
WEATHER & 
CLIMATE SERVICES 
FOR THE ENERGY 

INDUSTRY

Edited by
Alberto Troccoli



Weather & Climate Services for the Energy Industry



Alberto Troccoli
Editor

Weather & Climate 
Services for the 
Energy Industry



ISBN 978-3-319-68417-8    ISBN 978-3-319-68418-5 (eBook)
https://doi.org/10.1007/978-3-319-68418-5

Library of Congress Control Number: 2017954970

© The Editor(s) (if applicable) and The Author(s) 2018 This book is an open access 
publication
Open Access  This book is licensed under the terms of the Creative Commons Attribution 
4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits 
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as 
you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons license and indicate if changes were made.
The images or other third party material in this book are included in the book’s Creative 
Commons license, unless indicated otherwise in a credit line to the material. If material is not 
included in the book’s Creative Commons license and your intended use is not permitted by 
statutory regulation or exceeds the permitted use, you will need to obtain permission directly 
from the copyright holder.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this 
publication does not imply, even in the absence of a specific statement, that such names are 
exempt from the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information 
in this book are believed to be true and accurate at the date of publication. Neither the pub-
lisher nor the authors or the editors give a warranty, express or implied, with respect to the 
material contained herein or for any errors or omissions that may have been made. The 
publisher remains neutral with regard to jurisdictional claims in published maps and institu-
tional affiliations.

Cover illustration: © Andrew Taylor/Flickr

Printed on acid-free paper

This Palgrave Macmillan imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Editor
Alberto Troccoli
World Energy & Meteorology Council
c/o University of East Anglia
Norwich, UK

https://doi.org/10.1007/978-3-319-68418-5


“To my wife Elena and my three children, for their sustained lovingly 
support and understanding.”



vii

 1  Bridging the Energy and Meteorology Information Gap    1
Don Gunasekera
Introduction    2
Forecast Improvements    3
Targeted Model Outputs    4
Enhanced Partnerships    5
Data Sharing    5

Barriers to Data Sharing    7
Benefits of Data Sharing    7
Enhancing the Data-Sharing Arrangements    8

References   10

 2  Achieving Valuable Weather and Climate Services   13
Alberto Troccoli
What’s a Service—Never Mind the Weather and Climate?   14
Public versus Commercial Approach—How Does a Service Differ 
in These Two Contexts?   15
Adding Weather and Climate to the Service   17
Summary   21
Appendix—Definitions of Climate Service   22

The Global Framework for Climate Services Definition   22

Contents



viii  CONTENTS

The Climate Service Partnership Definition   22
The Climate Europe Definition   23

References   24

 3  European Climate Services   27
Carlo Buontempo
Introduction   28
Energy Users’ Requirements for Climate Services   29

Climate Risk Assessment   29
Strategic Planning   31
Corporate Governance, Planning and Communication   31
Operation and Management   32
Trading   33

Good Practice in Climate Services Development, for Energy 
and Beyond   33

Opportunities for Climate Services, for Energy and Beyond   34
References   38

 4  What Does the Energy Industry Require 
from Meteorology?   41
Laurent Dubus, Shylesh Muralidharan,  
and Alberto Troccoli
Introduction   42
Overview of the Energy Sector/Business   43

Peculiarities of Energy Systems   43
The Current Global Energy Picture   45
Future Scenarios   47
The Energy Trilemma   48

The Importance of Weather and Climate for the Energy  
Sector   50

Weather and Climate Impact the Energy Sector on All  
Timescales   50
Weather Readiness Is Key for Weather-Resilient Business 
Performance for Electric Utilities   53

Next Steps in the Dialogue Between Energy and Meteorology   59
Appendix: Key Documentation on the Energy Sector   60
References   61



  ix CONTENTS 

 5  Forging a Dialogue Between the Energy Industry 
and the Meteorological Community   65
Alberto Troccoli, Marta Bruno Soares, Laurent Dubus,  
Sue Haupt, Mohammed Sadeck Boulahya, and Stephen 
Dorling
Introduction to the World Energy & Meteorology Council   66

Rationale for Creating the Organisation   68
Aims of the Organisation   68
Structure of WEMC   69

Defining Priorities for WEMC: The Users’ Survey   71
Rationale for Undertaking a Survey   71
Methodology and Implementation of the WEMC Survey   71

Results from the WEMC Survey   72
Activities Across Sectors   74
Nexus Between Energy and Meteorology   77
Future WEMC Projects and Initiatives   78
Paying for WEMC Services   79

Next Steps for WEMC   81
References   82

 6  Weather, Climate and the Nature of Predictability   85
David J. Brayshaw
Introduction   85
The Nature of Predictability   86
Prediction Strategies   90

Statistical Models   91
Dynamical Models   91

Summary and Discussion   93
References   94

 7  Short-Range Forecasting for Energy   97
Sue Ellen Haupt
The Need for Short-Range Forecasts   98
Overview of Scales   98
Nowcasting   99
Numerical Weather Prediction  101
Blending the Forecasts and Predicting Power  102



x  CONTENTS

Probabilistic Forecasts and the Analog Ensemble  102
References  104

 8  Medium- and Extended-Range Ensemble Weather 
Forecasting  109
David Richardson
Preamble  110
Initial Condition Uncertainties  110
Model Uncertainties  111
Operational Global Medium-Range Ensembles  112
Extended-Range Ensembles  112
Ensemble Weather Forecast Products  116
References  118

 9  Seasonal-to-Decadal Climate Forecasting  123
Emma Suckling
Introduction to Climate Forecasting  124
Sources of Predictability  124
The Probabilistic Nature of Climate Forecasting  126
Assessing the Quality of Climate Forecasts  129
Climate Forecast Tools for the Energy Sector  129
Concluding Remarks  131
References  133

 10  Regional Climate Projections  139
Robert Vautard
Introduction  140
What Are Climate Projection and How Do They Differ  
from Weather Forecasts and Decadal Predictions?  140
Regional Climate Projections  142
The Use of Climate Projections for the Energy Sector  144
References  147



  xi CONTENTS 

 11  The Nature of Weather and Climate Impacts 
in the Energy Sector  151
David J. Brayshaw
Weather and Climate Impacts in the Energy Sector  152
Summary  157
References  158

 12  Probabilistic Forecasts for Energy: Weeks  
to a Century or More  161
John A. Dutton, Richard P. James, and Jeremy D. Ross
Introduction  162
Subseasonal and Seasonal Climate Prediction  162
Climate Change Probabilities  169
Conclusion  175
References  176

 13  Lessons Learned Establishing a Dialogue Between 
the Energy Industry and the Meteorological  
Community and a Way Forward  179
Laurent Dubus, Alberto Troccoli, Sue Ellen Haupt, 
Mohammed Sadeck Boulahya, and Stephen Dorling
Lessons Learned in Energy and Meteorology  180

Improving the Communication Between Providers and Users  180
Improving Decision-Making Processes  182

Looking Ahead in Energy and Meteorology  184
Major Challenges to Be Addressed in a Co-design Approach  185

References  189

 Index  191



xiii

notes on Contributors

Mohammed  Sadeck  Boulahya has more than 35  years of experience 
managing public regional institutions, mobilising resources, networking 
and building national capacity for weather and climate services in support 
of more resilient economies in Africa and the Mediterranean Region. Since 
2005, under a number of consultancies, Boulahya has advised the African 
Development Bank (AfDB) on the conception of a Strategy in Climate 
Risk Management and Adaptation, organised the First Climate for 
Development Conference in Addis Ababa, and was instrumental in facili-
tating the negotiation between African Union Commission (AUC), 
United Nations Economic Commission for Africa (UNECA) and AfDB 
for the conception of, and resource mobilisation for, the ClimDev-Africa 
Programme, leading to its official launch in 2010 during UNECA/
ADF(African Development Forum)-VII. Boulahya also co-founded and 
contributed to the programme implementation as the First Director 
General of the African Centre of Meteorological Applications for 
Development (ACMAD) for 12 years.

David Brayshaw PhD, is an associate professor in Climate Science and 
Energy Meteorology at the Department of Meteorology at the University 
of Reading and a Principal Investigator (PI) with the UK’s National 
Centre for Atmospheric Science. His research interests concern large-scale 
atmospheric dynamics and its impact on human and environmental sys-
tems. In 2012, he founded the energy-meteorology research group. He is 
involved in a wide range of academic and industry-partnered projects on 



xiv  NOTES ON CONTRIBUTORS

weather and climate risk in the energy sector, covering timescales from 
days to decades ahead.

Marta Bruno Soares PhD, is a social scientist based at the Sustainability 
Research Institute at the University of Leeds. Her research focuses on 
climate services including the analysis of the science-policy interface, bar-
riers and enablers to the use of climate information, and the value of cli-
mate information in decision-making processes. She is currently a PI on a 
Horizon 2020 (H2020) project looking at the development of climate 
services for agriculture in the Mediterranean Region and a PI on a Newton 
Fund Climate Science for Service Partnership in China project looking at 
the priorities for developing urban climate services in China.

Carlo  Buontempo PhD, manages the Sectoral Information System of 
the Copernicus Climate Change Service at the European Centre for 
Medium-Range Weather Forecasts (ECMWF). He coordinates the activi-
ties of a large number of projects working on the interface between cli-
mate science and decision making in sectors ranging from energy networks 
to city planning. Buontempo completed a PhD in physics at the University 
of L’Aquila in 2004; then, he moved to Canada for his postdoc before 
joining the Met Office. Buontempo worked at the Hadley Centre for 
almost a decade where he led the climate adaptation team and more 
recently the climate service development team. In this role, he led numer-
ous projects involving climate change adaptation and regional modelling 
in Europe, Africa, Asia and North America. In 2012 Buontempo became 
the scientific coordinator of EUPORIAS, a project funded by the European 
Commission to promote climate service development and delivery in 
Europe.

Steve  Dorling PhD, is Professor of Meteorology in the School of 
Environmental Sciences at the University of East Anglia. After completing 
BSc and PhD degrees in 1992 he worked at Environment Canada as a 
visiting research fellow in the Long Range Transport of Air Pollution, 
before taking up a faculty position in Applied Meteorology at the University 
of East Anglia (UEA) in 1994. Complementing his academic position, 
Dorling co-founded the private sector company Weatherquest Ltd in 
2001 where he holds the position of Innovations Director.  Since 2015, 
Dorling has also been a Director of the World Energy and Meteorology 
Council. Dorling teaches meteorology at undergraduate level. Dorling is 
part of the Senior Management Team at UEA through his role as Associate 



  xv NOTES ON CONTRIBUTORS 

Dean in the Faculty of Science.  In 2013, Dorling co-authored the text 
Operational Weather Forecasting.

Laurent  Dubus PhD, has been working with Électricité de France’s 
(EDF) R&D since 2001 as an expert researcher in energy meteorology. 
He has skills and experience in climate system modelling, weather and 
climate forecasts and power systems management. His activities are dedi-
cated to improving the effective integration of high-quality weather and 
climate information into energy sector policy formulation, planning, risk 
management and operational activities, to better manage power systems 
on all time scales from a few days to several decades. He is involved in dif-
ferent French and international activities and organisations at the nexus 
between energy and meteorology, including the World Energy and 
Meteorology Council (WEMC), the World Meteorological Organization 
(WMO), the Superior Council of Meteorology in France and the 
International Conferences Energy & Meteorology (ICEM) series. Laurent 
holds a PhD in physical oceanography.

John A. Dutton PhD, is the president of Prescient Weather, the chief 
executive officer of the World Climate Service, and a professor emeritus 
and dean emeritus at the Pennsylvania State University. He focuses on the 
analysis and mitigation of weather and climate risk in both private and 
public endeavours, including agriculture, energy, and commodity trading. 
He has a special interest in creating probabilistic climate variability predic-
tions and scenarios as inputs for corporate decision systems and strategic 
planning. Dutton has experience in science and public policy, including 
the National Research Council, the National Weather Service, space and 
earth science, aviation and weather, and other environmental issues. He is 
a fellow of the American Meteorological Society and the American 
Association for the Advancement of Science.

Don Gunasekera is a research fellow with the Centre for Supply Chain 
and Logistics at Deakin University. His research interest lies in analysing 
issues along various supply chains including those across meteorology, 
infrastructure, and food and energy sectors. He has worked in a range of 
organisations including the Australian Bureau of Agricultural and Resource 
Economics, the Australian Bureau of Meteorology and Victoria University. 
During 2006–2009, he was the chief economist at the Australian Bureau 
of Agricultural and Resource Economics. He has written widely in domes-
tic and international journals.

http://www.wemcouncil.org/wp/conferences/


xvi  NOTES ON CONTRIBUTORS

Sue Ellen Haupt PhD, is an NCAR (National Center for Atmospheric 
Research) senior scientist and Director of the Weather Systems and 
Assessment Program of the Research Applications Laboratory of 
NCAR. She is also Director of Education of WEMC and a Councilor of 
the American Meteorological Society (AMS). She previously headed a 
department at the Applied Research Laboratory of the Pennsylvania State 
University where she remains Adjunct Professor of Meteorology. She has 
also been on the faculty of the University of Colorado Boulder; the 
U.S. Air Force Academy (visiting); the University of Nevada, Reno; and 
Utah State University and previously worked for the New England Electric 
System and GCA Corporation.

Richard P. James PhD, is a senior scientist at Prescient Weather and the 
World Climate Service. He has a background in meteorological research, 
specialising in the high-resolution modelling of convective storms and in 
the application of modern meteorological datasets to problems of weather 
and climate risk management. James focuses on developing new tech-
niques to empower weather-sensitive decisions, and he benefits from 
cross-disciplinary knowledge of scientific meteorology, statistics and 
finance. James received his BA degree in natural sciences from Cambridge 
University, and his MS and PhD degrees from the Pennsylvania State 
University.

Shylesh (Shy) Muralidharan is a global product manager with Schneider 
Electric DTN, focused on building real-time weather analytics solutions 
for energy applications. He believes that weather-based decision support 
systems will play a major role in making the future energy infrastructure 
smarter and climate-resilient. He has over 14 years of worldwide experi-
ence in product management and technology consulting in the energy and 
utilities sector specialised in strategy and solution design of smart grid 
technology projects. Muralidharan is a system design and management 
fellow from Massachusetts Institute of Technology (MIT) and has a bach-
elor’s degree in mechanical engineering and an MBA from the University 
of Mumbai.

David Richardson PhD, is Head of Evaluation at ECMWF. He has over 
30 years of experience in weather forecasting research and operations and 
has worked on all aspects of ensemble prediction methods for weather 
forecasts for weeks to seasons ahead. This includes the configuration of 
ensembles to represent the uncertainties in the initial conditions and 



  xvii NOTES ON CONTRIBUTORS 

modelling systems, development of products and tools for forecast users, 
and evaluation of forecast performance. He has published numerous sci-
entific papers as well as book chapters on these topics. He is Chair of 
WMO Expert Team on Operational Weather Forecasting Process and 
Support, which oversees the co-ordination of operational NWP (numeri-
cal weather prediction) activities among WMO member states.

Jeremy D. Ross PhD, is Chief Scientist at Prescient Weather and Lead 
Forecaster of the World Climate Service. He has more than 15 years of 
experience researching and developing weather and climate models and 
innovative climate and weather risk products for energy, agriculture, 
retail, transportation, and the commodity markets. Ross has broad knowl-
edge of the academic and private sectors, and that insight combined with 
extensive technical and analytical skills facilitates rapid development of 
innovative science for weather and climate risk management. Ross 
obtained BS, MS, and PhD degrees in meteorology from the Pennsylvania 
State University.

Emma  Suckling PhD, is a postdoctoral research scientist within the 
Climate Division of the National Centre for Atmospheric Science in the 
Department of Meteorology, University of Reading. Her research inter-
ests are focused on climate variability and predictability, which includes 
interpreting and evaluating climate predictions, understanding the impacts 
of climate variability and change for energy (and other) applications, and 
extracting useful information from imperfect models. Suckling gained her 
PhD in the field of theoretical nuclear physics from the University of 
Surrey before making a transition into climate science, where she worked 
as postdoctoral research officer within the Centre for the Analysis of Time 
Series at the London School of Economics, before moving to her current 
role. She is also Chair of the Institute of Physics (IOP)  Nonlinear and 
Complex Physics Group committee.

Alberto Troccoli PhD, is based at the University of East Anglia (UK) 
and is the Managing Director of WEMC. Troccoli has more than 20 years 
of experience in several aspects of meteorology and climate and their appli-
cation to the energy sector, having worked at several other leading institu-
tions such as NASA, ECMWF (UK), the University of Reading (UK) and 
Commonwealth Scientific and Industrial Research Organisation (CSIRO, 
Australia). Troccoli is the lead author of the UN’s Global Framework for 
Climate Services’ Energy Exemplar, the editor of three other books, 



xviii  NOTES ON CONTRIBUTORS

including Weather Matters for Energy, and the convener of ICEMs. He 
holds a PhD from the University of Edinburgh (UK).

Robert Vautard PhD, is a senior scientist at the Centre National de la 
Recherche Scientifique (CNRS) and is working at the Laboratoire des 
Sciences du Climat et de l’Environnement (LSCE). He is a specialist in 
European climate and modelling of climate in relation to energy and air 
pollution. He was a review editor of the Intergovernmental Panel on 
Climate Change’s (IPCC) Fifth Assessment Report (AR5), and co-authored 
187 publications in peer-reviewed scientific literature. He is co-leading the 
energy branch of the Inter-Sectoral Impact Model Intercomparison Project 
(ISIMIP), an international project on impacts of climate change and theme 
of the WCRP (World Climate Research Programme) Grand Challenge of 
extreme events. He is leading the research and climate service activities of 
the Institut Pierre Simon Laplace (IPSL) excellence laboratory, and is a 
former director of LSCE.



xix

Fig. 3.1 A schematic representation of the ways in which climate 
information can be used within the energy sector 30

Fig. 3.2 Predictions of wind speed from ECMWF System 4 for the 
three months from December 2015 to February 2016 
generated on November 2015. The colour of the glyphs and 
their directions encode the most probable category, that is, the 
tendencies of the ensemble mean of the seasonal forecast with 
respect to the model climatology at that location. The 
thickness of the glyphs indicates the mean wind speed 
predicted for the coming season. The opacity of the colour 
provides a measure of the skill of the prediction at that location 
measured by the Ranked Probability Skill Score. The regions 
with no glyphs are the regions where climate predictions for 
the selected months provide no additional information to the 
one available from climatology. When selecting a specific 
location, the user can see (bottom panel) the historical 
time-series for wind speed (bottom left) and the future 
predictions in the form of a probability cone (bottom right) 35

Fig. 4.1 Share of energy sources in the global final energy 
consumption (adapted from REN21 2016) 46

Fig. 4.2 The World Energy Council’s Energy Trilemma, and the five 
focus areas for achieving energy goals (WEC 2016d). Used 
by permission of the World Energy Council 49

Fig. 4.3 Weather and climate impact the energy sector on all 
timescales (source: WEMC) 50

List of figures



xx  LIST OF FIGURES

Fig. 4.4 Business outcomes driving weather-readiness assessment. 
Electricity Value Chain Graphic adapted from ‘Utility 
Analytics Market & Energy Analytics Market Global 
Advancements, Business Models, Worldwide Market 
Forecasts and Analysis (2013–2018)’ 55

Fig. 4.5 Electric power sector applications enhanced by weather-based 
decision support. Graphic Adapted from ‘Utility Analytics 
Market & Energy Analytics Market (Solar Analytics, Oil & 
Gas Analytics, Water analytics, Waste analytics): Global 
Advancements, Business Models, Worldwide Market Forecasts 
and Analysis (2013–2018)’ 58

Fig. 5.1 The World Energy & Meteorology Council (WEMC) 
organigram 71

Fig. 5.2 Type of organisations per sector of activity 73
Fig. 5.3 Size of the responding organisations per sector 73
Fig. 5.4 Countries where survey respondents are based. Countries 

selected by only one respondent were excluded from this 
chart. These included Brazil, Austria, Vietnam, Costa Rica, 
Namibia, South Africa, New Zealand, Mexico, Zambia, 
Greece, Indonesia, Argentina, Malaysia, Bosnia and 
Herzegovina, India, Finland and Guatemala, Ghana, 
Morocco, Chad, United Arab Emirates and Mauritania 74

Fig. 5.5 Organisations scope of operations and activities 75
Fig. 5.6 Scope of responding organisations’ activities in the energy 

sector (total per cent of n = 47; note that this was a multi-
answer question) 76

Fig. 5.7 Area of the energy sector in which the organisations operate 
(note that this was a multi-answer question) 76

Fig. 5.8 Scope of activities in the responding organisations operating 
in meteorology and climate (note that this was a multi-answer 
question) 77

Fig. 5.9 Number of organisations surveyed interested in the energy 
and meteorology nexus 77

Fig. 5.10 Preferences from survey respondents regarding policy/
services initiatives to be pursued by WEMC (based on rating 
average of ranked preferences) 78

Fig. 5.11 Preferences from survey respondents regarding research and 
technology transfer initiatives to be pursued by WEMC 
(based on rating average of ranked preferences) 79

Fig. 5.12 Preferences from survey respondents regarding outreach and 
training activities to be pursued by WEMC (based on rating 
average of ranked preferences) 80



  xxi LIST OF FIGURES 

Fig. 5.13 Respondents’ willingness to pay for WEMC services, per year 80
Fig. 6.1 Weather and climate timescales, forecasting tools and datasets 86
Fig. 6.2 The Lorenz model and initial condition problems, using  

α = 10, β = 28, γ = 8/3 and ϵ = 0. See text for discussion 87
Fig. 6.3 The Lorenz model and the long-term equilibrium climate  

change problem. The black and grey curves show two  
simulations with different boundary conditions (parameters  
as in Fig. 6.2, but with ϵ = 10 for the grey curve). See text 
for discussion 89

Fig. 6.4 Indicative timescales of selected components in the climate 
system 90

Fig. 7.1 Blending of NWP models with observation-based nowcasting 
enables optimization of the short-range forecast 99

Fig. 7.2 Mean root mean square error for wind speed forecasts at 
METAR sites over the contiguous USA from multiple 
models and the DICast forecast (red) for the month from 5 
October to 5 November, 2015 103

Fig. 8.1 Skill of ensemble forecasts for temperature at 850 hPa in the 
northern hemisphere extra-tropics for 2016. The verification 
is performed against each centre’s own analysis, with the 
forecast and analysis data taken from the TIGGE archive. 
CMC = Canadian Meteorological Centre, JMA = Japan 
Meteorological Agency, UKMO = United Kingdom Met 
Office; NCEP = The National Centres for Environmental 
Prediction (USA) 113

Fig. 8.2 Forecast lead-time (in days) when a correlation-based 
measure of accuracy of the prediction of the Madden- Julian 
Oscillation (MJO) reaches 0.6 correlation (orange bars) and 
0.5 correlation (yellow bars) (1.0 would indicate a perfect 
forecast). The black lines indicate the 95% confidence interval 
of the time when the 0.6 correlation is reached. Results are 
based on the re-forecast from 1999 to 2010 from all the 
models, verified against ERA-Interim analyses. Correlations 
of 0.5 and 0.6 are often used as indication of useful forecast 
skill (Vitart 2014) 115

Fig. 8.3 ECMWF forecasts for the heat wave over Europe in July 
2015. Lower panel shows the 2-metre temperature anomaly 
forecasts for the 7-day period 29 June to 5 July initialised on 
18 June (left) and 22 June (right). Areas where the forecast 
distribution is significantly different from climatology are 
shaded. Upper panel shows the evolution of the ensemble 
forecasts for the temperature in Paris at 12 UTC on 1 July; 



xxii  LIST OF FIGURES

the dates on the horizontal axis indicate the start time of 
each forecast. The box-and-whisker plots show the 1st, 10th, 
25th, 75th, 90th and 99th percentile of the forecast, while 
black dot shows the median of the distribution. The 
temperature distribution of the model climate (generated 
from re- forecasts for late June and early July for the last 
20 years) is shown in red (the dotted line highlights the 
climate median). Magnusson et al. 2015 117

Fig. 9.1 Relative contributions to the fraction of total variance from 
each source of uncertainty in projections of decadal mean 
surface air temperature in a) global mean and b) Europe 
mean. Green regions represent scenario uncertainty, blue 
regions represent model uncertainty, and orange regions 
represent the internal variability component. The importance 
of model uncertainty is clearly visible for all policy-relevant 
timescales. As the size of the region is reduced, the relative 
importance of internal variability increases. Scenario 
uncertainty only becomes important at multidecadal lead times 
(Hawkins and Sutton 2009, see also Kirtman et al. 2013)  127

Fig. 9.2 Example of the information available from the ECEM 
Demonstrator tool (http://ecem.climate.copernicus.eu). 
Historical monthly mean wind speed for November 1979 
over Europe. Essential climate variables and energy impact 
indicators are available on a range of timescales, including a 
historical reanalysis, seasonal forecasts and climate projections 130

Fig. 9.3 Example of communicating seasonal forecasts skill 
information. Reliability of the European Centre for Medium- 
Range Weather Forecasts (ECMWF) Seasonal Forecast 
System 4 for predictions of 2m temperature during (a) cold 
DJF, (b) warm DJF, (c) cold JJA and (d) warm JJA 
(Weisheimer and Palmer 2014) 132

Fig. 10.1 Schematic of the modelling chain used to calculate the 
impacts of climate change. In this illustration, the impacts 
can be the river discharge or hydropower potential 140

Fig. 10.2 Mean changes in daily precipitation amounts estimated from 
ten EURO-CORDEX high-resolution model simulations 
(Jacob et al. 2014), in the RCP8.5 scenario. Changes are 
measured as differences of mean values calculated over the 
last 30 years of the twenty-first and twentieth centuries, 
averaged over the ten projections. Change values, 
represented by coloured areas, are only displayed when nine 
or ten models agree on the sign of change. When not, the 
area is coloured with grey 145

http://ecem.climate.copernicus.eu


  xxiii LIST OF FIGURES 

Fig. 10.3 Changes in mean wind power capacity factor, assuming the 
installed national wind farms fleets as of 2013, under a 2°C 
(cyan) and 3°C (salmon) global warming. Ensembles consist 
of 5 simulations out of the 9 RCP4.5-RCP8.5 simulations 
that reach 2°C or 3°C global warming, using the 
methodology defined in Vautard et al. (2014). The coloured 
wide bars indicate the model ensemble mean. The thin bars 
indicate the 95% level confidence interval as computed using 
the Wilcoxon-Mann-Whitney test. Model individual changes 
are represented by differing symbols: symbols are red when 
changes are significant at the 95% level using the Wilcoxon-
Mann-Whitney test (adapted from Tobin et al. 2016 and the 
results from the FP7 IMPACT2C project, WP6) 146

Fig. 11.1 The process of converting meteorological data into 
actionable information 152

Fig. 11.2 Levels of impact complexity 152
Fig. 11.3 Simple examples of idealised transfer functions used to 

convert meteorological quantities into estimates of power 
system properties: (a) an idealised wind power curve based 
on Brayshaw et al. (2011); (b) a simplified demand model 
based on Bloomfield et al. (2016). In each example here, the 
transfer function is shown to depend only on a single 
meteorological variable for simplicity but in general they may 
incorporate many input variables. Additional dependencies 
may be meteorological (e.g., wind direction for wind power, 
cloud cover for demand) or non-meteorological (e.g., 
day-of-week for demand), and include stochastic ‘noise’ to 
simulate the error and uncertainty in the transfer function 153

Fig. 11.4 An illustration of energy price forecasting using 
meteorological inputs following Lynch (2016) and Lynch 
et al. (2014). (a) A flow chart illustrating the process 
through which the forecast is made and evaluated. (b) A 
schematic of the ‘merit order model’. In (b), the red curve 
indicates the relationship between supply and price (more 
expensive power stations are willing to produce as price rises, 
hence a positive relationship between volume and price). The 
blue curve indicates the relationship between demand and 
price (the demand for power decreases with price, but here is 
assumed to be perfectly price-insensitive). The intersection of 
the two curves sets the wholesale price and volume of power 
produced by the market. The qualitative shape of the supply 
curve produced by the two-generation type model (as fitted 
by Lynch (2016) to observed price data using an Ensemble 



xxiv  LIST OF FIGURES

Kalman filter) is indicated in (b). Lynch (2016) went on to 
demonstrate that the ECMWF-forecast based process 
outlined in (a) was able to significantly outperform 
equivalent forecasts using purely historical weather 
observations for each of wind power, demand and price 
(evaluated over the period December 2010—February 2014, 
at a 99% statistical confidence level). ECMWF stands for 
European Centre for Medium-Range Weather Forecasts 155

Fig. 11.5 A conceptual model of a simple power system with four 
components: two fossil fuel generators (F1 and F2) with 
differing characteristics, wind power generation W and 
demand D. Residual demand (E = D − W), shown by the 
green line on the time series (right-hand plot), must be met 
by the combined generation from F1 and F2. See main text 
for discussion 156

Fig. 12.1 Comparison of predicted and climatological standardized 
temperatures for a S2S forecast. The area between the 
climate and predicted densities represents the probability of 
temperatures warmer than those expected from climate, 
which would be adverse for winter for an electric utility 163

Fig. 12.2 A S2S forecast system that uses the forecast history and 
verification data to optimize new forecasts in a calibration 
and combination process. The same data leads to forecast 
performance statistics that inform the business decisions 164

Fig. 12.3 A reliability diagram for WCS forecasts of temperature, 
precipitation, and wind speed for the North American winter, 
illustrating the improvement in reliability achieved by 
calibration. The data for above and below normal have been 
combined to create a single curve for each variable and 
thereby simplify the diagram 165

Fig. 12.4 Forecast performance functions for WCS forecasts for 
temperature, precipitation, and wind for the North American 
winter 168

Fig. 12.5 The WCS hedge advisor compares volatility and return for  
several predicted probabilities of adverse events to those  
expected from the climatological frequency of the same event. 
The dots indicate hedges at increments of one- quarter of the 
loss in adverse conditions. The minimum volatility occurs for 
hedges close to that loss. In this illustration, the skill of the 
forecasts puts the seller of hedges using η= 1/4 at a financial 
disadvantage for predicted probabilities of 1/3 or greater 169



  xxv LIST OF FIGURES 

Fig. 12.6 A climate change information system designed to assist 
business to explore alternative futures, including a system to 
assemble past and future climate information, a quantitative 
model of the business, and a system for computing business 
simulations 170

Fig. 12.7 The business model, constructed as an influence diagram, 
used to generate climate change scenarios for the 
hypothetical utility VEPCO 171

Fig. 12.8 Evolving probability of summer insolation for VEPCO, from 
one of the IPCC climate simulations for moderately severe 
climate change (6 watts/m2 additional greenhouse heating). 
The blues are the small-value side of the distribution, the 
reds the large-value side with the median at the intersection 
of the two colours 172

Fig. 12.9 Expense versus volatility relative to present conditions for 15 
selections of solar and hydro fractions of generation for five 
double decades in the twenty-first century, giving VEPCO a 
range of possibilities for minimizing expense or minimizing 
volatility. The relative volatility on the x-axis is the standard 
deviation of the relative expense on the y-axis 173

Fig. 12.10 Probability densities associated with VEPCO strategies that 
would imply favourable or unfavourable prospects for the 
end of the century. The performance is measured by a ratio 
of 2080–2100 income to present-day income, both in 
present-day values. Fragile is used in the sense of vulnerability 
to volatility (Taleb 2012), resilience for anti-fragile. The 
resilient density is relatively thin and favours positive income 
and therefore is robust 174



xxvii

Table 2.1 Qualitative comparison between five different types of service 
based on the four representative features—Maturity, 
Tangibility, Level of Risk, Trustworthiness 15

Table 4.1 Main trends in energy supply and consumption and 
electricity generation from 1973 to 2014 45

Table 12.1 The business model for computing the consequences of 
forecasts and hedges 164

Table 12.2 The frequencies of events in the forecast contingency table 
with the dependence on p of the skill functions omitted for 
brevity 167

List of tabLes



1© The Author(s) 2018
A. Troccoli (ed.), Weather & Climate Services for the Energy Industry, 
https://doi.org/10.1007/978-3-319-68418-5_1

CHAPTER 1

Bridging the Energy and Meteorology 
Information Gap

Don Gunasekera

Abstract This chapter discusses the information gaps relating to the type, 
level of accuracy and frequency of delivery of specific weather and climate 
information, and what extra information is required by the energy sector 
in the coming years. It is argued that ongoing technical and scientific 
interaction between weather and climate service providers and the energy 
sector, supported by input from the information and communication 
technologies, can help bridge these gaps. This will help the users in the 
energy sector to both understand and respond appropriately to the avail-
able weather and climate information. Focusing on the linkages between 
weather-, climate- and energy-related information and data, the chapter 
draws attention to barriers to data sharing, benefits of overcoming the bar-
riers and strategies to enhance data-sharing arrangements between the 
weather, climate and energy communities.

