inductance of a solenoid,

which is Eq. (6.22).

B. Estimate the relative error of the com-

mon expression for solenoid’s induc-

tance, Eq. (6.21).

Problem 6.18.

A. Design a 100-μH air-core inductor (deter-

mine the necessary number of turns) with

a radius of 1 cm and a length of 10 cm.

B. Determine the magnetic field energy

stored in the inductor if the applied cur-

rent, IL, is 1.0 A.

Problem 6.19.

A. Design a 0.5-mH air-core inductor

(determine the necessary number of

turns) having a radius of 0.5 cm and a

length of 10 cm.

B. Determine the magnetic field energy

stored in the inductor if the applied cur-

rent, IL, is 1.0 A.

Problem 6.20. The solenoid shown in the

figure has diameter, d ¼ 1 cm, length,

l ¼ 10 cm, and a closed magnetic core of the

same circular cross section with μr ¼ 1000.

A. Find the solenoid’s inductance, L, using

the common assumption d=l << 1.

B. Determine the magnetic field energy

stored in the inductor if the applied cur-

rent, IL, is 0.5 A.

C. Compare two of your answers to the

answers in Problem 6.16.

D. Determine voltage across the inductor

assuming the ideal (zero-resistance) wire.
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0 r IL

vL

+

N

B= H0 r

A

Problem 6.21.

A. Obtain a more accurate solution to

the previous problem using the precise

expression for the inductance of a

solenoid, Eq. (6.22). To do so, propose

your own modification of this expression

to include the effect of the

magnetic core.

B. Estimate the relative error of the simpli-

fied expression for the inductance,

Eq. (6.21).

Problem 6.22. Find the equivalent inductance

for the circuit shown in the following figure.

a

b

10 H

10 H

10 H10 H

Problem 6.23. Find the equivalent inductance

for circuits shown in the figure that follows.

5 H

a

b

a

b

a)

b)

5 H

10 H 5 H5 H

5 H 5 H

5 H15 H2000 nH5 H

Problem 6.24. Find the equivalent inductance

for circuits shown in the figure.

b)

a b

a

b

10 nH 10 nH

20 nH 20 nH

10 nH 20 nH

20 nH 10 nH

a)

Problem 6.25. For the inductor shown in

Fig. 6.11, l* ¼ 2l ¼ 10 cm and r ¼ 0:75 cm.

How do the inductances with the magnetic core

(with μr � 100) and without the core compare

to each other?

Problem 6.26. Repeat the previous problem

with l* ¼ 15 cm, but still 2l ¼ 10cm. The

other parameters are the same.

6.2 Dynamic Behavior

of Capacitance

and Inductance

6.2.2 Dynamic Behavior of Capacitance

6.2.3 Dynamic Behavior of Inductance

6.2.4 Instantaneous Energy and Power

of Dynamic Circuit Elements
Problem 6.27.

A. Sketch the circuit symbol for the capac-

itance and the inductance; label the

corresponding voltages and currents.

B. Write two dynamic equations for the

capacitance and the inductance which

relate the voltages and currents.

C. Express the units for the inductance and

capacitance through volts and amperes.
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D. Which capacitance and inductance

values are typical in electronic circuits?

Problem 6.28.

A. Sketch the hydrodynamic analogies for

the capacitance and the inductance.

B. Which mechanical quantities are associ-

ated with the capacitance and inductance?

Problem 6.29. The voltage across a 10-μF

capacitance is shown in the following figure.

At t ¼ 0, the voltage is zero. Sketch the current

through the capacitance to scale versus time.

10 F capacitance

+ -

iC

vC

v , VC

t, s0 1 2

1

2

Problem 6.30. Repeat the previous problem for

the voltage shown in the following figure.

A. How is the solution different from the

previous problem?

B. For creating large currents, should the

voltage across the capacitance change

slowly or quickly?

10 F capacitance

+ -

iC

vC

v , VC

t, ms0 1 2

1

2

Problem 6.31. A 10-μF capacitance is charged

by the current iC ¼ 1mA � cos 2 1000tð Þ. At

t ¼ 0, the capacitance voltage is zero.

A. Using software of your choice

(MATLAB is recommended), sketch

the capacitance voltage to scale versus

time over the interval from 0 to 0.05sec.

B. How much time is approximately neces-

sary to charge the capacitance to 1.5 V?

C. Solve the same problem analytically.

Problem 6.32. Repeat the previous problem

with the capacitance changed to 1 μF. Does

the 10-V charging time increase or decrease?

Problem 6.33. The current through a 5-mH

inductance is shown in the following figure.

At t ¼ 0, the current is zero. Sketch the voltage

across the inductance to scale versus time.

t, s
0 1 2

1

2

i , mAL

3

+ -

iL

vL

5 mH inductance

Problem 6.34. Repeat the previous problem for

the current shown in the figure.

A. How is the solution different from the

previous problem?

B. For creating large voltages, should the

current through the inductance change

slowly or quickly?

t, ms
0 1 2

1

2

i , mAL

3

+ -

iL

vL

5 mH inductance

Problem 6.35. The voltage across a 3-mH

inductance is given by υL tð Þ ¼
10mV � cos 2 1000tð Þ. The current through the
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inductance is equal to zero at the initial time

t ¼ 0. Using software of your choice

(MATLAB is recommended), plot the current

through the inductance for t � 50ms.

6.2.5 DC Steady State
Problem 6.36.

A. Draw the equivalent circuit for the

inductance shown in the figure at DC.

B. Repeat for the capacitance.

a b

a b

Problem 6.37. Find current I in the circuit

shown in the figure that follows at t ! 1, in

the DC steady state. The switch closes at t ¼ 0.

10 H

100

100I
+
-

10 V

t=0 10 H

10 F

Problem 6.38. Find current I in the circuit

shown in the figure at t ! 1, in the DC steady

state. The switch closes at t ¼ 0.

I

10 H

50

+
-

10 V

t=0

50

10 mH

Problem 6.39. Find current I in the circuit

shown in the following figure at t ! 1, in

the DC steady state. The switch closes at t ¼ 0.

I

10 H

50

+
-

10 V

t=0

50

10 mH

10 F

Problem 6.40.

A. Find current I in the circuit shown in the

figure at t ! 1, in the DC steady state.

The switch closes at t ¼ 0.

B. Find voltage across the capacitance in

the DC steady state and label its polarity

in the figure.

10 H

50

50

50

3 A

1 F

0.01 H

I

t=0

Problem 6.41. Find the voltage across the

capacitance in the DC steady state and label

its polarity in the figure at t ! 1, in the DC

steady state. The switch opens at t ¼ 0.

10 H

100

50

50

3 A

1 nF

0.01 H

I

t=0
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Problem 6.42. Determine the equivalent resis-

tance between terminals a and b for the circuit

shown in the following figure in the DC steady

state.

10 H

50

50

50

10 F

a

b

Problem 6.43. Determine the equivalent resis-

tance between terminals a and b for the circuit

shown in the following figure in the DC steady

state.

10 H

100

100

100

10 F

a

b

10 H

6.3 Application Circuits

Highlighting Dynamic

Behavior

6.3.1 Bypass Capacitor

6.3.2 Blocking Capacitor

6.3.3 Decoupling Inductor
Problem 6.44. Describe the purpose of a

A. Bypass capacitor

B. Blocking capacitor

C. Decoupling inductor

in your own words. Specify the placement of

each component: in series or in parallel with the

source.

6.3.4 Amplifier Circuits with Dynamic

Elements: Miller Integrator

6.3.5 Compensated Miller Integrator

6.3.6 Differentiator and Other Circuits
Problem 6.45. The input voltage to the Miller

integrator circuit with the ideal amplifier

shown in the figure is a series of rectangular

voltage pulses. Each is 50 mV tall and 8 ms

wide. Given that the initial value of the output

voltage is zero, how many voltage pulses are

necessary to reach the negative output voltage

threshold of �8 V?

+
-100k v (t)out

+

-

v (t)in

+

-

10nF

Problem 6.46. The input voltage to the Miller

integrator circuit with the ideal amplifier shown

in the figure is a series of rectangular voltage

pulses. Each is 50 mV tall and 16 ms wide.

Given that the initial value of the output voltage

is zero, how many voltage pulses are necessary

to reach the negative output voltage threshold

of �9.2 V?

+
-200k v (t)out

+

-

v (t)in

+

-

10nF

Problem 6.47. How would you modify the

circuit to the previous problem when the posi-

tive threshold voltage of +9.2 V should be

reached at the output?

Problem 6.48. For the circuit shown in the

following figure, express the output voltage,

υout(t), as a function of time in terms of the

input voltage, υin(t), and circuit parameters

R, C. Assume the ideal amplifier.
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+
-

R

v (t)in

+

-

C

+
-

R

v (t)out

+
-

C

Problem 6.49. For the circuit shown in the

following figure, express the output voltage,

υout(t), as a function of time in terms of the

input voltage, υin(t), and circuit parameters R,

C. Assume ideal amplifiers.

+
-

R

v (t)out

+

-

v (t)in

+

-

C

Problem 6.50. For the circuit shown in the

following figure, express the output voltage,

υout(t), as a function of time in terms of the

input voltage, υin(t), and circuit parameters R,

L. Assume ideal amplifier.

+
-

R

v (t)out

+
-

v (t)in

+

-

L

Problem 6.51. For the circuit shown in the

following figure, express the output voltage,

υout(t), as a function of time in terms of the

input voltage, υin(t), and circuit parameters R,

L. Assume ideal amplifier.

+
-

L

v (t)out

+
-

v (t)in

+

-

R

Problem 6.52. Explain why is the Miller inte-

grator typically used with a shunt resistance,

RF.

Problem 6.53. For the circuit shown in the

figure, assume that the voltage across the

capacitance at t ¼ 0 is zero. Also assume that

the negative feedback is present. Derive the

dynamic expression for υC(t) at any positive

time instance.

actual op-amp

vout

+
-

+
-

ideal op-amp

0 V

+

-
VOS0 V

0 V

+ -vC

R

V /ROS

VOS

Problem 6.54. Establish the gain of amplifier

circuits shown in the figure that follows.
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+
-

R

vout
vin CRin

+
-

L
vout

vin R

Rf

+
-L vout

vin

R

Rin

+
-R vout

vin
C

Rf

DC,0a)

DC,0b)

c)

d)

Problem 6.55. For two circuits shown in the

figure that follows, obtain an analytical expres-

sion for the output voltage as a function of time

and circuit parameters when the input voltage

has the form υin tð Þ ¼ 1exp �α tð Þ mV½ 	.

+
-R vout

vin

C

Rf

+
-L vout

vin

R

Rin

a)

b)
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Chapter 7: Transient Circuit Fundamentals

Overview

Prerequisites:

- Knowledge of first-order ordinary differential equations (calculus)

- Knowledge of Thévenin/Norton equivalent circuits (Chapter 4)

- Knowledge of constitutive relations for dynamic circuit elements (Chapter 6)

- Knowledge of basic amplifier theory (Chapter 5)

Objectives of Section 7.1:

- Demonstrate the universal character of the KVL/KCL as applied to any electric

circuit including transient circuits

- Establish the general character of the time constant τ ¼ RC for RC circuits

- Establish the continuity of the capacitor voltage and its role in circuit ODEs

- Solve any first-order transient RC circuit configuration and understand the

practical meaning of the RC circuit using different application examples

Objectives of Section 7.2:

- Demonstrate the universal character of the KVL/KCL as applicable to any

electric circuit including transient circuits

- Establish the general character of the time constant τ ¼ L=R for RL circuits

- Establish the continuity of the inductor current and its role in circuit ODEs

- Solve any first-order transient RL circuit configuration and understand the

practical meaning of the RL circuit using an application example

Objectives of Section 7.3:

- Obtain initial exposure to a bistable amplifier circuit with positive feedback

- Understand the principle of operation of a relaxation oscillator—RC timer—on

the base of the bistable amplifier circuit

- Establish oscillation frequency and voltage amplitudes from the relaxation

oscillator; demonstrate the corresponding laboratory setup

- Briefly discuss the 555 timer IC
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Objectives of Section 7.4:

- Define the single-time-constant (STC) transient circuit

- Be able to classify any transient circuit with dynamic elements of the same type

as either a single-time-constant circuit or a more complicated circuit

- Solve an example of a non-STC circuit

- Convert an arbitrary transient circuit with one capacitance or one inductance to

the basic RC/RL first-order circuit

- Solve a first-order transient circuit with a harmonic forcing function

Objectives of Section 7.5:

- Understand topology and classification for the second-order transient circuits

- Convert a transient circuit with a series/parallel LC block to the standard second-

order RLC series/parallel transient circuits

- Introduce two major RLC circuit parameters: damping coefficient and undamped

resonant frequency

- Introduce the step response of a second-order transient circuit as a solution with a

DC source and a switch. Understand the general value of the step response

- Properly select the independent function (capacitor voltage or inductor current)

for the standard form of the step response with zero initial conditions

Objectives of Section 7.6:

- Use the method of characteristic equation for second-order transient circuits

- Understand the meaning of overdamped, critically damped, and underdamped

circuits

- Use the value of damping ratio ς to distinguish between three different cases of

circuit behavior

- Obtain the complete analytical solution for the step response of the RLC circuit

- Apply this solution for modeling a nonideal (realistic) digital waveform

Application Examples:

- Electromagnetic railgun

- Electromagnetic material processing

- Digital memory cell

- Laboratory ignition system

- RC timer or clock circuit in laboratory

- Transient circuit with a bypass capacitor

- Modeling and origin of the nonideal digital waveform
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Keywords:

Transient RC circuit, Transient RL circuit, Energy-release RC/RL circuit, Energy-accumulating

RC/RL circuit, Time constant of RC circuit, Time constant of RL circuit, Relaxation time, Voltage

continuity across the capacitor, Fluid mechanics analogy of transient RC circuit, Lorentz force,

Self-induced Lorentz force, Railgun, Electromagnetic material processing, Electromagnetic

forming, Current continuity through the inductor, Fluid mechanics analogy of transient RL

circuit, Forced response, Electronic ignition system, Piezoelectric effect, Clock frequency,

Clock signal, Positive feedback, Linear oscillators, Switching oscillators, Switching RC

oscillator, Astable multivibrator, Relaxation oscillator, Bistable amplifier circuit (operation,

threshold voltage, mechanical analogy, triggering, trigger signal), Digital memory element,

Inverting Schmitt trigger, Non-inverting Schmitt trigger, 555 timer IC, Single-time-constant

circuits (definition, classification of, examples of, with general sources), STC circuits, Non-

STC circuits (definition, examples of), Series RLC circuit (generic representation, qualitative

description, mechanical analogy, step response, duality), Parallel RLC circuit (generic

representation, qualitative description, mechanical analogy, step response, duality), Second-

order ODE (homogeneous, nonhomogeneous, initial conditions, in terms of current, in terms of

voltage, forcing function, general solution, forced response, particular solution, complementary

solution natural response, step response), Damping coefficient, Neper, Time constant of the decay

envelope, Undamped resonant frequency, Step response, Impulse response, Damping ratio,

Natural frequency, Overdamped circuit, Critically damped circuit, Underdamped circuit,

Overshoot, Undershoot, Rise time, Fall time, Ringing, Nonideal digital waveform
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Section 7.1 RC Circuits

The first-order RC circuits explored in this section involve the process of discharging or

charging a capacitor. This is a time-dependent, or transient, circuit behavior, and to

understand it, we are required to solve dynamic circuit equations. Mathematically, this

implies the solution of first-order ordinary differential equations (ODEs) with time as one

independent variable. Fortunately, KVL and KCL remain valid for any static or dynamic

circuit. These laws can be employed to derive the circuit equations. After that, it is either

solved analytically for simple circuits or numerically for realistic RC circuits.

7.1.1 Energy-Release Capacitor Circuit

The circuit in Fig. 7.1 depicts a capacitor, C, that has been charged to a certain voltage

V 0 ¼ υC t � 0ð Þ ð7:1Þ

prior to use. Through a switch, the capacitor is connected to a load, represented by a

resistor R¼ 10 Ω. The switch shown in Fig. 7.1 may be a transistor switch. We assume

that the switch closes and thereby connects the load to the capacitor at t ¼ 0. Our goal is

to find all circuit parameters, plus the power delivered to the load as functions of time.

The solution to this dynamic circuit is based on applying KVL and KCL, which are

valid for all electric circuits. Using KCL gives the result:

iC ¼ �iR ð7:2Þ

at any instance of time, t. Since both circuit elements in Fig. 7.1 are passive, we can apply the

constitutive relations between currents and voltages without changing the sign:

C
dυC

dt

zfflffl}|fflffl{

iC

¼ � υR

R

z}|{
iR

¼ �υC

R
ð7:3Þ

This is true because KVL states for any positive time, t> 0,

iC

t=0

C=10 F iR R=10vC

+

-
vR

+

-

Fig. 7.1. Discharging a capacitor through a load resistor.
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υR ¼ υC ð7:4Þ

Equation (7.3) therefore yields

C
dυC

dt
þ υC

R
¼ 0 ) dυC

dt
þ υC

τ
¼ 0, τ ¼ RC ð7:5Þ

This is the famous first-order transient circuit equation. Here, τ carries units of seconds

since R is recorded inΩ andC is given in F¼A� s/Vand is called the time constant or the

relaxation constant of the circuit. It is the only constant that is present in the first-order

differential equation. The solution of an ODE of this type has the generic form

υC tð Þ ¼ Kexp �t

τ

� �

ð7:6Þ

This fact is proven by direct substitution. The constant K is determined from the initial

condition, Eq. (7.1), which yields

K ¼ V0 ð7:7Þ

Thus, the circuit voltages have the same form

υC tð Þ ¼ υR tð Þ ¼ V0exp �t

τ

� �

; t � 0 ð7:8aÞ

for nonnegative values of t. However, although the capacitor voltage is equal to V0 at

t < 0, the resistor voltage is exactly zero at t < 0, since the switch was open. The current

through the load resistor is

iR tð Þ ¼ υR tð Þ
R

¼ V0

R
exp �t

τ

� �

; t � 0 ð7:8bÞ

and is zero for negative t. We recall that the capacitor current is the negative of the load

current. The instantaneous power delivered to the load resistance is expressed in the form

pR tð Þ ¼ υR tð ÞiR tð Þ ¼ V0
2

R
exp �2

t

τ

� �

; t � 0 ð7:8cÞ

Equations (7.8a–c) provide the complete solution of the circuit shown in Fig. 7.1. What is

the most remarkable and perhaps most important property of the solution? The answer to

this question is linked to the amount of power that can be discharged in a finite amount of

time. Let us examine Eq. (7.8c) more closely. When the load resistance, R, becomes

small, the delivered power can reach an arbitrarily high value at small positive t.

Expressed in another way, when discharged through a small resistance, the (ideal)

capacitor delivers an extremely high power pulse during a short period of time!
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This conclusion is not affected by the specific capacitance value; the capacitance value

only affects the discharge duration. In reality, however, an infinitely small resistance

cannot be achieved. How can we use the ability of the charged capacitor to create a large

current and, consequently, supply a large power for a short period of time? There are a

number of well-known applications such as an electronic photoflash or drivers for the

light-emitting diodes (LEDs) or even electromagnetic material processing.

7.1.2 Time Constant of the RC Circuit and Its Meaning

To appreciate the value of the time constant as a fundamental property of an RC circuit, we

consider two examples with explicit component values. Our objective is to find the

dynamic voltage and current responses of the circuit as the capacitor discharges. You

should note that the time constant τ determines the duration at which the capacitor voltage

will have dropped to 1/e or 0.368 (36.8 %) of the initial voltage V0. This number arises

from the fact that, at the time instance t ¼ τ, we obtain from Eq. (7.8a)

υC tð Þ ¼ υR tð Þ ¼ V0exp �τ

τ

� �

¼ V0e
�1 ¼ V0=e ¼ 0:368 V0 ð7:9aÞ

It is sometimes useful to study the dynamic response at t ¼ 2τ, in which case we obtain

υC tð Þ ¼ υR tð Þ ¼ V0e
�2 ¼ 0:135 V0 ð7:9bÞ

or 13.5 % of its original value, V0. At 3 τ, we already see the voltage drop less than 5 %.

Example 7.1: In Fig. 7.1, a 10-μF capacitor discharges into a 10-Ω load. The capacitor is

initially charged to V 0 ¼ 10 V. Plot the capacitor voltage υC, load current iR, load voltage

υR, and load power pR, over the interval from �0.2 ms to 0.5 ms.

Solution: First, we determine the time constant τ. According to Eq. (7.5),

τ ¼ RC ¼ 10�5F� 10Ω ¼ 10�4s ¼ 0:1 ms ð7:9cÞ

The solution then relies on Eqs. (7.8a) through (7.8c) based on V 0 ¼ 10 V. Figure 7.2

shows the behavior of voltage, load current, and load power. The vertical line is the time

constant τ. This constant determines how fast the capacitor discharges. At t¼ τ, the voltage

is equal to 1/e or 0.368 of the initial capacitor voltage, V0. Note that a rather low

capacitance value of 10 μF is used. We can purchase a 10-μF electrolytic capacitor of

5 mm diameter and 12 mm height and rated at 25 V or 50 V. As seen in Fig. 7.2c, an

appreciable load power of 10 W (!) can be created. Unfortunately, it is created for only a

very short period of time, on the order of τ.
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Exercise 7.1: The capacitor in Fig. 7.1 is initially charged to V 0 ¼ 20 V. Determine the

capacitor voltage and the instantaneous power delivered to the load resistance at (i) t ¼ 50

μs and (ii) t ¼ 1 ms.

Answer: (i) –12.13 V and 1472 W; (ii) –0.9 mV and 8.2 μW.

7.1.3 Continuity of the Capacitor Voltage

Energy Consideration
The voltage across the discharging capacitor remains a continuous function of time over

the breakpoint t ¼ 0. On the other hand, all other quantities in Fig. 7.2 such as the circuit

current, the load voltage, and the load power are subject to a sudden jump when the

switch closes. Why is that so? The electric field energy stored in the capacitor is given by

EC ¼ 1

2
Cυ2C tð Þ ð7:10aÞ
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Fig. 7.2. (a) Capacitor voltage, (b) load current (c) load voltage, and (d) load power for a 10-μF

capacitor discharging into a 10-Ω load resistor.
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at any time instant. Any energy cannot be released instantaneously. For instance, a

vehicle with mass m and speed υ possesses the kinetic energy

ET ¼ 1

2
mυ2 ð7:10bÞ

and cannot be stopped instantaneously. The kinetic energy must be a continuous function

of time, as does the vehicle speed. Similarly, the capacitor energy must be a continuous

function of time and so does the capacitor voltage. Such an effect might be called the

“capacitor inertia” in reference to mechanical inertia. Thus, the capacitor voltage υC(t) is

the only variable which is always a continuous function of time in an RC circuit.

Therefore, it must be used as an independent function in the ODEs for RC circuits.

Using any other function (circuit current or resistor voltage) is prohibited since we cannot

specify the initial conditions for a noncontinuous function.

Fluid Mechanics Analogy

The continuity of the capacitor voltage may be illustrated by a fluid-flow analogy of the

discharging capacitor shown in Fig. 7.3. The voltage corresponds to the fluid level in the

water-filled tank, which gradually decreases, but cannot jump instantaneously. On the

other hand, the fluid acquires a certain velocity (the equivalence to electric current)

immediately after the switch in Fig. 7.3 opens. Interestingly, the value of the load

resistance in Fig. 7.1 is the reciprocal of the cross section of the pipe in Fig. 7.3. The

smaller the cross section of the pipe (i.e., the greater the resistance), the slower the

observed fluid flow from the tank (i.e., the smaller load current). At the same time, the

leakage time (or the discharge time) increases accordingly. In Fig. 7.3, we actually need to

open the mechanical valve, whereas in Fig. 7.1 we close the electric switch. There is no

real contradiction though since both operations really enable the flow of a substance:

either the flow of electric current in Fig. 7.1 or the water flow in Fig. 7.3.

7.1.4 Application Example: Electromagnetic Railgun

Figure 7.4 shows a generic structure of an electromagnetic accelerator, sometimes called

an electromagnetic railgun. Apart from potential high-power applications, this setup

helps us to visualize the operation of linear motors and generators. The discharging

t=0

Fig. 7.3. A fluid-flow analogy for the circuit shown in Fig. 7.1.
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capacitor is connected via a resistor to the rails, as shown on the left in Fig. 7.4. Resistor

R models ohmic losses in the metal rails and a (typically small) series resistance of the

capacitor. The capacitor current flows through two metal rails and through a sliding or

rolling metal rod to be accelerated. Also shown in Fig. 7.4 are two permanent magnets

responsible for creating a magnetic flux emanating from the north pole (N) and termi-

nating at the south pole (S). When this perpendicular magnetic flux density B, measured

in tesla (T), is applied between the rails, the Lorentz forcewill act on the moving object of

length l ¼
�
�~l
�
� and accelerate this object in the direction of the rails. This force is given by

~F ¼ iC ~l � ~B
� �

N½ � ð7:11Þ

The Lorentz force was named after Hendrik Antoon Lorentz (1853–1928), a Dutch

physicist and Nobel Prize laureate. Only 24 years of age, Lorentz was appointed to the

newly established chair in theoretical physics at the University of Leiden, the oldest

university in the Netherlands founded by William, Prince of Orange. Lorentz made

significant contributions to field theory ranging from hydrodynamics to general relativity.

The Lorentz force is the driving force of any electric motor you are using. The cross

product in Eq. (7.11) is consistent with the right-hand rule: the current direction of the

moving object represents the fingers of your right hand, and they are turned into the

magnetic flux direction so that the thumb points in the direction of the Lorentz force.

Another way is to picture a screw whose body points along the force and which is turned

in the plane spanned by~l and ~B such that~l is rotated into ~B. From a circuit point of view,

N

S

B

iC

F

l

conductive moving metal rod

ll
iC

metal rails

R
V0

iC

+

t=0

Fig. 7.4. An electromagnetic accelerator based on the Lorentz force effect in the magnetic field

created by two permanent magnets and the capacitor discharge current.
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the construction in Fig. 7.4 could be replaced by an RC circuit, with the capacitor

connected to the rails through a switch. Resistance R in Fig. 7.4 is formed by the rail

resistance combined with the object’s resistance and with the contact resistance between

the object and the rails. The force is directly proportional to the discharge current iC.

Example 7.2: The capacitor in Fig. 7.4 is initially charged to a voltage V 0 ¼ 100 V and

has a capacitance of 1000 μF. The total system resistance R is 1 Ω. For the above example,

what force in N is to be expected and for how long?

Solution: According to Eq. (7.8b), the maximum current value, which occurs when the

switch has just closed, is V 0=R ¼ 100 A. Using Eq. (7.11), we calculate the initial force

value, which is 0.6 N.

As time progresses, the current and the force both quickly decrease. Over a time duration

of τ ¼ RC ¼ 1ms, both of these values decrease to 36.8 % of their initial values. For

simplicity, we assume that an average force acts over the time duration τ. Its value is

estimated as approximately 60 % of the initial force value. We then obtain an average of

0.36 N over the time interval τ¼ 1 ms, which is a rather modest result. Realistic capacitors

used for electromagnetic (EM) acceleration are the so-called pulsed capacitors. They have

a high charge voltage of V 0 � 10,000 V and capacitances on the order of 100 μF.

Therefore, a high-voltage power supply is needed. A number of capacitors are put in

parallel to increase the overall capacitance. Large currents, on the order of 10,000 A, into

the 1-Ω load may then produce much higher force values.

7.1.5 Application Example: Electromagnetic Material Processing

Electromagnetic Forming
The moving object in Fig. 7.4 may be implemented in various forms. For example, it

could be replaced by a liquid metal such as molten aluminum. In principle, an electro-

magnetic “die casting” machine could be constructed that creates a high-speed liquid

metal jet. The key point is the small mass of the object in order to enable a fast

acceleration. Electromagnetic forming is used to accelerate solid metal sheets at velocities

up to a few hundred meters per second, which are 100–1000 times greater than the

deformation rates of conventional forming such as sheet metal stamping. The noncontact

electromagnetic forming of metals is a process that has been applied since the 1960s but

has not seen extensive use. Its common application is to expand, or compress, axisym-

metric metal parts as shown in Fig. 7.5a. It has been commercially applied for the joining

and assembly of concentric parts and compression crimp seals. Figure 7.5b shows a more

recent experiment at the Ohio State University and made with aluminum car door panels.

Chapter 7 Transient Circuit Fundamentals

VII-316



Self-Induced Lorentz Force

Electromagnetic forming processes shown in Fig. 7.5 do not use permanent magnets.

Instead, the so-called self-induced Lorentz force is employed. The idea is to generate the

magnetic flux B with the same current iC. Figure 7.5a shows the related concept used in

noncontact electromagnetic forming of metal joints. The high discharge current, iC, creates a

strong time-varying magnetic field, both inside and outside of the coils in Fig. 7.5a. In turn,

the time-varying magnetic field induces so-called eddy currents in the metal sample. The

product of these eddy currents and the magnetic field gives rise to a Lorentz force according

to Eq. (7.11). This force is strong enough to deform the joints.

7.1.6 Application Example: Digital Memory Cell

This completely different example investigates a digital circuit that stores binary infor-

mation. Figure 7.6 shows a schematic of a dynamic random-access memory (DRAM)

memory cell. The cell stores its bit of information as charge deposited on the cell

capacitor C. When the cell is storing a logic 1, the capacitor is charged to a positive

voltage V0; when a logic zero is stored, the capacitor is discharged to a zero voltage.

Because of leakage effects, there is always a nonzero resistance R to ground (not shown in

the figure). Thus, the cell circuit becomes that of Fig. 7.1. The capacitor will discharge

and must be refreshed periodically. During refresh, the capacitor voltage is restored to V0

if necessary. The refresh operation is in fact performed every 5–10 ms!

Fig. 7.5. (a) Electromagnetic forming of metal joints. The current in the windings generates a

magnetic flux that induces eddy currents in the metal. Their product is the Lorentz force.

(b) Electromagnetically reformed door panel compared with the production geometry.
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7.1.7 Energy-Accumulating Capacitor Circuit

Charging is the inverse process of discharging a capacitor and it involves a power supply.

The corresponding circuit is shown in Fig. 7.7. The switch closes at t ¼ 0. The resistor

R can be either the Thévenin resistance of the practical voltage source or the series

parasitic resistance of the capacitor itself or even a combination of both.

To support this conclusion, we note that the positions of the switch and the resistor in

Fig. 7.7 may be interchanged without affecting the circuit analysis. Similarly, two resistors

may be placed on both sides of the switch; the circuit solution will display their series

equivalent. The solution to the circuit is once again based on KVL and KCL. By KCL,

iC ¼ iR ð7:12Þ

at any time instance t. Since both R and C in Fig. 7.7 are passive elements, we can apply

the constitutive relations between currents and voltages without changing the sign:

C
dυC

dt

zfflffl}|fflffl{

iC

¼ υR

R

z}|{
iR

¼ V S � υC

R
ð7:13Þ

Next, KVL states

υR ¼ V S � υC ð7:14Þ

C

Cell0V

Bit line

Word line

Fig. 7.6. Dynamic RAM memory cell. The bit line carries either logic 1 or 0 information.

iC

t=0

C=10 F

iR

R=10
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+

-

vR+

-

+
-

VS

Fig. 7.7. Charging a capacitor with a DC voltage source as an example of another RC circuit.
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at any positive time instance t. Therefore, Eq. (7.13) yields

C
dυC

dt
þ υC

R
¼ V S

R
) dυC

dt
þ υC

τ
¼ V S

τ
, τ ¼ RC ð7:15Þ

Equation (7.15) has now an excitation term (the power supply voltage) on its right-hand

side. Consequently, the solution to this equation is called a forced response. Equation

(7.15) is known as an inhomogeneous first-order differential equation. This is in contrast to

the homogeneous differential equation (7.5). Nonetheless, Eq. (7.15) still remains a first-

order transient equation with the same time constant τ. The solution to any first-order

ordinary differential equation of that type has the generic form

υC tð Þ ¼ K1exp �t

τ

� �

þ K2 ð7:16aÞ

This fact can be checked by direct substitution. The two terms containing the exponential

factor will cancel out after differentiation. The remaining terms in Eq. (7.15) yield

K2

τ
¼ V S

τ
) K2 ¼ V S ð7:16bÞ

The constant parameter K1 can be determined from the initial condition, υC t ¼ 0ð Þ ¼ 0.

Since exp(0)¼ 1 in Eq. (7.16a), we conclude

K1 þ K2 ¼ 0 ) K1 ¼ �V S ð7:16cÞ

Thus, the circuit voltages have the form

υC tð Þ ¼ V S 1� exp �t

τ

� �h i

, υR tð Þ ¼ V Sexp �t

τ

� �

ð7:16dÞ

The resistor voltage has the same form as the resistor voltage in Eq. (7.8a) for the

discharging capacitor. However, the capacitor voltage has not. The capacitor current is

iC tð Þ ¼ C
dυC tð Þ
dt

¼ V S

R
exp �t

τ

� �

ð7:16eÞ

It is equivalent to Eq. (7.8b), the discharge current for the RC circuit. What is the most

remarkable property of the solution given? According to Eq. (7.16d), we always need a

certain amount of time to charge the capacitor. It is clear that this time will be on the order

of the time constant τ. Moreover, from a formal point of view, the capacitor voltage will

never exactly reach the source voltage (the exact equality only occurs at t ! 1), see

Fig. 7.8.
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Example 7.3: A 10-μF capacitor in Fig. 7.7 is charged by a 10-V voltage source. The

switch closes at t ¼ 0, and the system resistance is 10 Ω. Plot capacitor voltage υC and

capacitor current iC to scale over the time interval from �0.2 ms to 0.5 ms.

Solution: First, we find the time constant τ. According to Eq. (7.15) or (7.5),

τ ¼ RC ¼ 10�5F� 10 Ω ¼ 0:1ms. The solutions for this example are given by

Eqs. (7.16d) and (7.16e) with V S ¼ 10V. Solutions for the capacitor voltage and capacitor

current are plotted in Fig. 7.29. The vertical line denotes the time constant τ so that you can

see how fast the capacitor charges. At one time constant, i.e., τ¼ 0.1 ms, the capacitor is

charged to 1� 1=eð ÞV S or to 63.2 % of the source voltage VS.

Exercise 7.2: The source voltage in Fig. 7.7 is 20 V. Determine the capacitor voltage and

the circuit current at (i) t ¼ 5 μs and (ii) t ¼ 1 ms.

Answer: (i) –0.98 V and 1.90 A; (ii) –19.999 V and 90 μA.

0

2

4

6

8

10

τ

capacitor voltage v
C

, Vt<0

0

0.2

0.4

0.6

0.8

1

τ

capacitor current i
C

, At<0a) b)

-0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
time, ms

-0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
time, ms

Fig. 7.8. Voltage/current plots for charging a 10-μF capacitor in series with a 10-Ω resistor. We

again observe continuity of the capacitor voltage (the “capacitor inertia”).
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Section 7.2 RL Circuits

The first-order RL circuits studied in this section lay the foundation of understanding the

behavior of any transient circuit containing inductances. The transient circuit response is

a dynamic process; we are once again required to solve dynamic circuit equations that can

be formulated as ordinary differential equations. You can again rely on KVL and KCL

since they apply to any static (DC) or dynamic (transient and AC) circuit. Along with the

inductor’s voltage/current relation, they are used to derive the circuit ODE.

7.2.1 Energy-Release Inductor Circuit

The inductor stores the magnetic-field energy created by an electric current. Thus, in

order to be “charged,” the inductor must carry some current. A natural choice is therefore

a circuit with the current source shown in Fig. 7.9a. This is in contrast to the charged

capacitor, which does not need a voltage supply to stay charged. If the switch in Fig. 7.9a

is open ( t < 0), the entire current IS flows through the inductor. The inductor is thus

“charged.” When the switch closes at t ¼ 0, the current source still generates the same

current IS at its terminals. However, the supply is now shorted out, i.e., no current flows

into the circuit. In other words, the current supply is effectively disconnected so that the

RL circuit becomes a stand-alone circuit in Fig. 7.9b, with the initial current IS still

flowing in the inductor. As time progresses, the inductor releases its energy to the load.

The solution of the dynamic circuit in Fig. 7.9b is again based on KVL and KCL. With

the voltage polarities shown in Fig. 7.9b, the use of KVL yields

υL ¼ υR ð7:17Þ

at any time instance, t. Since both circuit elements in Fig. 7.9b are passive, we can directly

apply the constitutive relations between voltages and currents without changing the sign:

L
diL

dt

zffl}|ffl{

υL

¼ RiR
z}|{

υR

¼ �RiL ð7:18Þ

IS R L

t=0
IS

+

-
v R L

+

-

+

-

iL

t<0 t 0

vR

a) b)

iR

vL

Fig. 7.9. The concept of “discharging” the previously charged inductor through a load resistor R.
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According to KCL, iR ¼ �iL, at any positive time instance t, and Eq. (7.18) yields

L
diL

dt
þ RiL ¼ 0 ) diL

dt
þ iL

τ
¼ 0, τ ¼ L=R ð7:19Þ

Here again we encounter a first-order transient equation. The constant τ carries the unit of

seconds (since R is in ohms and L is in henrys) and is known as the time constant, or

relaxation constant, of the RL circuit. It is the only constant that is present in the first-

order transient differential equation. We can observe a remarkable similarity between the

transient RL circuit and the RC circuit of discharging a capacitor. The mathematics is

the same, but the capacitor voltage is replaced by the inductor current, and the value of the

time constant changes from RC to L/R. The initial condition iL t ¼ 0ð Þ ¼ IS includes the

past inductor current instead of the past capacitor voltage. The solution of Eq. (7.19) is

iL tð Þ ¼ Kexp �t

τ

� �

, t � 0 ð7:20Þ

The validity of Eq. (7.20) is seen by direct substitution. The constant K is determined

from the initial condition. Setting t ¼ 0 yields K ¼ IS. Both currents in Fig. 7.9b are

iL tð Þ ¼ �iR tð Þ ¼ ISexp �t

τ

� �

t � 0 ð7:21aÞ

At t < 0, the inductor current maintains its value IS but the resistor current is zero, as

shown in Fig. 7.9a. The resistor (or load) voltage is given by

υR tð Þ ¼ RiR tð Þ ¼ �RISexp �t

τ

� �

ð7:21bÞ

At t < 0, the load voltage is zero. The instantaneous power delivered to the load is

pR tð Þ ¼ υR tð ÞiR tð Þ ¼ RIS
2 exp �2

t

τ

� �

ð7:21cÞ

Equations (7.21a)–(7.21c) provide the complete solutions for the circuit depicted in

Fig. 7.9.

Example 7.4: A 1-mH inductor in Fig. 7.9 is connected to a 1-kΩ load. The supply current

(disconnected at t ¼ 0) is 1 A. Plot inductor current iL, inductor (or load) voltage υR, load

current, iR, and load power, pR, over the interval from –2τ to 5τ.
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Example 7.4 (cont.):

Solution: First, we find the time constant τ. According to Eq. (7.19),

τ ¼ L=R ¼ 10�3H=1000 Ω ¼ 10�6s ¼ 1 μs ð7:22Þ

which is a rather small value. The solution for this example is given by Eqs. (7.21a)

through (7.21c), with IS ¼ 1 A, and is shown in Fig. 7.10. The vertical line in all plots is

the time constant τ. One can see that the time constant determines how quickly the inductor

current and the load voltage decrease. At 1τ, the load voltage is equal to 1/e or 0.368

(36.8 %) of the initial voltage RIS.
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Fig. 7.10. (a) Inductor current, (b) load voltage, (c) load current, and (d) load power for a 1-mH

inductor connected to a 10-Ω load resistor.

Chapter 7 Section 7.2: RL Circuits

VII-323



Exercise 7.4: The supply current in Fig. 7.9 is 0.5 A. Given L ¼ 1 mH and R ¼ 1 kΩ,

determine the load voltage and the instantaneous power delivered to the load resistance at

(i) t ¼ 0:2 μs and (ii) t ¼ 10 μs.

Answer: (i) –409.4 V and 167.6 W; (ii) –23 mV and 0.52 μW.

What is the most remarkable property of the solution? According to Fig. 7.10, the high

voltage spike across the inductor is created in an RL switching circuit when the load

resistance, R, is large. For example, an air gap has a very high resistance. When used as a

load, it may possess a very high voltage drop of several kVandmore. This is the idea behind

any medium-to-high-power electronic ignition system, including the 12-V-powered car

ignition system, a missile ignition system, etc. Such a circuit must include at least three

basic elements: (a) a voltage or current power supply, (b) a switch, and (c) an inductor (coil).

The switch can be a transistor switch controlled by a sensor.

7.2.2 Continuity of the Inductor Current

The current through the inductor remains a continuous function of time over the

breakpoint t ¼ 0. However, all other quantities in Fig. 7.10, the load voltage, the load

current, and the load power are subject to a sudden jump when the switch closes. The

reason for such a continuity is the finite magnetic-field energy stored in the inductor:

EL ¼ 1

2
Li2L tð Þ; ð7:23Þ

at any time instant. This energy cannot be released instantaneously. Such an effect might

be called “inductor inertia” in reference to mechanical inertia of a vehicle with mass

m and speed υ and kinetic energyET ¼ 0:5mυ2, which cannot be stopped instantaneously.
The kinetic energy is a continuous function of time, as is the vehicle speed. Similarly, the

inductor energy is a continuous function of time, as is the inductor current. The inductor

current is the only variable which is always a continuous function. Therefore, it must be

used as an independent function in the ODEs for RL circuits. Using any other function is

prohibited since we cannot state the initial conditions for a noncontinuous function.

Fluid Mechanics Analogy

The continuity of the inductor current may be illustrated by a fluid-flow analogy of the

energy-releasing inductor circuit shown in Fig. 7.11. The electric current corresponds to

the velocity of the fluid. The inductance is a massive wheel of mass m. When subject to a

DC current (constant water flow), it acquires a certain angular velocity. This is the case of

Fig. 7.9a at t < 0. When the water pump is suddenly turned off, the wheel inertia will still

support the same water flow, at least at the initial time moment. After that, the wheel

slowly decelerates. This is the case of Fig. 7.9b.

Chapter 7 Transient Circuit Fundamentals

VII-324



7.2.3 Energy-Accumulating Inductor Circuit

The circuit behavior is now exactly the opposite of the circuit shown in Fig. 7.9. For

instance, when the switch in Fig. 7.12 is closed, the current supply is shorted out. No

current flows into the circuit. However, when the switch opens, the supply current IS starts

to flow into the circuit, and as time approaches infinity, the entire supply current IS flows

through the inductor. Thus, the inductor becomes “charged.”

The solution of the dynamic circuit in Fig. 7.12 is based on KVL and KCL. With the

voltage polarities in Fig. 7.12, the use of KVL yields

υL ¼ υR ð7:24Þ

at any time instance, t. Since both circuit elements in Fig. 7.12 are passive, we can apply

the constitutive relations between voltages and currents without changing the sign:

L
diL

dt

zffl}|ffl{

υL

¼ RiR
z}|{

υR

¼ RIS � RiL ð7:25Þ

because, according to KCL, iR ¼ IS � iL, at any positive time instance, t. Equation (7.25)

yields

diL

dt
þ iL

τ
¼ IS

τ
, τ ¼ L=R ð7:26Þ

which is the inhomogeneous first-order transient equation with the forcing function

(right-hand side) equal to IS/τ. Here, τ is the generic time constant of the RL circuit.

Once again, there is a close similarity between the present RL circuit and the series RC

circuit for charging the capacitor. The mathematics is the same, but the capacitor voltage

is replaced by an inductor current and the voltage supply is replaced by the current supply.

a)

DC current

massive wheel
of mass m

DC circuit Transient current

DC current DC current

b)

Fig. 7.11. A fluid-flow analogy for the two circuits shown in Fig. 7.9.
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Fig. 7.12. The concept of “charging” an inductor using a current source.
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The initial condition for Eq. (7.26) now includes the past inductor current of 0 A instead

of the past capacitor voltage, which is 0 V. Equation (7.26) has the solution

iL tð Þ ¼ K1exp �t

τ

� �

þ K2, K2 ¼ IS ð7:27Þ

This fact is seen by direct substitution. The constant K1 is found from the initial condition

of zero inductor current at t ¼ 0, which yields K1 ¼ �K2. Therefore,

iL tð Þ ¼ IS 1� exp �t

τ

� �h i

, iR tð Þ ¼ ISexp �t

τ

� �

, t � 0 ð7:28aÞ

Both currents are zero at t < 0. However, the inductor current is continuous over the

breakpoint while the resistor current is not. The inductor/resistor voltages are given by

υL tð Þ ¼ L
diL tð Þ
dt

¼ RISexp �t

τ

� �

, υR tð Þ ¼ υL tð Þ t � 0 ð7:28bÞ

Both voltages are zero at t < 0. This completes our circuit analysis.

Example 7.5: A 1-mH inductor in Fig. 7.12 is connected to a 1-A current power supply.

The resistor value isR ¼ 1kΩ. Plot the inductor current, iL, and the inductor voltage, υL, to

scale versus time over the interval from –2τ to 5τ.

Solution: First, we find the time constant τ. According to Eq. (7.26), we get

τ ¼ L=R ¼ 10�3H=1kΩ ¼ 10�6s ¼ 1μs. The solution to the example is given by

Eqs. (7.28a, b) with IS ¼ 1 A; see Fig. 7.13. The vertical line in both plots is the time

constant τ. One can see that this time constant determines how fast the circuit stabilizes.

At 1τ, the inductor current reaches 1� 1=eð ÞIS, i.e., 63.2 % of the expected DC value.

Note that Fig. 7.13 of this section and Fig. 7.8 of the previous section are identical to within

interchanging voltage and current terms!

L
, A

-2 -1 0 1 2 3 4 5
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time, s
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time, s

inductor current i
t<0

a)

2

200

400

600

800

inductor voltage v
L

, V
t<0b)

1000

0

Fig. 7.13. Voltage/current plots for “charging” the 1-mH inductor in parallel with the 1-kΩ resistor.
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Exercise 7.5: The supply current in Fig. 7.12 is 0.5 A. Given L ¼ 1 mH and R ¼ 1 kΩ,

determine the inductor voltage and the inductor current at (i) t ¼ 0:2 μs and (ii) t ¼ 10 μs.

Answer: (i) –409.4 V and 91 mA; (ii) –23 mV and 0.49999 A.

The final question to ask is what is the most remarkable property of the solutions

given by Eqs. (7.28a, b)? According to Eq. (7.28a), we always need a certain period

of time to create a given current through the inductor. The elapsed time will be on the

order of the time constant τ. Moreover, the inductor current will never exactly reach

the supply current (the exact equality only occurs as t ! 1). In practice, this effect is

masked by noise and by other factors. Interestingly, the resistor carries most of the circuit

current when the solution changes rapidly, i.e., close to the initial time t ¼ 0. At the

same time, when the circuit stabilizes, i.e., when t becomes large compared to τ, the

influence of the inductor dominates. This observation leads us to the concept of imped-

ance (the “resistance” of dynamic circuit elements) that is considered next. The imped-

ance is similar to a resistance (and has the same unit), but it depends on how fast circuit

current and voltage change. When the changes are very fast, the inductor exhibits a

much greater “resistance” than the resistor; it becomes virtually an open circuit with no

current flow.

7.2.4 Energy-Release RL Circuit with the Voltage Supply

The combination of the current supply IS and resistor R in Figs. 7.9 and 7.12 is in fact the

Norton equivalent circuit of any network of power supplies and resistors. The RL circuit

may be modeled a Thévenin equivalent too. The concept is shown in Fig. 7.14.

Prior to opening the switch in Fig. 7.14a, the inductor current is found to be VS/R0.

When the switch opens, the supply is disconnected from the RL circuit; see Fig. 7.14b. As

time progresses, the inductor releases its energy into the load. The circuit in Fig. 7.14b is

identical to the circuit in Fig. 7.9b. Therefore, all prior results related to the energy-release

RL circuit will remain valid if we replace the initial inductor current IS by VS/R0.

According to Eq. (7.21b), the load voltage is given by

t=0

L=1 mH R=1 kΩ+
-

VS

R =100

iL

L=1 mH R=1 kΩ

vL

+

-
vR

+

-
iR

a) b)

at t>0

original circuit

Ω

Fig. 7.14. “Discharging” an inductor with a voltage supply, as an example of an RL circuit.
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υR tð Þ ¼ RiR tð Þ ¼ � R

R0

V Sexp �t

τ

� �

ð7:29Þ

If the ratio R/R0 is large, the initial voltage spike of the inductor is large too. The

magnitude of the initial voltage spike for the circuit in Fig. 7.14 is a hundred times the

supply voltage VS! Can we model an electronic ignition system in the laboratory? Yes,

according to Fig. 7.14 this can be accomplished relatively easily. The key, however, is the

construction of a fast switch. A proper choice may be a power transistor switch.

7.2.5 Application Example: Laboratory Ignition Circuit

A circuit rated at 6 V for safety purposes is shown in Fig. 7.15. The laboratory DC voltage

source usually delivers up to 3 A of current, if not current limited. The electric step-up

transformer with two coils is a 6-V car ignition coil. Instead of a simple coil, a transformer

is used to further boost the inductor voltage spike of the RL circuit. The small resistance R0

is the transistor/wire resistance. The very large resistance R is the resistance of the spark

plug in series with the large resistance of the spark plug cable RCABLE, which is a carbon

core wire. This carbon core wire is used to prevent higher EM radiation and its possible

influence (we would hear it as noise) on the car audio receiving equipment. Figure 7.16

shows the operating circuit. The sparking frequency ranges from 2 Hz to 100 Hz.

transistor switch

+
-

6V=VS

R0 RCABLE

ignition coil
(transformer)

spark plug cable

spark plug

0V

Fig. 7.15. Modeling the ignition system as in a laboratory. The spark plug voltage is about 3–10 kV.

555 timer and control circuitry

Transistor switch
Spark
plug

6V DC supply
Ignition coil

Fig. 7.16. A constructed ignition system.
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Spark Gap Radio

The spark gap in the circuit in Fig. 7.15 and in Fig. 7.16 is a powerful and broadband

source of electromagnetic radiation. One favorite story in science fiction novels is that,

after crashing his or her spaceship on an inhabited planet, the commander can quickly

construct a spark generator out of remaining parts of the ship and send an SOS signal out

to space. An AM radio can “listen” to the circuit shown in Fig. 7.16 over the entire AM

band from 540 to 1610 kHz used in the USA. Even better results are observed for the

long-wave AM band from 153 to 279 kHz used in Europe, Africa, and parts of Asia.

Exercise 7.6: The supply voltage in Fig. 7.14 is 10 V. Determine the inductor voltage and

the inductor current at (i) t ¼ 0:2 μs and (ii) t ¼ 10 μs.

Answer: (i) –818.7 V and 0.82 A; (ii) –45 mV and 45 μA.
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Section 7.3 Switching RC Oscillator

The time constant τ of an RC circuit provides a natural time scale. It is widely employed

for timing purposes. Some of you may have already used microcontroller starter kits. The

microcontroller manual discussing the various settings will likely feature a topic entitled

“RC oscillator.” Here you will discover that the microcontroller clock frequency can be

controlled by an external resistor R and capacitor C. How is this possible? We have just

seen that the RC circuit discharges the capacitor through the resistor, but how can it be

used to create a periodic clock signal at a given frequency? The present section aims to

augment an RC circuit with an amplifier circuit and establish a clock circuit.

7.3.1 About Electronic Oscillators

An electronic oscillator is a circuit that has an output, but no input in the common sense.

It generates a certain periodic waveform at the output. The period, amplitude, and shape

of this waveform are determined by the circuit topology. The “heart” of any oscillator

circuit is an amplifier block with some sort of a positive feedback. The positive feedback

is the opposite of the negative feedback. A part of the output amplifier’s voltage is fed

back into the input with the sign plus. All oscillator circuits may be divided into linear

oscillators, which create sinusoidal waveforms, and switching oscillators, which create

square and other periodic nonharmonic waveforms. The subject of this section is a

switching oscillator circuit, which is called an astable multivibrator or a relaxation

oscillator. This circuit uses the comparator amplifier but with a positive feedback loop

and a transient RC block. It is perhaps the simplest and yet efficient oscillator circuit.

7.3.2 Bistable Amplifier Circuit with the Positive Feedback

Saturation Mechanism
Consider the circuit shown in Fig. 7.17. At first sight, it is similar to the inverting

amplifier configuration. However, the amplifier polarity is interchanged, which means

that the feedback is now positive. The circuit has no input: both potential inputs are

grounded. Since there is no current into the amplifier itself (the first summing-point

constraint still applies), two resistors of the feedback loop form a voltage divider between

the output voltage υout and ground. Therefore, the voltage at node (+) becomes

υþ ¼ R1

R1 þ R2

υout ð7:30Þ
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To analyze the circuit in Fig. 7.17, we again consider the feedback as a fast dynamic

process with a very short delay in the feedback loop. We assume that R1 ¼ R2 for

simplicity. It means that 50 % of υout is returned back to the non-inverting input in, say,

1 μs. The open-loop amplifier’s gain will be A ¼ 106; the amplifier hits the power rails

υout ¼ �VCC in saturation. The initial value of υþ will be 0 V, and the initial value of υout
will be 1 μV (at the noise level). Table 7.1 shows the dynamics of the feedback process

where the amplifier operates as υout ¼ Aυþ, but it takes 1 μs to return 50 % of υout. It

follows from Table 7.1 that the amplifier will be very quickly saturated; its output will be

the positive rail voltage υout ¼ þVCC. All other positive initial values of υout will lead to

the same result. Simultaneously, all negative initial values of υout will lead to the

saturation at the negative rail υout ¼ �VCC.

Two Stable States

The key point is that once the saturation state

υout ¼ þVCC, υ
þ ¼ þ R1

R1 þ R2

VCC ð7:31Þ

has been reached, the amplifier circuit will exist in this state indefinitely, despite all the

subsequent electric noise. To prove this fact, we may introduce a small perturbation in υout
and/or in υþ ; the circuit will quickly return to the solution given by Eq. (7.31). Quite

similarly, once the opposite saturation state

υout ¼ �VCC υþ ¼ � R1

R1 þ R2

VCC ð7:32Þ

Table 7.1. Dynamics of the output voltage for the bistable amplifier

circuit.

Time, μs υþ υout

0 0 V 10�6 V

1 0:5� 10�6 V 0.5 V

2 0.25 V þVCC

+
-

+

-

vout

R1
R2

0 V

0 V

R +R1 2

R1 voutv =

+

+

a

b

Fig. 7.17. A bistable amplifier circuit.
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has been reached, the amplifier circuit will exist in this state indefinitely. Thus, the

positive feedback always forces the comparator to operate in saturation, i.e., in either of

the two stable states, υout ¼ �VCC, where �VCC is the supply voltage of the amplifier.

This result is valid for any pair of the resistances R1,R2. The resistance pair specifies

values of υþ in Eqs. (7.31) and (7.32), respectively, known as threshold voltages.

Figure 7.18 shows the corresponding mechanical analogy of the bistable amplifier

circuit. Note that a grounded comparator amplifier without the positive feedback loop

would also be always saturated due to inherent electric noise. However, there are no

stable states whatsoever; the switching between the rails is random; it is controlled by

random noise.

7.3.3 Triggering

The amplifier circuit in Fig. 7.17 can be in either of two stable states defined by the initial

conditions. As such, it is useless as long as we do not have a mean to change the state.

A trigger signal (an input voltage signal) may be applied to switch between the states.

After introducing an external trigger signal in the form of short pulses, the bistable

amplifier circuit becomes a basic digital memory element capable of saving and retrieving

one bit of data. When the input voltage signal is applied to node (a) in Fig. 7.17 instead of

grounding it, the corresponding circuit becomes the non-inverting Schmitt trigger. When

the input voltage is applied to node (b) in Fig. 7.17 instead of grounding it, the

corresponding circuit becomes the inverting Schmitt trigger. The Schmitt triggers are

used as zero-level detectors in analog electronics and for many other purposes. When

triggered, the bistable amplifier circuit operates as a comparator.

Exercise 7.7: The bistable amplifier circuit withR1 ¼ R2 in Fig. 7.17 exists in the positive

stable state with υout ¼ þVCC. A trigger signal is applied to node (b) in Fig. 7.17.

Determine output voltage when the applied trigger signal is (i) �VCC , (ii) þ0:4VCC, and

(iii) þ0:6VCC, where �VCC is the supply voltage of the amplifier.

Answer: (i) þVCC; (ii) þVCC; (iii) �VCC.

v =Vout CCv =-Vout CC v = 0 Vout

Fig. 7.18. Mechanical analogy of two stable states for the bistable amplifier circuit.
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7.3.4 Switching RC Oscillator

The idea of the switching RC oscillator (or the relaxation oscillator) is not to use an

external trigger, but rather to derive the trigger signal from an RC circuit connected to the

output of the amplifier itself. The circuit diagram of the relaxation oscillator is shown in

Fig. 7.19. The RC circuit with the source voltage υout forms a negative feedback loop. The

capacitor may either charge or discharge depending on the source voltage.

To analyze the amplifier circuit in Fig 7.19, we assume an infinitely high open-loop DC

gain A and use basic amplifier equations 5.4 with υ� ¼ υC. This yields

υout ¼ þVCC if
R1

R1 þ R2

υout > υC ð7:33aÞ

υout ¼ �VCC if
R1

R1 þ R2

υout < υC ð7:33bÞ

Thus, the circuit in Fig. 7.19 becomes equivalent to a simple RC circuit given in Fig. 7.20

where the dependent (or rather switching) voltage source is defined by Eqs. (7.33a, b).

The corresponding transient analysis is performed starting with some initial conditions.

R

C

+
vC

-
+
-

vout

Fig. 7.20. Equivalent circuit for finding oscillation behavior. The dependent voltage source is

controlled by the capacitor voltage.

+
-

+

-

vout

R1
R2

0 V

0 V

R +R1 2

R1 vout=

+

R

C

trigger
signal

vC

+

-

v
+

Fig. 7.19. Bistable amplifier circuit with an RC circuit in the negative feedback loop.
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Example 7.6: Given initial conditions υout ¼ 10 V and υC ¼ 0 V at t ¼ 0, solve the

circuit in Fig. 7.19 and Fig. 7.20. Assume that VCC ¼ 10 V and R1 ¼ R2.

Solution: Step 1. The source voltage in Fig. 7.20 is υout ¼ 10 V and the capacitor voltage

is zero, i.e., υC ¼ 0 V at the initial time moment t ¼ 0.

Step 2. The capacitor starts to charge. When its voltage reaches υC ¼ 5 V, the differential

voltage at the amplifier’s input becomes negative so that Eq. (7.33a) is no longer valid. The

source voltage in Fig. 7.20 switches to

υout ¼ �10 V according to Eq. (7.33b).

Step 3. The capacitor starts to discharge. When it reaches υC ¼ �5 V, the differential

voltage at the amplifier’s input becomes positive, and the output voltage therefore switches

back to υout ¼ 10 V according to Eq.(7.33a).

After Step 3, the circuit returns to Step 1, and the process continues periodically. This

results in the output voltage shown in Fig. 7.21.

Exercise 7.8: The relaxation oscillator circuit in Fig. 7.19 uses R1 ¼ 1 kΩ and

R2 ¼ 4 kΩ. The supply voltage of the amplifier is �15 V. Determine the amplitude

(peak value) of the oscillating capacitor voltage and the oscillating output voltage.

Answer: 15 V and 3 V, respectively.

7.3.5 Oscillation Frequency

Consider the positive half cycle in Fig. 7.21. The solution for the RC circuit in Fig. 7.20 is

given by Eqs. (7.16a, b) with V S ¼ VCC. The constant K1 is found from the initial

condition of υC t ¼ 0ð Þ ¼ �β VCC where β ¼ R1= R1 þ R2ð Þ is the amount of the positive

0 0.1 0.2 0.3 0.4 0.5

-10

-5

0

5

10

time, s

Voltage, V

charge discharge chargedischarge

vC

vout

Fig. 7.21. Relaxation oscillator operation for the idealized amplifier model (amplifier hits the rails

in saturation); the amplifier supply voltage is 10 V.

Chapter 7 Transient Circuit Fundamentals

VII-334



feedback. We assume that the initial time instance has been switched to the start of the

half cycle. Therefore, during the entire positive half cycle

υC tð Þ ¼ VCC � 1þ βð ÞVCCexp �t

τ

� �

, τ ¼ RC ð7:34Þ

At the end of the positive half cycle, the capacitor voltage becomes β VCC. This allows us

to find the half cycle duration T/2 and the oscillation period T. Solving Eq. (7.34) with

υC ¼ β VCC and t ¼ T=2, one has ( f is the oscillation frequency in hertz)

T ¼ 2τln
1þ β

1� β
, f ¼ 1

T
¼ 1

2τ
ln
1þ β

1� β

� ��1

ð7:35Þ

Exercise 7.9: For the relaxation oscillator withR1 ¼ R2, express the oscillation frequency

in terms of its time constant τ.

Answer: f ¼ 0:455
τ

Hz½ �.

7.3.6 Circuit Implementation: 555 Timer

Figure 7.22 shows the relaxation oscillator circuit implemented in a laboratory and its

output voltages when the supply voltages are �5V. Since the realistic amplifier never

reaches the supply rails, the peak-to-peak (Pk-Pk) value of the output voltage is now less

than 10 V. The output current limitations of the amplifier IC may severely affect circuit

performance. Also, the oscillation frequency only approximately follows Eq. (7.35).

C: Two 10 F
capacitors
in parallel

Lm348 quad op-amp

R: potentiomer in series
with a fixed resistor

LED
a) b)

Fig. 7.22. (a) Timer circuit operation in laboratory. The square waveform is the output voltage

υout(t). The curved waveform is the capacitor voltage υC(t). A variable resistance R makes it

possible to visually control the oscillation frequency using an LED connected to the output

through a buffer amplifier . The oscillation frequency changes from 0.5 to about 100 Hz.
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555 Timer Integrated Circuit

Rectangular pulse forms at lower frequencies are routinely created by the well-known

555 timer IC (integrated circuit). The 555 timer operates conceptually similarly to the

relaxation oscillator circuit described above; it is more versatile though. The 555 timer

creates a waveform of relatively sharp and clean rectangular voltage pulses whose

frequency is controlled by an external capacitor and resistor. The duty cycle (ratio of

the positive phase duration to the signal period) can also be controlled. The 555 timer is

perhaps one of the most popular integrated circuits ever built.
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Section 7.4 Single-Time-Constant (STC) Transient Circuits

7.4.1 Circuits with Resistances and Capacitances

Consider a transient circuit with an arbitrary number of capacitances and resistances. The

circuit has an independent voltage source (or sources) and a switch. Instead of the voltage

source, some capacitors may be charged prior to closing the switch. A single-time-

constant transient circuit (STC circuit) is that which solution has the form

υ tð Þ ¼ K1exp �t

τ

� �

þ K2 ð7:36Þ

for any branch voltage in the circuit. In other words, only one exponential function is

involved, similar to the basic RC circuits studied previously. Here, τ is the only time constant

of the circuit. The STC transient circuits are frequently encountered in practice, in particular,

in the study of transistor amplifiers. The STC transient circuits include:

1. Transient circuits with only one capacitance C. According to Thévenin’s theorem,

the network of resistances and source(s) seen by the capacitor is reduced to its

Thévenin equivalent. As a result, we obtain the circuit shown in Fig. 7.7. Its time

constant is given by

τ ¼ RTC ð7:37Þ

where RT is Thévenin resistance – the equivalent resistance of the network with the

independent voltage source(s) shorted out.

2. Transient circuits with only one resistance R. Thévenin’s theorem may be applied

again, this time to the network of capacitances and source(s) seen by the resistance.

As a result, we again obtain the circuit from Fig. 7.7. Its time constant is given by

τ ¼ RCT ð7:38Þ

where CT is the equivalent capacitance of the network with the independent voltage

source(s) shorted out.

3. Transient circuits with an arbitrary number of capacitances and resistances given

that the solutions for different capacitor voltages obtained by the simultaneous use

of KVL and KCL are all linear functions of each other. Consider a circuit with

multiple capacitances. Assume that N is the final number of capacitances after all

possible series/parallel combinations. For the STC condition to hold, there should

be N � 1 independent closed loops that include only capacitances (and possibly

independent voltage source(s)) but do not include resistances. This useful result has

been confirmed by the authors based on an extensive circuit analysis.
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As an example, we consider here simple transient circuits shown in Fig. 7.23.

Exercise 7.10: For the circuits in Fig. 7.23, establish the number of independent closed

loops that include only capacitance(s) and independent voltage source but do not include

resistances.

Answer: (a) Zero; (b) zero; (c) one; (d) zero.

The first case in Fig. 7.23 is the transient circuit of Fig. 7.7. The positions of the switch

and the resistor may be interchanged without affecting the circuit solution, which has the

form of Eq. (7.36)—see also Eqs. (7.16). The second case is again the STC circuit; the

solution for the capacitor voltage (and any other voltage in the circuit) is given by

Eq. (7.36) with τ ¼ R1

�
�
�
�R2

� 	
C. The constants K1 and K2 in this equation will be different

for voltages across different circuit elements. The third case is also the STC circuit; the

solution for the capacitor voltage (and any other voltage in the circuit) is still given by

Eq. (7.36) with τ ¼ R C1 þ C2ð Þ. This case requires extra care since two capacitances and
the source form a closed loop. Therefore, according to KVL, capacitor voltages cannot be

both equal to zero at the initial time moment (and at any other time moment). Finally,

consider the last case in Fig. 7.23. For this circuit with two capacitances and two

resistances, there is no closed loop that includes only the capacitances but does not

+
-

VS C2

C1R1

R2

t=0

+
-

VS C

R1

R2

t=0

+
-

VS C2

C1

R

t=0

b)

c)

d)

+
-

VS C

Rt=0a)

Fig. 7.23. Transient circuits with multiple resistances and capacitances.
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include resistances. Therefore, this circuit is not a STC circuit. This result will be

confirmed shortly.

Exercise 7.11: Given initially uncharged capacitor(s), write solutions for the capacitor

voltage for the circuits shown in Fig. 7.23a–c. For the circuit in Fig. 7.23c, assume that that

C1 was initially uncharged but C2 was initially charged to VS and connected to the rest of

the circuit at t ¼ 0 via a second switch.

Answer:

υC tð Þ ¼ V S 1� exp �t

τ

� �h i

, τ ¼ RC in Fig: 7:23a ð7:39Þ

υC tð Þ ¼ V S

R2

R1 þ R2

1� exp �t

τ

� �h i

, τ ¼ R1

�
�
�
�R2

� 	
C in Fig: 7:23b ð7:40Þ

υC1 tð Þ ¼ V S 1� exp �t

τ

� �h i

, υC2 tð Þ ¼ V Sexp �t

τ

� �

,

τ ¼ R C1 þ C2ð Þ in Fig: 7:23c
ð7:41Þ

7.4.2 Circuits with Resistances and Inductances

The forthcoming analysis is quite similar to the analysis performed previously for the

capacitances and resistances. The single-time-constant transient circuit (STC circuit) with

resistances and inductances is that which solution has the form

i tð Þ ¼ K1exp �t

τ

� �

þ K2 ð7:42Þ

for any branch current in the circuit. The list of the corresponding STC circuits also

becomes identical to the previous case with a few modifications:

1. Capacitances are replaced by inductances.

2. Independent current source(s) will be used. They may be converted to voltage

sources according to the source transformation theorem.

3. In condition #3, instead of loops, we use circuit nodes. This condition is now

formulated as follows. Consider a circuit with multiple inductances. Assume that

N is the final number of inductances after all possible series/parallel combinations.

For the STC condition to hold, there should be N � 1 independent (single) nodes,

every branch of which is either an inductance or an independent current source.
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As an example, we consider here simple transient circuits shown in Fig. 7.24.

Exercise 7.12: For the circuits in Fig. 7.24, establish the number of independent nodes,

every branch of which is either an inductance or an independent current source.

Answer: (a) Zero; (b) zero; (c) one; (d) zero.

The first case in Fig. 7.24 is the transient circuit of Fig. 7.12. The corresponding solution

for the inductor current is given by Eq. (7.42); see also Eqs. (7.28). The second case is

again the STC circuit; the solution for the inductor current (and any other current in the

circuit) is given by Eq. (7.42) with τ ¼ L= R1 þ R2ð Þ. The constants K1 and K2 in this

equation will be different for voltages across different circuit elements. The third case is

also the STC circuit; the solution for the inductor current (and any other current in the

circuit) is still given by Eq. (7.42) with τ ¼ L1 þ L2ð Þ=R. This case requires extra care

since two inductances and the current source are three branches of the same node.

Therefore, according to KCL, inductance currents cannot be both equal to zero at the

initial time moment (and at any other time moment). We may assume, for example, that

inductance L2 carried initial current IS and employs a second switch. Finally, consider

the last case in Fig. 7.24. For this circuit with two inductances and two resistances, there is

no nontrivial single node that includes only the inductances but does not include resis-

tances. Therefore, this circuit is not the STC circuit.

IS

t=0

R2

L1R1

d)

L2

IS

t=0

R2

R1

b)

IS

L

IS

t=0

R

L1

c)

L2

IS

t=0

LR

a)

Fig. 7.24. Transient circuits with multiple resistances and inductances.
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Exercise 7.13: Given zero inductor current at the initial time moment, write solutions for

the inductor current for the circuits shown in Fig. 7.24a–c. For the circuit in Fig. 7.24c,

additionally assume that that inductor L1 was carrying zero initial current but inductor L2
was initially carrying current IS and connected to the rest of the circuit at t ¼ 0 via a second

switch.

Answer:

iL tð Þ ¼ IS 1� exp �t

τ

� �h i

, τ ¼ L=R in Fig: 7:24a ð7:43Þ

iL tð Þ ¼ IS
R1

R1 þ R2

1� exp �t

τ

� �h i

, τ ¼ L= R1 þ R2ð Þ in Fig: 7:24b ð7:44Þ

iL1 tð Þ ¼ IS 1� exp �t

τ

� �h i

, iL2 tð Þ ¼ ISexp �t

τ

� �

,

τ ¼ L1 þ L2ð Þ=R in Fig: 7:24c
ð7:45Þ

7.4.3 Example of a Non-STC Transient Circuit

Figure 7.25a shows the last circuit from Fig. 7.23 to be analyzed here in detail. With

reference to Fig. 7.25a, KCL and KVL give

i ¼ i1 þ i2 ) C1

dυ1

dt
¼ C2

dυ2

dt
þ υ2

R2

;

� V S þ υ1 þ υ2 ¼ 0 ) R1C1

dυ1

dt
¼ V S � υ1 � υ2

ð7:46Þ

Expressing either υ1 in terms of υ2 or vice versa, we obtain from Eq. (7.46) a second-

order ODE for either of the capacitor voltages. For simplicity, we will assume that

C1 ¼ C2 ¼ C, R1 ¼ R2 ¼ R, and τ0 ¼ RC. Then, the corresponding ODE for υ1 has

the form

d2υ1

dt2
þ 3

τ0

dυ1

dt
þ υ1

τ20
¼ V S

τ20
ð7:47Þ

The analysis of the second-order ODEs like Eq. (7.47) is thoroughly explained in the

last section of this chapter. Here, we present its succinct version suitable for our

immediate purposes. The solution of the homogeneous second-order ODE is sought in

the form exp �α t=τ0ð Þ with α being a dimensionless constant. Substitution of

this expression into the homogeneous ODE gives a quadratic equation for α,

α2 þ 3αþ 1 ¼ 0, with the two positive roots α1 ¼ 2:62 and α2 ¼ 0:38. Therefore, the
solution for Eq. (7.47) should have the form
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υ1 tð Þ ¼ V S þ K1exp � α1t

τ0

� �

þ K2exp � α2t

τ0

� �

ð7:48Þ

where K1, K2 are two constants determined by the initial conditions The solution for

voltage υ2(t) is found using the second of equations (7.46):

υ2 tð Þ ¼ 1þ α1ð ÞK1exp � α1t

τ0

� �

þ 1þ α2ð ÞK2exp � α2t

τ0

� �

ð7:49Þ

The initial conditions imply that both capacitors are uncharged prior to closing the switch.

This gives K1 ¼ 1þ α2ð Þ= α1 � α2ð ÞV S and K2 ¼ 1þ α1ð Þ= α2 � α1ð ÞV S. With this in

mind, the solution is complete. Figure 7.25b, c shows the behavior of the two capacitor

voltages. A truly remarkable point is that instantaneous voltage across the second capacitor

in Fig. 7.25b exceeds the (absolute) source voltage. Moreover, the instantaneous circuit

current in Fig. 7.25c exceeds the initial circuit current I0 ¼ V S=R1 by 2.5 times. Those

distinct features are observed for other second-order transient circuits studied further.

7.4.4 Example of an STC Transient Circuit

In Fig. 7.26, we present an example of a rather complicated circuit, which still follows the

STC circuit model. The proof is based on the observation that node (*) in Fig. 7.26

connects three branches: two of which are exactly the inductances and the remaining one

is the current source. According to KCL, this circuit again implies that both inductances

cannot have zero current simultaneously prior to closing the switch.

+
-

VS C2

C1R1

R2

t=0

time in terms of 0

0 5 0 10 0 0 5 0 10 00

time in terms of 0

capacitor voltages andv (t) v (t)1 2 circuit current and currenti(t) I0

v1

v2

a)

)c)b

v1+ -
v2

+

-

i1 i2
i

1.0VS

0.0VS

-1.0VS

-1.5VS

I0

2I0

0

Fig. 7.25. A non-STC circuit with two resistances and two capacitances and its solution behavior.
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7.4.5 Method of Thévenin Equivalent and Application Example:

Circuit with a Bypass Capacitor

Let us consider a transient circuit with a bypass capacitor shown in Fig. 7.27a. It includes

a voltage source represented by its Thévenin equivalent υS(t), RS and a load represented

by its equivalent resistance RL. The source is turned on at t ¼ 0 and it generates a voltage

in the form of a (large) DC component VS and a superimposed (small) AC signal:

υS tð Þ ¼ V S þ Vm cosω t, ω ¼ 2π f ð7:50Þ

where f is frequency in Hz. Generally, V S >> Vm.

We first interchange positions of capacitance C and resistance RL in Fig. 7.27. With the

switch closed, the voltage source υS(t) with two resistances RS, RL is then converted to its

Thévenin equivalent circuit with

υT tð Þ ¼ RL

RS þ RL

υS tð Þ, RT ¼ RS

�
�
�
�RL ð7:51Þ

The resulting circuit is the simple RC circuit shown in Fig. 7.27b. The method of a

Thévenin (or Norton) equivalent circuit is common for all transient circuits with one

capacitor or inductor as explained in the previous section. According to this method, a

circuit with one capacitance or one inductance is always converted to the basic RC or RL

transient circuit. Therefore, it is always a first-order transient circuit which is described

by a first-order ODE. Once the solution for the capacitor voltage υC(t) in Fig. 7.27a is

found, the voltage across the load resistor is then simply expressed as υL tð Þ ¼ υC tð Þ.

R1

IS

t=0
L1

R2

L2

*

Fig. 7.26. An STC circuit with two inductances and two resistances.

RL

RS

C+
-v (t)S

+

-
vC

source loadt=0 RT

C+
-v (t)T

t=0

+

-
vC

a) b)

Fig. 7.27. Model of a voltage source connected to a load with a bypass capacitor.
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Forced Response and Natural Response

Using KVL, KCL, and the capacitor equation, we obtain the first-order ODE for the

circuit in Fig. 7.27b in the form

dυC tð Þ
dt

þ υC tð Þ
τ

¼ f tð Þ, f tð Þ ¼ 1

τ

RL

RS þ RL

V S þ Vm cosω tð Þ, τ ¼ RTC ð7:52Þ

at any positive time instance, t > 0. The initial condition is υC t ¼ 0ð Þ ¼ 0. The time-

dependent source term f(t) is called a forcing function, whether or not the switch is

present. The action of the switch may always be included into f(t) by setting f tð Þ ¼ 0 at

t < 0. A general solution of the homogeneous Eq. (7.52), let us call it xc(t), is known

as the complementary solution (or natural response). The natural response is given by

xc tð Þ ¼ Kexp �t=τð Þ where K is an arbitrary constant. The natural response carries

information about the circuit. A particular solution of the inhomogeneous Eq. (7.52),

let us call it xp(t), is known as the forced response. The forced response carries informa-

tion about the excitation f(t). It does not need to contain an arbitrary integration constant.

By linearity, the complete solution for Eq. (7.53) is the sum of both responses, i.e.,

υC tð Þ ¼ xp tð Þ þ xc tð Þ ð7:53Þ

We already know the natural response. The forced response is sought in the form

xp tð Þ ¼ a cosω t þ b sinω t þ c ð7:54Þ

where constants a, b, c are to be uniquely determined. If the function f(t) is sinusoidal, a

combination of sine and cosine would suffice under certain conditions for any linear

differential equation, not necessarily of the first order. The particular solution in the form

of Eq. (7.54) is even useable for second-order circuits considered next.

Example 7.7: Find the forced response for Eq. (7.52).

Solution: Equation (7.54) is substituted into Eq. (7.52); then all terms are pulled to the left-

hand side, and all terms with cosωt and cosωt are combined. We obtain:

cosω t
a

τ
þ bω� Vm

τ

RL

RS þ RL


 �

þ sinω t
b

τ
� aω


 �

þ c

τ
� V S

τ

RL

RS þ RL


 �

¼ 0 ð7:55Þ

In order to satisfy Eq. (7.55), we require all three expressions in the square brackets to be

zero. This operation yields a system of two equations for a and b, while the constant c is

found directly. Working out the algebra produces the results

a ¼ RLVm

RS þ RL

1

1þ ωτð Þ2
, b ¼ RLVm

RS þ RL

ωτ

1þ ωτð Þ2
, c ¼ RLV S

RS þ RL

ð7:56Þ

Chapter 7 Transient Circuit Fundamentals

VII-344



Example 7.8: Obtain the complete solution for Eq. (7.52) and plot it to scale.

Solution: The final solution is based on Eqs. (7.54)–(7.56). The initial condition υC t ¼ 0ð Þ
¼ 0 is satisfied if K ¼ �a� c. The required load voltage has the form

υL tð Þ ¼ υC tð Þ ¼ RLV S

RS þ RL

1� exp �t=τð Þð Þ

þ RLVm

RS þ RL

1

1þ ωτð Þ2
cosω t þ ωτ sinω t � exp �t=τð Þ½ �

ð7:57Þ

This solution is compared with the load voltage without bypass capacitor:

υL tð Þ ¼ RLV S

RS þ RL

þ RLVm

RS þ RL

cosω t ð7:58Þ

Given that ωτ and t/τ are both large, the dominant AC term in Eq. (7.57) is the sine

function. Comparing Eqs. (7.57) and (7.58) with each other, we can therefore state that

the bypass capacitor reduces the amplitude of the unwanted AC component at the load by a

factor 1/(ωτ) while keeping the DC component unchanged! Figure 7.28 plots the load

voltage with and without the bypass capacitor. The circuit parameters are RS ¼ 5 Ω,

RL ¼ 1 kΩ, C ¼ 1000 μF. The source parameters are V S ¼ 10 V, Vm ¼ 1 V,

f ¼ 500 Hz. One hidden yet critical solution parameter is the source resistance RS.

When this parameter is very small, the bypass capacitor has little if any effect on the

solution.

0 5 10 15 20 25 30 35 40 45
0

2

4

6

8

10

12

load voltage with bypass capacitor

load voltage without bypass capacitor

t, ms

Load voltage, V

Fig. 7.28. Load voltage with and without the bypass capacitor predicted by Eqs. (7.57) and (7.58).
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Section 7.5 Description of the Second-Order

Transient Circuits

7.5.1 Types of Second-Order Transient Circuits

A first-order transient circuit is described by a first-order differential equation. All

single-time-constant (STC) circuits considered thus far are the first-order transient cir-

cuits. A second-order transient circuit is described by a second-order differential equa-

tion. Figure 7.29 outlines two major types of the second-order order transient circuits.

The first type involves two nonidentical dynamic elements (capacitance and induc-

tance) assembled as a series or parallel two-terminal LC network—see Fig. 7.29a. This

figure shows two such connections. The number of resistances may be arbitrary. As long

as the LC network sees only the combination of source(s) and resistances, the equi-

valent circuit (obtained with the help of Thévenin or Norton equivalents) will have the

form shown in Fig. 7.29a. The second type includes non-STC circuits with two capac-

itances or two inductances—see Fig. 7.29b. In this section, we will study the second-

order circuits on the base of the LC networks.

7.5.2 Series-Connected Second-Order RLC Circuit

Generic Representation of a Series RLC Circuit and Qualitative Operation
Consider a series LC network shown in the shaded box of Fig. 7.30. Using Thévenin’s

theorem, any network of resistances/independent DC sources connected to this block may

be represented as the series combination of the voltage source and the resistance R. This is

RIS

Non-STC circuits with capacitances or inductances andtwo two

at least two resistances - second-order transient circuits

Circuits with a capacitance and an inductance in series or in parallel and
an arbitrary number of resistances- second-order transient circuits

L C

b)

a)

+
-VS L

C

Rt=0

t=0

+
-

VS C2

R1

R2

t=0

IS

t=0

R2

L1R1

L2

C1

Fig. 7.29. Classification of second-order transient circuits.
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why we arrive at the very generic series RLC circuit shown in Fig. 7.30. The switch

implies that the ideal voltage source is to be connected to the circuit at time t ¼ 0. Prior to

t ¼ 0, this source has no effect, it is disconnected. Qualitatively, just after closing the

switch the entire voltage drop will be acquired by the inductance. Then, the capacitor

voltage will increase. Finally, the capacitor voltage will assume the supply voltage VS,

and no current will flow in the circuit under DC steady-state condition.

Mechanical Analogy

Figure 7.31 shows an intuitive analogy between a mechanical mass-spring-damping

system and an electric (or electronic) RLC transient circuit depicted in Fig. 7.30.

The inductance L corresponds to the mechanical mass m. The capacitance C is the

inverse stiffness, 1/k, of the spring. The resistance R corresponds to viscous damping. At

t ¼ 0, the gravity force is applied to mass m in Fig. 7.31 initially located at x ¼ 0. As a

result, the mass reaches a new equilibrium position x t ! 1ð Þ with or without interme-

diate oscillations depending on damping. The following correspondences may be

established between mechanical and electrical quantities (q(t) is the capacitor charge):

i ið Þ ! dx tð Þ=dt, q tð Þ ! x tð Þ, mg ! V S ð7:59Þ

+- vC

+
-VS L

C

Rt=0

+

-
vL

i(t)

i(t)

LC network

Fig. 7.30. Series RLC second-order transient circuit; the switch closes at t ¼ 0.

x(t=0)=0

k

a)

viscous
damping

m

viscous
damping

x(t) equilibrium

transient behavior

t

x

b)

m

Fig. 7.31. Mechanical counterpart of an RLC circuit; at t ¼ 0 the gravity force is applied.
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Solution in Terms of Circuit Current

A solution to the dynamic circuit in Fig. 7.30 is based on KVL and KCL. KCL prescribes

the same current i(t) through every circuit element at any time instant t. KVL states

υL þ υR þ υC ¼ V S ð7:60Þ

at any positive time t > 0. Indeed, υL, υR, υC are all functions of time. Using constitutive

relations for the inductance, resistance, and capacitance (integral form), we obtain

L
di tð Þ
dt

þ Ri tð Þ þ 1

C

ðt

0

i t0ð Þdt0 ¼ V S ð7:61Þ

where we assumed that the initial capacitor voltage is zero. Differentiation over time

yields the expected homogeneous second-order ODE:

L
d2i tð Þ
dt2

þ R
di tð Þ
dt

þ 1

C
i tð Þ ¼ 0 ð7:62Þ

which, after division by L, can be cast in the standard form:

d2i tð Þ
dt2

þ 2α
di tð Þ
dt

þ ω2
0i tð Þ ¼ 0 ð7:63Þ

The two constants present in this equation are given by

α ¼ R

2L
, ω0 ¼

1
ffiffiffiffiffiffiffi

LC
p ð7:64Þ

Both constants in Eq. (7.64) have a general mathematical meaning that should be

remembered. The first constant α with the units of neper/sec is the damping coefficient.

It generally characterizes how fast oscillations in Fig. 7.31 decay and reach a steady state.

The neper (Np) is a dimensionless unit named after John Napier (1550–1617), a Scottish

mathematician. The constant α is similar to the inverse time constant 1/τ for the first-order

transient circuits. The second constant ω0with the units of rad/s is the undamped resonant

frequency of the RLC circuit. This constant characterizes frequency of oscillations—see

again the mechanical analogy in Fig. 7.31. The meaning of the undamped resonant

frequency remains the same for any LC circuit block, either in transient analysis or in

the AC circuit analysis, either for series or parallel configurations.

Exercise 7.14: When is i tð Þ ¼ K cosω0t a solution to Eq. (7.63)?

Answer: At R ¼ 0.
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7.5.3 Initial Conditions in Terms of Circuit Current and Capacitor Voltage

In contrast to the first-order transient circuits, there are two equally possible choices of the

independent function for the RLC circuit in Fig. 7.30:

- Circuit (or inductor) current i(t)

- Capacitor voltage, υC(t)

The circuit current remains continuous over time (inductor “inertia”) and so does

the capacitor voltage (capacitor “inertia”). We have chosen the circuit current and

obtained the second-order ODE Eq. (7.53). You may wonder if this is really the best

choice. The answer is nontrivial and is hidden in the initial conditions. Any first-order

ODE needs one initial condition. Any second-order ODE needs two initial conditions.

Let us establish these initial conditions for the circuit current first. Following the current

continuity through the inductor, the circuit current must be zero at t ¼ 0, that is,

i t ¼ 0ð Þ ¼ 0 ð7:65aÞ

Hence, the first initial condition is established. The second one is that of the initial

capacitor voltage equal to zero. According to Eq. (7.60) and Eq. (7.65a),

υL t ¼ 0ð Þ þ υR t ¼ 0ð Þ
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

Ri t¼0ð Þ¼0

þ υC t ¼ 0ð Þ
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

0

¼ V S ) L
di

dt
t ¼ 0ð Þ ¼ V S )

di

dt
t ¼ 0ð Þ ¼ V S

L

ð7:65bÞ

Thus, the initial circuit current is zero, whereas its first derivative is not. This is a

drawback of the electric current formulation given by Eq. (7.63) for the series RLC

circuit. On the other hand, the capacitor voltage and its derivative (which is proportional

to the capacitor/inductor/circuit current) are both zero at t ¼ 0, which leads to a simpler

“universal” homogeneous formulation of the initial conditions, i.e.,

υC t ¼ 0ð Þ ¼ 0,
dυC t ¼ 0ð Þ

dt
¼ 0 ð7:66Þ

At the same time, the second-order ODE for the capacitor voltage becomes inhomoge-

neous, i.e., at t � 0

d2υC tð Þ
dt2

þ 2α
dυC tð Þ
dt

þ ω2
0υC tð Þ ¼ ω2

0V S ð7:67Þ

It is worth noting that this equation has exactly the same form as Eq. (7.63), but with the

nonzero right-hand side. The derivation of Eq. (7.67) is similar to the derivation of

Eq. (7.63); it is suggested as a homework problem.
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7.5.4 Step Response and Choice of the Independent Function

The selection between current and voltage formulations reflects our desire to convert the

circuit differential equation into a standard form, which will allow us to use powerful

tools of signals and systems theory. What should be preferred: the homogeneous second-

order ODE Eq. (7.63) for the circuit current augmented with inhomogeneous initial

conditions Eqs. (7.65a, b), or the inhomogeneous second-order ODE Eq. (7.67) for the

capacitor voltage augmented with the homogeneous initial conditions Eq. (7.66)? The

answer is as follows. If the initial conditions are all zero, the only remaining excitation is

the forcing function: the right-hand side of Eq. (7.67). We consider a unit step function,

u(t), defined by (see Fig. 7.32a)

u tð Þ ¼ 0 t < 0

1 t � 0



ð7:68Þ

Equation (7.67) may be conveniently written in the form

d2υC tð Þ
dt2

þ 2α
dυC tð Þ
dt

þ ω2
0υC tð Þ ¼ Au tð Þ ð7:69Þ

at any time instant where A ¼ ω2
0V S . The forcing function is thus the product of the

constant A and the unit step function u(t), as seen in Fig. 7.32b. The solution to Eq. (7.67)

or Eq. (7.69), after division by A, is the normalized step response of a second-order

system. We call it the response to a unit step voltage excitation. It is generally accepted in

signals and systems theory that for the unit step response the initial conditions should be

homogeneous or zero. Therefore, Eq. (7.67) or Eq. (7.69) with zero initial conditions

Eq. (7.66) is preferred when dealing with future applications of the unit step response.

The step response is the “business card” of the circuit, which actually contains the

complete information about its behavior. If the circuit in Fig. 7.30 with an arbitrary time-

varying voltage source V S ! υS tð Þ is considered, this source may be represented as a

number of “steps” in time. Hence, the complete solution may be constructed as a sum

(or integral) of the elementary unit step response solutions, properly scaled and shifted in

time. As an example, we consider a voltage source υS(t) in Fig. 7.30, which generates a

pulse (think of one bit) with the duration T and a 5-V peak value, as depicted in Fig. 7.33.

u(t)

1

t

Au(t)

t

A
a) b)

00

Fig. 7.32. (a) Unit step function u(t) and (b) the scaled right-hand side of Eq. (7.59).
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The switch in Fig. 7.30 is replaced by a short circuit. According to Fig. 7.33, υS tð Þ ¼
5u tð Þ � 5u t � Tð Þ. By linearity, the solution for the bit excitation is simply the sum 5υC tð Þ
�5υC t � Tð Þ in Fig. 7.33 where υC(t) is the solution of Eq. (7.69) with V S ¼ 1 V.

7.5.5 Parallel Connected Second-Order RLC Circuit

Generic Representation of the Parallel RLC Circuit and Qualitative Operation
Consider a parallel connected LC block in the shaded box in Fig. 7.34. Using Norton’s

theorem, any network of resistors and power supplies connected to this block is

represented as the parallel combination of a current source and a resistor R, as seen in

Fig. 7.34. This is why we arrive at the very generic parallel RLC circuit shown in

Fig. 7.34. The switch implies that the ideal current power supply is to be connected to

the circuit at time instant t ¼ 0. Qualitatively, just after closing the switch, the entire

circuit current will flow through the capacitor. As time progresses, the capacitor current

will decrease. Finally, the entire current will flow through the inductor, which becomes

the short circuit under DC conditions.

Circuit Equation in Terms of Voltage

The same reasoning as mentioned for the series RLC circuit applies. There are two

possible choices of the independent function for the RLC circuit in Fig. 7.34:

- Circuit (or capacitor) voltage, υ(t)

- Inductor current iL(t)

v (t)S

5V

t

0

5u(t)

t

0T

=

-5u(t-T)

t

0 T

+
5V

-5V

Fig. 7.33. A one-bit excitation voltage constructed as the sum of two step responses.

LC network

IS

+

-
v

+

-
v

iL

RIS L C

t=0

Fig. 7.34. Generic representation of any network of sources and resistances connected to the

parallel LC circuit: the standard parallel LCR circuit.
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The capacitor voltage remains continuous over time (inductor “inertia”) and so does the

inductor current (inductor “inertia”). We use for derivation υ(t) first. KCL yields

C
dυ tð Þ
dt

þ υ tð Þ
R

þ 1

L

ðt

0

υ t0ð Þdt0 ¼ IS ð7:70Þ

at any positive time t > 0. Differentiation over time and division by C yield the expected

homogeneous second-order ODE:

d2υ tð Þ
dt2

þ 1

RC

dυ tð Þ
dt

þ 1

LC
υ tð Þ ¼ 0 ð7:71Þ

Eq. (7.71) is written in the form of Eq. (7.63):

d2υ tð Þ
dt2

þ 2α
dυ tð Þ
dt

þ ω2
0υ tð Þ ¼ 0 ð7:72Þ

if we define the damping coefficient α and the undamped resonant frequency ω0 as

α ¼ 1

2RC
, ω0 ¼

1
ffiffiffiffiffiffiffi

LC
p ð7:73Þ

Initial Conditions and Choice of Independent Function

The initial conditions for Eq. (7.72) are that the voltage across the capacitor and the

inductor current must be continuous. Therefore, they must have the form

υ t ¼ 0ð Þ ¼ 0,
dυ

dt
t ¼ 0ð Þ ¼ IS

C
ð7:74Þ

The voltage derivative is not zero at the initial time moment. Eq. (7.74) is similar to

Eqs. (7.65a, b). It has been stated that the step response of the second-order system is

generally calculated with the homogeneous (zero) initial conditions. The second-order

circuit ODE written in terms of the inductor current

d2iL tð Þ
dt2

þ 2α
diL tð Þ
dt

þ ω2
0υL tð Þ ¼ ω2

0IS ð7:75Þ

possesses zero initial conditions, i.e.,

iL t ¼ 0ð Þ ¼ 0,
diL t ¼ 0ð Þ

dt
¼ 0 ð7:76Þ

Those are the preferred conditions for the step response calculations. The derivation of

Eq. (7.75) is similar to the derivation of Eq. (7.72); it is left as a homework problem.
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Duality

Comparing Eqs. (7.66) and (7.67) for the series LCR circuit with Eqs. (7.76) and (7.75)

for the parallel LCR circuit, we can establish the following substitutions:

V S $ RIS, υC $ RiL,
L

R
$ RC ð7:77Þ

These substitutions make both sets of equations including all the constants mathemati-

cally identical. This fact reflects the duality of series/parallel RLC electric circuits. A

similar duality is established for the steady-state RLC resonator circuits. Since the initial

conditions are also the same, we conclude that the step response of the parallel RLC

circuit is equivalent to the step response of the series RLC circuit.

Exercise 7.15: The damping coefficient of a second-order RLC circuit (i) does not depend

on capacitance, (ii) decreases when resistance increases, and (iii) equals zero.

Determine the circuit topology in every case.

Answer: (i) Series RLC circuit, (ii) parallel RLC circuit, (iii) series LC circuit.
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Section 7.6 Step Response of the Series RLC Circuit

7.6.1 General Solution of the Second-order ODE

Solution for Step Response
The starting point is Eq. (7.69) of the previous section for the capacitor voltage of the

series RLC circuit augmented with the homogeneous initial conditions, i.e.,

d2υC tð Þ
dt2

þ 2α
dυC tð Þ
dt

þ ω2
0υC tð Þ ¼ Au tð Þ, A ¼ ω2

0V S ð7:78aÞ

υC t ¼ 0ð Þ ¼ 0,
dυC t ¼ 0ð Þ

dt
¼ 0 ð7:78bÞ

Similar to the first-order transient circuits with arbitrary sources, the general solution is

also given by the sum of two parts: a particular solution of the inhomogeneous equation

(7.78a), let us call it xp(t), and a complementary solution, let us call it xc(t), of

the homogeneous equation (7.78a). Homogeneous implies that the right-hand side of the

ODE equals zero. The particular solution is known as the forced response and the

complementary solution is known as the natural response. As a result, the total solution is

υC tð Þ ¼ xp tð Þ þ xc tð Þ ð7:79Þ

For the circuit with the DC voltage source and the switch acting as a step excitation, the

particular solution is trivial. It is proved by direct substitution:

xp tð Þ ¼ V S ) υC tð Þ ¼ V S þ xc tð Þ ð7:80Þ

The complementary solution carries information about the entire circuit and requires care.

Solution in Arbitrary Case

What if the right-hand side of Eq. (7.78a) is an arbitrary function of time? How is the

solution obtained? We have already established that any such solution can be obtained on

the basis of the step response. In general, the solution is expressed in terms of a

convolution integral, which involves an arbitrary right-hand side of the second-order

ODE and the time derivative of the step response. This interesting and fundamental

question is studied further in signals and systems theory.

7.6.2 Derivation of the Complementary Solution: Method

of Characteristic Equation

Similar to the first-order transient circuits, we seek a complementary solution (natural

response) of the homogeneous Eq. (7.78a) in the most general exponential form
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xp tð Þ ¼ Kexp stð Þ ð7:81Þ

where K and s are two arbitrary constants. The substitution yields

s2 þ 2αsþ ω2
0

� 	
Kexp stð Þ ¼ 0 ð7:82Þ

For a nontrivial solution, the characteristic equation s2 þ 2αsþ ω2
0 ¼ 0 must be satis-

fied, that is,

s2þ2αsþω2
0¼ 0) s1,2¼ �αþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

α2�ω2
0

p

�α�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

α2�ω2
0

p



or s1,2¼
�α 1�

ffiffiffiffiffiffiffiffiffiffiffiffi

ς2�1

ς2

s !

�α 1þ
ffiffiffiffiffiffiffiffiffiffiffiffi

ς2�1

ς2

s !

8

>>>>><

>>>>>:

ð7:83Þ

where the new constant ζ¼ α=ω0 is the damping ratio of the RLC circuit. Formally, this

constant has units of 1/rad; it is often considered dimensionless. We must distinguish

between three separate cases depending on the value of the damping ratio:

Case A This situation (overdamping) corresponds to ς > 1. In this case, s1,2 are both real and

negative. Since the original ODE is linear, the general solution is simply the combination of two

independent decaying exponential functions:

xc tð Þ ¼ K1exp s1tð Þ þ K2exp s2tð Þ ð7:84aÞ

Case B This case (critical damping) corresponds to ς ¼ 1. Both roots s1,2 become identical.

Therefore, a solution in the form of Eq. (7.84a) with two independent constants can no longer be

formed. Only one independent constant may be available. Fortunately, another solution in the

form t exp(s1t) exists in this special case. This fact is proved by direct substitution. Thus, the

general solution becomes

xc tð Þ ¼ K1exp s1tð Þ þ K2texp s1tð Þ ð7:84bÞ

Case C This case (underdamping) corresponds to ς < 1. Both roots s1,2 become complex. This

means that our initial simple guess Eq. (7.81) is no longer correct. One can prove by direct

substitution that the general solution now has the oscillating form

xc tð Þ ¼ K1exp �α tð Þ cosωnt þ K2exp �α tð Þ sinωnt ð7:84cÞ

where ωn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω2
0 � α2

p

is the (radian) natural frequency of the circuit. 1/α is also called the time

constant or the time constant of the decay envelope. The complementary solution in the form of

Eqs. (7.84) always contains two independent integration constants. They should be used to satisfy

the initial conditions, which complete the solution.
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7.6.3 Finding Integration Constants

According to Eqs. (7.79) and (7.80), the capacitor voltage is υC tð Þ ¼ xc tð Þ þ V S where

xc(t) is given by Eqs. (7.84). The integration constants may be found using Eq. (7.78b),

which dictates that both the capacitor voltage and its derivative must vanish at the initial

time t ¼ 0. We then have from Eqs. (7.84)

Case A: K1 þ K2 þ V S ¼ 0, s1K1 þ s2K2 ¼ 0 ð7:85aÞ
Case B: K1 þ V S ¼ 0, s1K1 þ K2 ¼ 0 ð7:85bÞ
Case C: K1 þ V S ¼ 0, � αK1 þ ωnK2 ¼ 0 ð7:85cÞ

The solution of Eqs. (7.85) has the form

Case A: K1 ¼
s2V S

s1 � s2
, K2 ¼

s1V S

s2 � s1
ð7:86aÞ

Case B: K1 ¼ �V S , K2 ¼ s1V S ð7:86bÞ
Case C: K1 ¼ �V S, K2 ¼ � α

ωn

V S ð7:86cÞ

Equations (7.83) through (7.86) complete the step response solution for the series RLC

circuit. The circuit may behave quite differently depending on the value of the damping

ratio ς.

7.6.4 Solution Behavior for Different Damping Ratios

We consider the series RLC circuit shown in Fig. 7.35. We will choose round numbers

L ¼ 1mH, C ¼ 1nF. These values approximately correspond to an RLC transient circuit

operating in the 100 kHz–1 MHz frequency band.

+
-

10 V=VS 1 mH

1 nF

+- vC

R

i(t)

t=0

+ -

vR

+

-
vL

Fig. 7.35. RLC series circuit; the resistance value R may be varied.
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Example 7.9: Determine the solution for the capacitor voltage for the circuit shown in

Fig. 7.35 over a time interval from 0 to 25 μs for R ¼ 200 Ω, 1 kΩ, 2 kΩ, and 20 kΩ.

Solution: Equations (7.83) through (7.86) give

R ¼ 200 Ω ) α ¼ 105,ω0 ¼ 106 ) ζ ¼ 0:1 (Case C—underdamped circuit)

) υC tð Þ ¼ 10� 10exp �105t
� 	

cos 9:95� 105t � 1:005exp �105 t
� 	

sin 9:95

� 105t ð7:87aÞ

R ¼ 1 kΩ ) α ¼ 5� 105,ω0 ¼ 106 ) ζ ¼ 0:5 (Case C—underdamped circuit)

) υC tð Þ ¼ 10� 10exp �5� 105t
� 	

cos 8:66� 105t

� 5:77exp �5� 105 t
� 	

sin 8:66� 105t ð7:87bÞ

R ¼ 2 kΩ ) α ¼ 106,ω0 ¼ 106 ) ζ ¼ 1 (Case B—critically damped circuit)

) υC tð Þ ¼ 10� 10exp �106t
� 	

� 107texp �106 t
� 	

ð7:87cÞ

R ¼ 20 kΩ ) α ¼ 107,ω0 ¼ 106 ) ζ ¼ 10 (Case A—overdamped circuit)

) υC tð Þ ¼ 10 � 10:0252exp � 5:013� 104t
� 	

þ 0:0252exp � 1:995� 107 t
� 	

ð7:87dÞ

Equations (7.87) satisfy both the initial conditions to within numerical rounding error.

Figure 7.36 shows the solution behavior for four distinct cases.

The first person who discovered and documented the oscillatory transient response of

an electric circuit similar to that depicted in Fig. 7.36 was probably Félix Savary (1797–

1841). A renowned astronomer and French academician, he worked with Ampère and

discovered an oscillatory discharge of a Leyden jar (an early prototype of the battery) in

1823–1826. Some fifteen years later, the similar observation has been made by Joseph

Henry.

7.6.5 Overshoot and Rise Time

One important result seen in Fig. 7.36a, b is the so-called dynamic overshoot caused by a

sudden application of a voltage pulse and the associated voltage ringing. The dimension-

less overshoot (overshoot percentage after multiplying by 100) Mp is the maximum

voltage value minus the supply voltage divided by the supply voltage. For a slightly
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damped circuit, the overshoot may be quite large—see Fig. 7.36a, b. The rise time tr
(which is sometimes called the “transition time”) in digital circuits is the time taken for

the voltage to rise from 0.1VS to 0.9VS (T. L. Floyd, Digital Fundamentals, 9th, p. 8);

see Figs. 8.14a–c. The circuit designer typically attempts to minimize both the rise

time and the overshoot. An important example considered later in our text is a pulse

train to be transmitted at a maximum speed (which requires minimum rise time) and

with minimum distortion (which requires minimum overshoot). Figure 7.36 indicates

that those goals are in fact conflicting. Decreasing the rise time increases the overshoot

and vice versa. Designing the damping ratio close to unity, or slightly below it, is a

reasonable compromise to quickly achieve the desired voltage level without a significant

overshoot and ringing. The overshoot and rise time may be estimated analytically. We

present here the estimates found in common control theory textbooks:

Mp ¼
exp �πζð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ζ2
p for ζ < 1, M p ¼ 0 for ζ � 1 ð7:88aÞ

tr ¼ 1� 0:4167ζ þ 2:917ζ2
� 	

=ωn for ζ < 1 ð7:88bÞ

Exercise 7.16: The damping coefficient of 15,000 neper/s and the natural frequency of

10 kHz are measured for an unknown series RLC circuit in laboratory via its step response.

Given R¼ 10 Ω, determine L and C.

Answer: L ¼ 0:333 mH, C ¼ 0:719 μF.

As to mechanical engineering, it is interesting to note that an automotive suspension

system is described by the same step response model and behaves quite similarly to the

RLC circuit in Fig. 7.36. Well, driving a car everyday should certainly be a motivation for

studying this topic.

7.6.6 Application Example: Nonideal Digital Waveform

Modeling Circuit
The series RLC block is an appropriate model to study the voltage pulse as it realistically

occurs in digital circuits and in power electronic circuits involving pulse width modula-

tion (PWM). The ideal square voltage pulse, shown in Fig. 7.33 of the previous section, is

a crude approximation of reality. Parasitic capacitance, resistance, and inductance are

always present in the circuit. As a result, the pulse form is distorted. To model the pulse

form distortion, we consider the circuit shown in Fig. 7.37.
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Fig. 7.36. Circuit responses in terms of capacitor voltages for different damping factors.
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The switch is now removed and a time-varying voltage source υS(t) is introduced; it

generates the voltage pulse (one bit) of duration Twith amplitude VS as seen in Fig. 7.37b.

One may think of the source voltage as an “ideal” digital waveform and, for example, of

the capacitor voltage as a nonideal (realistic) waveform influenced by parasitic capaci-

tance, resistance, and inductance.

Solution

The solution to the pulse problem is derived as described at the end of the previous

section. We know that Eqs. (7.83) through (7.86) determine the step response—the

capacitor voltage υC(t) for the circuit with the DC voltage source shown in Fig. 7.35

after closing the switch. To obtain the solution υ
pulse
C (t) for the voltage pulse shown in

Fig. 7.37, we simply combine two such step responses, i.e.,

υ
pulse
C tð Þ ¼ υC tð Þ � υC t � Tð Þ ð7:89Þ

This operation again underscores the importance of the fundamental step response

solution. Close inspection of Eq. (7.89) shows that the pulse will possess the dynamic

overshoot and the nonzero rise time similar to the step response solution. This happens at

the rising (or leading) edge of the pulse. At the same time, a dynamic undershoot and a

nonzero settling time will happen at the falling or trailing edge as depicted in Fig. 7.38.

Example 7.10: Determine the solution for the capacitor voltage, υ
pulse
C (t), for the circuit

shown in Fig. 7.37 with L ¼ 1 μH, C ¼ 1 nF, V S ¼ 10 V, T ¼ 0:5 μs over the time

interval from 0 to 1 μs for R ¼ 15 Ω, 30 Ω, and 60 Ω.

Solution: We find the step response υC(t) following Eqs. (7.83) through (7.86) first and

then obtain the final solution using Eq. (7.89). For the step response, we obtain

R ¼ 15 Ω ) ζ ¼ 0:24 (Case C—underdamped circuit) )

υC tð Þ ¼ 10� 10exp �7:5� 106t
� 	

cos 3:07� 107t

� 2:44exp �7:5� 106 t
� 	

sin 3:07� 107t ð7:90aÞ

v (t)S

t0 T

v (t)S

a) b)

VS

Rising (leading)
edge

Falling (trailing)
edge+

-
L

C

+- vC

R

Fig. 7.37. The RLC circuit for studying the nonideal digital (pulse) waveform.
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Example 7.10 (cont.):

R ¼ 30 Ω ) ζ ¼ 0:47 (Case C—underdamped circuit) )

υC tð Þ ¼ 10� 10exp �1:5� 107t
� 	

cos 2:78� 107t

� 5:39exp �1:5� 107 t
� 	

sin 2:78� 107t ð7:90bÞ

R ¼ 60 Ω ) ζ ¼ 0:95 (Case C—underdamped circuit) )

υC tð Þ ¼ 10� 10exp �3:0� 107t
� 	

cos 1:0� 107t

� 30exp �3:0� 107 t
� 	

sin 1:0� 107t ð7:90cÞ

Figure 7.38a–c shows the distorted pulse forms for three particular cases. Figure 7.38a

outlines the major pulse parameters: rise time, fall time, overshoot, undershoot, and pulse

width. One can see that there is again a conflict between the desire to simultaneously

decrease the rise time and the overshoot.

The overshoot and undershoot in Fig. 7.38 approximately coincide, and so do the rise

time and the fall or settling time. Note that this is not always the case. The voltage pulse

may be very significantly and unsymmetrically distorted when the initial pulse width, T,

is comparable with the rise time. A good illustration is the previous example solved for

R ¼ 15Ω when T ¼ 0:25μs or less.

Exercise 7.17: Using a theoretical approximation, find the overshoot for the case of

Fig. 7.38a and compare this value with value observed on the figure.

Answer: 48 % (theory) versus 50 % (observation).
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The solution for the second-order circuits with arbitrary sources and arbitrary initial

conditions can quite simply be obtained numerically. A straightforward finite-difference

second-order method may be implemented in MATLAB or in other software packages

with a few lines of the code. This method is the extension of the Euler method used for

first-order transient circuits. Interestingly, the same method may be applied to radio-

frequency pulse propagation in transmission lines and in free space, including problems

such as signal penetration through walls.
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Fig. 7.38. Distorted pulse forms for three different values of the damping ratio. When the damping

ratio increases, the overshoot decreases but the rise time increases.
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Summary

General facts about transient circuits

Voltage across the capacitor(s) remains continuous for all times—use this voltage as an unknown

function

Current through the inductor(s) remains continuous for all times—use this current as an unknown

function

When discharged through a small resistance, the (ideal) capacitor is able to deliver an extremely

high power (and current) during a very short period of time

When disconnected from the source, the (ideal) inductor in series with a large resistance is able to

deliver an extremely high power (and voltage) during a very short period of time

Transient circuit Generic circuit diagram Solution plot

Energy-release RC circuit

υC tð Þ ¼ V 0exp �t

τ

� �

τ ¼ RC

ODE:

dυC

dt
þ υC

τ
¼ 0

Energy-accumulating RC circuit

υC tð Þ ¼ VS 1� exp �t

τ

� �h i

τ ¼ RC

ODE:

dυC

dt
þ υC

τ
¼ VS

τ

Energy-release RL circuit

iL tð Þ ¼ ISexp �t

τ

� �

τ ¼ L=R
ODE:

diL

dt
þ iL

τ
¼ 0

Energy-accumulating RL circuit

iL tð Þ ¼ IS 1� exp �t

τ

� �h i

τ ¼ L=R
ODE:

diL

dt
þ iL

τ
¼ IS

τ

Energy-release RL circuit

iL tð Þ ¼ I0exp �t

τ

� �

τ ¼ L=R, I0 ¼ VS=R0

ODE:

diL

dt
þ iL

τ
¼ VS

R0τ

(continued)
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Generic energy-release curves

for either dynamic element

Voltage or current Power

Switching RC oscillator (relaxation oscillator)—RC timer

Bistable amplifier circuit

with positive feedback.

Two stable states:

υout ¼ þVCC

υout ¼ �VCC

Threshold voltage(s):

υ* ¼ R1

R1 þ R2

υout

Relaxation oscillator with

positive feedback:

υout ¼ þVCC if υ* > υC
υout ¼ �VCC if υ* < υC

Threshold voltage(s):

υ* ¼ R1

R1 þ R2

υout

Period and frequency of the

relaxation oscillator

β ¼ R1= R1 þ R2ð Þð Þ
T ¼ 2τln

1þ β

1� β f ¼ 1

T
¼ 1

2τ
ln
1þ β

1� β

� ��1

Single-time-constant (STC) transient circuits

τ ¼ RC

or

τ ¼ L

R

τ ¼ R1

�
�
�
�R2

� 	
C or

τ ¼ L

R1 þ R2

τ ¼ R C1 þ C2ð Þ
or

τ ¼ L1 þ L2

R

(continued)
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τ ¼ L1 þ L2

R1 þ R2

τ ¼ R1

�
�
�
�R2�

C1 þ C2ð Þ
Arbtr. initial conditions are not

allowed

Arbtr. initial conditions are not allowed

STC circuits with general sources

Bypass capacitor

and decoupling

inductor
υS tð Þ ¼ VS þ Vm cosω t, τ ¼

RS

�
�
�
�RL

� 	
C

iS tð Þ ¼ IS þ Im cosω t, τ ¼
L= RS þ RLð Þ

Solution for load

voltage or load

current

υL¼
RLVS

RSþRL

1�exp �t

τ

� �� �

þ RLVm

RSþRL

� 1

1þ ωτð Þ2

cosωtþωτsinωt�exp �t

τ

� �h i

iL¼
RSIS

RSþRL

1�exp �t

τ

� �� �

þ RSIm

RSþRL

� 1

1þ ωτð Þ2

cosωtþωτsinωt�exp �t

τ

� �h i

Second-order transient circuits

With two

identical dynamic

elements

With series LC

network

• Step response with zero initial con-

ditions: use capacitor voltage υC(t)

• Damping coefficient: α ¼ R= 2Lð Þ
• Undamped res. freq.: ω0 ¼ 1=

ffiffiffiffiffiffiffi

LC
p

• Damping ratio: ζ ¼ α=ω0

• Natural freq.: ωn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω2
0 � α2

p

Characteristic Eq.: s2 þ 2αsþ ω2
0 ¼ 0

With parallel LC

network • Step response with zero initial con-

ditions: use inductor current iL(t)

• Damping coefficient: α ¼ 1= 2RCð Þ
• Undamped res. freq.: ω0 ¼ 1=

ffiffiffiffiffiffiffi

LC
p

• Damping ratio: ζ ¼ α=ω0

• Natural freq.: ωn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω2
0 � α2

p

Characteristic Eq.: s2 þ 2αsþ ω2
0 ¼ 0

(continued)
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Overdamped,

critically-damped,

and underdamped

RLC circuits

• Overdamped (ζ > 1):

xc tð Þ ¼ K1exp s1tð Þ þ K2exp s2tð Þ

K1 ¼
s2V S

s1 � s2
, K2 ¼

s1V S

s2 � s1

• Critically damped (ζ ¼ 1):

xc tð Þ ¼ K1exp s1tð Þ þ K2t exp s1tð Þ
K1 ¼ �V S, K2 ¼ s1V S

• Underdamped (ζ < 1):

xc tð Þ ¼ K1exp �α tð Þ cosωntþ
K2exp �α tð Þ sinωnt

K1 ¼ �VS , K2 ¼ � α
ωn
VS

Non-ideal digital

waveform:

second-order

circuit

• Overshoot

M p ¼
exp �πζð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ζ2
p for ζ < 1

• Undershoot is approximately over-

shoot for rise times small compared

to pulse width

• Rise time

tr¼ 1�0:4167ζþ2:917ζ2
� 	

=ωn

for ζ<1

Fall time is approximately rise time

for rise times small compared to

pulse width
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Problems
7.1 RC Circuits

7.1.1 Energy-Release Capacitor Circuit

7.1.2 Time Constant of an RC Circuit

and Its Meaning

7.1.3 Continuity of the Capacitor

Voltage
Problem 7.1. For the capacitor as a dynamic

circuit element, develop:

1. Equivalent circuit at DC

2. Relation between voltage and current

3. Expression for the time constant of a

transient circuit that includes the dynamic

element and a resistor R

Dynamic circuit element

iC

vC

+ -

Equivalent circuit at DC (short or

open)

Relation between voltage and

current (passive reference

configuration)

Expression for the time constant

of a transient circuit that includes

the dynamic element (C) and a

resistor R.

τ ¼

Problem 7.2. Using KCL and KVL, derive the

differential equation for the circuit shown in the

following figure, keeping the same labeling for

the voltages and the currents.

A. Is the final result different from Eq. (7.5)

of Section 7.1?

B. Could you give an example of a certain

voltage and/or current labeling

(by arbitrarily changing polarities and

directions in the figure) that causes the

differential equations to change?

iC

t=0

C=10 F

iR

R=100

vC

+

-
vR+

-

Problem 7.3. Prove that Eq. (7.6) is the solu-

tion to Eq. (7.5) (both from Section 7.1) using

direct substitution and the differentiation that

follows.

Problem 7.4.
A. Show that the time constant, τ, of an RC

circuit has the units of seconds.

B. To obtain the slow discharge rate of lesser

instantaneous power into the load, should

the load resistance be small or large?

Problem 7.5. A 100-μF capacitor discharges

into a load as shown in the following figure.

The load resistance may have values of 100 Ω,

10Ω, and 1Ω. The capacitor is charged to 20 V

prior to t ¼ 0.

t=0

C=100 F

vC

+

-
RL

µ

A. Find time constant τ and the maximum

instantaneous power delivered to the load

resistor in the very first moment for every

resistor value—fill out the Table that

follows.

Instantaneous load power right after the switch

closes

RL τ, s pL t ¼ þ0ð Þ, W
100 Ω

10 Ω

1 Ω

B. Do the instantaneous power values from

the Table depend on the capacitance

value?
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Problem 7.6. A 100-μF capacitor, shown in the

following figure, discharges into a 10-Ω load

resistor. The capacitor is charged to 15 V prior

to t ¼ 0.

A. Find the time constant of the circuit

(show units).

B. Express the voltage across the capacitor

as a function of time and sketch it to

scale versus time over time interval

from �2 ms to 5 ms.

t=0

C=100 F R=10

vC

+

-
vR

+

-

t, ms

v (t), VC

0 1 2 3 4-1-2

5

10

15

20

Problem 7.7. A 100-μF capacitor, shown in the

following figure, discharges into a 5-Ω load

resistor. The capacitor is charged to 20 V prior

to t ¼ 0.

A. Find an expression for the voltage across

the capacitor as a function of time and

sketch it to scale versus time over the

interval from –2τ to 5τ.

B. Repeat the exercise for instantaneous

power delivered to the resistor.

t=0

C=100 F

vC

+

-
vR

+

-

R=5

t, ms

v (t), VC

0 0.5 1.0 1.5 2.0-0.5-1.0

5

10

15

20

2.5

p (t), WR

20

40

60

80

t, ms0 0.5 1.0 1.5 2.0-0.5-1.0 2.5

Problem 7.8. In the circuit shown in the fol-

lowing figure, the capacitor is charged to 20 V

prior to t ¼ 0.

A. Find an expression for the voltage across

the capacitor as a function of time and

sketch it to scale versus time over the

interval from –2τ to 5τ.

B. Repeat for instantaneous power deliv-

ered to the rightmost resistor.

t=0

C=1 FvC

+

- R=50

R=50

Problem 7.9. Present the text of a MATLAB

script (or of any software of your choice) in

order to generate Fig. 7.2d of Section 7.1.

Attach the figure so generated to the homework

report.
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Problem 7.10. Prove that the integral of the

load power in Fig. 7.2d given by Eq.(7.8c) is

exactly equal to the energy stored in the

charged capacitor, EC ¼ 1
2
CV 2

0 prior to t ¼ 0.

Problem 7.11.
A. Create the generic capacitor voltage dis-

charge curve similar to Fig. 7.2a but for an

arbitrary capacitor powering an arbitrary

load resistor over the time interval from –

2τ to 5τ. The capacitor is charged to V0

prior to t ¼ 0. To do so, find the capacitor

voltage as a fraction of V0 for every unit

of τ and fill out the Table that follows.

Capacitor voltage in terms of V0

t �2τ -τ 0 τ 2τ 3τ 4τ 5τ

υC(t)

B. Repeat the same task for Fig. 7.2d related

to load power. Find the load power in

terms of the maximum power just after

closing the switch.

Problem 7.12. For an unknown energy-release

RC circuit, capacitor voltage and capacitor cur-

rent were measured in laboratory before and

after closing the switch at t ¼ 0 as shown in

the figure that follows. Approximate R and C.

-2 -1 0 1 2 3 4 5
0

5

10

15

20

25

time, ms

0

1

2

3

4

5

C
a

p
a

c
it
o

r 
v
o

lt
a

g
e

, 
V

C
a
p
a
c
it
o
r 

c
u
rr

e
n
t,

A

7.1.4 Application Example:

Electromagnetic Railgun

7.1.5 Application Example:

Electromagnetic Material Processing
Problem 7.13. An electromagnetic capacitor

accelerator with permanent magnets has

B ¼ 0:3 T. The accelerating object has a length

of 2 cm. Plot to scale the Lorentz force as a

function of discharge current over the interval

0 < iC < 1000 A.

Problem 7.14. An electromagnetic capacitor

accelerator needs to create an average force of

5 N over 2 ms on a moving object with length

of 1 cm. The load (armature plus object) resis-

tance is 1 Ω, and the external magnetic field is

B ¼ 0:25 T. Determine:

A. The required capacitor voltage prior to

discharge

B. The required capacitance of the capacitor

(bank of capacitors)

Hint: Assume that the average force acts over

the time interval τ. Its value is approximately

equal to 60 % of the initial force value.

Problem 7.15. Solve the previous problem

when:

A. The average force increases to 50 N

B. The average force increases to 500 N

Problem 7.16. The world's largest capacitor

bank is located in Dresden, Germany. The

pulsed, capacitive power supply system was

designed and installed for studying high mag-

netic fields by experts from Rheinmetall Waffe

Munition. The bank delivers 200 kA of dis-

charge current in the initial time moment (just

after the switch closes). The time constant is

100 ms. Estimate the bank capacitance if the

charging voltage is 200 kV.
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7.1.7 Energy-Accumulating Capacitor

Circuit
Problem 7.17. A 1-μF capacitor shown in the

following figure is charged through the 1-kΩ

load resistor. The initial capacitor voltage is

zero.

A. Find the time constant of the circuit

(show units).

B. Express the voltage across the capacitor

as a function of time and sketch it to

scale versus time over the interval from

�2 ms to 5 ms.

iC

t=0

C=1 F

iR

R=1 k

vC

+

-

vR+

-

+
-

15 V=VS

t, ms

v (t), VC

0 1 2 3 4-1-2

5

10

15

20

Problem 7.18. For the circuit shown in the

following figure:

A. Find an expression for the capacitor volt-

age, υC, and the capacitor current, iC,

including the value of time constant.

B. Sketch the capacitor voltage, υC, and the

capacitor current, iC, to scale versus time

over the interval from –2τ to 5τ.

iC

t=0

C=47 F

R=1

vC

+

-
+
-

25 V=VS

Problem 7.19. For the circuit shown in the

following figure:

A. Find an expression for the capacitor volt-

age, υC, and the capacitor current, iC,

including the value of time constant.

B. Sketch the capacitor voltage, υC, and the

capacitor current, iC, to scale versus time

over the time interval from –2τ to 5τ.

iC

t=0

C=33 F

R=0.5

vC

+

-
+
- 50 V=VS

C=33 F

iC

Problem 7.20. Sketch your own fluid-flow

counterpart of the charging circuit shown in

the figure and establish as many analogies

between electrical (R,C,VS) and mechanical

parameters of your drawing as possible.

t=0

C

R

+
-

VS

Problem 7.21. For the circuit shown in the

following figure:

A. How much time does it take to charge

the capacitor to 10 V?

B. To 25 V?

iC

t=0

C=47 F

R=50

vC

+

-
+
-

25 V=VS

Problem 7.22. For the circuit shown in the

figure, how much time does it take to charge
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the capacitor, C1, to 10 V? Assume that the

initial voltages of both capacitors are zero.

t=0 R=50

+
-

25 V=VS

C =47 F1

C =47 F2

Problem 7.23. For an unknown energy-

accumulating RC circuit, capacitor voltage

and capacitor current were measured in labora-

tory before and after closing the switch at t ¼ 0

as shown in the figure that follows. Approxi-

mate R and C.

-2 -1 0 1 2 3 4 5
0

5

10

15

20

25

time, ms
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A

Problem 7.24.
A. Obtain an analytical solution for the

capacitor voltage in the circuit shown

in the following figure. When the switch

is closed, the current source still gener-

ates current IS at its terminals. However,

the supply is shorted out – no current

flows into the circuit. When the switch

is open, the current flows into the circuit.

B. Could you convert this circuit to an

equivalent RC transient circuit with the

voltage source?

C. Plot the voltage across the resistor versus

time over the time interval from -2τ to 5τ.

C=10 F

iR

R=100

vR

+

-

1 A=IS
t=0

vC

+

-

Problem 7.25. Repeat the previous problem for

the circuit shown in the following figure.

t=0 C=47 F

iR

R=100

vR

+

-

1 A=IS iC +

-
vC

Problem 7.26. Obtain an analytical solution

for the capacitor voltage in the circuit shown

in the following figure at any time and express

it in terms of Is, R1, R2, C. Find

the time constant of the circuit when

R1 ¼ R2 ¼ 100 Ω, C ¼ 47 μF.

C
1 A=IS

t=0

R1 R2

Problem 7.27. For the circuit shown in the

figure:

A. Derive and solve the dynamic circuit

equation after the switch opens. Assume

the initial capacitor voltage equal to zero.

B. Plot the capacitor voltage to scale versus

time over the time interval from –2τ to 5τ.

t=0

C=10 F

R=100

10 V=VS

R=100

+
-
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Problem 7.28. In the circuit that follows, the

capacitor, C1, is initially uncharged. The switch

is closed at t ¼ 0.

t=0

VS
+
-

R1

C1

R2

Give answers to the following questions based

on known circuit parameters C1,R1,R2,VS:

A. What is the current through resistor R2 as

a function of time?

B. What is the maximum current through

resistor R1?

C. What is the current through resistor R1 at

a time long after the switch closes?

D. What is the charge, Qþ tð Þ, of the capac-
itor, C1, as a function of time?

The switch is then opened a very long time after

it has been closed – reset the time to t ¼ 0.

A. What is the charge Qþ tð Þ of the capaci-
tor, C1, as a function of time?

B. What is the current through resistor R2 as

a function of time? Specify the current

direction in the figure.

7.2 RL Circuits

7.2.1 Energy-Release Inductor Circuit

7.2.2 Continuity of the Inductor Current
Problem 7.29. For the inductor as a dynamic

circuit element, present:

1. Equivalent circuit at DC

2. Relation between voltage and current

3. Expression for the time constant of a

transient circuit that includes the dynamic

element and a resistor, R

Dynamic circuit element
+ -

iL

vL

Equivalent circuit at DC (short or

open)

Relation between voltage and

current (passive reference

configuration)

Expression for the time constant

of a transient circuit that includes

the dynamic element (L) and a

resistor R

τ ¼

Problem 7.30.

A. Using KCL and KVL, derive the differ-

ential equation for the inductor current in

the circuit shown in the figure that fol-

lows, keeping the same labeling for the

voltages and the currents.

B. Is the final result different from

Eq. (7.19) of Section 7.2?

iL

L=1 mH R=1 k

vL

+

-
vR

+

-
iR

Ω

Problem 7.31. Prove that Eq. (7.20) is the

solution to Eq. (7.19) using direct substitution

and the corresponding differentiation.

Problem 7.32.
A. Show that the time constant τ has units

of seconds for the RL circuit.

B. To ensure a slower energy release rate of

the inductor, should the load resistance

be small or large?

C. To ensure a faster energy release rate of

the inductor, should the load resistance

be small or large?
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Problem 7.33. A 6.8-μH inductor releases its

energy into a load resistor as shown in the

following figure. The load resistance may

have values of 10 Ω, 100 Ω, and 1 kΩ. The

inductor current is 1 A prior to t ¼ 0.

IS

R L
t=0

A. Find time constant τ and the maximum

instantaneous power delivered to the

load resistor in the very first moment

for every resistor value—fill out the

Table that follows.

Instantaneous load power just after the switch

closes

R τ, s pR t ¼ þ0ð Þ, W
10 Ω

100 Ω

1 kΩ

B. Do those instantaneous power values

from the Table depend on the inductance

value?

Problem 7.34. Prove that the integral from 0 to

1 of the load power in Fig. 7.10d is exactly

equal to the energy stored in the inductor EL

¼ 1
2
LI2S prior to t ¼ 0. Hint: The proof should

include analytical integration of the instanta-

neous power in Eq. (7.21c).

Problem 7.35. A 2-mH inductor, shown in the

following figure, releases its energy into the

2-kΩ load resistor. The supply current is 0.8 A.

A. Find the time constant of the RL circuit

(show units).

B. Express the current through the inductor

as a function of time and sketch it to

scale versus time over time interval

from �2 μs to 5 μs.

IS

R L
t=0

i (t), AL

-2 -1 0 1 2 3 4

0.2

0.4

0.6

0.8

1

time,ms

Problem 7.36. A 270-μH inductor, shown in

the following figure, releases its energy into the

510-Ω load resistor. The supply current is

0.8 A.

A. Find the time constant of the RL circuit

(show units).

B. Express the current through the inductor

as a function of time and sketch it to

scale versus time over time interval

from �1 μs to 2.5 μs.

C. Express the resistor voltage as a function

of time and sketch it to scale versus time

over time interval from �1 μs to 2.5 μs.

IS

R L
t=0

Chapter 7 Problems

VII-373



i (t), AL

time,ms-1 -0.5 0 0.5 1 1.5 2

0.2

0.4

0.6

0.8

1

v (t), VR

time, s-1 -0.5 0 0.5 1 1.5 2

-400

-300

-200

-100

0

m

Problem 7.37. For an unknown energy-release

RL circuit, inductor current and resistor voltage

were measured before and after closing the

switch at t ¼ 0 as shown in the figure that

follows. Approximate R and L.

time, s

-0.1 0 0.1 0.2

0

0.1

0.2

in
d
u
c
to

r
c
u
rr

e
n
t

i L
,

A

-50

-40

-30

-20

-10

0

lo
a
d

v
o
lt
a
g
e

v R
,

V

m

Problem 7.38. A 2-mH inductor, shown in the

following figure, releases its energy into two

1-kΩ load resistors. The supply current is

100 mA.

A. Find the time constant of the RL circuit

(show units).

B. Express the current through the inductor

as a function of time and sketch it to

scale versus time over time interval

from �2 μs to 10 μs.

IS

1 kW 2 mHt=0 1 kW

i (t), AL

time,ms-2 0 2 4 6 8

0.02

0.04

0.06

0.08

0.1

Problem 7.39.
A. Obtain the solution for the inductor cur-

rent in the circuit shown in the figure at

any time.

B. Plot to scale the current through the

inductor versus time over the interval

from –2τ to 10τ.

t=0

L=1 mH

R=1kW

1 A=IS

R=1kW

7.2.3 Energy-Accumulating Inductor

Circuit
Problem 7.40. In the energy-accumulating RL

circuit shown in the following figure, R ¼ 2 kΩ

and L ¼ 2 mH. The supply current is 1 A.
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IS

R L
t=0

iLiR

A. Find the time constant of the RL circuit

(show units).

B. Express the current through the inductor

as a function of time and sketch it to

scale versus time over time interval

from �2 μs to 5 μs.

i (t), AL

-2 -1 0 1 2 3 4

0.2

0.4

0.6

0.8

1

time, sm

Problem 7.41. In the energy-accumulating RL

circuit shown in the following figure, R ¼ 510

Ω andL ¼ 270 μH. The supply current is 1 A.

A. Find the time constant of the RL circuit

(show units).

B. Express the current through the inductor

as a function of time and sketch it to

scale versus time over time interval

from �1 μs to 2.5 μs.

C. Express the resistor voltage as a function

of time and sketch it to scale versus

time over time interval from �1 μs to

2.5 μs.

IS

R L
t=0

iLiR

+

-

+

-
vR vL

i (t), A
L

time, s-1 -0.5 0 0.5 1 1.5 2

0.2

0.4

0.6

0.8

1

m

v (t), VR

time, s-1 -0.5 0 0.5 1 1.5 2

200

400

600

800

1000

m

Problem 7.42.
A. Obtain the solution for the inductor cur-

rent in the circuit shown in the figure at

any time.

B. Plot the voltage across the rightmost

resistor versus time over the interval

from –2τ to 5τ.

t=0

L=1 mH

R=100

1 A=IS

R=100
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7.2.4 Energy-Release RL Circuit with

the Voltage Supply

7.2.5 Application Example: Laboratory

Ignition Circuit
Problem 7.43.A 270-μH inductor shown in the

following figure releases its energy into the

510-Ω load resistor. The power supply voltage

is 20 V. The switch opens at t ¼ 0.

A. Present an expression for the inductor

current as a function of time and sketch

it to scale versus time over the interval

from �1 μs to 2.5 μs.

B. Repeat the same task for the resistor

voltage.

t=0

L=270 H R=510

+
-

20 V=VS

R =510

Problem 7.44. The circuit for the previous

problem is converted to the energy-

accumulating RL circuit by inversing the

switch operation. Assume that the switch was

open prior to t ¼ 0. The switch closes at t ¼ 0.

A. Derive an expression for the inductor

current as a function of time.

B. Repeat the same task for the voltage

across resistor R.

C. Could this circuit generate large voltage

spikes, similar to the circuit from the

previous problem?

t=0

L=270 H R=510

+
-

20 V=VS

R =510

7.3 Switching RC Oscillator

7.3.2 Bistable Amplifier Circuit with the

Positive Feedback

7.3.3 Triggering
Problem 7.45. The bistable amplifier circuit

shown in the following figure (inverting

Schmitt trigger) exists in the positive stable

state. Amplifier’s power supply rails are

�12 V. Determine output voltage when the

applied trigger signal is

1. υin ¼ 6 V

2. υin ¼ 2 V

3. υin ¼ �4 V

Assume that the amplifier hits the power rails in

saturation.

+
-

+

-

vout

1 kW

0 V

vin

3 kW

Problem 7.46. Repeat the previous problem

when the initial stable state of the amplifier

circuit is negative.

Problem 7.47. The bistable amplifier circuit

shown in the following figure (non-inverting

Schmitt trigger) exists in the positive stable

state. Amplifier’s power supply rails are

�15 V. Determine output voltage when the

applied trigger signal is

A. υin ¼ �1 V

B. υin ¼ �2 V

C. υin ¼ �4 V

Assume that the amplifier hits the power rails in

saturation.

+
-

+

-

vout

1 kW

0 V

vin

3 kW
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Problem 7.48. Repeat the previous problem

when the initial stable state of the amplifier

circuit is negative.

7.3.4 Switching RC Oscillator

7.3.5 Oscillation Frequency
Problem 7.49.A clock circuit (relaxation oscil-

lator circuit) shown in the following figure is

powered by a �10-V power supply.

+
-

100 kW

vout

+

-R
CvC

+

-
0V

300 kW

Vout

7.5V

2.5V

0V

-2.5V

-7.5V

t

5.0V

10V

-5.0V

-10V

Sketch to scale the capacitor voltage, υC, as a

function of time. Assume that υC t ¼ 0ð Þ ¼ 0.

Assume the ideal amplifier model. The specific

values of R and C do not matter; they are

already included in the time scale.

Problem 7.50. An RC clock circuit is needed

with the oscillation frequency of 1 kHz and

amplitude of the capacitor voltage of 4 V.

Determine one possible set of circuit parame-

ters R1, R2, R given that the capacitance of

100 nF is used. The power supply voltage of

the amplifier is �12 V. Assume that the ampli-

fier hits the power rails in saturation.

Problem 7.51. A relaxation oscillator circuit

may generate nearly triangular waveforms at

the capacitor. Which values should the feed-

back factor β ¼ R1

R1þR2
attain to make it possible?

7.4 Single-Time-Constant

(STC) Transient Circuits

7.4.1 Circuits with Resistances and

Capacitances

7.4.2 Circuits with Resistances and

Inductances
Problem 7.52. Determine whether or not the

transient circuits shown in the following figure

are the STC circuits. If this is the case, express

the corresponding time constant in terms of the

circuit parameters.

+
-

VS

R1

t=0

C1

+
-

VS C

t=0 R3

R2 R4

C2 R1

+
-

VS

R2

t=0

C1

C2

R1

+
-

VS

R2

t=0

C1

B)

A)

C)

D)

C2

R1

Problem 7.53. Repeat the previous problem for

the circuits shown in the following figure.
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t=0

R2

R1
IS

L

IS

t=0

L1

A)

B)

L2

R3

R1

R2

7.4.3 Example of a Non-STC Transient

Circuit
Problem 7.54. Using software of your choice,

generate the solution for the non-STC circuit

in Fig. 7.25a over the time interval from 0 to

15τ0 where τ0 ¼ RC with C1 ¼ C2 ¼ C,

R1 ¼ R2 ¼ R. Use R ¼ 1 kΩ, C ¼ 1 μF, and

V S ¼ 10 V. Plot two capacitor voltages and

the circuit current as functions of time to scale.

Problem 7.55.
A. Derive the general ODE for the non-STC

circuit in Fig. 7.25a in terms of υ1 for

arbitrary circuit parameters.

B. Present its particular form whenC1 ¼ C2

¼ C and R1 ¼ 2R2 ¼ R. Express all

coefficients in terms of τ0 ¼ RC.

C. Given that the solution for the homoge-

neous ODE has the form exp �α t=τ0ð Þ,
determine two possible solutions for the

dimensionless coefficient α.

D. Using software of your choice, generate

the circuit solution over the time interval

from 0 to 15τ0. Use R ¼ 1 kΩ,

C ¼ 1 μF, and V S ¼ 10 V. Plot two

capacitor voltages and the circuit current

as functions of time to scale.

+
-

VS C2

C1R1

R2

t=0

v1+ -
v2

+

-

i1 i2
i

7.4.4 Example of a STC Circuit
Problem 7.56. For the circuit shown in

Fig. 7.26, derive ODEs for inductor currents

i1, i2.

7.4.5 Method of Thévenin Equivalent.

Application Example: Circuit with a

Bypass Capacitor
Problem 7.57. In the circuit from Fig. 7.27a,

another resistance R0 is present in series with

the capacitance C. Determine the natural

response of the circuit and find the

corresponding time constant, τ.

Problem 7.58. A transient circuit with the DC

voltage source VS is shown in the following

figure. Given that V S ¼ 10 V and

R1 ¼ 1 kΩ, R2 ¼ 1 kΩ, and C ¼ 1 μF:

A. Present the ODE for the capacitor volt-

age υC(t).

B. Determine the value of the time constant

τ and the ODE right-hand side (the forc-

ing function).

C. Present the solution for the capacitor

voltage as a function of time assuming

an initially uncharged capacitor

R1

C+
-

VS

+

-
vC

t=0

R2

Problem 7.59. A transient circuit with the DC

voltage source VS is shown in the following

figure. Given that V S ¼ 10 V and

R1 ¼ R2 ¼ 1 kΩ, R3 ¼ 2 kΩ, and C ¼ 1 μF:

A. Present the ODE for the capacitor volt-

age υC(t).

B. Determine the value of the time constant

τ and the ODE right-hand side (the forc-

ing function).

C. Present the solution for the capacitor

voltage as a function of time assuming

an initially uncharged capacitor.
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R1

C

+
-

+

-
vC

t=0

R2VS

R3

Problem 7.60. A transient circuit with the

DC voltage source VS is shown in the

following figure. Given that V S ¼ 10V and

R1¼R2¼1kΩ, R3 ¼R4 ¼ 2 kΩ, andC¼ 1 μF:

A. Present the ODE for the capacitor volt-

age υC(t).

B. Determine the value of the time constant

τ and the ODE right-hand side (the forc-

ing function).

C. Present the solution for the capacitor

voltage as a function of time assuming

an initially uncharged capacitor.

R1

C

+
-

+

-
vC

t=0

R2

R4

R3

VS

Problem 7.61. A transient circuit with the cur-

rent source IS is shown in the following figure.

Given that IS ¼ 10 mA and R1 ¼ R2 ¼ 1 kΩ

and L ¼ 1 mH:

A. Present the ODE for the inductor current

iL(t).

B. Determine the value of the time constant

τ and the ODE right-hand side (the forc-

ing function).

C. Present the solution for the inductor cur-

rent as a function of time assuming the

initial current equal to zero.

IS R1

L

t=0

R2

Problem 7.62. A transient circuit with the DC

voltage source VS is shown in the figure below.

Given that V S ¼ 10 V and R1 ¼ R2 ¼ 1 kΩ,

L ¼ 1 mH:

A. Present the ODE for the inductor current

iL(t).

B. Determine the value of the time constant

τ and the ODE right-hand side (the forc-

ing function).

C. Present the solution for the inductor cur-

rent as a function of time assuming the

initial current equal to zero.

L

R1

+
-

VS
R2

iL

t=0

Problem 7.63. Consider the circuits in two

previous problems at arbitrary values of R1, R2,

L, IS, VS. What should be the relation between

these parameters to guarantee the same solution

for the inductor current in every case?

Problem 7.64. Describe the mathematical

meaning of

A. Natural response

B. Forced response

for a first-order transient circuit in your own

words. Do you think that this concept can be

applied to any transient circuit?

Problem 7.65. If a transient circuit uses a DC

supply (either voltage or current) and a switch,

what is a general form of the forcing function?

Problem 7.66. If the forcing function of a first-

order transient circuit is a combination of sine/

cosine function and a constant, what is the

general form of the forced response?

Problem 7.67. In the transient circuit shown in

the figure below, υS tð Þ ¼ V S þ Vm sinω t.

A. Write the solution for the voltage across

the load resistor RL in terms of the circuit
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parameters assuming an initially

uncharged capacitor.

B. Write the solution for the voltage across

the load resistor RL when the bypass

capacitor is absent.

RS

RLC+
-

v (t)S

+

-
vL

t=0

Problem 7.68. Plot to scale the load voltage for

the circuit shown in Fig. 7.27a with and without

the bypass capacitor over time interval from 0 to

50 ms. The circuit parameters are RS ¼ 5 Ω,

RL ¼ 1 kΩ, C ¼ 500 μF. The source given

by Eq. (7.50) is the superposition of the DC

and AC components. The source parameters are

V S ¼ 10 V, Vm ¼ 1V, f ¼ 250 Hz.

Problem 7.69. What is the asymptotic form of

the solution given by Eqs. (7.57)–(7.58) when

the source resistance, RS, tends to zero?

Problem 7.70. In the transient circuit shown in

the figure below, assume iS tð Þ ¼ IS þ Im sinω t.

A. Write the solution for the current through

the load resistor RL in terms of the circuit

parameters assuming that the initial

inductor current is equal to zero.

B. Write the solution for the current through

the load resistor RL when the decoupling

inductor is absent

i (t)S

RS RL

L

t=0

Problem 7.71. In the circuit for the previous

problem, another resistor R0 is present in par-

allel with the inductance L. Determine the nat-

ural response of the circuit and find the time

constant, τ.

7.5 Description

of the Second-Order Transi-

ent Circuits

7.5.1 First-order Transient Circuits Ver-

sus Second-order Transient Circuits
Problem 7.72. A transient circuit is shown in

the following figure. Is it a first- or second-

order transient circuit? Justify your answer.

+
-

VS

C1R1

R2

C2

t=0

Problem 7.73. A transient circuit is shown in

the figure below. Is it a first- or second-order

transient circuit? Justify your answer.

L2IS

R1

R2L1

t=0

Problem 7.74. Establish the ODE for the tran-

sient circuit shown in the figure below. Both

capacitors have zero voltage prior to closing the

switch.

A. Assume R1 ¼ R2 ¼ R, C1 ¼ C2 ¼ C.

B. Assume arbitrary values of R1,2,C1,2.

+
-

VS C2

C1

R1

R2

t=0

Problem 7.75. Establish the ODE for the tran-

sient circuit shown in the figure below. Inductor

currents are zero prior opening the switch.

A. Assume R1 ¼ R2 ¼ R, L1 ¼ L2 ¼ L.

B. Assume arbitrary values of R1,2,L1,2.
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L2

L1

IS

R1

R2

t=0

Problem 7.76. In the previous problem, add

resistance R3 as shown in the figure that follows

and solve task B.

L2

L1

IS

R1

R2

t=0

R3

7.5.2 Series Connected Second-order

RLC Circuit
Problem 7.77. Describe in your own words the

mechanical counterpart of the series RLC

circuit.

Problem 7.78. An RLC circuit in Fig. 7.30 has

R ¼ 1 kΩ, C ¼ 1 μF, L ¼ 1 mH.

A. Find the value of the damping coeffi-

cient, α (show units).

B. Find the value of undamped resonant

frequency, ω0.

Problem 7.79. How does the second-order

ODE Eq. (7.63) for the circuit current in the

series RLC circuit from Fig. 7.30 change if the

capacitor was charged to VS/2 prior to t ¼ 0?

Problem 7.80. In the circuit shown in Fig. 7.30,

the switch is replaced by a short circuit. The

constant voltage source is replaced by an arbi-

trary time-varying voltage source V S ! υS tð Þ
as shown in the figure that follows. Derive the

dynamic circuit equation for the circuit current

similar to Eq. (7.63) of this section. Present

your result in terms of damping coefficient α

and undamped resonant frequency ω0.

v (t)S
+
-

L

C

+- vC

R

i(t)

+ -

vR

+

-
vL

i(t)

7.5.3 Choice of Independent Function:

Initial Conditions

7.5.4 Step Response
Problem 7.81. The RLC circuit shown in

Fig. 7.30 is described by dynamic equation

(7.63) written in terms of the electric current.

How do the initial conditions to this equation

change if the capacitor was charged to VS/2

prior to t ¼ 0?

Problem 7.82. For the circuit shown in

Fig. 7.30:

A. Derive the dynamic circuit equation

(7.67) in terms of the capacitor voltage

υC(t).

B. How does this equation change if

the capacitor was charged to VS/2 prior

to t ¼ 0?

Problem 7.83. For the series RLC circuit with

the switch and the DC supply shown in

Fig. 7.30, we know the solution, υC(t), of

Eq. (7.67) or Eq. (7.69) for V S ¼ 1 V. The

circuit shown in the following figure is now

considered, with the voltage source in the

form of a voltage pulse (one bit) centered

about t ¼ 0. Express the solution to the present

problem in terms of υC(t).
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v (t)S

10V

t0 T/2-T/2

+
-

v (t)S L

C

+- vC

R

Problem 7.84. Repeat the previous problem for

the voltage source shown in the figure that

follows (a voltage pulse train of two bits).

v (t)S

5V

t0
T T T

Problem 7.85. Repeat Problem 7.83 for the

voltage source shown in the figure that follows

(a bipolar voltage pulse).

v (t)S

10V

t

T/2-T/2

-10V

7.5.5 Parallel Connected Second-Order

RLC Circuit
Problem 7.86. For the circuit shown in

Fig. 7.34:

A. Derive the dynamic circuit equation

(7.75) written in terms of the inductor

current iL(t).

B. How does this equation change if

the switch in Fig. 7.34 was open prior

to t ¼ 0 and closes at t ¼ 0?

C. How do the initial conditions change in

this case?

Problem 7.87. Describe the duality between

series and parallel RLC circuits in your own

words.

Problem 7.88. For the parallel RLC circuit

with the switch and the DC current source

shown in Fig. 7.34, we know the solution,

iL(t), of Eq. (7.75) for IS ¼ 1 mA. The circuit

shown in the following figure is now consid-

ered, with the current source in the form of a

pulse (one bit) centered about t ¼ 0. Express

the solution to in terms of iL(t).

i (t)S

10mA

t0 T/2-T/2

i (t)S

R CL

iL

7.6. Step Response of the

Series RLC Circuit

7.6.1 General Solution of the

Second-order ODE

7.6.2 Derivation of Complementary

Solution
Problem 7.89.

A. The complete solution to a second-order

homogeneous ODE is a sum of two dis-

tinct components. Describe each

of them.

B. Write three forms of the complementary

solution (natural response) for the second-

order homogeneous ODE.

C. What is a new parameter to be intro-

duced for the underdamped circuit?

Problem 7.90. For the series RLC circuit

shown in the following figure:

A. Find the value of the damping coeffi-

cient, α (show units).
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B. Find the value of the undamped resonant

frequency, ω0 (show units).

C. Find the value of the damping ratio, ζ

(show units).

D. Find the particular solution (forced

response).

E. Outline the form of the complementary

solution (natural response).

F. Which value should the circuit resistance

have for a critically damped circuit?

5V=VS
1 mH

1 nF

300

+
-

t=0

Problem 7.91. Repeat the previous problem for

the series RLC circuit shown in the figure

below.

10 mH

1 F

5V=VS

300

+
-

t=0

Problem 7.92. For the series RLC circuit

shown in the following figure, fill out the

table of circuit parameters.

1 F

10V=VS
1 mH

R

+
-

t=0

Table of circuit parameters

R,

Ω

ζ Circuit type (overdamped, critically

damped, underdamped)

25

50

75

100

Given fixed L and C, which values of resistance

(large or small) lead to the overdamped circuit?

Problem 7.93. For the series RLC circuit

shown in the figure below, fill out the table of

circuit parameters.

C

10V=VS
1 mH

100

+
-

t=0

Table of circuit parameters

C,

μF

ζ Circuit type (overdamped, criti-

cally damped, underdamped)

0.01

0.1

0.4

1.0

Given fixed L and R, which values of capaci-

tance (large or small) lead to the overdamped

circuit?

Problem 7.94. For the series RLC circuit

shown in the following figure, fill out the

table of circuit parameters.

L10V=VS

1 nF

100

+
-

t=0

Table of circuit parameters

L,

μH

ζ Circuit type (overdamped, criti-

cally damped, underdamped)

0.1

1

2.5

10
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Given fixed R and C, which values of induc-

tance (large or small) lead to the overdamped

circuit?

Problem 7.95. Show that underdamped solu-

tion and critically damped solutions coincide

with each other when ς ! 1.

7.6.3 Finding Integration Constants

7.6.4 Solution Behavior for Different

Damping Ratios
Problem 7.96. For the circuit shown in the

figure below:

5V=VS
1 H

1 nF

60

+
-

t=0

A. Determine damping coefficient α,

undamped resonant frequency ω0, and

damping ratio ζ.

B. Determine constants K1,K2.

C. Write solution for the capacitor voltage

with all constants defined.

D. Calculate and plot to scale capacitor

voltage at 0, 0.05, 0.1, 0.2, and 0.3 μs.

Problem 7.97. For the circuit shown in the

following figure:

A. Determine damping coefficient α,

undamped resonant frequency ω0, and

damping ratio ζ.

B. Determine constants K1,K2.

C. Write the solution for the capacitor volt-

age with all constants defined.

D. Calculate capacitor voltage at 0, 1, 2, 3,

4, and 5 ms and plot it to scale

versus time.

+
-

1V=VS

1 mH

t=0

10

100 F

Problem 7.98. Repeat the previous problem for

the circuit shown in the following figure.

+
-

10V=VS

1 mHt=0

100 F

6

Problem 7.99. In the circuit shown in the figure

below, the capacitor was charged to 10 V prior

to closing the switch.

+- vC

100 F

1 mH

6t=0

A. How are the circuit equation and initial

conditions different from Eqs. (7.78a, b)?

B. Determine damping coefficient α,

undamped resonant frequency ω0, and

damping ratio ζ.

C. Determine constants K1,K2.

D. Write the solution for capacitor voltage

with all constants defined.

E. Calculate the capacitor voltage at 0, 1,

2, 3, 4, and 5 ms and plot it to scale

versus time.

7.6.5 Overshoot and Rise Time

7.6.6 Application: Non-ideal Digital

Waveform
Problem 7.100. The following figure shows

the underdamped step response for a series

RLC circuit. The DC source has the voltage

of 10 V. Using the figure:

A. Estimate the overshoot percentage.

B. Estimate the rise time.

C. Do these estimates (approximately)

agree with Eqs. (7.88a, b)?
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Capacitor voltage, V

t, ms

Problem 7.101. Capacitor voltage is measured

in a series RLC circuit as shown in the figure to

the previous problem. Given R ¼ 2Ω, estimate

circuit inductance L and circuit capacitance C.

Problem 7.102. The figure that follows shows

the distorted rectangular waveform (capacitor

voltage) for the circuit shown in Fig. 7.33. The

DC source has the voltage of 10 V.

A. Using the figure, estimate the overshoot

and undershoot percentages.

B. Using the figure, estimate the rise time

and the fall time.

C. Do these estimates (approximately)

agree with Eqs. (7.88a, 7.88b)?

Capacitor voltage, V

t, s0 1 2 3 4 5 6 7 8 9
-10

-5

0

5

10

15

Problem 7.103. For the circuit shown in the

following figure:

v (t)S

t

0 T

v (t)S

R

C

+- vC

a)

b)
VS

L+
-

A. Determine the step response υC(t)

for the circuit shown in figure (a) given

thatL ¼ 1 μH, C ¼ 1 nF;V S ¼ 10 V,

and R ¼ 75 Ω.

B. Express the solution υ
pulse
C (t) for the volt-

age pulse shown in figure (b) in terms of

the step response.

C. Given T ¼ 0:5 μs, calculate the solution

for the voltage pulse over the time inter-

val from 0 to 0.7 μs in steps of 0.1 μs and

plot it to scale.

