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Preface

This book is the text for the introductory course on Soil Mechanics at Delft
University of Technology’s Department of Civil Engineering, as I gave from 1980
until my retirement in 2002. It includes an introduction to the major principles and
methods of soil mechanics, such as the analysis of stresses, deformations and
stability. It also describes the most important methods of determining soil param-
eters, both in the laboratory and in situ, and in the appendices presents the basic
principles of applied mechanics that are frequently used. The text has been
developed on the basis of lectures at Delft by Profs. Nanninga, Langejan and De
Josselin de Jong. The subdivision into chapters is such that one chapter can be
treated in a single lecture, with sufficient time for demonstrations of soil behavior
and some illustrative applications, including failures of soil structures.

Since 2001 a preliminary version of this book has been available on the internet,
and some of its numerous users from all around the globe have offered their
comments and suggestions for corrections and improvements. Many of these have
been implemented in this version, which also includes references to other books and
papers. Upon the suggestion of Prof. Emmanuel Detournay of the University of
Minnesota, the problems at the end of chapters have been supplemented with
worked examples as a further aid to students. Additional sets of problems (with
answers) have been added to several chapters, and a number of demonstrations of
soil testing and of soil properties can be downloaded from http://geo.verruijt.net and
from http://extras.springer.com.

Delft, The Netherlands Arnold Verruijt
April 2017
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Chapter 1
Introduction

In this introductory chapter some of the characteristic properties of soils are
described, and the reasons for soil mechanics as a separate subject of engineering
are given.

1.1 The Discipline

Soil mechanics is the science of equilibrium and motion of soil bodies. Here soil
is understood to be the weathered material in the upper layers of the earth’s crust.
The non-weathered material in this crust is denoted as rock, and its mechanics is
the discipline of rock mechanics. In general the difference between soil and rock is
roughly that in soils it is possible to dig a trench with simple tools such as a spade
or even by hand. In rock this is impossible, it must first be splintered with heavy
equipment such as a chisel, a hammer or a mechanical drilling device. The natural
weathering process of rock is that under the long-term influence of sun, rain andwind,
it degenerates into stones. This process is stimulated by fracturing of rock bodies by
freezing and thawing of the water in small crevices in the rock. The coarse stones
that are created in mountainous areas are transported downstream by gravity, often
together with water in rivers. By internal friction the stones are gradually reduced in
size, so that the material becomes gradually finer: gravel, sand and eventually silt. In
flowing rivers the material may be deposited, the coarsest material at high velocities,
but the finer material only at very small velocities. This means that gravel will be
found in the upper reaches of a river bed, and finer material such as sand and silt in
the lower reaches.

The Netherlands is located in the lower reaches of the rivers Rhine and Meuse. In
general the soil consists of weathered material, mainly sand and clay. This material
has been deposited in earlier times in the delta formed by the rivers. Much fine
material has also been deposited by flooding of the land by the sea and the rivers.
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2 1 Introduction

This process of sedimentation occurs in many areas in the world, such as the deltas
of the Nile and the rivers in India and China. In the Netherlands it has come to an
end by preventing the rivers and the sea from flooding by building dikes. The process
of land forming has thus been stopped, but subsidence continues, by slow tectonic
movements. In order to compensate for the subsidence of the land, and seawater level
rise, the dikes must gradually be raised, so that they become heavier and cause more
subsidence. This process must continue forever if the country is to be maintained.

People use the land to live on, and build all sort of structures: houses, roads,
bridges, etcetera. It is the task of the geotechnical engineer to predict the behavior of
the soil as a result of these human activities. The problems that arise are, for instance,
the settlement of a road or a railway under the influence of its own weight and the
traffic load, the margin of safety of an earth retaining structure (a dike, a quay wall or
a sheet pile wall), the earth pressure acting upon a tunnel or a sluice, or the allowable
loads and the settlements of the foundation of a building. For all these problems soil
mechanics should provide the basic knowledge.

1.2 History

Soil mechanics has been developed in the beginning of the 20th century. The need
for the analysis of the behavior of soils arose in many countries, often as a result of
spectacular accidents, such as landslides and failures of foundations. In the Nether-
lands the slide of a railway embankment near Weesp, in 1918 (see Fig. 1.1) gave rise
to the first systematic investigation in the field of soil mechanics, by a special com-
mission set up by the government. Many of the basic principles of soil mechanics
were well known at that time, but their combination to an engineering discipline had
not yet been completed. The first important contributions to soil mechanics are due
to Coulomb, who published an important treatise on the failure of soils in 1776, and
to Rankine, who published an article on the possible states of stress in soils in 1857.
In 1856 Darcy published his famous work on the permeability of soils, for the water
supply of the city of Dijon. The principles of the mechanics of continua, including
statics and strength of materials, were also well known in the 19th century, due to the
work of Newton, Cauchy, Navier and Boussinesq. The union of all these fundamen-
tals to a coherent discipline had to wait until the 20th century. It may be mentioned
that the committee to investigate the disaster near Weesp came to the conclusion that
the water levels in the railway embankment had risen by sustained rainfall, and that
the embankment’s strength was insufficient to withstand these high water pressures.

Important pioneering contributions to the development of soil mechanics were
made by Terzaghi (1925), who, among many other things, has described how to deal
with the influence of the pressures of the pore water on the behavior of soils. This is
an essential element of soil mechanics theory. Mistakes on this aspect often lead to
large disasters, such as the slides near Weesp, Aberfan (Wales) and the Teton Valley
Dam disaster, in Idaho, USA. In the Netherlands much pioneering work was done by
Keverling Buisman, especially on the deformation rates of clay. A stimulating factor
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Fig. 1.1 Landslide near
Weesp, 1918

has been the establishment of the Delft Soil Mechanics Laboratory in 1934, now
known as Deltares. In many countries of the world there are similar institutes and
consulting companies that specialize on soil mechanics. Usually they also deal with
Foundation engineering, which is concerned with the application of soil mechanics
principle to the design and the construction of foundations in engineering practice.
Soil mechanics and Foundation engineering together are often denoted as Geotech-
nics. A well known consulting company in this field is Fugro, with its head office in
Leidschendam, and branch offices all over the world.

The international organization in the field of geotechnics is the International
Society for Soil Mechanics and Geotechnical Engineering, the ISSMGE, which
organizes conferences and stimulates the further development of geotechnics by
setting up international study groups and by standardization. In most countries the
International Society has a national society. In the Netherlands this is the Department
of Geotechnics of the Royal Netherlands Institution of Engineers (KIVI), with about
800 members.
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1.3 Why Soil Mechanics?

Soil mechanics has become a distinct and separate branch of engineering mechanics
because soils have a number of special properties, which distinguish the material
fromothermaterials. Its development has also been stimulated, of course, by thewide
range of applications of soil engineering in civil engineering, as all structures require a
sound foundation and should transfer its loads to the soil. The most important special
properties of soils will be described briefly in this chapter. In further chapters they
will be treated in greater detail, concentrating on quantitative methods of analysis.

1.3.1 Stiffness Dependent upon Stress Level

Many engineering materials, such as metals, but also concrete and wood, exhibit
linear stress-strain-behavior, at least up to a certain stress level. This means that the
deformations will be twice as large if the stresses are twice as large. This property
is described by Hooke’s law, and the materials are called linear elastic. Soils do not
satisfy this law. For instance, in compression soil becomes gradually stiffer. At the
surface sand will slip easily through the fingers, but under a certain compressive
stress it gains an ever increasing stiffness and strength. This is mainly caused by the
increase of the forces between the individual particles, which gives the structure of
particles an increasing strength. This property is used in daily life by the packaging
of coffee and other granular materials by a plastic envelope, and the application of
vacuum inside the package. The package becomes very hardwhen the air is evacuated
from it. In civil engineering the non-linear property is used to great advantage in the
pile foundation for a building on very soft soil, underlain by a layer of sand. In the
sand below a thick deposit of soft clay the stress level is high, due to the weight of
the clay. This makes the sand very hard and strong, and it is possible to apply large
compressive forces to the piles, provided that they are long enough to reach well into
the sand (Fig. 1.2).

1.3.2 Shear

In compression soils become gradually stiffer. In shear, however, soils become grad-
ually softer, and if the shear stresses reach a certain level, with respect to the normal
stresses, it is even possible that failure of the soil mass occurs. This means that the
slope of a sand heap, for instance in a depot or in a dam, can not be larger than about
30 or 40◦. The reason for this is that particles would slide over each other at greater
slopes. As a consequence of this phenomenon many areas in deltas of large rivers are
very flat. It has also caused the failure of dams and embankments all over the world,
sometimes with very serious consequences for the local population. Especially dan-
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Fig. 1.2 Pile foundation
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Fig. 1.3 A heap of sand

......................................................................................................................................................................................................................................................................................................................
.........

.........
.........

.........
.........

.........
.........

.........
.........

.........
.........

.........
.........

.........
.........

.........
.........

.........
.........

.........
.........



.................................................................................................................................................................................................................................................................................................................................................................................................................



gerous is that in very fine materials, such as clay, a steep slope is often possible for
some time, due to capillary pressures in the water, but after some time these capillary
pressures may vanish (perhaps because of rain), and the slope will fail (Fig. 1.3).

A positive application of the failure of soils in shear is the construction of guard
rails along highways. After a collision by a vehicle the foundation of the guard rail
will rotate in the soil due to the large shear stresses between this foundation and the
soil body around it. This will dissipate large amounts of energy (into heat), creating
a permanent deformation of the foundation of the rail, but the passengers, and the
car, may be unharmed. Of course, the guard rail must be repaired after the collision,
which can relatively easily be done with the aid of a heavy vehicle.

1.3.3 Dilatancy

Shear deformations of soils often are accompanied by volume changes. Loose sand
has a tendency to contract to a smaller volume, and densely packed sand can practi-
cally deform only when the volume expands somewhat, making the sand looser. This
is called dilatancy, a phenomenon discovered by Reynolds, in 1885. This property
causes the soil around a human foot on the beach near the water line to be drawn dry
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during walking. The densely packed sand is loaded by the weight of the foot, which
causes a shear deformation, which in turn causes a volume expansion, which sucks
in some water from the surrounding soil. The expansion of a dense soil during shear
is shown in Fig. 1.4. The space between the particles increases when they shear over
each other.

On the other hand a very loose assembly of sand particles will have a tendency to
collapsewhen it is sheared, with a decrease of the volume. Such volume deformations
may be especially dangerous when the soil is saturated with water. The tendency for
volume decrease then may lead to a large increase in the pore water pressures. Many
geotechnical accidents have been caused by increasing pore water pressures. During
earth quakes in Japan, for instance, saturated sand is sometimes densified in a short
time, which causes large pore pressures to develop, so that the sand particles may
start to float in the water. This phenomenon is called liquefaction. In the Netherlands
the original sand in the channels in the Eastern Scheldt estuary was very loose, which
required large densification works before the construction of the storm surge barrier.
Also, the sand used to create the airport Tjek Lap Kok in Hongkong was densified
before the construction of the runways and the facilities of the airport.

1.3.4 Creep

The deformations of a soil often depend upon time, even under a constant load. This
is called creep. Clay and peat exhibit this phenomenon. It causes structures founded
on soft soils to show ever increasing settlements. A new road, built on a soft soil,
will continue to settle for many years, and it must be repaired from time to time. For
buildings such settlements are particular damaging when they are not uniform, as
this may lead to cracks in the building.

The building of dikes in the Netherlands, on compressible layers of clay and peat,
results in settlements of these layers that continue for many decades. In order to
maintain the level of the crest of the dikes, they must be raised after a number of
years. This results in increasing stresses in the subsoil, and therefore causes additional
settlements. This process will continue forever. Before the construction of the dikes
the land was flooded now and then, with sediment being deposited on the land. This
process has been stopped by man building dikes. Safety has an ever increasing price.

Fig. 1.4 Dilatancy
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Fig. 1.5 Overflowing dike
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Sand and rock show practically no creep, except at very high stress levels. This
may be relevant when predicting the deformation of deep porous layers from which
gas or oil is extracted.

1.3.5 Groundwater

A special characteristic of soil is that water may be present in the pores of the soil.
This water contributes to the stress transfer in the soil. It may also be flowing with
respect to the granular particles, which creates friction stresses between the fluid and
the solid material. In many cases soil must be considered as a two phase material.
As it takes some time before water can be expelled from a soil mass, the presence of
water usually prevents rapid volume changes.

In many cases the influence of the groundwater has been very large. In 1953 in the
Netherlands many dikes in the south-west of the country failed because water flowed
over them, penetrated the soil, and then flowed through the dike, with a friction force
acting upon the dike material. See Fig. 1.5. The force of the water on and inside the
dike made the slope slide down, so that the dike lost its water retaining capacity, and
the low lying land was flooded in a short time. This has lead to a program (the Delta
works) for increasing the level of the dikes and closing several river channels.
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In other countries of the world large dams have sometimes failed also because of
rising water tables in the interior of the dam (for example, the Teton Valley Dam in
the USA, in which water could enter the coarse dam material because of a leaky clay
core). Even excessive rainfall may fill up a dam, as happened near Aberfan in Wales
in 1966, when a dam of mine tailings collapsed onto the village.

It is also very important that lowering the water pressures in a soil, for instance
by the production of groundwater for drinking purposes, leads to an increase of the
stresses between the particles, which results in settlements of the soil. This happens
in many big cities, such as Venice and Bangkok, that may be threatened to be swal-
lowed by the sea. It also occurs when a groundwater table is temporarily lowered
for the construction of a dry excavation. Buildings in the vicinity of the excavation
may be damaged by lowering the groundwater table. On a different scale the same
phenomenon occurs in gas or oil fields, where the production of gas or oil leads to
a volume decrease of the reservoir, and thus to subsidence of the soil. The produc-
tion of natural gas from the large reservoir in Groningen is estimated to result in a
subsidence of about 50cm in the production time of the reservoir.

1.3.6 Unknown Initial Stresses

Soil is a natural material, created in historical times by various geological processes.
Therefore the initial state of stress is often not uniform, and often even partly
unknown. Because of the non-linear behavior of the material, mentioned above, the
initial stresses in the soil are of great importance for the determination of soil behavior
under additional loads. These initial stresses depend upon geological history, which
is never exactly known, and this causes considerable uncertainty. In particular, the
initial horizontal stresses in a soil mass are usually unknown. The initial vertical
stresses may be determined by the weight of the overlying layers. This means that
the stresses increase with depth, and therefore stiffness and strength also increase
with depth. The horizontal stresses, however, usually remain largely unknown.When
the soil has been compressed horizontally in earlier times, it can be expected that the
horizontal stress is high, but when the soil is known to have spread out, the horizontal
stresses may be very low. Together with the stress dependency of the soil behavior
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Fig. 1.6 Stresses .....................................................................................................................................................................................................................................................................



............................
.......
.................................................

......................................
....
.......
....

.......

.......

.......

.......

..............

...........

................................ ........... ...........................................

.....................................................................................................................................................................................................................................................................

Fig. 1.7 Pisa

all this means that there may be considerable uncertainty about the initial behavior
of a soil mass. It may also be noted that further theoretical study can not provide
much help in this matter. Studying field history, or visiting the site, and talking to
local people, may be more helpful (Fig. 1.6).

1.3.7 Variability

The creation of soil by ancient geological processes alsomeans that soil properties
may be rather different on different locations. Even in two very close locations the soil
properties may be completely different, for instance when an ancient river channel
has been filled with sand deposits. Sometimes the course of an ancient river can be
traced on the surface of a soil, but often it can not be seen at the surface. When an
embankment is built on such a soil, it can be expected that the settlements will vary,
depending upon the local material in the subsoil. The variability of soil properties
may also be the result of a heavy local load in the past (Fig. 1.7).

A global impression of the soil composition can be obtained from geological
maps. These indicate the geological history and character of the soils. Together
with geological knowledge and experience this may give a first indication of the soil
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properties. Other geological information may also be helpful. Large areas ofWestern
Europe have, for instance, been covered by thick layers of ice in earlier ice ages, and
this means that the soils in these areas have been subject to a preload of considerable
magnitude, and therefore may be rather dense. An accurate determination of soil
properties can not be made from desk studies. It requires testing of the actual soils
in the laboratory, using samples taken from the field, or testing of the soil in the field
(in situ). This will be elaborated in later chapters.

Problem 1.1 In times of high water in the rivers in The Netherlands, when the water
table rises practically to the crest of the dikes, local authorities sometimes put sand
bags on top of the dike. Is that useful?

Problem 1.2 Another measure to prevent failure of a dike during high floods, is to
place large sheets of plastic on the slope of the dike. On which side?
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Fig. 1.8 Delft

Problem 1.3 Will the horizontal stress in the soil mass near a deep river be relatively
large or small?

Problem 1.4 The soil at the bottom of the North Sea is often much stiffer in the
Northern parts (near Norway) than it is in the Southern parts (near London). What
can be the cause?

Problem 1.5 A possible explanation for the leaning of the Pisa tower is that the
subsoil contains a compressible clay layer of variable thickness. On what side of the
tower would that clay layer be thickest?

Problem 1.6 Another explanation for the leaning of the Pisa tower is that in earlier
ages (before the start of the building of the tower, in 1400) a heavy structure stood
near that location. On which side of the tower would that building have been?
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Problem 1.7 In many cities of the world leaning towers may be found, though
nowhere so spectacular as in Pisa. An example is shown in Fig. 1.8 of the tower
of the Old Church of Delft, along the canal Oude Delft. Can you imagine what is
the probable cause in this case, and can you suggest a technical solution to prevent
further leaning?

Reference

K. Terzaghi, Erdbaumechanik auf bodenphysikalischer Grundlage (Deuticke, Wien, 1925)



Chapter 2
Classification

In this chapter the basic physical properties of themain types of soils are defined,with
themethods tomeasure them.Someelementary classification systems are considered.

2.1 Grain Size

Soils are usually classified into various types. In many cases these various types also
have different mechanical properties. A simple subdivision of soils is on the basis of
the grain size of the particles that constitute the soil. Coarse granular material is often
denoted as gravel and finer material as sand. In order to have a uniformly applicable
terminology it has been agreed internationally to consider particles larger than 2mm,
but smaller than 63mm as gravel. Larger particles are denoted as stones. Sand is the
material consisting of particles smaller than 2mm, but larger than 0.063mm.Particles
smaller than 0.063mm and larger than 0.002mm are denoted as silt. Soil consisting
of even smaller particles, smaller than 0.002 mm, is denoted as clay or luthum, see
Table2.1. In some countries the soil may also contain layers of peat, consisting of
organic material such as decayed plants. Particles of peat usually are rather small,
but it may also contain pieces of wood. It is then not so much the grain size that is
characteristic, but rather the chemical composition, with large amounts of carbon.
The amount of carbon in a soil can easily be determined by measuring how much is
lost when burning the material.

The mechanical behavior of the main types of soil, sand, clay and peat, is rather
different. Clay usually is much less permeable for water than sand, but it usually is
also much softer. Peat is usually is very light (some times hardly heavier than water),
and strongly anisotropic because of the presence of fibers of organic material. Peat
usually is also very compressible. Sand is rather permeable, and rather stiff, especially
after a certain preloading. It is also very characteristic of granular soils such as sand
and gravel, that they can not transfer tensile stresses. The particles can only transfer

© Springer International Publishing AG 2018
A. Verruijt, An Introduction to Soil Mechanics, Theory and Applications
of Transport in Porous Media 30, DOI 10.1007/978-3-319-61185-3_2
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Table 2.1 Grain sizes

Soil type Min. (mm) Max. (mm)

Clay 0.002

Silt 0.002 0.063

Sand 0.063 2

Gravel 2 63

compressive forces, no tensile forces. Only when the particles are very small and the
soil contains some water, can a tensile stress be transmitted, by capillary forces in
the contact points.

The grain size may be useful as a first distinguishing property of soils, but it is
not very useful for the mechanical properties. The quantitative data that an engineer
needs depend upon the mechanical properties such as stiffness and strength, and
these must be determined from mechanical tests. Soils of the same grain size may
have differentmechanical properties. Sand consisting of round particles, for instance,
can have a strength that is much smaller than sand consisting of particles with sharp
points. Also, a soil sample consisting of a mixture of various grain sizes can have a
very small permeability if the small particles just fit in the pores between the larger
particles.

The global character of a classification according to grain size is well illustrated
by the characterization sometimes used in Germany, saying that gravel particles are
smaller than a chicken’s egg and larger than the head of a match, and that sand
particles are smaller than a match head, but should be visible to the naked eye.

2.2 Grain Size Diagram

The size of the particles in a certain soil can be represented graphically in a grain
size diagram, see Fig. 2.1. Such a diagram indicates the percentage of the particles
smaller than a certain diameter, measured as a percentage of the mass (or weight). A
steep slope of the curve in the diagram indicates a uniform soil, a shallow slope of
the diagram indicates that the soil contains particles of strongly different grain sizes.
For rather coarse particles, say larger than 0.05 mm, the grain size distribution can
be determined by sieving. The usual procedure is to use a system of sieves having
different mesh sizes, stacked on top of each other, with the coarsest mesh on top
and the finest mesh at the bottom, see Fig. 2.2. After shaking the assembly of sieves,
by hand or by a shaking machine, each sieve will contain the particles larger than
its mesh size, and smaller than the mesh size of all the sieves above it. In this way
the grain size diagram can be determined. Special standardized sets of sieves are
available, as well as convenient shaking machines. The example shown in Fig. 2.1
illustrates normal sand. In this case there appear to be no grains larger than 5 mm.

The grain size distribution can be characterized by the quantities D60 and D10.
These indicate that 60%, respectively 10% of the particles (expressed as weights) is
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Fig. 2.1 Grain size diagram

Fig. 2.2 Sieve test

smaller than that diameter. In the case illustrated in Fig. 2.1 it appears that D60 ≈
0.6 mm, and D10 ≈ 0.07 mm. The ratio of these two numbers is denoted as the
uniformity coefficient Cu ,

Cu = D60

D10
. (2.1)
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In the case of Fig. 2.1 this is about 8.5. This indicates that the soil is not uniform.
This is sometimes denoted as a well graded soil. In a poorly graded soil the particles
all have about the same size. The uniformity coefficient is then only slightly larger
than 1, say Cu = 2.

For particles smaller than about 0.05mm the grain size can not be determined
by sieving, because the size of the holes in the mesh would become unrealistically
small, and also because during shaking the small particles might fly up in the air, as
dust. The amount of particles of a particular size can then be determined much better
by measuring the velocity of deposition in a glass of water. This method is based
upon a formula derived by Stokes. This formula expresses that the force on a small
sphere, sinking in a viscous fluid, depends upon the viscosity of the fluid, the size of
the sphere and the velocity. Because the force acting upon the particle is determined
by the weight of the particle under water, the velocity of sinking of a particle in a
fluid can be derived. The formula is

v = (γs − γ f )D2

18μ
, (2.2)

where γs is the volumetric weight of the solid particles, γ f is the volumetric weight
of the fluid, D is the grain size, and μ is the dynamic viscosity of the fluid. Because
for very small particles the velocity may be very small, the test may take rather long.

2.3 Chemical Composition

Besides the difference in grain size, the chemical composition of soil can also be
helpful in distinguishing between various types of soils. Sand and gravel usually
consist of the same minerals as the original rock from which they were created by
the erosion process. This can be quartz, feldspar or glimmer. InWestern Europe sand
usually consists mainly of quartz. The chemical formula of this mineral is SiO2.

Fine-grained soils may contain the same minerals, but they also contain the
so-called clay minerals, which have been created by chemical erosion. The main
clay minerals are kaolinite, montmorillonite and illite. In the Netherlands the most
frequent clay mineral is illite. These minerals consist of compounds of aluminum
with hydrogen, oxygen and silicates. They differ from each other in chemical compo-
sition, but also in geometrical structure, at the microscopic level. The microstructure
of clay usually resembles thin plates. On the microscale there are forces between
these very small elements, and ions of water may be bonded. Because of the small
magnitude of the elements and their distances, these forces include electrical forces
and the Van der Waals forces.

Although the interactionof clayparticles is of a different nature than the interaction
between the much larger grains of sand or gravel, there are many similarities in the
global behavior of these soils. There are some essential differences, however. The
deformations of clay are time dependent, for instance. When a sandy soil is loaded it
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will deform immediately, and then remain at rest if the load remains constant. Under
such conditions a clay soil will continue to deform, however. This is called creep. It is
very much dependent upon the actual chemical and mineralogical constitution of the
clay. Also, some clays, especially clays containing large amounts ofmontmorillonite,
may show a considerable swelling when they are getting wetter.

Asmentioned before, peat contains the remains of decayed trees andplants. Chem-
ically it therefore consists partly of carbon compounds. It may even be combustible,
or it may be produce gas. As a foundationmaterial it is not very suitable, also because
it is often very light and compressible. It may be mentioned that some clays may
also contain considerable amounts of organic material.

For a civil engineer the chemical and mineralogical composition of a soil may
be useful as a warning of its characteristics, and as an indication of its difference
from other materials, especially in combination with data from earlier projects. A
chemical analysis does not give much quantitative information on the mechanical
properties of a soil, however. For the determination of these properties mechanical
tests, in which the deformations and stresses are measured, are necessary. These will
be described in later chapters.

2.4 Consistency Limits

For very fine soils, such as silt and clay, the consistency is an important property. It
determines whether the soil can easily be handled, by soil moving equipment, or by
hand. The consistency is often very much dependent on the amount of water in the
soil. This is expressed by the water content w (see also Chap.3). It is defined as the
weight of the water per unit weight of solid material,

w = Ww/Wk . (2.3)

When the water content is very low (as in a very dry clay) the soil can be very stiff,
almost like a stone. It is then said to be in the solid state. Adding water, for instance if
the clay is flooded by rain, may make the clay plastic, and for higher water contents
the clay may even become almost liquid. In order to distinguish between these states
(solid, plastic and liquid) two standard tests have been agreed upon, that indicate
the consistency limits. They are sometimes denoted as the Atterberg limits, after the
Swedish engineer who introduced them.

The transition from the liquid state to the plastic state is denoted as the liquid limit,
wL . It represents the lowest water content at which the soil behavior is still mainly
liquid. As this limit is not absolute, it has been defined as the value determined in a
certain test, due to Casagrande, see Fig. 2.3. In the test a hollow container with a soil
sample may be raised and dropped by rotating an axis. The liquid limit is the value
of the water content for which a standard V-shaped groove cut in the soil, will just
close after 25 drops. When the groove closes after less than 25 drops, the soil is too
wet, and some water must be allowed to evaporate. By waiting for some time, and

http://dx.doi.org/10.1007/978-3-319-61185-3_3
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Fig. 2.3 Liquid limit

perhaps mixing the clay some more, the water content will have decreased, and the
test may be repeated, until the groove is closed after precisely 25 drops. Then the
water content must immediately be determined, before any more water evaporates,
of course.

An alternative for Casagrande’s test is the fall cone, see Fig. 2.4. In this test a
steel cone, of 60 g weight, and having a point angle of 60◦, is placed upon a clay
sample, with the point just at the surface of the clay. The cone is then dropped and
its penetration depth is measured. The liquid limit has been defined as the water
content corresponding to a penetration of exactly 10 mm. Again the liquid limit
can be determined by doing the test at various water contents. It has also been
observed, however, that the penetration depth, when plotted on a logarithmic scale,
is an approximately linear function of the water content. This means that the liquid
limit may be determined from a single test, which is much faster, although less
accurate.

The transition from the plastic state to the solid state is called the plastic limit, and
denoted aswP . It is defined as the water content at which the clay can just be rolled to
threads of 3mm diameter. Very wet clay can be rolled into very thin threads, but dry
clay will break when rolling thick threads. The (arbitrary) limit of 3mm is supposed

Fig. 2.4 The fall cone
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to indicate the plastic limit. In the laboratory the test is performed by starting with a
rather wet clay sample, fromwhich it is simple to roll threads of 3mm. By continuous
rolling the clay will gradually become drier, by evaporation of the water, until the
threads start to break.

For many applications (potteries, dike construction) it is especially important that
the range of the plastic state is large. This is described by the plasticity index PI. It
is defined as the difference of the liquid limit and the plastic limit,

PI = wL − wP . (2.4)

The plasticity index is a useful measure for the possibility to process the clay. It is
important for potteries, for the construction of the clay core in a high dam, and for the
construction of a layer of low permeability covering a deposit of polluted material.
In all these cases a high plasticity index indicates that the clay can easily be used
without too much fear of it turning into a liquid or a solid.

In countries with very thick clay deposits (England, Japan, Scandinavia) it is often
useful to determine a profile of the plastic limit and the liquid limit as a function of
depth, see Fig. 2.5. In this diagram the natural water content, as determined by taking
samples and immediately determining the water content, can also be indicated.

Fig. 2.5 Water content
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20 2 Classification

2.5 An International Classification System

The large variability of soil types, even in small countries such as the Netherlands,
leads to large variations in soil properties in soils that may resemble each other very
much at first sight. This is enhanced by confusion between terms such as sandy clay
and clayey sand that may be used by local firms. In some areas tradition may have
also lead to the use of terms such as blue clay or brown clay, that may be very clear
to experienced local engineers, but have little meaning to others.

Uniform criteria for the classification of soils do not exist, especially because
of local variations and characteristics. The soil in a plane of Tibet may be quite
different from the soil in Bolivia or Canada, as their geological history may be
quite different. The engineer should be aware of such differences and remain open
to characterizations that are used in other countries. Nevertheless, a classification
system that has been developed by the United States Bureau of Reclamation, is
widely used all over the world. This system consists of two characters to indicate
a soil type, see Table2.2. A soil of type SM, for instance, is a silty sand, which
indicates that it is a sand, but containing considerable amounts of non-organic fine
silty particles. This type of soil is found in the Eastern Scheldt in the Netherlands.
The sand on the beaches of the Netherlands usually is of the type SW. A clay of very
low plasticity, that is a clay with a relatively small plasticity index is denoted as CL.
The clay in a polder in Holland will often be of the type CH. It has a reasonably large
range of plastic behavior.

The characterization well graded indicates that a granular material consists of
particles that together formagood framework for stress transfer. It usually is relatively
stiff and strong, because the smaller particles fill well in the pores between the larger
particles. Amaterial consisting of large gravel particles and fine sand is called poorly
graded, because it has little coherence. Awell graded material is suitable for creating
a road foundation, and is also suitable for the production of concrete.

Global classifications as described above usually have only little meaning for the
determination of mechanical properties of soils, such as stiffness and strength. There
may be some correlation between the classification and the strength, but this ismerely
indicative. For engineering calculations mechanical tests should be performed, in
which stresses and deformations are measured. Such tests are described in later
chapters.

Table 2.2 Unified classification system (USA)

Character 1 Character 2

G Gravel W Well graded

S Sand P Poorly graded

M Silt M Silty

C Clay C Clayey

O Organic L Low plasticity

Pt Peat H High plasticity



Chapter 3
Particles, Water, Air

Soils usually consist of particles, water and air. In order to describe a soil various
parameters are used to describe the distribution of these three components, and their
relative contribution to the volume of a soil. These are also useful to determine other
parameters, such as the weight of the soil. They are defined in this chapter.

3.1 Porosity

An important basic parameter is the porosity n, defined as the ratio of the volume
of the pore space and the total volume of the soil,

n = Vp/Vt . (3.1)

For most soils the porosity is a number between 0.30 and 0.45 (or, as it is usually
expressed as a percentage, between 30 and 45%). When the porosity is small the soil
is called densely packed, when the porosity is large it is loosely packed.

It may be interesting to calculate the porosities for two particular cases. The first
case is a very loose packing of spherical particles, in which the contacts between
the spheres occur in three mutually orthogonal directions only. This is called a cubic
array of particles, see Fig. 3.1. If the diameter of the spheres is D, each sphere
occupies a volume πD3/6 in space. The ratio of the volume of the solids to the total
volume then is Vp/Vt = π/6 = 0.5236, and the porosity of this assembly thus is
n = 0.4764. This is the loosest packing of spherical particles that seems possible.
Of course, it is not stable: any small disturbance will make the assembly collapse.

A very dense packing of spheres can be constructed by starting from layers in
which the spheres form a pattern of equilateral triangles, see Fig. 3.2. The packing
is constructed by packing the layers such that the spheres of the next layer just fit in
the hollow space between three spheres of the previous layer. The axial lines from a

© Springer International Publishing AG 2018
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22 3 Particles, Water, Air

Fig. 3.1 Cubic array

Fig. 3.2 Densest array

sphere with the three spheres that support it from below form an regular tetrahedron,
having sides of magnitude D. The height of each tetrahedron is D

√
2/3. Each sphere

of the assembly, with its neighboring part of the voids, occupies a volume in space
of magnitude D × (D

√
3/4) × (D

√
2/3) = D3√1/2. Because the volume of the

sphere itself is πD3/6, the porosity of this assembly is n = 1 − π/
√
18 = 0.2595.

This seems to be the most dense packing of a set of spherical particles.
Although soils never consist of spherical particles, and the values calculated above

have no real meaning for actual soils, they may give a certain indication of what the
porosity of real soils may be. It can thus be expected that the porosity n of a granular
material may have a value somewhere in the range from 0.25 to 0.45. Practical
experience confirms this statement.

The amount of pores can also be expressed by the void ratio e, defined as the ratio
of the volume of the pores to the volume of the solids,

e = Vp/Vs . (3.2)

In many countries this quantity is preferred to the porosity, because it expresses the
pore volume with respect to a fixed volume (the volume of the solids). Because the
total volume of the soil is the sum of the volume of the pores and the volume of the
solids, Vt = Vp + Vs , the porosity and the void ratio can easily be related,

e = n/(1 − n), n = e/(1 + e). (3.3)

The porosity can not be smaller than 0, and can not be greater than 1. The void ratio
can be greater than 1.

The void ratio is also used in combination with the relative density. This quantity
is defined as

RD = emax − e

emax − emin
. (3.4)

Here emax is the maximum possible void ratio, and emin the minimum possible value.
These values may be determined in the laboratory. The densest packing of the soil
can be obtained by strong vibration of a sample, which then gives emin. The loosest
packing can be achieved by carefully pouring the soil into a container, or by letting
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the material subside under water, avoiding all disturbances, which gives emax. The
accuracy of the determination of these two values is not very good. After some more
vibration the sample may become even denser, and the slightest disturbance may
influence a loose packing.

It follows from Eq. (3.4) that the relative density varies between 0 and 1.A small
value, say RD < 0.5, means that the soil can easily be densified. Such a densification
can occur in the field rather unexpectedly, for instance in case of a sudden shock (an
earthquake), with dire consequences.

Of course, the relative density can also be expressed in terms of the porosity, using
Eq. (3.3), but this leads to an inconvenient formula, and therefore this is unusual.

3.2 Degree of Saturation

The pores of a soil may contain water and air. To describe the ratio of these two the
degree of saturation S is introduced as

S = Vw/Vp. (3.5)

Here Vw is the volume of the water, and Vp is the total volume of the pore space. The
volume of air (or any other gas) per unit pore space then is 1 − S. If S = 1 the soil
is completely saturated, if S = 0 the soil is perfectly dry.

3.3 Density

For the description of the density and the volumetric weight of a soil, the densities
of the various components are needed. The density of a substance is the mass per
unit volume of that substance. For water this is denoted by ρw, and its value is
about 1000 kg/m3. Small deviations from this value may occur due to temperature
differences or variations in salt content. In soil mechanics these are often of minor
importance, and it is often considered accurate enough to assume that

ρw = 1000 kg/m3. (3.6)

For the analysis of soil mechanics problems the density of air can usually be
disregarded.

The density of the solid particles depends upon the actual composition of the solid
material. In many cases, especially for quartz sands, its value is about

ρp = 2650 kg/m3. (3.7)
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Fig. 3.3 Measuring the
density of solid particles

This value can be determined by carefully dropping a certain mass of particles (say
Wp) in a container partially filled with water, see Fig. 3.3. The precise volume of the
particles can be measured by observing the rise of the water table in the glass. This
is particularly easy when using a graduated measuring glass. The rising of the water
table indicates the volume of the particles, Vp. Their massWp can be measured most
easily bymeasuring theweight of the glass before and after dropping the particles into
it. The density of the particle material then follows immediately from its definition,

ρp = Wp/Vp. (3.8)

The principle of this simple test, in which the volume of a body having a very
irregular shape (a number of sand particles) is measured, is due to Archimedes. He
had been asked to check the composition of a golden crown, ofwhich it was suspected
that it contained silver (which is cheaper). He realized that this could be achieved
by comparing the density of the crown with the density of a piece of pure gold, but
then he had to determine the precise volume of the crown. The legend has it that
when stepping into his bath he discovered that the volume of a body submerged
in water, whatever its precise shape, equals the volume of water above the original
water table. While shouting “Eureka!” he ran into the street, according to the legend,
to the surprise of the bystanders.

3.4 Volumetric Weight

In soil mechanics it is often required to determine the total weight of a soil body. This
can be calculated if the porosity, the degree of saturation and the densities are known.
The weight of the water in a volume V of soil is SnρwgV , and the weight of the
particles in that volume is (1 − n)ρpgV , where g is the strength of the gravity field, or
the acceleration of gravity. The value of the gravity constant is about g = 9.8 N/kg,
or, approximately, g = 10 N/kg. Thus the total weight W is
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W = [Snρwg + (1 − n)ρpg]V . (3.9)

This means that the volumetric weight γ, defined as the weight per unit volume, is

γ = W/V = Snρwg + (1 − n)ρpg. (3.10)

This formula indicates that the volumetric weight is determined by a large number
of soil parameters: the degree of saturation, the porosity, the densities of water and
soil particles, and the gravity constant. In reality it is much simpler to determine the
volumetric weight (often also denoted as the unit weight) directly by measuring the
weightW of a volume V of soil. It is then not necessary to determine the contribution
of each of the components.

If the soil is completely dry the dry volumetric weight is

γd = Wd/V = (1 − n)ρpg. (3.11)

This value can also be determined directly by weighing a volume of dry soil. In order
to dry the soil a sample may be placed in an oven. The temperature in such an oven
is usually close to 100◦, so that the water will evaporate quickly. At a much higher
temperature there would be a risk that organic parts of the soil would be burned.

From the dry volumetric weight the porosity n can be determined, see Eq. (3.11),
provided that the density of the particle material is known. This is a common method
to determine the porosity in a laboratory.

If both the original volumetric weight γ and the dry volumetric weight γd are
known, by measuring the weight and volumes both in the original state and after
drying, the porosity n may be determined from Eq. (3.11), and then the degree of
saturation Smay be determined using Eq. (3.10). Unfortunately, this procedure is not
very accurate for soils that are almost completely saturated, because a small error in
the measurements may cause that one obtains, for example, S = 0.97 rather than the
true value S = 0.99. In itself this is rather accurate, but the error in the air volume
is then 300%. In some cases, this may lead to large errors, for instance when the
compressibility of the water-air-mixture in the pores must be determined.

3.5 Water Content

The water content is another useful parameter, especially for clays. It has been used
in the previous chapter. By definition the water content w is the ratio of the weight
(or mass) of the water and the solids,

w = Ww/Wp. (3.12)

It may be noted that this is not a new independent parameter, because
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w = S
n

1 − n

ρw

ρp
= Se

ρw

ρp
. (3.13)

For a completely saturated soil (S = 1) and assuming that ρp/ρw = 2.65, it follows
that void ratio e is about 2.65 times the water content.

A normal value for the porosity is n = 0.40. Assuming that ρk = 2650 kg/m3 it
then follows from Eq. (3.11) that γd = 15900 N/m3, or γd = 15.9 kN/m3. Values
of the order of magnitude of 16 kN/m3 are indeed common for dry sand. If the
material is completely saturated it follows from Eq. (3.10) that γ ≈ 20 kN/m3. For
saturated sand this is a common value. The volumetric weight of clay soils may
also be about 20 kN/m3, but smaller values are very well possible, especially when
the water content is small, of course. Peat is often much lighter, sometimes hardly
heavier than water.

Example 3.1 A glass is initially filled with some water, see Fig. 3.4. The volume of
the water is measured to be 240 cm3. Some sand particles are carefully poured into
the water, avoiding the formation of air bubbles. The water table in the glass then
rises to indicate a volume of 320 cm3. The sand particles come to rest at the bottom
of the glass, indicating a total volume of 144 cm3. Calculate the porosity n of the
sand. Also calculate the void ratio e.

Solution

The rise of the water level after pouring the sand particles indicates that the volume
of the water plus the volume of the solid particles is 320 cm3. Because the volume
of the water is 240 cm3 it follows that the volume of the solids is Vs = 80 cm3. The
level of the sand at the bottom of the glass indicates that the volume of the sand
particles plus the volume of the water in the pores is Vt = 144 cm3. It follows that
the volume of the water in the pores is 64 cm3. Because there is no air in the water or
the sand it follows that the volume of the pores is Vp = 64 cm3. The porosity now is
n = Vp/Vt = 0.44, or n = 44%. The void ratio is e = Vp/Vs = 0.80, or e = 80%.
Note that e = n/(1 − n) and n = e/(1 + e).

Fig. 3.4 Measuring the
porosity
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Example 3.2 If the glas is shaken, it will be observed that the water level remains the
same, but the level of the sand decreases. If this level now indicates a total volume
of 128 cm3, calculate the porosity and the void ratio after shaking.

Solution

After shaking the volume of the sand (including the water in the pores) is Vt =
128 cm3, of which the solid particles occupy a volume Vs = 80 cm3 (as before), so
that the volume of the pores is Vp = 48 cm3. It follows that n = Vp/Vt = 0.375, or
n = 37.5%. The void ratio now is e = Vp/Vs = 0.60, or e = 60%.

Example 3.3 A test such as shown in Fig. 3.4 can also be used to determine the
density of the particle material, if not only the volumes are measured but also the
weights. Let the initial water level in the glass indicate a volume of 312 cm3, and the
weight of glass and water be 568 g. After carefully pouring some sand particles into
the glass, the water level rises to indicate a volume of 400 cm3. The weight of the
glass (with the water and the sand) now appears to be 800 g. Determine the density
ρs of the particle material, in g/cm3, or in kg/m3.

Solution

The volume of the sand particles is 400 − 312 = 88 cm3, and the weight of these
particles is 800 − 568 = 232 g. This means that the density of the particle material
is ρs = 2.64 g/cm3, or ρs = 2640 kg/m3

Example 3.4 A steel ring contains a sample of natural soil. The total weight of the
ring and the soil appears to be 490 g. The ring is placed in an oven, in order to let the
water evaporate. Then the weight of the ring and the dry soil is found to be 380 g.
The ring itself (empty and dry) weighs 210 g. What is the water content of the soil?
(Fig. 3.5).

Solution

The weight of the soil in its natural condition is 490−210 = 280 g, and the weight
of the water initially was 490−380 = 110 g. This means that the water content is
w = Ww/Wp = 110/170 = 0.65, or w = 65%.

Problem 3.1 A truck loaded with 2 m3 dry sand appears to weigh “3 tons” more
than the weight of the empty truck. What is the meaning of the term “3 tons”, and
what is the volumetric weight of the sand?

Problem 3.2 If it is known that the density of the sand particles in the material
of the previous problem is 2600 kg/m3, then what is the porosity n? And the void
ratio e?

Fig. 3.5 Soil sample in ring
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Problem 3.3 It would be possible to fill the pores of the dry sand of the previous
problems with water. What is the volume of the water that the sand could contain,
and then what is the volumetric weight of the saturated sand?

Problem 3.4 The soil in a polder consists of a clay layer of 5m thickness, with a
porosity of 50%, on top of a deep layer of stiff sand. The water level in the clay is
lowered by 1.5m. Experience indicates that then the porosity of the clay is reduced
to 40%. What is the subsidence of the soil?

Problem 3.5 The particle size of sand is about 1 mm. Gravel particles are much
larger, of the order of magnitude of 1 cm, a factor 10 larger. The shape of gravel
particles is about the same as that of sand particles. What is the influence of the
particle size on the porosity?



Chapter 4
Stresses in Soils

In this chapter the separation of the stresses in soils into pressures in the fluid and
stresses in the granular mass is presented. Special attention is paid to the definition
of the effective stress, and its relation to the deformations.

4.1 Stresses

As in other materials, stresses may act in soils as a result of an external load and the
volumetric weight of the material itself. Soils, however, have a number of properties
that distinguish it from other materials. Firstly, a special property is that soils can
only transfer compressive normal stresses, and no tensile stresses. Secondly, shear
stresses can only be transmitted if they are relatively small, compared to the normal
stresses. Furthermore it is characteristic of soils that part of the stresses is transferred
by the water in the pores. This will be considered in detail in this chapter.

Because the normal stresses in soils usually are compressive stresses only, it is
standard practice to use a sign convention for the stresses that is just opposite to the
sign convention of classical continuum mechanics, namely such that compressive
stresses are considered positive, and tensile stresses are negative. The stress tensor
will be denoted by σ. The sign convention for the stress components is illustrated
in Fig. 4.1. Its formal definition is that a stress component is positive when it acts in
positive coordinate direction on a plane with its outward normal in negative coor-
dinate direction, or when it acts in negative direction on a plane with its outward
normal in positive direction. This means that the sign of all stress components is just
opposite to the sign that they would have in most books on continuum mechanics or
applied mechanics.

It is assumed that in indicating a stress component σi j the first index denotes the
plane on which the stress is acting, and the second index denotes the direction of the
stress itself. This means, for instance, that the stress component σxy indicates that

© Springer International Publishing AG 2018
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Fig. 4.1 Stresses

the force in y-direction, acting upon a plane having its normal in the x-direction is
Fy = −σxy Ax , where Ax denotes the area of the plane surface. The minus sign is
needed because of the special sign convention of soil mechanics, assuming that the
sign convention for forces is the same as in mechanics in general.

4.2 Pore Pressures

Soil is a porous material, consisting of particles that together constitute the grain
skeleton. In the pores of the grain skeleton a fluid may be present: usually water.
The pore structure of all normal soils is such that the pores are mutually connected.
The water fills a space of very complex form, but it constitutes a single continuous
body. In this water body a pressure may be transmitted, and the water may also flow
through the pores. The pressure in the pore water is denoted as the pore pressure.

In a fluid at rest no shear stresses can be transmitted. This means that the pressure
is the same in all directions. This can be proved by considering the equilibrium
conditions of a very small triangular element, see Fig. 4.2, bounded by a vertical
plane, a horizontal plane and a sloping plane at an angle of 45◦. If the pressure on
the vertical plane at the right is p, the force on that plane is pA, where A is the
area of that plane. Because there is no shear stress on the lower horizontal plane, the
horizontal force pAmust be equilibrated by a force component on the sloping plane.
That component must therefore also be pA. Because on this plane the shear stress
is also zero, as on all surfaces, it follows that the vertical force component must be
pA, in order that the resulting force on the plane is perpendicular to it. This vertical
force must be in equilibrium with the vertical force on the lower horizontal plane of
the element. Because the area of that element is also A, the pressure on that plane is
p, equal to the pressure on the vertical plane. Using a little geometry it can be shown
that this pressure p acts on every plane through the same point. This is often denoted
as Pascal’s principle.
If the water is at rest (i.e. when there is no flow of the water), the pressure in the water
is determined by the depth of the point considered with respect to the water surface.
As first shown by Simon Stevin, a great engineer from The Netherlands in the 16th
century, the magnitude of the water pressure on the bottom of a container filled with
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Fig. 4.2 Pascal

Fig. 4.3 Stevin: hydrostatic water pressure depends upon depth only

water, depends only upon the height of the column ofwater and the volumetricweight
of the water, and not upon the shape of the container, see Fig. 4.3. The pressure at
the bottom in each case is

p = γwd, (4.1)

where γw is the volumetric weight of the water, and d is the depth below the water
surface. The total vertical force on the bottom is γwd A. Only in case of a container
with vertical sides this is equal to the total weight of the water in the container. Stevin
showed that for the other types of containers illustrated in Fig. 4.3 the total force on
the bottom is also γwd A. This can be demonstrated by considering equilibrium of
the water body, taking into account that the pressure in every point on the walls must
always be perpendicular to the wall. The container at the extreme right in Fig. 4.3
resembles a soil body, with its pore space. It can be concluded that the water in a
soil satisfies the principles of hydrostatics, provided that the water in the pore space
forms a continuous body.

4.3 Effective Stress

On an element of soil normal stresses as well as shear stresses may act. The simplest
case, however, is the case of an isotropic normal stress, see Fig. 4.4. It is assumed that
the magnitude of this stress, acting in all directions, is σ. In the interior of the soil, for
instance at a cross section in the center, this stress is transmitted by a pore pressure p
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Fig. 4.4 Isotropic stress

in the water, and by stresses in the particles. The stresses in the particles are generated
partly by the concentrated forces acting in the contact points between the particles,
and partly by the pressure in thewater, that almost completely surrounds the particles.
It can be expected that the deformations of the particle skeleton are almost completely
determined by the concentrated forces in the contact points, because the structure
can deform only by sliding and rolling in these contact points. The pressure in the
water results in an equal pressure in all the grains. It follows that this pressure acts
on the entire surface of a cross section, and that by subtracting p from the total stress
σ a measure for the contact forces is obtained. It can also be argued that when there
are no contact forces between the particles, and a pressure p acts in the pore water,
this same pressure p will also act in all the particles, because they are completely
surrounded by the pore fluid. The deformations in this case are the compression of
the particles and the water caused by this pressure p. Quartz and water are very stiff
materials, having an elastic modulus about 1/10 of the elastic modulus of steel, so
that the deformations in this case are very small (say 10−6), and can be disregarded
with respect to the large deformations that are usually observed in a soil (10−3–10−2).
These considerations indicate that it seems meaningful to introduce the difference
of the total stress σ and the pore pressure p, (Fig. 4.5).

σ′ = σ − p. (4.2)

Fig. 4.5 Karl Terzaghi
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The quantity σ′ is denoted as the effective stress. The effective stress is a measure
for the concentrated forces acting in the contact points of a granular material. If
p = σ it follows that σ′ = 0, which means that then there are no concentrated forces
in the contact points. This does not mean that the stresses in the grains are zero in
that case, because there will always be a stress in the particles equal to the pressure in
the surrounding water. The basic idea is, as stated above, that the deformations of a
granular material are almost completely determined by changes of the concentrated
forces in the contact points of the grains, which cause rolling and sliding in the
contact points. These are described (on the average) by the effective stress, a concept
introduced by Terzaghi (1925). Equation (4.2) can, of course, also be written as

σ = σ′ + p. (4.3)

Terzaghi’s effective stress principle is often quoted as “total stress equals effective
stress plus pore pressure”, but it should be noted that this applies only to the normal
stresses. Shear stresses can be transmitted by the grain skeleton only.

It may be noted that the concept is based upon the assumption that the particles
are very stiff compared to the soil as a whole, and also upon the assumption that the
contact areas of the particles are very small. These are reasonable assumptions for a
normal soil, but for porous rock theymay not be valid. For rock the compressibility of
the rock must be taken into account, which leads to a small correction in the formula.

To generalize the subdivision of total stress into effective stress and pore pressure
it may be noted that the water in the pores can not contribute to the transmission
of shear stresses, as the pore pressure is mainly isotropic. Even though in a flowing
fluid viscous shear stresses may be developed, these are several orders of magnitude
smaller than the pore pressure, and than the shear stresses that may occur in a soil.
This suggests that the generalization of (4.3) is

σxx = σ′
xx + p, σyz = σ′

yz,

σyy = σ′
yy + p, σzx = σ′

zx ,

σzz = σ′
zz + p, σxy = σ′

xy .

(4.4)

This is usually called the principle of effective stress. It is one of the basic principles of
soil mechanics. The notation, with the effective stresses being denoted by an accent,
σ′, is standard practice. The total stresses are denoted by σ, without accent.

Even though the Eq. (4.4) are very simple, and may seem almost trivial, different
expressions may be found in some publications, especially relations of the form
σ = σ′ + np, in which n is the porosity. The idea behind this is that the pore water
pressure acts in the pores only, and that therefore a quantity np must be subtracted
from the total stressσ to obtain ameasure for the stresses in the particle skeleton. That
seems to make sense, and it may even give a correct value for the average stress in
the particles, but it ignores that soil deformations are not in the first place determined
by deformations of the individual particles, but mainly by changes in the geometry
of the grain skeleton. This average granular stress might be useful if one wishes to
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Fig. 4.6 Effective stress

study the effect of stresses on the properties of the grains themselves (for instance a
photo-elastic or a piezo-electric effect), but in order to study the deformation of soils
it is not useful. Terzaghi’s notion, that the soil deformations are mainly determined
by the contact forces only, leads directly to the concept of effective stress, because
only if one writes σ′ = σ − p do the effective stresses vanish when there are no
contact forces. The pore pressure must be considered to act over the entire surface
to obtain a good measure for the contact forces, see Fig. 4.6.

The Eq. (4.4) can be written in matrix notation as

σi j = σ′
i j + p δi j , (4.5)

in which δi j is the Kronecker delta, or the unit matrix. Its definition is

δi j =
{
1 if i = j,
0 if i �= j .

(4.6)

Calculating the effective stresses in soils is one of the main problems of soil mechan-
ics. The effective stresses are important because they determine the deformations.
In the next chapter the procedure for the determination of the effective stress will be
illustrated for the simplest case, of one-dimensional deformation. In later chapters
more general cases will be considered, including the effect of flowing groundwater.

4.4 Archimedes and Terzaghi

The concept of effective stress is so important for soil mechanics that it deserves
careful consideration. It may be illuminating, for instance, to note that the concept
of effective stress is in complete agreement with the principle of Archimedes for the
upward force on a submerged body.

Consider a volume of soil of magnitude V , having a porosity n, see Fig. 4.7. The
total weight of the particles in the volume is (1 − n)γpV , in which γp is the unit
weight of the particle material, which is about 26.5 kN/m3. Following Archimedes,
the upward force underwater is equal to theweight of thewater that is being displaced
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Fig. 4.7 Archimedes

by the particles, that is (1 − n)γwV , in which γw is the volumetric weight of water,
about 10 kN/m3. The remaining force is

F = (1 − n)γkV − (1 − n)γwV,

which must be transmitted to the bottom on which the particles rest. If the area of
the volume is denoted by A, and the height by h, then the average stress is, with
σ′ = F/A,

σ′ = (1 − n)γph − (1 − n)γwh = (1 − n)(γp − γw)h. (4.7)

The quantity (γp − γw) is sometimes called the submerged volumetric weight.
Following Terzaghi the effective stresses must be determined as the difference of

the total stress and the pore pressure. The total stress is generated by the weight of
the soil, whatever its constitution, i.e. σ = γsh, in which γs is the volumetric weight
of the soil. If the ground water is at rest the pore pressure is determined by the depth
below the water table, i.e. p = γwh. This means that the effective stress is

σ′ = γsh − γwh. (4.8)

Because for a saturated soil the volumetric weight is

γs = nγw + (1 − n)γp,

this can also be written as

σ′ = (1 − n)γph − (1 − n)γwh = (1 − n)(γp − γw)h. (4.9)

This is identical to the expression (4.7). Terzaghi’s principle of effective stress appears
to be in agreementwith the principle ofArchimedes,which is a fundamental principle
of physics. It may be noted that in the two methods it has been assumed that the
determining factor is the force transmitted between the particles and an eventual
rigid surface, or the force transmittance between the grains. This is another basic
aspect of the concept of effective stress, and it can be concluded that Archimedes’
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principle confirms the principle of effective stress. Terzaghi’s approach, leading to the
expression (4.8), is somewhat more direct, and especially more easy to generalize. In
thismethod the porosity n is not needed, and hence it is not necessary to determine the
porosity to calculate the effective stress. On the other hand, the porosity is hidden in
the volumetric weight γs . It is important, however, to realize that Terzaghi’s principle
is in agreement with Archimedes’ principle for incompressible particles, because
Archimedes’ principle is so basic in theoretical physics.

Terzaghi’s idea of the effective stress, being the part of the total stress that is
responsible for the soil deformations, and can be determined by subtracting the pore
water pressure from the total stress, is the main reason for Terzaghi to be considered
as the father of soil mechanics. It is a typical example of good engineering, being
a very good approximation of scientific truth (not exact, because it is assumed that
the particles are completely incompressible), and very useful, and convenient, for
engineering practice.

The generalization of Terzaghi’s approach to more complicated cases, such as
non-saturated soils, or flowing groundwater, is relatively simple. For a non-saturated
soil the total stresses will be smaller, because the soil is lighter. The pore pressure
remains hydrostatic, and hence the effective stresses will be smaller, even though
there are just as many particles as in the saturated case. The effective principle can
also be applied in cases involving different fluids (oil and water, or fresh water and
salt water). In the case of flowing groundwater the pore pressures must be calculated
separately, using the basic laws of groundwater flow. Once these pore pressures are
known they can be subtracted from the total stresses to obtain the effective stresses.

The procedure for the determination of the effective stresses usually is that first
the total stresses are determined, on the basis of the total weight of the soil and all
possible loads. Then the pore pressures are determined, from the conditions on the
groundwater. Then finally the effective stresses are determined by subtracting the
pore pressures from the total stresses.

Example 4.1 A small rubber balloon is filled with dry sand, and then closed. The
external pressure on the balloon is equal to the atmospheric pressure, hence σ = pa .
The pressure in the air inside the balloon is also equal to the atmospheric pressure,
p = pa . It follows that the effective stress in the sand is σ′ = σ − p = 0. This means
that there are no contact forces between the soil particles, at least if the effect of the
weight of the particles can be disregarded, which is justified if the balloon is small.
The balloon can easily be deformed.

The pressure in the air inside the balloon can be decreasedwith the aid of a vacuum
pump. If the underpressure achieved by the pump is almost equal to the atmospheric
pressure, i.e. 1 bar or about 100 kPa, the total stress remains σ = pa = 100 kPa, but
the pressure in the air is reduced to p = 0 kPa, so that the effective stress becomes
σ′ = σ − p = pa = 100 kPa. There are now reasonably large forces in the contact
points of the particles. This results in a considerable stiffness of the balloon. It appears
as if there is a stone inside the balloon. Sometimes coffee is packaged in this way,
using an under pressure in a plastic bag. It is claimed that the coffee remains fresh
in this way.
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Note: in engineering practice all stresses are often considered with respect to the
atmospheric pressure. In the first situation this means that both the total stress and
the effective stress are zero; in the second situation the total stress is zero, but the
pore pressure is p = −100 kPa, so that the effective stress is σ′ = 100 kPa, which
is (of course) the same value as obtained previously.

Example 4.2 An astronaut takes a package of vacuum packed coffee into a spaceship
and then to the moon. On earth the effective stress keeping the package stiff is about
atmospheric pressure, say σ′ = 100 kPa, assuming that the vacuum is complete.

In the spaceship an artificial atmosphere is maintained, so that the astronauts
can move freely. Then the package remains very stiff. However, on the moon there
is practically no atmospheric pressure (check this statement in an encyclopedia or
on the internet, and try to understand the reasons), so that the zero pressure in the
pore space is equal to the total stress outside. The effective stress then is reduced to
practically zero, and the package looses all its rigidity.

Example 4.3 If a package of vacuum packed coffee is dropped into a lake, and sinks
to a depth of 10 m, the total stress increases with about 100 kPa, taking into account
that the unit weight of water is about γw = 10 kN/m3. As the pore pressure remains
the same, the effective stress increases to about σ′ = 200 kPa, which makes the
package about twice as stiff.

Note that in reality the package may float in the water, unless a stone is attached
to it.

Example 4.4 A treasure hunter wants to remove a collection of antique Chinese
plates from a sunken ship. Under water the divers must lift the plates very carefully,
of course, to avoid damage. It may be useful to consider whether it is important to
know the depth below water of the ship in order to estimate the risk of damages. For
this purpose it can be argued that the total stress below the first plate will be σ =
γwh + γcd, where h is the depth below sea level, γc is the unit weight of the plates,
and d is the thickness of a plate. The water pressure at that depth is p = γw(h + d),
so that the effective stress is σ′ = (γc − γw)d, which is independent of the water
depth h. The force between the first two plates is just the weight of one plate, under
water.

Example 4.5 The bottom of a lake consists of sand. The water level in the lake rises
by an amount �h, so that the water pressure at the bottom is increased. One might
think that this increase of pressure will result in a subsidence of the bottom of the lake
by deformation of the sand. This is not so, however, as can be understood by noting
that both the total stress and the pore pressure will increase, at all depths below the
soil surface, by an amount γw�h, indicating that the effective stresses remain the
same, so that there will be no deformation of the soil.

Reference
K. Terzaghi, Erdbaumechanik auf bodenphysikalischer Grundlage (Deuticke, Wien, 1925)



Chapter 5
Stresses in a Layer

This chapter presents some examples for the determination of the vertical stresses
(effective stresses and pore pressures) in a layer with a horizontal surface.

5.1 Vertical Stresses

In many places on earth the soil consists of practically horizontal layers. If such a
soil does not carry a local surface load, and if the groundwater is at rest, the vertical
stresses can be determined directly from a consideration of vertical equilibrium. The
procedure is illustrated in this chapter.

A simple case is a homogeneous layer, completely saturated with water, see
Fig. 5.1. The pressure in the water is determined by the location of the phreatic
surface. This is defined as the plane where the pressure in the groundwater is equal
to the atmospheric pressure. If the atmospheric pressure is taken as the zero level
of pressures, as is usual, it follows that p = 0 at the phreatic surface. If there are
no capillary effects in the soil, this is also the upper boundary of the water, which
is denoted as the groundwater table. In the example it is assumed that the phreatic
surface coincides with the soil surface, see Fig. 5.1. The volumetric weight of the
saturated soil is supposed to be γ = 20 kN/m3. The vertical normal stress in the soil
now increases linearly with depth,

σzz = γd. (5.1)

This is a consequence of vertical equilibrium of a column of soil of height d. It
has been assumed that there are no shear stresses on the vertical planes bounding
the column in horizontal direction. That seems to be a reasonable assumption if the
terrain is homogeneous and very large, with a single geological history. Often this is
assumed, even when there are no data.

© Springer International Publishing AG 2018
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Fig. 5.1 Stresses in a homogeneous layer

At a depth of 10 m, for instance, the vertical total stress is 200 kN/m2 = 200 kPa.
Because the groundwater is at rest, the pressures in the water will be hydrostatic. The
soil can be considered to be a container of water of very complex shape, bounded by
all the particles, but that is irrelevant for the actual pressure in the water. This means
that the pressure in the water at a depth d will be equal to the weight of the water in
a column of unit area, see also Fig. 4.3,

p = γwd, (5.2)

where γw is the volumetric weight of water, usually γw = 10 kN/m3. It now follows
that a depth of 10m the effective stress is 200 – 100 kPa = 100 kPa.

Formally, the distribution of the effective stress can be found from the basic
equation σ′

zz = σzz − p, or, with (5.1) and (5.2),

σ′
zz = (γ − γw)d. (5.3)

The vertical effective stresses appear to be linear with depth. That is a consequence
of the linear distribution of the total stresses and the pore pressures, with both of
them being zero at the same level, the soil surface.

It should be noted that the vertical stress components, both the total stress and the
effective stress, can be found using the condition of vertical equilibriumonly, together
with the assumption that the shear stresses are zero on vertical planes. The horizontal
normal stresses remain undetermined at this stage. Even by also considering horizon-
tal equilibrium these horizontal stresses can not be determined. A consideration of
horizontal equilibrium, see Fig. 5.2, does give some additional information, namely
that the horizontal normal stresses on the two vertical planes at the left and at the
right must be equal, but their magnitude remains unknown. The determination of
horizontal (or lateral) stresses is one of the essential difficulties of soil mechanics.

http://dx.doi.org/10.1007/978-3-319-61185-3_4
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Fig. 5.2 Equilibrium

Because the horizontal stresses can not be determined from equilibrium conditions
they often remain unknown. It will be shown later that even when also considering
the deformations, the determination of the horizontal stresses remains very difficult,
as this requires detailed knowledge of the geological history, which is usually not
available. Perhaps the best way to determine the horizontal stresses is by direct or
indirect measurement in the field. The problem will be discussed further in later
chapters.

The simple example of Fig. 5.1may be used as the starting point for more complex
cases. As a second example the situation of a somewhat lower phreatic surface is
considered, say when it is lowered by 2 m. This may be caused by the action of a
pumping station in the area, such that the water level in the canals and the ditches
in a polder is to be kept at a level of 2m below the soil surface. In this case there
are two possibilities, depending upon the size of the particles in the soil. If the soil
consists of very coarse material, the groundwater level in the soil will coincide with
the phreatic surface (the level where p = 0), which will be equal to the water level
in the open water, the ditches. However, when the soil is very fine (for instance clay),
it is possible that the top of the groundwater in the soil (the groundwater level) is
considerably higher than the phreatic level, because of the effect of capillarity. In
the fine pores of the soil the water may rise to a level above the phreatic level due to
the suction caused by the surface tension at the interface of particles, water and air.
This surface tension may lead to pressures in the water below atmospheric pressure,
i.e. negative water pressures. The zone above the phreatic level is denoted as the
capillary zone. The maximum height of the groundwater above the phreatic level is
denoted as hc, the capillary rise (Fig. 5.3).

If the capillary rise hc in the example is larger than 2 m, the soil in the polder
will remain saturated when the water table is lowered by 2 m. The total stresses
will not change, because the weight of the soil remains the same, but the pore pres-
sures throughout the soil are reduced by γw × 2 m = 20 kN/m2. This means that
the effective stresses are increased everywhere by the same amount, see Fig. 5.4.
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Fig. 5.3 Capillary rise

Fig. 5.4 Lowering the phreatic surface by 2 m, with capillary rise

Lowering the phreatic level appears to lead to an increase of the effective stresses.
In practice this will cause deformations, which will be manifest by a subsidence of
the ground level. This indeed occurs very often, wherever the groundwater table is
lowered. Lowering the water table to construct a dry building pit, or lowering the
groundwater table in a newly reclaimed polder, leads to higher effective stresses, and
therefore settlements. This may be accompanied by severe damage to buildings and
houses, especially if the settlements are not uniform. If the subsidence is uniform
there is less risk for damage to structures founded on the soil in that area. Lowering the
phreatic level may also have some positive consequences. For instance, the increase
of the effective stresses at the soil surface makes the soil much stiffer and stronger,
so that heavier vehicles (tractors or other agricultural machines) can be supported.
In case of a very high phreatic surface, coinciding with the soil surface, as illustrated
in Fig. 5.1, the effective stresses at the surface are zero, which means that there is no
force between the soil particles. Man, animal and machine then can not find support
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on the soil, and they may sink into it. The soil is called soggy or swampy. It seems
natural that in such cases people will be motivated to lower the water table. This
will result in some subsidence, and thus part of the effect of the lower groundwater
table is lost. This can be restored by a further lowering of the water table, which
in turn will lead to further subsidence. In some places on earth the process has had
almost catastrophic consequences (Venice, Bangkok). The subsidence of Venice, for
instance, was found to be caused for a large part by the production of ever increasing
amounts of drinking water from the soil in the immediate vicinity of the city. Further
subsidence has been reduced by finding a water supply farther from the city.

When the soil consists of very coarse material, there will practically be no cap-
illarity. In that case lowering the phreatic level by 2m will cause the top 2m of the
soil to become dry, see Fig. 5.5. The upper 2m of soil then will become lighter. A
reasonable value for the dry volumetric weight is γd = 16 kN/m3. At a depth of 2m
the vertical effective stress now is σ′

zz = 32 kPa, and at a depth of 10m the effective
stress is σ′

zz = 112 kPa. It appears that in this case the effective stresses increase by
12 kPa, compared to the case of a water table coinciding with the ground surface.
The distribution of total stresses, effective stresses and pore pressures is shown in
Fig. 5.5. Again there will be a tendency for settlement of the soil. In later chapters a
procedure for the calculation of these settlements will be presented. For this purpose
first the relation between effective stress and deformation must be considered.

Subsidence of the soil can also be caused by the extraction of gas or oil from soil
layers. The reservoirs containing oil and gas are often located at substantial depth
(in Groningen at 3000m depth). These reservoirs usually consist of porous rock, that
have been consolidated through the ages by the weight of the soil layers above it,
but some porosity (say 10 or 20%) remains, filled with gas or oil. When the gas or
oil is extracted from the reservoir, by reducing the pressure in the fluid, the effective
stresses increase, and the thickness of the reservoirwill be reduced.Thiswill cause the
soil layers above the reservoir to settle, and it will eventually give rise to subsidence

Fig. 5.5 Lowering of the phreatic surface by 2 m, no capillarity
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of the soil surface. In Groningen the subsidence above the large gas reservoir is
estimated to reach about 50 cm, over a very large area. All structures subside with
the soil, with a risk of damage. Also, because the soil surface is below sea level, great
care must be taken to maintain the drainage capacity of the hydraulic infrastructure.
Sluices may have to be renewed because they subside, whereas water levels must be
maintained. The dikes also have to be raised to balance the subsidence due to gas
production. Also, because the pressures in the gas are reduced by a large amount,
the effective stresses in the rock will be very much increased, which is causing earth
quakes because of inhomogeneities in the rock. As a result many buildings show
considerable damage.

In some parts of the world subsidence may have very serious consequences, for
instance in areas of coal mining activities. In mining the entire soil is being removed,
and sudden collapse of a mine gallery may cause great damage to the structures
above it.

5.2 The General Procedure

It has been indicated in the examples given above how the total stresses, the effective
stresses and the pore pressures can be determined on a horizontal plane in a soil
consisting of practically horizontal layers. In most cases the best general procedure
is that first the total stresses are determined, from the vertical equilibrium of a column
of soil. The total stress then is determined by the total weight of the column (particles
and water), plus an eventual surcharge caused by a structure. In the next step the pore
pressures are determined, from the hydraulic conditions. If the groundwater is at rest
it is sufficient to determine the location of the phreatic surface. The pore pressures
then are hydrostatic, starting from zero at the level of the phreatic surface, i.e. linear
with the depth below the phreatic surface. When the soil is very fine a capillary zone
may develop above the phreatic surface, in which the pore pressures are negative.
The maximum negative pore pressure depends upon the size of the pores, and can
be measured in the laboratory. Assuming that there are sufficient data to determine
the pore pressures, the effective stresses can be determined as the difference of the
total stresses and the pore pressures.

A final example is shown in Fig. 5.6. This concerns a layer of 10m thickness,
carrying a surcharge of 50 kPa. The phreatic level is located at a depth of 5 m,
and it has been measured that in this soil the capillary rise is 2 m. The volumetric
weight of the soil when dry is 16 kN/m3, and when saturated it is 20 kN/m3. Using
these data it can be concluded that the top 3m of the soil will be dry, and that the
lower 7m will be saturated with water. The total stress at a depth of 10m then is
50 kPa + 3 m × 16 kN/m3 + 7 m × 20 kN/m3 = 238 kPa. At that depth the pore
pressure is 5 m × 10 kN/m3 = 50 kPa. It follows that the effective stress at 10m
depth is 188 kPa. The distribution of total stresses, effective stresses and pore pres-
sures is shown in Fig. 5.6.
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Fig. 5.6 Example of the general procedure

It should be noted that throughout this chapter it has been assumed that the ground-
water is at rest, so that the pressure in the groundwater is hydrostatic. When the
groundwater is flowing this is not so, and more data are needed to determine the
pore pressures. For this purpose the flow of groundwater is considered in the next
chapters.

Example 5.1 A lake is being reclaimed by lowering the water table below the bottom
of the lake, see Fig. 5.7. The soil consists of 10m of homogeneous clay, having a
saturated volumetric weight of 18 kN/m3. Below the clay the soil is sand. Initially
the water level is 2m above the soil surface, after the reclamation the phreatic level is
at 2m below the soil surface, and it is assumed that soil remains saturated. Construct
graphs of total stresses, effective stresses and pore pressures before and after the
reclamation.

Solution

The stresses in the initial state are shown in the left half of Fig. 5.7. The stresses in
the final state are shown in the right half of the figure.

Fig. 5.7 Stresses before and after lowering the water table
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For the stresses in the initial state the total stresses can best be calculated first.
At a depth of −2 m: σzz = 0, and at a depth of 0 m: σzz = γw × 2 m = 20 kPa.
The top layer is 10m of clay, with a unit weight of 18 kN/m3. This means that at a
depth of 10 m: σzz = 200 kPa. Below that level the soil is sand, with a unit weight
of 20 kN/m3, so that at a depth of 15 m: σzz = 300 kPa.

Next the pore pressures can be calculated. At a depth of −2 m: p = 0, and then
the pore pressure increases hydrostatically with depth, so that for instance at a depth
of 10 m: p = 120 kPa.

The effective stresses can finally be determined using the relation σ′
zz = σzz − p.

At a depth of 10 m: σ′
zz = 80 kPa.

In the final state the total stresses start at the surface z = 0, and then at a depth
of 10 m: σzz = 180 kPa, and at a depth of 15 m: σzz = 280 kPa.

The pore pressures now are zero at a depth of 2 m, but above that level it is given
that the soil remains saturated, so that negative pore pressures will be developed.
The distribution of the pore pressures in the final state will again by hydrostatic. This
means that at a depth of 10 m: p = 80 kPa. At the soil surface the pore pressure will
be p = −20 kPa.

Again the effective stresses can be determined as the difference of the total stresses
and the pore pressures, σ′

zz = σzz − p. At a depth of 10 m: σ′
zz = 100 kPa.

It may be noted that the total stresses decrease, but the pore pressures decrease
even more, so that the effective stresses increase. For instance at a depth of 10 m the
initial effective stress is 80 kPa, and the final effective stress is 100 kPa. This means
that the soil will be compressed, and subsidence of the soil surface can be expected.

Example 5.2 A concrete caisson having a mass of 5000 ton, a foundation surface of
20 × 20 m, and a height of 10 m, is being placed on dry sand. Calculate the average
total stress and the average effective stress just below the caisson.

Solution

The total force on the soil is F = M × g, where M is the mass of the caisson, and g
is the gravity constant, which is approximately g = 10 N/kg. In this case it follows
that F = 5000 × 1000 × 10 = 50 × 106 N = 50, 000 kN. Because the area of the
bottom of the caisson is 400 m2 the average total stress is σzz = 125 kPa. There is
no water in the soil, so that the pore pressure is zero, and the effective stress is equal
to the total stress.