Keywords Service delivery • Partnership • Data sharing • Weather and 
climate information • Service providers

D. Gunasekera (*) 
Centre for Supply Chain & Logistics, Faculty of Science, Engineering & Built 
Environment, Deakin University, Burwood, VIC, Australia



2 

IntroductIon

Rise in global energy use has been modest over the past several years with 
growth rates of 1.1% and 1.0% in 2014 and 2015, respectively, and lower 
than its 10-year average of 1.9% (see International Energy Agency 2016; 
BP Global 2016). However, triggered by income and population growth, 
global energy use is expected to increase over the next several decades, 
particularly in emerging and developing economies. Weather and climate 
information is needed to efficiently plan, manage and operate energy ser-
vices on very diverse space and time scales. Hence, weather and climate 
information is crucial, given the expected increase in global energy use in 
the coming decades and the interdependence of weather, climate and 
energy production and use.

World energy demand is estimated to increase by 48% from 2012 to 
2040 (US Energy Information Administration 2016). Much of this 
increase in demand is expected among the developing non-OECD econo-
mies. Strong economic growth and expanding population in these econo-
mies will be the key drivers of rising energy use. Non-OECD energy 
demand is projected to rise by 71% from 2012 to 2040. In contrast, in the 
more mature energy-consuming and slower-growing OECD economies, 
total energy use is estimated to increase by only 18% from 2012 to 2040.

Given the estimated rise in world energy demand in the next several 
decades, the usefulness of weather and climate information for the energy 
sector will continue to be important and even increase. Hence, there is a 
growing demand for weather and climate information in the energy sector 
across many regions of the world. The practice of delivering weather and 
climate information requires sustained interactions with users along the 
energy supply chain. Both public and private sector meteorological service 
providers help to meet the weather and climate data requirements of the 
energy sector across the world.

A survey of clients of private meteorological service providers has 
revealed that the three main factors driving customer demand were the 
accuracy of their forecasts, assistance in operationalizing the forecasts and 
the availability of one-on-one consultation (Mandel and Noyes 2013).

The ability of weather and climate information providers to meet the 
growing requirements of the stakeholders along the energy supply chain 
has a range of gaps. For example, one of these gaps relate to the type, level 
of accuracy and frequency of delivery of specific weather and climate infor-
mation, and what additional information is required by the energy  industry 
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in the near term and into the future. These gaps are not surprising in light 
of the complex interplay among the commercial, environmental, social 
and economic considerations involved in energy supply and the changing 
balance of energy technologies between fossil fuels, renewables and nuclear 
in different regions. Continuing technical and scientific interaction 
between weather and climate service providers and the energy industry 
(supplemented by input from other relevant sectors such as the informa-
tion, communication and technologies [ICT] and the relevant regulators) 
can help bridge these gaps. This will enable the users in the energy sectors 
to both understand and respond appropriately to the available weather 
and climate information.

In this book, a range of gaps that hinder or slow down a more effective 
integration of weather and climate information in the energy sector busi-
ness/decision making are covered. These gaps relate to, for example, (a) 
the increasing need for improvement in relevant weather forecast quality, 
(b) the growing demand for location specific and/or user specific and 
more targeted meteorological model outputs, (c) the continuing need for 
greater partnership between the energy and meteorological communities 
and (e) the emerging requirement to address data-sharing needs. In this 
chapter, these gaps are introduced and particular attention is focussed on 
data-sharing gaps in more detail.

Forecast Improvements

Meteorological forecast improvements are an ongoing issue influenced by 
both supply- and demand-side factors. On the supply side, the accuracy of 
forecasts has been improving steadily over time. It is important to recog-
nize that forecast improvements will depend on both improved model 
predictions and improved forecast formulation and delivery. Continuing 
advancements in technology and expertise in collecting observations, pro-
cessing, analysing, making model predictions, formulating forecasts and 
disseminating them are some of the key supply-side factors enabling fore-
cast improvements in relevant variables. Chapters 6, 7, 8, 9 and 10 of this 
book highlight various state-of-the-art methodological issues associated 
with short range, medium and extended range forecast improvements.

On the demand side, for example, from the perspective of the energy 
sector, the need for better and improved meteorological forecasts can arise 
due to a range of reasons, for example: to better manage energy produc-
tion and distribution risks associated with weather and climate variability; 
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to efficiently operate energy markets and pricing; to undertake energy 
market regulatory compliance; to better plan and undertake the operation 
and maintenance of energy generation plants; to safeguard energy system 
assets from climate change impacts; and to develop risk management and 
adaptation planning. Several examples of these cases are covered in Chaps. 
4, 10, 11 and 12 in this book.

According to the American Meteorological Society (AMS) (2015), 
opportunities for increasing forecast skill at all time ranges will need 
further research, close global cooperation and coordination, improved 
observations of the atmosphere, ocean and land surface, and the incor-
poration of these observations into numerical models. The avenues to 
improved model predictions include higher spatial resolution, more 
powerful supercomputers, wider use and improvement of model ensem-
bles, the development of data mining and visualization methods that 
enable forecasters to make better use of model guidance and collabora-
tive forecast development activities among operational forecasters and 
researchers.

targeted model outputs

As highlighted in other chapters (see Chaps. 4 and 6, 7, 8, 9, 10, 11 and 12) 
in this book, location and/or user-specific higher resolution/downscaled/
targeted meteorological model outputs can help address risks to the energy 
sector from, for example, extreme weather events, changes in water avail-
ability, unusual seasonal temperatures and rising sea levels. Hence, targeted 
spatial analysis and improved forecasts of mesoscale weather events are 
important for both short- and long-term energy system management.

Such targeted model outputs are also relevant in the context of rising 
share of renewables (e.g. solar, wind and hydro power) and the depen-
dence of these renewable energy systems on weather and climate variabil-
ity. Additional weather observations at strategic locations as determined 
by quantitative models are important in this context.

In regions where the share of renewables in the energy mix is expand-
ing, relevant model outputs/forecasts targeted towards specific user 
groups such as transmission system operators (TSOs) would benefit con-
siderably in integrating renewable electricity to the grid as also discussed 
in Chap. 5. Targeted weather decision support products also help system 
load forecasting, enhanced efficiency in pricing for hourly and bulk mar-
kets and energy market trading in general. Examples of the development 
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of specific user targeted online interactive tools that can allow users to 
assess how energy production and demand will change in response to cli-
matic factors in certain regions are provided in Chaps. 9, 10 and 12.

enhanced partnershIps

Over the past several years, there has been an increasing incidence of research 
dialogues between energy and meteorological specialists, analysts and prac-
titioners at domestic, regional and international levels. This promising 
development requires further enhancement in the form of regular bidirec-
tional communications relating to issues such as improvements in current 
meteorological products and services used by the energy sector, new services 
and product requirements and generation, and skills and training needs of 
the users of relevant meteorological information. As reported in other chap-
ters (see Chaps. 4, 5 and 13) of this book, specific user group oriented (e.g. 
wind energy or solar energy sector focussed) dialogues/workshops/meet-
ings have enabled effective bidirectional interactions between, for example, 
meteorological experts and energy practitioners at technical, managerial and 
decision-/policy-making levels. The enhancement of the bidirectional inter-
action between energy and meteorology sectors will be underpinned by sev-
eral factors. These include rising demand for meteorological services by the 
energy sector, continuing innovations in meteorological service develop-
ment and provision, increasing availability of cost-effective digital technolo-
gies for service delivery, growing requests for development of codes, 
standards and guidance for meteorological information and emerging need 
to establish mutual trust among all stakeholders given that confidentiality 
issues can prevent energy firms from sharing specific meteorological require-
ments for operational practices in open (see Chaps. 4, 5 and 13).

data sharIng

The rest of this chapter expands more on data-related issues, firstly, because 
of their critical role and secondly, to provide specific indications about the 
factors associated with them. The linkages between weather, climate and 
energy are based on the fact that variation in weather and climatic condi-
tions across short, medium, and long timescales can affect all energy sources 
and energy needs. Many public and private sector meteorological informa-
tion providers fulfil the weather and climate data needs of the energy suppli-
ers and users across many regions. In certain cases, some of these providers 
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supply tailored weather and climate data to particular energy companies. 
Broadly speaking, an important challenge here is how to improve the inter-
facing of weather and climate data and information with key supply and 
demand-side activities of the energy industry. In this regard, sharing of rel-
evant data is one area which is critical for enhancing the synergies within and 
between weather, climate and energy spheres. For example, improvement in 
data sharing within the energy industry could have benefits in terms of 
improving energy production/demand monitoring and forecasting. Also, 
enhanced sharing of weather and climate data could help minimize energy 
sector’s vulnerability to extreme weather events, enable more cost-effective 
integration of renewable sources of energy and enhance energy supply and 
consumption strategies (American Meteorological Society 2012).

Kusiak (2015) argues that lack of data sharing in the renewable energy 
industry, for example, is hindering technical progress and limiting oppor-
tunities for improving the efficiency of energy markets. He points out that 
optimizing the supply of renewable energy requires data on device perfor-
mance, energy output and weather predictions, seconds to days in advance. 
At present, large amount of these data is gathered by participants such as 
turbine manufacturers, operators and utility companies along the energy 
supply chain.

Pfenninger (2017) argues that energy research needs to catch up with 
the open-software and open-data movements. He points out several rea-
sons why energy models and data are not openly available. They include 
business confidentiality, concerns over the security of critical infrastruc-
ture, a desire to avoid exposure and scrutiny, worries about data being 
misrepresented or taken out of context and a lack of time and resources.

Some competing energy companies also gather weather and climate 
data that they perceive as sensitive proprietary information. Hence, the 
amount of ‘big’ data within the meteorological sector and energy industry 
is rapidly growing. There is a growing demand in the energy sector to 
share its data openly so that better solutions for providing energy in a sus-
tainable and cost-effective manner can be designed and implemented.

Often some private sector data is difficult for anyone outside to access 
without data-sharing agreements and non-disclosure arrangements. In 
this context, there are lessons to be learnt in relation to maintaining data 
confidentiality and security from other sectors such as commerce and 
health-care organizations (see Kusiak 2015). In general, non-disclosure 
agreements outlining the specifics of data sharing and results dissemina-
tion are used in data-intensive projects.
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Barriers to Data Sharing

Meteorological and energy data-sharing arrangements are likely to be 
influenced by competition in service provision, commercialization of data, 
technical difficulties in data management, metadata problems, national 
security considerations and government data policies.

Better use of some data is often hindered due to data accessibility. 
Barriers to data sharing are generally based on the belief that it poses sig-
nificant risks, from either side of the sectors. These risks may relate to 
identification of the businesses within datasets, misuse of the data resulting 
from misunderstanding of its quality or meaning, inappropriate exposure 
of commercially sensitive data and information and reputational damage 
due to release of information about the data custodians. Often lack of 
trust is also a key barrier to sharing data. Trust between data custodian and 
user or between custodians is essential in all circumstances. Many options, 
reflecting the nature of working relationships, can be used to build and 
retain trust as opportunities to access and share data expand (see 
Productivity Commission 2016).

Benefits of Data Sharing

Public sector meteorological service providers participate in regional, 
national and international data-sharing initiatives and obligations. They 
would not be able to perform many of their functions without the data 
exchange arrangements of the members of the World Meteorological 
Organization (WMO), which cover the public, private and research sec-
tors of WMO member countries. The WMO provides an international 
framework through which its member countries coordinate the collection 
and exchange of information on the state of the global atmosphere, ocean 
and inland waters. The framework also supports the provision of essential 
meteorological and related services in all individual countries. The inter-
national exchange of essential data and products is free of charge under 
the provisions of Resolution 40 of the 12th Congress of the WMO. But 
Resolution 40 also places some restrictions on the commercial use of these 
data. Some shared meteorological data is only available under certain 
restrictions from the owner or provider. These restrictions may include a 
limited ability to use that data in situations other than those prescribed, or 
to charge for products/services derived from that data (see Australian 
Bureau of Meteorology 2016).
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Increased accessibility of relevant meteorological data would likely 
enhance the forecast skill (and the underlying research and analysis) and 
facilitate integration of a wide range of energy resources. Sharing of data, 
while still safeguarding the commercial interests of individual data- 
providing private-sector companies, has considerable potential to benefit 
the entire energy sector. Data sharing and supply between meteorological 
service providers and energy industries require that arrangements are 
established, covering the types of data required, their frequency of deliv-
ery, the reliability of the service and targets for quality. This will require 
policies to promote sharing of data relating to meteorological services and 
energy demand among the research, forecast and operations communities; 
safeguards to protect the commercial interests of private-sector companies 
that share proprietary data and an enhanced data collection and quality- 
control capability for weather and climate observations (American 
Meteorological Society 2012).

In recent years, some public sector and some large search entities have 
supported a move away from releasing data under restrictive licenses to 
releasing data under more permissive ‘Creative Commons’ licenses that 
allow the data to be reused. Under the ‘Creative Commons’ licences, in 
general, others are allowed to use and distribute content as long as they 
credit the copyright holder. A ‘Creative Commons’ licence provides a 
simple standardized way for companies and institutions to share their work 
with others on flexible terms without infringing copyright. It allows users 
to reuse, remix and share the content legally. Offering one’s work under a 
‘Creative Commons’ licence does not mean giving up copyright. It means 
permitting users to make use of the material in various ways and under 
certain conditions (Productivity Commission 2016).

Enhancing the Data-Sharing Arrangements

Path to open-access data and hence data sharing could involve at least 
four basic elements: agreement to participation in a cooperative data-
sharing regime, awareness of the problems and of the potential benefits 
of data sharing, formulation of data-sharing protocols and governance 
structures and development of data-and-knowledge sharing platforms 
(see Kusiak 2015).

Contreras and Reichman (2015) point out that to achieve widespread 
sharing of data, intellectual property, data privacy, national security and 
other legal and policy obstacles must be addressed. They observe four basic 
structural arrangements for scientific data pools (this may be applicable to 
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weather, climate and energy sector-related data also) along a continuum 
ranging from the most to the least centralized. These include fully central-
ized, intermediate distributed, fully distributed and non-commons arrange-
ments. According to them despite limited resources to link data repositories 
technically, there are advantages to fostering legal interoperability of data 
among distributed data repositories or custodians. To achieve this across 
different data users, rules for data access and usage must be compatible 
with each other, must comply with laws and regulations of relevant enti-
ties/jurisdictions and must address rights of ownership and control granted 
to data generators/custodians. The most straightforward path to legal 
interoperability is to contribute data to the public domain and waive all 
future rights to control it or to have data shared under standardized 
‘Creative Commons’ licenses that have been widely used.

By using a risk-based approach to data access, custodians of data, 
whether public or private, could clarify and manage the nature of data 
risks. Risk could be assessed based on both the likelihood and probable 
consequence of data breaches. Where the potential implications of data 
breaches are non-trivial but likelihood is remote, custodians of data can 
still share or release, with mitigation strategies adopted as required. Also, 
access to the data needs to be carefully managed where the likelihood of 
breach and its consequence are considered high (see Productivity 
Commission 2016).

It is important to recognize that the private sector collects, stores and 
uses a vast amount of data (including weather, climate and energy sector 
data) and is almost certainly now the dominant controller of data in most 
economies. For example, retail energy utility sector generally has a small 
number of large firms, or even a single firm, serving a regional or national 
market. These utilities increasingly have the capacity to gather vast amount 
of detailed data on consumer energy use via sophisticated metering tech-
nologies such as ‘smart meters’.

According to the Productivity Commission (2016), government inter-
vention in support of data sharing or release may be warranted in certain 
circumstances such as insufficient business-to-business sharing and/or 
insufficient data/information released for the community benefit. 
Insufficient business-to-business data sharing may reflect monopoly 
 holdings of data and misuse of market power. Having access to large quan-
tities of data can give a company—particularly a large, vertically integrated 
business—a degree of market power. Such market power could be used to 
deter new entrants to a particular market. It is important to recognize that 
there are several mechanisms that allow business-to-business data sharing 
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including bilateral commercial arrangements. It may still be the case that 
much wider access to some data could deliver greater public or commu-
nity benefit. An important factor in considering these issues is the delivery 
of net benefits for the public while preserving commercial incentives to 
collect and add value to relevant data. Any mechanisms to increase access 
to privately held data would, however, need to be premised on a clear 
articulation of net benefits to the community and a demonstration that 
access to the relevant data is not able to be secured through other means 
including through existing private sector data marketplaces and platforms 
(see Productivity Commission 2016).

The European Union has mandated open access to electricity-market 
data, resulting in the creation of the ENTSO-E Transparency Platform to 
hold it. This highlights the fact that there are valid arguments for the cre-
ation of national energy-data agencies to coordinate the collection and 
archiving of a range of important data (see Pfenninger 2017).

Knowing the value of meteorological or energy data being shared is a 
key factor which can help assess the potential returns from adding value to 
such data by, for example, tailoring them for specific uses.

There are various approaches for valuing or pricing meteorological (see 
World Meteorological Organization 2015) or energy data. They range 
from free provision and marginal cost pricing to commercial pricing. The 
preferred approach will depend on user demand (willingness to pay for 
specific data) and the capability of the data supplier to act commercially. 
Most public sector meteorological data are currently available on an open 
access basis to enable full and free reuse. This can occur, for example, 
under an open access licence (such as Creative Commons Licence).

Where data is shared with other parties, the value placed on it will be 
determined by several factors: the availability of alternatives, the need for 
further processing for use, potential uses to which the data can be put and 
strategic leverage attached to the data (see Productivity Commission 2016).
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The images or other third party material in this chapter are included in the 
work’s Creative Commons license, unless indicated otherwise in the credit line; if 
such material is not included in the work’s Creative Commons license and the 
respective action is not permitted by statutory regulation, users will need to obtain 
permission from the license holder to duplicate, adapt or reproduce the material.
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CHAPTER 2

Achieving Valuable  
Weather and Climate Services

Alberto Troccoli

Abstract Weather and climate services rely on the production and delivery 
of relevant, credible and, of course, valuable information. In this sense, the 
energy industry, with its long-standing and varied needs for these services 
and strong experience, provides a solid test bed for assessing these services. 
However, it is argued here that, whether for public or commercial use, 
weather and climate services are, in essence, no different to other more 
familiar services (e.g. financial). For weather and especially the more recent 
climate services to succeed, it is therefore important that lessons from these 
other common services—which also often deal with uncertain and complex 
information—are considered. It is also natural and important that the bur-
geoning climate services learn from the more mature and analogous weather 
services in order to leapfrog development. Initial public investment is criti-
cal to spur development of these services. Such investment should then be 
phased out in a managed way to avoid abruptly interrupting their growth 
phase and therefore jeopardising their sustainability, given the strong effort 
that is also being invested into developing these services. The criticalities of 
the weather and climate services—such as the accuracy and skill of the infor-
mation—need to be borne in mind when modulating public investment.

A. Troccoli (*) 
World Energy & Meteorology Council, c/o University of East  
Anglia, Norwich, UK
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What’s a service— 
Never MiNd the Weather aNd cliMate?

Whether for public good or commercial use, the value of weather and 
climate information is ultimately measured in terms of its usefulness to 
society and, specifically, for the energy sector in our case. The way in which 
this information is conveyed can be multifaceted—it may be in the form of 
a temperature map for instance—but in order for it to be most effective it 
needs to be ‘packaged’ in terms of a service. Although the definition of 
service can vary depending on the objective, scope and maturity of the 
information or product, the overall aim of a service is to meet the require-
ments of the user of the service, by extracting the highest value from, in 
our case, weather and climate information for the specific application at 
hand, be it the forecasting of hydropower production or the impact of a 
snowstorm on the infrastructure used for electricity transmission.

Thus, in its most general sense, a service can be defined as:

A set of actions aimed at helping its beneficiaries make the best use of tailored 
information so as to improve their ‘business’.

It is therefore apparent that a ‘weather or climate’ service is not unique, 
amongst other possible services. Although one can attempt a specific defi-
nition of weather or climate service,1 it is useful to first try to understand 
how a weather/climate service differs from, say, a financial service, or from 
a medical service, or even a car service. These may look like disparate 
analogies but assessing these can help understand better what a weather/
climate service is and what it is supposed to achieve. More specifically, we 
are arguing here that although each of these services delivers different 
outputs and outcomes, there is no fundamental distinction between them, 
in the sense of the above definition.

These services naturally differ from each other in terms of their specific 
features. If, for example, we characterise a service based on the following 
four features,2

 A. TROCCOLI
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• Maturity: how long have they been around?
• Tangibility: is it something we can easily relate to?
• Level of Risk: how reliable and/or accurate is the output/product?
• Trustworthiness (or Credibility): how much do we trust the service 

provider?

it is possible to categorise and inter-compare them as presented in Table 2.1. 
What this comparison tells us is that: (1) there is indeed nothing special 
about a weather/climate service from a conceptual point of view as they can 
easily be related/compared to other, more traditional and widespread, ser-
vices; (2) weather and, especially, climate services carry a higher level of risk 
or ‘caution’ (e.g. of the likelihood or certainty of climate forecast) than the 
other comparator services. It should indeed be the focus of the experts 
involved in the development of weather and climate services to attempt to 
reduce these levels of ‘cautioning’ as much as possible. The next section 
provides some indication on how this ‘caution’ reduction may be achieved.

Public versus coMMercial aPProach—hoW does 
a service differ iN these tWo coNtexts?

Before looking more closely at how the ‘caution’ level can be reduced, it 
is important to reflect a little more on the analogy amongst these services. 
One seemingly important feature, which was deliberately omitted in the 
comparison presented in Table 2.1, is the nature of the service. In other 
words, is the service commercial and/or a public good (including scien-
tific) service? Although this feature appears to be critical, the reason it has 

Maturity Tangibility Level of 
Risk

Trustworthiness

Financial Service H M M M
Medical Service H H M H
Car Service H H L M
Weather Service H M M M
Climate Service L L H M

Table 2.1 Qualitative comparison between five different types of service based 
on the four representative features—Maturity, Tangibility, Level of Risk, 
Trustworthiness

The three qualitative levels—H, M and L—stand for High, Medium and Low, respectively. These are 
associated with colours to indicate the level of ‘caution’. So, for instance, a high maturity (e.g. > 30 years) 
carries a low level of cautioning (green) whereas a high risk carries a high level of cautioning
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been omitted in Table 2.1 is simple: the distinction between commercial 
(or private) good and public good, it is argued here, is essentially irrele-
vant if the aim is to deliver an effective service. Indeed, if a service is to be 
successfully adopted, it needs to be developed, promoted and imple-
mented in a very similar way, irrespective of whether the service is com-
mercial or public in nature. Indeed, while the way in which these three 
activities—development, promotion and implementation—is carried out 
may differ in the two contexts, they remain critical in both the commercial 
and public domains.

Another way to look at this is that lessons learnt in one domain can be 
transferred to the other. Thus, for instance, it is likely that a more com-
mercially focussed ‘traditional’ sales approach can lead to an improved and 
more highly adopted public (weather/climate) service. Specifically, a sales 
approach would be based on the following four personal (i.e. human) 
characteristics or traits:

• Eloquence—To be able to influence the other person’s decision 
about their need for the service

• Cultural awareness—To be able to relate to different people regard-
less of their backgrounds, gender, religion and so on.

• Flexibility—To be able to operate outside of day-to-day routine in 
order to better tackle new or unexpected situations

• Transparency and honesty—To critically believe in what one is 
promoting

Of the four traits, the last one is by far the most critical. If you cannot 
convince yourself that something is valuable and useful, having properly 
appraised its pros and cons, it is going to be very hard to convince others. 
In other words, you need to be genuinely convinced that the service is 
worth buying, and that you would actually buy it yourself—ideally, you 
have already bought it! And the best way to convince yourself is to be as 
transparent and honest as possible.3

While sales approaches differ, one should make the most use of the 
huge amount of knowledge accrued in the marketing arena (Aaker and 
McLoughlin 2010; Homburg et al. 2012), irrespective of the service or 
product for which these approaches were devised. And thinking that a 
public good service should be treated differently just because the user will 
not be directly charged—remember they would have already paid for it via 
taxation—can be a serious mistake, particularly if the service development 
process is led by non-commercially savvy people.
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As remarked above, key to the uptake of a service is the careful develop-
ment, promotion and implementation of a service. This process requires 
close interaction with the final users of the service. The aim of this interac-
tion is to attentively capture the specifications of the service while also 
advising on the potentials a service can offer (e.g. see also Chaps. 3 and 4, 
for further discussion, especially in the context of the energy industry). 
Moreover, this process should be carried out in an iterative way—namely 
through regular consultations with the users. Overall, rigour and meticu-
lousness need to be applied in the development of the service. Ultimately 
this approach will ensure the production of a useful, robust and long- 
lasting, and ideally replicable, service/product.

addiNg Weather aNd cliMate to the service

Having drawn some analogies between meteorological (namely weather 
and climate) services and other more commonly known services, we here 
discuss how these analogies can be harnessed to produce better services 
for weather and climate. To a large extent, the discussion here prescinds 
from the source of funding required to develop meteorological services 
and from the quantification of the economic benefits of such services. 
Although these are very important discussions, they have extensively been 
authoritatively discussed in the literature (Freebairn and Zillman 2002a; 
Freebairn and Zillman 2002b; WMO 2015).