Problem 7.104. Repeat the previous problem

assuming T ¼ 0:2 μs. Calculate the solution

for the voltage pulse over the time interval

from 0 to 0.5 μs in steps of 0.05 μs and plot it

to scale versus time.
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Part III

AC Circuits



Chapter 8: Steady-State AC Circuit

Fundamentals

Overview

Prerequisites:

- Knowledge of DC circuit analysis (Chapters 2, 3, and 4)

- Knowledge of dynamic circuit elements (Chapter 6, optionally Chapter 7)

- Knowledge of complex arithmetic and calculus

Objectives of Section 8.1:

- Apply and work with the major parameters of the steady-state AC signals:

amplitude, frequency, and phase

- Establish the concept of phase leading or lagging for AC voltages and currents

- Become familiar with the major function of the oscilloscope—measure periodic

(AC) voltages in a circuit

- Understand the meaning of the phasor as a representation of the real signal

- Convert real signals to phasors and vice versa

- Perform basic operations with phasors

- Be able to construct the phasor diagram for real signals and restore the real signals

from the phasor diagram

- Become familiar with the phasor (angle) notation

Objectives of Section 8.2:

- Provide the complete mathematical derivation of complex impedances

- Apply the impedance concept to resistor, capacitor, and inductor

- Understand the meaning of magnitude and phase of the complex impedance

Objectives of Section 8.3:

- Understand and apply the AC circuit analysis with phasors and impedances

- Appreciate the value of the phasor diagram as a tool for AC circuit analysis

- Transfer major circuit theorems to steady-state AC circuits

- Be able to solve multifrequency AC circuits using superposition principle

Application examples:

- Measurements of amplitude, frequency, and phase

- Impedance of a human body
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Section 8.1 Harmonic Voltage and Current: Phasor

Whether you use a kitchen appliance or operate a piece of industrial machinery, they are

powered by alternating current (AC) power supplies. It may seem odd at first to create

power sources with alternating polarities that result in fluctuating voltage and current

directions through resistors, inductors, and capacitors. Consider the following situation:

current flows through a coil from left to right with increasing and then decreasing

magnitude, then changing direction, and again increasing and decreasing in magnitude

before the process repeats itself. A benefit of using periodic, sinusoidal waveforms is

related to the relative ease of stepping up or down AC voltages and currents with little,

ideally no, power losses via a transformer. The economic importance of AC circuits can

hardly be overstated; the bulk of the residential and industrial power demand is produced,

transformed, and distributed via AC circuits. To understand the basics of AC circuit

analysis, we start with the key characteristics of sinusoidal waveforms such as frequency,

phase, and amplitude. Special attention is paid to the phase. We define the meaning of

leading and lagging phase for two steady-state AC voltages or currents. We note that in

electrical engineering, AC voltages are often called signals.

8.1.1 Harmonic Voltages and Currents

In steady-state AC circuits, all voltages and currents measured across or through the

elements are periodic and in the ideal case harmonic (i.e., sine or cosine) functions of

time. These voltages and currents have the same frequency but different phases and

amplitudes. Interestingly, the word harmonic originates from the reference to music

sounds of pure, single tones, pitches, or frequencies. The word steady-state means that

the circuit frequency, phases of all voltages and currents, and amplitudes of all voltages

and currents do not change over time. Transient effects are entirely excluded from our

consideration. Similarly, the AC voltage and currents are called steady-state AC voltage

and steady-state alternating current. It is common to use terms AC voltage and AC

power, but the term AC current does not make much sense, even though it might be a part

of the electrical engineering jargon. Figure 8.1 shows an AC harmonic signal. All

voltages and currents in an AC circuit will have exactly this form, regardless of whether

they are measured over a resistor, capacitor, or inductor. For this figure we consider the

voltage υ(t). The current i(t) could be treated in an identical manner. As a harmonic

function, the steady-state AC voltage can be written in the form

υ tð Þ ¼ Vm cos ω t þ φð Þ ð8:1aÞ

where

Vm is the voltage amplitude (maximum absolute voltage), with the unit of volts.

ω is the angular frequency, with the unit of rad/s.

φ is the phase, with the unit of radians.
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The use of a cosine function rather than a sine function, as a basis for any AC signal in

Eq. (8.1a), is common. The angular frequency relates to the frequency f and period T by

ω ¼ 2πf , T ¼ 1=f ð8:1bÞ

where f is measured in hertz or Hz (1 Hz¼ 1 s�1) and the period is recorded in seconds.

As the name implies, the frequency f defines the number of cycles (positive-to-negative

AC voltage transitions) per second. For example, the frequency of the AC wall plug in the

USA is 60 cycles per second and is recorded as

f ¼ 60
1

s
¼ 60 Hz ð8:1cÞ

The angular frequency ω is essentially a replica of the frequency f; its use is primarily a

matter of convenience. Virtually all frequencies in electrical engineering are measured in

terms of f and not in terms of angular frequency ω. For example, we say that the AC

frequency in the USA is 60 Hz, or 50 Hz in Europe and other countries and not 377 rad/s

or 314 rad/s. The frequency unit hertz honors Heinrich Hertz (1857–1894), a German

scientist, who, at the age of 29, built the first radio-frequency transmitter based on a spark

gap circuit and a receiver (a loop antenna). He thus confirmed Maxwell’s theory of

electromagnetic wave propagation.

Example 8.1: Determine the frequency in Hz, the angular frequency in rad/s, and the

amplitude of the harmonic voltage signal shown in Fig. 8.1.

Solution: The amplitude is the simplest parameter to find. By inspection, the maximum

voltage value is 0.6 V. It is exactly the amplitude value, Vm ¼ 0:6 V, and therefore is the

absoluteminimum voltage. The period is determined as the interval between two similar zero

0 0.5 1 1.5 2 2.5 3
time, ms

-1

-0.8

-0.4

0

0.4

0.8

v
o
lt
a
g
e
, 
V

period

amplitude

amplitude

phase zero

Pk-Pk

1

Fig. 8.1. Harmonic voltage signal of Eq. (8.1a) and its parameters. The phase is zero.
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Example 8.1 (cont.): crossings in Fig. 8.1; it is measured as ejωt. Another (sometimes

more accurate) way to measure the period is to observe that there are exactly three

periods in the figure, recorded over the time interval from 0 to 3 ms. Dividing the time

interval over the number of periods, we obtain the duration of one period. The

frequency of the voltage is f ¼ 1=T ¼ 1000Hz ¼ 1kHz. The angular frequency results

in ω ¼ 2πf ¼ 6283:1 rad=s, and the voltage in Fig. 8.1 is υ tð Þ ¼ 0:6 cos 2π1000tð Þ V½ �.
In real circuits, you should avoid measuring the period by using two consecutive

maxima or minima of the sinusoidal signal. Although the same result is obtained on

paper, in reality the flat maximum plateau is frequently corrupted by noise. As a

result, rather inaccurate maxima positions are acquired.

Note that the amplitude is well defined for a pure harmonic in Fig. 8.1. It is symmetric

about the axis, i.e., does not have a DC offset. But what about other periodic signals that

have a significant DC offset? How can we define their amplitudes? The key is the peak-to-

peak (or in short: Pk-Pk) shown in Fig. 8.1. For a harmonic AC voltage and current, the

peak-to-peak value is simply twice the amplitude value. For non-sinusoidal periodic

signals or sinusoidal signals with a DC offset, the peak-to-peak value is the only mean-

ingful measure of the alternating signal strength. Therefore, an oscilloscope always uses

the peak-to-peak value, instead of the amplitude.

8.1.2 Phase: Leading and Lagging

Perhaps the most confusing constant in Eq. (8.1a) is the phase φ. A nonzero phase means

that the cosine function is shifted with respect to a zero-phase cosine in Fig. 8.1 either to the

left or to the right. Let us ask the following question: if the phase in Eq. (8.1a) is positive, say

φ ¼ þπ=2, is the cosine function shifted to the left or to the right versus the base cosine

signal on the time axis? The answer might be somewhat unexpected: the positive phase

means a shift to the left. Why? Because the given value of the cosine function occurs earlier

in time than without the phase. Figure 8.2a shows a phase-shifted voltage signal υ tð Þ ¼ 0:6
cos 2π1000t þ π=2ð Þ V½ �; see the dashed curve; the base signal of zero phase is shown by
the solid curve. At t ¼ 0, the argument is already ahead byþπ=2 and the cosine function is
zero, whereas with zero phase the zero occurs later at t ¼ 0:5T . A shift to the left means that

all events (e.g., the peaks or zero crossings) happen earlier in time than for the base cosine

with the phase zero. Therefore, the cosine with the positive phase always leads the cosine

with the zero phase. In the present case, it leads the base cosine by 90�. In contrast, the cosine
with the negative phase is shifted to the right. Figure 8.2b depicts the example ofφ ¼ �π=2.
A shift to the right means that all events (e.g., the peaks or zero crossings) happen later in

time than for the base cosine with zero phase. The voltage with the negative phase lags the

cosine with the zero phase (in fact, it lags by 90� or π/2 in Fig. 8.2b). The concept of leading
and lagging plays a prominent role in power electronics.
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Exercise 8.1: Determine frequency in Hz, angular frequency in rad/s, and the amplitude of

the harmonic voltage signals shown in Fig. 8.2.

Answer: All four signals in Fig. 8.2 have the same amplitude of 0.6 V, the same frequency

of 1 kHz, and the same radian frequency of ω ¼ 2πf ¼ 6283:1 rad=s.

The most useful facts related to phase measurements are:

1. The phase in electrical engineering applications ranges from�π to +π radians; this

corresponds in degrees to �180� to +180�. The phase in degrees should be divided

by 180 and multiplied by π to obtain the phase in radians. The phase in radians

should be divided by π and then multiplied by 180 to obtain the phase in degrees.

2. The phase is a relative measure, with reference to a base signal. If the base signal is

not present, the phase cannot be defined uniquely. By default the base signal is the

cosine signal of the same frequency, that is, cos(ω t).

3. If a measured phase for some reason exceeds π, we need to subtract its value from

2π. If it is less than�π, then we need to add 2π to its value. This will ensure that the

phase will stay in the range from�π to +π radians.
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Fig. 8.2. Phase-shifted AC voltages υ tð Þ ¼ 0:6 cos 2π1000t � π=2ð Þ V½ � versus the zero-phase

voltageυ tð Þ ¼ 0:6 cos 2π1000tð Þ V½ � shown by a solid curve. In Fig. 8.2a the dashed voltage leads
the base signal, whereas in Fig. 8.2b it lags the base signal.
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Example 8.2: Determine the frequency, amplitude, and phase of the harmonic voltage

signal shown in Fig. 8.3 versus the base cosine signal.

Solution: The amplitude is determined first: by inspection it is clear that Vm ¼ 1:0V. Next
the frequency is determined: the entire interval from 0 to 3 ms contains three full periods;

hence T ¼ 1 ms, and f ¼ 1=T ¼ 1000 Hz ¼ 1 kHz. For the phase determination, we note

that the first maximum in Fig. 8.3 occurs later in time than for the base cosine, which already

peaks at t ¼ 0. Therefore, the phasemust be negative, that is,φ < 0. The absolute value of the

phase in Fig. 8.3 is

φj j ¼ 2π
ΔT

T
ð8:2Þ

which gives φ ¼ �π=3 after measuring T and ΔTwith a scale. A smarter way to obtain the

same result is to note that the cosine function is equal to 0.5Vm at t ¼ 0, so that

φ ¼ � cos �1 0:5ð Þ ¼ �π=3. And an even “smarter” way is to use a calculator to plot the

cosine function with all possible phases until it matches Fig. 8.3. This method only works

well during an exam if enough time is available.

Example 8.3: Assume that an AC signal is given by υ tð Þ ¼ Vm sin ωt þ ψð Þ V½ �. How do

we convert it to a cosine function?

Solution: The single most important trigonometric identity worth remembering is proba-

bly sin α ¼ cos α� π=2ð Þ. If you forget this identity, you may recall a visual picture: at

t ¼ 0 the sine with zero phase lags the cosine with zero phase by π/2 or by 90�. The result is
then υ tð Þ ¼ Vm cos ωt þ ψ � π=2ð Þ V½ �.
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Fig. 8.3. A phase-shifted AC voltage υ tð Þ ¼ 1 cos 2π1000t � π=3ð Þ V½ �.
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8.1.3 Application Example: Measurements of Amplitude, Frequency,

and Phase

Different parameters of the steady-state AC voltage or of a general periodic voltage

studied in the section are readily measured with the oscilloscope. The oscilloscope always

measures the time-amplitude response of the voltage, not the current. Parameters include

frequency, amplitude (or peak-to-peak value), the rms voltage, the mean voltage (voltage

averaged over a period), etc. Figure 8.4 provides a practical measurement example.

Several voltage signals can be measured simultaneously with several oscilloscope chan-

nels. The phase is not measured for a single signal, only the phase difference between two

and more signals can be measured. The oscilloscope has two commonly used settings. In

the first setting called DC coupled, any voltage supplied to the channel will cause a

deflection of the trace. As a result, the actual value of the input voltage with respect to

oscilloscope ground can be measured. In the second setting called AC Coupled, any DC

offset to the periodic signal is eliminated via an internal coupling capacitor. The result,

after a short transient period, is that the trace will settle at 0 V regardless of the magnitude

of an applied DC voltage. This configuration is used whenever it is desired to ignore the

constant DC component of an applied voltage waveform and only observe the AC

component of the waveform with zero mean.

8.1.4 Definition of a Phasor

This topic is critical for the steady-state AC circuit analysis. We are about to introduce the

method of solving AC circuits based on the use of so-called phasors or complex numbers.

Working with phasors allows us to “cancel” out the frequency dependence and the time

dependence. This is possible because in a linear system the harmonic behavior is the same

for all circuit components, we only need to keep the amplitude and phase information for

every sinusoid. The application of phasors will eventually allow us to reduce the AC

circuit to an equivalent “DC” circuit that is solved using standard tools. However, there is

no “free lunch”; the voltages and currents in the resulting “DC” circuit appear to be

Fig. 8.4. Front panel of an inexpensive dual-channel digital-storage oscilloscope. Note the

measured signal parameters.
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complex numbers. They carry information of two parameters: the phase and the ampli-

tude of a sinusoid. The use of a complex number relies on two independent parameters,

real and imaginary parts (or magnitude and phase); it is ideally suited to represent AC

signals while entirely eliminating time-domain harmonics. The starting point of the

phasor concept is rooted in Euler’s formula in the form

e jα ¼ cos αþ j sin α ð8:3aÞ

The identity expresses the complex exponent in terms of the real-valued cosine and sine

functions. Here, j ¼
ffiffiffiffiffiffiffi

�1
p

is the imaginary unit and α is an arbitrary, real number. Note

that α can be equal to ωt or to ω t þ φ. In electrical engineering, the symbol j ¼
ffiffiffiffiffiffiffi

�1
p

is

preferred over the mathematical symbol i which may be confused with the electric

current. In terms of real and imaginary parts, we obtain

cos α ¼ Re e jα
� �

, sin α ¼ Im e jα
� �

ð8:3bÞ

Why do we need the complex exponent instead of cosine and sine? To answer this

question, let us study the following identity:

e j ωtþφð Þ ¼ e jωt � e jφ ð8:3cÞ

Wewill write the current or the voltage in the form of Eq. (8.3c) and use the multiplicative

property of the exponent. Then, the factor ejωt can be exactly canceled out in every term in

the underlying differential equation. This is a major simplification, because the ODE

becomes an algebraic equation. The key is the function Re(�) or the real part of a complex

number:

υ tð Þ ¼ Vm cos ωt þ φð Þ ¼ Re Vme
j ωtþφð Þ� �

i tð Þ ¼ Im cos ωt þ ψð Þ ¼ Re Ime
j ωtþψð Þ� � ð8:4Þ

The remaining complex number available after cancellation of the time factor ejωt is

called a phasor: the phasor voltage V and the phasor current I:

V ¼ Vme
jφ, I ¼ Ime

jψ ð8:5Þ

Equation (8.5) as a definition tells us that the phasor is a complex number comprised of

two parameters: amplitude and phase. For related operations with complex numbers, you

can see the chapter summary. You should notice that frequency is no longer present since

it remains the same for all circuit elements, and it is equal to the known frequency of the

voltage power supply. The phasor has the same units as the original quantity: the phasor

voltage has units of volts, and the phasor current has units of amperes. The theory and
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application of the symbolic method of alternating currents by means of complex number

algebra was started along with the famous book of C. P. Steinmetz, Theory and Calcu-

lation of Alternating Current Phenomena, New York, McGraw Hill Publishing Co.,

1897. It happened only four years after the 1893 World’s Fair, the World’s Columbian

Exposition in Chicago, where Nikola Tesla and George Westinghouse introduced visitors

to AC power by using it to illuminate the exposition. Further, those methods received

wide attention in control theory, in communications and signal processing, and in RF

engineering.

8.1.5 From Real Signals to Phasors

Every AC voltage or current has its own phasor. The conversion from real-valued

voltages and currents to phasors is performed exactly according to the phasor definition

Eqs. (8.4) and (8.5).

Example 8.4: Determine the phasors for the real-valued AC voltages and currents:

υ tð Þ ¼ 3 cos ω t � π=3ð Þ V½ �
i tð Þ ¼ 1 cos ω t þ π=6ð Þ A½ � ð8:6aÞ

Solution: To construct the phasor, we only need the amplitude (Vm or Im) and the

phase (φ or ψ) for every signal in Eq. (8.6a). The result then uses the phasor

definition given by Eqs. (8.4) and (8.5):

V ¼ 3e�jπ=3 ¼ 3 cos
π

3
� j sin

π

3

� �

¼ 3

2
� j

3
ffiffiffi
3

p

2
V½ �

I ¼ 1e jπ=6 ¼ 1 cos
π

6
þ j sin

π

6

� �

¼
ffiffiffi
3

p

2
þ j

1

2
A½ �

ð8:6bÞ

All results are a direct consequence of using Euler’s formula. The phasors are complex

numbers that can be plotted in the complex plane as dots or vectors; we will provide an

example of this later in this section. Moreover, we can add, subtract, multiply, and divide

phasors, and the results are again phasors. However, the addition and subtraction of real

signals is difficult, and the multiplication and division is practically impossible. Just

imagine how you would divide a sine by a cosine and then convert the result into a

cosine form.

To assure the uniqueness of phasor definition, the real signal must always be written in

the standard form of the cosine function with the positive amplitude. For example, voltage

υ tð Þ ¼ �3 cos ω tð Þ is to be converted to υ tð Þ ¼ 3 cos ω t þ πð Þ and then to the phasor

V ¼ 3e jπ.
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Exercise 8.2: Determine the phasor for the real-valued alternating current

i tð Þ ¼ �1 sin ω t � π=2ð Þ A½ �.
Answer: I ¼ 1e j0 ¼ 1 A½ �.

8.1.6 From Phasors to Real Signals

If the phasors of the voltage and current are given, and the angular frequency of the AC

source is known, the real-valued AC voltages and currents can be restored using the

phasor definition given by Eqs. (8.4) and (8.5).

Example 8.5: The phasors of the AC voltage and current are given by

V ¼ 12∠π=3 ¼ 12e jπ=3 V½ �
I ¼ 0:1∠60� ¼ 0:1e j60� A½ �

ð8:7aÞ

An AC source has the angular frequency ω. Restore the corresponding real-valued voltages

and currents.

Solution: We construct the real signals in the form of Eq. (8.4) where the amplitude

(Vm or Im) and the phase (φ or ψ) of the corresponding sinusoidal function are extracted

from the phasors in Eq. (8.7a):

υ tð Þ ¼ 12 cos ω t þ π=3ð Þ V½ �
i tð Þ ¼ 0:1 cos ω t þ π=3ð Þ A½ �

ð8:7bÞ

Exercise 8.3: The phasor voltage is given by V ¼ �2∠π=3 V½ �. Restore the

corresponding real-valued voltage signal.

Answer: υ tð Þ ¼ 2 cos ω t � 2π=3ð Þ V½ �:

8.1.7 Polar and Rectangular Forms: Phasor Magnitude

The phasor as a complex number has two forms: the polar form and the rectangular form.

Equation (8.8a) includes both forms:

V ¼ Vme
jφ

|fflfflffl{zfflfflffl}

polar form

¼ Vm cosφþ jVm sinφ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

rectangular form

¼ xþ jy
|fflffl{zfflffl}

rectangular form

ð8:8aÞ

In general, the conversion from polar form to rectangular form uses Euler’s identity. We

emphasize that Vm > 0 is the magnitude of a complex number—the phasor. It is always
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positive and equals the amplitude of the corresponding real signal. As mentioned before,

φ is the phase; it changes from �π to þπ and equals the phase of the corresponding real

signal. The phasor may be initially given in a rectangular form, say asV ¼ xþ jy. In that

case, we may convert the phasor to polar form as follows:

V ¼ Vme
jφ, Vm ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
p

, φ ¼ tan �1 y

x

� �

ð8:8bÞ

Equation (8.8b) is only valid when x is positive. Otherwise, a factor of�π must be added

as explained in Fig. 8.5. The conversion to the polar form and vice versa is routinely done

using a calculator, or MATLAB (function angle), or other software of your choice. For

other operations with complex numbers, please refer to the Appendix section. Figure 8.5

plots a complex number (phasor) as given by Eqs. (8.8a,b) in the complex plane. The x-

axis of the complex plane is the real part of the complex number, and the y-axis is the

imaginary part. The complex number is either represented by a dot with the coordinates x,

y or by a vector drawn from the origin to that dot. The magnitude of the complex number

(phasor), Vj j ¼ Vm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
p

, is the length of this vector; the phase φ is the angle with

the positive x-axis. It is straightforward to add two phasors; this operation corresponds to

vector addition in Fig. 8.5.

Example 8.6: The phasors of AC voltage and current are given in rectangular form

V ¼ 5þ j5 V½ �
I ¼ �0:1� j0:2 A½ �

ð8:9Þ

0 Re

Im

y

x

x+jy

arctan(y/x)arctan(y/x)+

arctan(y/x)- arctan(y/x)

quadrant Iquadrant II

quadrant III quadrant IV

Fig. 8.5. A phasor in rectangular, or polar, form in the complex plane and the corresponding phase

conversion. The phase of the complex number φ is given for different quadrants.
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Example 8.6 (cont.): An AC source has the angular frequency ω. Restore the

corresponding real voltages and currents.

Solution: We convert the phasors to the polar form using Eq. (8.8b) and Fig. 8.5:

V ¼ 7:07e j0:785 V½ �
I ¼ 0:224e�j2:03 A½ �

ð8:10Þ

After that, we restore the real signals exactly following Example 8.6:

υ tð Þ ¼ 7:07 cos ω t þ 0:785ð Þ V½ �
i tð Þ ¼ 0:224 cos ω t � 2:03ð Þ A½ �

ð8:11Þ

The phase in Eq. (8.11) is given in radians. Another equivalent form of the solution that

should please your engineering professor implies replacing 0.785 by π/4 or 45� and 2.03 by
π/1.54 or 117�.

8.1.8 Operations with Phasors and Phasor Diagram

Phasors allow us to perform a number of basic operations in AC circuits rather quickly.

Let us consider a part of an AC circuit with two arbitrary series circuit elements, shown in

Fig. 8.6. The AC voltages υ1(t) and υ2(t) across each element are known. How can we find

the AC voltage υ(t) for the series combinations?

According to KVL we conclude υ tð Þ ¼ υ1 tð Þ � υ2 tð Þ, where the second voltage has

opposite polarity. There are two ways to proceed from here. The first way in the time

domain is to add two cosine functions directly and convert them into another cosine

function. Unfortunately, if these cosine functions have different phases and amplitudes,

the operation is not straightforward. It requires a search for the corresponding trigonometric

formulas and the accurate use of this formula, keeping in mind proper phase definition.

v (t)
1

+

-

A B

v (t)
2

+

-

-+

v(t)?

ba

Fig. 8.6. A series combination of two AC circuit elements. The voltage across the series

combination (voltage between terminals a and b) is desired. You should note the voltage

polarities.
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The second way is to use phasors. We will see that this approach has a clear intuitive

background and is actually simpler to apply.

Example 8.7: Find the total voltage between terminals a and b in Fig. 8.6 if the element

voltages are given by:

υ1 tð Þ ¼ 6:08 cos ω t þ 80:5�ð Þ V½ �
υ2 tð Þ ¼ 5:00 cos ω t þ 36:9�ð Þ V½ �

ð8:12aÞ

Solution: We construct the phasors first:

V1 ¼ 6:08∠80:5� V½ �
V2 ¼ 5:00∠36:9� V½ �

ð8:12bÞ

Convert them into rectangular form using Euler’s formula next:

V1 ¼ 1:00þ j6:00 V½ �
V2 ¼ 4:00þ j3:00 V½ � ð8:12cÞ

Both phasors are plotted in Fig. 8.7a. Such a plot is known as a phasor diagram. It is quite

useful since it provides us with a visual picture of magnitude and phase. We subtract the

phasors as complex numbers and obtain the resulting phasor for the desired voltage υ(t)

υ tð Þ ¼ υ1 tð Þ � υ2 tð Þ ) V ¼ V1 � V2 ¼ 1þ j6� 4� j3 ¼ �3þ j3 V½ � ð8:13aÞ

The same subtraction operation is done in the vector form in the phasor diagram of

Fig. 8.7a. The resulting phasor V is shown by a dashed arrow. We need to center it at the

origin to obtain agreement with Eq. (8.13a). Next, we convert the phasor V into polar form

using either Eq. (8.8b) or by just looking at the phasor diagram itself,

V ¼ �3þ j3 ¼ 3
ffiffiffi

2
p

e j135� ¼ 4:23e j135� ¼ 4:23∠135� V½ � ð8:13bÞ

Finally, we restore the voltage υ(t) from its phasor: υ tð Þ ¼ 4:23 cos ω t þ 135�ð Þ.
Using the same method, we could find the terminal voltage for a series combination of any

number of circuit elements with arbitrary polarities.
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The phasor diagram introduced in Fig. 8.7a also allows us to find the relative lag or

lead for two or more AC voltages and/or currents, a topic you may recall from the

previous section. As an example, in Fig. 8.8 we show the phasor diagram for three

different time-domain voltages υ1(t), υ2(t), υ3(t). Irrespective of the specific values of

the amplitudes and phases, we may conclude that voltage υ2(t) leads voltage υ1(t) by 90
�,

but lags voltage υ3(t).
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Fig. 8.7. (a) Finding series voltage for two circuit elements using phasors and (b) the time-domain

representation of the same result.

0

Re

Im

V
2

V
1

V3

Fig. 8.8. Phasor diagram for three time-domain voltages υ1(t), υ2(t), υ3(t). Voltage υ2(t) leads

voltage υ1(t) by 90�, but lags voltage υ3(t).
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Exercise 8.4: Does the voltage signal υ tð Þ ¼ 6:08 cos ω t þ 80:5�ð Þ lead or lag the voltage
signal υ tð Þ ¼ 4:23 cos ω t þ 135�ð Þ?
Answer: It lags by 54.5�.

At this point a legitimate question arises: is adding sinusoids the only application of

phasors? What will be the next step? Obviously, our goal now is to reduce an AC circuit

to the equivalent “DC” circuit. This step requires a new concept known as impedance. It

will be considered in the next section.

8.1.9 Shorthand Notation for the Complex Exponent

In electrical engineering and electronics, the shorthand notation (phasor notation or angle

notation) e jφ ¼ ∠φ is commonly used to simplify the notation of the complex exponent.

We will frequently use this shorthand notation in the following sections. All operations

with phasors remain the same. For example, the multiplicative operations are written in

the forms

V 1e
jφV 2e

jψ ¼ V 1V 2e
j φþψð Þ ) V 1∠φ V 2∠ψ ¼ V 1V 2∠ φþ ψð Þ ð8:14Þ
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Section 8.2 Impedance

8.2.1 The Concept of Impedance

We can avoid solving ODEs for the AC circuits entirely if we establish a relation between

the phasor voltage and the phasor current for the inductor and capacitor, similar to Ohm’s

law for the resistor. We consider three basic AC circuit elements shown in Fig. 8.9 in a

passive reference configuration and determine their phasor voltages and phasor currents.

Resistance For the resistance, voltage will be given by a cosine function shown in

Fig. 8.10a. One has

υ ¼ Ri, υ tð Þ ¼ Vm cos ωt þ φð Þ ) i tð Þ ¼ Vm

R
cos ω t þ φð Þ

V ¼ Vme
jφ I ¼ Vm

R
e jφ

ð8:15Þ

Capacitance For the capacitance, voltage will again be given by a cosine function shown

in Fig. 8.10b. One has

i ¼ C
dυ

dt
, υ tð Þ ¼ Vm cos ω t þ φð Þ

) i tð Þ ¼ �ωCVm sin ωt þ φð Þ ¼ ωCVm cos ωt þ φþ π=2ð Þ
V ¼ Vme

jφ I ¼ ωCVme
jφþjπ=2

ð8:16Þ

Inductance For the inductance, current will be given by a cosine function shown in

Fig. 8.10c. One has

υ ¼ L
di

dt
, i tð Þ ¼ Im cos ωt þ φð Þ

) υ tð Þ ¼ �ωLIm sin ω t þ φð Þ ¼ ωLIm cos ωt þ φþ π=2ð Þ
I ¼ Ime

jφ V ¼ ωLIme
jφþjπ=2

ð8:17Þ

Impedance Z of an arbitrary linear circuit element or of an arbitrary one-port network

comprised of such elements is defined by

Z � V

I
ð8:18Þ

capacitanceinductanceresistance

+ -

i(t)i(t)

+ -

i(t)

v(t)
+ -

v(t) v(t)

Fig. 8.9. Three AC circuit elements.
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Thus, the phasors for voltage and current are linked via a constant, which can be real or

complex. In order to emphasize that this constant is not exactly a resistance, the constant

is called the impedance. Substituting Eqs. (8.15), (8.16), and (8.17) into Eq. (8.18), we

obtain:

Resistance : ZR � V

I
¼ R Ω½ �

Capacitance : ZC � V

I
¼ 1

e jπ=2ωC
¼ 1

ωC
∠� 90� ¼ 1

jωC
Ω½ �

Inductance : ZL � V

I
¼ e jπ=2ωL ¼ ωL∠90� ¼ jωL Ω½ �

ð8:19Þ
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Fig. 8.10. Voltage and current sinusoids for resistor, inductor, and capacitor (at phase zero).
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The impedance has units of ohms, exactly as the resistance does. The impedance is an

extension of the familiar DC resistance concept for dynamic AC circuit elements or any

combination of them. The term “impedance” (along with “inductance,” “permeability,”

etc.) belongs to Oliver Heaviside (1850–1925), a brilliant self-taught English electrical

engineer and mathematician. We note that the method of solving differential equations

with phasors (or using Laplace transforms) originates from him. Heaviside invented and

patented in England the first coaxial cable in 1880. His uncle was Sir Charles Wheatstone

(1802–1875); do you remember the Wheatstone bridge?

8.2.2 Physical Meaning of Impedance

The problem with the impedance definition is that in general it is a complex number.

What exactly is the physical meaning? For the resistor in Fig. 8.10a, we only need to

stretch the current sinusoid in order to obtain the voltage sinusoid. Therefore, we only

need one independent “stretching” parameter R to express voltage in terms of current.

However, for the capacitor in Fig. 8.10b, we need not only stretch, but also shift the

current sinusoid to the right in order to obtain the voltage sinusoid. To accomplish this,

we need two independent parameters. The impedance as a complex number has exactly

those two independent parameters. In polar form, it is the magnitude (responsible for

stretching) and the phase (responsible for shifting). Thus, only a complex number can be

used to express voltage in terms of current for the capacitor. Similarly, for the inductor in

Fig. 8.10c, we need not only stretch, but also shift to the left the current sinusoid in order

to obtain the voltage sinusoid. Therefore, we again need two independent parameters to

express the voltage in terms of current; we need the complex impedance with two

required independent parameters: the magnitude and the phase. In light of this reasoning,

it is useful to express the impedances given by Eq. (8.20) in polar form. For the imaginary

number, we use the equalities j ¼ ∠90� and 1=j ¼ ∠� 90� and obtain

ZR ¼ R∠0�, ZC ¼ 1

ωC
∠� 90�, ZL ¼ ωL∠90� ð8:20Þ

Example 8.8: Find impedances of resistor, capacitor, and inductor in Fig. 8.10.

Solution: In Fig. 8.10a,

iR tð Þ ¼ 1 cos ωtð Þ A½ �
υR tð Þ ¼ 2 cos ω tð Þ V½ �

) ZR ¼ R ¼ 2 Ω½ � ð8:21aÞ

The resistor’s impedance is frequency independent. It is just the resistance R. In Fig. 8.10b,
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Example 8.8 (cont.):

iC tð Þ ¼ 1 cos ωt þ π=2ð Þ A½ �
υC tð Þ ¼ 2 cos ωtð Þ V½ �

) ZC ¼ 2e�jπ=2 ¼ �j2 Ω½ � ð8:21bÞ

The capacitor’s impedance is thus an imaginary negative number. This is always true. In

Fig. 8.10c,

iL tð Þ ¼ 1 cos ωtð Þ A½ �
υL tð Þ ¼ 2 cos ω t þ π=2ð Þ V½ �

) ZL ¼ 2eþjπ=2 ¼ þj2 Ω½ � ð8:21cÞ

The inductor’s impedance is thus an imaginary positive number. This is always true.

8.2.3 Magnitude and Phase of Complex Impedance

With reference to Fig. 8.10, the magnitude of the impedance is a factor by which we

should multiply (or stretch) the current sinusoid in order to obtain the voltage sinusoid.

The phase (or the polar angle) of the impedance is a factor by which we should shift to the

left the current sinusoid in order to obtain the voltage sinusoid.

1. For the resistor, we multiply the current by ZRj j ¼ R ¼ 2 Ω and do not shift.

2. For the capacitor, we multiply the current by ZCj j ¼ 1
ωC

¼ 2 Ω and shift it by �90�

(or by a quarter of the period) to the right in Fig. 8.10b.

3. For the inductor, we multiply the current by ZLj j ¼ ωL ¼ 2 Ω and shift by +90�

(or by a quarter of the period) to the left in Fig. 8.10c.

The above operations hold for any resistor, inductor, and capacitor. Thus, the imped-

ance concept extends Ohm’s law to dynamic circuit elements in steady-state AC circuits.

Exercise 8.5: Establish phase relationships for voltages and currents in Fig. 8.10.

Answer: For the resistor, current and voltage are in phase. For the capacitor, current leads

voltage by 90� (or voltage lags current by 90�). For the inductor, voltage leads current by
90� (or current lags voltage by 90�).

Example 8.9: For two AC circuits shown in Fig. 8.11, find the impedance of the resistor,

capacitor, and inductor.

Solution: The resistor’s impedance is frequency independent. It is just the resistance R,
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Example 8.9 (cont.):

ZR ¼ R ¼ 2 Ω½ � ð8:22aÞ

The capacitor’s impedance does depend on frequency. In Fig. 8.10a, ω¼ 5000 rad/s.

Therefore,

ZC ¼ 1

jωC
¼ 1

j5000 � 10�4
¼ 1

j0:5
¼ 2

j
¼ �j2 Ω½ � ð8:22bÞ

The inductor’s impedance also depends on frequency. In Fig. 8.10b, ω¼ 20 rad/s.

Therefore,

ZL ¼ jωL ¼ j20 � 0:1 ¼ j2 Ω½ � ð8:22cÞ

An equivalent representation of impedances in Eqs. (8.22a, b, c) is the impedance phasor

diagram shown in Fig. 8.12 where we plot the corresponding complex numbers.

+
-

v (t)=V cos(20t)S m

L=100mH

R=2

+
-

v (t)=V cos(5000t)S m

C=100 F

R=2 b)a)

Fig. 8.11. Two types of a series AC circuit with a voltage supply.

0 Re( )1

Z
R

2

1

2

Im( )

-1

-2

-1-2

Z
L

Z
C

Fig. 8.12. Complex impedances displayed in the phasor diagram.
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Note that the magnitudes of complex impedances in Fig. 8.12 are all equal to 2Ω:

ZRj j ¼ ZRj j ¼ ZRj j ¼ 2 Ω ð8:23Þ

8.2.4 Application Example: Impedance of a Human Body

The impedance is not only the characteristic of an electric circuit but also of an arbitrary

conducting object, which may be modeled as a combination of ideal resistance, induc-

tance, and capacitance. They can be connected in series, in parallel, or a combination of

series and parallel. As an example, we consider here the impedance of a human body in

the frequency range from 10 kHz to 3 MHz. The impedance magnitude is shown in

Fig. 8.13. It was measured for about 400 human subjects of ages between 18 and 70 years

and then averaged. The subject stood on a large aluminum sheet as a ground plane. The

electrode was a cylindrical brass rod for making a grasping contact with the hand. In its

simplest form, the concept of impedance measurement implies the simultaneous mea-

surements of harmonic voltage and current and then the extraction of the amplitude ratio

(magnitude of the impedance) and the phase difference (impedance phase).

Figure 8.13 indicates that the impedance magnitude decreases with frequency.

Therefore, the human body impedance, at least at relatively low frequencies, behaves

similarly to the impedance of a capacitor, where the magnitude also decreases with

frequency. A purely resistive component is also present. The impedance measurements

have been used for the extraction of various biomedical data such as assessment of a

fat-free mass.

300

360

420

480

540

600

660

10
1

10
2

10
3

10
4

frequency, kHz

Male

Female

Ten-year-old child

Impedance magnitude,

Fig. 8.13. Magnitude of the average impedance of the human body. From: I. Chatterjee et al.,

“Human Body Impedance and Threshold Currents for Perception and Pain for Contact Hazard

Analysis in the VLF-MF Band,” IEEE Trans Biomedical Eng., May 1986.
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Section 8.3 Principles of AC Circuit Analysis

8.3.1 AC Circuit Analysis: KVL, KCL, and Equivalent Impedances

The generic process of conducting an AC circuit analysis is outlined in Fig. 8.14 for a

steady-state circuit with a capacitor and a resistor. We replace the circuit components by

their impedances and replace the voltages and currents by their phasors. Hence, the “real”

time-domain AC circuit in Fig. 8.14a becomes an “imaginary” circuit with complex

phasor voltages VS, VR, VC and a complex phasor current I “flowing” through the

circuit; see Fig. 8.14b. However, the phasor VS is a constant and the resulting circuit is

the “DC” circuit.

KVL for the circuit in Fig. 8.14a in the time domain reads

�υS tð Þ þ υR tð Þ þ υC tð Þ ¼ 0 ð8:24Þ

Its phasor counterpart, Fig. 8.14b, in the frequency domain has exactly the same algebraic

form

�VS þ VR þ VC ¼ 0 ð8:25Þ

This result can be proven using the method described in the Chapter’s summary. KCL

is formulated in terms of phasors exactly in the same manner. According to KCL,

the same phasor current I flows through all the elements in the circuit of Fig. 8.14b.

This results in

�VS þ ZRIþ ZCI ¼ 0 ) I ¼ VS

ZR þ ZC

¼ VS

Zeq
ð8:26Þ

where phasor voltages are related to phasor currents though the concept of impedances. Thus,

once the AC circuit has been transformed to phasors and impedances (frequency domain),

v
R+

-

R

C

R
Z

C
Z

+
-v (t)S v

C

+

-

V
R+

-

+
-VS V

C

+

-

i(t) I

b)a)

Fig. 8.14. Transformation of an AC circuit to phasor/impedance form.
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the impedances may be combined as if they were simple resistors. The series/parallel

equivalents for the impedances are equally applicable. After plugging in numbers for

ω, R, C, VS, the phasor current and phasor voltages can be found and converted back

to time domain. This is the method of solving in AC circuits.

8.3.2 Complete Solution for an AC Circuit: KVL and KCL

on Phasor Diagram

Let us assume that the power supply voltage in Fig. 8.14a has the formυS tð Þ ¼ Vm cosω t,

and its amplitude and frequency are given by Vm ¼ 5 V, ω ¼ 1000 rad=s. Further we
know that C ¼ 1 μF, R ¼ 1 kΩ in Fig. 8.14a. The solution to this AC circuit includes

several steps as discussed above. First, we convert the circuit to the phasor/impedance

form as shown in Fig. 8.14b. All currents/voltages are replaced by their phasors, and all

circuit elements are replaced by their impedances. Next, we solve the phasor circuit in

Fig. 8.14b as if it were a “DC” circuit. The element impedances are

ZR ¼ 1000 Ω½ �, ZC ¼ 1

jωC
¼ 1

j1000 � 1� 10�6
¼ �j1000 Ω½ � ð8:27Þ

Note that the impedances here are written in rectangular instead of polar form. We must

now find the equivalent impedance. From the series impedance combination:

Zeq ¼ ZR þ ZC ¼ 1000� j1000 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

10002 þ 10002
p

∠� arctan 1ð Þ
	 1414∠� 45� Ω½ � ð8:28Þ

The phasor current (circuit current) has the form

I ¼ VS

Zeq

¼ 5

1414∠� 45�
	 3:54∠45� mA½ � ð8:29Þ

The phasor voltages across the resistor and the capacitor are found according to Ohm’s

law, that is:

VR ¼ ZRI ¼ 1000� 0:00354∠45� ¼ 3:54∠45� V½ � ð8:30Þ
VC¼ZCI¼�j1000�0:00354∠45�¼ 3:54∠�90�∠45� ¼ 3:54∠�45� V½ � ð8:31Þ

The phasor voltages are plotted in the phasor diagram as depicted in Fig. 8.15.
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We may conclude that KVL in phasor form is equivalent to the addition of two

vectors VR, VC, which equals the supply phasor voltage VS. For an AC circuit in

the form of a current divider, KCL in phasor form will have exactly the same

representation.

As a final step to arrive at the solution, we convert the phasors in Eqs. (8.30) and (8.31)

to real-valued voltages:

υR tð Þ ¼ 3:54 cos ω t þ 45�ð Þ V½ �
υC tð Þ ¼ 3:54 cos ω t � 45�ð Þ V½ � ð8:32Þ

The AC circuit is thus solved. We note that the amplitudes of both voltages are the same;

in this particular case the voltage divider splits the power supply voltage “equally.” In

fact,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3:542 þ 3:542
p

¼ 5V, which is KVL in terms of the voltage amplitudes.

Exercise 8.6: How does the phasor diagram in Fig. 8.15 change if the voltage source in

Fig. 8.14 is given by υS tð Þ ¼ Vm cos ω t � 45�ð Þ?
Answer: The entire phasor diagram rotates clockwise by 45�.

8.3.3 Source Transformation

After KVL and KCL in terms of phasors (in the frequency domain) have been

established, the circuit laws and principles from Chapters 3 and 4 are straightforwardly

extended to the steady-state AC circuits operating at a single frequency. The first example

is the source transformation in the frequency domain shown in Fig. 8.16.

0 2

V
R

4

2

4

Im(V)

-2

-4

-2-4 Re(V)

V
C

V
S

Fig. 8.15. Phasor diagram for the circuit in Fig. 8.14 and KVL in the vector form.
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Avoltage source with the phasor voltageVT and in series with a passive circuit element

having impedance ZT is equivalent to a current source with the phasor current IN and in

parallel with impedance ZN given that

ZT ¼ ZN, VT ¼ ZTIN , IN ¼ VT

ZT

ð8:33Þ

Equation (8.33) is the direct extension of the source transformation principle established

in Chapter 4 for DC circuits.

Example 8.10: Determine phasor voltage V1 in the AC circuit shown in Fig. 8.17 using

the method of source transformation. The impedance values are given at the frequency of

interest. Note that, for every impedance box in Fig. 8.17, its physical counterpart is shown

inside this box.

Solution:The source transformation follows Eq. (8.33) and leads to the AC circuit shown in

Fig. 8.18. This circuit is easier to solve. We can see that the circuit in Fig. 8.18 becomes the

current divider between the 10Ω
�
�
�
�10Ω ¼ 5Ω impedance and the j10Ω� j5Ω ¼ j5Ω

impedance, respectively. Therefore, the phasor current through the impedance of interest

is given by current division

I ¼ 5

5þ j5
� 1∠90� ¼ 5

5
ffiffiffi
2

p
∠45�

� 1∠90� ¼ 1
ffiffiffi
2

p ∠45� A½ � ð8:34Þ

Thus, the resulting voltage is given by

V1 ¼ �j5� I ¼ 5∠� 90� � 1
ffiffiffi
2

p ∠45� ¼ 5
ffiffiffi
2

p ∠� 45� V½ � ð8:35Þ

+
-

VT

ZT

a

b

IN ZN

a

b

Fig. 8.16. Source transformation in the frequency domain.
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Exercise 8.7: Three impedances j5Ω, 10Ω, 10Ω are combined in parallel. What is the

equivalent impedance?

Answer: 2:5þ j2:5 Ω.

Exercise 8.8: In Fig. 8.18, the impedance of the capacitor changes to�j10Ω. What will be

the phasor current, I, through the capacitor?

Answer: I ¼ 1∠90� A½ �

8.3.4 Thévenin and Norton Equivalent Circuits

The Thévenin’s theorem for steady-state AC circuits is formulated as follows. Any linear

AC network of resistors/capacitors/inductors and voltage/current power sources operat-

ing at the same frequency can be represented in the form of a Thévenin

equivalent network shown in Fig. 8.19b (phasor form). This result is a direct extension

of Thévenin’s theorem for DC circuits stated in Chapter 4. Thévenin’s theorem allows us

to reduce complicated AC circuits to a simple source and the impedance configuration,

with the same power output to a load. The AC frequency remains the same. Phasor

voltage VT is known as Thévenin voltage or simply the source voltage; impedance ZT is

called Thévenin impedance or source impedance. The phasor voltage may have

10

I

V1

+

-

j10

10 - 5j[A]90

Fig. 8.18. Source transformation applied to the AC circuit from the previous figure.

+
-

10

V1

+

-

j10

10 - 5j[V]9010

Fig. 8.17. An AC circuit solved with the help of source transformation. Note that every impedance

box has a physical counterpart shown within this box.
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amplitude and phase that is different from the original AC sources. The Norton theorem

for steady-state AC circuits replaces the Thévenin equivalent circuit by the Norton

equivalent circuit from Fig. 8.16. As in resistive circuits, the Thévenin phasor voltage

is equal to the open-circuit phasor voltage of the original circuit in Fig. 8.19a:

VT ¼ Vab ¼ VOC ð8:36Þ

To find the Thévenin impedance ZT, we need to know the phasor, ISC, for the short-circuit

current of the network. The short-circuit current is obtained by shorting out the output

terminals a and b. This results in the source impedance:

ZT ¼ VOC

ISC
¼ VT

ISC
ð8:37Þ

To find ZT we often use another, somewhat simpler, approach. We short out the voltage

source(s), i.e., replace them by wires. Then we zero the current sources (if present), i.e.,

replace them by an open circuit. This enables us to find the equivalent impedance of the

resulting purely passive circuit, which is equal to ZT.

Example 8.11: Find the Thévenin equivalent, i.e., VT and ZT, for the circuit shown in

Fig. 8.19a when ω ¼ 377 rad=s, L ¼ 26:5 mH,R ¼ 10 Ω,C ¼ 220 μF, and V S tð Þ ¼
10 cosω t V½ �.
Solution:We convert the circuit in Fig. 8.19a into phasor form first.VT is the phasor voltage

between terminals a and b, i.e., the phasor voltage across the inductor. The resistor and the

inductor form a voltage divider with regard to the supply phasor voltage of 10 V. According

to the voltage division principle:

+
-

VT

ZT

a

b

a

b

a)

+
-v (t)S

b)

Fig. 8.19. Representation of a Thévenin equivalent circuit. The original AC circuit in (a) is

transformed into its Thévenin equivalent circuit (b) by providing the same voltage and current

to a load. Both circuits are indistinguishable when looking from the load.
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Example 8.11 (cont.):

VT ¼ VL ¼ ZL

ZL þ ZR

10 ¼ j10

10þ j10
10 ¼ 10∠90�

14:14∠45�
10 ¼ 7:07∠45� V½ � ð8:38Þ

To find the Thévenin resistance, we short out the voltage source (by using the second

approach). This operation simultaneously shorts out the capacitor, with the result that the

resistor and the inductor are now in parallel. This gives

ZT ¼ ZL

�
�
�
�ZR ¼ j10� 10

10þ j10
¼ 100∠90�

14:14∠45�
¼ 7:07∠45� Ω½ � ð8:39Þ

8.3.5 Summary of AC Circuit Analysis at a Single Frequency

As long as an AC circuit includes a single AC source or sources which all operate at the

same frequency, it can always be directly analyzed in terms of phasors/complex imped-

ances. All DC analysis techniques:

- Series/parallel equivalents and voltage/current dividers

- Superposition principle

- Source transformation; Thévenin and Norton equivalent circuits

- Nodal and mesh analyses

are equally applicable to steady-state AC circuits. The specific frequency value does not

matter. Indeed, we simply need to perform calculations with complex numbers instead of

real ones.

8.3.6 Multifrequency AC Circuit Analysis: Superposition Theorem

Unfortunately, when an AC circuit includes sources operating at different frequencies

and/or includes the DC sources, the situation is no longer straightforward. The key to the

circuit analysis in this case is the general superposition theorem, which is applicable to all

linear circuits with arbitrary independent and linear-dependent sources. The superposi-

tion theorem for multifrequency AC circuits is explained in Fig. 8.20. The original circuit

with two AC voltage sources of different frequencies and with one DC source is replaced

by three partial circuits, with two of three voltage sources shorted out at a time. Every

partial circuit is solved independently, either using the phasor/impedance method (for

single-frequency AC circuits) or the DC circuit analysis. Finally, the complete solution is

obtained as a sum of three real-valued contributions.
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Example 8.12: Find real-valued voltage υR(t) across the resistor for the circuit in Fig. 8.20

using the superposition principle. You are given R ¼ 10 Ω, V 1 ¼ 10 V, V 2 ¼ 1 V.

The impedance of the inductor is j2 Ω at frequency ω1 and j6 Ω at frequency ω2,

respectively.

Solution: Three partial equivalent circuits are shown in Fig. 8.20a,b,c. We solve the AC

circuits in Fig. 8.20a,c using the phasor/impedance method. Applying voltage division for

the circuits in frequency domain gives

VR1 ¼ þ 10

10þ j2
10 ¼ 9:81∠� 11� V ð8:40Þ

VR2 ¼ � 10

10þ j6
1 ¼ 0:86∠þ 149� V ð8:41Þ

The DC circuit in Fig. 8.20b givesVR3 ¼ 10 V since the inductor is the short circuit in the

DC steady state. Combining the solutions yields the resistor voltage,

υR tð Þ ¼ 10þ 9:81 cos ω1t � 11�ð Þ þ 0:86 cos ω2t þ 149�ð Þ V ð8:42Þ

Exercise 8.9: How does the solution for the previous example change when a 20 Ω

resistor is placed in series with the DC source?

Answer: The solution becomes

υR tð Þ ¼ 3:33þ 3:33 cos ω1t � 4�ð Þ þ 0:33 cos ω2t þ 169�ð Þ V:

+
-V cos t1 1

+

+
-

V =10 V DC3

V cos t2 2

+
-

V cos t1 1

+
-

V cos t2 2

+

-

V =10 V DC3

+

)c)b)a

v
R+

-

v
R2+

-

v
R3+

-

v
R1+

-

+

-

Fig. 8.20. Superposition theorem for a circuit with sources operating at different frequencies

(including a DC source).
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Summary

Term Meaning/Figure

Steady-state AC

voltage (steady-state

alternating current)

υ tð Þ ¼ Vm cos ω t þ φð Þ
Vm > 0 is the voltage

amplitude [V]

ω ¼ 2π f > 0 is the angular

frequency [rad/s]

f > 0 is the frequency [Hz]

T ¼ 1=f > 0 is the period [s]

�π 
 φ 
 π is the phase

[rad] or [deg]

Leading/lagging

Euler’s identity e jα ¼ cos αþ j sin α, e jπ=2 ¼ j, e�jπ=2 ¼ �j

Time-domain

signal υ(t) versus

its phasor V; phasor

diagram

Complex phasors

and impedances

ZR ¼ R

ZC ¼ 1

jωC

ZL ¼ jωL

(continued)
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Term Meaning/Figure

Meaning of

complex

impedance

Solution for

an AC circuit

Proof of the

conversion

from time

domain to

frequency

domain

�υS tð Þ þ υR tð Þ þ υC tð Þ ¼ 0 )
�Re VSe

jω tð Þ þ Re VRe
jω tð Þ þ Re VCe

jω tð Þ ¼ 0 )
Re �VSe

jω t þ VRe
jω t þ VCe

jω tð Þ ¼ 0 )
�VSe

jω t þ VRe
jω t þ VCe

jω t ¼ 0 )
�VS þ VR þ VC ¼ 0

Analytical

solution

method

(calculator)

Numerical

solution

method

(MATLAB)

Source

transformation;

Thévenin and

Norton

equivalent

circuits ZT ¼ ZN , VT ¼ ZT IN , IN ¼ VT

ZT
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Table 1. Some basic operations with complex numbers.

e j0 ¼ 1, e jπ=2 ¼ j, e�jπ=2 ¼ �j, e jπ ¼ �1, e�jπ ¼ �1, e jαj j ¼ 1

j ¼ ∠90�, 1
j
¼ ∠� 90�, j2 ¼ �1, 1

j
¼ �j, jj j ¼ 1

Vme
jφ ¼ Vm∠φ ¼ Vm cosφþ j sinφð Þ, Vme

�jφ ¼ Vm∠� ϕ ¼ Vm cosφ� j sinφð Þ
Vme

jφj j ¼ Vme
�jφj j ¼ Vm

xþ jy ¼ Vme
jφ, Vm ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
p

, φ ¼ arctan
y

x

� �
, x � 0

1
xþjy

¼ x
x2þy2

� j
y

x2þy2

1
xþjy

¼ 1
Vm

e�jφ, Vm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
p

, φ ¼ arctan
y

x

� �
, x � 0

xþ jyð Þ* ¼ x� jy, Vme
jφð Þ* ¼ Vme

�jφ, Vm∠φð Þ* ¼ Vm∠� φ

Vm∠φ � Im∠ψ ¼ Vme
jφð Þ Ime

jψð Þ ¼ VmIme
j φþψð Þ ¼ VmIm∠ φþ ψð Þ

Vm∠φ

Im∠ψ
¼ Vme

jφ

Ime jψ ¼ Vm

Im
e j φ�ψð Þ ¼ Vm

Im
∠ φ� ψð Þ

Table 2. Selected trigonometric identities.

sin α ¼ cos α� π=2ð Þ, � sin α ¼ cos αþ π=2ð Þ, cos 2α ¼ 2 cos 2α� 1, sin 2α ¼ 2 sin α cos α

cos αþ βð Þ ¼ cos α cos β � sin α sin β cos α cos β ¼ 0:5 cos αþ βð Þ þ cos α� βð Þð Þ
sin αþ βð Þ ¼ sin α cos β þ cos α sin β sin α sin β ¼ 0:5 cos α� βð Þ � cos αþ βð Þð Þ

sin α cos β ¼ 0:5 sin αþ βð Þ þ sin α� βð Þð Þ
cos αþ cos β ¼ 2 cos αþβ

2

� �
cos α�β

2

� �
sin αþ sin β ¼ 2 sin αþβ

2

� �
cos α�β

2

� �

arctanφ ¼ π
2
� arctan1

φ
, φ > 0 arctanφ ¼ �π

2
� arctan1

φ
, φ < 0

C1 cosωt þ C2 sinωt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

C2
1 þ C2

2

q

cos ωt þ φð Þ, φ ¼ �arctan C2

C1

� �

C1, C2 > 0

C1 cos ω t þ φð Þ � C2 cos ω t þ ψð Þ ¼ 0:5C1C2 cos φ� ψð Þ þ cos 2ωt þ φþ ψð Þð Þ
C1 cos ω t þ φð Þ þ C2 cos ω t þ ψð Þ ¼ C cos ωt þ φð Þ
C ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

C2
1 þ C2

2 þ 2C1C2 cos φ� ψð Þ
q

ϕ ¼ φ� arctan
C2 sin φ� ψð Þ

C1 þ C2 cos φ� ψð Þ

	 


þ 0 C1 þ C2 cos φ� ψð Þ > 0

π C1 þ C2 cos φ� ψð Þ < 0

�
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Problems
8.1 Harmonic Voltage

and Current: Phasor

8.1.1 Harmonic Voltages and Currents

8.1.2 Phase: Leading and Lagging
Problem 8.1

A. Write a general expression for the AC

harmonic voltage signal (steady-state AC

voltage) using the cosine function.

B. Identify amplitude, angular frequency,

and phase.

C. Write relations between the angular fre-

quency, frequency, and the period.

Problem 8.2

A. Determine frequency in Hz, angular fre-

quency in rad/s, and amplitude of the

harmonic voltage signal shown in the

figure below (show units for every

quantity).

B. Write the AC voltage in the form of a

cosine function with the corresponding

amplitude, frequency, and phase.

-2

-1

0

1

2

voltage, V

time, s

0 15 30 45 60 75 90

Problem 8.3. Repeat problem 8.2 for the volt-

age signal shown in the figure below.

0 0.5 1 1.5 2 2.5 3

-0.8

-0.4

0

0.4

0.8

time, ms

v
o
lt
a
g
e
, 
V

Problem 8.4. Repeat problem 8.2 for a har-

monic voltage signal with a DC offset shown

in the figure below.

-10.0

-5.0

0

5.0

10.0

voltage, V

time, s
0 5 10 15 20 25 30

Problem 8.5

A. Determine frequency in Hz, angular fre-

quency in rad/s, amplitude, and phase

(versus the base cosωt signal) of the

harmonic voltage shown in the figure

below (show units for every quantity).

B. Write the AC voltage in the form of a

cosine function with the corresponding

amplitude, frequency, and phase.
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-2

-1

0

1

2

voltage, V

time, s
0 15 30 45 60 75 90

Problem 8.6. Repeat problem 8.5 for the volt-

age signal shown in the figure below.

-2

-1

0

1

2

voltage, V

time, s
0 15 30 45 60 75 90

Problem 8.7. Repeat problem 8.5 for the volt-

age signal shown in the figure below.

voltage, V

0 5 10 15 20 25 30 35 40
-3

-2

-1

0

1

2

3

time, ms

Problem 8.8. Repeat problem 8.5 for the volt-

age signal shown in the figure below.

voltage, V

0 5 10 15 20 25 30 35 40
-3

-2

-1

0

1

2

3

time, ms

Problem 8.9. An AC voltage in a circuit is

given byυ tð Þ ¼ 10 cos 2π50tð Þ V½ �. Using soft-
ware of your choice, plot the voltage to scale

over the time interval of two periods, i.e.,

0 
 t 
 2T . Label the axes.

Problem 8.10. An AC voltage in a

circuit is given by the voltage expression

υ tð Þ ¼ 10 cos 1000t � π=3ð Þ V½ �. Using soft-

ware of your choice, plot the voltage to scale

over the time interval of four periods, i.e.,

0 
 t 
 4T . Label the axes.

Problem 8.11. The reference voltage is shown

by a solid curve in the figure; the AC voltage

under study is shown by a dashed curve. Deter-

mine if the AC voltage under study leads or

lags the reference voltage, and, if so, by how

many degrees.

voltage, V

0 5 10 15 20 25 30 35 40
-3

-2

-1

0

1

2

3

time, ms
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Problem 8.12. Repeat problem 8.11 for the

voltage signal shown in the figure below.

voltage, V

0 5 10 15 20 25 30 35 40
-3

-2

-1

0

1

2

3

time, ms

Problem 8.13. Repeat problem 8.11 for the

voltage signal shown in the figure below.

voltage, V

0 5 10 15 20 25 30 35 40
-3

-2

-1

0

1

2

3

time, s

Problem 8.14. Determine the frequency in

Hz, period in s, amplitude in V, and phase

in degrees (versus the base cosine signal)

of the voltage signal in the form

υ tð Þ ¼ 15 sin 100 t þ 45�ð Þ V½ �. Hint: Convert
the signal to the base cosine form first.

Problem 8.15. Determine the frequency in Hz,

period in s, amplitude in V, and phase in

radians (versus the base cosine signal) of the

voltage signal in the form υ tð Þ ¼
15 sin 1000 t � 35�ð Þ V½ �. Hint: Convert the

signal to the base cosine form first.

Problem 8.16. Determine the frequency in Hz,

period in s, amplitude in V, peak-to-peak value

in V, and phase in radians (versus the base

cosine signal) of the voltage signal in the form

υ tð Þ ¼ 5 sin 100 t þ 225�ð Þ V½ �. Hint: Convert
the signal to the base cosine form first.

Problem 8.17. The AC voltage is given by a

combination of two sinusoids:

A. υ tð Þ ¼ 1sin ω t þπ=2ð Þ�2sin ω t�ð π=2Þ
B. υ tð Þ¼ 1 sin ωt þ π=2ð Þ � 2 sin ωt�ð π=3Þ

Convert this voltage to the basic cosine form

υ tð Þ ¼ Vm cos ω t þ φð Þ and determine the

amplitude and the phase (versus the base cosine

signal).

Hint: Trigonometric identities may be found in

the summary to this chapter.

8.1.4 Definition of a Phasor

8.1.5 From Real Signals to Phasors

8.1.6 From Phasors to Real Signals
Problem 8.18. Determine the phasors for the

real-valued AC voltages and currents. Show

units. Express all phase angles in radians.

υ tð Þ ¼ 10 cos ω t þ π=3ð Þ V½ �
υ tð Þ ¼ 3 cos ω t � 30�ð Þ V½ �
i tð Þ ¼ 12 cos ω t þ π=6ð Þ A½ �
i tð Þ ¼ �1 cos ω t � π=2ð Þ A½ �

Problem 8.19. Determine the phasors for the

real-valued AC voltages and currents. Use the

shorthand notation∠ for the complex exponent.

Show units. Express all phase angles in degrees.

υ tð Þ ¼ 10 sin ω t þ π=3ð Þ V½ �
υ tð Þ ¼ 3 cos 100 t � 30�ð Þ V½ �
i tð Þ ¼ �12 sin ω t þ π=6ð Þ A½ �
i tð Þ ¼ cos ω tð Þ þ sin ωtð Þ A½ �

Problem 8.20. The phasors of the AC voltage

and current are given by

V ¼ 5∠π=3 V½ �
V ¼ 3∠π V½ �
I ¼ 2:1∠45� A½ �
I ¼ 1∠� 180� A½ �
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The AC source has the angular frequency ω.

Restore the corresponding real-valued voltages

and currents. Show units; express all phase

angles in radians.

Problem 8.21. The phasors of the AC voltage

and current are given by

V ¼ 10∠π=2 V½ �
V ¼ 15∠� π=3 V½ �
I ¼ �20∠� 16� A½ �
I ¼ j∠45� A½ �

The AC source has the angular frequency ω.

Restore the corresponding real-valued voltages

and currents as functions of time. Show units.

Express all phase angles in radians.

Problem 8.22. The phasors of the AC voltage

and current are given by

V ¼ �1 V½ �
V ¼ ∠π þ∠� π V½ �
I ¼ �2∠45� A½ �
I ¼ ∠45� þ∠� 45� A½ �

The AC source has the angular frequency ω.

Restore the corresponding real-valued voltages

and currents. Show units; express all phase

angles in degrees.

8.1.7 Polar and Rectangular Forms:

Phasor Magnitude

8.1.8Operationswith Phasors andPhasor

Diagram
Problem 8.23. A complex number V is given

by V ¼ 4þ j2.

A. Convert it into polar form; express the

phase angle in degrees.

B. Plot the number on the phasor diagram.

C. If this number is a phasor of a voltage

signal with the units of volts, what is the

voltage signal in time domain? Assume

the angular frequency ω.

0

Re

Im

2 4

2

4

6

6-2-4-6

-2

-4

-6

Problem 8.24. Repeat problem 8.23 for

V ¼ 4exp �jπ=6ð Þ, but convert this number to

the rectangular form.

Problem 8.25. Repeat problem 8.23 for

V ¼ 25= 3þ j4ð Þ.

Problem 8.26. Phasors of three AC voltage

signals are shown in Fig. 8.8. Every division in

the figure corresponds to 1 V. The AC source

has the angular frequency ω. Restore the corres-

ponding real-valued voltages in time domain.

Show units. Express all phase angles in radians.

Problem 8.27. The phasors of the AC voltage

and current are given in the rectangular form:

V ¼ 3þ j2 V½ �
I ¼ �2þ j3 A½ �

The AC source has the angular frequency ω.

Restore the corresponding real-valued voltages

and currents. Showunits, express all phase angles

in radians.

Problem 8.28*. Solve the previous problem

using MATLAB. Present the corresponding

MATLAB script.

Problem 8.29. The phasors of the AC voltage

and current are given in the rectangular form:

V ¼ 3þ j2ð Þ2 V½ �
V ¼ �2þ j3ð Þ 7þ jð Þ V½ �
V ¼ 1

�0:2þ j0:1
V½ �
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The AC source has the angular frequency ω.

Restore the corresponding real-valued voltages

and currents. Show units; express all phase

angles in radians.

Problem 8.30. Solve the previous problem

using MATLAB. Present the corresponding

MATLAB script.

Problem 8.31. Two phasor voltages are shown

in the phasor diagram. The AC source has the

angular frequencyω. Restore the corresponding

real-valued voltages. Show units. Express all

phase angles in radians.

0

Re(V)

Im(V)

2

V
2

V
1

4 6

2

4

6

Problem 8.32. Phasors of two AC current sig-

nals are shown in the following figure. The AC

source has the angular frequency ω. A sum of

two current signals is desired. Restore the real-

valued current corresponding to the sum of

three signals in time domain. Express the

phase angle in degrees.

0

Re(A)

Im(A)

2

I
2

I
1

4 6

2

4

6

Problem 8.33. Phasors of three AC voltage

signals are shown in Fig. 8.8. Every division in

the figure corresponds to 1 V. The AC source has

the angular frequency ω. A sum of three voltage

signals is desired. Restore the real-valued voltage

corresponding to the sum of three signals in time

domain. Express the phase angle in degrees.

Problem 8.34. Solve the previous problem

using MATLAB. Present the corresponding

MATLAB script.

Problem 8.35. Voltages of two series elements,

shown in the figure below,

v (t)
1

+

-

A B

v (t)
2+

-

-

+

v(t)?

ba

are given by

υ1 tð Þ ¼ 5 cos ω t þ 45�ð Þ V½ �
υ2 tð Þ ¼ 5 cos ω t � 45�ð Þ V½ �

A. Draw the phasor diagram and

show phasorsV1, V2 to scale as two vec-

tors in the complex plane.

B. Show the sum V ¼ V1 þ V2 as a vector

in the complex plane.

A. Find voltage υ(t) between terminals a and

b using the phasor method. Express the

phase angle in degrees.

C. Does voltage υ1(t) lag or lead voltage

υ2(t)?

Problem 8.36. Repeat the previous problem for:

υ1 tð Þ ¼ 1 cos ω t þ 60�ð Þ V½ �
υ2 tð Þ ¼ 2 cos ω t � 30�ð Þ V½ �

Problem 8.37. Electric currents through two

parallel circuit elements are shown in the fol-

lowing figure:

i (t)
1

A

B

i (t)
2

i(t)?
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The current expressions are given by

i1 tð Þ ¼ 4 cos ωt þ 45�ð Þ A½ �
i2 tð Þ ¼ 2 cos ωt � 60�ð Þ A½ �

A. Draw the phasor diagram and

show phasors I1, I2 to scale as two vec-

tors in the complex plane.

B. Show the difference I ¼ I1 � I2 as a

vector in the complex plane.

C. Find the net current i(t) of the parallel

combination using the phasor method.

Express the phase angle in degrees.

D. Does the net current i(t) lag or lead cur-

rent i1(t)?

8.2 Impedance

8.2.1 The Concept of Impedance

8.2.2 Physical Meaning of the Impedance
Problem 8.38. Prove that the impedance of the

inductor, ZL ¼ jωL, has units of ohms.

Hint: The imaginary unit j is dimensionless.

However, in the context of phasors, it may be

assigned the units of rad�1.

Problem 8.39. Prove that the impedance of the

capacitor, ZC ¼ 1
jωC

has units of ohms.

Hint: The imaginary unit j is dimensionless.

However, in the context of phasors, it may be

assigned the units of rad�1.

Problem 8.40. An ECE student discovers a

“new” dynamic passive circuit element

N (in addition to the inductor and the capacitor)

that is described by the voltage-to-current rela-

tion υN ¼ N d2iN
dt2

where N is a positive constant:

A. Obtain the impedance for this circuit

element.

B. Do you think such a circuit element may

exist? Why or why not? Hint: The real

part of the impedance is the element

resistance. If the resistance is negative,

the element delivers power instead of

absorbing it.

Problem 8.41. Another ECE student discovers

a “truly new” dynamic passive circuit element

N (in addition to the inductor and the capacitor)

that is described by the voltage-to-current rela-

tion υN ¼ N d3iN
dt3

where N is a constant:

A. Obtain the impedance for this circuit

element.

B. Do you think such a circuit element may

exist? Why or why not? Hint: The real

part of the impedance is the element

resistance. If the resistance is negative,

the element delivers power instead of

absorbing it.

Problem 8.42. For three AC circuits shown in

the following figure, find the impedance of the

resistor, inductor, and capacitor (when present).

Show units. Express the result in rectangular

form. Also express the result in polar form

using the shorthand notation ∠. Determine the

magnitude of the impedance. Does the strength

of the power supply have an effect on the

obtained impedance values?

+
-

10cos(1000t)=V (t)S

L=33 mH

R=25 k

+
-

2cos(50000t)=V (t)S

C=47 F

R=10

a)

b)

+
-

2cos(50000t)=V (t)S

C=68 F

R=10

c)

L=10 nH

Problem 8.43. Repeat problem 8.42 if the AC

voltage power supply in every figure is

replaced by an alternating current power supply

with the same frequency and amplitude of

0.5 A.

Problem 8.44. Voltages (dashed curves) and

the corresponding currents (solid curves) for
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three unknown circuit elements are shown in

the figure below.
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Determine:

A. The type of the element (resistor, capac-

itor, or inductor)

B. The value of the corresponding resis-

tance, inductance, or capacitance

Note that the angular frequency is different in

every case.

Problem 8.45. Voltages (dashed curves) and

currents (solid curves) for three unknown cir-

cuit elements are shown in the figure below.
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Determine:

A. The type of the element (resistor, capac-

itor, or inductor)

B. The value of the corresponding resis-

tance, inductance, or capacitance

Chapter 8 Steady-State AC Circuit Fundamentals

VIII-428



Problem 8.46. Phasor voltages and currents

for three unknown circuit elements are shown

in the figure below. Determine the type of

the element (R, L, or C) and the value of R,

L, or C.

0 1

I

V

2

1

2

3
a)

0 1

I

V

2

1

2

3
b)

=1000 rad/sec

=3000 rad/sec

0 1

I

V

2

1

2

3
c) =20000 rad/sec

Re (V or A)

Im (V or A)

Re (V or A)

Im (V or A)

Re (V or A)

Im (V or A)

Problem 8.47. Phasor voltages and phasor cur-

rents for three unknown circuit elements are

shown in the figure below. Determine the type of

the element (R, L, or C) and the value of R, L, or

Cwhen appropriate.

0

Re (V or A)

1I

V

2

1

2

3
a)

0 1

I

V

2

1

2

3
b)

=1000 rad/sec

=3000 rad/sec

0 1I V2

1

2

3
c) =20000 rad/sec

Im (V or A)

Re (V or A)

Im (V or A)

Re (V or A)

Im (V or A)

Problem 8.48*. The following MATLAB

script plots the real-valued signals in

time domain corresponding to the phasor

voltage V ¼ 5∠30� V½ � and to the phasor

current I ¼ 2∠� 60� A½ � for an inductor.

clear all

f ¼ 2e6; % frequency, Hz

T ¼ 1/f; % period, sec

dt ¼ T/100; % sampling int.

t ¼ [0:dt:2.5*T]; % time vector

vL ¼ 5*cos(2*pi*f*t+pi/6); % voltage

iL ¼ 2*cos(2*pi*f*t-pi/3); % current

t ¼ t/T; % time in periods
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plot(t, vL, ’b’);

grid on; hold on;

plot(t, iL, ’r’);

xlabel(’t/T’);

ylabel(’voltage/current’)

Modify the script and plot the real-valued volt-

ages and currents corresponding to the phasors

shown in the phasor diagrams for Problem 8.46.

Problem 8.49. Repeat the previous problem for

the phasors shown in the phasor diagrams for

Problem 8.47.

8.3 Principles of AC Circuit

Analysis

8.3.1 AC Circuit Analysis: KVL, KCL,

and Equivalent Impedances

8.3.2 Complete Solution for an AC

Circuit: KVL and KCL on Phasor

Diagram
Problem 8.50. For the AC circuit element com-

binations shown in the figure that follows,

R

C

R

L
eqZ eqZ

a)

R

L
eqZ

c)

C

b)

A. Find the equivalent impedance Zeq in

polar form given that

ω ¼ 10000 rad=s, C ¼ 0:1 μF,

L ¼ 100 mH, R ¼ 1 kΩ.

B. Plot the result for the partial impedances

and for Zeq on the corresponding phasor

diagram.

Problem 8.51. Find Zeq in the polar form for

the circuit element combination shown in the

figure below when ω ¼ 100, 000 rad=s,
C ¼ 100 nF, L ¼ 1 mH, R ¼ 100 Ω.

R C
eqZ L

Problem 8.52. For three circuit element com-

binations shown in the figure below,

findZeq given thatω ¼ 2000 rad=s,C ¼ 5 μF,

L ¼ 50 mH, R ¼ 1 kΩ.

R C
eqZ

a)

L

R

C
eqZ

b)

L

C

eqZ

c)

LR

Problem 8.53. A complex impedance of any

circuit may be written in the form Z ¼ Rþ jX

where R is called the resistance and X is called

the electrical reactance or simply the reac-

tance. An engineer measures a reactance of

2 Ω over an inductor at 60 Hz. What is the

inductance?

Problem 8.54. The same engineer measures a

reactance of �1 kΩ over a capacitor at 60 Hz.

What is the capacitance?

Problem 8.55. For the circuit shown

in the figure below, υS tð Þ ¼ 10 cosωt V½ �,
ω ¼ 10, 000 rad=s, C ¼ 1 μF, R ¼ 100 Ω:

A. Find phasor current I and phasor volt-

ages, VR, VC, and construct the voltage

phasor diagram for phasors VR, VC, VS.
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B. Find voltages across the resistor and

capacitor, υR(t) and υC(t), as functions

of time.

v
R+

-

R

C
+
-v (t)S v

C

+

-

i(t)

Problem 8.56. For the circuit shown in

the figure below, iS tð Þ ¼ 1 cosωt A½ � and

ω ¼ 10, 000 rad=s, C ¼ 1 μF, R ¼ 100Ω.

A. Find phasor voltages VR, VC, Vand con-

struct the voltage phasor diagram for

phasors V, VR, VC.

B. Find voltages across the resistor and

capacitor, υR(t) and υC(t), as functions

of time.

v
R+

-

R

Cv
C

+

-

i(t)

i (t)S v(t)

+

-

Problem 8.57. Repeat problem 8.55 when

C ¼ 2:2 μF. The rest of the parameters are

the same.

Problem 8.58. Repeat problem 8.55 when C

¼ 2:2 μF and f ¼ 500 Hz. The rest of the

parameters are the same.

Problem 8.59. In the circuit shown in the figure

below, υS tð Þ ¼ 12 cosωt V½ �, ω ¼ 10, 000 rad=s,
L ¼ 1 mH, R ¼ 10 Ω:

A. Find phasor current I and phasor volt-

ages, VR, VL, and construct the voltage

phasor diagram for phasors VR, VC, VS.

B. Find voltages across the resistor and

inductor, υR(t) and υL(t), as functions

of time.

v
L+

-

L

R
+
-v (t)S v

R

+

-

i(t)

Problem 8.60. For the circuit shown in the fig-

ure, iS tð Þ ¼ 1 cosωt A½ � and ω ¼ 10, 000 rad=s,
L ¼ 10 mH, R ¼ 100 Ω:

A. Find phasor voltages, VR, VL, V and

construct the voltage phasor diagram

for phasors V, VR, VC.

B. Find voltages across the resistor and

inductor, υR(t) and υL(t), as functions

of time.

L

v
L+

-

Rv
R

+
-

i(t)

i (t)S v(t)

+

-

Problem 8.61. Repeat Problem 8.59 when

L ¼ 1:9 mH. Assume the other parameters to

be the same.

Problem 8.62. Repeat Problem 8.59 when

L ¼ 6:8 mH and f ¼ 1000 Hz. The rest of

the parameters are the same.

8.3.3 Source Transformation

8.3.4 Thévenin and Norton Equivalent

Circuits

8.3.5 Summary of ACCircuit Analysis at

a Single Frequency

8.3.6 Multi-frequency AC Circuit Anal-

ysis: Superposition Principle
Problem 8.64. A current source with the

phasor current IN and in parallel with the

impedance ZN shown in the following figure

is equivalent to a voltage source with the phasor
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voltage VT and in series with the impedance

ZT. Determine VT and ZT given that

IN ¼ 2þ j3 A, ZN ¼ 2� j3 Ω. Express your

result in the polar form.

IN ZN

a

b

Problem 8.65.Determine phasor voltage V1 in

the AC circuit shown in the following figure

using the method of source transformation.

The impedance values are given at the fre-

quency of interest.

V1+

-

j10

3 - 5j

2A905

Problem 8.66. Find the Thévenin equivalent

circuit, i.e., VT and ZT, for the circuit shown in

the figure when ω ¼ 377 rad=s, L ¼ 26:5 mH,

R ¼ 10 Ω, C ¼ 220 μF, υS tð Þ ¼ 10 cosωt V½ �:

a

b

+
-v (t)S

Problem 8.67. Find the Thévenin equivalent

circuit, i.e., VT and ZT, for the circuit shown in

the figure when ω ¼ 377 rad=s, L ¼ 26:5 mH,

R ¼ 10 Ω, C ¼ 500 μF, and V S tð Þ ¼ 10 cos

ω t V½ �:

a

b

+
-v (t)S

Problem 8.68. Describe the meaning of the

superposition principle for multifrequency AC

circuits in your own words.

Problem 8.69. Find real-valued voltage υR(t)

across the resistor for the circuit in the follow-

ing figure using the superposition principle.

You are given V 1 ¼ 10 V, V 2 ¼ 1 V. The

AC frequencies are ω1 ¼ 377 rad=s and

ω2 ¼ 3ω1, respectively.

+
- V cos t1 1

+
-

+

-

V =10 V DC3

V cos t2 2

v
R+

-
10

1010

L=10 mH
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Chapter 9: Filter Circuits: Frequency

Response, Bode Plots, and Fourier

Transform

Overview

Prerequisites:

- Knowledge of complex arithmetic

- Knowledge of superposition principle for linear circuits (Chapter 3)

- Knowledge of harmonic voltage and current behavior (Chapter 8)

- Knowledge of phasor/impedance method for AC circuit analysis (Chapter 8)

- Knowledge of an operational amplifier with negative feedback (Chapter 5)

Objectives of Section 9.1:

- Establish the concept of a first-order analog filter as a two-port network

- Understand the difference between high-pass and low-pass filters

- Understand the effect of filter termination

- Become familiar with the fundamental filter characteristics including transfer

function, break frequency, roll-off, and high-/low-frequency asymptotes

- Understand the construction of the Bode plot including decibels; become familiar

with some of the jargon used by electrical engineers

- Establish the close agreement between first-order RC and RL filters; become

familiar with the concept of cascaded filter networks

Objectives of Section 9.2:

- Establish the model for the open-loop gain of an operational amplifier as a function

of frequency

- Understand the meaning of datasheet parameters such as unity-gain bandwidth and

gain-bandwidth product

- Establish the model for the closed-loop gain of an operational amplifier as a function

of frequency from first principles

- Find the frequency bandwidth for any practical operational amplifier circuit using

the datasheet
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Objectives of Section 9.3:

- Obtain an introductory exposure to the continuous Fourier transform and be able to

compute the transform for simple examples including the meaning of a sinc function

- Be able to relate continuous and discrete Fourier transform via the Riemann sum

approximation

- Be able to define sampling points of the DFT in both time and frequency domain

- Understand the structure and ordering of the DFT frequency spectrum including its

relation to negative frequencies

- Apply the DFT to a filter with a given transfer function and generate the discrete

frequency spectrum of the output signal

- Apply the DFT to filter operation with input pulse or nonperiodic signals

- Apply the DFT (FFT and IFFT) in MATLAB

Application examples:

- Effect of a load connected to the filter

- Effect of next-stage filter load

- Finding bandwidth of an amplifier circuit using the datasheet

- Selection of an amplifier IC for proper frequency bandwidth

- Numerical differentiation via the FFT

- Filter operation for an input pulse signal

- Converting computational electromagnetic solution from frequency domain to time

domain

Keywords:

Analog filter, RC filter, RL filter, Port, Two-port network, First-order high-pass filter, First-order

low-pass filter, Filter termination, Amplitude transfer function, Phase transfer function, Power

transfer function, Complex transfer function, Frequency response, Break frequency, Half-power

frequency, 3-dB frequency, Corner frequency, Bode plot, Decibel, Roll-off, High-frequency

asymptote, Low-frequency asymptote, Frequency band, Passband, Stopband, Decade, Octave,

Power gain, Open-loop amplifier gain, Unity-gain bandwidth, Gain-bandwidth product, Internal

compensation, Open-loop AC gain, Closed-loop AC gain, Amplifier circuit bandwidth, Fourier

transform continuous (direct inverse Fourier spectrum, direct inverse Fourier spectrum,

bandlimited spectrum, reversal property, sinc function, mathematical properties, amplitude-

modulated signal, Parseval’s theorem, energy spectral density), Fourier transform discrete

(Fast digital signal processing (DSP), sampling points, sampling interval, sampling frequency,

sampling theorem, Riemann sum approximation, rectangle rule, fundamental frequency, direct

(DFT), inverse (IDFT), standard form, reversal property, structure of discrete spectrum, numerical

differentiation, filter operation for pulse signals)

IX-434

Chapter 9 Filter Circuits: Frequency Response, Bode Plots. . .



Section 9.1 First-Order Filter Circuits and Their

Combinations

AC voltage divider circuits (either RC or RL) generally operate as analog filters. They

pass certain voltage signals but stop or cut out other signals, depending on the signal’s

frequency content. The analog filters studied in this section are first-order filters since

they may be described by first-order differential equations—we discussed them in

Chapter 7. The phasor/impedance method is applied to solve the AC circuit, both in

analytical and in numerical form. Although over the years the value of the numerical

analysis has greatly increased in engineering, the analytical method remains important if

we are interested in a parametric study such as a rigorous filter analysis. The analytical

method involves (multiple) conversions of complex numbers or expressions from the

rectangular to polar form and vice versa. Generally, division and multiplication are better

carried out in polar form, whereas addition and subtraction require a rectangular form.

9.1.1 RC Voltage Divider as an Analog Filter

The RC voltage divider circuit shown in Fig. 9.1a is perhaps the oldest and best-known

version of an analog filter. In order to understand its operation, we must obtain a general

solution to the RC circuit in Fig. 9.1a. Even though the solution has to work at any

frequency f or angular frequency ω of interest, it is not difficult to find.

What is an analog filter? The goal of the filter is to accept an AC voltage signal at its input

and either pass the signal to the next circuit block or to stop (or “cut out”) the signal,

depending on its particular frequency. Imagine a human voice that is mixed with white noise

with a spectrum extended over all frequencies. If the noise level is high, we will probably

only hear screaming at high frequencies. However, if we only pass the voltage signals with

frequencies below 3 kHz, where most of the voice power is concentrated, the resulting total

signal will be much clearer for listening. The analog filter is an electric circuit which, in its

simplest form, is identical to the circuit in Fig. 9.1.

v
R+

-

R

C

R
Z

C
Z

+
- v

C

+

-

V
R+

-

+
-VS V

C

+

-

i(t) I

a) b)

v (t)=v (t)in S

Fig. 9.1. RC voltage divider circuit and its solution by the phasor method. We note the phasors for

the voltages VS, VR, VC and the phasor for the circuit current I.
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General Solution

Let us first convert the circuit in Fig. 9.1a to a phasor form as shown in Fig. 9.1b. We

assume that υS tð Þ ¼ Vm cosω t ; therefore VS ¼ Vm. Next, we solve the resulting “DC

circuit” in the complex domain. The voltage division yields

VC ¼ ZC

ZR þ ZC

Vm ¼
1

jωC

Rþ 1
jωC

Vm ¼ 1

1þ jωRC
Vm ¼ 1

1þ jωτ
Vm V½ � ð9:1aÞ

VR ¼ ZR

ZR þ ZC

Vm ¼ R

Rþ 1
jωC

Vm ¼ jωRC

1þ jωRC
Vm ¼ jωτ

1þ jωτ
Vm V½ � ð9:1bÞ

where τ ¼ RC is exactly the same time constant that appears for transient circuits in

Chapter 7. Converting Eq. (9.1a) and (9.1b) into polar form gives

VC ¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ωτð Þ2
q Vm∠φC, φC ¼ � tan �1 ωτð Þ ð9:1cÞ

VR ¼ ωτ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ωτð Þ2
q Vm∠φR, φR ¼ π

2
� tan �1 ωτð Þ ð9:1dÞ

After the polar form has been obtained, the real-valued voltages are found in the form

υC tð Þ ¼ VmC cos ωt þ φCð Þ V½ �, VmC ¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ωτð Þ2
q Vm V½ �

υR tð Þ ¼ VmR cos ωt þ φRð Þ V½ �, VmR ¼ ωτ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ωτð Þ2
q Vm V½ �

ð9:1eÞ

The general solution of the RC circuit in Fig. 9.1a is now complete. The key observations

are that the amplitudes of the resistor voltage and the capacitor voltage now become

functions of frequency.

Qualitative Analysis

The circuit in Fig. 9.1 is a voltage divider. The supply voltage (or the input voltage to the

filter) is divided between the capacitor and the resistor. Which voltage dominates at low

frequencies and which at high frequencies? To answer those questions, we consider

Eq. (9.1e). When ω ! 0,
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VmC ¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ωτð Þ2
q Vm ! Vm

VmR ¼ ωτ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ωτð Þ2
q Vm ! 0

ð9:2aÞ

Therefore, at low frequencies, the capacitor voltage dominates; it is approximately equal

to the supply voltage. This fact is quite clear because the capacitor acts like an open

circuit for DC, implying that the capacitor voltage “sees” nearly all the supply voltage.

On the other hand, when ω ! 1,

VmC ¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ωτð Þ2
q Vm ! 0

VmR ¼ ωτ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ωτð Þ2
q Vm ! Vm

ð9:2bÞ

Therefore, at high frequencies, the resistor voltage dominates; it approximately equals the

supply voltage. This fact is also easy to understand because the capacitor acts like a short

circuit for a high-frequency AC, ZCj j ¼ 1= ωCð Þ ! 0, so that the capacitor voltage is

nearly zero and all the supply voltage is “seen” by the resistor.

Filter Concept: Two-Port Network

Now, we will explore the concept of an analog low-pass RC filter. We consider the power

supplyAC voltage as the input voltage υin(t) into the filter.We consider the capacitor voltage

as the output voltage υout(t) of the filter. According to Eq. (9.2a, 9.2b),

υout tð Þ � υin tð Þ at low frequencies

υout tð Þ � 0 at high frequencies

The circuit so constructed passes voltage signals with lower frequencies (like the human

voice) but cuts out voltage signals with higher frequencies (like noise). Figure 9.2 on the

left depicts the corresponding circuit transformation. This transformation implies that the

input voltage is acquired from another circuit block and the output voltage is passed to

another circuit block. The qualitative filter description is complete. You should note that

both circuits on the right of Fig. 9.2 are called two-port networks. A port is nothing else

but a pair of voltage terminals, either related to the input voltage or to the output voltage,

respectively. Can we construct an RC filter that passes high frequencies but cuts out low

frequencies? In other words, can we create a so-called high-pass filter? The solution is

simple and elegant; the output voltage is now the resistor voltage, not the capacitor

voltage. Figure 9.2b shows the corresponding circuit transformation.
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Example 9.1: The input voltage to the low-pass filter in Fig. 9.2a is a combination of three

harmonics: υin tð Þ ¼ 10 cosω1 t þ 10 cosω2 t þ 10 cosω3 t V½ �, each with an amplitude of

10 V. The filter has the following parameters: C ¼ 530 nF, R ¼ 100 Ω. Determine the

output voltage υout(t) given that:

1. f 1 ¼ 20 Hz (lower frequency of the acoustic range)

2. f 2 ¼ 3000 Hz (frequency below which most of the acoustic power is present)

3. f 3 ¼ 20, 000 Hz (higher frequency of the acoustic range)

Solution: The key is the superposition principle, which is based on circuit linearity. Using

the superposition principle, we apply Eq. (9.1e) (and Eq. (9.1d) reporting the phases) for

the capacitor voltage (the output voltage to the filter) to each harmonic separately and

then find the sum of three partial solutions. This will be the filter output voltage, which is

given by

υout tð Þ ¼ 10:00 cos ω1 t � 0:4�ð Þ þ 7:07 cos ω2 t � 45:0�ð Þ
þ 1:48 cos ω3 t � 81:5�ð Þ V½ � ð9:3Þ

The filter reduces the amplitudes of higher-frequency harmonics and simultaneously

creates a certain phase shift. The high-pass filter operates in an opposite manner. The

phase shift becomes positive.

Example 9.2: Solve Example 9.1 using MATLAB.

Solution: The text of the corresponding MATLAB is listed below. It is vectorized in the

sense that any number of input harmonics may be taken into consideration:

R

C
+
-v (t)=v (t)in S v

C

+

-

R

C

+

-

v (t)outv (t)in

+

-

low-pass analog RC filter

C

R+
-v (t)=v (t)in S v

R

+

-

C

R

+

-

v (t)in

+

-

high-pass analog RC filter

v (t)out

a)

b)

Fig. 9.2. (a) Transformation of the series RC circuit into the low-pass analog RC filter.

(b) A similar transformation into the high-pass RC filter.

Chapter 9 Filter Circuits: Frequency Response, Bode Plots. . .

IX-438



Example 9.2 (cont.):

Vm      = [10 10 10];       %   input voltage amplitudes, V

f       = [20 3000 20000];  %   input voltage frequencies, Hz

omega   = 2*pi*f;           %   angular frequencies, rad/sec

R       = 100;              %   resistance, Ohm

C    = 530e-9;           %   capacitance, F

tau     = R*C; 

VmC     = 1./sqrt(1+(omega*tau).^2).*Vm     %   output voltage ampl., V

phiC    = - atan(omega*tau)*180/pi          %   output phases in deg

Exercise 9.1: The input voltage to a high-pass filter circuit is a combination of two

harmonics, υin tð Þ ¼ 2 cosω1 t þ 2 cosω2 t, with the amplitude of 2 V each. The filter has

the following parameters: R ¼ 100 kΩ and C ¼ 1:59 nF. Determine the output voltage

υout(t) to the filter given that f 1 ¼ 100 Hz and f 2 ¼ 100 kHz.

Answer: υout tð Þ ¼ 1:99 cos ω1 t � 5:7�ð Þ þ 0:02 cos ω2 t � 89:4�ð Þ V½ �.

Application Example: Effect of a Load Connected to the Filter

The initial excitement about the simplicity of the theoretical filter model often fades

quickly once we try to construct the filter circuit of Fig. 9.2a or Fig. 9.2b in the laboratory.

And the circuit does not work. The major reason for this is the effect of a load connected

to the filter. We consider the low-pass filter in Fig. 9.3.

To solve the circuit with the load, we need to apply the phasor method. The input

voltage is now divided between the resistance R and the parallel combination of the

capacitor impedance and the load resistance, RL. Instead of Eq. (9.1c), we will have

VC ¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ R=RLð Þ2 þ ωτð Þ2
q Vm∠φC V½ �, φC ¼ � tan �1 ωτ

1þ R=RL

� �

ð9:4Þ

The proof of this result is suggested in Problems 9.5 and 9.6. The necessary condition for

proper filter operation (both high pass or low pass) is that the filter termination resistance

R

C

+

-

v (t)outv (t)in

+
-

Load

Fig. 9.3. A generic load connected to the low-pass RC filter.
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should be much greater than the filter’s resistance R. Put in approximate mathematical

terms: R=RL � 1. The low-resistance load (e.g., a loudspeaker) would simply short out

the capacitor! To avoid this effect, a buffer amplifier may have to be inserted between the

load and the filter.

9.1.2 Half-Power Frequency and Amplitude Transfer Function

Low-Pass Filter
We are going to show how to construct a low-pass RC filter for a particular application.

The design engineer needs to know at approximately which frequency the signal should

be cut out. It is a common agreement to choose this frequency so that the amplitude of the

output voltage is exactly 1=
ffiffiffi

2
p

� 0:707 of the input voltage amplitude Vm. In other

words, the output filter power, which is proportional to the square of the output voltage,

becomes exactly half of the input power. The corresponding frequency is called the break

frequency or half-power frequency of the low-pass filter. According to Eq. (9.1e), the

break frequencyωb ¼ fb is found using the amplitude of the output (capacitor) voltage in

the following way:

1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ωb τð Þ2
q ¼ 1

ffiffiffi

2
p ) ωb τ ¼ 1 ) ωb ¼

1

τ
) fb ¼

ωb

2π
¼ 1

2πτ
¼ 1

2πRC
Hz½ � ð9:5Þ

Expressed in terms of the break frequency, the amplitude of the output voltage to the

voltage across the capacitor in Eq. (9.1e), has the form Vm=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ f =fbð Þ2
q

since

ωτ ¼ f =fb. With the input voltage amplitude to the filter being Vm, the ratio of the two

amplitudes is the amplitude transfer function of the low-pass filter Hm. This transfer

function is given by

Hm fð Þ ¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ f =fbð Þ2
q � 1 ð9:6aÞ

We note that the transfer function is dimensionless (or has the units of V/V). For a

given input voltage, the amplitude transfer function allows us to determine the output

voltage amplitude. The behavior of Eq. (9.6a) is such that the amplitude transfer function

is always less than one: the output voltage cannot exceed the input voltage.

High-Pass Filter

The break frequency, ωb or fb, of the high-pass filter has the meaning of reducing the

voltage amplitude by a factor of 1=
ffiffiffi

2
p

and reducing the signal power by the factor of ½.

According to Eq. (9.1e) for the resistor voltage, it is found using the equality

ωb τ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ωb τð Þ2
q

¼ 1=
ffiffiffi

2
p

, which gives us exactly the same value as the break
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frequency for the low-pass filter; see Eq. (9.5). In other words, the definitions of the break

frequency and the half-power frequency coincide for the first-order low-pass filter and the

first-order high-pass filter, respectively. In terms of the break frequency, the amplitude of

the output voltage to the high-pass filter, the voltage across the resistor in Eq. (9.1e), has

the form Vmf =fb=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ f =fbð Þ2
q

, whereas the input voltage amplitude to the filter is still

Vm. The ratio of the two amplitudes is the amplitude transfer function of the high-pass

filter, denoted here by the same letter Hm. This transfer function is given by

Hm fð Þ ¼ f =fb
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ f =fbð Þ2
q � 1 ð9:6bÞ

We note again that Hm cannot exceed 1. The implication is that the output voltage is

always less than or equal to the input voltage; the filter cannot amplify the input.

Example 9.3: With the values ofC ¼ 530nF, R ¼ 100Ω, determine the break frequency

of both the low-pass RC filter and the high-pass RC filter, respectively.

Solution: We utilize the definition of Eq. (9.5), fb ¼ 1
2πRC

Hz½ �, and obtain fb ¼ 3:00 kHz

for either case. This is exactly why the particular signal at 3 kHz in Eq. (9.3) of Example

9.1 (the example uses the same parameters) was reduced by a factor of 0.707 at the output

of the low-pass filter. If a high-pass filter were used, the corresponding output signal would

have exactly the same form but with the phase shift of +45� instead of �45�.

Exercise 9.2: The input signal to a high-pass RC filter includes a 180-Hz component. Its

amplitude is to be reduced by a factor of 10. What break frequency should the filter have?

Answer: 1791 Hz.

9.1.3 Bode Plot, Decibel, and Roll-Off

The Bode plot displays the amplitude transfer function defined by Eq. (9.6a, 9.6b) as a

function of frequency on a logarithmic scale. It was first suggested by an electrical

engineer and mathematician Hendrik Wade Bode (1905–1982), Bell Labs, NJ, USA.

The advantage of the logarithmic scale is the ability to simultaneously observe the (very

large) function variations at small and large frequencies. Furthermore, you can more

clearly see the roll-off of the transfer function as a straight line (asymptote). This is

impossible to see when using the linear scale. As the x-variable, we will always choose

frequency f (and avoid the angular frequency ω). As the y-variable, we plot the logarith-

mic function
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Hm fð ÞdB ¼ 20log10Hm fð Þ dB½ � ð9:7Þ

The dimensionless units for the amplitude transfer function in Eq. (9.7) are decibels or

dB. Figure 9.4 shows the Bode plot for transfer function Eq. (9.6a) with fb ¼ 100 Hz.

The selected values of the transfer function are given in Table 9.1 and where the last row is

given in dB. The particular values of the resistance and capacitance are yet to be found;

only their combination τ ¼ RC ¼ 1= 2πfbð Þ ¼ 1:6 ms is really important for the Bode plot.

Despite the apparent simplicity of this operation, the Bode plot for an RC filter is a very

likely question on the entrance exam for an industrial position in electrical engineering.

Historical: The decibel is named in honor of Alexander Graham Bell (1847–1922), a

Scottish scientist and inventor who later became a professor at Boston University,

MA. Bell invented the first practical telephone at the age of 28 (US Patent 174,465) and

very quickly became a millionaire. His father-in-law Gardiner Greene Hubbard founded

the Bell Telephone Company in 1878, which subsequently transformed into American

Telephone & Telegraph Company (AT&T).

A legitimate question to ask is what is the meaning of the factor 20 in Eq. (9.7)? The

answer is based on the equality 20log10Hm fð Þ ¼ 10log10H
2
m fð Þ where H2

m( f ) is not the

Table 9.1. Values of amplitude transfer function for a low-pass filter with f b ¼ 100 Hz.

f, Hz 1 10 100 1000 104 105 106 107

Hm( f ) 1.000 0.995 0.707 1.0� 10�1 1.0� 10�2 1.0� 10�3 1.0� 10�4 1.0� 10�5

20 log10Hm( f ) �0.0004 �0.0432 �3.0103 �20.043 �40.000 �60.000 �80.000 �100.00

101 102 103 104 105 106 107

-100

-80

-60

-40

-20

0

Bode plot

Frequency of input voltage, Hz

roll-of f of 20dB

per decade

fb

decade

H ,  dBm

passband

100

3dB or 70.7% amplitude

attenuation

Fig. 9.4. Construction of a Bode plot for the amplitude transfer function of a low-pass RC filter

with break frequency of f b ¼ 100 Hz.
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amplitude transfer function but rather attempts to represent power, which is proportional

to voltage squared for a resistor. Therefore, Eq. (9.7) in fact attempts to plot the power

transfer function even though the capacitor in Fig. 9.2a does not consume any power in the

average sense, see Chapter 11. Also note that, when f ¼ fb, the transfer function in Table 9.1

is approximately �3 dB. Therefore, the break frequency is also called the 3-dB frequency

for obvious reasons. Another name, the corner frequency, will be explained shortly.

The interval on the Bode plot for which the frequencies differ by a factor of 10 is called

a decade. Every division on the x-axis in Fig. 9.4 is one decade. The transfer function for

any first-order low-pass filter decreases by 20 dB per decade or has the 20-dB-per-decade

roll-off as seen in Fig. 9.4. This not only occurs away from the break frequency, i.e., when

f 	 fb, but it is also approximately valid in the interval from fb to 10fb; see Table 9.1.

Note that an interval of frequencies is called the frequency band. The roll-off of 20 dB per

decade (or equivalently, the slope of -20 dB per decade) means that the output amplitude

of the filter decreases by a factor of 10 per decade (see Table 9.1), whereas the output

power decreases by the factor of 100. Figure 9.4 shows a frequency band from 0 to fb,

which is the passband of the low-pass filter. The passband is the range of frequencies that

are passed through a filter without being (significantly) attenuated. The opposite of the

passband is the stopband. The required attenuation within the stopband may be specified

between 20 and 120 dB as compared to the value of 0 dB, which means no attenuation.

Besides the decade, the relative frequency interval of one octave is sometimes used. In

this interval, the frequencies differ by the factor of 2, not 10. For example, a TV antenna

that has the bandwidth of one octave (400–800 MHz) may be used to receive most of the

(digital) commercial TV channels in the USA. It can be shown that the RC filter has a

6-dB-per-octave roll-off, away from the break frequency.

Historical: The career of Hendrik Wade Bode (1905–1982), a pioneer of modern control

theory and electronic telecommunications, gives us an example of how important it is to

have a comprehensive education in calculus and a solid background in electrical engineer-

ing. A graduate of the Ohio State University (BS in mathematics at the age of 19 and then

MS in mathematics two years later), Hendrik Bode started his job at Bell Labs as a designer

of electronic filters and invented the asymptotic plots we now call them Bode plots in 1938.

These plots have proven to be extremely useful in feedback control theory. Today, any

electrical engineer who works with amplifiers and their frequency responses is relying on

Bode plots. Some consider Bode a pioneer of robotics as well, based on his invention of

robotic antiaircraft artillery during WWII.

Exercise 9.3: The following values of the amplitude transfer function are given:

Hm fð Þ ¼ 0:707, 0:0707, and 0:00707. Find the corresponding values of Hm( f )dB.

Answer: �3.01 dB, �20.00 dB, and �40.00 dB.
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Example 9.4: Design a medium-frequency-range RC low-pass filter (LPF) that has a break

frequency of 1 kHz. The filter load has the resistance of R ¼ 100 kΩ. Create the amplitude

Bode plot in the range from 10Hz to 100 kHz. Label the filter passband. Repeat the same task

for the high-pass filter (HPF).

Solution: The condition fb ¼ 1= 2πRCð Þ yields C ¼ 1= 2πRfbð Þ ¼ 1:6 nF. The Bode plot
may be generated by finding transfer function values for (at least) every decade and filling

out a table similar to Table 9.1. The result is shown in Fig. 9.5a. The passband is the

frequency band from 0 to fb. For the high-pass filter, we repeat the same steps but replace

the transfer function given by Eq. (9.6a) by the transfer function given by Eq. (9.6b).

The result is shown in Fig. 9.5b. The passband extends from fb to infinity and is only

limited by the upper frequency of the Bode plot. Note that the Bode plot for the high-pass

filter has the same form, but it is mirror reflected about the break frequency. This is another

advantage of the logarithmic scale.

Figure 9.5 indicates that the amplitude response of both the low-pass filter and the high-

pass filter follows two straight lines, which are known as high-frequency and low-frequency

asymptotes. The corner between them is the break frequency, also called the corner fre-

quency. Note that, for the high-pass filter, the meaning of high-frequency and low-frequency

asymptotes is interchanged in Fig. 9.5b.

9.1.4 Phase Transfer Function and Its Bode Plot

According to Eq. (9.1e), it is not only the amplitude but also the phase of the input signal

that undergoes a transformation when the signal is passed through the filter. The phase

transformation is important since different frequencies (or harmonics) of the input signal

may have a certain phase relation that is distorted by thefilter. The phase transfer function is
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Fig. 9.5. (a) Bode plot for the amplitude transfer function of the low-pass RC filter with the break

frequency f b ¼ 1 kHz. (b) The same Bode plot but for the high-pass RC filter. Note high-

frequency and low-frequency asymptotes.
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given by the phase variation of the filter’s output voltage, which is either the capacitor

voltage for the low-pass filter or the resistor voltage for the high-pass filter. From Eq. (9.1c)

for the low-pass filter, the phase transfer function has the form

φH fð Þ ¼ � tan �1 ωτð Þ ¼ � tan �1 f

fb

� �

low-pass RC filter ð9:8aÞ

From Eq. (9.1d) for the high-pass filter, the phase transfer function has the form

φH fð Þ ¼ π

2
� tan �1 ωτð Þ ¼ π

2
� tan �1 f

fb

� �

high-pass RC filter ð9:8bÞ

where the break frequency is given by Eq. (9.5).

Example 9.5: Generate the phase Bode plots for the low-pass filter and the high-pass

filter, respectively, with the same break frequency fb ¼ 1kHz. The frequency band is from

10 Hz to 100 kHz.

Solution: The phase Bode plots in Fig. 9.6 may be generated by calculating the phase

transfer function according to Eq. (9.8a, 9.8b) for (at least) every decade. The result is

shown in Fig. 9.6. You can see that the Bode plots only differ by a phase shift of 90�.
Alternatively, a MATLAB script may be used:

f       = logspace(1, 5);      % frequency vector, Hz (from 10^1 to 10^5 Hz)

fb      = 1000;                % break frequency, Hz

phiH1   = -atan(f/fb);         % low-pass filter phase transfer function

phiH2   = pi/2-atan(f/fb);     % high-pass filter phase transfer function

semilogx(f, phiH1/pi*180); grid on;

title('Bode plot'); ylabel('phase transfer function, deg'); xlabel('f, Hz')

9.1.5 Complex Transfer Function: Cascading Filter Circuits

The complex transfer function of the filter,H( f ), is often called the frequency response of the

filter. It describes not only the amplitude transformation but also the phase transformation.

The transfer function now becomes a complex expression. It is equal to the ratio of two

phasors; specifically, it denotes the ratio of the output phasor voltage to the input phasor

voltage. The low-passfilter has the formof Fig. 9.1with the input voltage equal to the supply

voltage and the output voltage equal to the capacitor voltage. Its complex transfer function is

given by Eq. (9.1c) divided by Vm. The high-pass filter also has the form of Fig. 9.1 with the

input voltage equal to the supply voltage and the output voltage equal to the resistor voltage.

Its complex transfer function is given by Eq. (9.1d) divided by Vm. Thus, we obtain
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H fð Þ
Hm fð Þ∠φH¼

1

1þ j f =f bð Þ¼
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ f =f bð Þ2
q ∠� tan�1 f

f b

� �

; low-passRC filter

f =f bð Þ
1þ j f =f bð Þ¼

f =f b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ f =f bð Þ2
q ∠

π

2
� tan�1 f

f b

� �

; high-passRC filter

8

>

>

>

>

>

<

>

>

>

>

>

:

ð9:9aÞ

This is consistent with Eqs. (9.6a, b) and (9.8a, b), respectively. Given the phasor of input

voltage Vin, the phasor of the output voltage is simply expressed by

Vout ¼ H fð ÞVin ð9:9bÞ

Equation (9.9b), which is valid for any linear electronic filter and other linear systems,

fully describes the filter operation and has great practical value.

Example 9.6: For a low-pass RC filter with the values C ¼ 530 nF, R ¼ 100 Ω,

determine the output voltage in time domain when the input voltage is given by

υin tð Þ ¼ 1 cos ω t þ 30�ð Þ V½ � where ω ¼ 2π � 3000 rad=s.

Solution: The break frequency of the low-pass filter is fb ¼ 3:00 kHz, which coincides

with the signal frequency in this particular case. According to the first Eq. (9.9a) and

Fig. 9.6a, at that frequency,H fð Þ ¼ 1
ffiffi

2
p ∠� 45�; therefore, the output voltage has the form

Vout ¼ 1
ffiffi

2
p ∠�15� or υout tð Þ ¼ 0:71 cos ω t � 15�ð Þ V½ �. The same analysis may be applied

at any frequency and phase of the input harmonic voltage signal.

Another advantage of the complex transfer function lies in the fact that the series or

cascade combination of any number of filters (or two-port networks) shown in Fig. 9.7

has a transfer function that is simply the product of the corresponding transfer functions:
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Fig. 9.6. Comparison of the phase Bode plots for (a) the low-pass-filter and (b) for the high-pass filter

with the same break frequency f b ¼ 1 kHz. Both plots are identical to within a phase shift.
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H fð Þ ¼ H1 fð ÞH2 fð Þ ) Hm fð Þ ¼ Hm1 fð ÞHm1 fð Þ ð9:10Þ
In this manner, a more advanced filter may be constructed from the individual filter

blocks. To prove Eq. (9.10), we state that the phasor for the intermediate output voltage

υout1(t) in Fig. 9.7 is given byVout1 ¼ H1 fð ÞVin. Hence, the phasor for the output voltage

υout(t) in Fig. 9.7 becomes Vout ¼ H1 fð ÞVout1 ¼ H1 fð ÞH2 fð ÞVin which is equivalent to

Eq. (9.10). Due to the logarithmic scale of the Bode plot, the product in Eq. (9.10) is

replaced by the sum of two contributions when the decibel scale is used:

Hm fð ÞdB ¼ Hm1 fð ÞdB þ Hm1 fð ÞdB ð9:11Þ
Thus, we simply add up two magnitude transfer functions in dB and obtain the resulting

magnitude transfer function also in dB.

Application Example: Effect of Next-Stage Filter Load

Equation (9.10) requires great care. For example, the equivalent impedance seen by the

leftmost high-pass filter stage in Fig. 9.7 should be much greater than R1; otherwise this

stage will not operate as expected, and Eq. (9.10) will be inaccurate. In other words, a

following filter stage should not appreciably load the previous one.

Example 9.7: For the combined circuit in Fig. 9.7, create the Bode plot for the transfer

function of the cascade connection in the frequency band from 1 Hz to 1 MHz You are

given R1 ¼ 159:1Ω, C1 ¼ 10 μF and R2 ¼ 159:1Ω, C2 ¼ 0:1 μF.

Solution: The break frequency of the high-pass filter is calculated as 100.0 Hz, and the

break frequency of the low-pass filter is found to be 10.0 kHz. The combined Bode plot is

generated using Eqs. (9.6a, 9.6b) and (9.10). Alternatively, the transfer functions in dB,

specified by Eq. (9.7), may be added. The result is a band-pass filter as shown in Fig. 9.8

by the solid curve. This result is expected to be accurate only if R2 þ ZC2
j j 	 R1. Though

valid at low frequencies below 1 kHz, this inequality is violated above 1 kHz. The exact

transfer function is obtained by solving the complete AC circuit in Fig. 9.7 with the open-

circuited capacitor C2. It is plotted in Fig. 9.8 by a dashed curve. There is clearly a

significant deviation from the solution given by Eq. (9.10) at higher frequencies above

1 kHz. To avoid the loading effect seen in Fig. 9.8, a buffer amplifier may be inserted

between the filter stages shown in Fig. 9.7.

R1

C1

+

-

v (t)in

R2

C2

+

-

v (t)out

+

-

v (t)out1

H1(f) H2(f)

Fig. 9.7. Cascading a high-pass and a low-pass filter into a more complex filter structure.
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In Fig. 9.8, the exact transfer function may exceed 0 dB. In other words, the voltage

gain of the combined (still passive) filter may be greater than one. How is it possible? The

answer is that, in contrast to the circuits in Fig. 9.2, the circuit in Fig. 9.7 is in fact already

a second-order circuit. Second-order circuits may experience a resonance behavior where

the circuit voltages across individual elements may (very considerably) exceed the

original supply voltage. This effect, called voltage multiplication, is of great practical

importance and will be considered in detail in Chapter 10 devoted to second-order AC

circuits. Note that that the true power gain of a passive filter of any order and any

topology is always less than one (less than 0 dB). Only electronic amplifiers may have a

positive, and often high, power gain; this is discussed in the next section.

9.1.6 RL Filter Circuits

The RL circuits are used for the same filtering purposes as the RC circuits. Figure 9.9

depicts the concept. It may be demonstrated that the corresponding circuit theory and

Eqs. (9.6a, 9.6b) for the transfer functions become equivalent to first-order RC filter

circuits under the following conditions:

1. The time constant τ ¼ RC is replaced by the time constant τ ¼ L=R, similar to the

corresponding operation for the first-order transient circuits. The break frequency

f b ¼ 1= 2πτð Þ remains the same.

2. The role of the capacitor and inductor are interchanged. For example, the RL circuit

in Fig. 9.9a is a first-order high-pass filter because the inductor voltage, which is

the output filter voltage, is exactly zero for a DC signal. However, it becomes a

first-order low-pass filter if the inductor is replaced by a capacitor, as shown in

Fig. 9.9a.
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Fig. 9.8. Solid curve: Eq. (9.10) for the cascaded filters. Dashed curve: the exact solution with the

open-circuited capacitor C2.
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3. Similarly, the RL circuit in Fig. 9.9b is a first-order low-pass filter simply because

the inductor becomes a short circuit at DC and the DC signal will pass through.

However, it becomes a first-order high-pass filter if the inductor is replaced by a

capacitor, as shown in Fig. 9.9b.

Furthermore, the filter specifications might require large inductance values, which lead

to physically large inductor sizes.

Example 9.8: For the two filter circuits in Fig. 9.9, create the amplitude Bode plots in the

frequency band from 10 Hz to 100 kHz. You are given R ¼ 31:4 Ω, L ¼ 5mH.

Solution: The break frequencies of the high-pass filter and the low-pass filter in Fig. 9.9

coincide. In either case, we obtain fb ¼ 1= 2πτð Þ, τ ¼ L=R ¼ 1:59� 10�4 s. Thus,

fb ¼ 1:00 kHz. The Bode plots may be generated by finding transfer function values

based on Eq. (9.6) for (at least) every decade and filling out a table similar to Table 9.1.

The result is shown in Fig. 9.10 along with high- and low-frequency asymptotes. We

again observe the 20-dB roll-off per decade. The Bode plots given in Fig. 9.10 coincide

with the Bode plots for RC filters having the same break frequency, see Fig. 9.5.

However, given an identical component topology, the filter function is interchanged.
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Fig. 9.9. (a) Transformation of a series RL circuit into a high-pass analog RL filter. (b) Similar

transformation into the low-pass RL filter.
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Exercise 9.4: An RL filter circuit in Fig. 9.9a has R ¼ 100Ω and L ¼ 1mH. Establish

the capacitance value of an equivalent RC filter, given that the resistances are the same in

both cases.

Answer: 100 nF.
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Fig. 9.10. (a) Bode plot for the amplitude transfer function of the high-pass RL filter with break

frequency f b ¼ 1 kHz. (b) The same Bode plot but for the low-pass RL filter.
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Section 9.2 Bandwidth of an Operational Amplifier

The operational amplifier circuits introduced earlier are implicitly assumed to operate

equally well for any frequency of the input signal. In reality this is not true. An

operational amplifier may operate only over a certain frequency band, and the associated

frequency bandwidth is perhaps the most critical device parameter. Frequently we do not

realize how severe this limitation can be and how difficult it is to build a high-frequency

or radio-frequency amplifier. As an example, we should point out that none of the

common amplifier ICs studied in introductory ECE classes can be used as a front-end

amplifier for an AM radio receiver (520–1610 kHz), even if the noise levels were low.

Indeed, high-frequency amplifiers with larger frequency bandwidths exist. A case in point

is the accessible LM7171 chip. Key to understanding the amplifier frequency behavior is

the theory of the first-order RC filters developed in the previous section.

9.2.1 Bode Plot of the Open-Loop Amplifier Gain

Open-Loop Amplifier Gain and Its Relation to the Previous Results
The (amplitude) frequency response of an operational amplifier is simply a plot of its gain

magnitude versus frequency of the input AC voltage signal. This response is usually a

Bode plot. The problem is that the gain of the amplifier (both open loop and closed loop)

generally decreases with increasing frequency. We consider the open-loop gain (gain

without the feedback loop) first. The open-loop gain magnitude will be denoted here by

AOL ¼ AOL fð Þ. Note that in Chapter 5 we have already introduced the open-circuit gain,

A, of an amplifier at DC without the feedback loop. What is the relation between AOL and

A introduced previously? The answer is given by the equalityA ¼ AOL f ¼ 0ð Þ as long as
the amplifier is open circuited.

Open-Loop Gain Behavior

The open-loop gain decreases with increasing frequency of the input signal. Figure 9.11

shows the frequency response of an open-loop amplifier on a log-log scale. You may

recall that the log-log scale used in this figure is simply the Bode plot introduced in the

previous section. This figure is typical for the LM741 amplifier IC and similar general-

purpose devices. Comparing the Bode plot in Fig. 9.11 with the Bode plot of the RC filter

in Fig. 9.4 of the previous section, we discover that the amplifier’s gain as a function of

frequency is virtually identical to the transfer function of the RC filter for the same break

frequency of 10 Hz, as seen in Fig. 9.11! In both cases, we have a roll-off of 20 dB per

decade. Obviously, the scale is different. Why is this so? This occurs because the

amplifier ICs are usually internally compensated, which means incorporating a simple

RC filter network (in practice, it may be a single capacitor C) into the IC chip itself. This

process is called internal compensation of the amplifier. The goal of such a modification

is to ensure that the amplifier circuit will be stable. Stability refers to the amplifier’s

immunity to spontaneous oscillations. These undesired oscillations occur when the input
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frequency excites internal resonances, similar to a mechanical mass-spring system, that

continue ad infinitum.

9.2.2 Unity-Gain Bandwidth Versus Gain-Bandwidth Product

The amplifier gain in Fig. 9.11 decreases by a factor of 0.1 (or 20 dB) gain roll-off per

frequency decade. The decay already starts at a relatively low break frequency of 10 Hz

where the DC open-loop gain drops by the factor of 0.707 or 1=
ffiffiffi

2
p

. The corresponding

value in dB is 20log101=
ffiffiffi

2
p

¼ �3 dB. The gain continues to decrease further and

reaches unity at the frequency of 1 MHz. This frequency is equal to the unity-gain

bandwidth (BW) of the amplifier, i.e., for the amplifier IC depicted in Fig. 9.11:

BW ¼ 1 MHz ð9:12Þ

A remarkable observation from Fig. 9.11 is that the gain-bandwidth product (sometimes

denoted by GBWor GB in datasheets) remains constant over the band for every particular

gain value. The gain-bandwidth product is equal to the length of every single arrow

(in Hz) in Fig. 9.11 times the corresponding gain value (dimensionless), that is,

f ¼ 102Hz ) GBW ¼ 102 � 104 ¼ 106Hz ¼ BW,

f ¼ 103Hz ) GBW ¼ 103 � 103 ¼ 106Hz ¼ BW,

f ¼ 104Hz ) GBW ¼ 104 � 102 ¼ 106Hz ¼ BW;

ð9:13Þ

etc. Thus, the gain-bandwidth product is exactly equal to the unity-gain bandwidth BW;

it is frequently specified in the manufacturer datasheet. In what follows, we will use the

unity-gain bandwidth as the major parameter of interest. Note that instead of, or along
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bandwidth given by the break frequency fb is only 10 Hz.
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with, the unity-gain bandwidth, the rise time of an amplifier may be specified in the

datasheet. Approximately, we can state that BW ¼ 0:35=rise time Hz½ �.

9.2.3 Model of the Open-Loop AC Gain

The open-loop gain dependence on the frequency has the form of a low-pass filter. We

could therefore describe the open-loop gain in a complex form that is identical to the

complex transfer function of the low-pass filter given, for example, by Eqs. (9.9a, b) of

the previous section. The open-loop AC gain in complex phasor form states

AOL fð Þ ¼ AOL 0ð Þ
1þ j f =fbð Þ , AOL 0ð Þ is the open-loop DC gain ð9:14Þ

For example, AOL 0ð Þ ¼ 105 in Fig. 9.11. According to Eq. (9.14), the open-loop AC gain

is a complex-valued frequency-dependent transfer function. This circumstance is

reflected in a phase difference between the output and input voltages. To be consistent

with Fig. 9.11 and with the previous DC amplifier analysis, the magnitude of the complex

gain function in Eq. (9.14) is denoted by the same symbol, AOL, i.e.,

AOLj j ¼ AOL fð Þ ¼ AOL 0ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ f =fbð Þ2
q ð9:15Þ

The Bode plot applied to Eq. (9.15) will give us exactly the dependence shown in

Fig. 9.11. According to Eq. (9.15), the unity-gain bandwidth satisfies the equality

1 ¼ AOL 0ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ BW=fbð Þ2
q ð9:16Þ

Since BW=fb 	 1, one has

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ BW=fbð Þ2
q

� BW=fb with a high degree of accuracy.

Therefore, according to Eq. (9.16),

BW ¼ AOL 0ð Þfb ð9:17Þ

Looking at Fig. 9.11, we observe a very significant decrease of the open-loop gain, even

in the audio frequency range. For example, the open-loop gain decreases by a factor of

1000 in the audio range from 10 Hz to 10 kHz. Does it mean that the LM741 or any

general-purpose amplifier cannot be used in this range? The general answer is that the

operational amplifier is mostly used with a negative feedback loop. When the closed-loop

DC gain is not very high (say 10), the corresponding closed-loop AC gain appears to be

nearly constant over a much wider bandwidth (say up to 100 kHz). This critical result will

be proved mathematically shortly.
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Example 9.9: The internally compensated LM148-series amplifiers (LM148/248/348)

have a unity-gain bandwidth BW of 1 MHz. The typical large-signal voltage gain at

room temperature reported in the datasheet is 160 V/mV.

A. Find the open-loop DC gain in dB and the open-loop break frequency fb.

B. Find the open-loop gain at 100 Hz, 1 kHz, and 10 kHz.

Solution: The open-loop DC gain is AOL 0ð Þ ¼ 160, 000 or 20log10 160; 000ð Þ ¼ 104 dB.

The break frequency may be found from Eq. (9.17):

fb ¼
BW

160, 000
¼ 6:25 Hz ð9:18Þ

According to Eq. (9.15), the open-loop gain at 100 Hz, 1 kHz, and 10 kHz becomes 104,

103, and 100, which corresponds to 80 dB, 60 dB, and 40 dB.

Exercise 9.5: For an internally compensated amplifier IC, the open-loop DC gain is

120 dB. The break frequency is 100 Hz. Determine the unity-gain bandwidth.

Answer: BW¼ 100 MHz.

9.2.4 Model of the Closed-Loop AC Gain

Consider a negative feedback amplifier in an inverting configuration, as shown in

Fig. 9.12. Since the open-loop gain significantly decreases with frequency, we can no

longer apply the second summing-point constraint (the differential input voltage is zero),

which was justified based on the condition of the very high (ideally infinite) open-loop

gain. However, the first summing-point constraint of no current into the amplifier is still

valid. Therefore, a direct theoretical derivation of the closed-loop gain can be performed.

We use the complex open-loop gain given by Eq. (9.14) and employ phasor voltages.

Looking at Fig. 9.12, we conclude that AOL 0V� V*
� �

¼ Vout, based on the amplifier

definition. This definition is valid for either real (time-dependent) voltages or complex

phasors. By KCL at the node associated with V*, we can develop

+
-

R2

R1
Vout

+

-

+

-
Vx

V*
Vin I2

I1

Fig. 9.12. Circuit configuration for deriving the frequency-dependent closed-loop gain.
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Vin � V*

R1

¼ V* � Vout

R2

) Vin þ Vout=AOL

R1

¼ �Vout=AOL � Vout

R2

)

Vin

R1

¼ � 1

AOLR1

� 1

AOLR2

� 1

R2

� �

Vout

ð9:19Þ

It follows from Eq. (9.19) that the output phasor voltage to the amplifier and the closed-

loop amplifier phasor gain ACL become

Vout ¼ �R2

R1

Vin

1þ 1
AOL

1þ R2

R1

� � ) ACL 
 Vout

Vin

¼ �R2

R1

1

1þ 1
AOL

1þ R2

R1

� � ð9:20Þ

Next, we substitute Eq. (9.15) into Eq. (9.20) and rearrange terms to obtain the form

ACL fð Þ ¼ �R2

R1

1

1þ 1
AOL 0ð Þ 1þ R2

R1

� �h i

þ 1
AOL 0ð Þ 1þ R2

R1

� �

j
f

fb

ð9:21Þ

The first term in the denominator on the right-hand side of Eq. (9.20) is one with a high

degree of accuracy since AOL 0ð Þ � 105 � 108. This approximation is valid for any

realistic resistor values. Therefore, we again arrive at the first-order low-pass filter

response:

ACL fð Þ ¼ ACL 0ð Þ
1þ j f =f closed loopb

� � ,

ACL 0ð Þ ¼ �R2

R1

, f
closed loop
b ¼ AOL 0ð Þfb

1þ R2=R1

¼ BW

1þ R2=R1

ð9:22Þ

but with a very different break frequency fb
closed loop. A similar treatment holds for the

non-inverting amplifier configuration. The result is identical to Eq. (9.22); however, the

closed-loop DC gain ACL(0) is now given by

ACL 0ð Þ ¼ 1þ R2

R1

ð9:23Þ

9.2.5 Application Example: Finding Bandwidth of an Amplifier Circuit

The relation reported in Eq. (9.22) is perhaps the most important single result with regard

to the AC behavior of operational amplifiers. It reveals that the closed-loop AC gain has

conceptually the same RC filter response as the open-loop gain; see Eq. (9.15). However,
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the corresponding break frequency fb
closed loop is much larger, namely, by a factor of

AOL 0ð Þ= 1þ R2=R1ð Þ. This implies that the frequency response remains flat up to a very

high frequency. The amplifier bandwidth in the closed-loop configuration coincides with

the break frequency fb
closed loop determined by Eq. (9.22). Therefore, the bandwidth is

directly proportional to the unity-gain bandwidth BW reported in the datasheet and

inversely proportional to the factor 1þ R2=R1, which is straightforwardly calculated

using the known values of the feedback resistances.

Example 9.10: Anamplifierwith the open-loop gain of Fig. 9.11 (AOL 0ð Þ¼ 105, f b ¼ 10Hz)

is used in the closed-loop inverting configuration with R2=R1 ¼ 9 (the DC inverting gain

is �9). Create the Bode plot for the gain magnitude ACL( f ), compare this result with

the open-loop gain, and determine the bandwidth of the amplifier.

Solution: According to Eq. (9.22), the gain magnitude is given by

ACL fð Þ ¼ R2

R1

1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ f =f closed loop
b

� �2
r , f

closed loop
b ¼ 105

10
� 10 Hz ¼ 100 kHz ð9:24Þ

In Fig. 9.13, we plot the closed-loop gain versus the open-loop gain given by Eq. (9.15).

The amplifier bandwidth in the closed-loop configuration is now a respectable 100 kHz.

Exercise 9.6: The unity-gain bandwidth of an amplifier IC is 1 MHz. Determine the

bandwidth of the non-inverting amplifier circuit with a gain of 200.

Answer: 5 kHz.

9.2.6 Application Example: Selection of an Amplifier IC for Proper

Frequency Bandwidth

The required bandwidth and closed-loop gain usually are known to the circuit designer.

Using Eq. (9.22), we can estimate whether or not a specific amplifier IC will meet those

requirements. There is clearly a trade-off between the closed-loop gain and bandwidth

according to Fig. 9.13 and Eq. (9.22). For a given amplifier IC, the lower the closed-loop

gain requirement, the wider the achievable bandwidth.
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Example 9.11: An inverting amplifier with a gain of �20 and bandwidth of at least

20 kHz is needed. Is the LM348 chip appropriate for this purpose?

Solution: From the LM348 datasheet, we obtain BW ¼ 1 MHz. Because the inverting

gain is �20, we should use a ratio of R2=R1 ¼ 20. According to Eq. (9.22), this gives

f
closed loop
b ¼ 47:6 kHz. The closed-loop 3-dB bandwidth of the amplifier coincides with

this value. Therefore, the LM348 chip is sufficient for our purposes. However, if its gain is

forced to a higher value, say to 100, then the useful bandwidth reduces to 10 kHz.

Exercise 9.7: A non-inverting amplifier with a gain of 31 and a bandwidth of at least

90 kHz is needed. Is an LM741-based amplifier IC appropriate for this circuit?

Answer: No.
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Fig. 9.13. Closed-loop AC gain ACL( f ) (lower curve) versus open-loop AC gain AOL( f ) (upper

curve) for an inverting amplifier with AOL 0ð Þ ¼ 105 and 1þ R2=R1 ¼ 10 (the amplifier DC gain

is �9).
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Section 9.3 Introduction to Continuous

and Discrete Fourier Transform

9.3.1 Meaning and Definition of Fourier Transform

Consider a phasor as introduced in the previous chapter. This phasor is in fact a

transform. It converts a harmonic sinusoidal time-domain signal into a complex number

for easier, algebraic computation of circuit values. After determining the phasor value of a

voltage or current signal, we transform it back to the time-domain expression. What if we

do not have a pure sinusoidal tone, but an arbitrary voltage pulse υ(t) in the time domain?

Another important example is a bit stream of arbitrary data, which can also be described

by a certain voltage function f(t). Could we still introduce a “phasor” for an arbitrary

signal f(t) in the time domain? The answer is yes; however, instead of a single complex

number, we will have an entire complex function F(ω) of angular frequency ω. This

function essentially consists of individual phasors, corresponding to all possible har-

monic signals, which form the time-domain signal f(t). Mathematically, the direct Fourier

transform (from time domain to frequency domain) is given by

F ωð Þ 

ð

1

�1

f tð Þe�jωtdt; ð9:25aÞ

whereas the inverse Fourier transform (from frequency domain to time domain) is given

by a similar integral

f tð Þ 
 1

2π

ð

1

�1

F ωð Þejωtdω ð9:25bÞ

The pair of integrals in Eqs. (9.25a, 9.25b) completely describes the Fourier transform.

Function F(ω) is called the Fourier spectrum (or simply the spectrum) of the signal f(t).

This function is generally complex; however, in contrast to the previous convention, we

will not use boldface here in order to preserve the most common mathematical notations.

Exercise 9.8: Establish a relation between F �ωð Þ and F(ω) for a real signal f(t), which is

called a reversal property of the Fourier transform.

Answer:

F �ωð Þ ¼ F* ωð Þ ð9:26Þ

where the star denotes complex conjugate.
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The spectrum is said to be bandlimited if F(ω) is zero above a certain angular

frequency ωmax. According to Eq. (9.26), this simultaneously means that F(ω) is zero

below �ωmax. Many useful signals are approximately bandlimited.

Example 9.12: Derive the Fourier transform of a rectangular pulse in the form of one bit

of data shown in Fig. 9.14a.

Solution: The integral in Eq. (9.25a) is reduced to

F ωð Þ ¼ Vm

ð

T=2

�T=2

e�jωtdt ¼ Vm

�jω
e�jωt

	

	

	

	

T=2

�T=2

¼ VmT
sinωT=2

ωT=2
ð9:27Þ

The function sinc xð Þ
 sin π x= π xð Þ is called a sinc function. Using its definition, the final

result for the spectrum has the form

F ωð Þ ¼ VmTsinc
ωT

2π

� �

ð9:28Þ

and is plotted in Fig. 9.14b using a few lines of MATLAB code:

Vm      = 1;                           %   input voltage amplitude, V

T  = 1e-6;                        %   pulse duration, s

omega   = linspace(-12*pi/T, 12*pi/T); %   angular frequency, rad/s

F = Vm*T*sinc(omega*T/(2*pi));   %   inverse Fourier transform

plot(omega, F); grid on;

In contrast to the original signal, the pulse spectrum is not bounded and extends to infinity.

This is due to the fact that the original pulse has sharp edges, which are described by

higher-frequency harmonics. The pulse spectrum in the form of a sinc function is famous in

communications theory. Figure 9.15 shows the shape of the sinc function depicted on an

electronics store in Silicon Valley, CA.

f(t)

t0 T/2

a)

Vm

-4 -2 0 2 4
-0.4

0

1
F(w)/(V T)m

w, 10 rad/s
7-T/2

b)

Fig. 9.14. (a) Rectangular pulse f(t) of duration T ¼ 1μs and (b) its Fourier spectrum in the form

of a sinc function.
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9.3.2 Mathematical Properties of Fourier Transform

Major mathematical properties of the Fourier transform follow from its definition and are

listed in Table 9.2.

The two first properties follow from Fourier transform linearity. Multiplication of f(t)

by a constant corresponds to multiplying F(ω) by the same constant. Also, addition

(subtraction) in the time domain corresponds to addition (subtraction) in the frequency

domain. The next two properties (differentiation and integration) make the Fourier

transform useful for solving ODEs since the time-domain derivatives and integrals will

correspond to multiplication and division by jω in the frequency domain. The two last

properties (scaling and translation) directly follow from Eq. (9.25a).

Exercise 9.9: The Fourier transform of f(t) is F(ω). What is the Fourier transform of df

tð Þ=dt þ 5f tð Þ?
Answer: 5þ jωð ÞF ωð Þ.

Fig. 9.15. Fry’s Electronics store in Sunnyvale, Silicon Valley, with an emblem depicting the sinc

function.

Table 9.2. Major mathematical properties of Fourier transform.

f(t) F(ω)

Kf(t) KF(ω)

f 1 tð Þ � f 2 tð Þ þ f 3 tð Þ F1 ωð Þ � F2 ωð Þ þ F3 ωð Þ
dnf(t)/dtn ( jω)nF(ω)

ð

t

�1

f τð Þdτ,
ð

1

�1

f tð Þdt ¼ 0
1

jω
F ωð Þ

f(at) 1=að ÞF ω=að Þ, a > 0

f t � að Þ e�jωaF ωð Þ

Chapter 9 Filter Circuits: Frequency Response, Bode Plots. . .

IX-460



We emphasize that the properties listed in Table 9.2 also apply to the discrete Fourier

transform studied below, but the corresponding indexing of discrete frequencies has to be

carefully arranged.

9.3.3 Discrete Fourier Transform and Its Implementation

Direct Discrete Fourier Transform
Present and future demands are such that we must process continuous signals by discrete

methods. Perhaps the most important method is the discrete Fourier transform (DFT) and

its fast versions: fast Fourier transform (FFT) and inverse fast Fourier transform (IFFT).

Let f(t) be a continuous pulse signal which is the source of the data. We assume that f(t) is

zero outside of the interval 0 � t < T . Let f tnð Þ, n ¼ 0, . . . ,N � 1 be its values at

N uniformly distributed sampling points tn ¼ ΔTn, n ¼ 0, . . . ,N � 1 within the

interval of interest. Here

ΔT ¼ T

N
ð9:29Þ

is the sampling interval. Then, the integral of the direct Fourier transform in Eq. (9.25a)

may be found using the rectangle rule (or the Riemann sum approximation)

F ωð Þ ¼ ΔT
X

N�1

n¼0

e�jωnΔT f tnð Þ ð9:30Þ

We could in principle evaluate this expression at any value of ω. However, with only N data

points to start with, only N final outputs will be significant. We choose those N uniformly

distributed frequency sampling points as ωm ¼ ω0m, m ¼ 0, . . . ,N � 1, where

ω0 ¼
2π

T
ð9:31Þ

is the fundamental frequency (with one period over the interval T). Let F ωmð Þ, m ¼ 0,

. . . ,N � 1 be the values of F(ω) at the frequency sampling points. Then, Eq. (9.30) gives

F ωmð Þ ¼ ΔT
X

N�1

n¼0

e
�j

2π
N
mn

f tnð Þ, m ¼ 0, . . . ,N � 1 ð9:32Þ

Inverse Discrete Fourier Transform (IDFT)

A very similar operation is applied to the integral of the inverse Fourier transform given

by Eq. (9.25b). We first assume that F(ω) is zero outside of the interval 0 � ω < Nω0; in

other words, it is bandlimited. Then, the corresponding integral in Eq. (9.25b) is again

approximated using the rectangle rule so that the final result has the form
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f tnð Þ ¼ 1

NΔT

X

N�1

m¼0

e
j
2π
N
mn

F ωmð Þ, n ¼ 0, . . . ,N � 1 ð9:33Þ

Definition of Discrete Fourier Transform

It is rather inconvenient to keep the factor ΔT in both Eqs. (9.32) and (9.33), respectively.

Therefore, we may introduce the notation

f n½ � 
 ΔTf tnð Þ, F m½ � 
 F ωmð Þ ð9:34Þ

and obtain the standard form of the discrete Fourier transform

F m½ � ¼
X

N�1

n¼0

e
�j

2π
N
mn

f n½ �, m ¼ 0, . . . ,N � 1 ð9:35aÞ

f n½ � ¼ 1

N

X

N�1

m¼0

e
j
2π
N
mn

F m½ �, n ¼ 0, . . . ,N � 1 ð9:35bÞ

Here, f [n] may be treated as an impulse having the area of ΔTf(tn).

Exercise 9.10: Establish a relation betweenF N � m½ � and F[m] for a real signal f(t), which
is called a reversal property of the discrete Fourier transform.

Answer:

F* N � m½ � ¼ F m½ � ð9:36Þ
where the star again denotes complex conjugate.

Example 9.13: It is possible to very significantly minimize the actual number of multi-

plications necessary to compute a given DFT in Eqs. (9.35a, b). The DFT so constructed is

the fast Fourier transform (FFT) and inverse fast Fourier transform (IFFT). It works best

when N is a power of two. For a pulse f tð Þ ¼ exp �2 t � 5ð Þ2
� �

, 0 s � t < 10 s, compute

its FFT and then the IFFT and finally compare the end result with the original pulse form

given that N ¼ 64.

Solution: The solution is conveniently programmed using a few lines of a self-explanatory

MATLAB code, which uses Eq. (9.29) and plots two final curves:
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Example 9.13 (cont.):

T = 10; N = 64; 

dT = T/N; t = dT*(0:N-1);

f0 = exp(-2*(t-5).^2);

F = fft(f0); f = ifft(F);

plot(t, f, t, f0, '*');

Both curves are virtually identical: the relative integral error (integral of signal difference

magnitude over the integral of signal magnitude) does not exceed 10�16.

Structure of Discrete Fourier Spectrum

The set of spectrum values F[m], m ¼ 0, . . . ,N � 1, of the DFT has an important

redundancy property illustrated in the following example.

Example 9.14: Express all discrete Fourier spectrum values F[m] present in Eq. (9.35a)

through N/2 first values of F[m] only. Hint: Use Eq. (9.36).

Solution:

F 0½ �,F 1½ �, . . . ,F
N

2
� 1


 �

,F
N

2


 �

,F
N

2
þ 1


 �

, . . . ,F N � 1½ � ¼

F 0½ �,F 1½ �, . . . ,F
N

2
� 1


 �

,F
N

2


 �

,F* N

2
� 1


 �

, . . . ,F* 1½ �
ð9:37Þ

Equation (9.37) demonstrates how the output of the DFT (and of the FFT, in particular in

MATLAB) is arranged in reality. It is a symmetric conjugate aboutm ¼ N=2. Equation (9.37)
is a key to finding derivatives and arbitrary filter transformations of the input signal with the

FFT. Only a frequency with m � N=2 is considered to be valid; its mirror reflection about

m ¼ N=2 is a higher “aliasing frequency.” We emphasize that, according to Eq. (9.26), the

complex conjugates may be replaced by spectrum values at a negative frequency, i.e.,

F* 1½ � ¼ F �1½ �. Thus, the spectrum above m ¼ N=2 corresponds to negative frequencies

with m > �N=2.

9.3.4 Sampling Theorem

It follows from Example 9.14 that only frequency samples with ωm � N
2
ω0 are really

needed. This fact is a consequence of the sampling theorem, which states that any signal

bandlimited to ωmax can be reproduced exactly using the discrete Fourier transform if

ωmax �
N

2
ω0 ð9:38aÞ
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Accordingly, the maximum possible sampling interval may be found from inequality

ΔT � 1

2

1

f max

, f max ¼
ωmax

2π
ð9:38bÞ

Exercise 9.11: Examples of the maximum frequency of interest for some biomedical

signals are:

1. Electrocardiogram (ECG) where f max � 250 Hz

2. Blood flow where f max � 25 Hz

3. Respiratory rate where f max � 10 Hz

4. Electromyogram where f max � 10 kHz

Establish the maximum possible sampling interval of the DFT and the minimum possible

sampling frequency, which is equal to 1/ΔT.

Answer: (1) 2ms and 500 Hz; (2) 20 ms and 50 Hz; (3) 50 ms and 20 Hz; (4) 50 μs and

20 kHz.

9.3.5 Applications of Discrete Fourier Transform

The DFT is one of the most important tools in digital signal processing (DSP). In

particular, the DFT can calculate a signal’s frequency spectrum. This is a direct exami-

nation of information encoded in the frequency, phase, and amplitude of the component

sinusoids. For example, human speech and hearing use signals with this type of encoding.

Second, the DFT or rather its variation, the discrete cosine transform, is used in sound

compression; the MP3 format is one such example. The DFT is also an important image

processing tool which is used to decompose an image into its sine and cosine compo-

nents. The output of the transformation represents the image in the Fourier or frequency

domain, while the input image is the spatial domain equivalent. In the Fourier domain

image, each point represents a particular frequency contained in the spatial domain

image. In particular, the JPEG format is using a modification of the DFT for image

compression; the DFT is also used for image filtering and reconstruction. Along with this,

the DFT is used widely in bioinformatics/computational biology to analyze DNA

sequences. Last but not least, many computational modeling tools, such as antenna and

high-speed circuit simulators, typically operate at one particular signal frequency (in the

frequency domain). Collecting the solutions at many such frequencies makes it possible

to establish evolution of an arbitrary signal or wave field in time.

9.3.6 Application Example: Numerical Differentiation via the FFT

We have established that a filter is characterized by its transfer functionH( f ) orH(ω) and

found this transfer function for simple cases. Given the input sinusoidal signal, we have

also shown how to evaluate the filter’s output when its transfer function is known.

But what if the input signal is an arbitrary pulse? How could the solution for the output
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pulse be obtained? The answer relies upon an observation that the transfer function given

by Eq. (9.9b) may be applied to every harmonic component of the input signal fin(t)

separately. Those harmonics are all described by the Fourier spectrum of the pulse, F(ω).

Therefore, the output Fourier pulse spectrum is given by

Fout ωð Þ ¼ H ωð ÞF in ωð Þ ð9:39Þ

The remaining part is to find the output pulse itself, which is clearly the inverse Fourier

transform:

f out tð Þ

1

2π

ð

1

�1

Fout ωð Þejωtdω ð9:40Þ

When moving from continuous toward discrete Fourier transform and toward digital

signal processing, Eq. (9.39) becomes a somewhat tricky operation. According to

Eq. (9.37), the discrete version of Eq. (9.39) must have the form

HF ! H 0½ �F 0½ �, H 1½ �F 1½ �, . . . , H
N

2
� 1


 �

F
N

2
� 1


 �

, H
N

2


 �

F
N

2


 �

,

H* N

2
� 1


 �

F
N

2
þ 1


 �

, . . . H* 1½ �F N � 1½ �
ð9:41Þ

This version corresponds to the full list of monotonic frequency data

ωm ¼ ω0m, m ¼ 0, . . . ,N � 1. Also note that, in all realistic linear systems,

H* mð Þ ¼ H �mð Þ ð9:42Þ

Therefore, Eq. (9.41) simultaneously describes a set of data for the following

non-monotonic frequency list 0, ωm, . . . , N
2
ω0, 1� N

2

� �

ω0, 2� N
2

� �

, . . . , � ω0, which

also includes the negative frequencies.

Example 9.15 (numerical differentiation via the FFT): Prove Eq. (9.41) for a pulse

f tð Þ ¼ exp �2 t � 5ð Þ2
� �

, 0 s � t < 10 s and for H ωð Þ ¼ jω. Such a transfer function

corresponds to numerical differentiation via the FFT. Use the FFT and IFFT with N ¼ 64.

Solution: The solution is conveniently programmed in a self-explanatory MATLAB code,

which uses Eq. (9.41) and plots two final results in Fig. 9.16, the numerical pulse derivative

and the analytical derivative, respectively:
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Example 9.15 (numerical differentiation via the FFT) (cont.):

T = 10; N = 64; 

dT = T/N; t = dT*(0:N-1);

f = exp(-2*(t-5).^2);               %   input pulse

omega = (2*pi/T)*[0:N/2];              %   non-aliasing frequencies

H    = j*omega;                     %   H at non-aliasing frequencies

F       = fft(f);                      %   FFT spectrum

HF      = F.*[H, conj(H(end-1:-1:2))]; %   HF according to Eq. (9.40)

fder    = real(ifft(HF));              %   numerical derivative

fder0   = -4*(t-5).*f;                 %   analytical derivative

plot(t, fder0, t, fder, 'd');          %   compare both derivatives

Both curves are virtually identical: the relative integral error (integral of signal difference

magnitude over the integral of analytical signal magnitude) does not exceed 1.3� 10�15.

9.3.7 Application Example: Filter Operation for an Input Pulse Signal

The filter operation for an input pulse signal exactly follows Example 9.15 but with a

different transfer function H(ω).

Example 9.16: A pulse f tð Þ ¼ exp �2 t � 5ð Þ2
� �

, 0 s � t < 10 s is an input to a first-

order high-pass filter. Find the filter output when its (angular) break frequency is given by

a) ω0 ¼ 1 rad=s and b) ω0 ¼ 10 rad=s. Use the FFT and IFFT with N ¼ 64.

Solution: The solution is performed and programmed exactly described in the previous

example, but the transfer function is now given by Eq. (9.1b):

H ¼ j*omega/omega0./(1+j*omega/omega0);

t, s 10
-1.5

-1

-0.5

0

0.5

1

1.5
df(t)/dt

0 5

Fig. 9.16. Analytical (solid curve) and numerical (diamonds) differentiation of the original

Gaussian pulse.
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Example 9.16 (cont.):

Figure 9.17 plots two output pulse forms corresponding to two different values of the break

frequency. Note that the value ω0 ¼ 10 rad=s approximately corresponds to a mean value for

non-aliasing frequencies of the FFT. Also note that when the break frequency becomes

sufficiently high, the HPF behaves as an ideal differentiator but with a significant amplitude

decay.

9.3.8 Application Example: Converting Computational Electromagnetic

Solution from Frequency Domain to Time Domain

Many computational modeling tools operate at one particular signal frequency or at a set of

those (in frequency domain). To obtain the solution for an arbitrary pulse at an arbitrary

point in space, we can again use the method of the transfer function and the FFT described

previously. As an example, we consider a TMS (transcranial magnetic stimulation) coil

above the head of a computational human phantom in Fig. 9.18a. Once a current pulse is

applied to the coil, an electric field will be excited in the brain according to Faraday’s law of

induction. This field may help to reestablish some neuron connections lost, for example, in

Parkinson’s disease. For safety considerations, the field at arbitrary locations within the

body needs to be evaluated, let’s say at node 2 in Fig. 9.18a. In order to do so, the problem

is first solved for about 40 single-frequency excitations, which will presumably cover the

spectrum content of the desired TMS pulse in Fig. 9.18b well. The ratio of the electric field

phasor at the observation point to the coil current phasor is the transfer function value at a

desired frequency, H(ω). This ratio does not depend on particular amplitude of the coil

current. Next, we introduce the DFT of size N for the original pulse shown in Fig. 9.18b,

interpolate the transfer function over N=2þ 1 required frequency points, and apply the

method of Examples 91.5 and 9.16 with this new transfer function. The result is an electric

field pulse at node 2 shown in Fig. 9.18c (the dominant z-component has been plotted),

which is excited by the coil current shown in Fig. 9.18b.

t, s 10
-1.5

-1

-0.5

0

0.5

1

1.5

-1.5

-1

-0.5

0

0.5

1

1.5

t, s 10

a) b)

0 5 0 5

Fig. 9.17. Diamonds: HPF output for (a)ω0 ¼ 1 rad=s and (b)ω0 ¼ 10 rad=s, respectively. Solid
curve: analytical derivative of the input Gaussian pulse.

Chapter 9 Section 9.3: Introduction to Continuous and Discrete. . .

IX-467



-0.5

0

0.5

1

1.5

2

2.5

3

3.5
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a) b)

c)
time, ms
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1

Fig. 9.18. Time-domain computational solution for the induced electric field within a human body

obtained from the frequency-domain data via the FFT.
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Summary

Property First-order low-pass filter First-order high-pass filter

Circuit schematic

Transmission at

f ¼ 0 (DC)

1

(DC path through the resistor)

0

(No DC path)

Transmission at

f ! 1
0

(Inductor is an open circuit

at f ! 1)

1

(DC path through the resistor)

Transfer function

H( f )
1

1þ j f =f bð Þ
f =f bð Þ

1þ j f =f bð Þ
Decibels of H ¼ Hj j 20 log10H [dB] 20 log10H [dB]

Decibels of 1 and 0.1 0 dB and �20 dB 0 dB and �20 dB

Transfer function

magnitude Hm( f )

1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ f =f bð Þ2
q

f =f b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ f =f bð Þ2
q

Transfer function

phase ∠φH
∠� tan �1 f

f b

� �

π

2
� tan �1 f

f b

� �

Break frequency,

(half-power fre-

quency, 3-dB

frequency, corner

frequency)

f b ¼
1

2πτ
Hz½ �

τ ¼ RC or
L

R
s½ �

f b ¼
1

2πτ
Hz½ �

τ ¼ RC or
L

R
s½ �

Passband (3 dB

bandwidth), Hz

From 0 to fb From fb to 1

Filter with a resistive

load RL

(continued)
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Transfer function

with the load H( f )

H fð Þ ¼ 1

1þ R=RL þ j f =f bð Þ

f b ¼
1

2πτ
, τ ¼ RC

H fð Þ ¼ f =f bð Þ
1þ j f =f bð Þ

f b ¼
1

2πτ
, τ ¼ R

	

	

	

	RL

� �

C

Amplitude Bode

plots

Phase Bode plots

Meaning of the

transfer function for

harmonic signals

represented by

phasors

Vout ¼ H fð ÞVin

where Vin is the input voltage phasor and Vout is the output voltage phasor

Cascading filters

and linear systems

(series combination)

H fð Þ ¼ H1 fð ÞH2 fð Þ
only if the loading effect of individual blocks is minimized

3-dB bandwidth

of an operational

amplifier circuit

(inverting or non-

inverting amplifier

configuration)

From 0 to fb
closed loop (closed-loop 3-dB frequency) where

f
closed loop
b ¼ BW

1þ R2=R1

BW is the unity-gain bandwidth reported in the datasheet

(continued)
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Property Continuous and discrete Fourier transform

Fourier transform

definition

F ωð Þ

ð

1

�1

f tð Þe�jωtdt f tð Þ
 1

2π

ð

1

�1

F ωð Þejωtdω

F �ωð Þ ¼ F* ωð Þ if f(t) is real

Fourier transform

of a rectangular pulse

F ωð Þ ¼ VmT sinc
ωT

2π

� �

Fourier transform

of a Gaussian pulse
f tð Þ ¼ e�at2 , F ωð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

π

a
e�ω2= 4að Þ

r

Major properties of

Fourier transform

Definition of sam-

pling points: discrete

Fourier transform

tn ¼ ΔTn, n ¼ 0, . . . ,N � 1, T ¼ NΔT

ωm ¼ ω0m, m ¼ 0, . . . ,N � 1, ω0 ¼
2π

T

Definition of

samples: discrete

Fourier transform

f n½ � 
ΔTf tnð Þ, n ¼ 0, . . . ,N � 1

F m½ � 
 F ωmð Þ, m ¼ 0, . . . ,N � 1

Discrete/fast Fourier

transform

F m½ � ¼
X

N�1

n¼0

e
�j

2π

N
mn

f n½ �, m ¼ 0, . . . ,N � 1

f n½ � ¼ 1
N

X

N�1

m¼0

e
j
2π

N
mn

F m½ �, n ¼ 0, . . . ,N � 1

(continued)
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Sampling theorem

1. Any signal bandlimited to ωmax can be reproduced exactly using the

discrete Fourier transform if ωmax �
N

2
ω0

2. Alternatively, the sampling interval must satisfy inequality

ΔT � 1

2

1

f max

, f max ¼
ωmax

2π

Structure of discrete

Fourier spectrum

F* N � m½ � ¼ F m½ �
+

F 0½ �,F 1½ �, . . . ,F
N

2
� 1


 �

,F
N

2


 �

,F
N

2
þ 1


 �

, . . . ,F N � 1½ � ¼

F 0½ �,F 1½ �, . . . ,F
N

2
� 1


 �

,F
N

2


 �

,F* N

2
� 1


 �

, . . . ,F* 1½ �

Equivalent frequency

samples for negative

frequencies

0, ωm, . . . ,
N

2
ω0, 1� N

2

� �

ω0, 2� N

2

� �

, . . . , � ω0

Transfer function

multiplication

HF ! H 0½ �F 0½ �, H 1½ �F 1½ �, . . . , H
N

2
� 1


 �

F
N

2
� 1


 �

, H
N

2


 �

F
N

2


 �

,

H* N

2
� 1


 �

F
N

2
þ 1


 �

, . . . , H* 1½ �F N � 1½ �
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Problems
9.1 First-Order Filter

Circuits and Their

Combinations

9.1.1 RC Voltage Divider as an Analog

Filter
Problem 9.1

A. Explain the function of an analog RC

filter.