Example 5.3 A similar caisson is placed in open water, on a layer of sand. The water
level is 5m above the top of the sand, so that the top of the caisson is 5m above water.
Again calculate the average total stress and the average effective stress just below
the caisson.
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Solution

In this case the total stress is the same as in the previous case, σzz = 125 kPa. The
pore pressure in the soil just below the caisson is p = 50 kPa (the pressure caused
by 5m of water). The effective stress now is σ′

zz = σzz − p = 75 kPa.
Itmay be noted that this last answer can also be obtained directly by subtracting the

upward buoyancy force on the caisson from itsweight, i.e. F ′ = 50, 000 − 20, 000 =
30, 000 kPa, and then dividing this by the area of the caisson. This may be faster,
but it is recommended to always determine the effective stress as the difference of
the total stress and the pore pressure, because this can be more easily generalized,
for instance to problems involving flowing groundwater.

Problem 5.1 A certain soil has a dry volumetric weight of 15.7 kN/m3, and a sat-
urated volumetric weight of 21.4 kN/m3. The phreatic level is at 2.5m below the
soil surface, and the capillary rise is 1.3 m. Calculate the vertical effective stress at
a depth of 6.0 m, in kPa.

Problem 5.2 A layer of saturated clay has a thickness of 4 m, and a volumetric
weight of 18 kN/m3. Above this layer a sand layer is located, having a dry volu-
metric weight of 16 kN/m3 and a saturated volumetric weight of 20 kN/m3. The
groundwater level is at a depth of 1m below soil surface, which is the top of the sand
layer. There is no capillary rise in the sand, and the pore pressures are hydrostatic.
Calculate the average effective stress in the clay, in kPa.

Problem 5.3 The soil in the previous problem is loaded by a surcharge of 2m of
the same sand. The groundwater level is maintained. Calculate the increase of the
average effective stress in the clay, in kPa.



Chapter 6
Darcy’s Law

In this chapter Darcy’s law for the flow of groundwater through a porous medium
(a soil) is presented. Special attention is paid to the permeability and its unit.

6.1 Hydrostatics

As already mentioned in earlier chapters, the stress distribution in groundwater at
rest follows the rules of hydrostatics. More precise it can be stated that in the absence
of flow the stresses in the fluid in a porous medium must satisfy the equations of
equilibrium in the form

∂ p

∂x
= 0,

∂ p

∂y
= 0, (6.1)

∂ p

∂z
+ γw = 0.

Here it has been assumed that the z-axis is pointing vertically upward. The quantity
γw is the volumetric weight of the water, which is γw ≈ 10 kN/m3. It has further
been assumed that there are no shear stresses in the water. This is usually a very
good approximation. Water is a viscous fluid, and shear stresses may occur in it,
but only when the fluid is moving, and it has been assumed that the water is at
rest. Furthermore, even when the fluid is moving the shear stresses are very small
compared to the normal stress, the fluid pressure.

The first two equations in (6.1) mean that the pressure in the fluid can not change
in horizontal direction. This is a consequence of horizontal equilibrium of a fluid
element, see Fig. 6.1. Equilibrium in vertical direction requires that the difference
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Fig. 6.1 Equilibrium of
water

of the fluid pressures at the top and bottom of a small element balances the weight
of the fluid in the element, i.e. �p = −γw�z. Here �z represents the height of the
element. By passing into the limit �z → 0 the third equation of the system (6.1)
follows.

The value of the volumetric weight γw in the last of Eq. (6.1) need not be constant
for the equations to be valid. If the volumetric weight is variable the equations are
still valid. Such a variable density may be the result of variable salt contents in the
water, or variable temperatures. It may even be that the density is discontinuous, for
instance, in case of two different fluids, separated by a sharp interface. This may
happen for oil and water, or fresh water and salt water. Even in those cases the
Eq. (6.1) correctly express equilibrium of the fluid.

In soil mechanics the fluid in the soil usually is water, and it can often be assumed
that the groundwater is homogeneous, so that the volumetric weight γw is a constant.
In that case the system of Eq. (6.1) can be integrated to give

p = −γwz + C, (6.2)

where C is an integration constant. Equation (6.2) means that the fluid pressure is
completely known if the integration constant C can be found. For this it is necessary,
and sufficient, to know the water pressure in a single point. This may be the case
if the phreatic surface has been observed at some location. In that point the water
pressure p = 0 for a given value of z.

The location of the phreatic surface in the soil can be determined from the water
level in a ditch or pond, if it is known that there is no, or practically no, groundwater
flow. In principle the phreatic surface could be determined by digging a hole in the
ground, and then wait until the water has come to rest. It is much more accurate,
and easier, to determine the phreatic surface using an open standpipe, see Fig. 6.2.
A standpipe is a steel tube, having a diameter of for instance 2.5cm, with small
holes at the bottom, so that the water can rise in the pipe. Such a pipe can easily be
installed into the ground, by pressing or eventually by hammering it into the ground.
The diameter of the pipe is large enough that capillary effects can be disregarded.
After some time, during which the water has to flow from the ground into the pipe,
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Fig. 6.2 Standpipe

the level of the water in the standpipe indicates the location of the phreatic surface,
for the point of the pipe. Because this water level usually is located below ground
surface, it can not be observed with the naked eye. The simplest method to measure
the water level in the standpipe is to drop a small iron or copper weight into the tube,
at the end of a flexible cord. As soon as the weight touches the water surface, a sound
can be heard, especially by holding an ear close to the end of the pipe. The depth of
the water can be determined by measuring the length of the cord that went into the
standpipe.

Of course, the measurement can also be made by accurate electronic measuring
devices. Electronic pore pressure meters measure the pressure in a small cell, by a
flexible membrane and a strain gauge, glued onto the membrane. The water presses
against the membrane, and the strain gauge measures the small deflection of the
membrane. This can be transformed into the value of the pressure if the device has
been calibrated before.

6.2 Groundwater Flow

The hydrostatic distribution of pore pressures is valid when the groundwater is at
rest. When the groundwater is flowing through the soil the pressure distribution will
not be hydrostatic, because then the equations of equilibrium (6.1) are no longer
complete. The flow of groundwater through the pore space is accompanied by a
friction force between the flowing fluid and the soil skeleton, and this must be taken
into account. This friction force (per unit volume) is denoted by f . Then the equations
of equilibrium are

∂ p

∂x
− fx = 0,

∂ p

∂y
− fy = 0, (6.3)

∂ p

∂z
+ γw − fz = 0.
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Fig. 6.3 Forces

Here fx , fy and fz are the components of the force, per unit volume, exerted onto the
soil skeleton by the flowing groundwater. The sign of these terms can be verified by
considering the equilibrium in one of the directions, say the x-direction, see Fig. 6.3.
If the pressure increases in x-direction there must be a force in positive x-direction
acting on the water to ensure equilibrium. Both terms in the equation of equilibrium
then are positive, so that they cancel.

It may be mentioned that in the equations the accelerations of the groundwater
might also be taken into account. This could be expressed by terms of the form ρax ,
ρay and ρaz in the right hand sides of the equations. Such terms are usually very small,
however. It may be noted that the velocity of flowing groundwater usually is of the
order of magnitude of 1 m/d, or smaller. If such a velocity would be doubled in one
hour the acceleration would be (1/24) × (1/3600)2 m/s2, which is extremely small
with respect to the acceleration of gravity g, which also appears in the equations. In
fact the acceleration terms would be a factor 3 × 108 smaller, and therefore may be
neglected.

It seems probable that the friction force between the particles and the water
depends upon the velocity of the water, and in particular such that the force will
increase with increasing velocity, and acting in opposite direction. It can also be
expected that the friction force will be larger, at the same velocity, if the viscosity
of the fluid is larger (the fluid is then more sticky). From careful measurements it
has been established that the relation between the velocity and the friction force is
linear, at least as a very good first approximation. If the soil has the same properties
in all directions (i.e. is isotropic) the relations are

fx = −μ

κ
qx ,

fy = −μ

κ
qy, (6.4)

fz = −μ

κ
qz .

Here qx , qy and qz are the components of the specific discharge, that is the discharge
per unit area. The precise definition of qx is the discharge (a volume per unit time)
through a unit area perpendicular to the x-direction, qx = Q/A, see Fig. 6.4. This
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Fig. 6.4 Specific discharge

quantity is expressed in m3/s per m2, a discharge per unit area. In the SI-system of
units that reduces to m/s. It should be noted that this is not the average velocity of the
groundwater, because for that quantity the discharge should be divided by the area
of the pores only, and that area is a factor n smaller than the total area. The specific
discharge is proportional to the average velocity, however,

v = q/n. (6.5)

The fact that the specific discharge is expressed in m/s, and its definition is a dis-
charge per unit area, may give rise to confusion with the velocity. This confusion is
sometimes increased by denoting the specific discharge q as the filter velocity, the
seepage velocity or theDarcian velocity. Such terms can better be avoided: it should
be denoted as the specific discharge.

It may be interesting to note that in the USA the classical unit of volume of a fluid
is the gallon (3.785 liter), so that a discharge of water is expressed in gallon per day,
gpd. An area is expressed in square foot (1 foot = 30cm), and therefore a specific
discharge is expressed in gallons per day per square foot (gpd/sqft). That may seem
an antique type of unit, but at least it has the advantage of expressing precisely what
it is: a discharge per unit area. There is no possible confusion with a velocity, which
in the USA is usually expressed in miles per hour, mph.

Equation (6.4) expresses that there is an additional force in the equations of equi-
librium proportional to the specific discharge (and hence proportional to the velocity
of thewater with respect to the particles, as intended). The constant of proportionality
has been denoted by μ/κ, where μ is the dynamic viscosity of the fluid, and κ is the
permeability of the porous medium. The factor 1/κ is a measure for the resistance
of the porous medium. In general it has been found that κ is larger if the size of the
pores is larger. When the pores are very narrow the friction will be very large, and
the value of κ will be small.

Substitution of Eq. (6.4) into (6.3) gives

∂ p

∂x
+ μ

κ
qx = 0,

∂ p

∂y
+ μ

κ
qy = 0, (6.6)
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Fig. 6.5 Place Henry Darcy

∂ p

∂z
+ γw + μ

κ
qz = 0.

In contrast with Eq. (6.1), whichmay be used for an infinitely small element, within a
single pore, Eq. (6.6) represent the equations of equilibrium for an element containing
a sufficiently large number of pores, so that the friction force can be represented
with sufficient accuracy as a factor proportional to the average value of the specific
discharge. It may be noted that the Eq. (6.6) are also valid when the volumetric weight
γw is variable, for instance due to variations of salt content, or in the case of two
fluids (e.g. oil and water) in the pores. That can easily be demonstrated by noting
that these equations include the hydrostatic pressure distribution as the special case
for zero specific discharge, i.e. for the no flow case.

The Eq. (6.6) can also be written as

qx = −κ

μ
(
∂ p

∂x
),

qy = −κ

μ
(
∂ p

∂y
), (6.7)

qz = −κ

μ
(
∂ p

∂z
+ γw).
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These equations enable to determine the components of the specific discharge if
the pressure distribution is known.

The Eq. (6.7) are a basic form of Darcy’s law. They are named after the city
engineer of the French town Dijon, who developed that law on the basis of exper-
iments. Darcy (1856) designed the public water works of the town of Dijon, by
producing water from the ground in the center of town. He realized that this water
could be supplied from the higher areas surrounding the town, by flowing through
the ground. In order to assess the quantity that could be produced he needed the
permeability of the soil, and therefore measured it. The grateful citizens of Dijon
honored him by erecting a monument, and by naming the central square of the town
the Place Henry Darcy (See Fig. 6.5).

The Eq. (6.7) are generally valid, also if the volumetric weight γw of the fluid is
not constant. In civil engineering many problems are concerned with a single fluid,
fresh water, and the volumetric weight can then be considered as constant. In that
case it is convenient to introduce the groundwater head h, defined as

h = z + p

γw

. (6.8)

If the volumetric weight γw is constant it follows that

∂h

∂x
= 1

γw

(
∂ p

∂x
),

∂h

∂y
= 1

γw

(
∂ p

∂y
), (6.9)

∂h

∂z
= 1

γw

(
∂ p

∂z
+ γw).

Using these relations Darcy’s law, Eq. (6.7), can also be written as

qx = −k
∂h

∂x
,

qy = −k
∂h

∂y
, (6.10)

qz = −k
∂h

∂z
.

The quantity k in these equations is the hydraulic conductivity, defined as

k = κγw

μ
. (6.11)

It is sometimes denoted as the coefficient of permeability. The permeability κ then
should be denoted as the intrinsic permeability to avoid confusion.
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Darcy himselfwrote his equations in the simpler formof Eq. (6.10). In engineering
practice that is a convenient form of the equations, because the groundwater head
h can often be measured rather simply, and because the equations are of a simple
character, and are the same in all three directions. It should be remembered, however,
that the form(6.7) is more fundamentally correct. If the volumetric weight γw is not
constant, only the Eq. (6.7) can be used. The definition (6.8) then does not make
sense.

The concept of groundwater head can be illustrated by considering a standpipe
in the soil, see Fig. 6.6. The water level in the standpipe, measured with respect to a
certain horizontal level where z = 0, is the groundwater head h in the point indicated
by the open end of the standpipe. In the standpipe the water is at rest, and therefore
the pressure at the bottom end of the pipe is p = (h − z)γw, so that h = z + p/γw,
in agreement with (6.8). When the groundwater head is the same in every point of
a soil mass, the groundwater will be at rest. If the head is not constant however, the
groundwater will flow, and according to Eq. (6.10) it will flow from locations with a
high head to locations where the head is lower. If the groundwater head difference
is not maintained by some external influence (rainfall, or wells) the water will tend
towards a situation of constant head.

Darcy’s law can be written in an even simpler form if the direction of flow is
known, for instance if the water is flowing through a narrow tube, filled with soil.
The water is then forced to flow in the direction of the tube. If that directions is the
s-direction, the specific discharge in that direction is, similar to (6.10),

q = −k
dh

ds
. (6.12)

The quantity dh/ds is the increase of the groundwater head per unit of length, in the
direction of flow. The minus sign expresses that the water flows in the direction of
decreasing head. This is the form of Darcy’s law as it is often used in simple flow
problems. The quantity dh/ds is called the hydraulic gradient i ,

i = dh

ds
. (6.13)

It is a dimensionless quantity, indicating the slope of the phreatic surface.

Fig. 6.6 Groundwater head
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Seepage force

It has been seen that the flow of groundwater is accompanied by friction between the
water and the particles. According to (6.3) the friction force (per unit volume) that
the particles exert on the water is

fx = ∂ p

∂x
,

fy = ∂ p

∂y
, (6.14)

fz = ∂ p

∂z
+ γw.

With h = z + p/γw this can be expressed into the groundwater head h, assuming
that γw is constant,

fx = γw

∂h

∂x
,

fy = γw

∂h

∂y
, (6.15)

fz = γw

∂h

∂z
.

The force that the water exerts on the soil skeleton is denoted by j. Because of
Newton’s third law (the principle of equality of action and reaction), this is just the
opposite of the f. The vector quantity j is denoted as the seepage force, even though
it is actually not a force, but a force per unit volume. It now follows that

jx = −γw

∂h

∂x
,

jy = −γw

∂h

∂y
, (6.16)

jz = −γw

∂h

∂z
.

The seepage force is especially important when considering local equilibrium in a
soil, for instance when investigating the conditions for internal erosion, when some
particles may become locally unstable because of a high flow rate.

Example 6.1 In the USA the unit gpd/sqft (gallon per day per square foot) is often
used to measure the hydraulic conductivity k, and the specific discharge q. In Europe
the standard unit is m/s (meter per second), following the unification initiated by
Napoleon around 1800. European scientists consider this to be more convenient,
but the unit gpd/sqft has the advantage that the magnitude of a value is easier to
imagine. Furthermore, European engineers may be tempted to think that the specific
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discharge is a velocity, because it is expressed in m/s. However, it is not, as the
average velocity is v = q/n, where n is the porosity. American engineers will not
have that idea, because they are used to express a velocity in mph, and that seems to
be quite different from gpd/sqft.

What is the relation between the two units?

Solution

Because 1 (US) gallon = 0.0037854m3, 1 sqft = 0.0929m2 and 1day = 86,400s, it
follows that 1 gpd/sqft = 0.4716 × 10−6 m/s.

Problem 6.1 In geohydrology the unit m/d is often used to measure the hydraulic
conductivity k. What is the relation with the SI-unit m/s?

Problem 6.2 A certain soil has a hydraulic conductivity k = 5 m/d. This value has
been measured in summer. In winter the temperature is much lower, and if it is
supposed that the viscosity μ then is a factor 1.5 as large as in summer, determine
the value of the hydraulic conductivity in winter.



Chapter 7
Permeability

In this chapter the determination of the permeability of a soil sample by laboratory
tests is presented. The two tests considered are Darcy’s original test and the falling
head test, which is better suited for soils of small permeability.

7.1 Permeability Test

In the previous chapter Darcy’s law for the flow of a fluid through a porous medium
has been formulated, in its simplest form, as

q = −k
dh

ds
. (7.1)

This means that the hydraulic conductivity k can be determined if the specific dis-
charge q can bemeasured in a test in which the gradient dh/ds is known. An example
of a test setup is shown in Fig. 7.1. It consists of a glass tube, filled with soil. The two
ends are connected to small reservoirs of water, the height of which can be adjusted.
In these reservoirs a constant water level can be maintained. Under the influence of
a difference in head �h between the two reservoirs, water will flow through the soil.
The total discharge Q can be measured by collecting the volume of water in a certain
time interval. If the area of the tube is A, and the length of the soil sample is �L ,
then Darcy’s law gives

Q = k A
�h

�L
. (7.2)

Because Q = q A this formula is in agreement with (7.1). Darcy performed tests
as shown in Fig. 7.1 to verify his formula (7.2). For this purpose he performed tests
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Fig. 7.1 Permeability test

with various values of�h, and indeed found a linear relation between Q and�h. The
same test is still used very often to determine the hydraulic conductivity (coefficient
of permeability) k.

For sand normal values of the hydraulic conductivity k range from 10−6 to
10−3 m/s. For clay the hydraulic conductivity usually is several orders of magnitude
smaller, for instance k = 10−9 m/s, or even smaller. This is because the permeability
is approximately proportional to the square of the grain size of the material, and the
particles of clay are about 100 or 1000 times smaller than those of sand. An indication
of the hydraulic conductivity of various soils is given in Table7.1.

As mentioned before, the permeability also depends upon properties of the fluid.
Water will flow more easily through the soil than a thick oil. This is expressed in the
formula (6.11),

k = κγw

μ
, (7.3)

where μ is the dynamic viscosity of the fluid. The quantity κ (the intrinsic perme-
ability) depends upon the geometry of the grain skeleton only. A useful relation is
given by the formula of Kozeny–Carman,

Table 7.1 Hydraulic
conductivity k

Type of soil k (m/s)

Gravel 10−3−10−1

Sand 10−6−10−3

Silt 10−8−10−6

Clay 10−10−10−8

http://dx.doi.org/10.1007/978-3-319-61185-3_6
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Fig. 7.2 Failure of Teton
Dam

κ = cd2 n3

(1− n)2
. (7.4)

Here d is a measure for the grain size, and c is a coefficient, that now only depends
upon the tortuosity of the pore system, as determined by the shape of the particles.
Its value is about 1/200 or 1/100. Equation (7.4) is of little value for the actual
determination of the value of the permeability κ, because the value of the coefficient
c is still unknown, and because the hydraulic conductivity can easily be determined
directly from a permeability test. TheKozeny–Carman formula (7.4) is of great value,
however, because it indicates the dependence of the permeability on the grain size
and on the porosity. The dependence on d2 indicates, for instance, that two soils for
which the grain size differs by a factor 1000 (sand and clay) may have a difference
in permeability of a factor 106. Such differences are indeed realistic.

The large variability of the permeability indicates that thismay be a very important
parameter. In constructing a large dam, for instance, the dam is often built fromhighly
permeable material, with a core of clay. This clay core has the purpose to restrict
water losses from the reservoir behind the dam. If the core is not very homogeneous,
and contains thin layers of sand, or if the clay core is not well encased into the
rock bottom, the function of the clay core is disturbed to a high degree, and large
amounts of water may be leaking through the dam. Severe accidents of this type have
happened, see for instance Fig. 7.2, which shows the collapse of the Teton Dam, in
Idaho, USA, in 1976.

7.2 Falling Head Test

For soils of low permeability, such as clay, the normal permeability test shown in
Fig. 7.1 is not suitable, because only very small quantities of fluid are flowing through
the soil, and it would take very long to collect an appreciable volume of water. For
such soils a test set up as illustrated in Fig. 7.3, the falling head test, is more suitable.
In this apparatus a clay sample is enclosed by a circular ring, placed in a container
filled with water. The lower end of the sample is in open connection with the water
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Fig. 7.3 Falling head test

in the container, through a porous stone below the sample. At the top of the sample it
is connected to a thin glass tube, in which the water level is higher than the constant
water level in the container. Because of this difference in water level, water will flow
through the sample, in very small quantities, but sufficient to be observed by the
lowering of the water level in the thin tube.

In this case the head difference h is not constant, because no water is added to
the system, and the level h is gradually reduced. This water level is observed as a
function of time. On the basis of Darcy’s law the discharge is

Q = k Ah

L
. (7.5)

If the cross sectional area of the glass tube is a it follows that

Q = −a
dh

dt
. (7.6)

Elimination of Q from these two equations gives

dh

dt
= −k A

aL
h. (7.7)

This is a differential equation for h, that can easily be solved,

h = h0 exp(−k At/aL). (7.8)

where h0 is the value of the head difference h at time t = 0. If the head difference at
time t is h, the hydraulic conductivity k can be calculated from the relation
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k = aL

At
ln(

h0
h

). (7.9)

If the area of the tube a is very small compared to the area A of the sample, it
is possible to measure relatively small values of k with sufficient accuracy. The
advantage of this test is that very small quantities of flowing water can be measured.

It may be remarked that the determination of the hydraulic conductivity of a
sample in a laboratory is relatively easy, and very accurate, but large errors may
occur during sampling of the soil in the field, and perhaps during the transportation
from the field to the laboratory. Furthermore, the measured value only applies to that
particular sample, having small dimensions. This value may not be representative
for the hydraulic conductivity in the field. In particular, if a thin layer of clay has
been overlooked, the permeability of the soil for vertical flow may be much smaller
than follows from the measurements. On the other hand, if it is not known that a
clay layer contains pockets of sand, the flow in the field may be much larger than
expected on the basis of the permeability test on the clay. It is often advisable to
measure the permeability in the field (in situ), measuring the average permeability
of a sufficiently large region.

Example 7.1 In a permeability test (see Fig. 7.1) a head difference of 20cm is being
maintained between the top and bottom ends of a sample of 40cm height. The inner
diameter of the circular tube is 10cm. It has beenmeasured that in 1min an amount of
water of 35 cm3 is collected in a measuring glass. What is the value of the hydraulic
conductivity k?

Solution

In this case the gradient is i = −20/40 = −0.5. The discharge is Q = 35 cm3/60 s
= 0.5833 cm3/s. The area of a cross section of the tube isπ × (5 cm)2 = 78.54 cm2.
This means that the specific discharge is q = 7.426× 10−3 cm/s. Because q = −ki
it follows that k = 0.0148 cm/s.

Example 7.2 A circular glass tube is filled with 20cm of sand, having a hydraulic
conductivity of 10−5 m/s, and on top of that 20cm sand having a hydraulic conduc-
tivity that is a factor 4 larger, see Fig. 7.4. The inner diameter of the circular tube is
10cm. Calculate the discharge Q through this layered sample, if the head difference
between the top and bottom of the sample is 20cm.

Solution

In this case the water must flow through two media, in series,

Q1 = k1A1�h1/�s1, Q2 = k2A2�h2/�s2.

Continuity of flow requires that Q1 = Q2 = Q. Furthermore it is given that A1 =
A2 = A = 78.54 cm2, �s2 = �s1 = �s = 20 cm and k2 = 4k1 = 4× 10−3 cm/s,
and it is also given that �h1 + �h2 = 20 cm.
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Fig. 7.4 Two-layered soil

The simplest way to solve this problem is to express the total head difference �h
as

�h = �h1 + �h2 = Q

A
(
�s1
k1

+ �s2
k2

),

or

Q = (�h1 + �h2)A

�s1/k1 + �s2/k2
.

Using the given data it now follows that Q = 0.0628 cm3/s.

Example 7.3 A similar circular glass tube is filled over one half of its area with
40cm of sand, having a hydraulic conductivity of 10−5 m/s, and over the other half
of its area with 40cm sand having a hydraulic conductivity that is a factor 4 larger,
see Fig. 7.5. The inner diameter of the circular tube is 10cm. Calculate the discharge
Q through this layered sample, if the head difference between the top and bottom of
the sample is 20cm.

Fig. 7.5 Two-layered soil
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Solution

In this case the water must flow through the two media in parallel. The discharge
through the system now is the sum of the discharges through the two media, Q =
Q1 + Q2, with

Q1 = 1
2k1A1�h/�s, Q2 = 1

2k2A2�h/�s,

It is given that A1 = A2 = 1
2 A = 39.27 cm2, and for both parts �h/�s = 20/40 =

0.5.
It then follows that Q = 0.0982 cm3/s.

Problem 7.1 In Darcy’s test, see Fig. 7.1, the fluid flows through the soil in vertical
direction. In principle the tube can also be placed horizontally. The formulas then
remain the same, and the measurement of the head difference is simpler. The test is
usually not done in this way, however. Why not?

Problem 7.2 An engineer must give a quick estimate of the permeability of a certain
sand. He remembers that the hydraulic conductivity of the sand in a previous project
was 8 m/d. The sand in the current project seems to have particles that are about 1

4
times as large. What is his estimate?



Chapter 8
Groundwater Flow

In the previous chapters the relation of the flow of groundwater and the fluid pressure,
or the groundwater head, has been discussed, in the form of Darcy’s law. In order to
solve problems of groundwater flow another equation is needed. This is provided by
the principle of conservation of mass. This principle will be discussed in this chapter,
and some elementary problems will be solved.

8.1 Flow in a Vertical Plane

Suppose that the flow is restricted to a vertical plane, with a cartesian coordinate
system of axes x and z. The z-axis is supposed to be in upward vertical direction, or,
in other words, gravity is supposed to act in negative z-direction. The two relevant
components of Darcy’s law now are

qx = −k
∂h

∂x
,

(8.1)

qz = −k
∂h

∂z
.

Conservation of mass requires that no water can be lost or gained from a small
element, having dimensions dx and dz in the x, z-plane, see Fig. 8.1. In the
x-direction water flows through a vertical area of magnitude dy dz, where dy is the
thickness of the element perpendicular to the plane of flow. The difference between
the outflow from the element on the right end side and the inflow into the element
on the left end side is the discharge

© Springer International Publishing AG 2018
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Fig. 8.1 Continuity

qx qx + ∂qx
∂x

dx

qz

qz +
∂qz
∂z

dz

∂qx
∂x

dx dy dz.

In the z-direction water flows through a horizontal area of magnitude dx dy. The
difference of the outflow through the upper surface and the inflow through the lower
surface is

∂qz
∂z

dx dy dz.

The sum of these two quantities must be zero, and this gives, after division by
dx dy dz,

∂qx
∂x

+ ∂qz
∂z

= 0. (8.2)

The validity of this equation, the continuity equation, requires that the density of
the fluid is constant, so that conservation of mass means conservation of volume.
Equation (8.2) expresses that the situation shown in Fig. 8.1, in which both the flow
in x-direction and the flow in z-direction increase in the direction of flow, is impos-
sible. If the flow in x-direction increases, the element looses water, and this must be
balanced by a decrease of the flow in z-direction.

Substitution of (8.1) into (8.2) leads to the differential equation

∂2h

∂x2
+ ∂2h

∂z2
= 0, (8.3)

where it has been assumed that the hydraulic conductivity k is a constant. In mathe-
matics Eq. (8.3) is often denoted as the Laplace equation. This differential equation
governs, together with the boundary conditions, the flow of groundwater in a plane, if
the porous medium is isotropic and homogeneous, and if the fluid density is constant.
It has also been assumed that no water can be stored. The absence of storage is valid
only if the soil does not deform and is completely saturated.

The mathematical problem is to solve Eq. (8.3), together with the boundary con-
ditions. For a thorough discussion of such problems many specialized books are
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available, both from a physical point of view (on groundwater flow) and from a
mathematical point of view (on potential theory). Here only some particular solu-
tions will be considered, and an approximate method using a flow net.

It may be mentioned that in groundwater hydrology the groundwater head is
often denoted by φ rather than h. However, in soil mechanics this notation would be
inconvenient as the symbol φ is reserved for the angle of internal friction of the soil,
see later chapters.

8.2 Upward Flow

A very simple special case of groundwater flow occurs when the water flows in
vertical direction only. The solution for this case is h = i z, where i is a constant, a
measure for the intensity of the flow. Actually i , that is dh/dz, is called the gradient.
In this case qx = 0 and qz = −k i . The equation of continuity (8.2) is now indeed
satisfied. If the specific discharge is now denoted as q0, the gradient appears to be
i = −q0/k, and h = −q0z/k. Because in general h = z + p/γw it now follows that
the pressure in the groundwater is

p = −γwz(1 − i) = −γwz(1 + q0/k). (8.4)

The first term is the hydrostatic pressure, and the second term is due to the vertical
flow. It appears that a vertical flow requires a pressure that increases with depth
stronger than in the hydrostatic case.

Figure8.2 shows an example of a clay layer on a sand layer, with the groundwater
level at the top of the clay layer coinciding with the soil surface, whereas in the deep

................................................ σ, p

z

Fig. 8.2 Upward flow, Example 1
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sand the groundwater head is somewhat higher, as indicated in the figure by the water
level in a standpipe, reaching into this sand layer. A case like this may occur in a
polder, in case of a top layer of very low permeability, underlain by a very permeable
layer in which the groundwater level is determined by the higher water levels in the
canals surrounding the polder. It is assumed that the permeability of the sand is so
large, compared to the permeability of the clay, that the water pressures in the sand
layer are hydrostatic, even though there is a certain, small, velocity in the water. The
upward flow through the clay layer is denoted as seepage. The drainage system of the
polder must be designed so that the water entering the polder from above by rainfall,
and the water entering the polder from below by seepage, can be drained away. The
distribution of the pore water pressures in the sand layer can be sketched from the
given water level, and the assumption that this distribution is practically hydrostatic.
This leads to a certain value at the bottom of the clay layer. In this clay layer the pore
pressures will be linear, between this value and the value p = 0 at the top, assuming
that the permeability of the clay layer is constant. Only then the flow rate through
the clay layer is constant, and this is required by the continuity condition.

In Fig. 8.2 the total stresses (σ) have also been indicated, assuming that in the
sand and the clay the volumetric weight is the same, and about twice as large as
the volumetric weight of water. These total stresses are linear with depth, and at the
surface the total stress is zero, σ = 0. The effective stresses are the difference of
the total stresses and the pore water pressures (σ′ = σ − p). They are indicated
in the figure by horizontal hatching. It can be seen that the effective stresses in the
clay are reduced by the upward flow, compared to the fully hydrostatic case, if the
groundwater level in the sand were equal to the level of the soil surface. The upward
flow appears to result in lower effective stresses.

It may be that the groundwater head in the deep sand is so high that the effective
stresses in the clay layer reach the value σ′ = 0. This is the smallest possible value,
because tensile stresses can not be transmitted by the clay particles. The situation that
the effective stresses become zero is a critical condition. In that case the effective
stresses in the clay are zero, and no forces are transmitted between the particles.
If the pressure in the water below the clay layer would become slightly larger, the
clay layer will be lifted, and cracks will appear in it. If σ′ = 0 the soil has no
strength left. Even a small animal would sink into the soil. This situation is often
indicated as liquefaction, because the soil (in this example the clay layer) has all
the characteristics of a liquid : the pressure in it is linear with depth (although the
apparent volumetric weight is about twice the volumetric weight of water), and shear
stresses in it are impossible. The value of the gradient dh/dz for which this situation
occurs is sometimes denoted as the critical gradient. In the case considered here the
total stresses are

σzz = −γs z, (8.5)

where γs is the volumetric weight of the saturated soil (about 20 kN/m3). In the case
of a critical gradient the pore pressures, see (8.4), must be equal to the total stresses.
This will be the case if i = icr, with
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icr = −γs − γw

γw
. (8.6)

As the z-axis points in upward direction, this negative gradient indicates that the
groundwater head increases in downward direction, which causes the upward flow.
The order of magnitude of the absolute value of the critical gradient is about |icr| = 1,
assuming that γs = 2γw.

In the critical condition the vertical velocity is so large that the upward friction of
the water on the soil particles just balances the weight of the particles under water,
so that they no longer are resting on each other. Such a situation, in which there
is no more coherence in the particle skeleton, should be avoided by a responsible
civil engineer. In engineering practice a sufficiently large margin of safety should be
included. If the top layer is not homogeneous it is possible that an average gradient
of 1 can easily lead to instabilities, because locally the thickness of the clay layer is
somewhat smaller, for instance. Water has a very good capacity to find the weakest
spot.

In several cases this phenomenon has lead to large calamities and large costs, such
as excavations of which the bottom layer has burst open, with flooding of the entire
excavation as a result. Preventing such calamities may be costly, but is always much
cheaper than the repair works that are necessary in case of collapse.

An easy method to prevent bursting of a clay layer is to lower the groundwater
head below it, by a pumping well. As an example Fig. 8.3 shows an excavation for a
building pit. If the groundwater level in the upper sand layer is lowered by a drainage
system in the excavation, the shape of the phreatic level may be of the form sketched
in the figure by the fully drawn curves. Water in the upper layer will flow into the
excavation, and may be drained away by pumping at the bottom of the excavation. If
the permeability of the clay layer is sufficiently small, the groundwater level in the
lower layer will hardly be affected by this drainage system, and very little water will
flow through the clay layer. The phreatic level in the lower sand layer is indicated in
the figure by the dotted line. The situation drawn in the figure is very dangerous. Only
a thin clay layer separates the deep sand from the excavation. The water pressures in
the lower layer are far too high to be in equilibrium with the weight of the clay layer.
This layer will certainly collapse, and the excavation will be flooded. To prevent this,
the groundwater level in the lower layer may be lowered artificially, by pumping
wells. These have also been indicated in the figure, but their influence has not yet

Fig. 8.3 Draining an
excavation
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been indicated. A disadvantage of this solution is that large amounts of water must
be pumped to lower the groundwater level in the lower layer sufficiently, and this
entails that over a large region the groundwater is affected. Another solution may be
to construct a layer of concrete at the bottom of the excavation, before lowering the
groundwater table.

It may be interesting to note that the critical gradient can also be determined using
the concept of seepage force, as introduced in the previous chapter. In this approach
all the forces acting upon the particle skeleton are considered, and equilibrium of this
skeleton is formulated. The force due to the weight of the material is a downward
force caused by the volumetric weight under water, γs − γw. This leads to effective
stresses of the form

σ′
zz = −(γs − γw)z. (8.7)

The particles have an apparent volumetric weight of γs − γw. The absolute value of
the seepage force is, with (6.16), j = γwi . The two forces can be balanced if the two
values are equal, but opposite, i.e. if i = icr, with

| icr |= γs − γw

γw
. (8.8)

This is in agreement with the value derived before, see (8.6).
Many geotechnical engineers prefer the first approach, in which the effective

stresses are derived as the difference of the total stresses and the pore pressures, and
then the critical situation is generated if anywhere in the field the effective stress
becomes zero. This is a much more generally applicable criterion than a criterion
involving a critical gradient.

As an illustration a somewhat more complex situation is shown in Fig. 8.4, with
two sand layers, above and below a clay layer. It has been assumed that in both sand
layers the groundwater pressures are hydrostatic, with a higher zero level in the lower
layer. Water will flow through the clay layer, in upward direction.

The situation shown in Fig. 8.4 is not yet critical, even though the upward gradient
in the clay layer is i = icr, as can be seen by noting that the effective stresses in the
clay layer do not increase with depth. Indeed, the upward seepage force in the clay
layer is in equilibrium with the downward force due to the weight of the soil under
water. However, at the top of the clay layer there is a non-zero effective stress at
the top of the clay layer, due to the weight of the sand above it. Because of this
surcharge the effective stresses are unequal to zero throughout the clay layer, and the
situation is completely safe. The groundwater pressure below the clay layer could
be considerably higher before the risk of loss of equilibrium by the effective stress
becoming zero is reached, at the bottom of the clay layer. The concept of critical
gradient appears to be irrelevant in this case, and its use should be discouraged.

It can be concluded that an upward groundwater flow may lead to loss of equi-
librium, and this will occur as soon as the effective stress reaches zero, anywhere in
the soil. Such a situation should be avoided by all means.

http://dx.doi.org/10.1007/978-3-319-61185-3_6
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σ

z

Fig. 8.4 Upward flow, Example 2

8.3 Flow Under a Wall

A solution of the basic equations of groundwater flow, not so trivial as the previous
one, in which the flow rate was constant, is the solution of the problem of flow in
a very deep deposit, bounded by the horizontal surface z = 0, with a separation
of two regions above that surface by a thin vertical wall at the location x = 0, see
Fig. 8.5. The water level at the right side of the wall is supposed to be at a height H
above ground surface, and the water level at the left side of the wall is supposed to
coincide with the ground surface. Under the influence of this water level difference
groundwater will flow under the wall, from right to left.

The solution of this problem can be obtained using the theory of functions of
a complex variable (Strack 1989). The actual solution procedure is not considered
here. It is assumed, without any derivation, that in this case the groundwater head h
is

Fig. 8.5 Flow under a wall

x

z

H
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h = H

π
arctan(z/x). (8.9)

In order to apply this solution, it should be verified first that it is indeed the cor-
rect solution. For this purpose it is sufficient to check that the solution satisfies the
differential equation, and that it is in agreement with the boundary conditions.

That the solution (8.9) satisfies the differential equation (8.3) can easily be verified
by substituting the solution into the differential equation. To verify the boundary
conditions the behavior of the solution for z ↑ 0 must be investigated. The value of
z/x then will approach 0 from below if x > 0, and it will approach 0 from above if
x < 0. Let it now be assumed that the range of the function arctan(u) is from 0 to
π/2 if the argument u goes from 0 to ∞, and from π/2 to π if the argument u goes
from −∞ to 0, see Fig. 8.6. In that case it indeed follows that h = H if x > 0 and
z ↑ 0, and that h = 0 if x < 0 and z ↑ 0. All this means that Eq. (8.9) is indeed the
correct solution of the problem, as it satisfies all necessary conditions.

The vertical component of the specific discharge can be obtained by differentiation
of the solution (8.9) with respect to z. This gives

qz = −kH

π

x

x2 + z2
. (8.10)

In particular, it follows that along the horizontal axis, where z = 0,

z = 0 : qz = −kH

πx
. (8.11)

If x > 0 this is negative, so that the water flows in downward direction. This means
that to the right of the wall the water flows in vertical direction into the soil, as was
to be expected. If x < 0, that means to the left of the wall, the specific discharge qz
is positive, i.e. the water flows in upward direction, as also was to be expected. Very
close to the wall, i.e. for small values of x , the velocity will be very large. Locally
that might result in erosion of the soil.

u

arctan(u)

−5 −4 −3 −2 −1 0 1 2 3 4 5

π

2

π

Fig. 8.6 Function arctan(u)
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Fig. 8.7 Flow under a sluice 2a

d

It also follows from the solution, because arctan(∞) = π/2, that on the vertical
axis, i.e. for x = 0, the groundwater head is h = H/2. That could have been expected,
noting the symmetry of the problem.

The total discharge from the reservoir at the right side of the wall, between the
two points x = a and x = b (with b > a) can be found by integration of Eq. (8.11)
from x = a to x = b. The result is

Q = kH B

π
ln(b/a), (8.12)

in which B is the thickness of the plane of flow, perpendicular to the figure. This
formula indicates that the total discharge is infinitely large if b → ∞ or if a → 0.
In reality such situations do not occur, fortunately.

Equation (8.12) can be used to obtain a first estimate for the discharge under a
hydraulic structure, such as a sluice, see Fig. 8.7. If the length of the sluice is denoted
by 2a, and the thickness of the layer is d, it can be assumed that the water to the
left and to the right of the sluice will mostly flow into the soil and out of it over a
distance approximately equal to d. The flow then is somewhat similar to the flow in
the problem of Fig. 8.5 between x = a and x = b = a + d. In Fig. 8.7 it seems that
the values of a and d are approximately equal, so that ln(b/a) = 0.693. This gives
Q = 0.22 kH B as a first estimate for the total discharge.

Example 8.1 The thickness of a clay layer is 8m, and its volumetric weight is
18 kN/m3. It is covered by a layer of very permeable sand, having a thickness of
4m, a saturated volumetric weight of 20 kN/m3, and a dry volumetric weight of
16 kN/m3. The phreatic surface coincides with the soil surface. However, in the
thick sand layer directly below the clay layer the groundwater head is at a level of
4m above the soil surface. Calculate the effective stress in the center of the clay layer.

Solution

The total stress at a depth of 8m below the surface is σzz = 20 × 4 + 18 × 4 =
152 kPa. At the top of the clay layer the groundwater head is h = 0, and at the
bottom of the clay layer the groundwater head is h = 4m. This means that there is
a uniform upward flow through the clay layer, so that the groundwater head at the
center of the clay layer is h = 2m. Because the depth below the surface at that level
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is 8 m, the pore pressure at that level is p = 100 kPa. The effective stress then is
σ′
zz = σzz − p = 52 kPa.

Example 8.2 Calculate the effective stress in the center of the clay layer if the
groundwater level in the upper sand layer is lowered to 2m below the soil surface.

Solution

If the groundwater table in the upper sand layer is lowered by 2 m, this layer now
consists of 2m dry soil and 2m saturated soil. The total stress at a depth of 8m below
the surface now is σzz = 16 × 2 + 20 × 2 + 18 × 4 = 144 kPa. The groundwater
head at the top of the clay layer now is h = −2 kPa, and at the bottom of the clay
layer the groundwater head again is h = 4 h. This means that at the center of the
clay layer the groundwater head is h = 1 kPa. The pore pressure at that level now is
90 kPa. The effective stress then is σ′

zz = σzz − p = 54 kPa.

Example 8.3 Next calculate the effective stress in the center of the clay layer if a
layer of concrete is constructed on the soil surface, leading to a load of 40 kPa.

Solution

The only difference with the previous situation is the additional 40 kPa, which
increases the total stress below it. At the center of the clay layer the total stress
now is 184 kPa. Because the pore pressure remains at the value p = 90 kPa. The
effective stress then is σ′

zz = σzz − p = 94 kPa.

Problem 8.1 A clay layer has a thickness of 3m, and a volumetric weight of
18 kN/m3. Above the clay layer the soil consists of a sand layer, of thickness 3 m, a
saturated volumetric weight of 20 kN/m3, and a dry volumetric weight of 16 kN/m3.
The groundwater level in the sand is at 1m below the soil surface. Below the clay
layer, in another sand layer, the groundwater head is variable, due to a connection
with a tidal river. What is the maximum head (above the soil surface) that may occur
before the clay layer will fail?

Reference

O.D.L. Strack, Groundwater Mechanics (Prentice-Hall, Englewood Cliffs, 1989)



Chapter 9
Flotation

In the previous chapter it has been seen that under certain conditions the effective
stresses in the soil may be reduced to zero, so that the soil looses its coherence, and
a structure may fail. Even a small additional load, if it has to be supported by shear
stresses, can lead to a calamity. Many examples of failures of this type can be given:
the bursting of the bottom of excavation pits, and the uplift or flotation of basements,
tunnels and pipelines. The conditions for uplift or flotation of structures are discussed
in this chapter.

9.1 Archimedes

The basic principle of the uplift force on a body submerged in a fluid is due to
Archimedes. This principle can best be explained by first considering a small rec-
tangular element, which is at rest in a fluid, see the left half of Fig. 9.1. The material
of the block is irrelevant, but it must be given to be at rest, perhaps by the action of
some external forces.

The pressure in the fluid is a function of depth only, and in a homogeneous fluid
the pressure distribution is

p = ρgz, (9.1)

where ρ is the density of the fluid, g the acceleration of gravity, and z the depth below
the fluid surface.

The pressures on the left hand side and the right hand side are equal, but act in
opposite direction, and therefore are in equilibrium. The pressure below the element
is greater than the pressure above it. The resultant force is equal to the difference in
pressure, multiplied by the area of the upper or lower surfaces. Because the pressure
difference is just ρgh, where h is the height of the element, the upward force equals
ρg times the volume of the element. That is just the volumetric weight of the water

© Springer International Publishing AG 2018
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z

h

Fig. 9.1 Archimedes’ principle

multiplied by the volume of the element. Because any body can be constructed from a
number of such elementary blocks, the general applicability ofArchimedes’ principle
(a submerged body experiences an upward force equal to the weight of the displaced
fluid) follows.

A different argument, that immediately applies to a body of arbitrary shape, is
that in a state of equilibrium the precise composition of a body is irrelevant for the
force acting upon it. This means that the force on a body of water must be the same
as the force on a body of some other substance, that then perhaps must be kept in
equilibrium by some additional force. Because the body when composed of water
is in equilibrium it follows that the upward force must be equal to the weight of
the water in the volume. On a body of some other substance the resultant force of
the water pressures must be the same, i.e. an upward force equal to the weight of the
water in the volume. This is the proof that is given in most textbooks on elementary
physics. The upward force is often denoted as the buoyant force, and the effect is
denoted as buoyancy.

The buoyancy force on a body in a fluidmay have as a result that the body floats on
the water, if the weight of the body is smaller than the upward force. Floatation will
happen if the body on the average is lighter than water. More generally, flotation may
occur if the buoyancy force is larger than the sum of all downward forces together.
This may happen in the case of basements, tunnels, or pipelines. In principle flotation
can easily be prevented: the bodymust be heavy enough, andmayhave to be ballasted.

The problem of possible flotation of a foundation is that care must be taken that
the effective stresses are always positive, taking into account a certain margin of
safety. In practice this may be more difficult than imagined, because perhaps not all
conditions have been foreseen. Some examples may illustrate the analysis.

9.2 A Concrete Floor Under Water

As a first example the concrete floor of an excavation is considered. Such structures
are often used as foundations of basements, or as the pavement of the access road
of a tunnel. One of the functions of the concrete plate is to give additional weight to
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h

Fig. 9.2 Excavation with concrete floor under water

the soil, so that it will not float. Care must be taken that the water table is lowered
only after the construction of the concrete plate. Therefore a convenient procedure is
to build the concrete plate under water, before lowering the water table, see Fig. 9.2.
After excavation of the building pit, under water, perhaps using dredging equipment,
the concrete floor can be constructed, taking great care of the continuity of the
floor and the vertical walls of the excavation. When the concrete structure has been
finished, the water level can be lowered. In this stage the weight of the concrete is
needed to prevent flotation.

There are two possible methods to perform the stability analysis. The best method
is to determine the effective stresses just below the concrete floor. If these are always
positive, in every stage of the building process, a compressive stress is being trans-
ferred in all stages, and the structure is safe. Whenever tensile stresses are obtained,
even in a situation that is only temporary, the design must be modified, because the
structure is not always in equilibrium, and will float or break. It is assumed that in
the case shown in Fig. 9.2 the groundwater level is at a depth d = 1m below the
soil surface, and that the depth of the top of the concrete floor should be located at
a depth h = 5m below the soil surface. Furthermore the thickness of the concrete
layer (which is to be determined) is denoted as D. The total stress just below the
concrete floor now is

σ = γcD, (9.2)

where γc is the volumetric weight of the concrete, say γc = 25 kN/m3. The pore
pressure just below the concrete floor is

p = (h − d + D)γw, (9.3)

so that the effective stress is

σ′
zz = σzz − p = γcD − γw(h − d + D) = (γc − γw)D − γw(h − d). (9.4)

The requirement that this must be positive gives

D >
γw(h − d)

γc − γw
. (9.5)
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The effective stress will be positive if the thickness of the concrete floor is larger
than the critical value. In the example, with h − d = 4m and the concrete being a
factor 2.5 heavier than water, it follows that the thickness of the floor must be at least
2.67m.

It may be noted that the required thickness of the concrete floor should be even
larger if the groundwater levelmay also coincidewith the soil surface, namely 3.33m.
One must be very certain that this condition cannot occur if the concrete plate is
thinner than 3.33m.

It may also be noted that in time of danger, perhaps when the groundwater pres-
sures rise beyond the design level because of some emergency or because of some
human error, the foundation can often be saved by submerging it with water. The
damage to a basement or a tunnel due to a temporary layer of water on it is usually
less than the damage if the concrete floor is cracked and has to be replaced.

The analysis can be done somewhat faster by directly requiring that the weight of
the concrete must be sufficient to balance the upward force acting upon it from below.
This leads to the same result. The analysis using the somewhat elaborate process of
calculating the effective stresses may take some more time, but it can more easily
be generalized, for instance in case of a groundwater flow, when the groundwater
pressures are not hydrostatic.

The concrete floor in a structure as shown in Fig. 9.2 may have to be rather thick,
which requires a deep excavation and large amounts of concrete. In engineering
practice more advanced solutions have been developed, such as a thin concrete floor,
combined with tension piles. It should be noted that this requires a careful (and safe)
determination of the tensile capacity of the piles. A heavy concrete floor may be
expensive, its weight is always acting.

9.3 Flotation of a Pipe

The second example is concernedwith a pipeline in the bottomof the sea, or a circular
tunnel under a river, see Fig. 9.3. The pipeline is supposed to consist of steel, with a
concrete lining, having a diameter 2R and a total weight (above water) G, in kN/m.
This weight consists of the weight of the steel and the concrete lining, per unit length
of the pipe. For the risk of flotation the most dangerous situation will be when the
pipe is empty.

For the analysis of the stability of the pipeline it is convenient to express its weight
as an average volumetric weight γp, defined as the total weight of the pipeline divided
by its volume. In the most critical case of an empty pipeline this is

γp = G/πR2. (9.6)

The buoyant force F on the pipeline is, in accordance with Archimedes’ principle,

F = γwπR2, (9.7)
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Fig. 9.3 A pipe in the
ground

2R

h

d

where γw is the volumetric weight of water. If the upward force F is smaller than
the weight G there will be no risk of flotation. The pipeline then sinks in open water.
This will be the case if γp > γw. For a pipeline on the bottom of the sea this is a
very practical criterion. If one would have to rely on the weight of the soil above
the pipeline for its stability, flotation might occur if the soil above the pipeline is
taken away by erosion, which is not unlikely. The pipeline then might float to the sea
surface, and that should be avoided.

In case of a tunnel buried under a river there seems to be more certainty that the
soil above the tunnel remains in place. Then the weight of the soil above the tunnel
may prevent flotation even if the tunnel is lighter than water (γp < γw). The weight
W of the soil above the tunnel is

W = γs[2Rd + (2 − π/2)R2], (9.8)

where γs is the volumetric weight of the soil, and d is the cover thickness, the
thickness of the soil at the top of the tunnel. It is now essential to realize, in accordance
with Archimedes’ principle that for the stability of the tunnel the soil above it only
contributes insofar as it is heavier than water. The water above the tunnel does not
contribute, of course. A block of wood will float in water, even if the water is very
deep. This means that the effective downward force of the soil above the tunnel is

W ′ = (γs − γw)[2Rd + (2 − π/2)R2], (9.9)

the difference of theweight of the soil and theweight of thewater in the same volume.
The amount of soil that is minimally needed now follows from the condition

W ′ + G − F > 0. (9.10)

This gives
(γ − γw)[2Rd + (2 − π/2)R2] > (γw − γp)πR

2, (9.11)

from which the ground cover d can be calculated. There still is some additional
safety, because when the tunnel moves upward the soil above it must shear along
the soil next to it, and the friction force along that plane has been disregarded. It is
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recommended to keep that as a hidden reserve, because flotation is such a serious
calamity.

The analysis can, of course, also be performed in the more standard way of soil
mechanics stress analysis: determine the effective stress as the difference of the total
stress and the pore pressure. The procedure is as follows.

The average total stress below the tunnel is (averaged over its width 2R)

σ = γwh + W/2R + G/2R = γwh + γs[d + (1 − π/4)R] + γpπR/2, (9.12)

where h is the depth of the water in the river. The average pore pressure below the
tunnel is determined by the volumeof the space occupied by the tunnel and everything
above it, up to the water surface,

p = γwh + γw[d + (1 − π/4)R] + γwπR/2. (9.13)

The average effective stress below the tunnel now is

σ′ = (γs − γw)[d + (1 − π/4)R] + (γp − γw)πR/2. (9.14)

The condition that this must be positive, because the particles can not transmit any
tensile force, leads again to the criterion (9.11).

Example 9.1 A block of wood, having a volume of 0.1 m3, is kept in equilibrium
below water in a basin of water by a cord attached to the bottom of the basin, see
Fig. 9.4. The volumetric weight of the wood is 9.0 kN/m3, and the volumetric weight
of the water is 10.0 kN/m3. Calculate the force in the cord.

Solution

The weight of the block leads to a downward force of 0.9kN. The upward force due
to buoyancy is the weight of the displaced fluid: 1.0kN. The difference must be the
force in the cord, i.e. 0.1kN.

Example 9.2 The basin next is filled with two fluids: salt water (volumetric weight
10.2 kN/m3) and fresh water above it. The separation level of the salt and the fresh
water coincides with the top of the block of wood, see Fig. 9.5. Again calculate the
force in the cord.

Fig. 9.4 Block in water
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Fig. 9.5 Block in two fluids

Solution

The weight of the block remains 0.9kN. The upward force now is determined by
the heavier fluid, which completely surrounds the block. The resulting upward force
now is 1.02kN. The difference is the force in the cord, i.e. 0.12kN.

Example 9.3 A tunnel of square cross section, 8m × 8m, has a weight (above
water) of 50 ton per meter length. The tunnel is being floated to its destination, with
its two ends closed by temporary sheets. Calculate the draught (the depth of the
bottom below water) (Fig. 9.6).

Solution

Theweight of the tunnel per meter length is 500kN. If the depth of the floating tunnel
below water is denoted by d, the upward force per unit meter is d×8m×10 kN/m3.
These two forces cancel if d = 6.25m.

Example 9.4 The tunnel of the previous problem is sunk into a trench that has been
dredged in the river bottom, and then covered with sand. The volumetric weight of
the sand is 20 kN/m3. Determine the minimum cover of sand necessary to prevent
flotation of the tunnel (Fig. 9.7).

Fig. 9.6 Floating tunnel

Fig. 9.7 Tunnel at rest
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Solution

As seen before the weight of the tunnel per meter length is 500kN. If the depth of
the sand above the tunnel is denoted by h, the total force at the bottom of the tunnel
(expressed in kN/m) is F = 500 + 8 × 20 × h = 500 + 160 × h. The upward
force due to the water pressure just below the tunnel is P = (h + 8) × 10 × 8 =
640 + 80 × h. In order that the effective stress below the tunnel remains positive,
the condition is that F > P . The critical situation is when F = P , which will be
the case for h = 1.75m. This is the minimum value of the sand cover to prevent
flotation. Of course in reality a larger value should be taken, to avoid uplift if some
of the sand is eroded.

It may be noted that the depth of the water above the sand has been disregarded,
but this would add an equal value to both F and P , and thus would have no effect
on the outcome.

It may also be noted that many engineers would prefer to design the tunnel so
that its weight is at least equal to the buoyancy force. Then there is never any risk of
uplift.



Chapter 10
Flow Net

Two dimensional groundwater flow through a homogeneous soil can often be
described approximately in a relatively simple way by a flow net, that is a net of
potential lines and stream lines. Theprincipleswill be discussedbriefly in this chapter.

10.1 Potential and Stream Function

The groundwater potential, or just simply the potential, � is defined as

� = kh, (10.1)

where k is the permeability coefficient (or hydraulic conductivity), and h is the
groundwater head. It is assumed that the hydraulic conductivity k is a constant
throughout the field. If this is not the case the concept of a potential can not be
used. Darcy’s law, see (8.1), can now be written as

qx = −∂�

∂x
,

qz = −∂�

∂z
,

(10.2)

or, using vector notation,
q = −∇�. (10.3)

In mathematical physics any quantity whose gradient is a vector field (for example
forces or velocities), is often denoted as a potential. For that reason in groundwater
theory � is also called the potential. In some publications the groundwater head h
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Fig. 10.1 Potential lines and
Stream lines

itself is sometimes called the potential, but strictly speaking that is not correct, even
though the difference is merely the constant k.

The Eq. (10.2) indicate that no groundwater flow will flow in a direction in which
the potential � is not changing. This means that in a figure with lines of constant
potential (these are denoted as potential lines) the flow is everywhere perpendicular
to these potential lines, see Fig. 10.1.

The flow can also be described in terms of a stream function. This can best be
introduced by noting that the flowmust always satisfy the equation of continuity, see
(8.2), i.e.

∂qx
∂x

+ ∂qz
∂z

= 0. (10.4)

This means that a function � must exist such that

qx = −∂�

∂z
,

qz = +∂�

∂x
.

(10.5)

By the definition of the components of the specific discharge in this way, as being
derived from this function �, the stream function, the continuity equation (10.4) is
automatically satisfied, as can be verified by substitution of Eqs. (10.5) into (10.4).

It follows from (10.5) that the flow is precisely in x-direction if the value of �

is constant in x-direction. This can be checked by noting that the condition qz = 0

http://dx.doi.org/10.1007/978-3-319-61185-3_8
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can only be satisfied if ∂�/∂x = 0. Similarly, the flow is in z-direction only if � is
constant in z-direction, because it follows that qx = 0 if ∂�/∂z = 0. This suggests
that in general the stream function � is constant in the direction of flow. Along the
stream lines in Fig. 10.1 the value of � is constant. Formally this property can be
proved on the basis of the total differential

d� = ∂�

∂x
dx + ∂�

∂z
dz = qzdx − qxdz. (10.6)

Thiswill be zero if dz/dx = qz/qx, and thatmeans that the direction inwhich d� = 0
is givenbydz/dx = qz/qx,which is precisely the directionofflow. It canbe concluded
that in a mesh of potential lines and stream lines the value of � is constant along the
stream lines.

If the x-direction coincides with the direction of flow, the value of qz is 0. It then
follows from (10.2) to (10.5) that in that case � is constant in z-direction, and that
� is constant in x-direction. Furthermore, in that case one may write, approximately

��

�x
= ��

�z
. (10.7)

It now follows that if the intervals�� and�� are chosen to be equal, then�x = �z,
i.e. the potential line and the stream line locally form a small square. That is a general
property of the system of potential lines and streamlines (the flow net): potential lines
and stream lines form a system of “squares”.

The physical meaning of �� can be derived immediately from its definition,
see Eq.10.2. If the difference in head between two potential lines, along a stream
line, is �h, then �� = k�h. The physical meaning of �� can best be understood
by considering a point in which the flow is in x-direction only. In such a point
q = qx = −��/�z, or �� = −q�z. In general one may write

�� = −q�n, (10.8)

where n denotes the direction perpendicular to the flow direction, with the relative
orientation of n and s being the same as for z and x. If the thickness of the plane of
flow is denoted by B, the area of the cross section between two stream lines is �nB.
It now follows that

�� = −�Q/B. (10.9)

The quantity �� appears to be equal to the discharge per unit thickness being
transported between two stream lines. It will appear that this will enable to determine
the total discharge through a system.
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10.2 Flow Under a Structure

As an example the flow under a structure will be considered, see Fig. 10.2. In this
case a sluice has been constructed into the soil. It is assumed that the water level on
the left side of the sluice is a distance H higher than the water on the right side. At a
certain depth the permeable soil rests on an impermeable layer. To restrict the flow
under the sluice a sheet pile wall has been installed on the upstream side of the sluice
bottom.

The flow net for a case like this can be determined iteratively. The best procedure
is by sketching a small number of stream lines, say 2 or 3, following an imaginary
water particle from the upstreamboundary to the downstreamboundary. These stream
lines of course must follow the direction of the constraining boundaries at the top and
the bottom of the flow field. The knowledge that the stream lines must everywhere
be perpendicular to the potential lines can be used by drawing the stream lines
perpendicular to the horizontal potential lines to the left and to the right of the sluice.
After sketching a tentative set of stream lines, the potential lines can be sketched,
taking care that they must be perpendicular to the stream lines. In this stage the
distance between the potential lines should be tried to be taken equal to the distance
between the stream lines. In the first trial this will not be successful, at least not
everywhere, which means that the original set of stream lines must be modified. This
then must be done, perhaps using a new sheet of transparent paper superimposed
onto the first sketch. A better set of stream lines can then be sketched such that a
better approximation of a net of squares is obtained.

The entire process must be repeated a few times, until finally a satisfactory system
of squares is obtained, see Fig. 10.2. Near the corners in the boundaries some special
“squares”maybeobtained, sometimes having5 sides. Thismust be accepted, because
the boundary imposes the bend in the boundary. In the case of Fig. 10.2 at the right
end of the net one half of a square is left. It turns out that there are 12.5 intervals
between potential lines, which means that the interval between two potential lines is

�� = kH

12.5
. (10.10)

Fig. 10.2 Flow net
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Because the flow net consists of squares it follows that �� = ��, so that

�� = kH

12.5
. (10.11)

Because there appear to be 4 stream bands, the total discharge now is

Q = 4

12.5
kHB = 0.32 kHB, (10.12)

in which B is the width perpendicular to the plane of the figure. The value of the
dischargeQmust be independent of the number of stream lines that has been chosen,
of course. This is indeed the case, as can be verified by repeating the process with 4
interior stream lines rather than 3. It will then be found that the number of potential
intervals will be larger, about in the ratio 5 to 4. The ratio of the number of squares
in the direction of flow to the number of squares in the direction perpendicular to the
flow remains (approximately) constant.

From the completed flow net the groundwater head in every point of the field can
be determined. For instance, it can be observed that between the point at the extreme
left below the bottom of the sluice and the exit point at the right, about 6 squares can
be counted (5 squares and two halves). This means that the groundwater head in that
point is

h = 6

12.5
H = 0.48H, (10.13)

if the head is measured with respect to the water level on the right side.
The pore water pressure can be derived if the head is known, as well as the eleva-

tion, because h = z + p/γw. The evaluation of the water pressure may be of impor-
tance for the structural engineer designing the concrete floor, and for the geotechnical
engineer who wishes to know the effective stresses, so that the deformations of the
soil can be calculated.

From the flow net the force on the particles can also be determined (the seepage
force). According to Eq. (6.16) the seepage force is

jx = −γw
∂h

∂x
,

jz = −γw
∂h

∂z
.

(10.14)

In the case illustrated in Fig. 10.2 it can be observed that at the right hand exit,
next to the structure, in the last (half) square �h = −H/(2 × 12.5) and �z = 0.3 d,
if d is the depth of the structure into the ground. Then, approximately, ∂h/∂z =
−0.133H/d, so that jz = 0.133γw H/d. This is a positive quantity, indicating that
the force acts in upward direction, as might be expected. The particles at the soil
surface are also acted upon by gravity, which leads to a volume force of magnitude
−(γs − γw), negative because it is acting in downward direction. It seems tempting

http://dx.doi.org/10.1007/978-3-319-61185-3_6
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to conclude that there is no danger of erosion of the soil particles if the upward force
is smaller than the downward force. This would mean, assuming that γs/γw = 2, so
that (γs − γw)/γw = 1, that the critical value of H/d would be about 7.5. Only if
the value of H/d would be larger than 7.5 erosion of the soil would occur, with the
possible loss of stability of the floor foundation at the right hand side.

In reality the danger may be much greater. If the soil is not completely homoge-
neous, the gradient ∂h/∂z at the downstream exit may be much larger than the value
calculated here. This will be the case if the soil at the downstream side is less perme-
able than the average. In that case a pressure may build up below the impermeable
layer, and the situation may be much more dangerous. On the basis of continuity one
might say, very roughly, that the local gradient will vary inversely proportional to
the value of the hydraulic conductivity, because k1i1 = k2i2. This means that locally
the gradient may be much larger than the average value that will be calculated on
the basis of a homogeneous average value of the permeability. Locally soil may be
eroded, which will then attract more water, and this may lead to further erosion. The
phenomenon is called piping, because a pipemay be formed, just below the structure.
Piping is especially dangerous if a structure is built directly on the soil surface. If the
structure of Fig. 10.2 were built on the soil surface, and not into it, the velocities at
the downstream side would be even larger (the squares would be very small), with a
greater risk of piping.

Prescribing a safe value for the gradient is not so simple. For that reason large
safety factors are often used. In the case of vertical outflow, as in Fig. 10.2, a safety
factor 2, or even larger, is recommended. In cases with horizontal outflow the safety
factor must be taken much larger, because in that case there is no gravity to oppose
erosion. In many cases piping has been observed, even though the maximum gra-
dient was only about 0.1, assuming homogeneous conditions. Technical solutions
are reasonably simple, although they may be costly. A possible solution is that on
the upstream side, or near the upstream side, the resistance to flow is enlarged, for
instance by putting a blanket of clay on top of the soil, or into it. Another class of
solutions is to apply a drainage at the downstream side, for instance by the installa-
tion of a gravel pack near the expected outflow boundary. In the case of Fig. 10.2 a
perfect solution would be to make the sheet pile wall longer, so that it reaches into the
impermeable layer. A large dam built upon a permeable soil should be protected by
an impermeable core or sheet pile wall, and a drain at the downstream side. The large
costs of these measures are easily justified when compared to the cost of loosing the
dam.

Problem 10.1 Sketch a flow net for the situation shown in Fig. 8.7, and calculate the
total discharge. Compare the result with the estimate made at the end of that chapter.
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Problem 10.2 A building pit in a lake is being constructed, using a sheet pile wall
surrounding the building pit. Inside the wall the water level is lowered (by pumping)
to the level of the ground surface. Outside the sheet pile wall the water level is 5m
higher. It has been installed to a depth of 10m below ground surface. The thickness
of the soil layer is 20 m. Sketch a flow net, and determine the maximum gradient
inside the sheet pile wall.

Problem 10.3 Suppose that in a case as considered in the previous problem the soil
consists of 1m clay on top of a thick layer of homogeneous sand. In that case the
capacity of the pumps will be much smaller, which is very favorable. Are there any
risks involved?



Chapter 11
Flow Towards Wells

In this chapter some examples are presented in which the groundwater flows to a
well or a system of wells. Direct applications include the drainage of a building pit,
or the production of drinking water by a system of wells.

11.1 Flow in a Confined Aquifer

The solutions to be given in this chapter apply to a homogeneous sand layer, confined
between two impermeable clay layers, see Fig. 11.1. This is denoted as a confined
aquifer, assuming that the pressure in the groundwater is sufficiently large to ensure
complete saturation in the sand layer.

In this case the groundwater flows in a horizontal plane. In this plane the cartesian
coordinate axes are denoted as x and y. The groundwater flow is described byDarcy’s
law in the horizontal plane,

qx = −k
∂h

∂x
,

qy = −k
∂h

∂y
,

(11.1)

and the continuity equation for an element in the horizontal plane,

∂qx
∂x

+ ∂qy
∂y

= 0. (11.2)

It now follows, if it is assumed that the hydraulic conductivity k is constant, that the
partial differential equation governing the flow is
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Fig. 11.1 A well in a
confined aquifer

∂2h

∂x2
+ ∂2h

∂y2
= 0. (11.3)

This is again Laplace’s equation, but this time in a horizontal plane.

11.2 A Single Well

The first problem to be considered concerns the flow in a circular region, having a
radius R, to a well in the center of the circle. This is an important basic problem of
groundwater mechanics. The boundary conditions are that at the outer boundary (for
r = R) the groundwater head is fixed: h = h0, and that at the inner boundary, the
center of the circle, a discharge Q0 is being extracted from the soil.

It is postulated that the solution of this problem is

h = h0 + Q0

2πkH
ln

( r

R

)
, (11.4)

where Q0 is the discharge of the well, k the hydraulic conductivity of the soil, H the
thickness of the layer, h0 the value of the given head at the outer boundary (r = R),
and r is a polar coordinate,

r =
√
x2 + y2. (11.5)

That the expression (11.4) indeed satisfies the differential equation (11.3) can be
verified by substitution of this solution into the differential equation. The solution
also satisfies the boundary condition at the outer boundary, because for r = R the
value of the logarithm is 0 (ln(1) = 0). The boundary condition at the inner boundary
can be verified by first differentiating the solution (11.4) with respect to r . This gives

dh

dr
= Q0

2πkHr
. (11.6)

This means that the specific discharge in r -direction is, using Darcy’s law,

qr = −k
dh

dr
= − Q0

2πHr
. (11.7)
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The total amount of water flowing through a cylinder of radius r and height H is
obtained by multiplication of the specific discharge qr by the area 2πr H of such a
cylinder,

Q = 2πr Hqr = −2πkHr
dh

dr
= −Q0 (11.8)

This quantity appears to be constant, independent of r , which is in agreement with
the continuity principle. It appears that through every cylinder, whatever the radius,
an amount of water −Q0 is flowing in the positive r -direction. That means that an
amount of water Q0 is flowing towards the center of the circle. That is precisely the
required boundary condition, and it can be concluded that the solution satisfies all
conditions, and therefore must be correct.

The flow rate very close to the center is very large, because there the discharge Q0

must flow through a very small surface area. At the outer boundary the area is very
large, so that there the flow rate will be very small, and therefore the gradient will also
be small. This makes it plausible that the precise form of the outer boundary is not so
important. The solution (11.4) can also be used, at least as a first approximation, for
a well in a region that is not precisely circular, for instance a square. Such a square
can then be approximated by a circle, taking care that the total circumference is equal
to the circumference of the square.

It may be noted that everywhere in the aquifer r < R. Then the logarithm in
Eq. (11.4) is negative, and therefore h < h0, as could be expected. This confirms that
by pumping the groundwater head will indeed be lowered.

11.3 Systems of Wells

It is important to note that the differential equation (11.3) is linear, which means
that solutions can be added. This is the superposition principle. Using this principle
solutions can be obtained for a system of many wells, for instance for a drainage
system. All wells should be operating near the center of a large area, the outer
boundary of which is schematized to a circle of radius R. For a system of n wells
the solution is

h = h0 +
n∑
j=1

Q j

2πkH
ln(

r j
R
). (11.9)

Here Q j is the discharge of well j , and r j is the distance to that well. The influence
of all wells has simply been added to obtain the solution. The discharge Q j may be
positive if the well extracts water, or negative, for a recharging well. At the outer
boundary of the system all the values r j are approximately equal to R, the radius of
the area, provided that the wells are all located in the vicinity of the center of that
area. Then all logarithms are 0, and the solution satisfies the condition that h = h0
at the outer boundary, at least approximately.
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Fig. 11.2 Sink and source

In Fig. 11.2 the potential lines and the stream lines have been drawn for the case of
a system of a single well and a single recharge well in an infinite field, assuming that
the discharges of the well and the recharge well are equal. In mathematical physics
these singularities are often denoted as a sink and a source.

Problem 11.1 For a system of air conditioning water is extracted from a layer of
10m thickness, having a hydraulic conductivity of 1 m/d. The discharge is 50 m3/d.
At a distance of 100m the water is being injected into the same layer by a recharge
well. What is the influence on the groundwater head in the point just between the
two wells?

Problem 11.2 Awell in a circular area of radius 1000mappears to lead to a lowering
of the groundwater table (a drawdown) of 1m at a distance of 10m from the well.
What is the drawdown at a distance of 100 m?

Problem 11.3 Draw a sketch of the solution (11.4) for values of r/R from 0.001
to 1. The value 0.001 applies to the value r = rw, where rw is the radius of the tube
through which the water is being produced. Assume that h0 = 20 m, H = 10 m, and
Q0/2πkH = 1 m. What is the limiting value of the head when the radius of the tube
is very small, rw → 0?

Problem 11.4 If R → ∞ the solution (11.4) can not be used because ln(0) = −∞.
Does this mean that in a very large island (Australia) no groundwater can be pro-
duced?



Chapter 12
Stress Strain Relations

As stated in previous chapters, the deformations of soils are determined by the effec-
tive stresses, which are a measure for the contact forces transmitted between the
particles. The soil deformations are a consequence of the local displacements at the
level of individual particles. In this chapter some of the main aspects of these defor-
mations will be discussed, and this will lead to qualitative properties of the relations
between stress and strain. In later chapters these relations will be formulated in a
quantitative sense.

12.1 Compression and Distortion

In the contact point of two particles a normal force and a shear force can be transmit-
ted, see Fig. 12.1. The normal force can only be a compressive force. Tension can not
be transmitted, unless the soil particles are glued together. Such soils do exist (e.g.
calcareous soils near the coast of Brazil or Australia), but they are not considered
here. The magnitude of the shear force that can be transmitted depends upon the
magnitude of the normal force. It can be expected that if the ratio of shear force and
normal force exceeds a certain value (the friction coefficient of the material of the
particles), the particles will start to slide over each other, which will lead to relatively
large deformations. The deformations of the particles caused by their compression
can be disregarded compared to these sliding deformations. The particles might as
well be considered as incompressible.

This can be further clarified by comparing the usual deformations of soils with the
possible elastic deformations of the individual particles. Consider a layer of soil of a
normal thickness, say 20 m, that is being loaded by a surcharge of 5m dry sand. The
additional stress caused by the weight of the sand is about 100 kN/m2, or 0.1 MPa.
Deformations of the order of magnitude of 0.1% or even 1% are not uncommon
for soils. For a layer of 20m thickness a deformation of 0.1% means a settlement

© Springer International Publishing AG 2018
A. Verruijt, An Introduction to Soil Mechanics, Theory and Applications
of Transport in Porous Media 30, DOI 10.1007/978-3-319-61185-3_12
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Fig. 12.1 Particle contact
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of 2 cm, and that is quite normal. Many soil bodies show such settlements, or even
much more, for instance when a new embankment has been built. Settlements of
20cm may well be observed, corresponding to a strain of 1%. If one writes, as a
first approximation σ = Eε, a stress of 0.1 MPa and a strain of 0.1% suggests a
deformation modulus E ≈ 100 MPa. For a strain of 1% this would be E ≈ 10 MPa.
The modulus of elasticity of the particle material can be found in an encyclopedia or
handbook. This gives about 20 GPa, about one tenth of the modulus of elasticity of
steel, and about the same order of magnitude as concrete. That value is a factor 200
or 2000 as large as the value of the soil body as a whole. It can be concluded that the
deformations of soils are not caused by deformations of the individual particles, but
rather by a rearrangement of the system of particles, with the particles rolling and
sliding with respect to each other.