In spite of the close similarities between weather and climate services, 
there are three important distinctions to be drawn between weather services 
and climate services, leaving aside their intrinsic distinction according to 
which weather services essentially deals with forecasts of up to a few weeks 
in advance, and climate services deals with forecasts and projections from a 
few weeks to decades.4 In terms of services, their main differences are:

 1. Weather services are considerably more mature than climate ser-
vices; the former have been around for 40+ years (Pettifer 2015), 
the latter have started to be developed in a consistent way only dur-
ing the last decade (Hewitt et al. 2012);

 2. Weather services are based on information (e.g. forecasts) that are 
both more accurate (shorter lead time) and verifiable (their lifespan 
is shorter, in line with its lead time) compared to climate 
information5

 3. Data (including forecasts) policy for weather services can be differ-
ent, and more restrictive, than that for climate services6
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How these differences translate in practice is that weather services have 
accrued a strong basis, both in terms of products and (their related) mar-
ket. From the low levels of the 1970s, European weather services now 
have an estimated value of €300 million per annum (excluding aviation) 
(Pettifer 2015). In addition, Lazo et al. (2011) estimated that US eco-
nomic activity that is attributable to weather variability could be 3.4%, or 
$485 billion of the 2008 gross domestic product. It is therefore apparent 
that the weather services market—whether supplied by National 
Meteorological Services (NMS) or private sector providers—has a solid 
foundation.

This also means that users (or customers) of weather services are nor-
mally well aware of the potential and usefulness of weather products and 
therefore a smaller effort is required to persuade them compared to when 
climate products are promoted. For instance, there are established meet-
ings for users, such as the European Centre for Medium-Range Weather 
Forecasts (ECMWF)’s ‘Using ECMWF’s forecasts’ (UEF),7 as well as a 
host of private weather service companies that are working to improve the 
customisation of weather products for their customers. While the cost of 
the basic weather information (typically the forecasts) charged by some 
NMS (as is the case for most European NMSs) has been an important bar-
rier for start-up enterprises (Pettifer 2015), the market for weather ser-
vices has been such that this barrier has been overcome by a large number 
of companies.8

Different is the case for climate services, for which the accuracy (or 
skill) of the product still plays a crucial limiting factor in their uptake.9 A 
distinction needs to be made, however, between the climate forecasts, 
which have lead times from a few months to a year (also referred to as 
seasonal forecasts), and climate outlooks and projections, which consider 
time horizons from a few years to multi-decades ahead (referred to as 
decadal outlooks, over the following decade, and climate projections, 
beyond it).

In the case of seasonal forecasts, some regions of the world have some 
useful skill, namely they can be predicted more accurately than others 
(typically tropical areas), while others have little or no skill at all (normally 
regions at higher latitudes, like Europe, e.g. see Troccoli et  al. 2008; 
Troccoli 2010), the skill being also dependent on the season and, particu-
larly, the variable (air temperature usually has a higher skill than precipita-
tion, or wind speed or solar radiation). It can therefore be difficult to 
convince a prospective user or customer to make use of such forecasts in 
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areas or for variables that traditionally do not display an improvement in 
skill compared to using a long-term mean or climatology even if there is 
increasing evidence that their level of skill is improving (Alessandri et al. 
2017). Thus, interest in and uptake of seasonal forecasts are increasing. 
Work on the applications of seasonal forecasts, initially spearheaded by the 
International Research Institute for Climate and Society (IRI),10 is now 
becoming mainstream thanks to activities carried out at organisations such 
as the APEC Climate Center (APCC)11 or programmes such as the 
Copernicus Climate Change Services (C3S).12

In the case of climate projections, it is essentially impossible to prove 
their level of accuracy. The best that can be done is to demonstrate the 
suitability of the climate models at representing features at the country or 
sub-country level (and not just global or regional averages). This can 
mainly be done on the basis of the climate model performance over the 
recent (observed) climate period.

From an application point of view, seasonal climate forecasts are rele-
vant for operational matters such as resource management and infrastruc-
ture maintenance scheduling while climate projections are relevant for 
infrastructure planning purposes. Indeed, it is because of the increasing 
interest in these applications, with energy providing a prime example, that 
seasonal forecasts and climate projections are continually being developed 
and tailored to an increasing number of (prospective) users or customers 
(see also Chap. 12).

In spite of these advances, there remains the strong need for a close 
interaction with prospective users in order (1) to improve the service 
producer’s understanding of the final use of the climate information so 
that it can be appropriately tailored and (2) for the user to better appreci-
ate the strengths and limitations of the climate information. These are 
processes that require substantial time investment, both on the relation-
ship building side and on the technical development side. Most impor-
tant of all is the ultimate instillation of confidence in prospective 
customers in relation to climate services. This instillation does not mean 
over-selling the services, rather that one must extract the most informa-
tion relevant for the specific application knowing the limitations of the 
product—remember the key marketing trait is ‘Transparency and hon-
esty’ section ‘Public versus Commercial Approach—How Does a Service 
Differ in These Two Contexts?’. Weather services have gone through this 
process much before climate services and so lessons could be learned 
from this experience, bearing in mind the fundamental difference 
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between the two services, namely the level of accuracy and skill of the 
products. Lessons can also be learned by analogy from other services, as 
argued above particularly by adopting relevant commercial marketing 
techniques.

This type of approach is also supported by Brooks (2013) who argues 
that we now have the opportunity to provide innovative climate services 
(new datasets and products) to climate-sensitive sector clients. The key 
to achieving relevant, valuable and discontinuous climate services is to 
accelerate innovation in climate services, and decisively cross the 
Research-to- Operation valley of death. This, Brooks (2013) argues, can 
be achieved by adopting three Es—Engagement, Entrepreneurship and 
Evaluation.

It is sometimes argued that climate services should be mainly a public 
good exercise (e.g. Webber and Donner 2016). This view appears short- 
sighted since, as argued in this chapter, development of climate services 
can greatly benefit from trying to adopt a commercial approach. As these 
services mature, and the commercial value of climate services becomes 
more apparent, opportunities develop, and there will be an ever larger 
share of services that are offered at a cost. Thus the route to achieving a 
sustainable climate service is to embrace a standard, market-oriented 
approach, also expressed by the three Es of Brooks (2013). Of course, one 
should test whether it is more efficient, or cost-effective, to run a public 
good service (i.e. with public funding) or a commercial one. It can be easy 
to forget that public good services require substantial investment. This 
investment needs of course to be weighed against their benefit. More 
 generally, while an initial public investment is beneficial, and even required, 
in order to set in motion a (commercial) activity, it is important to scale 
back public funding or subsidies (e.g. as done in the case of feed-in-tariff 
for solar photovoltaic installations in a number of countries), but in a mea-
sured and reasoned way. One should also avoid falling into the trap of 
heavily funding a ‘commercial’ entity through public grants thinking that 
the services developed with these grants have value just because that com-
mercial entity is involved in the development of the services. While such 
development may be useful to create capacity and eventually have a com-
mercial entity which is self-reliant, it is entirely possible that reliance on 
public funding makes the ‘commercial’ entity risk-averse and therefore 
never really self-sustaining.
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suMMary

The development of weather and climate services should have as their 
ultimate objective the achievement of the best quality information to serve 
both the commercial and the public worlds. While weather services are 
well established, both in a commercial sense and in a public good way (e.g. 
through the weather forecasts regularly issued by media outlets), climate 
services can benefit from the lessons learnt by weather services, but also 
other analogous services (e.g. financial or medical services). Central to this 
analogy is the marketing approach and greater focus on the needs of spe-
cific customer groups, which at its heart requires an honest and transpar-
ent approach for it to be most effective in the long run. Having to deal 
with a product—climate information—which is highly uncertain and with 
relatively low skill, there is a strong need to create an environment of trust. 
Without this there is a risk to build a sand castle, which at the first high 
tide will be washed away.

Thus, the key to building valuable and self-sustaining (weather and cli-
mate) services is to grow confidence in the products by cultivating per-
sonal relationships with prospective users/customers. Achieving this 
objective requires substantial time and funding investment, particularly in 
the case of the newer climate services (compared to weather services). This 
investment should focus on providing strengthened education, training 
and knowledge transfer activities, as these are key components of enhanc-
ing confidence in a product/service.

Of course, investment to also improve and refine the underlying meteo-
rological data and products is fundamental. Public funding that is being 
invested to develop these (climate) services, as in the case of C3S or the 
European Union H2020 programme, is therefore essential in this phase of 
development. Specifically, projects such as the European Climatic Energy 
Mixes (ECEM),13 which is building a climate and energy demonstrator for 
the energy sector, are trying to make the best use of this funding by build-
ing a service for both commercial and public users, through a strong 
engagement with stakeholders.

The key question then is ‘how much, and for how long, public invest-
ment should be used in order to achieve the best possible weather and 
climate services from both a public and commercial point of view?’ While 
there is no easy answer, a good guide to addressing this question is to keep 
in mind the critical factors in the development of these services  
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(e.g. accuracy and skill of products). Better understanding and analysing 
this key question could be an area of further investigation.

Acknowledgements The author would like to acknowledge two reviewers for 
valuable input to this chapter.

aPPeNdix—defiNitioNs of cliMate service

It is only recently that the climate community has got to grips with the 
concept of ‘service’. As a consequence, this is still a relatively new concept, 
and that is perhaps why its definition is varied—here we present a few, 
verbatim, just to illustrate the point.

The Global Framework for Climate Services Definition

Climate services provide climate information in a way that assists decision 
making by individuals and organisations. Such services require appropriate 
engagement along with an effective access mechanism and must respond 
to user needs. Such services involve high-quality data from national and 
international databases on temperature, rainfall, wind, soil moisture and 
ocean conditions, as well as maps, risk and vulnerability analyses, assess-
ments and long-term projections and scenarios. Depending on the user’s 
needs, these data and information products may be combined with non- 
meteorological data, such as agricultural production, health trends, popu-
lation distributions in high-risk areas, road and infrastructure maps for the 
delivery of goods, and other socio-economic variables.

http://www.gfcs-climate.org/what_are_climate_weather_services

The Climate Service Partnership Definition

Climate services involve the production, translation, transfer and use of 
climate knowledge and information in climate-informed decision making 
and climate-smart policy and planning. Climate services ensure that the 
best available climate science is effectively communicated with agriculture, 
water, health and other sectors, to develop and evaluate adaptation strate-
gies. Easily accessible, timely and decision-relevant scientific information 
can help society to cope with current climate variability and limit the eco-
nomic and social damage caused by climate-related disaster. Climate ser-
vices also allow society to build resilience to future change and take 
advantage of opportunities provided by favourable conditions. Effective 
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climate services require established technical capacities and active com-
munication and exchange between information producers, translators and 
user communities.

http://www.climate-services.org/about-us/what-are-climate-services/

The Climate Europe Definition

A climate service is the provision of climate information to assist decision 
making. The service must respond to user needs, must be based on scien-
tifically credible information and expertise and requires appropriate 
engagement between the users and providers. Policy makers can use cli-
mate services to access decision-relevant scientific information in order to 
make the best decisions for society as a whole. This can help society to 
cope with current climate variability and limit the economic and social 
damage caused by climate-related disasters. Climate services ensure that 
the best available climate science is effectively communicated with agricul-
ture, water, health and other sectors, to develop and evaluate adaptation 
strategies.

https://www.climateurope.eu/definitions-climate-services/

Notes

1. For climate services, several definitions exist, sometimes even circular; a 
few of them are presented in the Appendix.

2. Other helpful features could be identified, such as usefulness of, or value of 
or share of the population affected by the service, but the discussion here is 
not intended to be exhaustive, merely illustrative.

3. We say ‘as far as possible’ because there is no need for instance to disclose 
and discuss technical details, such as an approximation applied in a pro-
gramming code used to produce a given map, as long as we genuinely 
think this is not affecting the overall message of the map.

4. The exact boundary between weather and climate services is sometimes 
blurred.

5. While seasonal forecasts can be verified, although not as frequently as 
weather forecasts, climate projections cannot, at least not in a strong statis-
tical sense due to very long time horizon compared to the human lifetime 
and their limited sample.

6. While there are common data policies on common data sharing, data poli-
cies for weather forecasts differ substantially in say USA (free sharing) and 
Europe (data are charged). For further discussion, see Harrison and 
Troccoli (2010) or WMO (2015).
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7. https://www.ecmwf.int/en/learning/workshops.
8. More needs to be done to completely remove or at least further reduce this 

barrier, however, as experience shows that an open-data policy tends to 
lead to a dramatic increase in the use of the data (Pettifer 2015, see also 
World Bank 2017).

9. Climate (and weather) services are here mainly treated in terms of predic-
tions/projections. Historical (past) data could also be included but, while 
they might technically belong to climate services, they can be found in 
both weather and climate services.

10. http://iri.columbia.edu/.
11. http://www.apcc21.org.
12. http://climate.copernicus.eu/.
13. http://ecem.climate.copernicus.eu/.
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CHAPTER 3

European Climate Services

Carlo Buontempo

Abstract The launch of the Global Framework for Climate Services 
(GFCS, Hewitt et al., Nature Climate Change 2(12): 831–832, 2012) 
just a few years ago helped to redirect the focus of the climate community 
towards the users and their information needs. A number of national and 
international initiatives such as the Climate Service Partnership, or the 
Climate Science for Services Partnership between China and the UK, 
were designed to build upon such an international framework. The role 
of the European Commission appears to be very prominent in the inter-
national climate services landscape as it supported a largenumber of 
research and innovation programmes in the field. The chapter discusses 
the role climate services could play for the energy sector starting from an 
analysis of the interactions that already exist and building upon a few 
specific examples that indicate some good practice in climate service 
development.

Keywords Climate services • Climate risk management • Copernicus cli-
mate change service • Climate information • Strategic investment • 
Energy trading
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IntroductIon

One of the characteristics that distinguishes science from services is the 
centrality of the users. Independent of the specific sector of application, 
the identification of users’ needs is at the same time a complex and funda-
mental operation in climate service development (cf. Lemos and 
Morehouse 2005). The complexity of such a critical step is made even 
more complex by the loose understanding among users of what is and 
what is not within the scope of climate services (Lourenço et al. 2015).

What is clear is that before trying to identify their needs it is essential to 
identify who the users are. From a climate service perspective, a user is a 
person whose actions (e.g. decisions, policies) are likely to be influenced 
by the provision of a specific set of climate information. Such a definition 
makes it clear that a user is an individual operating in a specific environ-
ment rather than an organisation or a sector. This is quite different from 
having an industrial stakeholder within a research project. A stakeholder 
could represent the needs of an industrial sector, but it may not necessarily 
have an immediate decision to take. For a climate service provider a good 
connection with a company or a public administration can represent a 
necessary rather than a sufficient condition for the identification of a user.

The existence of a powerful public narrative around global warming 
and climate change (Lowe et al. 2006) can make the identification of the 
suitable decision-making person within the target organisation more com-
plex rather than simpler. Especially the energy sector where the connec-
tion between climate change and energy production is extremely strong, 
it can be challenging to keep separate the discussion about the impact that 
climate variability and climate change could have on the business from the 
longer-term strategy of the company. The identification of a suitable 
decision- maker within the target organisation often represents one of the 
first challenges the development of climate service for the energy industry 
faces. This means that a direct contact between climate service providers 
and users is not common especially during the initial phase of develop-
ment of a new service.

More generally, the simplistic model that sees a provider of climate 
information meeting a decision-maker and developing for them a well- 
defined service does not represent the norm. Whilst the user–provider 
connection can be more or less convoluted, in most cases it involves one 
or more intermediaries who transform a user-relevant but still general 
 climate information into a product or a service which meets the require-
ments of a specific user.
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What is critical to the success of the service is the ability to efficiently 
exchange information in both directions as user requirement can justify 
fundamental climate science development and users can see new opportu-
nities once made aware of what the technology could currently achieve. A 
prerequisite for the development of a successful climate service is the 
establishment of a climate of mutual trust among all people involved 
(Brooks 2013).

Such a trust-building phase is necessary for a number of reasons. On 
the one hand, confidentiality issues can prevent industries from sharing 
specific requirements or operational practices in the open; on the other, a 
certain level of trust in the provider is required for users to consider the 
adoption of a specific service. Whilst it is at times possible to define sector- 
wide requirements such an assessment should be based on a generalisation 
of a series of user-specific requirements rather than a set of sector-wide 
requests which would otherwise be too loose and ill-defined to be action-
able and acted upon. For example, whilst the energy sector as a whole may 
be interested in seasonal predictions of wind speed only, some specific 
professionals within the industry will use this information to inform spe-
cific decisions and they may require specific products (e.g. capacity factors 
at hub height or potential wind speed rather than 10 m wind speed as 
extracted from the models).

EnErgy usErs’ rEquIrEmEnts for clImatE sErvIcEs

Extrapolating from the experience acquired through EUPORIAS, a cli-
mate service project funded by the European Commission through its 
seventh framework programme (Hewitt et al. 2013), and the Copernicus 
Climate Change Service (C3S)1, we can tentatively identify some general 
requirements that emerge from energy users. In general terms, climate 
information is currently used to manage environmental risks and to plan 
maintenance to critical infrastructure. Climate data is also one of the key 
inputs considered by energy traders. On the longer time horizon climate 
information also represents one of many inputs into strategic investment 
decisions. Figure 3.1 gives a schematic overview of these aspects which are 
presented in some detail in the following sections.

Climate Risk Assessment

From the dry soil conditions which can affect the heating dissipation (and 
thus the rating) of underground cables (Stern et al. 2003) to the wind, ice 
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and snow storms which have crashed to the ground high-voltage transmis-
sion lines (Ward 2013; Campbell 2012), some of the aspects that have 
more directly affected the energy industry are directly related to the occur-
rence of isolated extreme climatic events or combination thereof.

In that sense, it is not surprising that one of the most common requests 
for climate information from Transmission Service Operators (TSOs) is 
related to climatological values (intensity and return periods) of extreme 
events in a changing climate. Civil and electrical engineers have built their 
practices on the assumption that the past weather events could provide a 
good guidance on the level of risk a specific infrastructure is likely to be 
exposed to. This is a solid approach in a world where the assumption of a 
stationary climate holds true, but it can become suboptimal if not even 
dangerous in a world characterised by a large, low-frequency climate vari-
ability and/or by a long-term trend in the parameters describing the sta-
tistical distribution of these variables (Wilby 2007). In general, long-lasting 
infrastructure requiring substantial investment is likely to be susceptible to 
a redefinition of building standards. However, in the energy sector, the 

Operational management
and maintenance

Energy trading Design and risk
assessment

Climate knowledge,
information and

data

Strategic investment
decisions

Future regulatory
constraints and corporate

social responsibility

Fig. 3.1 A schematic representation of the ways in which climate information 
can be used within the energy sector
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expectations over such infrastructure are even higher given the impact and 
consequences that a failure in some of these systems may cause to society. 
For example, in the UK a nuclear power plant needs to be built so that it 
can withstand a 1  in 10,000-year return period flooding event (Starr 
1981). It is thus clear that the analysis of environmental risks in a changing 
climate can become particularly complex for the energy sector (Rothstein 
and Parey 2011).

Strategic Planning

The second area of focus relates to the strategic planning of critical infra-
structure. Traditionally, climate has not played a particularly big role in this 
kind of decisions, but the rapidity of the climatic changes and our growing 
capacity to predict some of them mean that this information is now playing 
a much more prominent role (Arnell and Delaney 2006; Larsen et  al. 
2008). For example, the viability of drilling and refining operations around 
the Caspian Sea (Zonn 2005) or the Persian Gulf will depend on a combi-
nation of freshwater availability, sea level rise and  maximum daily tempera-
ture. Similarly, an investment decision in Floating Production, Storage and 
Offloading (FPSO) platform may be affected by the predicted change in 
wave conditions in the area as this can directly affect its design and ulti-
mately the cost and possibly the return on investment of the infrastructure 
(Fonseca et al. 2010; Zou et al. 2014). Similarly, information on sea level 
rise or storminess could have a direct impact on the decision of decommis-
sioning or not an offshore drilling platform (Burkett 2011).

In general, with the exception of renewable energy, climate information 
plays a relatively minor role in these strategic investment decisions. In fact, 
the economic, political and regulatory environment is likely to have more 
weight on the overall strategy that is adopted. A number of methodologies 
have been proposed to account for climate change and its associated 
uncertainty in investment decisions (Hallegatte et  al. 2012; Lemos and 
Rood 2010) and an increase in the relative importance of climate informa-
tion in strategic decisions in the years to come could be expected.

Corporate Governance, Planning and Communication

A recent analysis commissioned by the C3S through a contract led by the 
University of Reading has showed that one of the areas in which climate ser-
vices are most used at the moment across all sectors is related to corporate 
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governance and planning. Whilst the large uncertainty that comes with cli-
mate projections has often been identified as a barrier to the use of this infor-
mation in strategic planning, having general indications, albeit uncertain, 
about what the future may hold appears to have a great relevance for corpo-
rate strategic planning. This appears to be particularly true for the energy 
sector possibly because of the direct link that exists between climate variabil-
ity, climate change and energy. Given that legislation, public incentives and 
regulations have the power to affect the energy market significantly (e.g. 
Saidur et al. 2010), climate information could also be used by the industry to 
improve their understanding of how the regulatory framework may evolve in 
the years to come in response to societal pressure. For this kind of strategic 
decisions, information about mitigation strategies and carbon emissions are 
likely to be more relevant than the evaluation of climate change impacts. For 
example, having information about the likelihood to contain the global tem-
perature change within 2 degrees from pre-industrial can have a significant 
bearing on the decarbonisation strategy the legislator is likely to pursue.

Operation and Management

The situation is rather different when looking at shorter timescales. 
Without necessarily entering the realm of weather predictions, it is clear 
that both historical climate and more recently climate predictions could be 
used to inform management decisions and operations (Troccoli 2010; 
Doblas-Reyes et al. 2013). This is of particular importance in a context 
where the fraction of renewable energy in the energy mix increases over 
time. Different from the traditional energy mix where climate represents 
simply an external factor, in the context of renewable energy the climate 
often represents the valuable asset itself. For example, planning the main-
tenance of an offshore wind farm can be an expensive operation which 
requires careful planning. Scheduling such a maintenance during a period 
characterised by relatively low wind conditions could both reduce the 
direct costs and reduce the loss in wind-energy production, as the turbine 
needs to be shut down during these operations. It is also becoming appar-
ent that information about near-future conditions can provide useful 
insights into the return on investment. The 2015 wind drought in the 
USA has taken a lot of the industry by surprise and has impacted signifi-
cantly the business plans of some of the operators. Although there is still 
some debate on the exact drivers of the drought, there is also evidence that 
it would have been possible to predict at least part of the observed wind 
anomalies.
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Trading

Given its peculiarity in terms of climate information, energy trading 
deserves a category on its own. The highly interconnected nature of the 
European energy and the geographical disparities in terms of energy 
demand and production represent a good base for the energy trading in 
the old continent. As in any market, the operators tend to pay attention to 
as many different pieces of relevant information as possible. Given that 
both energy demand and (to a greater extent) energy production depend 
on weather conditions, it is natural that traders have always shown a great 
deal of interest in meteorological information. Very short-term (e.g. 
0–48 hours) predictions, which are of greatest interest to traders, are now 
solidly in the hands of statistical post-processing algorithms (Foley et al. 
2012). The trader forecasters are looking with growing interests at the 
predictions for the coming weeks and months as they feel that on those 
sorts of timescales their instinct and knowledge can still outperform the 
statistical tools and provide useful guidance for the traders.

The impact seasonal predictions have on the global gas market 
(Changnon et  al. 1999) is an example of that and also shows how the 
market value of the predictions can often exceed the value climatologists 
would assign to it. Predicting something that is likely to affect the market 
is valuable per se even when the prediction itself turns out to be 
incorrect.

good PractIcE In clImatE sErvIcEs dEvEloPmEnt, 
for EnErgy and BEyond

One of the outstanding challenges of climate service development is 
related to the balance between user relevance/drive and public develop-
ment. In Europe, where the European Commission has been investing 
heavily on climate services through both research programmes and 
innovation actions (Street et al. 2015), the challenge is becoming quite 
evident. On the one hand, developing a service without sufficient user 
engagement could lead to a product which is much closer to the provid-
ers’ perception of the users’ needs rather than something that is actually 
fit for purpose. On the other hand, publicly funding a service that only 
addresses the need of a specific user is also not in the interest of the tax-
payer and it is almost certainly not politically viable. An example of the 
tension that may exist between these two opposing situations is pro-
vided by EUPORIAS. The project, structured around six climate service 
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prototypes, focused on the climate prediction timescale. At least two of 
the prototypes were directly relevant to the energy sector: Hydrological 
Seasonal Forecast System (HSFS) to support spring flood regulation 
planning, which provides seasonal forecasts of the spring flood onset and 
volume (1–5 months ahead) in support of hydropower reservoir regula-
tion planning in Sweden, and RESILIENCE, a user-friendly tool to pro-
duce information of the future wind power resources based on 
probabilistic climate predictions. In the case of HSFS, the prototype was 
entirely funded by Energiforsk, the Energy Research Institute of Sweden, 
which was also the target user for the service. It was also clear for which 
specific basin the prototype was going to provide information. In the 
case of RESILIENCE, the project team went through a series of stages 
to identify the target users.

Figure 3.2 provides a snapshot of the award-winning2 graphical user 
interface they developed called project Ukko.3 The development of such 
visualisation, which represented the graphical user interface to the data 
generated within the RESILIENCE prototype of EUPORIAS, also pro-
vides a good example of the kind of tension that may arise during the 
development of a climate services. The tension was in this case between 
EUPORIAS management team who were keen to develop a very targeted 
product addressing the need of a specific user (e.g. the manager of a wind 
farm) and the project team who were keen to develop a generic platform 
able to serve with relatively little modification a variety of users. On the 
one hand, there was the intention to understand how much the tailoring 
could add to the usefulness of a service. On the other hand, there was the 
cost-effectiveness requirement to invest in a system that could be reused 
for other applications. There is no reason to believe that this kind of ten-
sion, which ultimately represents a design challenge, might be a general 
issue of climate service development.

Opportunities for Climate Services, for Energy and Beyond

The Copernicus programme, previously known as Global Monitoring for 
Environment and Security (GMES), is a European system for monitoring 
the Earth System. It consists of a number of platforms which collect, pro-
cess and distribute data from multiple sources such as satellite and in situ 
sensors. Both elaborated and raw data provide users with reliable and up- 
to- date information through a set of services, which address six thematic 
areas: land, marine, atmosphere, climate change, emergency management 
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and security. The C3S, which is being implemented by the European 
Centre for Medium-Range Weather Forecast, is providing information for 
monitoring the global climate and predicting its evolution and will, there-
fore, help to support adaptation and mitigation efforts. The service will be 
built upon networks of in situ and satellite-based observations, re-analysis, 
seasonal predictions and climate projections. C3S will provide free and 
unrestricted access to several climate indicators and climate indices for 
both the historical and the future period.

The central piece of the C3S structure is the Climate Data Store, 
https://www.ecmwf.int/en/newsletter/151/meteorology/climate- 
service- develops-user-friendly-data-store. Despite its name, this is much 
more than a store of data as it represents a standardised access point to 
datasets (both those that exist already and the newly developed one) as 
well as a place where new application-relevant data will be made available. 
The data will include past observations and reconstructions, regional and 
global re-analysis, climate predictions and regional and global climate pro-
jections. The data will come with a standard set of tools which will allow 
users to define and then apply a range of post-processing procedures prior 
to the download of the data or graphics material they might need.

Alongside the development of the CDS, C3S is also developing a num-
ber of other important functions such as an Evaluation and Quality 
Control (EQC)—which will first define and then implement quality con-
trol procedures for all the dataset that will be made available by the C3S—
and an Outreach and Dissemination (OD) function—which will be 
responsible for both training the users and the intermediaries and main-
taining a support for the products and datasets.