B. Write the capacitor and resistor voltages

υR(t) and υC(t) of the series RC circuits

in the general form, as functions of the

AC angular frequency.

C. Which circuit element (or which voltage)

dominates at low frequencies? At high

frequencies?

Problem 9.2

A. Draw a schematic of the low-pass analog

RC filter. Show the input and output

ports.

B. Repeat the same task for the high-pass

analog RC filter.

Problem 9.3. The input voltage to the filter

circuit shown in the following figure is a com-

bination of two harmonics,

υin tð Þ ¼ 1 cosω1 t þ 1 cosω2 t, with the ampli-

tude of 1 V each. The filter has the following

parameters: R ¼ 100 kΩ and C ¼ 1:59 nF.

Determine the output voltage υout(t) to the filter

given that f 1 ¼ 100 Hz and f 2 ¼ 100 kHz.

Express all phase angles in degrees.

R

C

+

-

v (t)outv (t)in

+

-

Problem 9.4. Repeat the previous problem

for the filter circuit shown in the

following figure. All other parameters remain

the same.

C

R

+

-

v (t)in

+

-

v (t)out

Problem 9.5. The input voltage to the RC

filter circuit shown in the figure is

V in tð Þ ¼ 5 cosω t V½ �. The filter has the fol-

lowing parameters: C ¼ 1 μF and

R ¼ 100 Ω. The filter operates in the fre-

quency band from 100 Hz to 50 kHz. The filter

is connected to a load with the load resistance

of 1 MΩ. By solving the corresponding AC

circuit, determine the output voltage amplitude

across the load (and its percentage versus the

input voltage amplitude) with and without the

load at f ¼ 100 Hz, f ¼ 1592 Hz, and

f ¼ 50 kHz.

R

C

+

-

v (t)outv (t)=5cos(wt) [V]in

+

-

Load

Problem 9.6. Repeat the previous problem

when the load resistance changes from 1 MΩ

to 100 Ω (decreases).

Problem 9.7. Repeat Problem 9.5 for the filter

circuit shown in the following figure. Assume

the load resistance of 100 Ω.

R

C

+

-

v (t)outv (t)=5cos( t) [V]in w

+

-

Load
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9.1.2 Half-Power Frequency and Ampli-

tude Transfer Function

9.1.3 Bode Plot, Decibel, and Roll-off
Problem 9.8.

A. Describe the physical meaning of the

(half-power) break frequency in your

own words.

B. Give the expression for the break fre-

quency in terms of circuit parameters of

an RC filter. Is it different for low-pass

and high-pass filters?

Problem 9.9. Given R ¼ 100 kΩ and

C ¼ 1:59 nF, determine the break frequency

of the low-pass RC filter and of the high-pass

RC filter, respectively.

Problem 9.10. List all possible alternative

names for the break frequency.

Problem 9.11. Write the amplitude transfer

function for the low-pass RC filter. Repeat for

the high-pass RC filter. Indicate units (if any).

Problem 9.12. The input signal to a high-pass

RC filter includes a 60-Hz component. Its

amplitude is to be reduced by a factor of 10.

What break frequency should the filter have?

Problem 9.13. The input signal to a low-pass

RC filter includes a 10-kHz component. Its

amplitude is to be reduced by a factor of

5. What break frequency should the filter have?

Problem 9.14. Describe the meaning of the

Bode plot in your own words.

Problem 9.15. It is known that

Hm fð ÞdB ¼ 0, � 6, � 20 dB½ �. Find the

corresponding values of Hm( f ).

Problem 9.16. The following values are given

Hm fð Þ ¼ 1, 0:707, 0:1, and 100. Find the

corresponding values of Hm( f )dB.

Problem 9.17

A. When the ratio of the amplitudes of two

signals is
ffiffiffi

2
p

, what is the difference

between the two corresponding decibel

measures in dB?

B. When the ratio of the amplitudes of two

signals is 1/
ffiffiffi

2
p

, what is the difference

between the two corresponding decibel

measures in dB?

C. When the ratio of the amplitudes of two

signals is
ffiffiffiffiffi

20
p

, what is the difference

between the two corresponding decibel

measures in dB?

D. When the ratio of the powers of two

signals is 1000, what is the difference

between the two corresponding decibel

measures in dB?

Problem 9.18.What do engineers mean by one

decade? One octave?

Problem 9.19. For the filter circuit shown in

the following figure, given that R ¼ 100 kΩ

and C ¼ 159 pF:

A. Create the amplitude Bode plot by find-

ing transfer function values for (at least)

every decade.

B. Label the break frequency.

C. Label the filter passband.

-45

-40

-35

-30

-25

-20

-15

-10

-5

10
2

10
3

10
4

10
5

10
6

frequency, Hz

H , dBm
0

C

R

+

-

v (t)in
+

-

v (t)out

Problem 9.20. Repeat the previous problem

with R ¼ 100 kΩ and C ¼ 53 pF.
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Problem 9.21. For the filter circuit

shown in the following figure, assume the

values R ¼ 10 kΩ and C ¼ 1:59 nF.

A. Create the amplitude Bode plot by finding

the transfer function values for (at least)

every decade.

B. Label the break frequency.

C. Label the filter passband.

-45

-40

-35

-30

-25

-20

-15

-10

-5

10
2

10
3

10
4

10
5

10
6

frequency, Hz

H , dBm
0

R

C

+

-

v (t)outv (t)in

+

-

Problem 9.22. Repeat the previous problem

with R ¼ 100 kΩ and C ¼ 53 pF.

Problem 9.23. An amplitude Bode plot for a

certain RC filter is shown in the figure below.

A. Approximately determine the filter’s resis-

tance R if it is known that C ¼ 265 pF.

Describe each step of your approach.

B. Suggest a way to verify your solution.

10
2

10
3

10
4

10
5

frequency, Hz

H , dBm

Problem 9.24. An amplitude Bode plot for a

certain RC filter is shown in the figure below.

A. Approximately determine the filter’s

capacitance, C, for a given

R ¼ 100 kΩ. Describe each step of

your approach.

B. Suggest a way to verify your solution.

10
2

10
3

10
4

10
5

frequency, Hz

Problem 9.25. Prove analytically that the ampli-

tude transfer functions of the low-pass filter and

the high-pass filter are the mirror reflections of

each other about the break frequency in the

Bode plot.

9.1.4 Phase Transfer Function and Its

Bode Plot
Problem 9.26.Write the phase transfer function

for the low-pass RC filter. Repeat for the high-

pass RC filter. Show units.

Problem 9.27. The input voltage to a low-pass

RC filter has a zero phase. At what frequency in

terms of the break frequency fb is the phase shift

at the output equal to �1�, �45�, and �89�?

Problem 9.28. The input voltage to a high-pass

RC filter has a zero phase. At what frequency in

terms of the break frequency fb is the phase shift

at the output equal to 5�, 45�, and 85�?

Problem 9.29. A low-pass RC filter has the

break frequency of 10 kHz. Create the phase

Bode plot by finding the transfer function values

for (at least) every decade.
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-90

-80

-70

-60

-50

-40

-30

-20

-10

0

fb

φH, deg

10
2

10
3

10
4

10
5

10
6

frequency, Hz

Problem 9.30. Repeat the previous problem for

a high-pass RC filter with the same break fre-

quency.

9.1.5 Complex Transfer Function: Cas-

cading Filter Circuits

9.1.6 RL Filter Circuits
Problem 9.31. For the filter circuit shown in

the figure below, create the amplitude response

of the Bode plot by finding transfer function

values for (at least) every decade. The two

individual filter blocks both have the break

frequency of 1 kHz. Assume that the loading

effect of the filter stages is negligibly small; in

practice, a buffer amplifier stage could be used.

R1

C1

+

-

v (t)in

R2

C2

+

-

v (t)out

+

-

v (t)out1

10
1

10
2

10
3

10
4

10
5

-50

-40

-30

-20

-10

0

frequency, Hz

H , dBm

Problem 9.32

A. Repeat the previous problem for the filter

circuit shown in the figure below.

B. Analytically determine the roll-off per

decade in dB.

R1

C1

+

-

v (t)in

+

-

v (t)out

+

-

v (t)out1

C1

R1

10
1

10
2

10
3

10
4

10
5

-100

-80

-60

-40

-20

0

frequency, Hz

H , dBm

Problem 9.33. For two RL filter circuits with

R ¼ 31:4 Ω andL ¼ 1 mHshown in the figure

below:

A. Determine the break frequency.

B. Draw the corresponding RC counterpart.

C. Establish the capacitance values of the

RC filters, which assure the equivalent

transfer functions, given that the resis-

tances of the RC filters are 100 kΩ in

both cases.

a)

L

R

+

-

v (t)in

+

-

v (t)out

R

L

+

-

v (t)outv (t)in

+

-

b)
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Problem 9.34. For the filter circuit shown in

the figure below, assume the values R1 ¼ 628

Ω and L1 ¼ 10 mH.

A. Create the amplitude Bode plot by find-

ing transfer function values for (at least)

every decade.

B. Determine the roll-off per decade in dB.

Assume that the loading effect of the filter

stages is negligibly small (e.g., a buffer ampli-

fier stage is used).

R1

L1

+

-

v (t)in

+

-

v (t)out

+

-

v (t)out1 R1

L1

10
2

10
3

10
4

10
5

10
6

-100

-80

-60

-40

-20

0

frequency, Hz

H , dBm

Problem 9.35. The transfer function of a filter

circuit is given byH fð Þ ¼ 1þj f =1000ð Þ
1þ f =1000ð Þ2. Create its

amplitude and phase Bode plots in the frequency

band from 10 Hz to 100 kHz by finding transfer

function values for (at least) every decade.

9.2 Bandwidth of an Opera-

tional Amplifier

9.2.1 Bode Plot of the Open-loop Ampli-

fier Gain

9.2.2 Unity-gain Bandwidth Versus

Gain-Bandwidth Product
Problem 9.36. An amplifier has the unity-gain

bandwidth BW of 5 MHz. What exactly does

this mean? Explain and provide equations.

Problem 9.37. Using a manufacturing

company’s website (usually it is a more accu-

rate frequently updated source) or the

corresponding datasheet, find the unity-gain

bandwidth for the following amplifier ICs:

A. TL082

B. LM741

C. LM7171

Problem 9.38. Frequency response of an

amplifier is characterized by the open-loop DC

gain AOL 0ð Þ ¼ 1:41� 106 and the break fre-

quency of fb ¼ 20 Hz. Numerically calculate

the gain-bandwidth product for the amplifier at:

A. 20 Hz,

B. 2 kHz,

C. 2MHz.

9.2.3 Model of the Open-Loop AC Gain
Problem 9.39. Frequency response of an

amplifier is characterized by the open-loop

DC gainAOL 0ð Þ ¼ 106 and the break frequency

of fb ¼ 20 Hz. Plot the open-loop gain magni-

tude in dB over the range of frequencies (the

frequency band) from 1 Hz to 10 MHz on the

log-log scale (the Bode plot) and label the axes.

Problem 9.40. In the previous problem, find

the unity-gain bandwidth BW of the amplifier.

Problem 9.41. Internally compensated

LM358-series amplifiers have the unity-gain

bandwidth (BW) of 1 MHz. The typical large-

signal DC voltage gain at room temperature is

100 V/mV.

A. Find the open-loop DC gain in dB and the

open-loop break frequency fb.

B. Find the open-loop gain at 100 Hz,

1 kHz, and 10 kHz.

Problem 9.42. The open-loop gain magnitude

of an internally compensated high-frequency

amplifier has been given as

AOL 100 Hzð Þ ¼ 0:9� 106,

AOL 1 MHzð Þ ¼ 1:0� 102
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at room temperature. Determine:

A. 3-dB break frequency,

B. DC open-loop gain,

C. Unity-gain bandwidth BWof the amplifier.

Problem 9.43. Repeat the previous problem for

AOL 100 Hzð Þ ¼ 0:5� 106,

AOL 1 MHzð Þ ¼ 1:0� 102:

9.2.4 Model of the Closed-loop AC Gain

9.2.5 Application Example: Finding

Bandwidth of an Amplifier Circuit
Problem 9.44. An amplifier with the open-loop

gain described by the first-order RC circuit

response with AOL 0ð Þ ¼ 105 and fb ¼ 20 Hz

is used in a closed-loop inverting configuration

with R2=R1 ¼ 9 and R2=R1 ¼ 99, respectively.

A. Using the template that follows, create

the Bode plots for the corresponding

frequency response (closed-loop gain),

G( f ), in the band from 10 Hz to

10 MHz on the same graph. Plot the

gain values for (at least) every decade.

B. Also on the same graph, plot the open-

loop gain as a function of frequency.

C. Determine the bandwidth of the closed-

loop amplifier so constructed in

every case.

10
1

10
2

10
3

10
4

10
5

10
6

10
7

-20

0

20

40

60

80

100
Bode plot

frequency, Hz

g
a
in

, 
d
B

Problem 9.45. The unity-gain bandwidth of an

amplifier IC is 1 MHz. Determine the band-

width of the following amplifier circuits:

A. An inverting amplifier with the gain of

�1,

B. An inverting amplifier with the gain of

�10,

C. A non-inverting amplifier with the gain

of 100,

D. A voltage follower (buffer amplifier).

constructed using the same IC.

9.2.6 Application Example: Selection of

an Amplifier IC for Proper Frequency

Bandwidth
Problem 9.46. An inverting amplifier with a

gain of �20 and a bandwidth of at least

200 kHz is needed. Which amplifier chip is

appropriate for this circuit (and which is not)?

A. LM358

B. TL082

C. LM741

D. LM7171

E. LM8272

Problem 9.47.A non-inverting amplifier with a

gain of 31 and a bandwidth of at least 90 kHz is

needed. Which amplifier chip is appropriate for

this circuit (and which is not)?

A. TL082

B. LM7171

C. LM8272

9.3 Introduction

to Continuous and Discrete

Fourier Transform

9.3.1 Meaning and Definition of Fourier

Transform
Problem 9.48. Establish all values of the angu-

lar frequency ω in Fig. 9.14b at which the

Fourier spectrum F(ω) of a rectangular pulse

crosses the frequency axis (becomes zero).

Express your result in terms of pulse duration T.

Problem 9.49

A. Establish the value of the Fourier trans-

form F(ω) for the pulse shown in the

following figure at ω ¼ 0.

Chapter 9 Filter Circuits: Frequency Response, Bode Plots. . .

IX-478



B. Establish the complete pulse spectrum

F(ω) at all values of angular frequency ω.

f(t)

t0 T/2

Vm

-T/2

Problem 9.50

Establish the Fourier transform F(ω) for the

following voltage signals in time domain:

A.
f tð Þ ¼ A sin

π

2
t

� �

, �2 � t < 2

f tð Þ ¼ 0, otherwise

B.
f tð Þ ¼ A cos

π

2
t

� �

, �2 � t < 2

f tð Þ ¼ 0, otherwise

Problem 9.51

Show that for an arbitrary real voltage signal

f(t):

A. The real part of F(ω) is an even function

of angular frequency ω.

B. The imaginary part of F(ω) is an odd

function of angular frequency ω.

C. The magnitude of F(ω) is an even func-

tion of angular frequency ω.

D. Replacing ω by �ω generates the com-

plex conjugate of F(ω); in other words,

F �ωð Þ ¼ F* ωð Þ.

9.3.2 Mathematical Properties of Fou-

rier Transform
Problem 9.52. The Fourier transform of

f(t) is F(ω). What is the Fourier transform of

d2f tð Þ=dt2 � 2

ð

t

�1

f τð Þdτ?

Problem 9.53. The Fourier transform of f(t) is

F(ω). What is the Fourier transform of f �tð Þ?

Problem 9.54. The function f(t)cosω0t is an

amplitude-modulated signal: a high-frequency

carrier cosω0t, which is transmitted wirelessly,

has a low-frequency envelope f(t), which

carries information and is being demodulated

at the receiver. If the Fourier transform of f(t)

is F(ω), what is the Fourier transform of

f(t)cosω0t?

Problem 9.55. If f(t) represents the voltage

across a 1-Ω load, then f2(t) is the power deliv-

ered to the load and

ð

1

�1

f 2 tð Þdt is the total

energy delivered to the load. Prove Parseval’s

theorem,

ð

1

�1

f 2 tð Þdt ¼ 1

2π

ð

1

�1

F ωð Þj j2dω;

which relates the total energy to an inte-

gral of the energy spectral density,

F ωð Þj j2 ¼ F ωð ÞF* ωð Þ, of the signal.
Hint: Use the reversal property of the Fourier

transform given by Eq. (9.26).

Problem 9.56. Based on Parseval’s theorem

established in the previous problem, find the

value of the integral

ð

1

�1

sinc2 tð Þdt.

9.3.3 Discrete Fourier Transform and Its

Implementation
Problem 9.57. You are using the discrete Fou-

rier transform of length 8 (N ¼ 8) for a signal

f tð Þ ¼ sin t over a time interval from 0 to 2π s.

A. Compute all sampling points in the time

domain.

B. Compute all sampling points in the fre-

quency domain.
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C. Compute equivalent frequency samples

using negative frequencies.

D. Compute all discrete samples f [n].

E. Compute all discrete samples F[m] using

the definition of the discrete Fourier

transform. Explain the physical meaning

of their values.

F. Repeat the previous step using function
fft of MATLAB. Compare both sets of
F[m].

G. Restore all discrete samples f [n] using

the definition of the inverse discrete Fou-

rier transform. Compare them with the

exact function values.

H. Repeat the previous step using function

ifft of MATLAB. Compare both sets of
f [n].

Problem 9.58. Repeat the previous problem for

the signal f tð Þ ¼ cos t. All other parameters

remain the same.

Problem 9.59. For Problem 9.57, establish and

prove a discrete version of Parseval’s theorem

formulated in Problem 9.55.

Problem 9.60. An input signal to a filter has a

discrete frequency spectrum

F m½ �, m ¼ 0, . . . ,N � 1 computed via the

FFT. You are given filter transfer function

H computed at N
2
þ 1 frequency points of the

FFT, H m½ �, m ¼ 0, . . . ,N=2. Compute the

discrete spectrum of the filter’s output to be

fed into the IFFT.

9.3.6 Application Example: Numerical

Differentiation via the FFT

9.3.7 Application Example: Filter Oper-

ation for an Input Pulse Signal

Problem 9.61*. Present the text of a MATLAB

script that numerically differentiates the input

signal f tð Þ ¼ sin t over the time interval from

0 to 4π s using the FFT with 4096 sampling

points and plot the resulting signal derivative.

Problem 9.62. Repeat the previous problem for

the signal f tð Þ ¼ exp � t � 2πð Þ2
� �

. All other

parameters remain the same.

Problem 9.63. A monopolar pulse

f tð Þ ¼ exp �2 t � 5ð Þ2
� �

, 0 � t < 10 s is

an input to a series combination of two identical

first-order high-pass filters. Find the output of

the filter combination when the (angular) break

frequency is given by:

A. ω0 ¼ 0:5 rad=s
B. ω0 ¼ 10 rad=s

Use the FFT and IFFT with N ¼ 64. Plot the

filter output and explain the output signal

behavior in every case.

Problem 9.64. A bipolar pulse

f tð Þ¼ 5� tð Þexp �2 t�5ð Þ2
� �

, 0 � t< 10 s is

an input to a first-order low-pass filter. Find the

filter output when its (angular) break frequency

is given by:

A. ω0 ¼ 0:5 rad=s
B. ω0 ¼ 5 rad=s

Use the FFT and IFFT with N ¼ 64. Plot the

filter output along with the input signal on the

same graph and explain the output signal

behavior in both cases.
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Chapter 10: Second-Order RLC Circuits

Overview

Prerequisites:

- Knowledge of complex arithmetic

- Knowledge of phasor/impedance method for AC circuit analysis (Chapter 8)

Objectives of Section 10.1:

- Learn the concept of a resonant circuit and its relation to other engineering

disciplines

- Understand the internal dynamics of the series/parallel RLC resonator including

voltage and current behavior near the resonant frequency

- Establish the meaning and be able to calculate resonant frequency, quality factor, and

bandwidth of the second-order resonant circuits

- Establish and quantify the duality between series and parallel RLC resonators

Objectives of Section 10.2:

- Construct four major types of the second-order RLC filters

- Relate all filter concepts to the corresponding circuit diagrams

- Specify two filter design parameters: the undamped resonant frequency and the

quality factor

- Realize the advantages of the second-order filters versus the first-order filters

Objectives of Section 10.3:

- Become familiar with the concept of the near-field wireless link

- Apply the theory of the series resonant RLC circuit to the basic design of the near-

field wireless transmitter and receiver

- Understand the operation of proximity sensors based on resonant RLC circuits

Application examples:

- Near-field wireless link in undergraduate laboratory

- Proximity sensors
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tank circuit, Parallel RLC tank circuit, Undamped resonant frequency, Resonant frequency,

Quality factor of the series resonant RLC circuit, Quality factor of the parallel resonant RLC
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reject (or band-stop or notch) RLC filter, Second-order high-pass RLC filter, Quality factor of

the filter circuit, Center frequency of the band-pass filter, Lower and upper half-power

frequencies, Butterworth response, Quality factor of the nonideal inductor, Voltage multiplier

circuit, Voltage multiplication, Near-field wireless link, Horseshoe coil
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Section 10.1 Theory of Second-Order Resonant

RLC Circuits

In this section, we study the last group of standard AC circuits—the resonators. They are

second-order AC circuits in LC or LCR configuration. The term second order means that

the circuits will be described by second-order differential equations if we work in the time

domain. The value of a resonator circuit in electronics cannot be overstated. In order to

proceed with any type of wireless communication, we first need to create a high-

frequency AC signal as part of a resonator circuit. Beyond high-frequency circuits,

resonators are often used in power electronics and as sensors. In this section, we apply

the phasor/impedance method to analyze resonator circuits. We will discover that the

most important characteristic is the resonant frequency. Another important parameter is

the quality factor, which also determines the resonator bandwidth.

10.1.1 Self-Oscillating Ideal LC Circuit

The circuit shown in Fig. 10.1a includes an inductor and a capacitor and there is no power

source connected to the circuit. The circuit is also ideal, which means that there is no

resistance. In other words, the parasitic resistance of the inductor, parasitic resistance of

the capacitor, and the wire resistance are all neglected. We assume that the power supply

(voltage or current) was disconnected at t ¼ 0, after the resonator was excited. The

steady-state alternating current and the AC voltages across the circuit elements are sought

once the oscillation process has been stabilized, i.e., at t ! 1.

When we apply the phasor/impedance method to the circuit in Fig. 10.1a, we obtain the

circuit shown in Fig. 10.1b. KVL in phasor form yields (note the passive reference

configuration)

VL þ VC ¼ 0 ) ZL Iþ ZCI ¼ 0 ) ZL þ ZCð ÞI ¼ 0 ð10:1Þ

Generally, Eq. (10.1) requires the phasor current I to be zero. Obviously, if the phasor

current is zero, then the real current is also zero and so are the voltages across the inductor

and the capacitor. The circuit is not functioning. However, you should note that, if

Fig. 10.1. Self-oscillating ideal LC circuit and its phasor representation.
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ZL þ ZC ¼ 0 ð10:2Þ

in Eq. (10.1), the phasor current does not have to be zero and may have any value

depending on the initial excitation. Equation (10.2) is satisfied at only one single

frequency f0:

jω0Lþ 1

jω0C
¼ 0 ) multiply by jð Þ ) �ω0Lþ 1

ω0C
¼ 0 )

ω0 ¼
1
ffiffiffiffiffiffiffi

LC
p ) f 0 ¼

1

2π
ffiffiffiffiffiffiffi

LC
p

ð10:3Þ

which is the undamped resonant frequency of the LC circuit. Equation (10.3) is perhaps

the most important result of resonator theory. Once Eq. (10.3) is satisfied, the solution for

the circuit current is obtained in the form:

I ¼ I0 ) i tð Þ ¼ Im cosω0 t ð10:4aÞ

The current amplitude Im may be arbitrary; it is determined by the initial excitation. The

voltages are found accordingly:

VL ¼ ZLI ) υL tð Þ ¼ ω0LIm cos ω0t þ 90�ð Þ
VC ¼ ZCI ) υC tð Þ ¼ 1= ω0Cð ÞIm cos ω0t � 90�ð Þ ð10:4bÞ

The ideal self-oscillating LC circuit in Fig. 10.1 can oscillate indefinitely long. What is the

physical basis of self-oscillations in an LC circuit? To answer this question, let us take a

closer look at Eqs. (10.4). When the circuit current is at its maximum, the magnetic field

energy stored in the inductor also has reached its maximum. Since the voltages are shifted

by� π/2 versus the current, they are exactly zero at that time instance. The zero capacitor

voltage means that no energy of the electric field is stored in the capacitor. All of the energy

stored in the circuit is concentrated in the inductor. When the circuit current reaches zero,

the situation becomes the opposite: the capacitor stores the entire circuit energy, and the

inductor does not have any stored energy. As time progresses, the process continues so that

the current flows back and forth in the circuit charging and discharging the capacitor (and in

certain sense the inductor) periodically. Figure 10.2 shows the ideal mechanical counterpart

of the circuit in Fig. 10.1. A massive wheel with a rotational inertia represents the inductor

and the flexible membrane, the capacitor. The fluid flows back and forth either rotating the

wheel (increasing its rotational energy) or bending the membrane (increasing its release

energy).
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Example 10.1: An LC circuit in Fig. 10.1 has the circuit parameters L ¼ 1 μH,

C ¼ 1 μF. Determine its resonant frequency, also known as the self-oscillation frequency.

Solution: Equation (10.3) is applied, which gives ω0 ¼ 106 rad=s ) f 0 ¼ 159 kHz. For

practical reasons, the resonant frequency is most often measured and reported in Hz,

instead of rad/s.

10.1.2 Series Resonant Ideal LC Circuit

What if an alternating pressure pump is connected to the oscillating mechanical system in

Fig. 10.2, which will add a small pressure “push” at every period of oscillation? Since there

is no friction, the oscillations may grow up indefinitely. This phenomenon is known as

resonance. The corresponding electrical counterpart is the circuit shown in Fig. 10.3a. The

circuit in Fig 10.3a is solved using the phasor method, see Fig. 10.3b. We assume

υS tð Þ ¼ Vm cosω t. The equivalent impedance is given by,

Zeq ¼ ZL þ ZC ¼ jωLþ 1

jωC
¼ j ωL� 1

ωC

� �

¼ �j
1� LCω2

ωC
Ω½ � ð10:5aÞ

massive wheel

flexible membrane

Fig. 10.2. Self-oscillating mechanical counterpart of the LC circuit shown in Fig. 10.1.

Fig. 10.3. Series resonant ideal LC circuit and its phasor representation.
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The phasor voltages and phasor current become

I ¼ Vm=Zeq ¼
VmωC

1� LCω2
∠90�, VL ¼ ZLI ¼

VmLCω
2

1� LCω2
∠180�,

VC ¼ ZCI ¼
Vm

1� LCω2
∠0�

ð10:5bÞ

The real-valued circuit parameters are given by

i tð Þ ¼ VmωC

1� LCω2
cos ω t þ 90�ð Þ, υL tð Þ ¼ VmLCω

2

1� LCω2
cos ωt þ 180�ð Þ,

υC tð Þ ¼ Vm

1� LCω2
cos ωtð Þ

ð10:5cÞ

The solution remains finite at any source frequency except the undamped resonant

frequency ω0 ¼ 1=
ffiffiffiffiffiffiffi

LC
p

or f 0 ¼ ω0= 2πð Þ. The closer the source frequency approaches

the undamped resonant frequency, the higher the circuit current, capacitor voltage, and

the inductor voltage become. Eventually, at the exact undamped resonant frequency, they

all become infinitely high! The denominator in Eq. (10.5c) approaches zero and the

circuit starts to “resonate.” At the undamped resonant frequency, the impedances of the

inductor and capacitor cancel out and their combination is a short circuit: an ideal wire of

zero resistance. Moreover, the voltage source is shorted out. Note that the resonant

frequency of an LC circuit was first derived by James Clerk Maxwell in 1868. A young

man at this point, he spent a night working over this problem, which arose from an

experiment of Sir William Grove, and wrote a report to him the next morning.

Example 10.2: Find the sum of the real-valued voltages υL(t), υC(t) in Fig. 10.3a.

Solution: The capacitor and inductor voltages are in antiphase (the phases differ by 180�).
Therefore, they largely cancel out. According to Eq. (10.5c), the sum of the voltages is

exactly the supply voltage υS(t), irrespective of how high the individual voltages are.

Exercise 10.1: For the ideal series resonant ideal LC circuit in Fig. 10.3, determine the

phasor voltages across the inductor and capacitor given that Vm ¼ 1 V and ω
2 ¼ 0:9ω2

0.

Answer: VL ¼ 9∠180� V½ �, VC ¼ 10∠0� V½ �

10.1.3 Series Resonant RLC Circuit: Resonance Condition

The ideal LC circuit shown in Fig. 10.1a, or the series LC resonator shown in Fig. 10.3a,

never exists in practice. Internal power supply resistance, wire resistance, or parasitic

resistances of realistic capacitors and inductors lead to the realistic resonant RLC circuit
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model shown in Fig. 10.4a. Here, the resistance R models the combined resistances

present in the circuit. The resistance reduces the resonant effect and leads to finite

voltages/currents at the resonance.

The circuit in Fig 10.4a is solved using the phasor method, see Fig. 10.4b. We again

assume υS tð Þ ¼ Vm cosω t. The equivalent impedance is given by

Zeq ¼ ZR þ ZL þ ZC ¼ Rþ jωLþ 1

jωC
¼ Rþ j ωL� 1

ωC

� �

Ω½ � ð10:6aÞ

The resonance condition for any AC circuit, and not necessarily the circuit shown in

Fig. 10.4, states that the imaginary part (the reactance X) of the equivalent circuit

impedance seen by the power source must be equal to zero:

Im Zeq

� �

¼ X ¼ 0 Ω½ � ð10:6bÞ

When applied to Eq. (10.6a), this condition defines the circuit’s resonant frequency in the

form ω0 ¼ 1=
ffiffiffiffiffiffiffi

LC
p

, f 0 ¼ 1= 2π
ffiffiffiffiffiffiffi

LC
p� �

. For the series RLC circuit, the resonant fre-

quency clearly coincides with the undamped resonant frequency of the ideal LC circuit.

Unfortunately, this is not always the case for general RLC circuits. This important

question is addressed in the homework problems.

At the resonant frequency, the impedances of the inductor and capacitor in Eq. (10.6a)

cancel out; their combination is a short circuit since only the resistance R remains. The

real-valued circuit current and the real-valued voltages are given by

i tð Þ ¼ Vm

R
cos ω0tð Þ, υL tð Þ ¼ Vm

R
ω0L cos ω0t þ 90�ð Þ, υC tð Þ ¼ Vm

R

1

ω0C
cos ω0t � 90�ð Þ

ð10:6cÞ

at resonance. Those are the highest amplitudes of the circuit current and the individual

voltages that could be achieved in the series RLC circuit. If the frequency deviates from

the resonant frequency, smaller amplitude values are obtained. When the circuit

v
L+

-

L

R+
-v (t)S v

R

+

-

i(t)

v
C +

-

C

L
Z

C
Z

V
L+

-

+
-VS V

R

+

-

I
b)a)

V
C +

-

R
Z

Fig. 10.4. Realistic series resonant RLC circuit and its phasor representation.

Chapter 10 Section 10.1: Theory of Second-Order Resonant RLC Circuits

X-487



resistance is small, large circuit current and large capacitor and inductor voltages may be

achieved at the resonance. You have to be aware of the fact that it is not uncommon to

measure voltage amplitudes of 50–500 Vacross the individual elements in the laboratory,

whereas the driving source voltage may only have an amplitude of 10 V. The circuit in

Fig. 10.4 is also called the series RLC tank circuit.

Exercise 10.2: In the series resonant RLC circuit shown in Fig. 10.4, Vm ¼ 10 V,

L ¼ 50 μH, C ¼ 0:5 nF, R ¼ 50 Ω. Determine the real-valued circuit current and the

inductor/capacitor voltages at the resonance.

Answer:

i tð Þ ¼ 0:2 cos ω tð Þ A½ �, υL tð Þ ¼ 63:3 cos ω t þ 90�ð Þ V½ �,

υC tð Þ ¼ 63:3 cos ωt � 90�ð Þ V½ �:
ð10:7Þ

Could we increase the resonant voltage amplitudes of the series RLC circuit in

Fig. 10.4a [see Eq. (10.6c)] while keeping the voltage source and the circuit resistance

unaltered? Yes we can. However, one more concept is required for this and similar

problems: the concept of the quality factor of a resonator.

10.1.4 Quality Factor Q of the Series Resonant RLC Circuit

Multiple factors in front of resonant voltages and currents expressions can be reduced to

one single factor. Using the definition of the resonant frequency ω0, Eq. (10.6c) at the

resonance may be rewritten in the simple form

i tð Þ ¼ Vm

R
cos ω0tð Þ, υL tð Þ ¼QVm cos ω0tþ90�ð Þ, υC tð Þ ¼QVm cos ω0t� 90�ð Þ

ð10:8Þ

where the dimensionless constant

Q ¼
ffiffiffiffiffiffiffiffi

L=R
p

ffiffiffiffiffiffiffi

RC
p ¼

ffiffiffiffiffiffiffiffiffi

L=C
p

R
ð10:9Þ

is called the quality factor of the series resonant RLC circuit. The equivalent forms are

Q ¼ 1

ω0RC
¼ ω0

L

R
ð10:10Þ

Thus, in order to increase the resonant voltage amplitudes in Eq. (10.8), we should simply

increase the quality factor of the resonator. Even if the circuit resistance remains the same,

we can still improve Q by increasing the ratio of L/C in Eq. (10.9). This observation
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provides one physical interpretation of the quality factor: it determines the maximum

amplitude of the resonant oscillations. A higher Q-factor results in larger amplitudes. Yet

another, perhaps even more important, interpretation is related to the “sharpness” of the

resonance at frequencies close to ω0. What is the physical meaning of Eq. (10.9)? Why

does the Q-factor increase with increasing the inductance but not the capacitance? To

answer these questions, consider the fluid mechanics analogy in Fig. 10.2. The high

Q implies a massive wheel (note: high inductance is equivalent to high wheel mass).

Simultaneously, it implies a large membrane stiffness (the small capacitance, which is

inversely proportional to the stiffness). The mechanical resonator so constructed will be

less susceptible to losses at resonance but will not resonate at all if the driving force has a

frequency far away from the resonance.

A general definition of the quality factor also applicable to mechanical engineering and

physics is as follows. The quality factor is 2π times the ratio per cycle of the energy stored

in the resonator to the energy supplied by a source, while keeping the signal amplitudes

constant at the resonant frequency. According to Eq. (10.6c), the instantaneous energies

stored in the inductor and capacitor are given by

EL tð Þ ¼ 1

2
Li2 tð Þ ¼ Vm

R

� �2
L

2
cos 2 ω0 tð Þ,

EC tð Þ ¼ 1

2
Cυ2C tð Þ ¼ Vm

R

� �2
1

2ω2
0C

sin 2
ω0tð Þ

ð10:11Þ

Since 1= ω
2
0C

� �

¼ L, the coefficients in front of the cosine squared and sine squared terms

are equal. It means that even though both energies vary over time, their sum is a constant:

EL tð Þ þ EC tð Þ ¼ Vm

R

� �2
L

2
ð10:12aÞ

The energy dissipated in the resistance is the integral of the instantaneous absorbed power

over the period; this integral is equal to

Ediss ¼
ð

2π=ω0

0

V 2
m

R
cos 2 ω0tð Þdt ¼ V 2

m

2R

ð

2π=ω0

0

1þ cos 2ω0 tð Þð Þdt ¼ πV 2
m

ω0R
ð10:12bÞ

The ratio of the two energies times 2π precisely equals Eq. (10.9).
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Example 10.3: A series resonant LC circuit is driven by a laboratory AC voltage source

with amplitude Vm ¼ 10 V and an internal resistance of 50 Ω (a function generator).

Which value should the ratio L/C have to obtain the amplitude of the capacitor voltage to

be equal to 50 V at resonance?

Solution: We replace the realistic voltage source by its Thévenin equivalent: the ideal

voltage source with the amplitude of 10 Vand the series resistance of 50Ω. Here, we again

arrive at the standard RLC circuit shown in Fig. 10.4a. According to Eq. (10.8), the

Q-factor of the RLC circuit should be equal to 5. From the definition of the Q-factor

given by Eq. (10.9), one has

ffiffiffiffiffiffiffiffiffi

L=C
p

¼ RQ ¼ 250 ) L=C ¼ 62, 500 Ω2 ð10:13Þ

This result is valid for any resonant frequency. For example, the set L ¼ 1mH, C ¼ 16

nF will give us the desired amplitude value.

Note that large Q-factors usually imply large inductances which increase the

series resistance of the inductor coil and thus increase the net circuit resistance (increase

circuit loss). Therefore, there is a trade-off between the circuit Q and the inductance

value.

Example 10.4: A series resonant RLC circuit is needed with the resonant frequency of

100 kHz and a Q-factor of 50. The circuit resistance is 10 Ω. Determine the necessary

values of L and C.

Solution: From the definition of the resonant frequency and the Q-factor, we obtain

1=
ffiffiffiffiffiffiffi

LC
p

¼ 2π � 105,
ffiffiffiffiffiffiffiffiffi

L=C
p

¼ RQ ¼ 500 )
1

C
¼ 2π � 105 � 500 ) C ¼ 3:2 nF

ð10:14Þ

Consequently, L ¼ 0:80 mH.

10.1.5 Bandwidth of the Series Resonant RLC Circuit

The bandwidth of the series resonant RLC circuit is obtained by analyzing the behavior of

the amplitude of the circuit current as a function of source frequency. An alternative

definition implies analyzing the behavior of the amplitude of the resistor voltage;

however, both quantities are equal to within a constant R. The phasor current at any

frequency is obtained from Eq. (10.6a). It will be written here in terms of quality factor Q,

frequency f, and resonant frequency f0 in the form:
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I ¼ Vm

Zeq

¼ Vm

Rþ j ωL� 1
ωC

� � ¼ Im
1

1þ jQ
f

f 0
� f 0

f

� � ð10:15aÞ

Here, Im ¼ Vm=R is the maximum (resonant) current amplitude in the series RLC circuit;

f 0 ¼ 1= 2π
ffiffiffiffiffiffiffi

LC
p� �

is the resonant frequency in Hz. The real-valued circuit current and the

real-valued resistor voltage are both found from the phasor current given by Eq. (10.15a):

i tð Þ ¼ ImH cos ωt þ φð Þ A½ �
υR tð Þ ¼ VmH cos ωt þ φð Þ V½ �

	

, H fð Þ ¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ Q2 f

f 0
� f 0

f

� �2
r ð10:15bÞ

Here,H( f ) is the dimensionless function of frequency that peaks at the resonant frequency

f ¼ f 0,H f 0ð Þ ¼ 1. One may treatH( f ) as an amplitude transfer function of an associated

RLC filter with the input voltage being the source voltage and the output voltage being the

resistor voltage. In this case, H( f ) is equal to the amplitude ratio of the two voltages.

Simultaneously, H( f ) characterizes how fast the circuit current amplitude decays when

the circuit frequency deviates from the resonant frequency f0. To be specific, we assume

f 0 ¼ 10 kHz and Q ¼ 1, 2, 5 in Eq. (10.15b). Figure 10.5 plots the function H( f ) in

decibels, H fð ÞdB ¼ 20log10 H fð Þð Þ dB½ �, using a log-log scale, i.e., creates its Bode plot.
The bandwidth B of the series resonant RLC circuit is defined as the interval of

frequencies over which the function H( f ) is greater than or equal to 1=
ffiffiffi

2
p

¼ 0:707.
In other words, the signal power at the resistor (which is proportional to the square of

H( f )) is no less than 50 % of the maximum power at the exact resonance. We call

the bandwidth so defined the half-power bandwidth. In terms of the transfer function

H( f )dB in decibels, this condition corresponds to the inequality H fð ÞdB � �3 dB.

10
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Fig. 10.5. Amplitude of the circuit current (or the amplitude of the resistor voltage) normalized by

its peak value at resonance. The resulting graph is the Bode plot.
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The first resonant curve in the form of Fig. 10.5 was published by Heinrich Hertz in

1887 although he used a linear, not a logarithmic, frequency scale so that the curve did not

look quite symmetric. Figure 10.5 indicates that the bandwidth increases when the quality

factor decreases and vice versa. In other words, the low-Q resonant circuit has a large

bandwidth; we may say it resonates “equally bad” over a wider band of frequencies.

However, the high-Q circuit has a small bandwidth; it resonates well but only over a small

band of frequencies. The lower and upper half-power frequencies, fL, fU, are obtained by

setting H fð Þ ¼ 1=
ffiffiffi

2
p

in Eq. (10.15b) and solving for f. The resulting quadratic equation

has two roots:

f L ¼ f 0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 1= 2Qð Þ2
q

� 1= 2Qð Þ
� �

,

f U ¼ f 0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 1= 2Qð Þ2
q

þ 1= 2Qð Þ
� �

Hz½ �
ð10:16Þ

Despite the complexity of those expressions, the final result for the half-power bandwidth

is surprisingly simple and understandable:

B � f U � f L ¼ f 0
Q

¼ R

2πL
Hz½ � ð10:17Þ

Exercise 10.3: Determine the bandwidth B of the series resonant RLC circuit with the

resonant frequency of 1 MHz and a Q-factor of 10.

Answer: B ¼ 100 kHz.

Example 10.5: A series resonant RLC circuit is needed with a resonant frequency of

500 kHz and a bandwidth of 20 kHz. Given the circuit resistance of 15 Ω, determine

L and C.

Solution: From the bandwidth definition, the required Q-factor is equal to 500=20 ¼ 25.

Further, we may follow the solution developed in Example 10.4. From the definition of the

resonant frequency and the Q-factor, we subsequently obtain

1=
ffiffiffiffiffiffiffi

LC
p

¼ 2π�5�105,
ffiffiffiffiffiffiffiffiffi

L=C
p

¼RQ¼ 375)C	 0:85 nF. Next, we determine

L¼C RQð Þ2 	 0:12 mH. Alternatively, one could find the inductance L directly from

Eq. (10.16), that is, L¼R= 2πBð Þ¼ 0:12 mH.
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Example 10.6: Create Bode plots as seen in Fig. 10.5 using MATLAB.

Solution: We create only one bandwidth curve, for Q ¼ 2. Other curves are obtained

similarly, using the command hold on.

f       = logspace(3, 5, 101); % frequency vector, Hz(from 10^3 to 10^5 Hz)

f0      = 1e4;                 % resonant frequency, Hz

Q       = 2;                   % quality factor, dimensionless

H       = 1./sqrt(1+Q^2*(f/f0-f0./f).^2);

HdB     = 20*log10(H);

semilogx(f, HdB, 'r'); grid on;

title('Bode plot');

xlabel('frequency, Hz'); ylabel('H, dB')

axis([min(f) max(f) -30 0])

10.1.6 Parallel Resonant RLC Circuit: Duality

The parallel resonant RLC circuit is shown in Fig. 10.6. It is driven by an alternating

current source iS tð Þ ¼ Im cosωt. The parallel RLC resonator is a current divider circuit,

which is the dual to the series RLC resonator (which is a voltage divider) in Fig. 10.4.

While the series RLC resonator is capable of creating large voltages (or “amplifying” the

supply voltage), the parallel RLC resonator circuit is capable of producing large currents.

The amplitudes of the currents through the inductor and the capacitor may be large, much

larger than the supply current itself. The circuit in Fig. 10.6 is also called the parallel RLC

tank circuit.

The circuit in Fig 10.6a is solved by using the phasor method; see Fig. 10.6b. The

equivalent impedance is given by

1

Zeq

¼ 1

ZR

þ 1

ZL

þ 1

ZC

¼ 1

R
þ 1

jωL
þ jωC ¼ 1

R
� j

1� LCω2

ωL
Ω½ � ð10:18Þ

The resonance condition for any AC circuit states that the impedance Zeq must be a

purely real number at resonance. If the impedance is real, its reciprocal, the admittance, is

also real and vice versa. Therefore, from Eq. (10.18), we obtain the resonant frequency

R
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L
Z

C
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-
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Fig. 10.6. Parallel resonant RLC circuit and its phasor representation.
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ω0 ¼
1
ffiffiffiffiffiffiffi

LC
p , f 0 ¼

1

2π
ffiffiffiffiffiffiffi

LC
p ð10:19Þ

which coincides with the resonant frequency of the series RLC tank circuit and with the

undamped resonant frequency of the LC circuit. Thus, at resonance,Zeq ¼ R and one has

V ¼ RIm for the phasor voltage in Fig. 10.6b. Knowing the phasor voltage, we can

establish the phasor currents. The corresponding real-valued voltage and currents at

resonance take on the forms

υ tð Þ ¼ RIm cos ω0tð Þ, iL tð Þ ¼ RIm

ω0L
cos ω0t � 90�ð Þ,

iC tð Þ ¼ RIm ω0Cð Þ cos ω0t þ 90�ð Þ
ð10:20Þ

The amplitude of the circuit voltage, along with the amplitudes of inductor and capacitor

currents in Eq. (10.20), reaches a maximum at resonance. Next, we wish to introduce the

Q-factor of the circuit, similar to Eq. (10.8) for the series resonator, that is,

υ tð Þ ¼ RIm cos ω0tð Þ, iL tð Þ ¼ ImQ cos ω0t � 90�ð Þ,

iC tð Þ ¼ ImQ cos ω0t þ 90�ð Þ
ð10:21Þ

Comparing Eq. (10.20) with Eq. (10.21), we obtain a different expression:

Q ¼
ffiffiffiffiffiffiffi

RC
p
ffiffiffiffiffiffiffiffi

L=R
p ¼ ω0RC ¼ R

ω0L
ð10:22Þ

which is exactly the reciprocal of the Q-factor of the series RLC circuit. This means that a

high-Q parallel resonant circuit will require higher capacitances than inductances.

Fortunately, all the results related to the series resonant RLC circuit can directly be

converted to the parallel RLC resonant circuit using the substitutions:

υ tð Þ ! Ri tð Þ, iL tð Þ ! υC tð Þ=R, iC ! υL tð Þ=R ð10:23aÞ

Here, the left-hand side corresponds to the parallel RLC circuit, whereas the right-hand

side corresponds to the series RLC circuit. Furthermore, we need to replace Vm by RIm
and interchange the role of two partial time constants:

L

R
$ RC ð10:23bÞ

in the original solution for the series RLC circuit; see Eq. (10.22). The solution so

constructed will match exactly the solution of the parallel RLC circuit depicted in
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Fig. 10.6. This fact is proved by direct substitution. Thus, Eqs. (10.23) reflects the duality

of the series/parallel RLC AC steady-state electric circuits driven by voltage and current

sources, respectively. It means that the results established for one circuit may be applied

to the other circuit and vice versa. A similar duality is established for the transient RLC

circuits. Consequently, we can concentrate our study on the series RLC circuit.

Exercise 10.4: For the parallel resonant RLC circuit in Fig. 10.6, determine resonant

phasor currents IR, IL, and IC if Im ¼ 100 mA, L ¼ 30 μH, C ¼ 1 μF, and R ¼ 100 Ω.

Answer: IR ¼ IS¼ 0:1∠0�, IL¼ 1:83∠�90�, IC ¼ 1:83∠þ90� A½ �.

Example 10.7: The circuit voltage for the parallel RLC circuit in Fig. 10.6 at any

frequency may be written in the form υ tð Þ ¼ RImH fð Þ cos 2πf t þ φð Þ where H( f ) is a

dimensionless amplitude transfer function, which peaks at the resonant frequency,

H f 0ð Þ ¼ 1. Create the Bode plot of H( f ) at f 0 ¼ 10 kHz and for Q ¼ 1, 2, 5.

Solution: The amplitude transfer function H( f ) for the parallel RLC circuit coincides with

the expression (10.15b) for the series RLC circuit. The Bode plot also coincides with the

corresponding result for the series RLC circuit shown in Fig. 10.5. However, the Q-factor

is now given by Eq. (10.22). The bandwidth of the parallel resonant circuit is still given by

the expression B ¼ f 0=Q Hz½ � but with the modified Q-factor. This results in

B ¼ 1= 2πRCð Þ Hz½ �.
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Section 10.2 Construction of Second-Order RLC Filters

An immediate application of the RLC resonant circuits relates to the concept of filter

design. We have already studied the first-order low-pass and high-pass filters on the basis

of RC and RL steady-state AC circuits. In fact, the RLC circuits could also be used as

low-pass and high-pass filters. They perform even better, i.e., more closely linked to the

frequency response of the ideal filter, which implies passing all the frequency compo-

nents below (or above) a certain cutoff frequency and rejecting all other frequency

components. In other words, the frequency responses of the RLC low-pass and high-

pass filters are “steeper” than first-order filters. Not only that, resonant RLC circuits can

form band-pass and band-reject (or band-stop or notch) filters, a task which is impossible

with first-order RC or RL circuits.

10.2.1 Second-Order Band-Pass RLC Filter

A series RLC circuit is shown in Fig. 10.7a. We consider the supply voltage as the input

voltage υin(t) into the filter and the resistor voltage υR(t) as the output voltage υout(t).

Figure 10.7b depicts the corresponding circuit transformation. This transformation

implies that the input voltage is provided by another circuit block and the output voltage

is passed to another circuit block. The circuit in Fig. 10.7b is thus a two-port network.

Qualitatively then, when the frequency of the input voltage is the resonant frequency of

the RLC circuit, the LC block in Fig. 10.7 is replaced by a short circuit (a wire). The

input voltage passes through unchanged. However, if the frequency differs from the

resonant one, the LC block exhibits a large finite impedance that is added to the

resistance R. As a result, the circuit current decreases in amplitude, as does the output

voltage (voltage across the resistor), which is proportional to the current. Those frequen-

cies are thus rejected. The filter so constructed is known as a second-order band-pass

RLC filter.

We assume the source voltage (the input filter voltage) is given in the form

υS tð Þ ¼ Vm cosω t. The phasor current for the corresponding series RLC circuit was

found in the previous section (see Eq. (10.15a)):

C

+
-v (t)=v (t)in S v

R

+

- R

+

-

v (t)in

+

-

second-order band-pass RLC filter

v (t)out

CLL

R

a) b)

Fig. 10.7. Transformation of the series RLC circuit into the band-pass analog RLC filter.
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I ¼ Vm=R

1þ jQ
f

f 0
� f 0

f

� � ð10:24aÞ

Here,Q ¼
ffiffiffiffiffiffiffiffiffi

L=C
p

=R is the corresponding quality factor of the series RLC circuit (quality

factor of the filter circuit), and f 0 ¼ 1=
ffiffiffiffiffiffiffi

LC
p

is its resonant frequency. The complex filter

transfer function is defined by the ratio of the corresponding phasors:

H fð Þ � VR

VS

¼ RI

Vm

ð10:24bÞ

Substitution of Eq. (10.24a) into Eq. (10.24b) gives the transfer function in the form:

H fð Þ ¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ Q2 f

f 0
� f 0

f

� �2
r ∠� tan �1 Q

f

f 0
� f 0

f

� �� �

ð10:24cÞ

which is equivalent to Eq. (10.15b) of the previous section. Therefore, the results

derived for the series resonant RLC circuit are also valid for the band-pass RLC filter

in Fig. 10.7. In particular, the center frequency of the band-pass filter is the circuit

resonant frequency. The half-power bandwidth of the filter is given by Eq. (10.17),

i.e., B ¼ f 0=Q ¼ R= 2πLð Þ, and the lower and upper half-power frequencies are known

from Eq. (10.16) of the previous section. Second-order filter circuits are designed

by choosing the values of R, L, C in such a way as to obtain the required values of

Q and f0 (the filter center frequency and the required bandwidth). Thus, we have two

equations for three unknowns. The remaining degree of freedom is used to match the filter

impedances.

Example 10.8: A band-pass RLC filter is required with the center (resonant) frequency of

1 MHz and a half-power bandwidth B of 100 kHz. Create amplitude and phase Bode plots

for the filter in the frequency band from 100 kHz to 10 MHz.

Solution: Clearly, f 0 ¼ 1 MHz. The quality factor of the RLC circuit is found to be

Q ¼ f 0=B ¼ 10. We plot the magnitude of the transfer function, H( f ), in decibels and its

phase in degrees according to Eq. (10.24c). The result is shown in Fig. 10.8. You should

note that far away from the passband, the filter follows a 20-dB-per-decade roll-off.
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Exercise 10.5: In the band-pass filter circuit of Fig.10.7, L ¼ 100 μH, C ¼ 15:9 μF, and

R ¼ 10 Ω. What is the filter bandwidth?

Answer: 15.9 kHz.

Example 10.9: In the previous example, determine the necessary values of L and C given

R ¼ 20 Ω.

Solution: From the definition of the resonant frequency and the Q-factor, we obtain

1=
ffiffiffiffiffiffiffi

LC
p

¼ 2π � 106,
ffiffiffiffiffiffiffiffiffi

L=C
p

¼ RQ ¼ 200 ) C 	 796 pF. Then, we find the required

inductance, L ¼ C RQð Þ2 	 31:8 μH. Alternatively, one could find the inductance

L directly from the definition of the bandwidth for the series RLC resonator, that is,

L ¼ R= 2πBð Þ ¼ 31:8 μH.
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Fig. 10.8. Amplitude and phase Bode plot of a band-pass series RLC filter with Q¼ 10.
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10.2.2 Second-Order Low-Pass RLC Filter

A series RLC circuit is again shown in Fig. 10.9a. We consider the power supply AC

voltage as the input voltage υin(t) into the filter. We monitor the capacitor voltage υC(t) as

the output voltage υout(t) of the filter. Figure 10.9b depicts the corresponding circuit.

The filter so constructed is a second-order low-pass RLC filter. Qualitatively then,

when the frequency of the input voltage is low, the inductor behaves as a short circuit and

the capacitor as an open circuit. The input voltage passes through unchanged. However, if

the frequency is higher than the resonant frequency, both the inductor and the capacitor

prevent transmission: the capacitor shorts out the output voltage, whereas the inductor

reduces the circuit current. The complex filter transfer function is defined by the ratio of

the corresponding phasors:

H fð Þ � VC

VS

¼ I

jωCVm

ð10:25aÞ

We substitute the expression for the phasor current of the series RLC circuit from

Eq. (10.24a) and obtain the transfer function in the form:

H fð Þ ¼ Q
f 0
f

1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ Q2 f

f 0
� f 0

f

� �2
r ∠� π

2
� tan �1 Q

f

f 0
� f 0

f

� �� �

ð10:25bÞ

Example 10.10: A low-pass RLC filter is required with a passband from 0 to 1 MHz. In

other words, the low-pass filter bandwidth, which extends from zero hertz to the half-

power frequency, should be 1 MHz. Create amplitude and phase Bode plots for the filter

in the frequency band from 100 kHz to 10 MHz.

Solution: The critical point for the low-pass RLC filter design is the proper selection of

the quality factor. The amplitude transfer function in Eq. (10.25b) can exhibit a sharp

peak in the passband with its value higher than one. Such a peak (further investigated

in the homework problems) occurs only for Q ¼ 1=
ffiffiffi

2
p

. The value Q ¼ 1=
ffiffiffi

2
p

corre-

sponds to the maximally flat but still steep transfer function (maximally flat Butterworth

C
+
-v (t)=v (t)in S v
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+

-
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Fig. 10.9. Transformation of the series RLC circuit into the low-pass analog RLC filter.
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Example 10.10 (cont.): response). We will use this value in Eq. (10.25b). Then, the half-

power or 3-dB frequency of the filter will be exactly the resonant frequency f0.

The resulting Bode plots are shown in Fig. 10.10. The transfer function of the filter has

40-dB-per-decade roll-off.

Figure 10.10 shows three amplitude responses: for an ideal filter with the cutoff

frequency of 1 MHz, for a second-order RLC filter with the 3-dB frequency which

coincides with f 0 ¼ 1 MHz, and for a first-order RC (or RL) filter with the break

(half-power) frequency f b ¼ f 0 ¼ 1 MHz. Clearly, the second-order filter better

approaches the desired ideal response. This observation encourages us to consider filters

of higher order.

10.2.3 Second-Order High-Pass RLC Filter

A series RLC circuit is again shown in Fig. 10.11a. We consider the power supply AC

voltage as the input voltage υin(t) into the filter. We next consider the inductor voltage

υL(t) as the output voltage υout(t) of the filter, see Fig. 10.11b. The constructed circuit is a
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Fig. 10.10. Amplitude and phase Bode plots for the low-pass RLC filter (solid curves) compared

with a first-order RC filter (dotted curve).
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second-order high-pass RLC filter. Qualitatively, when the frequency of the input voltage

is low, the capacitor behaves like an open circuit, while the inductor behaves like a short

circuit. Both the inductor and the capacitor prevent transmission. However, if the

frequency is higher than the resonant frequency, the capacitor becomes a short circuit

and the inductor becomes an open circuit. The input voltage is passed through the filter

nearly unchanged. The complex filter transfer function is defined by the ratio of the

corresponding phasors:

H fð Þ � VL

VS

¼ jωLI

Vm

ð10:26aÞ

We substitute the expression for the phasor current of the series RLC circuit from

Eq. (10.24a) and obtain the transfer function in the form:

H fð Þ ¼ Q
f

f 0

1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ Q2 f

f 0
� f 0

f

� �2
r ∠

π

2
� tan �1 Q

f

f 0
� f 0

f

� �� �

ð10:26bÞ

The amplitude transfer function of the high-pass filter in Eq. (10.26b) is the mirror

reflection of the amplitude transfer function for the low-pass filter in Eq. (10.25b) if a

logarithmic frequency scale is used. This fact is seen by substituting f $ 1=f , f 0 $ 1=f 0,
which makes both expressions identical.

Example 10.11: A high-pass RLC filter is required with the passband from 0 to 1 MHz.

The high-pass filter half-power frequency should be 1 MHz. Create amplitude and phase

Bode plots for the filter in the band from 100 kHz to 10 MHz.

Solution: The important point for the high-pass RLC filter design is again the proper

selection of the quality factor. Similar to the low-pass filter, we choose the value

Q ¼ 1=
ffiffiffi

2
p

, which corresponds to the maximally flat transfer function (Butterworth

response). Then, the half-power or 3-dB frequency of the filter will be exactly the resonant

frequency f0. The resulting Bode plots are shown in Fig. 10.12 in comparison with

the transfer function of the first-order high-pass filter. The amplitude transfer function of

the filter again has the 40-dB-per-decade roll-off.
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Fig. 10.11. Transformation of the series RLC circuit into the high-pass analog RLC filter.
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Exercise 10.6: A band-pass filter is as a series combination of the second-order low-pass

RLC filter and the second-order high-pass RLC filter, respectively. Both filters have the

same half-power frequency. What is the transfer function roll-off far away from the

passband per one octave?

Answer: 12 dB.

10.2.4 Second-Order Band-Reject RLC Filter

A series RLC circuit is again shown in Fig. 10.13a. We consider the power supply

AC voltage as the input voltage υin(t) into the filter, and the voltage υLC(t) across the LC

block is recorded as the output voltage υout(t). Figure 10.13b depicts the corresponding

filter circuit.
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Fig. 10.12. Amplitude and phase Bode plots for the high-pass RLC filter (solid curves) and

amplitude comparison with a first-order RC filter (dotted curve).
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The filter so constructed is a second-order band-reject (known as band-stop or notch)

RLC filter. At resonance, the LC block forms a short circuit: the output filter voltage is

thus shorted out. All other frequencies pass through. This filter is useful when a single

tone (e.g., 60 Hz) needs to be rejected. By KVL, its transfer function is equal to one minus

the transfer function of the band-pass filter in Eq. (10.24c), i.e.,

H fð Þ¼ 1� 1

1þ jQ f

f 0
� f 0

f

� �¼Q
f

f 0
� f 0

f

























1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þQ2 f

f 0
� f 0

f

� �2
r ∠

π

2
� tan�1 Q

f

f 0
� f 0

f

� �� �

ð10:27Þ
Therefore, the filter behavior is the opposite of the band-pass filter previously analyzed.

Example 10.12: A band-reject RLC filter is required with the center frequency of 1 MHz

and the half-power bandwidth, B, of 100 kHz. Create amplitude and phase Bode plots for

the filter in the frequency band from 100 kHz to 10 MHz.

Solution: The quality factor of the RLC circuit is found to beQ ¼ f 0=B ¼ 10. We plot the

magnitude of the transfer function H( f ) in decibels and its phase in degrees according to

Eq. (10.27). The result is shown in Fig. 10.14. The filter response is very steep over the

specified frequency range. We can lower the Q-factor, which will lead to a wider band-

width. Note that the amplitude transfer function formally equals zero at the exact resonant

frequency. This result is physically unrealizable since real inductors have a small parasitic

series resistance.

L+
-v (t)=v (t)in S v

LC

+

-

+

-

v (t)in

+

-

second-order band-reject RLC filter

v (t)out

R

C

R

L

C

a) b)

Fig. 10.13. Transformation of the series RLC circuit into the band-reject analog RLC filter.
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10.2.5 Second-Order RLC Filters Derived from the Parallel RLC Circuit

All second-order filters considered so far are derived from the series RLC circuit, with the

same quality factor given by Q ¼ ω0L=R. The natural structure after shorting out the

input voltage source is shown in Fig. 10.15a. A complementary group of these filter

circuits exists; after shorting out the input voltage source, its natural structure is that of the

parallel RLC circuit seen in Fig. 10.15b. These circuits operate quite similarly, but all of

them have the quality factor of the parallel RLC resonator, that is, Q ¼ ω0RC.
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Fig. 10.15. (a) Series RLC circuit with no excitation and (b) parallel RLC circuit with no

excitation.
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For the filter circuits derived from the parallel RLC circuit, the resonant frequency

still has to satisfy the condition that a real circuit impedance is “seen” by the voltage

source. The resonant frequency found this way either does not equal the undamped

resonant frequency f 0 ¼ 1= 2π
ffiffiffiffiffiffiffi

LC
p� �

or does not exist at all. However, the structure of

the filter equations is not affected by this result. Only the undamped resonant frequency

f0 appears to be important for the voltage transfer function, which indeed remains the

same for any filter circuit containing one inductance and one capacitance.
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Section 10.3 RLC Circuits for Near-Field

Communications and Proximity Sensors

10.3.1 Near-Field Wireless Link

Near-field wireless communication can transfer data, power, or both of them simulta-

neously. Common data-related applications include radio-frequency identification (RFID)

systems of 125/134 kHz and 13.56 MHz, electronic article surveillance (EAS) for

electronic anti-theft devices in shops, and mobile and other portable device near-field

communication (NFC). Promising applications in biomedical engineering have also been

explored. Figure 10.16 shows the key concept of a near-field wireless link. The transmitter

and the receiver inductor coils share a common magnetic flux density ~B in the near field.

The transmitter/receiver system in Fig. 10.16 is known as an inductively coupled system.

In contrast to the radio-frequency radiating fields, the near field ~B is very strong in the

vicinity of the coil antenna. However, this field very rapidly decays at larger distances

from the transmitter. For example, consider a transmitter coil with N loops of area A each.

The corresponding near field of the transmitter coil in Fig. 10.16 with current i(t) on the

coil axis at the axial distances z much greater than the coil length (and the loop radius)

may be found in the form:

B ¼ N
μ0A

2π

i tð Þ
z3

� �

T½ �, μ0 ¼ 4π � 10�7 H=m ð10:28Þ

where B is recorded in tesla T. The expression in square brackets is the contribution of a

single loop. Thus, the near-field decay is inversely proportional to the third degree of the

separation distance. This observation (obtained via an asymptotic analysis of the related

magnetostatic expressions) is also valid for any quasi-static magnetic (and electric)

dipole. Such a short-range wireless communication is both safe and effective.

+
-v (t)S

Transmitter

R

Processing
device

Receiver

Inductive
couplingPower, data

Feedback, data

B

L

z

Fig. 10.16. The concept of the near-field wireless link; the magnetic flux density is shared between

receiver and transmitter coils.
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10.3.2 Transmitter Circuit

In a transmitter circuit shown in Fig. 10.17a, the function generator is modeled by an ideal

voltage source υS tð Þ ¼ Vm cosω t in series with resistance R. The function generator is

connected to the transmitter coil modeled by the inductance L. The goal is to increase the

magnetic flux density~Bof the transmitter. According to Eq. (10.28), the obvious choice is

to increase the inductance of the transmitter. However, this operation would decrease the

circuit current i(t) due to an increase of the impedance magnitude. We will attempt to

solve this problem with the series resonant RLC circuit shown in Fig. 10.17b.

The original and the modified circuits in Fig. 10.2 are both solved by using the phasor

method. We denote the desired operating frequency by f0. For the original circuit in

Fig. 10.17a, the phasor current may then be written in the form:

I¼ Vm

Zeq

¼ Vm

Rþ jωL
¼Vm

R

1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þQ2 f

f 0

� �2
r ∠� tan�1 Q

f

f 0

� �

, Q¼ω0 L=Rð Þ ð10:29Þ

For the series RLC circuit in Fig. 10.17b, the capacitance is chosen in such a way that the

resonant frequency of the circuit coincides with the operation frequency f0. The phasor

current for the RLC circuit has been derived in the previous sections. It has the form:

I¼ Vm

Zeq

¼ Vm

Rþ j ωL� 1
ωC

� �¼Vm

R

1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þQ2 f

f 0
� f 0

f

� �2
r ∠� tan�1 Q

f

f 0
� f 0

f

� �� �

ð10:30Þ

Note the presence of the quality factor, Q ¼ ω0 L=Rð Þ, for the series RLC circuit in both

Eqs. (10.29) and (10.30). At exactly the operation frequency, f ¼ f 0, the ratio of current

magnitudes (both phasors ∠
 have the magnitude of one) becomes

Im circuit with series capacitor

Im original circuit

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ Q2

q

	 Q for Q � 1 ð10:31Þ

This ratio may significantly exceed one for high Q values. Thus, the series RLC circuit

may considerably increase the circuit current and the associated magnetic field.

+
-

v (t)S

R

B

C

+
-

v (t)S

R

B

a) b)

LL

Fig. 10.17. Using a series capacitor in order to increase the circuit current.
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Exercise 10.7: It is suggested to increase the magnetic field for the circuit without the

capacitor in Fig. 10.7a by simply doubling the number of coil turns and increasing the coil

length by the factor of two. Given that:

1. Q ¼ ω0 L=Rð Þ � 1 at the operation frequency

2. Q ¼ ω0 L=Rð Þ � 1 at the operation frequency

how does the magnetic field B change?

Answer: (i) B remains the same. (ii) B doubles.

Example 10.13: Given the operation frequency (center band frequency) of f 0 ¼ 1 MHz

and Vm ¼ 10 V, L ¼ 50 μH, R ¼ 50 Ω, plot the amplitude of the circuit current as a

function of source frequency for the original (RL) and modified (resonant RLC) circuits in

in Fig. 10.17 over the frequency band from 0.5 to 1.5 MHz.

Solution: The quality factor is found to be Q ¼ 6:283. Next, we plot both current

amplitudes based on Eqs. (10.29) and (10.30) using a linear scale. The result is shown in

Fig. 10.18. The amplitude of the circuit current increases from 31.4 to 200 mA at the

operation frequency f0 (resonant frequency of the RLC circuit).

10.3.3 Receiver Circuit

Consider the receiver coil in Fig. 10.19a. Its equivalent circuit includes the ideal inductor

L in series with R, which is the resistance of the coil winding. It also includes an induced

emf (electromotive force) voltage source υemf(t), which follows Faraday’s law of induction:

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
0

40

80

120

160

200
Amplitude of the circuit current, mA

source frequency, MHz

f0

I0

~QI0

with series capacitor C

without capacitor C

Fig. 10.18. Amplitudes of the circuit current for the original and modified circuits in Fig. 10.17.
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υemf tð Þ � AN
dB tð Þ
dt

¼ Vm cos ω tð Þ, B tð Þ ¼ Bm sin ωtð Þ ð10:32Þ

Here, B(t) is the coaxial component of the external, time-varying magnetic flux

density of the transmitter at the receiver location. The source voltage amplitude is

given by Vm ¼ ANωBm where A is the area of the receiver coil and N is the number

of coil turns. The major parameter of interest is the (small) open-circuit voltage of

the receiver coil, υout(t). It is desired to increase this voltage. For the circuit shown

in Fig. 10.19a, υout(t) is always equal to υemf(t). However, the situation will change if

we create a series RLC circuit as shown in Fig. 10.19b. The output voltage becomes the

capacitor voltage. We will attempt to increase υout(t) by using the resonance condition.

The circuit in Fig. 10.19b is solved using the phasor method. The desired resonant

frequency (operating frequency) is f0. The phasor for the output voltage has the form:

Vout ¼VC¼
Vm= jωCð Þ

Rþ jωLþ 1
jωC

¼Q
f 0
f

Vm
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þQ2 f

f 0
� f 0

f

� �2
r ∠�π

2
� tan�1 Q

f

f 0
� f 0

f

� �� � 	

ð10:33Þ

where Q¼ω0 L=Rð Þ is again the quality factor of the series RLC resonant circuit (and

simultaneously the quality factor of the nonideal inductor with series resistance R). At the

exact resonant frequency, the output voltage amplitude becomes

V out ¼ QVm ð10:34Þ

B
v (t)emf

+
-

R La)

v (t)
out

+

-

v (t)
out

+

-

B
v (t)emf

C
+
-

R Lb)

v (t)
out
+

-

v (t)
out

+

-

C

Fig. 10.19. (a) Receiver coil and (b) receiver coil with capacitance to increase the open-circuit

voltage.
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This value may significantly exceed Vm given a high value of Q. Thus, the series RLC

circuit formed with the help of the shunt capacitor C in Fig. 10.19b may considerably

increase the received voltage.

Example 10.14: Given the operating frequency (center band frequency) of f 0 ¼ 1 MHz

and Vm ¼ 10 mV, L ¼ 78 μH, R ¼ 10 Ω, plot the amplitude of the output voltage for

the original and modified circuits in Fig. 10.19 as a function of source frequency over the

band from 0.5 to 1.5 MHz.

Solution: We find the required capacitance value first. Specifically,

C ¼ 1= L 2πf 0ð Þ2
� �

	 325 pF. The quality factor is given by Q 	 49:0. Next, we plot

both voltage amplitudes. The first one is simply Vm. The second plot is based on

Eq. (10.33). The results are shown in Fig. 10.20. The amplitude of the output voltage

increases from 10 to 490 mVat the operating frequency f0 (resonant frequency of the series

RLC circuit).

The circuit in Fig. 10.19b is the low-pass second-order RLC filter studied in the

previous section, right? Why is it boosting the source voltage instead of just passing it

through? The key is the Q-factor. The present circuit operates as a filter at relatively small

values of the quality factors, i.e., Q  1. At higher Q values, the circuit generates a

voltage spike close to the resonant frequency and operates as a voltage multiplier. This

operation is similar to the operation of an electric transformer.

10.3.4 Application Example: Near-Field Wireless Link in Laboratory

Figure 10.21 shows a prototype of the near-field link implemented in an undergraduate

laboratory. The operating frequency of the transmitter is tunable; it ranges from 400 kHz

to 1.2 MHz. Despite this relatively high frequencies, the circuitry can still be implemented
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Fig. 10.20. Amplitudes of the output voltage for the original and modified circuits in Fig. 10.19.
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on standard protoboards. The key is the tunability of both the transmitter and the receiver,

which simultaneously accounts for the parasitic capacitance of the board.

The transmitter is driven by a function generator; the tuning is made by a bank of fixed

capacitors from a laboratory kit. The receiver uses a single-ended magnetic-core coil

(a loopstick antenna) with an inductance of approximately 1 mH and a series resistance of

about 10Ω. The RLC circuit at the receiver uses a trimmer capacitor of 10–180 pF range for

tuning. When the transmitter is sending an amplitude-modulated signal from the function

generator, the receiver operates as an AM radio given the subsequent rectifying circuit with a

germanium diode and an audio amplifier IC (LM386). Frequency modulation is also

possible; however, the receiver circuit has to be modified accordingly. The system operating

range is up to two feet on average. When an external modulation input of the function

generator is used, an audio clip may be transmitted.

10.3.5 Application Example: Proximity Sensors

The idea of the resonant RLC proximity sensor is quite simple. Assume that the

inductance is a large coil or simply a loop of wire. When a metal object to be detected

is brought in proximity to the loop, its (self) inductance changes. This causes a detectable

change in the resonant frequency f0 of an RLC tank circuit. After encoding, information

may be extracted about the presence of the object and sometimes of its size. This is the

well-known principle of a metal detector. A large variety of metal-detecting circuits

already exist, and more are still awaiting discovery. Another idea is to change the

capacitance by putting a dielectric object (such as a medical pill) inside the capacitor.

A similar change in the resonant frequency may be observed and detected. Such a device

may be used, for example, as an automatic pill counter.

The detector circuit itself can operate based on three different principles. First, a simple

method is to use the series RLC tank circuit with the external AC power supply.

The measured parameter is the amplitude of the circuit current (resistor voltage) at the

transmitter coil

tuning capacitance made of fixed
capacitors

function
generator

receiver coil

trimmer capacitor LM386 audio amplifier chip
and associated circuitry

Fig. 10.21. Prototype of the near-field link implemented in laboratory.
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frequency of the AC source. When the resonant frequency is close to the AC frequency,

the circuit voltage is large. However, when the resonant frequency deviates from the

source frequency, the circuit voltage becomes smaller. The change in the circuit voltage is

detected. A second method is to make the tank circuit self-resonant, by using an amplifier

with a positive feedback. A resonant circuit so built does not need an AC power supply. It

oscillates exactly at f0 when there is no object to be detected. When the object is present

the oscillation frequency changes. The change in the AC frequency is encoded by another

electronic circuit. Using self-resonant tank circuits is perhaps the most common method

in practice. A third method is based on the effect of the resistance in the tank circuit.

When a metal object is placed close to the coil, the coil’s series resistance significantly

increases, due to the so-called eddy current losses (for all metals) and, possibly, hysteresis

losses (for magnetic metals such as iron, nickel, steel alloys, etc.). The increase in the

resistance leads to smaller voltage oscillations in the self-resonant circuit. The circuit may

be tuned in such a way as to stop oscillating at a given value of the extra resistance. Great

sensitivity may be achieved with this method.

Figure 10.22 shows the inductor assembly in a resonant sensor for an automatic traffic

light. The inductor now is a single-turn (or multi-turn) pavement loop. When a vehicle is

located above the loop, its (self) inductance L decreases. This leads to an increase in the

resonance frequency. The change in frequency, not the change in the amplitude, is

typically detected and encoded. The latter is used to indicate the presence of a vehicle

and to adjust the traffic light control. Most vehicle detectors based on loop inductors

operate with frequencies from 10 to 100 kHz. A (simplified) equivalent tank circuit for

the traffic light control is shown in Fig. 10.23b. We note the series resistance R, which is

the parasitic resistance of the loop. The parasitic resistance includes both the effect of the

passing vehicle and of the ground.

Fig. 10.22. Multiple vehicle detection loops after installation at an intersection. Courtesy of the US

Traffic Corporation, Loop Application Note of 3/10/03.
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The circuit in Fig. 10.23b may be analyzed exactly in the same way as the series/

parallel RLC tank circuits in Section 10.1. The tricky part for the tank circuit block in

Fig. 10.23b is that its resonant angular frequency is no longer 1=
ffiffiffiffiffiffiffi

LC
p

. However, it can

still be found from the condition of a purely real equivalent impedance Zeq, see the

summary of this chapter.

Single coils of special shapes—the horseshoe shape—may be used to detect the level

and the presence of molten metals through the walls of (large) casting molds and for other

purposes. The equivalent circuit is the parallel RLC tank circuit. When properly tuned,

the self-resonating circuit quantitatively detects variations in molten metal level through

4–500 thick walls, see Fig. 10.24.

Vehicle detecting
loop (L+R)

Parallel fixed
capacitor C

a

b

C

R

L

a

b

Detector

a)

b)

Fig. 10.23. (a) Simplified schematic of the vehicle detecting system and (b) equivalent resonant

circuit.

Fig. 10.24. A half-toroidal (horseshoe) coil used to concentrate the magnetic field between its tips

in a molten metal detector (Foley, Biederman, Ludwig, and Makarov, US Patent 7,828,043 Nov.

9th 2010).
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Summary

TERM Series RLC circuit Parallel RLC circuit

Series and

parallel RLC

resonators

Resonant

frequency
ω0 ¼ 1=

ffiffiffiffiffiffiffi

LC
p

, f 0 ¼ 1= 2π
ffiffiffiffiffiffiffi

LC
p� �

Coincides with the undamped resonant

frequency

ω0 ¼ 1=
ffiffiffiffiffiffiffi

LC
p

, f 0 ¼ 1= 2π
ffiffiffiffiffiffiffi

LC
p� �

Coincides with the undamped resonant

frequency

Quality factor

of the

resonant

circuit

Q ¼
ffiffiffiffiffiffiffiffi

L=R
p

ffiffiffiffiffiffiffi

RC
p ¼ 1

ω0RC
¼ ω0 L=Rð Þ

dimensionless

Q ¼
ffiffiffiffiffiffiffi

RC
p
ffiffiffiffiffiffiffiffi

L=R
p ¼ ω0RC ¼ 1

ω0 L=Rð Þ
dimensionless

Bandwidth of

the resonant

circuit

B � f U � f L ¼
f 0
Q

¼ 1

2π L=Rð Þ Hz½ � B � f U � f L ¼
f 0
Q

¼ 1

2πRC
Hz½ �

Half-power

lower and

upper

frequencies

f L,U ¼ f 0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 1

2Qð Þ2

s

� 1

2Q

 !

Hz½ � f L,U ¼ f 0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 1

2Qð Þ2

s

� 1

2Q

 !

Hz½ �

Other RLC

resonators

Circuit diagram Resonant frequency

L+R||C

ω0 ¼
1

RCð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

RC

L=R
� 1

s

Different from the undamped resonant

frequency

C+L||R

ω0 ¼
1

L=Rð Þ
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

RC

L=R
� 1

r

Different from the undamped resonant

frequency

(R+L)||C
ω0 ¼

1

L=Rð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

L=R

RC
� 1

r

Different from the undamped resonant

frequency

(continued)
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RLC filter circuits derived from the series RLC circuit: f 0 ¼ 1= 2π
ffiffiffiffiffiffiffi

LC
p� �

, Q ¼ 1= ω0RCð Þ
Band-pass

filter H0 fð Þ ¼ 1

1þ jQ
f

f 0
� f 0

f

� �

Low-pass

filter
H fð Þ ¼ Q

f 0
f
H0 fð Þ

High-pass

filter
H fð Þ ¼ Q

f

f 0
H0 fð Þ

Band-reject

filter

H fð Þ ¼ jQ
f

f 0
� f 0

f

� �

H0 fð Þ

RLC filter circuits derived from the parallel RLC circuit: f 0 ¼ 1= 2π
ffiffiffiffiffiffiffi

LC
p� �

, Q ¼ ω0RC

Band-pass

filter based

on parallel

RLC circuit

H0 fð Þ ¼ 1

1þ jQ
f

f 0
� f 0

f

� �

Low-pass

filter based

on parallel

RLC circuit

H fð Þ ¼ Q
f 0
f
H0 fð Þ

High-pass

filter based

on parallel

RLC circuit

H fð Þ ¼ Q
f

f 0
H0 fð Þ

Band-reject

filter based

on parallel

RLC circuit
H fð Þ ¼ jQ

f

f 0
� f 0

f

� �

H0 fð Þ

(continued)
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Near-field wireless transmitter/receiver

Resonant

circuit at the

transmitter

(TX)
The series capacitor forms the series RLC circuit and increases the amplitude of the

magnetic flux density anywhere in space by the factor
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ Q2
p

, Q ¼ ω0 L=Rð Þ

Resonant

circuit at the

receiver (RX)

The shunt capacitor again forms the series RLC circuit and increases the amplitude

of the output voltage by the factor Q, Q ¼ ω0 L=Rð Þ
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Problems
10.1. Theory of the Second-

Order RLC Resonator

10.1.1 Self-Oscillating Ideal LC Circuit

10.1.2 Series Resonant Ideal LC Circuit
Problem 10.1. Give an example of a self-

oscillating (resonant) mechanical system differ-

ent from that in Fig. 10.2 of this section.

Problem 10.2. For the self-oscillating circuit

shown in the figure below, the circuit current

is specified by i tð Þ ¼ Im cosω t. Given

Im ¼ 200 mA, L ¼ 0:63 mH, C ¼ 1 μF:

A. Determine the undamped resonant fre-

quency f0.

B. Construct the phasor diagram for phasor

voltages VL and VC and phasor

current I on the same plot. Assume that

every plot division corresponds to 1 Vor

to 100 mA.

v
L+

-

L

i(t)

v
C +

-

C

i(t)

0

Re

Im

2 4

2

4

6

6-2-4-6

-2

-4

-6

Problem 10.3. For a series ideal LC circuit

shown in the figure below, the voltage source

has the form υS tð Þ ¼ Vm cosω t. Given

Vm ¼ 5 V, L¼ 0:5 mH, C¼ 1 μF:

A. Determine the undamped resonant fre-

quency f0 of the circuit.

B. Construct the phasor diagram for phasor

voltagesVS,VL, andVCwhen the source

frequency is 90 % of the resonant

frequency.

C. Describe how your phasor diagram

would change if the inductance becomes

1 mH instead of 0.5 mH.

v
L+

-

L

+
-v (t)S

i(t)

v
C +

-

C

0

Re

Im

10 20

10

20

30

30-10-20-30

-10

-20

-30

Problem 10.4. For a series ideal LC circuit

shown in the figure below, the voltage

source has the form υS tð Þ ¼ Vm cosω t. Given

Vm ¼ 5 V, L¼ 1 mH, C¼ 0:5μF:
A. Determine the undamped resonant fre-

quency f0 of the circuit.

B. Construct the phasor diagram for phasor

voltagesVS,VL, andVCwhen the source

frequency is 111 % of the resonant

frequency.

C. Describe how your phasor diagram

would change if the capacitance

becomes 1 μF instead of 0.5 μF.
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v
C+

-

C

+
-

v (t)
S

i(t)

v
L +

-

L

0

Re

Im

10 20

10

20

30

30-10-20-30

-10

-20

-30

10.1.3 Series Resonant RLC Circuit:

Resonance Condition

10.1.4 Quality Factor Q of the Series

Resonant RLC Circuit

10.1.5 Bandwidth of the Series Resonant

RLC Circuit
Problem 10.5. For a generic series resonantRLC

circuit with the supply voltage υS tð Þ ¼
Vm cosω t, resistanceR, inductanceL, and capac-

itance C, give the expressions (show units) for:

A. Equivalent circuit impedance at the

resonance

B. Resonant frequency

C. Quality factor of the resonant circuit

Problem 10.6. Describe the physical meaning

of the quality factor of the series RLC resonator

circuit in your own words.

Problem 10.7. In the series resonant RLC

circuit shown in the figure that follows, given

Vm ¼ 1 V, L ¼ 1 mH,C ¼ 80 pF, R ¼ 10 Ω:

A. Determine resonant frequency and the

Q-factor.

B. Determine resonant phasor current and

phasor voltages VR, VL, and VC; con-

struct the phasor diagram. Assume volt-

age scale in volts and current scale in

milliamperes.

C. Determine the real-valued circuit current

i(t) and the inductor/capacitor voltages

υL(t), υC(t) at resonance.

v
L+

-

L

R+
-v (t)S v

R

+

-

i(t)

v
C +

-

C

0

Re

Im

200 400

200

400

600

600-200-400-600

-200

-400

-600

Problem 10.8. In the series resonant RLC

circuit shown in the figure below, given Vm ¼
5 V, L ¼ 30 μH, C ¼ 0:48 nF, R ¼ 50 Ω:

A. Determine resonant frequency and the

Q-factor.

B. Determine resonant phasor voltages VR,

VL, andVC; construct the phasor diagram.

C. Determine the real-valued resistor

voltage υR(t) and the inductor/capacitor

voltages υL(t), υC(t) at the resonance.

v
L+

-

L

R
+
-

v (t)
S

v
R

+

-

i(t)

v
C +

-

C

0

Re

Im

10 20
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20

30

30-10-20-30

-10

-20

-30
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Problem 10.9. A series resonant LC circuit is

driven by a laboratory AC voltage source with

an amplitude Vm ¼ 12 V and an internal resis-

tance of 50 Ω (a function generator). Which

value should the ratio L/C have to obtain the

amplitude of the capacitor voltage equal to

200 V at the resonance?

Problem 10.10. A series resonant RLC circuit

is needed with the resonant frequency of 1MHz

and a Q-factor of 100. The circuit resistance is

10 Ω. Determine the necessary values of

L and C.

Problem 10.11. Describe the physical meaning

of the resonance bandwidth of the series reso-

nant RLC circuit in your own words.

Problem 10.12. A series resonant RLC circuit

has the resonant frequency of 1 MHz and the

quality factor of 10. Create the Bode plot for the

amplitude of the circuit current normalized by

its maximum value at the resonance over fre-

quency band from 0.5 to 2 MHz.

Bode plotH(f), dB

1MHz

-25

-20

-15

-10

-5

0

2MHz0.5MHz

Problem 10.13. Determine the bandwidth, B,

of the series resonant RLC circuit with the

resonant frequency of 1 MHz and a Q-factor

of 100.

Problem 10.14. A series resonant RLC circuit

is needed with the resonant frequency of 1MHz

and the bandwidth of 10 kHz. Given the circuit

resistance of 10 Ω, determine L and C.

Problem 10.15. For the RLC circuit block

shown in the figure, establish the resonant fre-

quency in terms of component values.

Hint: The resonance is defined by the con-

dition of the purely real equivalent impedance

between terminals a and b. In other words, Im

Zeq

� �

¼ 0 at the resonance.

L

R C

a

b

Problem 10.16. Repeat the previous problem

for the circuit shown in the figure that follows.

R

C
a

b

L

10.1.6 Parallel Resonant RLC Circuit:

Duality
Problem 10.17. For a generic parallel RLC

resonant circuit with the supply current

iS tð Þ ¼ Im cosωt, resistance R, inductance L,

and capacitance C, give the expressions (show

units) for:

A. Equivalent circuit impedance at the

resonance

B. Resonant frequency

C. Quality factor of the resonant circuit

Problem 10.18. In the parallel resonant RLC

circuit shown in the figure that follows, given

Im ¼ 0:5A, L¼ 30 μH,C¼ 0:43 μF, R¼ 50Ω:

A. Determine the resonant frequency and

the Q-factor.

B. Determine resonant phasor currents IR,

IL, and IC; construct the phasor diagram.

C. Determine the real-valued resistor cur-

rent iR(t) and the inductor/capacitor cur-

rents iL(t), iC(t) at the resonance.
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Problem 10.19. Determine the bandwidth, B,

of the parallel resonant RLC circuit with the

resonant frequency of 0.5 MHz and a Q-factor

of 50.

Problem 10.20. A parallel resonant RLC cir-

cuit is needed with the resonant frequency of

1 MHz and the bandwidth of 10 kHz. Given the

circuit resistance of 100 Ω, determine L and C.

10.2: Construction of

Second-Order RLC Filters

10.2.1 Second-Order Band-Pass RLC

Filter

10.2.2 Second-Order Low-Pass RLC

Filter

10.2.3 Second-Order High-Pass RLC

Filter

10.2.4 Second-Order Band-Reject RLC

Filter

Problem 10.21
A. Draw the circuit diagram of the second-

order RLC band-pass filter. Label R, L,

and C.

B. Show the input and output ports (input

and output voltages)

C. Define the resonant frequency and the Q-

factor of the filter circuit.

Problem 10.22. A band-pass RLC filter is

required with the center (resonant) frequency

of 100 kHz and the half-power bandwidth, B, of

20 kHz.

A. Create its amplitude Bode plot in the

frequency band from 10 kHz to 1 MHz.

B. Label the filter passband.

C. Determine the necessary values of L and

C given R ¼ 20 Ω.

Bode plotH(f), dB

-3 dB

-40

-30

-20

-10

0

10
4

10
5

10
6

f, Hz

Problem 10.23

A. Draw the circuit diagram of the second-

order RLC low-pass filter. Label R, L,

and C.

B. Show the input and output ports (input

and output voltages)

C. Define the resonant frequency and the

Q-factor of the filter circuit.

D. Which Q-factor is required for the max-

imally flat response?

E. What is the filter’s half-power frequency

for the maximally flat response?

Problem 10.24.Alow-passRLCfilter is required

with the passband from 0 to 1MHz. Create ampli-

tude Bode plots for the filter in the frequency band

from 100 kHz to 10 MHz given the resonant

frequency of the filter circuit of 1 MHz and

A. Q ¼ 5

B. Q ¼ 1=
ffiffiffi

2
p

C. Q ¼ 0:2

H(f), dB

-60

-50

-40

-30

-20

-10

0

10

10
4

10
5

10
8

10
7

10
6

f0

f, Hz

20

f, Hz
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Problem 10.25*. Generate Fig. 10.4 of this

section, the Bode plots for the low-pass filter

using MATLAB.

Problem 10.26

A. Draw the circuit diagram of the second-

order RLC high-pass filter. Label R, L,

and C.

B. Show the input and output ports (input

and output voltages)

C. Define the resonant frequency and the Q-

factor of the filter circuit.

D. Which Q-factor is required for the max-

imally flat response?

E. What is the filter’s half-power frequency

for the maximally flat response?

Problem 10.27. A high-pass RLC filter is

required with the passband from 0 to 1 MHz.

Create amplitude Bode plots for the filter in the

frequency band from 100 kHz to 10 MHz given

the resonant frequency of the filter circuit of

1 MHz and

A. Q ¼ 10

B. Q ¼ 1=
ffiffiffi

2
p

C. Q ¼ 0:1

Problem 10.28

A. Draw the circuit diagram of the second-

order RLC band-reject filter. Label R, L,

and C.

B. Show the input and output ports (input

and output voltages)

C. Define the resonant frequency and the

Q-factor of the filter circuit.

Problem 10.29. A band-reject RLC filter is

required with the center (resonant) frequency

of 100 kHz and the half-power bandwidth, B,

of 20 kHz.

A. Create its amplitude Bode plot in the

frequency band from 10 kHz to 1 MHz.

B. Label the filter passband.

C. Determine the necessary values of L and

C given R ¼ 20 Ω.

Bode plotH(f), dB

-3 dB

-10

-9

-8

-7

-6
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-1

0

10
4

10
5

10
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10.2.6. Second-Order RLC Filters

Derived from the Parallel RLC Circuit
Problem 10.30. Second-order RLC filters may

be constructed either on the basis of the series

RLC circuit or on the basis of the parallel RLC

circuit. The undamped resonant frequency,

f 0 ¼ 1= 2π
ffiffiffiffiffiffiffi

LC
p� �

, which is present in the filter

equations, remains the same in either case. How-

ever, the quality factor does not. Three unknown

second-order RLC filter circuits are shown in the

figure that follows.

A. Determine the filter function (band-pass,

low-pass, high-pass, or band-reject).

B. By analyzingfilter’s natural structure (after

shorting out the input voltage source),

determine the expression for thefilter qual-

ity factor.

R

+

-

v (t)in

+

-

v (t)outC

L

L

+

-

v (t)in

+

-

v (t)outR

C

R

+

-

v (t)in

+

-

v (t)out

CL a)

b)

c)

Chapter 10 Problems

X-521



10.3. RLC Circuits for Near-

Field Communications

and Proximity Sensors

10.3.1 Near-Field Wireless Link

10.3.2 Transmitter Circuit

10.3.3 Receiver Circuit

10.3.4 Application Example: Near-Field

Wireless Link in Laboratory

10.3.5 Application Example: Proximity

Sensors
Problem 10.31. Describe the concept and pur-

pose of the near-field wireless link in your own

words. Think of an example where the link may

be used solely for the power transfer.

Problem 10.32. In the circuit shown in the

following figure, a capacitor C is introduced in

series with an ideal coil having inductance L in

order to set up a series resonant RLC circuit and

increase the amplitude of the magnetic flux den-

sity ~B oscillating at 1 MHz. Determine the ratio

of the magnetic flux amplitudes

Bm circuit with series capacitor

Bm original circuit

with and without the capacitor anywhere in

space given that L ¼ 100 μH, R ¼ 25 Ω.

C

+
-

vS(t)

R

B

L

Problem 10.33. Given the operation frequency

(center band frequency) of f 0 ¼ 1 MHz and

Vm ¼ 1 V, L ¼ 100 μH, R ¼ 20 Ω, plot to

scale the amplitude of the circuit current as a

function of source frequency for the original

(RL) and modified (resonant RLC) circuits in

the figure to the previous problem over the fre-

quency band from 0.5 to 1.5 MHz. Label the

amplitude values at the operation frequency.

Problem 10.34. In the circuit shown in the

figure that follows, a receiver coil antenna is

subject to an external magnetic field oscillating

at 1 MHz. A capacitor C is introduced in parallel

with the coil having inductance L and series

resistance R in order to set up a series resonant

RLC circuit and increase the amplitude of the

output voltage υout(t). Determine the ratio of the

output voltage amplitudes with and without the

capacitor given that L ¼ 1000 μH, R ¼ 10 Ω.

C
+
-

R L

vout(t)vout(t)

vemf(t)

+

-

+

-

C

Problem 10.35. Given the operation frequency

(center band frequency) of f 0 ¼ 1 MHz and

υemf tð Þ ¼ Vm cos ωtð Þ, Vm ¼ 1 mV, L ¼
500 μH, R ¼ 50 Ω, plot to scale the ampli-

tude of the output voltage as a function of

source frequency for the original (RL) and

modified (resonant series RLC) circuits in the

figure to the previous problem over the fre-

quency band from 0.5 to 1.5 MHz. Label the

amplitude values at the operation frequency.

Problem 10.36. In the circuit shown in the

figure below, a receive coil antenna is subject

to an external magnetic field oscillating at

1 MHz. A capacitor C is introduced in parallel

with the coil having inductance L and series

resistance R in order to set up a series resonant

RLC circuit and increase the amplitude of

the output voltage υout(t). Determine the output

voltage amplitudes with and without the capac-

itor given that υemf tð Þ ¼ 1 cos ω tð Þ mV½ � and
that L ¼ 1000 μH, R ¼ 10 Ω, Rf ¼ 100 Ω.

+
-

L R

vemf

receiving coil antenna

i(t)

C

+
-

Rf

0V

vout

+

-

a

b
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Chapter 11: AC Power and Power

Distribution

Overview

Prerequisites:

- Knowledge of complex arithmetic

- Knowledge of basic circuit analysis (Chapters 3 and 4)

- Knowledge of phasor/impedance method for AC circuit analysis (Chapter 8)

Objectives of Section 11.1:

- Find average AC power for a resistive load and understand the rms values

- Express average power for any AC load in terms of power angle and power factor

- Express average power in terms of phasors/impedances

- Define major AC power types: average power, reactive power, complex power, and

apparent power

- Be able to construct the power triangle and classify the load power factor

Objectives of Section 11.2:

- Be able to perform power factor correction of an inductive load (AC motor)

- Learn about maximum power efficiency technique in general

- Derive and test a simple condition for maximum power transfer to a load from an

arbitrary AC source

Objectives of Section 11.3:

- Learn the structure of power distribution systems

- Establish the concept of the three-phase power transmission system

- Understand the meaning and realization of three-phase source and three-phase load

- Solve for phase and line voltages and line currents in the three-phase balanced

wye-wye system

- Establish the meaning and the role of the neutral conductor in the wye-wye power

distribution system

Objectives of Section 11.4:

- Establish that the instantaneous power in balanced three-phase systems is constant

- Extend the concepts of reactive power, complex power, and apparent power to the

three-phase systems

- Compare conductor material consumption in single-phase and three-phase systems

- Become familiar with delta-connected three-phase sources and loads

- Establish equivalency between delta and wye topologies with no ground

Chapter 11
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Application Examples:

- rms voltages and AC frequencies around the world

- Wattmeter

- Automatic power factor correction system

- Examples of three-phase source and the load

- Conductor material consumption in three-phase systems

Keywords:

Time averaging, Average power, rms voltage, rms current, AC fuse, Root mean square, Sawtooth

wave, Triangular wave, Noise signals, Power angle, Power factor, Reactance, Capacitive

reactance, Inductive reactance, Active power, True power, Reactive power, Complex power,

Apparent power, VAR (volt-amperes reactive), VA (volt-amperes), Power triangle, Lagging

power factor, Leading power factor, Wattmeter, Wattmeter current coil, Wattmeter potential

coil, AC power conservation laws, Power factor correction, Power factor correction capacitor,

PFC capacitor, Principle of maximum power efficiency for AC circuits, Principle of maximum

power transfer for AC circuits, Impedance matching, Single-phase two-wire power distribution

system, Single-phase three-wire power distribution system, Neutral conductor, Neutral wire,

Split-phase distribution system, Polyphase distribution systems, Three-phase four-wire power

distribution system, Phase voltages, Line-to-neutral voltages, abc phase sequence, Positive phase

sequence, acb phase sequence, Negative phase sequence, Balanced phase voltages, Wye (or Y)

configuration, Balanced three-phase source, Wye-connected source, Wye-connected load, Wye-

wye distribution system, Phase impedances, Load impedances per phase, Balanced three-phase

load, Synchronous three-phase AC generator, Alternator, Rotor, Stator, Synchronous AC motor,

Rotating magnetic field, Line-to-line voltages, Line voltages, Line currents, Superposition

principle for three-phase circuits, Per-phase solution, Total instantaneous load power of the

three-phase system, Average load power of the balanced three-phase system, Reactive load

power of the balanced three-phase system, Complex load power of the balanced three-phase

system, Balanced delta-connected load, Balanced delta-connected source, Delta-delta distribution

system
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Section 11.1 AC Power Types and Their Meaning

The present section studies the basics of AC power. We begin with the root-mean-square

(rms) representation of AC voltages and currents. The rms concept enables us to develop a

DC equivalent representation, which compares AC to DC conditions in terms of power

delivered to the load. It is important to understand that the rms concept is a general power

concept; it applies not only to periodic AC circuits but virtually to any circuits, even with

nonperiodic power sources, like noise power sources. Further results presented in this

section are primarily intended for power electronic circuits; they have an equal applica-

bility to radio-frequency communication circuits.

11.1.1 Instantaneous AC Power

We consider an arbitrary load with resistance R, load current i(t), and load voltage υ(t), in

the passive reference configuration. The instantaneous power delivered into the load is

given by

p tð Þ ¼ υ tð Þi tð Þ ¼ υ2 tð Þ
R

ð11:1Þ

according to Ohm’s law. If we use the load voltage in the form υ tð Þ ¼ Vm cosω t V½ �,
then

p tð Þ ¼ υ tð Þi tð Þ ¼ V 2
m

R
cos 2ω t ¼ V 2

m

2R
1þ cos 2ω tð Þ ð11:2Þ

where we applied the trigonometric identity cos 2ω t ¼ 0:5 1þ cos 2ω tð Þ. Interestingly,
the load power is not constant; it varies in time, and the behavior is shown in Fig. 11.1 for

a load voltage amplitude Vm ¼ 3V, frequency f¼ 50 Hz, and load resistance R ¼ 5 Ω.
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Fig. 11.1. Power (solid line) for a load voltage υ tð Þ ¼ 3 cos 2π50tð Þ V½ � (dotted line).
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11.1.2 Time-averaged AC Power

An interesting question arises when we have to determine the bill for the variable AC

power in Fig. 11.1. As far as the utility power is concerned, a consumer would prefer to

pay for the minimum amount of power. The power minima in Fig. 11.1 occur at t ¼ 0:25T ,
0:75T , 1:25T , etc:; here T is the period of the AC voltage signal. Since the power is exactly

zero at its minima, we would pay nothing. On the other hand, a utility would prefer to charge

for the maxima of the power, which occur at t ¼ 0, 0:5T , 1:0T , 1:5T , etc:A fair solution

is clearly somewhere in the middle. It is based on time averaging the load power and then

charging the consumer for the average (or mean) power as indicated in Fig. 11.1 by the

shaded rectangle. Thus, we are interested in the averaged instantaneous power of Eq. (11.2).

The time averaging is always done over a full period T of the AC voltage signal. The

notation for the time-average value is often denoted by an overbar. Thus, the definition

reads:

P ¼ p tð Þ � 1

T

ðT

0

p tð Þdt ð11:3Þ

where P is now the average power delivered to the load. We note that the average power

times the period T gives us the energy E (in J or more often in W�h, 1 W�h¼ 3600 J)

delivered to the load per period, i.e., E ¼ TP:

rms Voltage and rms Current

Using Eq. (11.2) we obtain from Eq. (11.3)

P ¼ 1

T

ðT

0

V 2
m

2R
1þ cos 2ω tð Þ dt ¼ 1

T

V 2
m

2R

ðT

0

1 � dt þ
ðT

0

cos 2ω tdt

0

@

1

A ð11:4Þ

The first integral yields a nonzero contribution, whereas the second integral is exactly

equal to zero, due to fact that the average of the sine or cosine functions over a period, or

multiple periods, is zero. Thus,

ðT

0

1 � dt ¼ T ,

ðT

0

cos 2ω tdt ¼ 1

2ω
sin 2ω tjT0 ¼ 1

2ω
sin 4π t=Tð ÞjT0 ¼ 0 ð11:5Þ

Inserting these values into Eq. (11.4) results in

P ¼ V 2
m

2R
¼ V 2

rms

R
, V rms ¼

Vm
ffiffiffi

2
p ð11:6Þ
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where Vrms is the rms (root-mean-square) value for the load voltage υ tð Þ ¼ Vm cosω t or

simply the rms voltage. According to Eq. (11.6), the rms voltage is the equivalent DC

voltage that provides the same power into the load. Once we know the rms voltage, the

average power is given by the “DC” formula V 2
rms/R. The rms voltage is always less than

the voltage amplitude by a factor of 0.707 (or 71 %). You should notice that Fig. 11.2 is a

replica of Fig. 11.1; additionally, it shows the rms voltage and the averaged power for the

load voltage υ tð Þ ¼ 3 cos 2π50tð Þ V½ �. If a nonzero phase is present in this expression, the
result will not change. The signal will be shifted but all averages over the period will

remain the same. The corresponding mathematical proof is suggested as one of the

homework problems.

A similar expression is obtained for the alternating current i tð Þ ¼ Im cosω t across the

load. The rms current is given by

I rms ¼
Im
ffiffiffi

2
p , V rms ¼ RI rms, P ¼ R

I2m
2

¼ RI2rms ð11:7Þ

Example 11.1: Determine average power delivered to a 10-Ω load when the applied AC

voltage is given by υ tð Þ ¼ 170 cos 2π60tð Þ V½ � (US).
Solution: We find the rms voltage first:

V rms ¼ 170=
ffiffiffi

2
p

� 120:21 V ð11:8Þ
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Fig. 11.2. (a) Load voltage υ tð Þ ¼ 3 cos 2π50tð Þ V½ � (dotted line) and its rms DC voltage, which

delivers the same power into the load and (b) instantaneous power and the average power for the

load voltage υ tð Þ ¼ 3 cos 2π50tð Þ V½ �.
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Example 11.1 (cont.): The average power is then given by P ¼ V 2
rms

R
¼ 1:445 kW. Note

that the rms current is equal to 11.02 A. Therefore, a 15-A or a 20-A AC fuse should be

used. The fuse rating is based on the rms electric current value.

Exercise 11.1: Determine average power delivered to a 10-Ω load when the alternating

load current is given by i tð Þ ¼ 5 cos 2π60tð Þ A½ �.
Answer: 125 W.

11.1.3 Application Example: rms Voltages and AC Frequencies

Around the World

The AC voltage reported for the wall plug is an rms voltage. In the USA, the rms voltage

typically ranges from 110 V to 127 V. Variations are caused by a specific type of a three-

phase secondary distribution system studied later in this chapter. In this text we assume an

average nominal value of Vrms¼ 120 V, perhaps a safe estimate. Using this value we

obtain the voltage amplitude (the peak voltage value) ofVm ¼
ffiffiffi

2
p

� 120 V � 170 V. This

number is considerably greater than the reported 120 V AC. In other countries, the

nominal rms wall plug voltage ranges from 220 V to 240 V, depending on the country.

Using the nominal rms value of 220 V (People’s Republic of China, Russia, France,

Argentina, etc.), we obtain a voltage amplitude of Vm ¼
ffiffiffi

2
p

� 220 V ¼ 311 V. This

number is again greater than the reported 220 VAC. India uses the nominal rms value

of 230 V at 50 Hz, as do the European Union and Great Britain. This yields a voltage

amplitude of Vm ¼
ffiffiffi

2
p

� 230 V ¼ 325 V. Depending on the country you live in, the AC

frequency is either 50 Hz or 60 Hz; for instance, it is 60 Hz in the USA.

Historical: From the IEEE Historical FAQ’s and other sources: The person responsible

for adopting 60 Hz was probably Nikola Tesla who figured that for the Westinghouse-

designed central stations for incandescent lamps, the efficient distribution was 59 Hz, and it

was then rounded to 60 Hz. The German company AEG (Allgemeine Elektrizitäts-

Gesellschaft), originally influenced by Thomas Edison, started using 50 Hz as a more

“metric” number. Their standard spread to the rest of Europe and to other countries.

Figure 11.3 shows the rms voltage (and frequency) world map. Some countries have a

dual distribution system that operates at 120 V and 220 V simultaneously. With the help

of an electric transformer, studied in the following text, we can convert the voltages to

higher or lower values. However, we cannot convert frequency with a linear circuit or a

transformer. Some transformers are designed for both 50 Hz and 60 Hz but unfortunately

not all. As time progresses, the frequency difference between the load and the source may
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have a severe effect on motorized applications and their transformers (power loss,

overheating, and even eventual burnout).

Example 11.2: Determine average power delivered to a 100-Ω load when the applied AC

voltage has an rms value of 220 V (People’s Republic of China).

Solution: The average power is given by

P ¼ V 2
rms

R
¼ 484 W ð11:9Þ

Note that the rms current is equal to 2.2 A. Therefore, a 5-A AC fuse (but not the 2-A fuse)

is sufficient in the present case. The fuse is an overcurrent protective device; a soldered

joint within the fuse is melted when the rms current exceeds a threshold.

Exercise 11.2: The load from Example 11.2 is connected to a wall plug in the USA. How

would the average load power change?

Answer: The average load power will be 144 W.

11.1.4 rms Voltages for Arbitrary Periodic AC Signals

Analytical expressions given by Eqs. (11.6) and (11.7) are quite sufficient for finding the

mean power but only for single-frequency AC signals. In certain cases, the signal may

still be periodic with a period of T but may contain multiple frequency components. One

Fig. 11.3. The rms voltage world map, courtesy of Mr. Conrad H. McGregor, UK, and reproduced

with the author’s permission.
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such example is the clock signal for which we estimate the average electric power. In this

case, we return to the definition Eq. (11.3) and rewrite it in the form, which literally

explains the meaning of the root-mean-square value:

P ¼ 1

T

ðT

0

p tð Þdt ¼ 1

R

1

T

ðT

0

υ2 tð Þdt ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
T

ðT

0

υ2 tð Þ dt

v
u
u
u
t

0

B
@

1

C
A

2

R

ð11:10aÞ

We again wish to define the rms voltage as the DC voltage that gives the same power into

the load resistance R. Therefore, it should be

V rms ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

T

ðT

0

υ2 tð Þ dt

v
u
u
u
t ) P ¼ V 2

rms

R
ð11:10bÞ

For single-frequency voltage signals, this result reduces to Eq. (11.6). For more compli-

cated voltages or for voltages measured directly, the calculation of the integral in

Eq. (11.10b) may constitute some difficulties. At the end of this chapter, we provide a

few homework problems tasking you to calculate the integral in Eq. (11.10b) directly.

Once the rms voltage is found, the rms current across the resistive load is expressed by

I rms ¼ V rms=R, irrespective of the particular signal type.

Example 11.3: Determine the average power delivered to a 100-Ω load when the applied

periodic voltage has the form υ tð Þ ¼ 10 t=T V½ � over a period T¼ 10 ms. This signal is

known as a sawtooth or a triangular wave.

Solution: We find the rms voltage first:

V rms ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

T

ðT

0

υ2 tð Þ dt

v
u
u
u
t ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

T

ðT

0

100 t2=T2 dt ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

100=3
p

� 5:77 V

v
u
u
u
t ð11:10cÞ

The average power is thus given by P ¼ V 2
rms=R � 333 mW.

Frequently encountered voltage signals in microelectronic circuits are noise signals,

which are neither sinusoidal nor periodic. In this case, Eq. (11.10b) applies again, but

only in the limit as T ! 1. Advanced analog electronics deals with certain electronic

circuits where such noise sources become important and even critical.
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11.1.5 Average AC Power in Terms of Phasors: Power Angle

For arbitrary dynamic circuit elements, the power analysis is carried out in terms of

phasors. Consider element A in Fig. 11.4 which has real-valued voltage and current

given by

υ tð Þ ¼ Vm cos ωt þ φð Þ
i tð Þ ¼ Im cos ωt þ ψð Þ ð11:11Þ

When element A is a resistor, the phases in Eq. (11.11) are the same, and finding the

average power is straightforward. However, when element A is an inductor, capacitor, or

a combination of resistor and inductor/capacitor, the situation becomes different. In this

case, the phases of voltage and current in Eqs. (11.11) do not necessarily coincide. By

definition:

P ¼ p tð Þ ¼ 1

T

ðT

0

υ tð Þi tð Þdt ¼ 1

T
VmIm

ðT

0

cos ωt þ φð Þ cos ω t þ ψð Þdt ð11:12Þ

To manipulate the cosine expression in Eq. (11.12), we can use the trigonometric identity

cos ωt þ φð Þ cos ω t þ ψð Þ ¼ 0:5 cos φ� ψð Þ þ 0:5 cos 2ω t þ φþ ψð Þ. The integral of

the second term in Eq. (11.12) will be equal to zero since it is the integral of the plain

cosine function over two periods. The result then has the form:

P ¼ p tð Þ ¼ 1

T

ðT

0

υ tð Þi tð Þdt ¼ VmIm

2
cos φ� ψð Þ ¼ VmIm

2
cos θ ¼ V rmsI rms cos θ

ð11:13Þ

Equation (11.13) is of great importance for power electronics since it introduces the

so-called power angle θ

θ ¼ φ� ψ , � 90o � θ � þ90o ð11:14Þ

and the power factor

PF ¼ cos φ� ψð Þ ¼ cos θ ð11:15Þ

v(t)

-

A

+

P?

a b

i(t)

Fig. 11.4. Arbitrary circuit element in the passive reference configuration.
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Both of these expressions determine the average power delivered to the circuit element.

For any passive load, the power angle must be between �90� and +90�; i.e., the average
power delivered to the element must be nonnegative! However, for an active load

(an amplifier), it is possible that the power angle is no longer within those limits. Then,

the element actually delivers power to the circuit rather than absorbing it. Equation

(11.13) can now be expressed in terms of phasor voltage V ¼ Vm∠φ and phasor current

I ¼ Im∠ψ . The result is simple and elegant:

P ¼ Re V � I*
� �

2
¼ Re V* � I

� �

2
ð11:16Þ

where the star denotes the complex conjugate, e jαð Þ* ¼ e�jα, and Re is the real part of a

complex number. The proof is based on the phasor substitution, that is,

Re V � I*
� �

2
¼ Re Vm∠φ � Im∠� ψð Þ

2
¼ VmIm

2
Re ∠φ� ψð Þ ¼ VmIm

2
cos φ� ψð Þ

ð11:17Þ

Example 11.4: The phasor voltage across a purely resistive load with a resistance

R¼ 10 Ω is given by V ¼ �3þ j3 V½ �. Find the average power delivered to the load.

Solution: According to Eq. (11.16),

P ¼ Re V � I*
� �

2
¼ Re V � V*

� �

2R
¼ Vj j2

2R
¼ 32 þ 32

20
¼ 18

20
¼ 900 mW

Exercise 11.3: The phasor voltage and phasor current for an AC load are given by

V ¼ �3þ j3 V½ �, I ¼ þ 2þ j3 A½ �. Find the average power delivered to the load.

Answer: P ¼ 1:5 W.

11.1.6 Average Power for Resistor, Capacitor, and Inductor

For arbitrary passive circuit elements, the phasor voltage V and the phasor current I are

related by Ohm’s law in the impedance form,V ¼ ZI, where Z is the element impedance

(or the equivalent impedance of a circuit block). We can substitute this result into

Eq. (11.16) and obtain
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P ¼ Re V � I*
� �

2
¼ Re Z � I � I*

� �

2
¼

Re Z � Ij j2
� �

2
¼ Re Zð Þ Ij j2

2
ð11:18Þ

since for any complex number I, the following equality holds: I � I* ¼ Im∠ψ � Im∠� ψ ¼
I2m ¼ Ij j2 > 0. Equation (11.18) is a remarkable result: if the impedance of an element is

purely imaginary, the average power delivered to the circuit element must be zero.

Indeed, so are the impedances for the inductor and the capacitor. Therefore, the average

power delivered to either the inductor or the capacitor must be zero! The same result

may be explained using Eq. (11.13). We put the phase of the current, ψ , equal to zero for

simplicity. The voltage phase φ will then be +90� for the inductor and �90� for the

capacitor. As the cosine of 	90� is zero, Eq. (11.13) will also give zero average power.

An additional explanation is related to the phasor diagrams for voltages and currents

shown in Fig. 11.5. The average power is half of the dot products of two vectors (phasor

voltage and phasor current) in the complex plane. The dot product of two perpendicular

vectors is exactly zero.

11.1.7 Average Power, Reactive Power, and Apparent Power

We have just seen that the impedance of a load, Z, is most important for the average AC

power delivered to the load. If the impedance is a pure resistance, there is no problem.

Otherwise, almost no power may be delivered to the load even though large currents can

flow in the circuit and large AC voltages are observed. For example, if the load is a pure

inductance or capacitance, then no average power will be delivered to the load, no matter

which voltages and currents we use. Instead, we will only heat up wires and other circuit

components. We write the impedance for an arbitrary load both in rectangular and in polar

form:

Z ¼ Rþ jX Ω½ �, Z ¼ Zj j∠θ Ω½ �, R ¼ Zj j cos θ, X ¼ Zj j sin θ ð11:19aÞ

0

Re

Im
V
R

capacitorinductorresistor

I
R

0

Re

Im
V
L

I
L

0

Re

Im

V
C

I
C

90
o

90
o

Fig. 11.5. Average power for a resistor, inductor, and capacitor and the related phasor diagrams.
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Zj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2 þ X 2
p

Ω½ �, θ ¼ tan �1 X

R

� �

ð11:19bÞ

The real part of the impedance, R, is the resistance of the load, and the imaginary part, X,

is the load reactance. For example, the inductor and the capacitor are purely reactive

loads (have only X but not R), whereas the resistor is purely “resistive”. The angle θ is the

power angle of the load; the power angle has already been introduced in Eqs. (11.13),

(11.14), and (11.15). Thus, the power factor PF is simply the cosine of the angle of the

load impedance.

Example 11.5: Determine the resistance and the reactance of an RLC series load shown in

Fig. 11.6. The AC angular frequency is 1000 rad/s.

Solution: The three impedances are combined in series (added to each other),

Z ¼ 100þ jωL� j
1

ωC
¼ 100þ j1� j100 ¼ 100� j99 Ω½ � ð11:20Þ

The resistance is 100 Ω and the reactance is equal to �99 Ω. The reactance is

negative, i.e., capacitive. In other words, the capacitive reactance dominates.

Using resistance R and reactance X of the load, we now introduce three different AC

power types for that load. The first type is the average or active power P studied before in

this section. The active power is expressed by

P ¼ Re V � I*
� �

2
¼ R Ij j2

2
¼ Zj j Ij j2

2
cos θ ¼ Vj j Ij j

2
cos θ ¼ V rmsI rms cos θ W½ �

ð11:21aÞ

since Vj j ¼ Vm ¼
ffiffiffi

2
p

V rms, Ij j ¼ Im ¼
ffiffiffi

2
p

I rms. This is the true or useful power deliv-

ered to the load, with the units of watts. Note the operations with complex magnitudes:

abj j ¼ aj j bj j, a=bj j ¼ aj j= bj j, a*
	
	

	
	 ¼ aj j, which directly follow from the complex

number definition in polar form. The second power type is the reactive power Q that is

1 mH

10 F

a

b

100

Fig. 11.6. A RLC series load.
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Q ¼ Im V � I*
� �

2
¼ X Ij j2

2
¼ Zj j Ij j2

2
sin θ ¼ Vj j Ij j

2
sin θ ¼ V rmsI rms sin θ VAR½ �

ð11:21bÞ

The physical units of the reactive power are also watts. However, to underscore the fact

that this power is not an active useful power, the units of VAR (volt-amperes reactive) are

used. The reactive power flows back and forth from the source to the load, through an

electric line but does not do real work. The last power type is the complex power S that is

simply

S ¼ V � I*
2

¼ P þ jQ VA½ � ð11:21cÞ

The complex power is measured in volt-amperes (VA). The magnitude of the complex

powerS ¼ Sj j is called the apparent power. We can see that the apparent power is given by

S ¼ Sj j ¼ Zj j Ij j2
2

¼ Vj j Ij j
2

¼ V rmsI rms VAR½ � ð11:21dÞ

The apparent power is the “best possible” load power that can be obtained if one

measures current and voltage and ignores the phase shift between them. Equations

(11.21) and (11.22) raise the obvious question: why do we need so many AC power

types? The answer is that a purely resistive load (the power angle θ equals zero) is merely

a dream and not realistic. Any AC load generally has a significant reactive impedance

part. So does an electric motor, a small antenna in your cellphone, and even a household

electric heater whose heating spiral is a series combination of a resistance and a small, but

often visible, inductance. Therefore, we always deal with active and reactive power; the

sum of their squares is the square magnitude of the apparent power. The reactive power

increases the electric current flowing in the circuit and thus increases the unrecoverable

losses in (sometimes very long) power lines, which have a finite resistance. Therefore, our

goal is to decrease the percentage of the reactive power and thus decrease the net power

loss. The three power definitions show us how to accomplish this task. In the next section,

we will need to decrease the power angle θ by modifying the load through adding other

circuit components; in other words, we are attempting to load match the circuit.

11.1.8 Power Triangle

Since cos 2θ þ sin 2θ ¼ 1, the three powers (average, reactive, and apparent) are

interconnected by the relation

S2 ¼ P2
avg þ Q2 W½ � ð11:22Þ
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This relation is also called the power triangle.

Example 11.6: Determine the average (or true) power and the reactive power for the

inductive load shown in Fig 11.7a. Construct the corresponding power triangle. The circuit

parameters are as follows:

Vm ¼ 170 V, ω ¼ 377 rad=s, L ¼ 25:7 mH, R ¼ 9:7 Ω.

Solution: We need to find active and reactive powers according to Eq. (11.21). To do so,

we need the load impedance and the load or circuit current. We convert the circuit to the

phasor/impedance form. The equivalent impedance is given by

Z ¼ ZR þ ZL ¼ Rþ jωL ¼ 9:7þ j9:7 ¼ 9:7
ffiffiffi

2
p
∠45� Ω½ � ð11:23Þ

The power angle (the phase of the complex impedance) is 45�. The phasor voltageVacross

the load is equal to Vm ¼ 170V. The load phasor current is given by I ¼ Vm=Z ¼
170= 9:7

ffiffiffi

2
p
∠45�

� �
¼ 12:39∠� 45� A½ �. According to Eq. (11.21),

P ¼ 0:5
 170
 12:39
 cos 45� ¼ 745 W½ �
Q ¼ 0:5
 170
 12:39
 sin 45� ¼ 745 VAR½ � ð11:24Þ

The corresponding power triangle is plotted in Fig. 11.8a.

The power angle (the phase of the load impedance) of the power triangle in Fig. 11.8a

is +45�. When the power angle θ is positive, as in the present case, the corresponding

power factor is said to be lagging. The lagging power factor means that the load current

lags the load voltage. Thus, the power factor in Fig. 11.8a is 0.707 lagging or, which is the

same, is 70.7 % lagging. Similarly, the power factor in Fig. 11.8b is 44.8 % lagging.

However, the power angle (the phase of the load impedance) in Fig. 11.8c is �45�.

L
Z

R

L

R
Z

+
-v (t)S

+
-VS

V
L

+

-

Iload

V
R

+

-

R

C

R
Z

+
-v (t)S

+
-VS

V
C

+

-

I
load

V
R

+

-

C
Z

a)

b)

Fig. 11.7. Two circuits for power calculation of (a) inductive load and (b) capacitive load.
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When the power angle θ is negative, as is the case here, the corresponding power factor is

said to be leading. The leading power factor means that the load current leads the load

voltage. The power factor in Fig. 11.8c is 70.7 % leading. The lagging occurs for a

predominantly inductive load, whereas the leading occurs for a predominantly capacitive

load; see Fig. 11.7.

Exercise 11.4: Determine the average (or true)power and the reactivepower for the inductive

load shown in Fig 11.7a. Construct the corresponding power triangle. You are given Vm ¼
170 V, ω ¼ 377 rad=s, L ¼ 26:5 mH, R ¼ 5 Ω.

Solution: P ¼ 578:9 W½ �, Q ¼ 1156:7 VAR½ �, θ ¼ 63:4�. The power triangle is

plotted in Fig. 11.8b. The power factor is 44.8 % lagging.

Exercise 11.5: Determine the average (or true) power and the reactive power for the

capacitive load shown in Fig 11.7b. Construct the corresponding power triangle. The

circuit parameters are Vm ¼ 170 V, ω ¼ 377 rad=s, C ¼ 265 μF, R ¼ 10 Ω.

Answer: P ¼ 722:5 W½ �, Q ¼ �722:5 VAR½ �, θ ¼ �45�. Note that the reactive

power becomes negative for the capacitive load. The corresponding power triangle is

plotted in Fig. 11.8c. The power factor is 70.7 % leading.

It might be interesting to mention that the circuit in Fig. 11.7b is an equivalent circuit

model of a short dipole or monopole antenna, the so-called whip antenna; it represents

predominantly a capacitive load. Indeed, much higher frequencies are employed, but the

concept remains the same. Whip antennas are common on ships, trucks, and other

vehicles. Many radio amateurs use whip antennas as well.

0

Re (W)

Im (VAR)

1000

1000

Q
o

0

Q

θ=63.4
o

0

Q

θ=-45
o

S

Re (W)

Im (VAR)

1000

1000

Re (W)

Im (VAR)

1000

1000

a) b) c)70.7% lagging 44.8% lagging 70.7% leading

P

S

P

S

Pθ=45

Fig. 11.8. Power triangles for inductive loads (a, b), and for a capacitive load (c). The real axis

corresponds to the average (true) power; the imaginary axis is the reactive power.
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11.1.9 Application Example: Wattmeter

AC power is measured with a wattmeter. The idea of an analog wattmeter operation is

schematically illustrated in Fig. 11.9a. The wattmeter includes at least two coils: the massive

immovable current coil and the lighter suspended, or pivoted, voltage (or potential) coil. The

current coil has a very low impedance; it is connected in series with the load in Fig. 11.9b.

The voltage coil has a very high impedance; it is connected in parallel with the load in

Fig. 11.9b. The voltage coil typically has a high-value resistor connected in series to increase

the impedance. The voltage coil is constructed of a fine wire, whereas the fixed (current) coil

uses a thicker wire to carry the load current. When the current and voltage are in phase, the

magnetic fluxes in both coils attempt to align with each other so that the arrow in Fig. 11.9a

will move to the right. When the current and voltage are out of phase (phase difference of

180�; the load is in fact an AC source), the arrow in Fig. 11.9a would move to the left.When

the phase difference is 90�, the arrow stays at the center. Thus, the power angle could be

measured, and the average and reactive powers could be reported in an analog or digital way.

i(t)

R

+

-v(t)

wattmeter

voltage
coil

i(t)

current
coil

+

-

v(t)B

a) b)

i(t)
current coil

voltage coil

Fig. 11.9. (a) Wattmeter concept and (b) wattmeter coil connection to the load.
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Section 11.2 Power Factor Correction: Maximum Power

Efficiency and Maximum Power Transfer

11.2.1 Power Factor Correction

We are about to proceed with the correction of the power factor PF ¼ cos θ for an

arbitrary AC load. The correction has several equivalent definitions make:

1. the power angle exactly equal to zero.

2. the power factor equal to one.

3. the reactive power equal to zero.

4. the load impedance purely resistive.

5. the imaginary part of the load impedance (reactance) equal to zero.

The last definition is perhaps most useful from a practical point of view. We attempt to

modify the load by adding extra circuit elements so that the impedance of the modified

load becomes purely resistive (the imaginary part of the impedance is zero). It is worth

noting that the condition of zero reactance is simultaneously the resonance condition for

the various RLC tank circuits studied in the previous chapter. It means that we need to

make the load “resonant” in order to correct the power factor! This is often achieved by

converting the load to an RLC circuit: adding a capacitor to the inductive load or an

inductor to a capacitive load. Most residential loads (washer, dryer, air conditioner,

refrigerator, etc.) and industrial loads are powered by an induction motor. A simplified

equivalent circuit of it is an inductive load shown in Fig. 11.10a. We intend to add a

capacitor in parallel with the load as in Fig. 11.10b. We attempt to choose the capacitance

value in such a fashion as to make the power factor of the modified load equal to one. The

capacitor in Fig. 11.10b is called the power factor correction capacitor or the PFC

capacitor.

We solve both circuits in Fig. 11.10 in the phasor form. The equivalent impedance

(or better its reciprocal, the admittance) for the modified load in Fig. 11.10b is found first,

that is,

R

L
+
-v (t)S

inductive load with a power factor
correction capacitor

C

R

L
+
-v (t)S

a) b)inductive load

Fig. 11.10. Power correction for an inductive load with the shunt capacitor (capacitor in parallel).
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1

Z
¼ 1

ZC

þ 1

ZL þ ZR

¼ jωC þ R� jωL

R2 þ ωLð Þ2 ð11:25Þ

If the impedance is a real number, then the admittance is a real number and vice versa.

Therefore, the condition of a real impedance is equivalent to the condition of a real

admittance. From Eq. (11.25), one has

jωC þ �jωL

R2 þ ωLð Þ2
¼ 0 ) R2 þ ωLð Þ2 ¼ L

C
) C ¼ L

ω2L2 þ R2 ð11:26Þ

The capacitance value is thus found from the equation

C ¼ L

ω2L2 þ R2
ð11:27Þ

Equation (11.27) is a mathematical statement for the power factor correction capacitor. Its

practical value will become apparent from the example that follows. The equivalent

impedance of the load with the matching capacitor is then found using the real part of

Eq. (11.25), i.e.,

1

Z
¼ R

R2 þ ωLð Þ2
) Z ¼ Rþ ωLð Þ2

R
ð11:28Þ

We are interested in the phasor circuit current Iwith and without the PFC capacitor. Given

the voltage source υS tð Þ ¼ Vm cosω t, one obtains for the circuits in Fig. 11.10:

I ¼ RVm

R2 þ ωLð Þ2
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

with capacitor

� jωLVm

R2 þ ωLð Þ2

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{
without capacitor

ð11:29Þ

As you can see, the two terms of the expression without capacitor are reduced to the first

term when the power correction capacitor is included. This completes the analysis of the

circuits in Fig. 11.10.

Example 11.7: For the circuit in Fig. 11.10, find the average (or true) load power and the

reactive load power with and without the power correction factor capacitor. You are given

Vm ¼ 170 V, ω ¼ 377 rad=s, L ¼ 25:7 mH,R ¼ 9:7 Ω.
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Example 11.7 (cont.):

Solution: To find the power expressions, we need the phasor voltage across the load,

which is simply Vm. We also need the phasor current, which is given by Eq. (11.29) in

either case. Plugging in the numbers we obtain,

I ¼ 8:77 A or I ¼ 8:77� j8:77 A ð11:30Þ

with and without the PFC capacitor, respectively. Now, we use the power

definitions:

P ¼ Re V � I*
� �

2
) P ¼ 745 W or P ¼ 745 W ð11:31Þ

Q ¼ Im V � I*
� �

2
) Q ¼ 0 VAR or Q ¼ 745 VAR ð11:32Þ

with and without the PFC capacitor, respectively.

In summary, we have found the following information from this example:

No power factor correction:

- Average (active or true) power: P ¼ 745 W

- Reactive power: Q ¼ 745 VAR

- Amplitude of the circuit current: 12.41 A

Power factor correction:

- Average (active or true) power: P ¼ 745 W

- Reactive power: 0

- Amplitude of the circuit current: 8.77 A

By correcting the load power factor with the capacitor in parallel, we did not change

the average power (power delivered to the load), but we eliminated the reactive power and

decreased the amplitude of the circuit current by 70.7 % (1=
ffiffiffi

2
p

). This means that the ohmic

losses in the electric line connecting load and generator will decrease by 50 %, since these

losses are proportional to the square of the current amplitude. In other examples, the loss

reduction factor may be even more significant. Is it worth doing a power factor correction?

Well, if the electric power line is long enough or the initial power factor is not high enough,

it is definitely a very useful and professional task. To support this conclusion, we mention a

citation from IEEE Transactions on Power Electronics: “Everyone knows that correcting

power factor is the easiest and fastest way to save energy dollars.”
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Exercise 11.6: Find the value of the power factor correction capacitor in Example 11.7.

Answer: C ¼ 136:73 μF:

Exercise 11.7: Find the value of the load impedance in Example 11.7 with and without the

power factor correction capacitor. Express your result in polar form.

Answer: Z ¼ 13:7∠45� Ω and Z ¼ 19:4∠0� Ω, respectively.

11.2.2 Application Example: Automatic Power Factor Correction System

The power factor correction capacitors are frequently seen on residential power poles in

the form of pole-mounted capacitor banks. Figure 11.11 shows an automatically switched

power factor correction system that measures all three power types (active, reactive, and

apparent power) using the same wattmeter principle described in the previous section.

Based on the recorded measurements, the required capacitor value is selected, which

assures the targeted power factor.

11.2.3 Principle of Maximum Power Efficiency for AC Circuits

Why is the power correction capacitor placed in parallel, not in series with the load? To

answer this question, we should establish and understand the principle of maximum

power efficiency for AC circuits. Consider a generic source-load AC circuit depicted in

Fig. 11.12a in phasor form. It is based on a Thévenin equivalent circuit for an AC source

with the source impedance ZT connected to the load impedance ZL (note: load is

subscribed as L, not L). The source impedance will also include the loss resistance of

power lines. Figure 11.12b shows the corresponding DC counterpart, which is useful for

Fig. 11.11. Automatically switched power factor correction systems for low-voltage applications. Six

capacitor cells are seen on the bottom. Technical Data TD02607001E Cutler-Hammer.
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the subsequent analysis. The source resistance RTwill include the loss resistance of power

lines as well.

In the DC case, the source-load configuration of Fig. 11.12b is maximally efficient

when the load resistance is much greater than the source (loss) resistance. This fact has

been established in Chapter 4. When RL � RT, the useful power delivered to the load

resistance RL is much larger than the power loss in RT. We emphasize that the load power

itself could be relatively small in this case as compared to the maximum available load

power atRL ¼ RT. The same situation occurs for the AC system shown in Fig. 11.12a. Do

we wish to deliver the maximum available power of a remote megawatt AC source to the

household? No, this is not our goal. We would rather deliver a reasonable amount of

power but in a most efficient way. It means that not only do we need to make ZL real but

also as high as possible. This operation would further reduce the circuit current and the

associated loss. Exactly this goal is accomplished by the shunt PFC capacitor in

Fig. 11.10. If we consider the series-connected PFC capacitor as an alternative, we will

obtain

ZL ¼ R for series connection versus ZL ¼ Rþ ωLð Þ2
R

for shunt connection:

ð11:33Þ

Both impedances in Eq. (11.33) are real; there is no reactive power in either case.

However, the second impedance is considerably greater than the first one for poor power

factors, i.e., for ωL � R! Hence, considerably smaller circuit currents and considerably

better efficiencies are achieved. Moreover, the parallel connection is easier to accomplish

in practice—we remember how easy it is to connect a voltmeter as opposed to an ammeter

Exercise 11.8: Find the amplitude of the circuit current in Example 11.7 if the power

correction capacitor were in series.

Answer: Im ¼ 17:53 A.

+
-

VT

ZT

ZL +
-

VT

RT

a)

RL

II

b)

Fig. 11.12. Thévenin equivalent circuit for an AC source with the load impedance ZL and its DC

counterpart with the load resistance RL.
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11.2.4 Principle of Maximum Power Transfer for AC Circuits

The principle of maximum power transfer is perhaps less important for residential power

distribution systems where efficiency counts. However, it is critical for radio-frequency

and communication circuits, which are conceptually the same AC circuits but operating

at much higher frequencies. With reference to Fig. 11.12a, the following question should

now be asked: at which value of the load impedance ZL ¼ RL þ jX L is the average

(true) power delivered to the load maximized? The phasor current in Fig. 11.12a is

given by

I ¼ VT

ZL þ ZT

A½ � ð11:34Þ

so that the average power delivered to the load becomes

P ¼ RL Ij j2
2

¼ RL VTj j2

2 ZL þ ZTj j2
¼ 0:5RL VTj j2

RL þ RTð Þ2 þ X L þ X Tð Þ2
W½ � ð11:35Þ

Let us take a closer look at Eq. (11.35); in order to reach the maximum true power, the

load reactance XL should be equal to the generator reactance XT taken with the opposite

sign so that X L þ X T ¼ 0. This yields for the average load power

P ¼ 0:5RL VTj j2

RL þ RTð Þ2
W½ � ð11:36Þ

Consequently, the problem reduces to the maximum power transfer of a DC circuit as

studied in Chapter 2. The corresponding condition for the maximum load power is

RL ¼ RT ð11:37Þ

This condition, augmented by the equality for the reactances

X L ¼ �X T ð11:38Þ

leads to a simple, yet very useful result for the maximum power transfer to the load:

ZL ¼ Z*
T ) Pmax ¼

1

8

VTj j2
RT

W½ � ð11:39Þ

We note that the load impedance should be the complex conjugate of the generator

impedance. Along with the maximum power transfer, Eq. (11.39) assures that there is no

reflection of radio-frequency waves propagating along the circuit transmission lines from
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the source to the load, which may even be a more important factor. A process of

modifying the load impedance in order to satisfy Eq. (11.39) is called impedance

matching.

Example 11.8: A generator impedance is 50 Ω. The load impedance is 10 + j100 Ω. What

percentage of maximum available power (at a load impedance of 50Ω) is transferred to the

load?

Solution: According to Eq. (11.36), when the load impedance is exactly 50 Ω,

P ¼ 0:5
 50 VTj j2

50þ 50ð Þ2
¼ VTj j2

8
 50
¼ 0:0025 VTj j2 W½ � ð11:40aÞ

When the load impedance is 10 + j100Ω, the same equation gives

P ¼ 0:5
 10 VTj j2

50þ 10ð Þ2 þ 1002
¼ VTj j2

2720
¼ 0:00037 VTj j2 W½ � ð11:40bÞ

The ratio of the two power expressions is 0.147, or 14.7%. In other words, 85.3% of

available power is lost!

Exercise 11.9: A generator’s impedance is 50� j100 Ω. What should the load impedance

be for maximum power transfer?

Answer: 50 + j100 Ω.

Exercise 11.10: Solve Example 11.8 when the load impedance is 10� j100 Ω.

Answer: The same result of 14.7 % is obtained.
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Section 11.3 AC Power Distribution: Balanced Three-Phase

Power Distribution System

11.3.1 AC Power Distribution Systems

Representative AC power distribution systems are shown in Fig. 11.13. A single-phase

two-wire power distribution system is depicted in Fig. 11.13a. It consists of a generator

with a voltage amplitude of Vm, an rms value ofV rms ¼ Vm=
ffiffiffi

2
p

, and a phase φ connected

through two conductors to a load with impedance Z. The previous analysis of AC power

was solely restricted to this configuration. An extension is the single-phase three-wire

power distribution system shown in Fig. 11.13b. Such a system contains two identical AC

sources of the same amplitude and phase connected to two (Z1, Z2) loads or to one (Z)

load through two outer conductors and the neutral conductor (or neutral wire). This

system is the common household distribution system. It allows us to connect both 120-V

and 240-V appliances as shown in Fig. 11.13b; we sometimes called it the split-phase

distribution system. The neutral wire is usually physically grounded. In contrast to those

two cases, the power distribution systems shown in Fig. 11.13c, d are the polyphase

distribution systems in the sense that they use AC sources with different phases. For

example, Fig. 11.13c illustrates a two-phase three-wire distribution system with two

voltage sources; the second one lags the former by 90�. Finally, Fig. 11.13d shows the

most important and practical three-phase four-wire power distribution system with three

sources and three load impedances Z1, Z2, and Z3. Generally, the three-phase system also

uses a (grounded) neutral wire. We will show that this wire may be omitted for balanced

power distribution circuits, with the earth itself acting as the neutral conductor. This is

important for long-distance, high-power transmissions. Power systems designed in this

way are grounded at critical points to ensure safety.

Today, a vast majority of electric power is generated and distributed via the three-phase

power systems. Why is this so? You will soon learn that in contrast to the single-phase

systems, the instantaneous power in balanced three-phase systems is constant or inde-

pendent of time rather than pulsating. This circumstance results in more uniform power

transmission and less vibration of electric machines. Furthermore, three-phase AC motors

have a nonzero starting torque in contrast to the single-phase motors. Last but not least, it

will be shown that the three-phase system surprisingly requires a lesser amount of wire

compared to the single-phase system.
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11.3.2 Phase Voltages: Phase Sequence

The voltage sources in the three-phase system in Fig. 11.13d are set between lines a, b,

c and the neutral line n. Those voltages are called phase voltages or line-to-neutral

voltages. The phase voltages are 120� out of phase. One possible scenario for the real-

valued phase voltages is

υan tð Þ ¼ Vm cos ωtð Þ, υbn tð Þ ¼ Vm cos ωt � 120�ð Þ,
υcn tð Þ ¼ Vm cos ω t þ 120�ð Þ ð11:41aÞ

Van ¼ Vm, Vbn ¼ Vm∠� 120�, Vcn ¼ Vm∠þ 120� ð11:41bÞ

Phase voltage υan leads phase voltage υbn, which in turn leads υcn. This set of voltages is

shown in Fig. 11.14. It has a positive or abc phase sequence since the voltages reach their

peak values in the order abc as seen in Fig. 11.14. Simultaneously, the phasor voltages are

obtained from each other by clockwise rotation in the phasor diagram. This is shown in

Fig. 11.15a.
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Fig. 11.13. Various AC power distribution systems. N or n indicates the neutral line.
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An alternative is the negative or acb phase sequence, which corresponds to

0, þ120�, �120� phases in Eqs. (11.41a, b). In this case, the phasor voltages are

obtained from each other by counterclockwise rotation in the phasor diagram of

Fig. 11.15a. Thus, the balanced phase voltages are those which have equal amplitudes

and are out of phase with each other by 120� (either in positive 0, �120�, þ120� or in
negative 0, þ120�, �120� phase sequence). An example of balanced voltages is given

by Eqs. (11.41a, b). The concept of balanced phase voltages is critical for the subsequent

analysis.

Example 11.9: Determine whether the phase voltages

υan tð Þ ¼ 3cos ω t � 90�ð Þ, υbn tð Þ ¼ 3cos ω t þ 150�ð Þ, υcn tð Þ ¼ 3cos ω t þ 30�ð Þ ð11:42Þ

of a three-phase system are balanced or not. If yes, determine the corresponding

phase sequence.

Solution: The amplitudes of the phase voltages are equal, which is the first necessary

condition of the balanced sources. To analyze the phases, we plot the voltages in the phasor

diagram and obtain Fig. 11.15b. Despite the common phase shift of �90� as compared to

Eqs. (11.41a, b), the phase voltages are still out of phase with each other by 120� and form
the same positive phase sequence; see Fig. 11.15b.

Exercise 11.11: The phase voltage Vbn is given by Vm∠þ 45�. Determine the remaining

phase voltages Van, Vcn of the balanced three-phase system for the positive phase

sequence. Express your result in phasor form.

Answer: Van ¼ Vm∠165
�
, Vcn ¼ Vm∠�75�.

0
t120 240

Vm
v (t)an v (t)bn v (t)cn

Fig. 11.14. Balanced phase voltages in positive phase sequence.
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11.3.3 Wye (Y) Source and Load Configurations for Three-Phase Circuits

The voltage sources in the three-phase system in Fig. 11.13d are now rearranged as

shown in Fig. 11.16a. This configuration is indeed equivalent to the original one; it is

known as the wye (or Y) configuration. Accordingly, the balanced three-phase source in

Fig. 11.16a is the wye-connected source, and the load in Fig. 11.16b is the wye-connected

load.

The AC voltage source in Fig. 11.16a has four terminals. The corresponding load

should also have four terminals. The concept is shown in Fig. 11.16b. This load assembly

is also identical with the topology of Fig. 11.16d. The load includes three impedance

elements (phase impedances or load impedances per phase) Z ¼ Z∠θ with impedance

magnitude Z and phasor angle (power angle) θ each. The load so assembled is the

balanced three-phase load. In the balanced load, the phase impedances are equal in

magnitude and phase. The source and the load are typically connected by (long) wire

transmission lines. When necessary, the wire resistance may be added to each individual

load impedance.

+
-

+ -

an
V

bn
V

cn
V

a

b

n

c

A

B

N

C

Z Z

Z

a) b)

transmission line

+-

Fig. 11.16. Wye configuration for the three-phase source connected to a three-phase load.
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Fig. 11.15. (a) Phasor diagram for the phase sequence0, þ120�, �120� and (b) phasor diagram
for individual phase voltages from Eq. (11.42). Both three-phase sources are equivalent.
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11.3.4 Application: Examples of Three-Phase Source and the Load

Synchronous Three-Phase AC Generator
Despite the apparent complexity, the three-phase source and the three-phase loads are

relatively simple to realize in practice. Figure 11.17 shows a synchronous three-phase AC

generator (or alternator), which is equivalent to the three-phase source in Fig. 11.16a.

Consider first the generator cross section shown in Fig. 11.17a. The generator’s rotor is

a permanent magnet (small scale) or an electromagnet (industrial scale) rotated by a

mechanical torque (a turbine). Three individual coil windings aa0, bb0, and cc0 in the

stator are spaced exactly 120� apart around the stator. When the rotor moves, an induced

emf (induced voltage) will be created in every individual winding according to Faraday’s

law of induction—see Fig. 11.17b. From the geometry considerations, the induced

voltages are equal in magnitude and out of phase by 120�. When the coil terminals a0,
b0, and c0 are all connected to the neutral wire, see Fig. 11.17a, we obtain exactly the

three-phase source with the neutral wire in Fig. 11.16a.

Automotive Alternator

The automotive alternator operates based on the same principle. However, the resulting

three-phase voltage is further converted to the DC voltage (rectified, see Chapter 16).

Synchronous Three-Phase AC Motor

The counterpart of the three-phase generator is the three-phase AC motor (the synchro-

nous AC motor). The stator, which is subject to the three-phase voltage source, creates a

rotating magnetic field; the rotor magnet is aligned with this field at every time moment

and rotates accordingly. The stator’s circuit model is similar to the three-phase load model

in Fig. 11.16b where each load impedance Z includes resistance and inductance of the

individual (identical) coil windings. The induced emf should be included into our

consideration as well. Why is the phase sequence important for power distribution?

There is a simple answer to this question. Assume that the machine in Fig. 11.17 operates

c’

b

n

c

N

Sc b

b’

a’

a

a

N

S

a a’a) b)

Fig. 11.17. Structure of the three-phase AC generator. (a) Cross-section view. (b) Simplified

outline of one of the three windings.
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in the motor mode. Changing the phase sequence from abc to acb will reverse the

direction of the magnetic field rotation and thus reverse the direction of the motor

rotation! This method is used in practice since it requires interchanging only two

connections.

Residential Household

Another example of the load impedance per phase is related to a typical residential

household in the USA. A single phase of a three-phase residential distribution system

is normally used to power them up; see Fig. 11.18. This single phase still has a high rms

voltage (4800 Vor 7200 V). A step-down center-tap transformer is used to decrease this

voltage level to the desired level of 120–240 Vand provide the neutral contact necessary

for the three-wire single-phase residential system shown in Fig. 11.13b. This transformer

case is also seen in Fig. 11.18. In the USA, a pole-mounted transformer in a suburban

setting may supply one to three houses.

11.3.5 Solution for the Balanced Three-Phase Wye-Wye Circuit

Phase Voltages and Line Voltages
A three-phase balanced circuit (wye-wye configuration) which includes the source and the

load is shown in Fig. 11.19. We place the nodes n and N at the originally anticipated

center positions. The positive phase sequence of 0, �120�, þ120� is assumed. The

sum of phase voltages is to be found first. In the phasor form,

Van þ Vbn þ Vcn ¼ Vm 1þ 1∠�120� þ 1∠þ120�ð Þ ¼ Vm 1þ 2 cos 120�ð Þ
¼ Vm 1� 1ð Þ ¼ 0

ð11:43Þ

Fig. 11.18. Three-phase to three-wire residential system connected via a step-down transformer.

From the pole transformer, the residential power system serving two houses is run down the pole

underground. Cape Cod, MA.
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Thus, the sum of the balanced phase voltages is exactly zero, either in the phasor form or

in the time domain. Now, along with the phase (line-to-neutral) voltages, we define line-

to-line voltages (or just line voltages) Vab, Vbc, Vca between nodes a–b, b–c, and c–a, as

indicated in Fig. 11.19. These voltages are expressed through the phase voltages using

KVL. Using the trigonometric identity 1� 1∠�120� ¼
ffiffiffi
3

p
∠30� three times, it can be

shown that

Vab ¼ Van � Vbn ¼
ffiffiffi
3

p
Van∠30

�
,

Vbc ¼ Vbn � Vcn ¼
ffiffiffi
3

p
Vbn∠30

�
,

Vca ¼ Vcn � Van ¼
ffiffiffi
3

p
Vcn∠30

�
ð11:44Þ

It is seen that the line voltages are higher in amplitude than the phasor voltages by a factor

of
ffiffiffi
3

p
� 1:73. Furthermore, they lead their corresponding phase voltages by 30�.

According to Eqs. (11.43) and (11.44), the sum of the line voltages is also equal to

zero. Both the phase voltages and the line voltages may be used in the three-phase system.

Exercise 11.12: Is Eq. (11.44) also valid for the negative phase sequence?

Answer: Not exactly. A substitution 30� ! �30� has to be made.

Example 11.10: The electric service for commercial buildings (university campus build-

ings) in the USA is a three-phase, four-wire wye system schematically shown in Fig. 11.19.

Determine rms phase voltages if the line voltages are all equal to 208 V rms.

Solution: According to Eq. (11.44), we should divide the line voltage of 208 V rms by
ffiffiffi
3

p
.

This gives us exactly 120 V rms voltage per phase. Thus, the present wye system is also

powering common 120 V wall plugs with any of the line-to-neutral voltages. Note that the

source in Fig. 11.19 typically models an output of a three-phase transformer.
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Fig. 11.19. Three-phase, four-wire balanced wye-wye distribution system. Ground connection is

implied for the neutral wire.
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Line Currents: Per-Phase Solution

The currents Ia,b,c in Fig. 11.19 are called line currents. To find the line currents, the circuit

may be solved separately for every phase using the superposition principle. The superpo-

sition principle implies shorting out two of the three voltage sources at a time. This method

applies to both balanced and unbalanced circuits. Shorting out voltage sourcesVbn and Vcn

leads to a single-phase equivalent circuit, shown in Fig. 11.20, since the two remaining

source impedances will be shorted out by the neutral wire. As long as the system is balanced,

the same equivalent circuit will be derived for every other phase.

Applying this method to every phase, we obtain

Ia ¼ Van=Z ¼ Im∠� θ, Ib ¼ Vbn=Z ¼ Im∠�120� � θ,

Ic ¼ Vcn=Z ¼ Im∠120
��θ

ð11:45Þ

where Im ¼ Vm=Z. The sum of the line currents is given by

Ia þ Ib þ Ic ¼ Van þ Vbn þ Vcnð Þ=Z ¼ 0 ð11:46Þ

according to Eq. (11.43). Thus, the sum of the balanced line currents is also exactly zero,

either in phasor form or in the time domain. Equations (11.43), (11.44), (11.45), and

(11.46) hold for any phase sequence, with or without the common phase shift.

11.3.6 Removing the Neutral Wire in Long-Distance Power Transmission

Equation (11.46) for the line currents has an important implication. By taking into

account Eq. (11.46), KCL for node n in Fig. 11.19 yields

In ¼ � Ia þ Ib þ Icð Þ ¼ 0 ð11:47Þ

Equation (11.47) states that the neutral conductor in the balanced circuit carries no

current. Such a wire could in principle be removed from the balanced circuit without

affecting the rest of it. Removing the neutral conductor is economically beneficial in long-

distance high-voltage power transmission, which utilizes the balanced circuits. In high-

voltage power lines, the conductors in multiples of three are used; see Fig. 11.21.

an
V

a
I

+
-

a

n

L
Z

Fig. 11.20. A single-phase equivalent circuit by shorting out Vbn and Vcn.
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In fact, the neutral wire is not removed entirely since the earth ground itself plays the

role of the neutral conductor. We will not draw the neutral wire in the three-phase

balanced wye-wye circuit; in Fig. 11.22 only three wires are drawn. However, the

meaning of the phase voltage or the phase-to-neutral voltage still remains unchanged—

this voltage is simply defined with regard to the reference node n in Fig. 11.22.

If a three-phase circuit is unbalanced, like having different individual loads in

Fig. 11.19, then a significant current may flow in the neutral wire. The neutral wire is

thus meant to carry unbalanced currents in the electrical system. It should be kept in place

for potentially unbalanced systems.

Example 11.11: Determine line currents in the balanced three-phase wye-wye circuit

shown in Fig. 11.22 given the acb sequence of phase voltages Van ¼ 325∠0�, Vbn

¼ 325∠120�, Vcn ¼ 325∠�120� V½ � and load impedance per phase Z ¼ 8:333 þ
j14:434 Ω.

Solution: The three-phase circuit in Fig. 11.22 is balanced; hence, the single-phase circuit

in Fig. 11.20 applies to every phase (to visualize the per-phase method, we can still imagine

the neural wire present). We convert the load impedance to polar form first, i.e.,

Z ¼ 16:667∠60� Ω. Then, we solve the circuit in Fig. 11.20 for every phase and obtain

Ia ¼ 19:5∠�60�, Ib ¼ 19:5∠60�, Ic ¼ 19:5∠180� A½ �. The solution is shown in the
phasor diagram in Fig. 11.23. Note that the phasor voltages/currents are obtained from each

other by counter clockwise rotation in the phasor diagram, which corresponds to the

negative or acb phase sequence. Also note that the rms values for the phase voltages in

this example are 230 V, which corresponds to the European residential power distribution

system.

x xxa) b)

Fig. 11.21. (a) Three-phase single-circuit high-voltage overhead power transmission line and (b)

three-phase double-circuit, high-voltage overhead line. Both lines include (thinner) shielding wire

(s) on top of it to protect against lightning strikes (F. Kiessling, et al., “Overhead Power Lines:

Planning, Design, Construction,” Springer 2003).
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The wye-wye circuit in Fig. 11.22, along with the similar circuits in Figs. 11.13 and

11.19, may contain extra impedances. Those are line impedance, which characterizes

transmission line loss and inductance, and source impedances, which are present for

nonideal voltage sources. Fortunately, all those (equal) impedances are combined in

series along the line into one impedance Z which is called the total load impedance

per phase. In this sense, Fig. 11.22 represents this general case as well.
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Fig. 11.22. Three-phase balanced wye-wye system with the neutral conductor removed. The

neutral conductor may still be implied for the solution using the per-phase method.
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19.5 A

Fig. 11.23. Phasor diagram for the three-phase circuit of Example 11.11. Note the separate scales

for the phasors of voltages and phasors of currents.
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Section 11.4 Power in Balanced Three-Phase Systems:

Delta-connected Three-Phase Circuits

11.4.1 Instantaneous Power

The analysis of the instantaneous power requires a source-load circuit in terms of real-

value expressions of voltages and currents. This is shown in Fig. 11.24 for the wye-wye

configuration. We assume a balanced source and a balanced load. This means that

individual loads a, b, and c in Fig. 11.24 are identical. Each of them can be a mixed

RLC load, with an arbitrary impedance Z ¼ Z∠θ.