On the basis of this principlemany aspects of the behavior of soil can be explained.
It can, for instance, be expected that there will be a great difference between the
behavior in compression and the behavior in shear. Compression is a deformation of
an element in which the volume is changing, while the shape remains the same. In
pure compression the deformation in all directions is equal, see Fig. 12.2. It can be
expected that such compression will occur if a soil element is loaded isotropically,
i.e. by a uniform normal stress in all directions, and no shear stresses. In Fig. 12.2
the load has been indicated on the original element, in the left part of the figure. The
deformed element is shown in the right part of the figure.

With such a type of loading, there will be little cause for a change of direction
of the forces in the particle contacts. Because of the irregular character of the grain
skeleton there may be local shear forces, but these need not to increase to carry
increasing compressive forces. If all forces, normal forces and shear forces, increase
proportionally, an ever larger compressive external pressure can be transmitted. If the
particles were completely incompressible there would be no deformation in that case.
In reality the particles do have a small compressibility, and the forces transmitted by
the particle contacts are not distributed homogeneously. For these reasons there may
be some local sliding and rolling even in pure compression. But it is to be expected
that the soil will react much stiffer in compression than in shear when shear stresses
are applied. When external shear stresses are applied to a soil mass, the local shear
forces must increase on the average, and this will lead to considerable deformations.
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Fig. 12.2 Compression
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Fig. 12.3 Stiffness in
compression
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In tests it appears that soils are indeed relatively stiff under pure compression, at least
when compared to the stiffness in shear. When compared to materials such as steel,
soils are highly deformable, even in pure compression.

It can also be expected that in a continuing process of compression the particles
will come closer together, increasing the number of contacts, and enlarging the areas
of contact. This suggests that a soil will become gradually stiffer when compressed.
Compressionmeans that the porosity decreases, and it can be expected that a soil with
a smaller porosity will be stiffer than the same assembly of particles in a structure
with a larger porosity. It can be concluded that in compression a relation between
stress and strain can be expected as shown in Fig. 12.3. The quantity σ0 is the normal
stress, acting in all three directions. This is often denoted as the isotropic stress. The
quantity εvol is the volume strain, the relative change of volume (the change of the
volume divided by the original volume).

εvol = �V

V
. (12.1)
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Fig. 12.4 Distortion
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Fig. 12.5 Stiffness in
distortion
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Because the volume will, of course, decrease when the isotropic stress increases the
quantity on the horizontal axis in Fig. 12.3 has been indicated as −εvol.

It may be concluded that the stiffness of soils will increase with continuing com-
pression, or with increasing all round stress. Because in the field the stresses usually
increase with depth, this means that in nature it can be expected that the stiffness of
soils increases with depth. All these effects are indeed observed in nature, and in the
laboratory.

Quite a different type of loading is pure distortion, or pure shear: a change of shape
at constant volume, see Fig. 12.4. When a soil is loaded by increasing shear stresses
it can be expected that in the contact points between the particles the shear forces will
increase, whereas the normal forces may remain the same, on the average. This leads
to a tendency for sliding in the contact points, and thus there will be considerable
deformations. It is even possible that the sliding in one contact point leads to a larger
shear force in a neighboring contact point, and this may slide in its turn. All this
means that there is more cause for deformation than in compression. There may
even be a limit to the shear force that can be transmitted, because in each contact
point the ratio of shear force to normal force can not be larger than the friction angle
of the particle material.

During distortion of a soil a relation between stresses and strains as shown in
Fig. 12.5 can be expected. In this figure the quantity on the vertical axis is a shear
stress, indicated as τi j , divided by the isotropic stress σ0. The idea is that the friction
character of the basic mechanism of sliding in the contact points will lead to a
maximum for the ratio of shearing force to normal force, and that as a consequence for
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Fig. 12.6 Distortion
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the limiting state of shear stress the determining quantity will be the ratio of average
shear stress to the isotropic stress. Tests on dry sand confirm that large deformations,
and possible failure, at higher isotropic stresses indeed require proportionally higher
shear stresses. By plotting the relative shear stress (i.e. τi j divided by the isotropic
stress σ0) against the shear deformation, the results of various tests, at different
average stress levels, can be represented by a single curve. It should be noted that
this is a first approximation only, but it is much better than simply plotting the shear
stress against the shear deformation. In daily life the proportionality of maximum
shear stress to isotropic can be verified by trying to deform a package of coffee, sealed
under vacuum, and to compare that with the deformability of the same package when
the seal has been broken.

It must be noted that Fig. 12.4 represents only one possible form of distortion.
A similar deformation can, of course, also occur in the two other planes of a three
dimensional soil sample. Moreover, the definition of distortion as change of shape at
constant volume means that a deformation in which the width of a sample increases
and the height decreases, is also a form of distortion, see Fig. 12.6, because in this
case the volume is also constant. That there is no fundamental difference with the
shear deformation of Fig. 12.4 can be seen by connecting the centers of the four sides
in Fig. 12.6, before and after the deformation. It will appear that again a square is
deformed into a diamond, just as in Fig. 12.4, but rotated over an angle of 45◦.

Conclusions

In the relations between stresses and strains, as described above, it is of great impor-
tance to distinguish between compression and distortion. The behavior in these two
modes of deformation is completely different. The deformations in distortion (or
shear) are usually much larger than the deformations in compression. Also, in com-
pression thematerial becomes gradually stiffer,whereas in shear it becomes gradually
softer.
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12.2 Unloading and Reloading

Because the deformations of soils are mostly due to changes in the particle assembly,
by sliding and rolling of particles, it can be expected that after unloading a soil will
not return to its original state. Sliding of particles with respect to each other is an
irreversible process, in which mechanical energy is dissipated, into heat. It is to
be expected that after a full cycle of loading and unloading of a soil a permanent
deformation is observed. Tests indeed confirm this.

When reloading a soil there is probably less occasion for further sliding of the
particles, so that the soilwill bemuch stiffer in reloading than itwas in the first loading
(virgin loading). The behavior in unloading and reloading, below the maximum load
sustained before, often seems practically elastic, see Fig. 12.7, although there usually
is some additional plastic deformation after each cycle. In the figure this is illustrated
for shear loading.

A good example of irreversible deformations of soils from engineering practice
is the deformation of guard rails along highways. After a collision the guard rail will
have been deformed, and has absorbed the kinetic energy of the vehicle. The energy
is dissipated by the rotation of the foundation pile through the soil. After removal of
the damaged vehicle the rail will not rotate back to its original position, but it can
easily be restored by pulling it back. That is the principle of the structure: kinetic
energy is dissipated into heat, by the plastic deformation of the soil. That seemsmuch
better than to transfer the kinetic energy of the vehicle into damage of the vehicle
and its passengers. The dissipated energy can be observed in the figure as the area
enclosed by the branches of loading and unloading, respectively.

It is interesting to note that after unloading and subsequent reloading, the defor-
mations again are much larger if the stresses are increased beyond the previous
maximum stress, see Fig. 12.8. This is of great practical importance when a soil
layer that in earlier times has been loaded and unloaded, is loaded again. If the final
load is higher than themaximum load experienced before, a relation such as indicated
in Fig. 12.8 may be observed, with the discontinuity in the curve indicating the level
of the previous maximum load, the preload. The soil is said to be overconsolidated.

Fig. 12.7 Unloading and
reloading
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Fig. 12.8 Preload
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As long as the stresses remain below the preconsolidation load the soil is reasonably
stiff, but beyond the preconsolidation load the behavior will be much softer. This
type of behavior is often observed in soils that have been covered in earlier times (an
ice age) by a thick layer of ice.

12.3 Dilatancy

One of the most characteristic phenomena in granular soils is dilatancy, first reported
by Reynolds around 1885. Dilatancy is the volume increase that may occur during
shear. Inmost engineeringmaterials (such asmetals) a volume change is produced by
an all round (isotropic) stress, and shear deformations are produced by shear stresses,
and these two types of response are independent. The mechanical behavior of soils
is more complex. This can most conveniently be illustrated by considering a densely
packed sand, see Fig. 12.9. Each particle is well packed in the space formed by its
neighbors. When such a soil is made to shear, by shear stresses, the only possible
mode of deformation is when the particles slide and roll over each other, thereby
creating some moving space between them. Such a dense material is denoted as
dilatant.

Dilatancymay have some unexpected results, especially when the soil is saturated
with water. A densely packed sand loaded by shear stresses can only sustain these
shear stresses by a shear deformation. Through dilatancy this can only occur if it is
accompanied by a volume increase, i.e. by an increase of the porosity. In a saturated

Fig. 12.9 Densely packed
sand
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Fig. 12.10 Dilatancy on the
beach

soil this means that water must be attracted to fill the additional pore space. This
phenomenon can be observed on the beach when walking on the sand in the area
flooded by the waves. The soil surrounding the foot may be dried by the suction of
the soil next to and below the foot, whichmust carry the load, see Fig. 12.10. For sand
at greater depth, for instance the sand below the foundation of an offshore platform,
the water needed to fill the pore space can not be attracted in a short time, and this
means that an under pressure in the water is being produced. After a certain time
this will disappear, when sufficient amounts of water have been supplied. For short
values of time the soil is almost incompressible, because it takes time for the water
to be supplied, and the shear deformation will lead to a decrease of the pore water
pressure. This will be accompanied by an increase of the effective stress, as the total
stress remains approximately constant, because the total load must be carried. The
soil appears to be very stiff and strong, at least for short values of time. That may
be interpreted as a positive effect, but it should be noted that the effect disappears at
later times, when the water has flowed into the pores.

The phenomenon that in densely packed saturated sand the effective stresses tend
to increase during shear is of great importance for the dredging process.When cutting
densely packed strata of sand under water an under pressure is generated in the pore
water, and this will lead to increasing effective stresses. This increases the resistance
of the sand to cutting. A cutting dredger may have great difficulty in removing the
sand. The effect can be avoided when the velocity of the cutting process is very small,
but then the production is also small. Large production velocities will require large
cutting forces.

The reverse effect can occur in case of very loosely packed sand, see Fig. 12.11.
When an assembly of particles in a very loose packing is being loaded by shear
stresses, there will be a tendency for volume decrease. This is called contractancy.
The assembly may collapse, as a kind of card house structure. Again the effect is
most dramatic when the soil is saturated with water. The volume decrease means that
there is less space available for the pore water. This has to flow out of the soil, but
that takes some time, and in the case of very rapid loading the tendency for volume
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Fig. 12.11 Loosely packed
sand
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decrease will lead to an increasing pore pressure in the water. The effective stresses
will decrease, and the soil will become weaker and softer. It can even happen that
the effective stresses are reduced to zero, so that the soil looses all of its coherence.
This is called liquefaction of the soil. The soil then behaves as a heavy fluid (quick
sand), having a volumetric weight about twice as large as water. A person will sink
into the liquefied soil, to the waist.

The phenomenon of increasing pore pressures caused by contractancy of loose
soils can have serious consequences for the stability of the foundation of structures.
For example, the sand in the estuaries in the SouthWest of the Netherlands is loosely
packed because of the ever continuing process of erosion by tidal currents and depo-
sition of the sand at the turning of the tide. For the construction of the storm surge
barrier in the Eastern Scheldt the soil has been densified by vibration before the struc-
ture could safely be built upon it. For this purpose a special vessel was constructed,
the Mytilus, see Fig. 12.12, containing a row of vibrating needles. Other examples
are the soils in certain areas in Japan, for instance the soil in the artificial Port Island
in the bay near Kobe. During the earthquake of 1995 the loosely packed sand lique-
fied, causing great damage to the quay walls and to many buildings. In the area where
the soil had previously been densified the damage was much less. For the Chek Lap
Kok airport of Hong Kong, an artificial sand island has been constructed in the sea,
and to prevent damage by earthquakes the soil has been densified by vibration, at
large cost.

It can be concluded that the density of granular soils can be of great importance
for the mechanical behavior, especially when saturated with water, and especially

Fig. 12.12 Mytilus
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for short term effects. Densely packed sand will have a tendency to expand (dila-
tancy), and loosely packed sand will have a tendency to contract (contractancy). At
continuing deformations both dense and loose sand will tend towards a state of aver-
age density, sometimes denoted as the critical density. This is not a uniquely defined
value of the density, however, as it also depends upon the isotropic stress. At high
stresses the critical density is somewhat smaller than at small stress. The branch of
soil mechanics studying these relations is critical state soil mechanics.

It may be interesting to mention that during cyclic loads soils usually tend to
contract after each cycle, whatever the original density is. It seems that in a full cycle
of loading a few particles may find a more dense packing than before, resulting in a
continuing volume decrease. The effect becomes smaller and smaller if the number
of cycles increases, but it seems to continue practically forever. It can be compared
to the situation in a full train, where there seems to be no limit to the number of
passengers that can be transported. By some more pressing a full train can always
accommodate another passenger. The cyclic effect is of great importance for the
foundation of offshore structures, which may be loaded by a large number of wave
loads. During a severe storm each wave may generate a small densification, or a
small increase of the pore pressure, if the permeability of the soil is small. After a
great many of these wave loads the build up of pore pressures may be so large that
the stability of the structure is endangered. Again previous densification of the soil
reduces the risk.

Example 12.1 In road building one may observe that before the final layer of the
pavement is placed heavy equipment, such as a road roller, is being used to further
densify the soil, see Fig. 12.13.

This makes good sense, taking into account the influence of a pre-loading on the
stiffness of a soil, as shown in Fig. 12.8. Due to the passage of the heavy roller the
soil will deform, and some additional soil may be needed to raise the top surface
to the desired level. The result will be that when the road is completed the surface

Fig. 12.13 A road roller
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deformations will remain small. The initial cost is larger, but maintenance costs will
be smaller.

It may be noted that the stresses near the soil surface can be further increased by
constructing picks on the surface of the roller, as shown in the figure.

Example 12.2 A rubber ball contains saturated sand, and water reaching into the
neck of the glass tube inserted into the ball, above the sand. When squeezing the ball
between two fingers, the water level appears to go down.

This phenomenon, which is often used in geotechnical laboratories to demonstrate
the special properties of soils, can be explained by assuming that the initial density
of the sand is very high (if this not the case the sand may be densified before the
demonstration by knocking the ball several times onto the table, preferably before the
arrival of the spectators). The squeezing of the sand results in a shear deformation, and
in this dilatant material this is accompanied by a volume expansion of the assembly
of granular particles. This means that the pore volume increases, and thus water is
drawn into the ball from the glass tube.

Problem 12.1 A soil sample is loaded in a laboratory test, by an isotropic stress. If
the stress is increased from 100 to 200 kPa, the volume decrease is 0.1%. Suppose
that the stress is further increased to 300 kPa. Will the additional volume decrease
then be smaller than, larger than, or equal to 0.1%?

Problem 12.2 A part of a guard rail along a highway has been tested by pulling
sideways. A lateral force of 10 kN has been found to lead to a lateral displacement
of 1 cm. The force is next increased to 20 kN. Will the additional displacement then
be more than or less than 1 cm?

Problem 12.3 Is the sand used in the experiment shown in Fig. 12.14 suitable for
the foundation of a bridge pier?

Problem 12.4 In a laboratory quicksand is being produced in a large cylindrical
tank filled with sand, by pumping water into it from below, while the excess of water
flows over the top of the tank, back into the reservoir. (The experiment is shown in
the YouTube film “mythbusters quicksand”). How deep will a student sink into the
fluidized mixture of sand and water?

Fig. 12.14 Sand in a rubber
ball
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Chapter 13
Tangent Modulus

The difference in soil behavior in compression and in shear suggests to separate the
stresses and deformations into two parts, one describing compression, and another
describing shear. This will be presented in this chapter. Dilatancywill be disregarded,
at least initially.

13.1 Deformations

The components of the displacement vector will be denoted by ux , uy and uz . If
these displacements are not constant throughout the field there will be deformations,
or strains. In Fig. 13.1 the strains in the x, y-plane are shown.

The change of length of an element of original length�x , divided by that original
length, is the horizontal strain εxx . This strain can be expressed into the displacement
difference, see Fig. 13.1, by

εxx = ∂ux/∂x .

The change of length of an element of original length �y, divided by that original
length, is the vertical strain εyy . Its definition in terms of the displacement is, see
Fig. 13.1,

εyy = ∂uy/∂y.

Because ux can increase in y-direction, and uy in x-direction, the right angle in the
lower left corner of the element may become somewhat smaller. One half of this
decrease is denoted as the shear strain εxy ,

εxy = 1

2
(∂ux/∂y + ∂uy/∂x).

© Springer International Publishing AG 2018
A. Verruijt, An Introduction to Soil Mechanics, Theory and Applications
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Fig. 13.1 Strains
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Similar strains may occur in the other planes, of course, with similar definitions.
In the general three dimensional case the definitions of the strain components are

εxx = ∂ux

∂x
, εxy = 1

2

(
∂ux

∂y
+ ∂uy

∂x

)
,

εyy = ∂uy

∂y
, εyz = 1

2

(
∂uy

∂z
+ ∂uz

∂y

)
, (13.1)

εzz = ∂uz

∂z
, εzx = 1

2

(
∂uz

∂x
+ ∂ux

∂z

)
.

All derivatives, ∂ux/∂x, ∂ux/∂y, etc., are assumed to be small compared to 1. Then
the strains are also small compared to 1. Even in soils, in which considerable defor-
mations may occur, this is usually valid, at least as a first approximation.

The volume of an elementary small block may increase if its length increases, or
it width increases, or its height increases. The total volume strain is the sum of the
strains in the three coordinate directions,

εvol = �V

V
= εxx + εyy + εzz . (13.2)

This volume strain describes the compression of the material, if it is negative.
The remaining part of the strain tensor describes the distortion. For this purpose

the deviator strains are defined as

exx = εxx − 1

3
εvol, exy = εxy,

eyy = εyy − 1

3
εvol, eyz = εyz, (13.3)

ezz = εzz − 1

3
εvol, ezx = εzx .
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Fig. 13.2 Distortion
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These deviator strains do not contain any volume change, because exx + eyy + ezz =
0.

In a similar way deviator stresses can be defined,

τxx = σxx − σ, τxy = σxy,

τyy = σyy − σ, τyz = σyz, (13.4)

τzz = σzz − σ, τzx = σzx .

Here σ is the isotropic stress,

σ = 1
3 (σxx + σyy + σzz). (13.5)

The isotropic stress σ is the average normal stress. In an isotropic material volume
changes are determined primarily by changes of the isotropic stress. This means that
the volume strain εvol is a function of the isotropic stress σ only.

Even though this may seem almost trivial, for soils it is in general not true, as
it excludes dilatancy and contractancy. It is nevertheless assumed here, as a first
approximation.

The remaining part of the stress tensor, after subtraction of the isotropic stress,
see (13.4), consists of the deviator stresses. These are responsible for the distortion,
i.e. changes in shape, at constant volume.

There are many forms of distortion: shear strains in the three directions, but also
a positive normal strain in one direction and a negative normal strain in a second
direction, such that the volume remains constant. Some of these possibilities are
shown in Fig. 13.2. In the other three planes similar forms of distortion may occur.

13.2 Linear Elastic Material

The simplest possible relation between stresses and strains in a deformable contin-
uum is the linear elastic relation for an isotropic material. This can be described
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by two positive constants, the compression modulus K and the shear modulus G.
The compression modulus K gives the relation between the volume strain and the
isotropic stress,

σ = −K εvol . (13.6)

The minus sign has been introduced because stresses are considered positive for
compression, whereas strains are considered positive for extension. This is the sign
convention that is often used in soil mechanics, in contrast with the theoreticallymore
balanced sign conventions of continuummechanics, in which stresses are considered
positive for tension.

The shear modulus G (perhaps distortion modulus would be a better word) gives
the relation between the deviator strains and the deviator stresses,

τi j = −2G ei j . (13.7)

Here i and j can be all combinations of x , y or z, so that, for instance, τxx = −2G exx
and τxy = −2G exy . The factor 2 appears in the equations for historical reasons.

In applied mechanics the relation between stresses and strains of an isotropic
linear elastic material is usually described by Young’s modulus E , and Poisson’s
ratio ν. The usual form of the equations for the normal strains then is

εxx = − 1

E
[σxx − ν(σyy + σzz)],

εyy = − 1

E
[σyy − ν(σzz + σxx )], (13.8)

εzz = − 1

E
[σzz − ν(σxx + σyy)].

The minus sign has again been introduced to account for the sign convention for the
stresses of soil mechanics.

It can easily be verified that the Eq. (13.8) are equivalent to (13.6) and (13.7) if

K = E

3(1− 2ν)
, (13.9)

G = E

2(1+ ν)
. (13.10)

For the description of compression and distortion, which are so basically different
in soil mechanics, the parameters K and G are more suitable than E and ν. In
continuum mechanics they are sometimes preferred as well, for instance because it
can be argued, on thermodynamical grounds, that they both must be positive, K > 0
and G > 0.
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13.3 A Non-linear Material

In the previous chapter it has been argued that soils are non-linear and non-elastic.
Furthermore, soils are often not isotropic, because during the formation of soil
deposits it may be expected that there will be a difference between the direction
of deposition (the vertical direction) and the horizontal directions. As a simplifi-
cation this anisotropy will be disregarded here, and the irreversible deformations
due to a difference in loading and unloading are also disregarded. The behavior in
compression and distortion will be considered separately, but they will no longer be
described by constant parameters. As a first improvement on the linear elastic model
the modulus will be assumed to be dependent upon the stresses. A non-linear relation
between stresses and strains is shown schematically in Fig. 13.3. For a small change
in stress the tangent to the curve might be used. This means that one could write, for
the incremental volume change,

�σ = −K �εvol , (13.11)

Similarly, for the incremental shear strain one could write

�τi j = −2G �ei j . (13.12)

The parameters K and G in these equations are not constants, but they depend upon
the initial stress, as expressed by the location on the curve in Fig. 13.3. These type
of constants are denoted as tangent moduli, to indicate that they actually represent
the tangent to a non-linear curve. They depend upon the initial stress, and perhaps
also on some other physical quantities, such as time, or temperature. As mentioned
in the previous chapter, it can be expected that the value of K increases with an
increasing value of the isotropic stress, see Fig. 12.3. Many researchers have found,

Fig. 13.3 Tangent modulus
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from laboratory tests, that the stiffness of soils increases approximately linear with
the initial stress, although others seem to have found that the increase is not so strong,
approximately proportional to the square root of the initial stress. If it is assumed
that the stiffness in compression indeed increases linearly with the initial stress, it
follows that the stiffness in a homogeneous soil deposit will increase about linearly
with depth. This has also been confirmed by tests in the field, at least approximately.

For distortion it can be expected that the shear modulus G will decrease if the
shear stress increases. It may even tend towards zero when the shear stress reaches
its maximum possible value, see Fig. 12.5.

It should be emphasized that a linearization with two tangent moduli K and G,
dependent upon the initial stresses, can only be valid in case of small stress incre-
ments. That is not an impractical restriction, as in many cases the initial stresses in a
soil are already relatively large, because of the weight of the material. It should also
be mentioned, however, that many effects have been disregarded, such as anisotropy,
irreversible (plastic) deformations, creep and dilatancy. An elastic analysis using K
and G, or E and ν, at its best is merely a first approximate approach. It may be quite
valuable, however, as it may indicate the trend of the development of stresses. In the
last decades of the 20th century more advanced non-linear methods of analysis have
been developed, for instance using finite element modelling, that offer more realistic
computations.

Example 13.1 Consult a Handbook of Physics, a Handbook of Engineering, or an
Encyclopedia, and search for a chapter on Young’s modulus. Note that such a chapter
usually presents useful definitions of the quantities involved, and often also contains a
table of values for a large number of materials, including construction materials such
as steel, concrete andwood. Some engineers from disciplines other than geotechnical
engineering may be surprised that these tables do not give values for soils such as
sand or clay.

The reason for this is that the stiffness of soils depends upon the initial stress, as
presented in this chapter and the previous one. Or, in other words, Hooke’s law does
not apply to soils. Only for small stress increments Hooke’s law and an appropriate
value of Young’s modulus E may be used, with the modulus practically proportional
to the initial stress level.

Problem 13.1 A colleague in a foreign country reports that the Young’s modulus of
a certain layer has been back-calculated from the deformations of a stress increase
due to a surcharge, from 20 to 40kPa. This modulus is given as E = 2000kPa. A
new surcharge is being planned, from 40 to 60kPa, and your colleague (who is not
a geotechnical engineer) asks your advice on the value of E to be used then. What
is your suggestion?

Problem 13.2 Asoil sample is being tested in the laboratory by cyclic shear stresses,
of constant amplitude. In each cycle there are relatively large shear strains. What do
you expect for the volume change in the 100th cycle? And what would that mean for
the value of Poisson’s ratio ν?

http://dx.doi.org/10.1007/978-3-319-61185-3_12


Chapter 14
One-Dimensional Compression

In the previous chapters the deformation of soils has been separated into pure com-
pression and pure shear. Pure compression is a change of volume in the absence of
any change of shape, whereas pure shear is a change of shape, at constant volume.
Ideally laboratory tests should be of constant shape or constant volume type, but
that is not so simple. An ideal compression test would require isotropic loading of a
sample, that should be free to deform in all directions. Although tests on spherical
samples are indeed possible, it is more common to perform a compression test in
which no horizontal deformation is allowed, by enclosing the sample in a rigid steel
ring, and then deform the sample in vertical direction. In such a test the deformation
consists mainly of a change of volume, but some change of shape also occurs. The
main mode of deformation is compression, however.

14.1 Confined Compression Test

In the confined compression test, or oedometer test, a cylindrical soil sample is
enclosed in a very stiff steel ring, and loaded through a porous plate at the at the top,
see Fig. 14.1. The equipment is usually placed in a somewhat larger container, filled
with water. Pore water may be drained from the sample through porous stones at
the bottom and the top of the sample. The load is usually applied by a dead weight
pressing on the top of the sample. This load can be increased in steps, by adding
weights. The ring usually has a sharp edge at its top, which enables to cut the sample
from a larger soil body.

In this case there can be no horizontal deformations, by the confining ring, so that

εxx = εyy = 0. (14.1)

© Springer International Publishing AG 2018
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Fig. 14.1 Confined
compression test

This means that the only non-zero strain is a vertical strain. The volume strain will
be equal to that strain,

εvol = ε = εzz . (14.2)

For convenience this strain will be denoted simply as ε. The load of the sample is a
vertical stress σzz , which will be denoted as σ ,

σ = σzz . (14.3)

When performing the test, it is observed, as expected, that the increase of vertical
stress caused by a loading from say 10 to 20 kPa leads to a larger deformation than
a loading from 20 to 30 kPa. The sample becomes gradually stiffer, when the load
increases. Often it is observed that an increase from 20 to 40 kPa leads to the same
incremental deformation as an increase from 10 to 20 kPa. And increasing the load
from 40 to 80 kPa gives the same additional deformation. Each doubling of the load
has about the same effect. This suggests to plot the data on a semi-logarithmic scale,
see Fig. 14.2. In this figure log(σ/σ0) has been plotted against ε, where σ0 denotes
the initial stress. The test results appear to form a straight line, approximately, on
this scale. The logarithmic relation between vertical stress and strain has been found
first by Terzaghi, around 1930.

It means that the test results can be described reasonably well by the formula

ε = − 1

C
ln(

σ

σ0
). (14.4)

Fig. 14.2 Results
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Table 14.1 Compression constants

Type of soil C C10

Sand 50–500 20–200

Silt 25–125 10–50

Clay 10–100 4–40

Peat 2–25 1–10

Using this formula each doubling of the load, i.e. loadings following the series
1, 2, 4, 8, 16, . . . , gives the same strain. The relation (14.4) is often denoted as
Terzaghi’s logarithmic formula. Its approximate validity has been verified by many
laboratory tests.

In engineering practice the formula is sometimes slightly modified by using the
common logarithm (of base 10), rather than the natural logarithm (of base e), perhaps
because of the easy availability of semi-logarithmic paper on the basis of the common
logarithm. The formula then is

ε = − 1

C10
log(

σ

σ0
). (14.5)

Because log(x) = ln(x)/2.3 the relation between the constants is

C10 = C

2.3
, (14.6)

or
C = 2.3 × C10. (14.7)

The compression constants C and C10 are dimensionless parameters. Some average
values are shown in Table14.1.

The large variation in the compressibility suggests that the table has only limited
value. The compression test is a simple test, however, and the constants can easily
be determined for a particular soil, in the laboratory. The circumstance that there
are two forms of the formula, with a factor 2.3 between the values of the constants,
means that great care must be taken that the same logarithm is being used by the
laboratory and the consultant or the design engineer.

The values in Table14.1 refer to virgin loading, i.e. cases in which the load on
the soil is larger than the previous maximum load. If the soil is first loaded, then
unloaded, and next is loaded again, the results, when plotted on a logarithmic scale
for the stresses, are as shown in Fig. 14.3. Just as in loading, a straight line is obtained
during the unloading branch of the test, but the stiffness is much larger, by a factor
of about 10. When a soil is loaded below its preconsolidation load the stress strain
relation can best be described by a logarithmic formula similar to the ones presented
above, but using a coefficient A rather than C , where the values of A are about a
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Fig. 14.3 Loading, unloading, and cyclic loading

factor 10 larger than the values given in Table14.1. Such large values can also be used
in cyclic loading. A typical response curve for cyclic loading is shown in the right
part of Fig. 14.3. After each full cycle there will be a small permanent deformation.
When loading the soil beyond the previous maximum loading the response is again
much softer.

In many countries, such as the Scandinavian countries and the USA, the results
of a confined compression test are often described in a slightly different form, using
the void ratio e to express the deformation, rather than the strain ε. The formula then
used is

e1 − e = Cc log(
σ

σ0
), (14.8)

where e1 represents the void ratio at the initial stress σ0. In this representation
the test results also lead to a straight line, when using a logarithmic scale for the
stresses. The formula indicates that the void ratio decreases when the stress increases,
which corresponds to a compression of the soil. The coefficient Cc is denoted as the
compression index. A highly compressible soil will have a large value of Cc. As
seen before the behavior in unloading and reloading is much stiffer. The compres-
sion index is then much smaller (by about a factor 10). Three typical branches of
the response are shown in Fig. 14.4. The relationship shown in the figure is often
denoted as an e − log(p) diagram, where the notation p has been used to indicate
the effective stress.

To demonstrate that Eq. (14.8) is in agreement with the formula (14.5), given
before, it may be noted that the strain ε has been defined as ε = �V/V , where V is
the volume of the soil. This can be expressed as V = (1 + e)Vp, where e is the void
ratio, and Vp is the volume of the particles. Because the particle volume is constant
(the particles are practically incompressible) it follows that �V = �e Vk , so that
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Fig. 14.4 e− log p

σ/σ0

e

1 10 100
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0.01

ε = �e

1 + e
. (14.9)

Equation (14.8) therefore can also be written as

ε = − Cc

1 + e
log(

σ

σ0
), (14.10)

Comparison with Eq. (14.5) shows that the relation between Cc and C10 is

1

C10
= Cc

1 + e
. (14.11)

It is of course unfortunate that different coefficients are being used to describe the
same phenomenon. This can only be explained by the historical developments in
different parts of the world. It is especially inconvenient that in both formulas the
constant is denoted by the character C , but in one form it appears in the numerator,
and in the other one in the denominator. A large value for C10 corresponds to a
small value for Cc. It can be expected that the compression index Cc will prevail in
the future, as this has been standardized by ISO, the International Organization for
Standardization.

It may also be noted that in a well known model for elasto-plastic analysis of
deformations of soils, the Cam clay model, developed at Cambridge University, the
compression of soils is described in yet another somewhat different form,

ε = −λ ln(
σ

σ0
). (14.12)

The difference with Eq. (14.8) is that a natural logarithm is used rather than the
common logarithm (the difference being a factor 2.3), and that the deformation is
expressed by the strain ε rather than the void ratio e. The difference between these
two quantities is a factor 1 + e.
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The logarithmic relations given in this chapter should not be considered as fun-
damental physical laws. Many non-linear phenomena in physics produce a straight
line when plotted on semi-logarithmic paper, or if that does not work, on double
logarithmic paper. This may lead to very useful formulas, but they need not have
much fundamental meaning. The error may well be about 1 to 5%. It should be
noted that the approximation in Terzaghi’s logarithmic compression formula is of
a different nature than the approximation in Newton’s laws. These last are basic
physical laws (even though Einstein has introduced a small correction). The loga-
rithmic compression formula is not much more than a convenient approximation of
test results.

14.2 Elastic Analysis

In a confined compression test on a sample of an isotropic linear elastic material, the
lateral stresses are, using (13.8), and noting that εxx = εyy = 0,

σxx = σyy = ν

1 − ν
σzz . (14.13)

From the last equation of the system (13.8) it now follows that

εzz = − (1 + ν)(1 − 2ν)

E(1 − ν)
σzz . (14.14)

When expressed into the constants K and G this can also be written as

σzz = −(K + 4

3
G) εzz . (14.15)

The elastic coefficient for one dimensional confined compression appears to be K +
4
3G. This is sometimes denoted as D, the constrained modulus,

D = K + 4

3
G = E(1 − ν)

(1 + ν)(1 − 2ν)
= 3K (

1 − ν

1 + ν
). (14.16)

When ν = 0 it follows that D = E ; if ν > 0 : D > E . In the extreme case that ν = 1
2

the value of D → ∞. Such a material is indeed incompressible.
Similar to the considerations in the previous chapter on tangent moduli the log-

arithmic relationship (14.4) may be approximated for small stress increments. The
relation can be linearized by differentiation. This gives

dε

dσ
= − 1

Cσ
. (14.17)

http://dx.doi.org/10.1007/978-3-319-61185-3_13
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so that
�σ = −Cσ�ε. (14.18)

Comparing Eqs. (14.15) and (14.18) it follows that for small incremental stresses
and strains one write, approximately,

D = K + 4

3
G = Cσ. (14.19)

Thismeans that the stiffness increases linearlywith the stress, and that is in agreement
with many test results (and with earlier remarks).

The formula (14.19) is of considerable value to estimate the elastic modulus of
a soil. Many computational methods use the concepts and equations of elasticity
theory, even when it is acknowledged that soil is not a linear elastic material. On the
basis of Eq. (14.19) it is possible to estimate an elastic “constant”. For a layer of sand
at 20m depth, for instance, it can be estimated that the effective stress will be about
170 kPa (assuming that the soil above the sand is clay, and that the water table is very
high). For sand the value of C10 is about 100, and thus C ≈ 230. This means that the
elastic modulus is about 40,000 kPa = 40 MPa. This is a useful first estimate of the
elastic modulus for virgin loading. As stated before, the soil will be about a factor
10 stiffer for cyclic loading. This means that for problems of wave propagation the
elastic modulus to be used may be about 400 MPa. It should be noted that these are
only first estimates. The true values may be larger or smaller by a factor 2, or even
more. And nothing can beat measuring the stiffness in a laboratory test or a field test,
of course.

Example 14.1 In a confined compression test, see Fig. 14.1, a soil sample of 2cm
thickness has been preloaded by a stress of 100 kPa. An additional load of 20 kPa
leads to a vertical displacement of 0.030mm.Determine the value of the compression
constant C10.

Solution

The formula to be applied is Eq. (14.5), where now σ0 = 100 kPa and σ = 120 kPa,
so that log(σ/σ0) = 0.0792. The strain has been measured as ε = −0.030/20 =
−0.0015. It follows that C10 = 52.8.

If the test is continued with a next loading step of 20 kPa, the additional strain in
that step will be ε = − log(140/120)/C10 = −0.00127. This means that the addi-
tional displacement will be 0.025mm.

The total strain after the two steps canbe calculated as ε = − log(140/100)/C10 =
−0.00277, which is precisely the sum of the two values in each step, as one would
expect from a consistent theory. Mathematically speaking it is a consequence of the
property of the logarithmic function that log(ab) = log(a) + log(b).

Problem 14.1 A clay layer of 4m thickness is located below a sand layer of 10m
thickness. The volumetric weights are all 20 kN/m3, and the groundwater table
coincides with the soil surface. The compression constant of the clay is C10 = 20.
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Predict the settlement of the soil by compression of the clay layer due to an additional
load of 40 kPa.

Problem 14.2 A sand layer is located below a road construction of total weight
20 kPa. The sand has been densified by vibration before the road was built. Estimate
the order of magnitude of the elastic modulus of the soil that can be used for the
analysis of traffic vibrations in the soil.

Problem 14.3 The book Soil Mechanics by Lambe and Whitman (1969) gives the
value Cc = 0.47 for the compression index of a certain clay, see page 319. The void
ratio, given in Fig. E22.1 of that book, is about 0.95. EstimateC10, and verify whether
this value is in agreement with Table14.1.

Reference

T.W. Lambe, R.V. Whitman, Soil Mechanics (Wiley, New York, 1969)



Chapter 15
Consolidation

In the previous chapters it has been assumed that the deformation of a soil is uniquely
determined by the stress. This means that a time dependent response has been ex-
cluded. In reality the behavior is strongly dependent on time, however, especially for
clay soils. In compression of a soil the porosity decreases, and as a result there is less
space available for the pore water. This pore water can be expelled from the soil, but
in clays this may take a certain time, due to the small permeability. This process is
called consolidation. Its basic equations are considered in this chapter.

15.1 Differential Equation

The analysis will be restricted to one dimensional deformation, assuming that the
soil does not deform in lateral direction. It is also assumed that the water can only
flow in vertical direction. This will be the case during an oedometer test, or in the
field, in case of a surcharge load over a large area, see Fig. 15.1.

To simplify the analysis it will be assumed that the change in stress is small
compared to the initial stress. In that case the stress-strain relation may be linearized,
using an elastic coefficient D = K + 4

3G, see (14.19). The precise value of that
coefficient depends upon the initial stress. The relation between the increment of
effective stress �σ′ and the increment of strain �ε can now be written as

�σ′ = −
(
K + 4

3
G

)
�ε. (15.1)

In the remainder of this chapter the notation � will be omitted. Thus the increment
of the effective stress will be denoted simply by σ′, and the increment of the strain
by ε, so that

© Springer International Publishing AG 2018
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Fig. 15.1 Uniform load

σ′ = −
(
K + 4

3
G

)
ε. (15.2)

Using stresses and strains with respect to some initial state is very common in soil
mechanics. For the strains there is actually no other possibility. Strains can only be
measured with respect to some initial state, and in this initial state the soil is not stress
free. Gravity is always acting, and the stresses due to gravity have been developed
gradually during geological history. The logical procedure is to regard the state of
stress including the influence of the weight of the soil layers as a given initial state,
and to regard all effects of engineering activity with respect to that initial state. It
should be noted that to obtain the true stresses in the field the initial stresses should
be added to the incremental stresses.

In the analysis of consolidation it is customary to write Eq. (15.2) in its inverse
form,

ε = −mv σ′, (15.3)

where mv is denoted as the compressibility coefficient. If the incremental vertical
total stress is denoted by σ, and the incremental pore pressure by p, then Terzaghi’s
principle of effective stress is

σ′ = σ − p. (15.4)

It follows from (15.3) that
ε = −mv(σ − p). (15.5)

The total stress σ is often known, as a function of time. Its value is determined by
the load. Let it be assumed that initially σ = 0, indicating no additional load.

During the application of the load the total stress σ is supposed to be increased
by a given amount, in a very short time interval, after which the total stress remains
constant. The pore pressure may vary during that period. To describe its generation
and dissipation the continuity of the water must be considered.

Consider an elementary volume V in the soil, see Fig. 15.2. The volume ofwater is
Vw = nV , where n is the porosity. The remaining volume, Vp = (1 − n)V is the total
volume of the particles. As usual, the particles are considered as incompressible. This
means that the volume V can change only if the porosity changes. This is possible
only if the water in the pores is compressed, or if water flows out of the element.



15.1 Differential Equation 125

Fig. 15.2 Outflow
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qx qx + ∂qx
∂x

dx

qy

qy +
∂qy
∂y

dy

The first possibility, a volume change by compression of the pore water, can be
caused by a change of the pore pressure p. It can be expected that the change of
volume is proportional to the change of the pressure, and to the original volume, i.e.

�V1 = −βVw�p = −nβV�p, (15.6)

where β represents the compressibility of the water. For pure water handbooks of
physics give β = 0.5 × 10−9 m2/N, which is very small. Water is practically in-
compressible. However, when the water contains some small bubbles of gas (air or
natural gas), the value of β may be much larger, approximately

β = Sβ0 + (1 − S)

p0
, (15.7)

where β0 is the compressibility of pure water, S is the degree of saturation, and p0
is the absolute pressure in the water, considered with respect to vacuum (this means
that under atmospheric conditions p0 = 100 kPa). If S = 0.99 and the pressure is
p0 = 100 kPa, then β = 10−7 m2/N. That is still a small value, but about 200 times
larger than the compressibility of pure water. The apparent compressibility of the
water is now caused by the compression of the small air bubbles. The formula (15.7)
can be derived on the basis ofBoyle’s gas law. Taking into account the compressibility
of the fluid, even though the effect is small, makes the analysis more generally
applicable.

The second possibility of a volume change, as a result of a net outflow of water,
is described by the divergence of the specific discharge, see Fig. 15.2. There is a net
loss of water when the outflow from the element is larger than the inflow into it. In
a small time �t the volume change is

�V2 = −(∇ · q)V�t = −
(

∂qx
∂x

+ ∂qy
∂y

+ ∂qz
∂z

)
V�t. (15.8)

The minus sign expresses that a positive value of ∇ · q indicates that there is a net
outflow, which means that the volume will decrease. The volume increase �V2 then
is negative.

The total volume change in a small time �t now is
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�εvol = �V

V
= �V1 + �V2

V
= −nβ�p −

(
∂qx
∂x

+ ∂qy
∂y

+ ∂qz
∂z

)
�t. (15.9)

After division by �t , and passing into the limit �t → 0, the resulting equation is

∂εvol

∂t
= −nβ

∂ p

∂t
−

(
∂qx
∂x

+ ∂qy
∂y

+ ∂qz
∂z

)
. (15.10)

This is an important basic equation of the theory of consolidation, the storage equa-
tion. It expresses that a volume change (∂e/∂t) can be caused by either a pressure
change (the factor n indicating howmuchwater is present, and the factor β indicating
its compressibility), or by a net outflow of water from the pores.

In the one dimensional case of vertical flow only, the storage equation reduces to

∂εvol

∂t
= −nβ

∂ p

∂t
− ∂qz

∂z
. (15.11)

The value of the specific discharge qz depends upon the pressure gradient, through
Darcy’s law,

qz = − k

γw

∂ p

∂z
. (15.12)

It should be noted that it is not necessary to take into account a term for the pressure
gradient due to gravity, because p indicates the increment with respect to the initial
state, in which gravity is taken into account.

It follows from (15.11) and (15.12), assuming that the hydraulic conductivity k is
constant,

∂εvol

∂t
= −nβ

∂ p

∂t
+ k

γw

∂2 p

∂z2
. (15.13)

This equation contains two variables, the volume strain εvol and the fluid pressure
p. Another equation is needed for a full description of the problem. This second
equation is provided by the relation of the deformation of the soil to the stresses.

In the one dimensional case considered here the lateral strains are zero, so that
the volume strain εvol is equal to the vertical strain ε,

εvol = ε. (15.14)

It now follows from (15.5), (15.13) and (15.14), if it is assumed that the compress-
ibility mv is constant in time,

∂ p

∂t
= mv

mv + nβ

∂σ

∂t
+ cv

∂2 p

∂z2
, (15.15)

where cv is the consolidation coefficient,
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cv = k

γw(mv + nβ)
. (15.16)

Equation (15.15) is the basic differential equation for the one dimensional consol-
idation process. From this equation the pore pressure p must be determined. The
variation of the total stress σ with time, ∂σ/∂t , is supposed to be given by the
loading conditions.

The simplest type of loading occurs when the total stress σ is constant during
the entire process. This will be the case if the load does not change after its initial
application. Then

∂ p

∂t
= cv

∂2 p

∂z2
, (15.17)

In mathematical physics an equation of this type is denoted as a diffusion equation.
The same equation describes the process of heating or cooling of a strip of metal.
The variable then is the temperature.

It may be noted that the differential equation does not become simpler when the
water is assumed to be incompressible (β = 0). Only the coefficient cv is affected.
The compressibility of the water does not complicate the mathematics.

15.2 Boundary Conditions and Initial Condition

To complete the formulation of the problem, the boundary conditions and initial
conditions must be added to the differential equation (15.17). In the case of an
oedometer test, see Fig. 15.3, the sample is usually drained at the top, using a thin
sheet of filter paper and a steel porous plate, or a porous stone. In the container in
which the sample and its surrounding ring are placed, the water level is kept constant.
This means that at the top of the sample the excess pore pressure is zero,

z = h : p = 0. (15.18)

The soil sample may also be drained at its bottom, but alternatively, it may be sup-
ported by an impermeable plate. In that case the boundary condition at the bottom
of the sample is

z = 0 : ∂ p

∂z
= 0, (15.19)

indicating no outflow at the bottom of the sample. These two boundary conditions
are physically sufficient. In general a second order differential equation requires two
boundary conditions.

The initial condition is determined by the way of loading. A common testing
procedure is that a load is applied in a very short time (by placing a weight on the
loading plate). After this loading the load is kept constant. At the time of loading an
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Fig. 15.3 Oedometer test

immediate increase of the pore pressure is generated, that can be determined in the
following way. The storage equation (15.10) is integrated over a short time interval
�t , giving

εvol = −nβ p −
∫ �t

0

∂qz
∂z

dt.

The integral represents the amount of water that has flowed out of the soil in the time
interval �t . If �t → 0 this must be zero, so that

t = 0 : εvol = −nβ p. (15.20)

On the other hand, it follows from (15.5), taking into account that in this case εvol = ε,

εvol = −mv(σ − p). (15.21)

From Eqs. (15.20) and (15.21) it now follows that

t = 0 : p = σ

1 + nβ/mv

. (15.22)

This is the initial condition. It means that at the time of loading, t = 0, the pore water
pressure p is given.

If the water is considered as completely incompressible (which is a reasonable
assumption when the soil is completely saturated with water) Eq. (15.22) reduces to

t = 0, β = 0 : p = σ. (15.23)

In that case the initial pore pressure equals the given load. That can be understood by
noting that in case of an incompressible pore fluid there can be no immediate volume
change. This means that there can be no vertical strain, as the volume change equals
the vertical strain in this case of a sample that is laterally confined by the stiff steel
ring. Hence there can be no vertical strain at the moment of loading, and therefore
the effective stress can not increase at that instant. In this case, of lateral confinement
and incompressible water, the entire load is initially carried by the water in the pores,
and the effective stress remains equal to its initial value. This type of response is
called undrained. It is characteristic of soft soils under rapid loading.
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It should be noted that throughout this chapter the deformation and the flow
have been one dimensional. In a more general three dimensional case, there may be
lateral deformations, and an immediate deformation is very well possible, although
the volume must remain constant if the fluid is incompressible. There can then be
an immediate change of the effective stresses. The water will then carry only part
of the load. The three dimensional theory of consolidation is an interesting topic for
further study.



Chapter 16
Analytical Solution

In this chapter an analytical solution of the one dimensional consolidation problem
is given. In soil mechanics this solution was first given by Terzaghi (1923). In mathe-
matics the solution had been known since the beginning of the 19th century. Fourier
developed the solution to determine the heating and cooling of a metal strip, which is
governed by the same differential equation. Terzaghi knew that solution, and adapted
the parameters to the case of consolidation.

16.1 The Problem

The mathematical problem of one dimensional consolidation has been presented in
the previous chapter. The differential equation is

∂ p

∂t
= cv

∂2 p

∂z2
, (16.1)

with the initial condition

t = 0 : p = p0 = q

1 + nβ/mv

, (16.2)

in which q is the load applied at time t = 0. It is assumed that this load remains
constant for t > 0.

The boundary conditions are, for the case of a sample of height 2h, drained at its
top and its bottom,

z = −h : p = 0, (16.3)

z = h : p = 0. (16.4)
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Fig. 16.1 Consolidation of a
soil sample

These equations describe the consolidation of a soil sample in an oedometer test, or
a confined compression test, with a constant load, and drained at the top and bottom
of the sample. A variant of the problem is that of a sample of thickness h, drained
at its top and with an impermeable bottom, so that the boundary condition (16.3) is
replaced by

z = 0 : ∂ p/∂z = 0. (16.5)

Such a sample drains to the top only, see Fig. 16.1. The problem considered in this
chapter assumes drainage to both the top and the bottom of a sample of height 2h.
Taking the upper half of the solution of this problem only leads to the same solution
as the problem with the boundary conditions (16.5) and (16.4).

16.2 Solution

The problem defined by the Eqs. (16.1)–(16.4) can be solved, for instance, by sepa-
ration of variables, or, even better, by the Laplace transform method, which is given
in many books on advanced mathematics, see e.g. Churchill (1972) or Carslaw and
Jaeger (1948).

The Laplace transform p of the pressure p is defined as

p =
∫ ∞

0
exp(−st)dt. (16.6)

The basic principle of the Laplace transform method is that the differential equation
(16.1) is multiplied by exp(−st)dt , and then integrated from t = 0 to t = ∞. This
gives, using partial integration and the initial condition (16.2),

s p − p0 = cv

d2 p

dz2
. (16.7)

The partial differential equation (16.1) has now been transformed into an ordinary
differential equation. Its solution is



16.2 Solution 133

p = p0
s

+ A exp(z
√
s/cv) + B exp(−z

√
s/cv). (16.8)

Here A and B are integration constants, that do not depend upon z, but may depend
upon the transform parameter s. These constants may be determined from the bound-
ary conditions (16.3) and (16.4),

A = − p0
2s cosh(h

√
s/cv)

, (16.9)

B = − p0
2s cosh(h

√
s/cv)

. (16.10)

The transform of the pore pressure now is

p

p0
= 1

s
− cosh(z

√
s/cv)

s cosh(h
√
s/cv)

. (16.11)

The remaining problem now is the inverse transformation of the expression (16.11).
This is a mathematical problem, that requires some experience with the Laplace
transformmethod, including Heaviside’s inversion theorem. This theorem states that
the inverse transform of a function of the form f (s) = P(s)/Q(s) consists of a series
of terms, one for each of the zeros of the denominator Q(s). Each of these terms
gives a contribution of the form

p

p0
= P(s j

Q′(s j )
exp(−s j t). (16.12)

Without giving all the details it is stated here that the final result is

p

p0
= 4

π

∞∑
j=1

(−1) j−1

2 j − 1
cos

[
(2 j − 1)

π

2

z

h

]
exp

[
−(2 j − 1)2

π2

4

cvt

h2

]
. (16.13)

This is the analytical solution of the problem. It is shown in Fig. 16.2. The data in this
solution may be obtained from a simple computer program, for instance a program
in Turbo Pascal, see Program CONSOL1D.PAS, listed below. The program gives
the values of the pore water pressure as a function of depth, for a certain value of
time. In the program the terms of the infinite series are taken into account until the
argument of the exponential function reaches the value 20. This is based upon the
notion that al terms containing a factor exp(−20), or smaller, can be disregarded.
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Fig. 16.2 Analytical
solution of Terzaghi’s
problem

program CONSOL1D;
uses crt;
const
nn=10;

var
i,j,jj,k:integer;h,cv,tt,jt,pi,f,a,pa,pp:real;
z,p,t:array[0..nn] of real;

procedure title;
begin
clrscr;gotoxy(35,1);textbackground(7);textcolor(0);write(’ CONSOL1D ’);
textbackground(0);textcolor(7);writeln;

end;
procedure next;
var
c:char;

begin
gotoxy(25,25);textbackground(7);textcolor(0);
write(’ Touch any key to continue ’);write(chr(8));
c:=readkey;textbackground(0);textcolor(7)

end;
begin
h:=1;cv:=1;t[0]:=0;t[1]:=0.01;t[2]:=0.02;t[3]:=0.05;t[4]:=0.1;
t[5]:=0.2;t[6]:=0.5;t[7]:=1;t[8]:=2;
for k:=1 to 8 do
begin
tt:=cv*t[k]/(h*h);pi:=3.1415926;a:=4/pi;pa:=pi/2;pp:=pa*pa;
p[0]:=0;p[nn]:=0;z[0]:=0;z[nn]:=h;
for i:=0 to nn-1 do
begin
z[i]:=i*h/nn;p[i]:=0;
f:=1;j:=1;jj:=2*j-1;jt:=jj*jj*pp*tt;
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while (jt<20) do
begin
p[i]:=p[i]+(a*f/jj)*cos(jj*pa*z[i])*exp(-jt);
j:=j+1;f:=-f;jj:=2*j-1;jt:=jj*jj*pp*tt;

end;
end;

title;writeln(’ cv*t/hˆ2 = ’,t[k]:6:3);writeln;
for j:=0 to nn do
begin
writeln(’ z/h = ’,z[nn-j]:6:3,’, p/p0 = ’,p[nn-j]:6:3);

end;
next;

end;
end.

Program CONSOL1D.PAS

At afirst glance the solution (16.13)maynot seem to givemuch insight, but after some
closer inspection many properties of the solution can be obtained from it. It is for
instance easy to see that for z = h the pressure p = 0, which shows that the solution
satisfies the boundary condition (16.4). The cosine of each termof the series (16.13) is
zero if z = h, because cos(π/2) = 0, cos(3π/2) = 0, cos(5π/2) = 0, etc. It can also
be verified easily that the solution (16.13) satisfies the differential equation (16.1),
because each individual term satisfies that equation. That the boundary condition
(16.5) is satisfied can most easily be checked by noting that after differentiation with
respect to z each term will contain a factor sin(. . . z), and these are all zero if z = 0.
To check the initial condition is not so easy, because for t = 0 the series converges
very slowly. The verification can best be performed from the computer program,
taking the value of t very small.

A good impression of the solution can be obtained by investigating its behavior for
large values of time. Because the exponential functions contain a factor (2 j − 1)2,
i.e. factors 1, 9, 16, …, all later terms can be disregarded if the first term is small.
This means that for large values of time the series can be approximated by its first
term,

cvt

h2
� 0.1 : p

p0
≈ 4

π
cos

(π

2

z

h

)
exp

(
−π2

4

cvt

h2

)
. (16.14)

After a sufficiently long time only one term of the series remains, which is a cosine
function in z-direction. Its values tend to zero if t → ∞. The approximation (16.14)
can be used if time t is not too small. In practice it can be applied for all values for
which cvt/h2 > 0.2.

16.3 The Deformation

Once that the pore pressures are known, the deformations can easily be calculated.
The vertical strain is given by
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ε = −mv(σ − p). (16.15)

This means that the total deformation of the sample is

�h =
∫ h

0
ε dz = −mvhq + mv

∫ h

0
p dz. (16.16)

The first term on the right hand side is the final deformation, which will be reached
when all pore pressures have been reduced to zero. That value will be denoted by
�h∞,

�h∞ = −mvhq. (16.17)

Immediately after the application of the load the pore pressure p = p0, see Eq. (16.2).
The deformation then is, with (16.16),

�h0 = −mvhq
nβ/mv

1 + nβ/mv

. (16.18)

If the water is incompressible (β = 0), this is zero, as expected. The expressions
(16.17) and (16.18) are negative ifq > 0,which indicates that the samplewill become
shorter when loaded.

To describe the deformation as a function of time, a useful quantity is the degree
of consolidation, defined as

U = �h − �h0
�h∞ − �h0

. (16.19)

This is a dimensionless quantity, varying between 0 (for t = 0) and 1 (for t → ∞).
The degree of consolidation indicates how far the consolidation process has been
progressed.

With (16.16), (16.17) and (16.18) one obtains

U = 1

h

∫ h

0

p0 − p

p0
dz. (16.20)

And with (16.13) this gives

U = 1 − 8

π2

∞∑
j=1

1

(2 j − 1)2
exp

[
−(2 j − 1)2

π2

4

cvt

h2

]
. (16.21)

For t → ∞ this is indeed equal to 1. The valueU = 0 for t = 0 can be verified from
the series

∞∑
j=1

1

(2 j − 1)2
= 1 + 1

32
+ 1

52
+ 1

72
+ 1

92
+ · · · = π2

8
. (16.22)
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Fig. 16.3 Degree of consolidation

The degree of consolidation, which is a function of the dimensionless time parameter
cvt/h2 only, is shown in Fig. 16.3.

The degree of consolidation, which is a function of the dimensionless time cvt/h2

is shown in Fig. 16.3. The data may be calculated by the Program DEGREE.PAS,
listed below.

program DEGREE;
uses crt;
const
nn=20;

var
j,jj,k:integer;
h,cv,tt,pi,pp,a,u:real;
t:array[0..nn] of real;

procedure title;
begin
clrscr;gotoxy(35,1);textbackground(0);textcolor(7);write(’ DEGREE ’);
textbackground(7);textcolor(0);writeln;

end;
procedure next;
var
c:char;

begin
gotoxy(25,25);textbackground(0);textcolor(7);
write(’ Touch any key to continue ’);write(chr(8));
c:=readkey;textbackground(7);textcolor(0)

end;
begin
title;
h:=1;cv:=1;pi:=3.1415926;pp:=pi*pi/4;a:=2/pp;
t[0]:=0;t[1]:=0.001;t[2]:=0.002;t[3]:=0.005;t[4]:=0.01;t[5]:=0.02;
t[6]:=0.05;t[7]:=0.1;t[8]:=0.2;t[9]:=0.5;t[10]:=1;t[11]:=2;
t[12]:=5;t[13]:=10;
for k:=1 to 13 do
begin
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tt:=cv*t[k]/(h*h);j:=1;jj:=(2*j-1)*(2*j-1);jt:=jj*pp*tt;u:=1;
while (jt<20) do
begin
u:=u-a*exp(-jt)/jj;
j:=j+1;jj:=(2*j-1)*(2*j-1);jt:=jj*pp*tt;

end;
writeln(’ t = ’,t[k]:6:3,’, u = ’,u:6:3;)

end;
next;

end.

Program DEGREE.PAS

Theoretically speaking the consolidation process takes infinitely long to be com-
pleted. For engineering practice, however, it is sufficient if the first (and largest)
term in (16.21), the infinite series, is about 0.01. Then 99% of the final deformation
has been reached. It can be seen that this is the case if cvt/h2 = 1.784, or roughly
speaking cvt/h2 = 2. This means that

t99% = 2h2

cv

= 2h2(mv + nβ)γw

k
. (16.23)

This very useful formula is a summary of the process of consolidation. Because the
coefficient of consolidation cv is the quotient of the permeability k and the com-
pressibility mv , it can be seen from Eq. (16.23) that the consolidation process takes
longer if the permeability is smaller, or if the compressibility is larger. This is under-
standable if one realizes that the consolidation process consists of compression of
the soil, retarded by the outflow of water. If the permeability is smaller the outflow
is slower, and the consolidation therefore takes longer. And if the compressibility is
large much water must be expelled, and that takes a long time.

For engineering practice it is also very important that the time t appears in the
formula (16.21) in the combination cvt/h2. This means that the process will take 4
times as long if the layer is a factor 2 thicker. It also means that if in a laboratory
test on a sample of 2cm thickness, the consolidation process has been found to be
finished after 1h (this can best be measured by measuring the pore pressures, and
then waiting until they are practically zero), the consolidation of that soil in the field
for a layer of 2m thickness, will take 10,000 times as long, that is more than 1 year.

Another important consequence of the fact that the consolidation process is gov-
erned by the factor cvt/h2 is that the duration of the consolidation process can be
shortened considerably by reducing the drainage length h. As an example one may
consider the consolidation process of a clay layer of 10m thickness. Suppose that the
permeability k is about 10−9 m/s. Let it furthermore be expected that the final defor-
mation of the clay layer by a load of 50 kPa (theweight of 3m dry sand) is 20 cm. This
means that the value of the compressibilitymv is, with (15.3) :mv = 0.0004m2/kN.
The coefficient of consolidation then is, with (15.16), cv = 0.25 × 10−6 m2/s. The
consolidation time is, with (16.23), t99% = 2 × 108 s. That is about 6 years, which
means that it will take many years before the deformation reaches its final value of

http://dx.doi.org/10.1007/978-3-319-61185-3_15
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20 cm. To speed up the consolidation process a large number of vertical drainsmay be
installed, in the form of plastic filter material. If these drains are installed in a pattern
with mutual distances of about 1.60m, the drainage length becomes about a factor 6
smaller (0.80m rather than 5m). If it is assumed that the horizontal permeability is
equal to the vertical permeability, the duration of the consolidation process will be
a factor 36 shorter, that is about 2 months. For a new road, or a new town extension
this means that the settlements are concentrated in a much shorter time span.

16.4 Approximation for Small Values of Time

If the time parameter cvt/h2 is very small, many terms are needed in the analytical
solutions to obtain accurate results. That may not be a great disadvantage if the
computations are performed by a computer program, but it does not give much
insight into the solution. A more convenient approximation can be obtained using a
theorem fromLaplace transform theory saying that an approximation for small values
of t can be obtained by assuming the value of s in the transformed solution as very
large. Again, the details are omitted here. The result for the degree of consolidation
is found to be

U = �h − �h0
�h∞ − �h0

≈ 2√
π

√
cvt

h2
. (16.24)

It appears that in the beginning of the consolidation process its advance increases
with the square root of time.

The approximate formula (16.24) also enables to estimate how short the loading
time of a load must be to be considered as instantaneous. It can be seen that only
1% of the consolidation process has been completed if cvt/h2 = 10−4π/4, or about
t = t1%, with

t1% = 10−4 h
2

cv

. (16.25)

A load that is applied faster than this value of time can be considered as an instanta-
neous load.

Example 16.1 A clay sample of 2cm thickness is being tested in an oedometer. The
sample is drained on both sides. The coefficient of consolidation is known to be
cv = 10−7m2/s. At a certain moment of time the sample is loaded. Calculate the
time for the pore water pressure in the center of the sample to be reduced to 50% of
its initial value.

Solution

In this case the reduction of the pore pressure is large enough to justify the use of
only one term of the analytical solution, as given in Eq. (16.14). In this case only the
top half of the symmetric sample may be considered, with h = 1 cm. The bottom of
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this half, z = 0, corresponds to the center of the actual sample. Equation16.14 now
gives

4

π
exp

(
−π2

4

cvt

h2

)
= p

p0
= 0.5.

It follows that cvt/h2 = 0.3788, which is certainly large enough for the approxima-
tion (16.14) to be applicable. Using the given values of cv and h it finally follows
that t = 379 s.

Example 16.2 Determine the error in the approximation (16.14) for cvt/h2 = 0.2,
by calculating the second term in the series (16.13), for z = 0.

Solution

The second term in the series (16.13) can be calculated by taking j = 2 and z = 0.
This gives for the contribution of that term

�p

p0
= − 4

3π
exp

[
−9π2

4

cvt

h2

]
.

With cvt/h2 = 0.2 it follows that �p/p0 = 0.005, which means that the error in the
approximate solution is about 0.5%.

Problem 16.1 In a test on a clay sample of 2cm thickness it has been measured that
after 15min the pore pressures are practically zero. What will be the duration of the
consolidation process for a layer of the same clay, of 5m thickness?

Problem 16.2 In a laboratory test on a clay sample it has been forgotten to measure
the deformation immediately after the application of the load. The measurement
after 1min was a deformation of 0.06mm, and after 4min a deformation of 0.08mm.
Estimate the initial deformation.

Problem 16.3 The computer program in this chapter can not be used if t = 0,
because then the loop will continue forever. The series solutions do converge, how-
ever. Formulate a better criterion for terminating the series, and install this improve-
ment in the programs.

Problem 16.4 Extend the computer programof this chapterwith facilities for graph-
ical output, or output on a printer.
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Chapter 17
Numerical Solution

The dissipation of the pore water pressures during the consolidation process can be
calculated very simply by a numerical solution procedure, using the finite difference
method. This is presented in this chapter, keeping the method as simple as possible.
Many more advanced, and more powerful numerical methods have been developed.
They can be found on the internet.

17.1 Finite Differences

The differential equation for one dimensional consolidation is Eq. (15.17),

∂ p

∂t
= cv

∂2 p

∂z2
. (17.1)

The time derivative can be approximated by

∂ p

∂t
≈ pi (t + �t) − pi (t)

�t
, (17.2)

where the index i indicates that the values refer to the pressures in the point z = zi .
Equation (17.2) can be considered as the definition of the partial derivative ∂ p/∂t ,
except that the limit t → 0 has been omitted. Finite differences will also be used in
the z-direction. For this purpose the thickness h of the sample is subdivided into n
small elements of thickness �z,

�z = h

n
. (17.3)
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Fig. 17.1 Second derivative
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The second derivative with respect to z can be approximated by

∂2 p

∂z2
≈ pi+1(t) − 2pi (t) + pi−1(t)

(�z)2
. (17.4)

This relation is illustrated in Fig. 17.1. The formula can most simply be obtained by
noting that the second derivative is the derivative of the first derivative. This means
that the second derivative is the difference of the slope in the upper part of the figure
and the slope in the lower part of the figure, divided by the distance �z. It can also
be verified from the figure that for a straight line the expression (17.4) indeed gives
a value zero, because then the value in the center is just the average of the values at
the two values above it and below it.

Substitution of (17.2) and (17.4) into (17.1) gives

pi (t + �t) = pi (t) + α
{
pi+1(t) − 2pi (t) + pi−1(t)

}
, (17.5)

where

α = cv

�t

(�z)2
. (17.6)

The expression (17.5) is an explicit formula for the new value of the pore pressure in
the point i , if the old values (at time t) in that point and in the two points just above
and just below it are known.

The boundary conditions must also be represented in a numerical way. For the
boundary condition at the upper boundary, where the pressure p must be zero, see
(15.18), this is very simple,

pn = 0. (17.7)

The boundary condition at the bottom of the sample is that for z = 0 the derivative
∂ p/∂z = 0, see (15.19). That can best be approximated by continuing the numerical
subdivision by onemore interval below z = 0, so that in a point at a distance�z below
the lower boundary a value of the pore pressure is defined, say p−1. By requiring
that p−1 = p1, whatever the value of p0 is, the condition ∂ p/∂z = 0 is satisfied at
the symmetry axis z = 0. This means that the numerical equivalent of the boundary
condition at z = 0 is

p−1 = p1. (17.8)
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The general algorithm (17.5) for the point i = 0 can now be written as

p0(t + �t) = p0(t) + α
{
2p1(t) − 2p0(t)

}
. (17.9)

The two boundary conditions (17.7) and (17.9), which are valid at all values of time,
complete the algorithm (17.5), together with the initial conditions

t = 0 : pi = p0, i = 0, 1, 2, . . . n − 1, pn = 0. (17.10)

At the initial time t = 0 all values are known : all values of the pressure are p0,
except the one at the top, where the pressure is zero. The new values, after a time
step �t , can be calculated using the algorithm (17.5). This can be applied for all
values of i in the interval 0, 1, 2, . . . n − 1. At the top, for i = n, the value of the
pressure remains zero.

A simple computer program, in Turbo Pascal, is shown below as the Program
NUMCONS.PAS.

program numcons;
uses crt;
const nn=20;
var
z,p,pa:array[0..nn] of real;tt:array[0..8] of real;
i,j,k,nt:integer;a,alpha,t,dt,step,h,dz,cv,tc:real;d:char;

procedure title;
begin
clrscr;gotoxy(36,1);textbackground(7);textcolor(0);write(’ NUMCONS ’);
textbackground(0);textcolor(7);writeln;

end;
procedure next;
begin
gotoxy(25,25);textbackground(7);textcolor(0);
write(’ Touch any key to continue ’);write(chr(8));
d:=readkey;textbackground(0);textcolor(7)

end;
begin
title;writeln;writeln;
writeln(’This is a program for the analysis of one-dimensional’);
writeln(’consolidation of a homogeneous soil layer by the finite’);
writeln(’difference method.’);next;
h:=10;cv:=0.1;alpha:=0.2;t:=0.0;
dz:=h/nn;for i:=0 to nn do z[i]:=i*dz/h;
p[0]:=0;p[nn]:=0;for i:=1 to nn-1 do p[i]:=1.0;
tt[0]:=0.0;tt[1]:=0.01;tt[2]:=0.02;tt[3]:=0.05;tt[4]:=0.1;
tt[5]:=0.2;tt[6]:=0.5;tt[7]:=1.0;tt[8]:=2.0;
for k:=1 to 8 do
begin
dt:=tt[k]-tt[k-1];
nt:=round(int(h*h*dt/(alpha*dz*dz)));if nt<1 then nt:=1;
a:=h*h*dt/(nt*dz*dz);
for j:=1 to nt do
begin
t:=t+dt/nt;tc:=cv*t/(h*h);
for i:=1 to nn-1 do pa[i]:=p[i]+a*(p[i-1]-2*p[i]+p[i+1]);
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for i:=1 to nn-1 do p[i]:=pa[i];
end;

title;writeln(’ cv*t/hˆ2 = ’,t:6:3,’, steps = ’,nt);writeln;
for i:=0 to nn do writeln(’ z/h = ’,z[i]:6:3,’, p/p0 = ’,p[i]:6:3);
next;

end;
clrscr;

end.

Program NUMCONS.PAS

The numerical results are comparedwith the analytical results in Fig. 17.2. The values
of the dimensionless time cvt/h2 for which the pore pressures are shown, are the
same as those used in Fig. 16.2. It appears that the numerical data agree very well
with the analytical results. The accuracy of the numerical solution, and its simplicity,
may serve to explain the popularity of the numerical method.

The numerical data have been calculated by subdividing the height h in 20 equal
parts, �z = h/20. The value of α has been chosen as α = 0.2. This means that
�t = 0.0005 h2/cv . It turns out that in that case about 2/0.0005 = 10000 time steps
are needed to complete the entire consolidation process, until the pore pressures have
been reduced to practically zero (for cvt/h2 = 2), but even this many time steps are
executed very quickly on a computer.

Fig. 17.2 Numerical—
analytical

http://dx.doi.org/10.1007/978-3-319-61185-3_16


17.2 Numerical Stability 145

17.2 Numerical Stability

The stability of the numerical process can be investigated by calculating the devel-
opment of a small error in the numerical process. For this purpose it may be assumed
that near the end of the consolidation process, when all pore pressures should be
zero, some errors remain, with pi (t) = ε and pi+1(t) = pi−1(t) = −ε. The algo-
rithm (17.5) then gives pi (t + �t) = (1 − 4α)ε. The error will decrease if the new
value is smaller than the old one, in absolute value. This will be the case if

| 1 − 4α |< 1. (17.11)

This means that

0 < α <
1

2
. (17.12)

Of course, all distributions of errors should gradually be reduced to zero, and it is
not certain that the requirement (17.12) is sufficient for stability. However, more
fundamental investigations show that the criterion (17.12) is sufficient to guarantee
that all possible distributions of errors will eventually be reduced to zero.

The criterion (17.12) means that the algorithm used in this chapter is stable only
if the time step is positive (that seems to be self-evident), and not too large,

�t <
1

2

(�z)2

cv

. (17.13)

To satisfy this criterion the value of the factor α in the programNUMCONS.PAS has
been taken as 0.20. It is a simple matter to modify the program, and take a somewhat
larger value, larger than 1

2 . It will then appear immediately that the process is unstable.
The pore pressures will become larger and larger, alternating between negative and
positive values. If the time step is chosen such that the criterion (17.13) is satisfied,
the numerical process is always stable, as can be verified by running the program
with different values of the time step. The numerical results are always very accurate
as well, provided that he stability criterion (17.13) is satisfied.

17.3 Numerical Versus Analytical Solution

As may be evident from this chapter and the previous one, the numerical solution
method is simpler than the analytical solution, andmuch easier to use. Itmay be added
that the numerical solution method can easier be generalized than the analytical
method. It is, for instance, rather simple to develop a numerical solution for the
consolidation of a layered soil, with different values for the permeability and the
compressibility in the various layers. The analytical solution for such a layered
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system can also be constructed, at least in principle, but this is a reasonably complex
mathematical exercise.

In general an analytical solution has the advantage that it may give a good insight
in the character of the solution. For instance, the analytical solution of the consolida-
tion problem indicates that its progress is governed by the parameter cvt/h2, which
enables to compare a field situation with a laboratory test on the same material. Such
insight can also be obtained directly from the differential equation and the boundary
and initial conditions, however, even in the absence of a solution of the problem.
This can be illustrated as follows.

The basic equations of the consolidation problem can be made dimensionless
by introducing a dimensionless vertical coordinate Z = z/h and a dimensionless
pore pressure P = p/p0. As the time dimension only appears in the consolidation
coefficient cv , this means that the time t can only be made dimensionless by the
introduction of a parameter T = cvt/h2. The problem then is, in dimensionless
form,

∂P

∂T
= ∂2P

∂Z2
, (17.14)

with the initial condition
T = 0 : P = 1, (17.15)

and the boundary conditions

Z = 0 : ∂P

∂Z
= 0. (17.16)

Z = 1 : P = 0, (17.17)

Thematerial property cv and the size h have now been eliminated from themathemat-
ical problem, and the only numerical values in the problem are the numbers 0 and 1.
Both Z and P are of the order of magnitude of 1. This will then probably also hold for
T, and it can be expected that the process will be finished when T � 1. This means
that it can be stated that the process will be governed by the factor T = cvt/h2, as
was indeed found in the analytical solution in the previous chapter. The additional
information from the analytical solution is that it indicates that the consolidation
process will be practically finished when T ≈ 2, and that can not be concluded from
the basic equations only.

The fact that the behavior in time of the consolidation process is determined by
the parameter cvt/h2 means that it can also be predicted that any loading in a time
span �t can be considered as rapid when the value of cv�t/h2 is small compared
to 1, say about 0.0001 or smaller. That was concluded also in the previous chapter
from the analytical solution, see Eq. (16.25), but it can also be concluded from the
formulation of the problem in dimensionless form, without knowing the solution.

The numerical solution presented in this chapter appears to be stable only if
a certain stability criterion is satisfied. It may be mentioned that there exist other

http://dx.doi.org/10.1007/978-3-319-61185-3_16
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numerical procedures that are unconditionally stable. By using a different type of
finite differences, such as a backward finite difference or a central finite difference
for the time derivative, a stable process is obtained. The numerical procedures then
are somewhat more complicated, however. Another effective method is to use a
formulation by finite elements. This also makes it very easy to include variable soil
properties, which is rather complicated when using a finite difference method.

It may finally bementioned that many universities and consulting companies have
developed numerical methods for two-dimensional or three-dimensional problems
of consolidation. There are many possibilities for a further study of consolidation
theory, or of numerical methods.