One of the key aims of the C3S programme is to instigate the develop-
ment of a market of climate services which could be built upon the free 
and unrestricted data policy of Copernicus. Although data accessibility is 
key to this vision, data on its own may not suffice for the uptake of climate 
information and data by users. To address this, the C3S is also developing 
a Sectoral Information System. This sub-programme is funding the devel-
opment and the delivery of proof-of-concept demonstration services 
addressing the needs of specific sectors and users. The aim is to promote 
the development of conditions that will enable the use of the climate 
information provided rather than supporting a fleet of services for the 
end-users. Of the seven projects funded to date (Autumn 2016), two are 
designed to develop tools and datasets for the energy sector.

The first C3S Energy contract (European Climatic Energy Mixes, 
ECEM4), coordinated by the University of East Anglia, is looking at how 
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different energy mixes will be able to meet demand on timescales ranging 
from the next season to the next decades in Europe. The main target of 
this C3S project is the development of an online interactive tool that will 
allow users to assess how energy production and demand will change in 
response to climatic factors in a specified region of Europe on different 
time horizons. This project, which at the time of writing is half-way 
through its completion, has already managed to identify a set of important 
technical developments that need to take place in order for the energy sec-
tor to be properly served. In addition, it has already provided their target 
users with something tangible they can play with: web-based demonstra-
tor with up-to-date information about energy production and demand. 
Having a concrete tool to interact with is a fundamental step in the assess-
ment of users’ requirements.

The second C3S contract for the energy sector (CLIM4ENERGY5) is 
coordinated by the Commissariat á l’Énergie Atomique et aux énergies alter-
natives (CEA) and is expected to deliver nine energy-relevant pan- European 
indicators of climate trends and variability with cross-sectoral consistency, 
something that we believe will help users assess how exposed to climate 
extremes their infrastructure is likely to become in the coming decades.

Whilst none of these initiatives in isolation will be able to equip the 
energy sector with all the tools it needs for the challenges it is likely to face, 
these prototype service and demonstrators will provide useful examples for 
others to build upon. The recent adoption of Energy as a priority sector 
for the GFCS of the World Meteorological Organisation (WMO) means 
there is a general framework in which these experiences can be accounted 
for (WMO 2017).

Acknowledgement Project Ukko is a Future Everything and BSC project for 
EUPORIAS.  Data visualisation by Moritz Stefaner. EUPORIAS is a project 
funded by the EU 7th Framework Programme (GA 308291) and led by the Met 
Office.

notEs

1. http://climate.copernicus.eu/.
2. Project UKKO received the silver prize for the Kantar Information Is 

Beautiful Award http://www.informationisbeautifulawards.com/news/ 
188-2016-the-winners.

3. http://www.project-ukko.net.
4. http://ecem.climate.copernicus.eu/.
5. http://clim4energy.climate.copernicus.eu/.
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CHAPTER 4

What Does the Energy Industry Require 
from Meteorology?

Laurent Dubus, Shylesh Muralidharan, 
and Alberto Troccoli

Abstract The energy sector significantly depends on weather and climate 
variability, which impacts both demand and supply, at all timescales. Over 
the next decades, climate change mitigation and adaptation will lead to an 
overhaul in energy systems, to reduce greenhouse gases emissions. Low 
carbon energy generation is key to facing this challenge, but its renewable 
part—mainly from wind, solar and hydro power—will even increase the 
exposure of the sector to weather and climate factors. Energy companies 
can assess their preparation to tackle the impact of weather volatility on 
their operations by running a weather-readiness assessment. This chapter 
provides an overview of the energy sector today, together with future sce-
narios and challenges. The weather-readiness concept is then presented in 
detail and demonstrates that stronger collaboration between the energy 
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industry and the meteorological community is key to reducing the risks 
posed by climate variability and change, and allow a more effective 
 integration of high-quality weather and climate information into energy 
sector activities, to better manage power systems on all timescales from a 
few days to several decades.

Keywords Energy systems • Energy scenarios • Supply • Demand • 
Weather readiness

IntroductIon

The energy sector is weather and climate dependant. Both day-to-day 
weather and longer-term climate variability have impacts on supply, 
demand, transport and distribution, and energy markets. Despite the 
energy sector being one of the most advanced users of weather and climate 
information, its rapid evolution constantly creates new needs, which 
require a new paradigm for a more effective exchange of information 
between meteorologists and energy sector users. Scientific progress on its 
own is indeed not sufficient to increase the value of weather forecasts. 
Indeed, improving decision-making processes, and hence the value of 
meteorology, also demands improved communication and mutual under-
standing between energy and meteorology people.

In the last decade, a burgeoning number of sessions in Energy & 
Meteorology at various conferences (e.g. American Meteorology Society, 
European Meteorology Society, European Wind Energy Conference) 
started the process from the meteorology side, aiming to engage the energy 
side. The International Conference on Energy & Meteorology (ICEM) 
series is going one step beyond to support a bidirectional stream of com-
munication. The third ICEM in Boulder in 2015 provided a platform for 
a seminar on Energy for Meteorologists, with three main objectives:

 1. To provide meteorologists with an overview of the energy sector/
business

 2. To enhance awareness of the importance of weather and climate for 
the energy sector

 3. To help foster a dialog between both communities and to identify 
major challenges which should be addressed in a co-design approach 
in the coming years
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This chapter summarizes the content of the seminar and suggests ways 
to improve and develop collaboration between weather and climate scien-
tists on the one side, and energy practitioners on the other.

overvIew of the energy Sector/BuSIneSS

Energy systems are the engine of economic and social development. As 
stated in the SE4ALL1 2014 report (SE4ALL 2014): ‘Energy is the golden 
thread that connects economic growth, increased social equity and an environ-
ment that allows the world to thrive. Energy enables and empowers. Touching 
on so many aspects of life, from job creation to economic development, from 
security concerns to the empowerment of women, energy lies at the heart of all 
countries’ core interests.’ On the other hand, the energy sector is responsible 
for the largest share of anthropogenic greenhouse gas emissions. Reducing 
this footprint on global climate demands increasing the share of low car-
bon technologies, as well as increasing energy efficiency, while the global 
energy demand will continue to rise. Before going into further detailed 
implications of these basic elements, we first present here a quick overview 
of the energy sector, with a special focus on the power sector.

As things are moving very fast in the world energy landscape, the reader 
should note that the figures given here are a snapshot taken at the time of 
writing. There are a lot of resources when one wants to look in detail at 
the state of world energy systems. The most relevant ones are listed at the 
end of this chapter. The World Energy Council (WEC),2 the International 
Energy Agency (IEA)3 and REN214 annual publications are among the 
most relevant to keep updated on the status of the energy sector.

Peculiarities of Energy Systems

Energy systems exhibit some common features, like other public good 
service sectors such as water and transport infrastructure for instance. 
First, they are capital intensive, with huge investments needed when one 
considers grid development or construction and operation of large pro-
duction units. They are also characterized by long life cycles, on the lower 
order of 20 years for wind or solar farms, for instance, to as much as, or 
even more than, 60–80 years for heavy infrastructures, like large power 
plants, hydropower dams and transport networks. Last, but not least, 
energy markets are fragmented geographically, most generally at national 
level, and are sometimes subject to security issues.
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Energy systems consist of a great diversity of generation sources, with 
very different characteristics in terms of:

• Technical aspects: size, net generation capacity, efficiency, reliability, 
operating constraints…

• Economic aspects: fixed and variable (operating) costs can vary a lot 
from one production means to another

• Regulatory aspects: CO2 or other gas emissions limits, security rules, 
health and environmental impact regulations.

Energy systems are not isolated, but fully integrated in human activi-
ties, and closely linked to other sectors, in particular water. Water is indeed 
necessary for energy generation, either as the cooling fluid for some ther-
mal power generation units or as the engine for hydropower generation. 
In addition, pumping, treating and moving water requires electricity. 
There are then strong links and dependencies between the energy and the 
water sectors, and, consequently, also with the food sector. This interlink-
age is referred to as the energy–water–food nexus. It reflects the fact that 
there are competing uses of a common resource (water) for different 
human activities. Competition between energy generation, water supply 
and crop irrigation is already an issue in water scarce areas. It will become 
even more problematic in the next decades, with increased tensions on 
water resources due to climate change impacts (WEC 2016a).

As this chapter focuses on the power sector, we must add here some 
specificities of electricity as a commodity:

• Real-time balance between generation and consumption: as storage 
capacity is limited and/or very expensive, electricity cannot be cur-
rently stored on a large scale. Real-time balance between consump-
tion and production must then be ensured in real time;

• Electricity demand is very variable in time, with characteristics vary-
ing among countries, depending on the uses of electricity for heat-
ing, cooling or any other application;

• Prices are very volatile: the electricity sector is now liberalized in 
most countries, and prices can fluctuate strongly according to trad-
ing opportunities on the markets;

• Natural monopolies: despite liberalization, network topologies 
impose physical constraints even on interconnected networks, as 
only limited amounts of energy can flow from one country to its 
neighbours;
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• Technical complexity: there are difficulties in controlling load flows, 
interactions between generation and transmission (network conges-
tion, blackout risks) and very diverse plant characteristics;

• Economic model: economic dispatch of production is based on 
increasing variable costs, the cheapest generation unit being called 
first. This implies that the marginal production cost of electricity 
increases with volume, contrary to most other commodities, and that 
a kWh is more expensive during a peak in load. However, in some 
markets, wind and solar energy are preferred, in line with CO2 emis-
sions reduction targets, and must be the first supply source in the 
stack, requiring more flexibility from other sources to account for 
their variability in time.

The Current Global Energy Picture

The IEA annual Key World Energy Statistics provides a regular overview 
on past trends, the current picture, and projections to 25 years ahead for 
energy production and consumption, as well as CO2 emissions and energy 
prices. The 2016 edition (IEA 2016a) confirms past trends: globally, total 
primary energy supply and final consumption have constantly increased 
since 1973. Table 4.1 presents the main figures.

In 2014,5 the share of energy sources in the global final energy con-
sumption was roughly subdivided as shown in Fig. 4.1 (REN21, 2016).

Table 4.1 Main trends in energy supply and consumption and electricity genera-
tion from 1973 to 2014

1973 2014 Comments

Total primary energy 
supply

6101 Mtoea 
(70,955 TWh)

13,699 Mtoe 
(159,319 TWh)

•  Relative decrease in oil, 
increase in coal and 
natural gas

Total final energy 
consumption

4661 Mtoe 
(54,207 TWh)

9425 Mtoe 
(109,613 TWh)

•  Largest increase in 
China/Asia

•  Decrease in oil, increase 
in electricity

Electricity generation 6131 TWh 23,816 TWh •  Increase in nuclear, 
natural gas, renewables,

• Decrease in oil

Source: IEA (2016a)
a1 Mtoe = 1.163 × 104 GWh
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Obviously, fossil fuels still dominate at global scale. But this picture 
masks strong disparities between countries. For instance, whereas renew-
able sources represent only 8% of the final energy consumption in Belgium, 
this increases to 69.2% in Norway, mainly due to hydropower (WEC 
2016b).

Focusing on power generation, wind and solar energy have been rap-
idly developing in the last decade, with an average annual growth of the 
installed capacity of 23% per year between 2004 and 2014 for wind and 
51% per year for solar (WEC 2016c). This increase has been favoured by 
different factors, among which are incentives to develop these low- carbon- 
emitting technologies and a strong decrease in costs, in particular for solar 
panels. Overall, investments in renewable energy sources increased from 
US$72.8 billion in 2005 to US$285.9 billion in 2015, mainly dedicated 
to solar (US$161  billion) and wind (US$110  billion). As a result, the 
addition of new capacity in the power sector was higher in 2015 for renew-
ables than for coal, gas, oil and nuclear combined (IEA 2016b). Overall, 
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Fig. 4.1 Share of energy sources in the global final energy consumption (adapted 
from REN21 2016)
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renewables, including hydropower, now account for about 30% of the 
total global installed power generation capacity and 23% of total global 
electricity production (WEC 2016c).

The effects of this energy transition towards cleaner technologies are 
becoming important also in terms of emissions. Indeed, CO2 emissions 
from fossil fuels, which were increasing until 2013, seem to have stalled 
in 2014 and decreased in 2015 despite continued economic growth 
(Jackson et al. 2015, see their Fig. 1). The main reasons for this change 
in trend are a decrease in coal use in China, slower global growth in oil 
and the previously mentioned faster growth in renewables. The latter, 
together with a transfer from coal and oil to natural gas energy produc-
tion, has implied a reduction in carbon and energy intensity, in particular 
in the USA and the UK.

Future Scenarios

Many organizations produce future scenarios for the energy sector, gener-
ally no further than 50 years ahead due to too many uncertainties. At 
institution level, a few scenarios are generally considered that cover a range 
of technical, economic and political options. Those scenarios are driven by 
the need for more energy supply, in response to increase in demand, and 
by the indispensable adaptation of the energy sector to climate change. 
Obviously, energy access for those who do not have secure, affordable and 
sustainable access to energy, the three pillars of the WEC Energy Trilemma 
(WEC 2016d), is an essential target. This currently concerns 1.2 billion 
people in the world. Despite differences between these scenarios, com-
mon features emerge. We here reproduce the main points highlighted by 
WEC (WEC 2016e) and IEA (IEA 2016b).

 1. Energy demand will keep increasing, but per capita demand may 
peak around 2030 due to increased energy efficiency from new tech-
nologies and more stringent energy policies.

 2. Fossil (coal, oil) fuels’ share will decrease overall. Oil demand growth 
will be due mainly to freight, aviation and petrochemicals. 
Decarbonizing the global transport system is challenging, as the 
total number of vehicles is expected to double by 2040, and only 
few alternatives to fossil fuels exist. However, efficiency gains, use of 
biofuels and development of electric vehicles will make it possible to 
significantly reduce fuel demand for passenger vehicles. Among fos-
sil fuels, natural gas will be more widely used.
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 3. Electricity demand is likely to double by 2060. This is driven first by 
the fact that the electricity sector will be easier to decarbonize than 
the others (transport in particular) and by an increase in urbaniza-
tion and the associated development of technology-enabled life-
styles, which require more electricity.

 4. Renewable sources, especially wind and solar energy, will be key in 
delivering low-carbon electricity. Today, they provide around 4% of 
power generation, but according to WEC’s scenarios, their share 
could rise to between 20% and 39% by 2060 (WEC 2016e). Time 
and spatial variability of wind and solar generation poses risks to 
electricity security. Their integration will require a significant change 
in power system design and operation, allowing more flexibility to 
compensate for increases in variability from renewable generation. 
Several solutions therefore need to be developed in parallel to facili-
tate large wind and solar energy integration:

• demand response and management;
• increase in energy efficiency and conversion rates;
• stronger and smarter grids, including development of system 

services;
• availability of short-term backup power generation;
• energy storage, from water reservoirs, hydrogen, compressed air 

and batteries

The energy sector transition is now underway, and has been accelerated 
by the pledges made as part of the COP21 Paris Agreement in 2015. 
However, most energy scenarios show that the carbon budget for a 2°C 
target could be reached as soon as 2040 (IEA’s main scenario, IEA 2016b), 
or between 2040 and 2060 (WEC 2016e). Most analysts therefore agree 
that the 2°C pathway will require stronger efforts than the currently 
pledged commitments, while a 1.5°C target has not yet been addressed 
from the energy point of view. Addressing the energy sector challenges 
will require global cooperation, sustainable economic growth and tech-
nology innovation, together with political decisions and actions to fix a 
(high) carbon price.

The Energy Trilemma

The WEC’s definition of energy sustainability is based on three core 
goals—energy security, energy equity and environmental sustainability. 
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Balancing these three goals constitutes a ‘trilemma’ and is the basis for 
prosperity and competitiveness of individual countries. This trilemma 
neatly summarizes the energy sector’s challenges. Since 2013, annual 
reports provide guidance to translate the three goals into tangible actions 
(WEC 2016d). More specifically, the three Energy Trilemma goals are 
defined as:

• Energy security: The effective management of primary energy sup-
ply from domestic and external sources, the reliability of energy 
infrastructure and the ability of energy providers to meet current and 
future demand;

• Energy equity: Accessibility and affordability of energy supply across 
the population;

• Environmental sustainability: Encompasses the achievement of 
supply and demand side energy efficiencies and the development of 
energy supply from renewable and other low-carbon sources.

The 2016 report (WEC 2016d) suggests five focus areas to achieve 
those goals, as shown in Fig. 4.2. Meteorology, that is weather observa-
tion, forecasts and longer-term climate projections, will play an increasing 
role in helping achieve these objectives. A more effective integration of 
weather and climate information into energy systems will also require 

Fig. 4.2 The World Energy Council’s Energy Trilemma, and the five focus areas 
for achieving energy goals (WEC 2016d). Used by permission of the World Energy 
Council
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 fostering the collaboration between the meteorology community and the 
energy sector, from the utilities level up to the policymakers level (WEC 
2016d).

the Importance of weather and clImate 
for the energy Sector

Weather and Climate Impact the Energy Sector on All Timescales

Influences of short-term weather variability and longer-term climate 
impacts on the energy sector are well documented today. Among the avail-
able publications, most chapters, if not all, in Troccoli et al. (2014) give 
multiple examples and figures about these close links, which concern more 
or less all the fields of activity in the energy business, as exemplified in 
Fig. 4.3. In addition to the physical links between, for example, variable 
cloud cover and PV generation variability or between long droughts and 
reduced hydropower generation, weather and climate variability also have 
strong impacts on energy markets and energy system finance.

Variability of the weather-driven part of energy demand and supply 
causes energy prices to vary. The way energy prices vary depend also on 
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Fig. 4.3 Weather and climate impact the energy sector on all timescales (source: 
WEMC)
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the underlying trading schemes. Long-term contracts are managed on for-
ward markets, where week-ahead, month-ahead, quarter-ahead and even 
(up to three) year-ahead products are most often traded in the form of 
bilateral contracts.

Energy volumes can be purchased or sold on intra-day and day-ahead 
spot markets, similar to stock exchanges. In addition, in countries where 
energy load balancing is actively managed, Transmission System Operators 
(TSOs) and national regulators have set up balancing mechanisms to be 
able to mobilize extra generation or consumption reduction in case of 
higher than expected demand, and generation modulation or even curtail-
ment in the case of lower than expected demand, the final goal being of 
course to ensure the supply–demand balance in real time. As electricity 
prices follow the offer/demand law, prices can increase significantly dur-
ing peak demand. To fulfil low-emission energy development targets, 
renewable energy is prioritized in most countries to meet the demand. 
The increasing share of variable wind and solar generation then increases 
the volatility of net demand, defined as consumer demand minus renew-
able supply, and then that of prices. Any actor on the market who is able 
to forecast supply and demand better than competitors is then in a favour-
able position to buy and sell energy in a profitable way.

Energy system long-term financing is also more and more impacted by 
weather and climate, for two main reasons:

 1. the increase in strongly weather-dependant wind and solar energy, 
and

 2. the increasing vulnerability of energy assets to climate change.

Indeed, renewable energy projects’ bankability (likelihood to ensure 
the financial success of the project), and hence financing through bank 
loans, depends on the projected resource and profit over the full invest-
ment and operation period, generally between 15 and 30  years. The 
resource estimation needs of course to be as accurate as possible, as any 
overestimation will result in less profit. Together with the technical choices 
about the production unit’s characteristics, the resource estimation is a key 
factor in determining the Levelized Cost Of Energy (LCOE) of a project, 
this parameter often being the main or even the only determining selec-
tion criterion among competitive bids. As an example, EDF R&D and 
HYGEOS (Elias et al. 2015, 2016; Garnero et al. 2016) are developing 
new methodologies to estimate the solar radiation attenuation by aerosols 
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in the surface layer (between 0 and 200 m AGL) in solar thermal plants, 
on the slant path from the heliostats (mirrors) to the concentrating tower. 
For instance, in Ouarzazate, Morocco, slant path attenuation can vary 
between 0% and 20% during desert dust events, significantly impacting the 
estimated long-term resource. Improved horizontal attenuation measure-
ment and long-term estimation can significantly modify the LCOE calcu-
lation. This requires improvements in attenuation measurements during 
field campaigns in rough terrains, and new methodological developments 
to extrapolate short in situ measurements on the longer term, by coupling 
with satellite data and/or reanalysis.

More recently, long-term investments have started to take into account 
also the potential future impacts of climate change. As scientific consensus 
on future climate change has now been reached (IPCC 2013), this dimen-
sion has become a key factor in energy system development and new 
power plant projects. This is particularly true for long-term assets such as 
big dams or nuclear power plants, as well as power networks.

The International Hydropower Association6 (IHA) status report 2016 
(IHA 2016) notes that many countries are seeking a better understanding 
of climate change impacts and are beginning to build climate adaptation 
strategies and climate resilience into their plans. Many policymakers and 
industry leaders require guidelines and a robust framework for approach-
ing climate risks. The World Bank is also very active in defining and devel-
oping guidelines for the hydropower sector (and more generally the whole 
energy sector), in order to help countries and businesses building resil-
ience for both existing hydropower infrastructure and future projects. Its 
Energy Sector Management Assistance Program7 (ESMAP) in particular 
provides analytical and advisory services to low- and middle-income coun-
tries to increase their know-how and institutional capacity to achieve envi-
ronmentally sustainable energy solutions for poverty reduction and 
economic growth. In addition, many funding agencies and development 
banks now require that any long-term project includes a comprehensive 
assessment of climate change impacts (see for instance HRW 2014).

Many energy companies already consider climate change in their invest-
ment plans. For instance, EDF takes climate change into account when 
assessing the possible changes of efficiency of its thermal and nuclear 
power plant cooling systems (Anderhalt 2015).

Generally, the energy sector is, today, well aware that weather and cli-
mate variability and change impact their business, at every timescale. But 
not all companies and policymakers do take this quantitatively into account 
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in planning and operations. The next paragraph shows why weather readi-
ness is important, and how this concept can help the sector deal with 
weather and climate risks.

Weather Readiness Is Key for Weather-Resilient Business 
Performance for Electric Utilities

 Weather-Readiness Assessment—Background and Introduction
Recent research (Francis et  al. 2014) shows that in the past couple of 
decades, changing climate trends have led to increasing volatility in 
weather patterns across the world. This has significantly impacted the daily 
business operations of entities across the electricity supply value chain. 
Electric power generation entities are stressed during extremely anoma-
lous hot or cold weather events as extreme weather forces them to ‘make 
or buy’ energy worth millions of dollars. Energy becomes a scarce com-
modity during extreme events and good knowledge of weather forecasts 
helps companies to take decisions to produce or procure energy at the 
right time and at an economical cost and help them be ready for severe 
weather in the most efficient manner. For companies involved in activities 
down the value chain such as electricity transmission and distribution, 
weather definitely has had an increasing impact on operational reliability 
(IDC 2013) in recent decades. Every time there is a severe weather event, 
the delivery of electricity is impacted and customers may be without power 
for several hours or days depending on the strength of the storm and the 
ability of the utility to restore power in their service territory.

Outages have a significant economic impact as well. Severe weather- 
related outages cost the US economy a total of approximately $80 billion 
annually (LaCommare and Eto 2006), half of which impacts the industrial 
and digital economy. Electric Power Research Institute (EPRI) research 
shows that the economic cost of power outages is largely related to the 
length of the outage, while noting even short duration outages of a few 
minutes could have large costs. It is estimated the average cost of a one- 
hour outage for manufacturing and digital economy firms is $7795/firm 
(Baggini 2008). Among industrialized countries, the USA has one of the 
highest annual average outage durations per customer, and also one of the 
highest annual average number of supply outages per customer; more than 
45% of US utilities have a System Average Interruption Duration Index 
(SAIDI) metric of greater than 100  mins/year. The economic cost of 
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these outages impacts not only end-users of utilities but also utilities them-
selves. More than 60% of utilities in the USA lose more than $100,000 on 
average per year in revenues due to outages and this number does not even 
include the unplanned costs of response and restoration.

 Rationale for Investing in Weather-Readiness Assessment
So how do weather-readiness assessments help mitigate these problems? 
Weather-readiness assessment is a formal method which makes use of ana-
lytical tools to critically assess a utility’s preparation to tackle the impact 
of weather volatility on its operations. This includes a thorough study of 
the current ‘state-of-the-system’ with respect to weather volatility and 
identifies specific actions to ensure operational resilience during severe 
weather. Using the weather-readiness assessment framework helps utilities 
identify the overall influence of weather, gaps in the current health of 
their systems with respect to weather resilience, and measure how weather 
variables impact their business goals of providing reliable power, main-
taining service levels and reducing operational costs. There are several 
benefits to utilities adopting weather-readiness assessments. At an opera-
tional level, being weather-ready improves process efficiency and enhances 
service quality to the end-users and eventually improves customer satisfac-
tion. At the larger industry level, electric utilities that undergo this assess-
ment pioneer best practices in the sector and can utilize the outcomes of 
the assessment as a competitive advantage, by enhancing performance and 
cutting down costs associated with being weather-resilient. All utilities 
embarking on such an assessment send a positive message on how pre-
pared the electricity sector is to handle the increasing trend of weather 
volatility. Finally, being weather-ready means that utilities are not ‘react-
ing’ to every weather event but instead have clarity of how weather 
impacts each of their functions and proactively figure out what they need 
to do to keep their operations resilient during storms and/or other severe 
weather events.

 How Does the Industry Benefit from Being Better ‘Weather-Ready’?
The severe weather volatility seen in different parts of the world in the 
recent past have forced utilities to make unplanned expenses in restoration 
and recovery efforts, especially during superstorms. These ad hoc expenses, 
especially when they are a significant investment during a multi-storm 
year, make their financials look less than optimal. Unplanned expenses can 

 L. DUBUS ET AL.



 55

also divert funds from future investments leading to ageing infrastructure 
that has been denied the appropriate upgrades required for being weather- 
resilient, making it more vulnerable in the future, thus fuelling a vicious 
circle. So utilities have a good reason to design a weather-readiness assess-
ment framework that will make them better prepared and able to respond 
effectively to the next severe weather event which will test their service 
reliability.

 Defining Outcomes of Weather-Readiness Assessment
Weather-readiness assessments can be done in any part of the electric utili-
ties value chain—whether it is electricity generation, transmission and dis-
tribution or retail services—but the assessment can be successful only if it 
is linked to business outcomes in the corresponding business. And for 
companies that operate in more than one part of this value chain, the 
assessments too can be modified to reflect a multitude of business  outcomes 
(see Fig. 4.4). For example, at an enterprise level, it is a high-level goal to 
optimize the cost of emergency operations. At a ‘generation’ utility level, 
outcomes are linked to incorporating distributed generation (mostly 
renewables) effectively in the overall generation portfolio. On the trans-
mission and distribution side, business outcomes are linked to bringing 

Generation
• Reduce generation costs
• Reduce plant risks
• Effective load forecasting
• Incorporate distributed 

generation effectively & 
efficiently

Enterprise
• Avoid uncertainty in weather-related investments
• Lower emergency operation costs
• Effective risk management policy
• Consolidate weather-related expenses across the organization

Transmission and Distribution
• Improve reliability indices —  

SAIFI, SAIDI, CAIDI, etc.
• Lower number of outages
• Lower outage restoration time
• Improve maintenance

scheduling

Retail Operations
• Design weather-normalized 

tariffs
• Run Demand Response / 

Energy Efficiency programs
• Enhance customer engagement
• Improve Customer satisfaction

Fig. 4.4 Business outcomes driving weather-readiness assessment. Electricity 
Value Chain Graphic adapted from ‘Utility Analytics Market & Energy Analytics 
Market Global Advancements, Business Models, Worldwide Market Forecasts and 
Analysis (2013–2018)’
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down the duration of outages during a storm, and finally, in retail it is 
linked to improved customer satisfaction by improving communication 
during storms and delivering superior service.

Once business outcomes are identified, they are converted into realiz-
able operational outcomes. A risk management policy document that 
includes a section on ensuring adequate storm preparedness and mandat-
ing that all departments include weather readiness as part of their annual 
operational due diligence is one manifestation of an operational outcome. 
Other manifestations could support a heightened level of current situa-
tional awareness by using equipment and decision-support applications to 
get a real-time ‘state-of-the-system’ view of utilities’ assets integrating 
climate and weather information. Sometimes it could also be linked to a 
future objective, so when there is a plan to install a new asset, a weather- 
readiness assessment could become an integral part of the due diligence 
of the location. That is the reason operational outcomes have to be backed 
by measurable quantitative metrics. These are metrics which will have to 
make economic sense for the utility, so an operational outcome focusing 
on improving service reliability will have to go through a cost-benefit 
analysis of reduction in the number/duration of weather-related outages 
juxtaposed with the cost to successfully achieve these metrics. It is also 
important that these metrics have the buy-in from various functions of 
the company as well as supporting comparison studies industry-wide. So 
in the above example, being reliant upon industry standardized service 
reliability metrics such as SAIDI and System Average Interruption 
Frequency Index (SAIFI) will add much more credibility to the assess-
ment outcomes.