We consider the positive phase sequence. According to Eqs. (11.41) and (11.45) of the

previous section, the phase voltages and line currents in Fig. 11.24 are given by

υan tð Þ ¼ Vm cos ωtð Þ, υbn tð Þ ¼ Vm cos ωt � 120�ð Þ, υcn tð Þ ¼ Vm cos ωt þ 120�ð Þ
ð11:48aÞ

ia tð Þ ¼ Im cos ωt � θð Þ, ib tð Þ ¼ Im cos ωt � 120� � θð Þ,
ic tð Þ ¼ Im cos ω t þ 120� � θð Þ ð11:48bÞ

The total instantaneous load power of the three-phase system is the sum of the three

power contributions for each phase voltage, that is,

p tð Þ ¼ υan tð Þia tð Þ þ υbn tð Þib tð Þ þ υcn tð Þic tð Þ ð11:49Þ

Every summand on the right-hand side of Eq. (11.49) is the product of two cosines. To

transform this product back to cosines, we use the trigonometric identity cos α cos β

¼ 1
2

cos αþ βð Þ þ cos α� βð Þð Þ and obtain

p tð Þ ¼ 3

2
VmIm cos θ þ 1

2
VmIm cos 2ωt � θð Þ þ cos 2ωt � θ þ 120�ð Þ þ cos 2ωt � θ � 120�ð Þ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

� �

ð11:50Þ

Fig. 11.24. Three-phase balanced wye-wye circuit in the time domain. Three individual loads are

identical. Each of them is characterized by the impedance Z ¼ Z∠θ in the frequency domain.
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We then use the above trigonometric identity again to convert the underlined term to

2 cos 2ω t � θð Þ cos 120�ð Þ ¼ � cos 2ω t � θð Þ. Consequently, the entire term in the

square brackets in Eq. (11.50) is equal to zero, and the final result for the instantaneous

power is

p tð Þ ¼ 3

2
VmIm cos θ ¼ 3V rmsI rms cos θ ¼ const ! ð11:51Þ

where the rms values of phase voltages and line currents are indeed related to the

amplitudes by Vm ¼
ffiffiffi

2
p

V rms, Im ¼
ffiffiffi

2
p

I rms.

Example 11.12: A balanced wye-wye three-phase system in Fig. 11.24 operates at 60 Hz.

The line-to-neutral voltages have the amplitudes of 170 V, Vm ¼ 170 V. Every phase

impedance is a 77.2-mH inductance in series with a 29.1-Ω resistance. Find the instanta-

neous load power.

Solution: The first step is to find the impedance for every phase of the load. We have

Z ¼ Rþ jωL ¼ 29:1þ j29:1 Ω ¼ 29:1
ffiffiffi

2
p
∠45� Ω ð11:52Þ

Next, we find the line currents. Since the circuit is balanced, the per-phase solution applies,

with the equivalent circuit shown in Fig. 11.20 of the previous section. It yields

Im ¼ Vm

Zj j ¼
Vm

Z
¼ 170

41:154
¼ 4:1309 A ð11:53Þ

The instantaneous load power follows Eq. (11.51) with the power angle, θ ¼ 45�.
Therefore, we obtain

p tð Þ ¼ 3

2
VmIm cos θ ¼ 745 W ¼ const ð11:54Þ

Equation (11.51) is critical for three-phase systems. It tells us that the total instanta-

neous power delivered to the load remains constant at any instance in time. This is in

contrast to the instantaneous power of every individual single phase, which is still

pulsating in time. Equation (11.51) implies that a three-phase load (e.g., an induction

motor) as well as the three-phase generator introduced in the previous section should

generate or require a constant torque. Thus, they undergo less vibration since the net

power transfer is uniform.
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11.4.2 Average Power, Reactive Power, and Apparent Power

The AC power types defined for the single-phase power distribution in Section 11.1 of

this chapter also apply for the three-phase circuits. The average or active load power P,

the reactive load power Q, and the complex load power S of the balanced three-phase

system are given by

P ¼ 3V rmsI rms cos θ W½ �, Q ¼ 3V rmsI rms sin θ VAR½ �, S ¼ 3V rmsI rms∠θ VA½ �
ð11:55aÞ

While the instantaneous powers per phase are pulsating, their average values labeled with

indexes a, b, c are exactly one third of the load powers. One has

Pa,b,c ¼ V rmsI rms cos θ W½ �, Qa,b,c ¼ V rmsI rms sin θ VAR½ �,
Sa,b,c ¼ V rmsI rms∠θ VA½ �

ð11:55bÞ

per phase. Equation (11.55) uses the rms values of phase voltages and line currents.

Example 11.13: For the previous example, determine the load average power, reactive

power, and the apparent power. Do these powers coincide with the corresponding source

measures?

Solution: The average power is simply the load instantaneous power, P ¼ 745 W. The

reactive power is Q ¼ 3
2
VmIm sin θ ¼ 745 VAR. The apparent power is

S ¼ Sj j ¼ 3
2
VmIm ¼ 1053 VA. And the apparent power can be also found from the

power triangle. All load powers coincide with the corresponding source powers since the

transmission lines in Fig. 11.24 are assumed to be ideal conductors.

Exercise 11.13: A three-phase induction motor is modeled by a balanced wye load in

Fig. 11.24. The motor (active) power is 6 kW; the line current is 20 A rms, and the line

voltage is 208 V rms. Determine the power factor of the motor, which is the ratio of the

active load power P to the magnitude of the total apparent power, |S|.

Answer: PF � 5=6 ¼ 0:833.

11.4.3 Application Example: Material Consumption in Three-Phase

Systems

A comparison is made between the conductor material consumption in a single-phase

two-wire transmission system (shown in Fig. 11.25a) and the three-phase, three-wire

transmission system shown in Fig. 11.25b. Both systems have the identical distance from

the source to the load, the same average power P distributed to a purely resistive load, and

Chapter 11 AC Power and Power Distribution

XI-558



the same rms line voltages close to the load. They all use the same conductor material.

The distributed resistance per wire is modeled by a lumped resistor R for the single-phase

line and by a lumped resistor R0 for the three-phase line. Given the same load power and

line voltage, the rms line currents are expressed as

I single phase ¼
P

V
, I three phase ¼

P
ffiffiffi
3

p
V

ð11:56Þ

Equating power loss in the wire conductors, we obtain

2RI2single phase ¼ 3R
0
I2three phase ) 2R

P

V

� �2

¼ 3R
0 P

ffiffiffi
3

p
V

� �2

) R
0 ¼ 2R ð11:57Þ

Since resistance R is twice as large as resistance R0, the cross section of the

corresponding cylindrical conductor is smaller by a factor of two in the three-phase

configuration. Hence, its radius is 1=
ffiffiffi

2
p

times less than the radius, r, of the single-phase

line. Figure 11.26 depicts the radii of the equivalent conductors.

For the single-phase line, the total conductor cross section is 2πr2; for the three-phase

line, the total cross section is 1.5πr2. Given the same length, the ratio of conductor

material required is exactly the cross-section ratio, that is, 1:5=2 ¼ 0:75. In other words,

load

load

V

V

V

a)

b)

R

R

R’

R’

R’

source

source

V

Fig. 11.25. Comparison of single-phase and three-phase transmission systems.

b)

a) single-wire transmission

three-phase transmission

r

2/r

r

Fig. 11.26. Radii of equivalent conductors for the two systems in Fig. 11.25.
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the three-phase system consumes 75% less conductor material compared to the single-

phase system. The key is the absence of the neutral wire (or, possibly, using a much

thinner neutral wire). Other examples for particular loads might result in even more

dramatic savings.

11.4.4 Balanced Delta-Connected Load

Along with the wye-connected load, an important example of the three-phase load is the

delta-connected load, which is shown in Fig. 11.27a in the balanced configuration. The

balanced delta-connected load is common, along with a balanced wye-connected load.

The delta-connected load inherently does not have a neutral port. This load may be

converted to the wye-connected load shown in Fig. 11.27b by using the Y-Δ transforma-

tion algorithm established in Chapter 3. This algorithm equally applies to the impedance

circuits. The algorithm considerably simplifies when the loads are balanced (load resis-

tances or impedances are equal). With reference to Fig. 11.27, one has

ΖY ¼ 1

3
ΖΔ $ ΖΔ ¼ 3ΖY ð11:58Þ

for phase impedance transformation. Here, indexes Y and Δ refer to the wye-connected

and delta-connected loads, respectively.

11.4.5 Balanced Delta-Connected Source

The balanced delta-connected source is shown in Fig. 11.28b. In its original configura-

tion, it is not using the ground terminal or a neutral conductor. The delta-connected source

so wound is generally less common and less safe than the wye-connected source. It may

be created by the three-phase generator shown in Fig. 11.17 of the previous section,

assuming the three individual coil windings aa0, bb0, and cc0 are interconnected in a

closed loop.

a

b

c

a

b

c

Z

Z Z
Z
3

1
Z
3

1

Z
3

1

Delta-connected load Wye-connected loada) b)

Fig. 11.27. Delta-connected load versus ad.
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The balanced wye-connected source without a neutral or ground conductor can be

easily converted to the balanced delta source and vice versa. The concept is shown in

Fig. 11.28. The line voltages Vab, Vbc, Vca between nodes a–b, b–c, and c–a of the wye

source become the phase voltages of the delta source. The relation between two voltage

types is given by Eq. (11.44) of the previous section, that is (positive phase sequence),

Vab ¼
ffiffiffi

3
p

Van∠30
�
, Vbc ¼

ffiffiffi

3
p

Vbn∠30
�
, Vca ¼

ffiffiffi

3
p

Vcn∠30
� ð11:59Þ

Thus, according to Eq. (11.59) and Fig. 11.28, the phase voltages of the equivalent

delta-connected source Vab, Vbc, Vca are greater in amplitude by a factor of
ffiffiffi
3

p
� 1:73

as compared to the phase voltages Van, Vbn, Vcn of the equivalent wye-connected source

in Fig. 11.28. The line voltages of the delta-connected source coincide with its phase

voltages given lossless conductors and coincide with the line voltages of the wye-wye

source; all of them are simply Vab, Vbc, Vca. Indeed, the sum of the phase voltages for

the delta-connected source is still equal to zero according to Eq. (11.43) of the previous

section. Hence, there is no current circulation in the (ideal) delta loop in Fig. 11.28b.

Transformations given by Eqs. (11.58) and (11.59) allow us to consider four distinct

source-load configurations in the three-phase systems: wye-wye, wye-delta, delta-wye,

and delta-delta. All of them may be reduced to the wye-wye circuit or solved indepen-

dently. Figure 11.29 shows one such configuration: a balanced delta-delta distribution

system. In the delta-delta system, the line voltages coincide with the phase voltages,

whereas the line currents Ia, Ib, and Ic are different from the load (or phase) currents IAB,

IBC, and ICA. This is in contrast to the wye-wye system where the line and phase voltages

are different, but the line and load currents remain the same.
+
-

+ -

an
V

bn
V

cn
V

+-

a

b

c

Wye-connected sourcea) Delta-connected sourceb)

a

b

c

+

-

+
-

+
-

ab
V

bc
V

ca
V

Fig. 11.28. Wye-connected source versus delta-connected source.
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Example 11.14: A balanced delta-delta system in Fig. 11.29 operates at 60 Hz. The phase

voltages of the delta source, Vab, Vbc, Vca, have amplitudes of Vm ¼ 294:5 V each.

Moreover, each phase impedance is a 0.2315 H inductance in series with a 87.3 Ω

resistance. Find the average load power.

Solution: We find the impedance for each phase of the load first. One has

Z ¼ Rþ jωL ¼ 87:3þ j87:3 Ω ¼ 87:3
ffiffiffi

2
p
∠45� Ω ð11:60Þ

The power angle is thus given by θ ¼ 45�. Next, we find the load (phase) currents

IAB, IBC, ICA circulating in the delta-connected load. Since the individual voltage

sources in Fig. 11.6 are now directly connected to the individual load phases, one

has for the amplitude of the phase current IAB:

IAB ¼ Vab

Z
) Im ¼ Vm

Zj j ¼
294:5

Z
¼ 294:5

123:46
¼ 2:385 A ð11:61Þ

The remaining phases have the same amplitudes: the per-phase method is used again. Both

the average load power and the instantaneous load powers are the sum of three individual

contributions, that is,

P ¼ p tð Þ ¼ 3
 1

2
VmIm cos θ

� �

¼ 3

2
294:5
 2:385
 0:707 ¼ 745 W ð11:62Þ

The instantaneous power may be calculated; it is constant and equals 745 W. Note that the

rms line voltages in this example are 208 V.

Z

Z Z

a
I

b
I

c
I

a b

c

+

-

+
-

+
-

ab
V

bc
V

ca
V

AB

C

AB
I

BC
I

CA
I

Fig. 11.29. Three-phase balanced delta-delta distribution system. Note the load (phase) currents

circulating in the delta loop.
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Example 11.15: Solve the previous example by converting the delta-delta system to the

equivalent wye-wye system.

Solution: First, the phase impedance of the wye load should be three times less than the

phase impedance of the delta load, that is, Z ¼ 29:1
ffiffiffi

2
p
∠45� Ω. Second, the amplitude of

the wye phase source should be 1=
ffiffiffi
3

p
times less than the amplitude of the delta phase

source, that is,Vm ¼ 170 V. These numbers have been used in Examples 11.12 and 11.13

for the wye-wye system, which gave us exactly the same value of 745 W (one horsepower)

for the average and instantaneous powers, respectively.

Apart from the circuit equivalence, one may look at Fig. 11.28 from a slightly different

perspective. What if the voltage sources in Fig. 11.28 are all the same (the same windings

of the three-phase generator just connected differently)? In this case, the wye connection

gives us a line voltage
ffiffiffi
3

p
times greater than the delta connection. Hence, the line current,

which is required for the same power transfer, will be 1=
ffiffiffi
3

p
times less. Reducing line

currents reduces line losses. This explains why the wye source connection is preferable

for long-distance power transmission.
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Summary

rms Voltages and currents in terms of sine/cosine amplitudes and in the general case

For sinusoidal signals: V rms ¼
Vm
ffiffiffi

2
p , I rms ¼

Im
ffiffiffi

2
p General periodic case: V rms ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

T

ðT

0

υ2 tð Þ dt

v
u
u
u
t

Average power for resistive load: P ¼ 1

2
VmIm ¼ V rmsI rms, V rms ¼ RI rms

Power angle θ and power factor PF

υ tð Þ ¼ Vm cos ω t þ φð Þ
i tð Þ ¼ Im cos ω t þ ψð Þ

) θ ¼ φ� ψ , � 90� � θ � þ90� PF ¼ cos φ� ψð Þ ¼ cos θ

Average power for arbitrary load: P ¼ VmIm

2
cos θ ¼ V rmsI rms cos θ (zero for L and C)

Average power and power angle in terms of phasors: P ¼ Re V � I*
� �

2
, Z ¼ Zj j∠θ

Average power P, reactive power Q, complex power S, and apparent power S

P ¼ Re V � I*
� �

2
¼ R Ij j2

2
¼ Zj j Ij j2

2
cos θ ¼ Vj j Ij j

2
cos θ ¼ V rmsI rms cos θ W½ �

Q ¼ Im V � I*
� �

2
¼ X Ij j2

2
¼ Zj j Ij j2

2
sin θ ¼ Vj j Ij j

2
sin θ ¼ V rmsI rms sin θ VAR½ �

S ¼ V � I*
2

¼ P þ jQ VA½ �

S ¼ Sj j ¼ Zj j Ij j2
2

¼ Vj j Ij j
2

¼ V rmsI rms VAR½ �

Power triangle (lagging/leading power factor)

AC power conservation laws

For any network of N loads connected in series, parallel, or in general:

S ¼ S1 þ S2 þ . . . SN , P ¼ P1 þ P2 þ . . . PN , Q ¼ Q1 þ Q2 þ . . . QN

(continued)
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Power factor correction

C ¼ L

ω2L2 þ R2
) Z ¼ Rþ ωLð Þ2

R
)

I ¼ RVm

R2 þ ωLð Þ2
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

with capacitor

� jωLVm

R2 þ ωLð Þ2

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{
without capacitor

L ¼ 1þ ω2R2C2

ω2C
) Z ¼ Rþ 1

R ωCð Þ2
)

I ¼ R ωCð Þ2Vm

1þ ωRCð Þ2
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

with inductor

þ jωCVm

1þ ωRCð Þ2

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{
without inductor

P remains exactly the same, Q becomes zero, PF becomes 100%

Maximum power transfer

P ¼ 0:5RL VTj j2

RL þ RTð Þ2 þ X L þ X Tð Þ2
W½ �

Pmax ¼
1

8

VTj j2
RT

W½ �

at ZL ¼ Z*
T

Some equivalent drawings of the same balanced three-phase four-wire wye–wye power

distribution system

(continued)
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Major parameters of the balanced three-phase four-wire wye–wye power distribution system

Positive phase sequence Van ¼ Vm, Vbn ¼ Vm∠�120�, Vcn ¼ Vm∠þ120�

Negative phase sequence Van ¼ Vm, Vbn ¼ Vm∠þ120�, Vcn ¼ Vm∠�120�

Current in the neutral wire: In ¼ 0

Per phase solution: Ia ¼ Im∠� θ, Ib ¼ Im∠�120� � θ, Ic ¼ Im∠120� � θ

Im ¼ Vm=Z, Z ¼ Z∠θ

Line voltages (positive phase sequence):

Vab ¼ Van � Vbn ¼
ffiffiffi
3

p
Van∠30

�
,

Vbc ¼ Vbn � Vcn ¼
ffiffiffi
3

p
Vbn∠30

�
,

Vca ¼ Vcn � Van ¼
ffiffiffi
3

p
Vcn∠30

�

Instantaneous/average load power: p tð Þ ¼ P ¼ 3

2
VmIm cos θ ¼ 3V rmsI rms cos θ ¼ const

Apparent load power: S ¼ 3

2
VmIm ¼ 3V rmsI rms

Some common wye distribution systems

3-Phase, 4-Wire208Y=120V USð Þ Line : V rms ¼ 208 V, Vm ¼ 294 V

Phase : V rms ¼ 120 V, Vm ¼ 170 V

3-Phase, 4-Wire400Y=230 V EU, Othersð Þ Line : V rms ¼ 400 V, Vm ¼ 566 V

Phase : V rms ¼ 230 V, Vm ¼ 325 V

Wye load to delta load conversion

Wye source to delta source conversion

Vab ¼
ffiffiffi

3
p

Van∠30
�
, Vbc ¼

ffiffiffi

3
p

Vbn∠30
�
, Vca ¼

ffiffiffi

3
p

Vcn∠30
� (positive phase sequence)
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Problems
11.1 AC Power Types

and Their Meaning

11.1.1 Instantaneous AC Power

11.1.2 Time-Averaged AC Power
Problem 11.1. An AC voltage signal across a

resistive load with R¼ 10 Ω is given by:

A. υ tð Þ ¼ Vm cos 1000 t V½ �
B. υ tð Þ ¼ Vm sin 60t V½ �
C. υ tð Þ ¼ Vm cos 60t þ 45�ð Þ V½ �

where Vm ¼ 10 V. Determine the average AC

power into the load in every case.

Problem 11.2. An alternating current through a

resistive load with R¼ 100 Ω is given by:

A. i tð Þ ¼ Im cos 106 t V½ �
B. i tð Þ ¼ Im cos 37t V½ �
C. i tð Þ ¼ Im sin 2011t þ 45�ð Þ V½ �

where Im ¼ 1 A. Determine the average AC

power into the load in every case.

Problem 11.3. An rms voltage across a resis-

tive load with R¼ 100 Ω is given by:

A. V rms ¼ 5 V

B. V rms ¼ 100 V

C. V rms ¼ 0 V

Determine the average power into the load in

every case.

Problem 11.4. An rms current through a resis-

tive load with R¼ 1 kΩ is given by:

A. I rms ¼ 1 A

B. I rms ¼ 100 μA

C. I rms ¼ 0 A

Determine the average power into the load in

every case.

Problem 11.5. An AC voltage signal is given

by:

A. υ tð Þ ¼ Vm cos ω t þ φð Þ V½ �
B. υ tð Þ ¼ 1Vþ Vm cos ω t þ φð Þ V½ �
C. υ tð Þ ¼ 1 V� Vm sin ω t þ φð Þ V½ �

where Vm ¼ 1 V, ω ¼ 100 rad=s, and

φ ¼ π=2 rad. Find the time-average voltage

υ tð Þ in every case.

Problem 11.6. Present a mathematical proof of

the fact that the expression for the average

power, P ¼ V 2
m

2R
, holds for an AC voltage signal

given by υ tð Þ ¼ Vm cos ωt þ φð Þ V½ � where φ

is an arbitrary phase.

11.1.3 Application Example: rms Volt-

ages and AC Frequencies Around the

World
Problem 11.7. A 100 Ω resistive load is

connected to an AC wall plug in:

A. Peoples Republic of China

B. India

C. USA

D. Germany

Determine the average power delivered to the

load in every case. Also determine the rms load

current in every case.

Problem 11.8. What do you think is a major

A. Advantage

B. Disadvantage

of having a higher AC voltage?

11.1.4 rms Voltages for Arbitrary Peri-

odic AC Signals
Problem 11.9. Determine the average power

delivered to a 100 Ω resistive load when the

applied periodic voltage signal has the form

υ tð Þ ¼ 5t þ 0:01ð Þ=T V½ � over one period

T¼ 0.01 s. This signal is known as the saw-

tooth or the triangular wave:

A. Use the analytical calculation of the rms

voltage.

B. Use the rms voltage found numerically,

based on a MATLAB script or any soft-

ware of your choice.

Problem 11.10. Determine the average

power delivered to a 100 Ω resistive load

when the applied periodic voltage has the form

υ tð Þ ¼
ffiffi
t

p
=T V½ � over one period T¼ 0.01 s:

A. Use the analytical calculation of the rms

voltage.

B. Use the rms voltage found numerically,

based on a MATLAB script or any soft-

ware of your choice.
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Problem 11.11. Of the two periodic voltage sig-

nals shown in the figures below,

0 5 10 15 20 25 30 35 40

-6

-4

-2

0

2

4

6

time, ms

a)

0 5 10 15 20 25 30 35 40
-6

-4

-2

0

2

4

6

time, ms

b)

voltage, V

voltage, V

time, ms

which signal delivers more average power into

a resistive load? The periodic voltage on the top

graph is the cosine function. Explain your

answer and provide an analytical proof (find

the rms voltages and the average power in

every case).

Problem 11.12. Of the two periodic signals

shown in the figures that follow, which signal

delivers more average power into a resistive

load? Explain your answer and provide:

A. An analytical proof—find the rms volt-

age and the average power in every case

B. A numerical proof (use MATLAB or any

software of your choice).

The periodic voltage on the top graph is

the cosine function. The periodic voltage

on the bottom graph is given by υ tð Þ ¼ 3:2

105 t � 0:005ð Þ2 � 4 V½ � over the time interval

from 0 to T.
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-6

-4

-2

0

2

4

6
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a)

0 5 10 15 20 25 30 35 40
-6

-4

-2

0

2

4

6

time, ms

b)

voltage, V

voltage, V

time, ms

Problem 11.13. Of the two periodic signals

shown in the figure that follows, which signal

delivers more average power into a resistive

load? The periodic voltage on the top graph is

the cosine function. Explain your answer and

provide:

A. An analytical proof—find the rms volt-

age and the average power in every case

B. A numerical proof (use MATLAB or any

software of your choice).
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11.1.5 Average AC Power in Terms

of Phasors: Power Angle

11.1.6 Average Power for the Resistor,

Capacitor, and Inductor
Problem 11.14. The phasor voltage across a

purely resistive load with the resistance

R¼ 100 Ω is given by V ¼ �2� j1:5 V½ �.
Find the average power delivered to the load.

Problem 11.15. The phasor current through a

purely resistive load with the resistance

R¼ 100 Ω is given by I ¼ �1� j0:5 A½ �.
Find the average power delivered to the load.

Problem 11.16. The phasor voltage across an

AC load and the phasor current through the

same AC load are given by:

V ¼ �3þ j3 V½ �
I ¼ þ j0:1 A½ �

A. Find the average power delivered to the

load analytically.

B. Find the average power delivered to the

load numerically using MATLAB or any

software of your choice.

Problem 11.17. Repeat the previous problem

for phasor voltage and phasor current in the

form:

V ¼ 2þ j2 V½ �
I ¼ 1� j1 A½ �

Problem 11.18. Express the average power

given by P ¼ Re V�I*ð Þ
2

in terms of the following

three quantities: magnitude of the phasor volt-

age, |V|; the impedance magnitude, |Z|; and the

real part of the impedance, Re(Z).

Problem 11.19. Determine the average power

delivered to the load circuit between terminals

a and b shown in the figure that follows. The

AC angular frequency is 100 rad/s.

a

b 100

1 mHa

b

100 F

10cos t [A]

A)

B) a

b

10cos t [A]
1 mH 100

Problem 11.20. Determine the average power

delivered to the load circuit between terminals

a and b shown in the figure that follows. The

AC angular frequency is 1000 rad/s.
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100cos t [V]

a

b

+

-

100

1 mHa

b

+

-

100 F

A)

B) a

b

1 mH

100

1 F

100cos t [V]

+

-

Problem 11.21. Determine the average power

delivered to the load circuit shown in the figure

below. The AC signal frequency is 106 Hz.

a

b

1 mH 100

10cos t [mA] 1 F

11.1.7. Average Power, Reactive Power,

and Apparent Power

11.1.8. Power Triangle
Problem 11.22. Determine the resistance and

the reactance of the circuit blocks (the load)

shown in the figure. The AC angular frequency

is 1000 rad/s.

a

b 100

10 mHa

b

100 F

A)

B) a

b

10 mH 100

Problem 11.23. Determine the resistance and

the reactance of the circuit block (the load)

shown in the figure in terms of R, L, and C in

a general form. The AC angular frequency is ω.

CR L

a

b

Problem 11.24. Write the expressions (and

show units) for the average power P and the

reactive power Q in terms of:

A. Phasor current I through the load and the

load resistance R and the reactance X

B. Phasor voltage V across the load, the

load impedance magnitude |Z|, and the

impedance phase (or the power angle) θ

Problem 11.25. For the circuit shown in the

figure with the parameters Vm ¼ 170 V, ω ¼
377 rad=s, L ¼ 26:5 mH, R ¼ 25 Ω:

A. Determine the power angle and the

power factor.

B. Determine the average (or true) power and

the reactive power for the inductive load

shown in the figure.

C. Construct the corresponding power

triangle.

R

L
+
-v (t)S

load

0
Re

Im

500 W

500   VAR
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Problem 11.26. For the circuit shown in the

figure with the parameters

Vm ¼ 170 V, ω ¼ 377 rad=s,
C ¼ 500 μF, R ¼ 10 Ω

:

A. Determine the power angle and the

power factor.

B. Determine the average (or true) power

and the reactive power for the capacitive

load shown in the figure.

C. Construct the corresponding power

triangle.

R

C

+
-v (t)S

load

0 Re

Im

1 kW

1  kVAR

Problem 11.27. For the circuit shown in the

figure with the parameters

Vm ¼ 170 V, ω ¼ 377 rad=s, L ¼ 14:07 mH,

C ¼ 500 μF, R ¼ 10 Ω:

A. Determine the power angle and the

power factor.

B. Determine the average (or true) power and

the reactive power for the complex load

shown in the figure.

C. Construct the corresponding power

triangle.

R

C

+
-V (t)S

load

L

0 Re

Im

1 kW

1  kVAR

11.2 Power Factor Correc-

tion: Maximum Power Effi-

ciency and Maximum Power

Transfer

11.2.1 Power Factor Correction

11.2.3 Principle of Maximum Power

Efficiency for AC Circuits
Problem 11.28. Correct the power factor for

the inductive load shown in the figure below.

The circuit parameters are Vm ¼ 170 V,ω ¼
377 rad=s and L ¼ 53 mH,R ¼ 10 Ω:

A. Present the circuit diagram of the modi-

fied load and determine the required

capacitance.

B. Determine average (true) power, reactive

power, power factor, and amplitude of

the circuit current before the power fac-

tor correction.

C. Determine average (true) power, reactive

power, power factor, and amplitude of

the circuit current after the power factor

correction.

R

L
+
-v (t)S

Problem 11.29. Correct the power factor for

the capacitive load shown in the figure that
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follows. The circuit parameters are Vm ¼ 170

V, ω ¼ 377 rad=s and C ¼ 265 μF, R ¼
10 Ω:

A. Present the circuit diagram of the modi-

fied load and determine the required

inductance.

B. Determine average (true) power, reactive

power, power factor, and amplitude of

the circuit current before the power fac-

tor correction.

R

C

+
-v (t)S

Problem 11.30. A whip monopole antenna

used in US Coast Guard ships has an equivalent

electric circuit shown in the figure of the previ-

ous problem. Its (radiation) resistance is 1 Ω,

and the reactance is �j1000 Ω. By modifying

the antenna circuit with a lumped inductor, it is

required to make the antenna impedance real

and as large as possible:

A. Present the circuit diagram of the modi-

fied load

B. Determine the required impedance of the

inductor.

11.2.4 Principle of Maximum Power

Transfer for AC Circuits
Problem 11.31. Describe in your own words

the difference between the concepts of maxi-

mum power efficiency and maximum power

transfer for AC circuits.

Problem 11.32. A generator’s impedance is

50∠30� Ω½ �. What should the load imped-

ance be to allow the maximum power transfer

to the load?

Problem 11.33

A. A generator’s impedance is 50 Ω. The

load impedance is 1 + j50 [Ω]. What per-

centage of the maximum available

power (at the load impedance of 50 Ω)

is transferred to the load?

B. Repeat the same task for the load imped-

ance of 1� j50 [Ω].

C. Repeat the same task for the load imped-

ance of 5 + j50 [Ω].

Hint: Derive the general expression for the

power ratio first and then plug in the numbers.

11.3 AC Power Distribution:

Balanced Three-Phase

Power Distribution System

11.3.1 AC Power Distribution Systems

11.3.2 Phase Voltages: Phase Sequence
Problem 11.34. Draw generic circuits for the

following representative AC power distribution

systems:

A. Single-phase two-wire system

B. Single-phase three-wire system

C. Two-phase three-wire system

D. Three-phase four-wire system

Show loads and phasor voltages with the

corresponding phases.

Problem 11.35. Determine the phase sequence

for the phase voltages given by:

υan tð Þ ¼ 240 cos 314 t þ 75�ð Þ V½ �,
υbn tð Þ ¼ 240 cos 314t � 165�ð Þ V½ �,
υcn tð Þ ¼ 240 cos 314t � 45�ð Þ V½ �:

To simplify the solution, construct the

corresponding phasor diagram in the figure

below:

Re

Im
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Problem 11.36. Given Vbn ¼ 120 ∠45� V½ �,
find Van and Vcn assuming:

A. The positive abc phase sequence

B. The negative acb phase sequence

Express your result in phasor form. Make sure

that the phase ranges from �180� to +180�. To
check the solution, you may want to use the

corresponding phasor diagram shown in the

figure for the previous problem.

11.3.3 Wye (Y) Source and Load

Configurations for Three-phase Circuits

11.3.4 Application: Examples of

Three-phase Source and the Load

11.3.5 Solution for the Balanced

Three-Phase Wye-Wye Circuit

11.3.6 Removing the Neutral Wire in

Long-Distance Balanced High-power

Transmission

Problem 11.37

A. Draw the circuit diagram for a generic

three-phase four-wire balanced wye-wye

power distribution system.

B. Labelphasevoltagesandphaseimpedances

(load impedances per phase).

C. Label line currents.

Problem 11.38. A three-phase circuit is shown

in the figure that follows:

A. Is it a balanced wye-wye circuit?

B. If not, show your corrections on the

figure.

0
m
V

120
m
V

120
m
V

+

-

1
Z

+-

+-
1
Z

1
2Z

Problem 11.39. Repeat the previous problem

for the circuit shown in the figure below:

+
-

+ -

Z Z

Z

+- Nn

0
m
V

120
m
V

120
m
V

Problem 11.40. Repeat Problem 11.38 for the

circuits shown in the figure that follows:

+
-

+ -

+-

0
m
V

120
m
V

120
m
V

1
Z

1
Z

1
Z

2
Z

2
Z

2
Z

Problem 11.41. Prove that Eq. (11.28) of this

chapter for line voltages also holds for the

negative phase sequence to within the substitu-

tion 30� ! �30�.

Problem 11.42. The local electric service in

the European Union is provided by a three-

phase four-wire abcn wye system with the line

voltages equal to 400 V rms each (so-called

Niederspannungsnetz):

A. Determine the rms phase voltages.

B. By connecting terminals abcn in any

sequence of your choice, could you in

principle obtain the rms voltages higher

than 400 V?

Problem 11.43. Determine line currents in the

balanced three-phase wye-wye circuit shown in

the figure that follows. You are given the acb

sequence of phase voltagesVan ¼ 170∠0� V½ �,
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Vbn ¼ 170∠120� V½ �, Vbn ¼ 170∠�120� V½ �,
and load impedance per phase, Z ¼ 8 þ
j30 Ω.

Plot phasor currents on the phasor diagram that

follows.

+
-

+ -

an
V

bn
V

cn
V

a

b

c

Z Z

Z

+-

a
I

b
I

c
I

n N

Re

Im

Problem 11.44. In the balanced three-phase

wye-wye circuit shown in the figure that fol-

lows, the power line resistance and inductance

are additionally included into consideration. The

three-phase source operates at 60 Hz; R ¼ 2 Ω,

L ¼ 9:6 mH. You are given the abc sequence

of phase voltages Van ¼ 170∠0� V½ �, Vbn ¼
170∠� 120� V½ �, Vbn ¼ 170∠120� V½ �, and
load impedance per phase, Z ¼ 7þ j30 Ω.

A. Determine line currents.

B. Plot phasor line currents on the phasor

diagram to the previous problem.

+
-

+ -

an
V

bn
V

cn
V

a

c

Z Z

Z

+-

a
I

b
I

c
I

R L

R L

R L

11.4 Power in Balanced

Three-Phase Systems:

Delta-connected

Three-Phase Circuits

11.4.1 Intantaneous Power

11.4.2 Average Power, Reactive

Power, and Apparent Power
Problem 11.45. In a three-phase balanced

wye-wye system, the rms phase voltages are

120 V, and the rms line currents are 10 A. The

impedance has the power angle of θ ¼ 75�.
Find:

1. The instantaneous load power

2. The average load power

Problem 11.46. In a three-phase balanced

wye-wye system, the rms line voltages are

400 V, and the rms line currents are 10 A. The

impedance has the power angle of θ ¼ 60�.
Find:

1. The instantaneous load power

2. The average load power

Problem 11.47. In the three-phase system

shown in the figure that follows, Z ¼ 40∠60�.
The sources have the relative phases

0, � 120�, þ 120�. The rms line voltages

are 208 V. Determine:

A. The type of the three-phase system

B. Instantaneous power delivered to the

three-phase load

C. Average power delivered to the three-

phase load

+
-

a

b

c

+
-

Z

Z

+-

Z

Problem 11.48. A balanced wye-wye three-

phase system in the figure that follows uses loss-

less transmission lines and operates at 60 Hz.
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The line-to-neutral voltages have the amplitudes

of170V,Vm ¼ 170 V.Everyphase impedance is

a 92-mH inductance in series with a 20 Ω resis-

tance. Find the instantaneous load power.

+
-

+ -

an
V

bn
V

cn
V

a

b

c

+-

n N

Z Z

Z

Problem 11.49. In the previous problem:

A. Determine the load average power, reac-

tive power, and the apparent power.

B. Do these powers coincide with the

corresponding source measures?

Problem 11.50. A three-phase induction motor

is modeled by a balanced wye load. The motor

(active) power is 2.5 kW; the line current is

10 A rms, and the phase voltage of a three-

phase wye source is 120 V rms. Determine the

power factor of the motor.

Problem 11.51. In the previous problem, the

motor (active) power is 9 kW; the line current

is 15 A rms, and the line voltage of a three-

phase wye source is 400 V rms. Determine the

power factor of the motor.

11.4.4 Balanced Delta-Connected Load

11.4.5 Balanced Delta-Connected Source
Problem 11.52. A three-phase balanced

wye-wye system is shown in the figure that

follows. Its delta-delta equivalent is sought,

which is shown in the same figure. For the

delta-delta system, write the corresponding

voltage and impedance values in the phasor

form close to every circuit element.

+
-

+ -

a b

c

+-

n N

a b

c

+

-

+
-

+
-

AB

C

0120 120120

120120

6030 6030

6030

a)

b)

Problem 11.53. A three-phase balanced delta-

delta system is shown in the figure that follows.

Itswye-wye equivalent is sought,which is shown

in the samefigure. For thewye-wye system,write

the corresponding voltage and impedance values

in the phasor form close to every circuit element.

+
-

+ -

a b

c

+-

n N

a b

c

+

-

+
-

+
-

AB

C

6090

6090 6090

a)

b)

30400

90400150400
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Problem 11.54. A balanced delta-delta system

shown in the figure below operates at 50 Hz.

The phase voltages of the delta source, Vab,

Vbc, Vca, have the amplitudes of Vm ¼ 563:4
V each. Every phase impedance is a 0.21 H

inductance in series with a 38-Ω resistance:

A. Find the average load power,

B. Find the instantaneous load power,

C. Find the apparent load power.

a b

c

+

-

+
-

+
-

ab
V

bc
V

ca
V

AB
I

BC
I

CA
I

AB

C

Problem 11.55. A balanced wye-delta system

shown in the figure below operates at 60 Hz.

The phase voltages of the wye source, Van,

Vbn, Vcn, have the amplitudes of Vm ¼ 170 V

each. Each phase impedance is a 0.18 H induc-

tance in series with a 90 Ω resistance:

A. Find the average load power,

B. Find the instantaneous load power,

C. Find the apparent load power.

+
-

+ -

an
V

bn
V

cn
V

a

b

c

Z

Z Z

+-

a
I

b
I

c
I
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Chapter 12: Electric Transformer

and Coupled Inductors

Overview

Prerequisites:

- Knowledge of complex arithmetic

- Knowledge of basic circuit analysis (Chapters 3 and 4)

- Knowledge of self- and mutual inductances (Chapter 6)

- Knowledge of phasor/impedance method for AC circuit analysis (Chapter 8) and of

basic AC power analysis (Chapter 11)

Objectives of Section 12.1:

- Derive the ideal transformer model from the first principles

- Understand the role of the ideal magnetic core

- Understand the role of Faraday’s law and Ampere’s law

- Prepare the background for introducing magnetic circuits

- Understand and apply the dot convention

- Relate ideal transformer model to a model with dependent sources

Objectives of Section 12.2:

- Be able to analyze electric circuits with ideal transformer

- Learn about load and source reflections

- Learn about impedance matching via transformers

- Learn about electric power transfer via transformers

Objectives of Section 12.3:

- Derive equations for useful transformer types—autotransformer, multiwinding

transformer, and center-tapped transformer—from the first principles

- Understand the role of the center-tapped transformer for single-ended to differential

transformation and for power division

Objectives of Section 12.4:

- Understand the physical background of the Steinmetz model and relate the model

parameters to real transformers

- Be able to analyze the nonideal transformer model

- Define transformer voltage regulation and power efficiency

- Briefly discuss the high-frequency transformer model
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Objectives of Section 12.5:

- Introduce the model of two coupled inductors from the first principles

- Learn how to analyze electric circuits with coupled inductors

- Learn about the useful conversion to the T-network of uncoupled inductances

- Obtain the basic exposure to wireless inductive power transfer including its major

features and challenges

Application examples:

- Electric power transfer via transformers

- Wireless inductive power transfer

- Coupling of nearby magnetic radiators

Keywords:

Electric transformer (primary winding, secondary winding, circuit symbol, isolation

transformer, instrumentation transformer, current transformer, clamp on ammeter, potential

transformer, exciting current, magnetizing current, magnetizing inductance, magnetizing

reactance, power conservation, stored energy, turns ratio, step-up transformer, step-down

transformer, high-voltage side, low-voltage side, transformer rating, dot convention, dotted

terminals, voltage polarity, current reference directions, summary of reference directions,

mechanical analogies), Ideal transformer model (ideal magnetic core, ideal open-circuited

transformer, ideal transformer equations, ideal transformer equations in phasor form, power

conservation, stored energy, model in terms of dependent sources), Ampere’s law (linked

current, for ideal magnetic core, for multiwinding transformer), Referred (reflected) source

network in the secondary, Referred (reflected) load impedance in the primary, Load reflection,

Source reflection, Reflected resistance, Reflected inductance, Reflected capacitance, Transformer

as a matching circuit, Matching real-valued impedances, Matching arbitrary complex impedances,

Partial matching condition, Power transfer via transformers (for fixed load voltage, sending-

end voltages, for fixed source voltage), Autotransformer (step down, step up, circuit symbol,

ideal transformer equations), Multiwinding transformer (ideal circuit equations, Ampere’s law,

telephone hybrid circuit),Center-tapped transformer (ideal transformer equations, single-ended

to differential transformation, 180� power divider, 180� power splitter), Real transformer

(nonideal low-frequency model, Steinmetz model, Steinmetz parameters (magnetizing

reactance, core loss resistance, primary leakage reactance, secondary leakage reactance, primary

ohmic resistance, secondary ohmic resistance), nonideal transformer model terminology/analysis,

voltage regulation, transformer power efficiency, nonideal high-frequency model), Model of two

coupled inductors (equations, circuit symbol, circuit analysis, solution for N coupled inductors,

stored energy, conversion to T-network), Mutual inductance (definition, of ideal transformer, of

two coaxial coils), Coupling coefficient (definition, largest possible value, trend), Wireless

inductive power transfer (application, basic model, examples of), Mutual coupling for

nearby magnetic radiators (arrays of magnetic radiators), Lenz’s law
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Section 12.1 Ideal Transformer as a Linear Passive

Circuit Element

12.1.1 Electric Transformer

General
An electric transformer is a simple and versatile device, which targets AC power transfer

from one electric circuit to another. These circuits are coupled via a time-varying

magnetic flux linking two or more coils. There is no direct electric connection between

the coils. The transformer cannot transfer power between the DC circuits. Analysis of

transformers involves many principles that are basic to the understanding of electric

machines. Transformers are primarily used to:

1. Change the voltage level in power electronics AC circuits.

2. Insulate one AC (or RF) circuit from another (isolation transformers).

3. Match the impedance of the source and the load in electronic circuits.

4. Measure AC voltages and currents (instrumentation transformers).

As another everyday application example, we mention various DC power supplies

(AC to DC converters or adapters), both switching and linear. These DC supplies power

PCs, printers, modems, cordless phones, video game consoles, etc. at your home.

Low-frequency (bulky) or high-frequency (smaller) transformers are very important

parts of these supplies, irrespective of their particular construction.

Function

Although the transformer typically consists of two coupled inductors—see Fig. 12.1—its

function is principally different from that of the familiar inductance. While the inductance

is an energy-storage (and energy-release) circuit element, the ideal transformer, as a new

circuit element, never stores any instantaneous energy. It does not possess any inductance

(or impedance in general) either.

Approach

The model a two-winding electric transformer introduced in this section does yet not use

the concept of a magnetic circuit. Instead, we accurately formulate and employ Faraday’s

law and Ampere’s law directly. The same transformer model in the framework of

magnetic circuits is revisited in the next chapter. Through the text, we use opposite

reference directions for the transformer currents; the equal directions are also discussed in

the text.

12.1.2 Ideal Open-Circuited Transformer: Faraday’s Law of Induction

We will perform transformer analysis in several steps illustrated in Fig. 12.1.
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Using Faraday’s Law of Induction

Transformer construction can start with a single lossless inductor with a closed magnetic

core directly connected to an AC voltage source, see Fig. 12.1a. The inductor is a coil

with N1 turns—the primary winding of the transformer. Its inductance neglecting the flux

leakage effect will be denoted here by Lm. By KVL,

υ1 tð Þ ¼ υS tð Þ ð12:1Þ

The primary winding establishes a finite time-varying magnetic flux Φ tð Þ ¼ AB tð Þ in the

core. Here, B is the flux density and A is the core cross section. According to Faraday’s

+
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B

+

-

N2N1

B

+

-

N2N1

i (t)2
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+

-

+
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+

-

+
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+
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-
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e) f)
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+
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-
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ideal-transformer model

+
-
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v2

+

-

v (t)2

dot convention

Fig. 12.1. Construction of an ideal electric transformer. The negligibly small exciting current is not

shown. In all three cases, the magnetic flux Φ(t) in the core remains the same.
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law of induction—see Eq. (6.19) and (6.33)—this flux is uniquely determined by the

winding voltage (which is equal to the source voltage) in the form

υ1 tð Þ ¼ N1

dΦ tð Þ
dt

ð12:2Þ

Exciting Current and Inductance for the Ideal Magnetic Core

An inductor current iΦ(t) which would be present in Fig. 12.1a is called the exciting

current (or magnetizing current). Accordingly, inductance Lm is called the magnetizing

inductance. The magnetizing inductance is found using Eq. (6.23). The exciting current is

then found using Eq. (6.19) of the same chapter, which is valid in both static and dynamic

cases. This gives

Lm ¼ μ0μrAN
2
1

l
, iΦ tð Þ ¼ N 1

Φ tð Þ
Lm

ð12:3Þ

where A is the core cross section shown in Fig. 12.1. When the relative magnetic

permeability μr of the core is very high, the coil inductance Lm is very large. Therefore,

the corresponding inductor current iΦ(t) is quite small. An ideal magnetic core assumes

that μr ! 1. Therefore, according to Eq. (12.3),

Lm ! 1, iΦ tð Þ ¼ 0, μr ! 1 ð12:4Þ

Equation (12.4) corresponds to the ideal transformer model. The primary winding

becomes an open circuit of infinite inductance as shown in Fig. 12.1b. However, the

finite magnetic flux Φ(t) is still established in the core. There is no contradiction here

since a negligible exciting current iΦ(t) is necessary to establish the finite flux Φ(t) in a

core with the infinitely high permeability (infinitely high inductance). The situation is

somewhat similar to an operational amplifier with the negative feedback where the

negligible input different voltage controls the large-signal amplifier operation.

Using Faraday’s Law a Second Time: Relation Between Transformer Voltages

As a next step, another coil with N2 turns—the secondary winding of the transformer—

can be added as shown in Fig. 12.1c. The core flux Φ(t) also links the secondary winding

and creates an open-circuit voltage at its terminals. No flux leakage in air is permitted in

the ideal model. Faraday’s law is applied a second time, which yields

υ2 tð Þ ¼ N2

dΦ tð Þ
dt

ð12:5Þ

The plus sign implies the dot convention to be discussed shortly. From Eqs. (12.2) and

(12.5), the voltage ratio becomes
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υ2

υ1
¼ N2

N1

ð12:6Þ

at any time instant. Thus, the voltage ratio is the ratio of respective turns. The equivalent

circuit of the open-circuited transformer is that of Fig. 12.1d. The secondary winding

operates as a dependent voltage-controlled voltage source. Thus far, it has zero effect on

the circuit connected to the primary winding.

Exercise 12.1: You are given the source voltage in the form υS tð Þ ¼ 170 cos 2π60tð Þ V½ �,
the number of turns of the primary windingN1 ¼ 200, the finite relative permeability of the

magnetic core, μr ¼ 5000, the coil length of the primary winding of 0.1 m, and the core

cross-section of A ¼ 0:001 m2.

A. Find the exciting current (no-load current) in the primary winding of this non-ideal

transformer. Justify the ideal-transformer approximation Eq. (12.4).

B. Reduce N1 from 200 to 20 and repeat the solution.

Answers:

A. iΦ tð Þ ¼ 179 sin 2π60tð Þ mA½ �. The current amplitude and its rms value are much

less than typical current amplitudes of 5 A (3.54 A rms) observed in residential AC

circuits. The ideal-transformer approximation is justified.

B. iΦ tð Þ ¼ 17:9 sin 2π60tð Þ A½ �. The current amplitude is quite high; the ideal-

transformer approximation is severely violated.

Dot Convention

Windings of transformers are marked to indicate the relative voltage polarities of

voltages υ1 and υ2. We indicate the relative polarities by the dot convention.

Namely, voltages υ1 and υ2 with the positive polarity at the dotted terminals will be

strictly in phase, see Fig. 12.1c. It does not matter where the dots are exactly located.

Yet another meaningful definition of the dotted terminals is as follows. Currents entering

the dotted terminals (which means the passive reference configuration not to be

confused with Fig. 12.1e) would produce fluxes in the same direction in the core that

forms the common magnetic path. If the windings are visually seen, the polarities are

determined by examining clockwise or counterclockwise coil winding directions. Other-

wise, an experiment could be employed, with a function generator and an oscilloscope.

Emphasize that the dot convention only determines the voltage polarity; it has nothing

in common with large currents which can flow in a loaded transformer to be discussed

shortly.
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Exercise 12.2: In Fig. 12.1c, the winding direction of the secondary winding is reversed.

Where should the dot be placed?

Answer: To the lower end of the secondary winding.

12.1.3 Appearance of Transformer Currents

Finally, a load resistance R is connected across the terminals of the secondary winding,

see Fig. 12.1e, f. As a result, a large current i2(t) will flow in the secondary winding,

which is given by Ohm’s law:

i2 tð Þ ¼ υ2 tð Þ
R

ð12:7Þ

In this case, the transformer performs its major function of power transfer from the source

to the load. When a large current i2(t) starts to flow, it will drastically change the magnetic

field in the core, core flux Φ(t), and consequently voltage υ1(t) according to Eq. (12.2).

However, any extra change in υ1(t) is in contradiction with KVL stated by Eq. (12.1).

Therefore, another large current i1(t) in the primary winding will immediately start to flow

too, in order to undo this change. In other words, current i2 “calls current i1 into existence.”

Ampere’s law is used to establish the quantitative relation between transformer currents i1
and i2 at any time instant and in any circuit, not necessarily the circuit from Fig. 12.1.

12.1.4 Ampere’s Law

Ampere’s law does not operate in terms of the magnetic flux Φ (or flux density ~B), but

rather in terms of the magnetic field ~H defined in Section 6.1.7. Consider a closed contour

abcd in Fig. 12.2. Ampere’s law expresses the field created by a linked current i via a

contour integral:

þ

abcd

~H � d~l ¼ i ð12:8aÞ

It does not matter whether the magnetic core is present or not. The “linked current” i is the

total current that passes through a surface bounded by the contour in Fig. 12.2. The

direction in which the current traverses the contour and reference direction of the loop

abcd (clockwise in Fig. 12.2) are related by the right-hand rule. For the contour abcd in

Fig. 12.2, the field in the magnetic core is a constant and is parallel to the contour. In this

case, Eq. (12.8a) is simplified as

lH ¼ i ð12:8bÞ
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where l ¼ lab þ lbc þ lcd þ lda is the total contour length. Ampere’s law is further

simplified for time-varying currents linking the ideal magnetic core with μr ! 1. Note

the magnetic flux in the core is given byΦ tð Þ ¼ AB tð Þ ¼ Aμ0μrH tð Þ. When μr ! 1, any

finite magnetic fieldH(t) would create an infinite flux in the core and thus infinite voltages

across the coils, which is impossible. Therefore, we must set H ¼ 0 in Eq. (12.8b) and

obtain

i ¼ 0 for μr ! 1 ð12:8cÞ

In order words, for the ideal magnetic core, the time-varying linked current must be zero.

12.1.5 Ideal Loaded Transformer

For the transformer in Fig. 12.2, the linked current is given by

i ¼ N 1i1 � N 2i2 ð12:9Þ

since current i1 is inflowing and current i2 is outflowing through the surface bounded by

the contour. Therefore, according to Eq. (12.8c)

N1i1 � N 2i2 ¼ 0 ) i1

i2
¼ N 2

N 1

ð12:10Þ

at any time instant. Equation (12.9) completes the analysis of the ideal transformer. It

states that the current ratio is the inverse turns ratio. This result does not depend on the

particular value of the load resistance in Fig. 12.1f. It is perhaps even more important that

Eq. (12.10) does not require the source to be directly connected to the primary. Thus, the

ideal transformer as a new passive linear circuit element is completely described by

Eqs. (12.6) and (12.10) (ideal transformer equations), respectively. The corresponding

circuit model may be expressed in terms of two dependent sources—the voltage-

controlled voltage source in the secondary and the current-controlled current source in

the primary—see Fig. 12.1f.

H +

-

N2N1

i (t)2

i (t)1

+

-

a

b

d

c

H

cross-section A

Fig. 12.2. Ampere’s law for a transformer.
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Typical Transformer Circuit

Figure 12.3a shows a typical single-phase transformer circuit along with the ideal

transformer circuit symbol (with a magnetic core). The transformer acts as a linear

interface between an arbitrary AC source circuit and an arbitrary AC load circuit. Both

the source and the load do not have to be linear. Figure 12.3b shows the corresponding

dependent-source model. Such a model may be quite useful in transformer circuits where

extra coupling between the source and the load exists, for example, via a capacitor. This

may occur in high-frequency transformers.

Power Conservation

Combining Eqs. (12.6) and (12.10), we obtain for the instantaneous power delivered to

the load

p2 ¼ υ2i2 ¼
N2

N1

N 1

N 2

υ1i1 ¼ υ1i1 ¼ p1 ð12:11Þ

Equation (12.11) states that, in the absence of losses, instantaneous (and indeed average)

power is conserved during voltage/current transformation; there is no net gain or loss

of power for an ideal transformer. As soon as power is consumed by the load, the same

power is drawn from the source. The transformer, therefore, provides a physical isolation

between the load and the source while maintaining electric power transfer. Note that

Fig. 12.3b has similarities with the equivalent amplifier circuit model. If the transformer

may be used as a voltage booster, why do we need the semiconductor amplifier then?

The answer is that it is the power that counts. When the transformed voltage increases,

the transformed current decreases so that the output power remains the same. An

amplifier, on the other hand, boosts the total power, which is true amplification of the

source signal. Still, the transformer may be used at the amplifier output to provide a

significant extra voltage (but not power) gain.

+

-

v (t)1

+

-

v (t)2

i (t)2i (t)1

source load

source load+
-

N2

N1

i2
N2

N1

v1

i2

+

-
v1

a)

b)

Fig. 12.3. Transformer interfacing a source and a load and its model in terms of dependent sources.
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Stored Energy

The ideal loaded transformer in Fig. 12.1e, f does not possess any stored magnetic-field

energy. The instantaneous magnetic-field energy stored in a magnetic core of volume V is

given by Eq. (6.18):

E tð Þ ¼ 1

μ0μr

ð

V

~B tð Þ � ~B tð Þdυ ¼ Al

μ0μr
B2 tð Þ ¼ l

Aμ0μr
Φ2 tð Þ ð12:12Þ

The energy becomes exactly zero when μr ! 1. Here, l is the length of the centerline of

the magnetic core and A is its cross section. The same proof is valid for the open-circuited

ideal transformer.

Exercise 12.3: Under conditions of Exercise 12.1, determine the instantaneous stored

energy of a non-ideal transformer given that the core centerline length is 30 cm.

Answers:

A. E tð Þ ¼ 0:24 sin 2 2π60tð Þ J½ �, which is a small value.

B. E tð Þ ¼ 24 sin 2 2π60tð Þ J½ �, which is a quite significant number.

Exercise 12.4: In the circuit in Fig. 12.1f, υS tð Þ ¼ 325 cos 2π50tð Þ V½ �. For a 400 Ω

resistive load, determine load voltage, load current, and average power delivered to the

load when the turns ratio is equal to 10:1, 1:1, and 1:10.

Answers:

For 1:10 turns ratio:

υR tð Þ ¼ 32:5 cos 2π50tð Þ V½ �, iR tð Þ ¼ 0:08125 cos 2π50tð Þ A½ �, P ¼ 1:320 W

For 1:1 turns ratio:
υR tð Þ ¼ 325 cos 2π50tð Þ V½ �, iR tð Þ ¼ 0:8125 cos 2π50tð Þ A½ �, P ¼ 132:0 W

For 10:1 turns ratio:
υR tð Þ ¼ 3250 cos 2π50tð Þ V½ �, iR tð Þ ¼ 8:125 cos 2π50tð Þ A½ �, P ¼ 13:2 kW

12.1.6 Ideal Transformer Versus Real Transformer: Transformer

Terminology

Ideal Transformer Versus Real Transformer
The major assumptions of the ideal transformer discussed above are:

1. Infinite permeability of the magnetic core and no magnetic flux leakage from the

core in air.

2. No coil resistance loss (through using copper wires of a very small resistance).
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3. No other loss in the core called the iron loss. The iron losses would include

hysteresis loss and eddy current loss.

Real transformers studied in Section 12.4 deviate from this ideal circuit model often

very significantly. The ratio of output power to input power is called the efficiency of the

transformer. For large power transformers, the efficiency can be in excess of 98 %. For RF

(radio-frequency) transformers, the efficiency is typically much lower. Two methods of

analysis can be used to study realistic transformers:

1. An extended equivalent circuit model that includes the present ideal transformer

model plus extra inductances and resistances, see Section 12.4.

2. A different mathematical model of magnetically coupled circuits with self- and

mutual inductances, see Section 12.5.

Terminology

Engineers have adopted a special terminology when dealing with transformers:

A. The ratio N1 :N2 is the turns ratio of the transformer. A transformer with a primary

winding of 100 turns and a secondary winding of 200 turns has a turns ratio of

1:2. A transformer with a primary winding of 200 turns and a secondary winding of

150 turns has a turns ratio of 4:3.

B. When N 2 > N 1, the transformer increases the input AC voltage; it is called a step-

up transformer.

C. When N 2 < N 1, the transformer decreases the input AC voltage; it is called a

step-down transformer.

D. The winding with a higher number of turns is the high-voltage (HV) side of

the transformer.

E. The winding with a smaller number of turns is the low-voltage (HV) side of the

transformer.

In Figs. 12.1, 12.2, and 12.3, we have used the opposite current reference directions

for the two dotted terminals. Quite often, the same reference directions are employed.

This is to underscore the fact that either winding may serve as the input of the transformer.

Sign minus should then be inserted into Eq. (12.10) which relates i1 and i2.

Transformer Rating

Power transformers seldomdrive purely resistive loads. Therefore, their power rating is given

in VA (volt-amperes) or kVA instead of watts, identical to the complex power defined in

Section 11.1. More precisely, this is the apparent load power defined by Eq. (11.21d).

Consider a popular example of a transformer that carries the following information on a

nameplate or in a reference manual: 10 kVA, 1100:110 V. The voltage rating means the one

transformer winding (high-voltage side) is rated for 1100 V, whereas another (low-voltage

side) for 110 V. The turns ratio is the voltage ratio,N1 : N 2 ¼ 10. The corresponding current

ratings are 9.09 A rms and 90.9A rms, respectively.
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Exercise 12.4: A power transformer is rated as 1 kVA, 120:480 V. Determine transformer

type, turns ratio, and the rated current on the low-voltage side.

Answers: This is a step-up transformer with turns ratio 1:4 and a current on the

low-voltage side of 8.333 A rms.

Example 12.1: In the circuit shown in Fig. 12.4, υS tð Þ ¼ 170 cos 2πωtð Þ V½ �. The ideal-
transformer model is used. Determine all circuit currents and voltages when:

A. The switch is open.

B. The switch is closed.

C. The switch is closed and ω ! 0.

Solution A: The current through the secondary winding is zero, so is the current through

the primary. The open-circuit condition thus passes through the transformer. The physical

background for this is an infinite permeability of the magnetic core and hence an infinite

inductance of the primary coil. You should know that the infinite inductance is an open

circuit for an AC signal. By KVL, the voltage of the primary winding υ1(t) is equal to the

source voltage. Open-circuit voltage of the secondary winding υ2(t) is exactly five times

smaller.

Solution B: Both winding voltages remain identical to the voltages in the previous case.

The load voltage is now the voltage of the secondary winding. The load current, by Ohm’s

law, is iR ¼ i2 ¼ υR=RL ¼ 0:815 cosωt A½ �. The primary-winding current is exactly five

times smaller than the load current.

Solution C: When the frequency approaches zero, the transformer loses its functionality.

The induced voltages υ1 and υ2 tend to zero. Moreover, the primary winding of the

transformer becomes a short circuit, which prohibits using transformers loaded with DC

power sources.

Exercise 12.5: In the circuit shown in Fig. 12.4, the current through resistance is given by

i2 tð Þ ¼ 1 cos 2π60tð Þ A½ �. With the switch closed, find the source voltage.

Answer: υS tð Þ ¼ 200 cos 2π60tð Þ V½ �.

R =40LV cos( t)=v (t)m S

N :N =5:11 2

+
-

+

-

v1

+

-

v2

i (t)2i (t)1

Fig. 12.4. A transformer circuit with a load and a switch.

Chapter 12 Electric Transformer and Coupled Inductors

XII-588



12.1.7 Mechanical Analogies of a Transformer

An electric transformer operates with alternating currents. One mechanical analogy of the

transformer is a gear transmission or gearbox, see Fig. 12.5a.

In terms of anoular speed ω [rad/s] and developed torque T N �m½ �, one has

T2 ¼
D2

D1

T 1, ω2 ¼
D1

D2

ω1 ð12:13Þ

where D1,2 are pitch diameters of gear wheels. Here, torque is the voltage and speed is the

current.D1,2 are similar to the number of turns, N1,2, of the primary and secondary windings

of the transformer, respectively. Emphasize that the present transformer analogy still ignores

the field effect—magnetic coupling between the coils. Therefore, it will fail in theDC case. A

more realistic hydraulic transformer analogy is shown in Fig. 12.5b. The model with four

pistons transforms power from one circuit to another in the AC case only. It is drawn for a

transformer whose turns ratio is 1:1. When, for example, a transformer with a turns ratio of

2:1 is required, the area of output pistons is doubled. This doubles the output current, but the

output voltage (the force) will be halved.

Historical: The transformer action was independently invented and utilized by many

researchers, starting with Michael Faraday, Joseph Henry, Nicholas Callan of Ireland,

and Pavel Yablochkov of Russia. Hungarian engineer Ott�o Titusz Bláthy introduced the

name “transformer.” A power transformer developed by Lucien Gaulard of France and

John Dixon Gibbs of England was demonstrated in London in 1881 and then sold to the

American company Westinghouse. In 1886 William Stanley, working for Westinghouse,

built the refined, commercially used AC transformer used in the electrification of Great

Barrington, Massachusetts.

D1

a)

D2
primary secondary

N N

b)

pivot

Fig. 12.5. Analogies for a transformer.
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Section 12.2 Analysis of Ideal Transformer Circuits

12.2.1 Circuit with a Transformer in the Phasor Form

Consider a generic transformer circuit shown in Fig. 12.6a in the frequency domain. The

circuit is given in the phasor form assuming a harmonic signal source. A source circuitwith

the phasor voltage VS and impedance ZS is connected to a load with impedance ZL via an

ideal transformer studied in the previous Section. Since any linear AC source network can

be represented in the form of its Thévenin equivalent, and any linear passive source can

be replaced by the equivalent impedance, Fig. 12.6a is a rather general interpretation of

the transformer setup with linear networks in Fig. 12.4. When written in the phasor form,

the ideal transformer model given by Eqs. (12.6) and (12.10) does not need a special

treatment. We simply replace the real-valued voltages and currents by phasors:

υ2 ¼
N 2

N 1

υ1 ) V2 ¼
N2

N1

V1 ð12:14aÞ

i2 ¼
N 1

N 2

i1 ) I2 ¼
N 1

N 2

I1 ð12:14bÞ

In power electronics, phasor voltage and phasor current in Fig. 12.6a are often expressed

in terms of rms values times the phasor (the complex exponent). This is in contrast to the

previous analysis where we have used the amplitude of a sinusoidal function times

the phasor. The circuit analysis remains the same, but the factor of 2 in the expressions

for the power disappears. We will mention this convention every time when required.

12.2.2 Referred (Or Reflected) Source Network in the Secondary Side

What voltage and impedance does the load see in Fig. 12.6a? In other words, what is the

Thévenin equivalent circuit of the source and the transformer combined? To answer this

question, we find Thévenin equivalent voltage VT of the one-port network with terminals

a and b in Fig. 12.6a as its open-circuit voltage. Using Eqs. (12.14a, b) and setting ZL

¼ 1 in Fig. 12.6a yields

I2 ¼ 0 ) I1 ¼ 0 ) VT � V2 ¼
N 2

N 1

V1 ¼
N 2

N 1

VS ð12:15Þ

The Thévenin equivalent impedance ZT is found by dividing the open-circuit voltage

by the short-circuit current ISC ¼ I2. Setting ZL ¼ 0 in Fig. 12.6a, one finds the short-

circuit current

ZL ¼ 0 ) V2 ¼ V1 ¼ 0 ) ISC ¼ I2 ¼
N 1

N 2

I1 ¼
N 1

N 2

VS

ZS

ð12:16Þ
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In summary, the equivalent circuit of the source and the transformer combined is shown

in Fig. 12.6b. It is characterized by

VT ¼ N2

N1

VS, ZT ¼ N 2

N 1

� �2

ZS ð12:17Þ

We conclude that, from the viewpoint of the load, the ideal transformer boosts the source

voltage by a factor of N2/N1 and multiplies the source impedance by a factor of (N2/N1)
2.

The meaning of Eq. (12.17) is commonly expressed in the following form:

N :N1 2

+

-

V1

+

-

V2

I2I1

+

-

VL
+
-
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+

-

VL
+
-
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N1
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N2

N1

ZS

2

ZL

ZL

a)

b)

N :N1 2

+

-

V1

+

-

V2

I2I1

+

-
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+
-

ZS
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+
-

c)

d)
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N1

N2

2

c

d

a

b

I1

+

-

V2

c

d

a

b

c

d

+

-

V1

a

b

I2

ZL

ZL

Fig. 12.6. (a) A source circuit and a load circuit connected to a transformer. (b) Equivalent circuit

of the source with the transformer when looking from the load. (c) The same as (a). (d) Equivalent

circuit of the load with the transformer when looking from the source.
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1. The source is reflected to the secondary side by the inverse turns ratio.

2. The source impedance is reflected to the secondary by the square of the inverse turns

ratio.

An inspective student may notice a contradiction in Eq. (12.16): as long as

V2 ¼ V1 ¼ 0, the transformer apparently should not function at all. In fact, the equality

V2 ¼ V1 ¼ 0 is never exactly satisfied; a (infinitesimally small) voltage across the

transformer is assumed that supports its operation. Mathematically, one considers a finite

but small load impedance and then obtains Eq. (12.16) in the limit ZL ! 0.

12.2.3 Referred (Or Reflected) Load Impedance to the Primary Side

What is the equivalent impedance of the load and the transformer combined? With

reference to Fig. 12.6c, one has

ZT � V1

I1
¼ N1

N2

� �2
V2

I2
¼ N1

N2

� �2

ZL ð12:18Þ

The equivalent circuit of the load and the transformer combined are shown in Fig. 12.6d.

The meaning of Eq. (12.18) is commonly expressed in the following form: the load

impedance is reflected to the primary side by the square of the turns ratio.

Exercise 12.6: Load impedance is 12 Ω. Find the equivalent impedance of the load

combined with a 1:2 step-up transformer to the primary side.

Answer: RT ¼ 3 Ω.

Exercise 12.7: Source voltage is given by υS tð Þ ¼ 1 cosωt V½ � and the source impedance

is 12 Ω. Find the equivalent circuit of the source combined with a 1:2 step-up transformer

in the secondary side. Express your result both in frequency domain and in time domain.

Answer: RT ¼ 48 Ω, VT ¼ 2∠0� V½ � or υT tð Þ ¼ 2 cosωt V½ �.

Both source and load reflections are of great practical value since they eliminate

the transformer from the circuit analysis and thereby simplify the overall circuit

analysis and design. The analysis with Norton equivalent circuits is developed in a

similar fashion.
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Exercise 12.8: To bring out an important application, let the load be a series RLC network

with resistance R, inductance L, and capacitance C. An equivalent impedance of the load

combined with a N1 :N2 step-up transformer at the primary is again a series RLC network.

Find the reflected (or “transformed”) values of the resistance, inductance, and capacitance.

Answer: R ! N1

N2

� �2

R, L ! N1

N2

� �2

L, C ! N 2

N 1

� �2

C.

12.2.4 Transformer as a Matching Circuit

Matching Real-Valued Impedances
Consider a transformer circuit with real-valued impedances shown in Fig. 12.7. A given

practical voltage source with resistance RS is to be connected to a given load with

resistance RL 6¼ RS. The principle of maximum power transfer states that there should

be RL ¼ RS for the maximum power transfer from the source to the load. Could we still

achieve the maximum available power from the source without changing the source and

the load? The answer is yes; such a procedure is known as impedance matching with a

transformer. A transformer used for this purpose is known as a matching transformer.

The idea is to use a transformer with the turns ratio:

N 1 : N 2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

RS=RL

p

ð12:19Þ

To prove this fact we consider a transformer with an arbitrary turns ratio in the circuit of

Fig. 12.7a. The load resistance is reflected to the primary side by the square of the turns

ratio. The resulting equivalent circuit is a voltage divider. It includes the voltage source

and two resistances in series. Instantaneous power delivered to the load is given by

p tð Þ ¼ xRL

RS þ xRLð Þ2

( )

υ2S tð Þ, x ¼ N 1

N 2

� �2

ð12:20Þ

The expression in curly brackets is maximized with regard to parameter x, which may

attain any positive values. Its maximum (and the maximum power) is achieved when

x ¼ RS=RL ð12:21Þ

or when the reflected load resistance is exactly RS, see Fig. 12.7b. The same circuit may

be equally well solved by reflecting the source to the primary side; the related homework

problems provide several examples.
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Example 12.2: A passive RFID tag is modeled by a load resistance of 9 Ω. The tag is

wirelessly powered; it is augmented with a small collecting antenna, which has a radiation

resistance of 1 Ω. Find the ratio of the average received powers from the antenna with and

without the matching transformer.

Solution: We use Fig. 12.7a to visualize the circuit. The antenna is the source, the tag is

the load. For the received power without the transformer, one has

PL ¼ 1

2

RL VSj j2

RS þ RLð Þ2
¼ 0:045 VSj j2 W½ � ð12:22Þ

where VS is a phasor voltage at the antenna terminals. With the matching transformer

(1:3 turns ratio), the result has the form (after reflecting the source to the secondary side):

PL ¼ 1

2

RL=9 VSj j2

RS þ RL=9ð Þ2
¼ 0:125 VSj j2 W½ � ð12:23Þ

The ratio of the two powers is 2.78 or 10log10 2:78ð Þ ¼ 4:4 dB. This is an improvement

of the tag performance which results in a greater reading range.

Exercise 12.9: A 4-Ω speaker is connected to an AC voltage source with the voltage

amplitude of 10 V. The source’s impedance is 1 Ω.

A. Determine the average power delivered to the speaker.

B. Given a 1:2 matching transformer, determine power delivered to the speaker.

Answer: A. 8 W; B. 12.5 W.

RLv (t)S

RS

a)

b)

LS
RRNN /:

21

RS

RSv (t)S

+
-

+
-

i (t)S

i (t)S

=

Fig. 12.7. (a) A matching transformer for real impedances. (b) Equivalent circuit of the load with

the transformer when looking from the source.
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Matching Arbitrary Complex Impedances

Can a transformer match two arbitrary complex impedances? Unfortunately, it cannot.

The transformer operates as an impedance multiplier; it multiplies (or divides) by a real

number. On the other hand, the complex impedance match requires two complex

conjugate impedances. A transformer could often provide a “better” match (see the

summary to this chapter) but cannot perform impedance matching in full. Other circuit

elements (capacitance or inductance) may be necessary to complete the task.

12.2.5 Application Example: Electric Power Transfer via Transformers

Circuit with a Fixed Load Voltage
Figure 12.8a shows a circuit for transmitting electric power over a long transmission line

with the total resistance R and the total inductance L. The circuit in Fig. 12.8a is converted

to a phasor form first. We consider the phasors in terms of rms values. Two competing

schemes are studied: transmission without transformers (see Fig. 12.8b) and a transmis-

sion scheme with two 1:20 and 20:1 ideal transformers—see Fig. 12.8c. In order to

compare the performance of two circuits (with and without transformers), it is assumed

that the load phasor voltage VL (V rms) and the load phasor current IL (V rms) have the

same values in both cases. This guarantees us the same average power delivered to the

load. The power loss (ohmic loss) in the line resistance in Fig. 12.8b is

Ploss ¼ R ILj j2 ð12:24Þ

The power loss in the line resistance in Fig. 12.8c is decreased by a factor of 400:

Ploss ¼
1

400
R ILj j2 ð12:25Þ

since the line current is exactly 20 times less than in the first case. This result is

independent of the particular values of R and L. Simultaneously, the line voltages increase

by a factor of 20, but the load voltage still remains the same due to the step-down

transformer. Thus, using a pair of transformers allows us to choose an economically

optimum voltage for transmitting a given amount of power. The line sees a high voltage

of the secondary of the first transformer while the load essentially sees the source voltage.

Not only does the use of transformers greatly decrease the line loss, but it also potentially

allows us to use smaller source voltages (sending-end voltages). The required source

power also decreases.
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Circuit with a Fixed Source Voltage

Next, the performance of the circuit in Fig. 12.9 with a fixed source voltage is to be

analyzed, with and without 1:10 step-up transformer and 10:1 step-down transformer,

respectively. All phasors are given in terms of the rms values. We are interested in source

current IS and active source power:

PS ¼ Re VS � I*S
� �

ð12:26Þ

We are also interested in load parameters VL, IL and active load power:

PL ¼ Re VL � I*L
� �

ð12:27Þ

and, finally, in line power loss:

Ploss ¼ R Ilinej j2 ð12:28Þ

The circuit in Fig. 12.9a without the transformers is solved by finding the equivalent

impedance and then the source current. All circuit currents will coincide, IS ¼ Iline ¼ IL.

The circuit with the transformers is solved by reflecting the load impedance to the primary

side twice, see Fig. 12.9b and c, respectively.

RL

i (t)L

source

transmission line (TL)

load
+
-v (t)S

RL

step up transformer

+
-V

S2

R Z=j Lw

20VS2

+

-

20VL

+

-

1:20 20:1

step down transformer

a)

c)

i (t)L

RL
V
S1

R Z=j Lw

VL

+

-

b)
IL

source load

IL

VL

+

-

phasor model

+
-

Fig. 12.8. (a) Schematic of a transmission line. (b) Transmission line without a transformer

(phasor form). (c) Transmission line with step-up and step-down transformers (phasor form).

Chapter 12 Electric Transformer and Coupled Inductors

XII-596



The simplified circuit in Fig. 12.9c allows us to find the source current. Then, we return

to the circuit in Fig. 12.9b and find the line current following the ideal transformer model

Eq. (12.14b). Finally, we return to the circuit in Fig. 12.9a and restore the load current

from the line current. Table 12.1 summarizes the corresponding numerical values. It

illustrates the reduction in the line loss, which is again approximately proportional to the

square of the turns ratio.

Historical: Originally, the use of AC in favor of DC was made based on the use of

transformers. In the late 1880s, the USA experienced what many citizens termed a “Battle

of Currents” where George Westinghouse and Nikola Tesla prevailed with their AC power

distribution system over world-famous Thomas Edison who advocated DC power. This

fight became so intense that Edison rushed to deliver the first electric chair powered by

DC. The execution of the first prisoner, William Kemmler, in 1890 with 2000 V DC

became a terrible capital punishment; it caused his body to burn. This supposedly

prompted Westinghouse to state that an axe would have been a more humane execution.

Fig. 12.9. Analysis of a particular power-transfer circuit.

Table 12.1. Circuit parameters (V rms, A rms, and W) for the power-transfer circuit in Fig. 12.9.

Circuit VS IS PS Iline Ploss VL IL PL

No tr. 480∠0� 90∠� 38� 34,312 90∠� 38� 1634 452∠� 1� 90∠� 38� 32,678

W tr. 480∠0� 96∠� 37� 36,837 9:6∠� 37� 18.4 480∠0� 96∠� 37� 36,818
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Section 12.3 Some Useful Transformers

12.3.1 Autotransformer

A transformer in which a part of the winding is common to both primary and secondary

circuits—see Fig. 12.10—is known as an autotransformer. This common part may be

controlled by a sliding contact as shown in the same figure.

An autotransformer is typically a step-down transformer. Autotransformers are used

widely and come in many sizes. The autotransformer is also known as a Variac (variable

AC transformer). Such autotransformers are used in the laboratory to obtain a variable

output voltage by means of a movable contact in Fig. 12.10 that changes N2 and

consequently the turns ratio N1 :N2. An autotransformer will again be analyzed using

the ideal transformer model. Primary winding N1 and secondary winding N2 in Fig. 12.10

share the same flux Φ(t). Both induced voltages υ1(t) and υ2(t) in Fig. 12.10 obey

Faraday’s law given by Eqs. (12.2) and (12.5), respectively. One has

υ1 tð Þ ¼ N 1 þ N2ð Þ dΦ
dt

, υ2 tð Þ ¼ N 2

dΦ tð Þ
dt

ð12:29Þ

Therefore,

υ2 ¼
N 2

N 1 þ N 2

υ1 ð12:30Þ

Using Ampere’s law for the ideal magnetic core Eq. (12.8c), we obtain an expression that

is very similar to Eq. (12.10) of Section 12.1,

N 1 þ N 2ð Þi1 � N 2i2 ¼ 0 ) i2 ¼
N1 þ N2

N 2

i1 ð12:31Þ

B

a) i (t)1

v (t)1

+

-

N1

b)

N2

i (t)2

v (t)2

+

-

=

sliding contact i1

v (t)1

+

-
v (t)2

+

-

i2
N1

N2

F

Fig. 12.10. Step-down autotransformer along with the corresponding circuit symbol. Circuit

symbols for the autotransformer may vary.
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Thus, the model of the ideal autotransformer is indeed undistinguishable from the ideal

transformer model. Advantages of the autotransformer are generally lower losses and

variable output voltage. However, there is now a direct electric connection between the

primary and secondary sides, which potentially enables direct current flow.

Exercise 12.9: A voltage source connected to the primary winding of an autotransformer

has the form υS ¼ 10 cosω t þ 1 V½ �. Ohmic resistance of the primary winding is 1 Ω.

Magnetic losses are ignored. Turns ratio established by a sliding contact is given by

N1 þ N 2 : N2 ¼ 5. Determine the voltage in the secondary.

Answer: Using the superposition theorem for DC and AC voltages, one has

υS ¼ 2 cosω t þ 0:2 V½ �.

12.3.2 Multiwinding Transformer

A multiwinding transformer shown in Fig. 12.11 is one in which two or more secondary

windings are placed on the same core.

For example, a three-winding transformer shown in Fig. 12.11 has a primary winding

N1 and two secondary windings, N2 and N3, respectively. It is useful when lossless power

division is required. The multiwinding transformer is also analyzed using the ideal

transformer model. All induced voltages υ1(t), υ2(t), and υ3(t) in Fig. 12.11 obey Fara-

day’s law of induction. Therefore,

υ1

N1

¼ υ2

N 2

¼ υ3

N 3
ð12:32Þ

Using Ampere’s law for the ideal magnetic core Eq. (12.8c), we obtain

N 1i1 � N 2i2 � N 3i3 ¼ 0 ð12:33Þ

B

v (t)2

+

-

N2

i (t)1

v (t)1

+

-

N1

i (t)2

v (t)3

+

-

N3

i (t)3

N1

N3

multiple secondary windings

N1

a) b)

=

F

Fig. 12.11. A multiwinding transformer along with the corresponding circuit symbol. Circuit

symbols for the multiwinding transformer may vary.
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Example 12.3: In the circuit shown in Fig. 12.11, N1 ¼ N2 ¼ N3. How is the instanta-

neous power partitioned between the two secondary windings?

Solution: According to Eqs. (12.32) and (12.33),

υ1 ¼ υ2 ¼ υ3, i1 ¼ i2 þ i3 ð12:34Þ
If two secondary windings are terminated into the same load resistances, then

i2 ¼ i3 ¼ 0:5i1. Therefore, the input power is divided equally. However, if one of the

loads is an open circuit, all the input power is transferred to another load.

A multiwinding transformer may be used, for example, in a telephone hybrid circuit

which is designed to convert a two-wire interface to a four-wire interface. A telephone

hybrid is the circuit which separates the transmitted and received audio which are initially

sent both at the same wire pair in two-wire normal telephone interface.

12.3.3 Center-Tapped Transformer: Single-Ended to Differential

Transformation

Figure 12.12 shows a particular, yet widely used modification of the multiwinding

transformer in Fig. 12.11. Two equal secondary windings, with N2/2 turns each, are

connected to each other and then to ground. The center tap of the secondary coil may be

grounded. The output voltages of the two secondary windings versus the dotted terminals

are still equal to each other and equal to voltage υ2. However, since the center tap is

grounded, the absolute voltages at the output to the transformer are

þυ2 tð Þ, 0 V, and � υ2 tð Þ where υ2 ¼
N 2

2N1

υ1 ð12:35aÞ

versus ground. The output voltage is thus identical to a dual-polarity AC voltage source.

More generally, this design is intended to convert a single-ended (two-wire) voltage signal

υ1, i.e., a signal that is initially referenced to ground, to a balanced differential (three-wire)

voltage signal with equal voltages with respect to ground but of opposite polarity.

v (t)2

+

-N2N1

i2(t)

B

i1(t)

+

- v (t)2

+

-

0V

0V

b)

=

a)

v (t)1

N :N1 2

CT
(center tap)

i3(t)

F

Fig. 12.12. Center-tapped transformer intended for single-ended to differential signal transforma-

tion (differential transformer) and the corresponding circuit symbol.
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The differential signal has significant advantages; it can be used in different applica-

tions including power electronics, instrumentation, communication circuits, and high-

speed digital circuits. If, and only if, the center-tapped transformer is connected to the

two identical loads, the center tap carries zero current and with reference to Fig. 12.12,

i2 tð Þ ¼ i3 tð Þ where i1 ¼
N 2

N 1

i2 ð12:35bÞ

The three-wire model described by Eq. (12.35a) is often called a three-wire single-phase

system. Note that all of the AC power that is supplied to your house by a residential AC

distribution network is a 120/240 V rms three-wire single-phase system, see Fig. 11.13.

Example 12.4: Common home appliances use a single-phase 120-V rms AC line

(a refrigerator, TV, microwave, etc.) and a 240-V rms three-wire differential AC line

(electric range, dryer, etc.). A house located in a remote area is powered from a local

micro hydropower generator located a couple of miles away. Suggest a way to power all

appliances when the input power is a not a residential AC distribution network, but a

single-phase two-wire 240 V rms AC line from the generator.

Solution: A solution is shown in Fig. 12.13. The center-tapped transformer is used to

accomplish the task. All loads are to be connected in parallel.

Example 12.5: A dipole antenna with two wings is to be fed as follows: one wing is fed

with a voltage signal þυ tð Þ versus ground plane and another wing is fed with a voltage

signal �υ1 tð Þ versus ground plane (180� phase shift). At the same time, the input from a

transmitter is a single-phase coaxial line. Suggest a way of connecting the antenna to a

transmitter.

Solution: A solution is shown in Fig. 12.14. The center-tapped transformer from Fig. 12.12

is again used to accomplish the task. From the viewpoint of an RF circuit design, the

transformer in Fig. 12.14 is sometimes called a balun transformer; the word balun is an

acronym for balanced-to-unbalanced converter. These balun structures are employed in such

common RF and microwave components as mixers, antenna-feed networks, and frequency

multipliers.

+
-240V rms

120 V rms
TV

120 V rms
MW

120 V rms
Refr.

+

-

240 V rms
Stove, Dryer

N :N1 2

neutral (center tap)

Fig. 12.13. Powering home appliances in remote areas using a single-phase two-wire 240 V rms

AC line as an input. Note that the dot locations are less important for this case.
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Note that the transformer in Fig. 12.12 is simultaneously a power divider, namely, the

so-called 180� power divider or 180� power splitter. It is amazing to see how many

different applications rely on the “old good” transformer.

12.3.4 Current Transformer

There is a device that has been around for a long time and which allows the engineer to

monitor the electrical power system. It is called the current transformer and is shown in

Fig. 12.15. The current transformer is a main measuring tool to determine current flow in

a power system. The corresponding hardware device is known as a clamp on ammeter.

Consider a straight conductor in Fig. 12.15 that carries current i1 to be measured. This

conductor effectively forms one turn of the primary coil. The secondary coil has N2 turns.

We again assume the ideal transformer model and apply Ampere’s law for the ideal

magnetic core Eq. (12.8c). The current through the secondary coil then follows the

equality (note current directions in Fig. 12.15)

Electrically connected
ground plane

Feeding port
Port 1

Port 2

Electrically connected
ground plane

g port
Port 1

Port 2

Grounded case

current

Fig. 12.14. A balun (center-tapped) transformer attached to a dipole antenna. The metal case of the

transformer is grounded.

i1

i2 N2

power conductor

a) b)

FF

Fig. 12.15. A current transformer and the corresponding circuit symbol. Circuit symbols for the

current transformer may vary.
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i1 � N 2i2 ¼ 0 ) i2 ¼
1

N 2

i1 ð12:36Þ

which is a particular case of the ideal transformer equation with N 1 ¼ 1. Thus, by

measuring current i2 or the associated voltage, the unknown current i1 can be established.

Note that Fig. 12.15 and Eq. (12.36) only demonstrate the very basic concept; the

practical current transformer design is significantly more elaborated. Another type of

instrumentation transformers—potential transformers—is used for accurate AC voltage

measurements.
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Section 12.4 Real-Transformer Model

12.4.1 Model of a Nonideal Low-Frequency Transformer

Figure 12.16 shows a linear circuit model of a practical low-frequency (60 or 50 Hz)

two-winding transformer. This circuit is also known as the Steinmetz model and its

parameters as Steinmetz parameters. The complete model will be explained in several

steps:

1. Consider the open-circuited transformer first. The primary winding is characterized

by a large but finite magnetizing inductance, Lm, which was defined in Eq. (12.3).

This is the standard inductance expression for a long solenoid with the magnetic

core. It is shown in Fig. 12.16a.

2. A small amount of magnetic flux is still situated outside the core so that Eq. (12.3)

needs to be refined. The total inductance as in Fig. 12.16 of the primary winding is

therefore somewhat larger:

L1 ¼ Lm þ Ll1 ð12:36Þ

where a small addition Ll1 is called the leakage inductance, see Fig. 12.16a.

3. A practical primary winding has a certain ohmic resistance, R1, which is placed in

series with L1. Simultaneously, the core loss (hysteresis and eddy current loss) in the

magnetic material consumes some extra current. It is modeled by an equivalent

resistance Rc, which is placed in parallel with Lm. Rc is often called the core loss

resistance. The resulting equivalent circuit in Fig. 12.16b is also an equivalent

circuit of a nonideal inductor with the magnetic core.

4. Finally, the secondary winding is added and a load is connected to the transformer.

This results in the complete equivalent circuit model of Fig. 12.16c. Two new circuit

parameters Ll2, and R2 are the leakage resistance and the ohmic resistance, respec-

tively, of the secondary winding.

In general, all model parameters, and especially Lm and Rc, are frequency dependent.

12.4.2 Model Parameters and Their Extraction

Table 12.2 lists typical equivalent circuit values for three distinct power transformers

of different power ratings and compares them with the ideal transformer model.

Not the inductances themselves but the rather reactance values are given at angular

frequency ω ¼ 2πf where f ¼ 50 or 60 Hz.
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It follows from Table 12.2 that the real-transformer data is reasonably well approxi-

mated by the ideal model. In particular, we may observe that

R1,2 � Rc, X l1,2 � Xm ð12:37Þ

in all three cases considered. In a well-designed transformer, the following equalities

should be satisfied:

B

N1v1

+

-

a)

b)

cross-section A

i1

Lm

L
l1

lossless case

i1

LmRc

R1 L
l1

lossy case

i1

v1

+

-

B

N1
v1

+

-

cross-section A

i1

B

+

-

N2

i2
cross-section A

v2

v1

+

-

i1

c)

full model
i1

LmRc

R1 L
l1 R2

i2
L
l2

ideal transformer

N1

v1

+

-

v1

+

-

v2

+

-

i

Fig. 12.16. Circuit model of a low-frequency transformer—the Steinmetz model.
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R1 �
N 1

N 2

� �2

R2 ¼ R
0

2, X l1 �
N 1

N 2

� �2

X l2 ¼ X
0

2; ð12:38Þ

along with Eq. (12.37). Here, the prime denotes circuit parameters of the secondary

winding referred to the primary side.

Exercise 12.10: For three transformers from Table 12.2, find the corresponding turns ratio

and prove whether or not equalities given by Eq. (12.38) are approximately satisfied.

Answer:

- Model #1—turns ratio 2:1, first Eq. (12.38) is satisfied, but the second is not.

- Model #2—turns ratio 10:1, both Eq. (12.38) are satisfied.

- Model #3—turns ratio 5:1, both Eq. (12.38) are satisfied.

If the complete geometry and design characteristics of a transformer are available, all

parameters of the equivalent circuit model can be calculated theoretically.

Most complicated is the calculation of leakage resistances. At the same time, these

parameters are directly and more easily found using measurements. Open-circuit trans-

former test and short-circuit transformer test (and often the DC bridge test) are performed

to find all parameters of interest.

12.4.3 Analysis of Nonideal Transformer Model

When a harmonic voltage source is applied to a nonideal transformer and a linear load is

connected to it, the corresponding equivalent circuit follows Fig. 12.17a. Although only a

resistive load is indicated, the same circuit applies to an arbitrary RLC linear load.

Table. 12.2. Equivalent circuit values for three different practical power transformers as compared

to the ideal transformer model.

Element nameplate

Ideal

model

#1—2 kVA

230:115 V

50 Hz

#2—10 kVA

2300:230 V

60 Hz

#3—100 kVA

11,000:2200 V

60 Hz

Magnetizing reactance Xm ¼ ωLm, Ω 1 1437.5 69,400 57,300

Core loss resistance, Rc, Ω 1 294.2 75,600 124,000

Primary leakage reactance X l1 ¼ ωLl1,Ω 0 0.430 12 31.2

Secondary leakage reactance,

X l2 ¼ ωLl2, Ω

0 0.006 0.12 1.25

Primary ohmic resistance R1, Ω 0 0.428 5.80 6.1

Secondary ohmic resistance R2, Ω 0 0.123 0.0605 0.29
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The corresponding circuit in frequency domain is shown in Fig. 12.17b. Despite its

apparently complicated nature, the circuit analysis is quite straightforward.

Terminology

1. In power electronics, phasor voltage and phasor current in Fig. 12.17b are expressed

in terms of rms values times the phasor (the complex exponent). This is in contrast

to the previously analyzed circuits where we have mostly used the amplitude of the

sinusoidal function times the phasor. The analysis remains the same, but the factor

of 2 in the expressions for the power disappears. For example, the input (source) and

output (load) active powers are given by

PL ¼ Re VL � I*L
� �

, PS ¼ Re VS � I*S
� �

ð12:39Þ

2. The rated load is that which has the rms voltage corresponding to the transformer

rating. For example, the rated load for transformer #1 in Table 12.2 has

VL ¼ 115∠0� V rms½ � ð12:40Þ

It is customary to choose the phase of the load voltage equal to zero.

3. An impedance load has a power factor PF, lagging or leading. It means that the

rated-load current is defined by

IL ¼ S

VL

∠	 arccos PFð Þ A rms½ � ð12:41Þ

where S is transformer power rating (the apparent load power). For example,

for transformer #1 in Table 12.2, S ¼ 2 kVA. In Eq. (12.41), the minus sign

i (t)=i (t)1 S

LmRC
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l1 R2

i (t)2
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l2

transformer model
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+
-
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jXmRC

R1 jX
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+
-
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+

-
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+

-
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-
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impedance/phasor form

a
-1
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Fig. 12.17. Equivalent circuits for real transformers with harmonic source and linear load.
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corresponds to the lagging power factor and the plus sign to the leading power

factor, see Section 11.1.

Example 12.6: In the circuit in Fig. 12.17b, the load voltageVL and the load current IL are

both known. Determine the source phasor voltage VS and the source phasor current IS in

the general form. Use the notation a ¼ N1=N2.

Solution: Applying KVL to the circuit connected to the secondary winding of the ideal

transformer yields

E2 ¼ VL þ R2 þ jX l2ð ÞIL ð12:42Þ

Next, we apply KCL to the circuit connected to the primary winding of the ideal

transformer. This gives (I2 ¼ IL)

IS ¼ I1 ¼
IL

a
þ 1

RC

þ 1

jX l2

� �

aE2 ð12:43Þ

Finally, KVL for the primary circuit branch leads to

VS ¼ aE2 þ R1 þ jX l1ð ÞIS ð12:44Þ

Example 12.7: Given the rated load with the power factor of 1, determine the source

phasor voltage VS and the source phasor current IS for transformer #1 in Table. 12.2.

Solution: For the rated load, VL ¼ 115∠0� V rms½ �. The load phasor current is found

from Eq. (12.44), IL ¼ 17:39∠0� A rms½ �. Further, we use the solution of the previous

example with a ¼ 2, plug in the model parameters from Table 12.2, and obtain

VS ¼ 238:5∠þ 1:0�, IS ¼ 9:49∠� 1:0� ð12:45Þ

Emphasize that the source voltage of 238.5 V rms is higher than the rated or nameplate

value of 230 V rms. The additional potential of 8.5 V is needed to overcome the finite

impedance of the non-ideal transformer. Indeed, for the ideal-transformer model, the

agreement would be perfect.

Exercise 12.11: Repeat the previous example for transformer #2 and transformer #3 from

Table. 12.2.

Answer:

- Model #2—VS ¼ 2354∠þ 2:5�, IS ¼ 4:38∠� 0:4�.
- Model #3—VS ¼ 11142∠þ 2:9�, IS ¼ 9:19∠� 1:2�.
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Exercise 12.12: Repeat the previous example for every transformer model from Table 12.2

given the rated load with the power factor of 0.9 lagging (power angle of 25.8�). Does the
deviation from the rated input voltage increase?

Answer:

- Model #1—VS ¼ 239:3∠þ 0:1�, IS ¼ 9:49∠� 24:7�.
- Model #2—VS ¼ 2394∠þ 1:7�, IS ¼ 4:39∠� 26:1�.
- Model #3—VS ¼ 11373∠þ 2:3�, IS ¼ 9:26∠� 26:7�.

In all three cases, the deviation from the rated input voltage slightly increases when

compared to the case of the rated resistive load.

12.4.4 Voltage Regulation and Transformer Efficiency

Voltage Regulation
Since the transformer model is nonideal, the voltage delivered to the load does depend on

the load current. This means, for example, that the voltage delivered to lights will

somewhat decrease when another parallel high-current load (a dryer) is turned on. This

undesired effect is characterized by the regulation of a transformer (or percentage

regulation):

Regulation ¼ Vno-loadj j � VLj j
VLj j 
 100% ð12:46Þ

Here, |Vno‐load| is the rms voltage for the open-circuited load, and |VL| is the rms voltage

of the rated load. The regulation is determined by calculating VS for the rated load and

then using the same VS to find the voltage across the open-circuited load. With reference

to Fig. 12.17b, a simple yet accurate approximation for the no-load voltage is given by

Vno-load �
VS

a
ð12:47Þ

To prove this fact we observe that I2 ¼ 0 for the open-circuited load. Furthermore,

almost all of VS is applied to the primary.

Exercise 12.13: Given the rated load with the power factor of 1.0, determine the percent-

age regulation for three transformer models in Table. 12.2.

Answer:

- Model #1—Regulation ¼ 3:8 %.

- Model #2—Regulation ¼ 2:4 %.

- Model #3—Regulation ¼ 1:3 %.
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Exercise 12.14: Repeat the previous exercise for the power factor of 0.9 lagging.

Answer:

- Model #1—Regulation ¼ 4:1 %.

- Model #2—Regulation ¼ 4:1 %.

- Model #3—Regulation ¼ 3:4 %.

Transformer Efficiency

The transformer equivalent circuit in Fig. 12.17 includes parasitic resistances and thus

implies power loss in the transformer itself. This power loss is characterized by trans-

former power efficiency (percentage efficiency), η, which is defined by

η ¼ PL

PS


 100 % ð12:48Þ

where the input active power PS and the output active power PL are given by Eq. (12.39).

In well-designed power transformers, the efficiency may approach 99 %.

Exercise 12.15: Given the rated load with the power factor of 1.0, determine the percent-

age efficiency for three transformer models in Table. 12.2.

Answer:

- Model #1—η ¼ 88:4 %.

- Model #2—η ¼ 97:1 %.

- Model #3—η ¼ 97:9 %.

Exercise 12.16: Repeat the previous exercise for the power factor of 0.9 lagging.

Answer:

- Model #1—η ¼ 87:3 %.

- Model #2—η ¼ 96:8 %.

- Model #3—η ¼ 97:7 %.

12.4.5 About High-Frequency Transformer Model

At medium (in the audio range) and higher frequencies, the effect of winding capaci-

tances and other capacitances shown in Fig. 12.18 becomes important. When frequency

increases, the transformer, as an RLC circuit, may ultimately exhibit a resonance that will

cause the effective parameter a ¼ N 1=N 2 to change. A number of capacitances may be

added to the equivalent circuit model to model this effect.
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Core
Tank
wall

Winding

Fig. 12.18. Internal winding capacitances of a realistic high-frequency transformer.
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Section 12.5 Model of Coupled Inductors

12.5.1 Model of Two Coupled Inductors

Definitions
Now it is time to examine a model of two coupled inductors L1 and L2. This model is

perhaps more general than the transformer model. What does coupled mean? For

simplicity, we start with a “broken” transformer model with a large air gap shown in

Fig. 12.19. Primary and secondary windings have currents i1 and i2, respectively.

However, in contrast to the previous study, both currents will now enter the dotted

terminals. This means that the primary winding, inductor #1, as well as the secondary

winding, inductor #2, will both satisfy the passive υ-i reference configuration for the

inductance. Therefore, when the air gap is very large, we will have the familiar inductor

laws for both voltages υ1 and υ2 in Fig. 12.19, respectively:

υ1 ¼ þL1
di1

dt
, υ2 ¼ þL2

di2

dt
ð12:49Þ

When the air gap is not very large, inductor #1 will be subject to a certain time-varying

magnetic fluxΦ2(t) created by current i2(t) in the second inductor. According to Faraday’s

law, voltage υ1(t) will therefore additionally depend on current i2(t), more precisely, on its

time derivative. Quite similarly, inductor #2 will be subject to a certain time-varying

magnetic flux Φ1(t) created by current i1(t) in the first inductor. According to Faraday’s

law, voltage υ1(t) will also depend on time derivative of current i1(t). As a result, instead

of the inductance laws given by Eq. (12.49) for two uncoupled (literally noninteracting)

inductors, we have the model

v2

+

-

i2

N2

L1 L2

=

L1 L2

i1 i2

v1

+

-

v2

+

-

M

Mi1

v1

+

-
N1

2

1

Fig. 12.19. Two coupled inductors. Note that we no longer use the transformer symbol. Also note

the passive reference configuration for each inductance.
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υ1 ¼ þL1
di1

dt
þM

di2

dt

υ2 ¼ þM
di1

dt
þ L2

di2

dt

ð12:50Þ

of two coupled inductors. Here the coefficient M > 0 is the mutual inductance of two

coils, which is also measured in henries. You can see from the second expression in

Eqs. (12.50) that the mutual inductance determines the voltage induced in inductor #2 due

to changes of the electric current in inductor #1. Alternatively, from the first expression in

Eqs. (12.50), the same mutual inductance determines the voltage induced in inductor #1

due to changes of the electric current in inductor #2. The signs in Eq. (12.50) are

important. They follow a few rules:

1. Eqs. (12.50) corresponds to the dot convention and voltage polarities/current

directions shown in Fig. 12.19.

2. If one of the current reference directions, say the direction of i2, is selected

oppositely, we will have to use the minus sign in the respective terms in

Eqs. (12.50).

3. If one of the voltage polarities changes, we have will have to use the minus sign

where required in Eqs. (12.50).

Figure 12.19 also shows the circuit symbol for two coupled inductors. This symbol

does not include the magnetic core; event if it is present in reality. Also, the mutual

inductance is shown by an arrow.

12.5.2 Analysis of Circuits with Coupled Inductors

Solving circuits with the coupled inductors requires care. Consider, for example, a

simple circuit shown in Fig. 12.20 in frequency domain. We cannot apply the

impedance relations following from Eq. (12.49). For two coupled inductors,

V1 6¼ þjωL1I1 and V2 6¼ jωL2I2. Instead, we should convert Eqs. (12.50) to the

phasor form first and obtain

V1 ¼ jωL1I1 þ jωMI2
V2 ¼ jωMI1 þ jωL2I2

ð12:51Þ

These are two equations for four unknowns V1, I1,V2, I2. The two remaining equations

are KVL for the left part of the circuit and KVL for the right part of the circuit, i.e.,

V1 ¼ þVS and V2 ¼ �RLI2 ð12:52Þ
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Example 12.8: Solve the circuit with two coupled inductors in Fig. 12.20—determine the

phasor load current given that VS ¼ 10∠0� V½ �.
Solution: First, we substitute into Eqs. (12.51) the expressions for the reactances

jωL1 ¼ j5 Ω, jωL2 ¼ j4 Ω, jωM ¼ j2 Ω and obtain

V1 ¼ j5I1 þ j2I2 V½ �
V2 ¼ j2I1 þ j4I2 V½ � ð12:53Þ

Since, by KVL, V2 ¼ �RLI2 ¼ �10I2, from the second Eq. (12.53), one has

I1 ¼ �2þ j5ð ÞI2 A½ � ð12:54Þ

Since by KVL, V1 ¼ VS ¼ 10 V½ �, from the first Eq. (12.53), one has

10 ¼ �25� j8ð ÞI2 ) I2 ¼ 0:381∠162� A½ � ð12:55Þ

The phasor source current I1 is given by I1 ¼ 2:052∠� 86� A½ �.

A general solution of the four Eqs. (12.51) and (12.52) is of practical interest.

Following the method of Example 12.8, it is obtained in the form:

I2 ¼
VS

jω
M2 � L1L2

M
� L1RL

M

A½ �, I1 ¼ � L2

M
þ RL

jωM

� �

I2 A½ � ð12:56Þ

Exercise 12.17: Using Eqs. (12.56) solve the previous example given that jωL1 ¼ j4 Ω,

jωL2 ¼ j1 Ω, and the mutual inductance is given by M ¼
ffiffiffiffiffiffiffiffiffiffi

L1L2
p

.

Answer: I1 ¼ 2:513∠� 84� A½ �, I2 ¼ 0:500∠180� A½ �,
V1 ¼ 10:000∠0� V½ �, V2 ¼ 5:000∠0� V½ �:

j5

I1 I2

V1

+

-

V2

+

-

+
-

j4

j2

VS R = 10L

Fig. 12.20. Circuit with two coupled inductors in the phasor form.
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Solution for N Coupled Inductors

The solution method for two coupled inductors may be straightforwardly extended to the

case of N coupled inductors. In this case, Eqs. (12.51) will involve a matrix of self- and

mutual inductances (the inductance matrix L) on the size N
N. KVL applied to every

individual inductor circuit gives N remaining algebraic equations. The coupled system

of 2N algebraic equations is then solved for unknowns I1, . . ., IN and V1, . . .,VN. The

systems of coupled inductors are used in many applications, mostly for (multiple output)

switched-mode power conversion. They could also be used for sensor and other purposes

in bioelectromagnetics and other disciplines—see Fig. 12.21.

Finding Mutual Inductance(s)

Despite the dynamic nature of Eqs. (12.50), the mutual inductance defined previously by

Eq. (6.16) is inherently a static quantity. It may be computed from the corresponding 3D

magnetostatic analysis (often quite complicated). We will briefly review this question at

the end of this section. Right now, however, we will establish the highest possible value

of M, which is achieved for the ideal transformer.

Conversion to T-Network

It is may be convenient to replace a circuit with two coupled inductors by a circuit without

magnetic coupling. This can be done using either a T-network or a Π-network of three

inductances—see Section 3.3 of Chapter 3. Figure 12.22 illustrates a conversion to the

T-network for the circuit from Fig. 12.20. For leftmost inductance La, rightmost induc-

tance Lb, and shunt inductance Lc of the T-network, one has

La ¼ L1 �M , Lb ¼ L2 �M , Lc ¼ M ð12:57Þ

The proof is based on establishing υ–i relationships for both two-port networks in

Fig. 12.22 and demonstrating their identity.

Fig. 12.21. An array of coupled inductors (small coils) located on top of a human-head phantom.

This hypothetic setup was tested for applications related to brain stimulation.
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12.5.3 Coupling Coefficient

Energy in a Coupled Circuit
Multiplying Eqs. (12.50) by i1 and i2, respectively, and combining them together, one can

find expressions for the instantaneous power p(t) and instantaneous energy E(t) stored in

the system of two coupled inductors.

υ1i1 ¼ L1i1
di1

dt
þMi1

di2

dt

υ2i2 ¼ Mi2
di1

dt
þ L2i2

di2

dt

9

>

=

>

;

) p tð Þ ¼ υ1i1 þ υ2i2 ¼
d

dt

1

2
L1i

2
1 þ

1

2
L2i

2
2 þMi1i2

	 


)

E tð Þ ¼
ð

t

0

p t
0

� �

dt
0 ¼ 1

2
L1i

2
1 þ

1

2
L2i

2
2 þMi1i2 � 0

ð12:58Þ

To complete the square in the expression for the energy, we both add and subtract the term
ffiffiffiffiffiffiffiffiffiffi

L1L2
p

i1i2, which gives

E tð Þ ¼ 1

2

ffiffiffiffiffi

L1
p

i1 þ
ffiffiffiffiffi

L2
p

i2
� �2 þ M �

ffiffiffiffiffiffiffiffiffiffi

L1L2
p� �

i1i2 � 0 ð12:59Þ

Mutual Inductance of the Ideal Transformer

For the ideal transformer, the energy stored in the transformer is zero, for any values of i1,

i2. This fact has been proved in Section 12.1. Given arbitrary i1, i2, the conditionE tð Þ ¼ 0

in Eq. (12.58) is satisfied if and only if,

M ¼
ffiffiffiffiffiffiffiffiffiffi

L1L2
p

H½ � ð12:60Þ

j5

I1 I2

V1

+

-

V2

+

-

+
-

j4

j2

VS RL

j3

I1 I2

V1

+

-

V2

+

-

+
-

j2VS RL

j2

=

Fig. 12.22. Conversion of two coupled inductors to the T-network of three inductances.
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and

i1

i2
¼ �

ffiffiffiffiffi

L2
p
ffiffiffiffiffi

L1
p ¼ �N 2

N 1

ð12:61Þ

Equation (12.60) is the definition of the mutual inductance for the ideal transformer.

It gives the largest possible value of the mutual inductance. Equation (12.61) uses

Eq. (6.23) for the coil inductance. We note that this is indeed the ideal-transformer law

(12.10), but with the minus sign due to the opposite current direction in Fig. 3.19.

Example 12.9: A system of two coupled inductors is characterized by Eq. (12.60). Is this

system equivalent to an ideal transformer?

Solution: We check the voltage relation first. From Eq. (12.50),

υ2

υ1
¼

ffiffiffiffiffi

L2
p ffiffiffiffiffi

L1
p di1

dt
þ

ffiffiffiffiffi

L2
p di2

dt

� �

ffiffiffiffiffi

L2
p ffiffiffiffiffi

L1
p di1

dt
þ

ffiffiffiffiffi

L2
p di2

dt

� � ¼
ffiffiffiffiffi

L2

L1

r

¼ N1

N2

ð12:62Þ

Thus, the ideal-transformer law for voltages is satisfied. However, the ideal-transformer law

for currents is not satisfied. An example is given by Eqs. (12.56). In order to obtain the ideal-

transformer model, we must additionally assume that

L1 ! 1, L2 ! 1, M ! 1 ð12:63Þ

Otherwise, the coupled-inductor model will additionally take into account the magnetizing

inductance, which is already a part of the nonideal transformer model studied in the

previous section.

Coupling Coefficient

The mutual inductance in the general case is expressed in terms of the two coils’ self-

inductances L1 and L2, in the form

M ¼ k
ffiffiffiffiffiffiffiffiffiffi

L1L2
p

H½ � ð12:64Þ

where k is a so-called coupling coefficient, 0 < k � 1. The coupling coefficient deter-

mines the amount of total magnetic flux linkage from the first coil shared by the second

coil and vice versa. For the ideal transformer, the flux is entirely concentrated within the

common magnetic core so that k ¼ 1. Figure 12.23 illustrates different values of the

coupling coefficient.
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12.5.4 Application Example: Wireless Inductive Power Transfer

Next, we shall consider two arbitrary coils in spatial proximity to each other. Equations

(12.50) will always hold for any such coil configuration and for any distance, d, between

the coils. However, the coupling coefficient, k, in Eq. (12.64) has to be determined

separately for every particular geometry. The coupling coefficient may now be much

less than one. Nonetheless, for any non-zero k, the variable current in coil #1 will create a

variable voltage in coil #2. In other words, we could create wireless power or data

transfer between two, or even more than two, inductors. This is due to the very distinct

property of an inductor’s magnetic near field. We are going to briefly discuss two

examples of wireless data and/or power transfer with two coupled inductors. One

approach is radio-frequency identification (RFID) which employs the use of a patch,

known as an RFID tag, that is attached to the person or machinery to be monitored. The

RFID technology has created a rapidly growing industry following the first patent issued

in 1983 to Charles Walton (US Patent 4,284,288).

Example 12.10: The mutual inductance and the associated magnetic coupling provide a

fundamental example of wireless data transfer between two physically distant circuits

containing two coupled inductors. We should keep in mind that even though this is

considered wireless coupling, it is quite different from true radio-frequency

(RF) wireless data transmission over large distances. Still, many of the modern circuits,

including the first two RFID standards in Table 12.3, use magnetic coupling and mutual

inductance to enable wireless power transfer or data transfer from the tag to the reader and

vice versa.

k~1 c)b)a) 1<<k1<k

Fig. 12.23. Different configurations and coupling coefficient values for two coupled inductors.
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Example 12.10 (cont.):

Table 12.3. Standard frequencies for RFID tags (RFID TX/RX

systems).

Low frequency (LF) 125–134 kHz

High frequency (HF) 13.56 MHz

Ultra high frequency (UHF) 868–930 MHz

Microwave 2.45 GHz

Microwave 5.80 GHz

Circuits with coupled inductors are highlighted.

Example 12.11: The mutual inductance and the associated magnetic coupling also pro-

vide a basic example of a wireless power (not data) transfer between two physically

separated circuits. Let us assume that a power transfer is needed between two circuits, but

without mechanical contact. For example, one circuit may be fixed, and another contained

in a rotating or indexing machine. Clearly, we cannot use a wired wall plug for such a

situation. An important example of near field wireless power transfer is a battery of an

implanted device in a human body, which needs to be charged from time to time. A

solution to the problem involves a pair of coupled inductors. Figure 12.24 depicts a 120-W

inductive power transfer system from Mesa Systems Co., Medfield, MA. This system can

be powered by any 12 V battery and also includes DC to AC converters.

Basic Model of Inductive Power Transfer at Large Separation Distances

Two coaxial coupled inductors L1 and L2 in the wireless link configuration are shown in

Fig. 12.25. One of them is the transmitter (TX) and the second is the receiver (RX). The

separation distance between the inductors is d. The coupling coefficient k is usually

much less than one, and the calculation of the mutual inductance requires care. It is

Fig. 12.24. A 120-W inductive power-transfer system powered by a 12-V battery from Mesa

Systems Co., Medfield, MA.
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prudent to calculate the mutual inductance of two single coaxial loops of current

separated by d first. The result has the form

M loop �
πμ0

2

r21r
2
2

d3
H½ �, d  r1, r2 ð12:65Þ

where r1, r2 are the loop radii. Note that d
3 is in the denominator indicating that the mutual

inductance decreases very rapidly when the separation distance d increases. This is

somewhat discouraging, but an unavoidable result for magnetic near-field calculations.

The mutual inductance between the two air-core coils having radii r1, r2, and N1 and N2

turns, respectively, is obtained from Eq. (12.65) in the form

M ¼ N1N 2M loop �
N 1N2πμ0

2

r21r
2
2

d3
ð12:66Þ

Knowing the mutual inductance, we can find the received current or voltage (and the

received power) in the second coil once the transmitted voltage or the current is known in

the first coil.

Example 12.12: Two coaxial air-core coils with r1 ¼ r2 ¼ 1:0 cm and with N1 ¼ N 2

¼ 100 are separated by 1 m. What is the voltage signal induced in the second coil (RX) if

the current in the first coil (TX) is given by i1 tð Þ ¼ 100 mA
 sin ωtð Þ?
Solution: We find the mutual inductance first, using Eq. (12.67):

M ¼ 100
 100
 4π2 
 10�7

2

10�8

1
� 2:0
 10�10 H½ � ð12:67Þ

A voltage induced in coil #2 according to the second equation in Eq. (12.50) is given by

υ2 ¼ M
di1

dt
¼ 2:0
 10�10 
 10�1ω cos ω tð Þ ð12:68Þ

One can see that the higher the transmission frequency, the greater response we will obtain!

Let us assume that the transmission frequency is given by f ¼ 120 kHz. Then, ω ¼ 2πf

� 0:75
 106 rad=s and Eq. (12.68) yields

i1

v1+ -

N1

L1

v2

+-

i2d
N2

L2

Fig. 12.25. Coupling between two coils in a typical near-field wireless link configuration.
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Example 12.12 (cont.):

υ2 ¼ 2:0
 0:75
 10�11 
 106 cos ωtð Þ V½ � ¼ 15 cos ωtð Þ μV½ � ð12:69Þ

Such a weak voltage signal can hardly be observed on an oscilloscope, extracted from

noise, and then amplified in a class laboratory setup. The most critical parameter is the coil

radius; if it increases by the factor of 2, the received voltage will increase by a factor of 16.

We see from this example that the near-field wireless link is tricky: the weak received

signal must be carefully managed before conducting any experimentation.

The above analysis implies that the separation distance between the two coils is much

greater than any of the coil dimensions. A finite magnetic core is not yet taken into

account in Eq. (12.67). The equation is only valid for ceramic-core coils. Also note that

the presence of steel conductors (armatures) nearby may greatly increase the efficiency of

the wireless link. Such an effect is frequently observed in the laboratory. If the receive coil

is terminated into a very small resistance, infinite received current and power may be

obtained, even if the received voltage is small. Where is the contradiction? The point is

that the received current creates its own magnetic field that opposes the changes in the

transmitted magnetic field. As long as the received current is small, this is not an issue.

The rule of thumb is to request the magnitude of the magnetic field created by the

received current to be at most 10 % of the transmitted one at the receiver location.

Example 12.13: Compile a MATLAB script that will estimate the voltage signal (voltage

amplitude) induced in the second coaxial coil (RX) if the periodic current (current

amplitude) in the first coaxial coil (TX) is known. The signal strength (amplitude of the

receiver voltage) is to be plotted as a function of the distance between two coils, d. We

know coil radius, r, and number of turns, N (the same for both coils).

Solution: The text of the corresponding MATLAB script is given below. It uses

Eq. (12.67). Next, it plots the voltage as a function of the separation distance. The plot

for the previous example at 1 MHz is shown in Fig. 12.26.

mu0     = 4*pi*1e-7;        %   permeability of vacuum (air)

omega   = 2*pi*1e6;         %   angular frequency, rad/s

i1      = 0.1;              %   amplitude of exciting current i1, A

r       = 1e-2;             %   coil radius, m

l       = 0.1;              %   coil length, m

N       = 100;              %   number of turns

d       = [0.1:0.01:2];     %   separation distance, m

M0      = pi*mu0*r^4*N^2./(2*d.^3);  %   mutual inductance

v2      = M0*omega*i1;       %   received voltage, V

semilogy(d, v2*1000); grid on;

xlabel('distance d, m'); ylabel('received voltage, mV')
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12.5.5 Application Example: Coupling of Nearby Magnetic Radiators

The mutual coupling between the two inductors (a transmitter and a receiver) is key for

the wireless inductive power transfer. At the same time, the mutual coupling may have a

negative effect when the transmitter includes two or more independently driven coils

assembled in a coil array. The mutual coupling between the individual transmit coils may

reduce the individual coil current, i.e., reduce the resulting total magnetic field.

Circuit with Two Identical Radiators

The circuit shown in Fig. 12.27 formalizes the problem. It models the coupling effect

between two nearby identical magnetic radiators. This circuit is important for near-field

wireless power transfer with coil arrays including medical applications. Our goal is to

express the source phasor current IS through the circuit parameters for two distinct cases:

A. Mutual coupling is absent.

B. Mutual coupling is present; the mutual reactance is XM > 0.

To solve the circuit, we convert the two coupled inductors to a T-network. The

resulting circuit is shown in Fig. 12.28.

0 0.4 0.8 1.2 1.6 2

10
-1

10
0

10
1

10
2

distance d, m

received voltage, mV

10
-2

Fig. 12.26. Voltage amplitude in coil #2 when the current amplitude in coil #1 is 100 mA.

IS

+
-

VS

RS
RS

jXM

jX1 jX1
+
-

VS

IS

Fig. 12.27. Modeling mutual coupling of two transmit coils.
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When the mutual coupling is absent, the central inductor becomes a wire; both currents

are given by

IS ¼
VS

RS þ jX 1

ð12:70Þ

When the mutual coupling is present, we can use KVL for the either circuit loop, which

gives

�VS þ RSIS þ j X 1 � XMð ÞIS þ 2jXMIS ¼ 0 ð12:71Þ

Therefore,

IS ¼
VS

RS þ j X 1 þ XMð Þ ð12:72Þ

Note that the sign in front of XM may vary depending on coil orientation. For example, it

is positive for two coaxial coils (or loops) with in-phase currents (or in-phase fluxes) and

is negative otherwise.

Tuned Radiators

The individual radiator circuit should be tuned to the operating frequency to maximize the

circuit current/magnetic field. The tuning is typically achieved by a series capacitor with

reactance �X 1, which exactly cancels the inductor’s reactance þX 1. If this is the case,

Eq. (12.73) is transformed to

IS ¼
VS

RS þ jXM

) ISj j ¼ VSj j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2
S þ XMð Þ2

q ð12:73Þ

Thus, for the tuned radiators, the mutual coupling reduces the circuit current and the

magnetic field, irrespective of the coil orientation. When XM is small compared to the

source resistance, this effect is of little value. Altogether, it can be eliminated by adjusting

the value of the tuning capacitors.

+
-

VS

RS

jXM

RS

+
-

VS

IS

j(X -X )1 m j(X -X )1 m

IS

Fig. 12.28. Equivalent circuit with uncoupled inductors.

Chapter 12 Section 12.5: Model of Coupled Inductors

XII-623



Exercise 12.18: Determine the relative reduction in the emanating magnetic field at any

point in space for two tuned identical coupled radiators when RS ¼ 10 Ω and XM ¼ 1 Ω.

Answer: 0.5 %.

Exercise 12.19: Which reactance should the tuning capacitors have in order to eliminate

the effect of the mutual inductance in Fig. 12.28?

Answer: �X 1 � XM.
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Summary

Ideal-transformer model

Concept Circuit Formulas/Meaning

Faraday’s law

Dependent voltage source in the

secondary winding

Primary winding:

υ1 tð Þ ¼ N1

dΦ tð Þ
dt

Secondary winding:

υ2 tð Þ ¼ N2

dΦ tð Þ
dt

Conclusion:

υ2

υ1
¼ N2

N1

Ampere’s law

Dependent current source in the

primary winding

l ¼ lab þ lbc þ lcd þ lda

General form:

lH ¼ i

Ideal core:

0 ¼ i ¼ N 1i1 � N2i2

Conclusion:
i1

i2
¼ N2

N1

Ideal-transformer model with two

dependent sources Equivalent circuit model of the

ideal transformer

Ideal-transformer

equations:
υ2

υ1
¼ N2

N1

i1

i2
¼ N2

N1

Power conservation:

υ1i1 ¼ υ2i2

Stored energy: 0

Simple transformer circuit

Circuit with transformer symbol

Load voltage:

υR ¼ N 2

N 1

υS

Load current:

iR ¼ υR

R

Source power:

pS tð Þ ¼ N2

N1

υ2S tð Þ
R

(continued)
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Terminology

Turns ratio N1 : N 2 ¼ a

Step up transformer N 2 > N1, a < 1

Secondary winding is the high-voltage side

Step down transformer N 2 < N1, a > 1

Primary winding is the high-voltage side

Ratings Apparent load power and

Primary voltage (rms) : Secondary voltage (rms)

Some useful transformers

Autotransformer Circuit symbol Step down setup:

Voltage relation:

(from Faraday’s law)

υ2 ¼
N 2

N 1 þ N2

υ1

Current relation:

(from Ampere’s law)

i2 ¼
N 1 þ N2

N 2

i1

Multiwinding transformer Circuit symbol Voltage relation:

(from Faraday’s law)
υ1

N1

¼ υ2

N 2

¼ υ3

N 3

Current relation:

(from Ampere’s law)

N1i1 ¼ N2i2 þ N3i3

Center-tapped transformer Circuit symbol Voltage relation:

(from Faraday’s law)

υ2 ¼
N 2

2N 1

υ1

Current relation:

(from Ampere’s law for two

identical loads)
N1

N2

i1 ¼ i2 ¼ i3

Current transformer Circuit symbol Instrumentation transformer

(to measure current)

i2 ¼
1

N 2

i1

(continued)
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Phasor form of a transformer circuit

Particular types of dot convention

V2

V1

¼ þN 2

N 1

,
I2

I1
¼ þN 1

N 2

V2

V1

¼ þN 2

N 1

,
I2

I1
¼ �N 1

N 2

V2

V1

¼ �N 2

N 1

,
I2

I1
¼ þN 1

N 2

V2

V1

¼ �N 2

N 1

,
I2

I1
¼ �N 1

N 2

Reflecting the source to the secondary side

Transformer circuit Circuit equivalent (load voltage is the same)

Reflecting the load to the primary side

Transformer circuit Circuit equivalent (source current is the same)

(continued)
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Transformer-based impedance matching

Exact matching with real impedances

Transformer circuit Circuit equivalent with N1 : N2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

RS=RL

p

Approximate matching for maximum power transfer from source to load

Transformer circuit
N1 : N 2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2
S þ X 2

S

� �

=R2
L

4

q

Non-ideal low-frequency transformer model (Steinmetz model)

Primary winding and magnetic core:

Magnetizing inductance Lm (Xm ¼ ωLm);

Core loss equivalent resistanceRc;

Leakage inductance Ll1 (X l1 ¼ ωLl1);

Ohmic resistanceR1;

Secondary winding:

Leakage inductance Ll2 (X l2 ¼ ωLl2);

Ohmic resistance R1

Model of coupled inductors

Circuit symbol Physical counterpart

Reduction to ideal-transformer model Ideal-transformer model

(continued)
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Phasor form Constitutive relations:

V1 ¼ jωL1I1 þ jωMI2

V2 ¼ jωMI1 þ jωL2I2

Mutual inductance:

M ¼ k
ffiffiffiffiffiffiffiffiffiffi

L1L2
p

Dimensionless coupling coefficient:

0 � k � 1

Simple circuit To solve the circuit use the constitutive relations

and KVL for each loop. Solution:

I2 ¼
VS

jω
M 2 � L1L2

M
� L1RL

M

A½ �

I1 ¼ � L2

M
þ RL

jωM

� �

I2 A½ �

Conversion to a T-network without

coupling

Equivalent T-network of uncoupled inductances

Mutual inductance for two short ceramic

coaxial coils M � N 1N 2πμ0

2

r21r
2
2

d3

r1, r2 are the coil radii;

d >> r1, r2 is the coil separation distance

Coupling between two nearby near-field

magnetic radiators
Mutual coupling between two radiators generally

reduces the amplitude of the source current in every

radiator: IS ¼ VS

RS þ j X 1 þ XMð Þ
and the associated magnetic field for both of them
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Problems
12.1 Ideal Transformer

as a Linear Passive Circuit

Element

12.1.2 Ideal Open-Circuited Trans-

former: Faraday’s Law of Induction
Problem 12.1. The following figure shows two

open-circuited coils subject to a time-varying

flux, Φ(t), in the core.

a b a b

#1 #2

a b a b

#1 #2

a)

b)

Faraday’s law does not explicitly say anything

about the polarity of the induced voltage in the

coils. Nevertheless, the induced voltage does

have a preferred polarity determined by Lenz’s

law (Heinrich Friedrich Emil Lenz (1804–

1865), a Russian physicist of German ethnicity,

taught at the University of St. Petersburg).

Lenz’s Law states that the circuit current due

to induced voltage υ produces a flux in such a

direction as to oppose the change of the flux.

In other words, the induced current always

seeks to maintain the status duo of the magnetic

field. To find the direction of the anticipated

circuit current, you may imagine a resistance

connected across the coil terminals. Now,

assume that the magnetic flux in the core, Φ,

is increasing in time. Label the polarity of the

induced voltages for coils #1 and #2, respec-

tively, by � and show the direction of the

anticipated circuit current.

Problem 12.2. Are the following figures

correct?

a)

b)

c)

Problem 12.3. For the circuit shown in

the following figure, determine voltage υ2(t) if

υ tð Þ ¼ 100 cosω t V½ � using Faraday’s law of

induction. Count the number of turns. Assume

no flux leakage.

v(t)

+

v (t)2

+

--
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Problem 12.4. For the circuit shown in

the figure below, determine voltage υ2(t) if

υ tð Þ ¼ 70 cosω t V½ � using Faraday’s law of

induction. Count the number of turns. Assume

no flux leakage.

v (t)2

+

-
+

-

v(t)

Problem 12.5. Explain the meaning of the ideal

magnetic core. What is the inductance value for

an inductor which uses the closed-loop ideal

magnetic core?

Problem 12.6. You are given the source volt-

age in the form υS tð Þ ¼ 340 cos 2π60tð Þ V½ � ,
the number of turns of primary winding

N1 ¼ 250, the finite relative permeability of

the magnetic core, μr ¼ 7000, the coil length

of the primary winding of 9 cm, and the core

cross section of A ¼ 0:0015 m2.

A. Find the exciting current iΦ(t) (no-load

current) in the primary winding of this

nonideal transformer.

B. Reduce N1 by the factor of 10 and repeat

the solution.

12.1.4 Ampere’s Law

12.1.5 Ideal Loaded Transformer

12.1.6 Ideal Transformer Versus

Realistic Transformer: Transformer

Terminology
Problem 12.7. For the circuit shown in the

following figure, establish the relation between

currents i1(t) and i2(t). Assume the ideal mag-

netic core. Count the number of turns.

i (t)1

i (t)2

Problem 12.8. For the circuit shown in the

following figure, establish the relation between

currents i1(t), i2(t), and i3(t). Assume an ideal

magnetic core. Count the number of turns.

i (t)1

i (t)2

i (t)3

Problem 12.9. For the circuit shown in the

figure below, determine current i2(t) given that

i1 tð Þ ¼ 1 cosω t A½ �. Count the number of

turns.

i1

i2

H= 100 cos t [A/m]

R= 3 cm
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Problem 12.10. For the circuit shown in the

figure below, establish the relation between

currents i1(t), i2(t), and i3(t). Assume an ideal

magnetic core. Count the number of turns.

Hint: Ampere’s law for the ideal core applies

to every closed path.

i (t)1

i (t)2

i (t)3

Problem 12.11. In Problem 12.6, determine the

instantaneous stored energy of a nonideal trans-

former given a core centerline length of 30 cm.

Problem 12.12. In the circuit shown in the

figure below, υS tð Þ ¼ 170 cos 2π60tð Þ V½ �.
For a 100 Ω resistive load, determine:

- Source current iS(t)

- Load voltage υR(t)

- Load current iR(t)

- Average power delivered to the load P

when the turns ratio is equal to 10:1, 1:1, and

1:10.

RLv (t)S

N :N1 2

+
-

+

-

vR

i (t)R

i (t)S

Problem 12.13. In the circuit shown in thefigure

below, υS tð Þ ¼ 325 cos 2πωtð Þ V½ �. The ideal

transformer model is used. Determine source

current iS(t), load voltage υR(t), and load current

iR(t) when:

A. The switch is open.

B. The switch is closed.

C. The switch is closed and ω ! 0.

20v (t)S

2:1

+
-

+

-

vR

i (t)R

i (t)S

Problem. 12.14. In the circuit shown in the

figure below, the current through resistance

is given by iR tð Þ ¼ 50 cos 2π60tð Þ A½ �.
Determine:

- Source voltage υS(t)

- Source current iS(t)

20v (t)S

10:1

+
-

i (t)R

i (t)S

Problem 12.15. A power transformer is rated

as 100 kVA, 11,000:2200 V, 60 Hz. Determine:

- Transformer type

- Turns ratio

- The rated current on the low-voltage side

Problem 12.16. Repeat the previous problem

for a transformer rated as 10 kVA, 2300:230 V,

60 Hz.

Problem 12.17. Repeat Problem 12.15

for a transformer rated as 2 kVA, 230:115 V,

50 Hz.
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12.2 Analysis of Ideal-

Transformer Circuits

12.2.1 Circuit with a Transformer in the

Phasor Form

12.2.2 Referred (or Reflected) Source

Network in the Secondary Side

12.2.3 Referred (or Reflected) Load

Impedance in the Primary Side
Problem 12.18. The load impedance is

12:5� j2:5 Ω. Find the equivalent impedance

of the load ZT combined with a 2:1 step-down

transformer in the primary side.

Problem 12.19. Source voltage is given by

υS tð Þ ¼ 2:5 cosωt þ 45� V½ � and the source

impedance is 5� j0:5 Ω. Find the equivalent

circuit of the source (find VT and ZT) combined

with a 1:4 step-up transformer in the secondary

side. Express your result both in frequency

domain and in time domain.

Problem 12.20. A large capacitance value of

1.6 mF is required. The available physical com-

ponent is a 100-μF capacitor. You are given an

ideal transformer with an arbitrary turns ratio.

Design the equivalent circuit for the 1.6 mF

capacitance, specify the transformer turns

ratio, and draw the corresponding circuit

diagram.

Problem 12.21. For the circuit shown in the

figure below, determine transformer’s turns

ratio.

1 mHL =9 mHeq

N :N1 2

Problem 12.22. For the circuit shown in the

following figure, VS ¼ 10∠45� V½ �,
ZS ¼ 5þ j5 Ω, ZL ¼ 5þ j5 Ω, and

N1 : N2 ¼ 1 : 2. Find phasor voltage across

the load, VL. Express your result in polar

form. Assume the ideal transformer.

N :N1 2

+

-

VL
+
-VS

ZL

ZS

Problem 12.23. In the circuit shown in the

figure below, υS tð Þ ¼ 2:5 cos ω t þ 45�ð Þ V½ �
where ω ¼ 1000 rad=s, C ¼ 10 μF,

R1 ¼ 25 Ω, RL ¼ 200 Ω. Furthermore,

N1 : N2 ¼ 1 : 2. Find voltage across the load

υL(t) in time domain. Assume the ideal

transformer.

N :N1 2

+

-

v (t)Lv (t)S

R1 C1

RL
+
-

Problem 12.24. For the circuit shown in

the following figure, VS ¼ 10∠45� V½ �,
ZS ¼ 5þ j5 Ω, ZL ¼ 5þ j5 Ω, and

N1 : N2 ¼ 1 : 2. Find phasor current of the

source, IS. Express your result in polar form.

Assume the ideal transformer.

N :N1 2

+
- VS

ZL

ZS

IS

Problem 12.25. In the circuit shown in the

following figure, υS tð Þ¼2:5cos ωtþ45�ð Þ V½ �
where ω¼2000 rad=s, C¼10 μF, R1¼50 Ω,

RL¼20 Ω. Furthermore, N1 :N2¼2 :1. Find

source current iS(t) in time domain. Assume

the ideal transformer.

N :N1 2

v (t)S

R1 C2

RL

i (t)S

+
-
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12.2.4 Transformer as a Matching

Circuit
Problem 12.26.A 16-Ω load is connected to an

AC voltage source with a voltage amplitude of

10 V and series resistance of 1 Ω. A matching

transformer is used with the turns ratio N1 :N2.

Determine the average power delivered to the

load when

A. N1 : N2 ¼ 1 : 1

B. N1 : N 2 ¼ 1 : 2

C. N1 : N2 ¼ 1 : 4

D. N1 : N2 ¼ 1 : 5

Problem 12.27. A passive RFID tag circuit

measuring temperature is modeled by a load

resistance of 16 Ω. The tag is wirelessly

powered; it is augmented with a small

collecting antenna, which has the radiation

resistance of 1� j2 Ω. The negative antenna

reactance is an inherent part of the small dipole

antenna design. Find the ratio of the average

received powers from the antenna with and

without the matching transformer. Assume the

load matching condition for the real part of the

impedances.

RL+
-VS

N :N1 2
ZS

+

-

VL

tag

Problem 12.28. The previous problem may be

generalized as follows. An antenna operates as

an energy-harvesting source. The antenna is

modeled as an impedance ZS ¼ RS þ jX S in

series with a fixed ideal voltage source. The

nonzero antenna reactance is an inherent part

of the small antenna design. The load is

modeled as a resistance RL. Express the turns

ratio of a matching transformer, which is nec-

essary for maximum average power transfer

from the antenna to the load, in terms of three

given problem parameters. Note that this prob-

lem has an elegant analytical solution.

12.2.5 Application Example: Electric

Power Transfer via Transformers
Problem 12.29. The performance of a trans-

mission line circuit in the following figure is to

be analyzed, with and without 1:10 step-up

transformer and 10:1 step-down transformer,

respectively. All phasors are given in terms of

the rms values. Solve the circuit with and with-

out transformers and fill out the table that fol-

lows including active load power

PL ¼ Re VL � IL*
� �

, active source power,

PS ¼ Re VS � IS*
� �

, and the line power loss

Ploss ¼ R Ilinej j2. All powers are to be reported

in watts. You are given ZL ¼ 4þ j2 Ω.

+
-

0.4

1:10 10:1

IL

VL

+

-

j0.5

IS
Iline

VS ZL

Param. VS IS PS Iline

No tr. 240∠0�

W tr. 240∠0�

Param. Ploss VL IL PL

No tr.

W tr.

Problem 12.30. Repeat the previous problem

when the transformer setup changes to a 1:5 step-

up transformer and a 5:1 step-down transformer.

Problem 12.31. An AC-direct micro-hydro-

power system is illustrated in the following

figure.
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Reprinted from Micro-Hydropower Systems

Canada 2004, ISBN 0-662-35880-5

The system uses a single phase induction gen-

erator with the rms voltage of 240 V. The sys-

tem serves four small houses, each connected to

the generator via a separate transmission line

with the same length of 3000 m. Each line uses

AWG#10 solid aluminum wire with a diameter

of 2.59 mm. The house load in every house is

an electric range with the resistance of 20 Ω.

Determine total active power delivered by the

generator, PS, total power loss in the trans-

mission lines, Ploss, and total active useful

power, PL:

1. When no transformers are used;

2. When a 1:5 step-up transformer is used in

powerhouse and a 5:1 step-down trans-

former is used at home.

Problem 12.32. Solve the previous problem

when the distributed line inductance is addi-

tionally taken into account. The inductance

per unit length of a two-wire line is given by
μ0
π

lnd
a
þ 1

4

� �

where a is the wire radius and d is

the separation distance. Assume the separation

distance of 1 m. The operation frequency is

50 Hz.

12.3 Some useful

transformers

12.3.1 Autotransformer
Problem 12.33. A voltage source connected to

the primary winding of an ideal step-up auto-

transformer shown in the following figure has

the form υS tð Þ ¼ 5 cosωt V½ �. The source cur-
rent into the dotted terminal is iS tð Þ ¼
10 cosωt A½ �. You are given N 1 ¼ 200,

N2 ¼ 50. Determine voltage υ2(t) and current

i2(t) in the secondary.

i1

v (t)2

+

-
v (t)1

+

-

i2

N1

N2

Problem 12.34. Solve the previous problem for

the circuit shown in the following figure.

i1

v (t)1

+

-
v (t)2

+

-

i2N1

N2

Problem 12.35. For the circuit shown in the

following figure, VS ¼ 100∠45� V½ �,
ZS ¼ 5þ j5 Ω, ZL ¼ 5þ j5 Ω, and

N1 : N2 ¼ 4 : 1. Find phasor current of the

source, IS. Express your result in polar form.

Assume the ideal autotransformer.

VS

ZL

ZS

IS

N1

N2
+
-

Problem 12.36. Find the equivalent input

impedance, Zin, for two autotransformer cir-

cuits shown in the following figure.
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N1

N2

N1

N2

b)

ZL

ZL

a)

Zin

Zin

12.3.2 Multiwinding Transformer

12.3.3 Center-Tapped Transformer:

Single-Ended to Differential

Transformation
Problem 12.37. In the circuit shown in the

following figure, N1 ¼ 2N 2 ¼ N 3. How is the

instantaneous power partitioned between

the two secondary windings if both of them

are terminated into the same load resistances?

To answer this question, express both p2(t) and

p3(t) in terms of p1(t).

i1
v (t)2

+

-

i2

N2

N3

N1
i3

v (t)3

+

-

v (t)1

+

-

Problem 12.38. In the circuit of the previous

problem, N1 ¼ 2N2 ¼ 2N3. How is the instan-

taneous power partitioned between the two sec-

ondary windings if winding #2 is terminated

into resistance R and winding #3 is terminated

into resistance 3R?

Problem 12.39. Determine the turns ratio for

the center-tapped transformer in Fig. 12.13.

Problem 12.40. A household is using an ideal

center-tapped distribution transformer shown in

the following figure. All voltage values are the

rms values. The resistive loads include a TV, a

microwave, and a kitchen range. The powers

for every individual load are shown in the fig-

ure. Determine:

A. Turns ratio, N1 :N2 of the transformer

B. rms value of input current i1

2400 V

200 W
TV

1500 W
MW

10kW
Range

N :N1 2

+

-

120 V

120 V

i1

Problem 12.41.Determine phasor currents IR1,

IR2, and IR0 for the center-tapped balanced

transformer circuit shown in the following fig-

ure. You are given the source phasor voltage

VS ¼ 10∠0� V½ �, resistance values R ¼ 50 Ω,

and turns ratio N1 : N2 ¼ 1.

N :N1 2

VS +
-

R

R

IR1

IR2

IR0

Problem 12.42. Solve the previous problem in

a general form, i.e., express phasor currents IR1,

IR2, and IR0 in the (generally unbalanced) cir-

cuit shown in the following figure in terms of

given circuit parameters VS, Z1, Z2, and turns

ratio a ¼ N1 : N2.

N :N1 2

VS +
-

IR1

IR2

IR0

Z1

Z2

12.3.4 Current Transformer
Problem 12.43. Determine current i2(t) in an

ideal current transformer shown in the figure

given that i1 tð Þ ¼ 10 cosω t A½ �. Count the

number of turns.
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i1

i2

12.4 Real-Transformer

Model

12.4.1 Model of a Nonideal

Low-Frequency Transformer

12.4.2 Model Parameters and Their

Extraction

12.4.3 Analysis of Nonideal Transformer

Model

12.4.4 Voltage Regulation and Trans-

former Efficiency

Problem 12.44

A. Name all seven components of the

low-frequency nonideal transformer

model.

B. Draw the corresponding circuit diagram.

Problem 12.45. A practical power transformer

is characterized by the following nameplate

information: 20 kVA 2400:240 V 60 Hz.

A. Determine rated-load phasor voltage VL

(show units and assign phase zero).

B. Determine rated-load phasor current IL
for power factor of 0.8 lagging (show

units).

C. Determine rated-load active power PL

(show units).

Problem 12.46. Repeat the previous problem

for the power transformer characterized by

2 kVA 230:115 V 50 Hz.

Problem 12.47. A practical power transformer

is characterized by the following information:

Element nameplate 20 kVA

2400:240 V

60 Hz

Magnetizing reactance

Xm ¼ ωLm, Ω

15,000

Core loss resistance, Rc, Ω 100,000

Primary leakage reactance

X l1 ¼ ωLl1, Ω

6.5

Secondary leakage reactance,

X l12 ¼ ωLl12, Ω

0.07

Primary ohmic resistance R1,Ω 3.0

Secondary ohmic resistance

R2, Ω

0.03

Check whether or not equalities (12.38) for the

well-designed transformer are satisfied.

Problem 12.48. In a well-designed trans-

former, the number of turns of both primary

and secondary windings is usually quite large.

Why is it so? Can we just design a 10:1 trans-

former with 10 and 1 turns, respectively?

Problem 12.49. The nonideal transformer

model is shown in the following figure in fre-

quency domain. Given the rated load with a

power factor of 0.8 lagging, determine the

source phasor voltage VS and the source phasor

current IS for transformer #1 model from

Table 12.2.

I2

+

-
E2

+

-
aE2

+

-
VL

a
-1
I2

VS

a=N /N1 2

+
-

RC jXm

ZL

R +jX1 l1 R +jX2 l2

IS

Problem 12.50. Repeat the previous problem

for transformer #2 model from Table 12.2.

Problem 12.51. Repeat Problem 12.49 for

transformer #3 model from Table 12.2.

Problem 12.52. The nonideal transformer

model is shown in the following figure in
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frequency domain. Given the rated load with a

power factor of 0.7 lagging, determine:

A. Percentage regulation

B. Percentage efficiency

for transformer #1 model from Table 12.2

I2

+

-
E2

+

-
aE2

+

-
VL

a
-1
I2

VS

a=N /N1 2

+
-

RC jXm

ZL

R +jX1 l1 R +jX2 l2

IS

Problem 12.53. Repeat the previous problem

for transformer #2 model from Table 12.2.

Problem 12.54. Repeat Problem 12.52 for

transformer #3 model from Table 12.2.

12.5 Model of Coupled

Inductors

12.5.1 Model of Two Coupled Inductors

12.5.2 Analysis of Circuits with Coupled

Inductors

12.5.3 Coupling Coefficient
Problem 12.55. Solve a circuit with two

coupled inductors in the figure below in fre-

quency domain:

A. Determine the load phasor current and

the source phasor current.

B. Determine phasor voltages V1 and V2

given that VS ¼ 10∠0� V½ � and RL ¼ 10 Ω.

j4

I1 I2

V1

+

-

V2

+

-

+
-

j4

j4

VS RL

Problem 12.56. Solve the previous problem

when the mutual inductance is exactly zero.

Problem 12.57. Solve Problem 12.55 when the

mutual reactance is equal to 3 Ω.

Problem 12.58. In the circuit shown in the

following figure, determine source phasor cur-

rent IS given that RL ¼ 1 Ω, RS ¼ 2 Ω, and

VS ¼ 15∠0� V½ �.

j5

IS

+
-

j4

j3

VS RL

RS

12.5.4 Application Example: Wireless

Inductive Power Transfer

12.5.5 Application Example: Coupling

of Nearby Magnetic Radiators
Problem 12.59. Two small coaxial ceramic-

core coils with r1 ¼ r2 ¼ 2:0 cm and with N1

¼ N2 ¼ 100 are separated by 1 m. What is the

voltage signal induced in the second coil (RX) if

the current in the first coil (TX) is given by

i1 ¼ 100 mA
 sin ωtð Þ ? The operation fre-

quency is 1 MHz.

Problem 12.60. Repeat the previous problem

when the operation frequency changes to

10 MHz.

Problem 12.61. In the circuit shown in the

following figure, find source phasor current IS
in time domain iS(t) given that υS tð Þ ¼
10 cosωt V½ �.

IS

+
-

VS

4

j3 +
-

VS

IS

j3

j1
-j4 -j4 4
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Part IV

Digital Circuits



Chapter 13: Switching Circuits

Overview

Prerequisites:

- Knowledge of basic circuit analysis

Objectives of Section 13.1:

- Understand the functionality of a semiconductor transistor switch

- Characterize the operation of a transistor switch by differentiating between the

ground-side pull-down switch (NMOS transistor) and the power-side pull-up switch

(PMOS transistor)

- Appreciate the value of MOSFET threshold voltage

- Solve simple switching circuits

Objectives of Section 13.2:

- Become familiar with simple switching motor controllers and load controller

switches

- Track the operation of the H-bridge and the half H-bridge motor controllers

- Obtain initial exposure to pulse-width modulation (PWM) and motor speed control

Objectives of Section 13.3:

- Establish the relation between symbols for logic gates and underlying electric

circuits on transistor level

- Review basic logic gates

- Obtain initial exposure to Boolean algebra and logic circuit analysis and synthesis

- Understand the functionality of a semiconductor memory cell

Application Examples:

- PWM motor controller

- Logic gate motor controller
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Section 13.1 Principle of Operation

The manual switch used in electric circuits long ago and shown in Fig. 13.1a was first

replaced by electromechanical relays and later on by transistor switches. Still, both the

mechanical switch and the solenoid are widely used today: the mechanical switch finds its

numerous applications in household electronics, whereas the relay is employed for

switching high-power, high-current loads in power electronics. However, it is the tran-

sistor electronic switch that made possible digital systems, computers, control circuits,

and modern communication circuits. Applications of the current switching technology

range from toggle switches used in many simple circuits, including perhaps your labo-

ratory kit, to power transistors used in power electronics and motor controllers and to

literally billions of low-power switching transistors used in your computer. In the present

section, we introduce the meaning of the transistor switch and explain its operation based

on simple examples.

13.1.1 Switch Concept

An electronic switch shown in Fig. 13.1b is a circuit block that connects or disconnects

two nodes a and b in a circuit depending on the voltage Vin (switch control voltage)

supplied to a control terminal of the switch.

Therefore, any electronic switch should have at least three terminals: the control

terminal Vin referenced to ground and two line terminals a and b. We note the following:

1. An electronic switch is typically a transistor switch. The transistor is a semicon-

ductor device. This is in contrast to an electromechanical switch such as a relay.

2. The electronic switch always has a small but finite resistance (resistance between

terminals a and b). The goal of a circuit designer is to reduce this resistance and the

associate power loss in the switch. This can be done using proper circuit optimiza-

tion, without modifying the transistor itself.

Vin

a

b0V

+

-

b)a)

Fig. 13.1. Left—a mechanical copper switch. The background image is from Nicholas Gessler’s
website, Duke University (NC) and Umea University, Sweden. Right—schematic of a basic
electronic switch with a control voltage Vin.
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3. The electronic switch may use two distinct transistor types: the so-called metal-

oxide-semiconductor field-effect transistors (MOSFETs) studied in Chapter 18 and

the bipolar junction transistors (BJTs) studied in Chapter 17, respectively.

4. In this chapter, we will always implement MOSFET transistors since they are

specifically used in digital circuits including microprocessors and computers.

5. The most important feature of the switch is that it consumes virtually no input

power. Namely, the input current Iin into the control terminal in Fig. 13.1b is zero or

close to zero, in contrast to the control voltage Vin.

An electronic switch is an important part of many analog circuits including power

conversion circuits (DC to DC, AC to DC, etc.), DC and ACmotor drives, etc. The switch

is capable of turning on and off large line currents between terminals a and b. For

example, a properly designed electronic switch may in principle allow us to turn on a

1-MW power plant with a single 9-V battery. On the other hand, an electronic switch is

also the heart of any digital circuit. We could in principle build low-power switches using

operational amplifiers studied in Chapter 5. However, a powerful, simple, versatile, and

by far the fastest switch is a single-transistor switch.

13.1.2 Switch Position in a Circuit

Depending on the switch position in a circuit, we distinguish between:

1. A ground-side switch

2. A power-side switch

3. A series switch

All three switching configurations are quite intuitive; they are shown in Fig. 13.2.

Resistor RL designates a load. The switch position dictates the type of transistor to be used

and the acceptable values of control voltages. The details are given in the following text.

For example, the ground-side switch is implemented with an n-type transistor (MOSFET

or BJT). Such a transistor conducts by negative carriers—electrons. The switch is

normally open (which means that it is open at zero control voltage), but is closed at

higher control voltage values. In contrast to that, the power-side switch is implemented

with a p-type transistor (MOSFET or BJT). Such a transistor conducts by positive

carriers—holes. The switch is normally closed (closed at zero control voltage), but is

open at such control voltage values that are close to the supply voltage. The series switch

(the switch between two power blocks of a larger circuit) may use either transistor type.

However, the control voltage must be higher than the voltage to be switched. From the

viewpoint of a simple resistive load RL in Fig. 13.2, it really does not matter where the

control switch is exactly located: on the ground side or on the power side. Hence, either

type of the switch may be chosen. However, more sophisticated loads such as motors or

solenoids are controlled by several switches that are located both on the ground side and

on the power side and, thus, have quite distinct features.
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13.1.3 MOSFET Switches and Threshold Voltage

Among a variety of transistor types and switches, the switches based on metal-oxide-

semiconductor (MOS) transistors are most widely used in modern analog switching

applications. The MOS transistor switches almost entirely dominate the digital circuitry;

they serve about 98 % of those circuits. Overall, about 90 % of the electronic market

works with MOSFETs. Two of such switches—the ground-side switch (normally open)

and the power-side switch (normally closed)—are shown in Fig. 13.3.

We will assume that both switches operate with a supply voltage VS. Sometimes, the

ground-side switch is also called the pull-down switch, whereas the power-side switch is

called the pull-up switch. This is indicated in Fig. 13.3. The abbreviation NMOS in

0V

+
-

RL

VS

Ground side switch

0V

+
-

RL

VS

Power side switch

RL

Series switch

Fig. 13.2. Switch positions in a circuit.

D

S

G

Vin

0V

NMOS transistor

= Vin

0V

Pull-down switch

Open when V <Vin Th

Closed when V >Vin Th

S

D

G

Vin

VS

PMOS transistor

= Vin

VS

Pull-up switch

Closed when V <V -|V |in S Th

a

b

a

b

b

a

b

a Open when V >V -|V |in S Th

a)

b)

Fig. 13.3. Two types of electronic switches on the basis of field-effect transistors: the pull-down or
ground-side switch (normally open) and the pull-up or power-side switch (normally closed).
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Fig. 13.3 means n-type or n-channel MOS transistor, whereas the abbreviation PMOS in

Fig. 3 corresponds to a p-type or p-channel MOS transistor. The arrow in the (simplified)

transistor symbols always indicates the (normal) current direction. Transistor terminals in

Fig. 13.3 are called drain (D), gate (G), and source (S). An important feature of the

switches in Fig. 13.3 is that:

1. All NMOS transistors should be connected either to ground or to another NMOS

transistor—see Fig. 13.3a. This is the ground-side switch.

2. Similarly, all PMOS transistors should be connected either to the voltage source VS

or to another PMOS transistor—see Fig. 13.3b. This is the power-side switch.

Both transistors (NMOS and PMOS) are often called complementary transistors or

simply complements. CMOS (complementary MOS) circuits use both of them. Fig-

ure 13.4 shows a typical switching diagram for the two transistor switches. We indicate

the switch state as a function of the control voltage Vin. We assume in this chapter that the

transistor switch is precisely an open circuit when it is OFF and that it is a short circuit of

zero resistance when it is ON. Such an assumption corresponds to an ideal switch. It is

acceptable during the initial study, but it may be a crude approximation to reality when

the accurate results are required.

It is seen from Figs. 13.3 and 13.4 that the switching behavior is determined by the

so-called transistor threshold voltage. The NMOS transistor has a threshold voltage VTn

> 0; the PMOS transistor has a threshold voltage VTp < 0. The two switching transistors

in Figs. 13.3 and 13.4 are said to be matched when their threshold voltages coincide in

terms of the absolute values:

VTn ¼ VTp

�

�

�

� ¼ VTh ð13:1Þ

where VTh is the common threshold voltage. We will only consider the matched transis-

tors. The meaning of transistor threshold voltage is quantified in Chapter 18. With

VS

0V

OFF

ON

OFF

ON

VTh

IV ITh

Vin NMOS
ground side

PMOS
power sideSupply

voltage

Ground

Fig. 13.4. Switching diagram for two MOSFET transistors.
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reference to Fig. 13.4, the NMOS transistor is OFF when the control voltage Vin is less

than the threshold voltage VTh. It is ON for all other control voltages. Conversely, the

PMOS transistor is OFF when the control voltage Vin is close to the supply voltage:

V in > V S � V Thj j. It is ON for all other control voltages. The typical values are

0:4 V � VTh � 4 V. There is no current into the gate of the transistor (control terminal),

either in ON or OFF state. Therefore, virtually no input power is needed to turn the

transistor switch ON or OFF. The mid-region of operation (when both transistors are ON)

in Fig. 13.4 corresponds to the saturation state of MOSFETs where the power loss in the

switches themselves becomes significant (transistors will heat up). It also corresponds to

the undefined digital CMOS voltages—see below. Therefore, the mid-region should be

possibly avoided.