Example 17.1 The consolidation process of a clay layer of 4m thickness is solved by
a numerical procedure. The consolidation coefficient of the clay is cv = 10−6 m2/s.
The layer is subdivided into 20 small layers. What is the maximum allowable mag-
nitude of the time step?

Solution

In this case of a subdivision of the layer into 20 parts the thickness of each sub-layer
is �z = h/n = 0.20 m. The stability criterion (17.13) then gives �t < 20 × 103 s.

It may be noted that the duration of the total consolidation process is given by
Eq. (16.23), which expresses that t99% = 2h2/cv . With Eq. (17.13) it then follows
that t99% = 4n2 �t , indicating that about 4n2 time steps must be calculated for the
numerical process to be finished.

To make a more accurate analysis of the example the number of sub-layers may
be taken twice as large, say n = 40. The time step then must be 4 times as small,
because of the factor (�z)2 in the stability criterion. The price to be paid for this
increased accuracy is that 4 times as many time steps must be calculated. As in each
time step the number of calculations is also twice as large, the total computation time
will be 8 times as large. This may still be very small, however.

Problem 17.1 Execute the calculations described above, using the program NUM-
CONS.PAS or some other program, for instance using Excel, and investigate the
influence of the value of the parameter α, say α = 0.25 and α = 1.00.

http://dx.doi.org/10.1007/978-3-319-61185-3_16


Chapter 18
Consolidation Coefficient

In this chapter two methods to determine the coefficient of consolidation cv are
described. They are based on measurements in a one-dimensional test. However,
inaccuracies in the description of the deformations in such tests requiremodifications
in the measured displacements.

18.1 Theory Versus Test Results

If the theory of consolidation, presented in the previous chapters, were a perfect
description of the physical behavior of soils, it should be rather simple to determine
the value of the coefficient of consolidation cv from the data obtained in a consol-
idation test. For instance, one could measure the time at which 50% of the final
deformation has taken place. From the theory it follows that this is reached when
cvt/h2 = 0.197, because then the value ofU = 0.5, see formula (16.21). As the val-
ues of time t and the sample thickness h are known, it is then possible to determine the
value of cv . Unfortunately, there are some practical and some theoretical difficulties.
The procedure would require an accurate determination of the initial deformation
and of the ultimate deformation, and that is not so simple as it may seem. The initial
deformation of the sample, �h0, is the deformation at the moment of application of
the load, and at the moment of loading the indicator of the deformation will suddenly
start to move, with a sudden jump followed by a continuous increase. It is difficult to
decide what the value at the exact moment of loading is, as the moment is gone when
the indicator starts to move. Also, it usually appears that no final constant value of the
deformation, �h∞ is reached, as the deformation seems to continue, even when the
pore water pressures have been dissipated completely. For these reasons somewhat
modified procedures have been developed to define the initial deformation and the
final deformation. In this chapter the two most common procedures are presented.

© Springer International Publishing AG 2018
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18.2 Log(T)-Method

A first method to overcome the difficulties of determining the initial value and the
final value of the deformation has been proposed by Professor Arthur Casagrande of
Harvard University, Cambridge (USA), see Taylor (1948). In this method the defor-
mation of the sample, as measured as a function of time in a consolidation test, is
plotted against the logarithm of time, see Fig. 18.1. It usually appears that there is no
horizontal asymptote of the curve, as the classical theory predicts, but for very large
values of time a straight line is obtained, see also the next chapter. It is now postu-
lated, somewhat arbitrarily, that the intersection point of the straight line asymptote
for very large values of time, with the straight line that can be drawn tangent to the
measurement curve at the inflection point (that is the steepest possible tangent), is
considered to determine the final deformation of the primary consolidation process.
The continuing deformation beyond that deformation is denoted as secondary consol-
idation, representing deformation at practically zero pore pressures. This procedure
is indicated in Fig. 18.1, leading to the value �h∞ for the final deformation.

In order to define the initial settlement of the loaded sample use is made of the
knowledge, seeChap.16, that in the beginning of the consolidation process the degree
of consolidation increases proportional to

√
t . This means that between t = 0 and

t = t1 the deformation will be equal to the deformation between t = t1 and t = 4t1.
If the deformation is measured after 1 min and after 4 mins, it can be assumed that
between t = 0 and t = 1 min the deformation would have been the same as the
deformation between t = 1 min and t = 4 mins. This procedure has been indicated
in Fig. 18.1, leading to the value �h0 for the initial deformation.

Fig. 18.1 Log(t)-method

http://dx.doi.org/10.1007/978-3-319-61185-3_16
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From the values of the initial deformation �h0 and the final deformation �h∞,
it is simple to determine the moment at which the degree of consolidation is just
between these two values, which would mean thatU = 0.5. This is also indicated in
Fig. 18.1, giving a value for t50%. The value of the coefficient of consolidation then
follows from cvt50%/h2 = 0.197, or

cv = 0.197
h2

t50%
. (18.1)

It should be noted that the quantity h in this expression represents the thickness
of the sample, for the case of a sample drained on one side only. The consolidation
processwould be the same in a sample of thickness 2h and drainage to both sides. The
original solution of Terzaghi considers that case, and the solution of the consolidation
problem is given in that form in many textbooks. Because of the symmetry of that
problem there is no difference with the problem and the solution considered here.

18.3
√
t-Method

A secondmethod to determine the value of the coefficient of consolidation, proposed
by Taylor (1948), is to use only the results of a consolidation test for small values of
time, and to use the fact that in the beginning of the process its progress is proportional
to the square root of time. In this method the measurement data are plotted against√
t , see Fig. 18.2. The basic formula is, see (16.24),

�h − �h0 = (�h∞ − �h0)
2√
π

√
cvt

h2
. (18.2)

In theory the value of the coefficient of consolidation cv could be determined from
the slope of the straight line in the figure, but this again requires the value of the
initial deformation and the final deformation, as these appear in the formula (18.2).
The value of the initial deformation �h0 can be determined from the intersection
point of the straight tangent to the curve with the axis

√
t = 0. The final deformation

�h∞, however, can not be obtained directly from the data. In order to circumvent
this difficulty Taylor has suggested to use the result following from the theoretical
curve and its approximation that for U = 0.90, i.e. for 90% of the consolidation,
the value of

√
t according to the exact solution is 15% larger that the value given

by the approximate formula (18.2). The exact formula (16.13) gives that U = 0.90
if cvt/h2 = 0.8481, and the approximate formula (18.2) gives that U = 0.90 for
cvt/h2 = 0.6362. The ratio of these two values is 1.333, which is the square of
1.154. This means that if in Fig. 18.2 a straight line is plotted at a slope that is
15% smaller than the tangent to the measurement data for small values of time,
this line should intersect the measured curve in the point for which U = 0.90.
The corresponding value of the time parameter cvt/h2 is 0.848, and therefore the

http://dx.doi.org/10.1007/978-3-319-61185-3_16
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Fig. 18.2
√
t-method
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consolidation coefficient can be determined as

cv = 0.848
h2

t90%
. (18.3)

If the theory of consolidation were an exact description of the real behavior of soils,
the two methods described above should lead to precisely the same value for the
coefficient of consolidation cv . Usually this appears to be not the case, however, with
errors of the order of magnitude up to 10 or 20%. This indicates that themeasurement
data may be imprecise, especially when the deformations are very small, or that the
theory is less than perfect. Perhaps the weakest point in the theory is the assumption
of a linear relation between stress and strain.

18.4 Determination of mv and k

In both of the two methods, the log(t)-method and the
√
t-method, the procedure

includes a value for the final consolidation settlement of the sample, even though it is
realized that the deformations may continue beyond that value. In the log(t)-method
this final value forms part of the analysis, in the

√
t-method the final value of the

deformation can be determined by adding 10% to the difference of the level of 90%
consolidation and the initial deformation,

�h∞ = �h0 + 10

9
(�h90% − �h0). (18.4)
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In general the final deformation is

�h∞ = htotmvq, (18.5)

where htot is the total thickness of the sample. The value of the compressibility mv

follows from

mv = �h∞
htot q

. (18.6)

Because the coefficient of consolidation cv has been determined before, it follows
that the permeability k can be determined as

k = γwmvcv. (18.7)

The determination of the permeability k and the compressibility mv may be theoret-
ically unique, but because of approximations in the theory and inaccuracies in the
measurement data the accuracy of the calculated values may not be very large.

Example 18.1 A consolidation test, on a sample of 2cm thickness, with drainage
on both sides, has resulted in the following deformations, under a load of 10 kPa.
Determine the coefficient of consolidation, using the log(t)-method.

t (s) 10 20 30 40 60 120
�h (mm) 0.070 0.082 0.089 0.094 0.105 0.127

t (s) 240 600 1200 1800 3600 7200
�h (mm) 0.157 0.201 0.230 0.240 0.258 0.275

Solution

The graphical construction as described in this chapter, see Fig. 18.1, is shown in
Fig. 18.3. The measured data have been plotted using a logarithmic scale for the
values of time. Two lines have been drawn (in green): the line with the steepest slope
and the asymptote for large values of time, and the intersection point of these two
lines has been determined. This defines the value of the displacement at the end
of the consolidation process, �h∞. Furthermore the initial displacement �h0 has
been determined from the data for t = 10 and 40 s, assuming that initially the
displacements vary proportional to

√
t . From the graph it can then be observed that

t50% = 155 s. With Eq. (18.1) it now follows that cv = 0.127 × 10−6 m2/s, taking
into account that in this case of drainage on both sides h = 1 cm.

Themethod also enables to determine an estimation of the vertical displacement at
the end of the consolidation process, �h∞, ignoring the creep following thereafter.
This value appears to be �h∞ = 0.226 mm. Using the given value of the load
q, and taking into account that the total thickness of the sample in this case is
htot = 2 cm, it now follows from Eq. (18.6) that mv = 0.00113 m2/kN. Using the
relation cv = k/mvγw the hydraulic conductivity k can now also be determined. The
result is, assuming that γw = 10 kN/m3, k = 1.44 × 10−9 m/s.
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Fig. 18.3 Log(t)-method

Fig. 18.4
√
t-method

Example 18.2 Verify that the
√
t-method leads to (approximately) the same values

for the soil parameters as the log(t)-method in the case of the test described above.

Solution

The graphical construction for this method is shown in Fig. 18.4. The experimen-
tal data have been plotted using a scale of

√
t on the horizontal axis. The data

for small values of time have been used to draw the
√
t-approximation as a green

line. Also, a line at a 15% smaller slope has been drawn, and the intersection point
with the experimental curve has been determined (approximately). The location
of this point indicates that t90% = 721 s. From Eq. (18.3) it then follows that
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cv = 0.118× 10−6 m2/s, which is about 7% smaller than the value obtained earlier
using the log(t)-method. This gives an indication of the accuracy of the methods.

From the figure the displacement at the end of the consolidation process can be
determined by adding 10% to the value of �h90% − �h0. With �h0 = 0.052 mm
and �h90% = 0.213 mm this gives �h∞ = 0.229 mm. This value compares well
with the value �h∞ = 0.226 mm obtained using the log(t)-method. It follows that
the values of mv and k that are obtained using the

√
t-method will also be close to

the values obtained by the log(t)-method.

Reference

D.W. Taylor, Fundamentals of Soil Mechanics (Wiley, New York, 1948)



Chapter 19
Creep

As mentioned in the previous chapter, in a one dimensional compression test on
clay, under a constant load, the deformation usually appears to continue practically
forever, even if the pore pressures have long been reduced to zero. Similar types of
behavior are found in othermaterials, such as plastics and concrete. The phenomenon
is usually denoted as creep.

19.1 Keverling Buisman

For many materials creep can be modeled reasonably well by the theories of visco-
elasticity or visco-plasticity. In such models the creep is represented by a viscous
element, in which part of the stress is related to the rate of deformation of the
material. Although the behavior of soils may contain such a viscous component,
the creep behavior of soils is usually modeled by a special type of model, that has
been based upon the observations in laboratory testing and in field observations. In
1936 Keverling Buisman, the first professor of soil mechanics at the Delft University,
found, by doing long-duration tests, that the deformations of clay in a consolidation
test did not approach a constant final value, but that the deformations continued very
long. On a semi-logarithmic scale the deformations can be approximated very well
by a straight line, see Fig. 19.1.

This suggests that the relation between strain and stress increment, after very long
values of time, can be written as

ε = εp + εs log

(
t

t0

)
. (19.1)

Here εp is the primary strain, and εs is the secondary strain, or the creep. The quantity
t0 is a reference time, usually chosen to be 1 day. Keverling Buisman denoted the
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Fig. 19.1 Primary and secondary consolidation

continuing deformations after the dissipation of the pore pressures as the secular
effect, with reference to the Latin word seculum (for century). In most international
literature it is denoted as creep or secondary consolidation, the primary consolidation
being Terzaghi’s pore pressure dissipation process.

The primary strain εp is the deformation due to the consolidation of the soil. This is
being retarded by the outflow of groundwater from the soil, as described in Terzaghi’s
theory of consolidation. Afterwards the deformation continues, and this additional
deformation canbedescribed, in afirst approximation, by a semi-logarithmic relation,
see Fig. 19.1, using the secular strain parameter εs . The phenomenon can bemodeled
at themicroscopic level by the outflow ofwater frommicro pores to a system of larger
pores, or by a slow creeping deformation of clay elements (clay plates) under the
influence of elementary forces at the microscopic level.

From a theoretical point of view the formula (19.1) is somewhat peculiar, because
for t → ∞ the strain would become infinitely large. It seems as if one can calculate
the time span after which the thickness of the sample will have been reduced to zero,
when the deformation becomes as large as the original thickness of the sample. For
t < t0 the behavior of the formula is also peculiar, because then the strain would
be negative. Attempts have been made to adjust the formula for very large values of
time, but in engineering practice the original formula, in its simple form (19.1) is
perfectly usable, as long as it is assumed that t ≥ t0 and that the values of time in
practice will be limited to say a few thousands (or perhaps millions) of years.

The magnitude of the parameters εp and εs can be determined from the data of a
compression test at two different values of time, for instance at time t = t0 (=1 day)
and t = 10 t0 (=10 days). In the case illustrated in Fig. 19.1 this gives εp = −0.0058
and εp+εs = −0.0066 (the values are negative because the sample becomes thinner),
so that εs = −0.0008. If the results are extrapolated to a value of t = 100 years
the strain will be, after 100 years, ε = −0.0094. And after 1000 years the strain is
ε = −0.0102. Predictions over longer periods of time are unusual in civil engineering
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practice. The time span of a structure is usually considered to be several hundreds of
years.

In many countries the secondary strain is often denoted by Cα, the secondary
compression index, although various researchers have proposed slightly different
formulas and parameters.

Both the primary strain εp and the secondary strain εs can, of course, depend
upon the magnitude of the applied load. For this reason Keverling Buisman wrote
his formula in the form

ε = −σ′
[
αp + αs log

(
t

t0

)]
, (19.2)

in which σ′ represents the load increment. This may suggest that the relation between
stress and strain is linear, which in general is not the case. The coefficients αp and
αs therefore depend upon the stress, and on the stress history.

The dependence of the stiffness has been considered earlier in the discussion on
Terzaghi’s logarithmic compression formula, see Chap. 14. It can be considered that
the deformation considered in that chapter (for sandy soils) is a special case of the
more general case considered here, in the absence of creep, i.e. with εs = 0. It then
appears that the primary strain εp is proportional to the logarithm of the stress, with
proportionality constants that are different for virgin loading and for unloading and
reloading. It has been suggested to combine the formulas of Terzaghi and Keverling
Buisman to

ε = −
[

1

Cp
+ 1

Cs
log

(
t

t0

)]
ln

(
σ

σ0

)
. (19.3)

The coefficients Cp and Cs should be understood to have quite different values for
virgin loading and for unloading and reloading.

Den Haan (1994) found that the time dependent term is practically independent
of the actual magnitude of the load, and therefore proposed the formula

ε = −a ln

(
σ

σ0

)
− b ln

(
σ

σ0

)
H

(
σ − σ0

) − c ln

(
t

t0

)
, (19.4)

where the function H(x) represents Heaviside’s step function,

H(x) =
{
0 if x < 0,
1 if x > 0.

(19.5)

This means that the second term of the formula (19.4) applies only if σ > σ0, i.e.
when the stress is larger than the largest stress ever experienced before. In unloading
and reloading σ < σ0, and then this term vanishes. Thus the second term represents
the irreversible component of the deformation. The first term represents the reversible
part of the deformation. It should be noted that in this formula the natural logarithm

http://dx.doi.org/10.1007/978-3-319-61185-3_14
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is used, whereas in other forms of stress-strain-relations the logarithm of base 10
may be used.

In many countries the deformation is often expressed into the void ratio e. A
familiar form of the compression formula is Bjerrum’s relation

e0 − e = Cc log

(
σ

σ0

)
+ Cα log

(
t

t0

)
, (19.6)

in which e0 is the void ratio at the initial stress σ0, for t = t0. In this form the relation
has been incorporated in the international standards.

In Chap. 14 the relation between the change of the void ratio e and the strain ε
has been shown to be

ε = �e

1 + e
, (19.7)

See Eq. (14.9). Using this relation the various expressions given in this chapter can
be shown to be equivalent, and the various coefficients can be expressed into each
other.

It is, of course, regrettable that so many different formulas and different constants
are being used for the same phenomenon, especially as there is general agreement on
the basic formof relationships,with a logarithmof time. This ismainly a consequence
of national traditions and experiences. In engineering practice care must be taken
to translate local experience with certain constants into a formula using different
constants from literature or reports from another area. The conversion is simple,
however.

One of the main applications in engineering practice is the prediction of the
settlement of a layered soil due to an applied load. The standard procedure is to
collect a sample of each of the soil layers, to apply the initial load to each of the
samples, and then to load each sample by an additional load corresponding to the load
in the field. In this way the stress dependence of the stiffness is taken into account
by subjecting each sample to the same stress increment in the laboratory and in the
field. In general the settlement appears to increase with the logarithm of time after
application of the load, in agreement with the formula (19.1). The deformation in
the field can then be predicted using this formula. The contribution of each layer to
the total settlement is obtained by multiplying the strain of the layer by its thickness.
The total settlement is obtained by adding the deformations of all layers.

The prediction of the deformations can be complicated because the stiffness of
the soil depends on the stress history. In an area with a complex stress history (for
instance a terrain that has been used for different purposes in history, or a field that
has been subject to high preloading in an earlier geologic period) this means that the
behavior of the soil may be quite different below an unknown earlier stress level and
above that stress level. Extrapolation of laboratory results may be inaccurate if the
stress history is unknown. For this purpose it is advisable to estimate or simulate the
actual stress level and its proposed increase in the field in the laboratory tests. In that
case the laboratory tests will be a good representation of the behavior in the field. As

http://dx.doi.org/10.1007/978-3-319-61185-3_14
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Fig. 19.2 Layered soil
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the logarithmic time behavior is generally observed, the duration of the tests need
not be very long. Extrapolation in time is usually sufficiently accurate.

It should be mentioned that all the considerations in this chapter refer only to one-
dimensional compression. This means that they apply only if in the field there are no
horizontal deformations. In case of a local load it can be expected that there will be
lateral deformation as well as vertical deformation. In such cases consolidation and
creep should be considered as three-dimensional phenomena. These are considerably
more complicated than the one-dimensional case considered here (Fig. 19.2).

Example 19.1 A terrain consists (from top to bottom) of 1m dry sand (γ =
17 kN/m3), 4m saturated sand (γ = 20 kN/m3), 2m clay (γ = 18 kN/m3), 5m
sand (γ = 20 kN/m3), 4m clay (γ = 19 kN/m3), and finally a thick sand layer.
The terrain is loaded by an additional layer of 2m dry sand (γ = 17 kN/m3). The
deformations of the clay layers will be analyzed by performing oedometer tests on
samples from each clay layer. What should be the initial load on each of the two
samples, and what should be the additional load?

Solution

The most accurate results will be obtained if the initial stress in the clay samples is
equal to the average initial effective stress in the field. For the sample representing the
upper clay layer this means that the initial stress should be σ0 = 17+4×10+1×8 =
65 kPa. For the sample representing the deeper clay layer the initial stress should be
σ0 = 17 + 4 × 10 + 2 × 8 + 5 × 10 + 2 × 9 = 141 kPa. For both samples the
additional load should be 34kPa.

Example 19.2 Suppose that in the tests mentioned above, the test results are that
after one day a strain of 2% is observed, and after 10 days a strain of 3%, for both
clay layers. If it is assumed that the deformation of the sand layers can be neglected,
predict the total settlement of the terrain after 1, 10, and 100 years.
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Solution

Using equation (19.1), with t0 = 1 day, it follows that εp = 0.02 and εs = 0.01. The
primary settlement now is�h p = 0.02×6 m = 0.120 m. Because 1 year equals 365
days and log(365/1) = 2.562, it follows that after 1 year the secondary settlement is
�hs = 0.01× 2.562×6 m = 0.154 m. Because log(3650/1) = 3.562 the secondary
settlement after 10 years is 0.214m, and because log(36500/1) = 4.562 the secondary
settlement after 100 years is 0.274m.

The total settlement after 1, 10, and 100 years is 0.274, 0.334, and 0.394m.

Example 19.3 In a certain town it is required that in a period of 20 years after the sale
of a terrain the deformation may not be more than 20 cm. For a terrain that has been
prepared by the application of a sand layer on a soft soil layer of 7.6m thickness, it
has been found from tests on the soft soil that the deformation after one day is 1.1%,
and after 10 days 2.4%. How long should the town wait after the application of the
sand layer before the terrain can be sold?

Solution

In this case εp = 0.011 and εs = 0.013. The deformation in a period of 20 years
(=7300 days) after the time of sale, say ts , is εs h log{(ts+7300)/ts}. The requirement
that this must be less than 0.02m leads to the condition that ts > 70 days.



Chapter 20
Shear Strength

One of the main characteristics of soils is that the shear deformations increase pro-
gressively when the shear stresses increase, and that for sufficiently large shear
stresses the soil may eventually fail. In nature, or in engineering practice, dams,
dikes, or embankments for railroads or highways may fail by part of the soil mass
sliding over the soil below it. In this chapter the states of stresses causing such fail-
ures of the soil are described. In later chapters the laboratory tests to determine the
shear strength of soils will be presented.

20.1 Coulomb

A slope in a soft soil may fail if the slope is too steep or the soil has insufficient
strength. A very small cause, such as a small load, or a small local disturbance, may
result in a large landslide. Other causes for such a landslide may be water waves
against the slope, or a rising groundwater table in the interior of a dam. A spectacular
case, in Norway, is shown in the file “Rissa landslide” on the internet site YouTube.
A dramatic failure occurred in Aberfan, Wales, in 1966, when a coal tip failed due
to large rain fall destroying a young childrens school, see “Aberfan disaster” on
YouTube.

It seems reasonable to assume that a sliding failure of a soil will occur if on a
certain plane the shear stress is too large, compared to the normal stress. On other
planes the shear stress is sufficiently small compared to the normal stress to prevent
sliding failure. It may be illustrative to compare the analogous situation of a rigid
block on a slope, see Fig. 20.1. Equilibrium of forces shows that the shear force in
the plane of the slope is T = W sinα and that the normal force acting on the slope
is N = W cosα, where W is the weight of the block. The ratio of shear force to
normal force is T/N = tanα. As long as this is smaller than a certain critical value,
the friction coefficient f , the block will remain in equilibrium. However, if the slope
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Fig. 20.1 Block on slope

angle α becomes so large that tanα = f , the block will slide down the slope. On
steeper slopes the block can never be in equilibrium.

In 1776 Charles-Augustin de Coulomb, a French scientist who also made impor-
tant contributions to the theory of electricity, used the analogy with a sliding block
load to propose that the maximum possible shear stress τ f in a soil body is

τ f = c + σ′ tan φ. (20.1)

Here σ′ is the normal (effective) stress on the plane considered. The quantity c is the
cohesion, and φ is the angle of internal friction or the friction angle. An elementary
interpretation is that if the shear stress on a certain plane is smaller than the critical
value τ f , then the deformations will be limited, but if the shear stresses on any
single plane reaches the critical value, then the shear deformations are unlimited,
indicating shear failure. The cohesion c indicates that even when the normal stress
is zero, a certain shear stress is necessary to produce shear failure. In the case of two
rough surfaces sliding over each other (e.g. two blocks of wood), this may be due to
small irregularities in the surface. In the case of two very smooth surfaces molecular
attractions may play a role.

For soils the formula (20.1) should be expressed in terms of effective stresses, as
the stresses acting from one soil particle on another determine the eventual sliding.
For this reason the soil properties are often denoted as c′ and φ′, in order to stress
that these quantities refer to effective stresses.

20.2 Mohr’s Circle

From the theory of stresses (see Appendix A) it is known that the stresses acting in
a certain point on different planes can be related by analytical formulas, based upon
the equilibrium equations. In these formulas the basic variable is the angle of rotation
of the plane with respect to the principal directions. These principal directions are
the directions in which the shear stress is zero, and in which the normal stresses are
maximal or minimal. The stresses on a sample of soil are shown in Fig. 20.2. It is
assumed here that the maximum principal stress, σ1, is acting in vertical direction,
and hence that the smallest principal stress, σ3 acts in horizontal direction. The
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Fig. 20.2 Stresses on a rotated plane

intermediate principal stress (acting in a direction normal to the plane of the figure)
is denoted by σ2. It is possible that σ2 = σ1 or σ2 = σ3, otherwise σ3 < σ2 < σ1.
The stresses on two planes having their normal vectors in the x-direction and the
y-direction, which make an angle α with the directions of the major and the minor
principal stresses, can be expressed into the major and the minor principal stresses
by means of the equations of equilibrium, see Fig. 20.2.

The stress components σxx and σxy , acting on a plane with its normal in the
x-direction, can be found from the equations of equilibrium of a small elementary
triangle, formed by a plane perpendicular to the x-direction and a vertical and a
horizontal plane, see the small triangle in the center of Fig. 20.2. The small wedge
drawn is a part of the rotated element shown in the lower left part of the figure. If the
area of the oblique surface is A, the area of the vertical surface is A cosα, and the
area of the horizontal plane is A sinα. Equilibrium of forces in the x-direction now
gives

σxx = σ1 sin
2 α + σ3 cos

2 α. (20.2)

Equilibrium of the forces acting upon the small wedge in the y-direction gives

σxy = σ1 sinα cosα − σ3 sinα cosα. (20.3)

The stress components σyy and σyx , acting upon a plane having its normal in the
y-direction, can be found by considering equilibrium of a small triangular wedge,
formed by a plane perpendicular to the y-direction and a vertical and a horizontal
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plane, see the small triangle in the lower right part of Fig. 20.2. Equilibrium in
y-direction gives

σyy = σ1 cos
2 α + σ3 sin

2 α. (20.4)

And Equilibrium in x-direction gives

σyx = σ1 sinα cosα − σ3 sinα cosα. (20.5)

Comparison of (20.5) and (20.3) shows that σxy = σyx , which is in agreement with
equilibrium of moments of the element in the lower left part of Fig. 20.2.

It should be noted that the transformation formulas for rotation of a plane all
contain two factors sinα or cosα. This is a characteristic property of quantities such
as stresses and strains, which are second order tensors. Unlike a vector (sometimes
denoted as a first order tensor), which can be described by a magnitude and a single
direction, a (second order) tensor refers to two directions: in this case the direction
of the plane on which the stresses are acting, and the direction of the stress vector
on that plane. In the equations of equilibrium this is seen in the appearance of a
factor cosα or sinα because of taking the component of a force in x- or y-direction,
but another such factor appears because of the size of the area on which the stress
component is acting.

Using the trigonometric formulas

sin 2α = 2 sinα cosα, (20.6)

cos 2α = cos2 α − sin2 α = 2 cos2 α − 1 = 1 − 2 sin2 α, (20.7)

the transformation formulas can be expressed in 2α,

σxx = 1
2 (σ1 + σ3) − 1

2 (σ1 − σ3) cos 2α, (20.8)

σyy = 1
2 (σ1 + σ3) + 1

2 (σ1 − σ3) cos 2α, (20.9)

σxy = σyx = 1
2 (σ1 − σ3) sin 2α. (20.10)

The stress components on planeswith different orientations can be represented graph-
ically usingMohr’s circle, see Fig. 20.3. This useful graphical representationwas first
presented by the German scientist Otto Mohr in 1914. A simple form of Mohr’s dia-
gram occurs if it the positive normal stresses σxx and σyy are plotted towards the right
on the horizontal axis, that a positive shear stress σxy is plotted vertically downward,
and that a positive shear stress σyx is plotted vertically upward.

The circle is constructed by first indicating distances corresponding to σ1 and
σ3 on the horizontal axis. These two points define a circle, with its center on the
horizontal axis, at a distance 1

2 (σ1 + σ3) from the origin. The radius of the circle
is 1

2 (σ1 − σ3). These happen to be the two values appearing in the formulas (20.8),
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Fig. 20.3 Mohr’s circle

(20.9) and (20.10). If in the center of the circle an angle of magnitude 2α is measured,
it follows that the point A on the circle has the coordinates σxx and σxy . The point
B, on the opposite side on the circle, has coordinates σyy and σyx . It should be noted
that this is true only if on the vertical axis σxy is considered positive in downward
direction, and σyx is considered positive in upward direction. The formulas (20.8),
(20.9) and (20.10) now all are represented by the graphical construction.

Because an inscribed angle on a certain arc is just one half of the central angle,
it follows that point B can also be found by drawing a line at an angle α from the
leftmost point of the circle, and intersecting that line with the circle. In the same way
the point A can be found by drawing a line from the same point perpendicular to the
previous line.

The point A, which defines the stress components on a plane with its normal in
the x-direction, can also be found by drawing a line from the rightmost point of the
circle in the direction of the x-axis. Similarly, the point B, which defines the stress
components on a plane with its normal in the y-direction, can be found by drawing
a line from that point in the direction of the y-axis, see Fig. 20.2. The rightmost
point of the circle is therefore sometimes denoted as the pole of the circle. Drawing
lines in the directions of two perpendicular axes x and y will lead to two opposite
intersection points on the circle, which define the values of the stress components
in these two directions. If the axes rotate, i.e. when α increases, these intersection
points travel along the circle.

For α = 0 the x-axis coincides with the direction of σ3, and the y-axis coincides
with the direction of σ1. The point A then is located in the leftmost point of the circle,
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and the point B in the rightmost point. If the angle α now increases from 0 to π/2
the two stress points A and B travel along the circle, in a half circle. When α = π/2
point A arrives in the rightmost point and point B arrives in the leftmost point. Then
the x-axis points vertically upward, and the y-axis points horizontally towards the
left. If α varies from 0 to π the stress points travel along the entire circle.

20.3 Mohr–Coulomb

A point of Mohr’s circle defines the normal stress and the shear stress on a certain
plane. The stresses on all planes together form the circle, because when the plane
rotates the stress points traverse the circle. It appears that the ratio of shear stress to
normal stress varies along the circle, i.e. this ratio is different for different planes. It
is possible that for certain planes the failure criterion (20.1) is satisfied. In Fig. 20.4
this failure criterion has also been indicated, in the form of two straight lines, making
an angle φ with the horizontal axis. Their intersections with the vertical axis is at
distances c. In order to underline that failure of a soil is determined by the effective
stresses, the stresses in this figure have been indicated as σ′. There are two planes,
defined by the points C and D in Fig. 20.4, in which the stress state is critical. On
all other planes the shear stress remains below the critical value. Thus it can be
conjectured that failure will start to occur whenever Mohr’s circle just touches the
Coulomb envelope. This is called the Mohr–Coulomb failure criterion. If the stress
circle is completely within the envelope no failure will occur, because on all planes

Fig. 20.4 Mohr–Coulomb failure criterion
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the shear stress remains well below the critical value, as given by Eq. (20.1). Circles
partly outside the envelope are impossible, as the shear stress on some planes would
be larger than the critical value.

When the circle just touches the envelope there are two planes making angles
π/4− φ/2 with the direction of the major principal stress, on which the stresses are
critical. Sliding failure may occur on these planes. It can be expected that the soil
may slide in the directions of these two critical planes. In the case represented by
the figures in this chapter, in which it is assumed that the vertical direction is the
direction of the major principal stress, see Fig. 20.2, the planes on which the stresses
are most critical make an angle π/4 − φ/2 with the vertical direction. Thus it can
be expected that sliding failure will occur in planes that are somewhat steeper than
45◦. If for instance φ = 30◦, which is a normal value for sands, failure will occur by
sliding along planes that make an angle of 30◦ with the vertical direction.

20.4 The Mohr–Coulomb Criterion

The mathematical formulation of the Mohr–Coulomb failure criterion can be found
by noting that the radius of Mohr’s circle is 1

2 (σ
′
1 − σ′

3), and that the distance from
the origin to the center is 1

2 (σ
′
1 + σ′

3). Failure will occur if

sin φ =
1
2 (σ

′
1 − σ′

3)

c cot φ + 1
2 (σ

′
1 + σ′

3)
. (20.11)

This can also be written as
(

σ′
1 − σ′

3

2

)
−

(
σ′
1 + σ′

3

2

)
sin φ − c cosφ = 0. (20.12)

Using this equation the value of σ′
3 in the failure state can be expressed into σ′

1,

σ′
3 = σ′

1
1 − sin φ

1 + sin φ
− 2c

cosφ

1 + sin φ
. (20.13)

On the other hand, the value of σ′
1 in the failure state can also be expressed into σ′

3,
of course,

σ′
1 = σ′

3
1 + sin φ

1 − sin φ
+ 2c

cosφ

1 − sin φ
. (20.14)

These formulas will be used very often in later chapters.
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20.5 Remarks

The Mohr–Coulomb criterion is a rather good criterion for the failure state of sands.
For such soils the cohesion usually is practically zero, c = 0, and the friction angle
usually varies from φ = 30 to 45◦, depending upon the angularity and the roundness
of the particles. Clay soils usually have some cohesion, and a certain friction angle,
but usually somewhat smaller than sands.

Great care is needed in the application of the Mohr–Coulomb criterion for very
small stresses. For clay one might find that a Mohr’s circle would be possible in the
extreme left corner of the diagram, with tensile normal stresses. It is usually assumed
that this is not possible, and therefore the criterion should be extended by a vertical
cut-off at the vertical axis. To express that the cohesion of soils does not necessarily
mean that the soil can withstand tensile stresses, the property is sometimes denoted
as apparent cohesion, indicating that it is merely a first order schematization.

In metallurgy it is usually found that the shear strength of metals is independent
of the normal stress. The failure criterion then is that there is a given maximum shear
stress, τ f = c. The Mohr–Coulomb criterion reduces to the criterion for metals by
taking φ = 0.

The Mohr–Coulomb criterion can also be used, at least in a first approximation,
for materials such as rock and concrete. In such materials a tension cut-off is not
necessary, as they can indeed withstand considerable tensile stresses. In such mate-
rials the cohesion may be quite large, at least compared to soils. The contribution
of friction is not so dominant as it is in soils. Also it often appears that the friction
angle is not constant, but decreases at increasing stress levels.

In some locations, for instance in offshore coastal areas near Brazil and Australia,
calcareous soils are found. These are mostly sands, but the particles have been glued
together, by the presence of the calcium. Such materials have very high values of the
cohesion c, which may easily be destroyed, however, by a certain deformation. This
deformation may occur during the construction of a structure, for instance the piles
of an offshore platform. During the exploration of the soil this may have been found
to be very strong, but after installation much of the strength has been destroyed. An
advantage of true frictional materials is that the friction usually is maintained, also
after very large deformations. Soils such as sands may not be very strong, but at least
they maintain their strength.

For clays theMohr–Coulomb criterion is reasonablywell applicable, provided that
proper care is taken of the influence of the pore pressures, which may be a function
of time, so that the soil strength is also a function of time. Many clays also have the
property that the cohesion increases with time during consolidation. This leads to a
higher strength because of overconsolidation. For very soft clays theMohr–Coulomb
criterion may not be applicable, as the soil behaves more like a viscous liquid.

Example 20.1 In a sample of sand (c = 0) a stress state appears to be possible with
σxx = 10 kPa, σyy = 20 kPa and σxy = 5 kPa, without any sign of failure. What
can you say of the friction angle φ?
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Fig. 20.5 Example 20.1

Solution

In this case 1
2 (σxx + σyy) = 15, 1

2 (σyy − σxx ) = 5, σxy = 5. With Eq. (20.8),
(20.9) and (20.10) it follows that 1

2 (σ1 + σ3) = 15, 1
2 (σ1 − σ3) cos 2α = 5,

1
2 (σ1−σ3) sin 2α = 5. The (unknown) value ofα can be eliminated from the last two
equations using the relation sin2 2α + cos2 2α = 1. This gives 1

2 (σ1 − σ3) = 5
√
2.

With Eq. (20.11) it now follows that failure would occur if sin φ = √
2/3 = 0.4714,

or φ = 28◦. Because the stress state is possible without any sign of failure it follows
that φ > 28◦.

The solution can be verified by constructing Mohr’s circle for this state of stress,
see Fig. 20.5.

Example 20.2 A sand, with c = 0 and φ = 30◦ is on the limit of failure. The minor
principal stress is 10 kPa. What is the major principal stress?

Solution

The answer can be obtained from Eq. (20.14). This gives, because sin φ = 0.5:
σ1 = 30 kPa.

Problem 20.1 In a soil sample the state of stress is such that the major principal
stress is the vertical normal stress, at a value 3p. The horizontal normal stress is p.
Determine the normal stress and the shear stress on a plane making an angle of 45◦
with the horizontal direction, analytically or graphically using Mohr’s circle.

Problem 20.2 Also determine the normal stress and the shear stress on a plane
making an angle of 30◦ with the vertical direction, and determine the angle of the
resulting force with the normal vector to that plane.



Chapter 21
Triaxial Test

The failure of a soil sample under shear could perhaps best be investigated in a
laboratory test inwhich the sample is subjected to pure distortion, at constant volume.
The volume could be kept constant by taking care that the isotropic stress σ0 =
1
3 (σ1 + σ2 + σ3) remains constant during the test, or, better still, by using a test
setup in which the volume change can be measured and controlled very accurately,
so that the volume change can be zero. In principle such a test is possible, but it is
much simpler to perform a test in which the lateral stress is kept constant, the triaxial
test. In order to avoid the complications caused by pore pressure generation, it will
first be assumed that the soil is dry sand. The influence of pore water pressures will
be considered later.

21.1 The Triaxial Test

In the triaxial test, see Fig. 21.1 (Bishop andHenkel 1962), a cylindrical soil sample is
placed in a glass or plastic cell, with the sample being enclosed in a rubbermembrane.
Themembrane is connected to circular plates at the top and the bottom of the sample,
with two o-rings ensuring a water tight connection. The cell is filled with water, with
the pressure in the water (the cell pressure) being controlled by a pressure unit,
usually by a connection to a tank in which the pressure can be controlled. Because
the sample is completely surrounded by water, at its cylindrical surface and at the
top, a pressure equal to the cell pressure is generated in the sample. The usual, and
simplest, test procedure is to keep the cell pressure constant during the test.

In addition to the lateral (and vertical) loading by the cell pressure, the sample
can also be loaded by a vertical force, by means of a steel rod that passes through
the top cap of the cell. The usual procedure is that in the second stage of the test the
rod is being pushed down, at a constant rate, by an electric motor. This means that
the vertical deformation rate is constant, and that the force on the sample gradually
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Fig. 21.1 Triaxial test

Fig. 21.2 Cell pressure

increases. The force can be measured using a strain gauge or a compression ring,
and the vertical movement of the top of the sample is measured by a mechanical or
an electronic measuring device (Fig. 21.2).

During the test the vertical displacement of the top of the sample increases grad-
ually as a function of time, because the motor drives the steel rod at a very small
constant velocity downwards. The vertical force on the sample will also gradually
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Fig. 21.3 Test result

increase, so that the difference of the vertical stress and the horizontal stress grad-
ually increases, but after some time this reaches a maximum, and remains constant
afterwards, or shows some small additional increase, or decreases somewhat. The
maximum of the vertical force indicates that the sample starts to fail. Usually the
test is continued up to a level where it is quite clear that the sample has failed, by
recording large deformations, up to 5% or 10%. This can often be observed in the
shape of the sample too, with the occurrence of some distinct sliding planes. It may
also be, however, that the deformation of the sample remains practically uniform,
with a considerable shortening and at the same time a lateral extension of the sample.
In the interior of the sample many sliding planes may have formed, but these may
not be observed at its surface.

The test is called the triaxial test because stresses are imposed in three directions.
This can be accomplished in many different ways, however, and there even exist
tests in which the stresses applied in three orthogonal directions onto a cubical soil
sample (enclosed in a rubber membrane) can all be different, the true triaxial test.
This gives many more possibilities, but it is a much more complex apparatus, and
the testing procedures are more complex as well (Fig. 21.3).

In the normal triaxial test the sample is of cylindrical shape, and the two horizontal
stresses are identical. The usual diameter of the sample is 3.8 cm (or 1.5 in, as the
test was developed in England), but there also exist triaxial cells in which larger size
samples can be tested. For tests on gravel a diameter of 3.8cm seems to be insufficient
to achieve a uniform state of stress. For clay and sand it is sufficient to guarantee
that in every cross section there is a sufficient number of particles for the stress to be
well defined.

If the cell pressure is denoted by σc, and the vertical axis is the z-axis, then the
lateral stresses in the test are

σxx = σyy = σc, (21.1)

and the vertical stress is

σzz = σc + F

A
, (21.2)
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Fig. 21.4 Mohr’s circle for the triaxial test

in which F is the vertical force, and A is the cross sectional area of the sample.
Because the soil has been supposed to be dry sand, so that there are no pore pressures,
these are effective stresses as well as total stresses.

In this case the vertical stress is themajor principal stress, and the horizontal stress
is the minor principal stress,

σ1 = σc + F

A
. (21.3)

σ3 = σc, (21.4)

It should be noted that the stresses in the sample are assumed to be uniformly dis-
tributed. This will be the case only if the sample is of homogeneous composition.
Furthermore, it has been assumed that there are no shear stresses on the upper and
lower planes of the sample. This requires that the loading plates are very smooth.
This can be accomplished by using special materials (e.g. Teflon) or by applying a
thin smearing layer.

The stresses on planes having an inclined orientation with respect to the vertical
axis, can be determined using Mohr’s circle, see Fig. 21.4. The pole for the normal
directions coincides with the rightmost point of the circle. On a horizontal plane and
on a vertical plane the shear stresses are zero, but on all other planes there are certain
shear stresses. If the vertical force F gradually increases during the test, the size of the
circle will gradually increase, and if the force is sufficiently large the circle will touch
the straight lines indicating the Coulomb criterion, the Mohr-Coulomb envelope. In
that situation there are two planes on which the combination of shear stress and
normal stress is such that the maximum shear stress, according to (20.1) is reached.
These are the planes for which the stress points are indicated by C and D in the figure.
The direction of the normals to these planes can be found by connecting the points
C and D with the pole. The orientation of the planes themselves is perpendicular to

http://dx.doi.org/10.1007/978-3-319-61185-3_20
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Fig. 21.5 Determination of c and φ from two tests

these normals. In the right half of Fig. 21.4 these planes have been indicated by the
sloping lines.

When several tests are performed on the same material, but at different cell pres-
sures, the various critical circles define the envelope, so that the values of the cohesion
c and the friction angle φ can be determined. The usual practice is to do two tests,
on the same material, at clearly different cell pressures. In each of the tests a value
of the major principal stress σ1 is found, at a certain value of the lateral stress σ3.
The two critical circles can be drawn in a Mohr diagram, and the Mohr-Coulomb
envelope can then be determined by drawing straight lines touching these two circles,
see Fig. 21.5. In this way the values of c and φ can be determined. When doing more
than two tests the accuracy of the basic assumption that the envelope is a straight line
can be tested. It is often found that for high stresses the value of the friction angle φ
somewhat decreases.

For sands the tests usually give that the cohesion c is practically zero, and that
the friction angle φ varies from about 30◦ to 45◦, depending on the type of sand, and
its packing. Sharp sand, i.e. sand with many sharp angles, usually has a much higher
friction angle than sand consisting of rounded particles. And densely packed sand
has a higher friction angle than loosely packed sand. For clay the cohesion may be of
the order of magnitude of 5 to 50 kPa, or even higher, whereas φ may vary from 15◦
to 30◦. For the determination of c and φ of clay care must be taken that the influence
of pore pressures is accounted for, see Chap.23.

http://dx.doi.org/10.1007/978-3-319-61185-3_23
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Fig. 21.6 Apparent shear plane in triaxial test

It may be mentioned that the strength of rock can also be determined by triaxial
tests. The pressures then are much higher, and the cell wall usually is made of steel
rather than glass. In petroleum engineering, where the properties of deep layers of
rock are of paramount importance, rock samples are often tested by triaxial tests.

FromMohr’s circle, see Fig. 21.4, it can be seen that the critical planes are inclined
at angles of π/4 − 1

2φ with the vertical direction. If the failure mechanism would
consist only of sliding along one of these planes the testwould result in a discontinuity
in the deformation pattern in the direction of that plane. This is indeed sometimes
found, for rather loose sands, but very often the deformation pattern is disturbed
by more or less simultaneous sliding along different planes, by rotations, and by
elastic deformations. Even when a clear sliding surface seems to appear, it is not
recommended to try to determine the friction angle by measuring the angle of that
surface with the vertical direction, and equating it to π/4 − 1

2φ. This often leads
to significant errors, as angles between π/4 and π/4 − 1

2φ may be observed, and
repetition of the test may lead to a different direction. This can be explained by
considering a thin zone in which failure occurs, with sliding along different sliding
planes in the interior of that zone. The macroscopic (apparent) sliding angle depends
on the relative contribution of each of the two sliding directions. Figure21.6 shows
an example with possible sliding planes at angles of 30◦ with the vertical direction.
The case represented in the figure consists of a combination of a large shearing of
the right hand side with respect to the left hand side along one set of planes, and a
small shearing of the left hand side with respect to the right hand side along the other
set of planes. The result appears to be that an apparent shearing takes place over an
angle with the vertical direction.
The case represented in the figure consists of a combination of a large shearing of
the right hand side with respect to the left hand side along one set of planes, and a
small shearing of the left hand side with respect to the right hand side along the other
set of planes. The result appears to be that an apparent shearing takes place over
an angle with the vertical direction that is considerably larger than 30◦, that is less
steep. If one would consider that angle to be π/4 − 1

2φ, the friction angle φ would
be underestimated.
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Fig. 21.7 Some test results
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It should be noted that there is absolutely no need to determine the friction angle
φ from the direction of a possible sliding plane. The merit of the triaxial test is
that it provides a relatively simple and accurate method for the determination of the
strength parameters c and φ from two tests, because in both tests the critical stresses
are very accurately measured. The cell pressure and the vertical force can easily be
controlled and measured, and therefore the determination of the critical stress states
is very accurate. In other tests this may not be the case. It may be mentioned that
very often laboratory tests are being used to determine the relation between stress
and strain for the entire range of strains, from the small deformations in the early
stages, up to the large deformations at failure, and perhaps beyond, see Fig. 21.7.
If the vertical load is applied by imposing the strain (or the strain rate) a possible
decrease of the stress after reaching the maximum stress can also be detected. The
maximum strength is called the peak strength, and the final strength, at very large
strains, is called the residual strength. For certain types of soils the residual strength
is much lower than the peak strength, for instance the calcareous sands that occur in
offshore coastal zones of Western Australia and Brazil. An example of such a result
is shown in Fig. 21.7. In this type of material the peak strength is so high, with respect
to the residual strength, because the sand particles have been cemented together. The
sand will become very stiff, but brittle. It appears to be very strong, and it is, but
as soon as the structure has been broken, the strength falls down to a much lower
value. In the construction of offshore platforms near the coast of Western Australia
this has caused large problems, because the shear strength of the soil was reduced
very severely after the driving of the foundation piles through the soil.

Example 21.1 On two soil samples, having a diameter of 3.8 cm, triaxial tests are
performed, at cell pressures of 10 and 20 kPa, respectively. In the first test failure
occurs for an axial force of 22.7 N, and in the second test for an axial force of 44.9 N.
Determine c and φ of this soil, assuming that there are no pore pressures.

Solution

The solution can be obtained using Eq. (20.12). In the absence of pore pressures the
effective stresses are equal to the total stresses, so that this equation can be written
as 1

2 (σ1 − σ3) − 1
2 (σ1 + σ3) sin φ − c cosφ = 0.

http://dx.doi.org/10.1007/978-3-319-61185-3_20
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In the first test σ3 = 10 kPa and σ1 = 10 + 22.7 × 10−3/(π × 0.019 × 0.019) =
30.02 kPa, and in the second test σ3 = 20 kPa and σ1 = 20 + 44.9 × 10−3/(π ×
0.019 × 0.019) = 59.59 kPa. This leads to the two equations 10.01 − 20.01 sin φ −
c cosφ = 0, and 19.79 − 39.79 sin φ − c cosφ = 0. Subtraction of the first equation
from the second one gives sin φ = 0.4944, or φ = 29.6◦. It now follows that cosφ =
0.8692, and then substitution into one of the equations gives c = 0.13 kPa. Of course
the solution can also be obtained by drawing the two critical Mohr circles, and then
measuring the values of c and φ in the figure.

Problem 21.1 It is given that for a certain sand c = 0 and φ = 30◦. A triaxial test
is done on this sand, using a cell pressure of 100 kPa. The diameter of the sample is
3.8 cm. What is the axial force at the moment of failure?

Problem 21.2 Is it technically possible to perform a test on a sample in a triaxial
apparatus such that the vertical stress is smaller than the horizontal stress, which is
always equal to the cell pressure?

Reference

A.W. Bishop, D.J. Henkel, The Measurement of Soil Properties in the Triaxial Test, 2nd edn.
(Edward Arnold, London, 1962)



Chapter 22
Shear Test

The notion that failure of a soil occurs by sliding along a plane on which the shear
stress reaches a certain maximum value has lead to the development of shear tests. In
such tests a sample is loaded such that it is expected that one part of the sample slides
over another part, along a given sliding plane. It is often assumed that the sliding
plane is fixed and given by the geometry of the equipment used, but it will appear
that the deformation mode may be more complicated.

22.1 Direct Shear Test

The simplest apparatus is shown in Fig. 22.1. It consists of a box (the shear box)
of which the upper half can be moved with respect to the lower half, by means of
a motor which pushes the lower part away from the upper part, which is fixed in
horizontal direction. The cross section of the container usually is rectangular, but
circular versions have also been developed. The soil sample is loaded initially by a
vertical force only, applied by the dead weight of a loading plate and some additional
weights on it, through the intermediary of a small steel plate on top of the sample.
Because of this plate the sample is free to deform in vertical direction during the
test. The actual test consists of the lateral movement of the lower half of the box
with respect to the upper half, at a constant (small) speed, with a horizontal force
acting in the plane between the two halves. This force gradually increases, as the
box moves, and is measured by a pressure ring or a strain gauge. The horizontal
force reaches a maximum value after some time, and the force remains more or less
constant afterwards, or it may slowly increase or decrease. It seems logical to assume
that the maximum value of the horizontal force (T f ) is related to the vertical force
N by a relation of the form

T f = cA + N tan φ, (22.1)

© Springer International Publishing AG 2018
A. Verruijt, An Introduction to Soil Mechanics, Theory and Applications
of Transport in Porous Media 30, DOI 10.1007/978-3-319-61185-3_22
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Fig. 22.1 Direct shear test

where A is the area of the sample, c is the cohesion of the material, and φ its friction
angle. For simplicity it is assumed that the soil is dry sand, with c = 0. This means
that a single test is sufficient to determine the friction angle φ.

Many investigators have found that the test results of shear tests lead to values for
the shear strength that are considerably lower than the values obtained from triaxial
tests. Furthermore, it has sometimes been found that the reproducibility of the results
of shear tests is not so good. To explain the relatively large scatter in the results of
shear tests it may be noted that in a shear test the horizontal stress is not imposed,
and may vary from test to test. This may influence the test results, especially because
it may be argued that it is not so certain that the stresses on a horizontal plane are
indeed the critical stresses, as is assumed in Eq. (22.1). It may well be that there
is some other plane on which the critical state of stress is reached earlier. A likely
candidate for this possibility is the vertical plane, on which the normal stress may
well be smaller than on a horizontal plane, whereas the shear stress on a vertical
plane is equal to the shear stress on a horizontal plane because of equilibrium of
moments, σxz = σzx . In such a case the soil may fail according to the mechanism of
the toppling row of books suggested by De Josselin de Jong (1971), see Fig. 22.2.

It seems very likely that in a shear test the horizontal normal stress σxx is smaller
than the vertical normal stress σzz . If the sand has been poured into the shear box, and
the vertical load has been applied by gradually increasing the load, it seems likely
that the horizontal stress is smaller than the vertical stress. In an elastic material,
for instance, the ratio of horizontal to vertical stress would be σxx/σzz = ν/(1 − ν),
where ν is Poisson’s ratio, which must be smaller than 1

2 . If the shear stress now
is gradually increased, the maximum possible shear stress on a vertical plane is
smaller than the maximum possible shear stress on a horizontal plane. Thus it can
be expected that the maximum possible shear stress is reached first on a vertical
plane, so that failure may occur by sliding along a vertical plane, combined with a
certain rotation in order to satisfy the boundary condition on the lower and upper
horizontal boundaries. The stresses are indicated in theMohr circle that is also drawn
in Fig. 22.2. It should be noted that in this case the shear stresses σxz and σzx , in the
coordinate system assumed, will be negative. In the Mohr circle it has been assumed
that σxx < σzz . Because the point with coordinates σxx and σxz is located to the left
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Fig. 22.2 Toppling bookrow mechanism

of the point with coordinates σzz and σzx , sliding will occur first along the planes
on which the normal stress σxx is acting, i.e. the vertical planes. On the horizontal
planes, i.e. the planes on which the normal stress is σzz , failure will not be reached,
so that no sliding along these planes is to be expected. With the shear stresses acting
in the direction indicated in the figure this means that the soil to the right of a vertical
plane will slide in upwards direction with respect to the soil at the left side of that
plane. In Fig. 22.2 it has been assumed that such sliding occurs along a great number
of vertical planes. In order to conform to the restrictions imposed by the deformation
of the walls of the shear box, an additional rotation must be superimposed onto
the sliding mechanism. This can be done without change of stress, as a rigid body
rotation can occur without any deformation, and therefore requires no stresses. Thus
the mechanism of a toppling book row is produced, just as a row of books in a book
case will topple if there is insufficient lateral support.

If it is desired that the mechanism of toppling of a row of books is prevented, a
large lateral stress must be applied, which may be generated by two heavy bookends,
or by clamping the books between the two sides of the book case. Using this analogy
it may be considered that the mechanism of Fig. 22.2 can be prevented by applying
a high horizontal stress. If the horizontal normal stress is larger than the vertical
normal stress, for instance because the sand has been densified by strong vibration,
the state of stress on a horizontal plane will become critical before a vertical plane.
The stresses σzx and σzz , acting on a horizontal plane, will reach the critical ratio
tan φ before the stresses σxz and σxx , acting on a vertical plane.

This means that sliding along horizontal planes can be expected if the horizontal
stress is larger than the vertical stress. The situation is shown in Fig. 22.3. The Mohr
circle for this case is also shown in the figure.
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Fig. 22.3 Sliding on horizontal planes

Fig. 22.4 Simple shear test

22.2 Simple Shear Test

Apart from the difficulty that the state of stress is not completely given in a shear test,
the direct shear test suffers from the disadvantage that the deformation is strongly
inhomogeneous, because the deformations are concentrated in a zone in the center of
the shear box. An improved shear box has been developed in Cambridge (England),
in which the deformation is practically homogeneous. The apparatus has been con-
structed with rotating side walls, so that a uniform shear deformation can be imposed
on the sample, see Fig. 22.4.

This is denoted as the simple shear apparatus. As in the direct shear box, the cross
section in the horizontal plane is rectangular. The improvement is that the hinges at
the top and the bottom of the side walls enable a uniform shear deformation of the
sample. In Norway a variant of this apparatus has been developed, with a circular
cross section. A uniform deformation is then ensured by constructing the box using
a system of stiff metal rings, that can slide over each other.

Although the simple shear test is a definite improvement with respect to the direct
shear test, because the deformations are much more homogeneous, it is still not
certain that sliding will occur only along horizontal planes. This would be the case
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only if the state of stress on a horizontal plane would become critical first, which
would require that the horizontal stress is larger than the vertical stress. It is doubtful
whether this will always be the case. When preparing the sample for testing it seems
more likely that the horizontal stress is smaller than the vertical stress, so that it is to be
expected that failure will occur by sliding along vertical planes, with a simultaneous
rotation.

It may be interesting to investigate the influence of the toppling book row mecha-
nism on the critical stresses, see Fig. 22.2. Because in this case the stress combination
on a vertical plane is critical, it follows from the Mohr circle that

σxx + c cot φ = (σzz + c cot φ)
1 − sin2 φ

1 + sin2 φ
,

and
σzx = c + σxx tan φ.

Because σzz = N/A and σzx = T/A, it follows that

T f = cA + N tan φ
1 − sin2 φ

1 + sin2 φ
. (22.2)

This value is smaller than the one following from Eq. (22.1). It seems reasonable to
assume that the soil will fail according to the weakest mechanism, so that Eq. (22.2)
applies. This means that in a test with a small horizontal stress the critical shear stress
is smaller than in a test with a high horizontal stress. If the test result in a test with a
small horizontal stress is interpreted in the traditional manner, using Eq. (22.1), this
leads to a value of φ that is smaller than the true value. This explains why the strength
determined in a shear test is often lower than the strength in a triaxial test.

In the two failure mechanisms considered the horizontal stress is the basic dif-
ference, and this suggests that the occurrence of one or the other mechanism (the
toppling book row, or the sliding planks) will depend upon the relative magnitude
of the horizontal stress in the test. This horizontal stress depends upon the material
properties, but also on the method of installation of the sample. In general it is very
difficult to say what the magnitude of the horizontal stress in a shear box is. This
uncertainty in the state of stress is a disadvantage of the shear test, especially when
compared to the triaxial test, in which the stresses in the three coordinate directions
are well known.

It may be concluded that the shear test is not very well suited for an accurate
determination of the shear strength parameters of a soil, because the state of stress
is not fully known. The scatter in the results, and the relatively low values that are
sometimes obtained, may well be a result of the unknown horizontal stress. The
triaxial test does not suffer from this defect, as in this test the horizontal stress and
the vertical stress can both be measured accurately.

Itmay bementioned that in soilmechanics practice laboratory tests can sometimes
be considered as scale tests of the behavior in the field. The oedometer test can be
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considered as such, when the initial stresses and the incremental stresses are taken
equal to those in the field. For the problem of the shearing resistance of a large
concrete offshore caisson, loaded by wave forces on the caisson, a shear test may
be used if the vertical normal stress and the shear stress on the sample simulate the
stresses to be expected in the field, and the sample has been carefully taken from the
field to the shear box. Possible errors or inaccuracies may have the same effect in the
laboratory and in the field, so that they do not invalidate the applicability of the test.
But in this case it is also important to ensure that the horizontal stress in the sample
is of the same order of magnitude as the horizontal stress in the field.

Example 22.1 A shear test is performed on a sample of sand. It is known from
previous triaxial tests that for this sand c = 0 and φ = 40◦. The sand has been poured
very carefully into the shear box, so that it can be expected that the horizontal stress
in the sample is very low. The vertical normal stress is 100 kPa.What is themaximum
shear stress that can be applied onto the the sample?

Solution

If it is assumed that the horizontal stress is at its lowest possible value, Eq. (22.2)
applies. With c = 0 and φ = 40◦ one now obtains τmax = 34.84 kPa.

If the knowledge of the low horizontal stress is ignored, and the test is interpreted
in the classical way, using Eq. (22.1), the apparent value of the friction angle would
follow from tan φ = 0.3484, i.e. φ = 19.2◦, which is considerably lower than the
value obtained in the triaxial test.

Reference

G. De Josselin de Jong, The double sliding, free rotating model for granular assemblies. Géotech-
nique 20, 155–163 (1971)



Chapter 23
Pore Pressures

In a previous chapter the main principles of triaxial tests have been presented. For
simplicity it was assumed that the material was dry soil, so that there were no pore
pressures, and the effective stresses were equal to the applied stresses. In reality,
especially for clay soils, the sample usually contains water in its pores, and loading
the soil may give rise to the development of additional pore pressures. The influence
of these pore pressures will be described in this chapter.

23.1 Measuring the Pore Pressure

There are two possibilities to controll the pore pressures in a triaxial test: either
execute the test, on a drained sample, at a very low deformation rate, so that no pore
pressures are developed at all, or measure the pore pressures during the test. In the
first case the drainage of the sample can be ensured by filter paper applied at the top
and/or bottom ends of the sample, together with a drainage connection to a water
reservoir, and taking care that the duration of the test is so long that consolidation has
been completed during the test. The consolidation time should be estimated, using
estimated values of the permeability and the compressibility of the sample, and the
duration of the test should be large compared to that consolidation time. This may
mean that the test will take very long, and usually this is impractical. A better option
is to measure the pore pressures in the sample, for instance by means of an electrical
pore pressure meter. This is a pressure deducer in which the pressure is measured
on the basis of the deflection of a thin steel membrane, using a strain gauge on the
membrane. The pore pressure meter is connected to the top or the bottom of the
sample, see Fig. 23.1. An alternative is to measure the pore pressure in the interior of
the sample, using a thin needle. Whatever the precise system is, care should be taken
that the measuring device is very stiff, i.e. that it requires only a very small amount
of water to record a pore pressure increment. Otherwise a considerable time lag

© Springer International Publishing AG 2018
A. Verruijt, An Introduction to Soil Mechanics, Theory and Applications
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Fig. 23.1 Triaxial test with
measurement of pore
pressures

between the sample and the measuring device would occur, and the measurements
would be unreliable, as they may not be representative of the pore pressures in the
sample. An electrical pore pressure meter usually is very stiff: it may require only
1 mm3 of water to record a pressure increment of 100 kPa. The response of such a
stiff instrument is very fast, but it is very sensitive to the inclusion of air bubbles,
because air is very compressible. Great care should be taken to avoid the presence
of air in the system. If the pore pressures during the test are known it is simple to
determine the effective stresses from the measured total stresses, by subtraction of
the pore pressures. Because failure of the soil is determined by the critical values of
the effective stresses the shear strength parameters c and φ can then be determined.
In the stress diagrams the effective stresses must be plotted, and the envelope of
the Mohr circles yields the cohesion c and the friction angle φ. The procedure is
illustrated in Fig. 23.2, for the test results shown in Table23.1. The table refers to
two tests, performed at cell pressures of 40 and 95 kPa. In both tests the pore pressures
developed in the first stage of loading, by the application of the cell pressure, have
been reduced to zero, bywaiting sufficiently long for complete drainage to have taken
place. In the second stage of the tests the vertical force has been increased, at a fairly
rapid rate, measuring the pore pressures during the test. The total stresses have all
been represented in Fig. 23.2 by the Mohr circles. For the last circles, corresponding
to the maximum values of the vertical load, the effective stress circles have also been
drawn, indicated by the dotted circles. On the basis of the two critical effective stress
circles the Mohr–Coulomb envelope can be drawn, and the values of the cohesion c
and the friction angle φ can be determined. In the case of Fig. 23.2 the result obtained
is c = 9 kPa and φ = 30◦.

It should be emphasized that the strength parameters c andφ should be determined
on the basis of critical states of stress for the effective stresses. If in the test described
above some drainage would have occurred, and the pore pressures would have been
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Fig. 23.2 Determination of c and φ from two tests

Table 23.1 Test results

Test σ3 σ1 − σ3 p σ ′
3 σ ′

1

1 40 0 0 40 40

40 10 4 36 46

40 20 9 31 51

40 30 13 27 57

40 40 17 23 63

40 50 21 19 69

40 60 25 15 75

2 95 0 0 95 95

95 20 8 87 107

95 40 17 78 118

95 60 25 70 130

95 80 33 62 142

95 100 42 53 153

95 120 50 45 165
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smaller, the critical total stresses would also have been different (smaller). Only if
the test results are represented in terms of effective stresses they will lead to the same
values of c and φ, as they should.

23.2 Types of Triaxial Tests

The procedure in the tests described above, with the results given in Table23.1, is
that in the first stage of the tests, the application of the cell pressure, the soil is free to
consolidate, and sufficient time is taken to allow for complete consolidation, i.e. the
excess pore pressures are reduced to zero. In the second stage of the test, however, no
consolidation is allowed, by closing the tap to the drainage reservoir. Such a test is
denoted as aConsolidatedUndrained test, or a CU-test. This is a common procedure,
but several other procedures exist.

If in the second stage, the vertical loading of the sample, pore pressures are again
avoided by allowing for drainage, and by a very slow execution of the test (a very
small loading rate), the test is denoted as a Consolidated Drained test, or a CD-test.
Such a test takes a rather long time, which is expensive, and sometimes impractical.

A further possibility is to never allow for drainage in the test, not even in the first
stage of the test, by sealing off the sample. This is an Unconsolidated Undrained
test, or a UU-test.

23.3 Elastic Response

It may be illustrative to try to predict the pore pressures developed in a triaxial test
using basic theory. This will appear to be not very accurate and reliable, but it may
give some insight into the various mechanisms that govern the generation of pore
pressures.

The basic notion is that the presence of water in the pores obstructs a volume
change of the sample. The presence of water in no way hinders the shear deformation
of a soil element, but a volume change is possible only if water is drained from the
sample or if the water itself is compressed. The particles are assumed to be so stiff
that their volume is constant. At the moment of loading drainage can not yet have
lead to a volume change, and thus the only possibility for an immediate volume
change is a compression of the fluid itself. This can be described by

�Vw = −nβV�p, (23.1)

where V is the volume of the sample, �p is the increment of the pore pressure, and
β is the compressibility of the water, see also Chap.15. The instantaneous volume
strain is

http://dx.doi.org/10.1007/978-3-319-61185-3_15
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εvol = �V

V
= −nβ�p. (23.2)

Because the compressibility of thewater (β) is very small, this is a very small quantity.
On the other hand, if the soil skeleton is assumed to deform elastically, the volume

strain can be expressed as

εvol = −�σ ′

K
, (23.3)

where K is the compression modulus of the soil, and �σ ′ is the increment of the
isotropic effective stress. Because the volume strain is so small, the increment of the
isotropic effective stress will also be very small. It can be expressed as the increment
of the average of the three principal stresses,

�σ ′ = 1

3
(�σ ′

1 + �σ ′
2 + �σ ′

3). (23.4)

It follows from (23.3), with σ ′ = σ − p, that

εvol = −�σ − �p

K
. (23.5)

From (23.2) to (23.5) it finally follows that

�p = �σ

1 + nβK
. (23.6)

This formula expresses the increment of the pore water pressure into the increment
of the isotropic total stress. If the water is incompressible (β = 0), the increment
of the pore pressure is equal to the increment of the isotropic total stress. All this
is in complete agreement with the considerations in Chap.15 on consolidation. The
relation (23.6), with β = 0 can directly be obtained by noting that in a very short time
there can be no volume change if the water is incompressible. Hence there can be
no change in the isotropic effective stress, and thus the pore pressure must be equal
to the isotropic total stress. Only if the water is somewhat compressible there can be
a small instantaneous volume change, so that there can be a small increment of the
effective stress, and thus the pore pressure is somewhat smaller than the isotropic
total stress.

In general Eq. (23.6) can also be written as

�p = �σ1 + �σ2 + �σ3

3(1 + nβK )
. (23.7)

In a triaxial test �σ2 = �σ3, and in such tests the basic stress parameters are the
cell pressure �σ3 and the additional vertical stress, produced by the axial load,
�σ1 − �σ3. This suggests to write Eq. (23.7) in the form

http://dx.doi.org/10.1007/978-3-319-61185-3_15
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�p = 1

1 + nβK
[�σ3 + 1

3
(�σ1 − �σ3)]. (23.8)

In an undrained triaxial test it can be expected that increasing the cell pressure
leads to an increment of the pore pressure practically equal to the increment of the
cell pressure, assuming that nβK � 1. Furthermore, if the cell pressure remains
constant, and the vertical load increases, the increment of the pore pressure will be
about 1

3 of the additional vertical stress. Indeed, such values are sometimesmeasured,
approximately, see for instance the test results given in Table23.1. Very often the
results show considerable deviations from these theoretical results, because the water
may not be incompressible (perhaps due to the presence of air bubbles in the soil),
or because the sample is not isotropic, or because the sample exhibits non-linear
properties, such as dilatancy. Furthermore, the measurements may be disturbed by
inaccuracies in the measurement system, such as air bubbles in the pore pressure
meter.

23.4 Dilatancy

The analysis of the previous section may be generalized by taking dilatancy into
account. The basic idea remains that at the moment of loading there can not yet have
been any drainage, so that the only possibility for a volume change is the compression
of the water in the pores. This can be expressed by Eq. (23.2),

εvol = �V

V
= −nβ�p. (23.9)

It is now postulated that the volume change of the pore skeleton is related to the
stress changes by

εvol = −�σ ′

K
+ �τ

M
. (23.10)

The first term is the volume change due to the average compressive stress, which
is determined by the isotropic effective stress σ ′. The second term in Eq. (23.10)
is the volume change caused by the shear stresses. It has been assumed that this is
determined by some measure for the deviatoric stresses, indicated as τ , and as a first
approximation it has been assumed that this volume change is proportional to the
increment of τ , with a modulus M . That is a simplification of the real behavior, but
at least it gives the possibility to investigate the effect of dilatancy, because this term
expresses that shear stresses lead to a volume increase, if M > 0, which indicates a
densely packed soil. If M < 0 there would be a volume decrease due to an increment
of the shear stresses. Such a behavior can be expected in a loose material.

Because σ ′ = σ − p it follows that
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�p = 1

1 + nβK

(
�σ − K

M
�τ

)
. (23.11)

This is a generalization of the expression (23.6). For the conditions in a triaxial test
one may write

�σ = 1

3
(�σ1 + �σ2 + �σ3) = �σ3 + 1

3
(�σ1 − �σ3). (23.12)

The deviator stress τ is assumed to be

�τ = 1

2
(�σ1 − �σ3). (23.13)

This means that the radius of the Mohr circle is used as the measure for the deviator
stress τ .

The final result is

�p = 1

1 + nβK
[�σ3 +

(
1

3
− 1

2

K

M

)
(�σ1 − �σ3)]. (23.14)

This is a generalization of Eq. (23.8). Dilatancy does not appear to have any influence
in the first stage of a triaxial test, when the isotropic stress is increased. In the second
stage of a triaxial test, during the application of the vertical load, the generation of
pore pressures is determined by the factor 1

3 − 1
2 K/M . The first term is a result of

compression, the second term is a consequence of the dilatancy (or contractancy,
when M < 0).

In a dilatant material, with M > 0, the pore water pressure will be larger than in
a material without dilatancy. This is caused by the tendency of the densely packed
material to expand, which reduces the compression due to the isotropic loading. If the
dilatancy effect (here expressed by the parameter M) is very large, the pore pressure
may even become negative. In a very dense material the tendency for expansion will
lead to a suction of water.

In a contractant material, with M < 0, the pore pressures will become larger
due to the tendency of the material to contract. The loosely packed soil will tend to
contract as a result of shear stresses, thus enlarging the volume decrease due to the
isotropic stress increment. The water in the pores opposes such a volume change.

23.5 Skempton’s Coefficients

Skempton (1954) has suggested to write the relation between the incremental pore
water pressure and the increments of the total stress in the form

�p = B[�σ3 + A(�σ1 − �σ3)]. (23.15)
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The idea is that the coefficients A and B are measured in an undrained triaxial test.
The relations given in this section would mean that

B = 1

1 + nβK
, (23.16)

and

A = 1

3
− 1

2

K

M
. (23.17)

Indeed, the values of B observed in tests are usually somewhat smaller than 1, and for
the coefficient A various values, usually between 0 and 1

2 are found, but sometimes
even negative values have been obtained.

Skempton’s coefficients A and B have been found to be useful in many practical
problems, but it should be noted that they have limited physical significance, because
they are based upon a rather special description of the deformation process of a
soil, see Eq. (23.10). When their values are measured in a triaxial test, they may
be influenced by partial saturation, by anisotropy, and by the stiffness of the pore
pressure meter. It should also be noted that the values of the coefficients depends
upon the stress level. It is therefore suggested to determine the values of A and B in
tests in which the stress changes simulate the real stress changes in the field.

Example 23.1 On a number of samples from the same soil three CU-triaxial tests
are being performed. The cell pressure is applied, then consolidation is allowed to
reduce the pore water pressures to zero, and in the second stage the sample is very
quickly brought to failure, undrained. The pore pressures are measured. The results
are given in the following table (all stresses in kPa).

Test σ3 σ1 − σ3 p
1 20 40.94 8.19
2 40 69.52 13.90
3 60 98.09 19.62

Determine the values of the cohesion c and the friction angle φ.

Solution

From the test results the values of the effective stresses in each test can be determined.
This gives

Test σ ′
3 σ ′

1
1
2 (σ ′

1 + σ ′
3)

1 11.81 52.75 32.28
2 26.10 95.62 60.86
3 40.38 138.47 89.24
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Fig. 23.3 Example 23.1

Using these data the critical Mohr circles from each test can be drawn, see Fig. 23.3.
From the figure the values of c and φ can be measured. The result is c = 5 kPa and
φ = 30◦.

In this case the value of the pore pressure p is considerably less than 1
3 (�σ1−�σ3).

When compared to the theoretical formula (23.15) this indicates that Skempton’s
parameter A < 1

3 . This suggests that the parameter M in formula (23.14) is positive,
indicating a dilatant material, or a relatively densematerial, that expands under shear.

Example 23.2 Acompletely saturated clay sample is loaded in a cell test by a vertical
stress of 80 kPa. Due to this load the cell pressure is found to increase by 20 kPa. If
the soil were perfectly elastic, what would then be the increment of the pore pressure?

Solution

For an elastic sample Eq. (23.8) applies. In this case �σ1 = 80 kPa and �σ3 =
20 kPa. Assuming that the fluid is incompressible (β = 0) it follows that
�p = 40 kPa.

Reference

A.W. Skempton, The pore pressure coefficients A and B. Géotechnique 4, 143–147 (1954)



Chapter 24
Undrained Behaviour of Soils

If no drainage is possible from a soil, because the soil has been sealed off, or because
the load is applied so quickly and the permeability is so small that there is no time
for outflow of water, there will be no consolidation of the soil. This is the undrained
behavior of a soil. This chapter contains an introduction to the description of this
undrained behavior.