Weather readiness will have to be performed keeping expenses in check, 
so it is important that utilities do not embark on theoretical assessment 
studies that are a disproportionate sink of time and effort if they do not 
contribute effectively to making a good business case. And to make a busi-
ness case, the true cost of the assessment must be taken into account, some 
of which could be indirect as well. An example of a direct cost could be the 
expense of integrating weather-based decision-support features into an 
existing utility distribution automation application, whereas an example of 
an indirect cost could be the opportunity cost of setting aside an exorbi-
tant annual ‘reserve fund’ for multiple severe weather events and thereby 
denying much-needed system hardening investments within the utility’s 
asset network.
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 Preparation for an Effective Weather-Readiness Assessment Framework
Once the weather-readiness assessment activity has been tested for its 
economic feasibility, the next step is to ensure that the data used for 
such assessments are robust. Assessing weather readiness as part of sit-
ing a new infrastructure within the service territory will require multi-
year normalized climate data to understand weather patterns in a 
specific geographical location, while a situational awareness application 
focused on supporting severe weather events might need highly granu-
lar sub-second weather records such as lightning data that is updated in 
real time. Preparing the right kind of weather data also offers opportu-
nities to coordinate and optimize requirements across multiple func-
tions in the organization. So the power generation side of a bundled 
utility might be archiving weather data for forecasting load for several 
years and most of that archived weather data for multiple locations can 
also be used on the operational side to support machine learning algo-
rithms to understand how specific weather variables such as tempera-
tures and wind speeds play out in that location during extreme weather 
conditions.

 Interesting Applications at the Intersection of Energy and Meteorology
Having a robust data layer allows utilities to design weather-based decision 
support across the utility. And decision-support applications can be deliv-
ered with varying levels of sophistication. At the simplest level, it could be 
a simple report which elaborates weather variables observed at any given 
location at a given time in the past week or month or for any given severe 
weather event. A post-mortem analysis of a heat wave or cold wave usually 
just requires a simple time-series of weather variables (usually of just tem-
peratures) to understand the times when the utility demand was most 
stressed.

This might not be the case in an application which is a sophisticated 
decision-support application predicting asset damage from an incoming 
storm event. The same weather data in the earlier application is now 
regressed with data regarding location and performance of utility assets 
during similar weather conditions in the past. This ‘historical patterns’ 
data is then combined with non-weather variables such as vegetation and 
land use data to identify how a utility service territory will hold up during 
forecasted stormy weather based on historical behaviour. This allows utili-
ties to predict and simulate severe weather’s impact on their facilities and 
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predict service interruptions to their end-users. The same data can also 
drive automated applications which can optimize system decisions such as 
reconfiguring power through alternative transmission or distribution net-
work paths based on availability of network bandwidth which is not 
impacted by an incoming storm. This ensures that the degree to which 
service level performance is compromised is kept to a minimum and cus-
tomer satisfaction levels can be maintained by constant communication 
and prompt restoration.

At a retail service level, products such as smart thermostats and ser-
vices and smart utility bills normalized using weather data utilize hyper-
local weather data at a location to deliver unique decisions for energy 
management of residential, commercial and industrial premises. For a 
residential customer, it aids lifestyle decisions for the overall comfort 
while for a commercial customer it supports energy-efficiency initiatives. 
Of course, as the electrical grid gets smarter, the possibilities of how 
weather data can be applied using electricity supply and demand data at 
multiple nodes in the power grid can be endless. Figure 4.5 shows exam-
ples of current and future electric utility applications (across enterprise, 
grid and consumer applications) which can be enhanced by weather-
based decision support.
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Fig. 4.5 Electric power sector applications enhanced by weather-based decision 
support. Graphic Adapted from ‘Utility Analytics Market & Energy Analytics 
Market (Solar Analytics, Oil & Gas Analytics, Water analytics, Waste analytics): 
Global Advancements, Business Models, Worldwide Market Forecasts and Analysis 
(2013–2018)’
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Even though weather-readiness assessments can follow a generic 
framework, they have to be customized in a specific way for any utility to 
take advantage. Also, it is important that organizations take a larger 
cross- functional system view of the assessment and create a template for 
their overall readiness rather than individual departments producing 
separate silos of assessments without appreciating the synergies and con-
flicts within the organization. Millions of dollars are being spent world-
wide on managing the risks associated with weather (Lazo et al. 2011) 
and this assessment tool should help utilities decide whether it is spent 
on the highest priority ones and aligned with the larger business 
outcomes.

next StepS In the dIalogue Between energy 
and meteorology

It is obvious that weather and climate have become more and more impor-
tant for the energy sector as a) climate change demands an urgent need for 
adaptation of energy systems on the long term and b) the necessary, 
increasing share of variable renewables generation—mainly wind and 
solar—requires quick and significant improvements in weather forecasts, 
now, on short-term lead times.

As demonstrated in the other chapters in this book, and in many other 
publications (e.g. Troccoli et al. 2014), the meteorology community has, 
in the last decade or so, improved knowledge on many energy-relevant 
aspects; new forecasting tools, methods and products have been made 
available, and the research and development agenda promises significant 
new progress in the coming years. But scientific and technical progress 
alone is not enough to improve energy systems. Indeed, two key addi-
tional ingredients are necessary to improve weather readiness (Lazo 2007; 
Rogers et al. 2007; Dubus 2014):

 1. Improved communication between providers and users of the 
weather and climate information, and

 2. Improved decision-making processes.

These two critical aspects will be investigated further in the following 
chapters (Chaps. 5, 6, 7, 8, 9, 10, 11 and 12) and summarized in the con-
cluding chapter (Chap. 13).
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appendIx: Key documentatIon on the energy Sector

Different organizations gather, analyse, organize and disseminate infor-
mation about energy worldwide. We list here some of the most relevant 
ones, and provide the links to the latest releases of their key documents.

• The World Energy Council (http://www.worldenergy.org) pro-
vides several key publications:

 – World Energy Focus http://worldenergyfocus.org/annual-2016/ 
http://worldenergyfocus.org/annual-2016/

 – World Energy Resources http://www.worldenergy.org/publica-
tions/2016/world-energy-resources-2016/http://www.worlden-
ergy.org/publications/2016/world-energy-resources-2016/

 – Energy Trilemma Index http://www.worldenergy.org/
publications/2016/2016-energy-trilemma-index-benchmarking-
the-sustainability-of-national-energy-systems/http://www.
worldenergy.org/publications/2016/2016-energy-trilemma-index- 
benchmarking-the-sustainability-of-national-energy-systems/

Many other reports are available on the publications page of the web-
site (perspectives, scenarios …). A nice 4 minute movie summarizes the 
current status and main challenges in achieving the Energy Trilemma.

• The International Energy Agency publishes reference documents 
every year in November

 – the World Energy Outlook (http://www.iea.org/newsroom/
news/2016/november/world-energy-outlook-2016.html). A 
movie is also available with the 2016 edition. The IEA also pro-
duces special reports

 – World Energy Statistics http://www.iea.org/bookshop/723-
Wor ld_Energy_Sta t i s t i c s_2016ht tp ://www. iea .org/
bookshop/723-World_Energy_Statistics_2016
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Note that IEA documents have an associated cost, but executive 
summaries can be downloaded freely.

• The Renewable Energy Policy Network for the 21st Century 
(REN21) publishes a Yearly Renewables Global Status Report 
http://www.ren21.net/status-of-renewables/global-status-report/

noteS

1. http://www.se4all.org/.
2. https://www.worldenergy.org/.
3. https://www.iea.org/.
4. http://www.ren21.net/.
5. It has to be noted that available statistics are generally delayed by 1–2 years, 

the necessary time for organizations to gather, clean and analyse data from 
multiple sources.

6. https://www.hydropower.org/.
7. https://www.esmap.org/.
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Abstract The interplay between energy and meteorology (based on its 
broad meaning of weather, water and climate) has been steadily growing. 
For this relationship to continue flourishing, a formal structure for 
 stakeholders to interact effectively is required. The process of formation of 
the World Energy & Meteorology Council (WEMC), an organisation 
aimed at promoting and strengthening such a relationship, is discussed in 
this chapter. Such a process involves building many diverse relationships, 
something which has been happening over several years, alongside the 
adoption of more formal practices such as stakeholder surveys. While the 
focus of this chapter is clearly on WEMC, this process could be used as a 
stimulus for analogous activities in the broader energy and meteorology 
area, specifically those at the national and regional levels, as well as similar 
activities straddling diverse disciplines, such as those promoted by the 
Global Framework for Climate Services (GFCS).

Keywords Meteorology • Climate services • Energy • Partnerships • 
Survey • Capacity building • Communication • Outreach • Stakeholder 
engagement • Education • Associations

IntroductIon to the World energy & Meteorology 
councIl

The World Energy & Meteorology Council (WEMC) is a non-profit 
organisation devoted to promoting and enhancing the interaction between 
the energy industry and the weather, climate and broader environmental 
sciences community. Its primary goal is to support improved sustainability, 
resilience and efficiency of energy systems under ever-changing weather 
and climate.

Formally established in 2015 as a Company Limited by Guarantee in 
the UK, WEMC has taken shape over several years. The initial seeds were 
sown with the 2008 NATO Advanced Workshop, Weather/Climate Risk 
Management for the Energy Sector, which was attended by nearly 30 very 
active participants who subsequently produced a report published in an 
international journal (Troccoli et  al. 2010) as well as a book that has 
attracted the attention of thousands of practitioners (Troccoli 2010) and 
paved the way for more organised interactions between many stakeholders 
including but not limited to hydrometeorological science and energy sec-
tor communities. This start-up workshop was then followed by the more 
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formal and substantial International Conference on Energy & Meteorology 
(ICEM) series. Four ICEMs have been successfully held thus far—2011 in 
Australia, 2013 in France, 2015 in USA and 2017 in Italy—with a fifth 
one to be held in May 2018 in China, where increasing emphasis will be 
placed on developing world activities and requirements (plans for subse-
quent conferences are underway). During this period, the WEMC con-
cept has developed substantially thanks to countless discussions amongst 
experts, the creation of new connections, the burgeoning of the literature 
in the area of weather, water and climate services as well as work in related 
international activities such as the International Energy Agency (IEA) 
Tasks 36 for wind energy, 46 for solar energy and so on. Moreover, the 
UN-led Global Framework for Climate Services (GFCS) has officially 
elected energy as a new (fifth) priority area in 2017 and developed a road-
map for the implementation of climate services for the energy industry 
(WMO 2017, also Ebinger and Vergara 2011).

All of these activities have pointed to the growing interest in strength-
ening the relationship between energy and meteorology to ultimately 
help achieve the goals of sustainability, resilience and efficiency of energy 
systems. In a practical way, WEMC has been acting as the implementing 
agent for the ideas and recommendations emerging from the ICEMs 
and beyond (e.g. the GFCS-Energy Exemplar, the World Economic 
Forum, the United Nations Framework Convention on Climate Change 
[UNFCCC] Conference of the Parties [COP] 21–Paris Agreement in 
December 2015). With an average of 200 attendees at each ICEM, an 
edited book (Troccoli et  al. 2014), two special issues in international 
journals—one in Solar Energy following ICEM 2011 (Troccoli 2013) 
and one in MetZet following ICEM 2015 (Troccoli and Schroedter-
Homscheidt 2017)—and abundant discussions during ICEMs and at 
related events (e.g. Troccoli et al. 2013), there is a wide-ranging set of 
issues that naturally feeds into the WEMC concept and plan of action. 
The plan of action includes (1) the organisation of a series of institu-
tional workshop presentations, webinars and capacity building activities 
(including internships); (2) the assessments about the significance of 
future climate projections on energy resource and their implications for 
energy system investments; (3) the documentation on meteorological 
and energy data/metadata quality to assist the energy sector to easily 
access and make optimal use of these data; (4) the formulation and 
implementation of projects and programmes. These are just some exam-
ples amongst the many topics germane to the energy and meteorology 

 FORGING A DIALOGUE BETWEEN THE ENERGY INDUSTRY... 



68 

intersection. A more comprehensive list of suggested planned activities is 
presented below, resulting from the WEMC survey.

Rationale for Creating the Organisation

The major ongoing transformation of energy systems worldwide is high-
lighting the intimate interplay between energy on the one side and 
weather, climate and water on the other (Green et al. 2016). Although 
this connection is self-evident in the case of renewable energy (RE), 
weather and climate information is also critical to a much wider range of 
energy industry activities, from managing of energy supply from broader 
energy sources (e.g. offshore oil operations), to the understanding and 
estimation of energy demand, to the assessment of meteorological impacts 
on energy extraction, transportation, transmission and distribution (see 
also Chap. 2).

Given this context, WEMC seeks to substantially contribute to increas-
ing the productivity, resilience and efficiency of energy systems under the 
influence of ever changing weather and climate as well as to achieving 
more affordable and available energy, and thereby, foster sustainable and 
resilient energy systems.

Aims of the Organisation

WEMC aims to enhance productivity and policy formulation for the 
energy industry through a close collaboration between the energy sector 
and the weather, water and climate community and to achieve improved 
adoption of weather, water, climate and other environmental information 
by the energy industry towards more efficient, proactive and sustainable 
risk management practices. WEMC also aims to assist the energy industry 
in meeting the demand for energy while being mindful that there is a need 
for reducing harmful impacts on the natural environment, in line with 
international protocols such as the COP21 Paris Agreement.

These aims are tackled through the identification of top-class expertise 
in energy and meteorological sciences as well as through mobilisation of 
resources, with fund raising and facilitation of focussed programmes exe-
cuted by an appropriate mix of energy industry, private service providers, 
government and international institutions and scientific organisations. 
Such activities are typically in line with, and in support of, existing relevant 
national and international efforts.
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Ultimately, WEMC aims to create knowledge, critical thinking, experi-
mental tools and funding platforms at the global level for a highly effective 
use of meteorological information within the energy sector, particularly 
through creative public–private–academic partnerships. For instance, 
WEMC supports the energy industry in more effectively utilising meteo-
rological products and facilitating the integration of more appropriate ser-
vices in a changing climate. Specifically, one key area where the energy 
sector can benefit from the interaction with the weather and climate com-
munity, and that WEMC is contributing to, is the use of meteorological 
forecasts for grid integration and related tasks such as dynamic line rating. 
A number of transmission system operators (TSOs) and market operators 
are already using weather and/or production forecasts for the integration 
of renewable electricity into the grid. However, this is particularly the case 
in countries where either RE penetration is important (typically larger 
than 10%) or use of RE forecasts is mandated (or both). In countries 
where RE production is still marginal, use of forecasts is not considered a 
priority. There are also indications that countries/organisations that have 
taken early action in RE forecasting, rather than to react to a sudden 
increase in RE production, integrate RE into the grid in a more managed 
and effective way. It is critical therefore to inform TSOs about the latest 
developments in meteorological forecasting and the benefits of using this 
information. Thus, by producing easily accessible, jargon-free and succinct 
publications, WEMC aims to assist, as in this specific case, with the adop-
tion of meteorological forecasting tools to improve the integration of RE 
into the grid, and at the same time help control the cost of electricity for 
consumers.

Structure of WEMC

WEMC is structured around four programmes:

 1. Communications and Services
 2. Stakeholder Engagement
 3. Research and Technology Transfer
 4. Education

These programmes, which represent a mix of activities ranging from 
communication of technical information (programme 1) to a continuous 
engagement with an ever-widening base of stakeholders as well as the 
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strengthening of advisory bodies at the strategic (Advisory Board) and the 
technical (Technical Advisory Group) levels (programme 2); to the assis-
tance in the uptake of meteorological tools for more efficient, resilient and 
sustainable energy systems (programme 3); to capacity building activities 
such as the ICEMs (programme 4), have clearly been constructed to tar-
get the goals of WEMC. Top level international experts are leading the 
efforts in each of these programmes, with the assistance of the WEMC 
secretariat, which although currently small and with limited resources, is 
in a growing phase. The WEMC secretariat is sited on the campus of the 
University of East Anglia (Norwich, UK).

Sustained input from international experts, particularly the ICEM 
Organising Committee and the WEMC Technical Advisory Group, is key 
to the success of the WEMC initiative, in a similar manner to the way that 
related international activities function (e.g. the above-mentioned IEA 
tasks). Indeed, assistance from a wide base of experts is essential to tackle 
prioritised activities aimed at improving the interaction between energy 
and meteorology (e.g. data exchange and their standardisation).

WEMC heavily relies on the expert guidance of its Advisory Board, 
which is drawn from as diverse a group of people as possible to cover the 
main international players in the energy sector and the meteorology com-
munity, both in the developed and developing countries and including 
related associations (e.g. the USA-based Utility Variable Integration 
Group, UVIG).

Also integral to the structure of WEMC are Special Interest Groups 
(SIGs). The growing WEMC membership is leading the work of the 
SIGs. The plan is to constitute several such SIGs, one for each identified 
main critical activity, with around a dozen experts participating in each. 
Initially WEMC will focus on three initial SIGs, one on Data Sharing 
and Standards, the second on Grid Integration and the third on 
Education. This choice has been informed by members and the interests 
of other experts’ interest, as identified through the survey presented in 
the next section. WEMC will provide communication tools and assis-
tance to facilitate the work of these groups. It will also horizon scan for 
funding opportunities and pursue the most relevant and promising ones 
so as to provide financial support to the activities of specific working 
groups (e.g. to hold physical meetings). These SIGs are tasked to pro-
duce output readily usable by the energy industry such as the aforemen-
tioned guidance document on grid integration (Fig. 5.1).
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defInIng PrIorItIes for WeMc: the users’ survey

Rationale for Undertaking a Survey

Given the aim and nature of the WEMC activities, it was fundamental to 
define the next steps for the organisation based on the needs and require-
ments of the potential future users of those services. A survey was con-
ducted with the target of engaging with as many potential users and 
organisations around the world as possible.

Methodology and Implementation of the WEMC Survey

The method selected to engage with potential users of WEMC was an 
online survey as it enabled the collation of the widest possible number of 
responses from around the world as possible in a relatively short amount 
of time (May 2011). The survey, developed using the software Survey 
Monkey, included four main sections1:

 – Welcoming page—This introductory page described WEMC and 
asked respondents to select their sector of activity: energy; weather 
and climate; or other.

Execu�ve
Directors

Advisory 
Board

Managing Director

Comms and 
Services

Stakeholder 
Engagement

Research and 
Tech Transfer

Educa�on

WEMC Core Team
Technical 

Advisory Group

Fig. 5.1 The World Energy & Meteorology Council (WEMC) organigram
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 – Your organisation—This section covered questions about the 
respondent’s organisation including the size and type of organisa-
tion, its geographical location, the scope of their activities and 
where it operates, as well as the respondent’s specific role. Some of 
the questions were tailored specifically to take into account the 
sector of activity (i.e. energy; weather and climate; or other 
sectors).

 – Future projects and initiatives—This section included questions 
regarding the projects, initiatives and activities which WEMC 
should be focusing on in the future.

 – Next steps—The final page asked participants if they would like to 
be involved and updated on future WEMC initiatives and, if so, to 
leave their contact details.

Given the importance of involving people from the energy and weather 
community worldwide, the survey was disseminated to participants at the 
3rd ICEM in Boulder USA in 20152 as well as circulated to targeted mail-
ing lists such as the Energy-L3 and Climate-L,4 mailing lists for energy 
policy issues and climate-related news, respectively. The survey was offi-
cially launched in June 2015 and closed in January 2016. The sections 
below describe some of the main findings from the survey and how it 
helped inform future activities within WEMC.

results froM the WeMc survey

A total of 147 responses were received between June 2015 and January 
2016. Almost half of the respondents worked in the energy sector (47%, 
n = 69), followed by those working on weather and climate related activi-
ties (33%, n = 39) and other sectors (20%, n = 29). The type of organisa-
tions also varied with private companies representing the large majority in 
the energy sector whilst research institutes were the most represented in 
the weather and climate sectors (Fig. 5.2).

The participants’ organisations also varied in size and between the sec-
tors of analysis. The energy sector showed the highest number of large 
companies (with more than 5000 employees) followed by smaller organ-
isations (with up to 100 employees). Conversely, the weather and climate 
sector showed the highest number of smaller companies (up to 100 
employees) followed by those with between 1000 and 5000 employees 
(Fig. 5.3). Organisations in the ‘other’ sector had a fairly similar  distribution 
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with regard to the size of the companies who responded to the survey 
(Fig. 5.3).

The respondents from the energy sector were mainly based in Europe 
(France, Germany, Denmark, Spain) as well as the USA; whilst those 
working in the weather and climate sector were mostly based in the USA 
followed by France and the UK (Fig. 5.4).

With regard to the scope of the organisations’ activities, these were 
predominantly worldwide for both the energy and the weather and climate 

Fig. 5.2 Type of organisations per sector of activity

Fig. 5.3 Size of the responding organisations per sector
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sector followed by those operating across Europe and in specific countries 
worldwide for the energy sector and those operating in specific European 
countries for the weather and climate sector (Fig. 5.5). Those in the other 
sectors operated across the range of geographical areas as identified in 
Fig. 5.5.

Activities Across Sectors

The main activities pursued in the energy sector were distribution/trans-
mission, technology development, and power development (Fig.  5.6), 
although approximately half of the organisations in the energy sector 
(n = 25) worked in two or more activities.

Similarly, more than half of the organisations (n = 27) operated in two 
or more areas within the renewables (i.e. solar, wind and hydroelectric 
power) which was the sub-sector most strongly represented amongst the 
surveyed organisations (Fig.  5.7). Given renewables are, amongst the 
energy systems, the most impacted by weather and climate events, this 
result was not unexpected; however, this also reflects the backgrounds and 
interests of the respondents.

Another interesting aspect was the fact that 75% of these organisations 
(n = 35) were involved in the energy and meteorology nexus (i.e. working 
in areas linking energy and meteorology). The organisations working with 

Fig. 5.4 Countries where survey respondents are based. Countries selected by 
only one respondent were excluded from this chart. These included Brazil, Austria, 
Vietnam, Costa Rica, Namibia, South Africa, New Zealand, Mexico, Zambia, 
Greece, Indonesia, Argentina, Malaysia, Bosnia and Herzegovina, India, Finland 
and Guatemala, Ghana, Morocco, Chad, United Arab Emirates and Mauritania
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weather and climate were fairly homogenous with regard to the provision 
of different weather and climate information (Fig. 5.8).

The remainder of the organisations (n = 29) operating in other sectors 
was mainly constituted by those working in academic research, govern-
ment and public administration, forestry, media, biodiversity and ecology 
and coastal activities.

Fig. 5.6 Scope of responding organisations’ activities in the energy sector (total 
per cent of n = 47; note that this was a multi-answer question)

Fig. 5.7 Area of the energy sector in which the organisations operate (note that 
this was a multi-answer question)
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Nexus Between Energy and Meteorology

Survey participants were also asked about the interest of their organisation 
in the energy and meteorology nexus. The large majority of respondents 
confirmed the interest in this nexus with approximately 75%, 62% and 87% 
of the respondents in the energy, weather and climate and other sectors 
agreeing, respectively (Fig. 5.9).

Fig. 5.8 Scope of activities in the responding organisations operating in meteo-
rology and climate (note that this was a multi-answer question)

Fig. 5.9 Number of organisations surveyed interested in the energy and meteo-
rology nexus
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Future WEMC Projects and Initiatives

Survey participants were provided with a list of options of potential policy 
and services initiatives that could be pursued by WEMC (Fig. 5.10). Of 
those, the three main aspects that respondents (across all sectors of analy-
sis) preferred to have available from WEMC were the ‘Development of 
codes, standards and guidelines for meteorological information’; ‘Position 
papers’ and ‘Reports on resilience and sustainable energy systems and links 
to emission reduction requirements’. Conversely, the least preferred 
option was ‘Recommendations on data/metadata quality to assist the 
energy sector’ (Fig. 5.10).

It should be noted, however, that the range of scores between the most 
and least popular suggested policy/services initiatives is relatively small, 
and their differences are likely within the sample error. In addition, given 
this is an evolving area we expect these responses to vary over time. 
Therefore, it is not straightforward to clearly pinpoint which activities are 
deemed as critical to the extent that they should be prioritised.

Participants were also asked about their preferences regarding research 
and technology transfer initiatives that should be pursued by WEMC. The 
‘Development of methodologies for analysing the linkages between 

Fig. 5.10 Preferences from survey respondents regarding policy/services initia-
tives to be pursued by WEMC (based on rating average of ranked preferences)
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energy, water and food’ ranked the highest of all the options given 
(Fig.  5.11). This was followed by ‘Information and tools for assessing 
energy risks and vulnerabilities’ and ‘Climate information and tools to 
support decision-making based on energy source and need’. The least pre-
ferred option was ‘Assessing the impact of high penetration of variable 
energy generation and their optimal integration into the grid’ (Fig. 5.11).

Finally, participants were asked about their preferences regarding out-
reach and training activities. The main priority for respondents is the cre-
ation of a ‘WEMC mailing list and newsletter’ (Fig. 5.12). Following from 
that, respondents were also interested in ‘Targeted schools on particular 
topics within the energy and meteorology nexus’ and ‘A series of online 
webinars on the energy and meteorology nexus’. The least preferred 
option was ‘Creation of a database of organisations, projects, events, and 
best practices to support potential collaborations’ (Fig. 5.12).

Paying for WEMC Services

Participants were also asked about their willingness to pay for WEMC 
services. Of those who responded to this question (n = 88), 47% agreed 
that they would be willing to pay for those services whilst 53% disagreed. 
Those who indicated they would be willing to pay were then asked about 

Fig. 5.11 Preferences from survey respondents regarding research and technol-
ogy transfer initiatives to be pursued by WEMC (based on rating average of ranked 
preferences)
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how much they would pay per year for the WEMC services. Around 72% 
of the respondents would be willing to pay less than 500 US dollars per 
year, whilst only 16% would pay between 500 and 1000 US dollars, 9% 
between 1000 and 5000 US dollars and only 3% said they would be will-
ing to pay between 5000 and 15,000 US dollars (Fig. 5.13).

Fig. 5.12 Preferences from survey respondents regarding outreach and training 
activities to be pursued by WEMC (based on rating average of ranked 
preferences)

Fig. 5.13 Respondents’ willingness to pay for WEMC services, per year
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Of the total number of respondents, 46% agreed to continue being 
involved and updated regarding future WEMC activities (including those 
both willing and not willing to pay for the services). These mainly included 
respondents from Europe (56%) followed by those from the USA (21%), 
Africa (14%), South America and the Caribbean (6%) and Asia (3%).

next stePs for WeMc
The results of the survey have been very useful in shaping and guiding 
WEMC activities thus far, and for the immediate future. Specifically, the 
results of the survey have been useful to highlight:

 (a) The interest of survey respondents in WEMC pursuing a number 
of activities such as ‘Development of codes, standards and guide-
lines for meteorological information’ or ‘Development of method-
ologies for analysing the linkages between energy, water and food’;

 (b) The indication from nearly 50% of the respondents of their interest 
to remain engaged in and informed about future activities in the 
energy and meteorology nexus;

 (c) The willingness of a comparable percentage of respondents to pay 
for services provided by WEMC, a clear indication that these ser-
vices are deemed important and valuable.

It is also important to note that the results of the survey were written 
up nearly a year after it was closed. Having had this additional period to 
see the evolution of the sector, particularly in terms of stakeholders’ 
requirements, it is apparent that some of the priorities have somewhat 
shifted since then. For instance, the optimal integration of RE into the 
grid was given as a low priority by the respondents (Fig. 5.11), while there 
is evidence (as highlighted earlier in this chapter and also through the 
work of, e.g., the UVIG5) that this is now higher in experts’ agendas. This 
apparent shift may also be indicative of the fact that our survey sample, 
although reasonably large, was not robust enough to clearly discriminate 
amongst priorities areas. It may also simply be a reflection of the fact that 
preferences regarding policy/services initiatives (Fig. 5.10) cannot cap-
ture the nuances in the response choices available. In all, stakeholder con-
sultations, through surveys similar to the one presented here or via other 
processes (e.g. workshops), will need to be an integral component of 
WEMC activities so that new ideas, needs and other information from 
stakeholders are taken into consideration in a timely fashion.
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Partnerships with analogous organisations (e.g. the International Solar 
Energy Society, ISES) are also key to the success of WEMC, and these are 
being actively pursued, for instance, via the co-organisation of webinars, a 
communication tool that is proving very popular or the involvement of 
key people (e.g. ISES president) in the WEMC Advisory Board.