Exercise 13.1: A switching circuit driven by a 10-V power supply uses both NMOS and
PMOS transistor switches. The threshold voltage is VTn ¼ 2 V for the NMOS transistor

and V Tp

�

�

�

� ¼ 2 V for the PMOS transistor. What are the acceptable values of the control

voltage Vin to have one switch ON and another OFF?

Answer: 8 V � V in � 10 V and 0 V � V in � 2 V.

In digital circuits, the supply voltage VS may vary from 5 V (0.8-μm CMOS) all the

way down to 1.4 or 1.2 V for a modern 45-nm CMOS process. The transistor threshold

voltages in digital circuits may vary from about 700 mV (0.8 μm CMOS) all the way

down to 200 mV. In analog circuits, the supply voltage may vary widely; it is typically

12 Vor some multiples of this number. The transistor threshold voltages (power transis-

tors are used) are higher, about 2–4 V. Remember again that both switches in Fig. 13.3 or

Fig. 13.4 require zero input current and thus consume zero input power: the input

resistance of two switches is therefore infinite with a high degree of accuracy. However,

they could source or sink a significant power to a load. For example, the NMOS transistor

may sink a significant load current and discharge a load capacitor down to zero volts (this

is the reason for the name pull down). Similarly, the PMOS transistor may source a

significant current into a load (i.e., pull up the load voltage).

13.1.4 Sketch of Transistor Physics

The theory and the basic circuit design for MOS field-effect transistors (MOSFETs) are

studied in Chapter 18. Here, we discuss a simplified transistor model in Fig. 13.5

representing an n-channel MOSFET. The transistor is a semiconductor device; the

NMOS transistor includes two metal electrodes, drain (D) and source (S), with a weakly

conducting semiconductor material (Si or GaAs) between them—a channel. A third

electrode (gate or G) with voltage Vin is attached to the channel through an insulator.

When the input voltage Vin versus ground is close to zero, the channel is virtually an open

circuit, with a very low conductivity—see Fig. 13.5a.
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When the input voltage Vin versus ground is close to zero, the channel is virtually an

open circuit, with a small concentration of charge carriers and a very low conductivity—

see Fig. 13.5a. The switch is thus open (normally open). When a positive voltage Vin is

applied to the control terminal, the corresponding electric field attracts more negative

electron carriers to the channel from the drain and source semiconductor regions with the

rich electron concentration, thus making the channel more conducting. The dependence

of the conductivity on Vin is exponential, i.e., very sharp. When Vin reaches the threshold

voltage VTn or exceeds it, the channel becomes conducting, i.e., resembles a wire—see

Fig. 13.5b. The switch becomes closed. The intrinsic threshold voltage VTn of the NMOS

transistor depends on transistor geometry and doping concentrations. The PMOS tran-

sistor operates in an opposite way. It is closed when the control voltage Vin is close to zero

and opens when Vin reaches the difference between the source voltage VS and the

magnitude of the intrinsic threshold voltage for the PMOS transistor, |VTp|.

Example 13.1: Two circuits in Fig. 13.6 operate with a source V S ¼ 5 V. The transistor

threshold voltages are VTn ¼ VTp

�

�

�

� ¼ 1 V. Find the output voltage Vout to each circuit if

(a) V in ¼ 0:0V, (b) V in ¼ 0:5V, (c) V in ¼ 4:5V, and (d) V in ¼ 5:0V.

Source +nniarD+n

Gate

Substrate
p-doped Si

Gate oxide edixOedixO

Metal
contact

Metal
contact

W

Source +nniarD+n

Gate

edixOedixO

Metal
contact

Metal
contact

W

+ + + + + +

a)

b)

Electric field at the initial
time moment

v >Vin Th
vD

iDiD

v = 0 Vin
vD

v = 0 VS

v = 0 VS

Fig. 13.5. Simplified diagram of transistor conduction for an n-channel MOSFET: (a) zero control
voltage and (b) control voltage approaching the threshold value.
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Example 13.1 (cont.):

Solution:We use Fig. 13.4 as a reference and fill out Table 13.1 that follows. The transistor
switch is replaced by a short circuit when it is ON and by an open circuit when it is OFF.

Table 13.1. Output voltages to the circuits from Fig. 13.6.

Input

voltage

Switch state and output voltage—

NMOS switch

Switch state and output voltage—

PMOS switch

0 V OFF (Vout is determined by the rest of

circuit)

ON V out ¼ 5V

0.5 V OFF (Vout is determined by the rest of

circuit)

ON V out ¼ 5V

4.5 V ON V out ¼ 0V OFF (Vout is determined by the rest of

circuit)

5.0 V ON V out ¼ 0V OFF (Vout is determined by the rest of

circuit)

The NMOS switch sets the output voltage equal to zero at all high input voltages, whereas
the PMOS switch sets the output voltage equal to 5 V at all low input voltages. This will
allow us to use both switches in digital logic circuits.

We should also mention alternative circuit symbols for the switches shown in

Fig. 13.7.

NMOS transistor

= =

PMOS transistor

Fig. 13.7. Alternative circuit symbols for the transistor switches from Fig. 13.3.

NMOSVin

0V

Vout
PMOS

Vout

VSrest of a circuit

Vin

rest of a circuit

b)a)

Fig. 13.6. Transistor switch operation at different values of the input voltage.
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Section 13.2 Power Switching Circuits

13.2.1 Switching Quadrants

In this section, we introduce and describe the principle of operation for some standard

control switching circuits for motor loads including:

1. A single-transistor switch (one-quadrant switch)

2. A half H-bridge switch with two transistors (two-quadrant switch)

3. A full H-bridge switch with four transistors (four-quadrant switch)

4. A motor speed controller using pulse-width modulation (PWM)

The switching quadrants of load voltage/current are shown in Fig. 13.8. For a resistive

load (a DC heater), the load voltage VL and the load current IL are always positive, i.e., are

in the first quadrant or at zero. Therefore, the one-quadrant switch or a single-transistor

switch considered next is quite sufficient.

Instead of one simple switching option for a resistive load, the motor switching

generally requires four different states:

- Forward mode (the motor spins clockwise—quadrant I)

- Reverse mode (the motor spins counterclockwise—quadrant III)

- Free run to a stop (the motor stops slowly)

- Motor brake (the motor stops suddenly, using the brake effect of the Lorentz force

studied in Chapter 7)

A more involved transistor switch is therefore necessary. Such a switch (the H-bridge)

will be studied step by step. Also, we wish to control the motor speed in a continuous

fashion, which requires pulse-width modulation and the H-bridge modifications studied

next. The motor may also operate as a generator, i.e., in the second and fourth quadrants

in Fig. 13.8. Switching between motor and generator functions requires additional efforts.

III

III

VL

IL

IV

V >0L

I >0L

V <0L

I >0L

V <0L

I <0L

V >0L

I <0L

Fig. 13.8. Quadrants of load voltage and load current.
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13.2.2 Switching a Resistive Load

A switching circuit with one NMOS transistor (the ground-side switch) is shown in

Fig. 13.9 for a resistive load RL. The circuit always operates in the first quadrant in

Fig. 13.8. In practice, the circuit must include a current-limiting resistor.

Example 13.2: In Fig. 13.9, an IRF510 n-channel power MOSFET is used with
VTn ¼ 3:5 V. Establish power delivered to the resistive load when the control voltage
Vin switches from 0 V to 9 V.

Solution:When the control voltage is 0 V, the NMOS transistor switch is OFF according to
the switching chart in Fig. 13.4. The load is disconnected from the source; the load power
is zero. When V in ¼ 9 V, the switch closes. In the ideal approximation of zero switch
resistance, the load voltage is the source voltage, and we obtain the load power of 14.4 W.
In reality, the switch in Fig. 13.9 has to be carefully optimized to avoid losses in the
transistor. For the present example (with the circuit parameters from Fig. 13.9), the more
accurate analysis predicts the load power of 12.8 W and the transistor resistance of 0.6 Ω.
We will learn in Chapter 18 that this value can be reduced by increasing the control voltage
signal Vin.

13.2.3 Switching a DC Motor

A motor load requires a more involved treatment compared to the simple resistive load.

In order to proceed further, we should recall the motor model at DC steady state. This

model shown in Fig. 13.10 includes the induced emf, E (the dependent voltage source),

and the armature resistance, RM.

0V

NMOS

+
-

Vin

a)

b)

R =10L

VL+ -

IL

IL

V =12VS

V =0L+ -

Fig. 13.9. Switching circuit for a resistive load operating in the first quadrant.

=

E

+

-

RM E

+

-

~

Fig. 13.10. Motor model and its simplification.
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In order to perform a qualitative analysis of switching circuits, the (small) armature

resistance RMmay be ignored. This leads us to a simplified motor model with no armature

resistance also shown in Fig. 13.10. We will use this model in what follows. When the

motor in Fig. 13.11a operating in the forward mode is disconnected from the main source

by virtue of a top switch, one should distinguish between two different states—see

Fig. 13.11b, c, respectively. The first state is shown in Fig. 13.11a. The second switch

is left disconnected. Then, one of motor terminals is left disconnected. Therefore, the

current through the motor, Ia, is exactly zero just after switching. The motor torque T is

also zero. However, the motor angular speed, ω, is not zero, i.e.,

I a ¼ 0 ) T ¼ KTI a ¼ 0, ω 6¼ 0 ð13:2aÞ

The motor speed slowly decreases toward zero depending on its internal friction. We call

this state free run to a stop. The second state is shown in Fig 13.11b. The motor is

disconnected from the main source, but its terminals are shorted out so that the induced

emf E is exactly equal to zero just after switching. The motor speed is also zero. However,

the motor torque is not zero; it actually has an opposite sign and quickly decelerates the

load, due to current Ia fed back into the motor, i.e.,

E ¼ 0 ) ω ¼ E=KV ¼ 0, T 6¼ 0 ð13:2bÞ

We call this state motor brake.

Note that for a purely resistive load, the states in Fig.13.11b, c will be identical. Both

current through the load and the voltage across the load are zero just after disconnecting

the top switch. The same treatment of Fig. 13.11 holds for a reverse mode of operation,

when the supply current through the motor flows in the opposite direction. We could also

define two similar switching states for this mode—free run to stop and a brake.

13.2.4 One-Quadrant Switch for a DC Motor

A simple switching circuit—the one-quadrant switch—for a DC motor is shown in

Fig. 13.12. It operates in the first quadrant. When the transistor switch is closed, the

motor operates in the forward mode—see Fig. 13.12a. When the switch opens, the motor

a)
brake

forward mode free run to a stop

I =0a

E+ -

Ia

E=0+ -

Ia

b) c)

E+ -

0V 0V 0V

Fig. 13.11. Two possible motor states after disconnecting the power source.
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will operate in a free run to a stop mode—see Fig. 13.12b. No other modes of operation

are possible. Note that in Fig. 13.12 we use different notations compared to Fig. 13.9:

VL ! E, IL ! I a. Those notations are common in the theory of electric machines.

E stands for the induced emf and Ia stands for an armature current of a motor.

Example 13.3: Consider a switching circuit with a power NMOS transistor shown in
Fig. 13.12. The IRF510 n-channel power MOSFET from Vishay Siliconix with V Tn ¼ 3:5
V is used again; the switching voltage Vin is either 0 Vor 9 V. We wish to describe motor
behavior when switch opens.

Solution:When the control voltage Vin in Fig. 13.12 is 9 V, the NMOS transistor switch is
ON according to the switching chart in Fig. 13.4. The motor is in the forward mode in
Fig. 13.12a. The term forward mode means that the first quadrant in Fig. 13.8 is used.
When Vin in Fig. 13.12 switches to 0 V at t ¼ 0, the switch opens. The motor current
becomes exactly zero and that the motor does not create any extra torque. However, the
induced emf or the voltage across the motor E continues to stay the same. Then, it slowly
decreases in time. So does the motor velocity. Such a state shown in Fig. 13.12b is called
free run to a stop. This state is useful, but it may be not quite sufficient if we also wish to
implement a true brake, i.e., suddenly stop the motor. To do so, the circuit in Fig. 13.12
needs to be modified as described in the following text.

13.2.5 Half H-Bridge for a DC Motor

We aim to modify the circuit in Fig. 13.12 in order to implement the motor brake option,

which was impossible with the previous circuit. The new circuit is shown in Fig. 13.13.

The circuit has the name of a half H-bridge for an obvious reason. It uses two switches:

the ground-side NMOS transistor and the power-side PMOS transistor. Under no cir-

cumstances shall both transistors be turned on simultaneously.

forward mode

free run to a stop

0V

NMOS

+
-

Vin

a)

b)

I =0a

Ia

V =12VS

+

-

E

E+ -

Ia

+

-

E

Fig. 13.12. Switching circuit for a DC motor operating in the first quadrant.

Chapter 13 Section 13.2: Power Switching Circuits

XIII-653



Example 13.4: We consider the switching circuit with power NMOS/PMOS transistors
shown in Fig. 13.13. We use an IRF520 n-channel power MOSFETand its complement, an

IRF9520 p-channel power MOSFET, both from Vishay Siliconix. We assume that V Tn

¼ VTp

�

�

�

� ¼ 3:5V; the switching voltages V1,2 are either 0 Vor 9 V. The circuit behavior is

studied when two control voltages are given by
(i) V 1 ¼ 0V,V 2 ¼ 0V, (ii) V 1 ¼ 9V,V 2 ¼ 0V, and (iii) V 1 ¼ 9V,V 2 ¼ 9V.

Solution: In case (i), the PMOS switch is ON; the NMOS switch is OFF. The motor is in
the forward mode shown in Fig. 13.13a.

In case (ii), both switches are OFF. The motor is disconnected from the circuit; the
motor current is zero but not the motor voltage E, which slowly decreases toward zero
while the motor slows down. This is free run to a stop—a state in Fig. 13.13b that is also
achievable with only one transistor as described in the previous subsection. In case (iii),
however, the situation changes. The PMOS switch is OFF whereas the NMOS switch is
ON too. The motor is not only disconnected from the power source, but it is also shorted out.
This means that the motor voltage or induced emf E is exactly zero just after the motor is
shorted out. Then, from Eq. (13.2b), one hasω ¼ 0 for the angular speed. In other words, the
motor should stop suddenly. Such a state is the motor brake shown in Fig. 13.13c. An
experimental demonstration of the brake option in laboratory might be a quite valuable
addition to this analysis. Now, how about spinning the motor in the opposite direction? In
order to do so, we should further modify the switching transistor circuit as described further.

NMOS

PMOS

V1

0V

+
-

V2

a)

c)
brake

forward mode

b) free run to a stop

V =12VS

Ia

+

-

E

I =0a

E+ -

Ia

E=0+ -

E+ -

Ia

Fig. 13.13. Half H-bridge transistor switch with three motor functions.
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13.2.6 Full H-Bridge for a DC Motor

The circuit in Fig. 13.13 is further modified in order to implement the reverse mode of

operation, i.e., spin the motor in the opposite direction. In that case, the motor should

operate in the third quadrant of Fig. 13.8. The modified circuit is shown in Fig. 13.14.

Compared to Fig. 13.13, the circuit includes the second (missing) half of the full

H-bridge. The circuit in Fig. 13.14 has four control voltages V1,V2,V3,V4 and sixteen

possible control states. Under no circumstances shall both transistors in either side of the

bridge be turned on simultaneously (the forbidden stages).

Example 13.5: Determine forbidden states (short-circuited states) for the H-bridge in
Fig. 13.14. Use an IRF520 n-channel power MOSFET and its complement, an IRF9520

p-channel power MOSFET, and assume that V Tn ¼ VTp

�

�

�

� ¼ 3:5V; the switching voltages
V1,2,3,4 are either 0 Vor 9 V.

Solution: The forbidden states correspond to a short circuit on either side of the bridge.
Thus, they are:

i. V 1 ¼ 0V,V 2 ¼ 9V; V 3,V 4 are arbitrary
ii. V 3 ¼ 0V,V 4 ¼ 9V; V 1,V 2 are arbitrary

There are totally seven independent forbidden combinations. If we denote the 0-V control
voltage by 0 (low) and the 9-V control voltage by 1 (high), the forbidden control voltages
V1,2,3,4 in the digital form are:
0100 0001 0101 1001 0110 1101 0111

NMOS

PMOSV1

0V

NMOS

PMOS

+
-

V2

V3

V4

a)

b)

forward mode

reverse modeV =12VS

Fig. 13.14. Full H-bridge transistor switch with four motor functions.
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Example 13.6: The H-bridge in Fig. 13.14 has the switching voltages V1,2,3,4 that are

either 0 V or 9 V. The power MOSFETS with V Tn ¼ V Tp

�

�

�

� ¼ 3:5V are considered.

Determine all meaningful states of the control voltages.

Solution: We need to realize two directions of rotations (forward mode and stop mode),
plus free run to a stop and a brake for each direction. The corresponding states for V1,2,3,4 in
the digital form are those from Table 13.2. For illustration, Fig. 13.15 shows how two first
free run to a stop states have been calculated.

Table 13.2. Allowed states of the control voltages V1,2,3,4 for the circuit in Fig. 13.14.

Forward mode—see Fig. 13.7a 0011

Reverse mode—see Fig. 13.7b 1100 (inverse of the above)

Free run to a stop (reverse or forward mode—five

combinations)

1110

0010

1011

1000

1010 (all off)

Brake (reverse or forward mode—two combinations) 1111

0000

One may note a great similarity in the above bridge and the Wheatstone bridge made of

four resistors. Another bridge, the diode rectifying bridge from Chapter 16, is also very

similar to the present design. What makes those three circuits look so similar even though

they function quite differently? The answer is ability to control current direction using

two distinct current paths—two sides of the bridge. By this point, we have implemented

the motor forward/reverse mode, free run to a stop, and the brake options. And yet, how

about spinning the motor at a given speed, i.e., doing the complete speed control? In order

to do so, we should further modify the switching transistor circuit as described next.

01000111

Fig. 13.15. Identification of two possible free run to a stop states. Two next states (1011 and 1000)
are obtained by permutation.
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13.2.7 Application Example: Pulse-Width Modulation (PWM)

Motor Controller PWM Voltage Form

If someone needs speed control, an obvious way may be to vary load voltage using a

voltage divider with a variable resistor. For example, a 12-V Mabuchi DC motor

RS-380PH-3270 may operate at supply voltages from 4.5 V to 15 V, not necessarily at

exactly the nominal voltage of 12 V. However, this method results in higher losses in the

divider circuit. This method might also result not only in the decrease of the motor speed

but also the motor current Ia and the instantaneous motor torque. Another way of

controlling the speed is the pulse-width modulation (PWM). In that case, the supply

voltage to the motor is varied as a rectangular periodic waveform shown in Fig. 13.16.

The motor operates at its nominal voltage (12 V in Fig. 13.16) during the ON phase

(with the duration ton). The power supply is disconnected from the motor during the OFF

phase with the duration toff. The period of the periodic waveform in Fig. 13.16 is given by

T ¼ ton þ toff ð13:3Þ

The frequency (measured in hertz, 1Hz ¼ 1=s) of the waveform is given by

f ¼
1

T
Hz½ � ð13:4Þ

The duty cycle d (fraction) or D (percentage) of the periodic wave form is given by

d ¼
ton

T
, D ¼

ton

T
� 100% ð13:5Þ

When both ON and OFF phases are equal, the duty cycle is said to be exactly 50 %. The

average supply voltage VDC of PWM in Fig. 13.16 is given by

0 0.02 0.04 0.06 0.08 0.1

0

2

4

6

8

10

12

14

time, sec

ton toff

V , VS

T

VDC

Fig. 13.16. Pulse-width modulation of the supply voltage to the motor.
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VDC ¼
ton

T
V S ¼ dV S ð13:6Þ

This is the voltage that will be actually applied to a motor. Thus, the PWM also decreases

the average supply voltage but in the lossless way.

Example 13.7: Determine all parameters of the PWM voltage in Fig. 13.16 including
period, frequency, duty cycle d, and the average voltage VDC.

Solution: From Fig. 13.16 by observation, ton ¼ 30 ms, toff ¼ 10 ms. Therefore,
T ¼ 40 ms, f ¼ 1=0:04 ¼ 25 Hz. We further find the duty cycle and the average voltage
in the form

d ¼ ton=T ¼ 0:75, VDC ¼ dV S ¼ 0:75� 12 ¼ 9 V ð13:7Þ

Thus, varying the duty cycle changes the output voltage VDC in Fig. 13.16.

According to the equivalent motor circuit, one can write for the motor angular speed ω

(again neglecting the motor armature and brush resistance RM and using the voltage

constant of the DC motor, KV):

ω ¼
E

KV

�
VDC

KV

ð13:8Þ

Equation (13.8) says that applying the PWM with d ¼ 0:75 shown in Fig. 13.16 to a

12-V DC motor results in the average supply voltage of 9 V and the motor speed

reduction of 25 %.

PWM Realization

Commercial PWM controllers use the PWM applied directly to four transistors of the

H-bridge shown in Fig. 13.14 at the frequencies of approximately 10–20 kHz. A

laboratory setup that could be driven by a simple function generator is shown in

Fig. 13.17. This setup uses one more NMOS transistor as a switch controlling the

PWM but still keeps the full functionality of the H-bridge. The NMOS switch is normally

OFF (OFF at zero gate voltage). Therefore, the control signal applied to the transistor gate

from a function generator is identical in form to the PWM supply voltage. However, the

supply voltage in Fig. 13.17 has indeed the peak value of 12 V, whereas the control signal

may have different peak values of 9 V, 10 V, 12 V, etc. Note that the use of both PMOS

and NMOS transistors is intuitively very appealing. However, the present CMOS design

of the H-bridge might have higher losses in the PMOS power transistors. Therefore, an

H-bridge with the only NMOS transistors is typically used since it has a lower loss

(Fig. 13.18).
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NMOS

PMOSV1

0V

NMOS

PMOS

+
-

V2

V3

V4

V =12VS

NMOSPWM form from function generator

Fig. 13.17. Realization of the PWMwith one more switching transistor added to the H-bridge. The
control signal to the transistor gate is supplied by a function generator.

H-bridge

PWM

Fig. 13.18. PWM motor controller in undergraduate laboratory. The H-bridge is controlled by a
DIP switch. The PWM control signal to the transistor gate is supplied by a function generator.

Chapter 13 Section 13.2: Power Switching Circuits

XIII-659



Section 13.3 Digital Switching Circuits

A digital circuit is the same electric circuit except for the fact that it performs a different

function. For example, previously we have used transistors to control the motor. Now, we

will use the same transistors and even in a similar configuration, in order to perform logic

operations and arithmetic operations. An immediate question to ask is how an electric

circuit may be used to operate with numbers because we used to think that the circuit

operates with voltages and currents only. The simple answer here is that virtually any

digital circuit, including the computer that you are using right now, employs electric

voltages as a carrier of information. A digital circuit consists of logic gates. A logic gate is

a switching circuit that we shall study in this section. Any logic gate is an extension or a

generalization of a logic inverter, which is considered first.

13.3.1 NOT Gate or Logic Inverter

Consider the circuit shown in Fig. 13.19. It includes the PMOS transistor (normally ON)

as the power-side switch and the NMOS transistor (normally OFF) as a ground-side

switch. The circuit is powered by a 5-V power supply. The two transistors are matched

and have equal (absolute) threshold voltages V Tp

�

�

�

� ¼ V Tn ¼ 1 V. The circuit is identical

to the half H-bridge considered in the previous section, but it serves a different purpose.

The input voltage to the circuit follows the first column of Table 13.3. Further, we shall

use the chart from Fig. 13.4 of Section 13.1 in order to study the circuit behavior. When

the input voltage is low (0 V), the NMOS switch is OFF and the PMOS switch is ON. The

output voltage is 5 V. When the input voltage is high (5 V), the situation changes to the

opposite: the NMOS switch is ON and the PMOS switch is OFF. The output voltage is

0 V. Hence the output voltage follows the second column of Table 13.3.

NMOS

PMOS
G

G

Vin

0V

Vout

5 V=VS

Fig. 13.19. CMOS logic inverter or NOT gate.

Table 13.3. Output voltage of the logic inverter versus the input
voltage.

Vin Vout

0 V 5 V

5 V 0 V
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If we denote the 0-V voltage by value 0 (low or false) and the 5-V voltage by value

1 (high or true), Table 13.3 is converted to the so-called truth table—Table 13.4.

The circuit thus performs logic inversion (substitutes zero instead of one or false

instead of true and vice versa). The symbol for this is the logic NOT gate shown in

Fig. 13.20.

Note that the input voltage may slightly vary around zero volts or around five volts.

As long as these variations do exceed 1 V (do not exceed threshold voltages of

the transistors), the circuit shall still output exactly the results shown in Tables 13.3

and 13.4. The corresponding task is suggested as a homework problem. This property

of the NOT gate is critical—it means that the present logic operation is immune to

electric noise.

13.3.2 NOR Gate and OR Gate

NOR Gate
Consider the circuit with four transistors shown in Fig. 13.21. This circuit may be

considered as an extension of the logic inverter shown in Fig. 13.19. Now, one has two

input voltages V1 and V2 instead of one input voltage Vin. The circuit is powered by a 5-V

power supply. All four transistors (two PMOS and two NMOS transistors) are matched

and have equal threshold voltages VTp

�

�

�

� ¼ VTn ¼ 1 V.

Table 13.4. Truth table for the logic circuit in Fig. 13.19—the logic
inverter. We substitute 0 instead of 0 V and 1 instead of 5 V.

Vin Vout

0 1

1 0

NMOS

PMOS
G

G

Vin

0V

Vout

5 V=VS

Vin Vout=

NOT gate

Fig. 13.20. Symbol for the NOT gate along with the corresponding circuit diagram.

Chapter 13 Section 13.3: Digital Switching Circuits

XIII-661



The input voltages to the circuit follow the first columns of Table 13.5. Further, we

shall use the chart from Fig. 13.4 of Section 13.1 in order to study the circuit behavior.

When the input voltages V1 and V2 are both low (0 V), the NMOS switches are OFF and

the PMOS switches are ON. The output voltage is therefore 5 V. When the input voltage

V1 is high (5 V), irrespectively of the value of the input voltage V2, the leftmost NMOS

transistor is ON, so that the output voltage is always 0 V. A similar situation occurs when

V2 is high (5 V). The output voltage is always 0 V. Hence the output voltage follows the

last column of Table 13.5.

If we again denote the 0-V voltage by value 0 (low or false) and the 5-V voltage by

value 1 (high or true), Table 13.5 is converted to the truth table—Table 13.6.

It follows from Table 13.6 that this circuit does not perform the logic OR operation

(outputs true when at least one input is true). Rather, it does exactly the opposite.

NMOS

PMOSV1

0V

Vout

5V=VS

PMOSV2

NMOS

0V

V1 V2

Fig. 13.21. CMOS NOR logic gate.

Table 13.5. Output voltage of the NOR gate versus the input voltages.

V1 V2 Vout

0 V 0 V 5 V

0 V 5 V 0 V

5 V 0 V 0 V

5 V 5 V 0 V

Table 13.6. Truth table for the logic circuit in Fig. 13.21—the NOR gate.

V1 V2 Vout

0 0 1

0 1 0

1 0 0

1 1 0
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Therefore, this circuit is called NOT OR or simply the NOR logic gate. Its symbol is

shown in Fig. 13.22.

Note that the input voltagesV1 andV2may slightly vary around zero volts or around five

volts. As long as these variations do not exceed 1 V (do not exceed threshold voltages of

the transistors), the circuit shall still output exactly the results shown in Tables 13.5 and

13.6. The corresponding task is suggested as a related homework problem. This property

of the NOR logic gate (and of all other logic gates) is critical—it shows us that arbitrary

logic operations with voltages are immune to electric noise.

OR Gate

How to construct the gate that performs an OR operation? One way is to contemplate the

corresponding circuit diagram, which will include a number of PMOS and NMOS

transistors. Yet another way is to mention that the OR gate is simply obtained by a series

combination of the NOR gate and the NOT gate—see Fig. 13.23. The corresponding truth

table is Table 13.7. Further, we may substitute the real circuits from Fig. 13.19 and

Fig. 13.21 instead of symbols in Fig. 13.23 and obtain the resulting circuit for the OR

gate. It will include six transistors total. Generally, the way of constructing logic circuits

outlined in Fig. 13.23 is simple and powerful.

Note that the NOR (and OR) gate may have an arbitrary number of inputs as shown in

Fig. 13.24. The resulting circuit shall be a straightforward modification of the circuit in

Fig. 13.21. The corresponding task is suggested as a homework problem.

NOR gate
V1

V2

Vout

Fig. 13.22. Symbol for the NOR gate.

NOR gate      +     NOT gate
V1

V2

Vout=Vout

V1

V2

OR gate

Fig. 13.23. Construction of the OR gate from NOR gate and NOT gate.

Table 13.7. Truth table for the OR gate.

V1 V2 Vout

0 0 0

0 1 1

1 0 1

1 1 1
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Example 13.8: An oxygen sensor outputs high voltage (5 V) when the oxygen concen-
tration in a room is not sufficient. Otherwise, its output is low (0 V). A temperature sensor
outputs high voltage (5 V) when the temperature in a room is too high. Otherwise, its
output is low (0 V). Construct a logic circuit that outputs high voltage (5 V) and lights up a
red indicator when either of the sensor readings is high.

A. Present the symbolic circuit diagram.
B. Present the electric circuit diagram including individual transistors.

Solution: The input to the logic circuit will consist of two voltages V1 and V2—sensor
outputs. The logic circuit itself is the OR gate with two inputs shown in Fig. 13.23.
According to Table 13.7, it does output the high voltage when either of its inputs is
high. The electric circuit diagram is the transistor circuit in Fig. 13.21 in series with the
circuit from Fig. 13.19.

13.3.3 NAND Gate and AND Gate

NAND Gate
Consider again the circuit with four transistors shown in Fig. 13.25. The difference from

the NOR gate circuit in Fig. 13.21 is that the PMOS transistors are now in parallel, but the

NMOS transistors are in series. The circuit has two input voltages, V1 and V2, similar to

the NOR gate. The circuit is powered by a 5-V power supply. All four transistors (two

PMOS and two NMOS transistors) are matched and have equal threshold voltages

V Tp

�

�

�

� ¼ V Tn ¼ 1 V.

NOR gate

V1
Vout

V2

V3

Fig. 13.24. The NOR gate with three inputs.

PMOS

NMOSV1

0V

Vout

5V=VS

NMOSV2

PMOS
V1 V2

Fig. 13.25. CMOS NAND logic gate.
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The input voltages to the circuit follow the first columns of Table 13.8. Then, we use

the chart from Fig. 13.4 of Section 13.1 in order to determine the circuit behavior. When

either of the input voltages V1 and V2 is low (0 V), one of the PMOS switches is always

ON, so that the output voltage is always high (5 V). Only when both input voltages are

high, both PMOS switches are OFF, but the NMOS switches are ON. The output becomes

low (0 V). Hence the output voltage follows the last column of Table 13.8.

If we again denote the 0-V voltage by value 0 (low or false) and the 5-V voltage by

value 1 (high or true), Table 13.8 is converted to the truth table—Table 13.9.

It follows from Table 13.9 that this circuit does not perform the logic AND operation

(outputs true only when both inputs are true). Rather, it does exactly the opposite.

Therefore, this circuit is called NOT AND or simply the NAND logic gate. Its symbol

is shown in Fig. 13.26.

AND Gate

How to construct the gate that performs an AND operation? Similar to the OR gate from

the previous subsection, the AND gate is simply obtained by a series combination of the

NAND gate and the NOT gate shown in Fig. 13.27.

Table 13.8. Output voltage of the NAND gate versus the input voltages.

V1 V2 Vout

0 V 0 V 5 V

0 V 5 V 5 V

5 V 0 V 5 V

5 V 5 V 0 V

Table 13.9. Truth table for the logic circuit in Fig. 13.25—the NAND gate.

V1 V2 Vout

0 0 1

0 1 1

1 0 1

1 1 0

NAND gate
V1

V2

Vout

Fig. 13.26. Symbol for the NAND gate.
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The corresponding voltage table is Table 13.10; the truth table is Table 13.11. Further,

we may substitute the real circuits from Figs. 13.25 and 13.19 instead of symbols in

Fig. 13.26 and obtain the resulting circuit for the AND gate. It will include total six

transistors.

Note that the NAND (and AND) gate may have an arbitrary number of inputs—see

Fig. 13.28. The resulting circuit will be a straightforward modification of the circuit in

Fig. 13.27. The corresponding task is suggested as a homework problem.

NAND gate      +     NOT gate
V1

V2

Vout=Vout

V1

V2

AND gate

Fig. 13.27. Construction of the AND gate from NAND gate and NOT gate.

Table 13.10. Output voltage of the AND gate versus the input voltages.

V1 V2 Vout

0 V 0 V 0 V

0 V 5 V 0 V

5 V 0 V 0 V

5 V 5 V 5 V

Table 13.11. Truth table for the AND gate.

V1 V2 Vout

0 0 0

0 1 0

1 0 0

1 1 1

NAND gate

V1
Vout

V2

V3

Fig. 13.28. The NAND gate with three inputs.
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Example 13.9: We study the operation of the AND gate one more time and perform a
simple experiment. Please open your calculator and type 0. Apart from an intermediate
circuitry, you’ve just sent 0 V to input V1 in Table 13.10. Now type the multiplication sign.
You’ve chosen the AND gate. Then type 0 again. You’ve sent 0 V to input V2 in
Table 13.10. Then hit ENTER. Your result is zero or Vout¼ 0 V. Thus, the calculator
multiplication 0� 0 ¼ 0 relates to voltage operations by

0� 0 ¼ 0 is equivalent to! V1 V2 Vout

0 V 0 V 0 V

The calculator multiplication 0� 1 ¼ 0 relates to voltage operations by

0� 1 ¼ 0 is equivalent to! V1 V2 Vout

0 V 5 V 0 V

The calculator multiplication 1� 0 ¼ 0 relates to voltage operations by

1� 0 ¼ 0 is equivalent to! V1 V2 Vout

5 V 0 V 0 V

Finally, the calculator multiplication 1� 1 ¼ 1 relates to voltage operations by

1� 1 ¼ 1 is equivalent to! V1 V2 Vout

5 V 5 V 5 V

Thus, with one logic gate, we can accomplish the multiplication of ones and zeros. This is
not much, but a digital circuit may include a large number (thousands and even millions) of
such logic gates.

Example 13.10: A humidity sensor outputs high voltage (5 V) when the humidity
percentage in a room is too high. Otherwise, its output is low (0 V). A temperature sensor
outputs high voltage (5 V) when the temperature in a room is too high. Otherwise, its
output is low (0 V). Construct a logic circuit that outputs high voltage (5 V) and lights up a
red indicator only when both sensor readings are high.

A. Present the symbolic circuit diagram.
B. Present the electric circuit diagram including individual transistors.

Solution: The input to the logic circuit will consist of two voltages V1 and V2—sensor
outputs. The logic circuit itself is the AND gate with two inputs shown in Fig. 13.27.
According to Table 13.10, it outputs the high voltage if and only if both inputs are high.
The electric circuit diagram is the transistor circuit in Fig. 13.25 in series with the circuit
from Fig. 13.19.
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13.3.4 Simple Combinational Logic Circuits: Switching Algebra

The primary purpose of the logic gates is to serve as a building block of a complex digital

system. At the same time, they are also useful as stand-alone components in the form of

so-called logic circuits. Logic circuits consist of individual logic gates. Logic circuits are

classified into two types: “combinational” and “sequential.” A combinational logic

circuit is one whose outputs depend only on its current inputs. In other words, the

combinational logic circuit has no memory. A combinational logic circuit may contain

an arbitrary number of logic gates, but no feedback loops. Such a circuit is studied next.

In contrast to the analog circuits, logic circuits are not described by KVL and KCL.

Instead, they are described in terms of the switching algebra or Boolean algebra named

in honor of George Boole, an English mathematician. The switching algebra uses only

two values (states):

0 or voltage low

1 or voltage high

There are three basic Boolean operations: NOT, AND, and OR. They exactly corre-

spond to the three logic gates described in the previous subsections. If A and B are two

logic or Boolean variables (inputs to the gates), which can only assume values 0 and

1, then we could describe those operations with the help of Table 13.12 that follows.

Historical: George Boole (1815–1864) invented his two-value algebraic system in 1854.
He was the first who replaced the operation of multiplication by the word AND and
addition by the word OR. In 1938, Claude Shannon showed how to use this system to
describe simple digital circuits.

Table 13.12. Basic logic operations and their symbols.

Operation Symbol Gate Result

Logic inversion Ā NOT
0 ¼ 1

1 ¼ 0

Logic multiplication A � B AND

0 � 0 ¼ 0

0 � 1 ¼ 0

1 � 0 ¼ 0

1 � 1 ¼ 1

Logic addition Aþ B OR

0þ 0 ¼ 0

0þ 1 ¼ 1

1þ 0 ¼ 1

1þ 1 ¼ 1
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Boolean variables form Boolean expressions (the logic circuits), which satisfy a

number of fundamental laws and rules:

Aþ B ¼ Bþ A commutative law of addition ð13:9aÞ

A � B ¼ B � A commutative law of multiplication ð13:9bÞ

Aþ Bþ Cð Þ ¼ Aþ Bð Þ þ C associative law of addition ð13:9cÞ

A � B � Cð Þ ¼ A � Bð Þ � C associative law of multiplication ð13:9dÞ

A � Bþ Cð Þ ¼ A � Bþ A � C distributive law ð13:9eÞ

Aþ 0 ¼ A, Aþ 1 ¼ 1, A � 0 ¼ 0, A � 1 ¼ 1, Aþ A ¼ A, Aþ A ¼ 1,

A � A ¼ A, A � A ¼ 0, A ¼ A

ð13:9f Þ

Exercise 13.2: Simplify the Boolean expressionAþ A � B (AND gate and OR gate applied
to inputs A and B).

Answer: Aþ A � B ¼ A.

13.3.5 Universal Property of NAND Gates: De Morgan’s Laws

When looking for logic gates in the form of integrated circuits (ICs), you will probably

encounter a large number of NAND gate chips, with up to four gates per chip. A typical

example is a MM74HC00 quad NAND gate from Fairchild Semiconductor that currently

costs $0.50 (a 14-pin DIP package). Why are the other gates not so popular? The reason

for such a selection is simple: the NAND gate is a universal gate so that all other gates

(NOT, AND, OR, and NOR) can be constructed from NAND gates when necessary.

Furthermore, the NAND gate is faster (has a smaller number of transistor and a smaller

propagation delay) than an AND gate or an OR gate. The above statement is proved for

OR (and NOR) gates using De Morgan’s laws. These laws are given by two Boolean

expressions, for two (or more) Boolean variables X and Y, which are

Aþ B ¼ A � B ð13:10aÞ

A � B ¼ Aþ B ð13:10bÞ

Equation (13.10a) states that any OR gate may be constructed from a NAND gate with the

inverted inputs. Vice versa, Eq. (13.10b) states that any AND gate may be constructed

from a NOR gate with the inverted inputs. Interestingly, the NOR gate is also a universal

gate: all other gates could in principle be constructed from the NOR gates. De Morgan’s

laws are employed to simplify and transform Boolean expressions, so that you can use

one sort of gate, generally only using NAND or NOR gates. This leads to cheaper and

faster hardware.
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Exercise 13.3: Using De Morgan’s laws, present the equivalent representation of the OR

gate with two inverted inputs, Aþ B, in terms of the NAND gate(s).

Answer: Aþ B ¼ A � B. Therefore, the OR gate with inverted inputs is exactly equivalent
to one NAND gate and vice versa.

Exercise 13.4: Exclusive OR or XOR gate, which symbol is shown in Fig. 13.29, is
formed by a combination of other gates. However, because of its fundamental importance,
this gate is often treated as a basic logic element. The output of the XOR gate is given by

C ¼ A � Bþ A � B where A and B are the inputs. Give an alternative expression for the
output that involves the OR gate in the form Aþ Bð Þ.

Answer: C ¼ Aþ Bð Þ � A � B.

13.3.6 Logic Circuit Analysis and Application Example: Logic Gate Motor

Controller

Logic circuit analysis implies finding the behavior of the logic circuit for various input

combinations. Given a logic diagram for a combinational circuit, we obtain a formal

description of its operation, either in the form of a truth table or as a timing diagram if

time dependence is involved. As an example, we consider an H-bridge controller from the

previous section built in the laboratory and shown in Fig. 13.30c.

Obtaining Truth Table of the Logic Circuit

The H-bridge in Fig. 13.30a controls a DC motor placed at its center using four power

MOSFETs and four control voltages V1, V2, V3, V4 applied to their gates. Similar to the

Boolean algebra considered in this section, the control voltages could only have high and

low values. The motor has four meaningful states: forward and reverse rotation, free run to a

stop, and brake. On the other hand, four control voltages V1, V2, V3, V4 provide 16 total

possible switching combinations. Some of them are forbidden states (shorting out the

circuit), yet some others are redundant states. Do we really need four independent control

voltages to achieve the meaningful states? The answer is indeed no. Two independent

control voltages would exactly suffice since they provide four independent control combi-

nations, 00, 01, 10, and 11, each of which could be assigned to a particular meaningful state.

Therefore, it is desired to control the H-bridge in Fig. 13.30a not with four independent

XOR gate
V1

V2

Vout

Fig. 13.29. Exclusive OR or XOR gate.
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switches but with only two independent switches shown in Fig. 13.30b. In order to

accomplish this task, a logic circuit can be constructed as shown in Fig. 13.30c. This logic

circuit has two inputs and four outputs. Its analysis results in a truth table which is

Table 13.13 that follows.

Determining Motor State

Further, we use the MOSFET operation chart—see Fig. 13.4 in Section 13.2 of this

chapter—and arrive at Table 13.14, which employs the data of Table 13.13 for control

voltages V1, V2, V3, V4 in order to determine the particular transistor state and finally

establish the motor state.

NMOS

PMOSV1

NMOS

PMOS

+
-

V2

V3

V4

VS

V1

V2

Input 1

Input 2

74ALS00AN

V3

V4

10k

10k

0V

VS

VS

0V

a)

b)

c)

0V

Fig. 13.30. A simple manual two-switch motor controller with three NAND gates.

Table 13.13. Truth table for the logic circuit in Fig. 13.30c.

Input1 Input2 V1 V2 V3 V4

0 0 1 0 1 0

0 1 1 1 0 0

1 0 0 0 1 1

1 1 1 1 1 1
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Thus, the analysis of the logic circuit established the usefulness of the motor controller

in Fig. 13.30c. This controller replaces four switches by two switches while preserving

the full functionality of the H-bridge. Furthermore, it protects the H-bridge against the

forbidden states (short circuits). The controller may be implemented in the laboratory

with one low-cost quad NAND IC—see Fig. 13.31. It is important to note two resistors to

ground in Fig. 13.30b, which are called the pull-down resistors. These resistors assure

that the control voltage does go to zero when the switch is disconnected (no static charge).

When switches “Input1” and “Input2” in Fig. 13.30b operate as functions of time, one

may obtain the corresponding timing diagram for the logic circuit. This task is suggested

in a number of homework problems at the end of this section.

13.3.7 Logic Circuit Synthesis

Logic circuit design is mostly a synthesis of a logic circuit. We start with a verbal

description of the circuit (or function that it should perform) and proceed to the circuit

diagram, which includes a number of logic gates. In modern digital design, the word

description is translated into a program in a so-called hardware description language

(HDL). The HDL synthesizes a logic circuit for such a program so that the designer never

gets involved into the real design process. However, there are still many situations where

the logic circuit is designed and/or modified “by hand.” When a truth table is available,

Table 13.14. Motor states calculated from Table 13.13 and using the MOSFET switching
behavior.

Input1 Input2 V1 V2 V3 V4 Trans. state (1,2,3,4) Motor state

0 0 1 0 1 0 OFF/OFF/OFF/OFF Free run to a stop

0 1 1 1 0 0 OFF/ON/ON/OFF Reverse mode

1 0 0 0 1 1 ON/OFF/OFF/ON Forward mode

1 1 1 1 1 1 OFF/ON/OFF/ON Brake

H-bridge
power
resistors

Fig. 13.31. Manual two-switch H-bridge motor controller from Fig. 13.30 implemented in an
undergraduate laboratory using Digilent Electronics Explorer board with built-in NAND
74HC00 IC.
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there is always a way to design the logic circuit using the sum-of-products approach or the

product-of-sums approach. Both these methods are studied in digital circuit design

classes. However, the established logic circuits may be way too cumbersome and

expensive. They often need further minimization. This is accomplished based on

Karnaugh maps, which provide a graphic representation of the truth table. The logic

circuit design then becomes an exciting engineering design journey, which is beyond the

scope of the present text.

Example 13.11: A county board is composed of three commissioners. Each commissioner
votes on measures presented to the board by pressing a 5-V button indicating whether the
commissioner votes for or against a measure. If two or more commissioners vote for a
measure, it passes. You are asked to help with a logic circuit that takes the three votes as
inputs and lights a green LED (outputs 5 V) to indicate that a measure passed. You can use
OR and/or AND logic gates, as many of them as you need.

Solution: First, we may want to translate the description of the desired operation into a
truth table. The truth table has three logic inputs A,B,C and one output,M. The outputM is
one as long as any combination of A,B,C has at least two ones and is zero otherwise. One
straightforward Boolean expression for the output has the form:

M ¼ A � Bþ A � C þ B � C ð13:11aÞ

The corresponding hardware solution includes three AND gates connected to an OR gate
with three inputs. Another possible Boolean expression for the output has the form:

M ¼ Aþ Bð Þ � Aþ Cð Þ � Bþ Cð Þ ð13:11bÞ

The corresponding hardware solution includes three OR gates connected to an AND gate
with three inputs. The hardware realization of either logic circuit may be implemented with
only NAND gates. The LED will light up at high output voltage (5 Vor close) and be off at
low output voltage (0 Vor close).

13.3.8 The Latch

Most of the transistors today are used in semiconductor memories. Memory devices are

embedded in digital integrated circuits. Memory can occupy most of the area of a

computer processor chip. There are several types of semiconductor memories. We will

describe the topology of a unit cell for one such memory type—the static RAM (SRAM)

or the static random access memory. RAM means that every data bit is accessible any

time unlike hard disk memory. All RAM memories are volatile, which means that they

require a continuous presence of a power supply. SRAM cells provide the fastest

operation among all other memories. SRAM cells are used as cache memory embedded

in a processing unit where speed is critical. The basic memory element, the latch, is

shown in Fig. 13.32. It consists of two cross-coupled inverters connected input to output.

The latch has two stable states listed in Table 13.15. All other states are unstable, which

Chapter 13 Section 13.3: Digital Switching Circuits

XIII-673



means that they contradict the operation of the two logic gates. Thus, any arbitrary initial

voltage distribution will be very quickly transformed to one of the stable states. As long

as power is present, the latch can remain in any of the stable states indefinitely long. In

other words, the latch circuit memorizes the initial state, due to the effect of the positive

feedback.

With the two stable states, the latch circuit is capable of storing one bit of data. One

state is then designated as 0 (LOW) and another as 1 (HIGH). It now remains to design a

mechanism by which the state can be written and read. This is accomplished in a static

RAM memory cell, which uses two additional access (or pass) NMOS transistors.

NMOS

PMOS

Vout1

VS

NMOS

PMOS

Vout2

Vin2

Vin1

VS

Vin1 Vout1

=

b)a)

Vin2 Vout2

G1

G2

G1G2

Fig. 13.32. Basic latch consisting of two inverters.

Table 13.15. Stable states of the latch circuit. Note the inversion of all voltages for two different
states.

State Vin1 Vin2 Vout1 Vout2

#1 1 0 0 1

#2 0 1 1 0
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Summary

Transistor switches

Ground-side NMOS transistor switch (normally OFF)—pull down switch

A. Closes when V in > V tn;

B. For efficient operation, the control voltage Vin
must be as high as possible in the ON position;

C. Complement to PMOS switch

Power-side PMOS transistor switch (normally ON)—pull up switch

A. Opens when V in > V S � V tp

�

�

�

�;

B. For efficient operation, the control voltage Vin
must be as low as possible in the ON position;

C. Complement to NMOS switch

Transistor switching diagram

A. Vin—control voltage;

B. Assume V tn ¼ VTh;

C. Assume V tp

�

�

�

� ¼ VTh;

D. Typical values of VTh are in the range from

0.4 to 4 V

E. VTh depends on transistor geometry and

composition

Transistor motor controllers

H-bridge

Controls a DC motor load enabling:

– Forward mode;

– Reverse mode;

– Free run to a stop;

– Brake states

Available commercially as an H-bridge IC.

Simpler modification—half H-bridge

(continued)
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Basic pulse width modulation (PWM) waveform

Period (sec) T ¼ ton þ toff
Frequency (Hz) f ¼ 1=T

Duty cycle d ¼
ton

T
, D ¼

ton

T
� 100%

Average supply voltage VDC ¼ dVS

Basic logic gates and switching (Boolean) algebra

Logic inverter (NOT gate)

For single-transistor design, resistance R should

be very large

NAND gate

AND gate

(continued)
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NOR gate

OR gate

Exclusive OR (XOR) gate and exclusive NOR (XNOR) gates

Switching (Boolean) algebra

Aþ B ¼ Bþ A

A � B ¼ B � A

Aþ Bþ Cð Þ ¼ Aþ Bð Þ þ C

A � B � Cð Þ ¼ A � Bð Þ � C

A � Bþ Cð Þ ¼ A � Bþ A � C

Aþ 0 ¼ A, Aþ 1 ¼ 1, A � 0 ¼ 0,

A � 1 ¼ 1, Aþ A ¼ A, Aþ A ¼ 1,

A � A ¼ A, A � A ¼ 0, A ¼ A

De Morgan’s laws:

Aþ B ¼ A � B, A � B ¼ Aþ B

(continued)
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Latch (Transistor memory)
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Problems
13.1 Principle of Operation

13.1.1 Switch Concept

13.1.2 Switch Position in a Circuit

13.1.3 MOSFET Switches

13.1.4 Sketch of Transistor Physics
Problem 13.1. Describe the function and major
properties of an electronic switch in your own
words.

Problem 13.2.
A. Describe the meaning of the ground-side

switch, the power-side switch, and the
series switch. Why do we distinguish
between those switch types?

B. Draw the circuit symbol for a switching
NMOS transistor used in the ground-side
switch. Draw the circuit symbol for a
PMOS transistor used in the power-side
switch. Designate the line current direc-
tion in both cases.

Problem 13.3. Two digital circuits shown in the
following figure operate with a single-supply
voltage V S ¼ 1:8 V. The transistor threshold

voltages are V Tn ¼ VTp

�

�

�

� ¼ 0:5 V, which cor-

respond to a 0.18-μm CMOS process. Note:
Every “CMOS process” is a manufacturing pro-
cess for tiny MOSFETs used in digital circuits.
A 0.18-μm CMOS means that the channel
length (gate width) of the MOSFET in
Fig. 13.5 is greater than or equal to 0.18 μm.

NMOSVin

0 V

Vout

PMOS

Vout

VS

rest of a circuit

Vin

rest of a circuit

a)

b)

Find the output voltage Vout to each circuit if:
i. V in ¼ 0:0V
ii. V in ¼ 0:2V
iii. V in ¼ 1:6V
iv. V in ¼ 1:8V

Problem 13.4. Two digital circuits shown in
the figure below operate with a single-supply
voltage V S ¼ 5:0 V. The transistor threshold

voltages are VTn ¼ VTp

�

�

�

� ¼ 1:0 V.

NMOSVin

0 V

Vout

PMOS

Vout

VS

rest of a circuit

Vin

rest of a circuit

a)

b)

Find the output voltage Vout to each circuit if:
i. V in ¼ 0:0V
ii. V in ¼ 0:7V
iii. V in ¼ 5V
iv. V in ¼ 4:6V

Problem 13.5. For the circuit shown in the

figure below, V S ¼ 2:5 V and VTn ¼ V Tp

�

�

�

� ¼
0:5 V (0.25-μm CMOS process). Determine
the output voltage Vout when:

A. V in ¼ 0:0 V
B. V in ¼ 0:2 V
C. V in ¼ 2:3 V
D. V in ¼ 2:5 V
E. V in ¼ 1:0 V

NMOS

PMOS
G

G

Vin

0 V

Vout

VS
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Problem 13.6. For the circuit shown in the

figure below, V S ¼ 2:5 V and VTn ¼ V Tp

�

�

�

� ¼
0:5 V (0.25-μm CMOS process). Determine
the output voltage Vout when:

A. V 1 ¼ 0:0 V, V 2 ¼ 0:0 V
B. V 1 ¼ 0:7 V, V 2 ¼ 0:2 V
C. V 1 ¼ 2:3 V, V 2 ¼ 2:3 V
D. V 1 ¼ 2:3 V, V 2 ¼ 0:0 V
E. V 1 ¼ 1:0 V, V 2 ¼ 1:0 V

NMOS

PMOSV1

0 V

Vout

VS

V2

Problem 13.7. For the circuit shown in the
figure below, V S ¼ 2:5 V and VTn ¼ 0:5 V.
Determine the output voltage Vout when:

A. V in ¼ 0:0 V
B. V in ¼ 0:2 V
C. V in ¼ 2:3 V
D. V in ¼ 2:5 V

The output terminal is disconnected (current
cannot flow into this terminal).

0 V

Vin

VS

Vout

R

Problem 13.8. Draw two alternative circuit
symbols for an NMOS switch. Repeat for the
PMOS switch.

Problem 13.9. For the circuit shown in the
following figure, determine all possible values
of the voltage V. The transistor's threshold volt-
age is 0.5 V.

0 V

V

rest of a circuit

Problem 13.10. For the circuit shown in the
figure below, determine all possible values of
the voltage V. The transistor’s threshold voltage

is V Tp

�

�

�

� ¼ 0:5V; the supply voltage is 2.5 V.

V

VS

rest of a circuit

Problem 13.11. A circuit shown in the figure
below is used to measure the threshold voltage of
the NMOS transistor. Could you explain why?
Hint: Determine all possible values of the
voltage V.

0 V

VS

V~VTn

R(1 M or larger)

Problem 13.12. A circuit shown in the figure
below is used to measure the threshold voltage
of the PMOS transistor. Could you explain why?
Hint: Determine all possible values of the volt-
age V.

0 V

VS

V~V -|V |S Tp

R(1 M or larger)
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13.2 Power Switching Circuit

13.2.1 Switching Quadrants

13.2.2 Switching a Resistive Load
Problem 13.13. For a load shown in the figure
below, determine the quadrant of operation when:

A. VL ¼ �6 V, IL ¼ �1 A
B. VL ¼ 6 V, IL ¼ 1 A
C. VL ¼ 6 V, IL ¼ �1 A
D. VL ¼ �12 V, IL ¼ �2 A

VL

IL

V21V21-

2A

-2A

+

-VL

IL

Problem 13.14. In a switching circuit shown in
the figure that follows, an IRF510 n-channel
power MOSFET with V Tn ¼ 3:5 V is used.
Assuming zero switch resistance, determine
the power delivered to the load when the con-
trol voltage is:

A. 0 V
B. 3 V
C. 12 V
D. 14 V

Vin

0 V

R =5L

+

-

15 V

Problem 13.15. In a switching circuit shown in
the following figure, a power MOSFET with

VTp

�

�

�

� ¼ 3:5 V is used. Assuming zero switch

resistance, determine the power delivered to the
load when the control voltage Vin is

A. 0 V
B. 2 V
C. 15 V
D. 12 V

Vin

0 V

R =5L

+

-

15 V

13.2.3 Switching a DC Motor

13.2.4 One-Quadrant Switch for a DC

Motor
Problem 13.16. Explain in your own words
how switching a motor is different compared
to switching a simple resistor load.

Problem 13.17. Explain in your own words the
difference between the “free run to a stop” and
“brake” states of a DC motor.

Problem 13.18. Prove that a DC motor load
operates as a motor (passive load) in quadrants
I and III in Fig. 13.8 and as a generator (active
load) in quadrants II and IV.

13.2.5 Half H-Bridge for a DC Motor

13.2.6 Full H-Bridge for a DC Motor
Problem 13.19. For a half H-bridge shown in
the following figure, V S ¼ 12 V and

VTn ¼ VTp

�

�

�

� ¼ 3:5 V. The control voltages

V1, V2 may switch from 0 V to 12 V. Establish
the values of two control voltages that ensure
the following motor operations:

A. Motor is in forward mode (current direc-
tion through the motor is from left to
right).

B. Motor suddenly stops (motor terminals
are shorted out, which creates the brak-
ing effect).

C. Motor runs freely to a stop (motor is
disconnected from the power supply).
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NMOS

PMOSV1

0 V

+
-

V2

V =12 VS

+

-

E

Problem 13.20. In the half H-bridge circuit
shown in the figure to the previous problem,
the control voltages V1, V2 are either 0 V or
12 V. If we denote the 0-V control voltage by
0 (low) and the 12-V control voltage by
1 (high), all possible combinations of the con-
trol voltages are covered by the table that fol-
lows (the table in fact lists all binary numbers
from 0 to 3). Fill out the table using four states:

A. Forward mode (current direction is from
left to right)

B. Brake
C. Free run to a stop
D. Forbidden (short circuit)

V1 V2 State

0 0

0 1

1 0

1 1

Problem 13.21. Suggest and sketch a sche-
matic of the half H-bridge where three
switching states (ON, brake, free run to a
stop) are realized with only NMOS transistors.

Problem 13.22. For the H-bridge shown in the
following figure, V S ¼ 12 V and

VTn ¼ VTp

�

�

�

� ¼ 3:5 V. The control voltages

may switch from 0 V to 12 V. Establish at
least one set of particular values for four control
voltages V1, V2, V3, V4 that ensures the fol-
lowing motor operations:

A. Motor is in forward mode (current direc-
tion through the motor is from left to
right).

B. Motor is in reverse mode (current direc-
tion through the motor is from right
to left).

C. Motor suddenly stops (motor terminals
are shorted out, which creates the brak-
ing effect).

D. Motor runs freely to a stop (motor is
disconnected from the power supply).

NMOS

PMOS

V1

0 V

NMOS

PMOS

+
-

V2

V3

V4

V =12 VS

Problem 13.23. In the H-bridge circuit shown
in the figure to the previous problem, the con-
trol voltages V1, V2, V3, V4 are either 0 V or
12 V. If we denote the 0-V control voltage by
digit 0 (low) and the 12-V control voltage by
digit 1 (high), all possible combinations of the
control voltages are covered by the table that
follows (the table in fact lists all binary num-
bers from 0 to 15). Fill out the table using five
states:

A. Forward mode (current direction is from
left to right)

B. Reverse mode (current direction is from
right to left)

C. Brake
D. Free run to a stop
E. Forbidden (short circuit)

13.2.7 Application Example: Pulse-

Width Modulation (PWM) Motor

Controller
Problem 13.24. For a PWM form shown in the
following figure, determine:

A. Period, T (show units)
B. Frequency, f (show units)
C. Duty cycle, d (also give its percentageD)
D. Average supply voltage, VDC
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0

2

4

6

8

10

12

14
V , VS

0 0.02 0.04 0.06 0.08 0.1
time, sec

Problem 13.25. For a PWM form shown in the
following figure, determine

A. Period, T (show units)
B. Frequency, f (show units)
C. Duty cycle, d (also give its percentageD)
D. Average supply voltage, VDC

0

2

4

6

8

10

12

14
V , V

S

0 10 20 30 40 50 60 70 80 90 100

time, msec

0

2

4

6

8

10

12

14

0 10 20 30 40 50 60 70 80 90 100

time, msec

V , V
S

a)

b)

Problem 13.26*

A. Compile a MATLAB script to generate
the figure to Problem 13.24 above.
Attach the script and the figure to the
homework.

B. Compile two MATLAB scripts to gener-
ate the two figures to Problem 13.25
above. Attach the scripts and the figures
to the homework.

13.3DigitalSwitchingCircuits

13.3.1 NOT Gate or Logic Inverter

13.3.2 NOR Gate and OR Gate

13.3.3 NAND Gate and AND Gate
Problem 13.27

A. Draw the symbol for the logic inverter
(NOT gate).

B. Draw the corresponding circuit diagram.
C. Given the input voltage to the NOT gate,

fill out the table that follows. The tran-
sistors used in the circuit are matched
and have equal threshold voltages

VTp

�

�

�

� ¼ V Tn ¼ 1 V.

Vin Vout

0.5 V

4.7 V

Problem 13.28. For the circuit shown in the
figure, fill out the table that follows. The tran-
sistors used in the circuit are matched and have

equal threshold voltages V Tp

�

�

�

� ¼ VTn ¼ 1 V.

Vin Vout

Vin Vout

0 V

5 V

Problem 13.29. For the circuit shown in
the figure, fill out the table that follows.
The transistors used in the circuit are matched
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and have equal threshold voltages

VTp

�

�

�

� ¼ V Tn ¼ 1V.

Vin Vout

Vin Vout

0.3 V

4.2 V

Problem 13.30. The circuit shown in the
following figure is a logic gate. However, it
utilizes only one transistor. The current cannot
flow into the output terminal (it is disconnected
in the figure). Construct:

A. Table of Vout versus
V in ¼ 0, 0:5, 4:5, 5 V

B. The truth table

given that the source voltage is 5 V and the
threshold voltage is 1 V. What logic gate is it?
What value of the resistor R would you choose
to minimize circuit loss and the load impact?

0 V

Vin

5 V=VS

Vout

R

Problem 13.31. Repeat the previous problem
for the circuit shown in the following figure.

0 V

Vin

5 V=VS

Vout

R

Problem 13.32. Draw the symbol for the logic
OR gate and present the corresponding truth
table.

Problem 13.33. Draw the symbol for the logic
NOR gate and present the corresponding truth
table.

Problem 13.34. Draw the circuit diagram:
A. For the NOR gate
B. For the OR gate

Problem 13.35. For the NOR gate with input
voltages V1 and V2, fill out the table that fol-
lows. The transistors used in the circuit are
matched and have equal threshold voltages

VTp

�

�

�

� ¼ V Tn ¼ 1 V.

V1 V2 Vout

0.1 V 0.7 V

0.5 V 4.9 V

4.5 V 0.1 V

4.1 V 4.4 V

Problem 13.36. For the OR gate with input
voltages V1 and V2, fill out the table that fol-
lows. The transistors used in the circuit are
matched and have equal threshold voltages

VTp

�

�

�

� ¼ V Tn ¼ 1 V.

V1 V2 Vout

0.3 V 0.1 V

0.2 V 4.1 V

4.1 V �0.1 V

5.3 V 4.4 V

Problem 13.37. The following figure is an
internal electric circuit of a logic gate. It has
three inputs and one output.

1. Fill out the truth table.
2. Draw the symbol of the corresponding

logic gate.
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V2

5 V=VS

V3

V1 V2

Vout

5 V=VS

V1

V3

Problem 13.38. A freshman ECE student
attends class if at least one of the following
conditions is satisfied:

1. He/she feels that this lecture might be
useful.

2. The lecture is not early in the morning.
3. His/her friends might be present

there too.

Every morning he/she “votes” by simulta-
neously pushing any appropriate combination
of three 5-V buttons (V1, V2, and V3) placed in
parallel. A logic circuit is needed that lights a
green LED (outputs 5 V) when there is time to
go to the lecture.

A. Draw the corresponding logic circuit in
the symbolic form (in the form of logic
gates).

B. Draw the MOSFET representation of
that logic circuit.

C. Present the corresponding truth table.

Problem 13.39. Draw the symbol for the logic
AND gate and present the corresponding truth
table.

Problem 13.40. Draw the symbol for the logic
NAND gate and present the corresponding
truth table.

Problem 13.41. Draw the MOSFET
representation

A. For the NAND gate
B. For the AND gate

Howmany transistors are we using in every case?

Problem 13.42. For the NAND gate with input
voltages V1 and V2, fill out the table that fol-
lows. All transistors used in the circuit are
matched and have equal threshold voltages

VTp

�

�

�

� ¼ V Tn ¼ 1 V.

V1 V2 Vout

0.9 V 0.9 V

0.1 V 5.1 V

4.1 V �0.1 V

4.5 V 4.7 V

Problem 13.43. For the AND gate with input
voltages V1 and V2, fill out the table that fol-
lows. The transistors used in the circuit are
matched and have equal threshold voltages

VTp

�

�

�

� ¼ V Tn ¼ 1 V.

V1 V2 Vout

0.1 V 0.1 V

0.2 V 4.2 V

5.1 V �0.1 V

5.0 V 4.6 V

Problem 13.44. A senior ECE student attends
class if all of the following conditions are
satisfied:

1. He/she feels that this lecture might be
useful.

2. The lecture is not early in the morning.
3. His/her friends might be present

there too.

Every morning he/she “votes” by simulta-
neously pushing any appropriate combination
of three 5-V buttons (V1, V2, and V3) placed in
parallel. A logic circuit is needed that lights a
green LED (outputs 5 V) when there is time to
go to the lecture.

A. Draw the corresponding logic circuit in
the symbolic form (in the form of logic
gates).

B. Draw the MOSFET representation of
that logic circuit.

C. Present the corresponding truth table.
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13.3.4 Simple Combinational Logic

Circuits. Switching Algebra

13.3.6 Logic Circuit Analysis. Applica-

tion Example: Logic Gate Motor

Controller

13.3.7 Logic Circuit Synthesis
Problem 13.45. Draw a logic circuit with only
NAND and NOT gate(s) that realizes an OR
gate. Confirm your answer by using the
corresponding truth table.

Problem 13.46. Draw a logic circuit with only
NAND gate(s) that realizes an OR gate. Con-
firm your answer by using the corresponding
truth table.

Problem 13.47. Draw a logic circuit with only
NAND gate(s) that realizes a NOT gate.
Confirm your answer by using the corres-
ponding truth table.

Problem 13.48. Four logic circuits shown in
the figure below use only the NAND gates. By
constructing the truth table for every circuit,
establish the equivalence of circuits A,B, C,
and D to other logic gates studied in this
section.

Vin
Vout

V1 Vout

V2

Vout

V1

V2

V1

V2

Vout

A)

B)

C)

D)

Problem 13.49. The following figure shows
two logic circuits.

Vout

V1

V2

V1

Vout

Circuit #1

V2

Circuit #2

Are they equivalent? Prove your answer by
constructing the two corresponding truth tables.

Problem 13.50. The following figure shows
two logic circuits.

Vout

V1

V2

V1

Vout

Circuit #1

V2

Circuit #2

Are they equivalent? Prove your answer by
constructing the two corresponding truth tables.

Problem 13.51. Using laws and rules of Bool-
ean algebra, simplify the Boolean expressions

A. A � Bþ A � Bþ Cð Þ þ B � Bþ Cð Þ

B. A � B � C þ B � Dð Þ þ A � B
� �

� C

Problem 13.52. Using laws and rules of Bool-
ean algebra, simplify the Boolean expressions

A. Aþ A � B
B. Aþ Bð Þ � Aþ Cð Þ

Problem 13.53. The output of the XOR gate is

given by C ¼ A � Bþ A � B. Using De Mor-
gan’s theorems and laws and rules of Boolean
algebra, express the output of the exclusive

NOR gate, C, in a similar form.
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Problem 13.54. If AND gates are substituted in
place of NAND gates in the logic circuit in
Fig. 13.30c, will the motor controller still func-
tion properly? Explain why yes or why no.

Problem 13.55. If NOR gates are substituted in
place of NAND gates in the logic circuit in
Fig. 13.30c, will the motor controller still func-
tion properly? Explain why yes or why no.

Problem 13.56. Given the logic circuit and the
input waveforms in the following figure, draw
the output waveform on the same figure. Hint:
Construct the truth table of the logic circuit
first.

V1

V2

V1

V2

Vout

Vout

Problem 13.57. Given the logic circuit and the
input waveforms in the following figure, draw
the output waveform on the same figure. Hint:
Construct the truth table of the logic circuit
first.

V1

V2

V1

V2

Vout

Vout

Problem 13.58. Given the logic circuit and the
input waveforms in the following figure, draw
the output waveform on the same figure. Hint:
Construct the truth table of the logic circuit
first.

V1

V2

V1

V2

Vout

Vout

Problem 13.59. Given the logic circuit and the
input waveforms in the following figure, draw
the output waveform on the same figure. Hint:
Construct the truth table of the logic circuit
first.

V1

V2

V1

V2

Vout

Vout

Problem 13.60. A small county board is com-
posed of three commissioners. Each commis-
sioner votes on measures presented to the board
by pressing a 5-V button indicating whether the
commissioner votes for or against a measure. If
two or more commissioners vote for a measure,
it passes. You are asked to help with a logic
circuit that takes the three votes as inputs and
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lights a green LED (outputs 5 V) to indicate
that a measure passed. You can use AND,
NAND, and NOT logic gates, as many of
them as you need.

A. Present the corresponding logic circuit in
the symbolic form (in the form of logic
gates).

B. Present the corresponding truth table.
C. How many transistors does your circuit

include?

Problem 13.61. A small county board is com-
posed of three commissioners. Each commis-
sioner votes on measures presented to the board
by pressing a 5-V button indicating whether the
commissioner votes for or against a measure. If
two or more commissioners vote for a measure,
it passes. You are asked to help with a logic
circuit that takes the three votes as inputs and
lights a green LED (outputs 5 V) to indicate that
a measure passed. You can use OR, NOR, and
NOT logic gates, as many of them as you need.

A. Present the corresponding logic circuit in
the form of logic gates.

B. Present the corresponding truth table.
C. How many transistors does your circuit

include?

13.3.8 The Latch
Problem 13.62. Draw the circuit diagram of a
basic latch and explain its operation in your
own words.

Problem 13.63.Most of the transistors are used
in semiconductor memories. There are several
types of semiconductor memories. One of them
is the static RAM (SRAM) or the static random
access memory. RAM means that every data bit
is accessible any time unlike hard disk memory.
SRAM cells provide the fastest operation

among all other memories. The figure that fol-
lows shows a SRAM memory cell including:

1. The latch with four transistors.
2. A word line WL connected through two

access NMOS transistors M5, M6. They
are always turned on (become the short
circuit) when the selected cell’s word line
is raised high (to VS or another high
voltage).

3. A bit line BL and its counterpart, another

bit line BL.

NMOS

PMOS

VS

NMOS

PMOS

VS

G1G2

NMOS

NMOS

M5

M6

M1

M3

M2

M4

LBLB

Word Line (WL)

The following figure shows another attempt to
design the SRAM memory cell with only four
NMOS transistors. Will this design function?
Why yes or why no?

VSVS

G1
G2

M5
M6

M3 M4

LBLB

Word Line (WL)

1 G 1 G
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Chapter 14: Analog-to-Digital Conversion

Overview

Prerequisites:

- Knowledge of basic circuit analysis

- Knowledge of transistor switches (Chapter 13)

Objectives of Section 14.1:

- Relate hardware meaning and mathematical meaning of digital voltage

- Convert between binary, decimal, and hexadecimal numbers

- Understand parallel and series representation of digital voltage

- Become familiar with clock frequency and timing diagram of digital circuits

- Learn binary representation of ASCII characters

- Obtain initial exposure to tri-state digital voltage

Objectives of Section 14.2:

- Appreciate the necessity of the digital-to-analog converter

- Design simple hardware realization(s) of digital-to-analog converters

- Relate circuit structures to the corresponding mathematical operations with binary

numbers

- Become familiar with resolution, accuracy, and voltage range of a DAC

- Learn two basic DAC constructions: binary-weighted input and R/2R ladder

Objectives of Section 14.3:

- Understand the necessity for sampling analog voltages

- Design simple hardware realization(s) of the sample-and-hold circuit

- Understand the value of the Nyquist rate

Objectives of Section 14.4:

- Design simple hardware realization(s) of the analog-to-digital converters: flash ADC

and successive-approximation ADC

- Become familiar with key parameters of ADCs: resolution in bits, full-scale voltage

range, and voltage resolution

- Obtain initial exposure to ADC speed, throughput rate, and conversion time
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© Springer International Publishing Switzerland 2016

S.N. Makarov et al., Practical Electrical Engineering, DOI 10.1007/978-3-319-21173-2_14

XIV-689

http://dx.doi.org/10.1007/978-3-319-21173-2_13


Keywords:

Analog-to-digital converter (ADC), Digital-to-analog converter (DAC), Analog voltage, Digital

voltage, Analog computer, Binary number system, Binary number, Least significant bit (LSB),

Most significant bit (MSB), Parallel representation of a binary number, Serial representation of a

binary number, Binary line codes, Unipolar NRZ line code, Polar NRZ line code, Unipolar RZ

line code, Manchester line code, Bit rate, RS232 interface, Clock frequency, Timing diagram of a

digital circuit, Asynchronous transmission, Synchronous transmission, Hexadecimal numbers,

ASCII codes, Digital word, Bit, Byte, Nibble, Tri-state buffer, Tri-state digital voltage, Data bus,

Output enable, Chip select, Summing amplifier, Binary-weighted-input DAC, R/2R ladder DAC,

DAC scaling voltage factor, Scaled digital-to-analog conversion, DAC resolution voltage, Binary

counter, DAC reconstruction filter, DAC postfilter, DAC equation, DAC full-scale output voltage

range, DAC quantization levels, DAC external voltage reference, DAC resolution, DAC relative

accuracy, Sample-and-hold voltage, Sampling interval, Sampling rate, Sampling frequency,

Acquisition (sample) time, Sample-and-hold circuit, Track-and-hold circuit, Track/store circuit,

Nyquist rate, Nyquist frequency, Digital signal processing, Nyquist-Shannon sampling theorem,

Flash ADC, Successive-approximation ADC, Successive-approximation register, ADC full-scale

measurement voltage range, ADC encoder block, ADC resolution in bits, ADC voltage

resolution, ADC resolution accuracy, ADC equation, Mid-rise coding scheme, Mid-tread

coding scheme, ADC quantization error, ADC quantization noise, ADC conversion time, ADC

speed

Chapter 14 Analog-to-Digital Conversion

XIV-690



Section 14.1 Digital Voltage and Binary Numbers

14.1.1 Introduction: ADC and DAC Circuits

Consider a typical block diagram of a digital signal processor (DSP)—see Fig. 14.1. The

diagram includes an analog-to-digital converter (ADC) interfacing with a digital proces-

sor. The ADC converts an analog input voltage into data in the form of binary codes

which are processed mathematically. The digital processor performs mathematical oper-

ations with binary numbers. The output to the processor is converted back to the real-

world voltage using the digital-to-analog converter (DAC). Every time you use your cell

phone, you are using a DSP, and this is only one example of its application. A general-

purpose microprocessor possesses a similar structure.

In this chapter, we will study the ADC circuit(s), the DAC circuit(s), and some useful

interface/control circuits. Those basic digital circuits utilize and extend the generic

amplifier concept studied previously. In this sense, the present chapter offers further

solidification of the amplifier theory and practice. Section 14.1 introduces the meaning of

a digital voltage and its relation to binary number system. It shows how to read a binary

word and how to understand its circuit representation. Along with this, we briefly review

hexadecimal numbers and demonstrate how to convert between different number systems

using MATLAB. Section 14.2 studies two basic digital-to-analog converter configura-

tions. Resolution voltage, accuracy, and full-scale output voltage range are the most

important features of a digital-to-analog converter (DAC) chip. It may be amazing to

discover how the corresponding electronic circuits follow the mathematical formulas for

number conversion. In this section, we also introduce the useful concept of a binary

counter and give a number of examples. Section 14.3 analyzes the first block of the

analog-to-digital converter—a sample-and-hold circuit. The meaning of the sampling rate

and the fundamental concept of the Nyquist rate are naturally introduced in this context.

Section 14.4 is devoted to two basic analog-to-digital converters. Resolution voltage,

full-scale input voltage range, quantization error, and a slower speed of the A to D

conversion are explained. Indeed, the present chapter does not exactly follow modern

D0

Digital processor

D1

D2

D3

D4

D5

D6

D7

Analog input

voltage v (t)in

Analog output

voltage v (t)DACADC
circuit

DAC
circuit

Interface
(control) circuit

D0

D1

D2

D3

D4

D5

D6

D7

Fig. 14.1. Structure of a DSP including different circuit blocks.
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digital hardware, neither does it provide the reader with comprehensive digital funda-

mentals including the control logic. Only the basic circuit concepts will be illustrated

here, based on simpler yet functionally similar circuits.

14.1.2 Analog Voltage Versus Digital Voltage

Analog voltage is any instantaneous (usually continuous) voltage in a circuit. The term

digital voltage is not quite precise. Strictly speaking, digital voltage is the same as analog

voltage, which, however, may have only two states—high and low—at any time instant

and/or at any particular node in the circuit. The digital voltage concept is closely related

to the switching concept: the MOSFET switch studied in Chapter 13 may have only

two states: on or off. The output voltage of the switch (the switching voltage) is

thus exactly a digital voltage; it may be either high (switch is on) or low (switch is off).

Using a number of such switches together allows us to process and store information in

the circuit in the form of digital voltages. Thus, the analog circuit becomes a digital

machine.

Analog Voltage

Consider the (decimal) number 10. How could we represent it in a computer? One way is

shown in Fig. 14.2. We simply form a voltage divider circuit or an amplifier circuit or

another analog circuit, with exactly one output. We’d strive to have 10 Vat that output, as

precisely as possible. This is the simplest and most intuitive way of assigning the voltage

to a number.

However, the accuracy of this representation heavily depends on resistor tolerance,

amplifier gain tolerance, temperature variations, etc. Such an idea basically corresponds

to an analog computer, which is briefly considered below.

Digital Voltage and Binary Number System

The second less intuitive but much more versatile way to represent a certain number is

shown in Fig. 14.3. We still try to represent (decimal) number 10. But instead of one

output voltage V, we now introduce four output voltages denoted by D3,2,1,0. However,

each output can no longer have arbitrary voltage values. The output voltages may be

either low or high, say, 0 Vor 5 V, respectively.

rest of circuit

0 V
t

10 V

V V

Fig. 14.2. Analog output voltage V of 10 V corresponding to a number 10.
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In order to label high and low voltages, respectively, it is natural to use a binary

number system, with only two digits, 0 and 1. We assign binary value 0 to 0 Vand binary

value 1 to 5 V. In view of this, the resulting binary number, which is a combination of all

four digital output voltages in Fig. 14.2, is simply 1010binary. Further, we apply the

conversion rule

1010binary ¼ 1� 23 þ 0� 22 þ 1� 21 þ 0� 20 ¼ 10decimal ð14:1aÞ

between twonumber types and obtain (decimal) number 10 exactly. Thefirst (bold)multiplier

in every summand in Eq. (14.1a) is a binary digit (or bit) in the binary number 1010;we read it

from left to right. The rightmost bit (0 in this case) is the least significant bit or LSB; the

leftmost bit (1 in this case) is the most significant bit or MSB. Equation (14.1a) says that it is

possible to represent the number 10 with the help of four digital voltages 5 V, 0 V, 5 V, 0 V

forming the binary number 1010. The specific value of high voltage is not really critical; the

voltage combination 3 V, 0 V, 3 V, 0 V will again form the same binary number 1010 if we

assign binary value 1 to the voltage of 3 V. Equation (14.1a) may indeed be rewritten in a

more general form; for a 4-bit binary number, one has

d3d2d1d0binary ¼ d3 � 23 þ d2 � 22 þ d1 � 21 þ d0 � 20
� �

decimal
ð14:1bÞ

where d3, d2, d1, d0 are the corresponding binary digits (not voltages).

Parallel Versus Serial Representation

Figure 14.3 corresponds to the so-called parallel representation of a binary number. A

parallel representation requires each bit in the binary number to have its own electrical

connection. In the laboratory you often see (older) ribbon cables. Every such cable has

many individual wires; those wires are intended to separately carry digital voltages

D3,2,1,0. Yet another serial way of representing digital values is shown in Fig. 14.4. Serial

data transmission is currently the dominant format for digital data transfer. Evidence of

this is the overwhelming replacement of the older parallel ribbon cables by USB

rest of circuit

0V
t

D2

t

D3

t

5 V

5 V

D1

t

5 V

D0

5 V

t

D3 D2 D1 D0

1 0 1 0 binary=10

MSB LSB

Fig. 14.3. Four parallel digital output voltages D3,2,1,0 of either 0 V or 5 V corresponding to a

decimal number 10.
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(universal serial bus) cables. There is only one output voltage D in Fig. 14.4, but it

changes in time as either 0 Vor 5 V. Every voltage pulse in Fig. 14.4 is a bit (basic unit of

information: high or low); every time interval T in Fig. 14.4 is the bit width; every bit in

Fig. 14.4 represents a single binary digit: either the binary digit 0 (voltage pulse of 0 V) or

the binary digit 1 (voltage pulse of 5 V).

If we sample (which literally means read) the voltages at the center of bit intervals, then

the voltage signal in Fig. 14.4 will give us the binary number 1010 again. Here, the least

significant bit is coming at the earliest time moment, and the most significant bit is

coming last in time.

Example 14.1: Determine (decimal) numbers represented by digital voltages in Fig. 14.5a

(parallel output) and in Fig. 14.5b (serial output), respectively.

Solution: Both Fig. 14.5a and b deal with exactly six bits (six digital voltage values).

However, the LSB and MSB positions are the opposite. Therefore, we read in the case of

Fig. 14.5a,

010101binary ¼ 0� 25 þ 1� 24 þ 0� 23 þ 1� 22 þ 0� 21 þ 1� 20 ¼ 21decimal ð14:2Þ

and in the case of Fig. 14.5b,

101010binary ¼ 1� 25 þ 0� 24 þ 1� 23 þ 0� 22 þ 1� 21 þ 0� 20 ¼ 42decimal ð14:3Þ

rest of circuit

0V

D

t

5 V

1 0 1 0 binary=10

TTTT

D

MSBLSB

LSBMSB

Fig. 14.4. Serial digital output voltage D of either 0 Vor 5 V corresponding to a number 10.

D

t

5 V

D5 D4 D3 D2 D1 D0

MSB LSB

LSB MSB

5 V

0 V

a) b)

Fig. 14.5. Digital output voltages for parallel (a) and serial (b) transmission.
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14.1.3 Bit Rate, Clock Frequency: Timing Diagram

Bit Rate
While the parallel digital output is only characterized by high and low states at any time

instant, the serial bit stream may have a huge variety of forms or codes by which the 0 s

and 1 s are represented. Some of them (the so-called line codes used for wired or wireless

data transmission) are shown in Fig. 14.6. The first one is the unipolar (0–5 V) NRZ

(nonreturn to zero) code that has also been drawn in Figs. 14.4 and 14.5. The second code

is similar in form, but it utilizes both positive (+5 V-high) and negative (�5 V-low)

voltages versus ground. The third one has the duty cycle of 50 % (returns to zero in the

middle of bit width). The last code represents binary one by a�5 V two-phase pulse and

binary 0—by a �5 V reversed two-phase pulse.

Despite all those differences, the codes shown in Fig. 14.6 convey the same informa-

tion—binary number 01110010—in the same amount of time and thus have the same bit

width, T. It is clear that the capacity of a serial digital data stream depends on the speed

with which the bits (regardless of format) are transferred through a path. This capacity is

determined by a bit rate. The bit rate is the number of bits conveyed or processed per

second. As the name implies, the bit rate, fb, for any serial bit stream in Fig. 14.6 is

f b ¼
1

T
ð14:4Þ

where T is the bit width. Although the bit rate, fb, in Eq. (14.4) has the units of frequency

or hertz, it is rather measured in bits/s or bps. The reason for this is in that the serial bit

stream conveying nontrivial information is never a periodic waveform—see Fig. 14.6.

Therefore, we cannot use the meaning of frequency.

5V

0V

5V

0V

-5V

5V

0V

5V

0V

-5V

T T T T T T T T
t

0 1 0 0 1 1 1 0 MSBLSB

Unipolar NRZ code

Polar NRZ code

Unipolar RZ code

Manchester code

Fig. 14.6. Some serial line codes. All codes have the same bit width, T, and bit rate, fb.
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Exercise 14.1: Determine the bit rate of a bit stream in Fig. 14.7 when bit width T is 1 μs.

Answer: Using Eq. (14.4), one can find f b ¼
1
T
¼ 1, 000, 000 bps or 1 Mbps.

Example 14.2: Figure 14.7 shows the line code for a RS232 (Recommended Standard

232) interface (the serial port of a PC). Although outperformed with its much faster

successor, the USB, the RS232 interface is still widely used today. In contrast to the

USB, the RS232 interface does not require a protocol for transferring the data. For the line

code in Fig. 14.7 determine:

A. Code type

B. Bit rate

Solution: The comparison with Fig. 14.6 indicates that the code in Fig. 14.7 is a polar NRZ

code. This means that the serial connection requires a common ground wire in order to

distinguish between positive and negative voltages. Note that all voltages in Fig. 14.7 are

inverted—binary 0 now corresponds to a high voltage and binary 1—to a low voltage. The

corresponding bit rate is

f b ¼
1

0:1ms
¼ 10, 000 bps or 10 kbps:

One might wonder, for example, what are bit rates for RFID (radio-frequency identi-

fication) tags, in the popular wireless frequency range 860–960 MHz. For passive

(without a battery) RFIDs, the bit rates from 26.7 kbps to 128 kbps are common.

However, active (battery-powered) RFIDs have higher bit rates. For example, the

E-ZPass toll-collection system operates at 500 kbps.

Clock Frequency

In contrast to the bit stream of data, the voltage clock (a basic pulse train that is used to

synchronize serial bit streams) is always a periodic waveform. A typical clock waveform

15 V

0 V

-15 V

1 1

MSBLSBStart Stop

0 0 1 1 1 0

Data (8 bits)

pause or
next byte

pause or
prev byte

0.1 0.3 0.5 0.7 0.9 1.1 1.3 t, ms

Fig. 14.7. RS232 line code and its format. Acceptable voltage levels for high and low voltages are

indicated by green rectangles. Related standards are RS-422, R-423, R-449, and RS-485.
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corresponding to a bit stream in Fig. 14.6 or in Fig. 14.7 is shown in Fig. 14.8. Therefore,

one determines clock frequency, f, in Fig. 14.8,

f ¼
1

T
ð14:5Þ

in hertz. If the bit width and the clock period coincide, the bit rate is equal to the clock

frequency.

We note that the clock frequency is critical not only for digital IO but also for the

functioning of the computer itself. A computer or a microprocessor processes streams of

digital data. The logic gates introduced in Chapter 13 make it possible to perform logical

and arithmetical operations on binary numbers. As the logic gates are comprised of

individual transistors (MOSFETs), their parasitic capacitances delay and distort clock/

bit pulses. As a result, there is always a limiting clock frequency that dictates both the

maximum serial IO speed and the maximum computer speed. Eventually, those speeds

are determined by the response of switching transistors introduced in Chapter 13. This

question is of great practical importance; it requires detailed knowledge of MOS transis-

tors introduced in Chapter 18 and the detailed knowledge of transient RC circuits studied

in Chapter 7.

Timing Diagram

Figure 14.9 below illustrates a timing diagram: the clock signal and the actual synchro-

nized serial bit stream (the unipolar NRZ code). The timing diagram is a necessary

attribute of many digital device datasheets. A case in point is an analog-to-digital

converter studied in Section 14.3 of this chapter.

5 V

0 V

T T T T T T T T
t

Clock

Fig. 14.8. Clock signal for a bit stream in Fig. 14.7. The duty cycle of the periodic waveform is 50%.

5 V

0 V

5 V

0 V

1 3 5 7 9 11 13 t, s

MSBLSB

Fig. 14.9. Timing diagram for a binary bit steam.
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Does the RS232 code illustrated in Fig. 14.7 need a clock signal to be sent along with

the data code? As a matter of fact, the clock signal is not necessarily needed. One can see

that in Fig. 14.7 a start signal is sent prior to each byte (eight bits), and a stop signal is sent

after each byte. This helps us to decode the data even if no clock is available. Such a

transmission is called asynchronous transmission. On the other hand, RS232 also makes

use of a synchronous transmission; it has dedicated lines for a transmitter clock. We also

note that modern USB cables (USB 3.0) transfer data at the rate of 4800 Mbps. This is an

amazing number given the low cable cost and the use of stranded AWG-28 wires.

Exercise 14.2: For the timing diagram in Fig. 14.9:

A. Determine the clock period.

B. Determine the clock frequency (show units).

C. Determine the bit rate of the bit stream (show units).

D. Decode the corresponding binary number given the LSB/MSB positions (present its

decimal equivalent).

Answer:

A. The clock period (distance between two rising edges) is T ¼ 2 μs.

B. The clock frequency is f ¼ 1=T ¼ 500 kHz.

C. The bit rate of the bit stream is the inverse of the bit width, i.e., 500 kbps.

D. The corresponding binary number is 11001010. Its decimal equivalent is

11001010binary ¼ 202decimal.

14.1.4 Binary Numbers

Defeat of Analog Computers
It can be seen that digital voltage waveforms are always more complicated than analog

ones. Either we need more wires or need to transfer a long stream of digital pulses to

represent an analog (decimal) number. We may ask ourselves a question: as long the

amplifier circuits studied previously can perform multiplication, addition (or subtraction),

and integration (or differentiation), why can we not build an analog computer, which

operates with analog voltages and replaces its digital counterpart at least for simple

computational tasks? The answer is indeed: yes, we can. In fact, this was done long

before, in the mid-1960s. Figure 14.10 shows one such design. However, the analog

computers were quickly outperformed by the digital systems. What is the reason?

Surprisingly, it was not speed—amplifier circuits built with single junction transistors

can be extremely fast. Plus, analog computers routinely operate with many parallel tasks,

whereas the single-processor digital systems tend to operate sequentially.
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The culprits turned out noise and even the accuracy of the analog circuit components.

Imagine what tolerance the final result could have if you would perform 100 multiplica-

tions using 1 %-accurate resistors? The digital approach is principally different: the bit

values are defined by logic threshold voltage levels, which allow us for a wide variation

of circuit voltages within those margins. For example, a bit value 1 for a 0-to-5-V logic

may correspond to any voltage between 2.6 V and 5.0 V and a bit value zero—to any

voltage between 0 V and 0.4 V. Another, perhaps even more important point is the

existence of fast digital memory (ROM and RAM), which is more advanced than the

analog memory carriers. Still, analog computers and especially hybrid computers are

used in certain military and commercial applications even today.

Binary Numbers

Values that are in the ones and zeros format are said to be binary. Bi- means “two,” so a

binary number can only have one of two values per digit, as opposed to decimal numbers,

which can have one of ten values per digit. The conversion of integer or fractional binary

numbers to decimal numbers is rather straightforward; a few examples have been given at

the beginning of this section. When a binary fraction is present, we perform the conver-

sion following Eq. (14.6), that is,

27

1

26

0

25

0

24

1

23

1

22

0

21

0

20

1 :
2�1

1

2�2

0

2�3

0

2�4

1
¼ 128þ 16þ 8þ 1þ

1

2
þ

1

16
¼ 153:5625decimal

ð14:6Þ

On the other hand, the conversion of decimal numbers to binary numbers is a bit more

involved. To do so, we repeatedly divide the decimal number by two until the quotient is

zero. Equation (14.7) gives an example for decimal number 153. The resulting binary

number is given by the remainder column; we read it as shown in Eq. (14.7).

Fig. 14.10. An analog computer from Electronic Associates, Inc. West Long Branch, New Jersey,

with 156 individual amplifiers (Analog Computer Museum by Doug Coward).
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153 Quot: Remainder

153=2 76 1 LSBð Þ
76=2 38 0

38=2 19 0

19=2 9 1

9=2 4 1

4=2 2 0

2=2 1 0

1=2 0 stopð Þ 1 MSBð Þ

ð14:7Þ

To convert a decimal fraction to a binary fraction, we repeatedly multiply by 2, track if the

result exceeds one, and subtract one when this is the case. The template is given by

Eq. (14.8) for a decimal fraction 0.5625.

0:5625 Check if > 1: Remainder

0:5625� 2 1 0:125 MSBð Þ
0:125� 2 0 0 :25
0:25� 2 0 0:5
0:5� 2 1 0 stopð Þ LSBð Þ

ð14:8Þ

The remainder zero is not necessarily reached; in that case one has an infinite binary

fraction that may be truncated to a given number of binary digits.

Exercise 14.3: (A) Convert binary number 10011001 to decimal number usingMATLAB.

(B) Convert decimal number 153 to binary number using MATLAB.

Answer:

A. We use MATLAB function bin2dec(’10011001’)and obtain 153. This

method cannot be applied to binary fractions.

B. We use MATLAB function dec2bin(153)and obtain 10011001. This method

cannot be applied to decimal fractions either.

14.1.5 Hexadecimal Numbers

Binary numbers (base 2) are beneficial for electronic hardware since we only distinguish

between two voltage values. For human interpretation and programming, the octal

(base 8) and especially hexadecimal (base 16) numbers are often used. Table 14.1 that

follows establishes symbols for single hexadecimal (shortly hex or h) digits. This table

simultaneously lists all binary numbers with four bits—the so-called nibble—total

16 such numbers. The hexadecimal numbers are labeled somewhat differently depending

on the application field. Equation (14.9) gives an example for hexadecimal number 378:
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37816
|fflffl{zfflffl}

present text

¼ 378h
|ffl{zffl}

a microprocessor textbook

¼ 0x378
|fflffl{zfflffl}

C=Cþþ
ð14:9Þ

Conversion of hexadecimal numbers to decimal and binary numbers is explained in the

example that follows. Especially simple and elegant is hex-to-binary conversion.

Note that binary numbers in the first ten rows of Table 14.1 simultaneously give the

BCD (binary coded decimal) code for single decimal digits.

Example 14.3: A. Convert hexadecimal number 37816 to decimal number.

B. Convert hexadecimal number 37816 to binary number.

Solution:

A. We follow the scheme for binary numbers (Eq. (14.6)) but use base 16 instead of

base 2:

162

3

161

7

160

8
¼ 3� 256þ 7� 16þ 8� 1 ¼ 888decimal ð14:10Þ

Conversion of a hex fraction to a decimal fraction is done similarly; we again use the

analogy with Eq. (14.6).

Table 14.1. Single hexadecimal digits in terms of binary

numbers and decimal numbers.

Hexadecimal digit Binary number Decimal number

0 0000 0

1 0001 1

2 0010 2

3 0011 3

4 0100 4

5 0101 5

6 0110 6

7 0111 7

8 1000 8

9 1001 9

A 1010 10

B 1011 11

C 1100 12

D 1101 13

E 1110 14

F 1111 15
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Example 14.3 (cont.):

B. Every hexadecimal digit is simply replaced by a binary number from Table 14.1, so

that

0011

3

0111

7

1000

8
¼ 001101111000 ¼ 1101111000 ð14:11Þ

At the end of this example, we note that it is much easier to read and talk about 780 A

(hex) than 0111100000001010 (binary)!

Exercise 14.4: Convert decimal number 102310 to hexadecimal number using MATLAB.

Solution: We use MATLAB function dec2hex(1023) and obtain 3FF. This method

cannot be applied to decimal fractions.

14.1.6 ASCII Codes and Binary Words

Once binary numbers have been introduced, every piece of information could be

expressed through those numbers, i.e., in terms of ones and zeros. As an example,

ASCII codes (American Standard Code for Information Interchange) is a set of corre-

spondences between binary numbers (or digital voltages) and characters on the keyboard,

including uppercase and lowercase letters, numbers, and special characters. Table 14.2

which follows includes all the capital letters from an ASCII table. Notice that the MSB in

the second column is clearly redundant—only seven bits are necessary at most to

represent the keyboard ASCII characters. The 8-bit character set is actually the Extended

ASCII which came about later.

Table 14.2. ASCII table for English capital letters.

English capital

letter

8-bit binary number (only seven bits are

meaningful)

Hexadecimal

number

Decimal

number

A 01000001 41 65

B 01000010 42 66

C 01000011 43 67

D 01000100 44 68

E 01000101 45 69

F 01000110 46 70

G 01000111 47 71

H 01001000 48 72

I 01001001 49 73

J 01001010 4A 74

(continued)
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Example 14.4: Retrieve binary numbers (8-bit long words) for all ASCII characters

without memorizing Table 14.2 and/or its extension.

Solution:We use a simple MATLAB script that follows (the character is letter A chosen as

an example)

s ¼ ’A’

d ¼ int8(s)

b ¼ dec2bin(d)

and obtain d ¼65; b ¼ 1000001 for decimal and binary forms, respectively. Other

characters are processed in the same way. Note that an alternative solution that creates the

identical result in MATLAB is

s ¼ ’A’; d ¼ double(s); b ¼ dec2bin(d)

One can see from Table 14.2 that we generally need a multi-bit binary number

to represent a letter or another character. Such a binary number is called a digital word:

1. A nibble is the digital word consisting of four bits.

2. A byte is the digital word consisting of eight bits.

Table 14.2 (continued)

English capital

letter

8-bit binary number (only seven bits are

meaningful)

Hexadecimal

number

Decimal

number

K 01001011 4B 75

L 01001100 4C 76

M 01001101 4D 77

N 01001110 4E 78

O 01001111 4 F 79

P 01010000 50 80

Q 01010001 51 81

R 01010010 52 82

S 01010011 53 83

T 01010100 54 84

U 01010101 55 85

V 01010110 56 86

W 01010111 57 87

X 01011000 58 88

Y 01011001 59 89

Z 01011010 5A 90
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All binary numbers in the second column in Table 14.2 above are one-byte digital

words. A byte is the smallest amount of information that is typically saved in computer

memory. On the other hand, all single hexadecimal digits in Table 14.1 can be described

by a 4-bit word.

Historical: When and where the first electronic digital computer was built?

Answer: Interestingly, the first computer ever was built in 1939 in American Midwest, at

Iowa State University by Professor John Vincent Atanasoff (1903–1995) and an electrical

engineering undergraduate student Clifford Berry (1918–1963)—see Fig. 14.11 that fol-

lows. John V. Atanasoff received his BS in EE from the University of Florida (with straight

As!). This computer has been called the ABC (Atanasoff-Berry Computer).

The machine was the first to use several innovations that are a part of today’s computers:

- A binary system of arithmetic

- Separate memory and computing functions, regenerative memory

- Parallel processing, electronic amplifiers as on-off switches

- Circuits for logical addition and subtraction

- Clocked control of electronic operations

- A modular design

14.1.7 Tri-state Digital Voltage

Tri-state Buffer
Along with the high and low voltages considered in this section, a digital voltage

is usually required to have one more state: the High-Z (or “do not care”) state.

The High-Z state means that the corresponding terminal is disconnected from the rest

of the circuit. Its resistance to ground is therefore infinitely high (the terminal becomes an

open circuit). Note that letter Z in the term High-Z actually stands for impedance Z, which

is an extension of the resistance concept to both static (resistor) and dynamic (inductor,

Fig. 14.11. A modern replica of the Atanasoff-Berry computer. Computer History Museum in

Mountain View, California, 2010.
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capacitor) circuit components as shown in Chapter 8. When a digital device generates

high and low voltages only, a tri-state buffer is added in order to achieve an extra third

state: the High-Z state. This buffer may either be internal or external to a chip. The

concept is explained in Fig. 14.12. First, in Fig. 14.12a we consider the standard buffer

amplifier that uses a single-polarity power supply. When connected to an output of a

digital device, the amplifier simply transfers high and low digital voltages, without

adding new states. Therefore, its output D still has only two states—high and low. The

next step is to add a switching circuitry shown in Fig. 14.12b to the amplifier. When

control voltage enable is high, both the NMOS and PMOS switches will be on—see

Chapter 15 and note an inverter connected to the PMOS. Nothing really changes

compared to the previous case. However, when control voltage enable is low, both

switches will be off. This means that the amplifier will be disconnected from the power

supply completely. In other words, its output D becomes an entirely open circuit because

current can flow nowhere (the current cannot flow in/out the amplifier input(s) and into

the power rails).

Thus, the output to the amplifier, D, in Fig. 14.12b achieves the High-Z state. The

corresponding truth table is Table 14.3.

NMOS

Vin

PMOS

VS

+
-

power rail

power rail

VS

+
-

power rail

power rail

HIGH or
LOW

HIGH or
LOW or
HIGH-Z

ENABLE

reffubetats-irtreifilpmareffub b)a)

D D

HIGH or
LOW

HIGH or
LOW

Fig. 14.12. Concept of a tri-state buffer.

Table 14.3. Truth table for the tri-state buffer in Fig. 14.12b.

Input

Output DInput to the amplifier Enable

0 0 High-Z

1 0 High-Z

0 1 0

1 1 1
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Why Is the Tri-state Voltage Important?

An example is given in Fig. 14.13a. Here, two digital devices A and B are connected to a

bus, which is a set of interconnections that interface two or more digital devices. The bus

is supposed to run to another device C, not shown in Fig. 14.13a.

At any given time instant, only one device can have access to the bus (to the device C).

Let us say it is device A. Device B should then be electrically disconnected from the

circuit so that it cannot send competing voltage signals and thus cause bus contention.

Thus, we should add tri-state buffers to both devices A and B as illustrated in Fig. 14.13a.

The symbol for the tri-state buffer is a triangle with an extra terminal. The circuit then

operates as shown in Fig. 14.13b and c, respectively. The corresponding bus then

becomes the tri-state bus. How do we enable/disable outputs from different digital

devices in practice? For many chips, it is done with output enable (OE) and chip select

(CS) pins. In particular, the output drivers are disabled by deasserting output enable.

D0

D1

D0

D1

b)

ENABLE device A (High)

Device A

D0

D1

Device B

Bus (two lines)

D0

D1

ENABLE

a)

D

D

D

D

D0

D1

D0

D1

c)

ENABLE device B (Low)

-OR-=

Fig. 14.13. Two digital devices connected to the same bus.
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Section 14.2 Digital-to-Analog Converter

14.2.1 Digital-to-Analog Converter

Conversion between analog and digital voltage signals is done by means of a digital-to-

analog converter (DAC) and an analog-to-digital converter (ADC). Both DAC and ADC

are electric circuits that perform the corresponding operations. In this subsection we

consider the idea of the DAC circuit. Its goal is to convert a sequence of binary numbers

(digital voltages) generated by a processor or by a computer into a real-world voltage

signal, which could be used as an input to a control system, to an audio amplifier, etc. The

place of the DAC in the generic block diagram of a DSP is shown in Fig. 14.14.

14.2.2 Circuit (A Binary-Weighted-Input DAC)

Digital-to-analog conversion is conceptually simple. A 4-bit binary-weighted-input DAC

at the base of an amplifier is shown in Fig. 14.15. The circuit implies four digital input

voltages (data lines)D3,D2,D1,D0 and one analog output voltage υDAC. The parallel path

of four binary signals in Fig. 14.15 is called a data bus, D0 always represents the least

significant bit (LSB). The converter in Fig. 14.15 has the form of a summing amplifier.

The summing amplifier is further connected to an (optional) inverting amplifier stage

having the gain of minus one. The summing amplifier is also an inverting amplifier with

the negative feedback but with multiple inputs. Its operation may be explained as follows.

According to the KCL and to the first summing-point constraint (no current into the

amplifier), one has for the feedback current with reference to Fig. 14.15

D0

Digital processor

D1

D2

D3

D4

D5

D6

D7

Analog input

voltage v (t)in

Analog output

voltage v (t)DACADC
circuit

DAC
circuit

Interface
(control) circuit

D0

D1

D2

D3

D4

D5

D6

D7

Fig. 14.14. Place of the DAC in the DSP block diagram.
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iF ¼ i3 þ i2 þ i1 þ i0 ð14:12aÞ

On the other hand, the second summing-point constraint (the differential voltage to the

amplifier is zero and the inverting input is the virtual ground) yields

i3 ¼
D3

2RW

, i2 ¼
D2

4RW

, i1 ¼
D1

8RW

, i0 ¼
D0

16RW

ð14:12bÞ

in terms of input voltages D3,D2,D1,D0. Therefore, voltage υ1 in Fig. 14.15 is found

from Eq. (14.12a) that is now written in the form:

iF ¼
0� υ1

RF

¼ i3 þ i2 þ i1 þ i0 ¼
D3

2RW

þ
D2

4RW

þ
D1

8RW

þ
D0

16RW

� �

¼
1

16RW

D3 � 23 þ D2 � 22 þ D1 � 21 þ D0 � 20
� �

ð14:12cÞ

Consequently, the output voltage to the entire converter becomes

υDAC ¼ �υ1 ¼
RF

16RW

D3 � 23 þ D2 � 22 þ D1 � 21 þ D0 � 20
� �

; ð14:12dÞ

which is the final result for the binary-weighted-input DAC shown in Fig. 14.15.

14.2.3 Underlying Math and Resolution Voltage

It should be emphasized that Eq. (14.12d), which describes the circuit operation, is

precisely the hardware realization of the mathematical formula for binary-to-decimal

conversion given, for example, by Eq. (14.1) at the beginning of the previous section. In

order to prove this fact, Eq. (14.12d) may be rewritten in the form

υDAC ¼ Q d3 � 23 þ d2 � 22 þ d1 � 21 þ d0 � 20
� �

ð14:13aÞ

where the scaling voltage factor Q is given by

vDAC

+
-

R

R

D0

MSB

LSB

+
-

RF

16RW

8RW

4RW

2RW

D1

D2

D3

v1

V0V0

0 V

0 V

5 V

0 V

5 V

iF

i1

i3

Fig. 14.15. Binary-weighted-input digital-to-analog converter. Index w indicates weighted resistances.
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Q ¼
RFD

2NRW

, N ¼ 4 ð14:13bÞ

for the present circuit. Here, N is the number of bits (data lines), and d3, . . ., d0 are input

binary digits (0 and 1) of a 4-bit word, so that

D3 ¼ Dd3, . . . ,D0 ¼ Dd0 ð14:13cÞ

where D is the “high” digital voltage value. The conversion term in parentheses in

Eq. (14.13a) exactly coincides with Eq. (14.12d) for binary-to-decimal conversion

given at the beginning of the previous section. Equation (14.13) holds for any number

of bits (inputs), N, of the DAC. An extension of the circuit in Fig. 14.15 is

straightforward.

Resolution Voltage

The circuit in Fig. 14.15 performs the scaled digital-to-analog conversion. The scaling

voltage factor Q with the units of volts in Eq. (14.13) is critical. It is called the resolution

voltage of the DAC. Resolution voltage Q is simply the analog voltage increment per one

single binary count. The resolution voltage is often called the LSB voltage since this is

exactly the voltage represented by a change in the least significant bit in Eq. (14.13a). The

resolution voltage may be changed if necessary, by varying the resistor values in

Fig. 14.15. The result will then follow Eq. (14.13b).

Example 14.5: An input to a four-bit DAC is a timing sequence shown in Fig. 14.16a.

Such a timing sequence is known as a binary counter; it represents all four-bit binary

numbers in an ascending order, with the time interval of 1 μs. In other words, we count all

binary numbers with four bits in Fig. 14.16a, with the bit width of 1 μs and with the bit rate

of 1 Mbps. It takes exactly 16 μs to count them all. Design a binary-weighted-input DAC

circuit which, at the given digital inputs, attempts to output the analog voltage in the form

of a linear time dependence, υout ¼ 2:5� 105t Vð Þ, over time interval from 0 to 16 μs:

A. Present the corresponding circuit diagram.

B. Specify required resolution voltage and necessary resistor values.

C. Plot the output voltage to the DAC to scale versus time.

Solution: In order to model the required time dependence, the increment of the analog

voltage per one bit (per one LSB) should be equal to

2:5� 105
V

s
� 1μs ¼ 0:25V ð14:14aÞ

The resolution voltage given by Eq. (14.13b) must have exactly the same value,

Q ¼
RFD

16RW

¼ 0:25V ð14:14bÞ

Chapter 14 Section 14.2: Digital-to-Analog Converter

XIV-709



Example 14.5 (cont.): Since D ¼ 5 V in Fig. 14.16a, we may choose RF ¼ 2 kΩ, RW

¼ 2:5 kΩ to satisfy Eq. (14.14b). Furthermore, the next obvious choice isR ¼ 1 kΩ. With

this in mind, all resistor values have been specified and the circuit is completed. The output

of the DAC is plotted with the help of Eq. (14.13a) whereQ ¼ 0:25 V. The corresponding

result is shown in Fig. 14.16b. Figure 14.16b clearly demonstrates that the four-bit DAC

from Fig. 14.15 provides a staircase approximation of the required linear voltage depen-

dence. Therefore, a filter (called DAC reconstruction filter or a postfilter) may follow the

DAC in order to smooth the voltage output. Such analog filters are considered in Chapters

9 and 10 of the text.

The binary-weighted DAC is one of the fastest conversion methods. However, its

accuracy is poor, in particular, due to difficulty in manufacturing precise resistors with

different binary-weighted values. Realize that the amplifiers and the resistors in

Fig. 14.15 are implemented in practice as integrated transistor circuits. Also note that

the realization of the binary counter with light-emitting diodes in the laboratory is an

impressive and useful exercise.

D0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1515

0 V

5 V

0 V

5 V

0 V

5 V

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1515

0 V

5 V

D1

D2

D3

4.0 V

2.0 V

3.0 V

1.0 V

0.0 V

Input

Output

16

time, s

0 2 4 6 8 10 12 14 16
time, s

resolution voltage  Q

V =2.5e5*tout

a)
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pt
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uf

vDAC
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Fig. 14.16. Input digital voltages (a 4-bit binary counter) and output analog voltage to the 4-bit

digital-to-analog converter.
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14.2.4 DAC Full-Scale Output Voltage Range, Resolution, and Accuracy

Using the (mostly illustrative) binary-weighted-input DAC circuit as a starting point, we

now intend to obtain general facts about DAC resolution and accuracy, which are

applicable to any DAC chip, operating over an arbitrary voltage range.

DAC Equation

When all binary numbers are counted in ascending order starting with 0000 toward the

maximum 4-bit number of 1111, the circuit in Fig. 14.15 produces an analog output

voltage increasing in steps—see Fig. 14.16b above. In order to obtain the range of

variation of the output voltage in a general case, we may want to rewrite Eq. (14.13) as

υDAC ¼ E
d3

2
þ
d2

4
þ
d1

8
þ

d0

16

� �

ð14:15aÞ

which is the commonly used DAC equation. Here, the constant E with the units of volts,

E ¼ 2NQ, N ¼ 4 ð14:15bÞ

is the full-scale output voltage range of the DAC, and Q is its resolution voltage. For a

4-bit DAC, the maximum binary number is 1111, and Eq. (14.15a) yields

υDACjmax ¼
2N � 1

2N
E ¼

15

16
E � E ð14:15cÞ

Clearly, the maximum output voltage approaches E more and more precisely as the

number of bits, N, increases. Equation (14.15) no longer relies upon the specific DAC

circuitry. They are valid for any DAC chip. Equation (14.15b) indicates that the resolu-

tion voltage and the full-scale output voltage range are simply related to each other by a

factor of 2N. This factor is exactly the number of distinct binary words or quantization

levels for a DAC with N inputs (input bits). Note that Eq. (14.15a) is perhaps the most

useful DAC formula, often present in the datasheets.

Setting Output Voltage Range

In a realistic DAC chip, the combinations of voltage sources and resistors shown in

Fig. 14.15 (resistor “current sources”) are replaced with the transistor-based “current

sources.” Therefore, it is not necessary to change resistor values in order to obtain

different voltage ranges and resolution voltages, as might appear at first sight from

Eqs. (14.13b) and (14.15b). Instead, the output voltage range, E, and simultaneously

the resolution voltage Q are simply controlled by setting an external voltage reference,

which precisely coincides with the desired value of E. A case in point is a DAC0808 chip

(an 8-bit DAC) from National Semiconductor Corp. (Texas Instruments).
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DAC Resolution

As long as the full-scale output voltage range of the DAC, E, is given, its resolution

voltage Q (the LSB voltage) per one digital step is solely determined by the number of

bits N. According to Eq. (14.15b),

Q ¼
E

2N
ð14:16aÞ

The larger the number of bits is, the smaller resolution voltage can be obtained, and the

“smoother” analog voltage is produced. DACs with 8, 10, 12, and 16 bits are common.

The DAC resolution is simply defined as the number of bits, N, or more often as the total

number of discrete values it can produce over the full-scale output voltage range:

Resolution ¼ 2N ¼
E

Q
ð14:16bÞ

It has been pointed out already that the full-scale output voltage range of a DAC chip may

be controlled by specifying an external voltage reference for a DAC chip, VREF. There-

fore, voltage E, may be designated in practice as reference voltage or VREF.

DAC Relative Accuracy

The DAC relative accuracy is not exactly the deviation of the staircase approximation in

Fig. 14.16b from the straight line as might appear at first sight. It is rather accuracy in

reproducing an exact analog value, from the given exact binary data. The corresponding

error is further divided by the full-scale output voltage range. Such an error is typically in

the range of � ½ LSB (� ½Q). Therefore,

Relative Accuracy Percentage ¼
1=2Q

E
� 100% ¼

1

2Nþ1
� 100% ð14:16cÞ

For example, according to its datasheet, an 8-bit DAC0808 chip from National Semi-

conductor Corp. (Texas Instruments) has the relative accuracy percentage

1

28þ1
� 100% ¼ 0:19% ð14:16dÞ

Example 14.6: A 4-bit DAC, a 6-bit DAC, and an 8-bit DAC use a 4-, 6-, or 8-bit binary

counter input sequences in order to produce the analog voltage in the form of a linear time

dependence, υout tð Þ ¼ 2:5� 105t Vð Þ, over the same time interval from 0 to 16 μs.

Determine:

1. DAC resolution in bits (quantization levels)

2. Full-scale output voltage range, E
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Example 14.6 (cont.):

3. DAC voltage resolution, Q

4. Necessary bit rate, fb

and plot output analog voltages to scale versus time.

Solution: The first parameter is only DAC specific, and the second parameter is only

problem specific, that is, E ¼ υout 16μsð Þ ¼ 4 V. The rest of the parameters are both DAC

and problem specific. One thus has

4-bit DAC
- DAC resolution in bits is 4 bits or 24¼ 16 quantization levels (distinct analog outputs)

- Full-scale output voltage range E ¼ 4V (from 0 V to 4 V)

- DAC voltage resolution, Q ¼ E=16 ¼ 0:25V
- Necessary bit rate, f b ¼ 1=Tb ¼ 1Mbps

6-bit DAC
- DAC resolution in bits is 6 bits or 26¼ 64 quantization levels (distinct analog outputs)

- Full-scale output voltage range E ¼ 4V (from 0 V to 4 V)

- DAC voltage resolution, Q ¼ E=64 ¼ 62:5mV

- Necessary bit rate, f b ¼ 1=Tb ¼ 4Mbps

8-bit DAC
- DAC resolution in bits is 8 bits or 28¼ 256 quantization levels (distinct analog outputs)

- Full-scale output voltage range E ¼ 4V (from 0 V to 4 V)

- DAC voltage resolution, Q ¼ E=256 ¼ 15:6mV

- Necessary bit rate, f b ¼ 1=Tb ¼ 16Mbps

The voltage resolution indeed improves with increasing the number of bits. The

corresponding plots are shown in Fig. 14.17.

Exercise 14.5: Generate Fig. 14.17 using MATLAB.

Answer:
N       = 6;        %   DAC resolution (bits)

T       = 16;       %   Time interval in microseconds

Q       = 4/2^N;    %   Voltage resolution of the DAC

q       = T/2^N;    %   Time resolution (bit width)

t       = [0:q:T];  %   Time array

vDAC = [0:Q:4];  %   Analog output array

stairs(t, vDAC);    %   Stairstep graph – plot of discrete data

axis([0 16 0 4]); grid on;

Chapter 14 Section 14.2: Digital-to-Analog Converter

XIV-713



14.2.5 Other DAC Circuits

R/2R Ladder DAC
An alternative to the circuit in Fig. 14.15 is an R/2R ladder DAC, which is shown

(without the inverter) in a 4-bit configuration in Fig. 14.18. The resistive ladder is a

circuit, which has a similar performance when more sections are added. This circuit

requires a more careful analysis based on Thévenin equivalents, but the final result

exactly coincides with Eq. (14.15a), that is (after adding the inverter),

υDAC ¼ E
d3

2
þ
d2

4
þ
d1

8
þ

d0

16

� �

ð14:17aÞ

where the full-scale voltage range is given by

E ¼ 2NQ ¼
RFD

R
ð14:17bÞ
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1.0 V
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Output
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time, s
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4-bit DAC 6-bit DAC

8-bit DAC

vDAC

vDAC

V =2.5e5*tout

4.0 V

2.0 V

3.0 V

1.0 V

0.0 V

Fig. 14.17. Comparative resolution of the 4-bit DAC, the 6-bit DAC, and the 8-bit DAC. In all

three cases, the full-scale output voltage range (4 V) is the same. The linear time dependence,

υout tð Þ ¼ 2:5� 105t Vð Þ, over the time interval from 0 to 16 μs is approximated.
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The binary-weighted-input DAC and the R/2R ladder DAC become identical in operation

when RW ¼ R.

Example 14.7: For the circuit in Fig. 14.18,D3 ¼ 5 V, D2 ¼ 0 V, D1 ¼ 0V, D0 ¼ 0 V.

Determine the output voltage, υDAC, when RF ¼ R.

Solution: The voltages at nodes 0,1,2,3 in Fig. 14.18 are all equal to zero (the

corresponding resistors are shorted out). The current i3 ¼
5 V
2R

from the input D3 flows

entirely into the feedback resistor, which yields

υDAC ¼ �
D3RF

2R
¼ �

5 V� RF

2R
¼ �2:5V ð14:18Þ

This (after adding the inverter) is exactly the first term on the right-hand side of

Eq. (14.17a). The analysis of other individual input voltage combinations is suggested as

homework problems.

The use of the ladder network improves the precision of the binary-weighted-input

DAC since it is easier to produce equal resistors. Therefore, a typical DAC chip rather

uses the R/2R ladder network in the form of an integrated circuit, where the combinations

of voltage sources and resistors shown in Fig. 14.18 (resistor “current sources”) have

been replaced with the transistor-based “current sources.” A case in point is again a

DAC0808 chip (an 8-bit DAC) from National Semiconductor Corp. (Texas Instruments).

The “Power” of Thévenin Equivalent

An attempt to solve the ladder circuit in Fig. 14.18 for combinations other than the simple

input combination from Example 14.7 meets considerable difficulties. We outline below a

general Thévenin-equivalent-based solution that is shown in Fig. 14.19. First, the circuit

vDAC

D0

LSB

+
-

RF

0 V

0 V

5 V0 V5 V0 V

iF

2R 2R 2R2R

D1 D2 D3

0 V

R R R2R

MSB

0 1 2 3

Fig. 14.18. The R/2R ladder DAC.
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of Fig. 14.18 is redrawn in the form of the equivalent voltage sources D3,D2,D1,D0

referenced to ground in Fig. 14.19, top.

The resulting circuit block on the left of the amplifier (the ladder) contains only voltage

sources and resistors. The method of Thévenin equivalent is applied in order to convert it

to a form of a single voltage source VT in series with a resistance RT. The brute-force

calculation of Thévenin resistance for the entire ladder block is rather simple. However, a

calculation of Thévenin voltage VT is not. The resistance calculation (with shorted out

voltage sources) gives RT ¼ R. But what about VT? The idea (which is also applicable to

other ladder networks) is to apply Thévenin equivalent in steps, adding one single section

a,b,c,d of the ladder block at a time, starting with the leftmost section a in Fig. 14.19.

Every such step is analyzed straightforwardly; it gives Thévenin voltages and resistances

shown in Fig. 14.19. The last step in Fig. 14.19 followed by solving the inverting

amplifier circuit leads us exactly to Eq. (14.17) if an extra inverter is added.

PWM DAC

One should mention a digital PWM (pulse-width modulation) code, which is digitally

stored and then converted to an analog signal by means of an analog RC filter studied in

Chapter 9. Such a technique is becoming increasingly popular today.

Vout
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-
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+
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Fig. 14.19. Solving R/2R ladder DAC using the method of Thévenin equivalent while adding one

ladder section at a time.
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Section 14.3 Sample-and-Hold Circuit: Nyquist Rate

14.3.1 Analog-to-Digital Converter

The analog-to-digital converter (ADC) studied in this and next sections should translate a

continuously varying analog voltage (voice, electromagnetic signal, readout of a sensor)

into a continuous stream of binary numbers (and equivalent digital voltages) passed to a

processor. The digital-to-analog converter (DAC) studied in the previous section per-

forms an inverse operation. The place of the ADC in the generic block diagram of a DSP

(digital signal processor) is shown in Fig. 14.20. The ADC circuit analysis is in general

much more involved than the DAC circuit analysis. ADC design is an exciting and

growing area of the electrical engineering with many hundreds of engineers employed.

14.3.2 A Quick Look at an Analog Sinusoidal Voltage

First, an input analog voltage to the circuit in the figure above should be analyzed. The

simplest and simultaneously the most important case of the analog voltage is a pure sine

or cosine function shown in Fig. 14.21 and also called the harmonic. The sinusoidal

voltages are critical in AC circuit analysis studied previously. Why are we interested in a

sinusoidal voltage input also in this chapter? The reason is that, according to the method

of Fourier analysis studied in Chapter 9, all existing continuous voltages υin(t), including

voltage signals corresponding to the human voice, may be expanded into a sum of such

multiple sinusoidal functions. Every sinusoidal function will have its own frequency,

phase, and amplitude. The sinusoidal voltage can be written in the form

D0

Digital processor

D1

D2

D3

D4

D5

D6

D7

Analog input

voltage v (t)in

Analog output

voltage v (t)DACADC
circuit

DAC
circuit

Interface
(control) circuit

D0

D1

D2

D3

D4

D5

D6

D7

Fig. 14.20. Place of the ADC in the DSP block diagram.
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υin tð Þ ¼ Vm cos ω t þ φð Þ ð14:19aÞ

where:

Vm is the voltage amplitude (maximum absolute voltage), with the unit of volts.

ω is the angular frequency, with the unit of radians/sec.

φ is the phase, with the unit of radians.

The angular frequency relates to the voltage's frequency, f, and period, T, by

ω ¼ 2π f , T ¼
1

f
ð14:19bÞ

where f is measured in hertz or Hz (1 Hz¼ 1 s�1) and the period is measured in seconds.

For example, the frequency of the voltage signal in Fig. 14.21 is

f ¼
1

T
¼

1

1 μs
¼ 1 MHz ð14:19cÞ

The angular frequency ω is essentially a replica of the frequency f; its use is primarily a

matter of convenience. The phase in Eq. (14.19a) ranges from -π to +π radians; this

corresponds in degrees to �180� to +180�. Positive phases correspond to a shift of the

entire sinusoidal signal in Fig. 14.21 to the left and negative phases to the right. For

example, the phaseφ ¼ þπ=2 implies shifting of the sinusoidal signal in Fig. 14.21 to the

left by a quarter period. The phase in degrees should be divided by 180 and multiplied by

π to obtain the phase in radians. The phase is a relativemeasure; it is given with reference

to a base signal (usually a plain cosine function cosωt).

Exercise 14.6: Determine frequency in Hz and angular frequency in rad/sec, phase, and

amplitude of a harmonic voltage signal shown in Fig. 14.21.

Answer: f ¼ 1=T ¼ 1 MHz, Vm ¼ 1 V, the phase is exactly zero.
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-0.5

0

0.5
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period

V ,)t(
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ni

period

Fig. 14.21. Analog continuous voltage in the form of a cosine function.
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14.3.3 Sample-and-Hold Voltage

As compared to D to A conversion, the A to D conversion is generally (much) slower, due

to the following reasons:

- First, we need to sample the analog signal (acquire its voltage value) as shown in

Fig. 14.22.

- Second, we need to hold the sampled voltage value as long as it is necessary for the

conversion of this value to a binary number. Then, the next value of the analog signal is

acquired and held, so that the process repeats itself periodically.

The sample-and-hold concept is illustrated in Fig. 14.22. The input (analog) voltage

υin(t) is to be converted into a staircase voltage υSH(t)—the sample-and-hold approxima-

tion of the input signal. Realize that υSH(t) is not yet the digital voltage corresponding to

A to D conversion but rather the first step in doing so. Every interval between two

consecutive samples in Fig. 14.22 is called the sampling interval, TS. The sampling rate

(sampling frequency), which is the inverse of the sampling interval, defines the number of

samples taken per second, that is,

f S ¼
1

TS

ð14:20Þ

The unit for sampling rate is hertz. The sampling interval is in fact the sum of the hold

time and a (typically much shorter) acquisition (or sample) time, which is necessary, for

example, to charge the capacitor in Fig. 14.23 that follows. The acquisition time is not

seen in Fig. 14.22 due to insufficient resolution.

Exercise 14.7: Determine sampling interval and sampling rate for the sample-and-hold

voltage in Fig. 14.22.

Answer: TS ¼ 0:2=4 ¼ 0:05 μs, the sampling rate is f S ¼ 20 MHz. The sampling

frequency is much higher than the signal frequency of 1 MHz.
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-0.5
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v (t), VSH

t, s

sample

hold

Fig. 14.22. Analog continuous voltage versus sample-and-hold voltage.
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Example 14.8: Generate the plot for the sample-and-hold voltage shown in Fig. 14.22

using MATLAB.

Solution: The idea is to plot the “analog” voltage (still the discrete MATLAB array, but

with the sufficiently fine time resolution) versus the sample-and-hold voltage. In the last

case, we use the MATLAB function stairs, which allows us to plot the discrete data.

%   Analog voltage signal

T       = 2e-6;             %   Time interval, sec

t       = [0:T/1e3:T];      %   Time array ("analog" time)

f   = 1e6;              %   Frequency of the analog signal, Hz

vin     = cos(2*pi*f*t);    %   Analog input voltage, V

%   Sample-and-hold voltage signal

dt      = 0.05e-6;          %   Sampling time, sec

ts      = [0:dt:T];         %   Time array

vSH     = cos(2*pi*f*ts);   %   Sample-and-hold voltage, V   

plot  (t, vin, 'r');                      %   Analog input voltage

hold on; 

stairs(ts, vSH,  'b', 'LineWidth', 2);    %   Sample-and-hold voltage
grid on; axis([min(t) max(t), -1.25 1.25])

14.3.4 Sample-and-Hold Circuit (SH Circuit)

Which circuit could convert the analog voltage υin(t) into the sample-and-hold voltage

υSH(t) in Fig. 14.22? One such generic design is shown in Fig. 14.23a:

1. First, we need to isolate the acquired analog voltage from the rest of the circuit—

introduce the input non-inverting buffer amplifier. Once the “sample” switch is on,

the buffer amplifier acquires the voltage sample and charges the capacitor Chold to

exactly the same value.

2. This capacitor has no discharge path; it therefore keeps the sampled voltage as long

as required. The output buffer further conveys the sampled voltage to the rest of the

circuit without changing it (without discharging the capacitor).

3. However, when the “reset” switch closes, the voltage-holding capacitor voltage

quickly discharges, i.e., turns its voltage to zero. In other words, the past voltage

value is “erased.” Then, the reset switch opens again, which makes the circuit ready

for the next acquisition cycle. Both switches could be implemented with n-channel

MOSFET transistors as shown in Fig. 14.23b.

The basic process of charging/discharging a capacitor was studied in Chapter 7.

Indeed, it requires some time, which is very short when the capacitor value is small

enough. Such a transition time was ignored in Fig. 14.22.

Sample-and-Hold Circuits in Practice

The sample-and-hold circuits exist as single chips (LF198/LF298/LF398 chips from

National Semiconductor Corp. or Texas Instruments). The typical capacitance used
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there is Chold ¼ 0:02 μF. Those circuits may be used to hold a given voltage value from

any particular sensor in a robot or elsewhere.

However, usually, the sample-and-hold circuit is an internal part of the ADC chip as

explained further in the next section. Another popular modification is the track-and-hold

circuit suggested as one of the homework problems. Could an ADC function without the

sample-and-hold circuit? Yes, it could. This is exactly the way how first ADCs have been

made. However, it means that the voltage value to be converted will not be held; it will

change during the conversion process, which may lead to wrong bits.

14.3.5 Nyquist Rate

How fast should we sample? The answer seems to be trivial: as fast as possible in order to

acquire the most precise replica of the input signal. However, a very fast sampling rate may

be either impossible in practice for ultrafast signals, or it may lead to huge and unrealistic

memory consumptions. On the other hand, reducing the sampling rate, while still keeping

the major information about the analog voltage behavior, allows us to proceed with a

realistic circuit design and realistic memory requirements. Therefore, a minimum accept-

able sampling rate, fSmin, for a given analog voltage signal is of great practical importance.

In order to establish this minimum value, we will again consider the sinusoidal voltage of

1MHz shown in Fig. 14.24.We introduce theNyquist rate, fN, of this voltage signal, which

is two times its frequency, i.e.,

0 V

+
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D S

G

Chold

+
-

D

S

G

sample

reset

input buffer output buffer
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+
-

v (t)in
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+
-

sample

reset

input buffer output buffer

v (t)SH

0 V

a)

b)

v (t)SH

0 V

Fig. 14.23. Sample-and-hold circuit. (a) Circuit with “sample” and “reset” switches. (b) Switches

replaced by MOSFET transistors.
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f N ¼ 2f ð14:21Þ

We further analyze three distinct cases in Fig. 14.24:

1. When the sampling frequency is higher than the Nyquist rate—see Fig. 14.24a—

then the sample-and hold voltage generally follows the signal shape. After proper

filtering (smoothing the stairs in Fig. 14.24a), it will very well replicate the original

analog sinusoid.

2. When the sampling frequency is exactly equal to the Nyquist rate—see Fig. 14.24b—

then the sample-and hold voltage becomes exactly the pulse train. And yet, after

proper filtering, this pulse train may be converted to the sinusoidal function of the

same frequency—the reconstruction may be successful.

3. However, when the sampling frequency is less than the Nyquist rate—see

Fig. 14.24c—then the sample-and-hold voltage may become just a straight line.

No matter what do we do further, the signal information is entirely lost!
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Fig. 14.24. Effect of sampling rate on the sample-and hold voltage.
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Based on this reasoning, we arrive at the conclusion that the minimum acceptable

sampling rate must exceed the Nyquist rate, that is,

f Smin > f N ð14:22Þ

Equation (14.22) is the first (and critical) step of digital signal processing. It constitutes a

significant part of Nyquist-Shannon sampling theorem studied in ECE communication

classes. For example, the sinusoidal voltage in Fig. 14.24 may only be reconstructed

properly when the sampling frequency is higher than 2 MHz. What if an analog voltage is

not a pure sinusoidal function but is a (weighted) sum of many sinusoids with different

frequencies, e.g., a voice signal? In this case, Eq. (14.22) must be valid for the sinusoid

having the highest frequency among the others. All other sinusoidal functions will then

satisfy this condition automatically.

Historical: The Nyquist rate was named after famous Swedish-American engineer Harry

Nyquist (1889–1976). Harry Nyquist received his BS and MS in electrical engineering

from the University of North Dakota and PhD from Yale University. Interestingly, the term

“Nyquist rate” itself was first introduced by Harold S. Black (remember negative feed-

back?), in his book Modulation Theory (1953).

Oversampling and Undersampling

Oversampling is the process of sampling a signal with sampling frequency significantly

higher than the Nyquist rate:

f S >> f N ð14:23Þ

Clearly, once possible in practice, oversampling has many potential advantages. Under-

sampling is the opposite of oversampling. Although generally undesired, undersampling

finds numerous (and really smart!) applications for modulated signals in wireless

communications.

Example 14.9: An analog voltage signal is a combination of three sinusoidal voltages

(harmonics) with frequencies 5 kHz, 10 kHz, and 15 kHz. The voltage amplitudes of the

individual sinusoids are 5 V, 10V, and 5 V. What is the limit on the minimum acceptable

sampling rate of the sample-and-hold circuit?

Solution:We apply Eq. (14.22) to the highest-frequency sinusoid present in the signal and

obtain

f Smin > f N ¼ 2� 15 kHz ¼ 30 kHz ð14:24Þ

The amplitudes (and phases) of individual harmonics play no role for this estimate, as long

as their amplitudes are not zero. However, if the amplitude of a certain harmonic is zero

(or very small), this harmonic may be eliminated from the analysis entirely.
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Section 14.4 Analog-to-Digital Converter

The sample-and-hold (SH) circuit studied previously is only the “front-end” of the

analog-to-digital converter. Even if this circuit is available, the A to D converter itself

still needs to be designed. Therefore, the ADC block in Fig. 14.25 still needs to be

studied. This section completes the analog-to-digital converter model. We will consider

only two basic ADC circuit concepts (flash and successive approximation) leaving many

others.

14.4.1 Flash ADC

Circuit
The next step in ADC design is to convert the sample-and-hold voltage υSH(t) to the

digital voltage itself. Figure 14.26 shows the concept of a flash A to D converter. This is

the fastest A to D conversion method. All data are essentially processed in parallel. The

sample-and-hold circuit is not shown in Fig. 14.26, but it is implied. The circuit in

Fig. 14.26 is intended to encode the sample-and-hold voltage into 3-bit binary numbers or

3-bit digital voltages D2,D1,D0. It includes (from left to right):

1. A voltage divider with eight equal resistors, R. The voltage divider subdivides the

reference voltage, E, into eight levels corresponding to eight possible 3-bit words:

000, 001, 010, 011, 100, 101, 110, and 111. The reference voltage E to the ADC

chip simultaneously determines the full-scale measurement voltage range of the

ADC studied below.

2. Seven open-loop comparator amplifiers (the comparator for a 000 condition is not

needed) compare the input voltage with the seven nontrivial voltage levels of the

voltage divider. The comparators generate high voltage when υSH(t) exceed the

corresponding voltage divider level and low voltage otherwise.

3. The output of the comparator block—the second column of Table 14.4.

4. Finally, an ADC encoder block. This circuit converts binary words from the

comparator block to the binary numbers. It may be constructed with logic gates.
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Fig. 14.25. DSP block diagram. The ADC converter still needs to be completed.
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Operation

Table 14.4 lists circuit parameters for the voltage divider analysis in Fig. 14.26.
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+
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circuit
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R

R

R

R

R

R

Priority encoder
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D1
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Three-bit
parallel output

8.75V

7.5V

6.25V
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2.5V

1.25V

v (t)SH

Fig. 14.26. A 3-bit flash ADC.

Table 14.4. Output of comparators (second column) and output of the entire ADC chip (third

column).

Voltage range of

sample-and-hold

voltage υSH, V

Output of the

comparator

block (7–0)

Output of the

priority encoder

(binary number

d2d1d0)

Voltage decoded

back from d2d1d0 and

resolution Q,

Q 4d2 þ 2d1 þ 1d0ð Þ
V

Quantization

error, max

8.75–10 11111110 111 8.75 1.25 Vor Q

7.5–8.75 01111110 110 7.5 1.25 Vor Q

6.25–7.5 00111110 101 6.25 1.25 Vor Q

5–6.25 00011110 100 5 1.25 Vor Q

3.75–5 00001110 011 3.75 1.25 Vor Q

2.5–3.75 00000110 010 2.5 1.25 Vor Q

1.25–2.5 00000010 001 1.25 1.25 Vor Q

0–1.25 00000000 000 0 1.25 Vor Q

Chapter 14 Section 14.4: Analog-to-Digital Converter

XIV-725



14.4.2 ADC Resolution in Bits, Full-Scale Input Voltage Range,

and Voltage Resolution

Very similar to the digital-to-analog converter considered in Section 14.2, any ADC (not

only the flash ADC) is characterized by:

- Resolution in bits, N.

- Full-scale measurement (or input) voltage range, E.

- Voltage resolution, Q ¼ E
2N
.

- Relative accuracy (typically 1 LSB), which gives the accuracy magnitude percentage

of 1
2N
� 100%. The relative accuracy will be explained next.

We emphasize again that the reference voltage E to the ADC chip in Fig. 14.26 is

exactly its full-scale measurement voltage range. The reference voltage is specified in the

circuit depending on the problem under study.

Exercise 14.8: For the 3-bit ADC in Fig. 14.26, determine its resolution, full-scale

measurement voltage range, and voltage resolution.

Answer

- ADC resolution in bits is 3 bits or 23¼ 8 quantization levels (distinct digital outputs).

- Full-scale measurement voltage range E ¼ 10 V (from 0 V to 10 V).

- ADC voltage resolution, Q ¼ E=8 ¼ 1:25 V.

14.4.3 ADC Equation and Quantization Error

ADC Equation
It is seen from Table 14.4 that the 3-bit ADC in Fig. 14.26 follows an ADC equation in the

form

ADCcode ¼ floor
υSH

Q

� �

ð14:25aÞ

where ADCcode is a binary number corresponding to an integer on the right-hand side of

Eq. (14.25a). A function floor(x) rounds its argument x to the nearest integers less than

or equal to x. This function is used in MATLAB and in other software packages. Equation

(14.25a) corresponds to a mid-rise coding scheme. Its error—the difference between the

original signal υSH and the digitized and restored back signal—is clearly Q or one LSB.

However, a different coding scheme, the mid-tread coding scheme may reduce the error

magnitude to ½ Q or ½ LSB. It follows an ADC equation in the form

Chapter 14 Analog-to-Digital Conversion

XIV-726



ADCcode ¼ round
υSH

Q

� �

ð14:25bÞ

A function round(x) rounds its argument x to the nearest integer. This function is also

used in MATLAB and in other software packages. Equation (14.25b) corresponds to a

mid-tread coding scheme. Equations (14.25a) and (14.25b) are valid for any ADC type,

not only the flash ADC. Note that the flash-ADC circuit in Fig. 14.26 may be modified to

follow Eq. (14.25b). Only a slight modification of the circuit is needed! The

corresponding homework problem is suggested at the end of this chapter.

Quantization Error

The quantization error or quantization noise is the difference between the original signal

υSH and the digitized signal restored back – compare the first and last columns in

Table 14.4 above. It is exactly the error of Eq. (14.25a) or Eq. (14.25b), nothing else.

One has,

- For the coding scheme following Eq. (14.25a), the quantization error is 1Q or 1 LSB.

- For the coding scheme following Eq. (14.25b), the quantization error is �½ Q or �½

LSB (error magnitude is ½ Q or ½ LSB).

Quantization error is due to the finite resolution of the digital number; it is an intrinsic

imperfection of any ADC and cannot be avoided. The ADC relative accuracy considered

in the previous subsection includes the quantization error and other sources of error.

Example 14.10: A 4-bit flash ADC follows a mid-rise coding scheme. The reference

voltage is 10 V:

1. Present the ADC equation.

2. Determine ADC quantization error.

3. Find ADC output code when the sample-and-hold voltage, υSH, is 3.01 V.

Solution: We use Eq. (14.25a)

ADCcode ¼ floor
υSH

Q

� �

where Q ¼ E=2N ¼ 0:625 V ð14:25cÞ

The quantization error is 1LSB or 0.625 V. The ADC code is 0100, that is,

floor 3:01=0:625ð Þ ¼ 4 ¼ 0100binazry ð14:25dÞ

ADC Speed, Throughput Rate, and Conversion Time

An important parameter of the ADC is its conversion time. Conversion time is the time

required for a complete measurement by an analog-to-digital converter. Since the con-

version time does not include acquisition time of the sample-and-hold circuit, the
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conversion time may be less than the ADC throughput time. A case in point is an 8-bit

ADC0820 from National Semiconductor Corp. (Texas Instruments), which internally

uses two 4-bit flash A to D converters with the conversion time of 1.5–2.5 μs. The ADC

speed (or throughput rate) is the maximum rate at which the A–D converter can output

data values. The speed in measured in ksps (kilo samples per second) or Msps (mega

samples per second). For ADCs with the sample-and-hold circuits, the speed is the

inverse of the conversion time plus the acquisition time. For ADCs without the sample-

and-hold circuit (early versions of the ADCs), the speed is the inverse of the conversion

time only. A modern trend is to increase the throughput rate by using a pipelined A to D

converter, so a second conversion can start while the first is still in progress.

14.4.4 Successive-Approximation ADC

Concept
The flash ADC shown in Fig. 14.26 suffers from a huge number of comparators to be

used when a fine resolution is necessary. Another clever idea is to use the D to A

converter considered previously. Once driven by a binary counter, this converter pro-

duces various analog outputs corresponding to different binary numbers. Then, the circuit

compares such outputs with the actual sample-and-hold voltage using only one compar-

ator amplifier in Fig. 14.27. The closest result is the desired binary number.

Circuit

The corresponding circuit diagram (for a 4-bit ADC) is shown in Fig. 14.27. The A to D

converter so constructed is known as a successive-approximation ADC for a reason that

will be explained below. It is slower than the flash ADC but is still faster than many other

ADC techniques. This is perhaps the most popular ADC design today.

v (t)SH

D0

+
-

DAC
output

Control logic:
Successive-
approximation

register
(SAR)

D1

D2

D3

parallel binary output

serial binary output

Enable pulses

comparator amplifier

Fig. 14.27. A 4-bit successive-approximation ADC. Note that both parallel and serial outputs are

allowed.
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How Does It Work?

The brute-force comparison, e.g., counting all binary numbers startingwith zero andwaiting

until the corresponding voltage difference changes its sign, is not very appealing. The logic

control block in Fig. 14.27 uses a smarter, the successive-approximation comparison

algorithm, which actually dates back to the sixteenth century. The corresponding logic

circuit is known as successive-approximation register (SAR).

Historical: Long ago, an Italian mathematician Niccolò Fontana Tartaglia (1500–1557)

was posed with a problem of determination of an unknown weight by a minimal sequence

of weighing operations. His suggestion was to use a binary series of weights, e.g., 8 lb, 4 lb,

2 lb, 1 lb, etc. (1000, 0100, 0010, 0001 in terms of binaries). The proposed weighing

algorithm found its application in modern successive-approximation ADCs.

For simplicity, we assume that the 4-bit DAC in Fig. 14.27 has the output of 4 V for the

MSB (D3 high), of 2 V for D2 high, of 1 V for D1 high, and of 0.5 V for the LSB (D0

high). The sample-and-hold voltage is υSH¼ 2.6 V. The DAC resolution voltage, Q, is

then 0.5 V—exactly the LSB voltage. The DAC equation (Eq. (14.15a) of Section 14.2)

is written in terms of Q in the form

υDAC ¼ Q 8d3 þ 4d2 þ 2d1 þ d0ð Þ ð14:26Þ

The corresponding comparison sequence follows:

- First, the MSB only (binary word 1000) is compared. The result (4 V) is greater than

υSH; therefore, this bit is reset to zero (output of the comparator is low).

- Second, the D2 (binary word 0100) is compared. The result (2 V) is less than υSH;

therefore, this bit is kept (output of the comparator is high).

- Third, the D1 (binary word 0110 with D2 high) is compared. The result (3 V) is greater

than υSH; therefore, this bit is reset to zero (output of the comparator is low).

- Finally, the LSB (binary word 0101 with D2 high) is compared. The result (2.5 V) is

less than 2.6 V; therefore, it is kept (output of the comparator high). The obtained

binary number is 0101.

Figure 14.28 shows the corresponding comparison sequence, which is done in four

steps, instead of 15 steps of the worst-case scenario with the binary counter.
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Example 14.11: A 5-bit successive-approximation ADC has the input voltage of υSH

¼ 2:05 V; the DAC resolution voltage is 0.1 V. Determine the sequence of binary states

and the final ADC output.

Solution: The solution uses the DAC formula for a 5-bit DAC

υDAC ¼ Q 16d4 þ 8d3 þ 4d2 þ 2d1 þ d0ð Þ ð14:27Þ

and is done in five steps:

- 10000 is compared. The DAC output isQ� 16 ¼ 1:6 V. The comparator output is high;

the bit is kept.

- 11000 is compared. The DAC output isQ� 24 ¼ 2:4 V. The comparator output is low;

the bit is reset.

- 10100 is compared. The DAC output isQ� 20 ¼ 2:0 V. The comparator output is high;

the bit is kept.

- 10110 is compared. The DAC output isQ� 22 ¼ 2:2 V. The comparator output is low;

the bit is reset.

- 10101 is compared. The DAC output isQ� 21 ¼ 2:1 V. The comparator output is low;

the bit is reset.

The ADC output is 10100 (or 2.0 V when converted back to analog).

v (t)=2.6VSH

+
-

DAC

output

SAR

2 2 2 2
3 2 1 0

1 0 0 0

reset

MSB trial

low

v =4VDAC

v (t)=2.6VSH

+
-

DAC

output

SAR

2 2 2 2
3 2 1 0

0 1 0 0

high

v =2VDAC

2 bit trial
2

keep

v (t)=2.6VSH

+
-

DAC

output

SAR

2 2 2 2
3 2 1 0

0 1 1 0

low

v =3VDAC

2 bit trial
1

reset

v (t)=2.6VSH

+
-

DAC

output

SAR

2 2 2 2
3 2 1 0

0 1 0 1

high

v =2.5VDAC

LSB trial

keep

Fig. 14.28. Operation of a 4-bit successive-approximation ADC.

Chapter 14 Analog-to-Digital Conversion

XIV-730



Summary

Conversion of binary and hexadecimal numbers

Binary to decimal conversion: d3d2d1d0binary ¼

8d3 þ 4d2 þ 2d1 þ 1d0ð Þdecimal

Hex to decimal conversion: 378hex ¼

3� 256þ 7� 16þ 8� 1 ¼ 888decimal

Binary to hex conversion: 0011
|ffl{zffl}

0111
|ffl{zffl}

1000
|ffl{zffl}binary

¼ 378hex

Decimal to binary conversion: 156decimal ¼

256 128

1

64

0

32

0

16

1

8

1

4

1

2

0

1

0
¼ 10011100binary

Four-bit binary numbers

4 bit—binary counter

RS232 interface

(continued)
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Digital to analog converter (DAC) with N bits

– DAC resolution in bits is N bits or 2N

quantization levels (distinct analog output values);

– Full-scale output voltage range E is equal

to DAC reference voltage VREF;

– DAC voltage resolution Q (or LSB voltage)

is given by Q ¼ E=2N ;
– DAC relative accuracy is ½ LSB voltage or 1LSB

– DAC equation (a four-bit DAC):

υDAC ¼ Q 8d3 þ 4d2 þ 2d1 þ 1d0ð Þ or

υDAC ¼ E
d3

2
þ
d2

4
þ
d1

8
þ

d0

16

� �

, di ¼ 0 or 1

– Q ¼
RFD

2NRW

Binary-weighted-inp. DAC

– Q ¼
RFD

2NR
R/2R ladder DAC

Analog to digital converter (ADC) with N bits

– ADC resolution in bits is N bits or 2N

quantization levels (distinct analog outputs);

– Full-scale output voltage range E is equal

to ADC reference voltage VREF;

– ADC voltage resolution Q (or LSB voltage)

is given by Q ¼ E=2N ;
– ADC quantization error is ½ LSB or 1LSB

– ADC equation:

Mid-rise (w offset) coding: ADCcode ¼ floor
υSH

Q

� �

Mid-tread coding ADCcode ¼ round
υSH

Q

� �

– Minimum acceptable sampling rate must

exceed the Nyquist rate (sampling theorem):

– f Smin > f N , f N ¼ 2f—Nyquist frequency

– f—highest signal frequency

Schematic DAC and ADC circuits

Binary-weighted-input DAC

(continued)
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R/2R ladder DAC

Sample-and-hold circuit

Track-and-hold circuit

Flash ADC

Successive-approximation ADC
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Problems
14.1 Digital Voltage

and Binary Numbers

14.1.2 Analog Voltage Versus Digital

Voltage

14.1.3 Bit Rate. Clock Frequency.

Timing Diagram
Problem 14.1. Describe in your own words the

meaning of:

1. Analog voltage

2. Digital voltage

3. A bit

4. A binary number

5. Most significant bit (MSB)

6. Least significant bit (LSB)

Problem 14.2. Convert the following binary

numbers:

A. 1000001

B. 11111

C. 111111

D. 00001

E. 11110000

to decimal numbers.

Problem 14.3. Determine integer (decimal)

numbers represented by parallel digital output

voltages shown in the following figure.

D5 D4 D3 D2 D1 D0

MSB LSB
5 V

0 V

a)

D5 D4 D3 D2 D1 D0

MSB LSB
5 V

0 V

b)

D5 D4 D3 D2 D1 D0

MSB LSB
5 V

0 V

b)

Problem 14.4. Determine integer (decimal)

numbers represented by serial digital output

voltages shown in the figure. Sampling is

made at the center of each bit interval. In part

(c), the least significant bit arrives first at the

earliest time moment.

D

t

5 V

LSB MSB

a)

D

t

5 V

LSB MSB

b)

D

t

5 V

c)

Problem 14.5. A generic oscilloscope is mea-

suring a periodic voltage clock signal. The

oscilloscope window is shown in the following

figure.

A. Determine the clock period.

B. Determine the clock frequency (show

units).

C. Determine the duty cycle of the clock

waveform.

D. Determine Pk-Pk (peak-to-peak) voltage

of the clock signal.

5 V

-5 V

1 3 5 7 9 11 13 15

t, s

Problem 14.6. A Tektronix oscilloscope is

measuring a voltage clock signal. The oscillo-

scope window is shown in the following figure.

A. Determine the clock period.

B. Determine the clock frequency (show

units).

C. Determine the duty cycle of the clock

waveform.

D. Determine Pk-Pk (peak-to-peak) voltage

of the clock signal.
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Problem 14.7. A Tektronix oscilloscope is

measuring a voltage clock signal. The oscillo-

scope window is shown in the following figure.

A. Determine the clock period.

B. Determine the clock frequency (show

units).

C. Determine the duty cycle of the clock

waveform.

D. Determine Pk-Pk (peak-to-peak) voltage

of the clock signal.

Problem 14.8. The following figure shows a

timing diagram: the clock signal and the actual

synchronized serial bit stream (the unipolar

NRZ code).

A. Determine the clock period.

B. Determine the clock frequency (show

units).

C. Determine the bit rate of the bit stream

(show units).

D. Decode the corresponding binary num-

ber given the LSB/MSB positions (pre-

sent its decimal equivalent).

5 V

0 V

5 V

0 V

2 4 6 8 10 12 14 t, s

MSBLSB

Problem 14.9. The following figure shows a

timing diagram: the clock signal and the actual

synchronized serial bit stream (the polar NRZ

code).

A. Determine the clock period.

B. Determine the clock frequency (show

units).

C. Determine the bit rate of the bit stream

(show units).

D. Decode the corresponding binary num-

ber given the LSB/MSB positions (pre-

sent its decimal equivalent).

5 V

0 V

5 V

0 V

0.1 0.3 0.5 0.7 0.9 1.1 1.3 t, ns

MSBLSB

-5 V

14.1.4 Binary Numbers

14.1.5 Hexadecimal Numbers

14.1.6 ASCII Codes and Binary Words

14.1.7 Tri-state Digital Voltage
Problem 14.10. Name two major reasons why

the analog computer was surpassed by the dig-

ital computer.

Chapter 14 Problems

XIV-735



Problem 14.11. Describe in your own words

the meaning of:

1. A digital word

2. A nibble

3. A byte

Problem 14.12. Without a calculator or

MATLAB, convert the following binary num-

bers to decimal numbers:

A. 1010

B. 101010

C. 11.1

D. 10.001

Problem 14.13. Using either a calculator or

MATLAB, convert the following binary num-

bers to decimal numbers:

A. 1000001.111111

B. 0001111.000010

Problem 14.14. Without a calculator or

MATLAB, convert the following decimal num-

bers to binary numbers:

A. 19

B. 10

C. 1960

D. 14.25

Problem 14.15. Using either a calculator or

MATLAB, convert decimal numbers that fol-

low to binary numbers. The desired degree of

precision is six bits after the binary point:

A. 133.33

B. 999.125

C. 256.256

Problem 14.16

A. How many bits are necessary to repre-

sent decimal number 300,000,000 in

binary form?