24.1 Undrained Tests

In an undrained triaxial test on a saturated clay each increase of the cell pressure will
lead to an increase of the pore water pressure. As discussed in the previous chapter
this can be described by Skempton’s formula

�p = B[�σ3 + A(�σ1 − �σ3)]. (24.1)

The coefficient B can be expected to be about

B = 1

1 + nβK
, (24.2)

where β is the compressibility of the pore fluid (including possible air bubbles) and
K is the compression modulus of the grain skeleton. The value of the coefficient B
will be close to 1, as the water is practically incompressible.

Increasing the cell pressure can be expected to result in an increment of the pore
pressure by the same amount as the increment of the cell pressure, or slightly less, and
thus there will be very little change in the effective stresses. If there is a possibility
for drainage, and there is sufficient time for the soil to drain, the pore pressures will
be gradually reduced, with a simultaneous increase of the effective stresses. This is

© Springer International Publishing AG 2018
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Fig. 24.1 Mohr circles for two undrained tests

the consolidation process. If there is no possibility for drainage, because the sample
has been completely sealed off, or because the test is done so quickly that there is
no time for consolidation, the test is called unconsolidated. In the second stage of a
triaxial test, in which only the vertical stress is increased, distinction can also bemade
in drained or undrained tests. If in this stage no drainage can take place, the test is
called unconsolidated undrained (a UU-test). If a second UU-test is done at a higher
cell pressure, the only difference with the first test will be that the pore pressures
are higher. The effective stresses in both tests will be practically the same. If the
test results are plotted in a Mohr diagram, there would be just one critical circle for
the effective stresses, but in terms of total stresses there will be two clearly distinct
circles, of practically the same magnitude, see Fig. 24.1. In this figure the critical
Mohr circles for the total stresses in the two tests have been dotted. The critical
circles for the effective stresses can be obtained by subtracting the pore pressure, and
these are represented by full lines. The two circles practically coincide, if the sample
is saturated with water. These test results appear to be insufficient to determine the
shear strength parameters c and φ, because only one critical circle for the effective
stresses is available. In order to determine the values of c and φ the sample should be
allowed to consolidate after the first loading stage in at least one of the tests, so that
the isotropic effective stress at the beginning of the second stage, the vertical loading,
is different in the two tests. This would mean that this test should be a Consolidated
Undrained test, or a CU-test.

Admitting that undrained tests can not be used to determine the correct values
of the shear strength parameters c and φ, they may still be very useful, because in
engineering practice there are many situations in which no (or very little) drainage
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Fig. 24.2 Mohr circles for total stresses

will occur, for instance in case of loading of a soil of very low permeability (clay)
for a short time. Examples are a temporary loading for some building operation, or
a temporary excavation for the construction of a pipe line. In order to predict the
behavior of the clay in these circumstances it makes sense to just consider the total
stresses, and to make use of the results of an undrained test, analyzing the test results
in terms of total stresses also. That there may be considerable pore pressures in the
test as well as in the field, is perhaps interesting, but irrelevant if the period of loading
is so short that no consolidation can occur.

The analysis of the tests in terms of total stresses is illustrated in Fig. 24.2. As
explained above, all critical stress circles will be of the same magnitude, and when
the results are interpreted in terms of total stresses only it seems that the friction angle
φ is practically zero. The strength of the soil can be characterized by a cohesion only,
which is then usually denoted as su , the undrained shear strength of the soil. The
analysis, in which the friction of the material and the pore pressures are neglected,
is called an undrained analysis. Because the analysis of the safety of a structure on a
purely cohesive material (with φ = 0) is much simpler that the analysis for a material
with internal friction, an undrained analysis is often used in engineering practice.

In general, the undrained shear strength su is simply determined as one half of the
maximum shear stress, expressed in total stresses,

su = 1
2 (σ1 − σ3). (24.3)

The applicability of undrained tests, and the use of undrained strength parameters
is also justified if it can be expected that the most critical situation will be the
undrained state immediately after loading. In many cases of loading of a soil by a
constant load, it can be expected that the largest pore pressures will be developed
immediately after loading, and that these pore pressures will gradually dissipate
during consolidation of the soil, with the effective stresses increasing.

For instance, in the case of a permanent load applied to a shallow foundation
slab, see Fig. 24.3, it can be expected that pore pressures will be developed below
the foundation, and that these pore pressures will dissipate in course of time due to
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Fig. 24.3 Shallow
foundation

Fig. 24.4 Embankment

consolidation. If the load remains constant, it can be expected that the pore pressures
are highest, and thus the effective stresses are smallest, just after the application of
the load.

Later, after consolidation, the effective stresses will be higher, so that the Mohr
circle will be shifted to the right. This means that the most critical situation occurs
immediately after application of the load, in the undrained state. If the structure is
safe immediately after application of the load it will certainly be safe at later times,
when the pore pressures have been dissipated, the effective stresses have increased,
and thus the strength of the soil has been further developed.

In the case of the construction of an embankment, for a dyke or a road, an undrained
analysis may also be sufficient for the analysis of the stability of the embankment
itself, see Fig. 24.4. In many cases it can be assumed that the construction of the
embankment is one of the most critical phases in its lifetime. If the embankment
“survives” the construction, then it will probably will be stable forever. The pore
pressures are largest during the construction of the embankment. Later these will
be reduced, the effective stresses will increase, and therefore the shear strength will
increase. In many cases this additional strength is sufficient to even accept future
additional loadings, for instance by water pressures against the slope of the dike, or
by traffic, in case of a highway. In some exceptional cases, of very soft soils, with a
very low permeability, there may be additional undrained creep deformations, prior
to the effect of consolidation, so that the pore pressures may increase in the first few
days or weeks after construction. In some cases this has indeed resulted in failure of
an embankment a few days after its construction.

Of course it is not sufficient to assume, without further proof, that the reduction
of the pore pressures, caused by consolidation, will be sufficient to accommodate the
additional pore pressures due to the additional loading. A dyke is built to withstand
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Fig. 24.5 Excavation

the forces of the water during a storm with high water levels, and the behavior of the
dyke under these conditions needs careful analysis. Immediately after application of
the load, in this case the water pressure against the slope of the dyke, the soil may
be considered as undrained, but after some days of high water the dyke must still
be stable. During prolonged periods of high water, the pore pressures in the dyke
may gradually increase, because of inflow of water into the dyke body, and an unsafe
situation may be created by the reduction of the effective stresses in the dyke. An
undrained analysis of the dyke stability may be one element in its design, but an
effective stress analysis, considering various combinations of loading and drainage,
must also be performed.

An undrained analysis is unsafe if it is to be expected that the pore pressures
will increase after the construction. As an example one may consider the case of
an excavation, see Fig. 24.5. The excavation can be considered as a negative load,
which will result in decreasing total stresses, and therefore decreasing pore pressures
immediately after the excavation. Due to consolidation, however, the pore pressures
later will gradually increase, and they will ultimately be reduced to their original
value, as determined by the hydrologic conditions. Thus the effective stresses will be
reduced in the consolidation process, so that the shear strength of the soil is reduced.
This means that in the course of time the risk of a sliding failure may increase. A
trench may be stable for a short time, especially because of the increased strength
due to the negative pore pressures created by the excavation, but after some time
there may be a collapse of the slopes. This may be very dangerous for the people at
work in the excavation, of course.

24.2 Undrained Shear Strength

For the comparison of drained and undrained calculations, and for the actual calcula-
tion in an undrained analysis, it is often necessary to determine the undrained shear
strength su of a soil, from the basic shear strength parameters c and φ. This can be
done by noting that in a saturated soil there can be practically no volume change in
undrained conditions, so that the isotropic effective stress remains constant. Thus the
average effective stress remains constant, and thismeans that the location of theMohr
circle is constrained. Usually the state of stress in the soil is such that the vertical
stresses are reasonably well known, because of the weight of the soil and a possible
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load. If the pore water pressure is also known, this means that it can be assumed that
the vertical effective stress σ′

zz is known. Usually the two horizontal stresses will be
equal, and their magnitude may be estimated (or perhaps measured), even while that
is not always very easy. Here it is assumed that the horizontal effective stress σ′

xx is
also known. Thus the average effective stress, 1

3 (σ
′
zz + 2σ′

xx ) is known. If the soil is
loaded this average effective stress will remain constant,

σ′
0 = 1

3 (σ
′
zz + 2σ′

xx ) = constant. (24.4)

In case of failure of the soil the combination of the major principal stress σ′
1 and the

minor principal stress σ′
3 must be such that the Mohr-Coulomb failure criterion is

satisfied, i.e., with (20.12),

(
σ′
1 − σ′

3

2

)
−

(
σ′
1 + σ′

3

2

)
sin φ − c cosφ = 0. (24.5)

Because σ′
1 + σ′

3 = 2
3 (σ

′
1 + 2σ′

3) + 1
3 (σ

′
1 − σ′

3) this can also be written as

(
1 − 1

3 sin φ
) (

σ′
1 − σ′

3

2

)
−

(
σ′
1 + 2σ′

3

3

)
sin φ − c cosφ = 0. (24.6)

Because the average effective stress can not change in undrained conditions, we have,
before and after the application of the load,

1
3 (σ

′
1 + 2σ′

3) = σ′
0, (24.7)

where σ′
0 is a given value, determined by the initial stresses, see (24.4).

From (24.6) to (24.7) the undrained shear strength su is found to be

su = σ′
1 − σ′

3

2
= c

cosφ

1 − 1
3 sin φ

+ σ′
0

sin φ

1 − 1
3 sin φ

, (24.8)

This formula enables to estimate the undrained shear strength if the drained shear
strength parameters c and φ are known, as well as the initial average effective stress
σ′
0. The relation is illustrated in Fig. 24.6. In this figure a number of Mohr circles

for the effective stresses are shown, on the basis of the assumption that the average
effective stressσ′

0 remains constant. The total stresses always differ from the effective
stresses by the (unknown) value of the pore water pressure. The location of the total
stress circles is not known, and not relevant. Their magnitude is always equal to the
magnitude of the corresponding effective stress circle, as the pore pressure increases
all normal stresses, both σ′

xx and σ′
zz .

Equation (24.8) indicates that su = c if φ = 0, as could be expected. If φ > 0
the undrained shear strength su increases with the average effective stress σ′

0. This

http://dx.doi.org/10.1007/978-3-319-61185-3_20
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Fig. 24.6 Mohr circles for undrained behavior

means that a preload, followed by consolidation, has a positive effect on the undrained
strength of the soil.

It should be noted that in the derivation of Eq. (24.8) it has been assumed that
a volume change can be produced only by a change of the average effective stress.
This means that effects such as anisotropy, dilatancy and contractancy have been
disregarded. That is an important restriction, and it means that the formula is a first
approximation only.

Example 24.1 A consolidated undrained triaxial test is done on a clay sample. The
cell pressure is 50 kPa, and the sample is found to fail when the additional axial stress
is 170 kPa. What is the undrained shear strength su?

Solution

In this case σ3 = 50 kPa and σ1 = 220 kPa. The undrained shear strength in this
case is su = 1

2 (σ1 − σ3), or su = 85 kPa.

Example 24.2 Of a certain soil it is known fromprevious studies that c = 20 kPa and
φ = 30◦. An undrained analysismust bemade for a case inwhich the original vertical
effective stresses are 80 kPa, and the horizontal effective stresses are estimated to be
40 kPa. What is the value of su to be used?
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Solution

The appropriate formula is Eq. (24.8). In this case the average effective stress
σ′
0 = 53.3 kPa. Using the given values of c and φ the formula gives su = 52.8 kPa.
It may be noted that if the original horizontal stress was equal to the vertical

effective stress the answer would be su = 68.8 kPa. This illustrates the important
effect of the horizontal stresses.

It may also be noted that all these results can be verified using a construction of
the appropriate Mohr circle, see Fig. 24.6.



Chapter 25
Stress Paths

A convenient way to represent test results, and their correspondence with the stresses
in the field, is to use a graph of the stresses. In this technique the stresses in a point
are represented by two (perhaps three) characteristic parameters, and they are plotted
in a diagram. This diagram is called a stress path.

25.1 Parameters

In some presentations of books on soil mechanics, for instance from the University of
Cambridge (UK), see the books by Schofield andWroth (1968) and byWood (1990),
it is assumed that the state of stress in a point can be characterized by the average
stress (the isotropic stress), 1

3 (σ1 + σ2 + σ3), and the difference of the major and
minor principal stresses, σ1 − σ3. Alternatively, for instance in the book by Lambe
and Whitman (1969), the average value of the major and minor principal stresses,
1
2 (σ1+σ3), may be used rather than the average stress, whereas the second parameter
is chosen as one half of the difference of the major and minor prinicipal stresses,
1
2 (σ1 − σ3). Although the first pair of parameters may be prefered for theoretical
reasons, here the second pair will be used, because of its close correspondence to the
Mohr circle concept.

The two basic variables are denoted by σ and τ ,

σ = 1

2
(σ1 + σ3), (25.1)

τ = 1

2
(σ1 − σ3). (25.2)
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Fig. 25.1 Mohr’s circle and stress point

The introduction of the factor 1
2 in the two definitions results in σ and τ being the

location of the center, and the radius of the circle in Mohr’s diagram, see Fig. 25.1.
By choosing these parameters it is implicitly assumed that other parameters are
unimportant for the description of the material behavior of the soil. It is assumed, for
instance, that the intermediate principal stress is unimportant, as is the orientation
of the principal stresses. This is approximately correct for the failure state of a
soil, because the Mohr–Coulomb failure criterion can be formulated in σ and τ , but
for smaller stresses it may be a first approximation only. Actually, even the failure
criterion of a soil is often found to be dependent on other parameters (such as the
value of σ2) too, so that the Mohr–Coulomb failure criterion should be considered
as merely a first approximation of real soil behavior.

It should be mentioned that in many publications the symbols p and q are used,
rather than σ and τ , and the diagram is denoted as a p, q-diagram. This convention
will not be followed here, as the notation p has been reserved for the pore pressure.

The state of stress is represented in the right half of Fig. 25.1 in the σ, τ -diagram.
The basic principle is that the Mohr circle is characterized by the location of its top
only. If the state of stress changes, the values of σ and τ will be different, so that the
location of the stress point changes. The path of the stress point is called the stress
path.

A stress path can be drawn for the total stresses as well as the effective stresses, in
the same diagram. The difference is the pore pressure, see Fig. 25.2. The total stress
path is indicated by TSP, and the effective stress path by ESP.

The possible states of stress are limited by the Mohr–Coulomb failure criterion,
see Eq. (20.12). In a diagram of Mohr circles this is a straight line, limiting the stress
circles, see the left half of Fig. 25.2. This limit is described by

(
σ′
1 − σ′

3

2

)
−

(
σ′
1 + σ′

3

2

)
sin φ − c cosφ = 0. (25.3)

http://dx.doi.org/10.1007/978-3-319-61185-3_20
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Fig. 25.2 Stress paths

Expressed in terms of σ and τ this is

τ ′ = σ′ sin φ + c cosφ. (25.4)

This describes a straight line in theσ, τ -diagram.This straight line has been indicated
in the right half of Fig. 25.2. The slope of this line is sin φ, which is slightly less steep
than the envelope in the diagram of Mohr circles (which is tan φ). The intersection
with the vertical axis is c cosφ.

As mentioned before, many researchers use different parameters to characterize
the stresses in soils, because they are claimed to provide a better approximation of the
behavior of soils in certain tests. Actually, any combination of stress invariants may
be used, for instance the three principal stresses. The parametersσ and τ used here are
convenient because the Mohr–Coulomb failure criterion can so easily be formulated
in terms ofσ and τ . This criterion is not a basic physical principle, however, but rather
a simple way to represent some test results. Other failure criteria, perhaps involving
more parameters (such as the intermediate principal stress), may be formulated, and
these may give a better approximation of a wider class of test results. In conclusion,
the choice of stress path parameters is based upon considerations of convenience and
experience as well as pure science.

25.2 Triaxial Test

In the second stage of a normal triaxial test the cell pressure is kept constant, and the
vertical stress is increased. The cell pressure then is the minor principal stress, σ3,
which is kept constant. During the test the value of σ1 increases. The total stress path
is a straight line, with a slope of 45◦, see Fig. 25.3. Its mathematical description is
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Fig. 25.3 Stress path in
triaxial test

�σ3 = 0 : �τ = �σ. (25.5)

The course of the effective stress path depends upon the pore pressures. InChap.23
it was postulated that these may be expressed by Skempton’s formula,

�p = B[�σ3 + A(�σ1 − �σ3)]. (25.6)

This formula can also be written as

�p = B[�σ − (1 − 2A)�τ ]. (25.7)

In the case of a triaxial test the pore pressure is

�σ3 = 0 : �p = 2BA�σ. (25.8)

For a completely saturated isotropically elastic material the values of the coefficients
A and B are, if the compressibility of the water is neglected (see Chap.23): B = 1
and A = 1

3 . It then follows from (25.8) that the pore pressure increment will be
2
3 of the increment of σ, �p = 2

3�σ, see also Eq. (23.7). For such an idealized
material behavior the effective stress path will be a straight line at a slope of 3 : 1,
see Fig. 25.3.

Figure25.4 shows the stress paths for a dilatantmaterial and for a contractantmate-
rial. When the material is dilatant, it will tend to expand during shear, so that the pore
pressures will be reduced (the volume expansion results in suction). In a contractant
material the volume will tend to decrease, so that the pore pressures are increased.
It can be seen from the figure that in a contractant material failure will be reached
much faster than in a non-contractant or dilatant material. The two mechanisms of

Fig. 25.4 Stress paths in triaxial tests on dilatant and contractant material

http://dx.doi.org/10.1007/978-3-319-61185-3_23
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Table 25.1 Test results

Test σ3 σ1 − σ3 p σ1 σ σ′ τ

1 40 0 0 40 40 40 0

40 10 4 50 45 41 5

40 20 9 60 50 41 10

40 30 13 70 55 42 15

40 40 17 80 60 43 20

40 50 21 90 65 44 25

40 60 25 100 70 45 30

2 95 0 0 95 95 95 0

95 20 8 115 105 97 10

95 40 17 135 115 98 20

95 60 25 155 125 100 30

95 80 33 175 135 102 40

95 100 42 195 145 103 50

95 120 50 215 155 105 60

Fig. 25.5 Stress paths in
triaxial tests

pore pressure development, increasing the isotropic total stress (i.e. compression)
and shear deformation, add up to a relatively large pore pressure increase, so that
the isotropic effective stress σ′ decreases, and this may result in rapid failure. In a
dilatant material the two phenomena (compression and shear) counteract. The com-
pression tends to increase the pore pressure, whereas the shear tends to decrease the
pore pressure. The effective stress path will be located to the right of the path for a
non-dilatant material. In a triaxial test this will result in a large apparent strength, as
the vertical load can be very high before failure is reached.

The practical implications of dilatancy and contractancy may be very important.
A dilatant soil (i.e. a very dense material) may create additional strength by shearing,
through the negative pore pressures that are developed. On the other hand, in a very
loose material (a contractant soil) extra pore pressures may be generated by shearing,
thus reducing the effective stresses and the strength. The soil may well collapse.

As a further illustration the triaxial tests presented in Chap. 23 will be further
elaborated, using stress paths. The test results have been taken from Table23.1, but
they have been elaborated some more, to calculate the values of σ, σ′ and τ , see
Table25.1. The stress paths for the two tests are shown in Fig. 25.5. The paths for
the total stresses have been indicated by dotted lines, the effective stress paths have

http://dx.doi.org/10.1007/978-3-319-61185-3_23
http://dx.doi.org/10.1007/978-3-319-61185-3_23


210 25 Stress Paths

been indicated by fully drawn lines. The two end points of the effective stress paths
determine the critical envelope. According to Eq. (25.4) the critical points of the
effective stress paths are located on the straight line

τ ′ = aσ′ + b, (25.9)

where a = sin φ and b = c cosφ. In this case there are two critical points: σ′ =
45 kPa, τ = 30 kPa and σ′ = 105 kPa, τ = 60 kPa. Substitution of these two pairs
of values into (25.9) leads to two equations with two unknowns, a and b. This gives
a = 0.5 and b = 7.5 kPa. Because a = sin φ it follows that φ = 30◦, and because
b = c cosφ it follows that c = 8.7 kPa. These results are in agreement with the
values obtained in Chap.23.

Example 25.1 In a triaxial apparatus it is also possible to apply a negative value of
the axial force, by pulling on the steel rod (the plunger), at constant cell pressure.
This is called a triaxial extension test. Draw the total stress path for such a test, and
the effective stress path, assuming isotropic elastic behaviour, and assuming that the
test is a CU test, i.e. full drainage in the first stage of the test, and no drainage in the
second stage.

Solution

In this case the horizontal stress (the cell pressure) will be larger than the vertical
stress. Thus the horizontal stress will be the largest principal stress, to be denoted by
σ1, and the vertical stress will be the smallest principal stress, to be denoted by σ3.
The total stress path can be constructed by first considering the initial isotropic state
of stress, produced by the cell pressure, so that σ = σ1 and τ = 0. In the second
stage of the test σ3 = σ1 − t , where t is the tensile stress in the plunger, so that then
σ = 1

2 (σ1 + σ3) = σ1 − 1
2 t , and τ = 1

2 (σ1 − σ3) = 1
2 t . This total stress path (TSP)

is shown in Fig. 25.6.
For the construction of the effective stress path, assuming isotropic elastic behav-

iour, and no drainage in the second stage of the test, it must be noted that the formulas
given in Chap.23, such as the Skempton relations, were derived for triaxial condi-
tions in which the isotropic stress is 1

3 (σ1 + 2σ3, whereas in this case the isotropic
stress is 1

3 (2σ1+σ3. It may be assumed that the relation (23.7) remains valid, because
that relation was based upon the idea that there is no drainage, and thus the volume
change is just the compression of the fluid. This relation now becomes, however,

Fig. 25.6 Stress path in
triaxial extension test

http://dx.doi.org/10.1007/978-3-319-61185-3_23
http://dx.doi.org/10.1007/978-3-319-61185-3_23
http://dx.doi.org/10.1007/978-3-319-61185-3_23


25.2 Triaxial Test 211

Fig. 25.7 Stress paths in extension tests on dilatant and contractant material

with σ2 = σ1,

�p = 2�σ1 + �σ3

3(1 + nβK )
= 1

1 + nβK
[�σ1 − 1

3
(�σ1 − �σ3)],

Assuming that the fluid is incompressible (β = 0) it follows that an increment of the
cell pressure, with �σ1 = �σ3, will lead to a pore pressure �p = �σ1 in the first
stage of the test, but in a CU-test this will be reduced to zero by consolidation. In the
second stage of the test, a reduction of the vertical stress by pulling the plunger will
result in a positive value for �σ1 − �σ3, and thus the pore pressure will be changed
by an amount �p = − 1

3 (�σ1 − �σ3) = − 1
3 t . This is a negative value, indicating

tension, which seems in agreement with the fact that tension is applied to the sample.
In this case of a negative pore pressure, the effective stress will be larger than the total
stress. Actually, because σ = σ1 − 1

2 t , it now follows that σ′ = σ − �p = σ1 − 1
6 t .

The effective stress path (ESP) is also shown in Fig. 25.6. It can be expected that in
a dilatant material (a dense sand) the shear deformations will be accompanied by a
tendency for volume extension. In undrained conditions this will lead to a further
decrease of the pore pressure, and thus to a further increase of the strength. This is
illustrated in Fig. 25.7. In a contractant material (a loose sand) the shear deformations
will be accompanied by a tendency for volume compaction. In undrained condition
this will lead to an increase of the pore pressure, and thus to a reduction of the
effective stress and a reduction of the strength.
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Chapter 26
Elastic Stresses and Deformations

An important class of soil mechanics problems is the determination of the stresses
and deformations in a soil body, by the application of a certain load. The load may be
the result of construction of a road, a dyke, or the foundation of a building. The actual
load may be the weight of the structure, but it may also consist of the forces due to
traffic, wave loads, or the weight of the goods stored in a building. The stresses in the
soils must be calculated in order to verify whether these stresses can be withstood
by the soil (i.e. whether the stresses remain below the failure criterion), or in order
to determine the deformations of the soil, which must remain limited.

26.1 Stresses and Deformations

A three dimensional computation of stresses and deformations in general involves
three types of equations : equilibrium, constitutive relations, and compatibility. For
soils the main difficulty is that the constitutive relations are rather complicated, and
that their accurate description and formulation requires a large number of parameters,
which are not so easy to determine, and which must be determined for every soil
anew. In principle this should include the non-linear behavior of soils, both in com-
pression and in shear, and possible effects such as time dependence (creep), dilatancy,
contractancy and anisotropy. The calculation of the real stresses and deformations
in a soil is a well nigh impossible task, for which advanced numerical models are
being developed. Such models, usually based upon the finite element method, are
applied very often in engineering practice, and it can be expected that their use will
be further expanded.

As an introduction into the methods of analysis the problem will be severely
schematized here, andwill be kept as simple as possible, by assuming that thematerial
is isotropic linear elastic. This means that it is assumed that the relation between
stresses and strains is described by Hooke’s law. This is a severe approximation,
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but it may still be useful, as it contains all the necessary elements of a continuum
analysis. Also, it will appear that in many cases some of the results, in particular
the calculation of the vertical stresses, may be reasonably accurate. The idea then is
that for the stresses in a soil body caused by the application of a certain load, it is
perhaps not so important what the precise properties of the materials are. A complete
linear elastic computation at least ensures that equilibrium is satisfied, whereas the
field of deformations and displacements satisfies the compatibility equations. For
the vertical stresses in a layered soil it probably does not matter so much what the
precise stiffness of al the layers is, as long as equilibrium, the geometry, and the
distribution of the load have been taken into account. For other quantities, such as
the vertical deformations, the stiffness of the layers may be very important, and the
results of an elastic analysis may not be so relevant. It will be shown, however, that
an analysis on the basis of linear elasticity may still be used as the first step in a
reliable computation for the deformations as well.

It may also be mentioned that the applicability of a linear elastic analysis has been
verified for several problems by comparison with more complex computations. For
instance, the results of computations for anisotropic materials, or layered materials,
have been compared with the solutions for the linear elastic approximation. This
confirms that the errors in the vertical normal stresses often are very small. On the
other hand, the horizontal stresses, and the displacements, are very sensitive to the
description of the material properties. It is fortunate that the vertical normal stresses
often are the most interesting quantities, and these appear to be least sensitive for the
material properties.

A useful procedure is to determine the stresses from a linear elastic analysis,
and then, in a next step, to calculate the deformations from these stresses, using the
best known relations between stresses and strains. From a theoretical or scientific
viewpoint this is not justified, as the compatibility relations are ignored in the second
step, and the coupling between stresses and the real deformations is also disregarded,
but for engineering it appears to be a powerful and useful method. For instance, for
a layered soil the stresses may be calculated assuming that the soil is homogeneous
and linearly elastic, completely ignoring the difference in properties of the various
layers, and then in a second step the deformations of each layer are calculated using
Terzaghi’s logarithmic compression formula, or some other realistic formula. The
vertical deformations of the layers are finally added to determine the settlement of
the soil surface. This procedure will be elaborated in Chap.30.

26.2 Elasticity

For the analysis of stresses and strains in a homogenous, isotropic linear elastic
material various methods have been developed. The general theory can be found in
many textbooks on the theory of elasticity. Here, only the basic equations will be
given, without giving the details of the derivations. Some of these details, and some
derivations of solutions are given in Appendix B.

http://dx.doi.org/10.1007/978-3-319-61185-3_30
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Fig. 26.1 Stresses on
element

In this chapter, and in the next chapters, the analysis always concerns the calcu-
lation of stresses and deformations caused by some applied load. This means that
the stresses and deformations in each case are incremental quantities. The initial
stresses should be added in order to determine the actual stresses. It is assumed that
these initial stresses also account for the weight of the soil, so that for the analysis
of incremental stresses the weight of the soil itself may be disregarded. Thus there
will be no body forces due to gravity. For a small element the stresses on the three
visible faces are shown in Fig. 26.1.

The equations of equilibrium in the three coordinate directions are

∂σxx

∂x
+ ∂σyx

∂y
+ ∂σzx

∂z
= 0,

∂σxy

∂x
+ ∂σyy

∂y
+ ∂σzy

∂z
= 0, (26.1)

∂σxz

∂x
+ ∂σyz

∂y
+ ∂σzz

∂z
= 0.

Because of equilibrium of moments the stress tensor must be symmetric,

σxy = σyx ,

σyz = σzy, (26.2)

σzx = σxz .
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The equations of equilibrium constitute a set of six equations involving nine stress
components. In itself this can never be sufficient for a mathematical solution. The
deformations must also be considered before a solution can be contemplated.

For a linear elastic material the relation between stresses and strains is given by
Hooke’s law,

εxx = − 1

E
[σxx − ν(σyy + σzz)],

εyy = − 1

E
[σyy − ν(σzz + σxx )], (26.3)

εzz = − 1

E
[σzz − ν(σxx + σyy)],

εxy = −1+ ν

E
σxy,

εyz = −1+ ν

E
σyz, (26.4)

εzx = −1+ ν

E
σzx ,

where E is the modulus of elasticity (Young’s modulus), and ν is Poisson’s ratio.
The minus sign in the equations has been introduced to account for the unusual
combination of sign conventions: stresses are considered positive for compression,
and strains are considered positive for extension. The Eqs. (26.3) and (26.4) add six
equations to the system, at the same time introducing six additional variables.

The six strains can be related to the three components of the displacement vector,

εxx = ∂ux

∂x
,

εyy = ∂uy

∂y
, (26.5)

εzz = ∂uz

∂z
,

εxy = 1

2

(
∂ux

∂y
+ ∂uy

∂x

)
,

εyz = 1

2

(
∂uy

∂z
+ ∂uz

∂y

)
, (26.6)

εzx = 1

2

(
∂uz

∂x
+ ∂ux

∂z

)
.
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These are the compatibility equations. In total there are now just as many equations
as there are variables, so that the system may be solvable, at least if there are a
sufficient number of boundary conditions.

For a number of problems solutions of the system of equations can be found in
the literature on the theory of elasticity, see for instance the books by Timoshenko
and Goodier (1951), Sneddon (1951), Poulos and Davis (1974), and Sadd (2005).

In soil mechanics the solutions for a half space or a half plane, with a horizontal
upper surface, are of special interest. The solutions for some of these problems
are given in Appendix B. In order to conform to the sign conventions used in the
extensive literature the stresses in that appendix are denoted by τ , and the sign
convention is that tensile stresses are considered positive. In the next chapters some
of the most important solutions for soil mechanics are further discussed, without
detailed derivations.
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Chapter 27
Boussinesq

In this chapter some useful solutions for the stresses in an elastic half space are
given. These solutions were first obtained by the French scientist Joseph Boussinesq
in 1885, and can be found in many books on the theory of elasticity.

27.1 Boussinesq’s Problem

The problem to be considered is to obtain a solution for the stresses and strains in a
homogeneous isotropic linear elastic half space, loaded by a vertical point force on
the surface, see Fig. 27.1. A derivation of this solution is given in Appendix B.

The stresses are found to be

σzz = 3P

2π

z3

R5
, (27.1)

σrr = P

2π

[
3r2z

R5
− (1 − 2ν)

1

R(R + z)

]
, (27.2)

σθθ = P

2π

1 − 2ν

R2

(
R

R + z
− z

R

)
, (27.3)

σr z = 3P

2π

r z2

R5
. (27.4)

In these equations r is the cylindrical coordinate,

r =
√
x2 + y2, (27.5)

© Springer International Publishing AG 2018
A. Verruijt, An Introduction to Soil Mechanics, Theory and Applications
of Transport in Porous Media 30, DOI 10.1007/978-3-319-61185-3_27

219



220 27 Boussinesq

Fig. 27.1 Point load on half space

and R is the spherical coordinate,

R =
√
x2 + y2 + z2. (27.6)

The solution for the displacements is

ur = P(1 + ν)

2πER

[
r2z

R3
− (1 − 2ν)

(
1 − z

R

)]
, (27.7)

uθ = 0, (27.8)

uz = P(1 + ν)

2πER

[
2(1 − ν) + z2

R2

]
. (27.9)

The vertical displacement of the surface is particularly interesting. This is

z = 0 : uz = P(1 − ν2)

πEr
. (27.10)

For r → 0 this tends to infinity, indicating that at the point of application of the point
load the displacement is infinitely large. This singular behavior is a consequence of
the singularity in the surface load, as in the origin the stress is infinitely large. That
the displacement in that point is also infinitely large may not be so surprising.

Another interesting quantity is the distribution of the stresses as a function of
depth, just below the point load, i.e. for r = 0. This is found to be

r = 0 : σzz = 3P

2πz2
, (27.11)
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Fig. 27.2 Vertical normal stress σzz

Fig. 27.3 Uniform load over circular area

r = 0 : σrr = σθθ = −(1 − 2ν)
P

4πz2
. (27.12)

These stresses decrease with depth, of course.
In engineering practice it is sometimes assumed, as a first approximation, that at a

certain depth the stresses are distributed uniformly over an area obtained by drawing
a line from the load at an angle of 45◦. That wouldmean that the vertical normal stress
at a depth z would be P/πz2, homogeneously over a circle of radius z. Comparing
this approximation with the analytical solution (27.1) it appears to be incorrect (the
error is 50% if r = 0), but the trend is correct, as the stresses indeed decrease with
1/z2. In Fig. 27.2 the distribution of the vertical normal stress σzz is represented as a
function of the cylindrical coordinate r , for two values of the depth z.

The assumption of a linear elastic material behavior means that the entire problem
is linear, as the equations of equilibriumand compatibility are also linear. This implies
that the principle of superposition of solutions can be applied. Boussinesq’s solution
can be used as the starting point of more general types of loading, such as a system
of point loads, or a uniform load over a certain given area.

As an example consider the case of a uniform load of magnitude p over a circular
area, of radius a. The solution for this case can be found by integration over a circular
area, see Fig. 27.3. The stresses along the axis r = 0, i.e. below the center of the load,
are found to be
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Fig. 27.4 Rigid plate on half space

r = 0 : σzz = p

(
1 − z3

b3

)
, (27.13)

r = 0 : σrr = p

[
(1 + ν)

z

b
− 1

2

(
1 − z3

b3

)]
, (27.14)

where b = √
z2 + a2.

The displacement of the origin is

r = 0, z = 0 : uz = 2(1 − ν2)
pa

E
. (27.15)

This solution will be used as the basis of a more general case in the next chapter.
Another important problem, which was already solved by Boussinesq, is the prob-

lem of a half space loaded by a vertical force on a rigid plate. The force is represented
by P = πa2 p, see Fig. 27.4. The distribution of the normal stresses below the plate
is found to be

z = 0, 0 < r < a : σzz =
1
2 p√

1 − r2/a2
. (27.16)

This stress distribution is shown in Fig. 27.4. At the edge of the plate the stresses are
infinitely large, as a consequence of the constant displacement of the rigid plate. In
reality the material near the edge of the plate will probably deform plastically. It can
be expected, however, that the real distribution of the stresses below the plate will be
of the form shown in the figure, with the largest stresses near the edge. The center
of the plate will subside without much load.

The displacement of the plate is

z = 0, 0 < r < a : uz = π

2
(1 − ν2)

pa

E
. (27.17)
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Fig. 27.5 Exact and
approximate solution

When this is compared with the displacement below a uniform load, see (27.15),
it appears that the displacement of the rigid plate is somewhat smaller, as could be
expected.

Example 27.1 The distribution of the vertical stresses at a depth z below a uniform
load p on a circular area of radius a can be approximated by a uniform distribution
of stress over an area of radius z + a. The stress below the center of the load then
would be σzz = pa2/(z + a)2. In Fig. 27.5 this approximation is compared with the
exact solution given in Eq. (27.13). The exact solution is shown by the fully drawn
line, the approximate solution by the dots. The approximation appears not to be very
good.

An approximation of the surface settlement can be obtained by integrating the vertical
deformations. This vertical deformation can be approximated by εzz = σzz/E , where
E is Young’s modulus, and the effect of horizontal stresses has been neglected. Thus
the approximate vertical deformation is εzz = pa2/(E(z + a)2). Integration from
z = 0 to z = ∞ gives uz = pa/E , which is about a factor 2 smaller than the exact
result given in Eq. (27.15). The structure of the approximation agrees very well with
the exact solution, however.

Actually this agreement is less surprising than it might seem. Because of the
linearity of the system the displacement must be proportional to the load p, and the
only other parameters in the problem are the radius a and Young’s modulus E . The
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only combination of these parameters that will lead to a displacement (which has the
dimension of a length) is pa/E .

In engineering practice the displacement due to a loaded plate is often expressed
by a subgrade constant c, by writing uz = p/c. In this case it appears that c = E/a,
which relates the subgrade constant to Young’s modulus and the plate size a. In
reality a dimensionless multiplication factor may have to be included, of course.



Chapter 28
Newmark

This chapter presents an ingenious method for the determination of the vertical
normal stresses at a certain depth, caused by some arbitrary load distribution on the
surface, developed by Nathan M. Newmark, Professor at the University of Illinois.

28.1 Newmark’s Problem

The basis of Newmark’s analysis is Eq. (27.13), which gives the vertical normal stress
at a depth z below the center of a uniform load p on a circular area, see Fig. 28.1.
This equation can also be written as

r = 0 : σzz

p
= 1 − 1

√
(1 + a2/z2)3

. (28.1)

It will appear that this formula can be used to develop a technique to calculate the
vertical normal stress σzz below a load over an area of arbitrary shape. The method
can be constructed in the following way.

Equation (28.1) gives the value of the vertical normal stress σzz for a given value
of a/z. Conversely, it is also possible, of course, to calculate the value of a/z for
which certain values of σzz/p occur, in multiples of 0.1. For instance, by taking
σzz/p = 0.5, it follows from Eq. (28.1) that a/z should be equal to 0.7664. In this
way the values in Table28.1 have been calculated.

All the values given in the table can easily be verified using Eq.28.1. The first
value expresses that a ring of radius 0 leads to a stress σzz = 0, and the last value
expresses that in case of a uniform load over the entire surface the vertical stress σzz

at a depth z always is p.
It also follows from the table that for a load on a circle of radius 0.7664 z the

stress σzz at a depth is 0.5 p, and that for a load on a circle of radius 0.9176 z the
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r

z

p

Fig. 28.1 Uniform load on circular area

Table 28.1 Vertical stresses
below a circular load

a/z σzz/p

0.0000 0.0

0.2698 0.1

0.4005 0.2

0.5181 0.3

0.6370 0.4

0.7664 0.5

0.9176 0.6

0.1097 0.7

1.3871 0.8

1.9083 0.9

∞ 1.0

r

z

p
x

y

Fig. 28.2 Uniform load on a ring

stress is 0.6 p. The increase by 0.1 p must be due to the additional load, which is
a uniform load over a circular ring, between the circles of radius 0.7664 z and the
circle of radius 0.9176 z, see Fig. 28.2. It can be concluded that each ring shaped
load, between two successive circles from Table28.1 leads to a stress σzz = 0.1 p
in a point at depth z just between the center of the circles and rings. If each ring is
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Fig. 28.3 Newmark’s diagram

further subdivided into 100 equal sectors it follows that the load on every individual
segment leads to a contribution to the stress σzz of magnitude 0.001 p.

Using these properties, Newmark’s diagram can be constructed, see Fig. 28.3. A
load of magnitude p on each of the 1000 elementary rectangles in this diagram gives
rise to a stress σzz = 0.001 p, in the point at a depth z below the origin.

For clarity, not all the radial lines inside the smallest circle in Fig. 28.3 have been
fully continued to the center, because they all intersect in that point, and drawing
all lines would result in a big blue spot. It should be remembered that in reality the
inner ring, inside the smallest circle, contains 100 elementary rectangles, as each of
the other rings. In the outer ring all radial lines should be extended towards infinity.

The principle of the application of Newmark’s diagram is that a load of magnitude
p on any one of the 1000 elementary rectangles leads to a stress σzz = 0.001 p in
a point at depth z just below the center of the circles. This is valid for each of the
rectangles, and because the problem is linear, the stress caused by various loads
may be superimposed. This means that a load of magnitude p on a surface that
covers n rectangles, leads to a stress σzz at a depth z below the origin of magnitude
σzz = n × 0.001 p.



228 28 Newmark

The value of the depth z plays an important role in the method. It actually deter-
mines the scale of the problem in the horizontal plane. To determine the stress at a
deeper point the value of z is somewhat larger, and the size of the loaded area in the
diagram will be somewhat smaller. This smaller area then covers a smaller number
of rectangles, so that the stress will be smaller, as expected. This will be illustrated
by an example.

The method can also be used for non-uniform loads. As a load p on any rectangle
leads to a stress σzz = 0.001 p, it follows that a load kp on a rectangle results in a
contribution to the stress ofmagnitudeσzz = k × 0.001 p. Thiswill also be illustrated
in the example.

It may be mentioned that similar diagrams can be developed for other stress com-
ponents and for displacement components, sometimes for a given value of Poisson’s
ratio ν. In geotechnical engineering the most important stress component is the ver-
tical normal stress σzz .

Example 28.1 As an example the problem of a load on an L-shaped region is con-
sidered, see Fig. 28.4. On the short leg the load is 15 kPa, on the larger leg the load
is 5 kPa. The problem is to determine the vertical normal stress at a depth of 8 m
below the point A. The first step in the solution is to draw the loaded area on such
a scale that the reference length z in Newmark’s diagram corresponds to 8 m, see
Fig. 28.5, and such that the point A is located in the origin of the circles. The short
leg of the loaded area now covers about 7 rectangles, and the long leg covers about
34 rectangles. This means that the stress is

σzz = 7 × 0.001 × 15 kPa + 34 × 0.001 × 5 kPa = 0.275 kPa.

In order to determine the stress at a greater depth, say at a depth of 16 m, the loaded
area should be drawn half as large. This then covers a smaller number of rectangles,
so that the stress will be smaller.

Fig. 28.4 Example 28.1
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Fig. 28.5 Example 28.1

Problem 28.1 In the example considered above, determine the vertical stress σzz at
a depth of 8m below the corner point in the upper right corner in the plan.

Problem 28.2 Determine the stress in that corner point at the surface (for z = 0).
Also determine the stress in the point A at the surface. And finally, also calculate the
stress at a depth of 8000 m.

Problem 28.3 A square region of dimensions 4 m times 4 m is loaded by a uniform
load 10 kPa. Determine the vertical normal stress at a depth of 4 m in a number of
characteristic points : the center, one of the corners, and a point in the center of one
of the sides.



Chapter 29
Flamant

On the basis of Boussinesq’s solution the French scientist A. Flamant obtained in
1892 the solution for a vertical line load on a homogeneous isotropic linear elastic
half space.

29.1 Flamant’s Problem

The two-dimensional equivalent of Boussinesq’s problem of a point load on a half
space is shown in Fig. 29.1. It can be considered as the superposition of an infinite
number of point loads, uniformly distributed along the y-axis. A derivation of this
solution is given in Appendix B.

In this case the stresses in the x, z-plane are

σzz = 2F

π

z3

r4
= 2F

πr
cos3 θ, (29.1)

σxx = 2F

π

x2z

r4
= 2F

πr
sin2 θ cos θ, (29.2)

σxz = 2F

π

xz2

r4
= 2F

πr
sin θ cos2 θ. (29.3)

In these equations r = √
x2 + z2. The quantity F has the dimension of a force per

unit length, so that F/r has the dimension of a stress.
Expressions for the displacements are also known, but these contain singular

terms, with a factor ln r . This factor is infinitely large in the origin and at infinity.
Therefore these expressions are not so useful.
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rθ

x

z

F

σxx

σxz

σzz

σzx

Fig. 29.1 Flamant’s problem

x

z

p

r1
r2

θ1 θ2

x

z

p

Fig. 29.2 Strip load

On the basis of Flamant’s solution several other solutions may be obtained using
the principle of superposition.

An example is the case of a uniform load of magnitude p on a strip of width 2a,
see the left half of Fig. 29.2. In this case the stresses are

σzz = p

π

[
(θ1 − θ2) + sin θ1 cos θ1 − sin θ2 cos θ2

]
, (29.4)

σxx = p

π

[
(θ1 − θ2) − sin θ1 cos θ1 + sin θ2 cos θ2

]
, (29.5)

σxz = p

π

[
cos2 θ2 − cos2 θ1

]
. (29.6)

In the center of the plane, for x = 0: θ2 = −θ1, so that the stresses at the center are

x = 0 : σzz = 2p

π

[
θ1 + sin θ1 cos θ1

]
, (29.7)

x = 0 : σxx = 2p

π

[
θ1 − sin θ1 cos θ1

]
, (29.8)
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Fig. 29.3 Stresses at x = 0

x = 0 : σxz = 0. (29.9)

That the shear stress σxz = 0 for x = 0 is a consequence of the symmetry of this
case. The stresses σxx and σzz are shown in Fig. 29.3, as functions of the depth z.

Both stresses tend towards zero for z → ∞, of course, but the horizontal normal
stress appears to tend towards zero much faster than the vertical normal stress. It also
appears that at the surface the horizontal stress is equal to the vertical stress. At the
surface this vertical stress is equal to the load p, of course, because that is a boundary
condition of the problem. Actually, in every point of the surface below the strip load
the normal stresses are σxx = σzz = p.

Itmay be interesting to further explore the result that the shear stressσxz = 0 along
the axis of symmetry x = 0 in the case of a strip load, the right half of Fig. 29.2.
It can be expected that this symmetry also holds for the horizontal displacement,
so that ux = 0 along the axis x = 0. This means that this solution can also be used
as the solution of the problem that is obtained by considering the right half of the
strip problem only, see the right half of Fig. 29.3. In this problem the quarter plane
x > 0, z > 0 is supposed to be loaded by a strip load of width a on the surface
z = 0, and the boundary conditions on the boundary x = 0 are that the displacement
ux = 0 and the shear stressσxz = 0, representing a perfectly smooth and rigid vertical
wall. The wall is supposed to extend to an infinite depth, which is impossible, but
for a smooth rigid wall of finite depth the solution may be considered as a first
approximation.

The formulas (29.7) and (29.8) can also be written as

x = 0 : σzz = 2p

π

[
arctan

(a
z

) + az

a2 + z2
]
, (29.10)

x = 0 : σxx = 2p

π

[
arctan

(a
z

) − az

a2 + z2
]
. (29.11)
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Fig. 29.4 Line load next to a smooth rigid wall

Integration of the horizontal stress σxx from z = 0 to z = h gives the total force on
a wall of height h,

Q = 2

π
ph arctan

(a
h

)
. (29.12)

For a very deep wall (h � a) this becomes, because then arctan(a/h) ≈ a/h,

h → ∞ : Q = 2

π
pa = 0.637 pa. (29.13)

The quantity pa is the total vertical load F (per unit length perpendicular to the
plane of the drawing). It appears that the total horizontal reaction force in an elastic
material is 0.637 F .

For a very shallow wall (h � a) the total lateral force will be, because then
arctan(a/h) ≈ π/2,

h → 0 : Q = ph. (29.14)

This is in agreement with the observationmade earlier that the value of the horizontal
stress at the surface, just below the load, is σxx = p. For a very short wall the
horizontal force will be that horizontal stress, multiplied by the length of the wall.

Another interesting application of Flamant’s solution is shown in Fig. 29.4. In the
case of a surface load by two parallel line loads it can be expected that at the axis
of symmetry (x = 0) the horizontal displacement and the shear stress will be zero,
because of symmetry. This means that the solution of that problem can also be used
as the solution of the problem of a line load at a certain distance from a smooth rigid
wall, because the boundary conditions along the wall are that ux = 0 and σzx = 0
for x = 0. By the symmetry of the problem shown in the left half of Fig. 29.4, these
conditions are satisfied by the solution of that problem.

The horizontal stresses against the wall are given by Eq. (29.2) for Flamant’s basic
problem, multiplied by 2, because there are two line loads and each gives the same
stress. In this formula the value of x should be taken as x = a, where a is the distance
of the force to the wall. The horizontal stress against the wall in this case is
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σxx = 4

π

Fa2z

(a2 + z2)2
. (29.15)

The distribution of the horizontal stresses against the wall are also shown in Fig. 29.4.
The maximum value occurs for z = 0.577 a, and that maximum stress is

σxx−max = 0.4135
F

a

The total force on awall of depth h can be found again by integration of the horizontal
stress over the depth of the wall. This gives

Q = 2

π

F

1 + a2/h2
. (29.16)

If a = 0 this is Q = 0.637 F . If a increases the value of Q will gradually become
smaller. A force at a larger distance from the wall will give smaller stresses against
the wall, as could be expected.

Problem 29.1 Is it a coincidence that in each of the formulas (29.12) and (29.16)
the same factor 2/π appears?

Problem 29.2 Transform the stresses in Flamant’s solution into polar coordinates,
or in other words, derive expressions for the stress components σrr , σθθ and σrθ. Note
that the result is rather special.



Chapter 30
Layered Soil

An important problem of soil mechanics practice is the prediction of the settlements
of a structure built on the soil. For a homogeneous isotropic linear elastic mate-
rial the deformations could be calculated using the theory of elasticity. That is a
completely consistent theory, leading to expressions for the stresses and the dis-
placements. However, solutions are available only for a half space and a half plane,
not for a layered material (at least not in closed form). Therefore in this chapter an
approximate solution is considered (Fig. 30.1).

In the approximate analysis it is first postulated that the vertical stresses in the
soil, whatever its true properties are, can be approximated by the stresses that can be
calculated from linear elastic theory. On the basis of these stresses the deformations
are then determined, using the best available description of the relation between stress
and strain, which may be non-linear. If the soil is layered, the deformations of each
layer are calculated using its own properties, and then the surface displacements are
determined by a summation of the deformations of all layers. In this way the different
properties of the layers can be taken into account, including a possible increase of
the stiffness with depth.

The procedure is not completely consistent, because in a soil consisting of layers
of different stiffness, the stress distribution will not be the same as in a homogeneous
linear elastic material. A partial justification may be that the stresses following from
an elastic computation at least satisfy the equilibrium conditions. Also it has been
found, by comparison of solutions for layeredmaterials with the solution for a homo-
geneous material, that the distribution of the vertical stress σzz is not very sensitive
to the material properties, provided that the differences in material properties are
not very large, i.e. excepting extreme cases such as a very stiff layer on a very soft
subsoil.

© Springer International Publishing AG 2018
A. Verruijt, An Introduction to Soil Mechanics, Theory and Applications
of Transport in Porous Media 30, DOI 10.1007/978-3-319-61185-3_30

237



238 30 Layered Soil

Fig. 30.1 Load on layered soil

Fig. 30.2 Reservoir on soft soil

30.1 Example

The computation method can best be illustrated by considering an example. This
example concerns a circular fluid reservoir, having a diameter of 20m, which is
being constructed on a foundation plate on a layer of fairly soft soil, of 20m thick-
ness, see Fig. 30.2. Below the soft soil the soil is a hard layer of sand or rock. The
compressibility of the soft soil is C10 = 50. The pressure of the foundation plate
on the soil is 20kPa, and the additional load by the fluid in the reservoir is 100kPa.
The problem is to determine the settlement caused by the load, in the center of the
reservoir.

The example has been elaborated in Table30.1. The soil has been subdivided into
10 layers, of 2m thickness each. The first column of the table gives the average depth
of each layer. The second column gives the effective stress due to the weight of the
soil, assuming that the effective unit weight of the soil is 10 kN/m3, so that for each
meter depth the stress increases by 10kPa. The third column gives the additional
stress due to the weight of the foundation plate. These stresses have been calculated
using the formula for the stresses below a uniform circular load, Eq. (27.13),

http://dx.doi.org/10.1007/978-3-319-61185-3_27
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Table 30.1 Computation of settlement
Depth (m) Weight (kPa) Found.

(kPa)
σ1 (kPa) Load (kPa) σ (kPa) log(σ/σ1) �h (m)

1 10.00 19.98 29.99 99.90 129.89 0.6366 0.025

3 30.00 19.52 49.52 97.63 147.15 0.4730 0.019

5 50.00 18.21 68.21 91.06 159.27 0.3683 0.015

7 70.00 16.23 86.23 81.14 167.37 0.2880 0.011

9 90.00 14.01 104.01 70.06 174.07 0.2236 0.009

11 110.00 11.90 121.90 59.49 181.39 0.1726 0.007

13 130.00 10.04 140.04 50.20 190.24 0.1330 0.005

15 150.00 8.48 158.48 42.40 200.88 0.1030 0.004

17 170.00 7.19 177.19 35.96 213.15 0.0802 0.003

19 190.00 6.14 196.14 30.70 226.84 0.0631 0.002

σzz = p

(
1 − z3

b3

)
, (30.1)

in which b = √
z2 + a2, and a is the radius of the circular reservoir. The fourth

column is the sum of the second and third columns. This is considered as the initial
stress, before the application of the load, but after the construction of the foundation
plate. The fifth column gives the stresses caused by the load, the weight of the
fluid in the reservoir, which was assumed to be 100kPa. These stresses have also
been calculated by the formula (30.1). The sixth column is the sum of the fourth
and the fifth column. These are the final effective stresses. The seventh and eight
columns contain the actual computation of the deformations of each layer, using
Terzaghi’s logarithmic formula, see Chap. 14, and the value C10 = 50. By adding
the deformations of the layers the total settlement of the reservoir is obtained, which
is found to be 0.10m. That is not very small, and it might mean that the construction
of the reservoir on such a soft soil is not feasible.

The procedure described above can easily be extended. It is, for instance, simple to
account for different properties in each layer, by using a variable compressibility. The
method is also not restricted to circular loads. The method can easily be combined
with Newmark’s method to calculate the stresses below a load of arbitrary magnitude
on an area of arbitrary shape. The method can also be elaborated with little difficulty
to a computer program. Such a program may use a numerical form of Newmark’s
method to determine the stresses, and then calculate the settlements of the loaded
area by the method illustrated above. The formula to compute the deformation of
each layer may be Terzaghi’s formula, but it may also include a time dependent term,
to account for creep.

Problem 30.1 The method presented in this chapter can easily be executed by a
spreadsheet program on a computer.Write such a program and repeat the calculations
from the table. The program will be more flexible if a separate column is used for
the compressibility of the layers.

http://dx.doi.org/10.1007/978-3-319-61185-3_14
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Problem 30.2 Repeat the computations of the example for the case of a layered soil,
with C10 = 20 in the top 10m, and C10 = 80 in the lower 10m. On the average that
is 50, just as in the example, but the settlement will appear to be different. Do you
expect the settlement to be more than 0.10m or less?

Problem 30.3 Calculate the settlement of a point on the boundary of the reservoir.
Use Newmark’s method to determine the stresses at the various depths.



Chapter 31
Lateral Stresses

In the previous chapters some elastic solutions of soil mechanics problems have been
given. It was argued that elastic solutions may provide a reasonable approximation
of the vertical stresses in a soil body loaded at its surface by a vertical load. Also,
an approximate procedure for the prediction of settlements has been presented. In
the next chapters, the analysis of the horizontal stresses will be discussed. This is of
particular interest for the forces on a retaining structure, such as a retaining wall or
a sheet pile wall.

31.1 Coefficient of Lateral Earth Pressure

As stated before, see Chap. 5, even in the simplest case of a semi-infinite soil body,
without surface loading, see Fig. 31.1, it is impossible to determine all stresses caused
by the weight of the soil. It seems reasonable to assume that in a homogeneous soil
body with a horizontal top surface the shear stresses σzx , σzy and σxy are zero, and it
also seems natural to assume that the vertical normal stressσzz increases linearly with
depth, σzz = γz. These assumptions ensure that the condition of vertical equilibrium
is satisfied. The horizontal stresses σxx and σyy , however, can not be determined
unequivocally from the equilibrium conditions.

Actually, it can be stated that the stressesmust satisfy the equations of equilibrium,

∂σxx

∂x
+ ∂σyx

∂y
+ ∂σzx

∂z
= 0, (31.1)

∂σxy

∂x
+ ∂σyy

∂y
+ ∂σzy

∂z
= 0, (31.2)

∂σxz

∂x
+ ∂σyz

∂y
+ ∂σzz

∂z
− γ = 0, (31.3)
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Fig. 31.1 Half space

σyz = σzy, (31.4)

σzx = σxz, (31.5)

σxy = σyx . (31.6)

These equations constitute a set of six conditions for the nine stress components, at
every point of the soil body. It seems probable that many solutions of these equations
are possible, and it can not be decided, without further analysis, what the best solution
is. It seems natural to assume, at least for a homogeneous material, or a material
consisting of horizontal layers, that the stress state may be such that the vertical
normal stress increases linearly with depth, in proportion to the unit weight of the
soil. More precisely, it is assumed that the stresses can be written as

σzz = γz, (31.7)

σxx = σyy = f (z), (31.8)

σyz = σzy = 0, (31.9)

σzx = σxz = 0, (31.10)

σxy = σyx = 0. (31.11)

This field of stresses satisfies all the equilibrium conditions, and the boundary condi-
tions on the upper surface of the soil body, i.e. for z = 0 the stresses on a horizontal
plane are zero, σzz = 0, σzx = 0, and σzy = 0. That all shear stresses in the soil body
are zero seems a realistic assumption if all vertical columns of the soil have the same
properties. There will probably be no shear stress transfer between these columns.

The function f (z) in Eq. (31.8) remains arbitrary, and in principle the stresses
σxx and σyy need not be equal. It has been assumed that the horizontal stress in
any horizontal plane is the same in all directions, so that there are no preferential
directions in the horizontal plane. Theoretically speaking, the function f (z), which
describes the horizontal stresses, need not be continuous. Discontinuities in this
function are allowed, and may occur especially if there are discontinuities in the
soil properties. It may be remarked that even the expressions for the vertical normal
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stress σzz and for the shear stresses do not follow necessarily from the equilibrium
conditions. It may well be that these stresses depend upon x and y, if the soil stiffness
is not constant in horizontal planes. In case of a very soft inclusion in a rather stiff
soil body, the stresses may be concentrated in a region around the soft inclusion. This
is called arching, as the stiffer soil may form a certain arch to transmit the load from
upper layers to the subsoil. In homogeneous soil, however, or in soils without large
differences in stiffness, the stress distribution given above can be considered as a
reasonable approximation. Such a soil body has often been created, in its geological
history, by gradual sedimentation, often under water. In such conditions the gradual
increase of the thickness of the soil body will normally lead to a stress state of the
form given above.

The stress state described by Eqs. (31.7)–(31.11) can be made somewhat more
practical by writing f (z) = Kσzz , where K is an unknown coefficient, that may
depend upon the vertical coordinate z. The horizontal stresses then are

σxx = σyy = Kσzz = Kγz, (31.12)

where K is the coefficient of lateral earth pressure. It gives the ratio of the lateral
normal (effective) stress to the vertical (effective) stress. Theoretically speaking, the
problem has not be cleared, because the value of K is still unknown, but it seems to
make sense to assume that the horizontal stresses will also increase with depth, if the
vertical stresses do so. Thus, it can be assumed that the coefficient K will not vary
too much, at least compared to the original function f (z).

It may be mentioned that for historical reasons the coefficient K is denoted as a
coefficient of earth pressure, in agreement with most soil mechanics literature. This
is one of the few instances where the word earth is used in soil mechanics, rather than
the word soil, or ground. No special meaning should be attached to this terminology.
In this book the coefficient will sometimes also be denoted as the horizontal (or
lateral) stress coefficient.

The value of the lateral earth pressure coefficient K depends upon the material,
and also on the geological history of the soil. In this chapter some examples of
possible values, or the possible range of values, will be given, for certain simple
materials. It will appear to be illustrative to describe the relations between vertical
and horizontal stresses in a stress path. In Chap.26 the quantities σ and τ have been
introduced for that purpose, being the location of the center and the radius of Mohr’s
circle. In this case these quantities are

σ = 1

2

(
σzz + σxx

)
, (31.13)

τ = 1

2

∣
∣σzz − σxx

∣
∣. (31.14)

It now follows, with (31.12), and assuming that K ≤ 1,

http://dx.doi.org/10.1007/978-3-319-61185-3_26


244 31 Lateral Stresses

Fig. 31.2 Stress path for a fluid

τ

σ
= 1 − K

1 + K
. (31.15)

Often the horizontal stress will indeed be smaller than the vertical stress, so that
K < 1, but this is not absolutely necessary.

31.2 Fluid

In a fluid the shear stresses can be neglected, compared to the pressure. This means
that the normal stress is equal in all directions. This means that

K = 1. (31.16)

If K = 1 the horizontal stress is equal to the vertical stress.With (31.15) this gives

τ

σ
= 0. (31.17)

The stress path is shown in Fig. 31.2. This stress path refers to the case that a container
is gradually filled with water. It would also apply if gravity would gradually develop
in a fluid.

Soil is not a fluid, but certain very soft soils come close: the mud collected by
dredging often is similar to a thick fluid. Very soft clay, with a high water content,
also behaves similar to a fluid.When spread out it will flow until an almost horizontal
surface has been formed. For such soils the value of K will be close to 1, and the
stress path of Fig. 31.2 is realistic.

31.3 Elastic Material

A possible approach to the behavior of soils is to consider it as an elastic material.
In such a material the stresses and strains satisfy Hooke’s law. In a situation in which
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Fig. 31.3 Stress path for elastic material

there can be no lateral deformation, the stresses must satisfy the condition

εxx = − 1

E

[
σxx − ν(σyy + σzz)

] = 0,

εyy = − 1

E

[
σyy − ν(σzz + σxx )

] = 0,

if the z-direction is vertical. In a medium of large horizontal extent it can be expected
that σxx = σyy . Then

εxx = εyy = 0 : σxx = σyy = ν

1 − ν
σzz, (31.18)

or
K = ν

1 − ν
. (31.19)

If Poisson’s ratio varies between 0 and 0.5, the value of K varies from 0 to 1.
It follows from (31.15) and (31.19) that in this case

τ

σ
= 1 − 2ν. (31.20)

For a number of values of Poisson’s ratio ν, between 0 and 1
2 , the stress path is shown

in Fig. 31.3. If ν = 1
2 the horizontal stresses are equal to the vertical stresses. In that

case there are no volume changes, just as in a fluid. The stress path then is equal to
the stress path in a fluid. If ν = 0 the stress path has a slope of 45◦.

If the horizontal strains are not zero, but it is still assumed that the two horizontal
stresses, σxx and σyy , are equal, these stresses are

σxx = σyy = ν

1 − ν
σzz − E

1 − ν
εxx . (31.21)
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The first term is the value obtained in Eq. (31.18), when there are no lateral strains,
and the second term describes the influence of the lateral strain. In case of a positive
horizontal strain, the horizontal stress decreases, and then K is getting smaller. A
negative horizontal strain, for instance due to some lateral compression, will result
in a larger horizontal stress. The value of K then will seem to increase. These are
general tendencies, with a validity beyond elasticity.

In some older publications Eq. (31.19) has been proposed as a generally applicable
relation for soil and rock. That is not true. In the elastic analysis given above it is
assumed that the stresses are being developed gradually, by gravity being applied
gradually, on an existing soil in an unstressed state. And during this entire process the
relation between stress and strain should be linear, and no horizontal deformations
should occur. Geological history usually is much more complex, and the material
behavior is non-linear. This means that the value of the lateral stress coefficient K
in general can not be predicted with any accuracy. It can be expected that in a region
between two deep rivers the value of K will be relatively small, whereas in a valley
between two mountain ridges that are moving towards each other due to tectonic
motion, the stress coefficient K will be relatively large.

31.4 Elastic Material Under Water

In order to take groundwater into account, the soil may be schematized as a linear
elastic material, that is being deposited under water, see Fig. 31.4. If the weight of the
material is again carried by the vertical stresses, the vertical total stress will increase
linearly with depth,

σzz = γz, (31.22)

in which γ is the total volumetric weight of the soil, including the water in the pores.
The pore pressures are assumed to be hydrostatic,

p = γwz, (31.23)

so that the vertical effective stresses are

Fig. 31.4 Elastic material under water
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σ′
zz = σzz − p = (γ − γw)z. (31.24)

It is again assumed that in the process of the development of these stresses during
deposition of the soil no horizontal deformations of the soil skeleton occur. The
deformation of this soil skeleton is determined by the effective stresses, and in this
case, for a linear elastic material, it follows that

σ′
xx = σ′

yy = ν

1 − ν
σ′
zz = ν

1 − ν

(
γ − γw

)
z. (31.25)

This means that
K ′ = ν

1 − ν
, (31.26)

where the symbol K ′ indicates the lateral stress coefficient for the effective stresses.
The horizontal total stress now is

σxx = σ′
xx + p = K ′(γ − γw)z + γwz. (31.27)

This could be written as
σxx = Kσzz, (31.28)

where then
K = K ′ − (

1 − K ′)γw

γ
. (31.29)

It should be noted that this relation is valid only under very special conditions.
The derivation assumes that the groundwater table coincides with the soil surface,
and that the soil is homogeneous in depth. Actually, it seems that a lateral stress
coefficient should be used preferably for the effective stresses only. The horizontal
total stresses should be determined afterwards by adding the pore pressure to the
horizontal effective stress.

Example 31.1 The effective stress path (ESP) for the case of an elastic material
under water can be constructed by noting that in this case

σ′ = 1

2

(
σ′
zz + σ′

xx

) = 1

2

(
1 + K ′)(γ − γw

)
z,

τ ′ = 1

2

(
σ′
zz − σ′

xx

) = 1

2

(
1 − K ′)(γ − γw

)
z,

so that

τ ′

σ′ = 1 − K ′

1 + K ′ = 1 − 2ν.



248 31 Lateral Stresses

Fig. 31.5 Elastic material
under water

Fig. 31.6 Elastic material
under water

For three values of ν the effective stress path is shown in Fig. 31.5. It may be noted
that the shape of these paths is the same as in the case of a dry elastic material, see
Fig. 31.3. There is a difference in scale, however, because the effective weight under
water is smaller.

The total stress path (TSP) for the case of an elastic material under water can be
constructed by using the expressions (31.22) and (31.27). The parameters for the
total stress path are

σ = 1

2

(
σzz + σxx

) = 1

2

(
1 + K

)
γz,

τ = 1

2

(
σzz − σxx

) = 1

2

(
1 − K

)
γz,

so that

τ

σ
= 1 − K

1 + K
.

Using the expressions (31.29) and (31.26) for the parameters K and K ′, and assuming
that γw/γ = 1

2 , this can be written as

τ

σ
= 3

1 − 2ν

1 + 2ν
. (31.30)

For three values of ν the total stress path is shown in Fig. 31.6.



Chapter 32
Rankine

The possible stresses in a soil are limited by the Mohr-Coulomb failure criterion. In
1857 the Scottish engineer W.J.M. Rankine used this criterion to establish limiting
values for the stresses in the interior of a soil mass. This will be shown to lead to
limits for the lateral stress coefficient K in this chapter.

For simplicity the considerations will be restricted to dry soils at first. The influ-
ence of pore water will be investigated later.

32.1 Mohr–Coulomb

As seen before, see Chap.20, the stress states in a soil can be limited, with good
approximation, by the Mohr–Coulomb failure criterion. This criterion is that the
shear stresses on any plane are limited by the condition

τ < τ f = c + σ tan φ, (32.1)

where c is the cohesion, and φ is the angle of internal friction. The criterion can be
illustrated using Mohr’s circle, see Fig. 32.1.

If it is assumed that σzz and σxx are principal stresses, and that σzz is known (by
the weight of the load and the soil), it follows that the value of the horizontal stress
σxx can not be smaller than indicated by the small circle, and not larger than defined
by the large circle. The ratio between the minor and the major principal stress can be
determined by noting, see Fig. 32.2, that the radius of Mohr’s circle is 1

2 (σ1 − σ3),
and that the location of the center is at a distance 1

2 (σ1 + σ3) from the origin. It
follows that for a circle touching the envelope,

sin φ =
1
2 (σ1 − σ3)

1
2 (σ1 + σ3) + c cot φ

.
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Fig. 32.1 Mohr–Coulomb

Fig. 32.2 Ratio of principal stresses

so that

σ3 = 1 − sin φ

1 + sin φ
σ1 − 2c

cosφ

1 + sin φ
. (32.2)

This relation has been derived before, in Chap.20. The two coefficients in this
equation can be related by noting that

http://dx.doi.org/10.1007/978-3-319-61185-3_20
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cosφ

1 + sin φ
=

√
1 − sin2 φ

1 + sin φ
=

√
(1 + sin φ)(1 − sin φ)

1 + sin φ
=

√
1 − sin φ

1 + sin φ
.

This means that Eq. (32.2) can be written as

σ3 = Kaσ1 − 2c
√
Ka, (32.3)

where

Ka = 1 − sin φ

1 + sin φ
. (32.4)

Apart from the constant term 2c
√
Ka there appears to be a given ratio of the minor

and the major principal stress.
Formula (32.3) can be written in inverse form as

σ1 = Kpσ3 + 2c
√
Kp, (32.5)

where

Kp = 1 + sin φ

1 − sin φ
. (32.6)

The coefficients Ka and Kp, which give the smallest and the largest ratio of the two
principal stresses (apart from a constant term), are denoted as the coefficients of
active earth pressure (Ka) and passive earth pressure (Kp), respectively.

It can be seen that
Ka < K < Kp. (32.7)

If φ = 30◦ (this is a common value for sand, on the small side), it follows that

φ = 30◦ : 1

3
< K < 3. (32.8)

The lateral stress coefficient K appears to be limited by values about 1
3 , and about 3.

The precise limits depend upon the angle of internal friction φ.
As seen in the previous chapter for the elastic case, lateral extension of the soil

leads to a smaller value of the lateral stress coefficient K , whereas lateral compression
leads to a larger value of the coefficient K . The extreme situations are denoted as
active earth pressure and passive earth pressure, respectively. The case of active
earth pressure is supposed to occur when a retaining structure is being pushed away
by the soil stresses. Passive earth pressure denotes that the structure is being pushed
into the ground, in which a reaction is being developed.

The large difference between the minimum and the maximum lateral stress is
characteristic for frictional materials such as soils.
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Fig. 32.3 Active earth pressure

32.2 Active Earth Pressure

It can be expected that the smallest value of the horizontal stress occurs in the case
of a retaining wall that is moving away from the soil, see Fig. 32.3. The Mohr circle
for that case is also shown in the figure. The pole for the vectors normal to the planes
is the rightmost point of the circle. This means that the critical shear stress acts on
planes making an angle 1

4π + 1
2φ with the horizontal direction, that is an angle of

1
4π − 1

2φ with the vertical direction. These planes have been indicated in the left half
of Fig. 32.3. It is sometimes imagined that the soil indeed slides along these planes
in case of failure.

The vertical stresses along the wall are

σzz = γz, (32.9)

in which γ is the volumetric weight of the soil, and z is the depth below soil surface.
The horizontal stresses now are, with (32.3),

σxx = Kaγz − 2c
√
Ka . (32.10)

The total horizontal force on a wall of height h is obtained by integration from z = 0
to z = h. This gives

Q = 1

2
Kaγh

2 − 2ch
√
Ka . (32.11)

The distribution of the horizontal normal stress σxx against the wall is shown in
Fig. 32.4. It appears that at the top of the wall tensile stresses are generated, over a
depth of 2c/γ

√
Ka . That may be possible in the soil for a short while, in undrained

conditions, with negative stresses in the water. In fully drained conditions this is
not possible, because then there should be tensile stresses between the particles, or
between the particles and the wall. Therefore, it is usually assumed that in a top
layer of the soil, of height 2c/γ

√
Ka , cracks will appear in the soil, and between the
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Fig. 32.4 Horizontal stress in case of active earth pressure

Fig. 32.5 Horizontal stresses, with cracks in the soil

soil and the wall. For that case the stress distribution is shown in Fig. 32.5. For the
vertical stresses the cracked zone acts as a surcharge.

In the case with cracks at the surface, shown in Fig. 32.5, the total horizontal force
now is

Q = 1

2
Kaγh

2
r , (32.12)

in which hr is the reduced height of the wall,

hr = h − 2c/γ
√
Ka. (32.13)

32.3 Passive Earth Pressure

The case of passive earth pressure, inwhich the horizontal soil stress has itsmaximum
value, can be considered to correspond to a smooth vertical wall that is being pushed
in horizontal direction into the soil, see Fig. 32.6. Again the Mohr circle has been
shown in the figure as well, with the pole in this case being located in the leftmost
point of the circle. The critical shear stress τ = τ f = c + σ tan φ occurs on planes
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Fig. 32.6 Passive earth pressure

Fig. 32.7 Horizontal stresses in case of passive earth pressure

making an angle 1
4π − 1

2φ with the horizontal direction. These planes have also been
indicated in the left half of the figure. In this case the potential sliding planes are
shallower than 45◦ (Fig. 32.6).

In this case the horizontal stresses are, see Fig. 32.7

σxx = Kpγz + 2c
√
Kp. (32.14)

The total horizontal force on a wall of height h is obtained by integration of the
horizontal stresses from z = 0 to z = h. This gives

Q = 1

2
Kpγh

2 + 2ch
√
Kp. (32.15)

In the passive case the cohesion c appears to lead to a constant factor in the expression
for the horizontal stresses. There is no reason for cracks to appear, as there are no
tensile stresses in this case.

The two extreme states of stress considered here are often denoted as the Rankine
states, after the Scottish scientist Rankine (1857), who indicated that these stress
states are the limiting conditions. In the case of a solid retaining wall, on a good
foundation, the actual horizontal stresses will be somewhere between these two
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extremes. As the limits are so far apart (there may be a factor 9 between them), this
leaves the horizontal stress σxx undetermined to a high degree.