Another important aspect of the WEMC activities is to provide a blue-
print, and ideally an international reference, for national and regional 
activities in the area of energy and meteorology. A few such activities have 
already been initiated, with the USA (e.g. American Meteorological 
Society’s annual Conference on Weather, Climate, Water and the New 
Energy Economy, which started in 2009) and the EU (the Energy 
Meteorology session at the European Meteorological Society annual con-
ference, which also started in 2009) leading the way. More recently, a 
meeting on energy and meteorology was held in China in 2016 for the 
first time, for which ICEM was taken as a reference for the organisation of 
the event (Dr Rong Zhu, China Meteorological Administration, personal 
communication).

Overall, what is clear is that a continuous, adaptable and proactive 
interaction will be required in order to make WEMC’s activities valuable 
to a wide range of stakeholders in this relatively fast evolving interdisci-
plinary area. Further discussion about next steps in the area of energy and 
meteorology is presented in the final chapter of this book.

notes

1. The survey questions are available at: http://www.wemcouncil.org/
MEMBERS/WEMC_Survey_Qs_2015.pdf.

2. http://www.wemcouncil.org/wp/conferences/icem2015/.
3. https://lists.iisd.ca/read/?forum=energy-l.
4. https://lists.iisd.ca/read/?forum=climate-l.
5. https://www.uvig.org/.
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CHAPTER 6

Weather, Climate and the Nature 
of Predictability

David J. Brayshaw

Abstract The prediction and simulation of future weather and climate is a 
key ingredient in good weather risk management. This chapter briefly 
reviews the nature and underlying sources of predictability on timescales 
from hours-ahead to centuries-ahead. The traditional distinction between 
‘weather’ and ‘climate’ predictions is described, and the role of recent sci-
entific developments in driving a convergence of these two classic problems 
is highlighted. The chapter concludes by outlining and comparing the two 
main strategies used for creating weather and climate predictions, and dis-
cussing the challenges of using predictions in quantitative applications.

Keywords Weather prediction • Climate prediction • Predictability • 
Chaos • Modelling

IntroductIon

A long-standing challenge for meteorology and climate science has been 
to develop techniques capable of producing predictions and simulations of 
the weather and climate across a range of timescales. Although these 
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 timescales should be viewed as a continuum, it is nevertheless helpful to 
identify a number of discrete timescales, ranging from very near term 
‘nowcasting’ to climate change projections over centuries and millennia, 
as shown in Fig. 6.1.

This chapter briefly reviews how the nature of predictability differs 
across prediction timescales, identifies the major strategies used to create 
predictions and discusses some of the general challenges with using pre-
dictions in quantitative applications.

the nature of PredIctabIlIty

To understand weather and climate forecasting, it is important to under-
stand the character of the physical system one is seeking to predict. The 
atmosphere (and the climate system more broadly) can be viewed as an 
example of a chaotic system (e.g., Lorenz 1963), associated with two dis-
tinct ‘types’ of predictability (Lorenz 1975, see also Schneider and Griffies 
1999). These types—and their relationships to different timescales of 
weather and climate—are discussed herein.

Due to the complexity of the atmosphere (or climate) system, it is help-
ful to discuss predictability with reference to an analogous but simpler 
chaotic system. The Lorenz model contains three inter-dependent vari-
ables (U, X and Y) evolving deterministically over time. Each of the three 
dimensions can be understood as representing a meteorological quantity 
in analogy (e.g., eastward wind, northward wind and temperature). A 
typical atmosphere-only climate model will, however, have in excess of 
~106 dimensions: one each for six key meteorological properties (wind in 
the horizontal and vertical, temperature, water vapour and surface pres-
sure) at each point on a 3-dimensional grid (perhaps 192 × 120 × 30). 
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Fig. 6.1 Weather and climate timescales, forecasting tools and datasets
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In some cases, the time evolution of the equations may also include a sto-
chastic (random) component rather than being purely deterministic. The 
equations of the Lorenz model may be written in finite difference form:

 
X X Y X tt t t t= + −( ) − − −1 1 1α δ

 

 
Y Y X U Y tt t t t t= + −( ) − + − − − −1 1 1 1β δ

 

 
U U X Y U tt t t t t= + −[ ]− − − −1 1 1 1γ δ

 

where α, β and γ are constant parameters, subscripts denote time-steps, 
and δt is the interval between adjacent time-steps. Following Palmer 
(1999), ϵ is used to denote a small external forcing (for the initial discus-
sion it is assumed that ϵ = 0).

The time evolution of the Lorenz system can be represented as a trajec-
tory (or path) in phase space.1 Figure 6.2a shows a short section of a tra-
jectory as an example: from an initial state near (U, X, Y) = (33, 15, 18), 
the model evolves to a state (24,-12,-18) over a ‘time’ interval ∑δt = 0.7. 
If the model is allowed to evolve for a longer period to produce a more 
extended trajectory (referred to as an attractor), a fuller view of the sys-
tem’s properties emerges (Fig.  6.2b). The attractor clearly shows two 
lobes, with the system preferring to occupy states in one or the other of 
the lobes.
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Fig. 6.2 The Lorenz model and initial condition problems, using α = 10, β = 28, 
γ = 8/3 and ϵ = 0. See text for discussion
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Figure 6.2 can be used to illustrate an example of an initial condition 
problem or ‘predictability of the first kind’. Consider at some time t1 that 
observations of the system are taken, and found to be U1 = 30 and X1 = 
4. Assume that each of these measurements is subject to an observa-
tional error, ∆U1 = ∆X1 = 1, and Y1 is unobservable in practice.2 The 
systems current position in phase space is, therefore, not known exactly, 
but can be constrained to a relatively small region of phase space indi-
cated by the black box in Fig. 6.2b. A prediction of the system’s state at 
some future snapshot in time, t2 = t1 + ∆t is sought—that is, we wish to 
predict the exact values of U2 and X2. This is analogous to weather fore-
casting: we ‘know’ the weather today and wish to predict the weather 
tomorrow.

There are many possible phase space trajectories that are consistent 
with the available knowledge of the initial conditions at time t1. A 
selection of these are shown in Fig. 6.2c: some lead to the left lobe 
(black lines), whereas others remain in the right lobe B (grey lines). In 
consequence, a relatively small error in estimating the starting state 
(∆U1 = ∆X1 = 1) grows rapidly to a large error in the prediction (∆U2 
~ ∆X2 ~ 30). The rate of error growth is, however, very dependent on 
the initial state and the forecast time horizon considered; in this exam-
ple there is very low predictability but, if the initial conditions corre-
spond to some other regions of the attractor, there may be much more 
predictability (i.e., smaller errors), at least over short time horizons 
(i.e., small ∆t).

The evolution, shape and position of a trajectory are also sensitive to 
the model’s parameters (α, β and γ), typically referred to as boundary 
conditions. Figure  6.3 shows the original attractor from the previous 
figure (in black) and a new attractor (in grey)—the only difference is a 
small change in one of the boundary conditions, ϵ. Clearly, one can 
detect a change in the probability distribution of the observable quan-
tity, U, as indicated by the relative frequency distributions in the bottom 
panel in Fig.  6.3. This is an example of ‘predictability of the second 
kind’, which concerns the ability to predict changes in the attractor in 
response to changes in external boundary conditions.3 Clearly, if the 
response is large, then it can be more readily detected against the ‘inter-
nal’ variability corresponding to trajectories moving within a single 
attractor.

Traditional climate change simulations studying the equilibrium cli-
mate under a future greenhouse gas concentration scenario can be viewed 
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as an example of second kind predictability: it is a boundary condition 
prediction problem where one seeks to understand how the statistics of 
climate differ between two different sets of boundary conditions (e.g., 
Meehl et al. 2007).

If numerical weather prediction (NWP) (days-ahead) and long-term 
climate change simulations (decades-ahead) can be considered as  examples 
of initial condition and boundary condition problems, then it is clear that 
much lies between these two extremes. It is therefore helpful to consider 
the timescales involved in the system one is seeking to predict.

The climate system in general contains many different components, 
varying on a wide range of timescales (Fig. 6.4). At forecast lead times of 
1–2 days, it is typically sufficient to focus on the evolution of the faster 
components alone (e.g., troposphere and land-surface temperature) as the 
slower components (e.g., ocean temperature, ice sheets) change little dur-
ing the lifetime of the prediction. Indeed, at very short lead times (min-
utes to hours) many aspects of the large-scale flow in the troposphere may 
even be considered fixed. Conversely, at longer forecast lead times, the 
evolution of slower components become significant (e.g., ocean circula-
tion, land-surface moisture, ice sheets, sea ice and snow cover). For a pre-
diction of tomorrow’s weather in London, it may, therefore, be sufficient 
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Fig. 6.3 The Lorenz model and the long-term equilibrium climate change prob-
lem. The black and grey curves show two simulations with different boundary 
conditions (parameters as in Fig. 6.2, but with ϵ = 10 for the grey curve). See text 
for discussion
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to neglect small changes in the temperature of the North Atlantic ocean’s 
surface, but the same cannot be said for predicting the seasonal-average 
temperature over Europe several months in advance.

Weather and climate predictions (as outlined in Fig. 6.1)—particularly 
those in the range of several days to a few decades—are therefore a mixture 
of initial and boundary condition problems, and have been the subject of 
much research in recent years. This can be illustrated by considering, for 
example, a seasonal forecast. In such a forecast, the state of the troposphere 
and land-surface temperature change much more quickly (~days) than the 
forecast horizon (~months). From the perspective of these components, 
the problem is therefore boundary condition prediction and predictability 
of the second kind (i.e., the intention is to predict the statistical properties 
of the troposphere rather than estimate its state at a specific snapshot in 
time). However, for the ocean surface, soil moisture, snow cover and strato-
sphere—which only change slowly over the timescale of the forecast—the 
challenge is to determine the specific evolution, therefore concerns predict-
ability of the first kind where initial conditions play a key role.

PredIctIon StrategIeS

There are two broad categories of predictive models used in weather and 
climate forecasting: statistical and dynamical. The primary characteristics 
of each are outlined below.
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Fig. 6.4 Indicative timescales of selected components in the climate system
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Statistical Models

Statistical predictions come in many forms and are in widespread use 
throughout academia and industry for many problems. Conceptually, 
these models are simple: historical observations are interrogated to find 
relationships between a predictand and a set of potential predictors. These 
historical relationships are then assumed to remain fixed into the future 
and are used to create a prediction. Common examples include single- or 
multi-variate autoregressive models (or more sophisticated versions such 
as ARMA and GARCH), artificial neural networks, support vector 
machines and ‘analogue’-based techniques.

Statistical models are an undoubtedly powerful prediction tool. It must, 
however, be recognised that there are limitations and dangers associated 
with this approach. The process of statistical modelling is essentially ad- 
hoc: the predictors to be used are not necessarily known a priori (unless 
informed by some prior physical or dynamical process understanding), and 
must, therefore, be established afresh for each new predictand. The ability 
to identify statistical relationships between predictors and predictand is 
also constrained by the quantity and quality of the available historic data: 
the records must be sufficiently long and homogeneous to robustly estab-
lish statistical relationships between variables. Finally, statistical models 
trained on historic data may ultimately be a rather poor guide for a climate 
system subject to changing boundary conditions (e.g., greenhouse gas 
concentrations). This is perhaps particularly the case for longer range fore-
casts where many plausible future states will simply not have been recorded 
in historic observations

Dynamical Models

In contrast to statistical models, dynamical prediction models numerically 
simulate the behaviour of the system itself and are the basis of the weather 
forecasts provided by most operational weather services. In NWP, the 
atmosphere is represented by fundamental physical equations based on the 
laws of motion, thermodynamics and conservation of mass. The equations 
are discretised in space and time (i.e., the atmosphere is divided into grid 
boxes) and solved iteratively in each grid box, advancing time-step by 
time-step. Additional physical and dynamical processes such as clouds, 
precipitation and radiation are represented through ‘parameterization 
schemes’ at the grid box level.
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As discussed in section ‘The Nature of Predictability’, initial condition 
errors in NWP can grow rapidly over a short period (Fig.  6.2c) and 
‘ensemble forecasting’ is widely used. An NWP ensemble consists of a 
large set of N individual ‘member’ weather forecast simulations, each 
starting from a slightly different set of initial or boundary conditions (all 
of which are consistent with the observations, subject to observational 
error). Typically, the set of initial conditions chosen will seek to maximise 
the difference between the ensemble members at the targeted forecast 
time—that is, to capture the widest possible range of uncertainty associ-
ated with errors in the initial conditions. Such forecasts, although still 
‘predictions of the first kind’, provide N different potential realisations of 
the future weather state and must be interpreted probabilistically (typically 
N ~ 50 in many present NWP systems) with the ‘spread’ of outcomes in a 
good forecast system providing an indication of the predictability available 
from the particular set of initial conditions used.

Beyond a few days to a couple of weeks, additional climate system com-
ponents must also be included in addition to the atmosphere (see Fig. 6.4 
and section ‘The Nature of Predictability’), such as the stratosphere, 
oceans and sea ice. The resulting dynamical models draw strongly on the 
heritage of General Circulation Models (GCMs). First developed in the 
1960s–1980s—see, for example, Smagorinsky et al. 1965 for a very early 
example—and continually developed since, GCMs are identical in concept 
to NWP models—insofar as they represent a physical model of the system 
one is attempting to predict or understand—but as they include more 
physical processes and must be run over longer timescales, they typically 
use much coarser resolution grid boxes than NWP. As in NWP, the use of 
ensembles in climate model simulations is common. In this case, however, 
the ensemble is typically used to sample several different sources of uncer-
tainty4: natural climate variability (Deser et  al. 2012), initial condition 
uncertainty (Scaife et al. 2014), parametric uncertainty (Stainforth et al. 
2005) or model structural uncertainty (Taylor et al. 2012).

The power of dynamical models to simulate weather and climate is con-
siderable. The skill of NWP models at lead times of several days ahead has 
increased continuously over recent decades, and GCMs are now used to 
produce very sophisticated realisations of physical phenomena affecting a 
wide range of industrial sectors. There are, however, limitations. NWP and 
GCM models are computationally expensive compared to statistical mod-
els, leading to a three-way trade-off between resolution (grid size), physical 
complexity (number of processes modelled) and computational feasibility 
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(number of model years simulated and ensemble size). All dynamical mod-
els are subject to biases and/or growth of prediction error from many 
sources, such as deficiencies in model formulation (numerical approxima-
tions, missing processes), parametric uncertainty (ill- constrained proper-
ties in parameterisation schemes) and initial conditions. Before predictions 
are used, care should be taken to establish whether dynamical models pro-
duce a reliable representation of any particular phenomena of interest

Summary and dIScuSSIon

There are good reasons to believe that predictability exists in weather and 
climate forecasting across a range of timescales from hours to decades and 
beyond. This predictability may take one of two forms: either a prediction 
of the specific evolution of the weather (an initial condition problem) or 
else a prediction of the statistical properties of the climate (a boundary 
condition problem). Weather and climate forecasts in the intermediate 
range (several days to decades) typically incorporate some aspects of both 
forms of predictability, and a probabilistic approach to the resulting fore-
cast is essential.

Both the statistical and dynamical approaches discussed above have 
great power in terms of achieving predictive skill. It is, however, empha-
sised that the two approaches should be seen as being complementary 
toolkits rather than competing philosophical strategies. Statistical meth-
ods are often used to ‘calibrate’ dynamical model output (reduce bias 
when compared against point observations) and configure dynamical 
models forecasts (e.g., by statistically identifying key boundary conditions 
such as sea-surface temperature patterns). Conversely, dynamical models 
enable deeper process understanding (helping to identify robust predic-
tors for statistical models) and—with care—can be used to extend datasets 
by providing plausible artificially generated climate data (statistical robust-
ness and rare events, including effects of a changing climate).

noteS

1. Only two dimensions are shown, the Y-axis (not shown) is perpendicular to 
the page.

2. Many environmental properties, while observable in principle, cannot be 
observed well in practice. A good example is the deep ocean interior which 
is very sparsely sampled observationally.
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3. This response to boundary condition errors also acts to limit the predictabil-
ity for the evolution any single trajectory run from a specific set of initial 
conditions.

4. It should be noted that, like GCM ensembles, NWP ensembles may include 
sampling of model and parameter uncertainty. Indeed, recent developments 
have seen NWP and GCM models begin to converge in many respects, as 
NWP models include more Earth system components (e.g., coupling the 
atmosphere to ocean models) and the grid-resolution of GCMs increases.
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the original author(s) and the source, a link is provided to the Creative Commons 
license and any changes made are indicated.
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CHAPTER 7

Short-Range Forecasting for Energy

Sue Ellen Haupt

Abstract Short-range forecasts for periods on the order of hours to days 
and up to two weeks ahead are necessary to smoothly run transmission 
and distribution systems, plan maintenance, protect infrastructure and 
allocate units. In particular, forecasting the renewable energy resources on 
a day-to-day basis enables integration of increasing capacities of these vari-
able resources. This chapter describes the basics of this short-range fore-
casting, beginning with the observation-based “nowcasting” of the first 
15 minutes and ranging up to two weeks using numerical weather predic-
tion. We discuss how blending multiple forecasts can increase accuracy and 
how probabilistic forecasts are being used to quantify the forecast 
uncertainty.

Keywords Wind power forecasts • Solar power forecasts • Renewable 
energy • Nowcasting • Numerical weather prediction • DICast • Forecast 
blending • Analog ensemble • Probabilistic forecasts
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The Need for ShorT-raNge forecaSTS

Utilities and Independent Transmission Operators (ITOs) depend on 
accurate forecasts for the next hours to several weeks. They often need to 
plan operation and maintenance outages weeks to months ahead. Weather 
events may make it difficult to maintain power lines, wind turbines and 
other infrastructure. If they can plan around events such as lightning 
storms and high wind events, the safety of the workers and efficiency of 
the maintenance can be greatly improved.

Weather also impacts day ahead planning of how to commit units. 
Although weather impacts all types of power production, it actually also 
drives the renewable units. It is important to be able to forecast the wind, 
solar and hydro power available the next day, or often, over the next sev-
eral days too. The marginal cost to run these renewable resources is quite 
low and it is economically advantageous to allocate as much power from 
those units as possible. But overallocation of those units when the wind, 
irradiance or water power is not available could lead to using much more 
expensive reserve units in real time.  Thus it is critical to produce high 
quality wind and solar power forecasts.

For timescales less than a day, it is important to know the most recent 
update to the forecast in order to balance the load in close to real time. 
Sharp up or down ramps in renewable energy must be balanced with the 
reserve units if the grid operators were not expecting them.

overview of ScaleS

To forecast across these scales from minutes to a few weeks, meteorolo-
gists must combine forecast methods that are most appropriate to each 
scale. Figure 7.1 illustrates the big picture of the types of systems that may 
be useful for such forecasts. Figure 7.1 focuses on the short time range 
where the stakeholders require optimal accuracy. That figure demonstrates 
that observation-based nowcasting, which refers to the first few hours of 
the forecast, provides a much more accurate forecast in the short range, 
but its skill drops off rapidly. Numerical weather prediction (NWP) 
becomes more important at about three hours and provides value out to 
about two weeks. Because NWP run at high resolution over a sizable 
domain requires on the order of hours to run on supercomputers and 
often requires spin-up time, it is not available for real-time use in the 
shortest ranges. Modern methods of forecasting renewable energy output 
employing postprocessing methods to blend disparate models or ensem-
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bles are shown to greatly improve the forecast skill (Giebel and Kariniotakis 
2007; Monteiro et al. 2009; Mahoney et al. 2012; Ahlstrom et al. 2013; 
Orwig et al. 2014; Tuohy et al. 2015). Figure 7.1 indicates that this blend-
ing can provide value beyond that of the input models.

NowcaSTiNg

The shortest time frames of the first several hours benefit from forecast-
ing based on data sensors that determine the current situation of the 
variable of interest. For instance, having in situ measurements of wind 
speed or solar radiation in the field allow us to train statistical learning or 
artificial intelligence models to recognize current conditions and likely 
changes. Over the first 15–45 minutes, it is often difficult to beat a per-
sistence forecast. If we know the wind now, the best forecast in the first 
few minutes is that there is no change. For solar radiation, we often use 
a “smart persistence” where we expect the cloud cover to stay the same, 
but recognize that the solar angle will change. For solar energy, sky 
imaging traces cloud conditions in real time, which allows us to use 
motion vectors derived from image processing succeeding images, or if 
there is a co-located wind profiler, one can project the cloud motion for 
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Fig. 7.1 Blending of NWP models with observation-based nowcasting enables 
optimization of the short-range forecast
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the next few steps (Kleissl 2010; Chu et al. 2013; Nguyen and Kleissl 
2014; Peng et al. 2015). Cloud imager-based forecasts are effective for 
about 15–30 minutes.

Statistical learning methods have been shown to be effective from about 
30 minutes to around three hours. Such methods may consist of using tech-
niques such as artificial neural networks (ANN—Mellit 2008; Wang et al. 
2012), autoregressive models (Hassanzadeh et al. 2010; Yang et al. 2012), 
Markov process models (Morf 2014) or support vector machines (Sharma 
et al. 2011; Bouzerdoum et al. 2013) to recognize patterns in the changes 
of wind speed or solar radiation. Blended techniques, such as that of Pedro 
and Coimbra (2012), that use a genetic algorithm to optimize an ANN have 
also been effective. In addition, new methods blend weather observations 
with irradiance observations and use clustering techniques to identify regimes 
and then train ANN for the individual regimes (Kazor and Hering 2015), 
which was shown to improve upon non-regime- dependent ANN and upon 
smart persistence (McCandless et al. 2016a). Recent work has added satellite 
data to this type of forecasting (McCandless et al. 2016b). Some methods 
also predict the variability of the resource (McCandless et al. 2015).

In the time range from about an hour out to six hours, cloud motion 
vectors derived from satellite data are often used to forecast solar irradi-
ance (Miller et al. 2013). When a satellite observes the cloud cover and the 
forecast system then advects it using motion vectors derived from succes-
sive images or uses observed or modeled data to advect those clouds, the 
derived liquid water path can be used to provide good estimates of irradi-
ance attenuation. Satellite-based methods depend on the satellite data 
being received and processed before being used in the motion vector 
models, which take on the order of 30 minutes after observation. They 
also do not account for cloud development or dissipation, so the forecasts 
of individual clouds are only accurate for a limited period of time, begin-
ning to degrade after the first couple hours.

Wind energy forecasting at these scales of the first few hours can be 
improved by other methods of remote sensing. Mahoney et  al. (2012) 
describe the Variational Doppler Radar Analysis System (VDRAS) that 
assimilates radar data into a cloud-resolving model to better predict winds. 
Because that model does not include the full physics, it can be updated at 
frequencies as high as every 15 minutes. That work showed that in case 
studies, the winds could be well predicted for the first two hours and could 
identify weather ramps as they approach. This method, however, relies on 
having radars sited in close proximity to the wind farms.
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Numerical weaTher PredicTioN

Beyond about three to six hours, the workhorse of forecasting is 
NWP. NWP consists of the integration of the nonlinear partial differential 
equations governing atmospheric flow and includes appropriate models 
for the physics of clouds, radiation, turbulence, land surface conditions 
and more (Warner 2011). As computer power has advanced, so has our 
capability to provide higher resolution simulations in closer to real time. 
The national centers now run very short-range simulations at about three 
kilometers horizontal resolution over limited regions (such as over the 
USA) as often as hourly. Global models have necessarily coarser resolution 
and run less frequently. As of mid-2017, the US Global Forecast System is 
run every six hours at 13 kilometers resolution with hourly output for the 
first five days and at 70 kilometers out to 16 days. The European Center 
for Medium Forecast is run twice a day at nine kilometers resolution for 
16 days with output at three hours temporal resolution. The national cen-
ters are continually updating their model resolutions, lengths of simula-
tions and frequency of the runs as computer power is upgraded. In 
addition, they are including ensemble runs, which provide probabilistic 
information as well as improving upon the deterministic forecast. As men-
tioned in the introduction and elaborated later, the sensitivity to initial 
conditions is what partly limits predictability, which necessitates running 
ensembles of models.

It is important to assimilate observations of weather data from the 
global networks to provide the best possible initial condition to the runs. 
To improve forecasts at specific points, such as at a wind farm, it is advan-
tageous to also assimilate specialized data (such as wind speed measure-
ments) at that farm. Mahoney et  al. (2012) and Wilczak et  al. (2015) 
provide evidence that assimilating local wind farm data can improve the 
NWP forecasts. In a case study, Cheng et al. (2017) show that real-time 
four-dimensional data assimilation can reduce the mean absolute error in 
the forecast by 30–40% in the first three hours. Kosovic et al. (2017) indi-
cate that such local data assimilation can significantly improve forecasts 
over the national models for the first 15 hours. Versions of the models are 
now being built to specifically improve upon predicting variables of par-
ticular importance to energy, such as wind (Wilczak et  al. 2015), solar 
(Jimenez et al. 2016) and hydro (Gochis et al. 2014), although the use of 
national hydrological models is still in its infancy.
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BleNdiNg The forecaSTS aNd PredicTiNg Power

Modern forecasting includes postprocessing the NWP output and forecast 
blending to improve upon the results. At a basic level, a multivariate sta-
tistical regression model known as model output statistics (MOS) is 
applied to remove biases (Glahn and Lowry 1972). More complex meth-
ods (such as ANN, autoregressive models and others) are also used to 
provide nonlinear corrections to models (Myers et al. 2011; Myers and 
Linden 2011; Giebel and Kariniotakis 2007; Pelland et  al. 2013). 
Ensemble MOS (Wilks and Hamill 2007) not only corrects the individual 
models but also optimizes weights for blending forecasts from multiple 
models. It is typical to blend multiple models together using some statisti-
cal learning technique to produce a better forecast than any single model 
could produce consistently, often with a 10–15% improvement over the 
best model forecast (Mahoney et al. 2012; Myers et al. 2011). Figure 7.2 
displays an example of wind speed forecasts using National Center for 
Atmospheric Research (NCAR’s) Dynamic Integrated foreCast (DICast®) 
system to blend multiple models, with the blended forecast showing a 
lower average root mean square error than any input model.

ProBaBiliSTic forecaSTS aNd The aNalog eNSemBle

Utilities and ITOs are also requesting probabilistic information to plan 
reserves, alleviating transmission bottlenecks, and better planning for 
renewable operations. To this end, the meteorology sector has been pro-
viding probabilistic forecasts. All major national forecasting centers now 
run ensemble forecasts. The rate of spread of the members of the ensem-
ble quantifies the uncertainty. Various postprocessing methods are used to 
remove bias, sharpen the probability density function and calibrate the 
spread, or reliability, of the forecast.

Another interesting postprocessing method is the analog ensemble 
(AnEn) technique. In this case, however, rather than running multiple 
models, the historical output from a single, often high resolution, model 
is used to generate the ensemble. A search of the historical forecast records 
is made to identify the forecasts that are most similar to the current fore-
cast. We then compare the forecasts to the corresponding observations. 
Those observations then become the analog ensemble. This method is 
effective at both improving on the deterministic forecast and using the 
multiple analogs to form an ensemble that can be used to quantify the 
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uncertainty of the forecast (Delle Monache et al. 2013; Haupt and Delle 
Monache 2014; Alessandrini et al. 2015).

Accuracy of forecasts has been improving steadily with some areas now 
seeing single digit errors in terms of percentage of capacity at a wind farm 
(Orwig et  al. 2014; Haupt and Mahoney 2015). These improvements 
have stemmed from including observations in the immediate vicinity of 
the resource, both in the nowcasting and assimilated into the NWP mod-
els, as well as better methods of blending multiple models for the appro-
priate timescales. Solar power predictions have not been a focus for very 
long, but rapid improvement is also happening here (Lorenz et al. 2009; 
2014; Tuohy et al. 2015; Haupt et al. 2017).
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CHAPTER 8

Medium- and Extended-Range Ensemble 
Weather Forecasting

David Richardson

Abstract The chapter provides an overview of ensemble weather forecast-
ing for the medium- and extended-range (days to weeks ahead). It reviews 
the methods used to account for uncertainties in the initial conditions and 
in the forecast models themselves. The chapter explores the challenges of 
making useful forecasts for the sub-seasonal timescale, beyond the typical 
limit for skilful day-to-day forecasts, and considers some of the sources of 
predictability such as the Madden-Julian oscillation (MJO) that make this 
possible. It then introduces some of the ensemble-based forecast products 
and concludes with a case study for a European heat wave that demon-
strates how ensemble weather forecasts can be used to guide decision mak-
ing for weather-dependent activities.

Keywords Ensemble • Weather forecast • Uncertainty • Predictability • 
Medium-range • Extended-range • Sub-seasonal • Madden-Julian 
oscillation

D. Richardson (*) 
European Centre for Medium-Range Weather Forecasts (ECMWF),  
Reading, UK



110 

Preamble

Operational weather forecasts for the medium- and extended-range (days 
to weeks ahead) are generally based on the output from global Numerical 
Weather Prediction (NWP) or General Circulation Model (GCM) ensem-
ble forecasts.