B. How many bytes are necessary?

Problem 14.17. Write down the year of your

birth. Without a calculator or MATLAB, con-

vert this decimal number to:

A. Binary number

B. Hexadecimal number

Problem 14.18. Using the ASCII conversion

table, write the string USA in terms of:

A. Three decimal numbers

B. Three hexadecimal numbers

C. Three binary numbers

Problem 14.19. Without a calculator or

MATLAB, convert hexadecimal numbers that

follow to decimal numbers and binary num-

bers, respectively:

1. 1

2. 12

3. 1A

4. AAA

5. ECE

6. BE

7. CE

Problem 14.20. Using either a calculator or

MATLAB, convert hexadecimal numbers that

follow to decimal numbers:

1. 3F7

2. EE.25

3. 555h

4. 0x555

Problem 14.21. Convert binary numbers that

follow to hexadecimal numbers:

1. 01

2. 11110101

3. 1000000110000000

4. 1111111110000001

5. 1111111111111111.1111
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14.2 Digital to Analog

Converter

14.2.1 Digital to Analog Converter

(DAC)

14.2.2 Circuit (A Binary-Weighted-

Input DAC)

14.2.3 Underlying Math and Resolution

Voltage
Problem 14.22. The DAC circuit from

Fig. 14.15 is operating using the virtual-ground

condition of the inverting amplifier in order to

add up weighted-input currents. With this in

mind, a beginning ECE student removes the

amplifier from the circuit and puts a common

ground reference at the summing node instead.

Will the circuit work?

Problem 14.23

A. For an 8-bit binary-weighted-input DAC,

express its output voltage through the

resolution voltage (LSB voltage), Q,

and binary digits d7, d6, . . ., d0, which

corresponds to the input voltages.

B. Find the output voltage when the LSB

voltage is 20 mV and d7 ¼ d6 . . . ¼
d2 ¼ 1, d1 ¼ 0, d0 ¼ 1.

Problem 14.24. A 3-bit binary-weighted

digital-to-analog converter (DAC) is shown in

the figure. The circuit does not include the

inverter. Fill out the table that follows:

Vout

+
-

10 k80 k

0 V

iF

D0

D1

D2

40 k

20 k

D2, V D1, V D0, V υDAC, V

0 0 0

0 0 5

0 5 0

0 5 5

5 0 0

5 0 5

5 5 0

5 5 5

Problem 14.25. Repeat the previous problem

for the DAC shown in the following figure.

vDAC

+
-

5 k80 k

0 V

iF

D0

D1

D2

40 k

20 k

Problem 14.26. For a 4-bit binary-weighted-

input DAC, the input voltages D3,D2,D1,D0

are either 0 V or 5 V. The resolution voltage

Q of 10 mV is required:

A. Present the circuit diagram of a DAC;

label the input voltages.

B. Specify one set of possible resistor values.

Problem 14.27. For a 5-bit binary-weighted-

input DAC, the input voltages D4,D3,D2,D1,

D0 are either 0 V or 2.5 V. The resolution

voltage Q of 1 mV is required:

A. Present the circuit diagram of a DAC;

label the input voltages.

B. Specify one set of possible resistor values.

Problem 14.28. Design a 4-bit binary-

weighted-input DAC circuit which attempts to

output the analog voltage in the form of a linear

time dependence, υout tð Þ ¼ 5� 105t Vð Þ over

time interval from 0 to 4 μs. The input to the

DAC is a binary-counter sequence of all 4-bit
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binary numbers. The bit width is 0.25 μs; high

and low voltages are 5 V and 0 V, respectively:

A. Present the corresponding circuit dia-

gram; specify required DAC resolution

voltage (LSB voltage) and necessary

resistor values.

B. Plot the input digital voltages to scale

versus time.

C. Plot the output voltage to the DAC to

scale versus time.

D0

0 V

5 V

0 V

5 V

0 V

5 V

0 V

5 V

D1

D2

D3

2.0 V

1.0 V

1.5 V

0.5 V

0.0 V

Input

Output
vDAC

0 1 2 3 4
time, s

Q= R =W

Circuit diagrama)

R =F

0 1 2 3 4
time, s

b)

c)

Problem 14.29. Design a 3-bit binary-

weighted-input DAC circuit which attempts to

output the analog voltage in the form of a linear

time dependence, υout tð Þ ¼ 5� 105t Vð Þ over

time interval from 0 to 8 μs. The input to the

DAC is a binary-counter sequence of all 3-bit

binary numbers. The bit width is 1 μs; high and

low voltages are 5 Vand 0 V, respectively:

A. Present the corresponding circuit dia-

gram; specify the required DAC resolu-

tion voltage (LSB voltage) and

necessary resistor values.

B. Plot the input digital voltages to scale

versus time.

C. Plot the output voltage to the DAC to

scale versus time.

D0

0 V

5 V

0 V

5 V

0 V

5 V

D1

D2

4.0 V

Input

Output
time, s

b)

c)

0 1 2 3 4 5 6 7 8

time, s
0 1 2 3 4 5 6 7 8

2.0 V

0.0 V

Q= R =W

Circuit diagrama)

R =F

vDAC

Problem 14.30. A 4-bit binary-weighted-input

DAC has the resolution voltage, Q, of 0.125 V

and the input voltages shown in the following

figure. Pin D3 is accidentally connected to

ground. Plot the output voltage of a DAC to

scale versus time.
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D0

0 V

5 V

0 V

5 V

0 V

5 V

0 V

5 V

D1

D2

D3

2.0 V

1.0 V

1.5 V

0.5 V

0.0 V

Input

Output

0 1 2 3 4
time, s

0 1 2 3 4
time, s

a)

b) vDAC

Problem 14.31. Repeat the previous problem

for the input voltages shown in the following

figure.

D0

0 V

5 V

0 V

5 V

0 V

5 V

0 V

5 V

D1

D2

D3

2.0 V

1.0 V

1.5 V

0.5 V

0.0 V

Input

Output

0 1 2 3 4
time, s

0 1 2 3 4
time, s

a)

b)vDAC

14.2.4 DAC Full-scale Output Voltage

Range, Resolution, and Accuracy

Problem 14.32

A. For an 8-bit DAC chip, express its output

voltage through the full-scale output

voltage range, E, and binary digits d7,

d6, . . ., d0, which corresponds to the

input voltages.

B. Find the output voltage when the full-

scale output voltage range, E, is 6 V and

d7 ¼ d6 . . . ¼ d2 ¼ 1, d1 ¼ 0, d0 ¼ 1.

Problem 14.33

A. For a 10-bit DAC chip, express its output

voltage through the full-scale output

voltage range, E, and binary digits d9,

d8, . . ., d0, which corresponds to the

input voltages.

B. Find the output voltage when the full-

scale output voltage range, E, is 10 V

and d9 ¼ d8 . . . ¼ d3 ¼ 1, d2 ¼ d1 ¼ 0,

d0 ¼ 1

C. Find the resolution voltage of the

DAC, Q.

Problem 14.34. A 6-bit DAC and a 8-bit DAC

use a 6- and 8-bit binary-counter input

sequences in order to produce the analog volt-

age in the form of a linear time dependence,

υout tð Þ ¼ 5� 105t Vð Þ, over the same time

interval from 0 to 10 μs. Determine:

1. DAC resolution in bits (quantization

levels)

2. Full-scale output voltage range, E

3. DAC voltage resolution, Q

4. Necessary bit rate, fb

Problem 14.35. An 8-bit DAC and a 10-bit

DAC use an 8- and 10-bit binary-counter

input sequences in order to produce the analog

voltage in the form of a linear time dependence,

υout tð Þ ¼ 5� 106t Vð Þ, over the same time

interval from 0 to 1 μs. Determine:

1. DAC resolution in bits (quantization

levels)

2. Full-scale output voltage range, E

3. DAC voltage resolution, Q

4. Necessary bit rate, fb
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Problem 14.36. For a 3-bit R/2R ladder DAC,

the input voltagesD2,D1,D0 are either 0Vor 5V.

The resolution voltage Q of 100 mV is required:

A. Present the circuit diagram of a DAC;

label the input voltages.

B. Specify one set of possible resistor values.

14.2.5 Other DAC Circuits
Problem 14.37. By solving the amplifier circuit,

determine the output voltage of the 3-bit R/2R

ladder DAC shown in the following figure given

that D2 ¼ 0 V,D1 ¼ 5 V,D0 ¼ 0V.

Vout

D =0 V0

+
-

RF

0 V

0V

iF

2R 2R2R

D =5 V1 D =0 V2

0 V

R R2R
a b c

Problem 14.38. By solving the amplifier

circuit, determine the output voltage of the

4-bit R/2R ladder DAC in Fig. 14.18 given that

D3 ¼ 0 V,D2 ¼ 5 V,D1 ¼ 0 V,D0 ¼ 0 V.

D =0 V0

+
-

RF

0 V

0 V

iF

2R 2R 2R2R

D =0 V1 D =5 V2 D =0 V3

0 V

R R R2R
a b c d

vDAC

Problem 14.39. An important step in the anal-

ysis of the R/2R ladder network is finding

Thévenin equivalent for the circuit shown in

the figure. Find the Thévenin equivalent and

draw the corresponding circuit.

Dx

R

+
-

a

b

Dy

2R

+
-

R

14.3 Sample-and-Hold

Circuit. Nyquist Rate

14.3.1 Analog to Digital Converter

(ADC)

14.3.2 A Quick Look at an Analog Sinu-

soidal Voltage

Problem 14.40

A. Determine frequency in Hz, angular fre-

quency in rad/sec, phase, and amplitude

of the harmonic voltage signal shown in

the following figure.

B. Write the voltage in the form of a cosine

function with the corresponding ampli-

tude, frequency, and phase.

-2

-1

0

1

2

voltage, V

0 15 30 45 60 75

time, s

90

Problem 14.41. Determine frequency in Hz,

angular frequency in rad/s, and amplitude of

the harmonic voltage signal shown in the fol-

lowing figure.

-2

-1

0

1

2

voltage, V

0 15 30 45 60 75

time, s

90

Problem 14.42

A. Determine frequency in Hz, angular fre-

quency in rad/s, phase, and amplitude of
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the harmonic voltage signal shown in the

figure.

B. Write the AC voltage in the form of a

cosine function, with the corresponding

amplitude, frequency, and phase.

-2

-1

0

1

2

voltage, V

0 15 30 45 60 75

time, s

90

14.3.3 Sample-and-Hold Voltage
Problem 14.43. For the voltage signal shown

in the following figure, determine:

A. Frequency, f, and amplitude, Vm, of the

analog voltage

B. Sampling interval, TS, and sampling rate,

fS, for the sample-and-hold voltage

0 1 2

-1

-0.5

0

0.5

1

v (t), Vin

v (t), VSH

t, s

Problem 14.44*. Plot the figure to the previous

problem using MATLAB, introduce a title,

and label the axes. Present the text of the

corresponding MATLAB script.

Problem 14.45. For the voltage signal shown

in the following figure, determine:

A. Frequency, f, and amplitude, Vm, of the

analog voltage

B. Sampling interval, TS, and sampling rate,

fS, for the sample-and-hold voltage

v (t), Vin

v (t), VSH

t, s0 0.5 1

-2

-1

0

1

2

Problem 14.46*. Plot the figure to the previous

problem using MATLAB, introduce a title,

and label the axes. Present the text of the

corresponding MATLAB script.

14.3.4 Sample-and-Hold Circuit

(SH Circuit)
Problem 14.47. Draw the schematic of the

sample-and-hold circuit. Explain its operation

in steps.

Problem 14.48. The circuit shown in the figure

is another modification of the sample-and-hold

circuit.

Assuming that the capacitor responds

instantaneously:

A. Explain the circuit operation.

B. Sketch its output voltage to scale versus

time in the figure the follows.

The switching control voltage is shown on the

top of the figure. The switch is closed at high

control voltage and is open at low control

voltage.
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+
-

v (t)in

Chold

+
-

hold (open)

input buffer output buffer

v (t)SH

0V

v (t), Vin

v (t), V?SH

t, s

-1

-0.5

0

0.5

1

1 2 4 530

switch closed

switch open

14.3.5 Nyquist Rate
Problem 14.49. An analog voltage is a combi-

nation of three sinusoidal harmonics with fre-

quencies 1 MHz, 0.5 MHz, and 0.2 MHz.

The voltage amplitudes of the individual sinu-

soids are 1 V, 1 V, and 5 V. What is the limit

on minimum acceptable sampling rate of the

sample-and-hold circuit?

Problem 14.50. An analog voltage is a

combination of four sinusoidal harmonics

with frequencies 0.5 MHz, 0.2 MHz, 1 MHz,

and 1.2 MHz. The voltage amplitudes of

the individual sinusoids are 5 V, 1 V, 1 V,

and 0 V. What is the limit on minimum accept-

able sampling rate of the sample-and-hold

circuit?

Problem 14.51. Using the figure below, could

you demonstrate when the sampling at exactly

the Nyquist rate may not be successful?

0 1 2
t, s

f =fS N

v (t), Vin

v (t), VSH

Problem 14.52.An audio signal (containing all

analog sinusoids with frequencies between

20 Hz and 20 kHz) is recorded using a simpli-

fied sample-and-hold circuit (the reset switch is

omitted) shown in the following figure.

+
-

v (t)in

Chold

+
-

sample

input buffer output buffer

v (t)SH

0 V

The sample switch closes every:

A. 227 μs

B. 22.7 μs

C. 2.27 μs

then opens momentarily. Which case should be

preferred for the minimum memory require-

ment (for an audio CD)?

14.4 Analog to Digital

Converter

14.4.1 Flash ADC
Problem 14.53.How many comparators would

we need for an 8-bit flash ADC? For a 12-bit

flash ADC?
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Problem 14.54

A. Draw a complete circuit diagram of a

2-bit flash ADC with the full-scale mea-

surement voltage range of 4 V.

B. Fill out the following table:

Range of

sample-and-

hold voltage

υSH, V

Output of

comparator

block (3–0)

Output of the

priority

encoder

(binary number

d1d0)

3–4

2–3

1–2

0–1

Problem 14.55

A. Draw a complete circuit diagram of a

3-bit flash ADC with the full-scale mea-

surement voltage range of 8 V.

B. Fill out the following table:

Range of

sample-and-

hold voltage

υSH, V

Output of

comparator

block (7–0)

Output of the

priority

encoder

(binary number

d3d2d1d0)

7–8

6–7

5–6

4–5

3–4

2–3

1–2

0–1

14.4.2 ADC Resolution in Bits, Full-scale

Input Voltage Range, and Voltage

Resolution
Problem 14.56. For a 6-bit ADC determine:

A. Resolution in bits (quantization levels)

B. Voltage resolution, Q

C. Relative accuracy percentage assuming a

1 LSB error

when the full-scale measurement voltage range

is 8 V.

Problem 14.57. For an 8-bit ADC determine:

A. Resolution in bits (quantization levels)

B. Voltage resolution, Q

C. Relative accuracy percentage assuming a

1 LSB error

when the full-scale measurement voltage range

is 10 V.

14.4.3 ADC Equation and Quantization

Error
Problem 14.58. A 5-bit flash ADC follows a

mid-rise coding scheme. The reference voltage

is 12 V:

1. Present the ADC equation.

2. Determine ADC quantization error.

3. Find ADC output code when the sample-

and-hold voltage, υSH, is 3.1 V.

Problem 14.59. An 8-bit flash ADC follows a

mid-tread coding scheme. The reference volt-

age is 5 V:

1. Present the ADC equation.

2. Determine ADC quantization error.

3. Find ADC output code when the sample-

and-hold voltage, υSH, is 0.2 V.
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Problem 14.60. A 3-bit flash ADC is

constructed as shown in the following figure:

A. Fill out the table below, which describes

the ADC operation. Express all absolute

voltage values in terms of the resolution

voltage, Q.

B. Based on this table, estimate the

quantization error of the ADC in terms

of Q.

C. Is this ADC design is better than themid-

rise coding scheme?

1.5R

E=8V

Reference voltage

0V

R

R

R

R

R

R

0.5R

0V

v (t)SH

Priority encoder

7

6

5

4

3

2

1

0

Priority encoder

D0

D1

D2

+
-

+
-

+
-

+
-

+
-

+
-

+
-

Voltage

range of υSH,

in terms of Q

Output

of

comp.

block

(7–0)

Output

of prior-

ity

encoder

(binary

number

d2d1d0)

Voltage

decoded

back, in

terms of

Q

6.5Q–8Q

5.5Q–6.5Q

4.5Q–5.5Q

3.5Q–4.5Q

2.5Q–3.5Q

1.5Q–2.5Q

0.5Q–1.5Q

0–0.5Q

14.4.4 Successive-Approximation ADC
Problem 14.61. Draw the circuit diagram for a

3-bit successive-approximation ADC.

Problem 14.62. A 4-bit successive-approxi-

mation ADC has the input voltage of υSH ¼
1:05 V; the DAC resolution voltage is 0.1 V.

Determine the sequence of binary states and the

final ADC output.

Problem 14.63. A 5-bit successive-approxima-

tion ADC has the input voltage ofυSH ¼ 3:1 V;

the DAC resolution voltage is 0.2 V. Determine

the sequence of binary states and the final ADC

output.
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Chapter 15: Embedded Computing

Overview

Prerequisites:

- Knowledge of binary and hexadecimal numerical representations and conversions

- Knowledge of basic digital logic circuits

- Knowledge of basic circuitry

Objectives of Section 15.1:

- Understand high-level architecture of a generic computer

- Define elemental parts of an embedded computers, i.e., CPU, memory, I/O

peripherals, buses

- Understand architecture and function of the CPU, memory, and I/O

Objectives of Section 15.2:

- Understand the organization of memory

- Describe how data is stored in little- and big-endian microprocessors

- Describe and understand various categories and types of memory

Objectives of Section 15.3:

- Understand capabilities of Arduino Uno

- Install open-source Arduino IDE and driver software

- Learn how to write Arduino sketches and upload code to Arduino Uno

Objectives of Section 15.4:

- Understand basic data types available on Arduino Uno

- Perform basic operations on data types using arithmetic operations on Arduino

- Create functions to simplify code and reduce repeated instructions

- Understand libraries and their functions on Arduino

- Control a servomotor using Arduino Uno board
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Objectives of Section 15.5:

- Understand and create code with conditional statements

- Understand and implement code with switch statements

- Be able to control loops of a sketch and incite repetition

- Use strings and arrays in a program where appropriate

- Print out messages to the serial monitor for debugging

- Understand interrupts and their advantages and disadvantages

- Be able to generate a square wave with a controllable duty cycle on a pin

Application examples:

- Servomotor control

- Emergency motor stop

Keywords:

CPUs: Real-time, Von Neumann/Princeton architecture, Hierarchy, ALU (arithmetic logic unit),

CPU functions (fetch, decode, execute, write-back), Opcode, Operands, Instruction set, RISC

(Reduced Instruction Set Computing), Byte, Address, Kilobyte, Megabyte, Gigabyte, Kilobinary,

Megabinaries, Gigabinaries, Bus, Bus width, Address bus, Data bus, Rule of shared buses;

Memory: Address, Big endian, Little endian, Volatile, Nonvolatile, RAM (random access

memory), ROM (read-only memory), EEPROM (electronically erasable programmable read-

only memory), Flash memory, PROM (programmable read-only memory), EPROM (erasable

programmable read-only memory), Address space; Arduino: Arduino, Arduino Uno, IDE

(integrated development environment), File menu, Edit menu, Sketch menu, Tools menu,

Functions, Return value, Void, Setup(), Loop(), Comment, Primitive data types, Int (integer),

Float (floating point), Double (double precision), Boolean (true or false), Char (character),

Variables, Type specifier, Declaration, Assignment statement, Typecasting, Function header,

Body of the function, Argument, Arrays, Strings, Library, Encapsulation, Access functions,

Header file, Function prototypes, Script file, Servo library, Servomotor, Servo object,

Conditional statements, State programming, Switch statement, For loop, Pseudo-code, Infinite

loop, Increment operator, Decrement operator, While loop, Element, Index, Serial

communication, Baud rate, Polling, Interrupts, ISR (interrupt service routine), Interrupt queue,

Debounced
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Section 15.1 Architecture of Microcontrollers

Embedded computers are literally everywhere in modern life. Embedded computing is

the incorporation of computing devices like microcontrollers into the design of a product

or larger system that is not itself a computer. On any given day, we interact with and

depend on dozens of small computers to make coffee, run cell phones, take pictures, run

the dishwasher, control elevators, stop the car, and so on. For every PC-style computer

made each year, there are approximately 50–100 embedded computer devices produced.

Consider the contents of an average student’s backpack. It is likely to contain a notebook-

style personal computer (PC). However, it is just as likely to contain a digital music

player, a cell phone, a handheld graphing scientific calculator, a keyless entry car key, and

maybe an e-book reader! Each of these devices relies on the computing capability

embedded within it.

A key feature of an embedded computer is that it typically only performs a single

function or small set of very tightly coupled functions. It is not a general-purpose device

like a PC. Another feature of an embedded system is that it can enable operation of a

complex function by a nonexpert. For example, one can live a full and complete life

without knowing the details of the Moving Pictures Expert Group Audio Layer-3

encoding standard (i.e., MPEG-3). To use a digital music player, we simply press the

play button. Embedded computers are often resource constrained and must exhibit very

high reliability. They must perform their assigned task in real time or very close to real

time and must work flawlessly for years powered only by a small battery. To achieve

these goals, embedded computers are usually a mix of tightly integrated hardware and

software. An engineer must understand and appreciate both the hardware and the

software aspects of embedded computers to use them effectively. This chapter presents

a high-level overview of microcontrollers and how they can be interfaced with control

hardware components in an electronic circuit.

15.1.1 A Generic Microcontroller

Figure 15.1 is a block diagram view of a generic computer. Any computer system,

whether large or small, will contain three functional subblocks: the central processing

unit (CPU), memory, and input/output (or I/O) devices. The general architecture in

Fig. 15.1 is called the Von Neumann or Princeton architecture, and it dates from 1946.

In earlier mainframe and PC-style computers, the CPU, memory, and I/O devices were

each implemented as separate circuits often on separate circuit boards and were

connected through wire buses. Modern microcontrollers are complete computer systems

implemented within a single integrated circuit (IC).
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The hierarchy of hardware and software for general-purpose computing (e.g., on a PC)

is shown in Table 15.1.

This hierarchy is simplified in an embedded system where a single custom application

interfaces directly with the microcontroller’s hardware—see Table 15.2.

15.1.2 Central Processing Unit

The CPU is the “brain” of a computer. The CPU contains the control unit, the arithmetic

logic unit (ALU), and bus interface circuitry as seen in Fig. 15.2. It controls the operation of

memory and the I/O devices and executes program instructions. Conceptually, a CPU

performs four functions: fetch, decode, execute, and write-back. First the CPU fetches an

instruction from the part of memory where the program is stored. An instruction is simply a

multi-byte binary code. The instruction is then decoded within the control unit to extract its

opcode (operational code which specifies operations to be performed) and the operands

(quantities on which operations are performed). The sample format of this process can be

seen in Fig. 15.3. A CPU can only understand and execute a fixed number of operations

which is called its instruction set.

CPU

Memory

I/O Devices

Control Lines

Address Bus

Data Bus

Fig. 15.1. Architecture of a generic computer.

Table 15.1. Hierarchy of hardware and software for general-purpose computing.

Applications (MultiSim, MATLAB, Google Earth, etc.)

Operating system (Windows 10, Linux, or Mac OS X)

Hardware Abstraction Layer (device drivers, basic I/O system—BIOS)

Hardware (CPU, memory, I/O devices)

Table 15.2. Hierarchy of an embedded system.

Application (single, custom application)

Hardware (CPU, memory, I/O devices)
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Most small microcontrollers used in embedded computing today are RISC (Reduced

Instruction Set Computing) devices and only have about 20 or 30 instructions. Each of the

instructions is represented by a unique binary opcode. Execution of the instruction

generally involves the arithmetic logic unit (ALU). The ALU contains digital circuitry

to perform binary arithmetic functions like addition and subtraction as well as bitwise

logic functions like AND, OR, and NOTon operands supplied in the instruction. Many, if

not most, small microcontrollers do not have multiply or divide instructions meaning they

have no digital circuitry for multiplication or division in their ALU. When a program

requires multiplication or division, those operations are implemented in software using

repeated addition or subtraction instructions.

15.1.3 Memory

Memory is where both program and any data used or acquired during program execution

is stored. Memory is an array of sequential storage locations. Each location typically

holds 8 bits or 1 byte. Additionally, each memory location has an address (expressed to

the CPU as a binary code) that uniquely identifies it. The amount of memory is specified

in terms of bytes with the total number of bytes always being a power of 2. For example,

210¼ 1024 bytes is commonly called a 1 kilobyte¼ 1 KB. Similarly, 1 megabyte (MB) is

220 bytes and 1 gigabyte (GB) is 230 bytes. Strictly speaking the quantity 210 is defined as

a kilobinary (Ki) and 220 and 230 are megabinaries and gigabinaries (Mi and Gi),

respectively. However, manufacturers continue to regularly use the labels KB, MB, and

GB for these quantities. The system designer need to consult the datasheets to determine

how a given manufacture is defining memory capacity. Small microcontrollers may only

have 2–16 KiB of memory, a more capable system may have 64 KiB to 1 MiB, and the

most powerful embedded processors can have over 1 GiB of on-chip memory.

Control
Unit

Arithmetic Logic
Unit (ALU)

Bus
Interface
Unit
(BIU)

Control

Data

Control

Control Lines

Address Bus

Data Bus

CPU

Fig. 15.2. Block diagram of a CPU.

OPCODE    Operand 1 data size info Operand 2 

6 bits                      16 bits 2 bits 8 bits

Fig. 15.3. Notional format of a 4-byte machine language instruction.
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15.1.4 Input and Output Devices

The I/O devices, sometimes called peripherals, are how the CPU interfaces to the outside

world. The complement of I/O devices varies between many different microcontrollers

available. However, most microcontrollers will have at least one analog-to-digital con-

verter to take measurements from analog devices like thermistors, pressure sensors, and

accelerometers; one digital timer block to time events; and a one serial interface to

communicate serial data to the outside world. Other common peripherals include digital-

to-analog converters (DACs), comparators, and digital circuits for PWM generation.

15.1.5 Timers

Unlike PCs or other computers, microcontrollers have no access to a time reference. The

only unit of time an embedded controller actually knows is the period of its clock signal:

T clk ¼ 1=f clk ð15:1Þ

All other units of time like milliseconds or minutes must be generated by counting clock

periods. Timers are digital circuit block that count the rising (or falling) edges of a clock

signal. Virtually all microcontrollers have an on-chip timer and most have 2 or more.

Exercise 15.1: For an Arduino Uno running at a 16-MHz clock speed, how many rising or

falling edges of the clock signal must be counted to measure the following times:

(A) 37 ms, (B) 255 μs, and (C) 469 ns.

Answer: Simply multiply the clock frequency by the desired time.

A. Number of edges¼ 0.037 s * 16 MHz¼ 592,000 edges

B. Number of edges¼ 0.000255 s * 16 MHz¼ 4080 edges

C. Number of edges¼ 0.000000469 s * 16 MHz ~¼ 7 edges

An important note is that for 469 ns, a total of 7.5 edges must actually be counted, since

half edges cannot be counted. This shows that there is a resolution of 62 ns for this clock in

theory, but in practice this resolution will be much less precise.

15.1.6 Buses

A bus is the general name given to a collection of wires that make multiple connections

in parallel. The number of wires bundled together is called the bus width. In digital

circuits, the bus width also refers to the number of bits in a word. For example,

transferring a byte from memory to the CPU requires eight parallel electrical connec-

tions, one for each bit. These eight parallel connections are an 8-bit bus. Instead of

showing all eight connections in circuit drawings, buses are drawn as a single line with

a slash—see Fig. 15.4. Inside a microcontroller, the buses that connect the CPU,

memory, and peripherals are not wires but minute interconnections less than microm-

eter thick. Usually there will be a group of several control lines that the CPU uses to
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initiate operations by the memory or peripherals. There will also be an address bus

which used by the CPU to specify where data should be read from or written to and a

data bus which conveys binary data between the CPU and memory or between the

CPU and the I/O devices. Notice in Fig. 15.1 that a single bidirectional data bus goes

between memory, the CPU, and the I/O peripherals. It is the control lines from the CPU

that establish who has control of the bus. Only one device is allowed to place data on

the data bus at any given time. The fundamental rule of shared buses is that there can

be only one bus driver.

15.1.7 Universal Synchronous/Asynchronous

Receiver/Transmitter (USART)

Parallel Data Transmission
Within a microcontroller, data is passed along parallel interfaces (buses) between the

CPU and memory or between the CPU and I/O peripherals. However, parallel data

transmission is not practical for the “long” haul (i.e., off chip) for several reasons.

Chief among them are that the length of parallel links is usually limited and that there

simply aren’t enough pins available on a microcontroller’s package to support parallel

interfaces.

Serial Data Transmission

In serial communications, the bits that comprise a binary data word are sent sequentially

along a single data line. Serial data transfer is typically slower than parallel data transfer

but a minimal serial link requires only two data lines, transmit (TX) and receive (RX),

regardless of word size. Also, there are serial devices available to communicate over a

great range of distances. Serial data links can be made to communicate among integrated

circuits on the same printed circuit board or made to communicate over many kilometers

through an RF modem or satellite phone.

CPU Memory

d7

d0

CPU Memory

D7-0

8

a) b)

Fig. 15.4. (a) Explicitly showing all eight connections required to transfer 1 byte makes sche-

matics cluttered; (b) multi-bit buses are drawn as a single, thicker line with bus width indicated

above.
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USART

A USART bridges the gap between the CPU and external serial devices by acting as a

parallel-to-serial and serial-to-parallel translator. It converts parallel data from memory or

CPU registers to serial format and then transmits the data to an external serial device. It

also accepts serial data from external source(s) and converts it to parallel format so that

the data may be read by the CPU or stored in memory.

Exercise 15.2: Outline asynchronous and synchronous serial communications.

Solution: In asynchronous communications, both the transmit device and receive device

run using their own clock frequencies. In synchronous communications, both devices run

at the same clock cycle. There is a data line that supplies the clock signal from the transmit

device to any receiving devices to ensure the communication occurs smoothly and without

errors.
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Section 15.2 Memory

15.2.1 Organization of Memory

Memory is a group of sequential locations where binary data is stored. Typically, in a

microcontroller, each memory location holds 8 bits or 1 byte of data. Each location in

memory has a unique address which the CPU uses to read to and write from that

location—see Fig. 15.5 as an example. You may think of each memory location as

mailbox. The address number on the outside of the mailbox has nothing to do with

what is actually in the mailbox; it just identifies where the mail is to be placed. Memory

addresses serve the same purpose. The address identifies the location at which some data

is stored but does not convey any information about what that data may be. Frequently, a

single word of data is longer than 1 byte. For example, a 16-bit binary number would

require 2 bytes of memory to store. Similarly, the output of a 12-bit ADC would require

2 bytes of storage even though the most significant 4 bits of the second byte are not used.

Multi-byte data is stored in successive memory locations and the address associated with

the whole word is the address where the first byte from the word is stored.

The question is which byte is stored first in memory, the byte containing the most

significant 8 bits of the word or the byte containing the least significant bits? For that

matter, within a byte which bit is the most significant and which is the least?

By convention, the bits within a byte are labeled left to right as bits 7 through

0 with bit 7 representing the most significant bit and bit 0 being the least significant.

... xxxAh

15 14 ..Bits... 9 8 xxx9h

7 6 ..Bits.. 1 0 xxx8h

Byte xxx7h

Byte xxx6h

Word (High Byte) xxx5h

Word (High Byte) xxx4h

... xxx3h

Fig. 15.5. Byte storage in memory.
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This convention aligns with the powers of 2 that would be represented in an 8-bit binary

number. As an example, we present the byte that represents the decimal number 149 in

Fig. 15.6.

Determining the order in which the bytes of multi-byte data word are stored is more

confusing. One would think that, with almost 70 years into the age of computing, the

order of storage of multi-byte data words would be firmly established. Unfortunately, this

is not the case. There are two possible storage conventions; the most significant byte can

be stored first with the less significant bytes following in successive locations, or the least

significant byte can be stored first with the more significant bytes following. The first

method is called big-endian storage, and the second method is called little-endian

storage. Neither endian convention is technically superior to the other and both are firmly

established and used by various families of microcontrollers. The names big and little

endian actually come from Jonathan Swift’s Gulliver’s Travels in which the neighboring

kingdoms came to blows over which end of a hard-boiled egg to open first. Endian battles

in computing are nearly as hotly contested! Typically, endian-ness is a basic design

decision made early in the development of a family of CPUs and CPUs are either big

endian or they are little endian (however, FreeScale does make endian-selectable pro-

cessors). System designers need to know which convention is used to store their data in

order to interpret the contents of memory and implement long word data types.

Example 15.1: How would the value 72468 be stored in memory starting at address

0200h by a little-endian microprocessor and by a big-endian microprocessor?

Solution: First convert 72468 to binary: 72468¼ 10001101100010100b. This binary

number is 17 bits long, but data representations available to computers are always multiple

of 8 bits (i.e., of 1 byte). Common data word sizes for microcontrollers are 8 bits, 16 bits,

and 32 bits. Since this number requires more than 16 bits to represent, we must use a 32-bit

(4 bytes) data type with the most significant bits all equal to 0. It is easier to then write the

number as its equivalent hexadecimal value:

72468 decimal ¼ 00000000 00000001 00011011 00010100b ¼ 00 01 1B 14h ð15:2Þ

On a little-endian processor, the least significant byte (the little end) is placed in the

assigned address and the more significant bytes are placed in successive locations.

However, on a big-endian processor, the most significant byte (the big end) is stored first

and the more significant bytes are placed in successive slocations. Table 15.3 illustrates the

corresponding data storage.

1001 0101b = 1x2 + 0x2 + 0x2 + 1x2 + 0x2 + 1x2 + 0x2 + 1x2
7 6 5 4 3 2 1 0

bit7 MSB bit0 LSB

Fig. 15.6. The binary representation of the decimal number 149.
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Example 15.1 (cont.):

Table 15.3. Data storage methods.

Little endian Big endian

Address Byte value Address Byte value

0204h . . . 0204h . . .

0203h 00h 0203h 14h

0202h 01h 0202h 1Bh

0201h 1Bh 0201h 01h

0200h 14h 0200h 00h

01FFh . . . 01FFh . . .

15.2.2 Types of Memory

Volatile Memory
There are two main classifications of computer memory, volatile and nonvolatile. All

computer systems, including microcontrollers, will have a mix of these two memory

types. Volatile memory can be both read from and written to under program control but all

of its contents are immediately lost when power is removed. In most computer systems,

the volatile memory is called RAM, for random access memory. The term random access

means the data at any address can be accessed in any order. This a throwback to the early

days of computing where data storage devices like magnetic tape drives had to be

accessed sequentially as the tape spun to a given address. Strictly speaking, all on-chip

(or IC) memory, whether volatile or not, is random access but the name RAM has become

specifically associated with volatile memory.

Nonvolatile Memory

Nonvolatile memory retains its contents when power is removed but it is generally read-

only memory (ROM). This means that while nonvolatile memory can always be read from

under program control, it cannot, in general, be written to. The exception is electronically

erasable programmable read-only memory (EEPROM), such as commonly used flash

memory, which can be written to during program execution. A valid question might be:

why bother with volatile RAM? Why not just always use nonvolatile flash memory? The

reason is that reading from and especially writing to EEPROM takes longer than

accessing RAM. The erasure and writing process for flash is significantly more involved

than writing to RAM. Flash must be erased in blocks, e.g., 512 bits at a time, before it can

be written. Other types of ROM, like programmable read-only memory (PROM) and

erasable programmable read-only memory (EPROM), cannot be written to at all during

program execution. The contents of these types of memory are fixed and programmed in

using a separate, off-line process (i.e., a PROM programmer).
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The two types of memory serve different purposes within the computer. Nonvolatile

memory is where the microcontroller’s program is stored (code memory), while volatile

memory is where data used or generated during program execution is kept (data mem-

ory). By convention, nonvolatile memory generally occupies the higher memory

addresses, and RAM occupies the lower addresses. Often, the registers that control the

I/O devices are also mapped to the lower memory addresses. Figure 15.7 illustrates a

notional memory map for a small microcontroller with a total of 64 KB of memory. The

mix of RAM and ROM present in a computer depends on the application of the processor.

General-purpose PCs have much more volatile memory (i.e., several GB of RAM) than

nonvolatile memory. Most small microcontrollers, on the other hand, may have only

512–4096 bits of RAM and 16K to 64 KB of flash or ROM.

Exercise 15.3: How wide must the address bus be to access 64 KB of memory?

Answer: Sixty-four kilobytes of memory contains 64� 210¼ 26� 210¼ 216 bytes. Sixteen

bits are required to label these 216 locations. Usually memory addresses are expressed in hex.

The labels for the address space of this microcontroller would run from 0000h to FFFFh.

15.2.3 Flash Memory in Embedded Devices

The advent of inexpensive flash memory has had a tremendous impact on the design and

implementation of embedded systems. As mentioned above, many families of microcon-

trollers use flash as their nonvolatile memory. The primary purpose of these on-chip

blocks of flash is to act as code memory. However, some embedded systems also collect

measurements from I/O devices and must store this data permenantly. Data loggers are

devices that record measurements from a sensor over time and store the data. Depending

on the operational life of the system and the amount of data collected, part of the on-chip

flash of the microcontroller could be used to save the data. More often, an interface to a

removable flash device like a secure digital (SD) card is implemented using the serial

commuications peripheral. Then, a small, inexpensive microcontroller with only a few

KB of internal memory can save gigabytes of data to the external flash card. The SD

device can then be removed and connected to a PC for data review and analysis.

60 KB
Non-volatile

(Code memory)

4 KB Volatile
(Data memory)

I/O Addresses

Fig. 15.7. A notional memory map for a small microcontroller with a total of 64 KB of memory.
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Section 15.3 Arduino Uno: An Embedded Microcontroller

15.3.1 What Is Arduino?

The Arduino is an open-source platform designed to be a low-cost, flexible, and easy-to-

program embedded microprocessor. Technically, the word Arduino refers to the name of

the hardware, while the actual embedded microprocessors are named differently. The

Arduino Uno, for example, is one of the lowest-cost and easily accessible variations of the

Arduino boards. For the purpose of this textbook chapter, the examples and programming

will be done on the Arduino Uno. The Arduino Uno’s brain (the R3 Uno board) is derived

from an ATmega328 microcontroller. While the board is powered by a supply voltage of

7–12 V, the actual board itself uses 5-V logic levels and features a 10-bit analog-to-digital

convertor (ADC). The ATmega328 chip embedded into the board gives the Uno 14 pro-

grammable digital IO pins and 6 analog pins. The board also features 32 KB of flash

storage (with a dedicated 0.5 KB for the bootloader to load the Arduino code), 1 KB of

EEPROM, and 2 KB of SRAM. The Arduino Uno board also runs at a clock speed of

16 MHz.

The Uno is surprisingly low cost for the actual board and the onboard microcontroller.

Besides the Uno, there are many other variations of Arduino boards which are tailored to

certain applications, such as the Arduino LilyPad for being sewn on clothing, the Arduino

Robot board for robotics, and the Arduino Esplora for facilitating development of

videogame controllers. One feature about all of the Arduino boards is that the Arduino

software to program and compile code for the boards is completely free online. This

allows for easy program creation. Also available online is a reference for all the syntax for

programs and countless examples provided by the makers of the Arduino and the

community as a whole; fostering a sense of creativity and creating a knowledge base

for projects, tutorials, and code examples.

15.3.2 Arduino IDE

Now with a better understanding of what the Arduino is, the most logical question is how

does one interface with the Arduino? This is accomplished through the use of the USB

connection on the board. When the Uno is connected to the computer, the computer

attempts to install the driver but will most likely fail in the process. This is normal as the

driver required to run the Arduino must be installed with the integrated development

environment (IDE) supplied by the makers of the Arduino board. An IDE is a program

designed to aid in the programming of a certain language by providing a visual repre-

sentation of a centralized collection of coding resources and files. The Arduino IDE

provides a program editor, compiler, and uploading tool for the Arduino. The Arduino

IDE is essentially an IDE for the C language, with a few prewritten libraries.
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Example 15.2: Describe installation steps for the Arduino IDE.

Solution: This IDE can be downloaded directly from the Arduino home page. The builds

are offered for Windows, OS X, and Linux. At the time of writing, the most recent stable

version of the Arduino IDE is Arduino 1.0.5. For the purpose of this textbook, the

installation process for Windows will be used. The Arduino distribution comes in two

flavors: the Windows installer and the Windows ZIP file. The Windows installer is an .exe

file which runs and installs the Arduino IDE on the computer. The Windows ZIP file is a

compressed archive file which contains all the tools and packages necessary to run the

Arduino IDE without installing it on the computer. This means that the Arduino environ-

ment could be “installed” on a flash drive by simply unzipping the contents of the

ZIP file to the flash drive and then running the Arduino executable to start the IDE.

Once the Windows installer has been downloaded and run, a splash screen appears

which prompts the user to accept a license agreement. This license agreement basically

outlines the terms and conditions of fair use of the Arduino software and how the code

is open source and modifiable. After agreeing to this license, a screen showing the

installation options appears. Select and install all the components listed in this screen.

During the installation process, Windows may generate a warning complaining of the

authenticity of the Arduino USB driver, but simply click “install this driver software

anyways.”

At this point, the Arduino can be plugged into the computer, and the computer should

automatically recognize the device and install the drivers appropriately. If the installation

was a success, a message will be shown that states the hardware has been recognized and

installed. This message also shows the serial COM (communications port) that the Arduino

will be using to send and receive data from the computer. This port must be selected within

the Arduino IDE to ensure the Uno works properly.

15.3.3 Getting Started with Arduino IDE

The Arduino 1.0.5 IDE contains several notable features shown in Fig. 15.8. The first

indicated item is the verify button. This checks the syntax and keyword usage and then

compiles the code to a usable format for the Arduino. Item 2 is the upload button which

compiles the code again and uploads it to the Arduino. Item 3 shows the name of the

current “sketch” that the IDE is processing. A “sketch” is a code file (a .ino file) that the

Arduino understands (essentially equivalent to a .c file in C programming). Item 4 is the

button to create a new sketch file. Item 5 is the open sketch button. Item 6 is the save

button. Item 7 is the serial monitor which is the console that shows the communication

between the Arduino and the computer. Item 8 is the button that allows for the creation of

tabs in the Arduino IDE to break up the code. Item 9 is the scripting area. Item 10 is the

line number. Item 11 is the console output for showing the progress of compiling and

uploading and also displays errors in the code caught by the compiler. Item 12 shows the

current board being programmed and the serial port the board uses.
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The IDE also features several menu options that aid the coding process. One of the first

options is the ability to open examples that are preinstalled with the IDE. These can be

accessed under the File menu!Examples. It is highly recommended to take a look at

these examples as they provide how-to’s on the various aspects of Arduino syntax and

interfacing various external circuitry elements. The File menu also contains the various

options to deal with file creation, saving, and printing. The Edit menu contains the basic

tools to copy, paste, add indentation to the code, and find words and characters in the

code. The Sketch menu contains options to add files to the current sketch as well as import

a library. Libraries in the Arduino IDE will be discussed in greater detail later in this

section. The Tools menu offers several resources for uploading and storing Arduino code.

The most important options in the Tools menu are the Board and Serial Port options. The

Board option lists all the various Arduino boards that have been created. From this menu,

the correct board must be selected for programming purposes (simply select the Arduino

Uno option for the purpose of this textbook). Two of the most useful features of the IDE

help menu are the Reference and Find in Reference options under this menu. The

Reference option brings up the Arduino reference page online that details the basic

reserved words and functions in the Arduino language. Additionally, the Find in Refer-

ence option allows for searching of the online Reference page by selecting a word typed

into the scripting area.

15.3.4 Arduino Language, Program Storage, and Basic Program Setup

In order for a microprocessor to understand instructions, it must have some general

language and compiler to support those instructions. In the case of the Arduino, the

language that is used to program the boards is essentially the C language which was

developed by Brian W. Kernighan and Dennis M. Ritchie back in the 1970s. The actual

boards execute machine code that is translated into this form by the compiler, but the

10
11

12

1 2 3 4 5 6 7 8

9

Fig. 15.8. The various parts of the Arduino IDE environment.
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scripting is all in the C language. The Arduino IDE introduced at the beginning of this

section is essentially a specialized C programming environment with the specialized

Arduino compiler (the AVR-GCC compiler for the ATmega328), which translates the

code from the sketch files into the machine instructions which are then sent via USB to

the Arduino. Once the code is uploaded to the board, the program is stored into flash

memory on the Arduino board. This allows for quick access of the code with minimal

space considerations. After the code is uploaded to the Arduino, the Arduino will start to

run the code as written and will loop through the code while power is attached. When the

Arduino is connected to the computer, the Arduino also behaves in the same fashion.

Most Basic Arduino Program

In order to get the Arduino Uno running with just the bare-bones minimum, only several

lines of code need to be typed into the IDE. These lines of code can be seen in Fig. 15.9.

Figure 15.9 shows the most basic Arduino program (sketch) that will run on any

Arduino board. The actual executable code in Fig. 15.9 contains two functions. A function

in the Arduino language is identical to a function in the C language and is a segment of

code that is called and executed. This segment of code can have a return value or may not

return a value (void). The first function in this basic code is the setup() function. This

function is called once when the board receives power. Any initializations of variables or

other functions that must be run before the code starts executing the loop should be placed

here. After the setup function finishes, the loop() function is essentially called repeatedly

while the board is powered. This loop function is where the Arduino program does the

“thinking” and computing and is where the logic of the program is executed. Other

function calls, variable declaration, variable assignment, and looping may be executed

within this loop function.

Example 15.3: Relate Arduino code in Fig. 15.9 to the corresponding C code.

Solution: Those familiar with the C language should recognize the lack of a main()

function in the Arduino code. The user of the Arduino does not have to worry about the

main function but rather just the setup and loop functions for simplicity.

void setup(){
}
void loop() {
}

Fig. 15.9. The bare-bones minimum for an Arduino sketch.
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Example 15.3 (cont.):

The general idea of how the Arduino code in Fig. 15.9 translates to C code can be seen

in Fig. 15.10. The double slashes (//) indicate the start of a comment: a portion of the code

that is not compiled and not executed but serves to document the code.

int main()
{

//initializations of hardware
//call the setup function oncesetup();

//loop foreverwhile(1)
{

loop(); //call the loop function forever
//wait a little bit of time

}
0;return //no errors

}

Fig. 15.10. The translation of the basic Arduino program code to C code.

15.3.5 Compiling and Uploading Code to Arduino Uno

Once the program is written in the IDE, the verify button can be clicked to check the

syntax of the program. This will simply compile the code and check for errors in the code.

If any errors are encountered in the compiling of the program, those errors will be shown

below the scripting area. The user can then debug the program by using the information

from the compiler to create code that can be compiled. For the basic code shown in

Fig. 15.9, a screenshot of the output from the compiler can be seen in Fig. 15.11.

The output console in Fig. 15.11 shows a successful compiling of the basic .ino sketch

and shows the sketch size (466 bytes). The maximum sketch size is 32,256 bytes which

corresponds to most of the 32 Kb of flash memory on the Arduino Uno (there is some of

this flash storage taken up by the boot loader which is used to load the software onto the

Arduino). During the upload or compiling process, a small progress indication bar appears

above the console output on the right side of the IDE. Once the upload finishes, several

LEDs on the Arduino will flash and then the Arduino will begin executing the code that was

uploaded to the board. In this case of the program in Fig. 15.9, the Arduino will not show

any signs of activity on any of the pins. This is because no instructions have been added yet.

Fig. 15.11. The compiled basic code for the Arduino.
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Section 15.4 Basic Arduino Syntax

15.4.1 Data Types

The most basic aspects of any programming language are the primitive data types.

Primitive data types are the basic storage mechanisms for the language. These gener-

ally consist of integers (int), decimal or floating point numbers ( float), double-

precision floating point numbers (double), logic of true or false (Boolean), and single

characters (char). These basic data types hold the information of the program and allow

the programmer to create variables that change value. The complete listing of data

types supported by the Arduino can be found on the Arduino reference page. The

various data types listed above all have their own reserved word in the Arduino

language called a type specifier that tells the compiler that a certain variable or constant

is of a certain data type (such as an integer with the type specifier int).

In order for a data type to be implemented in Arduino as a variable or as a constant, the

type specifier must be listed followed by the name of the data type. Figure 15.12 shows

the creation or declaration of several variables and constants within the Arduino IDE.

All of the lines in Fig. 15.12 can be directly typed into the Arduino IDE and compiled

without an issue. The important note is that all the declarations and initializations must be

followed by a semicolon. Line 1 in Fig. 15.12 declares a fixed integer whose value cannot

be changed at runtime of the code. The general naming convention of a constant is all

capital letters with underscores between words.

Exercise 15.4: Declare several variables to store the following values:

true, 87, 3.14, ‘k’, ‘6’

Answer: Simply create the data types by declaring and naming the variables:

boolean is_robot_on ¼ true;

int my_state ¼ 87;

float pi_approximated ¼ 3.14;

char my_letter ¼ ‘k’, still_a_char ¼ ‘6’;

Line 1. const     MOTOR_PIN = 9;int
Line 2. const      KG_TO_LBS = 2.2;float
Line 3. boolean is_stop_button_pressed = false;
Line 4.     button_presses = 0;int
Line 5.     current_mode, num_switches = 2;int
Line 6.      foo = 17.77;float
Line 7.        conversion_factor = 4617.889;double
Line 8.      check_letter =    ;char 'a'

Fig. 15.12. Declaring and initializing several variables and a constant.
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15.4.2 Assignment Statements and Their Features

The code in Fig. 15.12 sets the integer constant MOTOR_PIN to have a value of 9 using the

assignment statement. This value can be referenced later in the code by simply typing

MOTOR_PIN instead of having to remember the value 9. This also aids in reusability of the

code as the programmer can simply change the value of MOTOR_PIN at the declaration and

this change will percolate through the code where the name was used (instead of having

to change all the places where 9 was used in code). The constant identifier in front of the

type identifier tells the compiler that the value of MOTOR_PIN should not change. The

compiler will then generate a warning if future code segments try to alter the value of

MOTOR_PIN. This allows for basic error avoidance.

Line 2 creates a constant floating point value of 2.2 that is called KG_TO_LBS. This name

could be used in the code by simply writing KG_TO_LBS. Line 3 declares a Boolean

variable called is_stop_button_pressed that can only take on the values true or false.

This type of variable is only stored in 1 byte of data (8 bits). Line 4 declares a new integer

variable called button_presses and sets its value to 0. This is an example of a single

declaration. The declaration of an integer sets aside 2 bytes of memory on the Arduino

Uno. The next line shows a double declaration of integer variables. Line 5 declares two

new integer variables current_mode and num_switches. A note about these two vari-

ables is that while num_switches contains the value 2, current_mode has not been

initialized. The value will most likely be 0, but this is not guaranteed. Thus, the safest

course of action is to initialize the variable to a known value as otherwise the variable uses

whatever was last in the memory location where the variable was stored. For example, as

this code stands now, num_switcheswill only take on the value of 2 when the code is first

uploaded to the Arduino or when power is applied to the Arduino (either externally or with

the USB).

Line 6 declares and initializes a floating point variable called foo to have the value of

17.77. This value could be changed by typing foo¼9.83; or by a more detailed

assignment statement. Floating points on the Arduino are stored in 4 bytes as are doubles.

Thus on the Arduino, floats and doubles can be considered the same. In particular, line

7 is equivalent to float conversion_factor ¼ 4617.88;. An interesting note about

floating point values and integer values is that an integer value may be converted to a

floating point automatically if for instance the following line of code is written:

float needed value ¼ 9; ==stores the value 9:0 in needed value ð15:3Þ

If the opposite is attempted:

int not a float ¼ 7:77; ==try to store 7:77 in an int ð15:4Þ

then a problem exists because a floating point value (with numbers to the right of the

decimal point) is trying to be stored an integer with a lesser precision. How does

the Arduino handle this conundrum? One could say rounding would solve this, but the
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Arduino simply truncates the value without rounding. The compiler will show a warning

if this occurs by in the code during compile time. If this occurs at runtime, however, this

can lead to a difficult bug to track. In order to avoid the warning from the compiler and to

show that the operation of storing a floating point value into an integer value is correct,

the code (int) must be added to the operation:

int not a float ¼ intð Þ 7:77; ð15:5Þ

The line avoids the warning potentially issued by the compiler and the value of 7 will be

stored into the variable not_a_float. This operation is referred to as typecasting and can

be applied to most data types. Obviously, this typecasting only makes sense where the

two data types are compatible. The type that a certain operation is being typecast into is

included in the parentheses.

Exercise 15.5: A variable distance holds the value of the distance from a sensor

connected to the Arduino. The distance is originally stored as an integer value, but later

it becomes necessary that the distance has greater precision. How can this be achieved?

Write code that converts the distance to the various data types.

Answer: If a greater precision is required, then the distance variable should be declared as

a floating point or double initially instead of an int. In order to convert the distance to a

floating point, double, or int, the following code can be used:

double d_distance ¼ (double) distance; //assuming distance was a float

float f_distance ¼ (float) distance; //assuming distance was a double

int i_distance ¼ (int) distance; //a loss of precision in this

conversion

15.4.3 Arithmetic Operations

Typecasting is done automatically for operations involving an integer and a floating point

in addition, subtraction, multiplication, and division. The code in Fig. 15.13 shows

several floating point and integer assignment operations.

The comments show the various values stored in the variables. Some interesting notes

are on line 5 and line 7. On line 5, the compiler may complain of a loss in precision

Line 1.       result = 9 + 9.1;float // = 18.1
Line 2.       divided_result = 9.77/ 4;float // = 2.44
Line 3.       equivalent_divided_result = 9.77 / ((    ) 4);float float // = 2.44
Line 4.      int_result = 5 / 9;int // = 0
Line 5.      still_int_result = 9.7 / 2.8;int // = 3
Line 6. float_result = 5 / ((    ) 9);float float // = 0.556
Line 7.       ensure_float_result = 5 / 9;float // = 0.00

Fig. 15.13. Declaring and initializing several variables and a constant.

Chapter 15 Embedded Computing

XV-764



converting to an int without a cast. Line 7 returns a value of 0.00 because the 5 and 9 are

both integer values and thus integer division is performed. The result of the integer

division of 5 and 9 is 0 and then this value is cast as a floating point to 0.00. This can

become a major issue of confusion for code operation, so care must be taken when

performing calculations.

Example 15.4: Write a line of code that converts a mass (in grams) stored in a variable

called mass to a weight (in newtons). Then store the result in double, floating point, and

integer variables.

Solution:

First, we find the result in the greatest precision available. Then, we convert the result to the

other data types using casting:

double f_result ¼ mass / ((double) 1000) * 9.8;

float result ¼ (float) f_result;

int i_result ¼ (int) f_result; // there is a loss of precision

One important note about the naming of variables in the Arduino IDE is that the names

cannot start with a number or a punctuation mark. Additionally, the variable names cannot

contain punctuation marks besides underscores.

Operations with Characters and Relation to C Language

Going back to Fig. 15.12, however, line 8 declares a character. On the Arduino, a

character variable is only stored using a single byte of data and can only hold a single

character, number, or punctuation mark. These characters can be added together using

arithmetic just like integers (e.g., to change a lowercase letter to an uppercase letter), but

this makes no sense unless the ASCII character set is used. Strings which are a collection

of characters will be discussed later.

As noted before, the Arduino runs a slightly modified version of the C language. As the

C language was developed, it is not intended as a highly sophisticated object-oriented

language like the other higher object-oriented languages Java and C++. This is not to say

that C does not support any objects, but rather it is intended as a more low-level language

as a step above the hardware and assembly languages.

15.4.4 Functions

Before moving on to objects, an important piece of the Arduino language is the creation

of functions. Functions allow the user to specify a segment of code that can be used or

called over and over again. This helps us to minimize writing the same segment of code

over and over by having one simple function to call that does the action of the segment of

code. The two basic functions that define an Arduino sketch have already been introduced

with setup and loop. In Arduino, a function can be created by using the generic structure

shown in Fig. 15.14.
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A specific function that returns a floating point representing the number of pounds

from an input of kilograms is shown in Fig. 15.15.

The function defined in Fig. 15.15 has one float output parameter and functions in

Arduino only may have 1 output parameter. The two lines before the definition of the

function are called the function header and exist to document the functions’ inputs and

outputs and what the function does. Any parameters to the function must be separated by

a comma. The return data type, specified as float here, could be any data type that has

been defined previously. Only the data type identifier is included though. The actual body

of the function in Fig. 15.15 only consists of the declaration of a constant integer called

KG_TO_LBSwhich is the conversion factor in this case (2.2 lbs in 1 kg). The actual work of

the function is done in the line return (kgs * KG_TO_LBS);. This line converts the

parameter kgs supplied to the function to pounds by multiplying by KG_TO_LBS and then

returns the value. The function can be either placed at the top of the file or in a separate

file that is included with the Arduino sketch that uses the function. A function cannot be

declared within another function. In order to call the function convertKgToLbs

(in Arduino), the following line is used:

float totalPounds ¼ convertKgToLbs 4:7Þ; ==convert 4:7 kg to lbsð ð15:6Þ

The above line converts 4.7 kg to pounds and then stores the result in the float variable

called totalPounds. The value 4.7 is the argument to the function. If the function did not

have a return value, the function call would simply be: convertKgToLbs(4.7);. In this

case, the function definition must use the reserved word “void” instead of any data type

before the function name.

return_type functionName(parameter 1, parameter 2   parameter n)…
{
// Body of function
Return data type //if needed
}

Fig. 15.14. The generic structure of a function in Arduino.

//float convertKgToLbs(float kgs)
//takes in a float that is the mass in kg and returns the value in lbs
float floatconvertKgToLbs(     kgs)
{

const      KG_TO_LBS = 2.2;float //conversion factor
(kgs * KG_TO_LBS);return //return the value after conversion

}

Fig. 15.15. A function for converting kilograms to pounds.
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Example 15.5: Write a function that calculates the moment of inertia of a thin rod about a

perpendicular axis passing through the rod’s center. The function should return the result in

the highest precision and take in the mass m and length L of the rod as the input arguments.

Solution: The moment of inertia about the rod’s center is given by

I rod ¼ mL2=12 ð15:7Þ

Therefore, the required function can be written in the form:

Line 1. //double calculateRotInertiaOfRod(double mass, double length)

Line 2. //takes in mass and length and returns the moment of inertia

Line 3. double calculateRotInertiaOfRod(double mass, double length)

Line 4. {

Line 5. double rotational_inertia;

Line 6. rotational_inertia ¼ (1.0 / 12) * mass * length * length;

Line 7. return rotational_inertia;

Line 8.}

15.4.5 Libraries

Two of the standard objects C and Arduino both support are called arrays and strings. In

Arduino, objects can also be created using a library. A library is a collection of code files

that define variables and functions which create a new data type or add functionality to a

preexisting data type. In the case of a new data type, the data type designed to be accessed

only using the defined methods and is supposed to keep its data inside the data type

without revealing the data. This is called encapsulation where the data is kept hidden

from the user and is only accessed through specialized access functions when needed. A

library in the Arduino environment consists of at minimum two code files. The first code

file is a *.h or header file which defines the function prototypes (for the functions that the

library allows the user to call). The actual definitions of the function will be implemented

in the *.cpp script file. The script file and header file must have the same name to be

understood as a library. One particularly important library is the servo library included in

the Arduino installation. This servo library must be imported into the current sketch by

either going to Sketch! Import Library! Servo from the IDE or by using writing the

following line at the top of the sketch file:

#include < Servo:h > ð15:8Þ

Notice that the above line does not terminate in a semicolon. This is because this type of

line is processed by the compiler before processing of the code begins. Upon seeing this

line of code, the compiler basically copies the content from the Servo.h header file over

to the top of the sketch when the sketch is being compiled.
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15.4.6 Objects. Application Example: A Servomotor

A servomotor is basically a motor with a potentiometer attached to the motor shaft. A

control loop is implemented using specialized circuitry to actuate and finely control the

position of the motor shaft. In Arduino, a servo object is created in order to better control

a servomotor attached to the Arduino board. Figure 15.16 shows the basic setup for

attaching a servomotor to the actual Arduino Uno board. In order for the servomotor to

work properly, the motor must be attached to a pin that supports pulse-width modulation

(PWM). These pins on the Arduino Uno are pins 3, 5, 6, 9, 10, and 11. They are

distinguished by a tilde next to the pin on the board itself. Figure 15.16 shows the

corresponding example.

Example 15.6: Write a program to drive a servomotor shown in Fig. 15.16 to one

position.

Solution: The code is actually quite simple and is given by

Line 1. #include <Servo.h> //import Servo library

Line 2. Servo left_arm_servo; //declare Servo object

Line 3. const int SERVO_PIN ¼ 10; //pin Servo is on

Line 4. void setup() {

Line 5. pinMode(SERVO_PIN, OUTPUT); //set Servo pin to output mode

Line 6. left_arm_servo.attach(SERVO_PIN); //attach servomotor

Line 7.}

Line 8. void loop() {

Line 9. left_arm_servo.write(37); //write the position

Line 10. delay(5); //wait 5 ms between each iteration of loop

Line 11.}

Arduino
Uno

Vcc

Pin 10

GND
Servo

0 V

Fig. 15.16. Attaching a servomotor to the Arduino Uno.
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Example 15.6 (cont.):

The second argument to the pinMode function is either INPUT or OUTPUT and specifies

the type of the pin. The attach function can also take an optional second argument and

third argument which specify the timing specifics of the PWM signal. For most small-

power servomotors, the default settings of this example are sufficient. Line 9 is actually

what causes the servomotor to move. This line generates a PWM signal on pin 9 that the

servomotor interprets to drive to the set position of 37. This position is usually decently

close to the degree rotation of the servomotor as most servomotors drive from 0� to about

180�. The value supplied to the write function on line 9 must be between 0 and 180 inclu-

sive otherwise the behavior of the servomotor is undefined. Information on the servo

library can be found in the Arduino tutorial page.

15.4.7 Interfacing with IO Pins

Here, we intend to show several techniques of interfacing with the IO pins on the Arduino

board. Two of the IO pins on the Arduino board are digital and analog IO pins,

respectively. Digital IO pins can be either read or written to by the Arduino. The same

is true of the analog pins. Both digital pins and analog pins also support PWM. For any of

the IO pins to work properly, they must be declared as either an INPUT or an OUTPUT pin

using the pinMode function as follows:

pinMode pin number; TYPEð Þ; ==TYPE is either INPUT or OUTPUT ð15:9Þ

Once the pin is enabled, it can be written to or read from depending on which type it was

declared as. If the pin is a digital pin, then it can be read using the following:

int digital value ¼ digitalRead pin numberð Þ; ==returns a 1 or 0

ð15:10Þ

Since the pin is a digital pin, it can only return a value of 1 or 0. An analog pin is read

using the analogRead function:

int anal value ¼ analogRead pin numberð Þ; ==returns a value 0� 1023Þð

ð15:11Þ

The analogRead function returns a value from 0 to 1023 (because of the 10 bits ADC). In

order to write to a digital pin, the command is simply

digitalWrite pin number; STATEð Þ; ==STATE is either HIGH or LOW

ð15:12Þ
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The value of the pin then becomes either high (5 V) or low (0 V). On analog pins, the

writing command creates a PWM signal with a controllable duty cycle from about 5 % to

around 95 %. This is achieved by the command

analogWrite valueð Þ; ==where value is from 0 to 255 inclusiveð Þ ð15:13Þ

A value of 0 corresponds to the lowest duty cycle and a value of 255 corresponds to the

highest duty cycle. With this information, more complex Arduino programs can be

written that interface external circuitry, LEDs, and other sensors. There are numerous

examples within the Arduino IDE for all types of analog writing to pins and reading of

sensors, which can be found under the File!Examples menu. Reading through the code

under this menu will help with understanding the Arduino syntax.
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Section 15.5 More Advanced Arduino Programming

15.5.1 Conditional Statements

The previous section is enough to get simple programs working on the Arduino.

However, these programs are limited in functionality and in complexity as they lack

the real control statements and functional blocks that afford greater detail in programs.

Some of these control statements are called conditional statements. These statements

create some logical expressions with the output of true or false. The basic structure of

conditional statements in Arduino is shown in Fig. 15.17.

In Fig. 15.17, there can be an arbitrary number of conditional statements. However,

there must be at least one if statement before any else if or else statements. Also

there can only be one else statement for any block of conditional statements. This

makes intuitive sense after thinking that one does not say “or else” without first stating

the “if” clause of a demand. The Arduino starts at line 1 and check logical expression

1 first. If logical expression 1 is true, then the Arduino runs the code between the curly

braces (brackets) on lines 1 and 3. After executing that code, the Arduino skips

execution of the code until after line 13. Using this technique, it is possible to explicitly

lay out the control of the program through conditional statements. This can lead to state

programming using variables as flags, but state machine programming is outside the

scope of this text. If logical expression 1 is false, then the Arduino jumps to line 4 and

checks logical expression 2 and processes the code in curly brackets on lines 4 and 6 if

logical expression 2 were true, etc. If the Arduino processes all of the conditional

statements in Fig. 15.17 and none of them are true, then control would jump to the

curly brackets following the else statement on line 13. The curly brackets are only

needed if the conditional code is more than a single line.

Line 1.   (logical expression 1) {if
Line 2. //Some code to run if logical expression 1 is True
Line 3. }
Line 4.         (logical expression 2)  {else if
Line 5. //Different code to run if logical expression 2 is True
Line 6. }
Line 7. //more else if statements
Line 8.         (logical expression n) {else if
Line 9. //Even more code to run if logical expression n is True
Line 10.    }
Line 11.         {else
Line 12. //Code to run if all above are false
Line 13.    }

Fig. 15.17. The basic structure of conditional statements.
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Example 15.7: Define a function which takes in a student GPA as a double and whose

output is the grade range of a student: A (return 1)¼ 4.0–3.3; B (return 2)¼ 3.3–2.7; C

(return 3)¼ 2.7–2.0; F (return 4)¼ 2.0–0.0.

Solution:

The function is rather simple to define and uses conditionals to check the various grade

ranges of the student.

Line 1. //int returnGradeRange (double GPA)

Line 2. //takes in a double representing GPA of a student. Returns

Line 3. //1, 2, 3, or 4 meaning the student is an A, B, C or F student

Line 4. int returnGradeRange(double gpa)

Line 5. {

Line 6. if(gpa > 3.3 && gpa <¼ 4.0)

Line 7. return 1; //An ‘A’ student

Line 8. else if(gpa > 2.7 && gpa <¼ 3.3)

Line 9. return 2; //A ‘B’ student

Line 10.else if(gps > 2.0 && gpa <¼ 2.7)

Line 11. return 3; //A ‘C’ student

Line 12.else

Line 13. return 4; //An ‘F’ student

Line 14.}

The if, else if, and else structure is used here to check the conditions. The logical

expression is a compounded expression joined together using two ampersands indicating

logical AND: gpa> 3.3 && gpa<¼ 4.0. The other relational operators available for

variables are less than (<), greater than or equal to (>¼), and equal to (¼¼). Additionally,

logical OR (||) and logical NOT (!) are available to string together logical expressions in

conditionals. Bitwise logical operators are also available for dealing with individual bits.

The function returnGradeRange could have been defined using only if statements

that checked the GPA range. While this is syntactically valid, this forces the Arduino to

check every conditional statement. Thus, the code above ensures the Arduino only checks

as many conditions are necessary before exiting the function. This improves the execution

speed of the code.

Example 15.8: Implement a logic circuit from Fig. 15.18 in Arduino code.

A

B

C

D

F

Fig. 15.18. A logic circuit.
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Example 15.8 (cont.):

Solution: The shortest implementation may be cast in the form:

Line 1. if((A && B) || !(B && C) || (!C || D))

Line 2. digitalWrite(F_PIN, HIGH);

Line 3. else //the output of the digital circuit is False

Line 4. digitalWrite(F_PIN, LOW);

Note that the logical NOT operator does not work on integers but rather only Booleans.

Thus A, B, C, and D would have to be declared as Booleans. Technically in Arduino

however, true is defined as anything nonzero and false is defined only as 0. The code to

implement the circuit in Fig. 15.18 could also be achieved using nested if statements and

an if, else if, and else configuration.

15.5.2 Switch Statements

Another type of control statement is called the switch statement. In terms of control of the

program, it is equivalent to conditional statements except that it follows a case-by-case

setup. This arrangement allows the program to quickly jump to the correct case and

execute the required code. Its generic layout is shown in Fig. 15.19.

The main elements of the switch statement are the beginning setup of the switch on line

1 of Fig. 15.19. This line lists the variable that will be checked against the various cases. Due

to rounding errors, this variable should be an integer. After line 1 in Fig. 15.19 sets up the

switch statement, different cases are listed. The order of the cases is not important. Each case

must start with the word “case” and then be followed by some expression. If the variable and

the expression are the same, the code between the case declaration and the break statement is

executed. If the value stored in the variable does not equal any of the results of any of the

particular expressions, then the code following the default case is executed. The break

statement with semicolon is optional. The switch statements tend to execute slightly faster

than conditional statements. This reduces the overall latency or delay of the code due to large

numbers of instructions. Some instructions can be time intensive. For example, analogRead

requires ~100 μs to complete!

Line 1.       (variable)switch
Line 2. {
Line 3.           (expression 1):case
Line 4. //Code to run if variable == expression 1
Line 5.           ;break
Line 6.           (expression 2):case
Line 7. //Code to run if variable == expression 2
Line 8.           ;break
Line 9. //More cases to check
Line 10.                :default
Line 11. //Code to run if variable does not equal a defined case
Line 12.  }

Fig. 15.19. The basic setup of a switch statement with multiple cases.
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Example 15.9: Write a function that returns an integer value indicating the following:

1¼ drive forward, 2¼ turn right, 3¼ turn left, and 4¼ stop, if a certain number of lines have

been counted. The number of lines counted corresponds to: 1, 2, 3¼ forward; 4¼ turn right;

5¼ forward; 6¼ turn left; 7, 8¼ forward; 9¼ turn left; 10¼ forward; and 11¼ stop.

Solution: This problem is solved using either conditionals or a switch statement. The

solution using conditionals is left as a homework problem. The solution using the switch

statement is as follows:

Line 1. //int determineDriveStatus(int number_of_lines)

Line 2. //takes in the number of lines a robot has seen and returns

Line 3. //what the robot should do to continue driving around

Line 4. int determineDriveStatus(int number_of_lines)

Line 5. {

Line 6. switch(number_of_lines)

Line 7. {

Line 8. case 7: case 1: case 2: case 3: case 5: case 8: case 10:

Line 9. return 1; //drive forward

Line 10. break;

Line 11. case 4:

Line 12. return 2; //turn right

Line 13. break;

Line 14. case 6: case 9:

Line 15. return 3; //turn left

Line 16. break;

Line 17. default:

Line 18. return 4; //stop the robot

Line 19.}

Line 20.}

A switch statement can also be translated over to an if, else if, and else configuration.

Line 8 shows how cases can be cascaded together to run the same piece of code.

If number_of_lines equals 7, 1, 2, 3, 5, 8, or 10, the code execution is said to return

1. A break statement is only needed if there is more than 1 line of code to execute after a

case or set of cases. Line 17, the default statement, is only executed if number_of_lines

does is not in the range of 1–10. This minimizes the amount of debugging.

15.5.3 Loops

For Loop
Loops in Arduino are very similar to those in C although the Arduino has a few minor

differences. A for loop is basically a segment of code that runs as many times as specified

by the loop conditions. The basic setup of a for loop can be seen in Fig. 15.20.
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The pseudo-code in Fig. 15.20 shows major items required in a for loop. Line 1 contains

the important information about how the loop operates. Curly brackets are only needed if

the code to execute in the loop is more than 1 line. The first part after the parenthesis is the

variable being used to loop through the code. This variable can be defined outside of

the loop or it can be defined in the loop itself. The next part is a logical expression. This

logical expression includes >, >¼, ¼¼, <, or<¼ operators. The last part is a counting

expression which describes how the loop changes the value of the variable. This must be an

expression that alters the value of the variable; otherwise, the loop could be executed

indefinitely. A typical mistake is a counting expression which never allows the logical

expression of the loop to evaluate to true. An example is a loop that starts counting from

0, is counting by 2 each time and the terminating condition is when the counter equals

7. A similar problem can occur when using floating point numbers. Note that a for loop

should never be followed by a semicolon. This could cause an infinite loop.

Example 15.10: Write a function that will print the message “Please press the reset

button” 15 times on the serial monitor.

Solution: The required loop uses the integer variable counter to count from 0 to 14. The

line counter++ is equivalent to counter ¼ counter + 1. The double plus is called the

increment operator. Two other methods replace lines 6–7.

Method 1:

Line 1. //void printErrorMessage()

Line 2. //takes nothing into the function and returns nothing although

Line 3. //a message has been printed 15 times

Line 4. void printErrorMessage() {

Line 5. int counter ¼ 0;

Line 6. for(counter; counter < 15; counter++)

Line 7. Serial.println(“Please press the reset button”);

Line 8.}

Method 2:

Line 1. for(int i ¼ 15; i > 0; i--)

Line 2. Serial.println(“Please press the reset button”);

The double minus in method 2 is called the decrement operator.

Line 1.    (variable; logical expression; counting expression)  {for
Line 2. //Code to execute - the body of the loop
Line 3. }

Fig. 15.20. Basic construction of a for loop in Arduino.
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Example 15.10 (cont.):

Method 3:

Line 1. int count;

Line 2. for(count ¼ 0; count !¼ 15; count++)

Line 3. Serial.println(“Please press the reset button”);

Method 3 uses a counter called “count” that starts at 0 and counts upward by 1 each time.

The terminating condition is when value is equal to 15. This sort of terminating condition

can be risky.

While Loop

Another type of loop similar to the for loop is called the while loop. The while loop acts

exactly as the name implies: it executes the code in the body of the loop as long as a certain

logical expression is true. The structure of a while loop can be seen in Fig. 15.21.

The while loop requires the counter that is a part of the logical expression to be

changed in the body of the loop. The while loop will not automatically update the variable

each time through the loop unlike the for loop. The while loop can suffer from the infinite

looping if the counter update is omitted or the logical expression is never reached. The

while loop requires the curly brackets since it will have at least one line where the counter

is updated. One note about the loops in general is that they can be terminated at any time

by either a return, a return (value), or a break statement. The break statement will cause

the program to jump to the end of the loop and begin code execution from there onward.

The return or return (value) statement will cause execution of the function currently being

called to cease and control will pass back to the calling function.

Example 15.11: Rewrite the function from the previous example using while loops.

Solution:

Method 1:

Line 1. //void printErrorMessage()

Line 2. //takes nothing into the function and returns nothing although

Line 3. //a message has been printed 15 times

Line 4. void printErrorMessage()

Line 5. {

Line 6. int counter ¼ 0;

Line 1.      (logical expression) {while
Line 2. //Code for the body of the loop
Line 3. //increment the variable in the logical expression
Line 4. }

Fig. 15.21. Basic structure of a while loop in Arduino.

Chapter 15 Embedded Computing

XV-776



Example 15.11 (cont.):

Line 7. while(counter < 15)

Line 8. {

Line 9. Serial.println(“Please press the reset button”);

Line 10. counter++;

Line 11.}

Line 12.}

Method 2:

Line 1. int i ¼ 15;

Line 2. while(i > 0)

Line 3. {

Line 4. Serial.println(“Please press the reset button”);

Line 5. i--;

Line 6.}

Method 3:

Line 1. int count ¼ 0;

Line 2. while(count !¼ 15)

Line 3. {

Line 4. Serial.println(“Please press the reset button”);

Line 5. count++;

Line 6.}

15.5.4 Arrays and Strings

One of the C objects the Arduino does support is a linear array. An array can be thought of

simply as a long rectangular box that has been partitioned to hold various items. The

particular storage location of an item is called the element and the number of the location is

called the index of that location. The indexing of the array starts at 0 in C and Arduino and

goes to the length of the arrayminus 1.Avisual representation of an array of size 7 can be seen

in Fig. 15.22. When an array is stored in memory, a block of memory is set aside and then

the elements in the array are stored sequentially one after another in this block of memory.

In order to declare the array in the Arduino language, the type of data the array stores

must be defined. Once created, the array should be initialized to some values before

accessing the elements. Both tasks can be accomplished by adding the values in the

corresponding assignment statement:

87 4 42 22 24 6 89 -

0 1 2 3 4 5 6

1 2 3 4 5 6 7
Element
number

Index
number

Data

Fig. 15.22. Values stored in the usedPins array after initialization.
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int usedPins 7� ¼ 87, 4, 42, 22, 24, 69, -8g;f½ ð15:14Þ

This initializes the values of the array in Fig. 15.22. After the assignment, array elements

can be individually accessed and individually changed:

int retrievedValue ¼ usedPins 4�; ==access array element½
usedPins 4� ¼ 7; ==store 7 into 5th elem in usedPins½ ð15:15Þ

In the second expression (15.15), the programmer must ensure that the requested index

value is always within the size of the array.

Exercise 15.6: What is the value of integer variable retrievedValue in expression

(15.15)?

Answer: 24

Exercise 15.7: Write an Arduino function that adds 17 to the array in Fig. 15.22.

Answer:

Line 1. int numbers_array ¼ {6, 8, 7, 99, 100, 2, �3};

Line 2. void add17ToArray(int size_of_array){

Line 3. for(int index ¼ 0; index < size_of_array; index++)

Line 4. numbers_array[index] +¼ 17; //access element and add 17

Line 5.}

Line 6. void setup() {

Line 7. add17ToArray(7); //the array is size seven

Line 8.}

Line 9. void loop() {

Line 10. //execute any code needed here

Line 11.}

Another object that C and Arduino support is called a string. A string is simply a

collection of characters that forms a longer word or sentence. Obviously, the size of a

string is variable and can be modified by adding or removing characters. Strings in C and

the Arduino are simply declared by using the same sort of notation as an array:

char name 6� ¼ “Frank”;½ ð15:16Þ

Upon inspection of the declaration (15.16), an observant student would notice the

assigned name is actually five letters long. The 6th character is actually the null character

“\o” which is treated as a single character and is needed for displaying a string properly as

the null character signals the end of the string. In order to extend the usefulness of the

string objects, the string library defines a collection of variables, functions, and files that
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define how a string is processed and accessed. Strings are accessed in the same way arrays

are accessed: by using the square brackets.

char letter ¼ name 2�;½
char new line ¼ name 5�;½ ð15:17Þ

This would allow the new line character to be printed to see the exact value of the

character (if cast as an integer) or would simply print a new line to the console.

Exercise 15.8: What is the value of variables letter and new_line, respectively, in

expressions (15.17)?

Answer: ‘a’ and ‘\o’.

15.5.5 Serial Communication

The Arduino does not have a way to visually represent a string on the board itself. The

way to get around this is to use the serial communication capabilities of the USB

connection of the Uno to the computer. The Arduino IDE contains the serial monitor

(console) button. If the Arduino is connected to the computer, then the serial monitor can

be opened. This establishes a serial communications link with the Arduino at a set baud

rate. The baud rate is a measure of how many bits per second are being transferred over

the communications line. The default value is 9600 baud, which refers to 9600 bits/s of

data transfer. The Arduino has the capability to communicate with the computer at baud

rates from 300 all the way of to 115,200 bits/s. In order to have the Arduino communicate

with the computer, both devices must be sending data at the same rate. In order to

accomplish this, the serial communications must be started on the Arduino. The serial

communication is illustrated in the following example.

Example 15.12: Write Arduino code that will read in a button sensor and an analog value

and will print both values to the serial monitor.

Solution:

Line 1. const int BUTTON_PIN ¼ 4;

Line 2. const int ANALOG_PIN ¼ A0;

Line 3. int button_state, analog_value;

Line 4. void setup() {

Line 5. pinMode(BUTTON_PIN, INPUT);

Line 6. pinMode(ANALOG_PIN, INPUT);//both pins must be input pins

Line 7. digitalWrite(BUTTON_PIN, HIGH); //enable pull up resistor

Line 8. Serial.begin(9600); //begin the serial communication
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Example 15.12 (cont.):

Line 9. button_state ¼ 0;

Line 10. analog_value ¼ 0;

Line 11.}

Line 12.void loop() {

Line 13. button_state¼digitalRead(BUTTON_PIN);//read button state

Line 14. analog_value¼analogRead(ANALOG_PIN);//read analog pin val.

Line 15. Serial.print("Button state: ");

Line 16. Serial.print(button_state);

Line 17. Serial.print(" Analog value: ");

Line 18. Serial.println(analog_value);

Line 19. delay(1); //wait 1 ms

Line 20.}

The two input pins have been declared and initialized in the setup function. Note line

7 where the code enables the internal pull-up resistor on the pin 4. This guarantees that the

button is always in a known state. The pull-up resistors can be disabled by writing a LOW

value instead of a HIGH one. The two input pins are simply read using the standard reading

functions for analog and digital pins. The results are then printed in lines 15–18. Note that

line 18 has a println function, which additionally skips a line to make the output more

readable. Otherwise, using the print statements relies on the user to specify any needed

spacing for printing as on lines 15–17.

15.5.6 Interrupts. Application Example: Emergency Motor Stop

Previously on the Arduino, buttons, switches, and other digital IO devices have been read

using a method called polling. Polling is where each time through a loop the input pin is

checked and read. This usually works well while the latency of the code is low and the loop

executes quickly. Otherwise, the reading of the input pin gets delayed and information can

bemissed. This problem is illustrated in Fig. 15.23where the input signal changes between

sample 2 and sample 3, but the change is missed.

t

Input

t1 t2
t3

Time intensive
code executed

HIGH LOW LOW

Fast code
executed

Fig. 15.23. The problem with polling an input pin.
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In order to still handle looping and make sure the signal is processed in “almost” real

time, an input pin is configured to handle interrupts. An interrupt allows the microprocessor

to handle code execution while still checking a pin in almost real time. Once an interrupt is

generated (a certain programmed state is achieved on the pin), the execution of the code

finishes the last machine instruction and then jumps to an interrupt service routine (ISR).

An ISR is a special segment of code written to be called when an interrupt is generated. This

code is executed and then the control of the program resumes from the last executed

machine code instruction. On the Arduino Uno, there exist two pins capable of handling

interrupts: pins 2 and 3. In order to configure a pin as an interrupt, the following line of code

is needed in the setup function (the pin should already be declared as an input):

attachInterrupt interrupt number; ISR; trigger stateð Þ; ð15:18Þ

Command (15.18) attaches the interrupt to the specific pin as denoted by the interrupt

number. An interrupt number of 0 refers to pin 2 and an interrupt number of 1 refers to pin

3 being used. The ISR is the code to be called when the interrupt is triggered. The trigger

state can be LOW (for triggering an interrupt when the pin is LOW), HIGH (for triggering

when the pin is HIGH), RISING (for triggering an interrupt when the pin sees a rising

edge of the signal), FALLING (when the pin transitions from HIGH to LOW), or

CHANGE (for triggering an interrupt when the pin changes from HIGH to LOW or

LOW to HIGH). The Arduino has only 1 priority level for interrupts and thus sees every

interrupt as the same (despite how important the user may feel one interrupt to be). Thus

in order to handle an interrupt coming in when already in an ISR, the Arduino has an

interrupt queue. The interrupt queue is capable of storing 1 additional interrupt while

processing another. Note that the use of switches with interrupts is tricky. When a switch

closes, the mechanical contacts tend to quickly make and break contact several times

before settling. This can result in many different rising and falling edges being generated.

In order to avoid this problem, the switch must be debounced.

Example 15.13: Write an Arduino code that acts as an “emergency stop” and stops a

motor attached to pin 10 using an interrupt when a button is pressed.

Solution:

Line 1. include <Servo.h>

Line 2. Servo motor;

Line 3. const int MOTOR_PIN ¼ 10;

Line 4. const int BUTTON_PIN ¼ 4;

Line 5. volatile boolean stop_motor;//variables modified in ISR are

volatile

Line 6. //void stopMotorISR()

Line 7. //Takes no parameters. Returns nothing.

Line 8. //Handles the interrupt code to stop the motor on the button

press
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Example 15.13 (cont.):

Line 9. void stopMotorISR() {

Line 10. stop_motor ¼ True;

Line 11.}

Line 12.void setup() {

Line 13. pinMode(BUTTON_PIN, INPUT);

Line 14. pinMode(MOTOR_PIN, OUTPUT);

Line 15. digitalWrite(BUTTON_PIN, HIGH); //pull up resistors on

Line 16. motor.attach(MOTOR_PIN);

Line 17. stop_motor ¼ False;

Line 18. attachInterrupt(0,stopMotorISR,FALLING); //interrupt on

pin 2

Line 19.}

Line 20.void loop(){

Line 21. if(!stop_motor)

Line 22. motor.write(180); //full speed

Line 23. else

Line 24. motor.write(90); //stopped motor

Line 25.}

The first notable part of the code is line 5 where a Boolean data type is declared using the

identifier of “volatile.” This indicates that the value of stop_motor can be changed by

code outside of where the variable is currently executing. The next important part is the ISR

with the header. In the loop on lines 21–25, the motor will stop being driven when the

logical expression on line 21 evaluates to false. Line 18 attaches the ISR function

stopMotorISR to pin 2 and sets the pin to wait for a falling edge to hit the pin. However,

since pull-up resistors are enabled, the button must be pulling the pin LOW to ground. The

loop drives the motor at full speed in one direction using the servo object as the servo object

drives the pin with a PWM pulse. The code will only drive the motor until the switch is

pressed and then the motor will not move afterward no matter how many times the switch is

pressed. In order to start the motor again, the reset button must be pressed on the Arduino.

15.5.7 Square Wave and PWM Generation with Arduino

The classic digital-to-analog conversion is not available on the Arduino. Therefore, a

sinusoidal signal cannot be produced directly from the Arduino without using external

circuitry. But what about creating a square wave with a certain period or frequency? The

answer is yes, but the correct timing requires work. Let us consider a 50-kHz square wave

with the period of 20 μs. This means that the signal is high for 0.01 ms and low for

0.01 ms. The standard delay function can only take in whole numbers of milliseconds;

thus a function that deals with smaller portions of seconds is needed. In the Arduino

language, the required function is delayMicroseconds, which takes in an argument that

is an integer number of microseconds. In the present case, delayMicrosecondswould be
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called with an argument of 10 after the pin was switched HIGH and then after the pin was

switched LOW again. The code to create the 50-kHz square wave is given in Fig. 15.24.

The program in Fig. 15.24 produces a square wave with a frequency of around 33 kHz.

Why is there a disparity between theory and application? The reason is in hardware

switching times. The transistors that regulate on and off of digital pins require some finite

time to change state and process the instructions from the code. What happens when there

is not a delay? In theory, the pin should be able to change state infinitely fast. This

obviously cannot happen as things cannot change instantaneously due to the hardware

constraints and software latency. In the Arduino, the fastest frequency achievable is around

100 kHz. This shows that the hardware switching time is about 5 μs as the 100-kHz square

wave has a period of around 10 μs. An astute observation would be that this switching time

is on the same order of magnitude as the delay times of the 50-kHz square wave. Thus, in

order to compensate for hardware switching times and produce the 50-kHz signal, the

delays could be modified as shown in Fig. 15.25. The numbers there are the closest

integers since delayMicroseconds does not accept floating point values.

In order to change the duty cycle of a square signal in the servo library, the

analogWrite function can be employed. The analogWrite function can be called

by supplying the pin number and the value to write. This value is in the range of 0–255

which represent duty cycles from about 5 % to about 100 %. If the analogWrite

function is used, the servomotor must be connected to an analog pin.

Line 1. const     SQUARE_WAVE_PIN = 4;int
Line 2.      setup() {void
Line 3.      pinMode(SQUARE_WAVE_PIN, OUTPUT);
Line 4. }
Line 5.      loop() {void
Line 6.      digitalWrite(SQUARE_WAVE_PIN, HIGH);
Line 7.      delayMicroseconds(10); //wait 10 microseconds
Line 8.      digitalWrite(SQUARE_WAVE_PIN, LOW);
Line 9.      delayMicroseconds(10);
Line 10.}

Fig. 15.24. Program that generates a 50-kHz square wave on pin 4.

Line 1. const     SQUARE_WAVE_PIN = 4;int
Line 2.      setup() {void
Line 3.      pinMode(SQUARE_WAVE_PIN, OUTPUT);
Line 4. }
Line 5.      loop() {void
Line 6.      digitalWrite(SQUARE_WAVE_PIN, HIGH);
Line 7.      delayMicroseconds(4); //wait 4 microseconds
Line 8.      digitalWrite(SQUARE_WAVE_PIN, LOW);
Line 9.      delayMicroseconds(6);
Line 10.}

Fig. 15.25. Program that generates ~50-kHz square wave.
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Summary

Topic Arduino sample program

Data types

and

assignments

Define several constants and assigns conversions to variables after using type casting

Arithmetic

operations

and

functions

Read analog voltage on pin A1 and output a square wave on pin 3.

The duty cycle is proportional to the analog voltage

Conditional

statements

Function that uses conditionals to determine the return value

Switch

statements

Function that uses a switch statement to return a drive value.

When called from the loop, it returns the robot state

For loop Program that will retrieve the drive values using the function from above and

store them in a new array to be used

While loop Program that will blink an LED a set number of times when a button is pressed

Numerical

array

Program that sorts an array into an even and odd arrays in the setup function

(continued)
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String array Program that continually swaps the letters in a string array

Serial

monitor

Program that reads analog/digital inputs and prints values to the Serial Monitor

Interrupt Pushbutton on pin 4 that will increment the state of the robot depending

on the number of times the button has been pressed. The code uses

an ISR on pin 2

Square

wave/PWM

Program that generates robust PWM signal on pin 7. This code should

only be used to generate frequencies between 61Hz and 50KHz.

For more accurate timing use the Servo Library
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Problems
15.1 Architecture

of Microcontrollers
Problem 15.1.

A. List some common IO devices.

B. Draw the schematic of a CPU.

C. Draw the schematic of a basic computer.

Problem 15.2. Convert the following numbers

to bits:

A. 14 GB

B. 27 MB

C. 42 KB

D. 0.97 TB

Problem 15.3.

A. Draw a diagram showing a CPU com-

municating with memory over a 16-bit

bus and label each of the data

connections.

B. Repeat the previous task but use the

abbreviated bus notation.

15.2 Memory
Problem 15.4. Store the value 57984 (decimal)

in memory starting at address 0100h using

little-endian notation. Repeat with big-endian

notation. Present the corresponding tables.

Problem 15.5. Store the value 372110 in mem-

ory starting at address 0400h using little-endian

notation. Repeat with big-endian notation. Pre-

sent the corresponding tables.

Problem 15.6.What is the decimal value stored

in memory in the following table starting from

address 0200h using little-endian notation?

Repeat with big-endian notation.

Address Byte value

0204h . . .

0203h 01h

(continued)

Address Byte value

0202h 22h

0201h FFh

0200h A0h

01FFh ....

Problem 15.7.What is the decimal value stored

in memory in the following table starting from

address 0200h using little-endian notation?

Repeat with big-endian notation.

Address Byte value

0204h . . .

0203h 77h

0202h 04h

0201h BBh

0200h 08h

01FFh ....

Problem 15.8. Describe each of the following

types of memory and their application:

A. RAM

B. ROM

C. EEPROM

D. PROM

E. EPROM

F. Flash

Problem 15.9.

A. Describe the difference between volatile

and nonvolatile memory.

B. Describe the advantages and disadvan-

tages of flash memory.

Problem 15.10. How wide must a data bus be

to access:

A. 1 GB of memory?

B. 1.44 MB of memory?

C. 1 TB of memory?

D. 22 KB of memory?
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15.3 Arduino Uno: An

Embedded Microcontroller
Problem 15.11.

A. Write the bare-bones minimum that is

required to create an Arduino sketch.

B. Write the corresponding C code.

Problem 15.12.What type of memory and how

much of it is available for programs on the

Arduino Uno?

Problem 15.13.Describe the process of writing

and uploading a program for the Arduino.

15.4 Basic Arduino Syntax
Problem 15.14.Describe the rationale behind a

function header and write an example for a

function that accepts several integers and

returns the maximum. Do not worry about

implementation of the function.

Problem 15.15. Design a function that will

return the integer value of a character that is

passed to the function (Hint: use typecasting).

Problem 15.16. Write a function for the

Arduino that takes in the resistance and current

in a circuit branch and finds and returns the

voltage drop across the resistance.

Problem 15.17. Write a function for the

Arduino that takes in the value of two resistors

and finds the equivalent parallel combination of

the two (returned as a double).

Problem 15.18. Write a function for the

Arduino that returns the value of the transfer

function for a given frequency for the following

low-pass filter with R¼ 100 kΩ and

C¼ 1.59 nF. Present the corresponding code.

R

C

+

–

+

–

Vin(t) Vout(t)

Problem 15.19. Write a function that will con-

figure the pins in the following configuration.

Also if needed enable the pull up resistors on

any input pins:

Pin 2¼ INPUT

Pin 3¼OUTPUT

Pin 4¼OUTPUT

Pin 5¼ INPUT

Pin 6¼ INPUT

Pin 7¼OUTPUT

Pin A0¼ INPUT

Pin A2¼OUTPUT

Problem 15.20. Design and implement a code

that reads in an analog voltage value across a

variable resistor (potentiometer) and converts

the resulting value into the duty cycle value of a

square wave on pin 3. The potentiometer

should be on pin A4. Discuss the corresponding

normalization procedure.

Problem 15.21. Write a program that reads in

an analog voltage value from a light sensor

(phototransistor) on analog pin A0 and converts

this value to the corresponding binary number

to be displayed on 8 LEDs. Discuss the

corresponding normalization procedure.

Problem 15.22. If the output of analogWrite

is a duty cycle ranging from 5 to 95 %

corresponding to 0–255, convert the following

values to their complement:

A. 67 %

B. 23

C. 44 %

D. 233

Problem 15.23. The ADC on the Arduino takes

in an input signal in the range of 0–5 V and

converts it to a decimal value in the range of

0–1023. Convert the following values to their

complements:

A. 3.7 V

B. 898

C. 1.2 V

D. 469

Problem 15.24.Write a program that counts in

binary from 0 to 255 on eight external LEDs on

Chapter 15 Problems

XV-787



pins 4–11 (the binary counter). Use appropriate

resistors to limit the current.

Problem 15.25. Create a program and external

circuitry that mimics a traffic light. The “green”

stays active for 8 s. The “yellow” is active for

3 s and then “red” is active for 10 s. The pattern

repeats indefinitely.

470

Red

Yellow

Green

0V

Arduino

Uno

Pin 6

Pin 7

Pin 8

Problem 15.26. Create a program that turns the

Arduino into a handheld flashlight using a push

button to turn an LED on when the button is

held down.

Problem 15.27.

A. Write a program to control the speed of a

motor using external circuitry (a single

switching transistor or an H-bridge), a

potentiometer, and the servo library.

B. Realize the corresponding project in

hardware.

Problem 15.28. Write a program to control the

position of a servo using ten switches attached

to digital pins 2 and 4–12. The servo should be

attached to pin 4. Each switch is acting as one

bit of the 10-bit ADC of the Arduino.

15.5 More Advanced

Arduino Programming
Problem 15.29. Implement the following digi-

tal logic circuit in a function that sets the output

pin (pin 10 of the Arduino) HIGH or LOW.

A

B

C

F

Problem 15.30. Repeat the previous problem

for the circuit shown in the following figure.

A
B
C

FD
E

Problem 15.31. Repeat problem 15.29 for the

circuit shown in the following figure.

Left bump
sensor

Right bump
sensor

IR sensor

Battery level
sensor

F

Problem 15.32. Implement a function that sets

an output pin (pin 10) HIGH or LOWas shown

in the following figure (use a switch statement).

Number
of button
presses

62,5 Turn right

Drive
forward

Beep
1,4,9

7,8,10

default
Stop

Turn 180

3

Turn left

Problem 15.33. Translate the code from Exam-

ple 15.9 in Section 15.5.2 to use conditional

statements instead of the switch statement.

Problem 15.34. What is an infinite loop? Dis-

cuss and document several ways that an infinite

loop can occur and how to ensure this does not

happen.
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Problem 15.35. Translate the following while

loops into for loops:

int counter = 7;
while(counter <= 20)
{
counter++;

}

int index = 99;
while(index > -7)
{
index -= 9;
}

a)

b)

Problem 15.36. Translate the following for

loops into while loops:

a)

b)

for int(    row = 0; row < 6; row++)
{

delay(9);
}

for int(    count=278;count!=0;count-=2)
{

delay(17);
}

Problem 15.37. Find and fix the errors in the

following loops:

a)

b)

for int(    count=278;count!=0;count-=3)
{

delay(2);
}

int number_of_times = 11;
while(number_of_times > 0)
{

delay(11);
}

Problem 15.38.Write a function that will cycle

through the string “Elizabeth” and will copy the

string into a blank string that has ten entries

(remember the terminating null character at the

end of the string).

Problem 15.39. Write a sketch that will print

“An Arduino says Hello world!” to the serial

monitor the following number of times:

A. 7

B. 12

C. 190

Problem 15.40. Write a sketch that can print

out the binary representation of the numbers

0–64 to the serial monitor. Hint: Use a function

to convert the number to binary then print

it out.

Problem 15.41.Write a function that will cycle

through an array and print the values with the

corresponding indices to the serial monitor. The

array should be {7, 29, 444, 42, 69,

8, �10020}.

Problem 15.42. Design a program that uses a

potentiometer to cycle through letters in the

following character array (string) and print the

result to the serial monitor.

char name[8]¼ “Stephan”;

Problem 15.43. Compare and contrast the use

of interrupts versus polling of inputs.

Problem 15.44. Discuss the issue of latency in

code: what it is, what causes latency, and how

to reduce it?

Problem 15.45. Create a program that turns the

Arduino into a voltmeter (0–5 V only!) using

two analog pins A0 and A1. The Arduino

should print out the voltage at the two pins

and the difference between the two pins in

both polarities. The voltage should be

expressed in volts, not in the decimal numbers

from the ADC. Hint: Write a function that

performs the function of a DAC in software to

print out values.

Problem 15.46. Implement a code that uses an

external 2-bit flash ADC to read values on four

digital pins and convert the result to a 2-bit

binary.
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E=5 V Reference voltage

0 V

R

R

R

0 V

v (t)SH

7

6

5

4

+
-

+
-

+
-1V

2V

3V

R

Uno

Problem 15.47. Create a program that flashes

an LED every second without using the built-in

delay function.

Problem 15.48.

A. Create and present a program that will

increment a counter on a button push.

The counter is then used to blink an

LED that many times per minute.

B. Design the corresponding circuitry and

present the circuit outline.

Problem 15.49. Update the code from the pre-

vious problem and the corresponding circuitry

to add a decrementing counter. Make sure the

result of the LED blinks per minute does not go

negative or cause a runtime error.

Problem 15.50. Design and implement the

code and the corresponding circuitry that will

actuate a motor in two directions without using

the servo library.

Uno
7

9
A0 A1

H-bridge

The circuitry should use two push button

switches to choose the direction.

Problem 15.51. Write a program that counts

hexadecimal numbers from 0 to F every second

and displays the count on a seven segment

display as shown in the following figure. The

program that drives the 7-segment display must

manually set the digital pins high

corresponding to the value to be shown.

f

ge

cb
d

a

Uno

9

8

7

6

5

4

3

g

f

e

d

c

b

a

Problem 15.52. Write a program that acts as a

burglar alarm. The corresponding schematic fol-

lows. The alarmwaits for the switch to be released

and then turns on a piezo-buzzer as the alarm. The

alarm should not reset if the switch is reset (only

after resetting the Arduino). The piezo can be

sounded by simply writing a PWM signal to it.

Uno
4

10

piezo

NC switch

Problem 15.53. Create a program that will read

the voltage across the capacitor and print the

value to the screen (one voltage reading per

line) for the circuit in the following figure.

Also print out the time measurement along

with the voltage. Hint: In order to observe

voltage variation across the capacitor, a square

wave must be applied to pin 10.

Uno

AO

10

50% duty cycle

1 k

330 F
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Problem 15.54. Create a program that uses two

light sensors (LDRs) to actuate a motor in two

directions. The sensors are modeled by voltage

dividers. In order to run the motor in two direc-

tions, two digital pins are used on the Uno.

Uno

7

A0 A1

H-bridge

Vcc

10 k

1 k

Vcc

10 k

1 k
10

Problem 15.55. Create a program that turns the

Arduino into a reaction time calculator. A

sketch is shown in the following figure. The

program starts a countdown of LEDs when the

start button is pressed. The program then counts

the time it takes the user to press the end button

once the final button has been pressed.

Uno

9

1 k

start LED

end LED

8

7

6

5

start timer

stop timer

Problem 15.56. Write a program that turns the

Arduino into a rudimentary stopwatch. The

Arduino should begin “timing” after the push

of a push button and then “stop” timing after a

push of a different button. A sketch is shown in

the following figure. Hint: Use some of the

built-in timing features.

Uno

7

6

start button

stop button

USB

Problem 15.57. Implement a “lap” feature

which spits out the time elapsed instead of

stopping the count. A sketch is shown in the

following figure.

Uno

7

6

start button

stop button

USB

5
lap button

Problem 15.58. Write a program that will con-

trol a 7� 5 LED matrix as shown in the fol-

lowing figure. In order to make an LED the cell

{R1, C1} on C1 must be LOWand R1 must be

HIGH. Hint: This problem involves the use of

arrays and several functions.

Uno
9

8

7

6

5

4

3

C1 C2 C3 C4 C5

R1

R2

R3

R4

R5

R6

R7

12

11

102

1C5

C4

C3

C2

C1

R1

R2

R3

R4

R5

R6

R7

Problem 15.59. Write a program and create

external circuitry that mimics the ball drop at

New Years. The “drop” should start when a

button is pressed and counts down 10 LEDs.

The final LED stays on. Hint: Use a function to

create the ball drop.
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Uno

3

10

2

Problem 15.60. Create a program that will

generate a square wave on pin 10 of the

Arduino with the following frequencies:

A. 25 kHz

B. 7 kHz

C. 300 Hz

D. 2 Hz

Problem 15.61. Write Arduino code that gen-

erates a 20-Hz square wave on pin 7 without

using delay or delayMicroseconds

function.
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Part V

Diode and Transistor Circuits



Chapter 16: Electronic Diode

and Diode Circuits

Overview

Prerequisites:

- Knowledge of basic circuit analysis

Objectives of Section 16.1:

- Understand basic principles of diode operation and its mechanical analogy

- Learn diode symbols

- Learn three operation regions of a diode

- Become familiar with common diode types and their functions

Objectives of Section 16.2:

- Solve diode circuits using the ideal-diode model

- Solve diode circuits using the constant-voltage-drop model

- Solve diode circuits using the exponential model and load-line method

- Learn about small-signal diode model and incremental resistance

- Establish applications of the superposition principle to diode circuits

Objectives of Section 16.3:

- Establish the concept of voltage reference/voltage regulator

- Analyze the voltage regulator with the Zener diode

- Become familiar with three major rectifier types: half-wave rectifier, full-wave

rectifier, and bridge rectifier

- Study selected applications of diode rectifier circuits

Objectives of Section 16.4:

- Become familiar with clamper and voltage multiplier diode circuits

- Learn the function and topology of diode clipper circuits including hard and soft

clippers

Application Examples:

- Automotive battery-charging system

- Envelope detector circuit for AM radio
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Section 16.1 Diode Operation and Classification

16.1.1 Circuit Symbol and Terminals

An electronic diode is the most basic two-terminal semiconductor device. The common

diode is simply a sealed semiconductor silicon pn-junction shown in Fig. 16.1a. The

diode symbol shown in Fig. 16.1b has a prominent arrow that indicates the proper

direction of the current. The positive side (where the current enters and the voltage is

more positive) is called anode and the negative side (where the current leaves) is called

cathode. This terminology has been adopted from vacuum tubes, which were used as

diodes in the past (circa 1910–1960). Thus, the diode, in contrast to the resistor, capacitor,

and inductor, is a polarized device. The current iD and the voltage across the diode υD

follow the passive reference configuration, seen in Fig. 16.1b, since the diode is a passive

device. The voltage υD is also called the terminal voltage. The general-purpose silicon

and germanium diodes usually have one or two prominent black rings printed on their

package terminations indicating the diode’s cathode as depicted in Fig. 16.1c

16.1.2 Three Regions of Operation

Figure 16.2 demonstrates an experimentally measured volt–ampere (or v–i) characteristic

of a common small-signal (i.e., low-power) 1N4148 silicon switching diode. Such diodes

are manufactured by many semiconductor companies. In Fig. 16.2, we plot the diode

current iD versus the voltage across the diode, υD. A closer look at Fig. 16.2 indicates that

the diode has three distinct operating regions:

1. The forward-bias region characterized by the inequality υD > 0

2. The reverse-bias region characterized by the inequality �VZ0 < υD < 0

3. The breakdown region characterized by the inequality υ < �VZ0.

The two vertical asymptotes shown in Fig. 16.2 correspond to Zener breakdown

voltage VZ0 and to a certain threshold voltage VD0, which is close to the built-in voltage

of the pn-junction, VBI. The three regions of operation and the associated constants will be

described in detail in the following sections.

p n =

+

-anode (+) cathode(-)

iD

vD

a) b)

=

cathode

anode

c)

Fig. 16.1. (a) Internal composition of a Si diode, (b) circuit symbol, and (c) physical counterpart.
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16.1.3 Mechanical Analogy of Diode Operation

The picture in Fig. 16.3 serves as a mechanical analogy for the diode, highlighting its

major function: a one-way valve. When the mechanical pressure (equivalently the electric

voltage) is sufficiently higher on the left side, the valve is open and a fluid (equivalently

the electric current) flows from left to right at any speed. This corresponds to the nearly

vertical v–i slope in the forward-bias region. However, a certain pressure drop (voltage of

0.7 V) is consumed by the spring attached to the valve. When the pressure gradient is

opposite, the valve is closed and there is no fluid flow (no current). This situation

corresponds to the reverse-bias region of operation.

16.1.4 Forward-Bias Region: Switching Diode

The forward-bias region is characterized by positive terminal voltages. In this region, the

diode current closely follows Shockley’s equation:

iD ¼ IS exp
υD

nV T

� �

� 1

� �

ð16:1aÞ

This Shockley’s ideal-diode equation (without the factor n) has been derived analytically

based on the pn-junction equations. This equation is strongly temperature dependent.

The reference is usually room temperature of 20 �C or 25 �C (cabinet temperature).

10

v ,V D

Forward-bias region

5

0.5 1.0-0.5-1.0-75

Reverse-bias regionBreakdown region

-VZ0

VD0iD,mA 

Fig. 16.2. Measured v–i characteristic of a 1N4148 Si switching diode to scale.

-+
(higher pressure) (lower pressure)

Fig. 16.3. Fluid flow analogy of the pn-junction behavior of an ideal diode—a flapper valve with a

resistive force in the forward direction.
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In Eq. (16.1a), the constant IS[A] is the diode saturation current. For small-signal

1N4148-type diodes, a theoretical value of IS � 10�14 A or less at room temperature

may be calculated. For real diodes, this value is much higher. The constant

VT ¼ kT=q ð16:1bÞ

with the unit of volts is called the thermal voltage. The dimensionless constant 1 � n is

the ideality factor of the diode, which accounts for the deviation of the real diode from

Shockley’s ideal-diode equation. For small-signal, discrete silicon diodes, n � 2. For

discrete Schottky diodes, as described below, n � 1. For diodes in integrated circuits,

n � 1. Other parameters in Eqs. (16.1a) and (16.1b) are summarized in Table 16.1.

The goal of the vertical asymptote in the forward-bias region in Fig. 16.2 is to

approximate the steep exponential function at practically relevant values of the diode

current. As an approximation, the value of VD0 in Fig. 16.2 is close to the built-in voltage

of the pn-junction, VBI. For small-signal silicon diodes, VBI � 0:62� 0:72V. To be

specific, we will assumeVD0 ¼ 0:7V, which is the commonly used value for small-signal

silicon diodes.

Example 16.1: Figure 16.4a (and simultaneously Fig. 16.2) shows measured character-

istics for the 1N4148 small-signal Si switching diode adopted from a Hitachi 1N4148

datasheet at 25 �C in the forward-bias region, i.e., the dotted curve. Compare the exper-

imental curve with the Shockley’s equation (16.1a) under the assumption that

n ¼ 1:7, IS ¼ 1:1nA.

Solution

We calculate the thermal voltage at 25 �C first and obtain VT ¼ 26mV. Next, we plot

Shockley’s equation in Fig. 16.4a based on the solid curve. The agreement between theory

and experiment is quite satisfactory. At the same time, when we consider a wider electric

current range and use a logarithmic scale to better resolve small and large currents, the

deviation at larger currents becomes more visible. The corresponding graph is given in

Fig. 16.4b. Figure 16.4 may be replicated in the laboratory for a 1N4148 diode from

different manufacturers.

Table 16.1. Useful constants for Shockley’s equation.

Absolute temperature T (K) T ¼ 273� þ t� Cð Þ

Electron charge q (C) 1.60218� 10�19

Boltzmann constant k (J/K) 1.38066�10�23
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Fig. 16.4. (a) Shockley equation prediction (solid curve) versus measured data (dotted curve) for

the 1N4148 small-signal Si switching diode at 25 �C and (b) enlarged scale.

Exercise 16.1: Determine the thermal voltage at room temperature (20 �C).

Answer: V T ¼ 25mV.

A diode operating in the forward-bias region is usually called a switching diode,

meaning this is its major use. For many applications the diode switching time T plays

an important role; it characterizes how fast the pn-junction current responds to reversing

the diode voltage. For example, a gold-doped 1N4148 switching diode may have the

switching times of about 2–4 ns. Even though this number might appear small, it is not

suitable for radio frequencies. The maximum operating frequency of the diode is the

inverse of its shortest switching time, f max � 1=T ¼ 250MHz for the present switching

diode.

16.1.5 Reverse-Bias Region: Varactor Diode

The reverse-bias region is characterized by negative terminal voltages. According to

Shockley’s equation (16.1a), in this region, iD ¼ �ISwhen υD � �V T. Thus, the reverse

current should flow in the diode. While extremely small, the reverse current may even

reach 1–20 nA due to various leakage effects. There is however a special diode which

operates only in the reverse-bias region. It is called a varactor (from variable capacitor)

diode or the tuning diode. The behavior of the varactor diode is based on the internal

structure of the pn-junction, which effectively becomes a charge-free capacitor at
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negative (and even quite small positive) terminal voltages. The gap between the charged

“capacitor plates” is determined by the terminal voltage, which controls the resulting

capacitance. As a result, we obtain a voltage-controlled capacitor that has numerous

applications in electronic communication circuits. The varactor diode is optimized to

increase capacitance variations in response to the applied voltage. The circuit symbol for

the varactor diode is seen in Fig. 16.5, where the schematic shows the built-in capacitor.

16.1.6 Breakdown Region: Zener Diode

The steepness of the v–i diode curve in Fig. 16.2 in the breakdown region is utilized in the

design of voltage regulators. The corresponding Zener breakdown voltage VZ0 is on the

order of 75–100 V for switching diodes, which makes their use in the reverse-bias region

impractical. A diode with a much smaller VZ0, on the order of 5–20 V and specially

designed to operate in the reverse-bias region, is called a Zener diode. The silicon-made

Zener diode features a heavily doped pn-junction. The breakdown voltage is adjusted by

a proper doping composition. Figure 16.6 compares circuit symbols for the switching

diode and Zener diode, respectively. Under normal operating conditions in the reverse-

bias region, the cathode of the Zener diode is more positive and the diode current flows

from cathode to anode. Therefore, both the diode voltage and the diode current in

Fig. 16.6b have positive values. The Shockley’s equation is not used in the breakdown

region. Instead, the behavior of the Zener diode is described by a piecewise-linear diode

model. The diode breakdown is not destructive; the diode successfully functions in the

breakdown region.

16.1.7 Other Common Diode Types

Schottky Diode
The Schottky (barrier) diode does not use a pn-junction. Instead, a junction of a metal

(anode) and an n-type semiconductor (cathode) are formed. Schottky diodes exhibit

lower forward-bias voltages (0.15 to 0.5 V) and ultrafast switching speeds, since they

are majority-carrier (conduction) devices, in contrast to the “slow” diffusion-current-

based pn-junctions. Schottky diodes may employ different semiconductors including Si,

anode (+) cathode(-)

Fig. 16.5. Circuit symbol for a varactor (variable capacitor) diode.
+

-

iD

vD

iD

-

vD +

a) b)

Fig. 16.6. Switching (a) versus Zener (b) diode. Note reversed voltage polarity/current direction.
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GaAs, etc. in contact with metal (molybdenum, platinum, chromium). The corresponding

circuit symbol is shown in Fig. 16.7.

PIN Diode

A Si PIN diode is a pin semiconductor junction. In contrast to the standard junction, there

exists a region of intrinsic (or lightly doped) silicon (i-layer) of low conductivity between

doped p and n layers. When the diode voltage is high and positive, this region becomes

filled with charge carriers. Consequently, the PIN diode becomes a variable, voltage-

controlled resistor. This makes it useful as a switch or attenuator for radio-frequency

signals. Another application is related to photodetection. In this case, the diode voltage is

typically negative. When there is no ambient light, the region of intrinsic silicon has no

charge carriers; hence, the diode is not conducting. When the ambient light is present, a

photon collides with a single electron in the lattice. When the photon energy is sufficiently

high, the electron leaves the crystal lattice and becomes a free carrier. Hence, the diode

becomes conducting and operates as a photodetector.

Photodiode

The idea of the photodiode can be explained on the basis of the PIN diode. The

light-induced carriers support a reverse current through the diode, the so-called photocur-

rent. Its intensity can be measured; it is proportional to the intensity of the incident light.

Light-Emitting Diode

A Light-Emitting Diode (LED) performs the opposite function of the photodiode. When a

free conduction electron finds its place in the crystal lattice (becomes a valence electron),

it loses energy, which is irradiated as a quantum of visible light. The LED junction is

not a silicon junction, but is made of gallium arsenide (GaAs), another semiconductor

material. Several different compounds may be involved and the junction becomes the

heterojunction. The corresponding circuit symbol is shown in Fig. 16.8 (the symbol for

the photodiode has the oppositely directed small arrows). Any general-purpose LED may

operate as a solar cell—generate a nonzero voltage across its terminals when illuminated

by light. A simple experiment is to connect an LED to the DMM and measure the voltage

across it with and without the ambient light (cover it with your hand).

anode (+) cathode(-)

Fig. 16.7. Circuit symbol for a Schottky diode.

anode (+) cathode(-)

Fig. 16.8. Circuit symbol for an LED.
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Historical: The history of diode discoveries is very rich. The term diode originates from

the Greek roots di, meaning “two,” and ode, meaning “path.” It was suggested by William

Eccles (1875–1966), British physicist and radio engineer, who worked with Guglielmo

Marconi. The first solid-state diode was patented in 1899 by Karl Ferdinand Braun (1850–

1918), German physicist and Nobel Prize laureate. Indian professor of physics, Jagadish

Chandra Bose (1858–1937) was the first to use diodes to detect radio signals. The Zener

diode is named in honor of American physicist Clarence Melvin Zener (1905–1993). The

Schottky diode is named in honor of Walter Hermann Schottky (1886–1976), German

professor and engineer at Siemens. The PIN diode was invented by Jun-ichi Nishizawa

(1926–), a Japanese professor and engineer. British scientist Henry Joseph Round (1881–

1966) was the first to report on the observation of light emission from crystals when

subjected to an applied voltage. Russian scientist Oleg Losev (1903–1942) observed light

emission from semiconductor junctions, the first LEDs. Nick Holonyak, Jr. (1928–),

professor at the University of Illinois at Urbana-Champaign, invented and constructed

the first practically useful LED.
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Section 16.2 Diode Models

16.2.1 Ideal-Diode Model: Method of Assumed States

The ideal-diode model ignores all details of the v–i characteristic except the most

fundamental one: the steep nonlinearity in the forward-bias region. Figure 16.9 shows

the v–i characteristic of the ideal diode. We plot the current iD versus the voltage υD

across the diode. The ideal diode is equivalent to an open circuit (no current) at negative

or reverse-bias applied voltages (υD < 0) and to a short circuit at any positive value of

diode current (iD > 0 ) υD ¼ 0). For comparison, we also draw the v–i line for a resistor

as a dashed line in Fig. 16.9.

The ideal-diode model allows us to analyze an electric circuit with a diode using the

method of assumed states. The ideal diode may only have two states: a short circuit (the

diode is “ON”) or an open circuit (the diode is “OFF”). During analysis, we make an

intuitive guess (ON or OFF) and replace the diode either by a wire or by an open circuit,

respectively. We then solve the rest of the circuit and check to see if our guess was right.

For the ON-diode, we cannot check the voltage across the diode, since it is exactly zero

for the ideal-diode model. However, we can check the current, which must flow in the

direction of the diode arrow. If this is not the case, our guess is wrong. For the OFF-diode,

we check the voltage across the diode. If this voltage is negative (or “reversed”), then it

satisfies the condition of Fig. 16.9, and the diode is an open circuit as expected.

Otherwise, the guess is wrong. Figure 16.10 shows the procedure.

iD

vD0

open circuit (no current)

Short circuit (a“wire”): any current
and virtually no voltage drop

anode (+) cathode(-)

resistor

Fig. 16.9. The v–i characteristics of an ideal diode. The resistor v–i characteristic is a dashed line.
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Example 16.2: Figure 16.11a presents a DC diode circuit, a resistor network bridged with

the ideal diode. Solve the circuit, i.e., find all voltages and currents assuming the ideal-

diode model. Denote the solution for the diode voltage and diode current in the DC steady

state by capital letters VD, ID, respectively.

Solution: We first assume the diode is OFF and replace it by an open circuit; see

Fig. 16.11b. Thus, the diode current ID is zero. The circuit becomes a combination of

two independent voltage dividers connected to the same power supply. The absolute

voltages of the anode and the cathode with respect to ground are obtained from the voltage

division principle and are equal to 5 and 10 V, respectively. The voltage across the diode is

obtained as VD ¼ 5� 10V ¼ �5V. This negative value shows that our guess is correct.

After that, all circuit currents are found using Ohm’s law. The total circuit current is 2 mA;

it is equally divided between two independent voltage dividers. The circuit analysis in

Fig. 16.11b is therefore complete; we have proved that the diode has a negative bias

voltage. Consequently, it is not necessary to prove that the opposite guess will lead to a

wrong conclusion, in this case, to a wrong direction of the diode current.

Exercise 16.2: For the purpose of completeness, present a solution for the diode state

guess ON in Fig. 16.11a and show that there is a contradiction.

Answer: The assumed solution is given in Fig. 16.11c. The diode current of 0.75 mA flows

though the diode in the opposite direction of the diode arrow. This is a contradiction;

therefore, the guess is wrong.

+

-

=

=

guess ON-check current direction

guess OFF-check if diode voltage is reversed

iD iD

vD

iD

Fig. 16.10. Checking procedure for the method of assumed states.
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We note that the equivalent circuit resistance in Fig. 16.11b is 7.5 kΩ, and in Fig. 16.11c

it becomes 6.68 kΩ. It is interesting to note that the dissipated power VS
2/R is greater in the

second case. A correct diode state thus minimizes the circuit power.

Example 16.3: A diode circuit known as an OR logic gate is shown in Fig. 16.12. This

circuit has two input voltages, V1 and V2, which may either be equal to 0 Vor to 5 V. Solve

the circuit by filling out Table 16.2 under the assumption that both diodes are ideal.

a b

c Guess ON (wrong)

+
-15 V

10 k

5 k10 k

5 k

7.5 V

1.5 mA

0.75 mA 1.5 mA

0.75 mA

0.75 mA

0 V

7.5 V

15 V

+
-15 V

10 k

5 k10 k

5 k

0 V

+

-

Guess OFF (correct)

10 V

+
-

10 k

5 k10 k

5 k

+

-
5 V

+

-
5 V

+

-
10 V

+ 5 V
-

0V

10 V 5 V

15 V

15 V

Fig. 16.11. (a) A resistor network bridged with an ideal diode. (b) Circuit analysis assuming the

diode state is OFF (correct guess), leading to an open circuit. Absolute voltages versus ground are

marked in bold. (c) Circuit analysis assuming the diode state ON (wrong guess), which is a short

circuit. The absolute voltages with respect to ground are marked in bold.
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Example 16.3 (cont.):

Table 16.2. Output voltage of the diode circuit shown in Fig. 16.12 to be evaluated as a

function of two input voltages.

V1 (V) V2 (V) VOUT

0 0

0 5

5 0

5 5

Solution: For the first row of the table, all three voltages in Fig. 16.12 are zero. For the

second row, diode D2 is ON and diode D1 is OFF. The last condition is confirmed by

the reverse bias voltage, and the first condition is confirmed by the correct diode current.

The output voltage is 5 V. For the third row of the table, the situation is opposite: diode D1

is ON and diode D2 is OFF. The output voltage is again 5 V. For the last row of the table,

both diodes are ON and VOUT ¼ 5V.

If we assign a binary value of “1” to the voltage of 5 V and binary value of “0” to the

voltage of 0 V, Table 16.2 from Example 16.3 can be rewritten in the form of a so-called

truth table. Table 16.3 is a truth table for the OR logic gate constructed based on two

diodes. An AND gate can be constructed in a similar fashion. The diode logic circuits (the

so-called diode logic or DL) had once been popular, but they were quickly outperformed

by the transistor logic circuits: the resistor-transistor logic (RTL) or the transistor-

transistor logic (TTL).

Table 16.3. Output voltage of the diode circuit in Fig. 16.12 as a function of two input voltages in

terms of binary numbers. This is known as a truth table.

V1 V2 VOUT

0 0 0

0 1 1

1 0 1

1 1 1

V1

1 k

0V

V2

VOUT

+

-

D1

D2

Fig. 16.12. An OR logic gate on the base of two ideal diodes.
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16.2.2 Constant-Voltage-Drop Model

Figure 16.13 demonstrates the constant-voltage-drop model of a diode. This is the ideal-

diode model, but with the inclusion of “turn-on” voltage VD0 from Fig. 16.2, which has

been used to approximate Shockley’s equation. The “voltage supply” VD0 and the diode

have the same polarity. The constant-voltage-drop model is not a significant complication

of the ideal-diode model: the method of assumed states is still applicable. However, it

provides better accuracy and is therefore a popular and robust extension of the ideal-diode

model. We will use VD0 ¼ 0:7V for silicon diodes. For the ON-diode, we additionally

introduce the voltage drop across the diode of 0.7 V in the forward direction, calculate the

diode current, and finally check the current direction.

Example 16.4: Determine diode current and diode voltage in a DC circuit shown in

Fig. 16.14 using (A) ideal-diode model and (B) constant-voltage-drop model.

Solution (A): We assume the diode in Fig. 16.14 is ON and replace it by a short circuit.

The correct current direction confirms this assumption. One has

VD ¼ 0, ID ¼ 3mA ð16:2aÞ

Solution (B): We again assume the diode in Fig. 16.14 is ON and replace it by a short

circuit plus a 0.7-V voltage supply. The circuit current is found using KVL. The correct

current direction confirms the initial assumption. One has

VD ¼ 0:7V, ID ¼ 2:3mA ð16:2bÞ

+
-3 V

1 k

0 V

ID

VD

+

-

+
-3 V

1 k

0 V

ID

VD0

+

-

Fig. 16.14. A basic diode circuit solved with the constant-voltage-drop model.

iD

vD0

open circuit (no current)

Short circuit (a “wire”): any current

and constant voltage dropVD

VD0

= VD0

+

-

Fig. 16.13. The v–i characteristic of the constant-voltage-drop model. The diode in the forward-

bias region is replaced by a DC voltage source having the same polarity.
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It follows from Example 16.4 that the ideal-diode model less accurately predicts the

circuit current (and other parameters) for relatively small supply voltages when compared

with VD0. However, its accuracy may be sufficient for voltages much greater than VD0.

Exercise 16.3: Solve Example 16.4 when the supply voltages change to 120 V.

Answer: VD ¼ 0, ID ¼ 120mA and VD ¼ 0:7V, ID ¼ 119:3mA.

16.2.3 Exponential Model in the Forward-Bias Region and Its Use

The most accurate exponential diode model makes use of Shockley’s equation (16.1a)

and is repeated here for convenience:

iD ¼ IS exp
υD

nV T

� �

� 1

� �

ð16:3aÞ

The saturation current IS and the ideality constant n in Eq. (16.3a) can hardly be found in

the diode datasheet. Instead, two pairs of measured values of diode voltage and current

are usually used. Assume that we know VD1, ID1 and VD2, ID2 at a given temperature and

thatVD1,2 � VT. By neglecting the factor 1 in Eq. (16.3a), one finds the ideality factor as

n ¼
VD2 � VD1

V Tln ID2=ID1ð Þ
ð16:3bÞ

After that, the saturation current is evaluated in the form:

IS ¼
ID1

exp VD1

nVT

� �

� 1
ð16:3cÞ

Exercise 16.4: A 1N4148 diode from Vishay Semiconductors has a current of 0.1 mA at

0.4 V and a current of 0.8 mA at 0.5 V at 25 �C. Determine the ideality factor and the

saturation current at this temperature and in this range of diode currents.

Answer: n ¼ 1:9, IS ¼ 24:4nA.

Exercise 16.5: Repeat Exercise 16.4 for a 1N4148 diode manufactured by Fairchild. This

diode has a current of 0.1 mA at 0.5 V and a current of 5 mA at 0.7 V at 25�.

Answer: n ¼ 2:0, IS ¼ 5:7nA.
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16.2.4 Load-Line Analysis

With the exponential diode model, the circuit equation becomes a transcendental expres-

sion which complicates the analysis. A solution may be obtained graphically. Such a

method is known as the load-line method. Consider the circuit in Fig. 16.14. On one

hand, the diode current as a function of diode voltage is given by the Shockley’s equation

(16.3a). On the other hand, the same current is found with the help of KVL:

iD ¼
V S � υD

R
ð16:4Þ

where V S ¼ 3V,R ¼ 1kΩ. In Fig. 16.15, we plot both dependencies on the same graph.

The Shockley’s equation is plotted to scale using n ¼ 1:7, IS ¼ 1:1nA at 25 �C. The

linear relation of Eq. (16.4) or the solid line in Fig. 16.15 is the load line. The load line

intersects the diode v–i curve at a point Q. The point Q is known as the DC operating

point (or the quiescent point) of the circuit. Its coordinates VD, ID give us the required

circuit solution. The load-line method is a general method for studying arbitrary linear

circuits represented by its Thévenin equivalent and connected to a nonlinear load.

Example 16.5: Determine diode (or circuit) current and diode voltage in the DC circuit

shown in Fig. 16.14 using the diode v–i curve from Fig. 16.15.

Solution:Avisual inspection of the operating pointQ in Fig. 16.15 indicates that the diode

voltage and the diode current may be approximately estimated as

VD � 0:65V, ID � 2:4mA ð16:5Þ

0

2.5

5.0

i ,mA D

v ,V D
0 0.5 1 1.5 2 2.5 3

Shockley equation

Load line

Q - operating point

V , ID D

3.0

Fig. 16.15. Shockley’s equation to scale and the load line for the circuit in Fig. 16.14.
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16.2.5 Iterative Solution

A higher accuracy can be achieved with a precise iterative method. Equating the right-

hand sides of Eqs. (16.3a) and (16.4), we obtain

IS exp
υD

nVT

� �

� 1

� �

¼
V S � υD

R
) υD ¼ nVTln

V S � υD

RIS
þ 1

� �

ð16:6aÞ

The transcendental equation (16.5a) for υD is solved using a basic iterative scheme:

υ
nþ1
D ¼ nVTln

V S � υ
n
D

RIS
þ 1

� �

, n ¼ 0, 1, 2, . . . ð16:6bÞ

where the initial guess υ
0
D may be chosen arbitrarily. Table 16.4 shows the solution

convergence for two choices of the initial diode voltage: 0.7 V and 0 V, respectively. In

both cases, the convergence is excellent: an accurate solution is obtained after the second

iteration already. The iterative algorithm works very well for lumped diode circuits.

Example 16.6: Compare performance of the four diode approximations using the DC

circuit shown in Fig. 16.14.

Solution: We collect the results of the two previous examples and Table 16.4:

Iterative method (most accurate): VD ¼ 0:6333V, ID ¼ 2:367mA

Load-line method (visual inspection): VD ¼ 0:65V, ID ¼ 2:4mA

Constant-voltage-drop model: VD ¼ 0:7V, ID ¼ 2:3mA

Ideal-diode mode (least accurate): VD ¼ 0, ID ¼ 3mA

The conclusion of this example is that the simple constant-voltage-drop model and the

load-line analysis perform quite well compared to the most-accurate solution.

16.2.6 Linearization About a Bias Point: Small-Signal Diode Model

The linearization procedure for the diode (or any other nonlinear circuit element) is

illustrated in Fig. 16.16. When compared to Fig. 16.15, this figure uses the same data, but

employs a finer voltage scale. Quite often, a signal-processing radio-frequency diode is

set in a DC circuit, which provides a certain DC operating point VD, ID shown in

Fig. 16.16. The DC circuit so constructed is called the bias circuit.

Table 16.4. Convergence of the iterative algorithm for the diode circuit with a 1N4148 small-

signal Si switching diode having n ¼ 1:7, IS ¼ 1:1nA at 25 �C.

υ
0
D (V) (init. guess) υ

1
D (V) υ

2
D (V) υ

3
D (V)

0.7 0.6320 0.6333 0.6333

0.0 0.6436 0.6331 0.6333
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Consequently, the DC operating point of the diode is called the bias point (quiescent

point). Further, a very weak AC signal υd(t), id(t) is added. Though weak, this signal

contains information to be processed. The diode voltage and diode current become

υD tð Þ ¼ VD þ υd tð Þ
iD tð Þ ¼ ID þ id tð Þ

υd tð Þj j < VT ð16:7aÞ

The inequality in Eq. (16.7a) means that the AC signal amplitude should be much less

than 25 mV. The linearization concept states that this weak AC signal will satisfy not the

complicated nonlinear diode expression, but the familiar linear Ohm’s law in the form:

υd tð Þ ¼ rdid tð Þ ð16:7bÞ

where rd is the small-signal diode resistance or incremental resistance determined by the

slope of the v–i dependence in Fig. 16.16. Thus, the diode becomes a resistor for small

signals, which greatly simplifies the AC analysis. Our goal is to find this small-signal

resistance as a function of VD and ID. To do so, we use the asymptotic expansion (Taylor

series) with regard to the small parameter υd/VT:

exp
υD

nVT

� �

¼ exp
VD

nVT

� �

exp
υd

nV T

� �

¼ exp
VD

nVT

� �

1þ
υd

nV T

þ O
υd

nV T

� �2
 ! !

ð16:7cÞ

and neglect all terms on the order of (υd/nVT)
2 or less denoted by the symbol O.

Substitution into Shockley’s equation yields

57.055.0
0

2.5

5

i ,mA D

v ,V D

Q - DC operating
point (bias point)

tangent at Q

v ,mV d

i ,mA d

1/rd

Fig. 16.16. Linearization procedure for a switching diode with n ¼ 1:7, IS ¼ 1:1nA at 25 �C.
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id ¼ ISexp
VD

nVT

� �

υd

nVT

ð16:8Þ

Since VD/VT is usually much greater than one, we can use IS exp(VD/nVT) instead of

ID ¼ IS exp VD=nVTð Þ � 1ð Þ. This gives the small-signal diode resistance rd in the form:

id ¼
ID

nVT

υd ) rd ¼
nVT

ID
ð16:9Þ

Mathematically, rd is the inverse slope of the tangent line at the bias point in Fig. 16.16.

The small-signal resistance is high at small bias currents and is low otherwise.

16.2.7 Superposition Principle for Small-Signal Diode Model

A circuit with the DC bias and a small AC signal is solved using the superposition

principle shown in Fig. 16.17. We solve the nonlinear DC diode circuit in Fig. 16.17a

first. The DC solution is used to find the small-signal diode resistance in Fig. 16.17b. The

linear AC circuit in Fig. 16.17b is solved next. The complete solution is the sum of both.

Example 16.7: Determine the diode voltage for the circuit in Fig. 16.17 which superim-

poses a weak AC voltage signal and the DC bias. Use the constant-voltage-drop-diode

model. Assume temperature of 25 �C and n ¼ 1:7.

Solution: We apply the method of assumed states to the DC circuit in Fig. 16.17a and

obtain ID ¼ 4:3mA. The small-signal diode resistance is rd ¼
nVT

ID
� 10Ω. The linear

small-signal circuit in Fig. 16.17b is a voltage divider; the small-signal diode voltage is

therefore given by υd tð Þ ¼ 10
1010

� 0:001 cosω t � 10 cosωtμV. The total diode voltage is

finally obtained in the form υd tð Þ ¼ 0:7Vþ 10 cosωtμV.

+
-5 V

1 k

0 V

v (t)D

+

-

+
-

0.001cos( t) V

+
- 5 V

1 k

0 V

ID

VD

+

-

1 k

0 V

i (t)d

v (t)d

+

-

=

+

0.001cos( t) V
+
-

i (t)D

r (I )d D

)b)a

Fig. 16.17. Illustration of the superposition principle for small-signal diode circuits.
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Section 16.3 Diode Voltage Regulators and Rectifiers

This section studies major diode circuits such as rectifiers and regulators. These circuits

have applications both in power electronics and communication. When the primary

application area is power electronics, we attempt to designate the input AC voltage as

the source voltage υS(t) and the output voltage as the load voltage υL(t). The same is done

for voltage regulator circuits. Otherwise, we keep the notation υin(t) for the input voltage

to the circuit and υout(t) for the output voltage, respectively. As to the phase, we pick the

initial phase in the form that is either most convenient for the graphical representation of

the problem or is of general convention. Specifically, we choose sinωt for basic rectifier

circuits and cosωt for a signal-processing envelope (peak) detector circuit. We will label

each individual diode in a circuit as D1, D2, etc.

16.3.1 Voltage Reference and Voltage Regulator

The first useful diode circuit is the voltage reference circuit shown in Fig. 16.18. In

amplifier and actuator circuits, it is often desired to have a fixed voltage reference with

respect to ground, which is not affected by variations of the source voltage VS and/or by

particular values of the load resistance RL. A resistive voltage divider is unable to do this.

However, a diode circuit shown in Fig. 16.18 solves this problem. Indeed, the voltage

reference can only be a multiple of the diode voltage drop VD0 ¼ 0:7V.

The circuit shown in Fig. 16.18 simultaneously serves as a basic forward-bias voltage

regulator. The voltage regulator is a circuit that provides a constant DC voltage between

its terminals, no matter how much the voltage supply changes. The circuit in Fig. 16.18 is

the shunt voltage regulator.

Example 16.8: Determine the load voltage and diode current for the regulator circuit

in Fig. 16.18 given that V S ¼ 9V	 0:5V for two different values of the load resistance, RL

¼ 1MΩ and RL ¼ 1kΩ. Use the constant-voltage-drop-diode model to evaluate the circuit.

R=1 k

0 V

+

-
VD

I
D

VS

RL

+

-
VD

+

-
VL

IL

0 V

a

I

D1

D2

Fig. 16.18. Diode voltage reference for the load resistor RL.
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Example 16.8 (cont.):

Solution: We apply the method of assumed states to the DC circuit in Fig. 16.18. We

assume that both diodes in Fig. 16.18 are ON and replace them by short circuits plus two

0.7 V voltage supplies in series; this gives us

VL ¼ V a ¼ 1:4V ð16:10Þ

in Fig. 16.18. The load current is therefore IL ¼ 1:4=RL. The current through the top

resistor in Fig. 16.18 is I ¼ V S � 1:4ð Þ=R. The guess ON implies the correct direction of

the diode current, that is,

ID ¼ I � IL ¼ V S � 1:4ð Þ=R� 1:4=RL > 0 ð16:11Þ

The substitutions show that for any set of values V S ¼ 9V	 0:5V and RL ¼ 1MΩ or

RL ¼ 1kΩ, the inequality (16.11) is satisfied. Thus, the initial guess ON is always true.

This means that the diode combination in Fig. 16.18 provides a constant voltage reference

of 1.4 V given by Eq. (16.10) irrespective of the power supply voltage variations and/or

load resistance variations.

The constant-voltage-drop-diode model employed in Example 16.18 may be improved

using the small-signal diode approximation from the previous section. The key observa-

tion is that the small-signal diode resistance, specifically developed to study weak AC

signals, is equally applicable for the study of arbitrary small variations of diode voltages

such as the variations encountered in the present problem.

Exercise 16.6: Does the voltage regulator in Example 16.8 still operate properly when:

A. The supply voltage V S ¼ 5V	 1V is used?

B. The load resistance of RL ¼ 100Ω is used?

Answer: A. Yes. B. No.

16.3.2 Voltage Regulator with Zener Diode

Shunt Voltage Regulator with Zener Diode
If a voltage regulator with an output voltage of 5–20 V is required, the use of forward-

biased diodes becomes impractical since many of them have to be used. The standard

voltage regulator makes use of the Zener diode operating in the breakdown region as
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shown in Fig. 16.19a where RL is the load resistance. Interestingly, the circuit in this

figure and the circuit in Fig. 16.18 have in fact the same topology if we replace two

forward-biased diodes by one reverse-biased Zener diode.

Piecewise-Linear Diode Model

The Zener diode in the breakdown region is described by a piecewise-linear diode

model. As the name implies, this model approximates the reverse-bias region by a linear

dependence shown in Fig. 16.19b. A datasheet for the Zener diode typically specifies:

1. The dynamic or incremental Zener diode resistance rZ, which is the inverse slope of

the straight-line asymptote in Fig. 16.19b

2. At least one diode test point VZT, IZT on the diode breakdown v–i curve that is also

shown in Fig. 16.19b

This information is sufficient to construct the linear model in the breakdown region as

VD ¼ rZID þ VZ0 ð16:12aÞ

where the Zener breakdown voltage VZ0 is found from the datasheet parameters as

VZ0 ¼ VZT � rZIZT ð16:12bÞ

Example 16.9: A 1N5231B Zener diode withVZT ¼ 5:1V, IZT ¼ 20mAand rZ ¼ 17Ω is

used in the voltage regulator circuit in Fig. 16.19a. Determine the load voltage given that

V S ¼ 9V	 1V and the load has a very high (infinite) resistance.

Solution: We apply the method of assumed states to the DC circuit in Fig. 16.19 and

assume that the Zener diode operates in the breakdown region. Substituting the diode data

into Eq. (16.12b) yields the breakdown voltage of VZ0 ¼ 4:76V. The resulting circuit

is shown in Fig. 16.19c where the infinite load resistance is replaced by an open circuit.

The circuit (diode) current is given by I ¼ ID � V S � 4:76ð Þ= Rþ rzð Þ. Therefore,

VL ¼ rzI þ 4:76. When the supply voltage is V S ¼ 9V	 1V, the load voltage becomes

VL ¼ 4: 831V	 17mV. Thus, the voltage regulation function of the circuit is quantified.

The load voltage response to 	1 V supply change is known as line regulation. In the

present example, the line regulation is 17 mV per 1 Vor 17 mV/V. Finally, we must justify

the initial guess of diode operation. This is done by checking the diode current:

ID ¼ 4:2mA	 1mA. Since the current flows in the reverse direction, the initial assump-

tion is also justified.
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16.3.3 Half-Wave Rectifier

A diode rectifier is perhaps the most important application of the diode. Mostly large AC

currents are rectified, i.e., converted to DC currents. The diode rectifier forms an input

stage for electronic DC power supplies including switching-mode power supplies.

Furthermore, diode rectifiers form a basis for battery-charging circuits including auto-

motive applications. The diode rectifier is also an important part of wireless energy-

harvesting and communication devices. In particular, any passive RFID tag uses a diode

rectifier to convert the (very weak) AC power of a received electromagnetic signal to DC

electric power. The concept of a simple (half-wave) diode rectifier is shown in Fig. 16.20.

An AC power supply with sinusoidal voltage (either positive or negative with respect to

ground) is connected to a load via a diode in series. We assume that υS tð Þ ¼ Vm sinωt.

Let us use the ideal-diode model first. When the voltage versus ground is positive, the

diode is in the ON state and can be replaced by a wire. All electric power is transferred to

the load and the current through the load flows from top to bottom. When the voltage is

negative, the diode is OFF, and the load acquires no current. Hence, the current through

the load always flows in one direction (or does not flow at all).

R=1 k

0 V

+

-
VD

IDVS RLVL

IL
a

I

+
-

+

-

D1

10

I ,mA D

V ,V D-2-4

-VZT

-IZT

1/rZ

-VZ0 =
VZ0

+

-

rZ

R=1 k

0 V

ID

VS

a

+
-

+

-

VL

4.76 V

17

+
-

a b

c

Fig. 16.19. (a) Shunt voltage regulator on the base of a Zener diode. (b). Piecewise-linear diode

model for the Zener diode in the breakdown region. (c) The circuit from (a) with the Zener diode

replaced by its equivalent circuit and with the open-circuited load.
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Mathematically, the load voltage for the ideal-diode rectifier is expressed by

υL tð Þ ¼ υS tð Þ if υS tð Þ > 0 ð16:13aÞ

υL tð Þ ¼ 0 if υS tð Þ � 0 ð16:13bÞ

Note that a battery charger is constructed in a similar way, with the load resistor

in Fig. 16.20 replaced by a battery. A current-limiting resistor must also be

added. Figure 16.21a shows the load voltage (rectified voltage) for the AC source

υS tð Þ ¼ Vm sinωt with Vm ¼ 90V and f ¼ ω= 2πð Þ ¼ 0:5Hz. Other signals that are

not necessarily sinusoidal, potentially not even periodic, may be rectified in a similar way.

Exercise 16.7: Plot source voltage and load voltage for the half-wave rectifier with

Vm ¼ 3V and f ¼ 0:5Hz using the constant-voltage-drop-diode model.

RL v (t)L

+

-

0 V

v (t)S
+
-

D1

Fig. 16.20. Half-wave diode rectifier with a resistive load. The source in this figure is usually a

secondary winding of a power transformer.
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Fig. 16.21. Rectified (or load) voltage versus source voltage. (a) The result for the ideal half-wave

diode rectifier or rectifier with a high input signal. (b) The result using the constant-voltage-drop-

diode model for a moderate input signal.
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Exercise 16.7 (cont.):

Answer: The plot is given in Fig. 16.21b. The non-ideal diode in Fig. 16.21b conducts not

over the entire positive half cycle characterized by the dimensionless angle of π (in terms

of ωt), but over a smaller conduction angle given by π � 2 sin �1 VD0=Vmð Þ where

VD0 ¼ 0:7V.

16.3.4 Full-Wave Rectifier with a Dual Supply

A drawback of the half-wave diode rectifier is that half of the AC signal (and of the AC

power) is being lost. One solution to the problem is a full-wave diode rectifier shown in

Fig. 16.22. This particular rectifier circuit uses a dual AC voltage supply, which is realized

in practice by a secondary winding of a power transformer with a center tap at node b. We

denote every identical individual supply in Fig. 16.22 by υS(t).

We assume that υS tð Þ ¼ Vm sinωt in Fig. 16.22 and analyze the circuit using the ideal-

diode model and the method of assumed states. When the top supply in Fig. 16.22 is

positive versus ground, diode D1will be ON and diode D2will be OFF. The positive half-

cycle will be rectified. However, when the top supply is negative versus ground, diode D1

will be OFF and diode D2 will be ON. The negative half-cycle will be rectified. However,

the load current will always be directed from right to left in Fig. 16.22. Mathematically,

the load voltage for the ideal full-wave diode rectifier is expressed by

υL tð Þ ¼ υS tð Þj j for any υS tð Þ ð16:14Þ

Figure 16.23a shows the load voltage (rectified voltage) for the AC source υS tð Þ ¼ Vm

sinωt with Vm ¼ 90V and f ¼ ω= 2πð Þ ¼ 0:5Hz.

RL

v (t)L +

-

0 V

v (t)S
+
-

+
-

ab

v (t)S

D1

D2

Fig. 16.22. The full-wave diode rectifier with a dual AC supply. The dual source in this figure is

usually a center-tapped secondary winding of a power transformer.
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Exercise 16.8: Plot the source voltage and the load voltage for the full-wave rectifier with

Vm ¼ 3V and f ¼ 0:5Hz using the constant-voltage-drop-diode model and give the

general mathematical expression for the load voltage corresponding to this model.

Answer: The plot is given in Fig. 16.23b. The load voltage becomes

υL tð Þ ¼ υS tð Þ � 0:7 if υS tð Þ > 0:7
υL tð Þ ¼

�

�

υS tð Þ þ 0:7
�

� if υS tð Þ < �0:7

υL tð Þ ¼ 0 if
�

�

υS tð Þ
�

� � 0:7
ð16:15Þ

16.3.5 Diode Bridge Rectifier

The diode bridge rectifier also does the full-wave rectification. However, it is operating

using a single AC supply, similar to the half-wave rectifier. Four diodes are used instead

of two. Nowadays this is not a serious drawback since diodes are inexpensive. The

corresponding circuit is shown in Fig. 16.24. The circuit is again analyzed using the ideal-

diode model and the method of assumed states. Figure 16.25 shows the result of this

analysis: the current flow at positive and negative voltages of the AC power supply,

respectively. When the voltage is positive, diodes D2 and D4 are ON and diodes D1 and

D3 are OFF.When it is negative, the opposite is true: diodesD1 andD3 are ON, but diodes

D2 and D4 are OFF. We can see from Fig. 16.25 that the current through the load resistor

flows in the same direction at both positive and negative voltages. Thus, the rectification

is achieved and the negative phase of the AC signal is not lost. The ideal-diode bridge

rectifier is characterized by Eq. (16.14). In sum, the full-wave rectifier delivers twice as

much power to the load as the half-wave rectifier does.
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Fig. 16.23. Rectified (or load) voltage versus source voltage. (a) The result for the ideal full-wave

diode rectifier or full-wave rectifier with a high input signal. (b) The result using the constant-

voltage-drop-diode model for a moderate input signal.
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Exercise 16.9: Will the diode bridge rectifier follow Fig. 16.23a, b obtained for the full-

wave bridge rectifier with the dual supply?

Answer: Fig. 16.23a will be identical for both rectifier types. However, Fig. 16.23b will be

different.

16.3.6 Application Example: Automotive Battery-Charging System

When an automotive generator starts to work, it recharges the battery and supplies electric

power for all electronic systems in the vehicle. The automotive generators have a long

history. Until the early 1960s, DC generators have been driven by a belt on the crankshaft.

After that, they have been replaced by three-phaseACgenerators, the alternators. Three coils

of an alternator stator may be delta or wye connected; see Chapter 11. Since the mid-1980s,

the delta connection has been used far more frequently. In this application example, we

apply our prior knowledge of the diode rectifier circuits to understand the operation of an

automotive alternator with a rectifier circuit.

+
-

+
-

v (t)>0S v (t)<0S

D1 D2

D4 D3

D1 D2

D4 D3

Fig. 16.25. Current flow in the full-wave diode bridge rectifier assuming ideal diodes. Circuit on

the left is for positive applied voltage; circuit on the right is for negative applied voltage.

+
-v (t)S

RL

0 V

D1 D2

D4 D3

Fig. 16.24. The full-wave diode bridge rectifier: four diodes are bridged by the load resistor RL.
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Diode Circuit Transformation

Figure 16.26a shows part of a three-phase diode rectifying circuit that rectifies a

voltage from one of the three stator coils of an alternator (three-phase voltage generator

studied in Chapter 11) and charges the battery. Every stator coil is an independent voltage

source that is offset 120� with regard to the others. The complete rectifying circuit

includes six diodes; every voltage power supply uses four of them. Figure 16.26a

shows an equivalent circuit for one such power supply (one phase); the charging battery

is replaced by a resistor load. Two other circuits are identical. The circuit uses chassis

ground; this is typical in automotive applications. A node-by node analysis (the nodes are

marked as * and ** in Fig. 16.26a) shows that the circuit in Fig. 16.26a may be converted

to the circuit shown in Fig. 16.26b. This circuit is “almost” the familiar full-wave

rectifier from Fig. 16.24, except that the load is now connected to the chassis ground

instead of the opposite end of the bridge. The opposite bridge end is also grounded.

We remember, however, that the chassis ground is just a metal case, and it conducts the

electric current exactly as an ordinary metal wire does. Thus, we can restore the missing

connection and put the load in the middle of the bridge to obtain exactly the rectifier

circuit of Fig. 16.24.

Three-Phase Diode Rectifier with Delta-Connected Alternator

Figure 16.26c shows the complete rectifying system for a delta-connected automotive

alternator. Every independent power supply υab(t), υbc(t), and υca(t) is connected to its

own bridge rectifier circuit shown in Fig. 16.26a, b. Those circuits share common diodes

so that the total number of diodes is six. We reduce each circuit to the standard

bridge rectifier model in Fig. 16.25. We can apply the method of assumed states to

each individual circuit based on the ideal-diode model. The individual power

supply voltages are given by υab tð Þ ¼ Vm cos ωtð Þ, υbc tð Þ ¼ Vm cos ωt � 120�ð Þ, and
υca tð Þ ¼ Vm cos ωt þ 120�ð Þ. The rectified load voltages have the form shown in

Fig. 16.23b to within a phase shift.

Although every individual diode circuit is nonlinear, the currents add up at the load so

that their linear superposition applies for the net load voltage and current. Figure 16.26d

shows the rectified load voltage found as the sum of the three voltage contributions; the

hardware prototype of the rectifier is shown below. We emphasize that modeling and

simulation of automotive electrical power systems facilitate efficient design of the next

generation of vehicles.
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16.3.7 Application Example: Envelope (or Peak) Detector Circuit

We now discuss a very different, low-power, application of the diode rectifier concept

called the envelope detector circuit or the peak detector circuit. Such a rectifier circuit is

primarily used for the demodulation of radio-frequency signals up to the very high

frequencies of 60 GHz. It is also used for radio-frequency power measurements and RF

power harvesting. A simple envelope detector circuit is shown in Fig. 16.27a. This circuit

is identical to the half-wave rectifier circuit in Fig. 16.20, except for the addition of a

capacitance C. The source voltage υS(t) is now the input voltage υin(t) and the load

voltage υL(t) is now the output voltage υout(t).
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-v (t)S

0V 0V 0V

RL* **
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D2

D4
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+
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0V

RL
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v (t)ab
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v (t)bc

v (t)ca
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c

0

v (t)ab v (t)bc
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-Vm

0

2Vm
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v (t)ca

load (rectified) voltage

d

Fig. 16.26. (a) Model of one phase of an automotive battery-charging system. The voltage source

is a winding of the alternator (three-phase voltage generator). (b) Conversion of the circuit

depicted in (a) to the full-wave diode rectifier. (c) Delta-connected alternator and the diode

rectifier bridge. (d) Top: rectified generator voltage; bottom: alternator rectifier circuit. Six

power diodes with heat sinks are shown (with permission from General Motors).
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Amplitude-Modulated Signal

The received and sufficiently amplified radio-frequency signal at the input to the enve-

lope detector has the form:

υin tð Þ ¼ Vm 1þ m tð Þ½ 
 cosωt ð16:16Þ

It is shown in Fig. 16.27b where Vm cosωt is the radio-frequency carrier. The carrier

supports the radio transmission, but does not carry any useful information itself.

The information is hidden in a low-frequency amplitude envelope seen in Fig. 16.27b.

Mathematically, the envelope is described by a function m tð Þ, m tð Þj j < 1 in Eq. (16.16).

The parameter m(t) is a modulating signal, a slowly varying function of time when

compared to the carrier frequency. For example, the modulating signal may be a voice

signal or a digital binary code (ON/OFF). In the simplest case of a pure modulating tone,

m tð Þ ¼ Am cosΩ t, Ω � ω, 0 � Am � 1 ð16:17Þ

where Ω is the frequency of the modulating signal and Am is the dimensionless modula-

tion depth. The modulation depth is the amplitude of the modulating signal. The purpose

of the envelope detector circuit is to recover the envelope of an amplitude-modulated

signal.

Exercise 16.10: Determine the carrier frequency and the frequency of the modulating

pure-tone signal in Fig. 16.27b.

Answer: 600 kHz and 100 kHz, respectively.

Operation of an Envelope Detector

The envelope carries information. Therefore, it should be extracted at the receiver, i.e.,

the received signal should be demodulated or downconverted. This is the underlying

principle of wireless communications. The goal of the envelope detector is to perform this

task. We assume the ideal-diode model for simplicity. Without the capacitor, the circuit

performs identical to the half-wave diode rectifier as shown in Fig. 16.27c. However,

when the capacitor in Fig. 16.27a is present, the situation changes.
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The capacitor is charged when the diode conducts, i.e., when the input voltage υin(t) is

positive. This process continues until the capacitor voltage υC(t) reaches the peak input

voltage of the positive phase. Beyond this point, the diode becomes reverse biased and

the capacitor voltage remains the same since there is no discharge path through the diode.