32.4 Neutral Earth Pressure

It has been found that the possible states of stress in a soil may vary between fairly
wide limits, especially if the friction angle is large. For a normal sand, with φ = 30◦,
the smallest value of the horizontal stress is 1

3 of the vertical stress (which usually is
known from the surcharge and the weight of the overlying soil), and the largest value
is 3 times the vertical stress. In case of a rigid retaining wall, the lateral stress against
the wall is unknown, at least from a strictly scientific viewpoint. In reality there may
be some additional information that may help to determine the probable range of
the horizontal stress. If the horizontal displacements of the wall are practically zero,
the ratio of the horizontal stress to the vertical stress is denoted as the neutral earth
pressure coefficient K0. In an elastic material this value would be K0 = ν/(1 − ν),
but this is not a very good estimate, as soil is not an elastic material, and the history of
the development of stresses in the soil may be more important than the condition of
zero lateral deformation. Nevertheless, inmany cases it is unlikely that the coefficient
K0 would be larger than 1, as this would require some form of motion of the wall
towards the soil mass. Also, the active state of stress (say 1

3 ) may also be unlikely, if
the wall is rather stiff and strong. All this suggests that the neutral stress coefficient
may perhaps vary in the range from 0.5 to 1.0. For soft clay the value may be close
to 1, and for sands values of about 0.6 or 0.7 have been found to give reasonable
results. Lacking any better information the value may be estimated by the formula
proposed in 1944 by the Hungarian engineer J. Jaky,

K0 = 1 − sin φ, (32.16)

but there is no real basis for this formula, except that it gives values between 0 and
1, with the value being close to 1 if the friction angle φ is very small (as it is for soft
clays).

The best procedure is to try to measure the value of K0, using an instrument
of which the response is determined by the horizontal stress. For example, in the
CAMKO-meter, developed in Cambridge (UK), a rubber membrane around a pipe
is being pressurized, and the resulting deformation is measured (Fig. 32.8). The idea
is that the soil response will be different for lateral pressures below and above the
original neutral stress. The membrane consists of three parts, with the central part
being the measuring cell. A similar instrument is Marchetti’s dilatometer, which
consists of a hollow circular plate that is pushed into the soil, in a vertical position.
By expanding the plate the lateral response is measured, and from this response the
lateral stiffness and the neutral stress coefficientmay be estimated.Anothermethod is
to inject water into the soil from a tubular instrument. The idea is that a vertical crack
may be produced in the soil if the water pressure exceeds the horizontal total stress,
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Fig. 32.8 CAMKO-meter

Fig. 32.9 Horizontal stress as a function of the displacement

because the soil skeleton can not transfer tensile stresses. In petroleum engineering
this process is called hydraulic fracturing, and it is used to improve the permeability
of porous rock.

A possible relation between the horizontal stress against a retaining structure and
its horizontal displacement is shown in Fig. 32.9. If the displacement is zero, the
lateral stress coefficient will be K0. If the structure now is being pressed towards
the soil, the lateral stress will gradually increase, until finally the passive coefficient
Kp is reached. On the other hand, if the structure moves away from the soil, the
lateral stress will decrease, until its lowest value is reached, as defined by the active
coefficient Ka . In advanced computations a relation as shown in Fig. 32.9 may be
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used to determine the displacement of the structure and the stresses against it. In
many cases it can be argued that one of the two limiting values can be considered as
appropriate, see the next chapter.

32.5 Groundwater

In the case of a soil saturated with water it should be noted that the Mohr–Coulomb
criterion describes the limiting states of effective stress in the soil. The correct proce-
dure should be that the smallest and the largest horizontal stress can be deduced from
the vertical effective stress, using the active or passive stress coefficient. The hori-
zontal total stress can be obtained by adding the pore water pressure to the horizontal
effective stress.

As an example a retaining wall is shown in Fig. 32.10. The wall is assumed to be
8m high, with the groundwater level at 2m below the soil surface. The question is
to determine the horizontal total stress at a depth of 8m, assuming that the soil is
sand, with c = 0 and φ = 30◦, for the case of active earth pressure. The volumetric
weight of the soil is 16 kN/m3 when dry, and 20 kN/m3 when saturated with water.
It is assumed that there is no capillary rise in the sand. The vertical total stress at
a depth of 8m is the weight of 2m dry soil and 6m of saturated soil, which gives
σzz = 152 kPa. Because the pore pressure at that depth is 60kPa the vertical effective
stress is σ′

zz = 92 kPa. The active stress coefficient is Ka = 1
3 , so that the horizontal

effective stress is σ′
xx = 31 kPa. The total stress is found by adding the pore pressure,

i.e. σxx = 91 kPa. It is interesting to note that this consists for 66% of water pressure,
and for only 34% of effective stress. This illustrates that the contribution of the pore
water pressure may be very large. This is especially true in the case of active earth
pressure with such small effective stresses.

Fig. 32.10 Groundwater in
the soil
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Table 32.1 Ka and Kp φ sin φ Ka Kp

0 0.000 1.000 1.000

5 0.087 0.826 1.211

10 0.174 0.704 1.420

15 0.259 0.589 1.698

20 0.342 0.490 2.041

25 0.423 0.405 2.469

30 0.500 0.333 3.000

35 0.574 0.271 3.690

40 0.643 0.217 4.608

45 0.707 0.172 5.814

Example 32.1 A small table of the active and passive earth pressure coefficients, as
a function of the angle of internal friction φ, is shown in Table32.1, on the basis of
Eqs. (32.4) and (32.6).

Note the large sensitivity of the values upon the value of φ. The conclusion must be
that the friction angle φ should be determined with great accuracy.

Example 32.2 If the cohesion c is unequal to zero, it follows from Eq. (32.3) that the
minor principal stress σ3 can be zero, while the major principal stress σ1 is unequal
to zero. This means that in a cohesive material an excavation can be made with
vertical sides. What is the maximum depth of such an excavation, on the basis of this
formula?

Solution

Assuming that the major principle stress, the vertical normal stress, is σ1 = γh,
where h is the depth of the excavation, it follows from Eq. (32.3) that σ3 = 0 if
h = 2c/(γKa). If φ = 0 this reduces to h = 2c/γ. This problem will be considered
in more detail in Chap.43.

Problem 32.1 Why is the instrument shown in Fig. 32.8 known as the CAMKO-
meter?

Problem 32.2 A bulldozer, having a blade of 4m width and 1m height, is used to
remove an amount of dry sand, of 1m height. Estimate the total force necessary to
move the sand.

http://dx.doi.org/10.1007/978-3-319-61185-3_43
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Problem 32.3 A concrete wall that retained a mass of gravel, of 5m height, has
collapsedbyoverturning.Estimate the total horizontal force on thewall at themoment
of failure, per meter width.

Reference

W.J.M. Rankine, On the stability of loose earth. Phil. Trans. Royal Soc. London 147, 9–27 (1857)



Chapter 33
Coulomb

Long before the analysis of Rankine the French scientist Coulomb presented a theory
on limiting states of stress in soils (in 1776), which is still of great value. The theory
enables to determine the stresses on a retaining wall for the cases of active and
passive earth pressure. The method is based upon the assumption that the soil fails
along straight slip planes.

33.1 Active Earth Pressure

For the active case (a retreating wall) the procedure is illustrated in Fig. 33.1. It is
assumed that in case of a displacement of the wall towards the left, a triangular wedge
of soil will slide down, along a straight slip plane. The angle of the slope with the
vertical direction is denoted by θ. It is also assumed that at the moment of sliding,
the weight of the soil wedge is just in equilibrium with the forces on the slip surface
and the forces on the wall. For reasons of simplicity it is assumed, at least initially,
that the force between the soil and the wall (Q) is directed normal to the surface of
the wall, i.e. shear stresses along the wall are initially neglected. In later chapters
such shear stresses will be taken into account as well. The purpose of the analysis
is to determine the magnitude of the force Q. The principle of Coulomb’s method
is that it is stated that the wall must be capable of withstanding the force Q for all
possible slip planes. Therefore the slip plane that leads to the largest value of Q is
to be determined. The various slip planes are characterized by the angle θ, and this
angle will be determined such that the maximum value of Q is obtained.

The starting point of the analysis is the weight of the soil wedge (W ), per unit
width perpendicular to the plane shown in the figure,

W = 1

2
γh2 tan θ. (33.1)

© Springer International Publishing AG 2018
A. Verruijt, An Introduction to Soil Mechanics, Theory and Applications
of Transport in Porous Media 30, DOI 10.1007/978-3-319-61185-3_33
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Fig. 33.1 Active earth
pressure

This weight must be balanced by the horizontal force Q (horizontal because the wall
has been assumed to be perfectly smooth), and the forces N and T on the slip plane.
The direction of the shear force T is determined by the assumed sliding direction,
with the soil body moving down, in order to follow the motion of the wall to the left.
Furthermore, because the length of the slip plane is h/ cos θ,

T = ch

cos θ
+ N tan φ. (33.2)

The equations of equilibrium of the soil body, in horizontal and vertical direction,
are

Q + T sin θ − N cos θ = 0, (33.3)

W − N sin θ − T cos θ = 0. (33.4)

With Eq. (33.2) the shear force T can be eliminated. This gives

Q = N

cosφ
cos(θ + φ) − ch tan θ, (33.5)

W = N

cosφ
sin(θ + φ) + ch. (33.6)

From these two equations the normal force N can be eliminated,

Q = W
cos(θ + φ)

sin(θ + φ)
− ch

cosφ

cos θ sin(θ + φ)
. (33.7)

With Eq. (33.1) this gives

Q = 1

2
γh2

sin θ cos(θ + φ)

cos θ sin(θ + φ)
− ch

cosφ

cos θ sin(θ + φ)
. (33.8)

This equation expresses the force Q as a function of the angle θ. The relation is rather
complex (the angle θ appears in 6 places), so that it does not seem to be very simple to
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determine the maximum value. However, the expression can be simplified by using
various trigonometric relations, such as sin θ cos(θ + φ) = cos θ sin(θ + φ) − sin φ.
This gives

Q = 1

2
γh2 −

1
2γh

2 sin φ + ch cosφ

cos θ sin(θ + φ)
. (33.9)

Now the angle θ appears in 2 places only, in the denominator of the second term.
The maximum value of Q can be determined by the maximum value of the function

f (θ) = cos θ sin(θ + φ).

The maximum of this function occurs when its derivative with respect to θ is zero.
Differentiation gives

d f

dθ
= cos(2θ + φ),

and a second differentiation gives

d2 f

dθ2
= −2 sin(2θ + φ).

It now follows that d f/dθ = 0 if 2θ + φ = 1
2π, or

d f

dθ
= 0 : θ = 1

4
π − 1

2
φ. (33.10)

Then d2 f/dθ2 = −2, so that the function f indeed has a maximum for this value
of θ. This means that the horizontal force Q also has a maximum for θ = 1

4π − 1
2φ.

This maximum value is, after some elaboration,

θ = 1

4
π − 1

2
φ : Q = 1

2
γh2Ka − 2ch

√
Ka, (33.11)

in which Ka is the coefficient of active earth pressure, defined before,

Ka = 1 − sin φ

1 + sin φ
. (33.12)

These results are in full agreement with the results obtained in the previous chapter
on active earth pressure, see Eq. (32.11). The value for the horizontal force Q corre-
sponds to the sliding of a wedge of soil along a slip plane making an angle 1

4π − 1
2φ

with the vertical direction. These are just the planes shown inFig. 32.3. In the previous
chapter itwas found that along these planes the stresses first reach theMohr–Coulomb
envelope. It might be noted that in this analysis possible tension cracks in the soil
have been ignored.

http://dx.doi.org/10.1007/978-3-319-61185-3_32
http://dx.doi.org/10.1007/978-3-319-61185-3_32
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Coulomb’s method contains a possibly confusing step, in the procedure of max-
imizing the force Q to determine the appropriate value of the angle θ. This might
suggest that the procedure gives a high value for Q, whereas in reality the value
of Q indicates the smallest possible value of the horizontal force against a retain-
ing wall, as can be seen from Rankine’s analysis. The confusion is caused by the
assumption in Coulomb’s analysis that the soil slides along a slope defined by an
angle θ with the vertical, and not along any other plane. For a value of θ other than the
critical value θ = 1

4π − 1
2φ, the force Q may be smaller, but in that case there will

be other planes on which the maximum shear stress exceeds Coulomb’s maximum
τ f = c + σn tan φ. In the analysis it ought to be investigated whether the assumed
slip plane, at an angle θ, is indeed the most critical plane. This is the case only if
θ = 1

4π − 1
2φ, as can be seen fromRankine’s analysis. In that analysis the stresses on

all planes are considered, by using Mohr’s circle. In Coulomb’s analysis the stresses
on planes other than the assumed sliding plane are not considered at all.

In engineering practice, the horizontal stress against a retaining wall, or a sheet
pile wall is often calculated using the active stress coefficient Ka . This may seem on
the unsafe side, because it gives the smallest possible value of the horizontal stress,
and will occur only in case of failure of the soil. The application is based upon the
following argument. It is admitted that the analysis following Rankine or Coulomb,
for the active stress state, yields the smallest possible value for the lateral force. In
reality the lateral force may be higher, especially if the foundation of the retaining
wall is stiff and strong. If the lateral force is so large that the wall’s foundation can
not withstand that force, it will deform, away from the soil. During that deformation
the lateral force will decrease. Eventually this deformation may be so large that the
active state of stress is attained. If the foundation and the structure are strong enough
to withstand the active state of stress, the deformations will stop as soon as this active
state is reached. These deformationsmay be large, but the structurewill not fail. Thus,
the structure will be safe if it can withstand active earth pressure, provided that there
is no objection to a considerable deformation. For instance, the pile foundation of a
quay wall in a harbor can be designed on the basis of active earth pressure against
the quay wall, if it is accepted that considerable lateral deformations (say 1% or
2% of the height of the wall) of the quay wall may occur. If this is undesirable, for
esthetic reasons or because other structures (the cranes) might be damaged by such
large deformations, the foundation must be designed for larger lateral forces. This
will mean that many more piles are needed.

33.2 Passive Earth Pressure

For the case of passive earth pressure (i.e. the case of a wall that is being pushed
towards the soil mass, by some external cause) Coulomb’s procedure is as follows,
see Fig. 33.2. Because the wedge of soil in this case is being pushed upwards, the
shear force T will be acting in downward direction. The weight of the wedge is, as
in the active case,
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Fig. 33.2 Passive earth pressure

W = 1

2
γh2 tan θ. (33.13)

The equations of equilibrium in x- and z-direction now are

Q − T sin θ − N cos θ = 0, (33.14)

W − N sin θ + T cos θ = 0. (33.15)

After elimination of T and N from the equations, and some trigonometric manipu-
lations, the force Q is found to be

Q = 1

2
γh2 +

1
2γh

2 sin φ + ch cosφ

cos θ sin(θ − φ)
. (33.16)

Again this force appears to be dependent on the angle θ. The minimum value of Q
occurs if the function

f (θ) = cos θ sin(θ − φ),

has its largest value. Differentiation gives

d f

dθ
= cos(2θ − φ),

and
d2 f

dθ2
= −2 sin(2θ − φ).

It now follows that d f/dθ = 0 if 2θ − φ = 1
2π, or

d f

dθ
= 0 : θ = 1

4
π + 1

2
φ. (33.17)



266 33 Coulomb

Then d2 f/dθ2 = −2, and the function f indeed has a maximum for that value of θ.
That means that the horizontal force Q has a minimum. This minimum is

θ = 1

4
π + 1

2
φ : Q = 1

2
γh2Kp + 2ch

√
Kp, (33.18)

where Kp is the passive earth pressure coefficient, defined before,

Kp = 1 + sin φ

1 − sin φ
. (33.19)

Again, the result is in complete agreement with the value obtained in Rankine’s
analysis. Coulomb’s procedure appears to lead to the maximum (passive) earth
pressure.

Coulomb’s method can easily be extended tomore general cases. It is possible, for
instance, that the surface of the wall is inclined with respect to the vertical direction,
and the soil surface may also be sloping. Also, the soil may carry a given surface
load. For all these cases the method can easily be extended. The general procedure
is to assume a straight slip plane, consider equilibrium of the sliding wedge, and
then maximizing or minimizing the force against the wall. Analytical, graphical and
numerical methods have been developed. In the next chapter a number of tables is
presented.

Example 33.1 A vertical wall retains a mass of dry sand, of 4m height. The friction
angle of the sand is 30◦, and the volumetric weight is 17 kN/m3. What is the design
value of the horizontal force (per meter width) on the wall, if eventual lateral defor-
mations are acceptable?

Solution

It can be assumed that for dry sand c = 0. Equation (33.11) then gives Q = 1
2γh

2Ka .
In this case, with φ = 30◦: Ka = 0.333. It follows that Q = 45.3 kN/m. If the angle
of internal friction is 10% larger, φ = 33◦ and the value of Ka = 0.2948. Then it
follows that Q = 40.1 kN/m, which is 11.4% smaller.

If φ = 30◦ and the client wishes that the wall should not deform under any circum-
stances, one may consider the passive case, so that Q = 1

2γh
2Kp = 405 kN/m. This

is the force needed to force the wall into the soil, and it may be assumed that this is
larger than the force in the absence of any displacement.



33.2 Passive Earth Pressure 267

Problem 33.1
In some textbooks the coefficients Ka and Kp are defined as

Ka = tan2(
1

4
π − 1

2
φ), Kp = tan2(

1

4
π + 1

2
φ).

Is that an error?



Chapter 34
Tables for Lateral Earth Pressure

The computation of lateral earth pressure against retaining walls is such an important
problem of soil mechanics that tables have been produced for its solution, all on the
basis of Coulomb’s method. These tables can be found in many handbooks, such as
the German “Grundbau Taschenbuch”, edited by Prof. Smoltczyk (1980).

Following Coulomb these tables apply to soils without cohesion (c = 0), that is
for sand or gravel. In this chapter some tables are given for the active and the passive
earth pressure against a retaining wall, with a surface that is practically vertical, and
a sloping soil surface.

34.1 Retaining Wall

The general problem considered in this chapter concerns a retaining wall, having
a surface inclined at an angle α with the horizontal direction. The soil surface is
horizontal, or it may be sloping at an angle β with the horizontal direction, see
Fig. 34.1. The wall may be perfectly smooth, or it may have a certain friction, so that
the direction of the forceQ is at an angle δ with the direction normal to the wall. The
friction angle δ is supposed to be given. Because the wall often is rather smooth, its
value is often taken somewhat smaller than the friction angle of the soil itself, say
δ = 2

3φ. The angle δ is considered positive in the active case, illustrated in Fig. 34.1,
in which the sliding soil wedge is expected to slide in downward direction, along the
surface of the wall. In the case of passive earth pressure it can be expected that the
soil will move in upward direction along the surface of the wall. The angle δ then
should be given a negative value.

The tables record the values of the coefficient K in the formula

Q = 1

2
Kγh2. (34.1)

© Springer International Publishing AG 2018
A. Verruijt, An Introduction to Soil Mechanics, Theory and Applications
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Fig. 34.1 Retaining wall

This coefficient would be equal to 1 in the case of a fluid against a vertical wall.
It should be noted thatQ is the total force. The angle of this force with the vertical

direction is α − δ. The horizontal component of this force is

Qh = Q sin(α − δ). (34.2)

If the tables are used to determine the horizontal force, the multiplication by the
factor sin(α − δ) should be performed by the user.

The values of the active coefficient Ka were already calculated by Coulomb. He
obtained

Ka = sin2(α + φ)

sin2 α sin(α − δ)
[
1 + √{sin(φ + δ) sin(φ − β)}/{sin(α − δ) sin(α + β)}

]2

(34.3)
For the passive case the formula is

Kp = sin2(α − φ)

sin2 α sin(α − δ)
[
1 − √{sin(φ − δ) sin(φ + β)}/{sin(α − δ) sin(α + β)}

]2

(34.4)
It may be mentioned that the active coefficients in the tables may be somewhat
too small, and that the passive coefficients may be too large. This may be because in
reality the soilmay not yet have reached a critical state, but also because inCoulomb’s
method only straight slip surfaces are considered. In reality a curved slip surface,
for instance a circular slip surface may give a higher active earth pressure or a lower
passive pressure. This last possibility can easily be imagined: if the soil can fail along
a circular slip surface for a force that is smaller than the critical straight sliding plane,
there is no reason why the soil would not fail along the circular slip surface. A chain
breaks if the weakest link fails.

It has been found that using circular slip surfaces leads to a very small increase of
the active coefficients. The passive coefficients, however, may become considerably
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Table 34.1 Active earth pressure coefficient, Ka

α = 90◦, β = 0◦

δ\φ 10◦ 15◦ 20◦ 25◦ 30◦ 35◦ 40◦ 45◦

0◦ 0.704 0.589 0.490 0.406 0.333 0.271 0.217 0.172

5◦ 0.662 0.556 0.465 0.387 0.319 0.260 0.210 0.166

10◦ 0.635 0.533 0.447 0.373 0.308 0.253 0.204 0.163

15◦ 0.617 0.518 0.434 0.363 0.301 0.248 0.201 0.160

20◦ 0.607 0.508 0.427 0.357 0.297 0.245 0.199 0.160

25◦ 0.604 0.505 0.424 0.355 0.296 0.244 0.199 0.160

30◦ 0.606 0.506 0.424 0.356 0.297 0.246 0.201 0.162

α = 90◦, β = 10◦

δ\φ 10◦ 15◦ 20◦ 25◦ 30◦ 35◦ 40◦ 45◦

0◦ 0.970 0.704 0.569 0.462 0.374 0.300 0.238 0.186

5◦ 0.974 0.679 0.547 0.444 0.359 0.289 0.230 0.180

10◦ 0.985 0.664 0.531 0.431 0.350 0.282 0.225 0.177

15◦ 1.004 0.655 0.522 0.423 0.343 0.277 0.221 0.174

20◦ 1.032 0.654 0.518 0.419 0.340 0.275 0.220 0.174

25◦ 1.070 0.658 0.518 0.419 0.340 0.275 0.221 0.175

30◦ 1.120 0.669 0.524 0.422 0.343 0.278 0.223 0.177

α = 90◦, β = 20◦

δ\φ 10◦ 15◦ 20◦ 25◦ 30◦ 35◦ 40◦ 45◦

0◦ 0.883 0.572 0.441 0.344 0.267 0.204

5◦ 0.886 0.558 0.428 0.333 0.259 0.199

10◦ 0.897 0.549 0.420 0.326 0.254 0.195

15◦ 0.914 0.546 0.415 0.323 0.251 0.194

20◦ 0.940 0.547 0.414 0.322 0.250 0.193

25◦ 0.974 0.553 0.417 0.323 0.252 0.195

30◦ 1.020 0.565 0.424 0.328 0.256 0.198

α = 90◦, β = 30◦

δ\φ 10◦ 15◦ 20◦ 25◦ 30◦ 35◦ 40◦ 45◦

0◦ 0.750 0.436 0.318 0.235

5◦ 0.753 0.428 0.311 0.229

10◦ 0.762 0.423 0.306 0.226

15◦ 0.776 0.422 0.305 0.225

20◦ 0.798 0.425 0.305 0.225

25◦ 0.828 0.431 0.309 0.228

30◦ 0.866 0.442 0.315 0.232
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lower when circular slip surfaces are also taken into account. In particular, all values
larger than 10 in the tables are unreliable. This can be very dangerous, for instance
when calculating the maximum holding force of an anchor. This may be severely
overestimated by using tables based upon straight slip planes only (as in this chapter).
More accurate values are given in the tables in “Grundbau Taschenbuch”.

It should be noted that in some tables the definition (and the notation) of the angles
α, β and δ differs from the definitions used here. Great care should be used when
taking values from an unfamiliar table (Table34.1).

34.2 Example

As an example the case of a wall at an inclination of 80◦ is considered. The slope of
the soil is 10◦, see Fig. 34.2. The soil is sand, with φ = 30◦, and the friction angle
between the wall and the soil is δ = 20◦. The problem is to determine the horizontal
component of the force against the wall, in the case of active earth pressure.

In this case Table34.2 gives K = 0.438, so that the force on the wall is Q =
0.219 γh2. Its horizontal component is, with (34.2), Qh = 0.190 γh2.

In the case of passive earth pressure, when the wall is moving to the right, it will
push the soil wedge up. It can be expected that then the wall will exert a shear force
on the wall in downward direction, with the value of δ being negative, δ = −20◦, see
Fig. 34.3. In this case Table34.3 gives K = 7.162. The force on the wall then is Q =
3.581 γh2. The horizontal component of this force is, with (34.2): Qh = 3.527 γh2,
because in this case α − δ = 100◦.

Fig. 34.2 Example: active
earth pressure
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Table 34.2 Active earth pressure coefficient, Ka

α = 80◦, β = 0◦

δ\φ 10◦ 15◦ 20◦ 25◦ 30◦ 35◦ 40◦ 45◦

0◦ 0.757 0.652 0.559 0.478 0.407 0.343 0.287 0.238

5◦ 0.720 0.622 0.536 0.460 0.393 0.333 0.280 0.233

10◦ 0.699 0.603 0.520 0.448 0.384 0.326 0.275 0.229

15◦ 0.687 0.592 0.511 0.441 0.378 0.323 0.273 0.228

20◦ 0.684 0.588 0.508 0.438 0.377 0.322 0.273 0.229

25◦ 0.689 0.591 0.510 0.440 0.379 0.325 0.276 0.232

30◦ 0.702 0.600 0.517 0.446 0.385 0.330 0.281 0.237

α = 80◦, β = 10◦

δ\φ 10◦ 15◦ 20◦ 25◦ 30◦ 35◦ 40◦ 45◦

0◦ 1.047 0.784 0.654 0.550 0.461 0.384 0.318 0.261

5◦ 1.067 0.766 0.636 0.534 0.448 0.374 0.311 0.255

10◦ 1.097 0.759 0.626 0.524 0.440 0.368 0.307 0.253

15◦ 1.138 0.759 0.622 0.520 0.437 0.366 0.305 0.252

20◦ 1.191 0.768 0.625 0.521 0.438 0.367 0.306 0.254

25◦ 1.259 0.785 0.634 0.528 0.443 0.371 0.310 0.257

30◦ 1.346 0.811 0.650 0.539 0.452 0.379 0.317 0.264

α = 80◦, β = 20◦

δ\φ 10◦ 15◦ 20◦ 25◦ 30◦ 35◦ 40◦ 45◦

0◦ 1.015 0.684 0.548 0.444 0.360 0.291

5◦ 1.035 0.676 0.538 0.436 0.354 0.286

10◦ 1.064 0.674 0.534 0.432 0.351 0.283

15◦ 1.103 0.679 0.535 0.432 0.350 0.284

20◦ 1.155 0.690 0.540 0.435 0.354 0.286

25◦ 1.221 0.708 0.551 0.443 0.360 0.292

30◦ 1.305 0.734 0.568 0.456 0.370 0.300

α = 80◦, β = 30◦

δ\φ 10◦ 15◦ 20◦ 25◦ 30◦ 35◦ 40◦ 45◦

0◦ 0.925 0.566 0.433 0.337

5◦ 0.943 0.563 0.428 0.333

10◦ 0.969 0.564 0.427 0.332

15◦ 1.005 0.570 0.430 0.333

20◦ 1.051 0.582 0.437 0.338

25◦ 1.111 0.600 0.448 0.346

30◦ 1.189 0.624 0.463 0.358
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Fig. 34.3 Example: passive
earth pressure

34.3 Tables

On the following pages some values of Ka and Kp are given in tabular form.

Problem 34.1 Verify that the two basic cases of Coulomb (vertical wall, horizontal
soil surface) are correctly given in the tables.

Problem 34.2 Verify that in the example considered in this chapter the tables indeed
give Ka = 0.438 and Kp = 7.162. Also verify whether the analytic formulas given
in this chapter give these same values.

Problem 34.3 Why do the tables not give values for cases with φ < β?

Problem 34.4 A retainingwall of 5m height, with a smooth vertical wall is bounded
by a soil with a horizontal surface. The angle of internal friction of the soil isφ = 35◦,
and the volumetric weight of the soil is γ = 17 kN/m3. Determine the horizontal
force against the wall.

Problem 34.5 Repeat the previous problem for the case that the wall is not vertical,
but inclined at 10◦ with respect to the vertical direction.

Problem 34.6 An anchor in dry soil consists of a square plate, of dimensions
2 m × 2 m. The plate has been pushed into the soil in vertical direction, and its
top coincides with the soil surface. Estimate the holding force of the anchor when
pulled in horizontal direction.
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Table 34.3 Passive earth pressure coefficient, Kp

α = 90◦, β = 0◦

δ\φ 10◦ 15◦ 20◦ 25◦ 30◦ 35◦ 40◦ 45◦

0◦ 1.420 1.698 2.040 2.464 3.000 3.690 4.599 5.828

−5◦ 1.569 1.901 2.313 2.833 3.505 4.391 5.593 7.278

−10◦ 1.730 2.131 2.635 3.285 4.143 5.309 6.946 9.345

−15◦ 1.914 2.403 3.029 3.855 4.976 6.555 8.872 12.466

−20◦ 2.130 2.735 3.525 4.597 6.105 8.324 11.771 17.539

−25◦ 2.395 3.151 4.169 5.599 7.704 10.980 16.473 26.696

−30◦ 2.726 3.691 5.036 7.013 10.095 15.273 24.933 46.087

α = 90◦, β = 10◦

δ\φ 10◦ 15◦ 20◦ 25◦ 30◦ 35◦ 40◦ 45◦

0◦ 2.099 2.595 3.235 4.080 5.228 6.841 9.204

−5◦ 2.467 3.086 3.908 5.028 6.605 8.923 12.518

−10◦ 2.907 3.700 4.783 6.314 8.569 12.076 17.944

−15◦ 3.456 4.496 5.969 8.145 11.536 17.225 27.812

−20◦ 4.166 5.572 7.652 10.903 16.370 26.569 48.891

−25◦ 5.122 7.093 10.181 15.384 25.117 46.474 108.431

−30◦ 6.470 9.371 14.274 23.468 43.697 102.545 426.159

α = 80◦, β = 0◦

δ\φ 10◦ 15◦ 20◦ 25◦ 30◦ 35◦ 40◦ 45◦

0◦ 1.363 1.582 1.843 2.156 2.535 3.002 3.587 4.332

−5◦ 1.480 1.737 2.045 2.418 2.879 3.456 4.193 5.158

−10◦ 1.600 1.905 2.273 2.725 3.292 4.017 4.966 6.244

−15◦ 1.732 2.096 2.540 3.094 3.802 4.730 5.981 7.726

−20◦ 1.883 2.321 2.861 3.549 4.450 5.666 7.363 9.838

−25◦ 2.060 2.590 3.257 4.127 5.299 6.937 9.329 13.021

−30◦ 2.274 2.923 3.759 4.881 6.450 8.742 12.286 18.184

α = 80◦, β = 10◦

δ\φ 10◦ 15◦ 20◦ 25◦ 30◦ 35◦ 40◦ 45◦

0◦ 1.935 2.308 2.767 3.343 4.079 5.043 6.340

−5◦ 2.218 2.668 3.233 3.960 4.914 6.201 7.998

−10◦ 2.541 3.093 3.805 4.742 6.010 7.783 10.372

−15◦ 2.922 3.614 4.528 5.767 7.504 10.045 13.969

−20◦ 3.387 4.272 5.474 7.162 9.636 13.465 19.844

−25◦ 3.975 5.131 6.759 9.148 12.854 19.039 30.500

−30◦ 4.740 6.295 8.583 12.137 18.084 29.127 53.188
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Reference

U. Smoltczyk, Grundbau Taschenbuch (Wilhelm Ernst & Sohn, Berlin, 1980)



Chapter 35
Sheet Pile Walls

An effective way to retain a soil mass is by installing a vertical wall consisting of long
thin elements (steel, concrete or wood), that are being driven into the ground. The
elements are usually connected by joints, consisting of special forms of the element
at the two ends. Compared to a massive wall (of concrete or stone), a sheet pile wall
is a flexible structure, in which bending moments will be developed by the lateral
load, and that should be designed so that they can withstand the largest bending
moments. Several methods of analysis have been developed, of different levels of
complexity. The simplest methods, that will be discussed in this chapter, are based on
convenient assumptions regarding the stress distribution against the sheet pile wall.
These methods have been found very useful in engineering practice, even though
they contain some rather drastic approximations.

35.1 Homogeneous Dry Soil

A standard type of sheet pile wall is shown in Fig. 35.1. The basic idea is that the
pressure of the soil will lead to a tendency of the flexible wall for displacements
towards the left. By this mode of deformation the soil pressures on the right side of
the wall will become close to the active state. This soil pressure must be equilibrated
by forces acting towards the right. A large horizontal force may be developed at the
lower end of the wall, embedded into the soil on the left side, by the displacement.
In this part passive earth pressure may develop if the displacements are sufficiently
large. The usual schematization is to assume that on the right side of the wall active
stresses will be acting, and below the excavated soil level at the left side of the
wall passive stresses will develop. Because the resulting force of the passive stresses
applies below the resulting force of the active stresses, complete equilibrium is not
possible by these stresses alone, as the condition of equilibrium of moments can not
be satisfied. Equilibrium can be ensured by adding an anchor at the top of the wall,
on the right side. This anchor can provide an additional force to the right. Without
such an anchor the sheet pile wall would rotate, until at the extreme lower end of the
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Fig. 35.1 Anchored sheet pile wall

wall passive earth pressures would be developed on the right side. With an anchor
equilibrium can be achieved, without the need for very large deformations. It may be
noted that the anchoring force can also be provided by a strut between two parallel
walls. This is especially practical in case of a narrow excavation trench.

For the sheet pile wall to be in equilibrium the depth of embedment should be
sufficiently large, so that a passive zone of sufficient length can be developed. In case
of a very small depth, with a thin passive zone at the toe, the lower end of the wall
might be pushed through the soil, with the structure rotating around the anchor point.
The determination of the minimum depth of the embedment of the sheet pile wall
is an important part of the analysis, which will be considered first. For reasons of
simplicity it is assumed that the soil is homogeneous, dry sand. The assumed stress
distribution is shown in Fig. 35.1. If the retaining height (the difference of the soil
levels at the right and left sides of the wall) is h, the length of the toe is d, and the
depth of the anchor rod is a, then the condition of equilibrium of moments around
the anchor point gives

1

2
Kaγ (h + d)2

(
2

3
h + 2

3
d − a

)
− 1

2
Kpγd

2

(
h + 2

3
d − a

)
= 0.

It follows that

(h + d)2
(
2

3
h + 2

3
d − a

)
= Kp

Ka
d2

(
h + 2

3
d − a

)
. (35.1)

This is an equation of the third degree in the variable d. It can be solved iteratively
by writing (

d

h

)2

= 2Ka

3Kp

(
1 + d

h

)2 1 + (d/h) − 3
2 (a/h)

1 + 2
3 (d/h) − (a/h)

. (35.2)

Starting from an initial estimate, for example d/h = 0, ever better estimates for d/h
can be obtained by substituting the estimated value into the right hand of Eq. (35.2).



35.1 Homogeneous Dry Soil 279

Table 35.1 Depth of sheet pile wall, (d/h)

a/h K p/Ka

4 6 8 9 10 12 14 16

0.00 0.793 0.550 0.438 0.401 0.371 0.326 0.294 0.269

0.05 0.785 0.545 0.433 0.396 0.367 0.323 0.290 0.265

0.10 0.777 0.539 0.428 0.392 0.363 0.319 0.287 0.262

0.15 0.768 0.532 0.422 0.386 0.358 0.314 0.282 0.258

0.20 0.759 0.524 0.416 0.380 0.352 0.309 0.278 0.254

0.25 0.749 0.516 0.409 0.374 0.346 0.303 0.273 0.249

0.30 0.737 0.507 0.401 0.366 0.339 0.297 0.267 0.243

0.35 0.724 0.496 0.392 0.358 0.330 0.289 0.260 0.237

0.40 0.710 0.484 0.381 0.348 0.321 0.281 0.252 0.229

0.45 0.693 0.470 0.369 0.336 0.310 0.270 0.242 0.220

0.50 0.674 0.454 0.354 0.322 0.296 0.258 0.230 0.209

This process has been found to iterate fairly rapidly. About 10 iterations may be
needed to obtain a relative accuracy of 10−6. The results for a series of values of
Kp/Ka and a/h are recorded in Table35.1.

The magnitude of the anchor force can be determined from the condition of
horizontal equilibrium,

T = 1

2
Kaγ(h + d)2 − 1

2
Kpγd

2. (35.3)

The values of T/Fa are given in Table35.2. The quantity Fa is the total active force,

Fa = 1

2
Kaγ(h + d)2. (35.4)

It appears that the anchor carries a substantial part of the total active load, varying
from 20% to more than 50%. The remaining part is carried by the passive earth
pressure, of course.

If the length of the sheet pile wall (h + d) and the anchor force are known, the
shear force Q and the bending moment M can easily be calculated, in any section
of the wall. For the case Ka = 1

3 , Kp = 3, and a/h = 0.2 the results are given in
Table35.3. At the location of the anchor the shear force jumps by the magnitude of
the anchor force. At the top and at the toe of the wall the shear force and the bending
moment are zero.

The largest bending moment, which determines the profile of the pile sheets, is
0.032 γh3. The results of this example are shown in graphical form in Fig. 35.2.

A simple verification of the order of magnitude of the results can be made by
considering the sheet pile wall as a beam on two supports, say at z/h = 0.2 and at
z/h = 1.2. The length of the beam then is h, and the average load is Kaγ (0.7 h). If
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Table 35.2 Anchor force, (T/Fa)

a/h K p/Ka

4 6 8 9 10 12 14 16

0.00 0.218 0.244 0.258 0.263 0.267 0.274 0.279 0.283

0.05 0.226 0.254 0.269 0.275 0.279 0.286 0.292 0.296

0.10 0.235 0.265 0.281 0.287 0.292 0.300 0.306 0.310

0.15 0.245 0.277 0.295 0.301 0.306 0.315 0.321 0.326

0.20 0.255 0.290 0.309 0.316 0.322 0.331 0.338 0.344

0.25 0.267 0.305 0.326 0.334 0.340 0.350 0.358 0.364

0.30 0.280 0.321 0.345 0.353 0.360 0.371 0.380 0.387

0.35 0.294 0.340 0.366 0.375 0.383 0.395 0.405 0.413

0.40 0.311 0.361 0.390 0.401 0.409 0.423 0.434 0.443

0.45 0.329 0.386 0.419 0.431 0.441 0.456 0.469 0.478

0.50 0.351 0.415 0.453 0.466 0.478 0.496 0.510 0.521

Table 35.3 Sheet pile wall z/h F/γh Q/γh2 M/γh3

0.00000 0.00000 0.00000 0.00000

0.10000 0.03333 −0.00167 −0.00006

0.19999 0.06666 −0.00667 −0.00044

0.20001 0.06667 0.09381 −0.00044

0.30000 0.10000 0.08548 0.00855

0.40000 0.13333 0.07381 0.01654

0.50000 0.16667 0.05881 0.02320

0.60000 0.20000 0.04048 0.02819

0.70000 0.23333 0.01881 0.03119

0.80000 0.26667 −0.00619 0.03184

0.90000 0.30000 −0.03452 0.02984

1.00000 0.33333 −0.06619 0.02483

1.10000 0.06667 −0.08619 0.01699

1.20000 −0.20000 −0.07952 0.00848

1.30000 −0.46667 −0.04619 0.00197

1.38047 −0.68125 0.00000 0.00000
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Fig. 35.2 Shear force and bending moment

this load is thought to be distributed homogeneously along the beam, the maximum
bending moment would be M = qh2/8 = 0.029 γh3, which is reasonably close to
the true value given above.

If the sheet pile wall is designed on the basis of the maximum bending moment
there is no safety against failure. In order to increase the safety of the structure the
passive earth pressure is often reduced, by using a conservative value for Kp. The
tables then remain valid, but the result will be a somewhat greater length, as can be
seen from Table35.1. If Kp/Ka is taken smaller, the needed value of d/h will be
larger. In the next chapter a more advanced method to reduce the risk of failure will
be presented.

Program 35.1: Sheet pile wall in homogeneous dry soil

100 CLS:PRINT "Sheet pile wall in homogeneous dry soil"
110 PRINT "Minimal length":PRINT
120 INPUT "Retaining height ................ ";H
130 INPUT "Depth of anchor ................. ";A
140 INPUT "Active stress coefficient ....... ";KA
150 INPUT "Passive stress coefficinet ...... ";KP
160 PA=KP/KA:A=A/H:B=1/(1.5*PA):D=0:A$="& ###.#####"
170 C=B*(1+D)*(1+D)*(1+D-1.5*A)/(1+D/1.5-A)
180 IF C<0 THEN PRINT "No solution":END
190 C=SQR(C):E=ABS(C-D):D=C:IF E>0.000001 THEN 170
200 PRINT USING A$;"d/h = ";D
210 T=KA*(1+D)*(1+D)/2-KP*D*D/2
220 PRINT USING A$;"T/ghh = ";T
230 INPUT "z/h = ";Z
240 IF Z<0 THEN END
250 IF Z>1+D THEN PRINT " Impossible":GOTO 230
260 F=KA*Z:IF Z>1 THEN F=F-KP*(Z-1)
270 Q=-KA*Z*Z/2:IF Z>A THEN Q=Q+T
280 IF Z>1 THEN Q=Q+KP*(Z-1)*(Z-1)/2
290 M=-KA*Z*Z*Z/6:IF Z>A THEN M=M+T*(Z-A)
300 IF Z>1 THEN M=M+KP*(Z-1)*(Z-1)*(Z-1)/6
310 PRINT USING A$;" F/gh = ";F;
320 PRINT USING A$;" Q/ghh = ";Q;
330 PRINT USING A$;" M/ghhh = ";M
340 GOTO 230
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An elementary computer program for the calculation of the minimum length of the
sheet pile wall, the corresponding anchor force, and the distribution of shear forces
and bending moments, is shown as Program 35.1. Input data to this program can
be entered interactively. After entering the values of Ka , Kp and a/h the program
first calculates the values of the depth of embedment d/h and the anchor force T ,
and then gives, for an arbitrary value of z/h, to be given by the user, the shear
force Q and the bending moment M . The program can be improved in many ways,
especially by adding more advanced forms of input and output, such as graphs of the
shear force and the bending moment, to be shown on the screen or on a printer. The
implementations of such improvements to the program are left as exercises for the
reader.

35.2 Pore Pressures

In the previous sections the soil was assumed to be dry, for simplicity. In general the
soil may consist of soil and water, however, and the excavation may even contain
free water. Thus the general problem of a sheet pile wall should take into account
the presence of groundwater in the soil. Because the failure of soils, as described by
the Mohr–Coulomb criterium, for instance, refers to effective stresses, the relations
formulated above for the earth pressure coefficients Ka and Kp, should be applied
to effective stresses only. This means that the vertical effective stresses should be
calculated first, before the horizontal effective stresses can be determined. The
horizontal total stresses can then be determined in the next step by adding the pore
pressure.

The general procedure for the determination of the horizontal stresses is as follows.

1. Determine the total vertical stresses, from the surcharge and the weight of the
overlying soil layers.

2. Determine the pore water pressures, on the basis of the location of the phreatic
surface. If the pore pressures can be assumed to be hydrostatic (if there is no
vertical groundwater flow) these can be determined from the depth below the
phreatic surface. Above the phreatic surface the pore pressures may be negative
in case of a soil with a capillary rise.

3. Determine the value of the vertical effective stress, as the difference of the vertical
total stress and the pore pressure. If the result of this computation is negative, it
may be assumed that a crack will develop, as tension between the soil particles
usually is impossible. The vertical effective stress then is zero.

4. Determine the horizontal effective stress, using the appropriate value of Ka or
Kp at the depth considered, and, if applicable, the local value of the cohesion c.

5. Determine the horizontal total stress by adding the pore pressure to the horizontal
effective stress.
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The algorithm for this procedure can be summarized as

σzz = qz +
∑

γ dz, (35.5)

p = γw(z − zw), if z < zw − hc then p = 0, (35.6)

σ′
zz = σzz − p, if σ′

zz < 0 then σ′
zz = 0, (35.7)

σ′
xx = Kσ′

zz ± 2c
√
K , (35.8)

σxx = σ′
xx + p. (35.9)

In these equations it has been assumed that the phreatic level is located at a depth
z = zw, and that in a zone of thickness hc above that level capillary water is present
in the pores. Above the level z = zw − hc there is no water in the pores, which can
be expressed by p = 0. It has also been assumed, in Eq. (35.7), that the particles can
not transmit tensile forces. It may also be noted that in computations such as these
open water, above the soil, should have to be considered as soil, having a volumetric
weight γw. The effective stress in such a water layer will be found as zero, and the
horizontal total stress will automatically be found to be equal to the vertical total
stress. For the analysis of the forces on a wall these forces are essential parts of the
analysis.

For the analysis of a sheet pile wall the stress calculation must be performed for
both sides of the wall separately, because on the two sides the soil levels and the
groundwater levels may be different.

An example is shown in Fig. 35.3. In this case an excavation of 6m depth is
made into a homogeneous soil. On the right side the groundwater level is located
at a depth of 1m below the soil surface, and on the left side the groundwater level
coincides with the bottom of the excavation. For simplicity it is assumed that on
both sides of the sheet pile wall the groundwater pressures are hydrostatic. This
might be possible if the toe of the wall reaches into a clay layer of low permeability.
Otherwise the groundwater pressures should include the effect of a groundwater
movement from the right side to the left side. That complication is omitted here. An
anchor has been installed at a depth of 0.50m, at the right side. The length of the
wall is initially unknown, but is assumed to be 9 m, for the representation of the
horizontal stresses. The soil is homogeneous sand, having a dry volumetric weight
of 16 kN/m3, a saturated volumetric weight of 20 kN/m3. It is assumed that for this
sand Ka = 0.3333, Kp = 3.0, c = 0 and hc = 0.

In order to present the stresses against the wand, the simplest procedure is to
calculate these stresses in a number of characteristic points. At a depth of 1m, for
instance, at the right side, the vertical total stress is σzz = 16 kPa. Because the pore
pressure is zero at that depth the horizontal effective stress is σ′

xx = 5.3 kPa, and the
horizontal total stress is equal to that value, because p = 0. At a depth of 9m, the
total stress is larger by the weight of 8m saturated soil, so that σzz = 176 kPa. At
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Fig. 35.3 Example: the influence of groundwater

that depth the pore pressure is p = 80 kPa, and the vertical effective stress is now
σ′
zz = 96 kPa. Because Ka = 0.3333 the horizontal effective stress is σ′

xx = 32 kPa.
Finally, the horizontal total stress is σxx = 112 kPa.

At the left side of the wall all stresses are zero down to the level of the bottom
of the excavation, at 6m depth. At a depth of 9m: σzz = 60 kPa and p = 30 kPa.
This gives σ′

zz = 30 kPa and, because Kp = 3, σ′
xx = 90 kPa. The horizontal stress

is obtained by adding the pore pressure, i.e. σxx = 120 kPa.
Even in this simple case, of a homogeneous soil, the determination of the hori-

zontal loads on the wall is not a trivial problem. In many problems of engineering
practice the analysis may be much more complicated, as the soil may consist of
layers of different volumetric weight and composition, with variable values of the
coefficients Ka and Kp. This may lead to discontinuities in the distribution of the
horizontal stress. The groundwater pressures also need not be hydrostatic. In the case
of a permeable soil the determination of the groundwater pressures may be a separate
problem.

The length of the sheet pile wall is initially unknown. It can be determined by
requiring that equilibrium is possible with the toe of the wall being a free end, with
Q = 0 and M = 0. As in the simple case considered before, see Fig. 35.1, the
length can be determined from the condition of equilibrium of moments with respect
to the anchor point. The simplest procedure is to first assume a certain very short
depth of the embedment into the soil, assuming full passive pressures at the left side.
Then calculating the bending moment at the toe, and then gradually increasing the
embedment depth (and the length of the sheet pile) until this bending moment is
zero.

100 CLS:PRINT "Sheet pile wall in homogeneous soil":PRINT:NN=10000
110 DIM M(NN),Q(NN),F(NN)
120 INPUT "Depth of the excavation (m) ...... ";H
130 INPUT "Depth of the anchor (m) .......... ";DA
140 INPUT "Active stress coefficient ........ ";CA
150 INPUT "Passive stress coefficient ....... ";CP
160 INPUT "Dry weight (kN/m3) ............... ";GD
170 INPUT "Saturated weight (kN/m3) ......... ";GN
180 INPUT "Depth of groundwater left (m) .... ";WL
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190 INPUT "Depth of groundwater right (m) ... ";WR
200 N=NN/3:HH=H:DZ=HH/N:DZ2=DZ/2:WW=10:A$="#####.###":PRINT
210 TLZ=0:PL=0:TRZ=0:PR=0:MT=0:Z=0:F(0)=0:Q(0)=0:M(0)=0
220 FOR I=1 TO N:Z=Z+DZ:G=WW:W=WW:IF Z-DZ2<WL THEN G=0:W=0
230 TLZ=TLZ+G*DZ:PL=PL+W*DZ:SLZ=TLZ-PL:SLX=SLZ:TLX=SLX+PL
240 G=GN:W=WW:IF Z-DZ2<WR THEN G=GD:W=0
250 TRZ=TRZ+G*DZ:PR=PR+W*DZ:SRZ=TRZ-PR:SRX=CA*SRZ:TRX=SRX+PR
260 F(I)=TRX-TLX:FF=(F(I)+F(I-1))*DZ2:Q(I)=Q(I-1)-FF
270 M(I)=M(I-1)+(Q(I)+Q(I-1))*DZ2:MT=MT+FF*(Z-DA-DZ2):NEXT I
280 WHILE MT>0:N=N+1:Z=Z+DZ:G=GN:W=WW:IF Z-DZ2<WL THEN G=GD:W=0
290 TLZ=TLZ+G*DZ:PL=PL+W*DZ:SLZ=TLZ-PL:SLX=CP*SLZ:TLX=SLX+PL
300 G=GN:W=WW:IF Z-DZ2<WR THEN G=GD:W=0
310 TRZ=TRZ+G*DZ:PR=PR+W*DZ:SRZ=TRZ-PR:SRX=CA*SRZ:TRX=SRX+PR
320 F(N)=TRX-TLX:FF=(F(N)+F(N-1))*DZ2:Q(N)=Q(N-1)-FF
330 M(N)=M(N-1)+(Q(N)+Q(N-1))*DZ2:MT=MT+FF*(Z-DA-DZ2)
340 IF N=NN THEN PRINT "No solution":STOP:END
350 WEND
360 HH=Z:FT=-M(N)/(HH-DA):Z=0:MM=0
370 FOR I=1 TO N:Z=Z+DZ:IF (Z>DA) THEN Q(I)=Q(I)+FT:M(I)=M(I)+FT*(Z-DA)
380 IF (M(I)>MM) THEN MM=M(I)
390 NEXT I
400 PRINT "Minimum length (m) ............... ";:PRINT USING A$;HH
410 PRINT "Anchor force (kN/m) .............. ";:PRINT USING A$;FT
420 PRINT "Maximum moment (kNm/m) ........... ";:PRINT USING A$;MM
430 PRINT "Shear force at the toe ........... ";:PRINT USING A$;Q(N)
440 PRINT "Moment at the toe ................ ";:PRINT USING A$;M(N)
450 STOP:END

Program 35.2: Sheet pile in homogeneous soil, with groundwater

The computations can be executed by Program35.2. In this program the sheet
pile wall is subdivided into a large number of small elements, of length DZ = H/N,
where N = NN/3 and NN = 10000. The horizontal stresses on the right side and
the left side are calculated from top to toe, at the same time calculating the moment
with respect to the anchor point (this is the variable MT). This is done first for the
part from the top to the bottom of the excavation, in lines 220 until 270. The vertical
total stresses σzz to the left and right of the wall are denoted as TLZ and TRZ, the
vertical effective stresses as SLZ and SRZ, the horizontal effective stresses as SLX
and SRX, and the horizontal total stresses as TLX and TRX. The quantity F(I) is
the total distributed load, the sum of the loads from the left and the right. The total
length of the wall is gradually increased, from its initial value HH = H, in small
steps of magnitude DZ, until a change of sign of the moment MT occurs. Then the
length of the wall is known (HH). If at a length of 3 times the excavation depth no
equilibrium of moments has been found, the program gives an error statement, and
stops. In the course of the analysis the shearing force Q(I) and the bending moment
M(I) are determined, neglecting the anchor force, As soon as the length of the wall is
known, the correct value of the anchor force can be determined, from the condition
that at the toe of the wall the bending moment must be zero, see line 360. Then
the distributions of the shear force and the bending moment can be corrected for
the influence of the anchor force, and the program prints some output data. It also
prints the shear force and the bending moment at the toe of the wall. These quantities
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should be zero. Usually this is not precisely the case, which is an indication of the
accuracy.

In the example: H = 6.0, DA = 0.5, CA = 0.3333, CP = 3.0, GD = 16.0,
GN = 20.0, WL = 6.0, WR = 1.0. The program then gives that the length of the
wall should be 11.825m. The anchor force is 162.710 kN/m, and themaximum bend-
ing moment is 544.263 kNm/m. The bending moment at the toe appears to be exactly
zero, but the shear force is 0.043 kN. This is a small error, that can be accepted.

Again, the computer program has been kept as simple as possible. It can be
used as a basis for a more advanced program, with more refined input and output
data handling. The input data might be collected in a datafile, that can be edited
separately, and the output data might be presented in tables or graphs on the screen
or on the printer.

Problem 35.1 Verify a number of values in the Tables35.1 and 35.2, using a com-
puter program.

Problem 35.2 Also verify the values from Table35.3, using a computer program.

Problem 35.3 A sheet pile wall is used to retain a height of 5m, in dry sand, with
φ = 30◦. The depth of the anchor is 1m. Determine the minimum embedment depth,
according to Table35.1, and using one of the computer programs.

Problem 35.4 Verify the output of the example of Program35.2. In this case the
length of the wall appears to be very large, almost twice the depth of the excavation.
What should be the length of the wall if the anchor is located somewhat deeper, say
at a depth of 2.0m?

Problem 35.5 Modify the Program35.2 so that it will present a table of the load,
the shear force and the bending moment, as a function of depth.



Chapter 36
Blum

In the previous chapter a procedure has been presented for the determination of the
minimum length of a sheet pile wall, needed to ensure equilibrium. This method is
such that whenever the wall is shorter than that minimum length, no equilibrium is
possible, and thewallwill certainly fail. This suggests that it is advisable to choose the
length of the wall somewhat larger than the minimum length, as a total failure of the
wall would be disastrous. If the length is taken somewhat larger than required,
the bending moments may perhaps be somewhat reduced. A method of analyzing
the deformation and bending of the wall has been developed in the 1950s by the
German engineer H. Blum. This method is presented in this chapter, including a
simple computer program.

36.1 Blum’s Schematization

If the length of the sheet pile wall is somewhat larger than strictly necessary to ensure
equilibrium, the passive earth pressure need not be developed over the entire length
of the embedded part of the wall. It may be expected that the pressures against the
wall will be of the form shown in Fig. 36.1. Because of the extra length of the sheet
pile wall the toe will act as a clamped edge, in which the lowest part may have a
tendency to move to the right, building up a pressure towards the left. Together with
the incomplete passive pressure towards the right this will constitute the clamping
moment. Blum suggested to schematize the loads on the wall as shown in the right
half of the figure. The force R (the Ersatzkraft) is equivalent to the pressure to the
right at the extreme lower part of thewall. Its precise distribution is left undetermined.
The toe of the sheet pile wall is now assumed to be a clamped edge, and it is also
assumed that at the toe the bending moment is zero, but a shear force (of magnitude
R) is allowed. In order that this force may indeed develop, and that there is enough
material to form a clamped boundary, the actual length should be somewhat larger
than assumed in the schematization: usually the embedment depth is taken 20%
larger than calculated.
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Fig. 36.1 Blum’s schematization

One of the ideas behind Blum’s schematization is that the clamping moment
will probably lead to a reduction of the bending moments in the sheet pile wall, so
that a lighter profile may be used. Thus the additional costs involved by taking a
longer sheet pile wall is balanced by a lighter profile. That this is acceptable can be
argued by noting that a failure by a wall that is too short is indeed disastrous, but
that in case of failure by exceeding the maximum bending moment, some additional
strength is available beyond the onset of plastic deformation of the steel. If a plastic
deformation in bending is developed, the bending moment will at least be constant,
and may even increase somewhat. Also, the soil pressures may be redistributed by
the large deformations.

36.2 Blum’s Method

The basic principle of Blum’s method of analysis is that the sheet pile wall is consid-
ered as fully clamped at its toe, with the additional condition that the bendingmoment
at the toe is zero. The shear force, however, in general will be unequal to zero. This
shear force is supposed to be the resultant force of the stresses in the vicinity of the
toe, including some length below the toe. The clamping of the edge is supposed to
be so strong that the displacement and the rotation (that is the first derivative of the
displacement) are zero, and even the second derivative is zero, so that the bending
moment is zero. The length of the wall will be determined by the conditions of equi-
librium, with active soil stresses on the high side and full passive stresses on the low
side, and the condition that the horizontal displacement is zero at the level of the
anchor. The procedure can best be illustrated by means of an elementary example.

The example refers to a sheet pile wall retaining a height h of homogeneous
saturated soil, see Fig. 36.2. To enable an analytical solution it is assumed that on
the two sides of the wall the groundwater table coincides with the soil surface. To
further simplify the problem the anchor is supposed to be acting at the top of the
wall. The embedment depth d is unknown. This is one of the parameters that have
to be determined by the analysis.
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Fig. 36.2 Example

At the active side of the wall the vertical total stress is

σzz = γz,

in which γ is the volumetric weight of the saturated soil. The pore pressures are

p = γwz,

so that the effective stresses are

σ′
zz = (γ − γw)z.

The horizontal effective stresses now are, for a cohesionless soil with c = 0,

σ′
xx = Ka(γ − γw)z.

The horizontal total stresses are obtained by adding the pore pressures,

σxx = [Ka(γ − γw) + γw]z.

This can also be written as
σxx = K ∗

aγz, (36.1)

where
K ∗

a = Ka(1 − γw/γ) + γw/γ. (36.2)

If Ka = 0.3333 and γw/γ = 0.5, then K ∗
a = 0.6667. It should be noted that the

simple expression (36.1), linear in z, is valid only if the soil is homogeneous, with
c = 0, and if the groundwater table coincides with the soil surface. In a more general
case the computation of the horizontal total stresses proceeds in exactly the same
way, but the result can not be expressed in the simple form of Eq. (36.1).
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In the same way the horizontal stresses at the passive side, for z > h, can be
determined. The result is

σxx = K ∗
pγ(z − h), (36.3)

where
K ∗

p = Kp(1 − γw/γ) + γw/γ. (36.4)

If Kp = 3.0 and γw/γ = 0.5, then K ∗
p = 2.0.

The resulting active and passive forces are

Fa = 1

2
K ∗

aγ(h + d)2,

Fp = 1

2
K ∗

pγd
2.

The condition that the bending moment at the toe of the sheet pile wall must be zero,
at the depth of the clamped edge, i.e. the point of application of the force R, gives

T (h + d) = 1

6
K ∗

aγ(h + d)3 − 1

6
K ∗

pγd
3. (36.5)

For the computation of the horizontal displacement of the top of the sheet pile wall
(which must be zero), the contribution of the three forms of loading can best be
considered separately, see Fig. 36.3.

The first loading case is the anchor force T , acting at the top of the sheet pile wall.
This force leads to a displacement of the top of magnitude

u1 = T (h + d)3

3 E I
. (36.6)

This is a well known basic problem from applied mechanics.
For the case of a triangular load f = az on a clamped beam of length l, the loading

case in the central part of Fig. 36.3, the displacements can be found using the classical
theory of bending of beams, from applied mechanics. By integrating the differential

Fig. 36.3 Loads on the
clamped wall in Blum’s
schematization



36.2 Blum’s Method 291

equation E Id4u/dz4 = f , with the boundary conditions that at the top the bending
moment and the shear force are zero, whereas at the toe the horizontal displacement
u and its first derivative (the rotation) are zero, the displacement of the top can be
obtained as

u0 = al5

30 E I
. (36.7)

The rotation of the top is found to be

ϕ0 = al4

24 E I
. (36.8)

Using these formulas the horizontal displacement of the top of the sheet pile wall
caused by the active soil pressure on the right side is, with (36.1) and (36.7),

u2 = −K ∗
aγ(h + d)5

30 E I
. (36.9)

The minus sign indicates that this displacement is directed towards the left.
The displacement caused by the passive soil pressures at the left side of the sheet

pile wall, as described by (36.3), is found to be

u3 = K ∗
pγd

5

30 E I
+ K ∗

pγd
4h

24 E I
. (36.10)

The first term in this expression is the displacement at the top of the load, the second
term is the additional displacement due to the rotation at the top of the load. Together
these two quantities constitute the displacement at the top of the sheet pile wall. The
upper, unloaded part of the wall, does not deform in this loading case.

The sum of the three displacements (36.6), (36.9) and (36.10) must be zero. This
gives, with (36.5), and after multiplication by E I/K ∗

pγ,

K ∗
a

K ∗
p

(h + d)5

18
− d3(h + d)2

18
− K ∗

a

K ∗
p

(h + d)5

30
+ d5

30
+ d4h

24
= 0,

or, after some rearranging of terms,

(d
h

)3 = 8 (K ∗
a /K

∗
p) (1 + d/h)5

20 (1 + d/h)2 − 15 d/h − 12 (d/h)2
. (36.11)

From this equation the value of d/h can be solved iteratively, using an initial estimate,
possibly simply d/h = 0.0.

The computations can bemade using the Program36.1. The programonly requests
the input of the volumetric weights of water and (saturated) soil, and the values
of the active and passive pressure coefficients, and then computes the values of
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100 CLS:PRINT "Sheet pile wall in homogeneous saturated soil"
110 PRINT "Blum":PRINT:A$="& ####.###"
120 INPUT "Volumetric weight of water ...... ";GW
130 INPUT "Volumetric weight of soil ....... ";GG
140 INPUT "Active stress coefficient ....... ";KA
150 INPUT "Passive stress coefficient ...... ";KP
160 KSA=KA*(1-GW/GG)+GW/GG:KSP=KP*(1-GW/GG)+GW/GG:D=0
170 C=8*(KSA/KSP)*(1+D)ˆ5/(20*(1+D)ˆ2-15*D-12*D*D)
180 IF C<0 THEN PRINT "No solution":END
190 C=Cˆ(1/3):E=ABS(C-D):D=C:IF E>0.000001 THEN 170
200 PRINT USING A$;"d/h = ";D
210 T=(KSA*(1+D)ˆ3-KSP*Dˆ3)/(6*(1+D))
220 PRINT USING A$;"T/ghh = ";T
230 END

Program 36.1: Blum’s method for saturated soil

Fig. 36.4 Shear force and bending moment

d/h and T/γh2, using the Eqs. (36.11) and (36.5). For the case that GW = 10,
GG = 20, CA = 0.3333 and CP = 3.0 the result of the program is d/h = 1.534
and T/γh2 = 0.239. It appears that in this case the sheet pile wall needs a rather
long embedment depth (more than 1.5 times the retaining height). This is the price
that has to be paid for a more favorable distribution of the bending moments. The
profile of the steel elements can be somewhat lighter, but the length is considerably
larger than in the simple method of the previous chapter.

The distribution of the shear force and the bending moment is shown in Fig. 36.4.
The shear force at the top is the anchor force. The value at the toe is Blum’s concen-
trated force R. It appears that this force results in a reduction of the bendingmoments
in the sheet pile wall, as mentioned before. For the determination of the profile of the
wall it is favorable that the positive and negative bending moments are of the same
order of magnitude.

The results of the computations for a number of values of the earth pressure
coefficients Ka and Kp are given in Table36.1. It has been assumed that the volu-
metric weight of the water is γw = 10 kN/m3, and that the volumetric weight of the
saturated soil is γ = 20 kN/m3, a common value.

The concentrated force R is an essential element in Blum’s method. It should be
remembered that this force actually represents the distributed load at the extreme toe
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Table 36.1 Blum’s method for homogeneous soil

φ Ka Kp d/h T/γh2

10◦ 0.7041 1.4203 5.228 0.881

15◦ 0.5888 1.6984 3.406 0.554

20◦ 0.4903 2.0396 2.481 0.394

25◦ 0.4059 2.4639 1.917 0.300

30◦ 0.3333 3.0000 1.534 0.239

35◦ 0.2710 3.6902 1.255 0.196

40◦ 0.2174 4.5989 1.040 0.165

45◦ 0.1716 5.8284 0.868 0.141

of the sheet pile wall, which is produced by the deformation of the sheet pile wall. For
the generation of this concentrated force the wall should be given some additional
length, by choosing the length of the wall somewhat larger than the theoretical value
computed in the analysis. It is often assumed that the length of the embedment depth
(the distance d in the example) should be taken 10% or 20% larger than computed.
All this leads to a wall of considerable length. This is the price that has to be paid
for the advantages of Blum’s analysis: a lighter profile, and small displacements.

It may be noted that the example considered in this chapter is perhaps a very
unfavorable case: the level of groundwater at the right side is very high, and on the
left side it is very low. In the next chapter a more general method will be described.
It must be admitted, however, that in many cases Blum’s method leads to rather long
sheet pile walls. The safety is perhaps large, but at a price.

Problem 36.1 Verify a number of values in Table36.1 by substitution into
Eq. (36.11), or by a computation using Program 36.1.

Problem 36.2 A sheet pile wall is used to construct a building pit in a polder. The
depth of the pit is 5m, and on both sides the groundwater level coincides with the
soil surface. The sheet pile wall is supported by a strut connecting to an identical
wall at the other side of the building pit. Determine the necessary length of the sheet
pile wall, assuming that c = 0 and φ = 30◦.

Problem 36.3 It has been found that the friction angle in the previous problem
should be 40◦ instead of 30◦. Determine the length of the sheet pile wall for this
case.

Problem 36.4 Equation (36.11) applies to saturated soil, with the groundwater level
coinciding with the soil surface. Derive a similar equation for homogeneous dry soil.
Then compute the value of d/h for dry soil, with γ = 16 kN/m3, c = 0 andφ = 30◦.

Problem 36.5 Verify the formulas (36.7) and (36.8) for the displacement and the
rotation of the free end of a clamped beam loaded by a triangular stress.



Chapter 37
Sheet Pile Wall in Layered Soil

In this chapter the analysis of a sheet pile wall, as presented in previous chapters, is
generalized to a sheet pile wall in a layered soil.

37.1 Layered Soil

For a sheet pile wall in a layered soil, the analysis requires the computation of the
horizontal stresses on both sides of the wall. The computations can best be per-
formed using a computer program. In this chapter a simple program is presented,
using Blum’smethod. Themain difference with the previous sections is that the com-
putation of the horizontal stresses against the wall is more complicated (Fig. 37.1).

The complications are that the weight and the properties of the various layers
may be different, and the zero level of the groundwater may also be different for
each layer. The simplest approach is to consider the determination of the horizontal
stresses against the wall as a separate problem, that precedes the analysis of the
sheet pile wall. In principle, these stresses can easily be determined by analyzing
the stresses from the top of the soil downward, in each step adding the weight, and
using the appropriate values of the lateral stress coefficients. The horizontal effective
stress follows from σ′

zz = σzz − p, and the horizontal effective stress σ′
xx follows

from the formula for active or passive earth pressure. The horizontal total stress
finally is obtained by adding the pore pressure, σxx = σ′

xx + p. At the interfaces
between succeeding layers the horizontal total stress may be discontinuous, because
the stress coefficients may be discontinuous.
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Fig. 37.1 Layered soil

37.2 Computer Program

100 CLS:PRINT"Sheet pile wall in layered soil":NN=1000

110 PRINT"Blum":PRINT

120 DIM D(20),Z(20),CA(20),CP(20)

130 DIM GDL(20),GNL(20),WL(20),GDR(20),GNR(20),WR(20)

140 DIM M(NN),Q(NN),F(NN),P(NN),U(NN)

150 INPUT "Depth of anchor (m) .............. ";DA

160 INPUT "Number of layers ................. ";N

170 Z(0)=0:GW=10:FOR I=1 TO N:CLS:PRINT "Layer ";I:PRINT

180 INPUT "Thickness (m) .................... ";D(I)

190 INPUT "Cohesion (kN/m2) ................. ";CC(I)

200 INPUT "Active stress coefficient ........ ";CA(I)

210 INPUT "Passive stress coefficient ....... ";CP(I)

220 INPUT "Dry weight left (kN/m3) .......... ";GDL(I)

230 INPUT "Saturated weight left (kN/m3) .... ";GNL(I)

240 INPUT "Depth of groundwater left (m) .... ";WL(I)

250 INPUT "Dry weight right (kN/m3) ......... ";GDR(I)

260 INPUT "Saturated weight right (kN/m3) ... ";GNR(I)

270 INPUT "Depth of groundwater right (m) ... ";WR(I)

280 Z(I)=Z(I-1)+D(I):NEXT I

290 HH=Z(N):DZ=HH/NN:DZ2=DZ/2:TLZ=0:TRZ=0:J=1:ZZ=0

300 FOR I=1 TO NN:ZZ=ZZ+DZ:IF ZZ>Z(J) THEN J=J+1

310 IF ZZ<WL(J) THEN GL=GDL(J) ELSE GL=GNL(J)

320 IF ZZ<WR(J) THEN GR=GDR(J) ELSE GR=GNR(J)

330 IF ZZ<WL(J) THEN PL=0 ELSE PL=GW*(ZZ-WL(J))

340 IF ZZ<WR(J) THEN PR=0 ELSE PR=GW*(ZZ-WR(J))

350 TLZ=TLZ+DZ*GL:SLZ=TLZ-PL:TRZ=TRZ+DZ*GR:SRZ=TRZ-PR
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360 SLX=CP(J)*SLZ+2*CC(J)*SQR(CP(J))

370 SRX=CA(J)*SRZ-2*CC(J)*SQR(CA(J)):IF SRX<0 THEN SRX=0

380 TLX=SLX+PL:TRX=SRX+PR:F(I)=TRX-TLX:NEXT I

390 F(0)=0:Q(0)=0:M(0)=0:JJ=0:FOR I=1 TO NN

400 FF=(F(I)+F(I-1))*DZ2:IF I*DZ<DA THEN JJ=I

410 Q(I)=Q(I-1)-FF:M(I)=M(I-1)+(Q(I)+Q(I-1))*DZ2

420 NEXT I:NH=NN+1:UA=1:WHILE UA>0:NH=NH-1

430 HT=NH*DZ:T=-M(NH)/(HT-DA):P(NH)=0:U(NH)=0

440 FOR I=NH-1 TO JJ STEP -1:M1=M(I)+T*(I*DZ-DA)

450 M2=M(I+1)+T*(I*DZ+DZ-DA):P(I)=P(I+1)+M1+M2

460 U(I)=U(I+1)-P(I)-P(I+1):NEXT I:UA=U(JJ)

470 WEND:NH=NH+1:HT=NH*DZ:T=-M(NH)/(HT-DA):A$="####.###"

480 FOR I=JJ TO NH:Q(I)=Q(I)+T:M(I)=M(I)+T*(I*DZ-DA):NEXT I

490 PRINT"Length : ";:PRINT USING A$;HT

500 PRINT"Anchor force : ";:PRINT USING A$;T

510 END

Program 37.1: Blum’s method for a layered soil.

The computations can be executed by Program 38.1. The input data are entered
interactively. After some general data the following data must be entered for each
layer: the thickness of the layer, the cohesion, the coefficient of active earth pressure,
the coefficient of passive earth pressure, the volumetric weight of the soil in dry
condition (if there is no soil this is 0), the volumetric weight of the soil in saturated
condition (if there is no soil this is 10, the volumetric weight of water), and the zero
level of the groundwater, considered with respect to the top of the wall. These last
three data must be given both for the left side and the right side of the wall. It is
assumed that the excavation is on the left side, so that active pressures occur on the
right side of the sheet pile wall, and passive stresses on the left side.

The program starts with an initial assumption of the length of the sheet pile
wall, namely the sum of all layer thicknesses. The distribution of the loads on the
two sides of the wall, active on the right side and passive on the left side, is then
calculated for a large number of points (1000 in the program), from the data defining
the layer thicknesses, their weight, the stress coefficients and the applicable depth
of the groundwater. The stresses are cut off for tension, in line 370. The resulting
load is indicated by F(I). This is the difference of the soil pressures at the right side
and the left side, see line 380. Next the shear force Q(I) and the building moment
M(I) are calculated numerically, ignoring the anchor force, which is unknown at that
stage. The anchor force T is calculated from the condition that the bending moment
is zero at the toe of the wall (in line 430). Next the rotation ϕ and the horizontal
displacement u are computed by integrating the bending moment twice, using the
boundary condition at the clamped toe of the wall, whereϕ = 0 and u = 0. Actually,
this calculation should involve the bending stiffness E I , because the equations are
dϕ/dz = M/E I and du/dz = ϕ, but as the conditions are that these variables must
be zero, the value of the constant factor E I is irrelevant. In the program the variables
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ϕ and u are indicated by P(I) and U(I). The displacement at the anchor point is
UA. If that displacement is found to be positive, the length of the wall is shortened
by a small amount, and the computation is repeated until UA turns negative. The
procedure assumes that the initial estimate of the length of the wall is sufficiently
large. Therefore the thickness of the deepest layer must be sufficiently large.

The output of the program consists of the computed length and anchor force only.
The shear force and the bending moment are calculated, but not printed. Of course,
it is very simple to modify the program so that it prints these quantities.

The simple example of the previous chapter, for the case of a cohesionless soil,
as shown in Fig. 36.2, can be determined using the following data.

DA=0.0:N=2

D(1)=1.0:CA(1)=0.3333:CP(1)=3.0

GDL(1)=0.0:GNL(1)=10.0:WL(1)=1.0

GDR(1)=16.0:GNR(1)=20.0:WR(1)=0.0

D(2)=2.0:CA(2)=0.3333:CP(2)=3.0

GDL(2)=16.0:GNL(2)=20.0:WL(2)=1.0

GDR(2)=16.0:GNR(2)=20.0:WR(2)=0.0

The depth of the excavation (the thickness of the first layer) has been taken as 1 m.
The thickness of the second layer is 2 m. The initial estimate for the length then
is 3 m. This will probably be sufficiently long. To simulate the excavation the dry
volumetric weight of the soil at the left side is assumed to be 0.0, and its saturated
weight is assumed to be 10.0, the volumetric weight of water. Although there is no
water there, but changing the groundwater level might change that.

Running the program shows that the length of the sheet pile wall must be 2.532 m,
and the anchor force T = 4.751 kN/m. This means that T/γh2 = 0.238. These
results are in agreement with the results of the analytical solution of the previous
chapter.