InItIal CondItIon UnCertaIntIes

The main aim of the ensemble approach is to account for uncertainty in 
the initial atmospheric conditions. Typically this is done by adding small 
perturbations to a single “best-estimate” analysis of the current state of 
the atmosphere. The analysis is generated through assimilation of observa-
tions into the NWP model. The size of the perturbations is constrained to 
be consistent with the known analysis errors. A number of different meth-
odologies are used to generate perturbations that are physically realistic 
and that will grow to represent the range of possible future states consis-
tent with the initial uncertainty.

The error-breeding method (Toth and Kalnay 1993, 1997) uses a 
cycling approach where the differences between short-range forecasts are 
re-scaled to form the initial perturbations for the next forecast. A number 
of generalisations of the original breeding method have been developed, 
designed to improve the representation of the analysis uncertainty at each 
initial time. These include the Ensemble Transform Kalman Filter (ETKF, 
Bishop et al. 2001), used at the Met Office (Bowler et al. 2008, 2009), 
and the Ensemble Transform with Rescaling (ETR, Wei et al. 2008) used 
at the United States National Centers for Environmental Prediction 
(NCEP).

The Singular Vector (SV) method (Buizza and Palmer 1995) computes 
new perturbations at each analysis time. The method identifies the fastest 
growing perturbations over a given time period (e.g. 48 hours). A linear 
combination of these SVs, scaled to have amplitudes consistent with the 
analysis error, is added to the best-estimate analysis to make the starting 
conditions for each ensemble member. The SV method is used operation-
ally at the European Centre for Medium-Range Weather Forecasts 
(ECMWF) (Leutbecher and Palmer 2008) and the Japan Meteorological 
Agency (JMA) (Yamaguchi and Majumdar 2010).

Other methods more directly address the observation uncertainty by 
perturbing the observed values themselves. At ECMWF, perturbations are 
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also provided from an Ensemble of Data Assimilations (EDA) (Buizza 
et al. 2008). Each EDA member is an independent data assimilation, using 
the same set of observations, but introducing perturbations to these obser-
vations consistent with the known observation errors. The Meteorological 
Service of Canada (MSC) uses perturbed observations and an ensemble 
approach, the ensemble Kalman filter (EnKF, Houtekamer and Mitchell 
2005; Houtekamer et al. 2009, 2014), to provide an ensemble of initial 
conditions. It should be noted that for both the EDA and EnKF, it is nec-
essary to take account of model uncertainties (see below) as well as the 
observation uncertainties to generate appropriate initial perturbations.

model UnCertaIntIes

Global NWP ensemble forecasts typically run with a grid spacing of a few 
tens of kilometres. Many important physical processes (that affect, e.g., 
clouds and precipitation) work on much smaller spatial scales than can be 
resolved directly. These processes are represented in the NWP models by 
“parametrization schemes” that describe the aggregate effect of the 
smaller-scale unresolved processes on the larger resolved scales.

The finite resolution of the NWP model and the approximations made 
in the parametrisation schemes are sources of model uncertainty. Most 
global NWP ensembles also now include a representation of these uncer-
tainties in the model formulation. A range of methods has been developed 
and sometimes a combination of methods is used in a single ensemble 
system to account for different aspects of model uncertainty.

One approach is to use a number of different parametrisation schemes 
within the ensemble. For example, there are various ways to parametrise 
convective processes and an ensemble can be generated by running some 
members using one convection parametrisation scheme, while other mem-
bers use a different convection scheme (Charron et al. 2010). An alterna-
tive is to use a single parametrisation, but to perturb some of the key 
parameters in the scheme (Bowler et al. 2008). Other schemes represent 
the uncertainty from the sub-grid scale by stochastically perturbing the 
tendencies from the parametrisation schemes, as, for example, in the 
Stochastically Perturbed Parametrisation Tendency scheme (SPPT, 
Leutbecher et  al. 2017; Buizza et  al. 1999). Backscatter schemes are 
designed to simulate the transfer of energy from the unresolved sub-grid 
scales to the larger scales that are resolved by the model (Shutts 2005; 
Berner et al. 2009).
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oPeratIonal Global medIUm-ranGe ensembles

A number of meteorological centres produce operational medium-range 
ensemble forecasts. Initial condition and model uncertainties are repre-
sented using many of the above methods, with different centres adopting 
different approaches. The TIGGE (The International Grand Global 
Ensemble) project provides access to regular global ensemble predictions 
from ten of the leading global NWP centres to support research and has 
facilitated a comprehensive evaluation of the global ensembles produced 
by different NWP centres (Swinbank et al. 2016; Bougeault et al. 2010; 
and references therein).

Comparison of the forecasts from the TIGGE centres confirms that 
while the different centres each have their strengths and weaknesses, the 
different perturbation methodologies all have merit. It is more important 
that an NWP system produces an ensemble that accounts for both initial 
condition and model uncertainties than the precise methodology used to 
produce the perturbations. However, it is also important to carry out 
proper and comprehensive evaluation to ensure that the perturbations are 
consistent with the uncertainties of the system. Figure 8.1 shows an exam-
ple of the skill of operational ensemble forecasts from five global centres in 
predicting the large-scale weather patterns over the extra-tropical north-
ern hemisphere up to two weeks ahead (the temperature at 850 hPa is a 
good indicator of whether a location is under the influence of a warm or 
cool circulation pattern). Skill is measured using the Continuous Ranked 
Probability Skill Score (CRPSS), a standard measure for assessing the use-
fulness of probabilistic forecasts, which can also be interpreted as an indi-
cation of the potential economic value of the forecast systems (Palmer and 
Richardson 2014). CRPSS ranges from a maximum value of 1 (perfect 
knowledge of what the weather will be) to zero (only the climatological 
information is known). This evaluation shows that all the forecasting sys-
tems have positive skill in forecasting day-to-day changes in the weather 
for up to two weeks ahead.

extended-ranGe ensembles

The medium-range ensembles described above typically produce forecasts 
for one to two weeks ahead. This is usually considered the limit for day-
to- day predictability, as the influence of the atmospheric initial conditions 
is much reduced at longer range.
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However, there are important sources of predictability that do give the 
potential to make useful forecasts for the sub-seasonal scale (one or two 
months ahead). One important phenomenon is the Madden-Julian oscil-
lation (MJO), a feature of the tropical atmosphere that also impacts on the 
weather in the extra-tropics (Lin et  al. 2009; Cassou 2008). The MJO 
evolves over a period of 40–60 days, and so is a potential source of forecast 
skill for several weeks ahead. Initial conditions in the stratosphere can 
affect the circulation in the troposphere over the following month, provid-
ing another source for sub-seasonal predictability (Baldwin and Dunkerton 
2001). Other potential sources of predictability at this timescale include 
the land surface (Koster et al. 2010) and snow cover (Jeong et al. 2013) 
conditions at the start of the forecast.

There have been significant improvements in sub-seasonal forecasts in 
recent years, with large improvements in skill for predicting the MJO 
(Fig.  8.2), as well as its influence on other regions, including Europe 
(Vitart 2014). There is now a growing interest in developing applications 
to exploit these forecasts as well as to improve the forecasts themselves.

Following the success of TIGGE, a new sub-seasonal to seasonal pre-
diction project (S2S) has been initiated by the World Weather Research 
Programme (WWRP) and World Climate Research Programme (WCRP). 
The main goal of this five-year project is to improve forecast skill and 
understanding of the sub-seasonal to seasonal timescale and to promote its 
uptake by operational centres and its exploitation by the applications com-
munity (Vitart et al. 2012).

The S2S database includes near real-time ensemble forecasts for up to 
60  days ahead, from 11 forecasting centres: Australia’s Bureau of 
Meteorology (BOM); the China Meteorological Administration (CMA); 
ECMWF; Environment and Climate Change Canada (ECCC); Italy’s 
Institute of Atmospheric Sciences and Climate (CNR-ISAC); the 
Hydrometeorological Centre of Russia (HMCR); the Japan Meteorological 
Agency (JMA); the Korea Meteorological Administration (KMA); Météo- 
France; the US National Centers for Environmental Prediction (NCEP); 
and the UK Met Office (Vitart et al. 2017).

These models are generally different from the NWP models used to 
produce medium-range forecasts at the same centres. Most are coupled to 
an ocean model, as it is important to take account of the evolution of the 
sea-surface temperature and its interaction with the atmosphere over the 
longer time periods of these forecasts. For the same reason, some systems 
also include an active sea ice model. Some centres, such as ECMWF, that 
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already include an ocean model in the medium-range ensemble, use the 
same ensemble system for both the medium-range and sub-seasonal fore-
casts, hence providing a seamless set of predictions covering the timescales 
from days to months ahead. While the skill in predicting the day-to-day 
weather may be limited to around two weeks in general (as seen in 
Fig.  8.1), many of the S2S models demonstrate substantial skill out to 
three or even four weeks ahead for the MJO (Fig. 8.2); this can lead to 
enhanced predictability, for example, over Europe, in certain situations.

Another important aspect of the sub-seasonal forecasts is the need to 
account for model errors. Systematic model errors (biases) can accumulate 

Fig. 8.2 Forecast lead-time (in days) when a correlation-based measure of accu-
racy of the prediction of the Madden- Julian Oscillation (MJO) reaches 0.6 correla-
tion (orange bars) and 0.5 correlation (yellow bars) (1.0 would indicate a perfect 
forecast). The black lines indicate the 95% confidence interval of the time when the 
0.6 correlation is reached. Results are based on the re-forecast from 1999 to 2010 
from all the models, verified against ERA-Interim analyses. Correlations of 0.5 and 
0.6 are often used as indication of useful forecast skill (Vitart 2014)
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during the forecast, and while they are often small enough to be neglected 
for medium-range forecasts, they become too large to be ignored at the 
longer sub-seasonal range. Hence, an additional set of historical ensemble 
integrations is generated by making forecasts from start dates covering the 
last 15–20 years. These re-forecasts (or hindcasts) are used to estimate the 
model climate. This can then be used to remove the model biases from the 
real-time forecasts in a statistical post-processing step (Vitart 2014).

ensemble Weather ForeCast ProdUCts

Ensembles are designed to take account of the uncertainties in the initial 
conditions and in the NWP model used to make the forecast. The set of 
ensemble forecasts provides a direct quantitative indication of the range of 
possible future weather scenarios that may occur. Most ensembles are con-
structed so that each member of the ensemble is equally likely. The pro-
portion of ensemble members forecasting a specific weather event gives an 
indication of the probability for it to occur. Grouping the ensemble into a 
small number of clusters can be valuable for those cases when there are 
distinct alternative scenarios within the ensemble (Ferranti et al. 2015).

The forecast values of weather variables (temperature, wind, rainfall, 
etc.) are typically generated on a 10–50-kilometre spatial grid for medium- 
and extended-range ensembles. These values are not directly comparable 
to the measurements recorded at specific locations since they represent the 
average for the area covered by a grid-box. Statistical post-processing can 
substantially improve the forecasts by tailoring (down-scaling) the grid- 
box forecasts to smaller areas or individual sites, and also accounting for 
the finite ensemble size (Hemri et al. 2014). Re-forecasts are useful for 
calibrating medium-range forecasts as well as for the sub-seasonal range, 
and re-forecast datasets are increasingly becoming part of the medium- 
range forecast configurations. This can be especially important for severe 
weather forecasting by providing information about how the model per-
formed for severe events in the re-forecast period.

The Extreme Forecast Index (EFI) was developed at ECMWF to high-
light potential anomalous weather events, by comparing the real-time 
forecast to the re-forecast model climate distribution (Lalaurette 2003).

Beyond a few days ahead it is no longer possible to predict the day-to- 
day changes in the weather at specific locations. However, by considering 
the average conditions over a period of time, it is possible to give skilful 
forecasts for longer lead times (Buizza and Leutbecher 2015). Sub- 
seasonal forecasts typically predict average conditions for each week of the 
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coming month. At this longer forecast range, the prediction of changes in 
large-scale weather patterns is important, for example, to give an early 
indication of the onset of heat waves or cold spells.

In summer 2015, a heat wave affected large parts of Europe—tempera-
ture records were broken in many places, including in Germany, France 
and Spain. Early indications of widespread warmer than normal conditions 
during the first week of July can be seen in the ECMWF forecast from 16 
June (Fig. 8.3). The signal becomes noticeably stronger in the forecast 

Mon 1 Tue 9 Wed 17 Thu 25 Fri 3
luJnuJ

2015 Fc date

10

15

20

25

30

35

40

)
C°( erutar e

p
meT

30°N

40°N

50°N

60°N

70°N

30°N

40°N

50°N

60°N

70°N

0°E20°W 20°E 40°E 0°E20°W 20°E 40°E

Temperature (°C)
–10 –6 –3 –1 0 1 3 6 10

Fig. 8.3 ECMWF forecasts for the heat wave over Europe in July 2015. Lower 
panel shows the 2-metre temperature anomaly forecasts for the 7-day period 29 
June to 5 July initialised on 18 June (left) and 22 June (right). Areas where the 
forecast distribution is significantly different from climatology are shaded. Upper 
panel shows the evolution of the ensemble forecasts for the temperature in Paris at 
12 UTC on 1 July; the dates on the horizontal axis indicate the start time of each 
forecast. The box-and-whisker plots show the 1st, 10th, 25th, 75th, 90th and 
99th percentile of the forecast, while black dot shows the median of the distribu-
tion. The temperature distribution of the model climate (generated from re- 
forecasts for late June and early July for the last 20 years) is shown in red (the 
dotted line highlights the climate median). Magnusson et al. 2015.
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from 22 June. While these successive forecasts give a good indication of 
the general situation, it is also interesting to consider the forecast for a 
specific time and location. The top panel of Fig. 8.3 shows a sequence of 
forecasts for the temperature in Paris at 12 UTC on 1 July (this was the 
second warmest day on record for Paris, with temperatures reaching to 
almost 40°C later in the afternoon). Each forecast is represented as a box- 
and- whisker plot that summarises the information in the ensemble. The 
forecasts from early June indicate a range of possible outcomes, similar to 
the model climate distribution (shown in red), with no clear signal for 
temperature to be warmer or cooler than normal. This is not surprising: as 
noted in the previous paragraphs, we should not expect skill in predicting 
the precise temperature at a specific place and time out to a month ahead. 
By mid-June there is a noticeable shift in the forecasts: while not certain, 
the ensemble indicates that high temperatures are much more likely to be 
above normal than below normal, and there is a significant chance that the 
temperature in Paris could reach more than 30°C. The risk of extreme 
temperatures increases in consecutive forecasts, and by 26 June the out-
come is almost certain (see Magnusson et al. 2015 for more details).

This example shows how ensemble weather forecasts can be used to 
guide decision making for weather-dependent activities in the days and 
weeks ahead. For the coming days, detailed information can be obtained 
on the weather at a particular place and time. Looking further ahead, these 
details are less predictable, but the forecasts can give an indication of the 
likely general weather situation, and what alternative scenarios may be. 
While the weather is not always predictable out to a month ahead, there 
are particular situations where the predictability is enhanced—on such 
occasions the ensemble will show higher confidence and a more limited 
range of alternatives. In all cases, the ensemble approach provides impor-
tant information about possible alternative scenarios, and enables users to 
make appropriate decisions, taking account of the confidence and risks 
quantified by the ensemble.
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CHAPTER 9

Seasonal-to-Decadal Climate Forecasting

Emma Suckling

Abstract Forecasting climate over the near-term, from a season to 
decades ahead, has the potential to inform decision-making within the 
energy sector in a number of ways: from energy trading to scheduling 
maintenance and resource management. Recent advances in forecasting 
at these timescales have led to promising levels of skill in predicting the 
large-scale drivers of seasonal and multi-annual climate variability as well 
as the consequent local climate impacts of relevance for the energy sec-
tor (e.g. seasonal temperatures and wind speeds). This chapter discusses 
the unique aspects of near-term prediction, how it differs from the task 
of weather prediction and long-term climate projections, the sources of 
predictability on these timescales, as well as some of the current climate 
forecasting tools and products aiming to provide value to the energy 
sector.
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• Skill

E. Suckling (*) 
NCAS-Climate, Department of Meteorology, University of Reading,  
Reading, UK



124 

IntroductIon to clImate ForecastIng

Climate prediction over the near-term, from seasons to multiple decades 
ahead, has received much attention over recent years for its potential to 
inform decisions in areas such as risk management and adaptation plan-
ning (Smith et al. 2012; Kirtman et al. 2013; Doblas-Reyes et al. 2013b; 
Meehl et al. 2014). In theory, local and regional scale forecasts on seasonal- 
to- decadal timescales could be beneficial to the energy sector, for example 
in terms of understanding vulnerabilities under different energy mixes, 
planning future wind farm sites or developing resource management strat-
egies. In practice, such forecasts must demonstrate that they are reliable 
and to add value to the practices currently adopted for decision-making.

Prediction on seasonal-to-decadal timescales occupies a middle ground 
between weather forecasting, whose goal is to provide a snapshot of atmo-
spheric conditions at a particular point in time for a few days ahead, and 
climate projection, which aims to estimate the response to external forcings 
such as from greenhouse gases and aerosols. The goal of seasonal-to- 
decadal prediction is generally to provide a statistical summary, or proba-
bility distributions, of conditions over the coming months and years given 
some knowledge of the current climate state, or phase of climate variability. 
The feasibility of predictions on these timescales arises from components of 
the climate system that evolve at a slower rate than the atmosphere, such as 
the ocean and land surface, and the interactions between them (Palmer and 
Hagedorn 2006; Meehl et al. 2009; Boer 2011). Sources of potential pre-
diction skill include both externally forced low-frequency variability due to 
anthropogenic factors (such as greenhouse gas and aerosol concentrations 
and land use changes), as well as natural variations in solar activity and 
volcanic aerosol, and low-frequency variations within the climate system 
(such as large-scale modes of variability in the atmosphere and oceans).

sources oF PredIctabIlIty

On seasonal timescales, the main source of predictability is the coupled 
ocean-atmosphere El-Niño Southern Oscillation (ENSO) phenomenon 
(Trenberth et al. 2000; Alexander et al. 2002; Wu et al. 2009), which has 
been a major factor in the success of seasonal forecasting using both 
dynamical and statistical models (van Oldenborgh et  al. 2005; Coelho 
et  al. 2006; Weisheimer et  al. 2009; Wu et  al. 2009). This mode of 
 variability in the tropical Pacific is known to influence local-scale seasonal 
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climate in many remote locations over the globe. The Madden Julian 
oscillation (MJO), in the tropical West Pacific and Indian Oceans, is char-
acterised by an eastward progression of atmospheric convection (Madden 
and Julian 1971). Studies suggest evidence of teleconnections between 
the MJO and variability in the extratropics in the Pacific basin (Kim et al. 
2006) and Atlantic (Cassou 2008) on monthly timescales. Seasonal pre-
dictability is also thought to arise from interactions between the tropo-
sphere and stratosphere, associated with the quasi-biennial oscillation 
(QBO) (Baldwin et al. 2001) and sudden stratospheric warming (SSW) 
(Marshall and Scaife 2010) which can have an important influence on 
winter conditions, particularly over Europe (Ineson and Scaife 2009). The 
North Atlantic Oscillation (NAO) is another source of low-frequency vari-
ability often attributed to stratosphere-troposphere coupling (Scaife et al. 
2005) and is known to influence winter temperatures and rainfall over 
Northern Europe and Central Asia (Ineson and Scaife 2009; Matthes 
et al. 2006). Recent studies have reported skill at predicting winter NAO 
from seasonal forecasts using dynamical models (Scaife et  al. 2014). 
Evidence of teleconnections between winter NAO and European climate 
in the following spring has also been suggested based on statistical analyses 
using observations (Herceg-Bulić and Kucharski 2013). The NAO has 
also been implicated as a predictor of Northern Hemisphere temperature 
variability at multidecadal timescales (Li et al. 2013).

On timescales of years to decades ahead, a major source of predictability 
is likely to arise from slowly evolving (multidecadal) variations in sea surface 
temperatures (SSTs) in the North Atlantic, referred to as Atlantic 
Multidecadal Variability (AMV). North Atlantic SST fluctuations are linked 
to variability in the Atlantic Meridional Overturning Circulation (AMOC), 
which may vary naturally or through external influences, such as volcanoes 
or greenhouse gases. It has been suggested that AMV and AMOC could be 
potentially predictable several years ahead (Griffes and Bryan 1997; 
Dunstone and Smith 2010) and some evidence suggests that associated 
changes in climate over Europe, America and the African Sahel, as well as in 
the strength and position of the Atlantic storm track (Knight et al. 2006; 
Sutton and Hodson 2007; Sutton and Dong 2012) could also be predict-
able. Pacific decadal variability (PDV) is also associated with climate impacts 
over America, Asia, Africa and Australia on multidecadal timescales (Power 
et al. 1999; Deser et al. 2004); however, the processes involved are currently 
not well understood and evidence of potential predictability is weaker than 
for AMV. The Indian Ocean Dipole, characterised as a fluctuation in SSTs, 
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has recently been associated with changes in winds and rainfall across Africa 
and India on interannual timescales (Webster et al. 1999).

In addition to large-scale modes of internally generated natural variabil-
ity, the evolution of the climate system is affected by external factors, includ-
ing a response to anthropogenic activity as well as natural factors such as 
solar activity and volcanic eruptions. Solar activity is somewhat predictable 
in terms of sunspot number and solar radiative output, which varies with a 
period of approximately 11 years. The influence of solar activity on global cli-
mate is fairly small and studies suggest global temperatures may vary by 
about 0.1°C due to solar activity (Lean and Rind 2008), as well as influence 
stratospheric temperatures and induce small changes in tropical atmospheric 
circulation (see e.g. Gray et al. 2010, Gray et al. 2016, Lockwood et al. 
2010). Volcanic activity cannot be predicted in advance, but large volcanic 
eruptions have a significant impact on forecast skill once they have occurred. 
Aerosols emitted into the stratosphere affect global and local temperatures 
over the timescale of a year or two, as well as the hydrological cycle and 
atmospheric circulation. Volcanic activity can also impact ocean circulation 
and heat content on timescales of years or decades, which has important 
implications for decadal forecast skill (Marshall et al. 2009).

the ProbabIlIstIc nature oF clImate ForecastIng

Climate forecasts are necessarily formulated in a probabilistic way (usually 
as ensembles of deterministic possible outcomes), owing to the inherently 
uncertain nature of climate prediction. Both the chaotic nature of the cli-
mate system (in which small errors in estimating the initial climate state 
grow with time in any forecast) and inadequacies of the forecast systems 
themselves (due to approximations in the formulation of the models and 
missing processes and feedbacks) contribute to forecast uncertainties, 
which play an important role in the interpretation and use of such fore-
casts for decision-making. The relative contributions of different sources 
of forecast uncertainty depend on the timescale, region and variable of 
interest, but can be difficult to disentangle (see Fig. 9.1). However, at 
shorter timescales, from months to years ahead, internal variability (from 
mechanisms such as ENSO or MJO) is typically a major source of uncer-
tainty, accounting for the largest fraction of the variance (e.g. in global or 
regional temperatures) in studies based on model predictions (Hawkins 
and Sutton 2009). Over the near-term, up to a few decades ahead, scenario 
uncertainty (which is assessed through a series of possible pathways that 
include estimates of future greenhouse gas emissions, land use changes 
and socio-economic factors) is typically not a dominant source of uncer-
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Fig. 9.1 Relative contributions to the fraction of total variance from each source 
of uncertainty in projections of decadal mean surface air temperature in a) global 
mean and b) Europe mean. Green regions represent scenario uncertainty, blue 
regions represent model uncertainty, and orange regions represent the internal vari-
ability component. The importance of model uncertainty is clearly visible for all 
policy-relevant timescales. As the size of the region is reduced, the relative impor-
tance of internal variability increases. Scenario uncertainty only becomes important 
at multidecadal lead times (Hawkins and Sutton 2009, see also Kirtman et al. 2013). 
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tainty at these timescales and is shown to account for only a small fraction 
of variance in model studies. Model inadequacy accounts for a large source 
of uncertainty, particularly in the near-term; therefore, the evaluation and 
comparison of a variety of forecast approaches and models are crucial both 
in terms of understanding sources of predictability and skill and in terms 
of designing and calibrating any prediction system for operational use.

Recent progress in the development of seasonal-to-decadal prediction 
systems includes the use of empirical methods, dynamical models or a 
combination of both. Empirical methods are based on observations and 
exploit statistical relationships to represent physical processes. Empirical 
models include simple approaches such as characterising the historical 
climatology, or persisting current conditions, as well as more sophisti-
cated methods such as linear regression models (e.g. Eden et al. 2015; 
Suckling et al. 2016), constructed analogues or neural networks (see, e.g. 
van den Dool 2007). However, such models rely on an adequate data-
base of historical observations on which to train the model, which is not 
always available. Dynamical models approximate solutions to the funda-
mental physical equations that characterise the Earth system. Seasonal-
to-decadal predictions based on dynamical models typically involve 
combining a boundary condition problem (i.e. simulating the response 
to forcings and the feedbacks between them) with an initial condition 
problem, in which the current state of the atmosphere, ocean, cryosphere 
and land surface is estimated by initialising the model to a state close to 
observations through data assimilation (see, e.g. Smith et al. 2012). The 
aim of initialisation is to narrow uncertainty in the predictions by taking 
into account the phase of internal climate variability (Doblas-Reyes et al. 
2013a). The process of initialisation is not trivial, however, and con-
straining a model with observations generally causes initialisation shocks, 
which impact the forecast skill. Furthermore, systematic biases cause a 
model to drift away from the observations over time towards its preferred 
climatology. Several recent studies have adopted different methodologies 
for attempting to overcome such biases (Balmaseda et al. 2009); how-
ever, at present the common approach to dealing with model bias and 
drift is to remove any systematic errors through post-processing. Post-
processing refers to approaches that are used to transform raw model 
output into forecast products and includes calibration (e.g. bias adjust-
ment or downscaling) and combination (in which information from dif-
ferent sources and models are combined to form a single forecast) (see, 
e.g. Doblas-Reyes et al. 2013b).
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assessIng the QualIty oF clImate Forecasts

The quality of seasonal-to-decadal prediction systems is typically assessed by 
comparing predictions from different models against each other and against 
observations over a historical hindcast period (Goddard et  al. 2013). 
Hindcasts (sometimes referred to as reforecasts) are essentially retrospective 
forecasts generated using today’s state-of-the-art models, based on knowl-
edge of the historical climate drivers. Several different attributes of the fore-
cast ensemble are often quantified, including model bias and ensemble 
spread, as well as the correspondence between forecast and outcome pairs 
using a variety of statistical metrics (Jolliffe and Stephenson 2003). Such 
metrics include deterministic skill scores, which consider the ensemble mean 
properties of a set of predictions, and probabilistic skill scores (Bröcker and 
Smith 2007) that quantify the quality of the full distribution of ensemble 
members relative to a reference forecast system (such as climatology, persis-
tence or another forecast system) (Suckling and Smith 2013). Reliability 
measures the correspondence between the predicted probabilities and 
observed frequencies of a particular set of events. The evaluation of any fore-
cast system in this way is crucial, not only for the development and improve-
ment of systems for operational use, but also in understanding when forecasts 
are likely to provide reliable information (e.g. Weisheimer and Palmer 2014).

clImate Forecast tools For the energy sector

Both empirical approaches and the use of initialised dynamical prediction 
systems have been relatively successful for seasonal forecasting, leading to 
the availability of a number of operational products including the North 
American Multi-Model Ensemble (NMME)1 and the EUROSIP multi- 
model seasonal forecasting system.2 Initiatives such as the Advancing 
Renewable Energy with Climate Services (ARECS) and European Climatic 
Energy Mixes (ECEM)3 projects aim to develop state-of-the art tools and 
forecasts that are relevant to the energy sector (see Fig. 9.2).