However, there is another discharge path through resistor RL. If RL is large, the capacitor

still discharges slowly between two time periods. Its voltage shown in Fig. 16.27c by a

solid curve approximately follows the signal envelope. So does the output voltage of the

circuit, which is indeed equal to the capacitor voltage, υout tð Þ ¼ υC tð Þ. The appropriate

envelope extraction implies a proper choice for the time constant τ of the corresponding

RC circuit, τ ¼ RLC. This constant should satisfy two inequalities:

τ � T carrier ¼
2π

ω

, τ � Tmodulation ¼
2π

Ω
ð16:18Þ

where Tcarrier, Tmodulation are the period of the carrier signal and the (minimum) period of

the modulation signal, respectively. The first inequality in Eq. (16.18) ensures that there

are no significant ripples between two consecutive short periods of the carrier. When this

inequality is satisfied, the small ripple voltage is equal to (Tcarrier/τ)Vm given no modu-

lation. The second inequality in Eq. (16.18) ensures that the output to the envelope

detector does follow the modulation signal, but does not stay the same all the time.

Figure 16.27 corresponds to the so-called linear region of operation of the envelope

detector where its output voltage is proportional to the modulating signal. Figure 16.28

shows a basic AM radio receiver circuit constructed in an undergraduate laboratory. The

envelope detector marked by a circle block follows the front-end amplifier block.
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Fig. 16.27. Envelope detector circuit and its operation; (a) circuit, (b) modulated input signal, (c)

output signal without capacitor C, and (d) output signal with capacitor C.
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Example 16.10: Design an envelope detector given the carrier frequency of f ¼ 1MHz.

The modulation is a human voice, with the maximum passing modulation frequency of

5 kHz.

Solution: First, we find the period of the carrier and the period of the modulating signal:

T carrier ¼ 1μs,Tmodulation ¼ 200μs. A number of choices may satisfy Eq. (16.18). One

possible choice is given by Rd ¼ 50kΩ,Cd ¼ 0:5nF. Thus, τ ¼ RLC ¼ 25μs.

Modeling Envelope Detector and Square-Law Region of Operation

The circuit shown in Fig. 16.27 (and other similar diode circuits) can be analyzed using

SPICE. In some cases, it is also useful to have an analytical description. KCL gives

C
dυout

dt
¼ iD �

υout

RL

ð16:19aÞ

The corresponding nonlinear ODE for the envelope detector has the form:

dυout

dt
þ
υout

τ

¼
RLIS

τ

exp υin þ V bias � υoutð Þ=VT½ 
 ð16:19bÞ

where Vbias is an extra DC bias voltage applied to the diode. Equation (16.19b) is then

solved numerically as done in a number of software packages including MATLAB. The

model of the envelope detector studied thus far implies large input signals. For small

input signals, an appropriate DC bias voltage can be applied to the diode. For very small

input signals, which are less than thermal voltage VT � 0:026V, the (modified) small-

signal diode model developed in the previous section can be used. Its key modification is

that the last square term on the right-hand side of Eq. (16.7c) must be retained. As a result,

the circuit behavior becomes quite different. The output voltage now follows the square

of the input voltage. Thus, the envelope detector operates not in the linear region (as for

large input signals), but in the square-law region, where its output voltage is proportional

to the power of the received signal, and not to its linear envelope. In the square-law

region, the envelope detector is a simple and versatile radio-frequency (RF) power meter.

Fig. 16.28. AM radio receiver circuit with the envelope detector.
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Section 16.4 Diode Wave-Shaping Circuits

This section studies common wave-shaping (signal-processing) diode circuits such as

clamper circuits, voltage doublers and multipliers, and clipper circuits. These circuits find

applications in power electronics. We keep the notation υin(t) for the input voltage of

the circuit and υin(t) for the output voltage of the circuit, respectively. As to the

phase of an AC source, we choose the input voltage in the form

υin tð Þ ¼ �Vm sinω t ¼ Vm cos ωt þ π=2ð Þ, which is perhaps most convenient for the

graphical representation of the clamper and multiplier circuit operation.

16.4.1 Diode Clamper Circuit (DC Restorer)

The diode clamper circuit or DC restorer circuit without a load resistor is shown in

Fig. 16.29a. It is identical to the envelope (or peak) detector circuit seen in Fig. 16.27a

with the load resistor removed. However, the output voltage is now the (reverse) voltage

across the diode or the voltage across the voltage supply and capacitance C1 in series.

This change leads to different applications. A similar situation occurs for filter circuits,

where voltages across different elements lead to different filter types.

The idea behind the circuit in Fig. 16.29a is explained using the ideal-diode model. We

assume that the input voltage has the period of 2 ms and starts with a negative phase, i.e.,

υin tð Þ ¼ �Vm sinω t in Fig. 16.29b. The capacitor starts to charge when diode D1

conducts, i.e., when the input voltage υin(t) is negative. The charge polarity is shown in

Fig. 16.29a. This process continues until the capacitor voltage υC(t) reaches the peak

input voltage Vm. Afterwards, the diode becomes reverse biased and the capacitor voltage

remains the same over an infinitely large number of periods as in Fig. 16.29b since there

is no discharge path through the diode. The output voltage with respect to circuit ground

is simply the sum of the capacitor voltage and the supply voltage; it is shown in

+

-

v (t)in
v (t)out

0V 

+
-

C1

D1

++-

0 1 2 3 4 5

0

time, ms

voltage drop of C1 

voltage of D1(output voltage)

input voltage

a) b)
Vm +-

Vm

-Vm

2Vm

-2Vm

Fig. 16.29. Diode clamper circuit and the corresponding voltage waveforms. The steady-state

value of the capacitor voltage is shown in the box.
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Fig. 16.29b as the top curve. We conclude that, in the clamper circuit, the lowest peak of a

waveform is clamped to zero with respect to ground, hence its name. This is important for

square digital waveforms in pulse-width modulation, which are generated as entirely

positive pulse trains, but transmitted with zero mean values. The clamper circuit lifts up

the entire signal and thus makes it possible to measure and utilize the variable duty cycle

of the pulse train, which carries information. This process effectively restores the lost DC

reference voltage with respect to the receiver ground; here is another name of the DC

restorer circuit.

Exercise 16.11: How do voltage waveforms in Fig. 16.29b change if the diode polarity in

Fig. 16.29a is reversed and the input voltage becomes υS tð Þ ¼ Vm sinωt?

Answer: All three curves in Fig. 16.29b will be mirror-reflected with respect to the x-axis.

Thus, the output (diode) voltage will always be negative.

Exercise 16.12: How will the diode voltage in Fig. 16.29b change if the input voltage has

an extra DC component of �Vm?

Answer: The diode voltage with respect to circuit ground will not change. However, the

steady-state capacitor voltage will double.

When a finite load resistance RL is connected in shunt with the diodeD1 in Fig. 16.29a,

the ideal output waveform in Fig. 16.29b will be distorted and it will no longer have only

positive output voltages.

16.4.2 Diode Voltage Doubler and Multiplier

Diode voltage multiplier circuits are employed to generate a high-voltage DC signal

from an AC source. Such circuits generally avoid using an electric transformer in

applications where its use is impractical due to size, safety, loss, and other issues. For

example, voltage multipliers can boost low-voltage radio-frequency signals received by

an antenna. They can also be used to generate high static voltages for special power

supplies. Figure 16.30a shows a circuit for the diode voltage doubler invented in 1914 by

Heinrich Greinacher, a German-Swiss experimenter. Typically, the output capacitance C2

is larger than the series coupling capacitance C1. The idea behind the circuit in

Fig. 16.29a will be explained using the ideal-diode model and a combination of already

studied cascaded circuit blocks. Here again, we note an obvious analogy with the AC

filter circuits, which may also combine multiple filter stages with different features in one.
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We note that the first stage of the doubler is the clamper circuit from Fig. 16.29.

The voltage across diode D1 is exactly the curve depicted in Fig. 16.29b; see also

Fig. 16.30b. This voltage is now an input voltage to the second stage of the circuit

which is the envelope detector circuit in Fig. 16.27a without the load resistor. Therefore,

the circuit in Fig. 16.30 generates a positive DC voltage of 2Vmwhen excited by the input

signal υin tð Þ ¼ �Vm sinωt; see Fig. 16.30b. It is therefore named a doubler circuit.

Exercise 16.13: Howwill the output voltage of the doubler circuit in Fig. 16.30b change if

the input voltage has an extra DC component of �Vm?

Answer: The output voltage versus ground will not change.

A natural extension of the doubler circuit is the diode voltage quadrupler circuit shown

in Fig. 16.31. We will describe the circuit operation and determine the output voltage in

the AC steady state. The key point is again the stage-by-stage analysis. The quadrupler

circuit in Fig. 16.31 includes two cascaded diode voltage doublers. However, the output

of the first doubler is not the DC voltage of 2Vm across capacitor C2, but the voltage drop

υD2 across diodeD2. According to KVL, υD2 ¼ υin þ υC1 � υC2. If we employ the already

existing curves υC1, υC2 from Fig. 16.30b, we obtain the voltage drop υD2 in the form

shown in Fig. 16.30b and repeated in Fig. 16.31b. Now, we employ this voltage, which is

υin tð Þ � Vm for the AC steady state, as the input voltage to the second voltage doubler.

The second voltage doubler is also using the new reference ground point of 2Vm—the

virtual ground. The lowest peak of υD2 is clamped to zero volts versus the new ground

point and then rectified; see Fig. 16.31b. Hence, we obtain the DC voltage of 4Vm at the

output of the quadrupler circuit versus the original circuit ground as shown in Fig. 16.31a.

Multiplier circuits of a different order are constructed in a similar way.

+

-

v (t)in
v (t)out

0 V

+
- C2

C1

D1

D2

++-

a)

0 1 2 3 4 5
time, ms

voltage drop of C1

voltage of D1

input voltage

b)
voltage of C (output voltage)2

2Vm

+

-
0

Vm

-Vm

2Vm

-2Vm

Vm +-

voltage drop of D2

+ -
+

-

Fig. 16.30. Diode voltage doubler circuit (Greinacher circuit) and the corresponding voltage

waveforms. The steady-state values of the capacitor voltages are shown in the boxes.
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16.4.3 Positive, Negative, and Double Clipper

Diode clipper circuits derive their name by operating in such a way that a part of the input

signal is clipped off at the output. Another name is the diode limiter circuits, which often

implies a protection function of such circuits against overload, electrostatic discharge, etc.

Figure 16.32a shows the positive diode clipper circuit. The circuit topology is exactly that

of the half-wave diode rectifier in Fig. 16.20. However, the output voltage is now the

diode voltage, not the resistor voltage.

When the constant-voltage-drop-diode model (with the voltage drop of 0.7 V) is used,

the circuit output has the form shown in Fig. 16.32b given that the input voltage is

υin tð Þ ¼ �Vm sinωt, Vm ¼ 4V. The positive signal voltages above +0.7 V are thus

v (t)in

2Vm

0 V

+
-

C2

C1

D1 D2 D3

C3

D4

C4

4Vm

+

-
+-

+- +-

Vm +- 2Vm +-

2Vm +- 2Vm +-

0 1 2 3 4 5
time, ms

voltage of D3

b)

voltage drop of C3

virtual
ground

Vm

-Vm

2Vm

-2Vm
voltage drop of D2(input voltage)

a)

Fig. 16.31. Voltage quadrupler diode circuit and the corresponding voltage waveforms. The

steady-state values of the capacitor voltages are shown in the boxes.

+

-

vin(t) vout(t)

vout(t)

0 V

+
- D1

a)

0 1 2 3 4 5

0

2 V 

time, ms

R

-4 V 

b)

Fig. 16.32. Positive diode clipper circuit and the corresponding voltage waveform.
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clipped off. By analogy with the positive clipper, we can also introduce the negative diode

clipper circuit and the double diode clipper circuit, see Fig. 16.33. The negative clipper

circuit clips negative signal voltages below �0.7 V, whereas the double clipper circuit

clips both halves of the voltage waveform if they exceed 	0.7 V. Similar clipper circuits

can be constructed with the Zener diodes. A single Zener diode may in fact clip voltages

of both polarities, in the forward-bias region and in the breakdown region, respectively.

Example 16.11: Figure 16.34a shows a diode clipper circuit commonly used for electro-

static discharge (ESD) protection. Describe its operation and plot to scale the output

voltage over three periods given the input voltage of υin tð Þ ¼ �Vm sinωt with Vm ¼ 10

V and VCC ¼ 5V.

Solution: We will use the method of assumed states and the constant-voltage-drop model

to solve the diode circuit. When υin tð Þ < �0:7V, diode D2 conducts. The output voltage

stays at�0.7 V. Whenυin tð Þ > �0:7V, diodeD2 is an open circuit with no influence on the

solution. However, diode D1 starts to conduct when υin tð Þ > VCC þ 0:7V. In this case, the
output voltage is the voltage across D1 plus +0.7 V. Thus, the output voltage has the form

shown in Fig. 16.34b. In other words, the diode circuit in Fig. 16.34a prevents the signal

from exceeding the power supply rails by more than 0.7 V.

+

-

vin(t) vout(t)

0 V

+
- D1

a)

0

-2 V 

R

4 V b)

vout(t)

+

-vin(t)

vout(t)

0 V

+
- D1

c)

0 1 2 3 4 5

0

-2 V 

time, ms

R 2 V 

d)

D2

vout(t)

Fig. 16.33. Negative clipper circuit, double clipper circuit, and the corresponding voltage

waveforms.
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16.4.4 Transfer Characteristic of a Diode Circuit

Since the diode circuits are inherently nonlinear, the meaning of the amplitude/phase

transfer function, which is common for linear circuits, cannot be applied. Instead, the

diode circuits are described by their transfer characteristic. The transfer characteristic of

the diode circuit is simply the ratio of the instantaneous output voltage to the instanta-

neous input (source) voltage. Thus, in order to find the transfer characteristic, we consider

the circuit behavior in the DC steady state. The transfer characteristic is well defined for

the diode circuits containing only diodes and resistances. Those are simple rectifiers and

clippers/limiter circuits. On the other hand, the transfer characteristic of the diode circuits

with dynamic circuit elements (clamper circuits, voltage doublers and multipliers) is not

well defined since it is time dependent. Figure 16.35 shows the transfer characteristics of

three clipper circuits from Figs. 16.32 and 16.33, respectively.

Example 16.12: The clipper (limiter) circuits studied in Figs. 16.32 and 16.33 are called

the hard limiters. Soft limiters also exist: they are characterized by a smoother transfer

characteristic. The circuit shown in Fig. 16.36a is the positive soft limiter. Plot its transfer

characteristic given that R2 ¼ 0:5R1.

1

1

1

1

vout

vin

vout

vin

vout

vin

positive clipper negative clipper double clipper

0.7 V 

-0.7 V 

0.7 V 

-0.7 V 

Fig. 16.35. Transfer characteristics of diode clipper circuits.

+

-

vin(t)
vout(t)

0 V 

+
-

0 1 2 3 4 5
time, ms

R

10 V a)

D2

vout(t)

0 V 

D1

VCC

-10 V 

VCC

b)

input voltage

output
voltage

Fig. 16.34. ESD discharge protection clipper circuit and the corresponding voltage waveforms.
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Example 16.12 (cont.):

Solution: We use the method of assumed states and the constant-voltage-drop model to

solve the diode circuit.

When υin < 0:7V, diode D1 does not conduct. The output voltage is exactly the input

voltage which corresponds to the straight line of slope 1 in Fig. 16.36b. When υin > 0:7V,
the output voltage is the voltage across resistance R2 and the diode combined, that is,

υout ¼ R2= R1 þ R2ð Þ υin � 0:7ð Þ þ 0:7V. GivenR2 ¼ 0:5R1 this voltage corresponds to the

straight line of slope 1/3 in Fig. 16.36b. Other variations are possible.

vout

vin

0.7 V 
+

-

vin(t) vout(t)

0 V 

+
-

D1

R2

R1

1

1

1
0.333

a) b)

Fig. 16.36. Transfer characteristic of the soft limiter circuit.
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Summary

Common diode circuits—circuits with diodes and resistors

Sensors, voltage references/regulators

1. Diode temperature

sensor

1. Uses temperature dependence

of diode pn-junction parameters

2. Resistor R determines

necessary diode current

3. Typical sensitivity is minus

2 mV to minus 4 mV per 1 �C

2. Forward-bias voltage

reference/voltage

regulator

1. Provides a fixed reference

voltage in a circuit

2. Provides a constant DC

voltage to the load

3. Solved using the constant-

voltage-drop model or the

small-signal diode model

3. Zener voltage regulator For high-resistance load:

V L ¼ rZ
V S � V Z0

Rþ rZ
þ V Z0,

V Z0 ¼ V ZT � rZIZT

Rectifiers and clippers

4. Half-wave rectifier

5. Full-wave rectifier

6. Full-wave bridge

rectifier

(continued)
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7. Positive clipper/limiter

Clips positive voltages

8. Negative clipper/limiter

Clips negative voltages

9. Double clipper/limiter

Clips pos./neg. voltages

10. ESD protection circuit

Clips signals outside

power rails

11. Zener diode

clipper/limiter

Clips positive/negative voltages

12. Zener diode double

clipper/limiter

Clips positive/negative voltages

(continued)
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13. Soft clipper/limiter

Smoothly clips positive voltages

Common diode circuits—circuits with diodes, capacitors, and resistors

14. Envelope detector

or peak detector

Outputs signal envelope

τ ¼ RLC

τ >> T carrier, τ << Tmodulation

dυout

dt
þ
υout

τ

¼
RLIS

τ

�

exp υin þ V bias � υoutð Þ=V T½ 


15. Clamper circuit or

DC restorer

1. Lowest peak of a signal is

clamped to zero volts versus

ground

2. Has no effect on already

clamped signals

3. Used in clock recovery circuits

and in PWM

16. Diode voltage

doubler

1. Outputs the DC voltage of 2Vm

if the input signal has the

amplitude of Vm

2. Constructed as a combination

of the clamper and the envelope

detector

17. Diode voltage

tripler

1. Outputs the DC voltage of 3Vm

if the input signal has the

amplitude of Vm

2. Constructed as a combination

of the voltage doubler and the

envelope detector

18. Diode voltage

quadrupler

1. Outputs the DC voltage of 4Vm

if the input signal has the

amplitude of Vm

2. Constructed as a combination

of two voltage doublers
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Problems
16.1 Diode Operation

and Classification

16.1.1 Circuit Symbol and Terminals

16.1.2 Three Regions of Operation

16.1.3 Mechanical Analogy of Diode

Operation

16.1.4 Forward-Bias Region: Switching

Diode

16.1.5 Reverse-Bias Region: Varactor

Diode

16.1.6 Breakdown Region: Zener Diode

16.1.7 Other Diode Types
Problem 16.1. Draw the circuit symbol for the

diode, labeling the anode and the cathode. In

what direction does the electric current flow?

Problem 16.2. A package for a small-signal

1N4148 Si switching diode (yellow package)

is shown in the figure. Where is its anode, on

the left or on the right?

Problem 16.3.
A. Sketch the typical v–i diode curve

B. Indicate three regions of diode operation

and write the name of each region on the

figure.

Problem 16.4. Determine thermal voltage,

which is present in Shockley equation at:

A. 0 �C

B. 10 �C

C. 20 �C

D. 40 �C

Problem 16.5. Plot the v–i characteristic of a

diode with:

A. n ¼ 1:0, IS ¼ 1:1nA
B. n ¼ 2:0, IS ¼ 1:1nA

at room temperature of 25 �C on the same figure.

Use the figure that follows as a template. Label

each curve. Use the value of 1.60218�10�19 C

for the electron charge and the value of

1.38066�10�23 J/K for the Boltzmann constant.

-0.5 0 0.5 1

0

5

10

i , mAD

v , VD

Problem 16.6. Plot the v–i characteristic of a

diode with:

A. n ¼ 1:0, IS ¼ 1nA

B. n ¼ 1:0, IS ¼ 0:01nA

at room temperature of 25 �C on the same

figure. Use the figure to the previous problem

as a template. Label each curve. Use the value

of 1.60218�10�19 C for the electron charge

and the value of 1.38066�10�23 J/K for the

Boltzmann constant.

Problem 16.7. For a diode with n ¼ 2:0, the
following measurement is taken: υD ¼ 0:65V
and iD ¼ 1mA. Given thermal voltage of

26 mV, determine diode’s saturation current IS.

Problem 16.8. For a diode with IS ¼ 1pA, the

following measurement is taken: υD ¼ 0:62V
and iD ¼ 1mA. Given thermal voltage of

26 mV, determine diode’s ideality constant, n.

Problem 16.9. At which forward-bias voltage

in terms of VT does the diode conduct a current

of 104IS given the ideality factor of two?

Problem 16.10. A diode with n ¼ 2:0 is to be

used as a temperature sensor in the forward-

bias region (it is a common diode application).

Determine:

A. The corresponding change in the diode

voltage (initial value, final value, and the

difference) when the temperature rises

from 20 to 60 �C
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B. Sensitivity of the device in mV/�C

The diode current is fixed at 1 mA. You are

given that IS ¼ 1nA at 20 �C and that IS
doubles in value for every 5 �C. Use the value

of 1.60218�10�19 C for the electron charge

and the value of 1.38066�10�23 J/K for the

Boltzmann constant.

Problem 16.11. Answer the following

questions:

A. Which diode is used as a variable capac-

itor? Draw its symbol.

B. Which diode operates in the breakdown

region? Draw its symbol.

C. Draw the circuit symbol for the Schottky

barrier diode.

D. Draw the circuit symbol for the

photodiode.

16.2 Diode Models

16.2.1 Ideal-Diode Model: Method

of Assumed States
Problem 16.12.

A. What is an ideal-diode model?

B. Draw its volt-ampere characteristic using

the voltage axis from�5 V to 5 Vand the

current axis from �10 mA to +10 mA as

shown in the figure that follows. On the

same graph draw the v–i characteristic for

a 250 Ω resistor to scale.

Problem 16.13. After solving a circuit with

ideal diodes, what check is necessary for diodes

initially assumed to be ON? OFF?

Problem 16.14. Present equivalent circuits for

the two-diode configurations shown in the fig-

ure, assuming ideal diodes.

a)

b)

Problem 16.15. Determine the electric current

through the 1 kΩ resistor for the circuit shown

in the figure below, assuming the ideal diode.

+
-

10 V 4 Ω

6 Ω

0V

Problem 16.16. Assuming the ideal-diode

model, find the voltage across the diode and

the diode current for the circuit shown in the

following figure. Denote the solution for the

diode voltage and diode current in the DC

steady state by capital letters VD and ID,

respectively.

3 mA

1 kΩ 1 kΩ 1 kΩ

+

-VD

Problem 16.17. For the circuits shown in the

figure that follows, find values of the diode

current and voltage across the diode assuming

that the diodes are ideal. Use capital letters VD

and ID to denote the solution for the diode

voltage and diode current in the DC steady

state.

R=1 kΩ

0V

10 V

+

-
VDID

R=1 kΩ

0V

10 V

+

-
VDID

a) b)

Problem 16.18. Using the ideal-diode model,

you need to design a circuit for the diode tem-

perature sensor described in Problem 16.10.
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The diode current must be fixed at 1 mA. The

power supply voltage is fixed at 9 V.

A. Present the corresponding circuit dia-

gram and specify the component

(s) values.

B. Label the sensor output voltage.

Problem 16.19. A diode circuit is shown in the

figure that follows. Find the values of the diode

current and the voltage across the diode, assum-

ing that the diode is ideal.

R=1 kΩ

0 V

10 V

+

-
VDID

0 V

R=1 kΩ

Problem 16.20. For the diode circuit shown in

the following figure, determine the values of

the diode current and the voltage across the

diode, assuming that the diode is ideal.

R=1 kΩ

0 V

10V

+

-
VD

ID

0 V

R=2 kΩ

Problem 16.21. Assuming the ideal-diode

model, find current I for the circuit shown in

the figure below.

+
-

5 V 

1 kΩ

1 kΩ2 kΩ

3 kΩ

0 V 

I

Problem 16.22. Assuming the ideal-diode

model, find current I for the circuit shown in

the figure below.

+
-

5 V 

5 kΩ

5 kΩ3 kΩ

2 kΩ

0 V 

I

Problem 16.23. For the circuit shown in the

figure below, determine circuit current I,

assuming that the diode is ideal. The ground

path is simultaneously the current return path.

10 V

1 kΩ

1 kΩ2 kΩ

3 kΩ

0 V

I

Problem 16.24. For the circuit below find cir-

cuit current I, assuming that both diodes are

ideal. The ground path is simultaneously the

current return path.
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+15 V

5 kΩ

10 kΩ2 kΩ

10 kΩ

0 V

I

Problem 16.25. For the circuit shown in the

figure below, find circuit current I, assuming

that the diodes are ideal. The ground path is

simultaneously the current return path.

+15 V

5 kΩ

10 kΩ2 kΩ

10 kΩ

0 V

I

Problem 16.26. The circuit shown in the figure

below can be used as a signaling system using

one wire plus a common ground return. At any

moment, the input has one of three voltage

values shown in the figure. What is the status

of the lamps for each input value?

D1 D2

V5

V0

V5

V

0 V 0 V

red green

Problem 16.27. Sketch I versus V to scale for

the circuit shown in the following figure.

Assume the ideal-diode model and allow V to

range from �3 V to 3 V.

1 kΩ

I

V

+

-

V

I

-3 V +3 V

-3 mA

+3 mA

Problem 16.28. Sketch I versus V to scale for

the circuit shown in the figure. Assume the

ideal-diode model and allow V to range from

�5 V to 5 V.

1kΩ
I

V
+

- +-3V

V

I

-5 V +5 V

-3 mA

+3 mA

Problem 16.29. For the circuit shown in the

figure below, fill out Table 16.5.

V1

1 kΩ

0 V

V2 VOUT

+

-

5 V

D1

D2
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What type of logic gate is it?

Problem 16.30. A freshman ECE student

attends class if all of the following conditions

are satisfied:

A. He/she feels that this lecture might be

useful.

B. There are no other more important things

to do.

C. The way to the Department is cleaned up

from snow.

Every morning he/she “votes” by simulta-

neously pushing any appropriate combination

of three 5-V buttons (A, B, C) placed in paral-

lel. A simple diode circuit is needed that lights a

green LED when there is time to go to the

lecture.

Problem 16.31. A small county board is com-

posed of three commissioners. Each commis-

sioner votes on measures presented to the board

by pressing a 5-V button indicating whether the

commissioner votes for or against a measure. If

two or more commissioners vote for a measure, it

passes. You are asked to help with a an ideal-

diode circuit that takes the three votes as inputs

and lights a green LED to indicate that a measure

passed. You can use as many diodes/resistors as

you need.

1. Explain your reasoning for building the

diode circuit.

2. Present the appropriate circuit diagram.

16.2.2. Constant-Voltage-Drop Model
Problem 16.32. What is the constant-voltage-

drop-diode model? Draw the corresponding v–i

diagram.

Problem 16.33. Sketch I versus V to scale for

the circuit shown in the following figure using:

A. Ideal-diode model

B. Constant-voltage-drop-diode model with

the turn-on voltage of 1 V

Allow V to range from �3 V to 3 V.

1kΩ

I

V

+

-

V

I

-3 V +3 V

-3 mA

+3 mA

Problem 16.34. Sketch I versus V to scale for

the circuit shown in the figure using:

A. Ideal-diode model

B. Constant-voltage-drop-diode model with

the turn-on voltage of 1 V

Allow V to range from �5 V to 5 V.

1kΩ

I

V

+

-

V

I

-5 V +5 V

+3 mA

Problem 16.35. Sketch I versus V to scale for

the circuit shown in the figure using:

A. Ideal-diode model

B. Constant-voltage-drop-diode model with

the turn-on voltage of 1 V

Allow V to range from �5 V to 5 V.

Table 16.5. Output voltage of the diode circuit

as a function of two input voltages.

V1 (V) V2 (V) VOUT

0 0

0 5

5 0

5 5
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1 kΩ

I

V
+

- +
-

3 V

V

I

-5 V +5 V

+3 mA

-3 mA

Problem 16.36. Present equivalent circuit for

the two-diode configuration shown in the fig-

ure, assuming the constant-voltage-drop-diode

model with the turn-on voltage of 1 V.

Problem 16.37. Using the constant-voltage-

drop-diode model, you need to design a circuit

for the diode temperature sensor described in

Problem 16.10. The diode current must be fixed

at 1 mA. The power supply voltage is fixed at

9 V.

A. Present the corresponding circuit dia-

gram and specify the component

(s) values.

B. Label the sensor output voltage.

16.2.3 ExponentialModel in theForward-

Bias Region and Its Use

16.2.4 Load-Line Analysis

16.2.5 Iterative Solution
Problem 16.38.A 1N4148 diode manufactured

by Fairchild has a current of 0.7 mA at 0.6 V

and a current of 8 mA at 0.725 V, all at 25�.

Determine the ideality factor and the saturation

current of Shockley equation at this

temperature.

Problem 16.39. A 1N4148 diode manufactured

by Hitachi has a current of 0.15 mA at 0.6 Vand

a current of 1.5 mA at 0.7 V, all at minus 25�.

Determine the ideality factor and the saturation

current of Shockley equation at this

temperature.

Problem 16.40. In the circuit shown in the

figure below, the diode is described in terms

of the exponential forward-bias model with the

Shockley equation plotted in the figure.

A. Graphically determine the solution—the

DC operating point VD, ID using the

load-line method.

B. Compare the obtained diode current with

that found in the constant-voltage-drop

model.

+
-2 V

500 Ω

0 V

ID

VD

+

-
0

2.5

5.0

i , mAD

v , VD

0 0.5 1 1.5 2 2.5 3

Shockley equation

a)

b)

Problem 16.41. Repeat the previous problem

for the circuit shown in the figure that follows.

+
-3 V 

666 Ω

0 V 

ID

VD

+

-

Problem 16.42. In the circuit shown in the

figure that follows, the diode is described in

terms of the exponential forward-bias model

where the ideality factor and the saturation
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current of Shockley equation are n ¼ 1:5, IS ¼
1nA. Given thermal voltage of 0.026 V, deter-

mine the exact DC operating point (diode volt-

age and diode current VD, ID) with the help of

the iterative solution.

+
-5 V

1 k

0 V

ID

VD

+

-

Problem 16.43. Repeat the previous problem

when the diode saturation current changes to

3 nA. All other parameters remain the same.

16.2.6 Linearization About a Bias Point:

Small-Signal Diode Model

16.2.7 Superposition Principle for Small-

Signal Diode Model
Problem 16.44. Determine the small-signal

diode resistance for two limiting cases:

A. When diode bias voltage (DC operating

voltage) VD tends to zero

B. When diode bias current (DC operating

current) ID tends to infinity

Problem 16.45. In the circuit shown in the

following figure, υS tð Þ ¼ 10þ
0:005 cosωt V½ 
. Determine diode voltage. Use

the constant-voltage-drop-diode model for the

diode with the turn-on voltage of 0.7 V.

Assume the operating temperature of 25 �C

and n ¼ 2:0.

500 Ω

0 V

v (t)D

+

-

+
-

i (t)D

v (t)S

Problem 16.46. Repeat the previous problem

for the circuit shown in the following figure.

1 kΩ

0 V

v (t)D

+

-

+
-

i (t)D

v (t)S
1 kΩ

Problem 16.47.
A. Obtain the next term of the asymptotic

expansion in Eq. (16.7c) so that the error

will be on the order of (υd/nVT)
3.

B. Derive the expression of the nonlinear

small-signal diode resistance as a con-

stant term plus a term that depends on

the small-signal diode voltage.

16.3 Diode Voltage

Regulators and Rectifiers

16.3.1 Voltage reference and voltage

regulator
Problem 16.48. You are given a variable volt-

age source V S ¼ 5V	 0:5V represented by its

Thévenin equivalent shown in the figure below.

You are also given a load represented by its

equivalent resistance of RL ¼ 1000Ω. Con-

struct a diode voltage regulator circuit which

outputs the constant voltage of 2.1 V to

the load.

+
-

500

0 V

VS RL

A. Present the corresponding circuit

diagram.

B. Determine load voltage and diode cur-

rent for the regulator circuit for two

extreme cases V S ¼ 5V	 0:5V of the

supply voltage variation. Use the con-

stant-voltage-drop-diode model with the

turn-on voltage of 0.7 V.
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Problem 16.49. Repeat the previous problem

when Thévenin resistance of the source

changes to 1 kΩ.

Problem 16.50. You are given a (variable)

voltage source VS represented by its Thévenin

equivalent with resistance RT and a load

represented by its equivalent resistance of RL.

A forward-bias diode voltage regulator is used

to keep the load voltage constant. Using the

constant-voltage-drop-diode model, answer

two questions:

A. What is the maximum possible regulated

load voltage if RL ¼ RT?

B. What is the maximum possible regulated

load voltage if RL ¼ 10RT?

16.3.2 Voltage regulator with Zener

diode
Problem 16.51. A 1N5231B Zener diode with

the test point V ZT ¼ 5:1V, IZT ¼ 20mA and

with the dynamic resistance rZ ¼ 17Ω is used

in the voltage regulator circuit shown in the

figure below.

A. Determine load voltage for the regulator

circuit given that V S ¼ 9V	 1V and

that the load has a very high (infinite)

resistance.

B. Determine line regulation

R=500 Ω

0 V

IDVS
+
-

+

-
VL

Problem 16.52. In a typical 12-V automotive

application, battery voltage may vary between

10.5 and 14.1 V. The ECM (engine control

module) determines fuel delivery and spark

advance to control emissions based on several

sensors connected to the engine. Many of

these sensors require a stable 5-V reference

that can be achieved through the use of a

Zener diode. The figure that follows shows

the corresponding circuit using a 1N4733A

Zener diode to provide a stable 5-V reference.

0 V

+

-
VD

IDVB RL

ILI

+

-
VL

D1

R1

+

-

The Zener diode has a reference (test) voltage

of 5.1 V at a reference (test) current of 49 mA.

A. Choose a value for resistor R1 to limit the

current through the Zener diode to

approximately 50 mAwith the sensor dis-

connected (switch OPEN).

B. Given that the battery voltage may vary

between 10.5 and 14.1 V, determine how

much the Zener voltage (voltage across the

Zener diode) fluctuates with the sensor

disconnected (switch OPEN). Note: This

Zener diode has a dynamic resistance of

7Ω at the test current of 49 mA.

C. What minimum load resistance can be

connected to the circuit without the volt-

age drop more than 0.5 V from 5 V?

D. Plot load voltage as function of the load

resistance in the range 0–1000 Ω for two

extreme battery voltages.

E. If the switch is closed and the load

resistance is 100Ω, what is the power

efficiency of this circuit for two extreme

values of the battery voltage?

Note: Efficiency percentage¼ PLOAD/

PBAT� 100 %.

Problem 16.55. Using software of your choice

(MATLAB is recommended), plot the output of a

half-wave diode rectifier to scale over a time period

from 0 to 8 s when the input voltage is given by

υS tð Þ ¼ Vm sinωt þ 0:5Vm sin 2ωt

with
Signal frequency—0.5 Hz

Signal amplitude—Vm ¼ 9V.

Assume the ideal diode.
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Problem 16.56. Using the constant-voltage-

drop model for a diode with the turn-on

voltage of 0.7 V, determine the following

parameters for the circuit shown in the figure:

A. The peak positive voltage across the load

B. The average voltage across the load

C. The peak diode current

D. The average diode current

E. The peak negative voltage across the

diode

+

-

0 V 

6.3 Vrms

60 Hz, 0 deg
+
-

D1

100 Ω

+

-

Note: The voltage source shown represents the

output of a typical step-down transform and is

given in rms.

16.3.4 Full-wave rectifier with a dual

supply

16.3.5 Diode bridge rectifier

16.3.6 Application example: Automotive

battery-charging system
Problem 16.57. Using the constant-voltage-

drop model for the diode with the turn-on volt-

age of 0.7 V, determine the following parame-

ters for the circuit shown in the figure:

A. The peak positive voltage across the load

B. The average voltage across the load

C. The peak diode current

D. The average diode current

E. The peak negative voltage across each

diode

6.3 Vrms
60 Hz, 0 deg

100 Ω

+

-

+

-

0 V

+
-

+
-

b

+

-

6.3 Vrms
60 Hz, 0 deg

Problem 16.58.
A. Draw a schematic of the full-wave diode

bridge rectifier.

B. Indicate current flow in the full-wave

diode rectifier at positive and negative

applied voltages.

C. If all diodes in the rectifier are changed to

the opposite direction, will the rectifier

function or not?

Problem 16.59. Using the constant-voltage-

drop model for the diode with the turn-on volt-

age of 0.7 V, determine the following parame-

ters for the circuit shown in the figure:

A. The peak positive voltage across the load

B. The average voltage across the load

C. The peak diode current

D. The average diode current

E. The peak negative voltage across each

diode

+
-

0 V 

D1 D2

D4 D3

12.6 Vrms

60 Hz, 0 deg

+

-
100 Ω

Note: The voltage source shown represents the

output of a typical step-down transform and is

given in rms.

Problem 16.60. For an automotive battery-

charging system schematically shown in

Fig. 16.26c, plot the individual rectified volt-

ages and the output voltage (voltage across the

load) as a function of time over the interval

0–0.01 s. Every power supply in the figure is

a sinusoidal AC voltage source with

Vm ¼ 15V, f ¼ 100Hz. All three voltage

power supplies are 120� out of phase with

regard to each other—have the phase angles

of 0 and �120�. Any software can be used

(MATLAB is recommended).
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16.3.7 Application example: Envelope

(or peak) detector circuit
Problem 16.61.

A. Explain the function of the envelope

detector in your own words.

B. What is the difference between linear

and square-law regions of operation for

the envelope detector?

C. When does the envelope detector operate

in the linear region? In the square-law

region?

Problem 16.62. Design an envelope detector

given the carrier frequency of f ¼ 1:7MHz.

The modulation is a human voice, with the

maximum passing modulation frequency of

20 kHz.

A. Draw the circuit diagram of the envelope

detector.

B. Specify one possible set of values for

RL,C.

Problem 16.63. Design an envelope detector

(specify one possible set of values for RL,C)

given the carrier frequency of f ¼ 10MHz.

The modulation is a digital signal, with the bit

rate of 100 kbps. Hint: The equivalent fre-

quency of the digital signal is the bit rate in Hz.

Problem 16.64. A MATLAB script that fol-

lows models an envelope detector circuit in

Fig. 16.27 by solving the exact circuit ODE

given by Eq. (16.19b)

dυout

dt

¼
1

τ

RLIS exp υin þ V bias � υoutð Þ=V T½ 
ð

�υoutÞ

%   Input signal

%   carrier freq., Hz

f       = 1e6;      

%   modulation freq., Hz

fm      = 2e4;  Am = 0.5;         

%   time array

t       = linspace(0, 4/fm, 1e6);

%   envelope

E       = 1 + Am*cos(2*pi*fm*t);

%   input signal ampl., V

Vm      = 0.10;       

%   input signal, V

vin     = Vm*E.*cos(2*pi*f*t);    

%   Envelope detector

%   capacitance, F

C   = 10e-9;       

%   resistance, Ohm

R   = 5e4;      

%   time constant, sec

tau = R*C;            

%   Boltzmann constant [J/K]

k   = 1.38066e-23;  

%   electron charge [C]

q   = 1.60218e-19;  

%   temperature [K]

T   = 298;            

%   thermal voltage [V]

VT  = k*T/q;       

%   saturation current, A

Is  = 1e-9;   

%   bias voltage, V

Vbias  = 0.0;               

%   Numerical solution 

%   (first-order Euler)

vout    = zeros(size(t)); 

dt      = t(2)- t(1);

iD      = zeros(size(t));

%   starting voltage

vout(1)   = Vbias + vin(1) -0.60;

for n = 1:length(t)-1

iD(n) = Is*(exp((vin(n)...

+Vbias-vout(n))/VT )-1);

vout(n+1)  = vout(n) +...

dt/tau*(R*iD(n) - vout(n));
end

%   Graphics

t       = t(end/2:end); 

vout    = vout(end/2:end); 

vin     = vin(end/2:end); 

subplot(1,2,1); plot(t, vin+Vbias);

grid on; axis square

subplot(1,2,2); plot(t, vout);

grid on; axis square

with a particular set of design parameters of

your choice. Which bias voltage (0, 1, 4, or

8 V) is most beneficial for the performance of

your circuit? Justify your answer.
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16.4 Diode Wave-Shaping

Circuits

16.4.1 Diode clamper circuit

(DC restorer)

16.4.2 Diode voltage doubler and

multiplier
Problem 16.65. In the clamper circuit shown in

the figure below, υin tð Þ ¼ Vm sinωt and

Vm ¼ 4V. The wave period is 2 ms. Given

the ideal-diode model, plot the input voltage,

voltage across capacitor C1, and voltage across

diode D1 (the output voltage of the circuit) to

scale versus time. Clearly label each curve.

+

-

v (t)in
v (t)out

0 V

+
-

C1

D1

++-

0 1 2 3 4 5
-10 V

10 V

time, ms

a)

b)

Problem 16.66. In the clamper circuit shown in

the figure for Problem 16.65,

υin tð Þ ¼ Vm � Vm sinωt and Vm ¼ 4V. The

wave period is 2 ms.

A. Given the ideal-diode model, plot the

input voltage, voltage across capacitor

C1, and voltage across diode D1 to

scale versus time. Clearly label each

curve.

B. Based on your solution, what conclusion

could you make about the operation of a

clamper circuit subject to strictly positive

versus the ground point (already

clamped) AC signals?

Problem 16.67. The input voltage for the volt-

age doubler circuit in Fig. 16.30a is shown in

the figure below. Plot the voltage across capac-

itor C1 and the voltage across capacitor C2 (the

output voltage) to scale versus time. Clearly

label each curve.

0 1 2 3 4 5
-10 V

0

10 V

time, ms

input voltage

Problem 16.68.
A. Construct a voltage tripler diode circuit,

which outputs the DC voltage of 3Vm for

the input AC signal of amplitude Vm and

zero mean. Present the corresponding

circuit diagram.

B. How many capacitors and diodes are you

using?

C. Could you extrapolate your answer to a

voltage multiplier diode circuit, which

outputs the DC voltage of 5Vm?

16.4.3 Positive, negative, and double

clipper

16.4.4 Transfer characteristic of a diode

circuit
Problem 16.69. For the positive clipper diode

circuit, sketch the voltage transfer characteristic

to scale assuming

A. Ideal-diode model

B. Constant-voltage drop model
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+

-

vin(t) vout(t)

0 V 

+
- D1

R

vout,V

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

vin,V 

a)

b)

Problem 16.70. Repeat Problem 16.69 for the

diode circuit shown in the figure that follows.

+

-

vin(t) vout(t)

0 V 

+
- D1

R

Problem 16.71. Repeat Problem 16.69 for the

diode circuit shown in the figure that follows.

+

-

vin(t) vout(t)

0 V 

+
-

D1

R

D2

Problem 16.72. Given the Zener breakdown

voltage of 4 V for D1, for the circuit shown in

the figure below, sketch the voltage transfer

characteristic to scale assuming:

A. Ideal-diode model in the forward-bias

region

B. Constant-voltage drop model in the

forward-bias region

Always use the constant-voltage-drop model in

the breakdown region.

+

-

vin(t) vout(t)

0 V 

+
- D1

R

vout,V 

-6 -4 -2 0 2 4 6
-6

-4

-2

0

2

4

6

vin,V 

a)

b)

Problem 16.73. Repeat Problem 16.72 for the

diode circuit shown in the following figure.

+

-

vin(t) vout(t)

0 V 

+
- D1

R

Problem 16.74. Repeat Problem 16.72 for the

diode circuit shown in the figure below assum-

ing the Zener breakdown voltage of 4 V for D1

and 5 V for D2.

+

-
vin(t) vout(t)

0 V 

+
- D1

R

D2

Problem 16.75. Repeat Problem 16.72 for the

diode circuit shown in the figure below assum-

ing the Zener breakdown voltage of 2 V for D1

and 4 V for D2.

Problem 16.76. For the following diode cir-

cuit, sketch the voltage transfer characteristic

to scale given that R1 ¼ 1kΩ and R2 ¼ 1kΩ,

and assuming:
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A. Ideal-diode model

B. Constant-voltage drop model

Label the endpoint voltages.

+

-

vout(t)

D1

vout,V

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

vin,V

a)

b)

R1

R2

+

-

vin(t)

Problem 16.77. Repeat Problem 16.76 for the

diode circuit shown in the figure below.

Assume R1 ¼ 1kΩ, R2 ¼ 1kΩ, and

R3 ¼ 1kΩ. Label the endpoint voltages.

+

-

vout(t)

D1
R1

R2

D2

R3

+

-

vin(t)
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Chapter 17: Bipolar Junction Transistor

and BJT Circuits

Overview

Prerequisites:

- Knowledge of basic circuit analysis

- Exposure to theory of semiconductor pn-junction (optional)

- Exposure to theory of electronic diode (Chapter 16)

Objectives of Section 17.1:

- Become familiar with terminal voltages and currents of the BJT

- Understand the physical structure and underlying operation of the BJT

- Learn the physical meaning of active, saturation, and cutoff regions of operation

- Learn transistor test circuits and the corresponding v–i dependencies

- Obtain initial exposure to Early effect and Ebers-Moll model

Objectives of Section 17.2:

- Learn and apply the first-order large-signal exponential transistor model

- Learn and apply the large-signal DC transistor circuit model

- Estimate the accuracy of the large-signal DC circuit model

- Be able to solve a DC transistor circuit using the method of assumed states

- Learn common transistor bias circuits at DC and be able to solve in each of them

- Learn about β-independent bias circuits

Objectives of Section 17.3:

- Be able to construct a constant-current source based on the BJT

- Be able to construct a constant-voltage source (voltage buffer) based on the BJT

- Learn about the construction of BJT switches and their typical applications

Objectives of Section 17.4:

- Learn equivalent circuit model of a voltage amplifier and its major parameters

- Understand voltage transfer characteristic of a BJT common-emitter amplifier

- Understand separation of DC and AC voltages/currents in a BJT amplifier model

- Visualize DC operating point or the quiescent point of the transistor amplifier

- Understand the meaning of a small-signal ground

- Be able to find the base-emitter small-signal resistance and formulate the small-

signal BJT model (hybrid-π model)

Chapter 17
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- Analyze most typical common-emitter small-signal BJT amplifier circuits

- Obtain the initial exposure to small-signal transistor amplifier bandwidth

Application Examples:

- Automotive BJT dome light switch

- Door lock BJT switch and Darlington pair

- Transistor amplifier bandwidth

Keywords:

Bipolar junction transistor (BJT), Transfer resistor, npn-junction transistor, pnp junction

transistor, Emitter of a BJT, Base of a BJT, Collector of a BJT, Emitter-base junction (EBJ),

Collector-base junction (CBJ), Base-emitter voltage of a BJT, Base-collector voltage of a BJT,

Collector-emitter voltage of a BJT, Common-emitter configuration, Common-base configuration,

Common-collector configuration, Active operating region of a BJT, Saturation operating region of

a BJT, Cutoff operation region of a BJT, Saturation (scale) current of a transistor, Transistor test

circuits, (forward) Common-emitter current gain, (forward) Common-base current gain, Reverse

common-emitter current gain, Ebers-Moll model, Forced beta, Forced current gain, BJT v–i

dependencies, Early effect, Early voltage, (first-order) Large-signal BJT circuit model, (first-

order) π-type large-signal BJT circuit model, Large-signal DC circuit model of a BJT, Method

of assumed states, DC transistor bias circuits, Base-bias BJT bias circuit, Fixed-base BJT bias

circuit, BJT bias circuit with emitter resistance, BJT four-resistor bias circuit, Discrete-circuit

transistor amplifiers, Integrated-circuit transistor amplifiers, BJT bias circuit with dual-polarity

power supply, Constant-current BJT source, Constant-current LED driver, Constant-voltage BJT

source, Emitter follower BJT voltage source configuration, BJT DC voltage buffer (voltage

follower), Voltage-controlled BJT switch, Current-controlled BJT switch, Ground-side switch,

Power-side switch, Control side of the BJT switch, Load (power) side of the BJT switch, Body

control module, Driver BJT module, Darlington BJT pair, Super-beta transistor, Sziklai BJT pair,

Open-circuit voltage gain of the generic voltage amplifier, Input resistance of the generic voltage

amplifier, Output resistance of the generic voltage amplifier, Voltage transfer characteristic of

common-emitter amplifier, DC operating point of the transistor amplifier, Quiescent (Q) point of

the transistor amplifier, Quiescent-point parameters, Separation of DC and AC quantities in

transistor amplifier, Small-signal voltage gain of BJT voltage amplifier, Small-signal input/

output resistance of BJT voltage amplifier, Small-signal ground of the BJT amplifier, Small-

signal base-emitter resistance of the BJT, Small-signal transconductance of the BJT, Small-signal

approximation, Small-signal transistor circuit model, Hybrid-π BJT model, Base-bias

configuration of BJT common-emitter amplifier, Emitter resistance configuration of BJT

common-emitter amplifier, Four-resistor bias configuration of BJT common-emitter amplifier,

Capacitively coupled load, Capacitively coupled input signal, Transistor amplifier bandwidth,

Miller effect, Amplitude frequency response of transistor amplifier, Midband of BJT amplifier

frequency response, Low end of BJT amplifier frequency response, High end of BJT amplifier

frequency response
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Section 17.1 Physical Principles and Operation Laws

17.1.1 Physical Structure: Terminal Voltages and Currents

A bipolar junction transistor (BJT) is a three-terminal semiconductor device. Internally,

the transistor has three distinct doping regions shown in Fig. 17.1. The npn-junction

transistor is made of a heavily doped n+-type emitter, a p-type base, and n-type collector.

According to standard convention, the transistor terminals are called collector (C), base

(B), and emitter (E). The doping structure in Fig. 17.1 corresponds to two semiconductor

pn-junctions. One pn-junction is the emitter-base junction (EBJ) and another is the

collector-base junction (CBJ). You have to be careful: these junctions are not quite

symmetric: swapping collector and emitter of the transistor will result in malfunctioning.

As a three-terminal device, the transistor is characterized by three terminal voltages;

this is also shown in Fig. 17.1:

- Base-emitter (bias) voltage υBE
- Base-collector (bias) voltage υBC (or collector-base voltage υCB ¼ �υBC)

- Collector-emitter (bias) voltage υCE

Only two of them are independent since KVL relates all three voltages to each other.

The voltages υBE and υCE are chosen as independent variables. Then,

υBC ¼ υBE � υCE ð17:1Þ

Similarly, the transistor is characterized by three terminal currents shown in the same

figure:

- Collector current iC
- Emitter current iE
- Base current iB

Again, only two of them are independent since KCL relates all three currents to each

other. The currents iC and iB are typically chosen as the primary parameters. Then,

iE ¼ iC þ iB ð17:2Þ

rotcellocrettime

n+ np

base

iC

B

iE iB

+

-

vCE

+

-

vBE + vBC

CE

-

Fig. 17.1. Simplified physical structure of the npn-junction transistor.
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Figure 17.2a shows the circuit symbol for the npn-junction transistor, Fig. 17.2b denotes the

terminal currents, and Fig. 17.2c displays the terminal voltages. The word transistor is the

abbreviation of transfer resistor. It conveys the idea of a resistor connected between two

terminals and whose resistance can be controlled by a third terminal.

Exercise 17.1: An npn junction transistor has the base-emitter voltage of 0.5 V and base-

collector voltage of 0.3 V. What is the collector-emitter voltage?

Answer: 0.2 V.

17.1.2 Principle of Operation

We illustrate the operation of a junction transistor using a numerical simulation example

for a certain n+pn junction with the total length of R ¼ 5μm and exponential (n+ and n)

donor doping profiles with terminal concentrations of 1018 cm�3 and 0:5� 1015 cm�3,

respectively. The central p-region employs acceptor doping whose distribution is of

cosine shape with the maximum concentration of 0:3� 1016 cm�3. The doping profiles

are shown on top of Fig. 17.3. The built-in voltage of the base-to-emitter pn-junction is

approximately 0.80 V, and the built-in voltage of the collector-to-base pn-junction is

approximately 0.6 V. These values are typical for the npn-junction transistor. The

collector-base voltage υCB is fixed at zero volts. The emitter of the transistor in

Fig. 17.3 is grounded (or is a common node). This arrangement is known as the

common-emitter configuration. Alternatively, we could ground the base (common-base

configuration) or the collector (common-collector configuration).

C

E

B

C

E

B

iC

iB

iE

)b)a

C

E

B

vBE

+

-+

-

vCE

+

-

vBC

c)

Fig. 17.2. Circuit symbol for the npn-junction transistor, terminal currents, and terminal voltages.
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Figure 17.3a–c shows the built-in electric potential φ(x) along the junction in volts.

Figure 17.3d–f depicts the intrinsic Fermi energy level of electrons, Ei xð Þ ¼ �qφ xð Þ,
along the junction in electron volts. The curves are given for three values of the base-

emitter voltage, υBE ¼ 0, 0:5, and 0:7V. The collector-emitter voltage coincides with

υBE, which means that the base-collector voltage υBC is always fixed at zero volts. The

device operation can be explained in three steps using simple mechanical analogies:

1. At υBE ¼ 0V, the electric potential has a depth extending far downward into the

p-region. The electrons in equilibrium attempt to concentrate in a region with a large

electric potential as shown in Fig. 17.3a. From the viewpoint of the electric potential,

they resemble air bubbles in water floating up toward the “potential” boundary. From

the viewpoint of the electron energy, they resemble water drops in air that fall into

lower energy states. Virtually no electrons cross the barrier; hence, the electric current

is negligible.

2. The bias voltage υBE ¼ 0:5V decreases the potential depth (energy barrier). Some

electrons may now pass through the weaker potential barrier, diffuse across the

p-type base, and get swept into the n-type collector sliding down along the energy
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-R/2 +R/2

b)
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Fig. 17.3. Operation of the npn-junction transistor for three values of base-emitter voltage υBE.

The collector-base voltage υCB is fixed at zero volts.
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hill as seen in Fig. 17.3e. An alternative interpretation is the collection of electrons

(air bubbles) under the higher potential hill of the collector in Fig. 17.3b.

3. When the bias voltage reaches υBE ¼ 0:7V, carrier diffusion into the base is fully

enabled. Hence, a significant electric current iC passes through the collector (directed

opposite to the electron motion). The base of the transistor (the p-region) is inten-

tionally made narrow in order to avoid any significant recombination.

In contrast to the pn-junction diode, the npn transistor is essentially an electron-control-

ling device. The base-collector voltage υBC determines the potential/energy behavior to the

right of the base region in Fig. 17.3. As long as the potential (or the energy) has a

sufficiently high (or low) elevation there, all the electrons diffusing across the base get

swept into the n-type collector and no electrons reach the collector. This means that the

transistor operation is expected to be independent on υBC when it is negative or small.

17.1.3 Operating Regions

The junction transistor has three operating regions listed in Table 17.1. These regions are

determined by the state of the two pn-junction diodes, i.e., by the corresponding bias

voltage υBE for the base-emitter junction and υBC for the collector-base junction. Their

generic values are listed in Table 17.1. Figure 17.4 shows the corresponding transistor test

circuits in the common-emitter configuration. In Fig. 17.4a, υBE and υCE are kept at fixed

values using the two voltage sources. In Fig. 17.4, iB is fixed instead of υBE.

Table 17.1. Operating regions of an npn-junction transistor.

Region

Junctions

EBJ CBJ

Active Forward bias υBE � 0:5V Reverse-bias or small positive forward

bias υBC � 0:4V

Saturation Forward bias υBE � 0:5V Forward bias υBC � 0:4V

Cutoff Reverse-bias or small positive forward

bias υBE � 0:5V
Reverse-bias or small positive forward

bias υBC � 0:4V

C

E

B
+

-
vCE

0V

+

-
vBE

a)
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E

B
+

-
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iB
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Fig. 17.4. Conceptual test circuits for an npn transistor in common-emitter configuration.
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17.1.4 Active Region

Collector Current: Qualitative Description
The collector current is the diffusion current of minority electron carriers through

the electrically neutral p-doped base, as seen in Fig. 17.5. Such a current can be determined;

the analysis resulted in the ideal-diode Shockley equation. For the junction transistor,

there is one significant simplification. The base region of the BJT is very narrow so that

the recombination of the minority carriers there may be ignored. This will lead us to the

same Shockley equation but with a modified expression for the saturation current.

Collector Current: Quantitative Derivation of Shockley Equation

With reference to Fig. 17.5, boundary conditions for the excess minority carrier concen-

tration Δn(x) are

Δn x ¼ 0ð Þ ¼
n2i
NA0

exp
υBE

VT

� �

� 1

� �

,

Δn x ¼ Wð Þ ¼
n2i
NA0

exp
υBC

V T

� �

� 1

� �

� 0

ð17:3Þ

It is assumed the CBJ is either reverse biased or has only a small positive bias (υBC � 0:4V).
HereVT ¼ kT=q is the thermal voltage, ni is the intrinsic concentration of free carriers in the

base, NA0 is the (terminal) acceptor doping concentration in the base, and W is the base

width. The diffusion equation is

d2Δn

dx2
¼ 0 ð17:4Þ

The solution of Eqs. (17.3) and (17.4) is a simple linear function

Δn ¼
n2i
NA0

exp
υBE

VT

� �

� 1

� �

1� x=Wð Þ ð17:5Þ

rotcellocrettime base

0V

vBE

iC

V0V0

vCE

iE iB

electron flowhole flow -
+

x=0 x=W

~0

n(x)

Fig. 17.5. Transistor test circuit of the common-emitter configuration in the active region.
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Although the concentration decreases when the distance along the base increases, it

does not imply that the minority carriers disappear. They simply move faster when

approaching the collector. The transistor collector current is the diffusion current

of excess minority carriers in the base. The current density per unit area is found as JC ¼
�qDndΔn=dx where Dn is the base diffusion constant of the minority carriers. The total

collector current is the current density times junction area A. Using Eq. (17.5) yields

iC ¼ IS exp
υBE

VT

� �

� 1

� �

, IS ¼ A
qn2iDn

NA0W
ð17:6Þ

Equation (17.6) is the ideal-diode Shockley equation. The saturation current IS in

Eq. (17.6) has another name, the scale current, which underscores the fact that it scales

linearly with the emitter-base junction area A. Typical values are in the range

IS ¼ 10�12 � 10�15A.

Base Current

When the emitter-base junction is forward biased, some holes are injected from the p-type

base into the emitter. These holes constitute the base current iB shown in Fig. 17.5. The

base current is an inevitable side effect of the junction transistor. Exactly the same method

of the diffusion equation applies. The final result has the form

iB ¼ ISB exp
υBE

V T

� �

� 1

� �

ð17:7Þ

The saturation current ISB has the form of second Eq. (17.6) related to the emitter region.

Relation Between Transistor Currents: Common-Emitter Current Gain

According to Eqs. (17.6) and (17.7), transistor currents are directly proportional to each

iC ¼ βiB, iE ¼ β þ 1ð Þ iB ð17:8Þ

where the dimensionless constant β is the (forward) common-emitter current gain of

the transistor. The current gain cannot be controlled precisely due to uncertainties of

the manufacturing process. Typical values are β ¼ 20� 200, but much higher values

may be obtained. The current gain is the most important DC parameter of the junction

transistor. Consider a general-purpose small-signal (which means low-power) npn

2N3904 Si transistor. The current gain from the device’s datasheet ranges from a

minimum of 30–100 (for different collector currents) to a maximum of 300 (at room

temperature). Along with β, another parameter α is of interest, called the common-base

current gain:

iC ¼ αiE, α ¼
β

β þ 1
ð17:9Þ
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Exercise 17.2: An npn junction transistor in the active region has the collector current of

0.5 mA and the base current of 10 μA. Find emitter current, common-emitter current gain,

and common-base current gain. Show units.

Answer: iE ¼ 0:51mA, β ¼ 50, α ¼ 0:98.

In summary, in the active region the junction transistor operates as a current amplifier

with terminal currents given by

iC ¼ IS exp
υBE

V T

� �

� 1

� �

, iB ¼
IS

β
exp

υBE

V T

� �

� 1

� �

ð17:10Þ

Equation (17.7) is the accurate nonlinear exponential model of the transistor in the active

region. For practical purposes the factor 1 in the square brackets may be ignored.

Exercise 17.3: An npn junction transistor at room temperature of 25 �C has

υCE ¼ 3V, υBC ¼ �2:4V, β ¼ 50, IS ¼ 10�14A. Determine collector and base currents.

Answer: iC ¼ 0:105mA, iB ¼ 2:1μA.

17.1.5 Saturation Region and Cutoff Region

Qualitative Description of the Saturation Region
In saturation, both pn-junctions are forward biased. As a result, along with the diffusion

electron motion from the emitter shown in Fig. 17.3, an oppositely directed diffusion

electron motion from the collector also exists. The net collector (diffusion) current is now

given by the contribution of two diffusion currents of two simultaneously operating

pn-junctions. These two currents attempt to cancel each other so that the total collector

current decreases. The base current, on the other hand, increases since it now serves two

forward-biased pn-junctions instead of one. Equation (17.8) must be replaced by

iC < βiB ð17:11Þ

Quantitative Description of the Saturation Region

Assume that the collector current is affected by both bias voltages, υBE and υBC, and

consider two cases. The first case corresponds to a forward bias for υBE and υBC ¼ 0V.

The collector and base currents are expressed by Eq. (17.10). The second case corre-

sponds to υBE ¼ 0V and a forward bias for υBC. In this case, the roles of the collector and

emitter and of two pn-junctions are swapped: the emitter functions as the collector and

vice versa. In laboratory, you might encounter this case when the junction transistor in the

active region is connected backward. With reference to Fig. 17.6, the emitter and base

currents are given by
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iE ¼ IS exp
υBC

VT

� �

� 1

� �

, iB ¼
IS

βR
exp

υBC

VT

� �

� 1

� �

ð17:12Þ

The emitter current in Eq. (17.12) has the same form as the collector current in

Eq. (17.10) since the saturation current in Eq. (17.6) is only affected by the base

parameters; it does not change if we swap the collector and emitter. The base current is

also similar, but with a different constant βR known as the reverse common-emitter

current gain. While β � 1, the reverse current gain is small, βR 	 1.

When both bias voltages υBE and υBC are present, the collector and emitter currents are

the superposition of two solutions given by Eqs. (17.10) and (17.12), respectively,

iC ¼ IS exp
υBE

VT

� �

� 1

� �

� IS 1þ
1

βR

� �

exp
υBC

V T

� �

� 1

� �

ð17:13aÞ

iB ¼
IS

β
exp

υBE

VT

� �

� 1

� �

þ
IS

βR
exp

υBC

VT

� �

� 1

� �

ð17:13bÞ

Equations (17.13) give the general analytical Ebers-Moll model of the junction transistor

that is valid for any values of the bias voltages. It is used in circuit simulators like SPICE.

Equation (17.10) is its simplification for the active region. The saturation region may be

also described in terms of the “forced” common-emitter current gain (the forced beta):

βforced 
 iC=iB ð17:13cÞ

Example 17.1: Using the Ebers-Moll model and assuming room temperature of 25 �C,

estimate the forced common-emitter current gain βforced 
 iC=iB of the BJTwhen β ¼ 100,

βR ¼ 0:02, IS ¼ 10�12A for two sets of bias voltages:

A. υBE ¼ 0:5V, υBC ¼ 0:1, 0:2, 0:3V
B. υBE ¼ 0:6V, υBC ¼ 0:2, 0:3, 0:4V

Solution: We plug the above data into the Ebers-Moll model and obtain:

A. βforced ¼ 99:9, 95:3, 29:8

0V

vBE

iC

V0V0

vCE

iE iB

n+ np

Fig. 17.6. Current flow in the transistor when EBJ is at zero volts and CBJ is forward biased.
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Example 17.1 (cont.):

B. βforced ¼ 99:9, 95:3, 29:8

The forced current gain indeed decreases when the base-collector voltage increases.

Remarkably, both sets of βforced are identical to each other. This means that the current

gain degradation in the saturation region is solely determined by the collector-emitter

voltage, which is the υCE ¼ υBE � υBC.

Exercise 17.4: Equation (17.13a) predicts that the saturation current of BCJ,

IS 1þ 1=βRð Þ, is much larger than the saturation current of EBJ, IS, given that βR 	 1.

A physical explanation of this effect is a much larger area of the BCJ compared to that of

the EBJ.

A. Which equation may be used to estimate the ratio of two saturation currents in terms

of the ratio of two areas?

B. Which value does βR have if the area ratio is 20?

Answer: (A) Equation (17.6). (B) βR ¼ 0:053.

In the cutoff region, the EBJ and the CBJ are both reverse biased. All transistor

currents are zero. Transistor voltages must satisfy the corresponding inequalities of

Table 17.1.

17.1.6 Transistor v–i Dependencies

The transistor v–i curves are measured experimentally using circuits shown in Fig. 17.4.

In the first case, we vary υBE in Fig. 17.4a while keeping υCE constant. Figure 17.7 shows

the dependence of the collector current iC on the base-emitter voltage υBE. The

corresponding dependence is that of the Shockley type and varies with temperature.

0

2.5

5.0
i , mAC

v , VBE
0 0.5 1

Fig. 17.7. Typical dependence of the collector current on υBE.
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A new important plot specifically related to the junction transistor is that of the

collector current as a function of the collector-emitter voltage υCE. In this case, we vary

υCE in Fig. 17.4 while keeping either υBE or iB constant. If we treat the junction transistor

as a “transfer resistor,” this plot allows us to visualize the transistor equivalent “resis-

tance” between collector and emitter terminals. Figure 17.8a shows an idealized plot of

this type at three different values of the base current. The test circuit is that of Fig. 17.4b.

It is assumed that the EBJ is forward biased. The saturation region corresponds to small

υCE (smaller than about 0.3 V) where the collector current nonlinearly drops toward zero.

At larger υCE, the transistor enters the active region. The collector current remains

independent on υCE (and on υBC) as long as iB (and accordingly υBE) is a fixed

number—see Eq. (17.1). According to Fig. 17.8a, the transistor collector-emitter resis-

tance is infinitely high in the active region, but is rather small in the saturation region.

Exercise 17.5: In Fig. 17.8a determine the common-emitter current gain β and the

common-base current gain in the active region of operation.

Answer: β ¼ 100, α ¼ 0:99.

Exercise 17.6: In Fig. 17.8, which part of the figure corresponds to the cutoff region?

Answer: The line iC ¼ 0.

0

2

4

6

0 1 2 3 4

i , mAC

v , VCE

i =50 AB

i =30 AB

i =10 AB

npn BJT

saturation
region

active region

0

2

4

6

0 1 2 3 4

i , mAC

v , VCE

i =50 AB

i =30 AB

i =10 AB

npn BJT)b)a

Fig. 17.8. Typical common-emitter characteristics of the npn BJT. The collector current is

independent of the collector-to-emitter voltage in the active region in (a). (b) shows a more

accurate representation which includes the Early effect.
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Exercise 17.7: Using the Ebers-Moll model and assuming room temperature of 25 �C,

determine at which υCE does the collector current become zero. Ignore the factor 1 in the

square-bracketed expressions. Assume βR ¼ 0:01.

Answer: υCE ¼ VTln 1þ 1=βRð Þ � 0:12V.

17.1.7 Early Effect

Figure 17.8b shows a more realistic situation when the collector current slightly (in fact

linearly) increases with increasing υCE. This is known as the Early effect. At large positive

υCE (large negative υBC), the CBJ is very significantly reverse biased, which results in the

widening of the corresponding depletion region and shortening the neutral base length

W in Eq. (17.6). Hence, the saturation current in Eq. (17.6) increases as the diffusion

current becomes more prominent. The Early effect is therefore known as the base-width

modulation effect. It leads to a finite output resistance of the transistor, ro,

ro ¼
VA

iC
ð17:14Þ

where iC is the collector current given by Eq. (17.10) and shown in Fig. 17.8 with the

Early effect ignored and VA is a transistor constant known as the Early voltage (a typical

VA is 50 V). The Early voltage is the common intersection point of all dashed asymptotes

in Fig. 17.8b with the υCE-axis.

Exercise 17.8: In Fig. 17.8, determine the output transistor resistance when iB is 30 μA

and VA is 50 V.

Answer: ro ¼ 16:7kΩ.

17.1.8 The pnp Transistor

Two complementary types of the junction transistor are in use: the npn BJT and the pnp

BJT—see Fig. 17.9. In the pnp arrangement the doping concentrations are reversed as

shown in Fig. 17.9b. However, the ratios of impurity concentrations do not differ signif-

icantly for both cases. The reversal of doping concentrations (which means the opposite

carrier polarity) leads to the opposite current directions and, simultaneously, to a change in

sign of the bias voltages. Fortunately, this does not affect the functional behavior. More-

over, if we flip the emitter and collector of the pnp BJT as shown in Fig. 17.9b, then the

transistor operation becomes very similar to that for the npn BJT shown in Fig. 17.9a. The

changes to be made in the formulas are in switching all voltage polarities:

1. υBE ! υEB
2. υBC ! υCB
3. υCE ! υEC
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After this operation is complete, all equations of the present sections become applica-

ble to the pnp transistor. Indeed, all physical currents, iB, iE, and iC will also flow in the

opposite directions versus their respective terminals.

The npn transistors exhibit higher speed than pnp transistors since the electron

mobility is larger than the hole mobility. Junction transistors used in analog communi-

cation circuits are exclusively of the npn type. The pnp transistors find its use in audio

applications and elsewhere. The general-purpose discrete junction transistors have

corresponding pair marking such as 2N3904 small-signal npn BJT and its 2N3906 pnp

complement, 2N3055 npn power BJT and its 2N2955 complement, TIP3055 npn power

BJT and its TIP2955 complement, etc.

Exercise 17.9: Derive the current relations for a pnp BJT in the active region.

Answer: iE ¼ β þ 1ð ÞiB, iC ¼ βiB.

Historical Note: How can we build an amplifier based on a semiconductor pn-junction?

One straightforward answer may be to decrease the built-in voltage of the pn-junction

using an external control signal and a point contact as shown in Fig. 17.10a. However, the

real breakthrough was achieved through the use of an npn-junction when an extra central

p-doped region was added as a base. Figure 17.10b indicates how this concept was fist

implemented. The BJT, invented in by William Shockley, John Bardeen, and Walter

Brattain at Bell Labs in New Jersey, has had a lasting impact on the electronic industry.

The history of this Nobel Prize winning invention is a dramatic story of competition, hard

work, and multiple frustrations, which nevertheless resulted in a series of great discover-

ies—see “The Path to the Conception of the Junction Transistor,” by William Shockley,

IEEE Trans. Electron Devices, vol. ED-31, no. 11, pp. 1523–1546, Nov. 1984. The

bipolar-junction transistor and the junction field-effect transistor (JFET) were both

invented as a direct result of US government-sponsored research programs.
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Fig. 17.9. The npn BJT and its pnp complement. We notice the collector and emitter reversal.
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Fig. 17.10. (a) An early concept of a semiconductor amplifier on the basis of a single pn-junction;

(b) evolution of the pn-junction concept resulted in the invention of the bipolar junction transistor.

Both figures are from the original patents. (c) William Bradford Shockley (seating), John Bardeen

and Walter Brattain Bell Labs, June 1948.
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Section 17.2 Large-Signal Circuit Models of a BJT

17.2.1 Large-Signal Circuit Model of a BJT

The equivalent circuit model of a BJT must describe its operation using a combination of

simpler circuit blocks: dependent sources and diodes. The equivalent first-order circuit of

a BJT is either of a π- or T-type (or Y-type). The term first-order implies that more

accurate models indeed exist. Figure 17.11b, c shows the first-order π-type npn BJT

model in the active region of operation. The circuit in Fig. 17.11b, c is the large-signal

BJT circuit model. It means that it is applicable equally well to all possible values of υBE.

In Fig. 17.11b, the transistor is replaced by the EBJ Shockley diode and a nonlinear

voltage-controlled current source. In Fig. 17.11c, a linear current-controlled current

source is used instead. Both circuits in Fig. 17.11b, c are the equivalent of Eq. (17.10)

describing the BJT operation in the active region and repeated here one more time for

convenience (see also Fig. 17.7):

iC ¼ IS exp
υBE

V T

� �

� 1

� �

, iB ¼
IS

β
exp

υBE

V T

� �

� 1

� �

, iC ¼ βiB ð17:15Þ

Example 17.2: Solve the base-bias transistor circuit in Fig. 17.12a (which is essentially

the transistor test circuit in Fig. 17.4b) at 25 �C by determining voltages υBE, υ, and υCE
using the large-signal model. Assume IS ¼ 10�14A for the EBJ Shockley diode.
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Fig. 17.11. First-order π-type BJT model in the active region of operation.
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Example 17.2 (cont.):

Solution: First, we need to replace the transistor by an equivalent circuit model. We

assume the active region of operation. Since the base current is given, the model of

Fig. 17.11b is more appropriate. The transistor circuit is transformed as shown in

Fig. 17.12b. Then, we solve this equivalent circuit. We find the base-emitter voltage υBE
from the Shockley diode model:

iB ¼
IS

β
exp

υBE

V T

� �

� 1

� �

) υBE ¼ VTln
βiB

IS
þ 1

� �

¼ 0:68V ð17:16aÞ

The next step is to find the collector current. From the circuit in Fig. 17.12b,

iC ¼ βiB ¼ 1:93mA ð17:16bÞ

Resistor voltage υ is obtained in the form

υ ¼ RCiC ¼ 9:07V ð17:16cÞ

Therefore, the collector-emitter voltage is given by

υCE ¼ 20� 9:07 ¼ RCiC ¼ 10:93V ð17:16dÞ

After the solution is complete, we check if the transistor is really in the active operation

region following Table 17.1. Since υBE ¼ 0:68V, we obtain υBC ¼ υBE � υCE ¼ �10:25V
so that both conditions of the active region (the EBJ is forward biased and the CBJ is

reverse biased) are satisfied.

The solution of other (more complicated) transistor circuits with the exponential large-

signal model follows the method of Example 17.2. The model may be extended to the

saturation region by inclusion the second diode and the Ebers-Moll formalism. In many

practical cases, a solution of a transcendental equation may become necessary, which is

done either using the graphical load-line method or iteratively. This approach is similar to

the diode models studied in Chapter 16.
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=100
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=
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V =20 VCC
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Fig. 17.12. A base-bias transistor circuit and its equivalent representation.
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17.2.2 Large-Signal DC Circuit Model of a BJT

In the DC steady state, the circuit parameters are fixed. The steep exponential dependen-

cies of the BJT transistor may be replaced by turn-on voltages, similar to the constant-

voltage-drop diode model studied in Chapter 16. Figure 17.13 outlines the concept. This

results in a simplified large-signal DC BJT circuit model, which allows us to determine

the operation region (active, saturation, or cutoff) and estimate major circuit parameters.

This model works reasonably well when it is necessary to establish the DC operating

point of a transistor amplifier circuit and for the qualitative analysis of transistor power

circuits.

Figure 17.14 shows the DC circuit model for three different transistor regions.

1. In the active region, VBE � 0:7V (turn-on voltage of the EBJ), and the CBJ is

reverse biased or has a small positive bias below its turn-on voltage of VBC � 0:5V
(turn-on voltage of the CBJ is smaller due to more shallow collector doping).

Therefore, VCE ¼ VBE � VBC > 0:2V. This data falls within the wider active

region of Table 17.1. Indeed, IC ¼ βIB.

2. In the saturation region,VBE � 0:7V (turn-on voltage of the EBJ) andVBC � 0:5V
(turn-on voltage of the CBJ). Therefore, VCE ¼ VBE � VBC � 0:2V. This data

again falls within the wider saturation region of Table 17.1. In saturation,

IC < βIB. The particular value of the collector current is determined by the rest of

the circuit. The transistor is most efficient as a switch (has the lowest relative power

loss) in the saturation region.

3. In the cutoff region, both junctions are reverse biased or have a small positive bias

so that VBE � 0:5V, VBC � 0:4V according to Table 17.1. We round the last value

to 0.5 V to better memorize it. All terminal currents are zeros; the transistor is an

open circuit.

IB

vBE0

open circuit (no current)

Short circuit (a “wire”): any current

and constant voltage drop VBE

VBE

Fig. 17.13. Large-signal DC circuit model of the EBJ.
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Example 17.3: Create the analog of the chart in Fig. 17.14 for a pnp transistor.

Solution: According to the previous section, the pnp BJT model is reduced to npn model

after switching voltage polarities, i.e., after substitutions VBE ! VEB, VBC ! VCB, and

VCE ! VEC. Therefore, the chart of Fig. 17.14 is straightforwardly extended to the pnp

case as shown in Fig. 17.15.

In practice, for different junction transistors and under different operating conditions,

the particular voltage values shown in Figs. 17.13 and 17.14 may slightly vary. We will

ignore these variations.
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Fig. 17.14. Large-signal DC circuit model of a npn BJT transistor for three regions of operation.
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17.2.3 Method of Assumed States

When the large-signal DC circuit model of a transistor is applied, the circuit is solved

using the method of assumed states used in Chapter 16. Its concept is as follows:

1. We make a guess for the transistor state (active, saturation, or cutoff).

2. We replace the transistor by the large-signal DC circuit model for the corresponding

region

3. We solve the resulting circuit. Not all model conditions are necessary for this

purpose.

4. We check if the remaining model conditions are satisfied.

5. If this is not the case, the model for another region is selected.

The large-signal DC circuit model always provides a unique solution.

Exercise 17.10: Determine the region of operation for an npn BJT with β ¼ 100

shown in Fig. 17.11a using the large-signal DC circuit model when (A)

IB ¼ 0:01mA and IC ¼ 0:15mA, (B) VCE ¼ 0:3V and VBE < 0:4V, (C)

VCE ¼ 0:4V and VBE ¼ 0:7V, (D) IB ¼ 0mA, (E) IC ¼ 0mA, and (F) VCE ¼ 0V.

Answer: (A) saturation, (B) cutoff, (C) active, (D) cutoff, (E) cutoff, and (F) cutoff.

VEB +

-

+

-

VEC

E

C

B

I =0E
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Fig. 17.15. Large-signal DC circuit model of a pnp BJT transistor.
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17.2.4 Transistor Circuit Analysis Using the Method of Assumed States

Our starting point is the transistor test circuit shown in Fig. 17.4a. We will make it

realistic by adding collector and base resistances as shown in Fig. 17.16. Note changes in

power supply indexing compared to Fig. 17.4a. This is done since the supply voltages are

no longer the base-emitter voltage or the collector-emitter voltage, respectively. We will

solve the resulting transistor circuit using the large-signal DC model and the method of

assumed states first. Then, we will solve the same circuit using the large-signal exponen-

tial model. Finally, we will compare both solutions.

Example 17.4: Solve the transistor circuit shown in Fig. 17.16a by determining unknown

voltages VBE and VCE using the large-signal DC BJT model and the method of assumed

states. Assume β ¼ 100.

Solution: We need to choose one of the regions first; let us choose the active region of

operation. This guess leads to the circuit shown in Fig. 17.16b with

VBE ¼ 0:7V ð17:17aÞ

The base current is found using KVL for the base-emitter loop:

IB ¼
VBB � 0:7V

RB

¼ 13μA ð17:17bÞ

In the active region, IC ¼ βIB ¼ 1:3mA. From KVL for the base-to-collector branch:

VCE ¼ VCC � V ¼ 15� RCIC ¼ 15� 6:63 ¼ 8:37V ð17:17cÞ

The circuit is thus “tentatively” solved. As a last step, we must check if our initial guess

was correct. The only remaining condition to check in the active region is that of the

collector-to-emitter voltage:
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5.1 k =RC

VBE

+

-

V =15 VCC

100 k =RB
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=

0.7 V
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-
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E
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V =15 VCC

b)
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a)

+

-V +

-V

Fig. 17.16. Transistor circuit solved using the method of assumed states.
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Example 17.4 (cont.):

VCE ¼ 8:37V > 0:2V ð17:17dÞ

Thus, all conditions of the active region are met. The check of other regions of operation

(saturation and cutoff) is unnecessary; it must lead to negative results since a solution

obtained with the method of assumed states is always unique.

Example 17.5: Solve the transistor circuit in Fig. 17.17a at room temperature of 25 �C by

determining unknown voltages υBE and υCE using the large-signal BJT model. Assume IS
¼ 10�14A for the EBJ Shockley diode and β ¼ 100.

Solution: The current-controlled current source model from Fig. 17.11c is selected. This

model is somewhat more convenient for the present problem. The rightmost base-to-

emitter branch is solved either using the load-line method or iteratively. Using KVL and

the definition of the Shockley diode, one has

2� RBiB � υBE ¼ 0 ) iB ¼
2� υBE

RB

) iB ¼
2� VTln

βiB
IS
þ 1

� �

RB

ð17:18aÞ

We will use the iterative solution for iB with the starting guess of iB ¼ 0. The convergence

process is very fast. We present the final result, which is

DB

E

B
iiB

C
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B

5.1 k =RC

vBE
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-

V =15 VCC

100 k =RB

V =2 VBB

= C

RC

V =15 VCC

b)
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V =2 VBB
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+

-

v +
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v

Fig. 17.17. Transistor circuit solved using the large-signal exponential model.
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Example 17.5 (cont.):

iB ¼ 13:3μA ð17:18bÞ

The base-emitter voltage is obtained as

υBE ¼ VTln
βiB

IS
þ 1

� �

¼ 0:67V ð17:18cÞ

The collector current is found from the equivalent circuit, iC ¼ βiB ¼ 1:33mA. Voltage

across the collector resistance is obtained in the form υ ¼ RCiC ¼ 6:71V. Therefore, the
collector-emitter voltage is given by

υCE ¼ 15� υ ¼ 8:29V ð17:18dÞ

The results of Examples 17.4 and 17.5 are in close agreement; the error does not exceed

5% for every parameter. A good agreement is also obtained if we significantly vary

parameters of the exponential model (the saturation current, for example). This means

that the large-signal DC model is a viable yet simple tool for transistor circuit analysis.

17.2.5 DC Transistor Bias Circuits

The large-signal DC circuit model and the method of assumed states find their use in the

analysis of BJTDC transistor bias circuits. Such circuits are the starting point in the design

of all transistor amplifiers, both discrete and integrated. The bias circuits typically consist

of a transistor, a number of resistors around it, and/or one or multiple voltage/current

sources. The bias circuits must ensure that the transistor operates in the active region. The

general goal of the bias circuit is to control base, collector, and emitter voltages VB, VC, VE,

and the corresponding currents. This will allow us to establish amplifier gain, input and

output resistances, and other parameters of interest. If we (not very seriously) replace the

VC

VB

VE

T

Fig. 17.18. A “puppet master” analogy of the transistor bias circuit.
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transistor by a marionette shown in Fig. 17.18 and assign some positions (voltages) to its

arms and legs, then the bias circuit plays the role of the “puppet master.”

Our goal now is to design a simple active-region bias circuit that is typical for transistor

amplifiers. The following conditions should be met:

1. Provide a constant DC collector current IC that remains nearly the same at large β

variations (and temperature variations).

2. Make sure that the transistor has enough output voltage swing (a sufficiently wide

dynamic range) in the active region.

17.2.6 β-Independent Biasing and Negative Feedback

The first such circuit is the base-bias or fixed-base transistor circuit studied previously

and shown again in Fig. 17.19a. The name comes from the fact that the base current in the

active region, IB ¼ VBB � 0:7Vð Þ=RB, is fixed. The amplifier’s output will be the

collector voltage VC versus ground, which coincides with VCE. The general solution is

obtained by applying the KVL to the base-emitter loop and has the form:

IC ¼ β
VBB � 0:7V

RB

) VC ¼ VCE ¼ VCC � β
RC

RB

VBB � 0:7Vð Þ ð17:19Þ

For the particular component values shown in Fig. 17.19a and β ¼ 100, the output

voltage VC has been determined in Examples 17.4 and 17.5, respectively. It approxi-

mately satisfies the equality

VC � VCC=2 ð17:20Þ

which is desired for the maximum output voltage swing. As a competitor, we suggest

using an alternative bias circuit with emitter resistance shown in Fig. 17.19b, which

employs the emitter resistance RE instead of the base resistance RB. In fact, the emitter

resistance is one way of introducing the negative feedback in a transistor circuit.

The feedback loop is as follows: a larger base current increases the voltage drop across

the emitter resistance. By KVL, the higher emitter voltage drop decreases the VBE and

thus attempts to decrease the base current, which is the negative feedback. The general

solution for the circuit in Fig. 17.19b in the active region has the form

IE ¼
VBB � 0:7V

RE

)

IC ¼
β

β þ 1

VBB � 0:7V

RE

) VC ¼ VCC �
β

β þ 1

RC

RE

VBB � 0:7Vð Þ

ð17:21Þ

In order to obtain Eq. (17.21), we have again applied KVL to the base-emitter loop in

Fig. 17.19b. For the particular component values shown in Fig. 17.19b and β ¼ 100, the

output voltage is VC ¼ 8:44V. It is not far from VCC/2, which is the desired value. Thus,

both circuits approximately satisfy the condition for the maximum output voltage swing

given by Eq. (17.20). The next step is to check the β-dependency.
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Example 17.6: Compare the performance of two circuits in Fig. 17.19 for

β ¼ 50, 100, and 250. Show the variation in IC and VC, respectively.

Solution: We assume that both circuits operate in the active region and apply the solution

shortcut given by Eqs. (17.19) and (17.21), respectively. The corresponding result is shown

in Table 17.2. In the case of the base-bias circuit in Fig. 17.19a, the current/voltage

variations are so large than the transistor runs in the saturation for large β. On the other

hand, the circuit with the emitter resistance in Fig. 17.19b indicates a great stability with

regard to β variations, which is the direct consequence of the negative feedback—similar to

the operational amplifiers with the negative feedback.

Exercise 17.11: Determine values IC, VC in Table 17.2 in the saturation region.

Answer: VC ¼ 0:2V, IC ¼ 2:9mA.
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V =15 VCC
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b)
V =15 VCC

1 k =RE

V =2 VBB

100 k =RB

V =2 VBB

VC

VB VB VE

VC

Fig. 17.19. Two candidates for the transistor bias circuit.

Table 17.2. Comparison of two circuits for different β.

β

Fig. 17.19a Fig. 17.19b

IC VC IC VC

50 0.55 mA 11.69 V 1.28 mA 8.50 V

100 1.30 mA 8.37 V 1.29 mA 8.44 V

250 Saturation 1.30 mA 8.40 V
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17.2.7 Common Discrete-Circuit Bias Arrangement

Although the circuit in Fig. 17.19b is already suitable for our purpose, using two voltage

supplies is not convenient. It can be avoided by employing only one voltage supply VCC

and a proper voltage divider connected to the base as shown in Fig. 17.20. This configu-

ration is standard in discrete-circuit transistor amplifiers, in contrast to the integrated-

circuit transistor amplifierswhere the use of resistors should be avoided. It is known as the

four-resistor bias circuit. We employ the value VCC ¼ 10V to demonstrate that the supply

voltage may vary widely from circuit to circuit. The circuit in Fig. 17.20 is solved using the

method of Thévenin equivalent as shown in Fig. 17.21. First, we draw the voltage power

supply VCC explicitly. Next, we replace the circuit within the shadow rectangle in

Fig. 17.21b by its Thévenin equivalent. The Thévenin resistance (denoted here by index

TH) is the circuit resistance with the voltage supply shorted out, i.e.,

RTH ¼ R1

�
�
�
�R2 ¼

R1R2

R1 þ R2

ð17:22aÞ
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V =15 VCC V =15 VCC

VC

Fig. 17.20. Four-resistor bias circuit.
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Fig. 17.21. Solution of the four-resistor bias circuit using the method of Thévenin equivalent.
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Thévenin voltage (denoted by the same index TH) is the open-circuit voltage, i.e., the

voltage across the resistor R2. By voltage division,

VTH ¼
R2

R1 þ R2

VCC ð17:22bÞ

The resulting circuit is shown in Fig. 17.21c. To complete the solution, we write KVL

around the base-emitter loop in Fig. 17.21c and obtain an equation for IB:

�VTH þ RTHIB þ 0:7Vþ β þ 1ð ÞREIB ¼ 0 ð17:22cÞ

Solving for IB gives us the general solution for the four-resistor bias circuit in the form

IC ¼ βIB ¼ β
VTH � 0:7V

RTH þ β þ 1ð ÞRE

,VC ¼ VCC � βRC

VTH � 0:7V

RTH þ β þ 1ð ÞRE

ð17:22dÞ

which indeed coincides with Eq. (17.21) when RTH ¼ 0. Now, it is instructive to show

how we can solve the same circuit without using the method of Thévenin equivalent.

Example 17.7: Solve the circuit in Fig. 17.20 without using the method of Thévenin

equivalent. Assume transistor current gain of 100. The circuit parameters are

R1 ¼ 5:1kΩ,R2 ¼ 820Ω, RC ¼ 5:1kΩ, and RE ¼ 1kΩ.

Solution: Let’s introduce at least one unknown and see if we can write a closed-form

equation for this unknown. We assume the active region of operation and choose an

unknown: the voltage across the emitter resistor, V. In this case, VB ¼ V þ 0:7V. The
currents I1, I2, and IB become

I1 ¼
14:3� V

R1

, I2 ¼
0:7þ V

R2

, IB ¼ I1 � I2 ¼
14:3� V

R1

�
0:7 þ V

R2

ð17:23aÞ

On the other hand,

IB ¼
IC

β
¼

IE

β þ 1
¼

V

RE β þ 1ð Þ
ð17:23bÞ

Equating the two expressions for IB, we obtain the resulting equation for V:

V

RE β þ 1ð Þ
¼

14:3� V

R1

�
0:7þ V

R2

ð17:23cÞ

The rest of the solution is to plug the numbers into Eq. (17.23c) and solve it for V. This

operation yields V ¼ 1:37V. Other circuit parameters are found trivially. The present

method is in fact a truncated version of the nodal analysis.
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17.2.8 Other Bias Circuits

Dual power supplies are often used in transistor amplifier circuits to provide a symmetric

voltage swing to a load (e.g., a speaker). In this case, the corresponding bias circuit with

the dual-polarity power supply may be simplified as shown in Fig. 17.22.

To obtain the general solution, we write KVL around the base-emitter loop in

Fig. 17.22 and obtain an equation for IB:

RBIB þ 0:7Vþ β þ 1ð ÞREIB � VCC ¼ 0 ð17:24aÞ

Solving for IB gives us the complete solution for the bias circuit in the form

IC ¼ βIB ¼ β
VCC � 0:7V

RB þ β þ 1ð ÞRE

,VC ¼ VCC � βRC

VCC � 0:7V

RB þ β þ 1ð ÞRE

ð17:24bÞ

Example 17.8: Establish the performance of the circuit in Fig. 17.22 for

β ¼ 50, 100, and 250. Show the variation in IC and VC, respectively.

Solution: We assume that the circuit operates in the active region and apply the solution

shortcut given by Eq. (17.24b). The corresponding result is shown in Table 17.3. A good

stability with regard to β variations is again observed though the variations are larger than

in Table 17.2. Similar to the prior results, the stability is a direct consequence of the

negative feedback in the base-emitter loop.
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Fig. 17.22. A bias circuit with the dual-polarity power supply.
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Other bias circuits exist, in particular those which use the current sources along with

the voltage sources. The current sources are constructed using transistors as well. Thus,

often one transistor circuit is used to bias another.

Table 17.3. Performance of the bias circuit in

Fig. 17.22 for different β.

β IC VC

50 1.82 mA 7.35 V

100 1.86 mA 7.18 V

250 1.89 mA 7.07 V
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Section 17.3 Practical BJT Circuits at DC

The transistor circuits of this section behave very similar to the transistor bias circuits

considered previously. However, they serve a completely different purpose. Namely, they

are used as drivers and switches for different (power) loads such as LEDs, automotive

lights, solenoids, etc.

17.3.1 Constant-Current Sources: Active Region of Operation

General
Since the BJT behaves as a dependent current source, it can be used to control the current

through many other devices. For example, if a load requires a constant current, a BJT can

be connected as shown in Fig. 17.23 with a constant reference voltage connected to the

base of a BJT through a fixed resistance. Doing so establishes a constant current in the

base, which is amplified in the collector (by the current gain β) and flows through the

load. The transistor circuits so constructed are called constant-current BJT sources.

In the current sources, the BJT is operating in the active region. The collector current is

determined using the large-signal DC model. In Fig. 17.23a, b, one has, respectively

IC ¼ β
VREF � 0:7V

RB

ð17:25aÞ

IE ¼
VREF � 0:7V

RE

) IC ¼
β

β þ 1

VREF � 0:7V

RE

ð17:25bÞ

Those equations are the same as Eqs. (17.19) and (17.21) of the previous sections

established for the topologically equivalent bias circuits. Although Eq. (17.25a) provides

a means of setting the collector current to a particular value, β varies widely due to

variations in transistor dopant concentrations, operating temperature, and current levels.

Therefore, this design is not very practical since it is too β-dependent. An improved
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Fig. 17.23. Simple BJT configuration as constant-current sources.
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current source is realized if the resistance is moved to the emitter as shown in Fig. 17.23b.

Since the ratio β= β þ 1ð Þ is close to unity (β � 1), Eq. (17.25b) is reduced to

IC �
VREF � 0:7ð Þ

RE

ð17:25cÞ

Here we see that the collector current no longer depends on β—a very significant result,

making it possible to design practical BJT current sources.

Exercise 17.12:

A. Given the circuit of Fig. 17.23b with VREF ¼ 5V, choose a value of resistance RE to

set a constant emitter current of 20 mA.

B. If β varies between 50 and 250, determine the minimum and maximum collector

currents that result.

Answers: (A) RE ¼ 215 Ω. (B) ICmin ¼ 19:60 mA, ICmax ¼ 19:92 mA

Circuit Limitations

In order for a current source in Fig. 17.23b to operate properly, it must remain in the active

region, which requires thatVCE > V SAT � 0:2V. If the voltage across the load is too great,
it will drive the BJT into saturation. Therefore, the load voltage is always less than the supply

voltage minus the voltage drop across the emitter resistor RE and VSAT,

VL < VCC � IERE � V SAT ð17:26Þ

Constant-Current Source LED Driver

Constant-current sources are often used to drive LEDs (light emitting diodes) of different

colors because of their voltage variations. Red LEDs typically have a voltage drop of

approximately 1.7 V at 20 mA, while blue LEDs have a voltage drop of 3.5 V at this

value. Although the voltage drops are different, both of these LEDs could be driven by

the same current source design. The design of a current source capable of driving any

color LED at 20 mA from a 5-V supply VCC is shown in Fig. 17.24a. The reference

voltage is set up at 1 V (any value greater than 0.7 V is appropriate). If the 5-V supply is

regulated, the 1-V reference voltage can be derived from it using a voltage divider as

shown in Fig. 17.24b. Following a typical rule of thumb, the divider current in this circuit

was selected to be 10% of the load current or 2 mA.
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Exercise 17.13: For the circuits of Fig. 17.24, what is the largest LED voltage that can be

tolerated before the transistor is pushed into saturation? You are given RE ¼ 15Ω.

Answer: Applying Eq. (17.26), the largest LED voltage would be 4.5 V.

17.3.2 Voltage Follower (Voltage Buffer): Active Region of Operation

Now, we consider a different problem of setting the constant load voltage with the

transistor (the constant-voltage BJT source). Often, the familiar resistive voltage dividers

are used to drop supply voltages down to lower values for various low-power applica-

tions. In cases requiring greater current handling capability, a BJT can be used as a

voltage follower (voltage buffer) to prevent excessive voltage drop when heavy loads are

connected to the divider. Figure 17.25 compares two circuits for generating a required

reduced voltage VDIV from VCC. The circuit in Fig. 17.25a is a simple voltage divider; the

circuit in Fig. 17.25b utilizes a BJT in an emitter follower configuration with the output

being the emitter. In both circuits, the voltage divider voltage under no load conditions is

VDIV ¼
R2

R1 þ R2

VCC ð17:27Þ

C
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510 =R2

2 k =R1

VBE

+

-

VDIV

b)
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VCC

C

E

B

VBE

+

-

a)
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VCC
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Fig. 17.24. A 20-mA current source to drive color LEDs.
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Fig. 17.25. Voltage divider circuit comparison.
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To determine how much the voltages drop when the switches are closed, it is customary to

replace the voltage dividers with their Thévenin equivalents as shown in Fig. 17.26.

For both voltage dividers, Thévenin voltage and resistance are given by

VTH ¼ VDIV ¼
R2

R1 þ R2

VCC RTH ¼ R1

�
�
�
�R2 ¼

R1R2

R1 þ R2

ð17:28Þ

Equation (17.28) coincides with the corresponding result for the bias circuits given by

Eqs. (17.22). For the pure resistive divider circuit in Fig. 17.26a, the undesired drop in

voltage VDROP is simply the load current multiplied by the Thévenin resistance:

VDROP ¼ ILRTH ð17:29aÞ

On the other hand, for the transistor circuit in Fig. 17.26b, the undesired voltage drop

VDROP is the base current multiplied by the Thévenin resistance:

VDROP ¼ IBRTH ð17:29bÞ

Since IB ¼ IL= β þ 1ð Þ, Eq. (17.29b) can be rewritten in terms of the load current, i.e.,

VDROP ¼
ILRTH

β þ 1
ð17:30Þ

Therefore, for the same load current, the voltage drop in the transistor circuit is reduced

by a factor of 1/(β + 1), making it a very good voltage buffer capable of maintaining a

voltage across a load with minimal drop.

Circuit Limitations

The actual output voltage of the voltage buffer will be 0.7 V less than the divider voltage.

Therefore, the divider voltage in the voltage buffer should be made 0.7 V above the

desired output. Also, the circuit of Fig. 17.25b can only source current, it cannot sink it

+

-

VL
IL

C

E

IC

VBE

+

-

Load

+

-

VL
IL Load

b)a)

VTH

RTH

VTH
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VCC

+

-

VDROP +

-

VDROP IB

Fig. 17.26. Voltage divider circuit comparison after applying their Thévenin equivalents.
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(i.e., provide current flowing into the emitter). In order to be able to sink current, the

complementary pnp transistor should be used.

Exercise 17.14: For the circuit of Fig. 17.25b,R1 ¼ 315Ω,R2 ¼ 285Ω, andVCC ¼ 12V.

A. Determine Thévenin voltage and resistance for the voltage divider.

B. Determine the voltage drop that results for a load current of 10 mA. Assume β ¼ 50.

Repeat for a load current of 100 mA.

C. Determine the load voltage for each of the load currents of part B.

Answers:

(A): VTH¼ 5.7 V, RTH¼ 149.63Ω.

(B): 29.3 mV drop for 10 mA load, 293 mV drop for 100 mA load.

(C): 4.97 V for 10 mA load, 4.71 V for 100 mA load.

17.3.3 BJT Switches: Saturation Region

When operated in the saturation and cutoff regions, BJTs can be used as voltage-

controlled (or current-controlled) switches. Similar to mechanical switches, BJTs can

be placed on either the positive side or the negative side of the load with respect to the

power source. Figure 17.27 shows the concept. The npn BJT transistors are used for

negative-side switches and the pnp transistors for positive-side switches. In both cases,

the collector of each transistor is tied to the load and the emitter is tied to the power

source. Often, the negative side of the source is designated as the ground reference. In

those cases, negative-side switches may be referred to as ground-side switches and

positive-side switches as power-side switches.

npn BJT Switch

In an actual BJT switching circuit, there are two sides to consider—the control side and

the load side as shown in Fig. 17.28. The switching concept is as follows: smaller control

current (or base current) is used to turn on the transistor which allows much larger load

C
B

VBE

+

-

VCC

E

E

B

VEB

+

-

VCC

C

b)a)

Fig. 17.27. Negative-side and positive-side BJT switches.
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current (or collector current) to flow. One important feature of the circuit of Fig. 17.28 is

that the voltage on the control side does not have to be the same as the voltage on the load

side. The control voltage need only be greater than 0.7 V versus ground. This is just

enough to turn on the transistor, which means that low-voltage systems can control high-

voltage ones or vice versa. The only requirement is that the voltage sources share a

common return path or ground path as in Fig. 17.28.

In systems with one power source such as automobiles, the same supply can be used for

both control and load currents as shown in Fig. 17.29. Thewiring on the control side can be

of lighter gauge since it only has to handle the small control current. The wiring on the load

side is of heavier gauge. This allows the control switch to be located an appreciable

distance from the load without having to run heavy gauge wire the entire distance. This

approach is often employed in automotive vehicle wiring.

Operation in the Saturation Regio: Quick Estimates

In order for the BJT to work as an effective switch, it must be driven deep into saturation

even under maximum load conditions in order to minimize the voltage drop across the

transistor and reduce its power dissipation. Clearly, the power dissipation is the product of

C
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Fig. 17.28. An npn BJT operating as a switch.
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Fig. 17.29. Single supply operation with wire gauge considerations.
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VCE ¼ 0:2V in saturation and the load current. The minimum base current required to

saturate the transistor is found as follows. We take the maximum load current (replace the

transistor by a wire, ignore the 0.2 V drop for simplicity) and dividing it by the minimum

anticipated current gain β given in the transistor spec sheet. The actual base current

should be two times this value to certainly guarantee saturation. This condition is called

overdriving the transistor base. The pnp switch in Fig. 17.29b is considered similarly.

Exercise 17.15: For the circuit of Fig. 17.28,VREF ¼ 5V,VCC ¼ 12V, and the bulb turn-

on resistance is 20Ω. Assume the minimum value β ¼ 50.

A. Find the maximum load current (if the transistor were a perfect switch).

B. Find the minimum base current required to saturate the transistor.

C. Determine a value for RB to overdrive the transistor by approximately a factor of 2.

Answers: (A) 0.60 A, (B) 12 mA, and (C) 179.2Ω (175Ω, 180Ω are acceptable too).

17.3.4 Application Example: Automotive BJT Dome Light Switch

Modern automobiles utilize dozens of microcontrollers to handle the various electronic

control systems on today’s vehicles. These microcontrollers are integrated into modules

that are dedicated to specific functions. Here are a few that are quite common:

PCM powertrain control module

ECM engine control module

BCM body control module

SRS supplemental restraint system (airbags)

ABS anti-lock braking system

Typically, these embedded computer systems run on 5 V, while having to control devices

operating at 12 V. BJTs make this switching possible. Figure 17.30 shows one of the

outputs of a BCM (body control module) used to control a dome light. The BCM is

modeled here as a Thévenin equivalent circuit with VTH ¼ 5V and RTH ¼ 100Ω. The

transistor inside a driver module is used to turn on a dome light modeled as a 20-Ω resistor.

C
B

VBE

+

-

+

-

RTH

VTH

VCC

VL
IC

IB

E

RB

Body control module Driver

Dome light

Fig. 17.30. Automotive dome light application.
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The procedure to determine the value of RB is as follows:

1. If the transistor were a perfect switch, the maximum load current would be

12V=20Ω ¼ 600mA.

2. If the minimum transistor β is 50, then the minimum base current required to

saturate the transistor would be IB ¼ 600mA=50 ¼ 12mA.

3. In order to drive the transistor deep into saturation, the base current should be

approximately twice this value, i.e., 24 mA. Writing a KVL equation around the

base-emitter loop yields VTH ¼ IB RTH þ RBð Þ þ VBE.

4. Solving for RB gives the desired result: RB ¼ VTH�VBE

IB
� RTH ¼ 5�0:7

0:024 �

100 ¼ 79:2Ω. Close resistance values are also acceptable.

17.3.5 Application Example: Door Lock BJT Switch and Darlington Pair

For applications requiring higher switching currents, aDarlington pair (sometimes called

a super-beta transistor) is often used. Darlington pairs utilize two BJT transistors with

one driving the other. In this way, very high current gains can be achieved—see

Fig. 17.31a. For the Darlington pair in Fig. 17.31a,

IC ¼ β1 þ 1ð Þ β2 þ 1ð Þ � 1ð ÞIB, IE ¼ β1 þ 1ð Þ β2 þ 1ð ÞIB ð17:31Þ

Figure 17.31 illustrates a door lock solenoid switching circuit. The BCM is again

modeled as a Thévenin equivalent circuit with V TH ¼ 5V and RTH ¼ 100Ω. The

Darlington pair comprised of two npn transistors is used to turn on the solenoid whose

internal resistance is 3Ω. A diode is used to quench the inductive current spike that

RTH

VTH

VCC

IB

RB

Body control module Driver

Door lock solenoid

C

E

C

E

IB

IC

IE

C

E

b)a)

3

L

D

Fig. 17.31. Automotive door lock solenoid driven by Darlington pair.
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occurs when the solenoid is turned off. The procedure to determine the value of RB is

similar to the previous example; however, much higher current values are used:

1. If the transistor were a perfect switch, the maximum load current would be

12V=3Ω ¼ 4A.

2. Given that β1 ¼ 100 and β2 ¼ 25, the overall current gain of the Darlington pair is

2625—see Eq. (17.31). This is sometimes referred to as super-beta.

3. Therefore, the minimum amount of base current required to saturate the Darlington

pair is IB ¼ 4A=2625 ¼ 1:52mA. Note that the saturation voltage for the Darling-

ton pair is approximately 0.9 V since only one transistor (the first one) goes into

saturation and the other remains in the active mode, i.e., 0.2 V+ 0.7 V¼ 0.9 V. This

is a major drawback of the Darlington pair since it substantially increases its power

dissipation and heat sink requirements.

4. To overdrive the Darlington pair, double the base current, i.e., choose

IB ¼ 2� 1:52mA ¼ 3:04mA.

5. KVL equation around the base-emitter loop yields V TH ¼ IB RTH þ RBð Þþ VBE.

Note that there are two 0.7 V voltage drops from base to emitter for the

Darlington pair.

6. Solving for RB finally yields

RB ¼
VTH � 2� 0:7V

IB
� RTH ¼

5� 1:4

0:00304
� 100 ¼ 1184Ω ð17:32Þ
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Section 17.4 Small-Signal Transistor Amplifier

17.4.1 Generic Voltage-Gain Amplifier

An important application of the junction transistor is the design of small-signal, high-

frequency amplifiers. This is mostly done with fast npn BJTs. We aim to learn how to

design a single-transistor, or single-stage, voltage amplifier. Its generic circuit in the form

of a dependent voltage source is shown in Fig. 17.32. Also included are the source circuit

and the load circuit.

Major amplifier characteristics are the open-circuit voltage gain Aυ0, input resistance

Rin, and output resistance Rout. The circuit in Fig. 17.32 includes several parameters:

source voltage, υS(t), input voltage to the amplifier, υin(t), output voltage, υout(t), and the

corresponding currents. The output voltage is expressed through the source voltage

υout ¼ υS �
Rin

Rin þ RS

� �

υin

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

�Aυ0 �
RL

RL þ Rout

� �

ð17:33Þ

The transistor amplifier design in its basic form relies on Aυ0, Rin, and Rout using the

proper biasing scheme. The ideal values for general-purpose low-frequency amplifiers

are the fixed and constant Aυ0,Rin ! 1, andRout ! 0, whereas the ideal values for high-

frequency (radio-frequency) amplifiers are Rin ¼ 50Ω, and Rout ¼ 50Ω. Amplifier fre-

quency bandwidth is another important parameter of interest. The parameters Aυ0, Rin,

and Rout in Fig. 17.32 are determined as follows:

Aυ0 

υout

υin

�
�
�
�
RL¼1

,Rin 

υin

iin
,Rout 


υtest

itest

�
�
�
�
υin¼0

ð17:34Þ

Here, index test stands for a test voltage source connected to the output when the input

of the amplifier is shorted out. Note that dimensionless units for Aυ0 may be V/Vor V/mV.

Exercise 17.16: What is (A) inverting or (B) non-inverting version of the voltage ampli-

fier in Fig. 17.32?

Answer: (A) Aυ0 < 0. (B) Aυ0 > 0.

Rout

Rin

+

-
Av0 invvin

+
-

+
-

RS

vS RL

+

-

vout

iin iout

Fig. 17.32. Generic voltage amplifier with the source and the load.
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17.4.2 Simplified Model of the BJT Common-Emitter Amplifier

The simplified model of the BJT common-emitter amplifier introduced below ignores a

small-signal resistance/impedance of the EBJ. However, it correctly describes the major

modeling steps and it is mathematically consistent. The starting point is the fixed-base

transistor bias circuit from Fig. 17.19a. We replace the DC bias source VBB by a variable

input voltage υIN(t). The DC collector voltage VC will now become the variable output

voltage υOUT(t). The corresponding circuit is shown in Fig. 17.33a. We do not yet connect

a load resistance RL.

Voltage Transfer Characteristic

To grasp the key amplifier concept, we will simplify the circuit analysis. We will use the

large-signal DC circuit model but assume that input/output voltages and currents are now

functions of time. The corresponding solution has been given by Eq. (17.20), that is,

υOUT tð Þ ¼ VCC � β
RC

RB

υIN tð Þ � 0:7 Vð Þ ð17:35Þ

Equation (17.35) is plotted by a thick in Fig. 17.33b. This curve is known as the voltage

transfer characteristic of the amplifier. The input voltage in Fig. 17.33a is a combination

of a certain DC voltage plus a very small input AC signal to be amplified. Then, the

output voltage will be a combination of a certain DC voltage plus an amplified (but still

relatively small) replica of the AC signal; see Fig. 17.33b. This is the amplifier concept.

Linear Expansion of Circuit Variables and Quiescent Point

In transistor amplifiers, the small-signal amplification is superimposed onto the DC

solution. Mathematically, the separation of large DC and small (at least for now) AC

quantities is done in the form (lowercase indexes are used for small AC signals):

B

RC

+

-

VCC

RB

v (t)OUT

v (t)IN

a)

0.5 0.9

v (t), VOUT

v (t), VIN

Q - DC operating
point (bias point)

vCC

0
0.7

0.2 V sat.

VOUT

VIN

Slope is voltage

gain AV0

b)

0.7 V

Fig. 17.33. BJT common-emitter amplifier and its simplified voltage transfer characteristic.
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υIN tð Þ ¼ V IN þ υin tð Þ
υOUT tð Þ ¼ VOUT þ υout tð Þ
iB tð Þ ¼ IB þ ib tð Þ
iC tð Þ ¼ IC þ ic tð Þ

ð17:36Þ

The DC parameters listed in Eq. (17.36) correspond to the point Q in Fig. 17.33b, which

is the DC operating point or the quiescent point of the transistor amplifier. Sometimes,

the index Q is introduced to underscore this fact, i.e., IB is replaced by IBQ, IC is replaced

by ICQ, etc. We will not do this assuming that the DC parameters already correspond to

the desired operating point. The quiescent-point parameters are defined by the DC bias

sources, for example, V IN ¼ VBB. The DC parameters satisfy the large-signal DC circuit

model separately, that is,

VOUT ¼ VCC � β
RC

RB

V IN � 0:7Vð Þ ð17:37Þ

We insert the first two equations (17.36) into Eq. (17.35) and take into account

Eq. (17.37) so that all DC parameters cancel out. The end result has the form:

υout tð Þ ¼ �β
RC

RB

υin tð Þ ð17:38Þ

Thus, with regard to the small AC input signal υin(t), the circuit in Fig. 17.33 operates as

an inverting voltage amplifier with the open-circuit small-signal voltage gain Aυ0

Aυ0 

υout

υin

�
�
�
�
RL¼0

¼ �β
RC

RB

ð17:39aÞ

Exercise 17.17: For a transistor amplifier circuit in Fig. 17.33a, determine the open-circuit

voltage gain given that RB ¼ RC. The transistor’s current gain is 50.

Answer: AV0 ¼ �50.

Small-Signal Ground

Constant DC sources play the role of a ground for an AC signal, similar to the physical

ground offset by a certain constant voltage. Therefore, the VCC and the fixed-base voltage

of 0.7 V in Fig. 17.33a become the small-signal ground. This leads us to small-signal

input/output resistances in the form

Rin ¼ RB,Rout ¼ RC ð17:39bÞ

Equations (17.39) will be extended and explained in greater detail below.
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17.4.3 Small-Signal BJT Analysis and Superposition

Base-Emitter Small-Signal Resistance
The simplified amplifier model developed previously assumes exactly zero small-signal

resistance between base and emitter. This would be true if the v–i dependence for the

base-emitter junction were infinitely steep, as is indeed imposed by the large-signal DC

model. As a matter of fact, the exponential v–i Shockley dependence given by Eq. (17.7)

iB ¼ ISB exp
υBE

V T

� �

� 1

� �

� ISBexp
υBE

V T

� �

ð17:40Þ

has a very steep, yet finite, slope in the active region. Its accurate consideration will give

us a finite small-signal base-emitter resistance rπ at quiescent point Q as illustrated in

Fig. 17.34. This figure shows the “zoomed in” area around the Q-point. The value of rπ is

just the inverse slope at that point. To find rπ, we insert the expansion (17.36) for the

base current iB ¼ IB þ ib and the corresponding expansion for the base-emitter voltage

υBE ¼ VBE þ υbe into the Shockley equation (17.40) and obtain using Taylor series

IB þ ib ¼ ISBexp
VBE þ υbe

VT

� �

¼ IBexp
υbe

V T

� �

� IB þ IB
υbe

VT

¼ IB þ
υbe

rπ
ð17:41aÞ

given that

υbej j=VT 	 1 ð17:41bÞ

which is the critical small-signal approximation. From Eq. (17.41a), one has

rπ 

υbe

ib
¼

V T

IB
¼

βV T

IC
ð17:42Þ

0.750.55

iB

v , VBE

Q - DC operating
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tangent at Q

1/r

IB

VBE

Fig. 17.34. Finding the small-signal base-emitter amplifier resistance rπ.
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When the condition υbe=V T 	 1 is severely violated, a nonlinear distortion of the

transistor amplifier occurs. Nonetheless, Eq. (17.42) still provides a reasonable average

estimate about the Q-point. The small-signal transconductance is defined in a similar

fashion:

gm 

ic

υbe
¼

β

rπ
ð17:43Þ

Exercise 17.18: Find rπ at room temperature of 25 �C given that (A) IB ¼ 1μA and (B)

IB ¼ 10μA.

Answer: (A) rπ ¼ 26 kΩ, (B) rπ ¼ 2:6 kΩ.

Small-Signal BJT Model

The concept of linear expansion, see Eq. (17.36), and of the small-signal base-emitter

resistance rπ allows us to split the exponential large-signal BJT model in the active region

into two parts; this is studied previously and depicted in Fig. 17.11. Both models are

shown in Fig. 17.35b, c. The DC solution is still described by the nonlinear large-signal

DC circuit model (or even by a nonlinear exponential model, if desired). At the same

time, the AC solution is described by a linear small-signal transistor model in Fig. 17.35c

which is known as the hybrid-π model. Although other small-signal models have been

developed, the hybrid-π is the most popular.
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Fig. 17.35. Splitting the large-signal transistor model into a large-signal DC model and a small-

signal model.
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Superposition

When you look at Fig. 17.35, you notice that we solve the BJT amplifier circuit twice: the

first time at DC using the large-signal DC BJT model and the second time at AC using the

small-signal model. The DC solution will provide all necessary information for the AC

solution. The complete solution is then found as the sum of the DC and AC solutions,

respectively. In other words, the superposition principle can be applied. This is a

remarkable fact given that the DC model is inherently nonlinear.

17.4.4 Analysis of Small-Signal Common-Emitter Amplifiers

We apply the formalism of the combined large-signal/small-signal BJT model to study

and quantify three common-emitter amplifier configurations:

1. Base-bias configuration for DC bias circuit; see Figs. 17.16 and 17.33a.

2. Configuration with the emitter resistance for DC bias circuit; see Fig. 17.19b.

3. Most common four-resistor bias configuration for DC bias circuit; see Fig. 17.20.

The general procedure is as follows. First, we solve the large-signal DC model of the

circuit with the small-signal sources set to zero, i.e., find the DC bias solution. Such a

solution has already been carried out in Section 17.2. It gives us the DC collector voltage

VOUT ¼ VC, the DC base and collector currents IB, IC, and the small-signal base-emitter

resistance rπ ¼ V T=IC. Once rπ is known, we can apply the small-signal model and find

the amplifier parameters of interest: Aυ0, Rin, and Rout. The first amplifier type is the base-

bias (or the fixed-base amplifier), shown in Fig. 17.36a. The corresponding small-signal

circuit model is shown in Fig. 17.36b.
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Fig. 17.36. Base-bias amplifier circuit and its small-signal model.
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Example 17.9: Quantify the model of the small-signal BJT base-bias amplifier with the

circuit diagram shown in Fig. 17.36a, i.e., express the generic amplifier parameters Aυ0,

Rin, Rout and the output DC collector voltage VC in terms of the (given) circuit parameters.

Assume the BJT current gain is given by the constant β.

Solution:We perform the DC analysis first as required. We use the large-signal DC model

in Fig. 17.35b. The corresponding circuit solution is given by Eq. (17.19). It allows us to

find the small-signal resistance and the output DC voltage, i.e.,

rπ ¼
VT

IB
,VC ¼ VCC � βRCIB, IB ¼

VBB � 0:7V

RB

ð17:44Þ

We solve the corresponding small signal model from Fig. 17.36b and obtain

iin ¼ ib ¼
υin

RB þ rπ
, ic ¼ βib ¼

βυin

RB þ rπ
, υout ¼ �RCic ¼ �β

RC

RB þ rπ
υin ð17:45Þ

The open-circuit voltage gain Aυ0 and the input/output resistances follow the definitions

given by Eqs. (17.34). Note that the condition υin ¼ 0, which is required for finding the

output resistance, is equivalent to the condition iin ¼ ib ¼ 0, which results in zeroing the

dependent current source. The zero current source is an open circuit. Therefore,

Eqs. (17.34) give

Aυ0 ¼ �β
RC

RB þ rπ
,Rin ¼ RB þ rπ,Rout ¼ RC ð17:46Þ

A comparison with the simplified amplifier model described by Eqs. (17.39) reveals only

one modification: RB ! RB þ rπ. Unfortunately, the problem with this particular amplifier

is that the gain and the DC bias VC are both strongly β-dependent. To eliminate the DC bias

from υOUT(t), the load is capacitively coupled to the collector and thus becomes a

capacitively-coupled load.

The next amplifier type is a configuration with the emitter resistance shown in

Fig. 17.37a. The corresponding small-signal model is shown in Fig. 17.37b.

B C

E

πr βib

ib

+

-

vbe

small-signal model

vin

+
-

RC

vout

iin

ic

icRC

VCC

v (t)OUT

a)

VBB

vin
+
-

RE

B

RE

small-signal 
ground

b)

vin

Fig. 17.37. Amplifier circuit with the emitter resistance and its small-signal model.
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Example 17.10: Repeat the previous example for the amplifier circuit with the emitter

resistance shown in Fig. 17.37a.

Solution: We perform the DC analysis first. We use the large-signal DC model in

Fig. 17.35b. The corresponding circuit solution is given by Eq. (17.21). It allows us to

find the small-signal resistance and the output DC voltage, i.e.,

rπ ¼
VT

IB
,VC ¼ VCC � βRCIB, IB ¼

VBB � 0:7V

β þ 1ð ÞRE
ð17:47Þ

We solve the small-signal model from Fig. 17.37b next. By KVL,

υin ¼ ibrπ þ β þ 1ð ÞibRE ) iin ¼ ib ¼
υin

β þ 1ð ÞRE þ rπ
,

ic ¼ βib ¼
βυin

β þ 1ð ÞRE þ rπ
, υout ¼ �RCic ¼ �

βRC

β þ 1ð ÞRE þ rπ

� �

υin

ð17:48Þ

The open-circuit voltage gain Aυ0 and the input/output resistances follow the definitions

given by Eq. (17.34). The expressions for the voltage gain and input resistance simplify,

since β þ 1ð ÞRE � rπ, β � 1. The condition υin ¼ 0 for the output resistance is equivalent

to the condition iin ¼ ib ¼ 0, which results in zeroing the dependent current source; a zero

current source is an open circuit.

Therefore, Eqs. (17.34) give

Aυ0 ¼ �
βRC

β þ 1ð ÞRE þ rπ
� �

RC

RE

,Rin � β þ 1ð ÞRE,Rout ¼ RC ð17:49Þ

Compared to Example 17.9, the design of Example 17.10 greatly improves because the

amplifier gain and the output DC voltage VC become β-independent. To eliminate the DC

bias from υOUT(t), the load is capacitively coupled to the collector. A common way to

increase the gain of this amplifier type is to put another capacitor in parallel with the

emitter resistor. The final common-emitter amplifier type is the four-resistor bias config-

uration shown in Fig. 17.38a. The input AC signal is now capacitively coupled to the

transistor base. The corresponding small-signal model is shown in Fig. 17.38b. We note

that the DC analysis of this circuit using the method of Thévenin equivalent has been

performed previously; it is given by Eqs. (17.22).

Example 17.11: Solve the task of the previous example for the four-resistor bias BJT

amplifier circuit with the emitter resistance shown in Fig. 17.38a.

Solution: We perform the DC analysis first; we use the large-signal DC model in

Fig. 17.35b. The corresponding circuit solution is given by Eqs. (17.22). It allows us to

find the small-signal resistance and the output DC voltage, i.e.,
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Example 17.11 (cont.):

rπ ¼
VT

IB
,VC ¼ VCC � βRCIB, IB ¼

VTH � 0:7V

RTH þ β þ 1ð ÞRE
ð17:50Þ

where RTH ¼ R1

�
�
�
�R2 and V TH ¼ R2= R1 þ R2ð ÞVCC. These expressions are further simpli-

fied owing to β þ 1ð ÞRE � RTH, β � 1. We solve the corresponding small-signal model

from Fig. 17.38b next. By KCL and KVL,

iin ¼ ib þ
υin

R1

þ
υin

R2

, υin ¼ ib rπ þ β þ 1ð ÞREð Þ )

Rin ¼ R1

�
�
�
�R2

�
�
�
� rπ þ β þ 1ð ÞREð Þ

ic ¼ βib ¼
βυin

β þ 1ð ÞRE þ rπ
, υout ¼ �RCic ¼ �

βRC

β þ 1ð ÞRE þ rπ

� �

υin

ð17:51Þ

The open-circuit voltage gain Aυ0 and the input/output resistances follow the definitions

given by Eq. (17.34). The expressions for the voltage gain and input resistance simplify

since we can approximate β þ 1ð ÞRE � rπ, β � 1. The condition υin ¼ 0 for the output

resistance is equivalent to the condition iin ¼ ib ¼ 0, which results in zeroing the depen-

dent current source. The zero current source is an open circuit. Therefore, Eqs. (17.34) give

Aυ0 ¼ �
βRC

β þ 1ð ÞRE þ rπ
� �

RC

RE

,Rin � R1

�
�
�
�R2

�
�
�
� β þ 1ð ÞRE,Rout ¼ RC ð17:52Þ

VCC

v (t)OUT

B

R2

R1 RC

RE

VCC

+
-

C

B C

E

πr βib

ib

+

-

vbe

small-signal model

+
-

RC

vout

iin

ic

ic

RE

small-signal 
ground

R1R2

small-signal 
ground

vin

vin

a)

b)

Fig. 17.38. Four-resistor bias amplifier circuit and its small-signal model.
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Exercise 17.19: In a BJT common-emitter amplifier circuit at room temperature of 25 �C,

RC ¼ 5:1kΩ,VCC ¼ 15V, β¼ 100. Determine the output DC collector voltage VC and the

small-signal amplifier parameters Aυ0, Rin, Rout for:

A. Base-bias amplifier circuit with RB ¼ 100kΩ and VBB ¼ 2V

B. Emitter-resistance amplifier circuit with RE ¼ 1kΩ and VBB ¼ 2V

C. Four-resistor bias amplifier circuit with RE ¼ 1kΩ and R1 ¼ 5:1kΩ,R2 ¼ 820Ω

Use the exact expressions without the usual simplifications β þ 1ð ÞRE � rπ and β � 1.

Answer:

(A): VC ¼ 8:37V, Aυ0 ¼ �5, Rin ¼ 102kΩ, Rout ¼ 5:1kΩ
(B): VC ¼ 8:44V, Aυ0 ¼ �4:951, Rin ¼ 103:02kΩ, Rout ¼ 5:1kΩ
(C): VC ¼ 8:09V, Aυ0 ¼ �4:955, Rin ¼ 701:6Ω, Rout ¼ 5:1kΩ

Note that Eq. (17.52) coincide with Eq. (17.49) except for the input resistance. This

fact is to be expected since the base voltage divider in Fig. 17.38a simply replaces the bias

source VBB in Fig. 17.37a. To eliminate the DC bias from υ
OUT

(t), the load is usually

capacitively coupled to the collector. Emphasize that the input capacitor in Fig. 17.38a

prevents the DC bias current to flow into the AC source (short circuit at zero input

voltage). If this capacitor were not present, resistance R2 would be simply shorted out. A

common way to increase the gain of this amplifier type is to put another capacitor in

parallel with the emitter resistor. This shunt capacitor does not affect the DC bias (is an

open circuit at DC), but present a low-impedance load for the high-frequency small

signal. As a result, it effectively shorts out the emitter resistance in Eq. (17.52) so that

RE ! 0 and the amplifier gain greatly increases.

17.4.5 Application Example: Transistor Amplifier Bandwidth

The small-signal analysis performed above predicts the constant amplifier voltage gain

Aυ0 over the entire frequency band and does not explain its observed degradation at high

frequencies. The reason is the so-called Miller effect; it arises due to the junction

capacitance Cμ of the CBJ shown in Fig. 17.33. Likewise, the EBJ has a certain junction

capacitance Cπ (not shown in the figure), which is usually less important.

The parasitic capacitance Cμ adds an extra negative-feedback loop to the transistor

amplifier as shown in Fig. 17.39. This extra feedback loop requires an additional current

that is drawn from the input. Unfortunately, the corresponding small-signal analysis is

very involved and we omit a detailed derivation. The final result is formulated in terms of

the amplitude frequency response of the transistor amplifier, which we define as the ratio

of the amplitude of the source voltage VmS in Fig. 17.32 to the amplitude of the output

voltage Vmout under open-circuited conditions. This definition reveals that the frequency

response becomes the product of Aυ0 and the transfer functions of two first-order low-pass

filters, one at the amplifier input and another at the output, i.e.,
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Vmout

VmS

¼ 1þ
Rsig

Rin

� �
Aυ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ f =f bið Þ2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ f =f boð Þ2
q

f bi ¼
1

2π RS

�
�
�
�Rin

� �
CMILLER, in

, f bo ¼
1

2πRoutCMILLER,out

CMILLER, in ¼ 1� Aυ0ð ÞCμ,CMILLER,out ¼ 1� Aυ0ð Þ= �Aυ0ð ÞCμ

ð17:53Þ

Equation (17.53) states that frequency response is controlled by the amplifier parameters

Aυ0, Rin, and Rout established in this section. The capacitance Cμ at arbitrary bias is

expressed through the CBJ zero-bias junction capacitance Cjcwhich is available from the

datasheet through a semi-empirical dependence:

Cμ � Cjc 1þ
VCEQ � 0:7V
� �

0:75V

� ��0:3

ð17:54Þ

Example 17.12: The transistor amplifier in Fig. 17.38a has the following parameters:

R1 ¼ 43kΩ,R2 ¼ 3kΩ,RC ¼ 20kΩ,RE ¼ 1kΩ. We also assume VCC ¼ 15V, β¼ 100,

and the source resistance of 50 Ω. The amplifier uses a general-purpose Fairchild 2N3904

npn transistor with Cjc ¼ 3:64pF. Plot its frequency response to scale over the band from

1 Hz to 100 MHz.

Solution: The analysis of the previous example gives VCE ¼ 9:4V, Aυ0 ¼ �18:1,
Rin ¼ 2:7kΩ, and Rout ¼ 20kΩ. Equation (17.54) leads to Cμ ¼ 1:7pF. All parameters

of the frequency response in Eq. (17.53) are thus defined. We plot it by a dashed curve in

Fig. 17.40. The absolute value of Aυ0 in dB is 25.2 dB. The solid curve in Fig. 17.40 is the

corresponding SPICE simulation result. The deviation between two curves at low frequen-

cies is the effect of input/output coupling capacitors used in the realistic circuit. The

deviation at high frequencies is due to the approximate character of the present model.

The resulting frequency bandwidth of about 5 MHz is mostly affected by a high

Rout ¼ 20kΩ. The flat region in Fig. 17.40 is called the midband; the roll-off at low

frequencies is the low end and the roll-off at high frequencies is the high end of the

frequency response.

E

C

B

C

Fig. 17.39. CBJ junction capacitance Cμ.
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Fig. 17.40. Bode plot for the amplifier gain of the common-emitter amplifier.
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Summary

Large-signal exponential first-order transistor model

iC ¼ IS exp
υBE

V T

� �

� 1

� �

,

iB ¼
IS

β
exp

υBE

V T

� �

� 1

� �

, iC ¼ β iB

Large-signal DC circuit model of the npn transistor

Large-signal DC circuit model of the pnp transistor

Transistor bias circuit with base resistance (base-bias) in active region

(β-dependent, common emitter configuration)

VC ¼ VCC � βRCIB, IB ¼
VBB � 0:7 V

RB

VB ¼ 0:7 V, VE ¼ 0 V

Used as a constant-current source

Used as a small-signal common-emitter amplifier

(continued)
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Transistor bias circuit with emitter resistance in active region (β-independent)

VC ¼ VCC � βRCIB, IB ¼
VBB � 0:7 V

β þ 1ð ÞRE

VC � VCC � RC=REð Þ VBB � 0:7 Vð Þ

VB ¼ VBB, VE ¼ VBB � 0:7 V

Used as a constant-current source

Used as a small-signal common-emitter amplifier

Transistor bias circuit with voltage divider (four-resistor bias circuit) in active region

(β-independent)

VC ¼ VCC � βRCIB, IB ¼
V TH � 0:7 V

RTH þ β þ 1ð ÞRE

RTH ¼
R1R2

R1 þ R2

, V TH ¼
R2

R1 þ R2

VCC

VC � VCC � RC=REð Þ V TH � 0:7 Vð Þ

VB ¼ VE þ 0:7 V, VE ¼ β þ 1ð ÞREIB

Used as a constant-current source

Used as a small-signal common-emitter amplifier

Transistor bias circuit with emitter resistance and dual power supply in active region

(β-independent)

VC ¼ VCC � βRCIB, IB ¼
VCC � 0:7 V

RB þ β þ 1ð ÞRE

VC � VCC � RC=REð Þ VCC � 0:7 Vð Þ

V B ¼ VE þ 0:7 V, VE ¼ β þ 1ð ÞREIB � VCC

Used as a small-signal common-emitter amplifier

Transistor constant-current sources and constant-voltage sources operating in active region

(similar to DC bias circuits)

Load current is controlled by VREF

(β-dependent)

IL ¼ β
VREF � 0:7 V

RB

(continued)
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Load current is controlled by VREF

(β-independent)

IL �
VREF � 0:7 V

RE

Constant-current source—the 5 V—LED drive of

20 mA (any color LED, β-independent)

ILED �
V TH � 0:7 V

RE

, V TH ¼
R2

R1 þ R2

VCC

Constant-voltage source (voltage follower or voltage

buffer, β-independent) in common collector or

emitter follower configuration

V L ¼ V TH �
ILRTH

β þ 1
� 0:7 V � V TH � 0:7 V

RTH ¼
R1R2

R1 þ R2

, V TH ¼
R2

R1 þ R2

VCC

Transistor switch operating in saturation region

RB ¼
V TH � 0:7 V

IB
� RTH , IB � 2

VCC

βRL

(design selection)

Darlington pair

Darlington pair (super-beta transistor)

IC ¼ β1 þ 1ð Þ β2 þ 1ð Þ � 1ð ÞIB

IE ¼ β1 þ 1ð Þ β2 þ 1ð ÞIB

βeff � β2 for equal transistors

(continued)
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General characteristics of voltage amplifier

Open-circuit voltage gain Aυ0: Aυ0

υout

υin

�
�
�
�
RL¼1

Input resistance Rin : Rin

υin

iin

Output resistance Rout : Rout

υtest

itest

�
�
�
�
υin¼0

Overall volt. gain: Gυ 

υout

υS
¼

Rin

Rin þ RS

Aυ0

RL

RL þ Rout

Small-signal transistor model (hybrid-π model) at Q-point

Small-signal EBJ resistance: rπ

υbe

ib
¼

V T

IB

Small-signal transconductance: gm

ic

υbe
¼

β

rπ

Small-signal base-bias amplifier circuit—common emitter amplifier (no load)

(β-dependent)—Class A

rπ ¼
V T

IB
, VC ¼ VCC � βRCIB, IB ¼

VBB � 0:7 V

RB

Aυ0 ¼ �β
RC

RB þ rπ
, Rin ¼ RB þ rπ , Rout ¼ RC

Capacitive coupling eliminates the DC bias at the output

(continued)
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Small-signal amplifier circuit with emitter resistance—common emitter amplifier (no load)

(β-independent)—Class A

rπ ¼
V T

IB
, VC ¼ VCC � βRCIB, IB ¼

VBB � 0:7 V

β þ 1ð ÞRE

Aυ0 � �
RC

RE

, Rin ¼ rπ þ β þ 1ð ÞRE, Rout ¼ RC

Capacitive coupling eliminates the DC bias at the output

Small-signal four-resistor bias amplifier circuit—common emitter amplifier (no load)

(β-independent)—Class A

rπ ¼
V T

IB
, VC ¼ VCC � βRCIB, IB ¼

V TH � 0:7 V

RTH þ β þ 1ð ÞRE

Aυ0 � �
RC

RE

, Rin ¼ R1

�
�
�
�R2

�
�
�
� rπ þ β þ 1ð ÞREð Þ,

Rout ¼ RC

Capacitive coupling eliminates the DC bias at the output

Gain enhancement of the prior design with shunt capacitance

The Q-point parameters remain the same

The small-signal parameters:

Aυ0 ¼ �β
RC

rπ
, Rin ¼ R1

�
�
�
�R2

�
�
�
� rπ þ β þ 1ð ÞREð Þ,

Rout ¼ RC
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Problems
17.1 Physical Principles

and Operation Laws

17.1.1 Physical Structure. Terminal Volt-

ages and Currents

17.1.2 Principle of Operation
Problem 17.1.

A. Draw the circuit symbol for the

npn-junction transistor; label the collec-

tor, base, and emitter. What do you think

the arrow in the transistor symbol

designates?

B. Label the transistor currents, and write

KCL for the currents.

C. Label the transistor voltages and write

KCL for the voltages.

Problem 17.2. Shown in the figure is a cross

section of the Si npn BJT lateral structure

implemented in planar integrated-circuit tech-

nology, first invented by Jean Hoerni from

Fairchild Semiconductor Inc. (Maine) in 1958.

Modern implementations essentially repeat this

structure, but with a number of significant

improvements. Redraw the figure in your

notes and identify the collector, emitter, and

base of the transistor.

metal contact

n- (substrate)

oxide

oxide

p
n n+ p+

Problem 17.3. Shown in the figure is a cross

section of another Si npn BJT lateral structure

implemented in planar integrated-circuit tech-

nology. The black color indicates aluminum

metallization.

A. Redraw the figure in your notes and

identify the collector, emitter, and base

of the transistor.

B. What could you tell about the areas of

EBJ and CBJ? Area of which

pn-junction is larger?

Hint: The circuit in the figure not only shows

the transistor but also another circuit element.

p-type substrate  (500 m)

n n
p+ p+

p p n+ n+

BJT

17.1.3 Operating Regions

17.1.4 Active Region

17.1.5 Saturation Region and Cutoff

Region
Problem 17.4. Determine the operating region

for an npn BJT transistor when:

A. υBE ¼ 0:6V, υCE ¼ 0:6V
B. υCE ¼ 0V, υBE ¼ 0:6V
C. υBC ¼ �5V, υCE ¼ 5:6V

Problem 17.5. Determine the operating region

for an npn BJT transistor when:

A. υCE ¼ �1V, υCB ¼ 5V

B. υCB ¼ 0:6V, υBE ¼ 0:6V
C. υBC ¼ 0:3V, υCE ¼ �5:6V

Problem 17.6. Shown in the figure below is the

Darlington pair, or the Darlington amplifier,

invented at Bell Labs by S. Darlington and then

patented. TheDarlington pair is a combination of

two npn BJTs in series. Which resulting current

gain does the Darlington pair have if the

current gain of each individual BJT is β and

both BJTs have υBE ¼ 0:6V, υCE ¼ 0:6V?
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Problem 17.7. An npn-junction transistor in the

active region at room temperature of 25 �C has

υBE ¼ 0:5V, IS ¼ 10�13A, and the base current

of 0.3 μA. Find collector current, emitter current,

common-emitter current gain, and common-

base current gain. Show units.

Problem 17.8. An npn-junction transistor at

room temperature of 25 �C has υBE ¼ 0V,

υCE ¼ �0:5V, IS ¼ 10�13A, and the base cur-

rent of 0.1 mA. Find collector current. Show

units.

Problem 17.9. Using the Ebers-Moll transistor

model, estimate the forced common-emitter cur-

rent gain βforced 
 iC=iB of a npn BJT when

β ¼ 50, βR ¼ 0:02, IS ¼ 10�13A for two sets

of bias voltages:

A.
υBE ¼ 0:6V,
υBC ¼ 0:2, 0:3, 0:4V

B.
υBE ¼ 0:7V,
υBC ¼ 0:3, 0:4, 0:5V

at room temperature of 25 �C.

Problem 17.10. Using the Ebers-

Moll transistor model, estimate the forced -

common-emitter current gain βforced 
 iC=iB
of a npn BJT when β ¼ 100, βR ¼ 0:02, IS ¼

10�12A for

A. υCE ¼ 0:4V
B. υCE ¼ 0:3V
C. υCE ¼ 0:2V

at room temperature of 25 �C.

17.1.6 Transistor v–i Dependencies

17.1.7 Early Effect
Problem 17.11. An idealized v–i dependence

for an npn-junction transistor at room tempera-

ture of 25 �C is shown in the figure below. Find

the transistor scale current IS.

0

1

2

3

0 1 2 3 4

i , mAC

v , VCE

v =0.55 VBE

npn BJT

Problem 17.12. Using the Ebers-Moll transistor

model, express the collector current iC in terms

of the base current iBwhen the voltage across the

transistor is exactly zero, i.e., when υCE ¼ 0.

Problem 17.13. An idealized v–i dependence

for an npn-junction transistor at room tempera-

ture of 25 �C is shown in the figure below. The

Early voltage VA is a (negative) value of the

intersection point of the dashed line with the

υCE-axis. Its value is 60 V. Determine the out-

put transistor resistance, ro.

3

2

i
C
, mA

v
CE

, V

npn BJT

0

17.1.8 The pnp Transistor
Problem 17.14. Establish whether or the fol-

lowing equations

iE ¼ βiB ð1Þ
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iC ¼ iE þ iB ¼ βiB þ iB ¼ 1þ βð ÞiB ð2Þ

iB ¼ ISB exp
υBE

V T

� �

� 1

� �

ð3Þ

are valid for the pnp BJT in the active region.

Consider each equation separately.

Problem 17.15. Shown in the figure below are

four BJT transistors. The input base current is

always equal to 10 μA. Each BJT has a

common-emitter current gain β of 50 and is

properly biased to operate in the active region.

1. Redraw the circuit shown in the figure.

2. Indicate collector, base, and emitter, and

denote the transistor type (npn or pnp) for

each device.

3. Indicate the current directions and deter-

mine the values of all other currents in the

circuit.

iB

a)

iB

b)

iB

c)

iB

d)

Problem 17.16. Shown in the figure below is

the Sziklai pair (George Clifford Sziklai

(1909–1998) was an electrical engineer at

Lockheed Martin), which includes the npn

and the pnp BJTs. The npn BJT base current

is 10 μA. Given that (1) the npn BJT has the

current gain β of 10 and VBE of +0.7 V and (2)

the pnp BJT has current gain β of 5 and VBE of

�0.7 V, show the values and the directions of

all unknown currents close to each wire in this

circuit topology.

C

B

iB

C

E

E

B

Problem 17.17. Repeat the previous problem if

υBE of the pnp transistor is 0.7 V.

Problem 17.18.

A. Who invented the first npn transistor,

and in what year?

B. Who were two major collaborators (and

rivals) of W. Shockley? Hint: See the

reference in this subsection and the arti-

cle devoted to W. Shockley from

Wikipedia.

17.2 Large-Signal Circuit

Models of a BJT

17.2.1 Equivalent Large-Signal Circuit

Model of a BJT
Problem 17.19. Draw the large-signal equiva-

lent BJT model with:

A. Voltage-controlled current source

B. Current-controlled current source

Problem 17.20. For the transistor circuit shown

in the figure below:

A. Draw the equivalent circuit diagram

using the large-signal BJT model.

B. Solve the circuit for unknown voltages

υBE, υ, and υCE at room temperature of

25 �C. Assume IS ¼ 10�14A for the EBJ

Shockley diode.
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C

E

B

4.7k =RC

vBE

+

-

=100

15 A
+

-

v

V =20 VCC

Problem 17.21. For the conceptual transistor

circuit shown in the figure below:

A. Draw the equivalent circuit diagram

using the large-signal BJT model.

B. Solve the circuit for unknown voltages

υBE, υ , υCE, and the base current iB at

room temperature of 25 �C. Assume IS
¼ 10�14A for the EBJ Shockley diode.

C

E

B

4.7k =RC

vBE

+

-

=100

+

-

v

V =20 VCC

0.6 V

Problem 17.22. For the transistor circuit shown

in the figure below:

A. Draw the equivalent circuit diagram

using the large-signal BJT model.

B. Solve the circuit for unknown base cur-

rent iB and unknown voltages υBE, υ ,

υCE at room temperature of 25 �C.

Assume IS ¼ 10�14A for the EBJ

Shockley diode.

C

E

B

4.7k =RC

vBE

+

-

=100

+

-

v

V =20 VCC

1M =RB

V =20 VCC

Problem 17.23. Repeat the previous problem

when the base resistance changes to 100 kΩ.

17.2.2 Large-Signal DC Circuit Model of

a BJT

17.2.3 Method of Assumed States
Problem 17.24. For the large-signal DC circuit

model of the npn BJT shown in the following

figure, establish:

IC

IB

E

B

VBE

+

-

+

-

VCE

IE

A. Conditions for currents and voltages in

the active region

B. Conditions for currents and voltages in

the saturation region

C. Conditions for currents and voltages in

the cutoff region

Problem 17.25. Using the datasheet for a

2N3904 npn transistor from Fairchild Semicon-

ductor, estimate the range for:
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A. Base-to-emitter voltage in the saturation

region (“Base-Emitter Saturation Volt-

age” in the datasheet)

B. Collector-to-emitter voltage in the satu-

ration region (“Collector-Emitter Satura-

tion Voltage” in the datasheet)

for this popular transistor make.

Problem 17.26. Determine the region of oper-

ation for an npn BJTwith β ¼ 200 shown in the

figure using the large-signal DC circuit model.

IC

IB

E

B

VBE

+

-

+

-

VCE

IE

A. For IB ¼ 0:1mA and VCE ¼0:4V
B. For VCE ¼ 0:3V and VBE ¼0:4V
C. For IC ¼ 1mA and IB ¼ 20μA

D. For VCE ¼ �5V

Problem 17.27. Repeat Problem 17.26 for β

¼ 100 and

A. IB ¼ 0:1mA and VCE ¼ 0:6V
B. VCE ¼ 0:7V and VBE ¼ 0:4V
C. IC ¼ 2mA and IB ¼ 20μA

D. VCE ¼ 0V

Problem 17.28. Determine the region of oper-

ation for a pnp BJT with β ¼ 100 shown in the

figure using the large-signal DC circuit model.

E

C

B

IE

IB

IC

VEB +

-
+

-

VEC

Problem 17.29. Repeat Problem 17.28 for

A. IB ¼ 0:1mA and VCE ¼ �1V

B. VCE ¼ �1V and VBE ¼ �0:4V
C. IC ¼ 2mA and IB ¼ 20μA

D. VCE ¼ 0V

17.2.4 Transistor Circuit Analysis Using

the Method of Assumed States
Problem 17.30.

A. Solve the transistor circuit shown in the

figure that follows by determining

unknown voltages VBE, V, and VCE

using the large-signal DC BJT model

and the method of assumed states.

B. Solve the same circuit using the large-

signal BJT model. Assume room temper-

ature of 25 �C and IS ¼ 10�14A for the

EBJ Shockley diode.

C. Compare both solutions to each other.

C

E

B

4.7 k =RC

VBE

+

-

=100

+

-V

V =20 VCC

500 k =RB

V =20 VCC

VCE

+

-

Problem 17.31. For three-transistor circuit

shown in the figure, find the collector current

IC and collector-to-emitter voltage VCE

A. For β ¼ 100

B. For β ¼ 300

Use the large-signal DC circuit model of the

transistor.
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C

E

B

0V

+10V +10V

500 k 3.5 k

+

-

VCE

VBIB

IC

VBE
+

-

+

-

V

C

E

B

0V

+10V +5V

930 k 5 k

+

-

VCE

VBIB

IC

VBE

+

-

+

-

V

C

E

B

-5V

+10V +5V

930 k 5 k

+

-

VCE

VBIB

IC

VBE

+

-

+

-

V

a)

b)

c)

Problem 17.32.
A. For the BJT circuit shown below, deter-

mine unknown parameters listed in the

table that follows Assume β ¼ 100. Use

the large-signal DC circuit model of the

transistor.

B. Perform the corresponding laboratory

experiment with a 2N3904 small-signal

npn BJT and fill out a similar table.

Note: This configuration is sometimes referred to

as an NPN inverter with resistive load.

C

E

B

15 k =RC

VCE

+

-

V =20 VCC

100 k =RB

vBB

IC

IB

VBE

+

-

VBB IB IC VCE Region

0 V

1 V

2 V

3 V

4 V

Problem 17.33.

A. For the BJT circuit shown below, deter-

mine unknown parameters listed in the

table that follows. Assume β ¼ 100. Use

the large-signal DC circuit model of the

transistor.

B. Perform the corresponding laboratory

experiment with a 2N3904 small-signal

npn BJT and fill out a similar table.

C

E

B

15k =RC

VBE

+

-

V =15 VCC

1k =RE

vBB

IC

IB

IE

VCE

+

-

VBB IE IC VCE Region

1 V

2 V

3 V

4 V

0 V
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17.2.5 DC Transistor Bias Circuits

17.2.6 β-Independent Biasing and

Negative Feedback

17.2.7 Common Discrete-Circuit Bias

Arrangement

17.2.8 Other Bias Circuits
Problem 17.34. For the circuit shown in the

figure, fill the table that follows. Use the large-

signal DC circuit model of the transistor.

C

E

B

4.7 k =RC

VBE

+

-

+

-

V

V =20 VCC

62 k =RB

V =2 VBB

VC

VB

β IC VC

50

100

250

Problem 17.35. For the circuit shown in the

figure, fill the table that follows. Use the large-

signal DC circuit model of the transistor.

C

E

B

7.5 k =RC

VBE

+

-

+

-

V

V =20 VCC

1 k =RE

V =2 VBB

VB VE

VC

β IC VC

50

100

250

Problem 17.36. For the circuit shown in the

figure, determine (the npn BJT has β ¼ 100):

A. Collector current IC
B. Emitter current IiE

Use the large-signal DC circuit model of the

transistor.

C

E

B

0V

+10V +10V

50k

IC

200

100 IE

Problem 17.37. For the circuit shown in the

figure, determine the transistor current gain β.

Use the large-signal DC circuit model of the

transistor.

C

E

B

0V

+10V +10V

1k

I =9mAC

51

1k

Problem 17.38.

A. Sketch the four-resistor bias circuit.

Label two base resistances, collector

resistance, and emitter resistance.

B. What purpose could this circuit have?

Problem 17.39. For the circuit shown below,

determine the emitter current, iE, using the

method of Thévenin equivalent when

R1 ¼ 43kΩ, R2 ¼ 3kΩ, RC ¼ 20kΩ,

RE ¼ 1kΩ:
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C

E

B

+15V +15V

R2

R1

VB

RC

=100

RE

Problem 17.40. For three circuits shown in the

figure below:

C

E

B

+10V +10V

R2

R1

VB

RC

=100

RE

A)

C

E

B

+10V +10V

R2

R1

VB

RC

=100

RE

-2V -5V

C

E

B

+10V +10V

R2

R1

VB

RC

=200

RE

-2V

B)

C)

determine the emitter current, iE, when

A. R1¼ 10kΩ,R2¼ 3kΩ,RC¼ 10kΩ,

RE¼ 10kΩ

B. R1 ¼ 10kΩ,R2 ¼ 10kΩ,RC ¼ 10kΩ,

RE ¼ 5kΩ

C. R1¼ 10kΩ,R2¼ 10kΩ,RC¼ 2kΩ,

RE¼ 5kΩ

Problem 17.41. Establish the performance of

the circuit shown in the figure below for

β ¼ 50, 100, and 250. Show the variation in

IC and VC, respectively.

C

E

B

8.2 k =RC

VBE

+

-

V =+15 VCC

VE

VC

10 k =RB

V =-15 VCC

0.5 mA=I1

β IC VC

50

100

250

17.3 Practical BJT Circuits

at DC

17.3.1 Constant Current Sources: Active

Region of Operation

17.3.2 Voltage Follower (Voltage

Buffer): Active Region of Operation
Problem 17.42.

A. Given the constant-current source circuit

in Fig. 17.24b with VREF ¼ 5V, select a

value of resistance RE to set a constant

emitter current of 50 mA.

B. If β varies between 50 and 200, deter-

mine the minimum and maximum col-

lector currents.
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C. Given VCC ¼ 12V, what is the range of

possible load voltages?

Problem 17.43. Solve task A of the previous

problem for the circuit in Fig. 17.24a given

β ¼ 50.

Problem 17.44. For the circuits of Fig. 17.24a,

the required LED current is 30 mA and

RE ¼ 15Ω. What is the largest LED voltage

that can be tolerated before the transistor is

pushed into saturation?

Problem 17.45. For the circuit of Fig. 17.25b,

R1 ¼ 200Ω, R2 ¼ 300Ω, and VCC ¼ 12V.

A. Determine Thévenin voltage and resis-

tance for the voltage divider.

B. Determine the voltage drop that results

for a load current of 30 mA. Assume

β ¼ 100. Repeat for a load current of

100 mA.

C. Determine the load voltage for two load

currents from part B.

Problem 17.46. For the circuits of Fig. 17.24b,

VCC ¼ 5V, the emitter current is 30 mA and

RE ¼ 15Ω. The transistor has β ¼ 50.

A. What is the voltage across the emitter

resistance?

B. What is the LED voltage in Fig. 17.24b?

17.3.3 BJT Switches: Saturation Region

17.3.4 Application Example: Automo-

tive BJT Dome Light Switch

17.3.5 Application Example: Door Lock

BJT Switch and Darlington Pair
Problem 17.47. For the circuit of Fig. 17.28,

VREF ¼ 3V, VCC ¼ 24V, and the load resis-

tance is 10Ω. Assume the minimum value

β ¼ 100.

A. Find the maximum possible load current

(if the transistor were a perfect switch).

B. Find the minimum base current required

to saturate the transistor.

C. Determine a value for RB to overdrive the

transistor by approximately a factor of 2.

Problem 17.48. For the circuit shown in the

following figure,VCC ¼ 12V, and the bulb turn

on resistance is 40Ω. Assume the minimum

value β ¼ 50.

A. Find the maximum possible load current

(if the transistor were a perfect switch).

B. Find the minimum base current required

to saturate the transistor.

C. Determine a value for RB to overdrive

the transistor by approximately a factor

of 2.

C
B

VBE

+

-

+

-

RB

VCC

VL
IC

IB

E

Problem 17.49. For the circuit shown in the

figure below, VCC ¼ 12V, and the bulb turn on

resistance is 40Ω. Assume the minimum value

β ¼ 30.

A. Find the maximum possible load current

(if the transistor were a perfect switch).

B. Find the minimum base current required

to saturate the transistor.

C. Determine a value for RB to overdrive

the transistor by approximately a factor

of 2.

E

B

VEB

+

-RB
VCC

IC

IB

C
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Problem 17.50. Design the transistor switch

for the circuit shown in Fig. 17.30 (determine

base resistance RB) given that VTH ¼ 3V and

RTH ¼ 100Ω. The load is modeled as a 30Ω

resistor, VCC ¼ 12V. The minimum transistor

β is 50.