37.3 Computation of Anchor Plate

The anchor is supposed to consist of a steel rod, connected to a plate. This plate
should be capable of resisting the anchor force T . The maximum force of the anchor
plate can be determined by an application of Coulomb’s theory, see Fig. 37.2. At the
left side of the plate the stresses are supposed to be the passive earth pressure, and at
the right side the active earth pressure is assumed to act. The maximum force then
is, assuming that the plate is continuous,

Tmax = 1

2
(Kp − Ka)γb

2. (37.1)

http://dx.doi.org/10.1007/978-3-319-61185-3_36
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Fig. 37.2 Anchor

This value must be larger than the anchor force required for equilibrium of the sheet
pile wall. A sufficiently large value of a safety factor must be taken into account
(for instance 1.5). Of course, the anchor rod must also be strong enough to transfer
this force. In engineering practice the anchor usually consists of a series of plates,
at certain distances. The value (37.1) gives the force per unit length. This must be
multiplied by the distance of the anchors to obtain the force in a single anchor.

The anchor plate need not run from its largest depth b to the soil surface. This
might be an obstacle for other use of the soil. However, even when the anchor reaches
only to a certain small depth, the sliding surface might be the same as for an anchor
up to the surface. In practice an anchor is considered as fully embedded if its height
is at least 1

2b.
The distance of the anchor plate from the sheet pile wall should be sufficiently

large to enable the necessary passive earth pressure to be developed. In principle, the
distance must be so large that the active region of the sheet pile wall and the passive
region of the anchor plate do not overlap, see Fig. 37.2.

The complete system, of sheet pile wall, anchor and soil body, forms a retaining
structure, that must be stable in itself. In order to verify that condition a stability
analysis of the system must also be made, for instance using a circular slip plane
passing below the sheet pile wall and the anchor plate. See Chap.44.

In engineering practice somemore advancedmethods are often used for the analy-
sis of a sheet pile wall. A familiar method is to consider the wall as a beam supported
by a large number of elasto-plastic springs (Verruijt, 1995). The characteristics of
these springs are defined such that the maximum soil stress is the passive earth pres-
sure, and the minimum soil stress is the active earth pressure. The actual soil stress is
supposed to depend upon the displacement, with the passive stress being developed if
the displacement is towards the soil, and sufficiently large. The active state of stress is
developed when the wall displaces away from the soil, and the displacement is suffi-
ciently large. The actual displacements are calculated by considering the differential
equations of equilibrium and deformation of the sheet pile wall. In such an analysis
the excavation process can be modeled in a number of loading and unloading stages,
with anchors being installed in different stages. The main advantages of this method
is that the analysis includes a reasonably accurate computation of the deformations,

http://dx.doi.org/10.1007/978-3-319-61185-3_44
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and that it enables to analyze walls with multiple anchors. Computer programs for
this type of numerical analysis are available on the internet (search for geotechnical
software).

Some fully numerical methods of analysis of soil structures based upon the finite
elementmethod also include amodule for sheet pilewalls. An example is the program
PLAXIS by Brinkgreve and Vermeer (2002).

Problem 37.1 Calculate the case shown in Fig. 36.2, with an anchor at depth 0.2 h.
Determine the length of the sheet pile wall, if h = 5 m.

Problem 37.2 Also consider the case shown in Fig. 36.2, with an anchor at a depth
0.2 h, and a water level of 0.2 h below the top of the wall, at both sides. Determine
the length of the sheet pile wall, if h = 5 m.

Problem 37.3 Extend the program 37.0 with statements that print the load, the shear
force and the bending moment. Let the program also calculate the largest positive
and negative bending moments.

Reference

R.B.J. Brinkgreve, P.A. Vermeer, PLAXIS, Finite Element Code for Soil and Rock
Analysis (Swets & Seitlinger, Lisse, 2002)
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Chapter 38
Limit Analysis

Coulomb’s method for the analysis of soil pressures considers extreme conditions,
in which the soil is on the verge of failure. This type of analysis can be given a
firm theoretical basis by the theory of plasticity. This also enables to generalize the
method, and to investigate the possible limitations and the validity of the method.

38.1 Plasticity

In the analysis of stresses and strains in continuum mechanics three types of equa-
tions are needed: equilibrium conditions, constitutive relations, and compatibility
equations. The general purpose is to determine the stresses and strains in a certain
body, under the influence of given stresses and displacements on the surface of that
body. Even for the simplest type of material, a linear elastic body, for which the
constitutive relations are linear relations between stresses and strains (Hooke’s law),
this is a formidable task, which can be solved only for simple cases, such as a half
space, a perfect sphere or a cylindrical body. Approximate solutions may be found
for various materials, including linear elastic materials, using advanced numerical
methods, such as the finite element method. Such numerical methods will not be
considered in this book, however. An alternative may be formed by limit analysis,
on the basis of plasticity theory, which aims not to give the complete field of actual
stresses and deformations, but is restricted to give a possible upper or lower limit of
the stresses or the deformations.
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38.2 Basic Theorems of Plasticity Theory

In considerations of limit analysis not all the details of the constitutive relations are
taken into account, but one aspect is given priority, namely the failure criterion of the
material. For soils this may be theMohr–Coulomb criterion, described by a cohesion
c and a friction angle φ. Also, not all the conditions of equilibrium and compatibility
equations are taken into account, but only a subset of these equations. The purpose
of limit analysis is not to determine the complete field of actual stresses and strains,
but only to determine certain limiting values. The problem may be to determine a
lower bound for the maximum allowable load on a soil body, or to determine an
upper bound for this maximum load. If a lower bound for the failure load can be
found, it is certain that no failure will occur as long as the real load remains below
this lower bound. If an upper bound can be found it is certain that failure will occur
if the real load is greater than this upper bound.

In its simplest form the theory of plasticity uses a single constant failure condi-
tion, which is a function of the stresses only. This condition expresses that for certain
combinations of stresses in a point of the material the deformations increase with-
out bounds (this is called plastic yielding), and that for smaller stresses no plastic
deformations will occur. A material with such a simple yield condition is called a
perfectly plastic material. For soils a suitable yield condition is the Mohr–Coulomb
criterion, although more complex yield conditions have also been studied.

In formulating the basic theorems of the theory of plasticity two types of fields
are being used, which can be defined as follows.

1. An equilibrium system, or a statically admissible field of stresses is a distribution
of stresses that satisfies the following conditions:

a. it satisfies the conditions of equilibrium in each point of the body,
b. it satisfies the boundary conditions for the stresses,
c. the yield condition is not exceeded in any point of the body.

2. Amechanism, or a kinematically admissible field of displacements is a distribution
of displacements and deformations that satisfies the following conditions:

a. the displacement field is compatible, i.e. no gaps or overlaps are produced in
the body (sliding of one part along another part is allowed),

b. it satisfies the boundary conditions for the displacements,
c. wherever deformations occur the stresses satisfy the yield condition.

The basic theorems of the plasticity theory are,

1. Lower bound theorem. The true failure load is larger than the load corresponding
to an equilibrium system.

2. Upper bound theorem. The true failure load is smaller than the load corresponding
to a mechanism, if that load is determined using the virtual work principle.

The first theorem states that if for a certain load an equilibrium system can be found
(ignoring compatibility), then that load can certainly be carried. The second theorem
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states that if amechanismcanbe found corresponding to a certain load (where equilib-
rium is taken into account only insofar as it corresponds to the chosen deformation),
then this load can certainly not be carried.

It may be noted that in these theorems and in the definition of the statically or
kinematically admissible fields, the constitutive relations are not mentioned, and
therefore they play no role, except for the statement that the material will yield if the
stresses satisfy the yield condition.

A proof of the two theorems is given in Appendix C. When studying these proofs
it will appear that they have only a limited validity. The most important restriction
is that for a material with friction, such as a soil, for which the yield condition is the
Mohr–Coulomb criterion, with a cohesion c and a friction angle φ, the theorems are
valid only if during plastic deformation a continuing volume expansion occurs, of
magnitude sin φ times the rate of shear deformation. That seems to be an unrealistic
behavior, as it can be expected that in the case of continuing plastic deformations the
volumewill remain practically constant. This is alsowhat has often been confirmed in
experimental studies. An ever continuing plastic volume expansion would mean that
the material expands without bounds, and that seems to be improbable. This means
that the basic theorems of plasticity are not valid for soils, except for φ = 0, i.e. for
purely cohesive materials. For such a material the theory predicts that the volume
is constant during plastic deformations, and that is in agreement with experimental
evidence.

Because for φ = 0 the theorems are valid, it follows that for such a material safe
and unsafe predictions of the behavior of a soil body can be made. For rapid loadings
of saturated clays it can indeed be assumed that φ = 0 and c = su , the undrained
shear strength, see Chap. 24. For sands, for which it is essential that the friction angle
φ > 0, the theorems are not valid, at least in principle. In engineering practice they
may nevertheless be used, often in a somewhat modified form. Great care should be
taken in formulating conclusions from limit analysis for sands.

Actually, the limit theorems have already been used in the Chaps. 32 and 33.
Rankine’s considerations, see Chap.32, are based upon equilibrium systems, choos-
ing the horizontal stress such that the limit of yielding is reached. This means that
the failure load is approached from below. In the analysis following Coulomb, see
Chap.33, the basis is a kinematic system, with sliding along a straight slip plane.
Then the failure load is approached from above.

In the next chapters limiting states will be considered for a variety of structures,
using limit analysis. These include the bearing capacity of a shallow footing, and the
stability of slopes.

http://dx.doi.org/10.1007/978-3-319-61185-3_24
http://dx.doi.org/10.1007/978-3-319-61185-3_32
http://dx.doi.org/10.1007/978-3-319-61185-3_33
http://dx.doi.org/10.1007/978-3-319-61185-3_32
http://dx.doi.org/10.1007/978-3-319-61185-3_33


Chapter 39
Strip Footing

One of the simplest problems for which lower limits and upper limits can be
determined is the case of an infinitely long strip load on a layer of homogeneous
cohesive material.

39.1 Strip Load

The problem considered in this chapter concerns a half space of homogeneous cohe-
sive material (φ = 0), see Fig. 39.1, loaded by a strip load. The weight of the soil
will be disregarded, at least in this chapter. That means that it is assumed that γ = 0.
The problem is a first schematization of the foundation of a structure, using a long
strip foundation, made of concrete, for instance.

It will first be attempted to obtain a lower bound for the failure load, using an
equilibrium system. Such a system should consist of a field of stresses that satisfies
the conditions of equilibrium in all points of the field, that agrees with the given
stress distribution on the soil surface, and that does not violate the yield condition in
any point.

39.2 Lower Bound

An elementary solution of the conditions of equilibrium in a certain region is that the
stresses in that region are constant, because then all conditions are indeed satisfied.
In a two-dimensional field these equilibrium conditions are, in the absence of gravity,

∂σxx

∂x
+ ∂σzx

∂z
= 0, (39.1)
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Fig. 39.1 Strip load on half space

∂σxz

∂x
+ ∂σzz

∂z
= 0, (39.2)

σxz = σzx . (39.3)

Themain difficulty is to satisfy the boundary condition, because the normal stress σzz

is discontinuous along the surface, see Fig. 39.1. This difficulty can be surmounted
by noting that in a statically admissible field of stresses (an equilibrium system),
not all stresses need be continuous. Formally this can be recognized by inspection
of the equations of equilibrium, Eqs. (39.1)–(39.3). All partial derivatives in these
equations must exist, which means that the stresses must at least be continuous
in the directions in which they have to be differentiated. It follows that the shear
stress σxz must be continuous in both directions, that the normal stress σxx must be
continuous in x-direction, and the normal stressσzz must be continuous in z-direction.
However, two of the partial derivatives, ∂σxx/∂z and ∂σzz/∂x , do not appear in the
equations of equilibrium, and therefore no conditions have to be imposed on the
continuity of these two normal stresses in these directions. This means that σxx may
be discontinuous in z-direction, and that σzz may be discontinuous in x-direction.
Such a discontinuity is shown, for the vertical direction, in Fig. 39.2. This figure
shows a small element, with all the stresses acting upon its boundaries. The normal
stress σxx must be continuous in x-direction, because of equilibrium, as can most
easily be seen by letting the width of the element approach zero. Then the continuity
of the stress σxx can be seen as a consequence of Newton’s principle of equality of
action and reaction. The normal stress σzz , however, may jump across the vertical
line, without disturbing equilibrium. In Fig. 39.2 the stress σzz is discontinuous in
x-direction. The partial derivative ∂σzz/∂x is infinitely large at the location of the
vertical axis, but the element, and all of its parts, are perfectly well in equilibrium.

This property of equilibrium systems has been applied by Drucker, one of the
originators of the theory of plasticity, to construct equilibrium fields for practical
problems. In this method the field is subdivided into regions of simple form, in each
of which the stress is constant, so that the equations of equilibrium are automatically
satisfied. The various subregions then are connected by requiring that all the stresses
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Fig. 39.2 Stress
discontinuity

transferred on the boundary surfaces are continuous, allowing the normal stresses
in the direction of these boundaries to be discontinuous. An example is shown in
Fig. 39.3, for the case of a strip footing. In a vertical strip below the load the stresses
are supposed to be σxx = 2c, σzz = 4c, and σxz = 0. In the two regions to the
left and right of this strip the stresses are σxx = 2c, σzz = 0, and σxz = 0. On the
two vertical discontinuity lines only the vertical normal stress σzz is discontinuous.
The other stresses are continuous, as required by equilibrium. This field of stresses
satisfies all the conditions of equilibrium, and satisfies the boundary conditions on
the upper surface. The shear stress σzx = 0, and the normal stress σzz = 0 if |x | > a,
and σzz = p = 4c if |x | < a, where 2a is the width of the loaded strip. The
stress distribution should also satisfy the condition that the yield condition is never
violated. This can be checked most conveniently by considering the Mohr circles
for this case, as shown in the right half of Fig. 39.3. In order that all circles remain
within the yield envelope the value of the load p should be such that p < 4c. The
stress distribution satisfies all the conditions for a statically admissible stress field,
and it can be concluded that p = 4c is a lower bound for the failure load. If the true
failure load is denoted by pc, it now has been shown that

pc ≥ 4c. (39.4)

It is possible that by considering more than two discontinuity lines slightly higher
lower bounds can be found. This will not be investigated here, however.

Another method to obtain a statically admissible stress field is to use an elastic
solution, when available. Such a solution satisfies the equilibrium equations and the
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Fig. 39.3 Equilibrium system

Fig. 39.4 Elastic solution

boundary conditions. It also satisfies Hooke’s law and the compatibility equations,
which is not required for a statically admissible stress field, but not forbidden either.
If the stress field is such that the maximum shear stress is not larger than the strength
c, a lower bound of the failure load has been obtained. For the case of a strip load,
see Fig. 39.4, the elastic solution has been given in Chap.29. It can be shown that the
maximum shear stress is

τ = p

π
| sin(θ1 − θ2) | . (39.5)

This equation can be derived from the formulas (29.4)–(29.6) by noting that

τ 2 = (
σxx − σzz

2
)2 + σ2

xz . (39.6)

The maximum value of | sin(θ1 − θ2) | is 1, so that the maximum elastic shear stress
is p/π. If this is taken equal to c, the load is p = πc. For this value of the load the
elastic solution is a statically admissible stress field, and the corresponding load is a
lower bound for the failure load, i.e.

pc ≥ 3.14c. (39.7)

Unfortunately, this is a lower value than the value found before (4c), so that this
elastic lower bound does not contribute to a better approximation of the failure load.

http://dx.doi.org/10.1007/978-3-319-61185-3_29
http://dx.doi.org/10.1007/978-3-319-61185-3_29
http://dx.doi.org/10.1007/978-3-319-61185-3_29


39.3 Upper Bound 309

39.3 Upper Bound

An upper bound for the failure load can be obtained by considering the mechanism
shown in Fig. 39.5. This mechanism consists of a displacement field in which half
a circle, of radius a, rotates over a small angle, without internal deformations. This
half circle slides along the remaining part of the body. The displacement field is
compatible, and satisfies the boundary conditions on the displacements (that is very
simple: there are none). The load corresponding to this deformation can be deter-
mined using the virtual work principle. If the circle rotates over a small angle θ,
the displacement along the circle is θa. The work done by the internal stresses on
the virtual deformations (which are concentrated at the circle’s circumference) is,
assuming that the shear stresses along the circle attain their maximum value c,

πca2θ,

because the length of the circular arc is πa. The average displacement of the external
load is 1

2aθ, so that the work done by the load is

1

2
pa2θ.

Equating these two forms of work gives

p = 2πc.

This is an upper bound for the failure load pc,

pc ≤ 6.28c. (39.8)

A somewhat lower upper bound can be found by choosing the center of the circle
somewhat higher, see Fig. 39.6. If the angle at the top is 2α and the rotation again is
θ, the virtual work equation gives

Fig. 39.5 Mechanism 1



310 39 Strip Footing

Fig. 39.6 Mechanism 2

2cR2αθ = 1

2
pa2θ,

and because a = R sinα, in which R is the radius of the circle and a the width of
the load,

p = 4cα

sin2 α
.

Forα = 1
2π the previous upper bound is recovered, but the smallest value is obtained

for α = 1.165562, or α = 66.78◦. The center of the circle then is located at a height
0.429a. The corresponding value of p is 5.52c. This is an upper bound, hence

pc ≤ 5.52c. (39.9)

It can be concluded at this stage that it has been shown that

4c ≤ pc ≤ 5.52c. (39.10)

In the next chapter the failure load will be limited within even closer bounds.
It should be emphasized that for the determination of an equilibrium system the

deformations are not relevant. And in a mechanism internal equilibrium is irrelevant,
except that the virtual work equation can be considered as the equilibrium condition
corresponding to the assumed failure mode.

In the two examples considered here, of a rotation along a circular slip surface,
that equilibrium condition is the equilibrium of moments with respect to the center
of the circle. This is a general result: in an analysis on the basis of a circular slip
surface, the failure load can be calculated by considering equilibrium of moments
with respect to the center of the circle. This equation is equivalent to the virtual work
equation. Because in a mechanism other equilibrium conditions are irrelevant, and
need not be satisfied, it is not allowed to determine the failure load from any other
type of equilibrium condition, not even moment equilibrium with respect to some
other point than the circle’s center.



Chapter 40
Prandtl

In this section a solution is given for the problem of a strip load on a half plane that is
both statically admissible and kinematically admissible. This solutionmust therefore
give the true failure load. The solution was found by the German scientist Ludwig
Prandtl in (1920).

40.1 Prandtl’s Solution

The lower bound part of Prandtl’s solution, with an equilibrium system of stresses,
will be presented in this chapter. The proof that this solution is also kinematically
admissible, which is much more difficult, will be omitted here. A complete proof
can be found in textbooks on the theory of plasticity. As in the previous chapter, the
material is considered to be weightless (γ = 0), and frictionless (φ = 0), so that its
only relevant property is the cohesive strength c. That is a great restriction, but it will
be relaxed in later chapters.

The stresses will be formulated using polar coordinates. In order to verify the
equilibrium conditions, these must be expressed into polar coordinates first.

40.2 Equilibrium Equations in Polar Coordinates

Figure40.1 shows a small element of a two-dimensional region, in polar coordinates
r and θ, with all the stresses acting upon it. Equilibrium in r-direction requires that

σ∗
rr (r + �r)�θ − σrrr�θ + σ∗

θr�r − σθr�r − σθθ�r�θ = 0.
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Fig. 40.1 Polar coordinates

The last term in this equation is needed because the forces σθθ�r and σ∗
θθ�r , which

differ only infinitesimally, do not have precisely the same direction. Their directions
differ by an amount�θ. Together they give a contribution to the forces in r-direction.
By writing

σ∗
rr − σrr = ∂σrr

∂r
�r,

σ∗
θr − σθr = ∂σθr

∂θ
�θ,

the equilibrium equation becomes, after division by r�r�θ,

∂σrr

∂r
+ 1

r

∂σθr

∂θ
+ σrr − σθθ

r
= 0. (40.1)

This is the equation of equilibrium in radial direction.
Equilibrium in tangential direction requires that

σ∗
θθ�r − σθθ�r + σ∗

rθ(r + �r)�θ − σrθr�θ + σθr�r�θ = 0.

In this case the last term may deserve some explanation. This term is the result of
the angle �θ between the forces σθr�r and σ∗

θr�r . Using the equality σθr = σrθ the
following equation is obtained,

∂σrθ

∂r
+ 1

r

∂σθθ

∂θ
+ 2

r
σrθ = 0. (40.2)

This is the equation of equilibrium in tangential direction.
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40.3 Prandtl’s Schematization

The basic principle of Prandtl’s solution of the problem of the determination of the
failure load of a half plane carrying a strip load on its surface is a subdivision of the
region below the load into three zones, see Fig. 40.2, two triangles and a wedge. In
each of these three zones the stress state is assumed to be critical. The load can most
simply be derived from a consideration of equilibrium.

In zone I the stresses are assumed to be

I : σxx = 2c, σzz = 0, σxz = 0. (40.3)

This stress state satisfies the equilibrium conditions and the boundary conditions on
the upper surface (zero shear stress and zero normal stress), and it does not violate the
yield condition in any point. Actually, in every point of this zone the yield condition is
just reached. On a plane inclined at an angle of 45◦ the stresses are, see also Fig. 40.3,
σθθ = c, and σθr = −c. The sign of these stresses can best be verified by comparison
with the definitions of positive stress components, as illustrated in Fig. 40.1, and the
stress distribution shown in Fig. 40.3. On the interface between zones I and II the
normal stress in radial direction is σrr = c.

Fig. 40.2 Prandtl’s schematization

Fig. 40.3 Stresses in zone I
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For zone II, the wedge, it is assumed that everywhere in this zone σrr = σθθ

and σθr = σrθ = −c. Throughout this zone the Mohr circle then just touches the
envelope. The two equations of equilibrium, (40.1) and (40.2) now reduce to

∂σrr

∂r
= 0, (40.4)

∂σθθ

∂θ
= 2c. (40.5)

These equations can be satisfied by the stress field

II : σrr = σθθ = c + 2c(θ − 1
4π), σθr = σrθ = −c, (40.6)

where the integration constant has been chosen such that σθθ is continuous on the
interface between zone I and zone II, where θ = 1

4π. On the interface between zone
II and zone III the angle θ = 3

4π. Then

θ = 3
4π : σrr = σθθ = c(π + 1), σθr = σrθ = −c. (40.7)

In zone III the stresses are again be assumed to be constant. A possible stress field
is, see also Fig. 40.4,

III : σxx = πc, σzz = (π + 2)c, σxz = 0. (40.8)

The boundary conditions for the stresses are satisfied if p = (π + 2)c. This solution
satisfies all conditions for an equilibrium system. This means that the load in this
solution is a lower bound. The failure load is at least equal to that lower bound,

pc ≥ (π + 2)c = 5.14c. (40.9)

Fig. 40.4 Stresses in zone III
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It can be shown that Prandtl’s solution is also an upper bound, by considering a
convenient deformation field, with the wedge being subdivided into a large number
of small triangular wedges. In that case a complication arises in the top corner of the
wedge, where the displacements are singular. The derivation for this case, which also
happens to yield a load of (π + 2)c, will not be considered here, see any textbook on
the theory of plasticity, e.g. Hill (1960).

Assuming that the proof that the value (π + 2)c is an upper bound can indeed be
given, it follows that the true failure load in the case of a strip load is

pc = (π + 2)c = 5.14c. (40.10)

This value is indeed higher than the lower bounds obtained in the previous chapter,
and lower than the upper bounds obtained in that chapter. This confirms the validity
of the upper and lower bound theorems.
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Chapter 41
Limit Theorems for Frictional Materials

In the previous chapters the limit theorems have been applied to determine failure
loads for a purely cohesivematerial (φ = 0). Formaterials with internal friction there
is a fundamental difficulty, namely that the basic theorems of the theory of plasticity
(the upper and lower bound theorems) are not valid, see Appendix C. This difficulty
will be illustrated in this chapter.

41.1 Shear Test

To illustrate the difficulty of applying limit theorems for frictional materials the
behavior of sand in a simple shear test may be considered, see Fig. 41.1. In this test
the vertical normal stress is constant, and the shear stress is increased until failure
occurs. The maximum shear stress is to be determined.

For this case the Dutch scientist De Josselin de Jong has indicated two fields
of stresses and deformations, that appear to satisfy all the conditions for being a
statically admissible stress field as well as a kinematically admissible displacement
field. If the limit theorems were valid the loads for these fields should be the same,
but they will appear to be unequal, which invalidates the theorems, at least if the
material is assumed to have a certain friction angle, and if it is assumed that during
plastic deformation the volume is constant. The two fields will be demonstrated using
simple mechanical models for the deformation of the sand. These models consist of
an assembly of sliding slices.

The first system, illustrated in Fig. 41.2, consists of a large number of thin hori-
zontal slices, each of which slides over the one below. This requires that the stresses
σzz and σzx constitute a critical stress combination. In the assumed direction of shear-
ing the shear stress σzx is negative. In the Mohr circle this critical state of stress is
indicated as point A. The horizontal normal stress σxx can be found using the pole
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Fig. 41.1 Simple shear test

Fig. 41.2 Shearing on horizontal planes

of the Mohr circle. This horizontal stress then appears to be larger than the vertical
normal stress.

It is assumed that the stresses in the entire sand body are constant. Then all
conditions of equilibrium are satisfied. The vertical normal force is N = σzz A, where
A denotes the area of the loading surface. The shear force is T = σzx A, and because
σzx = σzz tan φ it follows that

T = N tan φ. (41.1)

This system satisfies all the conditions for an equilibrium system, so that the load
must be a lower limit for the failure load,

Tc ≥ N tan φ. (41.2)

This is an application of the lower bound theorem, which states that the failure limit
is always larger than the load corresponding to a statically admissible stress field.

The second system, see Fig. 41.3, consists of a combination of sliding vertical
slices, plus a rotation (which requires no stresses). In this case the state of stress is
critical on vertical planes. Because σxz is negative, the critical stress combination of
σxz and the horizontal normal stressσxx is represented by the point B inMohr’s circle,
see Fig. 41.3. Using the pole of the circle the vertical stress σzz can be determined. In
this case the horizontal normal stress is smaller than the vertical normal stress. The
relation between these two stresses is
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Fig. 41.3 Shearing on vertical planes: the book row mechanism

σxx

σzz
= 1 − sin2 φ

1 + sin2 φ
.

Thus the critical shear force is

Tc = N tan φ
1 − sin2 φ

1 + sin2 φ
. (41.3)

This system satisfies all the conditions for a kinematically admissible displacement
field (a mechanism). The load must be an upper limit for the failure load,

Tc ≤ N tan φ
1 − sin2 φ

1 + sin2 φ
. (41.4)

This is an application of the upper bound theorem, which states that the failure
limit is always smaller than the load corresponding to a kinematically admissible
deformation field.

Equations (41.4) and (41.2) constitute a contradiction. Because the last factor in
(41.4) is smaller than 1 (if φ > 0), the two equations can not both be valid. This
means that the limit theorems can not both be valid for sand.

It must be admitted that not all experts of soil mechanics immediately accepted the
conclusion that the limit theorems are not valid for frictionalmaterials. But theBritish
scientist Wroth in his 1984 Rankine lecture showed theoretical and experimental
evidence to support De Josselin de Jong’s analysis.

Notwithstanding this fundamental difficulty in the attempts to establish limiting
values for the stresses, in practical geotechnical engineering limit analysis is applied
frequently, also for frictional materials such as sand. An example is the determination
of lateral stresses in soils in earlier chapters. To offset the difficulties it is attempted to
make the total set of assumptions regarding the stresses and deformations as realistic
as possible. If possible, the lessons from test results and practical experiences may
also be incorporated in these assumptions. The example of this chapter indicates
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that for frictional materials there is no certainty that the results are an upper bound
or a lower bound for the failure load. The practical approach is that by taking care
that the field of stresses and deformations satisfies the requirements of a statically
admissible field of stress and a kinematic field of deformations as good as possible,
the calculated failure load will probably be close to the real failure load.



Chapter 42
Bearing Capacity

In this chapter the case of a strip footing on cohesivematerial, considered inChaps. 39
and 40, is extended to a general type of shallow foundation, on a soil characterized
by its cohesion c, friction angle φ and volumetric weight γ. The soil is assumed to
be completely homogeneous. Although the formulas were originally intended to be
applied to foundation strips of buildings, at a shallow depth below the soil surface,
they are also applied to large caisson foundations used in offshore engineering for
the foundation of huge oil production platforms. Although many scientists have
contributed to the analysis, the usual reference is to the Danish geotechnical engineer
J. Brinch Hansen (1970).

42.1 Bearing Capacity of Strip Foundation

An important problem of foundation engineering is the computation of themaximum
load (the bearing capacity) of a strip foundation, i.e. a very long foundation, of
constant width, at a certain depth below the soil surface. The influence of the depth
of the foundation is accounted for by considering a surcharge at the foundation level,
to the left and the right of the applied load. For the simplest case, of a strip of infinite
length, on weightless soil, the first computations were made by Prandtl (1920), see
Fig. 42.1, on the basis of the assumption that in a certain region at the soil surface the
stresses satisfy the equilibrium conditions and the Mohr–Coulomb failure criterion.
In this entire region the soil then is on the verge of yielding. This analysis is a direct
generalization of the problem considered in Chap.40 of a strip load on the surface
of a cohesive material. The foundation pressure is denoted by p. The surcharge q,
next to the foundation, is supposed to be given. It can be used to represent the effect
of the depth of the foundation (d) below the soil surface. In that case q = γd, where
γ is the unit weight of the soil.

Prandtl’s solution,whichwill not be derived in detail here, again uses a subdivision
of the soil into three zones, see Fig. 42.1. In zone I the horizontal stress is supposed
to be larger than the vertical stress, which is equal to the surcharge q. This horizontal
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Fig. 42.1 Strip foundation

stress is then the passive lateral stress corresponding to the vertical stress q. In zone
III the vertical normal stress is supposed to be the largest stress, and its value is
equal to the unknown load p. The transition is formed by the wedge shaped zone II
(Prandtl’s wedge), which is bounded below by a logarithmic spiral. The results of
the analysis can be written as

p = cNc + qNq , (42.1)

where the coefficients Nc and Nq are dimensionless constants, for which Prandtl
obtained the following expressions,

Nq = 1 + sin φ

1 − sin φ
exp(π tan φ), (42.2)

Nc = (Nq − 1) cot φ. (42.3)

In Table42.1 the values of Nc and Nq are given, as a function of the friction angle φ.
In the limiting case φ = 0 the value of Nc = 2 + π, as found in Chap.40. If c = 0
and φ = 0 the bearing capacity must be equal to the surcharge, i.e. p = q. Even
a layer of mud can support a certain load, provided that it is the same all over its
surface. This is expressed by the value Nq = 1 for φ = 0.

Prandtl’s formula (42.1) has been extended by Keverling Buisman (1940), Terza-
ghi (1943), Meyerhof (1952), and Brinch Hansen (1970). Various refinements were
introduced, such as an inclined load, the influence of the shape of the load. The
complete formula is written in the form

p = cNc + qNq + 1

2
γBNγ, (42.4)

where B is the total width of the loaded strip, and γ is the volumetric weight of the
soil. That all effects may be superimposed, as has been assumed in Eq. (42.4), has
been confirmed by various investigations, but has never been proved rigorously. For
the coefficient Nγ various suggestions have been made, on the basis of theoretical
analysis or experimental evidence, for instance

http://dx.doi.org/10.1007/978-3-319-61185-3_40
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Table 42.1 Bearing capacity
coefficients

φ Nc Nq Nγ

0 5.142 1.000 0.000

1 5.379 1.094 0.003

2 5.632 1.197 0.014

3 5.900 1.309 0.032

4 6.185 1.433 0.060

5 6.489 1.568 0.099

6 6.813 1.716 0.151

7 7.158 1.879 0.216

8 7.527 2.058 0.297

9 7.922 2.255 0.397

10 8.345 2.471 0.519

11 8.798 2.710 0.665

12 9.285 2.974 0.839

13 9.807 3.264 1.045

14 10.370 3.586 1.289

15 10.977 3.941 1.576

16 11.631 4.335 1.913

17 12.338 4.772 2.307

18 13.104 5.258 2.767

19 13.934 5.798 3.304

20 14.835 6.399 3.930

21 15.815 7.071 4.661

22 16.833 7.821 5.512

23 18.049 8.661 6.504

24 19.324 9.603 7.661

25 20.721 10.662 9.011

26 22.254 11.854 10.558

27 23.942 13.199 12.432

28 25.803 14.720 14.590

29 27.860 16.443 17.121

30 30.140 18.401 20.093

31 32.671 20.631 23.591

32 35.490 23.177 27.715

33 38.638 26.092 32.590

34 42.164 29.440 38.366

35 46.124 33.296 45.228

36 50.586 37.753 53.404

37 55.630 42.920 63.178

38 61.352 48.933 74.899

39 67.867 55.957 89.007

40 75.313 64.195 106.054
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Nγ = 2(Nq − 1) tan φ. (42.5)

There appears to be general agreement on the character of this expression, but various
researchers have proposed different values for the constant factor. Brinch Hansen
used a factor 3

2 rather than a factor 2, probably to avoid an overestimation, and
therefore including some extra safety. In modern engineering it is considered that
safety factors should be kept apart from the theoretical formulas, so that it was agreed
that the best value of the multiplication factor is 2.A safety factor must be taken into
account explicitly, in the design stage, by reducing the soil strength, or as a load
factor.

Later the formula (42.4) has been further extended with various correction coef-
ficients, in order to take into account the shape of the loaded area, the inclination of
the load, a possible inclined soil surface, and a possible inclined loading area. Most
of these effects were assembled into a single formula by Brinch Hansen,

p = icsccNc + iqsqqNq + iγsγ
1

2
γBNγ . (42.6)

In this equation the coefficients ic and iq are correction factors for a possible inclina-
tion of the load (inclination factors), and sc and sq are correction factors for the shape
of the loaded area (shape factors). Some other factors may be used (for a sloping
soil surface, or a sloping foundation plate), but these are not considered here.

42.2 Inclination Factors

In case of an inclined load, i.e. loading by a vertical force and a horizontal load,
see Fig. 42.2, the bearing capacity is considerably reduced. This can be understood
by noting that sliding would occur if the horizontal force approaches the maximum
possible shear force on the foundation surface,

tmax = c + p tan φ.

The formulas should be such that for this limiting value of the shear stress t (with
respect to the constant value of the vertical stress p) the bearing capacity reduces to
zero.

For cases in which the shear force is smaller than its maximum possible value,
the correction factors for the inclination of the load are usually expressed as

ic = 1 − t

c + p tan φ
, (42.7)

iq = i2c , (42.8)
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Fig. 42.2 Inclined load

iγ = i3c . (42.9)

There is no general agreement on the precise value of these reduction factors, on an
international level and even on a national level. Various researchers prefer slightly
different values, and even the national standards may give different values.

The formulas given above at least are in agreement with certain special cases. The
coefficients approach 0 if the shear stress approaches the maximum value tmax =
c + p tan φ. The other extreme case is when the load is vertical (t = 0). Then all
factors reduce to 1, as required.

42.3 Shape Factors

If the shape of the foundation area is not an infinitely long strip, but a rectangular
area, of width B and length L (where it is assumed, for definiteness, that the width
is the smallest dimension, i.e, L ≥ B), the usual correction factors are of the form

sc = 1 + 0.2
B

L
, (42.10)

sq = 1 + B

L
sin φ, (42.11)

sγ = 1 − 0.3
B

L
. (42.12)

There is no international agreement on the precise values of these correction factors
either. Some consultants prefer to take sq = 1, for all values of φ, and some use
coefficients with slightly different values for the factors 0.2 and 0.3. It may be noted
that for B/L = 0, the formulas all give a factor 1, in agreement with the basic
results for an infinite strip. It should also be remembered that B/L ≤ 1, by definition
(Fig. 42.3).

Some justification for values of the coefficients sc and sq larger than 1 is that when
loading a rectangular plate, some of the soil surrounding the plate will also deform
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Fig. 42.3 Rectangular area

Fig. 42.4 Eccentric load

with the plate, so that a larger area contributes to the bearing capacity of the plate.
The coefficient sγ is smaller than 1 because tests indicate that for a rectangular plate
in sand a sliding surface may occur that is less deep than the sliding surface for a
long strip.

In case of an eccentric resultant force of the load, the width B and the length L
may be reduced such that the resulting force does apply in the center of the reduced
area, see Fig. 42.4. Part of the foundation plate then does not contribute to the bearing
capacity, at least for this loading case. It may, of course, give a contribution to the
bearing capacity of other loading cases.

As mentioned before, there is no general agreement about the values of many
of the correction factors, because the results obtained by researchers in different
countries, from theoretical or experimental studies, appear to give different results.
Great care is needed when using data from literature. When a certain value has been
obtained by one single researcher, and deviates from the results of many others, that
value may well be in error.

It is also very inconvenient that there is sometimes no agreement about the basic
formula (42.4). In some older publications the factor 1

2 is omitted. Then the values
of Nγ are (approximately) half as large, so that the final result is the same, but it may
give rise to some confusion when using a formula from one publication, and taking
the coefficients from another publication. In this book Terzaghi’s original formula
has been used, as is common practice internationally.

The formulas presented in this chapter have originally been derived for founda-
tions on land, with relatively modest dimensions, say a few square meters. The third
term in Brinch Hansen’s formula (42.6) then is rather small, because of the small
value of B, and it is often omitted. In offshore engineering the development of gravity
foundations has meant that production platforms may be founded on huge concrete
caissons that are placed on the sea bottom, in deep water. The surface area may be
up to 80 m × 80 m. For the design of such structures the bearing capacity of the
foundation is of great importance, and then the third term in the formulas (42.4) or
(42.6), which describes the influence of the unit weight of the soil (i.e. the gravity
term), is the most important term of all, giving the major contribution to the bearing
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capacity, especially in sand. This is why considerable attention has been paid to a
more accurate definition of this term.

It must be emphasized that all the considerations of this chapter are restricted to
dry soils, in which there is no difference between effective stresses and total stresses.
For saturated soils the formulas should be expressed in terms of effective stresses.
Usually this can be accomplished simply by replacing the volumetric weight γ by
the effective volumetric weight γs − γw. That is a simple, but very fundamental
adjustment.

Example 42.1 A gravity foundation, with surface dimensions of 60 m × 60 m, is
being considered as the foundation of an offshore platform, on a sandy soil, under
water. The sea at the location is 200m deep. A first estimate of the bearing capacity
of the foundation is to be determined.

In the absence of detailed soil data it may be assumed that the friction angle of the
sand isφ = 30◦. In this case there is no contribution to the bearing capacity of the soil
cohesion c or the surcharge q. For a vertical load the Brinch Hansen formula (42.6)
reduces to p = sγ

1
2γBNγ , where now Nγ = 20.093, see Table42.1. Furthermore,

from Eq. (42.12) it follows that for a square foundation sγ = 0.7. Assuming that the
effective volumetric weight of the sand (under water) is γ = 10 kN/m3, the formula
now gives p = 4220 kPa. The total bearing capacity is obtained by multiplication
with the surface of 3600 m2. This gives F = 15190 MN, a very large value, but the
weight of the structure and the foundation itself will probably also be very large.

Example 42.2 In some countries the soil consists of a thick deposit of soft soil
(clay or peat), above a layer of sand. A popular foundation method then is to use
prefabricated concrete piles. Estimate the bearing capacity of a pile, if the thickness
of the soft soil is 20 m, so that the pile is 20m long. The cross section of the pile is
assumed to be 40cm × 40cm.

A first estimate of the bearing capacity of the pile can be made using Brinch
Hansen’s formula, in which now the surcharge term is most important, i.e. p =
sqqNq . The surcharge q now is, assuming that the effective weight of the soft soil is
γ = 9 kN/m3, q = 180 kN/m2. For a square pile sq = 1.5, assuming that for the
sand (which determines the actual bearing capacity) φ = 30◦. Furthermore, from
Table42.1 it follows that Nq = 18.4. It now follows that p = 4968 kPa. The bearing
capacity of the pile then is F = 795 kN.

An additional contribution to the bearing capacity of the pile may be from the
weight of the sand below the point of the pile. This can be estimated by the term
p = sγ

1
2γBNγ , with now sγ = 0.7, 1

2γB = 2 kN/m2 and Nγ = 20.093. This gives
p = 28 kPa, which is only a small contribution, compared to the contribution of the
surcharge. A pile in the sand appears to derive its bearing capacity mainly from the
weight of the soft soil.
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Problem 42.1 Show that the expression (42.3) tends to π + 2 if φ → 0, confirming
Prandtl’s original formula.

Problem 42.2 In the examples presented above it was assumed that the value of the
friction angle of sand is 30◦. If there is some indication that the value is larger, say
φ = 40◦, the bearing capacity will probably be larger. Investigate this effect, using
the values from Table42.1.
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Chapter 43
Vertical Slope in Cohesive Soil

A classical problem of soil mechanics is the case of a vertical cutoff in a purely
cohesive material (φ = 0), as occurs when making a vertical excavation, or a vertical
slope. The problem to be considered in this chapter is the determination of a lower
bound or an upper bound for the maximum possible height hc of the slope, for a
material having a constant cohesive strength c, and a constant volumetric weight γ.

43.1 Lower Bound

The problem is illustrated in Fig. 43.1. In this case it is essential that the weight of
the material is taken into account. The equations of equilibrium now are

∂σxx

∂x
+ ∂σzx

∂z
= 0, (43.1)

∂σxz

∂x
+ ∂σzz

∂z
− γ = 0. (43.2)

A simple equilibrium system is shown in Fig. 43.2, consisting of three zones. On the
interfaces between the zones the normal stresses parallel to these interfaces may be
discontinuous, without disturbing equilibrium, see Chap. 39. The boundary condi-
tions for the stresses are that the normal stresses and the shear stresses are zero, all
along the upper surface. These conditions are exactly satisfied by the stress fields
indicated in Fig. 43.2. This field can be constructed by starting to assume that in the
entire field the shear stress σxz = 0, because this shear stress must be zero on the
two horizontal boundaries, and on the vertical slope. In order to satisfy the condition
that on the vertical slope the horizontal stress σxx = 0, it follows from the equation
of horizontal equilibrium, Eq. (43.1) that this stress must be zero throughout zone I.
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Fig. 43.1 Vertical slope

Fig. 43.2 Equilibrium system

The expressions for the vertical normal stress σzz follow immediately from the equa-
tion of vertical equilibrium (43.2) by putting σzx = 0, and using the boundary
conditions at the top of the soil. The expressions for the horizontal stress σxx in
zones II and III can be chosen arbitrarily, but they must be constant in x-direction (to
satisfy horizontal equilibrium), and preferably as close to σzz as possible, to keep the
maximum shear stress as small as possible. By choosing σxx = γz the Mohr circle in
zone II, in the lower left part, reduces to a point. This seems to be very attractive, but
the consequence is that in zone III, the lower right part, the difference of the stresses
σxx and σzz is rather large, σzz − σxx = γh.

The vertical and horizontal stresses are principal stresses in this case, because
everywhere σxz = 0. Therefore, the Mohr-Coulomb criterion now is | σxx − σzz | ≤
2c. As the largest value of σxx −σzz occurs in the lower right part, it follows that the
critical value of the height h = 2c/γ. This is a lower bound, i.e.

hc ≥ 2c

γ
. (43.3)
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In soil mechanics literature some higher values for a lower bound can be found, on
the basis of more complex stress fields. De Josselin de Jong and Heyman obtained,
for instance,

hc ≥ 2.82c

γ
. (43.4)

In the seventies of the 20th century gradually higher values were obtained, up to

hc ≥ 3.64c

γ
, (43.5)

a value obtained by Pastor in 1978, using a numerical method.
In 2010 Kammoun et al. found an even higher value,

hc ≥ 3.7752c

γ
, (43.6)

All these values are correct lower bounds. A higher value then this has not yet been
found.

43.2 Upper Bound

A simple upper bound can be found by considering a mechanism consisting of a
single straight slip surface, at an angle α with the vertical direction, see Fig. 43.3.

Fig. 43.3 Mechanism with straight slip surface
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Theweight of the slidingwedge isW = 1
2γh

2 tanα, and it follows from the condition
of equilibrium in the direction of sliding (that is equivalent with the virtual work
principle for the deformation mode of the mechanism) that

T = W cosα = 1

2
γh2 sinα.

Because the length of the slip plane is h/ cosα it follows that

T = c h

cosα
.

Combination of these two equations gives

h = 4c

γ

1

sin 2α
. (43.7)

The height of the excavation appears to depend upon the angle α. The critical
sliding plane is the one for which h is a minimum. This minimum occurs if sin 2α
has its maximum value, i.e. 2α = 1

2π, or α = 45◦. Because this is an upper bound
it follows that

hc ≤ 4c

γ
. (43.8)

This is the upper bound for straight slip surfaces.
Using circular slip planes the Swedish engineer Fellenius has found a lower upper

bound, in 1927. Its value is

hc ≤ 3.83c

γ
, (43.9)

see Fig. 43.4. There have been many attempts to find a lower value, mostly unsuc-
cessful, but a lower value was indeed obtained by Pastor et al. (2009),

hc ≤ 3.7776c

γ
, (43.10)

It can be concluded that for the problem of the critical height hc of a vertical exca-
vation or slope in a cohesive material, without internal friction (φ = 0), it has been
shown that

3.7752c

γ
≤ hc ≤ 3.7776c

γ
. (43.11)

This encloses the failure load between very narrow bounds, with no more real need
for further studies. It may be surprising, however, that even for this simple case, of
homogeneous soil, with constant strength c, and zero friction, φ = 0, there is still
some difference between the highest lower bound and the smallest upper bound.
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Fig. 43.4 Fellenius’ mechanism

Example 43.1
In the equilibrium system of Fig. 43.2 the maximum shear stress in the lower right
part (zone III) can be made equal to zero by assuming that σxx = γ(z + h). This
suggests that perhaps a higher lower bound can be obtained by assuming these stress.

Unfortunately, the condition of horizontal equilibrium now requires that in the lower
left part (zone II) the horizontal stress must also be adjusted, to the value σxx =
γ(z+ h). The vertical stress in this region can not be changed, because the boundary
condition at the surface z = 0 must be satisfied. It then follows that in region II
σxx − σzz = γh, and this leads to the same limit as before, h = 2c/γ.

Example 43.2
In a clay layer of unit weight 18 kN/m3 a telephone cable must be placed at a depth
of 2 m. Howmuch should the cohesion be if this is to be done in a trench with vertical
walls?

Solution

This problem is the inverse of the one considered earlier in this chapter. Now the
height of the cutoff is given, and the soil strength c needed to maintain equilibrium
is to be determined. Using the basic theorems of plasticity theory, see Chap.38, it
follows that an equilibrium system leads to a safe situation if the maximum shear
stress is smaller than the shear strength, and that a mechanism always leads to an
unsafe situation. In this case the considerations of the lower bound for the height of
the cutoff imply that a strength c = γh/3.7752 is sufficient to prevent failure. Using
the numerical values given above it follows that a cohesion c = 9.5 kPa is sufficient.

http://dx.doi.org/10.1007/978-3-319-61185-3_38
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Problem 43.1 By mixing sand with long thin plastic fibers a material is obtained
with cohesion and friction. The vendor claims that the cohesion may be as large as
50 kPa. What can be the height of a vertical slope in this material?

Reference
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Chapter 44
Stability of Infinite Slope

The evaluation of the stability of a slope, of an embankment or a dyke, is an important
problem of applied soil mechanics. In the previous chapter this problem has been
considered for a vertical slope in a purely cohesive material (c > 0, φ = 0). As a
preparation for the general case, which will be considered in the next chapter, this
chapter will present some solutions for slopes of infinite extent, in a homogeneous
frictional material, without cohesion (c = 0, φ > 0).

44.1 Infinite Slope in Dry Sand

Consider an infinitely long slope, in dry sand, at inclination α, see Fig. 44.1. The
equations of equilibrium can now best be expressed using coordinates parallel and
perpendicular to the slope,

∂σξξ

∂ξ
+ ∂σηξ

∂η
+ γ sinα = 0, (44.1)

∂σξη

∂ξ
+ ∂σηη

∂η
− γ cosα = 0. (44.2)

The stresses in these equations are total stresses, but as there are no pore pressures,
they are effective stresses as well, in this case of a dry soil.

The state of stress is not uniquely determined by the equilibrium conditions.
One of the possible solutions can be obtained by assuming that the state of stress
is independent of ξ, the coordinate along the slope. That seems to be a reasonable
assumption, because the slope extends towards infinity both in upward and in down-
ward direction. There is nu absolute need for the independence of ξ, however, and
it is not more than an assumption. Using this assumption the equilibrium equations
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Fig. 44.1 Infinite slope in
dry sand

give, when expressed in effective stresses,

σ′
ηξ = −γη sinα, (44.3)

σ′
ηη = +γη cosα. (44.4)

The integration constants have been taken as zero, because at the surface η = 0 the
stresses σ′

ηη and σ′
ηξ must be zero. It follows that

| σ′
ηξ |

| σ′
ηη | = tanα. (44.5)

The Coulomb failure criterion states that in a cohesionless material (c = 0) this ratio
can not be larger than tan φ. This means that α can not be larger than φ, α < φ.

A stability factor can be introduced as

F = | σ′
ηξ/σ

′
ηη |max

| σ′
ηξ/σ

′
ηη | . (44.6)

The factor F may also be called the safety factor. In this case

F = tan φ

tanα
. (44.7)

If α < φ this is greater than 1, the slope is stable. If α > φ the value of F is smaller
than one, the slope is unstable.

It should be noted that the stability factor F appears to be independent of the
volumetric weight γ. That is a characteristic of frictional materials. In general the
safety factor is defined as

F = strength

load
. (44.8)
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Fig. 44.2 Infinite slope
under water

In case of loading by the weight of a frictional material the load is proportional to
the volumetric weight, but so is the strength. The result is that the volumetric weight
cancels in the ratio, so that the safety is independent of the volumetric weight.

It has been seen that the steepest possible slope in dry sand is φ. This property
can be used as a simple method to determine the value of the friction angle φ of dry
sand: it is the inclination of the steepest slope. It should be noted that this property
holds only for a soil without cohesion, and completely dry. A small amount of water
can easily disturb it.

44.2 Infinite Slope Under Water

For the case of a very long slope under water, see Fig. 44.2, the critical slope can be
determined as follows.

Equilibrium is again described by the Eqs. (44.1) and (44.2), but in this case there
is a certain pore pressure. Terzaghi’s effective stress principle the total stresses can be
expressed by σξξ = σ′

ξξ + p and σηη = σ′
ηη + p, so that the equations of equilibrium

can be expressed in terms of effective stresses as

∂σ′
ξξ

∂ξ
+ ∂σ′

ηξ

∂η
+ ∂ p

∂ξ
+ γ sinα = 0, (44.9)

∂σ′
ξη

∂ξ
+ ∂σ′

ηη

∂η
+ ∂ p

∂η
− γ cosα = 0. (44.10)

If the groundwater is at rest, the pressure distribution is hydrostatic. If the z-axis is
directed vertically upward, the pressures in the groundwater can be written as

p = p0 − γwz = po + γwη cosα − γwξ sinα. (44.11)
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The reference pressure p0 in this expression is the pressure at the level z = 0. If the
entire slope is located under water, the phreatic surface (the level at which p = 0)
must be located at an infinite height. The pore pressure at the level z = 0 then is
infinitely large, p0 = ∞. The present example is not completely realistic, which is a
consequence of considering an infinite slope. At its best the example is the limiting
form of a very long slope.

Substitution of (44.11) into (44.9) and (44.10) gives

∂σ′
ξξ

∂ξ
+ ∂σ′

ηξ

∂η
+ (γ − γw) sinα = 0, (44.12)

∂σ′
ξη

∂ξ
+ ∂σ′

ηη

∂η
− (γ − γw) cosα = 0. (44.13)

These are precisely the same equations as in the dry case, except that γ has been
replaced by γ − γw. Because it was found earlier that the stability factor F is inde-
pendent of γ, see Eq. (44.7), it follows that this is also valid in this case of a slope
under water, i.e.

F = tan φ

tanα
. (44.14)

It appears that a slope under water can also be maintained at an inclination φ. This
conclusion seems to be in contradiction with experimental evidence, which suggests
that a slope under water usually is less steep than a slope above water, in the same
material. A possible explanation is that under water other processes may disturb the
stability of a slope, such as erosion by waves or by flowing groundwater. In a basin
with water a slope at rest can indeed be as steep as a slope in dry sand.

44.3 Flow Parallel to the Slope

An interesting problem is the stability of an embankment or dam in which groundwa-
ter flows parallel to the slope, in downward direction, see Fig. 44.3. This may occur
in a dyke that is just not high enough to retain the water in a river, so that water flows
over the slope. This water penetrates into the dyke material, and after some time a
flow of groundwater parallel to the slope may be created, as shown in Fig. 44.4.

If the flow is uniform the pressure distribution must be linear in ξ and η, i.e.

p = Aη + Bξ + C. (44.15)

Along the surface the pressure must be zero (this will be the case if the soil is
saturated, with merely a thin film of water flowing over the slope), i.e. p = 0 for
η = 0. It then follows that B = C = 0, so that the pressure distribution reduces to
p = Aη. This means that the groundwater head h is
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Fig. 44.3 Parallel
groundwater flow

Fig. 44.4 Parallel flow

h = z + p

γw
= A

η

γw
− η cosα + ξ sinα. (44.16)

If the flow is parallel to the soil surface the component of the specific discharge
vector perpendicular to the surface must be zero, qη = 0, and therefore ∂h/∂η = 0.
It follows that A = γw cosα, so that the pressure p is

p = γwη cosα. (44.17)

Substitution of this pressure distribution into the equations of equilibrium (44.9) and
(44.10) gives

∂σ′
ξξ

∂ξ
+ ∂σ′

ηξ

∂η
+ γ sinα = 0, (44.18)

∂σ′
ξη

∂ξ
+ ∂σ′

ηη

∂η
− (γ − γw) cosα = 0. (44.19)

A solution independent of ξ is

σ′
ηξ = −γη sinα, (44.20)

σ′
ηη = (γ − γw)η cosα. (44.21)



340 44 Stability of Infinite Slope

In this case the stability factor F is

F = γ − γw

γ

tan φ

tanα
. (44.22)

Because (γ − γw)/γ < 1 (usually about 0.5), it follows that the steepest possible
slope in this case is much smaller than φ. The groundwater flow appears to have a
large negative influence on the stability of the slope.

It must be concluded that it is very unfavorable for the stability of the downstream
slope of a dyke if groundwater flows down the slope, parallel to the slope. This may
occur in the case of groundwater exiting the slope along a seepage surface, or if the
level of the free water at the upstream side of the dyke is so high that it flows over
the dyke, and penetrates into the downstream slope. This mechanism is considered
to have been responsible for the failure of many dykes in the 1953 flood in the
South–West of the Netherlands. The analysis in this section was given by Joustra
and Edelman (1960).

44.4 Horizontal Outflow

Another interesting example is a dyke in which groundwater is flowing in horizontal
direction, see Fig. 44.5. If groundwater flows through the dyke in horizontal direction,
the groundwater head is independent of z, ∂h/∂z = 0. Because h = z + p/γw it then
follows that ∂ p/∂z = −γw. Furthermore, along the surface, that is for z = x tanα,
the pressure pmust be zero. And if the flow is uniform the pressure distribution must
be linear. The only pressure distribution that satisfies all these conditions is

p = γwx tanα − γwz. (44.23)

This can be expressed into ξ and η using the transformation formulas for rotation of
the coordinates,

x = ξ cosα + η sinα, z = −η cosα + ξ cosα.

Fig. 44.5 Horizontal
groundwater flow
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The result is
p = γwη/ cosα. (44.24)

Substitution into the equations of equilibrium (44.9) and (44.10) in this case gives

∂σ′
ξξ

∂ξ
+ ∂σ′

ηξ

∂η
+ γ sinα = 0, (44.25)

∂σ′
ξη

∂ξ
+ ∂σ′

ηη

∂η
− γ cosα − γw/ cosα = 0. (44.26)

A solution independent of ξ is

σ′
ηξ = −γη sinα, (44.27)

σ′
ηη =

(
γ − γw

cos2 α

)
η cosα. (44.28)

The stability factor F now is

F = γ − γw/ cos2 α

γ

tan φ

tanα
. (44.29)

This value is even smaller than the value in the previous case, see (44.22), because
the value of cos2 α is always smaller than 1. It follows that a horizontal outflow of
groundwater is even more dangerous than a flow parallel to the slope.

Such a horizontal flow can be considered to occur, approximately, for a permeable
dyke or dam on an impermeable base. Large dams are often built on an impermeable
base, to prevent leakage from the lake through the subsoil. If the dam were built
from homogeneous material, see Fig. 44.6, groundwater will exit from the dam at
the downstream slope, with a practically horizontal flow through the dam. This is a
very unfavorable situation, and should be avoided (Fig. 44.7).

There are two good technical solutions. The first solution is to place a blanket
of almost impermeable material (clay) on the upstream slope, or, even better, to
construct a core of clay in the center of the dam. This is better because it can not
be damaged by poor maintenance or accidental damage. The second solution is to
construct a filter at the toe of the dam or dyke, consisting of very permeable material
(for instance gravel). Such a filter will attract the groundwater and drain it away.

Fig. 44.6 Flow through
dyke
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Fig. 44.7 Dam with a clay blanket, or with a drain

Great care should be taken to maintain the high permeability of the filter. Of course,
the best solution is to apply both solutions: a clay core in the center, and a filter in
the downstream toe. Failure of a large dam is such a catastrophe that it should be
avoided at all cost.

Reference
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Chapter 45
Slope Stability

For the analysis of the stability of slopes of arbitrary shape and composition various
approximate methods have been developed. Many of these assume a circular slip
surface. Using a number of simplifying assumptions a value for the safety factor F ,
the ratio of strength and load, is determined. The circle giving the smallest value of
F is considered to be critical. The multitude of methods (developed by Fellenius,
Taylor, Bishop, Morgenstern-Price, Spencer, among others) in itself illustrates that
none of them is exact. The results should always be handled with care. A value
F = 1.05 gives no absolute certainty that the slope will stand. In this chapter two of
the simplest methods will be presented.

45.1 Circular Slip Surface

Most methods assume that the soil fails along a circular slip surface, see Fig. 45.1.
The soil above the slip surface is subdivided into a number of slices, bounded by
vertical interfaces. At the slip surface the shear stress is τ , which is assumed to be a
factor F smaller than the maximum possible shear stress, i.e.

τ = 1

F
(c + σ′

n tan φ). (45.1)

The factor F is assumed to be the same for all slices, an assumption that is common
to all methods.

The equilibrium equation to be used in conjunction with a circular slip surface is
the equation of equilibrium of moments with respect to the center of the circle. This
equation gives

∑
γhbR sinα =

∑ τbR

cosα
. (45.2)
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α

γ

σn

τ

Fig. 45.1 Circular slip surface

Here h is the height of a slice, b its width, γ the volumetric weight of the soil in the
slice, and R is the radius of the circle. More generally it can be defined that γbh is the
weight of the slice, possibly consisting of a sum of parts with different unit weight.

If all slices have the same width, it now follows from (45.1) and (45.2) that

F =
∑[(c + σ′

n tan φ)/ cosα]∑
γh sinα

. (45.3)

This is the basic formula for many computation methods. The various methods usu-
ally differ in the method of calculating the normal effective stress σ′

n .

45.2 Fellenius

In themethod of Fellenius (1926), the oldestmethod for the analysis of slope stability,
it is assumed that there are no forces between the slices. The only remaining forces
acting on a slice, see Fig. 45.2, then are the weight γhb, a normal stress σn and a
shear stress τ at the bottom of the slice. The normal stress σn can most conveniently
be expressed into the known weight by considering the equilibrium of the slice in
the direction perpendicular to the slip surface. This gives

σn = γh cos2 α, (45.4)

and, because σn = σ′
n + p,

σ′
n = γh cos2 α − p. (45.5)
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Fig. 45.2 Fellenius

α

γ

σn

τ

Substitution into (45.3) finally gives

F =
∑{[c + (γh cos2 α − p) tan φ]/ cosα}∑

γh sinα
. (45.6)

This is the Fellenius formula.
For a slope in homogeneous soil the computation can be executed by assuming a

certain location of the center of the circle and its radius, and subdividing the sliding
soil wedge into 10 or 20 slices. By measuring the values of the angle α and the height
h for each slice the value of the stability factor F can be determined. This must be
repeated for a large number of circles, to determine the smallest value of F . In a
non-homogeneous soil the computation is somewhat more complicated because for
each slice the value of γh must be determined as the sum of the contributions of a
number of layers in the slice.

Several objections can be made against this method. To begin with, a sound
fundamental base lacks for all slip surfacemethods formaterialswith internal friction,
as seen before (see Chap.41). But there are other objections as well. Disregarding
the forces transmitted between the slices is a severe approximation, and vertical
equilibrium is violated. Furthermore, there is an internal inconsistency in stating on
the one hand that sliding occurs along the circle, and on the other hand stating that
the horizontal and vertical directions are the directions of principal stress (as it is
assumed that there are no shear stresses on vertical planes). This inconsistency can
best be seen by considering the slice in the center, for which α = 0. At that slice
σn = γh, and it is assumed that there is a shear stress (σn − p)/F on that slice. This
violates the assumption that the vertical direction is a direction of principal stress.
Horizontal equilibrium of that slice is also clearly violated. For other slices vertical
equilibrium is violated, as only the condition of equilibrium perpendicular to the slip
surface is taken into account.

http://dx.doi.org/10.1007/978-3-319-61185-3_41
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Fellenius’ method has the property that in a number of special cases it confirms
certain limiting values. For instance, for an infinite slope in a dry frictional material
without cohesion, one obtains from (45.6), assuming a straight slip surface at a depth
d below the slope, and taking p = c = 0,

F =
∑

γd cosα tan φ∑
γd sinα

= tan φ

tanα
.

This is in perfect agreement with formula (44.7) in the previous chapter.
In the case of a slope under water, in the absence of groundwater flow, see

Fig. 44.2, the limiting value (44.14) is not immediately recovered. For such prob-
lems the Fellenius formula might be modified by using the volumetric weight under
water, (γ − γw)h rather than γh, and using the excess water pressure with respect
to the hydrostatic water pressure for p. This is somewhat artificial, however, and for
this reason and the objections formulated above, the Fellenius method is rarely used.

45.3 Bishop

A method that is frequently used in engineering practice is the method proposed by
Bishop (Bishop, 1954). In thismethod the forces between the slices are not neglected,
but it is assumed that the resultant force is horizontal, see Fig. 45.3. By considering
the vertical equilibrium of each slice only, the horizontal forces do not enter into the
computations, however.

The basic equation again is the equation of moment equilibrium, Eq. (45.3).
Vertical equilibrium of a slice now requires that

Fig. 45.3 Bishop
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γ

σn

τ
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γh = σn + τ
sinα

cosα
, (45.7)

or, because σn = σ′
n + p,

γh = σ′
n + p + τ

sinα

cosα
. (45.8)

If in this equation the value of τ is written, in agreement with Eq. (45.1), as τ =
(c + σ′

n tan φ)/F , the result is

σ′
n

(
1 + tanα tan φ

F

)
= γh − p − c

F
tanα. (45.9)

Substitution of σ′
n into (45.3) now leads to the final equation for Bishop’s method,

F =
∑ c + (γh − p) tan φ

cosα(1 + tanα tan φ/F)∑
γh sinα

. (45.10)

Because the stability factor F also appears in the right hand side, it must be deter-
mined iteratively, by starting from an initial estimate (for instance F = 1), and then
calculating an updated value using (45.10). This must be repeated until the value of
F no longer changes. In general the procedure converges rather fast. As the compu-
tations must be executed by a computer program anyway (many circles have to be
investigated) the iterations can easily be incorporated into the program. Computer
programs are available on the internet (search for geotechnical software).

Ifφ = 0 theBishop and Felleniusmethods are identical. Ifφ > 0Bishop’smethod
usually gives somewhat smaller values. Because Bishop’s method is more consistent
(vertical equilibrium is satisfied), and it confirms known results for special cases, it is
often used in geotechnical engineering. Various other methods have been developed,
for instance using forces between the slices, but their results often differ only slightly
from those obtained by Bishop’s method. That may explain its popularity.

Example 45.1 A slope that has been designed using one of the standard static meth-
ods may be subject to a more critical condition in case of an earthquake. A simple
method to include the shaking forces produced by an earthquake is to assume that
the earthquake is equivalent to a horizontal force of a certain magnitude, say 10%
of the weight of the sliding soil mass. Such a horizontal force can be included in the
basic equation of equilibrium of moments as an additional driving moment. Another
method, which is about as elementary and simple, would be to tilt the entire soil mass
over an angle 1:10.
Experience shows that this method, in which the horizontal force continues indefi-
nitely, may too quickly lead to the conclusion that the slope is unsafe, and that the
slope must be redesigned. On the other hand, in many areas the possibility of an
earthquake may be remote, and a more refined method may be considered. These
have been developed, for instance by Newmark, who proposed to take into account
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the limited duration of the earthquake, and to allow for the limited deformations that
may occur in case of an earthquake.

Problem 45.1 Verify that Fellenius’ method gives the correct limiting value for an
infinite slope with a groundwater flow parallel to the slope.

Problem 45.2 Verify that Bishop’s method gives the correct limiting values for the
special cases considered in the previous chapter.
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Chapter 46
Soil Exploration

In this chapter some of the most effective or popular methods for soil exploration,
or soil investigations in the field will be described.

46.1 Cone Penetration Test

A simple, but very effective method of soil investigation consists of pushing a steel
rod into the soil, and then measuring the force during the penetration, as a function of
depth. This force consists of the reaction of the soil at the point (the cone resistance),
and the friction along the circumference of the rods. The method was developed
in the 1930s in the Netherlands. It was mainly intended as an exploration tool, to
give an indication of the soil structure, and as a modelling tool for the design of a
pile foundation. This sounding test, cone penetration test, or simply CPT, has been
developed from a simple tool, that was pushed into the ground by hand or a manual
pressure device, into a sophisticated electronic measuring device, with an advanced
hydraulic loading system. The load is often provided by the weight of a heavy truck.

Originally the CPT was a purely mechanical test, as shown schematically in
Fig. 46.1. The instrument consists of three movable parts, with a common central
axis. The upper part is connected, by a screw thread, to a hollow rod, that reaches to
the soil surface, using extension rods of 1m length. The procedure was that pressure
was alternately exerted upon the central axis or the outer rods. When pushing on the
internal axis at first only the cone is pushed into the ground, over a distance of 35mm.
The other two parts do not move with respect to the soil (by the friction of the soil),
so that the force represents the cone resistance only. When pushing the instrument
beyond a distance of 35mm the second part, the friction sleeve, moves with the cone,
so that in this stage the force consists of the cone resistance plus the friction along
the friction sleeve. The upper part of the instrument is still stationary in this stage.
If it is assumed that the cone resistance is still the same as before, the sleeve friction

© Springer International Publishing AG 2018
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Fig. 46.1 Mechanical CPT

can be determined by subtraction. If in the next step the force is exerted on the outer
rods, the cone remains stationary and the system is compressed to its original state,
but at a greater depth (10cm). The diameter of the lowest part of the sleeve, which
is attached to the cone and moves with it, was sometimes reduced, to ensure that in
the first stage only point resistance is measured.

Modern versions of the CPT use an electrical cone, see Fig. 46.2. Both the cone
resistance and the friction aremeasured continuously, using a system of strain gauges
in the interior of the cone. The instrument again consists of three parts, that are
separated by thin rings of rubber. The very sensitive strain gauges can measure
the forces on the lower two parts of the instrument independently. The results of a
cone penetration test give a good insight into the layered structure of the soil. Clay
layers have a much smaller cone resistance than sand. A typical cone resistance for
a sand layer is 5 MPa or 10 MPa, or even higher, whereas the cone resistance of
soft clay layers is between 0.01 and 0.1 MPa. If the local friction is also measured
the difference is even more pronounced. The ratio of friction to cone resistance for
clays is much higher than for sand. In sands the friction usually is only 1% or 2% of
the cone resistance, whereas in clays this ratio usually is about 5%. Higher values
(8–10%) may suggest a layer of peat. In peat the friction usually is substantial, but
it has a very small cone resistance.

Recent developments are to install additional measuring devices in the cone, such
a pore pressure meter. This type of cone is denoted as a piezocone. A small chamber
inside the cone is connected to the pores in the soil by a number of tiny holes in
the cone. This enables to measure the local pore water pressure. This pressure is
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Fig. 46.2 Electrical cone

determined by the actual pore water pressure in the soil, but also by the penetration
of the cone in the soil, at least in materials of low permeability. In a very dense clay
the material may have a tendency to expand, which will lead to and under pressure in
the water, with respect to the hydrostatic pressure. This enables to distinguish very
thin layers of clay. In measuring the cone resistance or the friction such thin layers
are not observed, because of the averaging procedure in measuring forces.

An example of the results of as cone penetration test is shown in Fig. 46.3. At
a depth of 7m a sand layer of about 2m thickness can be observed. At a depth of
18m the top of a thick sand layer is found. The low values above the first sand layer,
and between the two sand layers indicate soft soil, probably clay. A simple building
(a house) can be founded on the top sand layer, provided that the presence of this
layer is general. A single CPT is insufficient to conclude the existence of this layer
everywhere, having it observed in 3 CPT’s at practically the same depth (and at about
the same thickness) usually is sufficient evidence of its general existence. A heavy
foundation, for a large building, usually requires a foundation reaching into the deep
sand.

In the Netherlands the cone penetration test is mainly used as a model test for
pile foundations. In the Western parts of the Netherlands the soil usually consists of
10–20m of very soft soil layers (clay and peat), on a rather stiff sand layer. This soil
structure is very well suited for a pile foundation, of wooden or concrete piles of
about 20–40cm diameter, reaching just into the sand. The weight of the soft soil acts
as a surcharge on the sand, which has a considerable cone resistance. The allowable
stress on the sand depends upon its friction angle φ, its cohesion c (usually very
small, or zero), and the surcharge q, as explained in Chap.42. The dimensions of
the foundation pile have very little influence, because this parameter appears only
in the third term of Brinch Hansen’s formula, which is a small term if the width is
less than, say, 1m. This means that the maximum pressure for a large pile and the

http://dx.doi.org/10.1007/978-3-319-61185-3_42
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Fig. 46.3 Result of CPT

thin pile of a cone penetrometer will be practically the same, so that the allowable
pressure on a pile can be determined by simply measuring the cone resistance. This
will be elaborated in Chap.48.

The cone penetration test can also be used to determine physical parameters of
the soil, especially the shear strength. It can be postulated, for instance, that in clays
the cone resistance will be determined mainly by the undrained shear strength of the
soil (su). In agreement with the analysis of Brinch Hansen, see Chap.42, the relation
will be of the form

qc − σv = Ncsu, (46.1)

where σv is the local vertical stress caused by the surcharge, and Nc is a dimensionless
factor. For a circular cone in a cohesive material a cone factor Nc of the order of
magnitude 15–18 is usually assumed, on the basis of plasticity calculations for the
insertion of a cone into a cohesive material of infinite extent. By measuring the cone
resistance qc the undrained shear strength su can be determined. The results are not
very accurate, because of theoretical shortcomings and practical difficulties, but the
measurement has the great advantage of being done in situ, on the least disturbed
soil. The alternative would be taking a sample, bringing it to a laboratory, and then
doing a laboratory test. This process includes many possible sources of disturbance,
that are avoided by doing a test in situ.

http://dx.doi.org/10.1007/978-3-319-61185-3_48
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46.2 Vane Test

The shear strength of soils can be measured reasonably accurately in situ using the
vane test. In this test a small instrument in the shape of a vane is pushed into the
ground, through a system of rods, just as in the cone penetration test. The vane
is connected, by a central steel axis, to a screw at the top of the rods. This screw
can be rotated, so that the soil in a cylindrical element of soil is sheared along its
surface, against the soil outside the cylinder. Measuring the moment necessary for
the rotation enables to determine the average shear stress along the boundary, which
is about equal to the (undrained) shear strength of the soil. The vane test is very
popular in Scandinavian countries, where the soil very often consists of thick layers
of clay of reasonable strength (Fig. 46.4).

46.3 Standard Penetration Test

In many parts of the world, especially in Anglo-Saxon countries, the properties of the
soil are often determined by using a Standard Penetration Test, or SPT. In this test a
sampling tube is driven into a borehole in the ground using a standardized hammering
weight. The actual test consists ofmeasuring the number of blows needed to achieve a
penetration of 300 mm (1 foot) into the ground. This is denoted as N , the blow count,
the number of blows per foot. An advantage of the SPT is that no heavy equipment is
needed, as for instance in the CPT, which has to be pushed into the ground statically,
and thus requires a large counter weight. Another advantage of the SPT is that it
immediately provides a soil sample. The sample is perhaps not of the best quality,
because of the disturbance of the soil during the dynamic hammering, but at least
there is a sample that can be inspected. The reproducibility of the SPT usually is not
so very good, and the difference between sand and clay is not so pronounced as it is
in the CPT. It is also not possible to immediately derive the shear strength from the
blow count.

For many projects the initial soil data often may be restricted to a series of SPT-
results. Then it is useful to know that a characteristic blow count for sand is N = 20,

Fig. 46.4 Vane test
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Table 46.1 Interpretation of
SPT according to Terzaghi
and Peck

Sand Clay

N Density N Consistency

<4 Very loose <2 Very soft

4–10 Loose 2–4 Soft

10–30 Normal 4–8 Normal

30–50 Dense 8–15 Stiff

>50 Very dense 15–30 Very stiff

>30 Hard

and that for soft clay the value may be N = 5, or even lower, down to N = 1. A first
indication can be obtained from Table46.1, derived from Terzaghi and Peck. Many
researchers have tried to obtain a correlation with the CPT, but their results are not
very consistent.

46.4 Soil Sampling

For many engineering projects it is very useful to take a sample of the soil, and
to investigate its properties in the laboratory. The investigation may be a visual
inspection (which indicates the type of materials: sand, clay or peat), a chemical
analysis, or a mechanical test, such as a compression test or a triaxial test.

A simple method to take a sample is to drive a tube into the ground, and then
recovering the tube with the soil in it. The tube may be about 1m long, see Fig. 46.5,
and may have a valve at its bottom, to prevent loosing the sample. The tube may
be brought into the soil by driving it into the ground using a falling weight, or a
hammer. An advantage of this method is that it does not require heavy equipment.
It is possible to take a sample in a terrain that is inaccessible to heavy vehicles. The
sample is somewhat disturbed, of course, during the sampling process, but even so,
a good impression of the composition of the soil can be obtained. The sample is not
very well suited for a refined test, however, as the initial state of stress is disturbed,
and perhaps also the density. To take a deep sample the sampling tube may be of
smaller diameter than the borehole, which is supported and deepened by a special
boring tube.