17.4 Small-Signal Transistor

Amplifier

17.4.1 Generic Voltage-Gain Amplifier

17.4.2 Simplified Model of the BJT

Common-Emitter Amplifier

17.4.3 Small-Signal BJT Analysis and

Superposition
Problem 17.51. For the amplifier circuit with

AV0 ¼ 20 shown in the figure below,

determine the output voltage given that

υS tð Þ ¼ 1 cosω t mV½ �, RS ¼ 50Ω, RL ¼ 50Ω

for two cases

A. Rin ¼ 1MΩ and Rout ¼ 1Ω.

B. Rin ¼ 50Ω and Rout ¼ 50Ω.

Rout

Rin

+

-
V0 invvin

+
-

+
-

RS

vS

RL+

-

vout

iin iout

Problem 17.52. For the amplifier circuit shown

in the figure below, plot its voltage transfer

characteristic to scale given that VCC ¼ 9:8V,
RC ¼ RB ¼ 20kΩ, and β ¼ 128.

B

RC

VCC

RB

v
OUT

vIN

8.06.0

v
OUT

, V

v
IN

, V

10

0
0.7

5

Problem 17.53. Determine small-signal base-

emitter resistance rπ of a BJT at room temper-

ature of 25 �C given that

A. β ¼ 50, IB ¼ 1μA

B. β ¼ 100, IC ¼ 5mA

C. IC ¼ 10mA, IE ¼ 10:1mA

Problem 17.54. Repeat the previous problem

for the small-signal transconductance gm.

17.4.4 Analysis of BJT Common-

Emitter Amplifiers
Problem 17.55. A BJT common-emitter ampli-

fier circuit is shown in the figure that follows.

Assume RC ¼ 5:1kΩ, VCC ¼ 15V, β¼ 100,

and room temperature of 25 �C. Also assume

RB ¼ 100kΩandVBB ¼ 2V. The input voltage

is given by υin ¼ 0:5 cosωt V½ �.
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B

RC

V
CC

RB

v (t)OUT

V
BB

vin
+
-

A. Determine DC bias parameters VB,VC,

VE, IB, IC.

B. Determine small-signal amplifier param-

eters rπ, Aυ0, Rin, and Rout.

C. Write expressions for υIN(t) and υOUT(t).

D. Sketch υIN(t) and υOUT(t) for two cycles

to scale on the same plot.

Note: Use exact expressions for circuit param-

eters without simplifications resulting from the

condition β � 1.

Problem 17.56. Repeat tasks C and D of the

previous problem when β¼ 250.

Problem 17.57. A BJT common-emitter ampli-

fier circuit is shown in the following figure.

Assume RC ¼ 5:1kΩ, VCC ¼ 15V, β¼ 100,

and room temperature of 25 �C. Also assume

RE ¼ 1kΩ andVBB ¼ 2V. The input voltage is

given by υin ¼ 0:5 cosωt V½ �.

vin

RC

VCC

v (t)OUT

VBB

vin
+
-

RE

B

A. Determine DC bias parameters VB,VC,

VE, IB, IC.

B. Determine small-signal amplifier param-

eters rπ, Aυ0, Rin, and Rout.

C. Write expressions for υIN(t) and υOUT(t).

D. Sketch υIN(t) and υOUT(t) for two cycles

to scale on the same plot.

Note: Use the exact expressions for circuit

parameters without simplifications resulting

from the condition β � 1.

Problem 17.58. Repeat tasks C and D of the

previous problem when υin ¼ 2:0 cosωt V½ �.

Problem 17.59. A BJT common-emitter ampli-

fier circuit is shown in the following figure.

Assume RC ¼ 5:1kΩ, VCC ¼ 15V, β¼ 100,

and room temperature of 25 �C. Also assume

RE ¼ 1kΩ and R1 ¼ 65kΩ, R2 ¼ 10kΩ. The

input voltage is given by υin ¼ 0:5 cosωt V½ �.

VCC

v (t)OUT

B

R2

R1 RC

RE

VCC

+
-

C

vin

v (t)IN

A. Determine DC bias parameters VB,VC,

VE, IB, IC.

B. Determine small-signal amplifier param-

eters rπ, Aυ0, Rin, and Rout.

C. Write expressions for υIN(t) and υOUT(t).

D. Sketch υIN(t) and υOUT(t) for two cycles

to scale on the same plot.

Note: Use the exact expressions for circuit

parameters without simplifications resulting

from the condition β � 1.

Problem 17.60. A BJT common-emitter ampli-

fier circuit shown in the following figure uses a

capacitor in parallel with the emitter resistor to

boost the amplifier small-signal gain, but still

keep the DC bias parameters unchanged.

Assume that the capacitor reactance is negligi-

ble for the AC signal. Also assume the same
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circuit parameters as in the previous problem

(without the shunt capacitor): RC ¼ 5:1kΩ,
VCC ¼ 15V, β¼ 100, room temperature of

25 �C, and RE ¼ 1kΩ, R1 ¼ 65kΩ,

R2 ¼ 10kΩ. The input voltage is given by

υin ¼ 0:01 cosωt V½ �.

VCC

v (t)OUT

B

R2

R1 RC

RE

VCC

+
-

C

vin

v (t)IN

A. Determine DC bias parameters VB,VC,

VE, IB, IC.

B. Determine small-signal amplifier param-

eters rπ, Aυ0, Rin, and Rout.

C. Write expressions for υIN(t) and υOUT(t).

D. Sketch υIN(t) and υOUT(t) for two cycles

to scale on the same plot.

Note: Use the exact expressions for circuit

parameters without simplifications resulting

from the condition β � 1.

Problem 17.61. Repeat tasks C and D of the

previous problem when υin ¼ 0:1 cosωt V½ �.

Problem 17.62. A BJT common-emitter ampli-

fier circuit shown in the figure that follows

includes the source circuit and the load circuit.

Assume the following circuit parameters (iden-

tical to Problem 17.59): RC ¼ 5:1kΩ,
VCC ¼ 15V, β¼ 100, room temperature of

25 �C, and RE ¼ 1kΩ, R1 ¼ 65kΩ,

R2 ¼ 10kΩ. Also assume that the capacitor

reactances are negligible. The source (not the

input!) voltage is given by υS ¼ 0:5 cosωt V½ �,
and the source and load resistances are

RS ¼ 1kΩ, RL ¼ 10kΩ.

VCC

vOUT

B

R2

R1 RC

RE

VCC

+
-

vS

vINvin
RS

RL

vout

A. Determine DC bias parameters VB,VC,

VE, IB, IC.

B. Determine small-signal amplifier param-

eters rπ, Aυ0, Rin, and Rout;

C. Write expressions for υout(t); write a sim-

ilar expression for υout0(t) when the load

resistance tends to infinity and the source

resistance is zero (the ideal case).

D. Sketch υout(t) and υout0(t) for two cycles

to scale on the same plot.

Note: Use the exact expressions for circuit

parameters without simplifications

resulting from the condition β � 1.

Problem 17.63. In a BJT common-emitter

amplifier circuit shown in the figure

that follows, assume that the capacitor reactances

are negligible (equal to zero) for the AC signal.

Also assume the following circuit parameters:

RC ¼ 2kΩ, VCC ¼ 15V, VEE ¼ �15V,

β¼ 100, room temperature of 25 �C, and

RE1 ¼ 4:7kΩ, RE2 ¼ 510Ω, RB ¼ 10kΩ. The

input voltage is given by υin ¼ 1 cosωt V½ �.

v (t)OUT

B

RB

RC

RE1

VCC

+
-

C

vin

v (t)IN

RE2

VEE
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A. Determine DC bias parameters VB,VC,

VE, IB, IC.

B. Determine small-signal amplifier param-

eters rπ, Aυ0, Rin, and Rout.

C. Write the expression for υOUT(t).

D. Sketch υin(t) and υOUT(t) for two cycles

to scale on the same plot.

Note: Use the exact expressions for circuit

parameters without simplifications resulting

from the condition β � 1.
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Chapter 18: MOS Field-Effect Transistor

(MOSFET)

Overview

Prerequisites:

- Knowledge of basic circuit analysis

- Exposure to theory of the pn-junction (optional)

- Exposure to BJT circuit analysis and amplifiers (Chapter 17, optional)

Objectives of Section 18.1:

- Learn physical composition of the field-effect transistor, four- and three-terminal

configurations

- Understand principle of operation of the MOSFET

- Realize the origin and understand the value of MOSFET threshold voltage

- Be able to estimate threshold voltage based on MOSFET’s physical composition

Objectives of Section 18.2:

- Learn MOSFET test circuits

- Become familiar with the dynamics of channel inversion and quantify the underlying

mechanism

- Derive MOSFET equations (large-signal model) for three regions of operation from

first principles

- Pay special attention to large-signal MOSFET model in saturation

- Become familiar with v-i dependencies for the NMOS and PMOS transistors

Objectives of Section 18.3:

- Learn the resistor-switch model of the MOSFET for switching applications

- Apply the resistor-switch model of the MOSFET to logic gates

- Understand the value of the triode and cutoff regions for switching applications

- Become fluent with the method of assumed states for MOSFET DC circuit analysis

- Use the load-line method, either graphically or analytically

- Solve in basic MOSFET DC bias circuits
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Objectives of Section 18.4:

- Learn circuit topology of the common-source MOSFET amplifier

- Analyze and characterize the voltage transfer characteristic of the common-source

amplifier

- Understand the value of the saturation region for amplifier applications

- Be able to properly select the quiescent (bias) point

- Formulate the small-signal MOSFET model and solve in the common-source

amplifier circuit

Application Examples:

- Output resistance of digital logic gates

- Basic MOSFET switching actuator

Keywords:

Field-effect transistor (FET), Metal-oxide semiconductor FET (MOSFET), Enhancement-mode

MOSFET, E-MOSFET, Depletion-mode MOSFET, n-channel MOSFET, p-channel MOSFET,

NMOS transistor, PMOS transistor, MOSFET drain terminal, MOSFET source terminal,

MOSFET gate terminal, MOSFET body terminal, MOSFET substrate terminal, Four-terminal

MOSFET, Three-terminal MOSFET, MOSFET channel, MOSFET threshold voltage, MOS

capacitor, Ideal MOS capacitor model, Surface space-charge region of MOS capacitor, Surface

voltage of MOS capacitor, Surface potential of MOS capacitor, One-sided pn-junction

approximation, Strong inversion in MOS capacitor, Inversion layer of MOS capacitor, Flat-

band voltage, Work function difference, Junction FET (JFET), Metal–semiconductor FET

(MESFET), Triode region of a MOSFET, Saturation region of a MOSFET, Cutoff region of a

MOSFET, Process transconductance parameter, MOSFET transconductance parameter, MOSFET

lumped process parameter, MOSFET turn-on resistance, Channel pinch-off, Saturation current,

Saturation velocity, Velocity saturation region, Early effect, Channel modulation effect,

Transconductance curve, Large-signal MOSFET model in saturation, MOSFET parameter

extraction, MOSFET on-state resistance, MOSFET resistor-switch model, CMOS logic gates,

CMOS NOT gate (inverter), CMOS NAND gate, CMOS NOR gate, Gate output resistance,

Method of assumed states, Gate-bias (fixed-gate) MOSFET circuit, Diode-connected MOSFET

circuit, Load-line analysis, Load line, Basic MOSFETactuator device, Common-source MOSFET

amplifier, Voltage transfer characteristic, Quiescent point of NMOS amplifier, Small-signal

MOSFET model, Open-circuit small-signal voltage gain, Small-signal MOSFET

transconductance, Small-signal ground
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Section 18.1 Principle of Operation and Threshold Voltage

In this chapter we study the field-effect transistor (FET). The most important member of

the FET family is the metal-oxide-semiconductor FET or MOSFET. Similar to the npn

and pnp BJT transistors, MOSFETs are subdivided into n-channel MOSFETs and

p-channel MOSFETs, also known as NMOS and PMOS transistors. The abbreviation

CMOS, or complementary MOS, implies an integrated circuit which incorporates both of

these types of transistors on the same substrate. It is the CMOS transistor that allows high-

density chip integration as part of microelectronic analog and digital circuits. MOSFETs

are used in both logic gates and in memory cells. Discrete power MOSFETs are also

deployed in many power engineering applications. We will concentrate on the enhance-

ment-mode MOSFET (or E-MOSFET), which relies on a positive gate-to-source thresh-

old voltage. Other MOSFET types (depletion-mode MOSFET ) may have either negative

or near-zero threshold voltages.

18.1.1 Physical Structure: Terminal Voltages and Currents

An enhancement-mode n-channel MOSFET (NMOS transistor) is a four-terminal semi-

conductor device. The NMOS transistor shown in Fig. 18.1 consists of a p-doped

substrate (the Si wafer) into which two n (or rather heavily doped n+) regions, the source

and the drain, are formed through ion implantation. The gate electrode (source of the

control voltage) used to be a metal film, but nowadays it is a heavily doped polysilicon.

The gate length L, also known as channel length, can be as small as 30 nm. The gate

isolation, necessary to form a capacitor, is a SiO2 dielectric. It is formed directly from the

Si substrate by thermal oxidation of Si. There are four metal electrodes corresponding to

four transistor terminals: the gate terminal (G), the source terminal (S), the drain terminal

(D), and the body (or substrate) terminal (B). The basic geometrical device parameters

are the channel length, L, in horizontal direction, and the channel width, W, in vertical

direction in Fig. 18.1. The channel length is the distance between the two pn+�junctions;

the channel width characterizes the region of electron carrier flow between the drain and

the source. Typical substrate acceptor concentrations (p-doping) are in the range of

NA ¼ 1016 � 1017 cm�3. The doping of the two n+ domains (donor doping) is large.

For example, ND � 1019 cm�3 for a power MOSFET.
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The circuit symbol for the four-terminal NMOS transistor is shown in Fig. 18.2a. The

device is strictly symmetrical, whichmeans that we can interchange the drain and the source;

this is in contrast to the BJT. The arrow denotes the pn-junction polarity (from p to n)

similar to the diode arrow. The four-terminal NMOS transistor is widely used in integrated

circuits. In discrete circuits, which employ discrete transistor components, the body termi-

nal is tied to the source terminal as shown in Fig. 18.1b. Therefore, the NMOS transistor

becomes the three-terminal MOSFET device (gate, drain, and source), similar to the BJT.

However, it is no longer symmetrical. Figure 18.2b shows the corresponding circuit symbol.

You encounter this symbol in the majority of manufacturer datasheets and electronic

simulation packages. Simplified symbols are widely used; see Fig. 18.2c.
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Gate oxide

Channel

Oxide Oxide
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contact
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Body

vG vDvS
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iDiD

Metal
contact

Metal
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+

-
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vGS

+
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+
-vGD

Fig. 18.1. Semiconductor composition of the NMOS transistor—lateral or planar channel design.

The vertical channel design typical for power MOSFETs implies rotation by 90 degrees.
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D
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Fig. 18.2. Circuit symbols of (a) a four-terminal NMOS transistor, (b) a three-terminal asymmetric

NMOS transistor with the body tied to the source, and (c) the same device but simplified.
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We are going to study only the three-terminal configuration and use the symbol shown

in Fig. 18.2b. Figure 18.3a shows transistor terminal voltages for the three-terminal

device:

- Gate-source voltage υGS
- Drain-source voltage υDS
- Gate-drain voltage υGD

Only two voltages are independent since KVL relates all three voltages to each other.

The voltages υGS and υDS are chosen as independent variables. Then,

υGD ¼ υGS � υDS ð18:1Þ

The principal difference from the BJT is that the control terminal of the transistor, the

gate, is electrically insulated. There is no current flowing into or out of the gate.

Therefore, the transistor current is the only drain current, iD, which flows from the

drain to the source in Fig. 18.3b.

Exercise 18.1: A NMOS transistor has the gate-source voltage of 2 V and drain-source

voltage of 0.3 V. What is the gate-drain voltage?

Answer: 1.7 V.

18.1.2 Simplified Principle of Operation

We consider the simplified transistor circuit shown in Fig. 18.4. Both the source and the

substrate are grounded.When υGS ¼ 0, the path between the drain and the source includes

two oppositely directed pn-junction diodes; see Fig. 18.4a. Therefore, there will be no

current between the drain and the source for any possible value of drain-source voltage υDS
since one of the diodes will always be off. Now let us assume a positive control voltage υGS
is applied to the gate control terminal and υDS ¼ 0 for simplicity. A capacitor will form

between the gate and all remaining (grounded) terminals; the initial electric field is shown

vGS

+

-

+

-

vDS

+

-

vGD

iD

iD

b)a)

D

S

G

D

S

G

Fig. 18.3. Terminal voltages and currents for the NMOS transistor.
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in Fig. 18.4b by dashed lines. This electric field attractsmore negative electron carriers to

the channel between the drain and the source and repels the positive carrier (holes) from

the channel until the initial electric field will be essentially neutralized in the bulk of the

substrate. The dependence of the electron concentration in the channel on υGS is expo-

nential, i.e., very sharp. When υGS reaches a certain threshold value VTh or exceeds it, the

MOSFET channel appears (a thin subsurface domain just below the oxide) that has

enough electron carriers to form a conducting “wire” between the drain and source as in

Fig. 18.4b. The transistor switch becomes closed and transistor conducts the current iD
from the drain to the source given any (even small) positive voltage υDS > 0. One may

think of the boundary of the n+ region in Fig. 18.4b as a “rubber band” that is pushed away

from the gate by the positive gate voltage. The value VTh is the intrinsic threshold voltage

(or simply threshold voltage) of the NMOS transistor. VTh depends on transistor geometry

and its doping concentrations. For the NMOS transistor, the threshold voltage is often

denoted by VTn and for the PMOS transistor by VTp. In the following text, we will attempt

to keep the generic notation VTh for both transistor types.

18.1.3 NMOS Capacitor

The phenomenon described above is known as channel inversion (from p- to n-type) of

the NMOS transistor. The inversion can be quantified analytically since we deal with a

Source n+ Drain n+

Gate
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p-doped Si

Gate oxideOxide Oxide

Metal
contact

Metal
contact

W

Source n+ Drain n+

Gate

Oxide Oxide
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contact

W

+ + + + + +

a)

b)

Electric field at the initial
time moment

v >VG Th vD

iDiD

v = 0 VG
vD

v = 0 VS

v = 0 VS

Fig. 18.4. Simplified NMOS configuration and creating a channel for current flow.
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homogeneous p-type material in the bulk of the channel, as you can see in Fig. 18.4b. The

central region of the NMOS transistor in Fig. 18.4 thus forms a MOS capacitor that

consists of the gate, insulator, and the p-body. We will apply the semiconductor analysis

to the MOS capacitor and use its one-dimensional electrostatic model which is shown in

Fig. 18.5a (in fact it is turned 90� counterclockwise with respect to Fig. 18.4).

The ideal MOS capacitor model will be considered first. By KVL, the voltage υGS > 0

is the sum of two positive components shown in Fig. 18.5a:

υGS ¼ V S þ VOX ð18:2Þ

The first component VS is the voltage across the semiconductor substrate, which is also

called the surface voltage or the surface potential φS ¼ V S (given zero potential at the

body terminal). The second component VOX is the voltage across the oxide layer. We will

express it in terms of the surface potentialφS ¼ V S first. Then, φS itself will be quantified

at the onset of strong inversion. Substitution of those two values in Eq. (18.2) will give us

the desired threshold voltage VTn. The corresponding analysis relies upon semiconductor

surface physics and may be skipped if necessary.

18.1.4 Voltage Across the Oxide Layer Before and at the Onset

of Strong Inversion

At any υGS > 0, the surface voltage is also positive, i.e., V S > 0. The corresponding

electric field directed into the body will push the positive holes into the depth of the
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Fig. 18.5. (a) Central region of the MOSFET under an applied voltage υGS: the MOS capacitor. (b)

to (d) Formation of the depletion and inversion layers in the substrate. The entire region close to

the semiconductor surface is called the surface space-charge region.
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substrate and leave immovable negative ions behind; this is seen in Fig. 18.5b–d. Hence,

a depletion layer will be formed, similar to the pn-junction depletion layer. Assume that

the body is uniformly doped and has an acceptor concentration NA >> ni where ni is the

intrinsic concentration of holes and electrons, ni � 1� 1010 cm�3 for Si. The depletion

layer is nearly the abrupt region of a uniform negative ion concentration NA and the width

Wd. The depletion layer width Wd may be found analytically as

W d ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2ε

q

V S

NA

r

ð18:3Þ

Here, ε is the dielectric constant of the substrate; in Si, ε ¼ 1:05� 10�12F=cm. The total

charge Q of the depletion layer per unit surface (units of C/cm2) is subsequently given by

Q ¼ �qW dNA ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2εqNAV S

p

ð18:4Þ

This is the negative charge on one side of the oxide capacitor with capacitance COX per

unit area. The charge on the opposite side (gate) must be positive and of the same absolute

value in order to keep the device electrically neutral. The voltage of the oxide capacitor is

therefore

VOX ¼ �Q=COX ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2εqNAV S

p

=COX, COX ¼ εOX=tOX ð18:5Þ

where the dielectric constant of the SiO2 oxide is εOX ¼ 3:45� 10�13F=cm and tOX is the

oxide thickness.

Example 18.1: Given V S ¼ 1 V and NA ¼ 5� 1016 cm�3 estimate the voltage across

the SiO2 oxide layer with a thickness of 4 nm; the NMOS body is Si.

Solution: We will use centimeters as length units in accordance with generally accepted

semiconductor convention. The oxide-layer capacitance is given by

COX ¼ 8:625� 10�7 F=cm2 ð18:6Þ

Substitution into Eq. (18.5) yields

VOX ¼ 0:15 V ð18:7Þ

18.1.5 Voltage Across the Semiconductor Body

At any υGS, the MOS capacitor is still a system in equilibrium (no currents of any kind) as

long as υDS is zero. Then, the electron and hole concentrations n(x) and p(x) are
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p xð Þ ¼ NA, n xð Þ ¼ n2i
NA

<< NA, n xð Þp xð Þ ¼ n2i ð18:8Þ

The last expression in Eq. (18.8) is the mass-action law of a semiconductor. When a

positive voltage υGS is applied, an electric field is established in the p-doped material

which is the negative spatial derivative of the potential distribution φ(x); see Fig. 18.5a.

The concentrations are modified by the potential φ(x). Since the potential is defined to

within a constant, one can select this constant in order to satisfy Eq. (18.8) deep in the body

when φ xð Þ ¼ 0. Equation (18.8) is therefore transformed to

p xð Þ ¼ NAexp �φ xð Þ
V T

� �

, n xð Þ ¼ n2i
NA

exp
φ xð Þ
VT

� �

, n xð Þp xð Þ ¼ n2i ð18:9Þ

where VT is the thermal voltage. The boundary condition at x ¼ 0 is simply

φ xð Þ ¼ φs ¼ V S . At the boundary of the semiconductor, i.e., at x ¼ 0, we obtain

n ¼ n2i
NA

exp
V S

VT

� �

, p ¼ NAexp �V S

VT

� �

ð18:10Þ

It is a common agreement to choose the onset of strong inversion as a surface voltage at

which the electron charge concentration n reaches NA at the boundary of the semicon-

ductor; this is depicted in Fig. 18.5c. Thus, the surface charge concentration is inverted

from p ¼ NA with no applied voltage to n ¼ NA when the channel inversion starts. From

Eq. (18.10), the surface voltage becomes

V S ¼ φS ¼ 2VTln
NA

ni

� �

¼ 2φF ð18:11Þ

where the voltage constant φF ¼ V T ln NA=ni is known as the Fermi potential of the

semiconductor. We emphasize that at the onset of strong inversion the total charge Q of

the depletion layer per unit surface given by Eq. (18.4) is still much greater than an extra

free electron charge brought close to the surface. This is because the surface concentra-

tion n ¼ NA very quickly decreases when the distance from the surface increases.

Exercise 18.2: GivenNA ¼ 5� 1016 cm�3 estimate surface voltage at the onset of strong

inversion at room temperature of 25 �C. The NMOS transistor body is Si.

Answer: V S ¼ 0:79 V

When VS continues to increase even slightly above the value predicted by Eq. (18.11),

the surface electron concentration rises exponentially according to Eq. (18.10), and a rich

n+ electron channel (or the inversion layer) is quickly formed as illustrated in Fig. 18.5d.
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When strong inversion takes place, the depletion layer width Wd no longer increases

because the inversion layer starts blocking the electric field. Its maximum value is given by

Eq. (18.3) with V S ¼ 2φF. A critical distinction between the NMOS capacitor and the

NMOS transistor is the channel formation time. While for an NMOS capacitor it can take

minutes to collect the necessary electrons from the p-doped semiconductor with few free

electrons, the inversion electrons for the transistor are readily available from two nearby

n+ regions—the source and the drain.

18.1.6 Threshold Voltage

The threshold voltage VTh of an NMOS transistor is defined as the gate-source voltage

(18.2) at the onset of strong inversion whenV S ¼ 2φB according to Eq. (18.11). VOX still

follows Eq. (18.5). Therefore,

VTh ¼ V FB þ 2φB þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2εqNA 2φBð Þ
p

=COX ð18:12Þ

The new extra term VFB on the right-hand side of Eq. (18.12) is called the flat-band

voltage of the MOS capacitor. This term is needed for two reasons. The somewhat less

important one is the presence of charges in the oxide layer due to ionic contamination.

The second, important reason is the built-in voltage or potential of a boundary between

two materials. This effect is similar to the built-in potential or voltage of the pn-junction.

The built-in voltages of the metal-oxide boundary and of the semiconductor-oxide

boundary do not cancel each other; the corresponding voltage difference is known as

a work function difference ψGS between the gate and the semiconductor; it appears across

the oxide layer (Fig. 18.6). Without going into further details, we may assume V FB

� ψGS and write

ψGSjAl � �0:66� 0:03ln
NA

1013

� �

V½ �, ψGSjnþpoly � �0:7� 0:03ln
NA

1013

� �

V½ �

ð18:13Þ
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Fig. 18.6. Work function difference ψGS as a function of body doping for gate electrodes of

polysilicon and aluminum, respectively, on a p-Si body of an NMOS transistor.
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Example 18.2: Estimate the threshold voltage VTh for a Si NMOS transistor with alumi-

num gate, NA ¼ 1� 1017 cm�3, and the SiO2 oxide layer with the thickness of 50 nm at

room temperature of 25 �C.

Solution: We will use centimeters as length units in accordance with standard semicon-

ductor convention. The surface voltage at the onset of strong inversion is given by

Eq. (18.11), i.e.,

V S ¼ 0:83 V ð18:14aÞ

The oxide-layer capacitance and oxide voltage are given by Eq. (18.5), that is,

COX ¼ 6:9� 10�8 F=cm2, VOX ¼ 2:42 V ð18:14bÞ

Finally, we findψGS ¼ �0:94 Vfrom Eq. (18.13) and substitute all three contributions into

the expression for the threshold voltage, VTh ¼ ψGSþ V S þ VOX. The result has the form

VTh ¼ 2:31 V.

It is possible to extend the method of Example 18.2 to arbitrary values of oxide

thickness tOX and body doping concentration NA. The result is shown in Fig. 18.7

where the threshold voltage is plotted as a function of NA and tOX. When the threshold

voltage is positive (heavy body doping), the NMOS transistor is the enhancement-mode

device (E-MOSFET). At light doping and small oxide thickness, the threshold voltage

becomes negative. For different enhancement-mode MOSFETs, the VTh values vary in

the range

0:4 V � VTh � 4 V ð18:15Þ

Many different methods exist to measure the threshold voltage. In practice, the threshold

voltage is defined as a voltage when the drain current reaches a certain specified value.

18.1.7 PMOS Transistor

For a PMOS transistor (p-channel MOSFET), all doping concentrations in Figs. 18.1 and

18.4 are reversed. The substrate is now of n-type, and the source and drain are heavily
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Fig. 18.7. Threshold voltage as a function of NA and tOX (Al gate).
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doped p+ regions. Consequently, all voltage polarities are reversed relative to their

counterparts in the NMOS case. The PMOS and NMOS transistors are two complemen-

tary devices. Figure 18.8 shows the circuit symbols for the PMOS transistor. We put the

source on top in accordance with a more positive voltage applied to it.

The threshold voltage between the gate and the source also becomes negative. Spe-

cifically, Eq. (18.12) for the PMOS transistor is modified as

VTh ¼ V FB � 2φB �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2εqND 2φBð Þ
p

=COX ð18:14Þ

where V FB � ψGS and ψGS is given by two upper curves in Fig. 18.6.

Exercise 18.3: In Example 18.2, invert all doping concentrations and find the threshold

voltage of the corresponding PMOS transistor.

Answer: V Th � �3:3 V.

18.1.8 Oxide Thicknesses and Capacitances in CMOS Processes

MOSFETs used in integrated circuits are fabricated in a number of CMOS processes.

Each process is characterized by the minimum channel length L as seen in Fig. 18.1.

Smaller lengths allow us to pack a greater number of transistors per unit area. The CMOS

design is constantly evolving so as to decrease the channel length. Table 18.1 lists some

CMOS device parameters: oxide layer thickness and oxide capacitance used in the design

of analog ICs. This information helps to find the threshold voltages of the transistors.

G

S

D

G B

a) b)

G

c)

S

D

S

D

iD

iD

Fig. 18.8. Circuit symbols of (a) a four-terminal PMOS transistor, (b) a three-terminal asymmetric

PMOS transistor with the body tied to the source, and (c) the same but simplified symbol.

Table 18.1. Minimum channel lengths and oxide layer thicknesses and oxide capacitances for

different CMOS processes. 1 fF=μm2 ¼ 10�7F=cm2 and εOX ¼ 3:45� 10�13F=cm(SiO2 oxide).

Parameter

0.5-μm process 0.25-μm process 0.18-μm process 0.13-μm process

NMOS PMOS NMOS PMOS NMOS PMOS NMOS PMOS

tOX (nm) 9 9 6 6 4 4 2.7 2.7

COX ¼ εOX
tOX

fF=μm2ð Þ 3.8 3.8 5.8 5.8 8.6 8.6 12.8 12.8
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18.1.9 Family Tree of FETs

The MOSFET is not the only member of the field-effect transistor family. In contrast to

the BJT, this device family is extensive. Figure 18.9 lists three examples. Let us first

discuss the idea of W. Shockley (1952) for the junction FET (JFET). We can use a

depletion region of the reverse-biased pn-junction to control, i.e., reduce or increase, the

net channel opening b between the drain and the source in Fig. 18.10a. This is the JFET

composition. When current flows from the drain to the source, the device becomes a

voltage-controlled resistor, with the control voltage being the reverse-bias voltage of the

pn-junction. Indeed there is still no gate current since the reverse-biased pn-junction is a

very good insulator. A similar situation applies for the MESFET (metal–semiconductor

FET) in Fig. 18.10b. However, here the origin of the depletion layer is different, i.e., the

metal–semiconductor interface and the corresponding Schottky potential barrier.

MESFETs constructed with Si, and especially gallium arsenide (GaAs), are typically

used in RF power amplifiers. Many additional FET types exist or are still awaiting

discovery.

FET

insulator (oxide) gate

pn-junction gate

Schottky-diode gate

JFET (Shockley 1952)

MOSFET
(Lilienfeld 1925)

MESFET
(Mead 1966)

Fig. 18.9. Modifications of the field-effect transistor involving different types of gates.
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Fig. 18.10. Two schematic FETconfigurations: (a) n-channel JFETand (b) n-channel MESFET. A

variant for both configurations is the dual gate arrangement. You should note that the corresponding

circuit symbols have a continuous gate, denoting the normally “on” state.
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Section 18.2 Theoretical Model of a MOSFET

18.2.1 Test Circuit and Operating Regions

Figure 18.11 shows the test circuit for the three-terminal NMOS transistor. Gate-source

voltage υGS and drain-source voltage υDS are varied. The drain current iD is measured at

every particular voltage combination. Our goal is to derive analytical expressions for the

drain current iD. The analytical models described below rely on the corresponding

measured data, which have been obtained with circuits similar to that in Fig. 18.11.

The NMOS (and PMOS) transistor has three operating regions: triode, saturation, and

cutoff listed in Table 18.2. All three regions are used. Most common MOSFET switching

circuits like logic gates utilize the cutoff and triode regions in order to characterize two

binary steady states—logic 0 and 1. However, during the fast transition between the

states, the transistors enter the saturation region. MOSFET amplifier circuits solely utilize

the saturation region of operation.

The regions of operation are determined by the value of υDS as compared to the control

voltage υGS. The triode region starts with a linear (or ohmic) subregion. Table 18.2 indicates

one more useful voltage parameter: the overdrive voltage υOV ¼ υGS � VTh. The NMOS

transistor typically operates at large overdrive voltages.

iD

D

S

G +

-

vDS

0V

+

-

vGS

A
+

-

Fig. 18.11. Schematic diagram of the NMOS transistor test circuit.

Table 18.2. The three operating regions of an NMOS transistor.

Region Condition on υGS Condition on υDS

Triode υGS > VTh υDS < υGS � VTh ¼ υOV

Saturation υGS > VTh υDS > υGS � VTh ¼ υOV

Cutoff υGS � VTh Immaterial
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18.2.2 Linear Subregion of Triode Region at Strong Inversion

Let us consider a situation when a large enough gate voltage (typically significantly

larger than VTh) is applied to induce the inversion layer between the drain and the source.

The cross section of the NMOS transistor is shown in Fig. 18.12. This is a

two-dimensional structure. For the analytical description, the electric field is conveniently

subdivided into two components: one is in the horizontal direction from gate to body

termination, and the other is in the vertical direction from drain to source. Henceforth,

two sets of associated voltages (potentials) should describe the 2D models. We analyze

fields and voltages in the horizontal direction first.

When the drain is at zero volts or at a small positive voltage with respect to the source

(body), the gate-source voltage appears to be nearly uniform in space along the length of

the channel L; this is seen in Fig. 18.12a. The charge density in the inversion layer per unit

area QINV measured in C/cm2 is also uniform when the distance x along the channel

changes. To find QINV the following observation is made. The threshold voltage VTh is

responsible for creating the depletion layer in the semiconductor body at the onset of

strong inversion. Any excess or overdrive voltage υOV ¼ υGS � VThð Þ thus controls QINV

in the inversion layer since the depletion layer parameters no longer change. QINV is the

negative charge on one side of the oxide capacitor with capacitance COX per unit area. The

charge on the opposite side (gate) must be positive and of the same absolute value in order

to keep the device electrically neutral. Therefore,

QINV ¼ �COX υGS � V Thð Þ ð18:15Þ

We now turn to the vertical fields. The drain current iD in Fig. 18.12 is the motion of

charge QINV with speed υ ¼ μnsE in the (vertical) constant electric fieldE ¼ υDS=Lwhere
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Fig. 18.12. Voltage distribution across the channel in the triode region. The linear charge and

voltage profiles in Fig. 18.12b are an approximation.
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μns is the electron surface mobility; μns � 450cm2= V � sð Þ or less. The drain current that

flows from drain to source is thus given by (W is the channel width)

iD ¼ �WQINVυ ¼
W

L
k
0

n υGS � V Thð ÞυDS, k
0

n ¼ COXμns ð18:16Þ

The constant k
0
n with units of A/V2 (more often mA/V2) is called the process transcon-

ductance parameter. The name implies that it is determined by the particular fabrication

technology. The constant kn ¼ W=Lð Þk 0

n with the same units is the MOSFET transcon-

ductance parameter (also called the lumped process parameter); it also includes infor-

mation about the gate dimensions. Typically, kn is on order of 1 mA per V2 or less for

small-signal MOSFET transistors. For power MOSFETs, however, it can be much larger:

on the order of 100 mA per V2. Equation (18.16) states that at small positive υDS the

NMOS transistor behaves like a linear resistance rDS, which is controlled by the gate-

source voltage,

iD ¼ υDS

rDS
, rDS ¼

1

kn υGS � VThð Þ ð18:17Þ

The resistance rDS can be measured in the laboratory. It is also called the turn-on

resistance. This resistance of a MOSFET is a key parameter that is typically specified

in the manufacturer’s datasheets (in contrast to kn).

18.2.3 Nonlinear Subregion of Triode Region at Strong Inversion

When υDS increases (but still remains less than υGS � V Th ), the situation depicted in

Fig. 18.12b is observed. Close to the source region, the gate still “sees” the absolute

source voltage (0 V in this case) as the terminal voltage. However, close to the drain, the

gate does not “see” 0 V, but sees the drain voltage as the terminal voltage. The resulting

voltage becomes υGD ¼ υGS � υDS. Therefore, a variable gate-source voltage υGS(x) is

effectively applied across the channel. The tip of the inversion layer becomes thinner,

which is schematically shown in Fig. 18.12b. Introducing an as-yet unknown channel

voltage profile y(x), we have

υGS xð Þ ¼ υGS � y xð ÞυDS, y xð Þ ¼ 0 x ¼ 0

1 x ¼ L

�

ð18:18aÞ

Consequently, the charge of the inversion layer given by Eq. (18.15) also becomes a

function of x as illustrated in Fig. 18.12b:

QINV xð Þ ¼ �COX υGS xð Þ � VThð Þ ¼ �COX VOV � y xð ÞυDSð Þ ð18:18bÞ

The vertical potential electric field in the channel is now variable too, that is,
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E xð Þ ¼ � dυGS xð Þ
dx

¼ υDS
dy

dx
ð18:18cÞ

Next, the current along the inversion layer, iD ¼ �WQINVυ, becomes

iD ¼ �WQINVμnsE xð Þ ¼ Wk
0

nυDS VOV � y xð ÞυDSð Þ dy xð Þ
dx

ð18:18dÞ

By KCL, the current along the inversion layer must remain constant. If this condition is

enforced, Eq. (18.18c) becomes a nonlinear ODE augmented with the boundary condi-

tions Eq. (18.18a). It allows us to find the voltage profile y(x) along the channel

analytically. The corresponding solution has the form (the proof is suggested as one of

the homework problems)

y xð Þ ¼ m�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2 � 2m� 1ð Þ x
L

r

,
dy

dx
¼ 1

L

m� 0:5

m� y xð Þ , m ¼ υOV

υDS
ð18:18eÞ

The profile y(x) is quite linear (� x=L) everywhere in the channel at small υDS and close to
the source for any υDS, but it becomes steeper when approaching the drain at large υDS.

Since all channel parameters are now defined, the transistor current can be calculated by

picking up any point along the channel. An alternative and more common approach is to

integrate Eq. (18.18d) from x to L and use boundary conditions Eq. (18.18a) along with

the constant-current condition. Either method gives the simple final expression for the

drain current in the form:

iD ¼ kn υGS �
1

2
υDS � VTh

� �

υDS ð18:19Þ

Equation (18.19) reveals a nonlinear (parabolic) dependence of iD on υDS; this is an exact

result. We could still use Eq. (18.17) too. However, rDS is no longer constant; it becomes

voltage dependent, i.e.,

rDS ¼
1

kn υGS � 1
2
υDS � V Th

� � ð18:20Þ

and increases with increasing υDS. When the drain-source voltage υDS is small compared

to υGS � V Th, the nonlinear MOSFET model is reduced to a linear one. Equation (18.19)

becomes asymptotically equivalent to Eq. (18.16), and Eq. (18.20) reduces to Eq. (18.17).

18.2.4 Saturation Region

As υDS continues to increase and eventually reachυGS � V Th, the tip of the inversion layer

in Fig. 18.12b becomes infinitely thin since the inversion layer charge in Eq. (18.18b) is
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exactly zero atx ¼ L. This effect is known as the channel pinch-off. It determines entering

the saturation region of a MOSFET. The terminal drain current (saturation current) is

found from Eq. (18.19) to be

iDsat ¼
1

2
knV

2
OV ¼ 1

2
kn υGS � V Thð Þ2 ð18:21aÞ

This corresponding drain-source voltage is known as the drain saturation voltage:

υDSsat ¼ VOV ¼ υGS � VTh ð18:21bÞ

While the MOSFET model correctly estimates the saturation voltage and the saturation

current, it has one major drawback: the finite current at zero inversion charge would

imply infinite carrier velocity. This contradiction has its roots in semiconductor physics.

Figure 18.13 provides an explanation. The carrier velocity in a semiconductor cannot

exceed a certain value υ � υsat, which is known as the saturation velocity. An excess

electric field (or voltage) applied to accelerate carriers even further will result in the

generation of certain optical phonons (atom vibrations that light) and the loss of extra

kinetic energy. Thus, the artificial carrier-free pinch-off region is in fact a small velocity

saturation region that appears near the drain in Fig. 18.13.

The model of the MOSFET in saturation shown in Fig. 18.13 is quantified as follows.

A portion of υDS equal to the overdrive voltage, υGS � VTh, is spent to create the tapered

channel with the saturation drain current given by Eq. (18.21a). At the end of this

channel, we enter the velocity saturation region. Any excess portion of υDS is applied

solely to the velocity saturation region. However, such an excess voltage does not change

the inversion charge in this region:

v -VGS Th

-

+

x

Source

-+

VDS

-

+

remainder of VDS

velocity saturation region

iDsat

Drain

0

~L

QINV

-- - -

-- -

--

vsat
-

Fig. 18.13. Channel behavior at saturation voltage and beyond and voltage drops across the

respective channel areas. The charge profile is an exact nonlinear solution of Eq. (18.18).

Chapter 18 MOS Field-Effect Transistor (MOSFET)

XVIII-936



QINV ¼ �iDsat= Wυsatð Þ ð18:22Þ

since the carrier velocity is fixed at υsat. Instead, the electric field energy is transformed

into lattice vibrations. An important conclusion is that the drain current does not change

either with increasing υDS above the overdrive voltage, υGS � VTh. It remains equal to

iDsat from Eq. (18.21a).

18.2.5 The v-i Dependencies

Table 18.3 summarizes the simple yet accurate model of the NMOS transistor established

in this section.

Example 18.3: A NMOS transistor has the following parameters: VTh ¼ 2 V and

kn ¼ 3 mA=V2. Plot the drain current for source-drain voltages from the interval υDS ¼
0�9½ � V and at three values of the gate-source voltage υGS ¼ 3, 4, and 5 V on the same

figure.

Solution: We determine the saturation voltages first. According to the definition,

υDSsat ¼ υGS � VTh ¼ 1, 2, and 3 V. Below these voltages, the triode model

Eq. (18.23a) is used. It results in a parabola, whose top point is exactly at the saturation

voltage. Above those voltages, the current remains constant; it is equal to the saturation

current from Eq. (18.23b). The corresponding values are iDGS ¼ 1:5, 6, and 13:5 mA.

The result is shown in Fig. 18.14a. Note that the boundary between the two regions (triode

and saturation) is another parabola:

iD ¼ 0:5knυDS
2 ð18:24Þ

Also note the linear subregion of the triode region at small drain-source voltages.

Table 18.3. Model of the NMOS transistor.

Region Conditions on υGS and υDS Drain current iD

Triode υGS > V Th

υDS < υGS � VTh

iD ¼ kn υGS � VThð ÞυDS � 1
2
υ2DS

� �
(18.23a)

Saturation υGS > V Th

υDS 	 υGS � VTh

iD ¼ 1
2
kn υGS � V Thð Þ2 (18.23b)

(index sat is omitted)

Cutoff υGS � V Th iD ¼ 0 (18.23c)
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Example 18.4: An enhancement-mode NMOS transistor is characterized by

kn ¼ 4 mA=V2. For a given set of bias voltages, determine the region of operation and

calculate the transistor’s drain current:

A. υGS ¼ 3 V, υDS ¼ 10 V, and VTh ¼ 2 V:
B. υGS ¼ �2 V, υDS ¼ 10 V, and VTh ¼ 1 V:
C. υGS ¼ 3 V, υDS ¼ 2 V, and V Th ¼ 2 V:
D. υGS ¼ 3 V, υDS ¼ 0:5 V, and VTh ¼ 2 V:

Solution: We inspect the inequalities from Table 18.3. Case A then corresponds to

saturation, Case B to cutoff (irrespective of drain-to-source voltage), Case C to saturation,

and Case D corresponds to the triode region. The transistor current (drain current iD) is

given by Eq. (18.23). Therefore, one has

A iD ¼ 2 mA, B iD ¼ 0 mA, C iD ¼ 2 mA, and D iD ¼ 1:5 mA.

Exercise 18.4: For the circuit of Fig. 18.11, determine the region of MOSFEToperation as

well as the drain current iD for each set of conditions given. Assume kn ¼ 90 mA=V2 and

VTh ¼ 2 V for the general-purpose 2 N7000 MOSFET.

A. υGS ¼ 4:5 V, υDS ¼ 2 V:
B. υGS ¼ 4:5 V, υDS ¼ 8 V:
C. υGS ¼ 1:5 V, υDS ¼ 8 V:

Answer:

A) Triode, iD ¼270 mA. B) Saturation, iD¼ 281 mA. C) Cutoff, iD¼ 0.

0
0 2 4 6 8

i , mAD

v , VDS

V =5 VGS

n-channel MOSFET

V =3 VGS

V =4 VGS

4

8

12

16

20

triode

saturation

cutoff (V < V =2V)GS Th

a)

0
0 2 4 6 8

i , mAD

v , VSD

V =5 VSG

p-channel MOSFET

V =3 VSG

V =4 VSG

4

8

12

16

20

triode

saturation

cutoff (V < |V |=2V)SG Th

b)

Fig. 18.14. (a) Drain current as a function of the drain-source voltage for an NMOS transistor with

VTh ¼ 2 V and kn ¼ 3 mA=V2. (b) Drain current as a function of the source-drain voltage for a

PMOS transistor with V Thj j ¼ 2 V and kp ¼ 3 mA=V2.
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18.2.6 PMOS Transistor

A similar analysis can be repeated for the PMOS transistor with inverted doping concen-

trations. Table 18.4 summarizes the model of the PMOS transistor. The corresponding test

circuit is shown in Fig. 18.15. Note that the |VTh| is used since VTh itself is negative. Also

note that υSG and υSD are both positive. Table 18.4 is identical to Table 18.3 to within the

substitutions υGS ! υSG, υDS ! υSD, and V Thj j ! VTh.

Exercise 18.5: Solve Example 18.3 for the PMOS transistor with VThj j ¼ 2 V,

kp ¼ 3 mA=V2, and υSG ¼ 3, 4, and 5 V.

Answer: The solution is shown in Fig. 18.14b.

18.2.7 Large-Signal MOSFET Model in Saturation

The saturation region of a MOSFET is important for amplifier applications and for fast

digital switching circuits. Consider the NMOS transistor: according to Table 18.3, the

transistor behaves as a constant-current source in the saturation region for any value of

υDS > υGS � VTh. However, if the gate-source voltage υGS is now varied, the MOSFET

becomes a voltage-controlled current source with respect to υGS, as long as it remains in

the saturation region. The corresponding result is given by Eq. (18.23b), which is valid

for υDS > υGS � VTh and υGS > VTh. This is a parabolic dependence. Figure 18.16

Table 18.4. Model of the PMOS transistor.

Region Conditions on υSG and υSD Drain current iD 	 0

Triode υSG > VThj j
υSD < υSG � V Thj j

iD ¼ kp υSG � VThj jð ÞυSD � 1
2
υ2SD

� �
(18.25a)

Saturation υSG > VThj j
υSD 	 υSG � V Thj j

iD ¼ 1
2
kp υSG � VThj jð Þ2 (18.25b)
(index sat is omitted)

Cutoff υSG < VThj j iD ¼ 0 (18.25c)

D

+

-
vSD

0V

+

-

vSG

A
+

-

S

G

iD

Fig. 18.15. Schematic diagram of the PMOS transistor test circuit.
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illustrates its behavior for kp ¼ 90 mA=V2 and a threshold voltage of 2 V. The parabola

in Fig. 18.16 is known as the transconductance curve of the MOSFET, which expresses

the output current iD in terms of υGS. The transconductance curve terminates at

υGS ¼ VTh.

Figure 18.17 shows the equivalent circuit representation of the NMOS transistor in the

saturation region. The voltage-controlled nonlinear current source is described by the

dependence iD ¼ 1
2
kn υGS � VThð Þ2. This is the large-signal MOSFET model in satura-

tion, which is valid for any values of υGS and iD, both under DC and AC conditions. A

similar model is established for the PMOS transistor.

18.2.8 Device Parameters in CMOS Processes

In order to determine the MOSFET model, we need to know the MOSFET transcon-

ductance parameter kn or kp. Their values are determined by oxide capacitance COX and

electron/hole surface mobility μns/ μps, along with gate dimensions L andW. Table 18.5 is

an extension of Table 18.1; it provides the corresponding information for CMOS

processes used in the design of analog ICs. This information may be used to find the

corresponding transconductance parameter (the lumped process parameter).

saturation

0 2 4 6 8
v , VGS

i , mAD n-channel MOSFET

cutoff

0

4

8

12

16

20

VTh

Fig. 18.16. Transconductance curve of the NMOS transistor (iD versus υGS).
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iD
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=

Fig. 18.17. MOSFET large-signal (nonlinear) current source model.

Chapter 18 MOS Field-Effect Transistor (MOSFET)

XVIII-940



Table 18.5. Minimum channel lengths, oxide capacitances, and surface mobilities for some

CMOS processes. Note that 1 fF=μm2 ¼ 10�7F=cm2, εOX ¼ 3:45� 10-13F=cm (SiO2 oxide).

Parameter

0.5-μm process 0.25-μm process 0.18-μm process 0.13-μm process

NMOS PMOS NMOS PMOS NMOS PMOS NMOS PMOS

COX ¼ εOX
tOX

fF=μm2ð Þ 3.8 3.8 5.8 5.8 8.6 8.6 12.8 12.8

μns cm2= V � sð Þ or
μps cm2= V � sð Þ

500 180 460 160 450 100 400 100

VTh (V) 0.7 �0.8 0.5 �0.6 0.5 �0.5 0.4 �0.4
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Section 18.3 MOSFET Switching and Bias Circuits

All problems in this section assume DC steady-state analysis. This is also valid for digital

switching circuits where we will ignore the transition region between the two stable states.

Still, transistor terminal voltages and drain current (in contrast to the supply voltages) will be

denoted by small letters to emphasize that many results of this section are also applicable to

the variable signals, either in the exact form or approximately.

18.3.1 Triode Region for Switching Circuits: Device Parameter Extraction

Turn-On Resistance and Its Behavior
Consider switching applications where values of υDS are expected to be near 0 Vand much

less than the overdrive voltageυGS � VTh. In this case, the v-i characteristic of theMOSFET

belongs to the linear subregion of the triode region; this is seen in Fig. 18.18. Therefore, the

MOSFET is modeled as a DC resistance (turn-on resistance), rDS.

The value of this resistance is easily found by finding the slope of the υDS � iD
characteristic at the origin and inverting the result. It is given by Eq. (18.17) of the

previous section, i.e.,

iD ¼ υDS

rDS
, rDS ¼

1

kn υGS � VThð Þ NMOS transistor ð18:26Þ

Example 18.5: A general-purpose 2N7000 NMOS transistor has the lumped process

parameter kn ¼ 90 mA=V2 and a threshold voltage of 2.0 V. The gate-source voltage is

5 V. Plot the drain current for drain-source voltages over the interval υDS ¼ 0�9½ � V and

determine the MOSFET’s turn-on resistance.

i , mAD

v , VDSv - VGS Th

0 2 4 6 8

slope=1/rDS

saturation

V =5 VGS

v , VGS

0 2 4 6 8

VTh

r ,DS
)b)a

2

10

100

1000

0

100

200

300

400

500

Fig. 18.18. MOSFET turn-on resistance rDS and its dependence on gate-source voltage for a

2 N7000 NMOS device.
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Example 18.5 (cont.):

Solution: We determine the saturation voltage first. According to the definition,

υDSsat ¼ υGS � VTh ¼ 3 V. Below this voltage the triode model Eq. (18.23a) is used;

above this voltage the saturation model Eq. (18.23b) applies, that is,

iD ¼ kn
�
υGS � VTh

�
υDS �

1

2
υ2DS

� �

, υDS < 3 V ð18:27aÞ

iD ¼ 1

2
kn υGS � VThð Þ2, υDS 	 3 V ð18:27bÞ

The result is shown in Fig. 18.18a. The turn-on resistance from Eq. (18.26) is rDS¼ 3.7 Ω.

It is important to emphasize the turn-on resistance has a strong dependence on the gate-

source voltage, as seen in Fig. 18.18b. Higher υGS (higher overdrive voltages) lead to

smaller resistances, which is usually desirable. The MOSFET turn-on resistance rDS is

typically plotted as a function of υGS for quick reference in specification sheets. Often, a

logarithmic scale plots the resistance.

Exercise 18.5: Using the data of the previous example, plot rDS as a function of υGS.

Answer: The plot is given in Fig. 18.18b. The threshold voltage is clearly seen.

Device Parameter Extraction

Although most MOSFET specification sheets provide values for VTh, most do not give

values for the lumped process parameter kn. Therefore, one convenient method of

determining the threshold voltage VTh and the lumped process parameter kn from the

MOSFET data is to select two distinct data points on the resistive characteristic similar to

Fig. 18.18b, insert each into Eq. (18.6), and then solve the resulting system of two

equations for VTh and kn. This technique is often called MOSFET parameter extraction;

it is used for device modeling.

Exercise 18.6: Determine the threshold voltage VTh and the lumped process parameter kn
for a given MOSFET having the following turn-on resistances at gate-to-source voltages:

[υGS¼ 4 V, rDS¼ 500Ω] and [υGS¼ 6 V, rDS¼ 100Ω].

Answer: VTh¼ 3.5 V, kn ¼ 4 mA/V2.

Since the turn-on resistance of a MOSFET is a key parameter, it is typically specified in

manufacturer datasheets for a given pair of υGS and iD values. This information may also

be used to find rDS at other gate-source voltages as illustrated in the example that follows.
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Example 18.6: The datasheet for an IRF510 enhanced-mode n-channel power MOSFET

reports the drain-source on-state resistance:

rDS ¼ υDS=iD ¼ 0:54 Ω ð18:28aÞ

for iD ¼ 3:4A and υGS ¼ 10V. Determine rDS when υGS ¼ 5 V and 15 V, respectively.

Assume threshold voltage to be 2.0 V.

Solution: From Eq. (18.26), we find

kn ¼
1

rDS υGS � VThð Þ ¼ 232 mA=V2 ð18:28bÞ

Therefore, using the same expression for the drain-source resistance, one has

rDS ¼ 1:44 Ω for υGS ¼ 5 V, rDS ¼ 0:33 Ω for υGS ¼ 15 V ð18:28cÞ

Higher overdrive voltages lead to smaller turn-on resistances of the MOSFET.

Exercise 18.7: Solve the previous example when VTh changes to 4 V.

Answer: rDS ¼ 4:31 Ω for υGS ¼ 5 V, rDS ¼ 0:39 Ω for υGS ¼ 15 V.

18.3.2 Resistor-Switch Model in Triode Region

Equation (18.26) is valid for MOSFET switching applications where the voltage across

the MOSFET is expected to be small, 0 < υDS << υGS � VTh. Under this condition, a

simple resistor-switch model can be used for the NMOS transistor that is shown in

Fig. 18.19a. This model includes an ideal switch and a series resistor. Similar to the

NMOS transistor, the resistor-switch model for the p-channel MOSFET is developed in

exactly the same way; it is shown in Fig. 18.19b. This model is valid for 0 < υSD << υSG

�
�
�V Th

�
�; see Table 18.4 for the PMOS transistor polarities. Care must be taken, however,

not to mix the NMOS and PMOS parameters together in the same equations. When both

devices are used, an additional subscript of n or p is generally desirable to distinguish

between them. In addition, the threshold voltage for the PMOS device is specified as a

negative number. Therefore, its absolute value is employed when defining the turn-on

resistance in the form

iD ¼ υSD

rDS
> 0, rDS ¼

1

kp υSG � VThj jð Þ PMOS transistor ð18:29Þ
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Exercise 18.8: For the resistor-switch model in Fig. 18.19a, determine rDS given kn ¼ 90

mA=V2 and the threshold voltage of 2.0 V. The gate-source voltage is 4, 5, and 6 V.

Answer: 5.56Ω, 3.70Ω, 2.78Ω.

The resistor-switch model is applied as follows. When υGS < VTh for the NMOS

transistor, the switch in Fig. 18.19a is an open circuit. Otherwise, we assume it is a short

circuit. Similarly, when υSG < VThj j for the PMOS transistor, the switch in Fig. 18.19a is

an open circuit. Otherwise, it is a short circuit.

18.3.3 Application Example: Output Resistance of Digital Logic Gates

Use of the Resistor-Switch Model
The MOSFET resistor-switch model from Fig. 18.19 is used extensively as an estimation

tool in the design of digital logic gates shown in Fig. 18.20. The particular gate chosen is

a CMOS NOT gate or a logic inverter comprised of one PMOS and one NMOS device.

Such a configuration with two complementary MOSFETs is a ubiquitous circuit in

CMOS-based digital logic. This circuit can be implemented as a tiny building block

and replicated billions of times as part of microprocessors and memory chips, making

possible high-density microelectronic integrated circuits.

G
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=

Fig. 18.19. MOSFET resistor-switch model in the triode region.
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Fig. 18.20. A circuit with a complementary MOSFET pair; the configuration is known as a logic

CMOS inverter. Note that the output voltage is open circuited.
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The circuit in Fig. 18.20a is replaced by the resistor-switch model in Fig. 18.20b. We

assume that VDD > VTh for the NMOS transistor and VDD > VThj j for the PMOS

transistor. The circuit solution implies the inspection of gate-source voltages for either

input voltage. It results in the truth table 18.6, which indicates the state of each MOSFET

for a given input voltage and resulting output voltage. A logic “1” corresponds to a

voltage level of VDD and a logic “0” corresponds to 0 V.

Gate Output Resistance and Its Value

The output resistance of the logic gate is defined as the resistance of the equivalent

Thévenin circuit seen by the output terminal. The corresponding Thévenin voltage (either

VDD or 0 V) has no influence on the output resistance. The output resistance of the gate

will vary. For the NOT gate in Fig. 18.20, rOUT ¼ rDSp when the input is logic 0 and rOUT
¼ rDSnwhen the input is logic 1. Generally, rDSn 6¼ rDSp. More complicated combinations

occur for other gates such as a NAND gate shown in Fig. 18.21. The output resistance of

the gate is important in predicting the fundamental parameter of digital circuits, the gate

propagation delay, which is determined by the time constant of an RC circuit formed by

rOUT and MOSFET capacitances. Strictly speaking, the resistor-switch DC model in the

triode region loses its validity during the transition between two gate stages, where the

MOSFETs enter the saturation region. However, rOUT found with the help of this model

will still provide simple and useful design estimates.

Table 18.6. CMOS NOT gate truth table and MOSFET switch

states.

Inputs NMOS switch PMOS switch Output

0 OFF ON 1

1 ON OFF 0

VA
NMOS

a) b)

rDSn

rDSn

VDD

PMOS

VDD

PMOS

NMOS
VB

Vout

rDSp

VDD

rDSp

VDD

VA

VB

Vout

M2

M1

M3 M4

S3 S4

S1

S2

Fig. 18.21. The NAND gate with two identical PMOS transistors and two identical NMOS

transistors. The output voltage is open circuited, similar to Fig. 18.20.
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Example 18.7: For the NAND gate in Fig. 18.21a, construct the truth table and determine

the output gate resistance for every input voltage combination. Assume VDD > VTh for the

NMOS transistor and VDD > VThj j for the PMOS transistor.

Solution: The circuit in Fig. 18.21a is replaced by the resistor-switch model in Fig. 18.21b.

The gate-source voltages of every individual transistor are found by inspection. They

determine whether the transistor is on or off. If a direct conduction path from VDD to the

output results, the output voltage is VDD or logic 1. If a direct conduction path from

ground to the output occurs, the output voltage is 0 Vor logic 0. The corresponding truth

table, Table 18.7, contains an extra column where the gate output resistance is reported.

For example, when both A and B are logic 1, both NMOS devices are on, and since they

are in series the resistance between the output and ground is rDSn þ rDSn. On the other

hand, if both A and B are logic 0, both PMOS devices are on and they are wired in

parallel, so the output resistance is rDSp
�
�
�
�rDSp.

18.3.4 MOSFET Circuit Analysis at DC

Method of Assumed States
A DC circuit with MOSFET(s) is solved using the method of assumed states, similar to

the large-signal DC model for the junction transistor. Initially, we assume one of the

states—saturation, triode, or cutoff—and solve the resulting circuit. The complete large-

signal transistor models, Eq. (18.23) (Table 18.3) for the NMOS transistor and

Eq. (18.25) (Table 18.4) for the PMOS transistor, are employed. Then, the inequalities

for the transistor voltages are checked. If they are satisfied, the solution is correct. If not,

another region of operation is selected. If the transistor state found through inspection is

not cutoff, it is often convenient to assume the saturation first and solve for υDS. If this

value is larger than the effective voltage of υGS � υTh, the solution is correct. Otherwise,

the operating region is triode and the quadratic equation applies. After a certain amount of

practice, the method of assumed states, which always provides a unique solution,

becomes easy to apply.

Load-Line Analysis

The load-line analysis implies the graphical or analytical representation of the solution in

the form of an intersection of two curves: the nonlinear υDS—iD transistor dependence

Table 18.7. CMOS NAND gate truth table, MOSFET switch states, and output resistances.

Inputs NMOS PMOS Output rOUT

A B M1 M2 M3 M4

0 0 OFF OFF ON ON 1 rDS3
�
�
�
�rDS4

0 1 OFF ON ON OFF 1 rDS3

1 0 ON OFF OFF ON 1 rDS4

1 1 ON ON OFF OFF 0 rDS1 þ rDS2
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and the linear Ohm’s law for the (load) resistor expressed in terms of the same two

quantities. Examples that follow will illustrate the load-line method.

Example 18.8: Consider a gate-bias (or fixed-gate) NMOS transistor circuit shown in

Fig. 18.22. An NMOS transistor has the lumped process parameter kn ¼ 1:0 mA=V2 and a

threshold voltage of 1.0 V. The gate-source voltage is 5 V. Solve the circuit, i.e., find drain-

source voltage υDS and current iD.

Solution: SinceυGS > VTh, the transistor is ON; it is either in the saturation region or in the

triode region. We make a guess and assume that the device operates in the saturation

region; this yields

iD ¼ kn

2
υGS � VThð Þ2 ¼ 8 mA ð18:29aÞ

Therefore, VRD ¼ RDiD ¼ 8 V. The drain-source voltage, by KVL, gives

VDS ¼ 20 V� 8 V ¼ 12 V ð18:29bÞ

The condition of the saturation region VDS > VGS � V Th ¼ 4 V is satisfied; the drain

current is 8 mA. The circuit is thus solved.

A check of other operation regions will yield all negative results. The graphical form of the

solution is shown in Fig. 18.23a. We plot the transistor current given either by iD ¼ kn

υGS � VThð ÞυDS � 1
2
υ2DS

� �
in the triode region or by Eq. (18.29a) in the saturation region.

Simultaneously, the general linear load line iD ¼ VDD � υDSð Þ=RD plots the same current

but found using the Ohm’s law for the resistor RD. The intersection of two of them

corresponds to the solution for the drain-source voltage. This intersection clearly occurs

in the saturation region. The boundary between the triode and saturation regions is a

parabola iD ¼ 0:5k
0

nυ
2
DS, which follows from Eq. (18.29a) with υDS ¼ υGS � V Th.

vGS

+

-

+

-

vDS

20 V=VDD

1.0 k =RD

+

-

VGS

+

-

vRD

G

D

S

k =1.0 mA/Vn

2

V =1 VTh

Fig. 18.22. Gate-bias NMOS transistor circuit; it is the bias circuit for the common-source

MOSFET amplifier.
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Example 18.9: Repeat the previous example when the gate-source voltage changes from

5 V to 7 V.

Solution: As long as υGS > VTh, the transistor is ON. We select the saturation region and

find iD ¼ 0:5kn υGS � V Thð Þ2 ¼ 18 mA. Therefore, VDS ¼ 20 V� 18 V ¼ 2 V. However,

the condition of the saturation region VDS > VGS � VTh ¼ 6 V is not satisfied. The triode

region must be therefore chosen. In the triode region, we have to assume

iD ¼ kn υGS � VThð Þð υDS � 1
2
υ2DSÞ. However, Ohm’s law for the resistor predicts the linear

dependence in the form of the load line iD ¼ VDD � υDSð Þ=RD. Setting both results equal to

each other, we obtain a quadratic equation in υDS

20 V-υDS

RD

¼ kn υGS � V Thð ÞυDS � 0:5υ2DS
� �

ð18:30Þ

This equation is reduced to 20 � υDS ¼ 6υDS � 0:5υ2DS. It can be solved directly using a

calculator. There are two roots: υDS ¼ 4 V and υDS ¼ 10 V. The second (larger) root is

non-physical since it is located within the already abandoned saturation region. The first

root is the true solution; the corresponding drain current is given by 16 mA. The graphical

form of the solution is shown in Fig. 18.23b. We again plot the υDS—iD transistor curve

along with linear load line iD ¼ VDD � υDSð Þ=RD. There are two intersections

corresponding to the two roots for υDS obtained above. The load line method provides

physical insight into the problem and the ability to modify the solution in a controlled way

if necessary. For example, with reference to Fig. 18.23 we can decide which circuit

parameters need to be changed to move the solution from the triode to the saturation

region and vice versa.

0 5 10 15

i , mAD

v , VDS

triode saturation

load line: i =(20-v )/RD DS D

a) b)

solution

0

4

8

12

16

20

v -VGS Th

5

0 5 10 15v , VDS
v -VGS Th

load line: i =(20-v )/RD DS D
solution

invalid point

triode saturation

i , mAD

Fig. 18.23. Graphical representation of the solution for the DC circuit in Fig. 18.22 and intersec-

tion of the load line with the υDS—iD curve. (a) NMOS transistor in saturation and (b) NMOS

transistor in triode region.
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Exercise 18.9: In the circuit shown in Fig. 18.22 we use the model that represents the

2N7000 NMOS transistor from Fairchild with the lumped process parameter kn ¼ 90 m

A=V2 and the threshold voltage of 2.0 V. Find the drain-source voltage υDS and the drain

current iD given RD ¼ 25 Ω, VGS ¼ 5 V, and VDD ¼ 10 V.

Answer:

υDS¼ 1.720 V, iD¼ 331.2 mA.

The circuit in Fig. 18.22 is the bias circuit for the common-source MOSFET small-

signal amplifier considered in the next section. Note that the drain resistor RD and the

(variable) transistor resistance rDS essentially form a voltage divider and thus enable

proper amplifier operation (sufficient voltage swing). This situation is similar to voltage

dividers used as sensors.

Exercise 18.10: The circuit shown in Fig. 18.24a is the diode-connected MOSFET. This

terminology is adopted from the BJT analysis: the BJT connected in a similar fashion

operates like a diode. The configuration shown is a part of the current mirror used in

integrated circuits. Determine drain current iD given VDD ¼ 5 V, the lumped process

parameter kn ¼ 10 mA=V2, and the threshold voltage of 2.0 V.

Answer:

iD¼ 45 mA.

Exercise 18.11: The circuit shown in Fig. 18.24b is the diode-connected MOSFET with

the drain resistance. It can be used to quickly estimate the threshold voltage VTh of a

particular MOSFET in the laboratory at condition υGS ¼ υDS (which is not exactly the

theoretical condition of υDS ! 0) and at a certain (usually very small) value of the drain

current. Determine the MOSFET’s threshold voltage VTh if the circuit in Fig. 18.24b, with

RD ¼ 100 kΩ, VDD ¼ 12 V, measures a current of iD ¼ 100 μA.

Answer:

VTh ¼ υGS ¼ υDS ¼ 2 V.

iD

VDD

G

D

S

iD

VDD

G

D

S

RD

a) b)

Fig. 18.24. Diode-connected MOSFET circuit with υGS ¼ υDS.
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18.3.5 Application Example: Basic MOSFET Actuator

The circuit shown in Fig. 18.25 is a straightforward modification of the gate-bias circuit

from Fig. 18.22. We simply replace the second voltage supply VGS by a voltage divider

connected to the gate. This voltage divider operates independently in the sense that it is

not affected by the gate connection since there is no current into the gate of the MOSFET.

Given the fixed resistor values, this circuit may be employed as a bias circuit for the

small-signal MOSFET amplifiers. Its advantage is in using only one voltage supply VDD.

Yet another application is a basic MOSFET actuator device which turns on the motor or

another power load, when the sensor reading – output of the voltage divider with a

sensing resistive element R1—requires doing so. For higher-power loads, a power

MOSFET should be used.

Exercise 18.12: For the circuit shown in Fig. 18.25, choose values for R1 and R2 to

establish a drain current of 20 mA in the MOSFET. Assume RD ¼ 0. You are given

VDD ¼ 5 V, the lumped process parameter kn ¼ 90 mA=V2, and the threshold voltage of

2.0 V. Also, limit the voltage divider current to 20 μA.

Answer: R1¼116.7 kΩ, R2¼ 133.3 kΩ.

To be specific, R1 is the resistance of a NTC-503 thermistor operating as

R1 ¼ 50 kΩ at 25 �C room temperatureð Þ
R1 ¼ 30 kΩ at 37 �C

The second resistance of the voltage divider is fixed at R2 ¼ 12 kΩ. Further, a hypothet-

ical n-channel power MOSFETwithVTh ¼ 2 V and kn ¼261 mA/V2 is considered as an

example. The goal is to turn on a small 5-V DC fan motor of 0.4-W power with the

equivalent load resistance RD ¼ 80 Ω if the temperature in a room (or in an enclosure)

reaches 37 �C.

iD

R2

R1

vGS

+

-
+

-

vDS

VDD

RD

+

-

vRD

G

D

S

VDD

Fig. 18.25. Gate-bias NMOS transistor circuit with the voltage divider.
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Exercise 18.13: Determine the load current iD and load voltage υD in Fig. 18.5 when

VDD ¼ 10 V and

A. R1 ¼ 50 kΩ (room temperature).

B. R1 ¼ 30 kΩ (temperature of 37 �C).

Other device parameters are given in the text above.

Answer: A) Load current and voltages are zero; the transistor is at cutoff.

B) The transistor is in saturation; the load current is 96 mA and the load

voltage is 7.7 V.

Various sensing elements (e.g., a photoresistor instead of a thermistor) and various DC

motors may be used. Figure 18.26 illustrates the circuit operation with a thermistor and a

more powerful 12-V motor. The basic design in Fig. 18.25 is not very practical since it

suffers from variations of the MOSFET threshold voltage and other device parameters

including the motor’s starting current. A modification involves the use of a potentiometer

instead of the fixed resistance R2 and tuning the circuit to the proper operation region.

12 V DC motor

IRF520 power

MOSFET
thermistor

fixed resistor

a) b)

voltage
divider

Fig. 18.26. MOSFET actuator circuit with a temperature sensor and a 12-V DC motor.
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Section 18.4 MOSFETAmplifier

18.4.1 MOSFET Common-Source Amplifier

For amplifier applications, the MOSFET is typically biased into the saturation region

where it behaves as a voltage-controlled current source. If a voltage output is desired, the

current can be converted to a proportional voltage drop by pulling it through a resistor as

shown in Fig. 18.27a. Figure 18.27b shows the equivalent large-signal circuit model of

the amplifier. The NMOS transistor in saturation is described by a nonlinear current

source following the large-signal model from Fig. 18.17, which is valid at any input

voltage υIN ¼ υGS. The output voltage to the amplifier is υOUT ¼ υDS. The drain-source

path forms a voltage divider between the fixed (RD) and variable resistors.

Following traditional naming schemes, when the input is at the gate and the output is at

the drain, the amplifier circuit in Fig. 18.17 is identified as the common-source amplifier.

Other amplifier configurations exist.

18.4.2 Voltage Transfer Characteristic

The voltage transfer characteristic of the MOSFET amplifier is obtained when plotting

υOUT versus υIN. We let υIN vary from 0 V all the way to VDD. For the amplifier in

Fig. 18.27, the plot includes all three regions, cutoff, saturation, and triode, when υIN
passes from 0 V to VDD. Only the saturation region is meaningful. Using the large-signal

model of the NMOS transistor and the load-line method in saturation, the complete

expression for the output voltage as a function of the input voltage may be found

analytically. The corresponding calculation results in

vGS

+

-

+

-

vOUT

VDD

RD

+

-

vIN

G

D

S

a)

iD

D

+

-

vIN

G

b)

=

+
-

vOUT

VDD

S

i =0.5k (v -V )D n IN Th

2

RD

Fig. 18.27. MOSFET common-source amplifier model.

Chapter 18 Section 18.4: MOSFET Amplifier

XVIII-953



0 � υIN � VTh υOUT ¼ VDD cutoff

VTh < υIN � 1þ sð ÞVTh υOUT ¼ VDD � kn

2
RD υIN � VThð Þ2 saturation

υIN > 1þ sð ÞVTh υOUT � min 1þ sð ÞVTh ,
rDS

rDS þ RD

VDD

� �

<< VDD triode

ð18:31Þ

In Eq. (18.31), the gate-source voltage υGS has been replaced with the input voltage υIN
and the drain-source voltage υDS has been replaced with the output voltage υOUT.

Equation (18.31) clearly indicates the usefulness of the saturation region: otherwise the

output voltage would either not change at all (cutoff) or change very little (triode, rDS is

typically ~1 Ω and is much less than RDS). The dimensionless parameter s characterizes

the width of the saturation region as a fraction of VTh; it is found by solving the quadratic

equation for υIN at the border of the saturation and triode regions, when

υOUT ¼ υIN � VTh. Its value involves both the circuit parameters and the transistor

parameters, i.e.,

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2knRDVDD

p
� 1

knRDVTh

ð18:32Þ

Exercise 18.14: Determine parameter s and the width of the saturation region (amplifier

operating region) for the amplifier circuit built with the general-purpose 2N7000 NMOS

transistor, which has the lumped process parameter kn ¼ 90 mA=V2 and the threshold

voltage of 2.0 V. The source voltage is VDD ¼ 10 V and RD ¼ 1:2 kΩ.

Answer: s ¼ 0:211; the saturation (operating) region extends from 2 V to 2.42 V. Thus, the

operating region is quite narrow.

Plotting Eq. (18.31) yields the voltage transfer characteristic for the MOSFET

common-source amplifier. To be specific, we consider the parameters from Exercise

18.14 where Fig. 18.28a shows the corresponding voltage transfer characteristic.
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18.4.3 Principle of Operation and Q-Point

The input voltage in Fig. 18.27 is a combination of a certain DC voltage plus (typically

relatively small) an input AC signal to be amplified. Then, the output voltage will be a

combination of a particular DC voltage plus an amplified replica of the AC signal; see

Fig. 18.28b. This is the amplifier concept. Mathematically, the separation of large DC

and small AC quantities is done in the form (lowercase indexes are used for small AC

signals):

υIN tð Þ ¼ V IN þ υin tð Þ υGS tð Þ ¼ VGS þ υgs tð Þ
υOUT tð Þ ¼ VOUT þ υout tð Þ or equivalentlyð Þ υDS tð Þ ¼ VDS þ υds tð Þ

iD tð Þ ¼ ID þ id tð Þ iD tð Þ ¼ ID þ id tð Þ
ð18:33Þ

The DC parameters in Eq. (18.33) correspond to the point Q in Fig. 18.28, which is

known as theDC operating point or the quiescent point of the NMOS transistor amplifier.

Sometimes, the index Q is introduced to underscore this fact. We will not introduce this

0
v , VIN

cutoff

VTh

triode

saturation

(1+s)VTh
1.0VDD

0.1VDD

0.5VDD

0

1.0VDD

VOUT

0.2VDD 0.3VDD 0.4VDD

1.0VDD

VIN

0

0.5VDD

Q - DC operating
point (bias point)

Q - DC operating
point (bias point)

a)

b)

Slope is voltage

gain Av0

zoomed in

v , VOUT

Fig. 18.28. Voltage transfer characteristic of the MOSFET common-source amplifier (a) and the

amplification principle (b). The output sinusoidal signal indicates no distortion, which is a

simplification. Circuit parameters are those from Exercise 18.14.
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index assuming that the DC parameters already correspond to the desired operating point

(i.e., are the quiescent-point parameters). The quiescent-point parameters may denote the

corresponding DC bias sources, for example, V IN ¼ VGS. The equations in (18.33) are

applicable to all MOSFET small-signal amplifier models. The DC parameters must

satisfy the large-signal DC circuit model separately, that is,

VOUT ¼ VDD � kn

2
RD V IN � VThð Þ2 ð18:34Þ

18.4.4 MOSFET Biasing for Amplifier Operation

In order to use the MOSFETas an amplifier, it is necessary to bias the output to a pointQ in

the saturation region where the transfer characteristic is fairly linear while at the same time

providing enough dynamic range for the output voltage to swing in both a positive and

negative direction. In the case of Fig. 18.28, this point has been chosen to be

VTh ¼ 2 V < V IN ¼ 2:3 V < 1þ sð ÞVTh ¼ 2:42 V ð18:35Þ

to establish VOUT ¼ 5:14 V according to Eq. (18.34). This way, a small variation in VIN

will cause a large variation in VOUT, realizing the desired amplification; see Fig. 18.28.

The amount of amplification or the open-circuit small-signal voltage gain Aυ0 is simply

the slope of the voltage transfer characteristic at this point, approximately �30 V/V in

Fig. 18.28. The negative sign indicates that the output voltage swing will be inverted with

respect to the input.

18.4.5 Small-Signal MOSFET Model and Superposition

Our goal is to solve the circuit in Fig. 18.27. In order to do so, we will introduce a small-

signal MOSFET model. The concept of the linear expansion (18.33) allows us to split the

large-signal MOSFET model used previously and depicted in Fig. 18.29a into two parts.

Both of them are shown in Fig. 18.29b and c respectively. The DC solution is still

described by the nonlinear large-signal circuit model. At the same time, the AC solution is

described by a linear small-signal MOSFET model in Fig. 18.29c. In the small-signal

model, the change in output current id is equal to a gain factor gmmultiplied by the change

in input voltage υgs. The gain factor gm is known as the small-signal MOSFET transcon-

ductance. In the small-signal model, all constant DC bias sources are replaced by ground

(the small-signal ground condition) since their voltages do not change with time; the AC

signal is thus shorted out.

According to Fig. 18.29, we solve the MOSFET amplifier circuit twice: the first time at

DC using the large-signal DC model and the second time at AC using the small-signal

model. The DC solution will provide the necessary information for the AC solution. The

complete solution is found as the sum of the DC and AC solutions, respectively. In other

words, the superposition principle applies. This is a remarkable fact given that the DC

model is inherently nonlinear.
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18.4.6 MOSFET Transconductance

In order to use the small-signal model, a value for the transconductance gm must be

determined. This can be found by plotting the drain current iD as a function of the gate-to-

source voltage υGS and finding the slope of this characteristic at the bias point. Mathe-

matically, we can use the Taylor series about the selected DC point. Substitution of

the expansions υGS ¼ VGS þ υgs, iD ¼ ID þ id into the saturation equation

iD ¼ kn
2

υGS � VThð Þ2 and the corresponding linearization yields

ID þ id ¼
kn

2
VGS þ υgs � V Th

� �2 ¼ kn

2
VGS � VThð Þ2 þ kn VGS � VThð Þυgs þ

kn

2
υ2gs

|fflffl{zfflffl}

neglected

ð18:36Þ
Therefore, in the general case,

gm ¼ kn VGS � VThð Þ A=V½ � ð18:37aÞ

or, in a practical circuit to the common-source amplifier with the bias point VIN, VOUT,

gm ¼ kn V IN � V Thð Þ A=V½ � ð18:37bÞ

The transconductance can also be expressed conveniently as a function of the drain

current bias:

gm ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

2knID
p

A=V½ � ð18:37cÞ

+
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Fig. 18.29. Splitting the large-signal MOSFET model into a large-signal DC model and a small-

signal model. This consideration applies to the common-source amplifier and to other circuits.
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Exercise 18.15: Determine transconductance gm for the common-source amplifier circuit

with the general-purpose 2N7000 NMOS transistor, which has kn ¼ 90 mA=V2, the

threshold voltage of 2.0 V, and the Q-point at V IN ¼ 2:3 V.

Answer: gm ¼ 27 mA=V.

18.4.7 Analysis of Common-Source MOSFET Amplifier

We apply the formalism of the combined large-signal/small-signal MOSFET model to

study and quantify the complete common-source amplifier configuration shown in

Fig. 18.30a.

This configuration includes a (small) input AC source υin(t) and a DC bias source VGS

¼ V IN at the input and an amplified AC voltage υout(t) and a DC bias voltageVDS ¼ VOUT

at the output. The general procedure is as follows. First, we solve the large-signal DC

model of the circuit in Fig. 18.30b with the small-signal sources set to zero, i.e., we find the

DC bias solution. Substitutions V IN $ VGS and VDS $ VOUT can be used at any time to

make the model fully compatible with the previous treatment. This solution gives us the

output DC voltage VDS, the DC drain current ID, and the small-signal MOSFET transcon-

ductance gm; see Eqs. (18.37c). Once gm is known, we may apply the small-signal

MOSFET model in Fig. 18.30c and find the major amplifier parameters of interest, the

open-circuit small-signal voltage gain Aυ0 defined by
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V +v (t)DS out
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I =0.5k (V -V )D n GS Th

2

RD

VGS

v (t)in
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c)

S

RD

v (t)in
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-

VDS
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small-signal
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DV =0DD

Fig. 18.30. Common-source amplifier circuit and its two equivalent circuit models.
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Aυ0 

υout

υin

�
�
�
�
RL¼1

ð18:38Þ

where RL is a load resistance to be connected (in general) to the amplifier’s output. Note

the small-signal ground in Fig. 20.30c. The voltage of a constant DC source does not

change with time. Therefore, this source plays the role of a ground for an AC signal,

similar to the physical ground offset by a specific constant voltage. Note that most of the

steps for the amplifier design procedure have already been outlined in the preceding

section. Also note that a capacitively coupled output voltage may be employed to

eliminate the DC voltage bias at the output.

Example 18.10: In a common-source MOSFET amplifier in Fig. 18.30a,

υin tð Þ ¼ 0:1 cos ω tð Þ V½ �. The general-purpose 2N7000 NMOS transistor is used, with kn
¼ 90 mA=V2 and V Th ¼ 2 V. Furthermore, VDD ¼ 10 V and RD ¼ 1:2 kΩ. Design the

amplifier by performing the following steps:

1. Solve the large-signal DC circuit model in Fig. 18.30b and determine VGS (and

the corresponding VDS) which assures that the Q-point (the DC operating point) is

in saturation region and there is enough dynamic range for the output voltage

to swing in both a positive and negative direction. Determine the transistor’s

transconductance.

2. Solve the small-signal circuit model in Fig. 18.30c and determine the amplified AC

voltage υout(t) and the open-circuit small-signal voltage gain Aυ0 of the amplifier.

3. Finally, plot the input and output voltages υIN tð Þ ¼ VGS þ υin tð Þ, υOUT tð Þ ¼ VDS

þυout tð Þ of the amplifier to scale over two periods.

Solution (1): The saturation region is described by Eqs. (18.31) and (18.32). For the

present DC circuit, the saturation region extends from V Th ¼ 2 V to

1þ sð ÞV Th ¼ 2:42 V. We select VGS ¼ 2:3 V in order to assure that VDS ¼ VDD �
kn
2
RD VGS � VThð Þ2 ¼ 5:14 V is approximately in the middle of the power supply region.

The small-signal transconductance is then given by gm ¼ kn VGS � VThð Þ ¼ 27 mA=V.

Solution (2): The small-signal model in Fig. 18.30c yields

υout tð Þ ¼ 0 V� gmRDυin tð Þ ¼ �3:24 cos ω tð Þ V½ � ð18:39Þ

Therefore, the open-circuit amplifier gain is given by (note the units)

Aυ0 ¼ �gmRD ¼ �32:4 V=V½ � ð18:40Þ

Solution (3): Input/output voltages of the amplifier circuit are finally given by

υIN tð Þ ¼ 2:3 þ 0:1 cos ω tð Þ V½ �,
υOUT tð Þ ¼ 5:14 � 3:24 cos ω tð Þ V½ � ð18:41Þ

They are plotted in Fig. 18.31. Note that Fig. 18.31 indicates no distortion of the output

voltage. Such a distortion happens in reality for this particular circuit.
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Fig. 18.31. Input and output voltages for the common-source amplifier from Example 18.10.
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Summary

MOSFET physical characteristics

VTh—threshold voltage (0.4–4 V for enhancement-mode n-channel MOSFET) [V]

kn ¼ W=Lð ÞCOXμns—MOSFET transconductance par. (lumped process par.) [mA/V2]

MOSFET modeling

NMOS test circuit and regions of operations (large-signal model)

Triode υGS > V Th, υDS < υGS � V Th½ �:

iD ¼ kn υGS � V Thð ÞυDS �
1

2
υ2DS

� �

Saturation υGS > V Th, υDS 	 υGS � V Th½ �:
iD ¼ 1

2
kn υGS � V Thð Þ2

Cutoff υGS � V Th½ �: iD ¼ 0

PMOS test circuit and regions of operations (large-signal model)

Triode υSG > V Thj j, υSD < υSG � V Thj j½ �:

iD ¼ kp υSG � V Thj jð ÞυSD � 1

2
υ2SD

� �

Saturation υSG > V Thj j, υSD 	 υSG � V Thj j½ �:
iD ¼ 1

2
kp υSG � V Thj jð Þ2

Cutoff υSG � V Thj j½ �: iD ¼ 0

Resistor-switch model in triode region

NMOS: iD ¼ υDS

rDS
, rDS ¼ 1

kn υGS � V Thð Þ

PMOS: iD ¼ υSD

rDS
, rDS ¼ 1

kp υSG � V Thj jð Þ
rDS may be as small as 0.3–0.5 Ω

for discrete (small-signal or power)

MOSFETS

MOSFET circuits at DC

CMOS Logic gates (two stable states correspond to triode and cutoff regions)

NOT (inverter)

Most basic and most important digital circuit

For alternative drawing see Chap. 13

(continued)
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NAND

For alternative drawing see Chap. 13

NOR

For alternative drawing see Chap. 13

AND (OR is constructed similarly)

AND=NAND+NOT

OR=NOR+NOT

For alternative drawing see Chap. 15

Method of assumed states/Load line method

(continued)
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Gate-bias circuit (all three regions are possible)

The load line: iD ¼ VDD � υDSð Þ=RD

If VGS � V Th then cutoff

If VDD > 1þ knRD

2

� �

VGS � V Thð Þ then saturation

If VDD � 1þ knRD

2

� �

VGS � V Thð Þ then triode

Gate-bias circuit with voltage divider (all three regions are possible)

Eliminates the need in the second voltage supply (VGS)

Equivalent to the previous circuit when

VGS ¼ R2

R1 þ R2

VDD or R2 ¼
VGS

VDD � VGS

R1

May be used as a bias circuit for the amplifier or as a

sensor switch when R1 (or R2) is variable and RD is the load

(light bulb, motor, etc.)

Diode-connected MOSFETS (current sources, always in saturation or cutoff)

If VDD � V Th, then iD ¼ 0 NMOS

If VDD > V Th, then iD ¼ 1

2
kn VDD � V Thð Þ2 NMOS

If VDD � V Thj j, then iD ¼ 0 PMOS

If VDD > V Thj j, then iD ¼ 1

2
kn VDD � V Thð Þ2 PMOS

Diode-connected MOSFET with resistance (always in saturation or cutoff)

If VDD � V Th, then iD ¼ 0

If VDD > V Th, then

iD ¼ VDD � V Th

RD

þ
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2knR
2
D VDD � V Thð Þ

q

knR
2
D

Used to estimate threshold voltage:

If RD is sufficiently large (iD is small) then V Th � υGS

MOSFET common-source amplifier

– Common-source amplifier = small-signal voltage amplifier

– Common-source amplifier is similar to the BJT common-emitter amplifier

– In a MOSFET amplifier, the input resistance can be made infinitely large (or kept finite

if necessary)

– An analog of the BJT emitter follower is the MOSFET source follower

(continued)
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Voltage transfer function and Q-point

0� υIN �V Th υOUT ¼VDD cutoff small υIN , not usedð Þ

V Th < υIN � 1þ sð ÞV Th υOUT ¼VDD�
kn

2
RD υIN �V Thð Þ2 saturation υIN 	V Thð Þ

υIN > 1þ sð ÞV Th υOUT <<VDD triode υIN >>V Th, not usedð Þ

s¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ2knRDVDD

p
�1

knRDV th

> 0,VGS �V Thþ
ffiffiffiffiffiffiffiffiffiffi
VDD

knRD

r

, VDS �
1

2
VDD

Amplifier circuit analysis, transconductance, and open-circuit small-signal gain

Transconductance: gm ¼ kn VGS � V Thð Þ A=V½ �
Small-signal gain: Aυ0 ¼ �gmRD V=V½ �
Input resistance: Rin ¼ 1 Ω½ �
Output resistance: Rout ¼ RD Ω½ �
Small-signal output: υout tð Þ ¼ �A0υυin tð Þ
Input with DC bias: υIN tð Þ ¼ VGS þ υin tð Þ
Output with DC bias: υOUT tð Þ ¼ VDS � A0υυin tð Þ
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Problems
18.1 Principle of Operation

and Threshold Voltage

18.1.1 Physical Structure: Terminal

Voltages and Currents

18.1.2 Simplified Principle of Operation
Problem 18.1.What do the abbreviations FET,

MOSFET, and CMOS stand for?

Problem 18.2. Draw circuit symbols of:

A. Four-terminal symmetric NMOS

transistor

B. Three-terminal asymmetric NMOS tran-

sistor with the body tied to the source and

C. The same but simplified symbol

For B and C, label transistor currents and tran-

sistor voltages.

Problem 18.3. Repeat the previous problem for

the PMOS transistor.

Problem 18.4. An NMOS transistor has

A. The gate-drain voltage of�2 Vand gate-

source voltage of 1 V

B. The source current of 1 mA

What is the drain-source voltage? What is the

drain current?

Problem 18.5. Repeat the previous problem for

the PMOS transistor.

18.1.3 NMOS Capacitor

18.1.4 Voltage Across the Oxide Layer

18.1.5 Voltage Across the Semiconductor

Body

18.1.6 Threshold Voltage

18.1.7 PMOS Transistor

18.1.8 Oxide Thicknesses and Capaci-

tances in CMOS Processes
Problem 18.6. Given the semiconductor sur-

face potentialϕS ¼ 2 Vand the uniform accep-

tor concentration 5� 1016 cm�3 for the p-body

of the NMOS transistor, estimate the voltage

across the SiO2 oxide layer with the thickness

of 10 nm. The NMOS body is Si.

Problem 18.7. Repeat the previous problem

when the NMOS body is GaAs and the insulat-

ing layer is Al2O3.

Problem 18.8. Estimate surface voltage of the

semiconductor body at the onset of strong chan-

nel inversion at room temperature of 25 �C given

NA ¼ 5� 1017 cm�3. The NMOS body is Si.

Problem 18.9. Repeat the previous problem

when the body material is GaAs.

Problem 18.10. Estimate threshold voltage VTh

for a Si NMOS transistor with n+ polysilicon

gate,NA ¼ 2� 1016 cm�3, and the SiO2 oxide

layer with the thickness of 20 nm at room

temperature of 25 �C.

Problem 18.11. Repeat the previous problem

for an aluminum gate.

Problem 18.12. Repeat Problem 18.10 for the

PMOS transistor with the n-doped body of the

same doping concentration.

Problem 18.13. Estimate threshold voltage VTh

for Si NMOS transistors used in analog ICs and

fabricated in four CMOS processes listed in

Table 18.1. Every transistor has the n+

polysilicon gate and the SiO2 oxide layer. The

corresponding doping concentrations are NA ¼
3:5, 4:5, 7:5, 10:5½ � � 1016 cm�3.

Keep at least two significant digits. Compare

your solutions with the typical values reported

elsewhere: VTh ¼ 0:7,½ 0:5, 0:5, 0:4� V.

Assume room temperature of 25 �C.

18.2 Theoretical Model of a

MOSFET

18.2.1 Test Circuit and Operating

Regions

18.2.2 Linear Subregion of Triode region

at Strong Inversion

Problem 18.14

A. Draw the schematic test circuit for the

NMOS transistor. Label transistor termi-

nals. When the gate-source bias voltage
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is 0 V, which region of operation is

encountered?

B. Repeat the same tasks for the PMOS

transistor.

Problem 18.15. Determine the total charge

(show units) stored in the inversion layer of the

MOSFET transistorwithL¼ 0.8μm,W¼ 16μm,

COX ¼ 2:3 fF=μm2. The overdrive voltage is

2 V; the drain-source voltage is 0 V. How many

electrons are stored in the inversion layer?

Problem 18.16. For a CMOS process of

MOSFET fabrication, L¼ 0.8 μm, and

W¼ 16 μm. Furthermore, the electron surface

mobility is μn ¼ 550 cm2=V � s and the oxide

capacitance is COX ¼ 2:3 fF=μm2. Determine

the MOSFET transconductance parameter and

show units.

Problem 18.17. An NMOS transistor in the

linear subregion of the triode region operates at

υOV ¼ 4 V. Given rDS ¼ 100 Ω determine the

lumped process parameter k
0
n and show units.

Problem 18.18

A. Determine the MOSFET transcon-

ductance parameter (show units) for

NMOS transistors used in analog ICs

and fabricated in four CMOS processes

listed in Table 18.5. Use the given chan-

nel length and the channel width ten

times greater than the length.

B. Determine turn-on resistances rDS in

every case given that the overdrive volt-

age is equal to the threshold voltage.

Problem 18.19. Repeat the previous problem

for the PMOS transistor with parameters listed

in Table 18.5. The corresponding resistance is

given by rDS ¼ 1
kp υSG� VThj jð Þ, υOV ¼ υSG � V Thj j.

18.2.3 Nonlinear Subregion of Triode

Region at Strong Inversion

18.2.4 Saturation Region
Problem 18.20. To avoid complications caused

by a nonlinear channel voltage and inversion

charge behavior, it is suggested to simplify

Eq. (18.18). Namely, the inversion layer of the

MOSFET at nonzero drain-source voltages

would be described by a straightforward linear

voltage dependence υGS xð Þ ¼ υGS � x
L
υDS, x2

0, L½ � present in some undergraduate texts. Do

you see one critical contradiction of this model?

Problem 18.21. Plot variable gate-source volt-

age υGS(X) to scale over the interval

X ¼ x
L
2 0, 1½ � given that VTh ¼ 1 V,

VOV ¼ 1 V, and

A. υDS ¼ 0:1VOV:
B. υDS ¼ 0:5VOV:
C. υDS ¼ 1:0VOV:

Use the vertical scale from 1 V to 2 V for every

figure.

Problem 18.22. Repeat the previous problem

for the normalized charge, QINV(X)/QINV(0), of

the inversion layer.

Problem 18.23. Show that the solution for the

channel voltage profile given by Eq. (18.18e)

guarantees the condition of the constant current

along the channel.

Problem 18.24. An NMOS transistor has kn
¼ 2 mA=V2 and VTh ¼ 0:7 V. The gate-source

voltage is 3 V.

A. At which value of υDS does the transistor

enter the saturation?

B. What value of iD is obtained in saturation?

Problem 18.25. An NMOS transistor has (the

0.25-μm Si CMOS process) L ¼ 0:25 μm,

tOX ¼ 6 nm, μn ¼ 460 cm2= V � sð Þ, and

VTh ¼ 0:5 V. Given W ¼ 10 μm find υGS,

which assures the operation in the saturation

region with the transistor current of 1 mA.

18.2.5 The v-i Dependencies

18.2.6 PMOS Transistor

18.2.7 Large-Signal MOSFET Model in

Saturation
Problem 18.26. A n-channel power MOSFET

has the following parameters: V Th ¼ 3 V and

kn ¼ 100 mA=V2.
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A. Plot the drain current for source-drain

voltages from the interval υDS ¼ 0�9½ �
V and at three values of the gate-source

voltage, υGS ¼ 3, 4, and 5 V on the

same figure.

B. Plot the boundary between the triode

region and the saturation region.

0
0 2 4 6 8

n-channel MOSFET

100

200

300

vDS, V

iD, mA

Problem 18.27. Repeat the previous problem

for υGS ¼ 6, 7, and 8 V.

n-channel MOSFET

400

0 2 4 6 8
 

800

1200

vDS, V

iD, mA

Problem 18.28

A. Based on Table 18.3, construct the sim-

ilar table for the power dissipated by an

NMOS transistor.

B. In the figure that follows, show graphi-

cally power dissipated by the transistor at

two values of υDS: 2 V and 5 V.

C. Which region, triode or saturation, leads

to the smallest power dissipation?

0
0 2 4 6 8

NMOS transistor

4

8

12

16

20
iD, mA

VGS=5 V

vDS, V

Problem 18.29. A PMOS transistor has the

following parameters: VThj j ¼ 3 V and

kp ¼ 100 mA=V2.

A. Plot the drain current for source-drain

voltages from the interval υSD ¼ 0�9½ �
V and at three values of the gate-source

voltage υGS ¼ 4, 5, and 6 V on the

same figure.

B. Plot the boundary between the triode

region and the saturation region.

p-channel MOSFET

400

0 2 4 6 8

800

1200

vSG, V

iD, mA

Problem 18.30. For the circuit shown in the

figure that follows, determine the region of

MOSFET operation as well as the drain current

iD for each set of conditions given. Assume

kn ¼ 100 mA=V2 and V Th ¼ 3 V

A. υGS ¼ �3 V, υDS ¼ 3 V:
B. υGS ¼ 10 V, υDS ¼ 8 V:
C. υGS ¼ 5 V, υDS ¼ 1 V:
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iD

D

S

G +

-

0V

+

-

vGS

vDS

A
+

-

Problem 18.31. For the circuit shown in the

figure that follows, determine the region of

MOSFET operation as well as the drain current

iD for each set of conditions given. Assume

kp ¼ 100 mA=V2 and VTh ¼ �2 V.

A. υGS ¼ �3 V, υDS ¼ �5 V:
B. υGS ¼ 10 V, υDS ¼ �8 V:
C. υGS ¼ �5 V, υDS ¼ �1 V:

D

+

-
vSD

0V

+

-

vSG

A
+

-

S

G

iD

18.3 MOSFET Switching

and Bias Circuits

18.3.1 Triode Region for Switching Cir-

cuits. Device Parameter Extraction

18.3.2 Resistor-Switch Model in Triode

Region
Problem 18.32. A power MOSFET has the

lumped process parameter kn ¼ 130 mA=V2

and the threshold voltage of 2.0 V.

A. Plot the drain current for drain-source

voltages from the interval υDS ¼ 0�9½ �
V to scale and determine MOSFET turn-

on resistance rDS given the gate-source

voltage of 5 V.

B. Plot the boundary between the triode

region and the saturation region and indi-

cate the slope 1/rDS in the figure.

C. Plot rDS as a function of υGS to scale.

r ,DS

10

0

200

0 2 4 6 8

6 80 2 4

400

600

800

1000

1

100

1000

iD, mA

vDS, V

vGS, V

Problem 18.33. Repeat the previous problem

when the threshold voltage changes to 3 V.

Problem 18.34. A measurement curve for a

certain NMOS transistor is shown in the figure

below. Approximately determine the threshold

voltage VTh and the (MOSFET) lumped process

parameter kn (show units).

r ,DS

10

0 2 4 6 8
1

100

1000

vGS, V

rDS,
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Problem 18.35. Repeat the previous problem

for the measurement curve shown in the figure

that follows.

r ,DS

0 2 4 6 8

2

20

vGS, V

Problem 18.36. The datasheet for an IRF510

enhanced-mode n-channel power MOSFET

from Fairchild reports the average drain-source

on-state resistance rDS ¼ υDS=iD ¼ 0:4 Ω for

iD ¼ 3:4A and υGS ¼ 10V. Assuming thresh-

old voltage to be 2.0 V, sketch rDS as a function

of υGS to scale.

r ,DS

0

20

5 10

10

1

vGS, V

18.3.3 Application Example: Output

Resistance of Digital Logic Gates
Problem 18.37. For a logic gate shown in the

figure that follows, construct the truth table in

the form of Table 18.7 and determine the output

gate resistance for every input voltage combi-

nation. Assume VDD > V Th for the NMOS

transistor and VDD > V Thj j for the PMOS tran-

sistor. Label turn-on resistances of M1,2,3,4 as

rDS1,2,3,4.

NMOS NMOS

M1

PMOS

PMOS

VA

M3

M4

M2

Vout

VDD

VB

Problem 18.38. For a logic gate shown in the

figure that follows, construct the truth table in

the form of Table 18.7 and determine the output

gate resistance for every input voltage combi-

nation. Assume VDD > V Th for the NMOS

transistor and VDD > V Thj j for the PMOS tran-

sistor. Label turn-on resistances ofM1,2,3,4,5,6 as

rDS1,2,3,4,5,6.

M3

VA

VB

M4

M6

M5M1

M2

Vout

VDD

18.3.4 MOSFET Circuit Analysis at DC

18.3.5 Application Example: Basic

MOSFET Actuator
Problem 18.39. In a fixed-gate NMOS transis-

tor circuit, the NMOS transistor has the lumped

process parameter kn ¼ 1:0 mA=V2 and the

threshold voltage of 1.0 V. Furthermore,

VGS ¼ 7 V, VDD ¼ 10 V, and RD ¼ 1 kΩ.
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The corresponding υDS – iD curve is shown in

the figure that follows.

A. Draw the load line in the same figure and

find the solution for the drain-source

voltage υDS and drain current iD.

B. Solve the same problem exactly and

compare the two answers.

+

-

VDD

vDS

VGS

RD

+

-

G

D

S

0

4

8

12

16

20

0 5 10vDS, V

iD, mA

Problem 18.40. In a fixed-gate NMOS transis-

tor circuit shown in the figure that follows, the

NMOS transistor has the lumped process

parameter kn ¼ 1:0 mA=V2 and the threshold

voltage of 1.0 V. Furthermore, VDD ¼ 15 V,

and RD ¼ 1 kΩ. Determine the region of oper-

ation of the transistor and find the solution for

the drain-source voltage υDS and drain current

iD when

A. VGS ¼ 1 V:
B. VGS ¼ 3 V:
C. VGS ¼ 5 V:
D. VGS ¼ 7 V:

+

-

+

-

G

D

S

vDS

VGS

VDD

RD

Problem 18.41. A solution for an unknown

fixed-gate circuit shown in the previous prob-

lem is given in the figure that follows. Restore

the transistor and circuit parameters (show

units):

A. VDD

B. VGS � V Th

C. RD

D. kn

0

10

1220 4 6 8 10

20

30

40

50

vDS, V

iD, mA

Problem 18.42. In the circuit shown in the

figure that follows, the NMOS transistor has

the lumped process parameter kn and the thresh-

old voltage VTh. Derive the analytical expres-

sion for the drain current iD as a function of VDD

valid for any values of VDD.

Chapter 18 MOS Field-Effect Transistor (MOSFET)

XVIII-970



G

D

S

VDD

iD

Problem 18.43. In the circuit shown in the

figure that follows, the PMOS transistor has

the lumped process parameter kp and the thresh-

old voltage VTh < 0. Derive the analytical

expression for the drain current iD as a function

of VDD valid for any values of VDD.

G

S

D

VDD

iD

Problem 18.44. In the circuit shown in the

figure that follows, the NMOS transistor has

the lumped process parameter kn and the thresh-

old voltage VTh. Derive an analytical expres-

sion for the drain current iD as a function of VDD

and RD valid for any values of VDD, RD.

G

D

S

VDD

RD
iD

Problem 18.45. In the circuit shown in the

figure to the previous problem, a sufficiently

large resistance RD has been chosen so that the

drain current is very small. Measured υDS is

2.5 V. What is approximately the threshold

voltage VTh of the transistor?

Problem 18.46. In a fixed-gate NMOS transis-

tor circuit shown in the figure, the NMOS tran-

sistor has the lumped process parameter

kn ¼ 100 mA=V2 and the threshold voltage

of 2.0 V. Furthermore, VDD ¼ 20 V,

R2 ¼ 1 kΩ, and RD ¼ 40 kΩ. Determine υGS,

the region of operation of the transistor, and the

solution for the drain-source voltage υDS and

drain current iD when

A. R1 ¼ 9 kΩ:
B. R1 ¼ 4 kΩ:
C. R1 ¼ 2:33 kΩ:
D. R1 ¼ 1:5 kΩ:

At which value of the resistance R1 is the load

power (power into RD) maximized?

At which value of the resistance R1 is the

MOSFET power loss minimized?

+

-

+

-
G

D

S

VDD

R1

R2

VGS

VDS

VDD

RD iD

Problem 18.47. Repeat the previous problem

when the lumped process parameter changes to

200 mA/V2
.

18.4 MOSFET Amplifier

18.4.1 MOSFET Common-Source

Amplifier

18.4.2 Voltage Transfer Characteristic

18.4.3 Principle of Operation andQ-point

18.4.4 MOSFET Biasing for Amplifier

Operation
Problem 18.48. In the common-source ampli-

fier circuit in Fig. 18.27, the MOSFET has the

lumped process parameter kn ¼ 100 mA=V2
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and the threshold voltage of 2 V. The source

voltage is VDD ¼ 20 V.

A. Identify all values of υIN corresponding

to the saturation region when

RD ¼ 1 kΩ:

RD ¼ 500 Ω:

RD ¼ 100 Ω:

B. Identify the DC Q-point voltage VIN

within the saturation region

corresponding to VOUT ¼ VDD=2 when

RD ¼ 1 kΩ:

RD ¼ 500 Ω:

RD ¼ 100 Ω:

Problem 18.49. Plot to scale the voltage trans-

fer characteristic for the common-source ampli-

fier circuit in Fig. 18.27 built with the general-

purpose 2 N7000 NMOS transistor from Fair-

child, which has the lumped process parameter

kn ¼ 90 mA=V2 and the threshold voltage of

2.0 V. Indicate the saturation region. The source

voltage is VDD ¼ 10 V and RD ¼ 90 Ω.

Assume that the output voltage is constant in

the triode region for simplicity.

0
v , VIN

1.0VDD

0.6V DD

1.2V DD

v , VOUT

0.5VDD

0

18.4.5 Small-Signal MOSFET Model

and Superposition

18.4.6 MOSFET Transconductance

18.4.7 Analysis of Common-Source

MOSFET Amplifier
Problem 18.50. In a common-source MOSFET

amplifier in Fig. 18.30a, the transistor has kn
¼ 100 mA=V2 and VTh ¼ 3 V. Furthermore,

VDD ¼ 20 V. For

A. RD ¼ 5 kΩ

B. RD ¼ 1 kΩ

C. RD ¼ 100 Ω

design the amplifier by performing the follow-

ing steps:

1. Identify all values of VGS corresponding

to the Q-point in the saturation region.

2. Determine VGS which assures that the Q-

point (the DC operating point) is in satu-

ration region and there is enough

dynamic range for the output voltage to

swing in both a positive and negative

direction, i.e., VDS ¼ VDD=2.
3. Determine the transistor’s transcon-

ductance at the Q-point.

4. Determine the open-circuit small-signal

voltage gain Aυ0 of the amplifier.

Problem 18.51

A. Repeat the previous problem when

RD ¼ 120 Ω.

B. Plot input and output voltages

υIN tð Þ ¼ VGS þ υin tð Þ, υOUT tð Þ ¼ VDS þ
υout tð Þ to scale over two periods given

that υin tð Þ ¼ 0:1 cos ω tð Þ V½ �.

Problem 18.52

A. Repeat Problem 18.50 when RD ¼ 120

Ω and VDD ¼ 10 V.

B. Plot input and output voltages

υIN tð Þ ¼ VGS þ υin tð Þ, υOUT tð Þ ¼ VDS þ
υout tð Þ to scale over two periods given

that υin tð Þ ¼ 0:2 cos ω tð Þ V½ �.

Chapter 18 MOS Field-Effect Transistor (MOSFET)

XVIII-972



ERRATUM TO

Practical Electrical Engineering

Sergey N. Makarov, Reinhold Ludwig, Stephen J. Bitar

© Springer International Publishing Switzerland 2016

S.N. Makarov et al., Practical Electrical Engineering, DOI 10.1007/978-3-319-21173-2

––––––––––––––––––––––––

DOI 10.1007/978-3-319-21173-2

The original version of this volume contained incorrect page numbers associated with the index entries.

We have updated these with the correct page numbers in the current volume.

–––––––––––––––––

The updated original online version for this book can be found at

DOI 10.1007/978-3-319-21173-2

© Springer International Publishing Switzerland 2016

S.N. Makarov et al., Practical Electrical Engineering, DOI 10.1007/978-3-319-21173-2_19

E-1

http://dx.doi.org/10.1007/978-3-319-21173-2


Index

A

abc phase sequence, 547, 573

Absolute voltages in circuit, 72–73

acb phase sequence, 548, 554, 573

AC circuit analysis

KVL, KCL and equivalent impedances, 411–412

Norton equivalent circuits, 415–417

phasor diagram, 412–413

single frequency, 417

source transformation, 413–415

superposition theorem, 417–418

Thévenin equivalent circuits, 415–417

AC-coupled amplifier, 208

AC-direct micro-hydropower system, 79

AC fuse, 528, 529

AC power

distribution system

automotive alternator, 550

line currents, 553–554

line voltages, 551–553

neutral conductor, 546

polyphase distribution systems, 546

phase voltages, 551–553

residential household, 551

single-phase three-wire, 546

single-phase two-wire, 546, 547

synchronous three-phase AC generator, 550

synchronous three-phase AC motor, 550–551

three-phase four-wire, 546

electronic circuits, 525

load voltage amplitude, 525

maximum power efficiency, 542–543, 571, 572

maximum power transfer

average power, 544

equality, 544

impedance matching, 545

load impedance, 545

radio-frequency and communication circuits, 544

Ohm’s law, 525

rms voltage

and AC frequencies, 528–529

and rms current, 526–528

time averaging, 526, 567

Active differentiator, 292

Active filters, 290

Active one-port networks, 178

Active reference configuration, 52

AC voltage source, 68

Air-core coil, 275

Alternating-current (AC)

circuits (see AC circuit analysis)

power (See AC power)

American Wire Gauge (AWG), 39, 78

Ampere’s law, 583–584, 631

Amplifier

circuit analysis (see Amplifier circuit analysis)

circuit model, 195–197

differential gain and common-mode gain, 223–225

differential input signal, 222–223

dynamic circuit elements, 283–284, 290–291

ideal-amplifier model, 197–198

input/output resistances, 198

instrumentation, 226–229

load cell and uses, 229

output current, 198

summing-point constraint, 197–198

Amplifier circuit analysis

cascading amplifier stages, 215–217

current flow, 206–207

DC imperfections, 217–220

discrete resistance values, 210

gain tolerance, 210–211

input bias and offset currents, 219–220

input load bridging, 212–214

input load matching, 214–215

input offset voltage, 217–218

input/output resistances, 211–212

inverting amplifier, 203–204

––––––––––––––––––––––––––––––––––
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Amplifier circuit analysis (cont.)

multiple-input, 207–208

negative feedback, 211

non-inverting amplifier, 201–203

output offset voltage, 218–219

potentiometers, 210

resistance values, 209–210

summing-point constraints, 240

voltage follower/buffer amplifier, 204–205

voltage vs. matched amplifier, 212–215

Amplitude envelope, 824

Amplitude-modulated signal, 479

Amplitude transfer function See Filter circuits

Analog computers, 293, 698–699

Analog filter

amplitudes, 436

DC circuit, 436

load connection, effect, 439–440

qualitative analysis, 436–437

RC voltage divider circuit, 435, 436, 473

real-valued voltages, 436

transient circuits, 436

two-port network, 437–439

Analog output voltage, 692

Analog pulse counter, 290

Analog sinusoidal voltage, 717–718

Analog to digital converter (ADC)

conversion time, 727–728

and DAC circuit, 691–692

equation, 726–727

flash, 724–725

quantization error, 727

speed and throughput rate, 727–728

successive-approximation

circuit, 728

concept, 728

DAC formula, 730

logic control block, 729

operation, 730

AND gate, 664–667

Apparent power, 535

Arbitrary linear networks, 155–157

Arduino

applications, 757

compiling and uploading code, 761

IDE, 757–759

language and compiler, 759

loop() function, 760

open-source platform, 757

setup() function, 760

sketch, 760

translation, 761

Arduino programming

arrays, 777–779

conditional statements, 771–773

interrupts, 780–782

loops, 774–777

PWM generation, 782–783

serial communication, 779–780

square wave generation, 782–783

strings, 777–779

switch statements, 773–774

Arduino syntax

arithmetic operations, 764–765

assignment statements and features, 763–764

data types, 762

functions, 769

interfacing, IO pins, 769–770

library, 767

objects, 768–769

Arithmetic operations

characters and relation, C language, 765

floating point and integer, 764

IDE, 765

typecasting, 764

Arrays

element, 777

indexing, 777

linear, 777

ASCII codes, 702–704, 735

Assignment statements

declaration, 763

floating points, 763

MOTOR_PIN, 763

typecasting, 764

Astable multivibrator, 330

Asynchronous transmission, 698

Autotransformer, 598–599, 635

Average generator voltage, 60

Average power, 532–533, 569

B

Balanced delta-connected load, 560, 575

Balanced delta-connected source, 560–563, 575

Balanced phase voltages, 578, 552

Balanced three-phase load, 549

Balanced three-phase source, 549

Balanced three-phase systems

apparent power, 556, 558

average power, 556, 558

constant torque, 557

line currents, 557

material consumption, 558–560

phase voltages, 557

reactive power, 556, 558

total instantaneous load power, 556

wye-wye configuration, 556

Balanced Y and Δ networks, 121

Bandlimited spectrum, 459, 461, 463

Bandwidth, parallel resonant circuit, 495

Base-emitter voltage, 854, 855, 861, 867, 871, 872, 892

Battery capacity, 61, 62

Battery energy storage, 63

Battery pack, 100

Battery voltage, 61
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Bias circuit, dual-polarity power supply, 878

Bidirectional switch, 50

Binary counter, 208, 709

Binary numbers

analog computers, 699

ASCII codes, 702–704

conversion, 698–700

decimal fraction, 700

digital voltage, 692–693

MATLAB, 700

Binary-weighted-input DAC, 707–708

Bipolar junction transistor (BJT), 20

assumed states, 870

automotive dome light application, 886–887

base-collector (bias) voltage, 853

base-collector voltage, 854, 861

base current, 853

base-emitter (bias) voltage, 853

bias circuits, 878–879

collector current, 853

base current, 858–859

qualitative description, 857

Shockley equation, 857–858

collector-emitter (bias) voltage, 853

constant-current sources

circuit limitations, 881

collector current, 880, 881

color LEDs, 881, 882

fixed resistance, 880

LED driver, 881–882

DC transistor bias circuits, 873–874

dome light switch, 886–887

door lock BJT switch and Darlington pair, 887–888

early effect, 863

early voltage, 863, 907

EBJ and CBJ, 853

emitter current, 853

ground-side switches, 884

independent biasing and negative feedback, 874–875

large-signal DC circuit model, 868–870

maximum load current, 886

negative-side and positive-side, 884

npn BJT switch, 884–885

npn-junction transistor, 853, 854

operating regions, 856

overdriving, transistor base, 886

pnp transistor, 863–865

principles

built-in electric potential, 855

common-emitter configuration, 854

doping profiles, 854, 855

electron-controlling device, 856

intrinsic Fermi energy level of electrons, 855

potential boundary, 855

qualitative description

base current, 859, 860

collector current, 859, 860

diffusion electron motion, 859

Ebers-Moll model, 860

emitter current, 859, 860

forced common-emitter current gain, 860

forward-biased pn-junctions, 859

reverse common-emitter current gain, 860

transistor v–i dependencies, 861–863

voltage-controlled switches, 884

voltage follower

circuit comparison, 882, 883

circuit limitations, 883–884

constant-voltage, 882

emitter follower configuration, 882

Thévenin equivalents, 883

Bistable amplifier circuit See Switching RC oscillator

Bit rate, 695–696

Blocking capacitor, 289

Body capacitance, 263

Body control module, 886

Boolean algebra, 668, 669, 670

Boolean expressions, 669, 673, 686

Branch currents, 93

Branch voltages, 93

Branches of electric network, 91–93

Break frequency

amplifier gain, 452

3-dB frequency, 443

half-power frequency, 440

high-pass filter, 440–441, 447

mirror reflected, 444

Built-in voltage, pn-junction, 797, 799

Butterworth response, 499–501

Bypass capacitor, 287–288

C

Capacitance

conductors, 261

dynamic behavior, 278–286

equal conductors separated, large distances, 262

ground, 261–262

Capacitive coupling of an amplifier, 209

Capacitive reactance, 534

Capacitive touch screens, 265

Cascading amplifier stages, 215–217

Center-tapped transformer

180� power divider, 602

180� power splitter, 602

Central processing unit (CPU)

brain, 748

functions, 748

instruction, 748

instruction set, 748, 749

opcode, 748

operands, 748

software, 749

Channel pinch-off, 936

Charge separation principle, 58

Chassis ground, 71, 72

Circuit analysis methods, 159–163, 183

Circuit components
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Circuit components (cont.)

bias, 46

vs. circuit elements, 31

semiconductor, 20

Circuit elements

absolute voltage and voltage drop, 72–73

vs. circuit components, 31

current amplifier, 65

ideal-diode, 49

independent ideal voltage source, 52

linear passive, 33

nonlinear passive, 47–48

transconductance amplifier, 65

transresistance amplifier, 66

υ-i characteristic, 34–35

Clamp on ammeter, 602

Clock frequency, 696, 698

Closed-loop AC gain, 453–455

Closed-loop configuration, 192, 231

Closed-loop gain, 202, 230–232

CMOS NAND gate, 946–947

CMOS NOT gate (inverter), 945

Collector-base junction (CBJ), 853, 856

Collector-emitter voltage, 854, 855, 861, 862,

867, 871, 873

Common-base configuration, 854

Common-base current gain, 858, 862, 906

Common-collector configuration, 854

Common-emitter amplifier

fixed-base transistor bias circuit, 890

linear expansion, 890–891

small-signal ground, 891

small-signal resistance/impedance, 890

voltage transfer characteristic, 890

Common ground, dual-polarity power supply, 101

Common-mode amplifier circuit gain, 224

Common-mode input signal, 197

Common-mode rejection ratio (CMRR), 224

Common-mode voltage of sensor, 222, 224, 226

Common (neutral) terminal (ground), 71

Common-source MOSFET amplifier

DC bias solution, 958

input/output voltages, 959

large-signal/small-signal, 959

saturation region, 959

small-signal model, 959

voltage-controlled current source, 953

Comparator, 194–195

Compensated Miller integrator, 291–292

Complementary MOS (CMOS) circuits

H-bridge, 658

logic inverter/NOT gate, 660

NAND logic gate, 665

NOR logic gate, 662

Complementary transistors, 646

Complex load power, balanced three-phase system, 558

Complex power, 535

Complex transfer function

cascading filter circuits, 445–447, 476

complex expression, 445

frequency response, 445

high-pass filter, 445

low-pass filter, 445, 446

next-stage filter load, 447–448

Compliance, 19

Conditional statements

function, 772

logic circuit, 772

logical expression, 772

nested if statements, 773

state programming, 771

structure, 771

Conductance

Ohm’s law, 33

transconductance, 65

Conduction angle, 819

Conservative field, 5

Constant-voltage-drop model

assumed states, 808

diode current, 809

diode voltage, 809

voltage supply, 808

Contour integral, 5

Control switching circuits

full H-bridge switch, 650

half H-bridge, 650

motor speed controller, 650

one-quadrant switch, 650

Corner frequency, 443, 444

Coulomb force, 3, 7, 37, 94

Coupled inductors

mutual inductances, 615

N coupled, 615

phasor form, 613, 614

T-network, 615–616

two coupled inductors, 616, 638

Coupling coefficient

energy, 616

ideal transformer, 616–617

mutual inductance, 617

CPU See Central processing unit (CPU)

Current amplifier

current-controlled current source, 65

and transconductance, 233

using op-amp, 209

Current-controlled current source, 65

Current-controlled voltage source, 65–66

Current divider circuit, 112–113

Current division rule, 112

Current limiter, 111–112

Current-limiting resistor, 111, 134

Current reference directions, 587, 613

Current transformer, 602

Cutoff frequency, 496, 497
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D

DAC See Digital to analog converter (DAC)

DAC scaling voltage factor, 708

Damping coefficient, 348, 352, 353, 358, 381

Data bus, 707

Data storage methods, 755

Data types, 762

3-dB frequency, 443

DC-coupled amplifier, 208

DC-coupled single-supply amplifier, 220–221

DC imperfections, 217–220

DC operating point, 810, 811, 842, 843

DC restorer circuit, 827, 828

DC steady state, 284–285

Decoupling capacitor, 289

Decoupling inductor, 289

Decrement operator, 775

Delta-delta distribution system, 561

Δ to Y transformation, 120, 121

De Morgan’s laws, 669–670

Dependent sources

vs. independent sources, 64

Depletion-enhancement mode MOSFET, 921

Depletion-mode MOSFET, 921

Device under test (DUT), 264

DFT See Discrete Fourier transform (DFT)

Differential amplifier circuit gain, 224

Differential input signal, 197, 222–223

Differential input voltage, 192, 200, 224

Differential resistance, 49

Differential sensor, 223

Differentiator amplifier

circuit, 292–293

gain at very high frequencies, 292

Digital logic gates

CMOS NOT gate, 945

logic inverter, 945

output resistance, 945–947

Digital memory element, 332

Digital output voltage, 694

Digital repeater, 194

Digital signal processing (DSP), 464, 691, 707

Digital switching circuits

AND gate, 665–667

combinational logic circuits, 668–669

latch, 673

logic circuit analysis

motor state, 671–672

truth table, 670–671

logic circuit synthesis, 672–673

logic gate, 660

NAND gate, 664–665

NOR gate, 661–663

NOT gate/logic inverter, 660–661

OR gate, 663–664

universal property, NAND gates, 669–670

Digital to analog converter (DAC)

binary-weighted-input, 707–708

equation, 711

math voltage, 708–709

operations, 707

output voltage range, 711

PWM, 716

quantization levels, 711

R/2R ladder, 714–716

relative accuracy, 712–714,

resolution, 712

resolution voltage, 709–710

Thévenin equivalent, 715–716

Digital voltage

ADC, 691–692

vs. analog voltage, 692

ASCII codes and binary words, 702

binary numbers, 692, 693, 698–700

bit rate, 695–696

clock frequency, 696–697

hexadecimal numbers, 700–702

parallel vs. serial representation, 693, 694

timing diagram, 697, 698

tri-state, 704–705

Digital-to-analog converter (DAC), 207, 247

Diode, 20

bridge rectifier, 820, 821

clamper circuit, 827–828, 847

electronic (see Electronic diode)

voltage

doubler, 847

multiplier, 847

quadrupler circuit, 829

Discrete-circuit transistor amplifiers

base-emitter loop, 874

four-resistor bias circuit, 876

integrated-circuit transistor amplifiers, 876

Thévenin equivalent, 876, 877

voltage supply, 876

Discrete Fourier transform (DFT)

applications, 464

definition, 462–463

FFT, 461

fundamental frequency, 461

IFFT, 461

implementation, 479–480

sampling interval, 461

sampling points, 461

spectrum, 463

Dotted terminals, 582, 587, 600, 612, 635

Double clipper, 831

DRAM See Dynamic random-access memory

(DRAM)

DSP See Digital signal processing (DSP)

Dual in-line (DIP-N) package, 191

Dual-polarity power supply, 101

Dynamic circuit elements

capacitance (see Capacitance)

instantaneous energy and power, 283–284

inductance (see Inductance)

Dynamic random-access memory (DRAM), 317

Dynamic resistance, 49
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E

Earth ground, 71, 72

EAS See Electronic article surveillance (EAS)

Electric circuit, 39, 53, 57, 69, 70, 71, 84

Electric current density, 11

Electric field intensity, 3

Electric network

description, 92

topology, 92–95

Electric permittivity, 9

Electric transformer

AC power transfer, 579

Ampere’s law, 583–584

application, 634–635

autotransformer, 598–599

center-tapped, 600–602, 636

current, 602–603, 636

fixed load voltage, 595–596

fixed source voltage, 596–597

function, 579, 580

high-frequency transformer model, 609–610

magnetic circuit, 579

mechanical analogies, 589

multiwinding, 599–600

phasor form, 590, 591, 633

referred load impedance, primary side, 592–593, 633

referred source network, secondary side, 590–592, 633

transformer currents, 583

transformer efficiency, 610, 637

usage, 579

voltage regulation, 609–610, 637

Electromagnetic material processing

electromagnetic forming, 316–317

self-induced Lorentz force, 317

Electronic article surveillance (EAS), 506

Electronic diode

anode and cathode, 797

automotive battery-charging system

application, 845

delta/wye connection, 821

diode circuit transformation, 822

three-phase diode rectifier, 822–823

vehicle, 821

breakdown region, 797

constant-voltage-drop-diode model, 815, 830

diode clipper circuits, 830

diode limiter circuits, 830

double diode clipper circuit, 831

envelope/peak detector circuit

amplitude-modulated signal, 824

demodulation, 823

and operation, 824–826

square-law region, 826

ESD protection, 831

forward-bias region, 797, 809

forward-bias voltage regulator, 814

iterative method, 811, 842–843

LED, 802

load voltage and diode current, 814

load-line analysis, 810, 842

mechanical analogy, 798

negative diode clipper circuit, 831

1N4148 Si switching diode, 797, 798

photodiode, 802

PIN diode, 802

positive diode clipper circuit, 830

power electronics, 814

rectifiers and regulators, 814

reverse-bias region, 797

room temperature, 798–800

Schottky diode, 801–802

Shockley’s ideal-diode equation, 798–799

shunt voltage regulator, 814

switching diode, 797

symbol, 797

terminal voltage, 797

thermal voltage, 799, 800

varactor diode, 937, 977

voltage reference circuit, 814

voltage regulator, 814

wave-shaping circuits

clamper and multiplier circuit operation, 827

diode clamper circuit/DC restorer, 827–828

diode voltage doubler and multiplier, 828–830

positive, negative and double clipper, 830–832

power electronics, 827

transfer characteristics, 832–833

Zener breakdown voltage, 797

Zener diode, 801

Electronic ignition system, 324, 328

Electronic switch, 50–51, 643, 645

Electrostatic discharge (ESD)

ESDS device, 263

ICs, 263

prediction of, 263

Electrostatics, 3–10

conductor, 7–8

Coulomb’s Law, 9–10

electric charge, 3

electric field

definition, 3

laboratory power source, 4

electric voltage

and electric potential, 4–5

vs. ground, 5–7

Element’s polarity, 81

Encapsulation, 767

Energy spectral density, 479

Energy stored in capacitance, 261

Energy stored in inductance, 282, 283

Envelope detector circuit, 823

Equipotential lines, 6

Equipotential surface, 6, 8

Equivalent circuit element, 103–104

Equivalent electric circuits, 99

Equivalent electric networks, 99
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Equivalent resistance, 102–104, 120

Error signal, 230–232

Essential mesh, 92

Exciting current, 581

Exponential diode model, 809

F

Faraday’s law

current and inductance, 581

dot convention, 582

ideal open-circuited transformer, 630–631

induction, 59, 60, 276

primary winding, 580

single lossless inductor, 580

transformer analysis, 579

transformer voltages, 581–582

Fast Fourier transform (FFT)

digital signal processing, 464

input sinusoidal signal, 464

inverse Fourier transform, 465

monotonic frequency data, 465

numerical differentiation, 465–466, 480

Feedback factor, 230

Feedback gain, 230

Feedback loop, 192, 199

Fermi potential, 927

Filter circuits

Bode plot, 441–445, 474–476

decibel (dB), 441–444, 474–476

first-order filters, 435

high-pass, 440–441

low-pass, 440

phase transfer function, 444–445, 475–476

roll-off, 441–444, 474–476

Filter termination, 439

First-order high-pass filter, 441, 448, 466, 480

First-order low-pass filter, 443, 448, 449, 455, 480

First summing-point constraint, 197–198

Fixed resistors, 41–42

Flash ADC

circuit, 724, 725

operation, 725

Flash memory, 756

Flat-band voltage, 928

Fluid analogies SeeHydraulic analogiesFor loop, 774–776

Forbidden state, 655, 670, 672

Forced beta, 860

Forced current gain, 861

Forward current, 71

Fourier transform

bandlimited, 459

converting computational electromagnetic solution,

467–472

definition, 478–479

DFT, 461–462

direct, 458

Fourier spectrum, 458

input pulse signal, 466–467, 480

inverse, 458

mathematical properties, 460–461, 479

rectangular pulse, 459

reversal property, 458

sampling theorem, 463–464

voltage/current signal, 458

Four-resistor bias configuration, 894

Four-terminal NMOS transistor

BJT, 922

integrated circuits, 922

Frequency band

bandwidth, 451

bode plot, 447

passband, 443

Full H-bridge

DC motor, 655–656, 681–682

transistor switch, 655

Full-scale output voltage range, 711

Full-wave rectifier, 819–820

Functions, Arduino language, 765–767

Function header, 766

Fundamental frequency, 461

G

Gain tolerance, amplifier, 210–211

Gauge factor (GF), 44

Gauss’ theorem, 7

Generic solar cell

application, 170–171, 179, 188

maximum power extraction, 185–187

nonlinear circuits, 167–168, 187–188

solar panels, 179

Ground reference, 5–6

Ground-side switch, 644–646, 651, 660, 679

H

Half H-bridge

DC motor, 653–654

motor functions, 654

switching states, NMOS transistors, 682

Half-power bandwidth, 491, 492, 497, 503, 520

Half-power frequency See Filter circuits

Half-wave rectifier

AC power supply, sinusoidal voltage, 817

current-limiting resistor, 818

diode rectifier, 818

dual supply, 845

electronic DC power supplies, 817

ideal-diode rectifier, 817, 818

plot source and load voltage, 818–819

rectified voltage vs. source voltage, 819, 820

Hard limiter, 832

Hardware description language (HDL), 672

Harmonic voltage and current

AC power supplies, 391

AC voltage, 391

angular frequency, 391–392
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Harmonic voltage and current (cont.)

benefit, 391

complex exponent, 404

definition, phasor, 396–398

electric circuit, 410

electrode, 410

frequency, phase and amplitude, 391

impedance, 405–407

leading and lagging

AC signal, 395

amplitude and phase, 395

frequency, 394

phase-shifted AC voltages, 394

power electronics, 393

zero-phase cosine, 393

magnitude

impedance, 408–410

human body, 410

Maxwell’s theory, 392

measurements, 396

operations, phasors and phasor diagram, 401–404

and parameters, 391, 392

phasors to real signals, 399

polar and rectangular forms, 399–401

real signals to phasors, 398–399

resistance, 405

signals, 391

steady-state AC circuits, 391

steady-state AC voltage, 391

steady-state alternating current, 391

Hexadecimal numbers, 700–702

High-voltage side, 587

Howland current source (Howland current pump), 255

Hydraulic analogies

AC circuits, 19

DC steady state, 18, 19

semiconductor circuit components, 20

I

υ-i characteristics

circuit elements, 31

current source, 55

definition, 31

c—plot, 53

ideal (Shockley) diode, 47

ideal diode, 48

ideal switch, 35

inverse slop, 49

Ohm’s law, 47

ohmic conductor, 47

passive circuit elements, 47–48

practical current source, 58

practical voltage source, 55

resistances 34–35

solid line, 58

static resistance, 48

transfer characteristic, 66–67

two-terminal switch, 50

voltage source, 52–53

Ideal ammeter, 69

Ideal-amplifier model, 197–198, 217, 252

Ideal-diode model, 31, 47, 79

assumed states, 804, 805, 838–840

forward-bias region, 804

OFF-diode, 804–806

ON-diode, 804–806

OR logic gate, 806–807

output voltage, 807

v–i characteristics, 804

Ideal loaded transformer

circuit symbol, 585

contour, 584

linear interface, 585

power conservation, 585

power rating, 587–588

vs. real transformer, 586–587, 631–632

stored energy, 586

terminologies, 587

Ideal MOS capacitor model, 925

Ideal open-circuited transformer See Faraday’s Law

Ideal transformer equations, 579, 602

Ideal voltmeter and ammeter, 69–70, 85

IDFT See Inverse discrete Fourier transform (IDFT)

Impedance matching, 545

Increment operator, 775

Incremental resistance, 49

Independent ideal current source

active reference configuration, 55

definition, 55

symbols, 56–57

υ-i characteristic, 56

Independent ideal voltage source, 52–55

Inductance

dynamic behavior, 281–283

self-inductance, 272–273

series and parallel, 275–276

solenoid with and without magnetic core, 273–275

Inductor

choke, 289

fringing effect, 274

ideal, 275

1-mH, 276–277

physical, 272

Input and output (I/O) devices, 750

Input bias current, 219–220

Instantaneous generator voltage, 60

Instruction set, 748

Instrumentation amplifier, 222–229

Instrumentation transformers, 579, 603

Integrated circuit (IC), 191, 229

Integrated development environment (IDE)

edit menu, 759

features, 758

file menu, 759

installation, 758
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license agreement, 758

sketch menu, 758

tools menu, 759

USB connection, 757

visual representation, 757

windows, 758

Interface

analogRead function, 769

Arduino programs, 770

IO pins, 769

pinMode function, 769

PWM signal, 770

Internal compensation, 451

Internal source resistance, 54, 57

Interrupt service routine (ISR), 781

Interrupts

debounced, 781

ISR, 781

microprocessor, 781

polling, 780

queue, 781

trigger state, 781

volatile, 782

Inverse discrete Fourier transform (IDFT), 461

Inversion layer of MOS capacitor, 928, 935, 936

Inverting amplifier, 203–204

Inverting input, 191, 201, 207

Inverting Schmitt trigger, 332, 376

Isolation transformers, 579

ISR See Interrupt service routine (ISR)

Iterative method for nonlinear circuits

definition of, 169

explicit iterative scheme, 169

implicit iterative scheme, 169

J

Junction FET (JFET), 931

K

Karnaugh maps, 673

Kirchhoff’s current law (KCL), 93–95

Kirchhoff’s voltage law (KVL), 14, 95–98

L

Lagging power factor, 536

Large-signal BJT circuit model, 866

Large-signal circuit model

base-bias transistor circuit, 866

equivalent circuit model, 866

first-order circuit, 866

linear current-controlled current source, 866

nonlinear voltage-controlled current source, 866

Large-signal MOSFET model in saturation

digital switching circuits, 939

transconductance curve, 940

Latch

inverters, 673

SRAM, 688

stable states, 673

Laws of Boolean algebra, 668

Leading power factor, 537

Least significant bit (LSB), 707

LED See Light-emitting diode (LED)

Lenz’s law, 630

Library, 767

Light-emitting diode (LED), 802

Line currents, 553

Line integral, 5

Linear circuit (definition of homogeneity additivity

superposition), 116

Linear feedback system, 230

Linear load, 47, 607

Linear oscillators, 330

Linear passive circuit element

components, 31

fixed resistors, 41–42

Ohm’s law, 33

Ohmic conductors, 36–39

passive reference configuration, 32–33

power delivered, 35–36

resistive sensors, 42–45

symbols and terminals, 31–32

variable resistors (potentiometers), 42

voltage across, 32

υ-i characteristic (see υ-i characteristic)

Lines of force, 4

Line-to-line voltages, 552

Line-to-neutral voltages, 547, 552, 557, 575

Load cell, 229

Load impedances per phase, 549, 573

Load line (definition, method of), 167–168

Load reflections, 592

Load-line analysis

actuator device, 951, 952

amplifier (see MOSFET amplifier) current

mirror, 950

diode-connected, 950

lumped process parameter, 950

Ohm’s law, 948

quadratic equation, 949

Load-line method, 810–811, 842

Logic inverter, 660–661, 683

Loops

electric network, 92–93

for loop, 774–776

while loop, 776, 777

Lorentz force, 59, 60, 315, 317

Low-frequency asymptotes, 444, 449

Low-voltage side, 588, 632

LSB See Least significant bit (LSB)

Lumped process parameter, 934
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M

Magnetic field, 271, 272, 299

Magnetic flux density, 272, 273, 299, 315

Magnetic induction, 272, 299

Magnetic permeability of vacuum, 274

Magnetic radiators

application, 638

coil array, 622

tuned radiators, 623–624

two identical, 622–623

uncoupled inductors, 623

wireless inductive power transfer, 622, 638

Magnetizing inductance, 581

Magnetizing reactance, 606, 637

Magnetostatics

Ampere’s law, 14–16

current-carrying conductor, 12–13

current flow model vs. electrostatics, 11–12

electric circuit, 13–14

electric current, 11

electric power transfer, 16–17

Matched load, 161

Matched switching transistors, 646

Matching circuit

arbitrary complex impedances, 595

real-valued impedances, 593–594

transformer, 634

Material conductivity, 37, 44

Material resistivity, 37

Maximum available source current, 54

Maximum available source power, 54

Maximum operating frequency, 800

Maximum power efficiency, 162–163, 184–185

Maximum power theorem (principle of maximum

power transfer), 161, 171

Maximum power transfer for AC circuits,

principle of, 544–545, 572

Maximum sensitivity of voltage divider circuit, 108–109

Mechanical analogy, 332

Memory

binary representation, 754

bytes, 749

data storage methods, 754–755

flash, 756

organization, 753–755

program execution, 749

storage, 881

types, 755–756

Mesh analysis (mesh-current analysis), 142

linear circuits, 146–147

Meshes of electric network, 91–93

Metal-oxide-semiconductor (MOS) transistors

complementary MOS circuits, 645

ground-side switch, 645

power-side switch, 645

Metal–semiconductor FET (MESFET), 931

1-mH inductor, 276–277

mho, 33

Microcontrollers

architecture, 747, 748

buses, 850–851

CPU, 748–749

feature, 747

hierarchy, 748

I/O devices, 747, 850

memory, 747, 849

timers, 850

USART, 851–852

Miller integrator

amplifier circuits, dynamic elements, 290–291

compensated, 291–292

Mobility of charge carriers, 37

Modulation depth, 824

MOS field effect transistor (MOSFET)

amplifier

linear small-signal, 956–957

Q-point, 955–956

transconductance, 957–958

voltage transfer characteristic, 953–954

channel, 924

CMOS process, 930

common-source amplifier (see Common-source

MOSFET amplifier)

DC circuit, 947

JFET, 931

linear/ohmic subregion, 932

load-line method (see Load-line analysis)

MESFET, 931

n and p-channel, 921

NMOS

capacitor, 924–925

and PMOS transistor, 932

on-state resistance, 944

oxide layer

pn-junction depletion layer, 926

SiO2, 926

parameter extraction, 943–944,

PMOS transistor, 929–930, 939

process transconductance parameter, 934

resistor-switch model, 944

saturation current, 936

saturation region, 935–937

semiconductor body

Fermi potential, 927

inversion layer, 927, 928

mass-action law, 927

simplifier transistor circuit, 933

terminal voltages and currents

drain-source voltage, 923

gate-drain voltage, 923

gate-source voltage, 923

threshold voltage, , 921–933

transconductance parameter

curve, 940

lumped process parameter, 934

transistors, 646

Index 982



turn-on resistance, 934, 942–944, 968

v-i dependencies, 937–938

work function difference, 928, 929

Motor control states (forward mode), 650, 652

Motor speed controller, 650

Motor switching

forward mode, 650

free run to stop, 650

motor brake, 650

reverse mode, 650

Multiwinding transformer, 599–600, 636

Mutual inductance, 272–273

N

NAND gate

vs. input voltages, 662

symbol, 663

three inputs, 664

n-channel metal-oxide-semiconductor field-effect

(NMOS) transistor, 20

n-channel MOSFET, 653

Near-field communication (NFC), 506

Near-field wireless link, 506, 510–511, 522

Negative clipper, 831

Negative equivalent (Thévenin) resistance, 182

construction and use, 158

dependent source, 158

voltage-controlled voltage source, 158

Negative feedback

amplifier’s stability, 199

idea of, 199

summing-point constraints, 199–201

Negative phase sequence, 524, 573

Negative temperature coefficient (NTC), 43

Neper (Np), 348, 358

Neutral wire, 553–555, 573–576

NFC See Near-field communication (NFC)

NMOS transistor

channel inversion, 924

threshold voltage, 928

Nodal analysis, 142, 176–177

circuit current I, 176

linear circuits, 146–148

supply current I, 176

Nodes of electric network, 92–94

Noise signals, 530

Nonideal low-frequency transformer, 617

Nonideal transformer model

harmonic source and linear load, 607

impedance load, 607

input voltage, 609

load current, 607

load voltage, 607

power factor, 609

rms values, 606

Non-inverting amplifier, 201–203

Non-inverting input, 192, 193

Non-inverting Schmitt trigger, 332, 376

Nonlinear circuits, 167–168

definition of linearization dynamic/small-signal

resistance, 116

Nonlinear passive circuit elements, load, 46

Non-ohmic circuit elements, 46

Non-reference, 141

Nonvolatile memory, 755

NOR gate, 661

vs. input voltages, 660

three inputs, 664

NOT gate, 660–661, 663, 665, 666

n-type/n-channel MOS transistor (NMOS)

control voltage, 646

ground-side switch, 645

intrinsic threshold voltage, 648

load current, 647

metal electrodes, 647

threshold voltage, 647

Nyquist rate

minimum acceptable sampling rate, 723

modulation theory, 723

Nyquist-Shannon sampling theorem, 723

oversampling and undersampling, 723

sampling frequency, 723

Nyquist-Shannon sampling theorem, 723

O

Objects, 768, 769

Octave, 443, 474

Offset-null terminals, 192, 218

Ohm’s law, 35, 36, 39, 47, 49, 67

resistance and conductance, 33

Ohmic conductor, 36–39

One-port network, 99

Open-circuit, 34

small-signal voltage gain, 956, 958

source voltage, 54, 57, 60, 65, 67, 83

voltage gain, 192, 232, 889, 891, 895

Open-loop AC gain, 453–454, 477

Open-loop configuration, 192, 199

Open-loop voltage gain, 192

Operating point, 49, 50

Operational amplifier

application, 194–195

bandwidth, 455–456, 477–478

closed-loop AC gain, 454–455, 477

definition, 191

frequency bandwidth, 451, 456–457, 478

open-circuit/open-loop voltage gain, 192

open-loop AC gain, 453–454, 477

open-loop amplifier gain, 451, 477

open-loop gain behavior, 451–452

power rails and voltage transfer characteristic, 193, 194

symbol and terminals, 191–192

Index 983



Operational amplifier (cont.)

unity-gain bandwidth vs. gain-bandwidth product,

452–453, 477

OR gate, 661–662, 669

Output resistance, 863, 873, 889, 891, 895, 896

Output terminal, 192, 196

P

Parallel battery bank, 101

Parallel connection, 103

Parallel data transmission, 751

Parallel digital output voltage, 693

Parallel-plate capacitor

application, 267–269

capacitive touchscreens, 270–271

capacitor marking, 269–270

ceramic capacitors, 269

circuit symbol, 266–267, 275–276

dielectric permittivity of vacuum, 265

electrolytic capacitors, 269

fringing effect, 265

inductor marking, 277

mutual-capacitance method, 271–273

opposite charge–Q, 264

self-capacitance method, 270–271

solenoid with and without magnetic core, 273–275

static capacitance, 266

total charge +Q, 264

touch screens, 265

Parallel resonant RLC circuit

amplitude, 493

circuit voltage, 494

duality, 495, 519, 520

parallel RLC tank circuit, 493

partial time constants, 493

phasor representation, 493

Q-factor, 494

resonance condition, 493

resonant frequency, 493–494

resonant phasor currents, 495

second-order RLC filters, 504–505

Parallel vs. serial representation, 693, 694

Parseval’s theorem, 479

Passive linear circuit elements, 278

Passive reference configuration, 32–33

p-channel MOSFET, 929, 944

Peak detector circuit, 823

Peltier-Seebeck effect, 44

Peripherals, 750

Per-phase solution, 553

PFC capacitor, 539–541, 543

Phase impedances, 549, 557, 575

Phase voltages, 547–549, 572, 573

Photocell, 43

Photoresistor, 44, 45

Piecewise-linear diode model, 801, 816, 817

PMOS transistor, 929–930

Polarity

AC source, 67

active reference configuration, 52, 56

independent, 52

voltage, 32, 34

Polling, 780

Positive feedback, 330, 335, 372

Positive phase sequence, 548, 549, 551, 556, 560

Postfilter, 710

Potential transformers, 603

Potentiometer, 42

Potentiometric position sensor, 44–45

Power angle, 531–532, 569

Power conservation law for electric networks, 99

Power factor correction

application, 542

average load power, 541

capacitance value, 540

capacitor, 539

current amplitude, 541

impedance, 540

load impedance, 542

modified load, 539

power angle, 539

reactive load power, 540

RLC circuit, 539

shunt capacitor, 539, 540

Power rails, 193

Power-related networking theorems, 98–99

Power-side switch, 644–646, 679, 884

Power switching circuits

DC motor, 651–652

full H-bridge, 655–657

half H-bridge, 653–654

one-quadrant switch, 652–653

PWM motor controller, 657–659

resistive load, 651

switching quadrants, 650–651

Power terminals, 230

Power triangle, 570–571

inductive and capacitive load, 535, 536

whip antenna, 537

Poynting vector, 17

Practical current source

definition, 58

open-circuit voltage, 57

short-circuit current, 57

υ-i characteristic, 58

Practical voltage source, 54–55

Primitive data types, 762

Process transconductance parameter, 934

Product-of-sums approach, 672–673

Proximity sensors, 511–516, 520, 521

P-type/p-channel MOS transistor (PMOS), 646

control voltage, 646

intrinsic threshold voltage, 648
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output voltages, 648–649

power-side, 653

power-side switch, 679

threshold voltage, 646

Pull-down switch See Ground-side switch

Pull-up switch See Power-side switch

Pulse-width modulation (PWM), 716, 768, 782, 783

average supply voltage, 657

commercial controllers, 658

duty cycle, 657

motor controller, 657–659, 682

realization, 658, 659

supply voltage, motor, 657

voltage form, 657–659

PWM See Pulse-width modulation (PWM)

Q

Quality factor

constant, 489

definition, resonant frequency, 488

inductor and capacitor, 489

maximum amplitude, 489

mechanical resonator, 489

series resonant LC circuit, 490

series resonant RLC circuit, 491

Quality factor of series resonant RLC circuit, 488

Quantization error, 727

Quiescent-point (Q-point), 49, 810, 812

NMOS amplifier, 955

parameters, 891

R

Radiation resistance, 47

Radio-frequency (RF)

inductor choke, 289

power, 823

Rail-to-rail amplifiers, 194

Reactive power, 535

Real transformer, 604

equivalent circuit values, 606

model parameters and extraction, 604–606

nonideal low-frequency

core loss resistance, 604

leakage resistance, 604

leakage inductance, 604

ohmic resistance, 604

Steinmetz model, 604

Receiver circuit, 522

Faraday’s law, 508

open-circuit voltage, 509, 510

operating frequency, 510

quality factor, nonideal inductor, 510

voltage multiplier, 510

Reconstruction filter, 710

Rectangle rule, 461

Reduction of resistive networks, 104–105

Relative magnetic permeability, 275

Replacing a node by a loop, 120

Resistive sensors, 42–45

Resistor, 40

ECE laboratory kit, 77

fixed, 41–42

photoresistor, 44

thermal, 42

variable, 42

Resolution voltage, 708–710

Return current and ground, 71

Reversal property, 458, 479

Riemann sum approximation, 461

RL filter circuits, 448–450, 476

rms voltage

AC signals, 567

application, 567

DC voltage, 530

root-mean-square value, 530

sawtooth/triangular wave, 530

single-frequency voltage signals, 530

Rotating magnetic field, 550

Rotor, 550

R/2R ladder DAC, 714–715

R-2R ladder network, 157

T

T and Π networks, 121–122

Telephone hybrid circuit, 600

Tellegen’s theorem, 98

Thermistor constant, 43

Thermistor equation, 43

Thermocouple, 43

Thévenin equivalent, 153, 155, 158, 162, 167, 181

Thévenin’s and Norton’s theorems, 153–182

Three-terminal MOSFET, 922, 923, 932

Three-terminal networks, 119

Threshold voltages, 332

Timing diagram, 697, 698

T network, 122, 132

T pad, 122

Transconductance, 66, 67

amplifier, 65, 233

curve, 940

Transfer characteristic, 66–67

Transfer resistor, 854, 862

Transient circuit, 284

Transient RC circuit

capacitor, 310

digital memory cell, 317–318

electromagnetic railgun, 314–316, 369

energy-accumulating capacitor circuit

forced response, 319

resistor voltage, 319

source voltage, 320

Thévenin resistance, 318

energy consideration, 313
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Transient RC circuit (cont.)

energy-release capacitor circuit

electromagnetic material processing, 312

load resistor, 310

time/relaxation constant, 311

fluid mechanics analogy, 314

static/dynamic circuit, 310

time constant, 312–313

Transient RL circuit

energy-accumulating capacitor circuit

charging, 325

inductor/resistor voltages, 326

inhomogeneous, 325

mH inductor, 326

supply current, 327

voltages and currents, 321

zero inductor current, 326

energy-release inductor circuit

charged, 321

current source, 321

dynamic circuit, 321

inductor, 321, 322

magnetic-field energy, 321

supply current, 322

time/relaxation constant, 322

inductor current

continuous function, 324

finite magnetic-field energy, 324

fluid mechanics analogy, 324, 325

independent function, 324

inductor inertia, 324

laboratory ignition circuit, 328–329

static/dynamic circuit, 321

voltage supply, 327

Transistor circuit analysis

collector and base resistances, 871

current-controlled current source model, 872, 873

Transistor test circuits, 856, 866, 871

Transistor threshold voltage

digital circuits, 647

switching behavior, 646

Transmission line, 14

Transmitter circuit, 522

magnetic field, 507

operation frequency, 507

phasor method, 507

quality factor, 507

series capacitor, 507

Transmitting antenna, 163

Transresistance amplifier, 65, 233

Triode region, MOSFET

electron surface mobility, 934

lumped process parameter, 934

process transconductance parameter, 934

turn-on resistance, 934

Tri-state buffer, 704–705

Tri-state digital voltage

buffer, 704

components, 705

True power, 544

Truth table

AND gate, 666

logic circuit, 661, 670–671

NAND gate, 665

OR gate, 666

Tuning diode, 800

Two coupled inductors

circuit analysis, 607

circuit symbol, 613

Two-port networks, 121–122

Two-terminal network (definition of input port

output port), 119

Two-terminal switch, 50

Typecasting, 764

U

Undamped resonant frequency, 348, 352, 381, 384, 385

Underdamped circuit, 357, 360

Unidirectional switch, 50

Unity common-mode gain stage, 227

Universal synchronous/asynchronous receiver/

transmitter (USART)

CPU and external serial devices, 752

parallel data transmission, 751

serial data transmission, 751

USART See Universal synchronous/asynchronous

receiver/transmitter (USART)

V

Variable resistor, 42

Velocity saturation region, 936

Very high frequencies, 285

Virtual-ground circuit, 220–221

Virtual ground of dual-polarity power supply, 101

Virtual-ground (integrated) circuit, 221

Volatile memory, 755

Voltage amplifier, 65

Voltage-controlled current source, 65–66

Voltage-controlled voltage source, 65

Voltage difference, 5, 32, 52, 61

Voltage divider circuit, 105–107

Voltage division rule, 107

Voltage drop, 5, 32, 37, 56

absolute voltage, 72–74

Voltage follower (buffer) amplifier, 204–205

Voltage polarity, 31, 32, 55, 582, 613

Voltage transfer characteristic, 193, 953, 954

Volt-amperes (VA), 535

Volt-amperes reactive (VAR), 535

W

Wattmeter, 538

Wattmeter current coil, 538

Wheatstone bridge (definition of difference signal

difference voltage balanced), 113–115
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While loop, 776, 777

Wireless inductive power transfer

coaxial coupled inductors, 619

coil configuration, 618

data transfer, 618

finite magnetic core, 621

magnetic near-field calculations, 620

MATLAB script, 621

mutual inductance, 620

RFID, 619

transmission frequency, 620

Work function difference, 928

wye-connected load, 549, 560

Wye-connected source, 549, 560, 561

Wye-wye distribution system, 552

Wye/Y configuration, 549

X

XOR gate, 670

Y

Y and Δ Networks, 119, 121

Y to Δ transformation, 121

Z

Zener diode

piecewise-linear, 816–817

shunt voltage regulator, 815–817

voltage regulator, 843, 844

Zero-level detector, 195, 240
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