An alternative method is to push the sampler into the ground, by using hydraulic
equipment, mounted on a heavy truck. In this case the sampling process is somewhat
more careful, and the disturbance of the sample is less. Due to friction of the sample
with the wall of the sampling tube, however, the samples are not undisturbed.

Various institutes have developed systems in which the sample is almost undis-
turbed. A completely undisturbed sample is impossible, but some procedures come
very close. Some methods are, for instance, to take a very large block of soil, and use
the inner part only, or freezing a block of sand, and then cutting a sample from the
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Fig. 46.5 SPT

frozen soil. Good quality samples can also be obtained using the Begemann sampler,
developed at Deltares and managed by Fugro, see Fig. 46.6. This sampler consists
of two steel tubes, that are being pushed into the soil together. The sample is cut by
the outer tube, which immediately widens behind the cutting edge, and the sample is
surrounded by a nylon stocking, that initially is rolled up on the inner tube. The end
of the stocking is attached to a plate at the top of the future sample, so that, when
the tubes are pushed down, the stocking gradually displace downward the stocking
is gradually stripped off the inner tube. The final result is a very long soil sample (for
instance 20m long), enclosed by a nylon stocking. Around the stocking the sample
is supported by a heavy fluid (of unit weight γ ≈ 15 kN/m3), that simulates the
original lateral support of the soil. This fluid also reduces the friction along the cir-
cumference of the sample. The samples produced by this sampler are of high quality.
Very thin layers of all sorts of materials can be identified, including loose sand. The
quality of the samples is good enough to be used for accurate laboratory testing,
in compression tests or triaxial tests. The results of a boring may be presented in
the form of a color photograph of one half of the sample, cut along its length. That
the thin layers are not disturbed near the boundary confirms that there is very little
friction.

It may be interesting to note that samples can also be taken from the bottom of
the sea. One possible method is by using a diving bell, in which the air pressure is
kept at the same level as the water pressure. From this diving bell a sample can be
taken by the operators, or they can make a cone penetration test. Another method
is to use a heavy frame, that is submerged in the water from a ship. Using a remote
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Fig. 46.6 Begemann
sampler

control system a cone can be made to penetrate the soil, or a sample can be taken.
This method can even be used in water depths of 1000m, or more.

An example of a continuous Begemann boring, made from the bottom of the
Eastern Scheldt, is shown in Fig. 46.7. The lighter and darker colors of the soil in
the boring indicate a variation of sand and clay layers. Also, some of the sand layers
appear to be composed of thin layers of different soils.

Investigating the sea bottom is of special interest in offshore engineering, of
course. For the production of oil and gas from the sea bottom large platforms are
constructed, which usually need a pile foundation towithstand the extremewave load
conditions during a storm. The piles usually are steel tubular piles, of large diameter
(one meter or more), and very large length (50m or more). These piles derive their
bearing capacity mostly from the friction along the shaft, and not from the point
resistance (as most piles in Western Netherlands). It is of great importance to predict
the maximum shearing resistance along the pile shaft. This can be measured very
well by a cone penetration test, from the bottom of the sea. Even though this is a
costly operation, it gives very valuable information about the soil structure, and it
gives numerical values for the cone resistance and the friction, as a function of depth.

Example 46.1 In formula (46.1) the total stress σv appears. It might be argued that
this should be the effective stress σ ′

v , because the shearing resistance of a soil is
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Fig. 46.7 Begemann boring

determined by the effective stresses and not by the total stresses. However, the cone
resistance is also a total stress (and includes the local pore pressure), and in the
formula the strength is the undrained strength, which also indicates a total stress
analysis.



Chapter 47
Model Tests

A useful tool in engineering is the analysis of the behavior of a structure by doing
a model test, at a reduced scale. The purpose of the test may be just to investigate a
phenomenon in a qualitative way, but more often its purpose is to obtain quantitative
information. In that case the scale rules must be known. For a soil a special difficulty
is that the mechanical properties often depend upon the state of stress, which is
determined to a large extent by the weight of the soil itself. This means that in a scale
model the soil properties are not well represented, because in the model the stresses
are much smaller than in reality (the prototype).

47.1 Types of Models

An ingenious way to simulate the stresses in amodel is to increase gravity, by placing
the scale model in a geotechnical centrifuge, in which the model is rotated at high
speed. The principles of this method are briefly presented in this chapter. Some
attention is also paid to 1g-testing, the testing of a model without scaling gravity. It
will appear that in some situations this can be useful method of model testing.

The scale rules of a certain field in physics can usually be derived by considering
the basic equations that fully describe a certain process, and then taking care that all
relevant terms in each of the equations are scaled by the same factor. The equations
describing the process may be partly symbolic, if a detailed description can not be
given, but the character of the relations is known. It is essential that all important
factors are taken into account. Less important factors may be disregarded, if their
small influence can be demonstrated.
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47.2 Simple Scale Models

One of the most important properties of soils is that it may shear, possibly up to very
large deformations, and that this shear is caused by the relative magnitude of the
shear stress, compared to the normal stress. In Coulomb’s failure criterion

τmax = c + σ′ tan φ, (47.1)

this appears if the first term, the cohesion c, is very small. This is the case for sand.
In that case one may write

c = 0 : τmax

σ′ = tan φ. (47.2)

It appears that failure is determined only by a ratio of the stresses, not by their
magnitude. This does not necessarily mean that the ratio of shear stress to normal
stress determines the soil behavior throughout the entire range from zero deformation
to failure. For very small deformations the behavior is more or less elastic, and it
is not certain that in that range the ratio τ/σ is the only parameter that governs the
deformations. However, there is much evidence that the stiffness of soils increases
with the stress level, both in shear as in compression (compare Terzaghi’s logarithmic
compression formula). Thus, it is not unreasonable to assume, at least for sandy soils,
that the deformations can be described by a formula of the character

εi j = f

(
σ′
i j

σ′
o

)
, (47.3)

where σ′
o is an invariant of the stress tensor, say the isotropic stress.

This means that the deformations are determined only by the ratio of the shear
stresses and a characteristic normal stress, say the isotropic stress. For sands this is
a useful approximation. It may be noted that in compression the deformation is also
determined by a stress ratio, in this case the ratio of the stress to the initial stress.
The assumption excludes effects as consolidation, creep and dilatancy. These must
be small compared to shear and primary compression for the assumption (47.3) to be
valid. Examples of problems for which the assumption is valid are a laterally loaded
pile, or a caisson loaded by cyclic forces.

If all the spatial dimensions are scaled down by a factor nL , i.e.

xi−m = xi−p/nL , (47.4)

the equations of equilibrium, including the term representing the weight of the mate-
rial, are satisfied if the scale factor for the stresses is also nL ,

σi j−m = σi j−p/nL . (47.5)
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This can be verified by noting that the equations of equilibrium consist of terms of
type ∂σxx/∂x , and the gravity term γ. All these terms now are identical in the model
and in the prototype.

If the relation between stresses and strain is of the form (47.3), the deformations
are represented at scale 1,

εi j−m = εi j−p. (47.6)

Because the deformations are related to the displacements by derivatives with respect
to the spatial coordinates (for example εxx = ∂ux/∂x), the displacements are at the
same scale as a length,

ui−m = ui−p/nL , (47.7)

In each of the relevant equations (equilibrium, compatibility and constitutive equa-
tions) the ratio of all terms in the model is the same as the corresponding terms
in the prototype. This means that it is indeed possible to study the behavior of the
prototype in a scale model. The boundary values of stress and deformations must
also be applied using the scale nL .

A problem that can be studied in this way is a laterally loaded pile, see Fig. 47.1.
Compression is not important in this case, so that it is unlikely that pore water
pressures will be generated. The determining factor for the deformations is the ratio
of shear stress to normal stress. In the model these ratios will be the same as in the
prototype if the material is the same. The deformations then are at scale 1. Similarly,
problems of sheet pile walls, or retaining walls, can be studied by 1g-models, if the
material is non-cohesive, i.e. sand.

Even dynamic problems may be studied by such a scale model, by noting that in
that case the equations of motion contain terms of the type ρ ∂2ui/∂t2. These terms
will be the same in the model and in the prototype if the time is scaled according to
the square root of the length scale,

tm = tp/
√
nL . (47.8)

Here it has been assumed that the density ρ is the same in the model as in the
prototype, which is easy to accomplish, by using the same material. It may be noted
that dynamic effects are important only for special problems, such as earthquakes

Fig. 47.1 Model test
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and high speed trains. In the standard engineering problems dynamic effects usually
play a minor role. Even in the cyclic loading of an offshore platform the dynamic
effects are small because the period of the cycles (about 10 s) is so large.

Problems of consolidation can also be studied in 1g-models, at least in a first
approximation. In the consolidation equation,

∂e

∂t
= −nβ

∂ p

∂t
+ k

γw

(
∂2 p

∂x2
+ ∂2 p

∂y2
+ ∂2 p

∂z2

)
, (47.9)

all terms should then be scaled by the same factor. If all the stresses are scaled on
the same scale (nL ) as a length, in order to model equilibrium, and the deformations
on scale 1, the term in the left hand side of the equation can be in agreement with
the other terms only if time is scaled on the length scale,

tm = tp/nL . (47.10)

The first term in the right hand side of the equation then is not scaled correctly,
because this term consists of a ratio of two factors at length scale. But in many cases
this is a small term anyway, as the compressibility of the water (β) is very small.
This means that the error in scaling the consolidation process will be very small.

It follows from the considerations given above that it is impossible to take both
consolidation and dynamic effects into account, as these two phenomena lead to
different requirements for the time scale. An ingenious way to solve this difficulty is
to scale the permeability, without changing the porous material, by using a different
fluid in the model, having a different viscosity, such that the two terms scale in the
same way.

As mentioned before, all this does not apply if the material behavior is more
complex than is indicated by Eq. (47.3). This will be so in the majority of problems,
for instance in case of simultaneous elastic and plastic deformations, or in case of a
cohesive material. This means that simple scale tests on clays are not representative
for the behavior in the prototype. They can be used only if friction is the dominant
property in themechanical behavior, and the plastic deformations are relatively large.

47.3 Centrifuge Testing

A general way of describing the relation between stresses and strains in a soil is

�εi j = f (σ′
i j ,�σ′

i j , hk), (47.11)

where f is an arbitrary function, and hk indicates that there may be some other
physical parameters involved in the functional relationship, such as the cohesion c,
or the stiffness parameters K and G. Equation (47.11) states that the incremental
strains are determined by the stresses and the incremental stresses, in a not yet
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specified manner. Various types of behavior can be described by relations of the
type (47.11), such as elastic and plastic deformations. Of particular importance is
that the incremental strains depend upon the actual stresses. This means that the
stiffness may depend upon the stresses, which is a typical property of many soils.
Dilatancy and contractancy can also be described by the general relation (47.11).
And elastic deformations, in which the incremental strains are fully determined by
the incremental stresses can also be described by (47.11), of course.

Assuming the validity of the general relationship (47.11),model testing is possible
only if the stresses and the strains are all modelled at scale 1, and that the same soil is
used, to ensure that the properties are the same. This implies that the stresses caused
by the weight of the material must also be modelled at scale 1. In the equations
of equilibrium terms of the type ∂σxx/∂x appear with a term γ = ρg. In order to
model both these terms at the same scale, the volumetric weight γ must be inversely
proportional to the length scale,

γm = γp × nL . (47.12)

This can be realized by rotating the model very fast, in a geotechnical centrifuge.
Gravity then appears to be magnified, see Fig. 47.2. The facility consists of an arm
that can be rotated around a central axis. At the two ends of the arm containers
are placed, one containing the model, and the other containing a counter weight (or
another model), to balance the arm. If the arm rotates a centrifugal force acts on the
material in the two containers, which will rotate around a hinge. If the rotation is
very fast the bottom of the two containers will be practically vertical.

For safety of people and the surroundings, the centrifuge must be protected by
heavy steel plates and concrete walls, to prevent damage in case of failure of a part
of the system. For this reason the centrifuge is often located in the basement of a
geotechnical laboratory.

An elementary consideration of the motion of a body moving along a circular
path, of radius R, indicates that an acceleration perpendicular to the path occurs, of
magnitude

Fig. 47.2 Geotechnical centrifuge
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a = v2

R
. (47.13)

This is called the centripetal acceleration. In the case of a container filled with soil
that rotates in a centrifuge this acceleration is caused by the force from the container
on the soil, and transmitted through the soil, in upward direction. If the soil were
not contained by the container, it would fly on, in a straight path, but it is retained in
its circular path by the container. This requires a very large force, and this force is
larger if the velocity is larger, or the radius smaller (at the same velocity). The stress
state would be the same if the container were at rest, and a volumetric force would
act upon the soil. If this volumetric force is denoted by gm , we have

gm = v2

R
= ω2R, (47.14)

in whichω is the angular velocity (or the frequency) of the centrifuge.Many geotech-
nical centrifuges have an arm length of about 5m. This means that an acceleration of
100 g = 1000m/s2 is achieved if the velocity of the container is 71m/s, or 254 km/h.
The angular velocity then is 14.14 rad/s, which means that the container flies by
every 0.444 s. This corresponds to 2.25 revolutions per second, or 135 revolutions
per minute.

The major principle of centrifuge testing is that all stresses in the model are the
same as the stresses in the prototype, so that it is practically guaranteed that soil
will behave in the same way as in reality. A geotechnical centrifuge is a reasonably
complex machine, however, and it generates large forces in its parts. Furthermore,
observing deformations and measuring stresses is not a simple matter. Electronic
measuring devices may be built in, but these should be very small, and the measur-
ing signals must be transmitted to the outside world, through the central axis. An
alternative registration method is to record the measurements on a data recorder that
is attached to the arm itself, and to read the data later. A video signal can be used to
observe deformations in flight. Preparation of the samples also requires much atten-
tion, as the sample must be a good representation of the prototype, at a small scale.
A small disturbance in the model corresponds to a large disturbance in reality.

Consolidation problems, in which time is important, can be studied in a centrifuge
if the terms ∂e/∂t and ∂2 p/∂x2 are scaled in the same way. Because stresses and
strains are at scale 1, it follows that the time scale must be the square of the length
scale,

tm = tp/n
2
L . (47.15)

If the time scale is determined by inertia effects (in dynamic problems) the terms
ρ ∂2u/∂t2 must be scaled by the same factor as the derivatives of the stresses,
∂σxx/∂x . That will be the case if the time scale equals the length scale,

tm = tp/nL . (47.16)
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Again it is not easily possible to scale consolidation in combination with dynamic
effects, except by using a fluid of different viscosity.

Example 47.1 The arm of a certain centrifuge is of 6m length, and the machine is
designed for testing at a maximum acceleration of 300g. What is then its number of
rotations per minute? And the velocity of the container?

Solution

It follows from Eq. (47.14), with gm = 300 g = 3000m/s2, that the velocity v of
the container at the maximum acceleration is v = 134m/s, which is equivalent to
v = 483 km/h.

The angular velocity ω = v/R. In this case this is ω = 22.33 s−1. This means that
a full circle (an angle 2π) is completed in 0.28 s. This means that in 1min, or 60 s,
the number of rotations is 214.

Problem 47.1 Is it possible to study the problem of slope stability of a sand dyke
in a 1g-model test? And in a centrifuge?

Problem 47.2 Is it possible to study the problem of slope stability of a clay dyke in
a 1g-model test? And in a centrifuge?

Problem 47.3 At a fair onemay see a large rotating cylinder, inwhich people remain
hanging against the wall if the bottom moves down. If it is supposed that the friction
coefficient between man and steel wall is about 0.2, the radial acceleration must be
about 0.2g. If the radius of the cylinder is 4.5m, then what is the velocity of the
people, in km/h?



Chapter 48
Pile Foundations

In Deltaic areas in the world, for instance the western part of the Netherlands, the soil
consists of layers of soft soil (clay and peat), on a rather stiff sand layer, of pleistocene
origin. The bearing capacity of the sand layer below the soft soil is derived for a
large part from its deep location, with the soft layers acting as a surcharge. And the
properties of the sand itself, a relatively high density, and a high friction angle, also
help to give this sand layer a good bearing capacity. The system of soft soils and a
deeper stiff sand layer is very suitable for a pile foundation. In this chapter a number
of important soil mechanics aspects of such pile foundations are briefly discussed.

48.1 Bearing Capacity of a Pile

For the determination of the bearing capacity of a foundation pile it is possible to
use a theoretical analysis, on the basis of Brinch Hansen’s general bearing capacity
formula (see Chap.42). In this analysis the basic parameters are the shear strength of
the sand layer (characterized by its cohesion c and its friction angleφ), and theweight
of the soft layers, which can be taken into account as a surcharge q. In engineering
practice a simpler, more practical and more reliable method has been developed, on
the basis of a cone penetration test, considering this as a model test. It would be
even better to perform a pile loading test on the pile, in which the pile is loaded,
for instance by concrete blocks on a steel frame, with a test load approaching its
maximum bearing capacity. This is very expensive, however, and the CPT is usually
considered reliable enough. In a homogeneous soil it can be assumed that under static
conditions the failure load of a long pile (expressed as a pressure) is independent
of the diameter of the pile. This means that the cone resistance measured in a CPT
can be considered to be equal to the bearing capacity of the pile point. A possible
theoretical foundation behind this statement is that the failure is produced by shear
deformations in a zone around the pile, the dimensions of which are determined by
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Fig. 48.1 CPT and pile

the only dimension in the problem, the diameter of the pile. If the pile diameter is
taken twice as large, the dimensions of the failure zone around the pile will also
be twice as large. The total force (stress times area) then is four times as large, see
Fig. 48.1. This is also in agreement with the theory behind Brinch Hansen’s formula,
provided that the third term (representing the weight of the soil below the foundation
level, and the width of the foundation) is small. This will be the case if the pile
diameter is small compared to its length.

In reality the soil around the pile point usually is not perfectly homogeneous. Very
often the soil consists of layers having different properties. For this case practical
design formulas have been developed, which take into account the different cone
resistance below and above the level of the pile point. Moreover, in these design
formulas the possibility that the failure mode will prefer the weakest soil can be
accounted for. In the Netherlands the resistance of a pile is assumed to consist of
three contributions,

p = 1

2

[
1

2
(p1 + p2) + p3

]
. (48.1)

In this equation p1 is the smallest value of the cone resistance below the pile point,
up to adepthof 4d,whered is the diameter of the pile, p2 is the average cone resistance
in that zone, and p3 is a representative low value of the cone resistance above the pile
point, in a zone up to 8d above the pile point. In this way a representative average
value of the cone resistance around the pile point is obtained, in which engineering
judgement is combined with experience.

A pile may also have a bearing capacity due to friction along the length of the
pile. This is very important for piles in sand layers. In applications in very soft soil
(clay layers), the contribution of friction is generally very unreliable, because the soil
may be subject to settlements, whereas the pile may be rigid, if it has been installed
into a deep sand layer. It may even happen that the subsiding soil exerts a downward
friction force on the pile, negative skin friction, which reduces the effective bearing
capacity of the pile. Friction is of course very important for tension piles, for which
it is the only contributing mechanism.

The maximum value of the skin friction can be determined very well using a
friction cone, that is a penetration test in which the sleeve friction is also measured.
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The local values are often very small, however, so that the measured data are not
very accurate. For sandy soils the friction therefore is often correlated to the cone
resistance.

48.2 Statically Determinate Pile Foundation

If the maximum allowable load on a single pile is known, from a theoretical analysis,
or from the interpretation of a cone penetration test, or from a pile loading test, the
number of piles in the foundation of a large structure can be determined from the total
load of the structure, including its weight. In this process a sufficiently large safety
coefficient (e.g. 1.5 or 1.8) must be taken into account, to avoid possible failure.
If all the loads are vertical the piles may all be vertical as well. The installation is
then also simplest, as driving a vertical pile is easier than driving a tilting pile. A
small horizontal force may be transmitted by a vertical pile, by bending of the pile,
but if large horizontal forces must be transferred to the soil (due to wind or waves),
it is better to use some tilted piles, so that the pile forces can all be axial, and the
deformations of the piles remain small. The analysis of the pile forces deserves some
special attention.

Fig. 48.2 Statically determinate pile foundation
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As an example a retaining wall may be considered, see Fig. 48.2. In this case there is
a considerable horizontal force, which can most easily be transferred to the ground
by using a tilted pile. For this foundation system it may be assumed that the force in
each pile is directed along its axis. The reason for that is that a pile is much stiffer in
axial loading than it is in lateral loading. In the case shown in Fig. 48.2, with three
rows of piles, the force in each row can be determined from the equilibrium equations
alone. This is called a statically determinate system. The analysis can be performed
graphically. The starting point is that the loading force F must be equilibrated by the
sum of the forces in the piles, N1, N2 and N3. Because N2 and N3 are vertical the
force diagram shown in the right part of Fig. 48.2 can be constructed. The precise
contributions of N2 and N3 is still unknown in the first stage. However, because the
resulting force of F and N2 must be in equilibrium with the resulting force of N1

and N3 these two resultants must have the same line of action, and they must be of
equal magnitude, in opposite direction. The resulting force of N1 and N3 should pass
through the intersection point of these two forces, and similarly the resulting force
of F and N2 passes through the intersection of these two forces. Thereby the line
of action of these resultants is known. In the force diagram this line of action can
then be drawn as well, as its direction is known. The three pile forces have now been
determined, and the problem is solved.

48.3 Statically Indeterminate Pile Foundation

If there are more than three rows of piles, the problem of determining the individual
pile forces is statically indeterminate. The solution then depends upon the flexibility
of each of the piles, and of the superstructure. A well known procedure is to assume
that the pile forces are directed along their axes (which means that the bending
resistance of the piles is neglected with respect to their axial stiffness), and then to
consider the piles as linear springs. For each pile one may write

Ni = kiui . (48.2)

in which Ni is the force in pile i , ui the displacement of the pile top, and ki the
spring constant of the pile. This spring constant could be taken as the stiffness of
the pile E A/ l, but that would be valid only if the pile point is fully fixed. In reality
the soil surrounding the pile point will also somewhat deform if the pile is loaded, so
that the value of the spring constant ki should be reduced. In the absence of further
information about the stiffness of the soil it is sometimes assumed, as a first estimate,
that the deformation of the pile top is twice as large as the deformation of the pile
itself, leading to a value ki = 1

2 E A/ l. It can also be argued, however, that the pile
force will not be constant along the pile, due to friction, which would lead to a larger
value of ki . In general, it is recommended to try to determine the spring constants by
a careful analysis of the load transfer from the foundation to the soil.
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Fig. 48.3 Statically indeterminate pile foundation

If the superstructure can be considered as infinitely stiff, the computations can be
performed using the displacement method. This will be illustrated by considering an
example, see Fig. 48.3. In this two-dimensional case there are three basic parameters
to describe the displacement of the foundation: the horizontal and vertical displace-
ments, and the rotation. It is assumed that all pile rows have the same stiffness (k).
The load is supposed to consist of a vertical component of 2000kN and a horizontal
component of 200kN. The line of action of this force is supposed to pass through the
point x = 1m, y = 0, see Fig. 48.3. The slope of row 1 is 3:1 (vertical to horizontal).

The solution of the problem of determining the forces in each row of piles can be
obtained by the standard procedure of the displacement method. This procedure is:
first determine the basic displacement parameters (in this case the two displacements
and the rotation), then express the internal forces into these parameters, and finally
formulate the equations of equilibrium. In this case the procedure is as follows.
In case of a horizontal displacement u the forces in the pile rows are:

N1 = 1√
10

ku, N2 = 0, N3 = 0, N4 = 0.
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For a vertical displacement v the forces are:

N1 = 3√
10

kv, N2 = kv, N3 = kv, N4 = kv.

For a rotation around the origin, of magnitude θ = w/1m the forces are:

N1 = 0, N2 = 0, N3 = 2kw, N4 = 6kw.

Addition of these forces gives

⎛
⎜⎜⎜⎜⎝

N1
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N4

⎞
⎟⎟⎟⎟⎠ =

⎛
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⎞
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⎛
⎜⎜⎝

ku

kv

kw

⎞
⎟⎟⎠ (48.3)

The forces in the piles have been considered positive for tension.
The equations of equilibrium of the foundation plate are that the sum of the hori-

zontal forces should be−200kN, the sum of the vertical forces should be−2000kN,
and the sum of the moments with respect to the origin should be −2000kNm. These
equations can be written as
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1 1 1
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⎞
⎟⎟⎠ (48.4)

Substitution of (48.3) into (48.4) yields the equilibrium equations expressed into the
displacements, ⎛

⎜⎜⎝
1
10

3
10 0

3
10

39
10 8

0 8 40

⎞
⎟⎟⎠

⎛
⎜⎜⎝

ku

kv

kw

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

−200 kN

−2000 kN

−2000 kN

⎞
⎟⎟⎠ (48.5)

This is a system of three equations with three unknowns. The solution is a simple
mathematical problem. The result is

ku

kv

kw

=
=
=

143 kN,

−714 kN,

93 kN.

(48.6)
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The pile forces then are
N1

N2

N3

N4

=
=
=
=

−632 kN,

−714 kN,

−529 kN,

−157 kN.

(48.7)

The vertical component of the force in row 1 is 600kN, and its horizontal component
is 200kN. That result could have been obtained immediately, as this is the only pile
that can transfer a horizontal load.

The distribution of the pile forces appears not to be uniform. The force in row
4 appears to be considerably smaller than in the other rows. If this is the only load
that the foundation must carry, it may be considered to place the piles in row 4 at
larger mutual distances (in y-direction). This would mean that the stiffness in that
row would be smaller, and the computations should be repeated for the new stiffness
parameters.

The procedure illustrated here can easily be generalized to the three-dimensional
case. Then there are six degrees of freedom (three displacements and three
rotations), and six equations of equilibrium. The number of piles may be very large.
The procedure is very well suited for numerical analysis, using a simple computer
program.

Example 48.1 Repeat the computation of the pile forces, see Fig. 48.3, for the case
that the stiffness of pile row 4 is half the stiffness of the other pile rows. Predict the
pile force in row 1.

Solution

The computation follows the lines given in the example considered above, but now
in the expressions for the pile force N4 the value k must be replaced by 1

2k. The final
result will be N1 = 632 kN. It should be noted that this happens to be the same value
as in the original example. The reason is, of course, that the first row of piles is the
only one that can carry the horizontal force.

Problem 48.1 Can a computer program for the analysis of space frames be used for
the computation of pile forces in a pile foundation?



Appendix A
Stress Analysis

In this appendix themain principles of stress analysis are presented. This includes the
graphical method of representing the transformation formulas of the stress tensor by
Mohr’s circle. The considerations are restricted to two-dimensional states of stress,
for reasons of simplicity.

A.1 Transformation Formulas

Suppose that the state of stress in a certain point is described by the stresses τxx, τxy,
τyx and τyy, see Fig.A.1. Following the usual sign convention of applied mechanics
a component of stress is considered positive when the force component on a plane
whose outward normal vector is directed in a positive coordinate direction, acts in
positive direction as well, or when the force component acts in negative direction on
a plane whose outward normal vector is directed in negative coordinate direction.
For normal stresses this means that tension is considered positive, and pressure is
considered negative. In soil mechanics the usual sign convention is just the opposite.
The difference is expressed in that in this appendix stresses are denoted by the
symbol τ , whereas in the main text of the book stresses are denoted by σ. Formally,
the relation is

σxx = − τxx,
σxy = − τxy,
σyx = − τyx,
σyy = − τyy.

(A.1)

The state of stress in a certain point is completely defined by the four stress compo-
nents τxx, τxy, τyx and τyy. Of these four stresses the shear stresses are equal, as can
be shown by considering equilibrium of moments with respect to the center of the
element,
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Fig. A.1 Stress in two
dimensions

Fig. A.2 Rotation of axes

Fig. A.3 Stresses in a
rotated system of coordinates

τxy = τyx. (A.2)

In many situations it is necessary to describe the stress transfer by also considering
planes other than those in the directions of the cartesian coordinates x and y. The
stress state should then be described in a rotated set of coordinate axes, denoted by ξ
and η, rotated with respect to the original coordinates over an angle α, see Fig.A.2.
The transformation formulas can be derived most conveniently by considering equi-
librium of a suitably chosen elementary triangle, see Fig.A.3.

In formulating the equilibrium conditions it should be remembered that the basis
of this principle is equilibrium of forces, not stresses. This means that the magnitude
of the various planes on which the various stress components act should be taken
into account.

By formulating the conditions of equilibrium in ξ-direction and in η-direction of
a suitably chosen triangular element, with only two unknown stress components in
the pair of equations, see Fig.A.3, it follows that
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τξξ =
(

τxx + τyy

2

)
+

(
τxx − τyy

2

)
cos 2α + τxy sin 2α,

τηη =
(

τxx + τyy

2

)
−

(
τxx − τyy

2

)
cos 2α − τxy sin 2α, (A.3)

τξη = τηξ = τxy cos 2α −
(

τxx − τyy

2

)
sin 2α.

A.2 Principal Directions

For certain values of the rotation angle α the shear stresses τξη and τηξ are zero. This
means that there are certain planes on which only a normal stress is acting, and no
shear stress. The directions normal to these planes are called the principal directions
of the stress tensor. The value of α for which the shear stress is zero will be denoted
by α0. Its value can be determined by setting the last equation of (A.3) equal to zero.
This gives

tan 2α0 = τxy
1
2 (τxx − τyy)

. (A.4)

Because of the periodic property of the function tan 2α0 it follows that there are
two solutions, which differ by a factor 1

2π. The corresponding values of the normal
stresses can be found by substitution of this value of α into the first two equations
of the system (A.3). These normal stresses are denoted by τ1 and τ2, the principal
stresses. It is assumed that τ1 is the largest of these two stresses, the major principal
stress, and τ2 is the smallest of the two stresses, the minor principal stress. Using
some trigonometric relations, it can be shown that

τ1,2 =
(

τxx + τyy

2

)
±

√(
τxx − τyy

2

)2

+ τ 2
xy (A.5)

The notions of principal stress and principal direction introduced here are special
cases of the more general properties of eigen value and eigen vector of matrices and
tensors.

A.3 Mohr’s Circle

The formulas derived above can be represented in a simple graphical form, using
Mohr’s circle. For this purpose it is most convenient to use the transformation formu-
las in the form (A.3), but expressed into the principal stresses. The orientation of the
x-axis with respect to the direction of the major principal stress is denoted by γ, see
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Fig. A.4 Rotation of axes

Fig.A.4. The directions of the major and the minor principal stresses are indicated
by 1 and 2. The transformation formulas for the transition from the axes 1 and 2 to
the axes x and y can easily be obtained from the formulas (A.3), by replacing x and
y by 1 and 2 (with τ12 = 0), and replacing ξ and η by x and y, and the angle α by γ.
The result is

τxx =
(

τ1 + τ2

2

)
+

(
τ1 − τ2

2

)
cos 2γ,

τyy =
(

τ1 + τ2

2

)
−

(
τ1 − τ2

2

)
cos 2γ, (A.6)

τxy = τyx = −
(

τ1 − τ2

2

)
sin 2γ.

These formulas admit a simple graphical interpretation, see Fig.A.5. In this figure,
Mohr’s diagram, the normal stresses τxx and τyy are plotted positive towards the right.
The shear stress τyx is plotted positive in upward direction, and the shear stress τxy

Fig. A.5 Mohr’s circle
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is plotted positive in downward direction. The pair of stresses τxx and τxy (i.e. the
stresses acting on a plane with its normal in the x-direction) together constitute the
point A in the diagram shown in Fig.A.5. The stresses τyy and τyx (i.e. the stresses
acting on a plane with its normal in the y-direction) together constitute the point B
in the figure. The formulas (A.6) indicate that these stress points describe a circle
if the orientation angle γ varies. The center of the circle is located in a point of the
horizontal axis, at a distance 1

2 (τ1 + τ2) to the right of the origin, and the radius of
the circle is 1

2 (τ1 − τ2). The location of the stress point on the circle is determined
by the angle γ, or, more precisely, by the central angle 2γ. If the angle γ increases,
the stress points move along the circumference of the circle. In the case shown in the
figure both τxy and τyx are negative.

A special point can be identified on the circle: the pole, the point from which the
stresses in any direction can be found by a simple construction (Point P in Fig.A.6).
The pole can be found by drawing a line in x-direction from the stress point A,
and intersecting this line with a line from the stress point B in the y-direction. The
principal directions can now be found by drawing lines from the pole to the rightmost
and leftmost points of the circle. The stresses on an arbitrary plane can be found by
drawing a line in the direction of the normal vector to that plane, and intersecting it
with the circle. The validity of the construction follows from the fact that an angle on
the circumference of the circle, spanning a certain arc, is just one-half of the central
angle on the same arc.

The graphical constructions described above are very useful in soil mechanics, to
determine the directions of the major and the minor principal stresses, and also for
the determination of the most critical planes, potential slip planes.

It may be mentioned that the considerations of this appendix apply to any sym-
metric second order tensor, strain as well as stress, for instance.

Fig. A.6 Pole



Appendix B
Elasticity

In this appendix the basic equations of the theory of elasticity are presented, together
with some elementary solutions. The material is supposed to be isotropic, i.e. all
properties are independent of the orientation.

B.1 Basic Equations

The basic equations of the theory of elasticity describe the relations between stresses,
strain and displacements in an isotropic linear elastic material.

The basic variables are the components of the displacement vector. In a carte-
sian coordinate system these can be denoted by ux, uy and uz. The components of
the strain tensor (or deformation tensor) can be derived from the displacements by
differentiation,

εxx = ∂ux
∂x

, εxy = 1
2

(
∂ux
∂y

+ ∂uy
∂x

)
,

εyy = ∂uy
∂y

, εyz = 1
2

(
∂uy
∂z

+ ∂uz
∂y

)
, (B.1)

εzz = ∂uz
∂z

, εzx = 1
2

(
∂uz
∂x

+ ∂ux
∂z

)
.

These expressions are illustrated in Fig.B.1. It has been assumed that all the partial
derivatives in the system of equations (B.1) are small. The strains εxx, εyy and εzz
are a dimensionless measure for the relative change of length in the three coordinate
directions. The shear strains εxy, εyz and εzx indicate the angular deformations. The
quantity εxy, for instance, is one half of the reduction of the right angle in the lower
left corner of the element shown in Fig.B.1.

© Springer International Publishing AG 2018
A. Verruijt, An Introduction to Soil Mechanics, Theory and Applications
of Transport in Porous Media 30, DOI 10.1007/978-3-319-61185-3

381



382 Appendix B: Elasticity

Fig. B.1 Strains

The relative increase of the volume is the volume strain, and is denoted by the
symbol εvol,

εvol = �V

V
. (B.2)

If the strains are small (compared to 1) this is the sum of the strains in the coordinate
directions,

εvol = εxx + εyy + εzz. (B.3)

For an isotropic linear elastic material the stresses can be expressed into the strains
by Hooke’s law,

τxx = λεvol + 2μεxx, τxy = 2μεxy,

τyy = λεvol + 2μεyy, τyz = 2μεyz, (B.4)

τzz = λεvol + 2μεzz, τzx = 2μεzx.

The parameters λ and μ are Lamé’s elastic constants. They are related to Young’s
modulus E and Poisson’s ratio ν by

λ = νE

(1 + ν)(1 − 2ν)
, μ = E

2(1 + ν)
. (B.5)

The sign convention for the stresses is that a stress component is positive when acting
in positive coordinate direction on a plane having its outward normal in positive
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Fig. B.2 Stresses on a small
element

coordinate direction. This is the usual sign convention of continuum mechanics. It
means that tensile stresses are positive, and compressive stresses are negative.

For a small element the stresses on the three visible faces are shown in Fig.B.2.
It may be noted that in soil mechanics the sign convention often is just the opposite,
with compressive stresses being considered positive. Compressive stresses σij can
be related to the stresses τij considered here, using the formula σij = −τij.

The stresses should satisfy the equilibrium equations. In the absence of body
forces these are

∂τxx

∂x
+ ∂τyx

∂y
+ ∂τzx

∂z
= 0, τxy = τyx,

∂τxy

∂x
+ ∂τyy

∂y
+ ∂τzy

∂z
= 0, τyz = τzy, (B.6)

∂τxz

∂x
+ ∂τyz

∂y
+ ∂τzz

∂z
= 0. τzx = τxz.

These equations can be derived by considering equilibrium of a small element, in
the three coordinate directions, and equilibrium of moments about the three axes.

The stresses, strains and displacements in an isotropic linear elastic material
should satisfy all the equations given above, and the appropriate boundary con-
ditions at the surface of the body. Deriving solutions is not an easy matter. There are
many books presenting techniques for the solution of elastic problems, for instance
the book by Timoshenko and Goodier (1970). In the next sections some special
solutions will be presented.

Formany solutionmethods it is convenient to express the equations of equilibrium
into the displacement components. If the elastic coefficients λ and μ are constants
(i.e. if the material is homogeneous), it follows from Eqs. (B.1), (B.4) and (B.6) that
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(λ + μ)
∂εvol

∂x
+ μ∇2ux = 0,

(λ + μ)
∂εvol

∂y
+ μ∇2uy = 0, (B.7)

(λ + μ)
∂εvol

∂z
+ μ∇2uz = 0.

These equations form a system of three differential equations with three basic vari-
ables, the equations of Navier.

B.2 Boussinesq Problems

For geotechnical engineering the class of problems of an elastic half space (z > 0),
bounded by the plane z = 0, is of great importance. If the surface is loaded by normal
stresses only, see Fig.B.3, a solution can be found following methods developed by
Boussinesq in (1885).

Problems of this type, with given normal stresses on the boundary, and no shear
stresses on the boundary, can be solved relatively easily by introducing a special
potential function �. The displacements can be expressed into this potential by the
equations

ux = ∂�

∂x
+ λ + μ

μ
z

∂2�

∂x∂z
,

uy = ∂�

∂y
+ λ + μ

μ
z
∂2�

∂y∂z
, (B.8)

uz = −λ + 2μ

μ

∂�

∂z
+ λ + μ

μ
z
∂2�

∂z2
.

Fig. B.3 Boussinesq problem
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Substitution into the Eq. (B.7) shows that all these equations are satisfied, provided
that the function � satisfies Laplace’s differential equation,

∇2� = ∂2�

∂x2
+ ∂2�

∂y2
+ ∂2�

∂z2
= 0. (B.9)

It follows that there is only a single unknown function, �, which should satisfy
a rather simple differential equation, Laplace’s equation. Many solutions of this
equation are available.

The applicability of the potential � appears when the stresses are expressed in
terms of this function. Using (B.1), (B.4) and (B.9), it follows that the normal stresses
are

τxx

2μ
= ∂2�

∂x2
+ λ + μ

μ
z

∂3�

∂x2∂z
− λ

μ

∂2�

∂z2
,

τyy

2μ
= ∂2�

∂y2
+ λ + μ

μ
z

∂3�

∂y2∂z
− λ

μ

∂2�

∂z2
, (B.10)

τzz

2μ
= −λ + μ

μ

∂2�

∂z2
+ λ + μ

μ
z

∂3�

∂z3
.

And the shear stresses are found to be

τxy

2μ
= ∂2�

∂x∂y
+ λ + μ

μ
z

∂3�

∂x∂y∂z
,

τyz

2μ
= λ + μ

μ
z

∂3�

∂y∂z2
, (B.11)

τzx

2μ
= λ + μ

μ
z

∂3�

∂x∂z2
.

The last two equations show that on the plane z = 0 the shear stresses are automati-
cally zero,

z = 0 : τzx = τzy = 0, (B.12)

whatever the function � is. This means that the potential � can be used only for
problems in which the surface z = 0 is free of shear stresses. That is an important
restriction, which limits the use of this potential very severely. On the other hand,
the class of problems of a half space loaded by normal stresses is an important class
of problems for soil mechanics, and the differential equation is rather simple. On the
surface z = 0 the normal stress τzz may be prescribed, or the displacement uz. Some
examples will be given below.
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B.3 Point Load

A classical solution, described by Boussinesq, is the problem of a point load P on an
elastic half space z > 0, see Fig.B.4.

The solution is assumed to be

� = − P

4π(λ + μ)
ln(z + R), (B.13)

in which R is the spherical coordinate,

R =
√
x2 + y2 + z2. (B.14)

That this function satisfies the differential equation (B.9) can easily be verified by
substitution into this equation. Next it must be checked that the boundary conditions
are satisfied. The shear stresses on the surface z = 0 are automatically zero, and the
condition for the normal stresses can be verified as follows.

Differentiation of � with respect to z gives

∂�

∂z
= − P

4π(λ + μ)

1

R
, (B.15)

∂2�

∂z2
= P

4π(λ + μ)

z

R3
, (B.16)

∂3�

∂z3
= P

4π(λ + μ)

(
1

R3
− 3

z2

R5

)
. (B.17)

The vertical normal stress τzz now is, with (B.10),

τzz = −3P

2π

z3

R5
. (B.18)

On the surface z = 0 this stress is zero, except in the origin, where the stress is
infinitely large. The resultant force of the stress distribution can be obtained by
integrating the vertical normal stress over an entire horizontal plane. This gives

Fig. B.4 Point load on half
space
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∫ ∞

−∞

∫ ∞

−∞
τzz dx dy = −P. (B.19)

Every horizontal plane appears to transfer a force of magnitude P, as required. The
solution (B.13) appears to satisfy all necessary conditions, and it can be concluded
that it is the correct solution of the problem.

The vertical displacement is, with (B.8),

uz = P

4πμR

(
λ + 2μ

λ + μ
+ z2

R2

)
. (B.20)

The factor (λ + 2μ)/(λ + μ) can also be written as 2(1 − ν). The displacements of
the surface z = 0 is, when expressed in E and ν,

z = 0 : uz = P(1 − ν2)

πER
. (B.21)

This is singular in the origin, as might be expected for this case of a concentrated
load.

All other stresses anddisplacements can easily be derived from the solution (B.13).

B.4 Distributed Load

On the basis of the elementary solution (B.13) many other interesting solutions can
be derived. As an example the displacement in the center of a circular area, carrying
a uniform load will be derived, see Fig.B.5. A load of magnitude pdA at a distance
r from the origin leads to a displacement of the origin of magnitude

Fig. B.5 Distributed load,
on circular area
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p dA (1 − ν2)

πEr
,

in agreement with formula (B.21).
The displacement caused by a uniform load over a circular area, with radius a,

can be found by integration over that area. Because dA = r dr dθ, integration over θ
from θ = 0 to θ = 2π, and integration over r from r = 0 to r = a gives

r = 0, z = 0 : u = 2pa(1 − ν2)

E
. (B.22)

This is a well known and useful result.

B.5 Fourier Transforms

A general class of solutions can be found by using Fourier transforms (Sneddon
1951). As an example some a problem of plane strain deformations (for which
uy = 0) will be considered here.

The solution is assumed to be

� =
∫ ∞

0
{f (α) cos(αx) + g(α) sin(αx)} exp(−αz) dα, (B.23)

in which f (α) and g(α) are undetermined functions in this stage.
That the expression (B.23) is indeed a solution follows immediately from sub-

stitution of the elementary solutions cos(αx) exp(−αz) and sin(αx) exp(−αz) into
the differential equation (B.9). For z → ∞ the solution tends towards zero, which
suggests that these solutions may be used for problems in which the stresses should
vanish for z → ∞.

The normal stress at the surface z = 0 is, with (B.10) and (B.23),

z = 0 : τzz

2μ
= −

(
λ + μ

μ

) ∫ ∞

0
{α2f (α) cos(αx) + α2g(α) sin(αx)} dα. (B.24)

It is assumed that the boundary condition is

z = 0, −∞ < x < ∞ : τzz = q(x), (B.25)

in which q(x) is a given function. Then the condition is

∫ ∞

0
{A(α) cos(αx) + B(α) sin(αx)} dα = q(x), (B.26)
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in which

A(α) = −2(λ + μ)α2 f (α), (B.27)

and

B(α) = −2(λ + μ)α2 g(α). (B.28)

The problem of determining the functions A(α) and B(α) from (B.26) is the standard
problem from the theory of Fourier transforms. The solution is provided by the
inversion theorem. The derivation of this theorem will not be given here, see any
book on Fourier analysis. The final result is

A(α) = 1

π

∫ ∞

−∞
q(t) cos(αt) dt, (B.29)

and

B(α) = 1

π

∫ ∞

−∞
q(t) sin(αt) dt. (B.30)

This is the solution of the problem, for an arbitrary load distribution q(x) on the
surface. The solution expresses that first the integrals (B.29) and (B.30) must be
calculated, and then the results must be substituted into the general solution (B.23).
The actual analysis may be quite complicated, depending upon the complexity of the
load function q(x). The procedure will be elaborated in the next section, for a simple
example.

B.6 Line Load

As an example the case of a line load will be elaborated, see Fig.B.6. In this case the
load can be described by the function

q(x) =
{−F/(2ε) if |x| < ε,

0 if |x| > ε,
(B.31)

where ε is a small length, with ε → 0. From (B.29) and (B.30) it now follows that

A(α) = − F

πε

sin(αε)

α
,

B(α) = 0.
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Fig. B.6 Line load on half space

If ε → 0 this reduces to

A(α) = −F/π, (B.32)

B(α) = 0. (B.33)

With (B.27) and (B.28) the original functions are

f (α) = F

2π(λ + μ)α2
, (B.34)

g(α) = 0. (B.35)

The final solution of the problem is

� = F

2π(λ + μ)

∫ ∞

0

cos(αx) exp(−αz)

α2
dα. (B.36)

Even though this integral does not converge, because of the behavior of the factor
α2 in the denominator for α → 0, the result can be used to determine the stresses,
for which the potential must be differentiated. For instance,

∂2�

∂x2
= − F

2π(λ + μ)

∫ ∞

0
cos(αx) exp(−αz) dα,

and this integral converges. The result is

∂2�

∂x2
= − F

2π(λ + μ)

z

x2 + z2
. (B.37)
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In a similar way it can be shown that

∂2�

∂z2
= F

2π(λ + μ)

z

x2 + z2
. (B.38)

Continuing the differentiation gives

∂3�

∂z3
= F

2π(λ + μ)

x2 − z2

(x2 + z2)2
, (B.39)

∂3�

∂x2∂z
= − F

2π(λ + μ)

x2 − z2

(x2 + z2)2
. (B.40)

The stresses finally are, with (B.10) and (B.11),

τxx = −2F

π

x2z

(x2 + z2)2
, (B.41)

τzz = −2F

π

z3

(x2 + z2)2
, (B.42)

τxz = −2F

π

xz2

(x2 + z2)2
. (B.43)

These formulas were first derived by Flamant, in (1892).
Manymore solutions of elastic problems have been found, for instance for layered

systems, and for bodies of more complex form than a half plane or a half space, for
instance aplanewith a rowof circular holes (a problemofgreat interest to aeronautical
engineers). Many of these solutions are very complex. A large number of solutions of
interest for geotechnical engineering can be found in the book by Poulos and Davis
(1974).



Appendix C
Plasticity

In this appendix the main theorems of plasticity theory are presented. These are the
limit theorems, which enable to determine upper bounds and lower bounds of the
failure load of a body.

C.1 Yield Surface

The simplest description of plastic deformations is by considering a perfectly plastic
material. This is a material that exhibits plastic deformations if (and only if) the
stresses satisfy the yield condition. For a perfectly plasticmaterial this yield condition
is a function of the stresses only (and not of the deformations, or of the time). This
yield condition is written in the form

f (σij) = 0. (C.1)

Plastic deformations can occur only if f (σij) = 0. Stress states for which f (σij) > 0
are impossible, and if f (σij) < 0 there are no plastic deformations, but such states of
stress are perfectly possible. The deformations then are elastic only.

The yield condition can be considered as a relation between the nine stresses σij,
with i, j = 1, 2, 3, in a 9-dimensional space. In such a space the yield condition (C.1)
is an 8-dimensional part of space. It is usually called the yield surface. If the state of
stress can be described by three stresses (for instance the three principal stresses),
the yield condition can be written as

f (σ1,σ2,σ3) = 0. (C.2)

In the 3-dimensional space with axes σ1, σ2 and σ3 this is a surface. For that reason
the condition (C.1) in a higher dimensional space is also called the yield surface. In
a 2-dimensional space, if there are only two parameters that determine yielding, the
yield surface reduces to a (curved) line.

© Springer International Publishing AG 2018
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Fig. C.1 Yield surface

It is assumed that the origin σij = 0, that is the state of stress in which all stresses
are zero, is located inside the yield surface. Furthermore, it is assumed that if a certain
point σe

ij is located inside the yield surface, then ασe
ij, with α < 1, is also inside the

yield surface. In topology it is said that the yield surface is star-shaped. Later it will
also be assumed that the yield surface is convex, see Fig.C.1. That is a more severe
restriction than the assumption that it is star-shaped. These assumptions are essential
for the derivations to be presented in this chapter.

To simplify the analysis it will be assumed that the material can deform only if
f (σij) = 0. This means that all elastic deformations are disregarded. Such a material
is called rigid plastic.

C.2 Some Geometrical Definitions

Before presenting the mechanics of plastic deformations it is useful to first derive
some important geometrical relations, for the expression of a plane tangent to the
yield surface, and for a line perpendicular to that surface.

In a 9-dimensional space a plane tangent to the surface f (σij) can be defined as

(
∂f

∂σij

)
1

(σij − σ1
ij) = 0. (C.3)

Here (∂f /∂σij)1 denotes the partial derivative of the function f with respect to the
variable σij in the point σ1

ij. In Eq. (C.3) summation over the indices i and j is implied
by the repetition of these indices. This is the summation convention of Einstein,

aibi =
n∑

i=1

aibi, (C.4)

in which n is the dimension of space, usually 3, but in this case n = 9. The def-
inition (C.3) is a generalization to 9-dimensional space of the usual definition in
3-dimensional space.

The significance of the definition (C.3) can be clarified as follows. On the yield
surface the value of f is constant (f = 0). Suppose that σ1

ij is a point on that surface,
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and consider a small increment of the stress from that value, such that both σ1
ij and

σ1
ij + dσij are located on the yield surface. The difference df of the functional values

in these two points is zero, i.e.

df =
(

∂f

∂σij

)
1

dσij = 0. (C.5)

Equation (C.3) is the generalization of (C.5) for arbitrary points, at an arbitrary
distance form σ1

ij, which is also linear in σij. It follows that is indeed natural to
denote (C.3) as the definition of the tangent plane.

Next the definition of a line perpendicular to the yield surface will be considered.
For this purpose it may be noted that the general equation of a plane passing through
the point σ1

ij is

Aij (σij − σ1
ij) = 0, (C.6)

in which the constants Aij are given numbers, that define the slopes of the plane in the
various directions. A straight line in this plane, through the point σ1

ij, can be written
as

σij − σ1
ij = a (σ2

ij − σ1
ij), (C.7)

in which a is a variable parameter, and σ2
ij is a second point in the plane (C.6), which

means that

Aij (σ
2
ij − σ1

ij) = 0. (C.8)

An arbitrary straight line through the pointσ1
ij, not necessarily in the plane considered,

can be described by the equation

σij − σ1
ij = c bij, (C.9)

in which bij are constants, and c a variable parameter.
In general two straight lines

σij − σa
ij = a cij, (C.10)

σij − σb
ij = b dij, (C.11)

are considered to be perpendicular if the inner product of the directional vectors is
zero,

cij dij = 0. (C.12)
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This is in agreement with the usual definition of orthogonality, by requiring that the
inner product of two vectors is zero.

If Eq. (C.7) is now written as

σij − σ1
ij = a cij = a (σ2

ij − σ1
ij), (C.13)

it follows that the line
σij − σ0

ij = b Aij, (C.14)

is perpendicular to each line of the set (C.13), becauseAij cij is always zero, see (C.8).
The conclusion must be that the line (C.14) is perpendicular to the plane (C.6). The
point σ0

ij needs not to be located on the yield surface, but this is not forbidden either,
and the point may even coincide with the point σ1

ij. It follows that the line

σij − σ1
ij = bAij, (C.15)

passes through the point σ1
ij, and is perpendicular to the plane (C.6).

If this property is applied to the tangent plane of the yield surface, as defined by
Eq. (C.3), it follows that a line defined by

σij − σ1
ij = b

(
∂f

∂σij

)
1

, (C.16)

is perpendicular to the yield surface, in the point σ1
ij.

As an example consider a yield surface in the form of an ellipse, see Fig.C.1, with
axes 2a and a,

f = σ2
11

4a2
+ σ2

22

a2
= 0. (C.17)

In this case the equation of the tangent plane (in this two-dimensional case this is a
tangent line) is, following (C.3),

σ1
11(σ11 − σ1

11) + 4σ1
22(σ22 − σ1

22) = 0, (C.18)

in which the superscript 1 indicates that the point is located on the yield surface.
In the rightmost point of the yield surface σ1

11 = 2a and σ1
22 = 0. Equation (C.18)

then defines the tangent as: σ11 = 2a. In the topmost point of the yield surface
σ1
11 = 0 and σ1

22 = a. In that case Eq. (C.18) defines the tangent as: σ22 = a. These
two tangents are shown as dotted lines in Fig.C.2. These two lines are indeed tangent
to the yield surface.
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Fig. C.2 Examples of
tangents

C.3 Convex Yield Surface

After the definition of some geometrical concepts we now return to the mechanics of
plastic materials. As stated before, plastic deformation is governed by the location
of the stress point σij with respect to the yield surface f (σij) = 0, in a 9-dimensional
space. It is now assumed that the yield surface is convex. This is supposed to be
defined by the requirement that

(σ1
ij − σe

ij)

(
∂f

∂σij

)
1

> 0, (C.19)

in which σ1
ij is a point of the yield surface, and σe

ij is an arbitrary point inside the
yield surface. This means that f (σ1

ij) = 0 and f (σe
ij) < 0. Equation (C.19) states

that the inner product of the vector from σe
ij to σ1

ij, and the vector (∂f /∂σij)1, which
is directed perpendicular to the yield surface, is positive. This means that the angle
between these two vectors is smaller than π/2, which corresponds to the statement
that the yield surface is convex., see Fig.C.3. Only if the yield surface would have
concave parts it would be possible that a vector from a point inside the yield surface
to a point on that surface makes an angle greater than π/2 with the vector normal to
the yield surface, in outward direction. This possibility is excluded here, by assuming
that the yield surface is convex. This property will be used in later proofs.

Fig. C.3 Convex yield
surface
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C.4 Plastic Deformations

It is assumed that the plastic deformations can be described by the deformation rates
ε̇ij. It follows that

f (σij) < 0
f (σij) = 0

:
:
ε̇ij = 0,
ε̇ij �= 0.

(C.20)

This means that plastic deformations, whenever they occur, will continue forever, at
a certain rate. If time progresses, the deformations will increase indefinitely.

The plastic deformation rates ε̇ij can also be plotted in a 9-dimensional space, and
this can be done such that the axes coincide with the axes of stress space. The vectors
σij and ε̇ij may then be represented in the same space.

C.5 Plastic Potential

It is postulated that the plastic strain rates can be derived from a plastic potential g,
that depends on the stresses only, i.e. g = g(σij), in such a way that the strain rates
can be obtained by

f (σij) < 0 : ε̇ij = 0, (C.21)

f (σij) = 0 : ε̇ij = λ
∂g

∂σij
. (C.22)

Here λ is an undetermined constant. The essential assumption is that such a function
g(σij), from which the strain rates can be determined by differentiation with respect
to the corresponding stresses, see (C.22), exists.

From the geometrical considerations presented above, it follows that the vector
of strain rates ε̇ij in 9-dimensional space is perpendicular to the surface of the plastic

Fig. C.4 Plastic potential
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potential g, see Fig.C.4. In this figure the yield condition is shown by a dotted curve.
The plastic potential passing through a certain point of the yield surface has been
indicated by a fully drawn curve. The vector of strain rates is perpendicular to the
plastic potential. Through each point of the yield surface a surface of constant values
of g can be drawn, each with its own value of that constant. The shape of the plastic
potential surfaces is unknown at this stage. It may be star-shaped, or convex, or
perhaps not.

C.6 Drucker’s Postulate

It has been found, by comparing theoretical results with experimental data, that for
metals very good agreement is obtained if the plastic potential g is identified with
the yield function f . This is often called Drucker’s postulate,

Drucker : f = g. (C.23)

It has been attempted to find a theoretical derivation of this property, for instance on
the basis of some thermodynamical principle. It has been found later, however, that
there is no physical necessity for the validity of Drucker’s postulate, other than that it
provides a reasonable prediction for the plasticity behavior of metals. For other mate-
rials, especially frictional materials such as sand, it is very unlikely that Drucker’s
postulate is valid, as it leads to unrealistic predictions. It is usually concluded that
it may be applicable for materials without friction (φ = 0), but is inapplicable if
φ > 0.

Notwithstanding the theoretical objections against Drucker’s postulate, it may
well be used for clays, especially in undrained conditions. For this reason its validity
will be assumed in the sequel, until further notice. This will enable to derive limit
theorems for clays.

If the plastic potential is identified with the yield condition, Eq. (C.22) can be
written as

f (σij) < 0 : ε̇ij = 0, (C.24)

f (σij) = 0 : ε̇ij = λ
∂f

∂σij
. (C.25)

The direction of the vector of plastic deformations now is normal to the yield surface.
In the next sections the limit theoremswill be derived, using the assumptionsmade

before. The first step is the formulation and derivation of the virtual work principle.
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C.7 Virtual Work

Let there be considered a body in equilibrium. If the volume of the body is V the
equilibrium conditions are that in the volume V the following equations are satisfied,

σij,i + Fj = 0, (C.26)

and

σij = σji, (C.27)

where Fj is a given volume force. The comma indicates partial differentiation,

a,i = ∂a

∂xi
. (C.28)

It is assumed that the boundary conditions are that on a part (S1) of the boundary
the stresses are prescribed, and that on the remaining part of the boundary (S2) the
displacements are prescribed,

on S1 : σijni = tj, (C.29)

on S2 : ui = fi, (C.30)

where tj is given on S1 and fi is given on S2.
In the sequel the following definitions are needed. A field of stresses that satisfies

Eqs. (C.26), (C.27) and (C.29) is a statically admissible stress field, or an equilibrium
system. A field of displacements that satisfies certain regularity conditions (meaning
that the material should retain its integrity, and that no overlaps or gaps may be
created in the deformation, but that allows sliding of one part with respect to the rest
of the body), and that satisfies Eq. (C.30), is a kinematically admissible displacement
field, or a mechanism. To such a field a displacement field can be associated by

εij = 1

2
(ui,j + uj,i). (C.31)

Now consider an arbitrary statically admissible stress field σij, and an arbitrary
kinematically admissible displacement field ui. These fields need not have any rela-
tion, except that they must be defined in the same volume V . In general one may
write ∫

V
σij,iuj dV =

∫
V
[(σijuj),i − σijuj,i] dV .
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Using Gauss’ divergence theorem and Eq. (C.27) it follows that

∫
V

σij,iuj dV =
∫
S
σijujni dS −

∫
V

1

2
σij(ui,j + uj,i) dV .

With (C.31), (C.29), (C.30) and (C.27) it now follows that

∫
V

σijεij dV =
∫
S1

tiui dS +
∫
S2

σijnifj dS +
∫
V
Fiui dV . (C.32)

Equation (C.32) is valid for any combination of an arbitrary statically admissible
field and an arbitrary kinematically admissible displacement field, defined in the
same body.

Equation (C.32) must also be valid for the combination of the statically admis-
sible stress field σij and the kinematically admissible displacement field ui + u̇i dt.
Because this field should also satisfy the boundary condition (C.30), in order to be
kinematically admissible, it follows that

on S2 : u̇i = 0. (C.33)

The small increments of the displacement field u̇i dt, that satisfies (C.33) constitutes
a virtual displacement. Similar to Eq. (C.32) the following equationmust be satisfied

∫
V

σijεij dV + dt
∫
V

σij ε̇ij dV =
∫
S1

tiui dS + dt
∫
S1

tiu̇i dS

+
∫
S2

σijnifj dS +
∫
V
Fiui dV + dt

∫
V
Fiu̇i dV . (C.34)

If Eq. (C.32) is subtracted from this equation, the result is, after division by dt,

∫
V

σij ε̇ij dV =
∫
S1

tiu̇i dS +
∫
V
Fiu̇i dV . (C.35)

This is the virtual work theorem. It is valid for any combination of a statically
admissible stress field, and a variation of a kinematically admissible displacement
field. These fields need not be related at all.

The integral in the left hand side is the (virtual) work by the stresses on the
given incremental deformations. The terms in the right hand side can be considered
as the (virtual) work by the volume forces and the surface load during the virtual
displacement. This virtual work appears to be equal to the work done by the stresses
on the incremental strains.
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C.8 Lower Bound Theorem

The lower bound theorem states that a lower bound for the failure load can be found
by considering an equilibrium field. It can be proved in the following way.

Consider a body consisting of a perfectly plastic material, having a convex yield
surface, and satisfying Drucker’s postulate. Let the body be loaded by a surface load
ti on the part S1 of the boundary, and by a volume force Fi. It is assumed that failure
will occur for a certain combination of loads, say tci and Fc

i . From now on only
combinations of loads are considered that are proportional to the failure load, i.e.

ti = αtci , Fi = αFc
i , (C.36)

where α is a constant.
The stresses at failure are assumed to be σc

ij, and the corresponding velocities are
supposed to be u̇ci . The virtual work theorem now gives

∫
V

σc
ij ε̇

c
ij dV =

∫
S1

tci u̇
c
i dS +

∫
V
Fc
i u̇

c
i dV . (C.37)

Now assume that for a load tei = αtci and Fe
i = αFc

i a statically admissible stress
field σe

ij has been found, and that all these stresses are inside the yield criterion. Then
this load is smaller than the failure load, i.e.

α < 1. (C.38)

The proof (ad absurdum) of this theorem can be given as follows. Let it be assumed
that the theorem is false, i.e. assume that α > 1. From the virtual work theorem it
follows that ∫

V
σe
ij ε̇

c
ij dV =

∫
S1

tei u̇
c
i dS +

∫
V
Fe
i u̇

c
i dV,

or, with tei = αtci and Fe
i = αFc

i ,

∫
V

1

α
σe
ij ε̇

c
ij dV =

∫
S1

tci u̇
c
i dS +

∫
V
Fc
i u̇

c
i dV . (C.39)

From (C.37) and (C.39) it follows that

∫
V

(
σc
ij −

1

α
σe
ij

)
ε̇cij dV = 0. (C.40)

Using Drucker’s postulate, which has been assumed to be valid, the strain rates at
failure are
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ε̇cij = λ

(
∂f

∂σij

)
c

. (C.41)

Substitution into (C.40) gives

λ

∫
V

(
σc
ij −

1

α
σe
ij

) (
∂f

∂σij

)
c

dV = 0. (C.42)

If α > 1, and σe
ij is inside the yield surface (as had been assumed), then σe

ij/α is
certainly inside the yield surface. Because of (C.19), i.e. because of the convexity of
the yield surface, it now follows that

(
σc
ij −

1

α
σe
ij

) (
∂f

∂σij

)
c

> 0. (C.43)

The integral of this quantity can not be zero, as Eq. (C.42) states. This means that
the assumption α > 1 must be false. Therefore α < 1, and this is just what had to
be proved.

The theorem means that a statically admissible stress field that does not violate
the yield criterion, constitutes a lower bound for the failure load. The real failure
load is always larger than the load for that equilibrium system. The load is on the
safe side.

C.9 Upper Bound Theorem

The failure load can also be approached from above. This is expressed by the upper
bound theorem, which can be derived as follows.

Consider a body consisting of a perfectly plastic material, satisfying Drucker’s
postulate. The failure load again is tci (on S1) and Fc

i (in V ). The corresponding
stresses are σc

ij. These stresses are located on the yield surface, or partly inside it.
Suppose that a kinematically admissible velocity field u̇ki has been chosen, with

the corresponding strain rates ε̇kij. The plastic strain rates can be derived from the
yield function by the relations

ε̇ij = λ
∂f

∂σij
.

Using these relations it is possible, at least in principle, to determine the stresses
σk
ij in all points where ε̇kij �= 0. Because the yield surface is convex, and the plastic

strain rates are known, there is just one point where the vector of plastic strain rates
is perpendicular to the yield surface. This point determines the stress state. Next the
following integral can be calculated,
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D =
∫
V

σk
ij ε̇

k
ij dV . (C.44)

This is the energy that would be dissipated by the assumed kinematic field, if it would
occur. A load proportional to the failure load, tki = βtci and Fk

i = βFc
i , can now be

calculated such that
∫
S1

tki u̇
k
i dS +

∫
V
Fk
i u̇

k
i dV = D =

∫
V

σk
ij ε̇

k
ij dV . (C.45)

Although this formula has the same form as the virtual work principle, it does not
follow from that theorem, because the stress field σk

ij in general is not an equilibrium
system, and it need not satisfy the boundary condition for the stresses. Equation
(C.45) is simply a procedure to determine the fictitious loads tki and Fk

i .
The upper bound theorem is that the load tki and F

k
i is larger than the failure load,

or, in other words, that

β > 1. (C.46)

The proof (ad absurdum) of this theorem is as follows. Let it be assumed that the
theorem is false, i.e. assume that

β = tki /t
c
i = Fk

i /F
c
i < 1.

From (C.45) it follows that

∫
V

σk
ij ε̇

k
ij dV = β

∫
S1

tci u̇
k
i dS + β

∫
V
Fc
i u̇

k
i dV . (C.47)

Using the virtual work theorem the following equality can be formulated

β

∫
V

σc
ij ε̇

k
ij dV = β

∫
S1

tci u̇
k
i dS + β

∫
V
Fc
i u̇

k
i dV . (C.48)

From (C.47) and (C.48) it follows that

∫
V
(σk

ij − βσc
ij)ε̇

k
ij dV = 0. (C.49)

In all points where ε̇kij �= 0, so that there are contributions to the integral, the point σk
ij

is located on the failure surface. The stress βσc
ij is located inside the yield surface,

because σc
ij is a point of the convex yield surface, and β < 1, by supposition. It then

follows from (C.19) that

ε̇kij �= 0 : (σk
ij − βσc

ij)

(
∂f

∂σij

)
k

> 0.
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The integral of this quantity can not be zero, as required by (C.49). This means that
a contradiction has been obtained. The conclusion must be that the assumption that
β < 1 must be false, at least if it is assumed that the other assumptions (validity
of Drucker’s postulate, convex yield surface) are true. Therefore β > 1, and this is
what had to be proved.

The theorem means that a kinematically admissible velocity field, constitutes an
upper bound for the failure load. The real failure load is always smaller than the load
for that mechanism. The load is on the unsafe side.

C.10 Frictional Materials

For a frictional material, such as most soils, in particular sands, the Mohr–Coulomb
criterion is a good representation of the yield condition. For the case that the cohesion
c = 0 this is shown inFig.C.5. It is assumed that yieldingof thematerial is determined
by the stresses σxx, σyy, and σxy = σyx only. The stresses are effective stresses, but
as there are no pore pressures (by assumption) they are total stresses as well. The
yield condition is that the radius of Mohr’s circle equals sin φ times the distance of
the center of the circle to the origin. This can be expressed as

1

2
(σ1 − σ3) = 1

2
(σ1 + σ3) sin φ, (C.50)

or, if the principal stresses are expressed in terms of the stress components in an
arbitrary coordinate system of axes x and y,

Fig. C.5 Mohr–Coulomb criterion
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f =
(

σxx − σyy

2

)2

+ 1

2
σ2
xy + 1

2
σ2
yx −

(
σxx + σyy

2

)2

sin2 φ = 0. (C.51)

The circumstance that this yield condition depends upon the isotropic stress implies
that Drucker’s postulate will automatically lead to a deformation corresponding to
that stress, i.e. a volume strain. This can be seen formally by calculating the strain
rates using Drucker’s postulate. This gives

ε̇xx = λ

(
∂f

σxx

)
= λ

{(
σxx − σyy

2

)
−

(
σxx + σyy

2

)
sin2 φ

}
, (C.52)

ε̇yy = λ

(
∂f

σyy

)
= λ

{(
σyy − σxx

2

)
−

(
σxx + σyy

2

)
sin2 φ

}
, (C.53)

ε̇xy = λ

(
∂f

σxy

)
= λσxy. (C.54)

These strain rates can also be represented graphically in aMohr diagram. If the radius
of that circle is denoted by 1

2 γ̇, it follows that

(
γ̇

2

)2

=
(

ε̇xx − ε̇yy

2

)2

+ ε̇2xy. (C.55)

Using the expressions (C.52)–(C.54) this can also be written as

(
γ̇

2

)2

= λ2

{(
σxx − σyy

2

)2

+ σ2
xy

}
, (C.56)

or, because these stresses satisfy the yield criterion (C.51),

(
γ̇

2

)2

= λ2

(
σxx + σyy

2

)2

sin2 φ. (C.57)

It follows that

γ̇

2
= λ

(
σxx + σyy

2

)
sin φ. (C.58)

On the other hand the volume strain rate is

ε̇vol = ε̇xx + ε̇yy = −2λ

(
σxx + σyy

2

)
sin2 φ. (C.59)
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From (C.58) and (C.59) it follows that

ε̇vol = −γ̇ sin φ. (C.60)

Any plastic shear strain γ will be accompanied by a simultaneous volume strain εvol,
in a ratio of sin φ. The minus sign indicates that this is a volume expansion. That
the shear strains in a sand that is failing are accompanied by a continuous volume
increase is not what is observed in experiments. It can also not be imagined very well
that a sand in failure would continuously increase in volume, as long as it shears.
The conclusion must be that Drucker’s postulate is not valid for frictional materials.
Plasticity theory for such materials must be considerably more complicated, and the
proofs of the limit theorems,which heavily rely on the validity ofDrucker’s postulate,
do not apply to frictional materials.



Answers to Problems

1.1 Yes.
1.2 Outer slope.
1.3 Small.
1.4 Preloading by ice.
1.5 At the lower side.
1.6 At the higher side.
1.7 Tower close to canal.
3.1 Mass: 3000 kg. Volumetric weight: 15 kN/m3.
3.2 n = 0.42, e = 0.73.
3.3 0.846 m3, γ = 1923 kg/m3.
3.4 Settlement: 0.83 m.
3.5 No influence.
3.6 n = 0.42.
3.7 ρk = 2636 kg/m3.
4.1 Total stress unchanged, effective stress increase 5 kPa.
4.2 In the space ship artificial air pressure. Effective stress equals air pressure. On

the moon there is no atmospheric pressure. Effective stress zero.
4.3 Yes, if it sinks.
4.4 No, effective stresses unchanged.
4.5 No.
5.1 After reclamation, at 2m depth: σ = 36 kPa, p = 0, σ′ = 36 kPa.

At 10m depth: σ = 180 kPa, p = 80 kPa, σ′ = 100 kPa.
5.2 σ = 125 kPa, σ′ = 125 kPa.
5.3 σ = 125 kPa, p = 50 kPa, σ′ = 75 kPa.
5.4 Water level 10 m: σ = 125 kPa, p = 100 kPa, σ′ = 25 kPa.

Water level 150 m: σ′ = 25 kPa.
5.5 σ′ = 86.6 kPa.
5.6 σ′ = 62 kPa.
5.7 �σ′ = 32 kPa.
6.1 1 m/d = 1.16 × 10−5 m/s. Normal: 1 m/d.
6.2 1 gpd/sqft = 0.5 × 10−6 m/s. Normal: 20 gpd/sqft.
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410 Answers to Problems

6.3 k = 3.33 m/d.
7.1 k = 1.48 × 10−4 m/s.
7.2 Q = 0.0628 cm3/s.
7.3 To prevent leakage along the top of the sample.
7.4 k = 0.5 m/d.
8.1 σ = 152 kPa, p = 100 kPa, σ′ = 52 kPa.
8.2 σ = 144 kPa, p = 90 kPa, σ′ = 54 kPa.
8.3 σ = 184 kPa, p = 90 kPa, σ′ = 94 kPa.
8.4 5 m.
9.1 0.10 kN.
9.2 0.12 kN.
9.3 6.25 m.
9.4 1.40 m.

10.1 Q = 0.4 kHB.
10.2 i = 0.17.
10.3 Yes, in case of holes in the clay layer.
11.1 No.
11.2 0.50 m.
11.3 h → −∞.
11.4 Not forever, if there is no supply.
12.1 Smaller.
12.2 More than 2 cm.
12.3 Yes, because it is so dense.
12.4 To the waist.
13.1 3300 kPa.
13.2 Very small, ν ≈ 0.5.
14.1 2.5 cm.
14.2 E = 50 à 100 MPa.
14.3 C10 = 4. Just OK.
16.1 379 s.
16.2 Factor 4 larger.
16.3 650 d.
16.4 0.04 mm.
16.5 0.004.
16.6 Stop if JJ>100.
20.1 σxx = 2 p, σxy = p.
20.2 σnn = 1.500 p, σnt = 0.867 p, α = 30◦.
21.1 F = 340 N.
21.2 Yes.
28.1 σzz = 1.23 kPa.
28.2 σzz = 3.75 kPa, in A: σzz = 0, at 8000m depth: σzz = 0.
28.3 3.40 kPa, 1.72 kPa, 2.32 kPa.
29.1 No.
29.2 σrr = (2P/πr) cos θ, σrθ = 0, σθθ = 0.
30.2 0.213 m.
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30.3 0.070 m.
32.1 Cambridge K0 meter.
32.2 96 kN.
32.3 67 kN/m.
33.1 No.
34.1 OK.
34.2 OK.
34.3 Slope too steep for stability.
34.4 57.6 kN/m.
34.5 71.8 kN/m.
34.6 192 kN.
35.1 OK.
35.2 OK.
35.3 1.90 m.
35.4 11.507 m.
36.1 OK.
36.2 12.67 m.
36.3 10.20 m.
36.4 d/h = 0.650.
37.1 8.02 m.
37.2 8.22 m.
37.4 F = T × a.
42.1 OK.
42.2 A large effect.
43.1 9 m.
45.1 No.
45.2 Yes.
46.1 No, qc is total stress.
46.2 qc ≈ 8 MPa.
47.1 Yes. Yes.
47.2 No. Yes.
47.3 3.56 Revolutions per second, v = 134 m/s.
47.4 v = 3 m/s = 10.8 km/h.
48.2 Yes.
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