The field of decadal forecasting is still relatively new, but is rapidly devel-
oping. Currently decadal predictions are not widely used as  operational 
products; however, model intercomparison projects such as CMIP5 
(Taylor et al. 2012) have advanced the science base for decadal prediction 
using dynamical model and projects such as the Decadal Forecast Exchange4 
and the World Climate Research Programme (WRCP) Grand Challenge 
on Near-Term Climate Prediction (https://www.wcrp-climate.org/
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grand-challenges/gc-near-term-climate-prediction) aim to facilitate devel-
opment of decadal forecast approaches towards operational use.

concludIng remarks

The recent interest in seasonal-to-decadal forecasting has led to significant 
improvements in forecast skill, as well as a better understanding of the 
sources of forecast skill and climate predictability. At seasonal timescales, 
ENSO is reliably predicted several months ahead by the latest empirical 
and dynamical models, and ENSO teleconnections are also well predicted 
(Wang et al. 2009). Recent analyses of the reliability of seasonal forecasts 
have indicated that temperature predictions in the east and west coast of 
North America and parts of China and East Asia are reliable, particularly in 
winter (DJF), while predictions over South America, Southern Africa and 
Australia are reliable in austral winter (JJA) (see Fig. 9.3) (Weisheimer and 
Palmer 2014). Predictions in other regions and seasons may also be useful 
as decision-relevant tools; however, there is often a lot of diversity between 
different models, making it difficult to make statements about the broad 
level skill in those regions. Predictions of precipitation are generally less 
reliable, however. On the other hand, near surface winds are strongly con-
strained by the ocean in the tropics and are therefore relatively predictable. 
Furthermore, recent indications of skill in predicting the NAO during win-
ter show promising signals of predictability of winter winds and tempera-
tures in the extratropics, particularly over Europe (Scaife et al. 2014).

On decadal timescales, empirical methods have been demonstrated to rep-
resent temperatures well, both for externally forced signals (Lean and Rind 
2008; Suckling et al. 2016) and for idealised studies of internal variability 
(Hawkins et al. 2011). There is also evidence of predictability in north Atlantic 
SSTs related to skill in predictions of the AMOC (Pohlmann et al. 2013); 
however, evaluations are currently complicated by a lack of observations over 
an extended period. The initialisation of model predictions has provided 
some evidence of improvements in AMV and other large-scale models of vari-
ability (Doblas-Reyes et al. 2013a), as well as in predictions of, for example, 
Atlantic hurricane number more than a year in advance (Smith et al. 2010).

The future direction of climate forecasting for the energy sector will see 
continued efforts in the development of climate prediction systems, 
including a new generation of high-resolution global and regional climate 
models under projects such as PRIMAVERA,5 as well as improved under-
standing of the mechanisms that drive local variability and impacts and the 
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conditions which lead to greater predictability and forecast skill. Initiatives 
such as the Copernicus Climate Change Service (C3S—climate.coperni-
cus.eu) and its related projects are already working towards tailoring state- 
of- the-art climate forecasts for the energy sector, including the delivery of 
energy-relevant climate variables and energy-impact indicators from a sea-
son to several decades ahead.

notes

1. http://www.cpc.ncep.noaa.gov/products/NMME/.
2. https://www.ecmwf.int/en/forecasts/documentation-and-support/long-

range/seasonal-forecast-documentation/eurosip-user-guide/multi-model.
3. http://ecem.climate.copernicus.eu.
4. http://www.metoffice.gov.uk/research/climate/seasonal-to-decadal/

long-range/decadal-multimodel.
5. https://www.primavera-h2020.eu.
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CHAPTER 10

Regional Climate Projections

Robert Vautard

Abstract When designing adaptation and mitigation measures of climate 
change for the coming decades and up to the middle of the century, poli-
cymakers and industries must rely upon climate information that is at an 
appropriate scale to evaluate impacts, vulnerabilities and risks due to 
changes in climate. It is, therefore, essential that the quantitative informa-
tion on the climate and its impacts is reliable. Reliable quantitative infor-
mation about climate change impacts must also be available. This includes 
estimations of uncertainty bounds. In the current state of knowledge, 
technology and structure of scientific communities, climate change impact 
studies are achieved from a suite of models: global earth system models, 
with a generally low-resolution (100–300 km), regional limited-area cli-
mate models with a higher resolution (10–50  km), which take their 
boundary conditions from global models and impact models calculating 
how changes in weather, ocean and biogeochemical cycles affect the sys-
tem to be adapted.

Keywords Downscaling • Uncertainty • Extreme events • Climate  
projections • Scenarios
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IntroductIon

Regional climate projections are the key chain elements that provide infor-
mation at a scale allowing impacts calculations, and the assessment of 
adaptation measures. Regional climate projections also allow an improved 
simulation of physical and biogeochemical processes, and of extreme 
events at the scales relevant for impacts studies (see schematic of Fig. 10.1).

Uncertainty in climate projections cannot be directly estimated by 
comparing them against observations, as in the case of weather forecasts, 
due to the long timescales involved. This is why uncertainty is generally 
estimated from the spread of ensembles of simulations. The larger the 
spread, the larger the uncertainty. This emphasizes the need to estimate 
impacts of climate change using ensembles of models. This section 
describes (1) the specific nature of climate projections as compared to 
forecasts previously presented, their main underlying assumptions, their 
uncertainty sources and how the science community is organized; (2) how 
regional climate projections add value to the global climate projections 
and (3) how they can be used in the energy sector.

What are clImate ProjectIon and hoW do they dIffer 
from Weather forecasts and decadal PredIctIons?

Climate projections aim at predicting future climatologies, that is, the sta-
tistics of weather, of the state of the ocean, cryosphere, vegetation and 
atmospheric chemical composition. They are based on a number of 

Regional climate projections

Downscaling

Global climate model
(100–300 km)

Regional climate model
(10–50 km)

Impact modeling

Impact model

Fig. 10.1 Schematic of the modelling chain used to calculate the impacts of cli-
mate change. In this illustration, the impacts can be the river discharge or hydro-
power potential

 R. VAUTARD



 141

assumptions about human evolution (population, economy, land use, land 
management, technologies and climate policies) and our understanding of 
the earth systems response to this evolution. Projections are considered as 
a “boundary value problem”, where climate responds to external drivers. 
The principle is very different from that of weather forecasts, which is an 
initial value problem whose aim is to provide a snapshot of the state of the 
atmosphere at particular points in space and time (see also Chap. 6). 
Climate projections also differ from weather forecasts in that they use fully 
fledged earth system models describing the evolution of as many as possible 
variables concerning all compartments of the earth envelope, for example 
the ocean, cryosphere, as well as the atmosphere. Weather forecasts, when, 
for instance, limited to a few weeks, do not need to include changes in the 
oceans as well as other slowly evolving components of the earth system.

Climate projections also aim at explaining the evolution of past climate, 
from the instrumental period to paleoclimatic periods. A correct simula-
tion of past periods, including the last century, millennium and beyond 
(Braconnot et al. 2012) provides some confidence to the models ability to 
simulate climate change, even though comparison with paleo observations 
often faces numerous scientific challenges. However, as demonstrated in 
the fifth assessment report of the IPCC WGI (Intergovernmental Panel on 
Climate Change Working Group I) (IPCC WGI 2013), climate evolu-
tions along the twentieth century, and in particular the late warming, 
attributed to human influence on atmospheric composition, are fairly well 
reproduced: the amplitude of the warming is reproduced as well as the 
long-term modulations, thought to be due to aerosols.

Climate projections used for adaptation are usually initialized from an 
equilibrium state in a period when human influence is assumed to be 
minor relative to external natural forcing (solar and volcanic), in the mid-
dle of the nineteenth century. Since the memory of initial conditions dis-
appears quickly, it is therefore not expected that projections synchronously 
represent the actual chaotic short-term observed evolutions across the 
instrumental period. Instead, one expects climate projections to represent 
possible trajectories of the weather, and the probability distribution func-
tions (PDFs) of these fluctuations.

However, models have biases difficult to fully control, because of accu-
mulation of approximations, which are due to low-resolution and insuffi-
ciently well-represented physical or biogeochemical processes such as 
convection or land-atmosphere interactions. In models, all these processes 
are in a balance that is typically shifted as compared to the real world. 
However, it is often assumed that such biases do not hinder a correct 
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simulation of the response to external forcing. These potential error 
sources are often called “structural uncertainties”.

Two other major sources of uncertainties are also present: the evolution 
of societies, climate policies and their effect on resulting atmospheric com-
position (greenhouse gases, aerosols), and on land use. Strong mitigation 
scenarios, including potential use of negative emission technologies, are 
likely to significantly alter land use (Smith et al. 2016) and therefore impact 
climate through an alternative pathway from atmospheric composition. 
Climate evolutions also undergo a natural internal variability at a timescale 
of a decade to several decades. Multidecadal modes and oscillations have 
long been identified (Ghil and Vautard 1991), with yet no full understand-
ing. Such modes can induce temporary warming hiatus such as the one 
witnessed in the last decade or so. It is considered that the latter uncer-
tainty source dominates for the few coming decades, while uncertainty on 
scenarios is the dominant driver for the second half of the century.

The global climate projections production that feed the IPCC assess-
ment reports are internationally coordinated by the Climate Model Inter- 
comparison Project (CMIP) (Taylor et al. 2012) supported by the World 
Climate Research Program. Modelling centres from around the world 
carry out a core set of simulation using the same natural forcings and 
socio-economic scenario assumptions. This makes simulations comparable 
and allows investigation of spread across the different models and some 
sources of uncertainty to be estimated.

International coordination not only takes place for climate simulations but 
also for data dissemination through the distributed Earth System Grid 
Federation (ESGF), with common standards, vocabulary and quality control. 
The ESGF data nodes1, where climate simulations are available from, are part 
of a gigantic internationally coordinated climate data repository, with a num-
ber of functionalities (dynamic catalogue, quick look visualizations etc.). This 
coordinated effort allows for a systematic retrieval and use of model ensem-
bles in order to account for climate projection uncertainties. The archive is 
now open to data from a number of projects, namely not just CMIP.

regIonal clImate ProjectIons

After a few pioneering projects such as PRUDENCE (Christensen and 
Christensen 2007), ENSEMBLES (Hewitt and Griggs 2004) or the 
North American Regional Climate Change Assessment Program 
(NARCCAP) (Mearns et al. 2012), regional climate projections were only 
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recently coordinated at an international scale within the framework of the 
COordinated Regional Downscaling Experiment (CORDEX) (Giorgi 
et al. 2009). This framework aims at providing downscaled global climate 
projections through a coordinated approach over several regions of the 
world, using refined, but scale-limited models which take global model 
output as boundary conditions. A number of regions of the globe are now 
modelled using this approach, including Europe (Jacob et al. 2014). In 
Europe, these coordinated projections were made both at a low (50 km) 
and high (12 km) resolutions.

Regional climate projections are issued from limited-area regional cli-
mate models (RCMs) (Giorgi and Mearns 1999) which describe weather 
in a limited area (typically a region of around 25 thousand of kilometres 
square) with a higher resolution (typically 10–50 km) than global climate 
models (GCMs). These models are often only atmospheric models, forced 
by sea-surface temperatures and lateral boundary values of temperature, 
humidity and wind prescribed to be the values obtained from GCMs. 
Therefore, regional models solve the atmospheric equations with constraints 
on the boundaries. Recently, regional earth system models are also currently 
being developed, using ocean coupled with the atmosphere, which is a cen-
tral development of the MED-CORDEX2 project (Ruti et al. 2015).

Just as is true for GCMs, RCMs have inherent climate biases that can 
be quite large when underpinning processes are poorly constrained by 
observations. Such is, for instance, the case of heat waves in Europe 
(Vautard et al. 2013). These biases add to those already present in bound-
ary conditions provided by the GCMs. In particular, providing climate 
projections at a higher resolution does not annihilate potential biases in 
large-scale dynamical structures (jet streams, weather patterns), inherited 
from GCMs.

The expectation, however, is that RCMs better simulate atmospheric 
flows, and therefore weather, in the vicinity of marked topography or 
coastal areas, and other small-scale phenomena, compared to GCMs. 
Heavy precipitations are usually small-scale phenomena, and recent stud-
ies show a clear improvement in the statistics of such phenomena (Prein 
et  al. 2016; Giorgi et  al. 2016), in particular over mountainous areas, 
when using high-resolution simulations (e.g. 12  km as in EURO- 
CORDEX). This has a clear benefit for use in climate projections for 
studying applications such as winter tourism or mountain ecosystem 
impacts. By contrast, no added value of higher resolution was found for 
larger-scale phenomena such as heat waves (Vautard et al. 2013).
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As for GCMs, ensembles of RCMs are assumed to provide a picture of 
uncertainties in projections. In order to cover a wider range of possibili-
ties, a full GCM-RCM matrix should in principle be explored, each RCM 
downscaling all GCMs. In practice, while some strategies to explore all 
combinations have been developed (Mearns et al. 2012), these have not 
been implemented in practice. As of 2016, the EURO-CORDEX matrix 
largely remains to be filled for the high-resolution simulations with a 
12 × 12 km2 grid.

Regional climate projections have climatological biases that usually need 
to be accounted for in impact studies. Bias adjustment is a statistical process 
that modifies model simulation values in order to adjust distributions to 
observed values. It uses a range of methods from simple mean bias removal 
to quantile mapping, in order to adjust the full distribution. More sophis-
ticated schemes account both for past climate corrections and the evolution 
of distributions as simulated in models, such as the Cumulative Distribution 
Function transform (CDFt) method (Vrac et al. 2012; Vrac et al. 2016). It 
is an assumption that bias adjustment does not deteriorate the climate 
change signal, or even improves projections of changes. However, it is dif-
ficult to prove this in practice. It is therefore recommended that climate 
projections be processed by several bias adjustment methods.

The following example (see data description below) uses the CDFt 
method to bias adjust the number of rain days according to recent 
improvements (Vrac et al. 2016) using ten EURO-CORDEX simulations 
(available from the ESGF archive). Figure  10.2 shows an example of 
multi-model mean change in daily precipitation amount between the last 
30 years of the twenty-first century and the corresponding period of the 
twentieth century. As an example, a clear, robust signal of precipitation 
increase is found in Northern Europe, and of precipitation decrease in 
Southern Europe, where more than eight models agree on the sign of the 
change.

the use of clImate ProjectIons for the energy 
sector

Regional climate projections can be used in several ways to help the energy 
industry and policymakers. Energy demand, renewable energy resources, 
risks from extreme events, cooling water for thermoelectric generation 
and other operation conditions all depend on weather and climate.  
The exposure to weather and climate variability and change will increase 
in the future decades owing to the tremendous energy transition that is 
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required to almost completely decarbonize the electricity generation by 
2050 in order to reach ambitious climate targets (IPCC WGII 2014).

Both hydropower and thermoelectric generation could be at risk with 
climate change (van Vliet et al. 2016). In Europe, climate change may be 
expected to induce rather general decreases in wind power (Tobin et al. 
2016), with a higher and more significant signal in Southern Europe (see 
Fig. 10.3, drawn from the results of the FP7 IMPACT2C project, WP6). 

Fig. 10.2 Mean changes in daily precipitation amounts estimated from ten 
EURO-CORDEX high-resolution model simulations (Jacob et al. 2014), in the 
RCP8.5 scenario. Changes are measured as differences of mean values calculated 
over the last 30 years of the twenty-first and twentieth centuries, averaged over the 
ten projections. Change values, represented by coloured areas, are only displayed 
when nine or ten models agree on the sign of change. When not, the area is 
coloured with grey
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Solar photovoltaic (PV) power may also be expected to decrease in Europe 
as a result of the analysis of an ensemble of regional climate projections 
(Jerez et al. 2015).

Climate projections, generally available at the daily timescale, and in 
some cases at sub-daily timescale, can also be used as “weather genera-
tors”. Bias-adjusted time series obtained from ensembles of simulations 
are usually 10–30 times longer than observed time series, due to the num-
ber of models available and do not suffer from homogeneity problems. 
They can generate statistics dedicated to the user’s problem, such as the 
risk of typical extreme events. In some cases, infrastructures are built to 
cope with reference events, such as, for instance, extreme cold spells (e.g. 
winter of 1963) that occurred in the past. The risk of such events in cur-
rent and future climates can be evaluated from the climate projection 
ensembles time series, although this is still a developing science. Reference 
events and their odds in the current and future climate can provide con-
crete information for adaptation.

For the needs of the energy sector, dedicated regional climate projec-
tions data sets have been developed and made available through prototype 
“climate services”, such as, for Europe, CLIM4ENERGY3 and European 
Climatic Energy Mixes (ECEM)4 Copernicus Climate Change Service 
projects. Other data sets for other regions (e.g. NARCCAP data for North 
America5) are also available to be used for application in the energy sector. 
The value of such datasets for adaptation needs is still to be assessed by 
users as their use is relatively new.

notes

1. See e.g. http://esgf-node.ipsl.upmc.fr/.
2. MED-CORDEX is the name of the experiment, and stands for Mediterranean.
3. http://clim4energy.climate.copernicus.eu
4. http://ecem.climate.copernicus.eu
5. http://www.narccap.ucar.edu/
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CHAPTER 11

The Nature of Weather and Climate Impacts 
in the Energy Sector

David J. Brayshaw

Abstract The power sector’s meteorological information needs are 
diverse and cover many different distinct applications and users. 
Recognising this diversity, it is important to understand the general nature 
of how weather and climate influence the energy sector and the implica-
tions they have for quantitative impact modelling. Using conceptual 
examples and illustrations from recent research, this chapter argues that 
the traditional ‘transfer function’ approach that is common to many indus-
trial applications of weather and climate science—whereby weather can be 
directly mapped to an energy impact—is inadequate for many important 
power system applications (such as price forecasting and system operations 
and planning). The chapter concludes by arguing that a deeper under-
standing of how meteorological impacts in the energy sector are modelled 
is required.
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Weather and Climate impaCts in the energy seCtor

The power sector’s meteorological information needs are diverse. On the 
one hand, Transmission System Operators (TSOs) may be concerned with 
detailed geographical forecasts of wind power and demand at relatively 
short lead times (hours or days ahead) for the operational management of 
the power grid. This contrasts, for example, with long-term investors in 
infrastructure and system planners who require a longer view of system 
resilience (years to decades), and energy traders or maintenance planners 
seeking to position themselves for the coming weeks or seasons.

A common theme, however, is the need for a series of conversions to 
transform meteorological information into an actionable decision. The 
three steps in Fig. 11.1 can typically be recognised.

Chapter 6 discussed the first step in this process at length, and under-
standing user needs and preferences is discussed elsewhere in other chap-
ters of this book (Chaps. 1, 3, 4 and 5). Here, the focus is on the general 
process of modelling energy system impacts using meteorological data 
from numerical simulations, illustrated with selected examples (i.e., Impact 
Simulation). It is, however, noted that user preferences—once elicited and 
expressed quantitatively—can be thought of as a conversion of a physical 
impact (in terms of MWh, prices, loss of load) into a ‘utility’ (a numerical 
expression of the user’s preferences). To some extent, they can therefore 
be considered as direct extensions of the impact models discussed below.

It is helpful to identify three distinct levels of complexity in weather- 
and climate-impact modelling, as illustrated in Fig. 11.2.

Meteorological 
simulation

Impact 
simulation

User 
preferences

Fig. 11.1 The process of converting meteorological data into actionable 
information

Single impact

Compound impact

Complex impact

Fig. 11.2 Levels of impact 
complexity
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The simplest level, commonly referred to as ‘point forecasting’, may be 
defined as the response of a single energy system component to a set of mete-
orological drivers for which a transfer function can be written. Typical 
examples might include predicting wind power output for a particular tur-
bine, farm or country, or forecasting power demand over a particular geo-
graphical region (Fig. 11.3). The key aspect is that it is possible to write 
(or otherwise estimate in at least an approximate form) a function, f, which 
converts a set of meteorological variables, {m}, into the energy system 
property of interest E:

 
E f m= { }( )

 

The transfer function may be either physically or empirically derived, 
may be non-linear, many-to-one or probabilistic. Typical examples include 
electricity demand models (Thornton et  al. 2016; Taylor and Buizza 
2003), wind power production models (Dunning et  al. 2015; Cannon 
et al. 2015) and damage models (McColl et al. 2012).

A more complex form of impact occurs when the simultaneous influ-
ence of meteorology on several different components of an energy system 
becomes an important part of the impact. In this case, a transfer function 

0 0 VcutoutVratedVmin

Power output

Wind speed (ms–1)
0
Daily average temperature (oC)

Na�onal-aggregate demand

10 20

a b

Fig. 11.3 Simple examples of idealised transfer functions used to convert meteo-
rological quantities into estimates of power system properties: (a) an idealised 
wind power curve based on Brayshaw et al. (2011); (b) a simplified demand model 
based on Bloomfield et al. (2016). In each example here, the transfer function is 
shown to depend only on a single meteorological variable for simplicity but in 
general they may incorporate many input variables. Additional dependencies may 
be meteorological (e.g., wind direction for wind power, cloud cover for demand) 
or non-meteorological (e.g., day-of-week for demand), and include stochastic 
‘noise’ to simulate the error and uncertainty in the transfer function
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exists for each component, but the impact is perceived through a 
 combination of those components (often referred to as a ‘compound 
impact’). An example is the residual power load of national power systems 
(i.e., demand net renewables), which depends on demand, solar and wind, 
each of which has a different sensitivity to weather.

In the simplest case, the system can be considered as a set of non- 
interacting energy system components,{E}, and may be written:

 
S L E= { }( )

 

where L is a mapping of the set of energy system components {E} to a 
particular system-wide property of interest, S.

An example1 of this is the ‘merit order’ model2 of UK wholesale power 
price, exploring the extent to which month-ahead forecasts could be ben-
eficial to energy-trading and risk management (Fig. 11.4a; see Lynch et al. 
2014; Lynch 2016). In this example, daily ensemble forecasts of UK wind 
power and national total power demand are created from the European 
Centre for Medium-Range Weather Forecasts (ECMWF) system for sev-
eral weeks in advance, and the ‘residual demand’ calculated.3 The residual 
demand is assumed to be met by a mixture of coal and gas generation, 
preferentially utilising the cheapest marginal cost generators first (i.e., 
those bidding to produce power at the lowest price), with the wholesale 
power price being determined by the most expensive generation unit 
required to operate (Fig. 11.4b). The use of sub-seasonal weather forecasts 
three to four weeks ahead was shown to offer an improvement over stan-
dard industry practice for some—though not all—trading applications. 
This work therefore emphasised both the potential benefits of longer- range 
meteorological forecasts for energy, but also the need for careful evaluation 
of the forecast’s performance in the context for which it is being used.

In both ‘point impact’ and ‘compound impact’ problems, the meteoro-
logical state is assumed to map directly to that of the impacted system (via 
a transfer function or set of transfer functions) and, although the mapping 
may be complicated, it is only dependent on the current meteorological 
state. This assumption does not hold, however, in many energy system 
planning and operations problems (e.g., ‘optimal power flow’ or ‘unit 
commitment’). In problems of this type, there are potentially complex 
connections in time and space between different energy system compo-
nents and to forecast the state of the impacted system accurately requires 
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knowledge of both the power system’s initial state and the meteorological 
evolution between the forecast’s initialisation and its target lead time.

It is beyond the scope of the present text to discuss these problems in 
detail but the key concepts of a ‘complex impact’ on the power system can 
be illustrated through a conceptual model,4 as shown in Fig.  11.5. 

ECMWF month-
ahead ensemble 

forecast

Bid
Price 
(£)

Volume (MWh)

Generation 
‘stack’ 

(coal and gas 
generator 
bid prices)

V

P

Residual
demand

Wind Temperature

Wind power Demand

Residual demand
(Demand – WindPower)

Price and volume
(merit order model)

Evaluation of performance 
according to trading strategy 

(swaps, options, hedging)

a b

Fig. 11.4 An illustration of energy price forecasting using meteorological inputs 
following Lynch (2016) and Lynch et al. (2014). (a) A flow chart illustrating the 
process through which the forecast is made and evaluated. (b) A schematic of the 
‘merit order model’. In (b), the red curve indicates the relationship between sup-
ply and price (more expensive power stations are willing to produce as price rises, 
hence a positive relationship between volume and price). The blue curve indicates 
the relationship between demand and price (the demand for power decreases with 
price, but here is assumed to be perfectly price-insensitive). The intersection of the 
two curves sets the wholesale price and volume of power produced by the market. 
The qualitative shape of the supply curve produced by the two-generation type 
model (as fitted by Lynch (2016) to observed price data using an Ensemble 
Kalman filter) is indicated in (b). Lynch (2016) went on to demonstrate that the 
ECMWF-forecast based process outlined in (a) was able to significantly outper-
form equivalent forecasts using purely historical weather observations for each of 
wind power, demand and price (evaluated over the period December 2010—
February 2014, at a 99% statistical confidence level). ECMWF stands for European 
Centre for Medium-Range Weather Forecasts
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Consider a power system with a single demand node, D, connected to a 
wind power source, W, the output from which is always instantaneously 
utilised. As there is no storage of power, the residual demand E (i.e., 
demand minus wind power, E = D − W) must be met at all times by two 
fossil fuel generators, F1 and F2. F1 has low fuel costs (i.e., it is cheap to 
generate power with F1) but changes in its output must occur slowly, 
whereas F2 has high fuel costs (i.e., it is expensive to use) but its output can 
change rapidly if required.

Consider further a time series of residual demand as shown by the green 
line on the right hand panel of Fig. 11.5. Initially, the residual demand can 
be met entirely by F1—the low cost generator—but on hour 4 the residual 
demand rapidly increases faster than F1 can respond and F2 must be used 
to meet the short fall. Crucially, although the residual demand at hour 4 
could have been determined using a transfer function applied to the 
instantaneous meteorological state,5 the division of the generation used to 
meet this residual demand between F1 and F2 in hour 4 could not have 
been estimated without also knowing the prior and future meteorological 
and power system status. In this example, if the residual demand had been 
higher in hour 3—and hence F1(t = 3) was also higher—then more of the 
residual demand in hour 4 could have been met with the cheaper F1 rather 
than the more expensive F2. In effect, it is not possible to determine the 
value of F1 and F2 at a particular point in time (e.g., t = 4) independently 
of determining F1 and F2 over many surrounding time steps.

Thus, if one wishes to model the status of the power system at any instant, 
it is therefore important to correctly represent both the meteorological  

Fig. 11.5 A conceptual model of a simple power system with four components: 
two fossil fuel generators (F1 and F2) with differing characteristics, wind power 
generation W and demand D. Residual demand (E = D − W), shown by the green 
line on the time series (right-hand plot), must be met by the combined generation 
from F1 and F2. See main text for discussion
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time series trajectory and the power system’s time-evolving response to it. 
It is not sufficient to simply apply a transfer function to an instantaneous 
‘snapshot’ of weather in isolation from the rest of the time series trajectory to 
produce a full estimate of the power system’s status. In practice, the time-
dependences introduced by power system response constraints are also fur-
ther complicated by spatial connections introduced by transmission 
limitations (i.e., finite rates of power transfer between locations). In contrast 
to ‘point forecasting’, however, there has been relatively little assessment of 
‘time-trajectory forecasting’ (or spatial patterns of co- dependent meteoro-
logical surface variables) in the meteorological research literature in either a 
weather-forecasting or climate modelling context. Similarly, there has also 
been relatively little attention paid to the quality of meteorological data used 
in sophisticated energy system planning and operations studies. New 
research is, however, beginning to tackle some of these concerns, for exam-
ple, Bloomfield et al. (2016) highlight that significant errors may arise if 
insufficiently long weather records are used for power system planning and 
Pfenninger and Keirstead (2015) have provided a recent example of com-
plex unit commitment modelling in a climate- change context.

Despite the differing levels of energy system impact complexity, many 
challenges in energy meteorology have similarities to other meteorological 
applications (e.g., insurance, water and agriculture). The need to calibrate 
and downscale meteorological variables from coarse prediction datasets to 
specific localised properties is a particularly ubiquitous problem. Direct 
meteorological observations of the site (for ‘statistical downscaling’) and 
‘dynamical downscaling’ (with finer resolution numerical models) can 
assist in many circumstances, but it is especially challenging when the 
response of the impacted system depends on more than one meteorologi-
cal input (in such cases, the co-variability of the meteorological properties 
may be important as well as the individual meteorological properties them-
selves). It is also noted that downscaling and calibration only improve the 
forecast if the large-scale dynamics of the system are well-simulated and, in 
practice, errors associated with meteorological downscaling and transfer 
functions are often difficult to separate (see, e.g., Cannon et al. 2017).

summary

To summarise, the transfer from ‘meteorology’ to ‘energy’ is, in many 
cases, highly non-linear. This has profound implications for simulation and 
prediction of energy system impacts, suggesting that forecast skill may be 
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strongly influenced by the transformation from meteorological variables 
to energy variables. In an ideal world, this may act to either increase or 
decrease the skill of the forecast, depending on the specific characteristics 
of the forecast problem but, in practice, the skill of an energy forecast will 
often tend to be lower than the meteorological forecast from which it origi-
nates as errors in the transformation process will tend to compound errors 
in the original meteorology. Careful diagnosis is needed to identify which 
aspects of the forecasting system—from the meteorological prediction to 
its downscaling and transformation into an energy property, and finally its 
conversion into an end-user decision—lead to the dominant sources of 
error, and to focus analytical resources on the scales and processes where 
skill is achievable.

notes

1. Other examples of similar ‘compound impact’ problems can be found in 
peak-load estimation (e.g., Thornton et  al. 2017) and simple models for 
system planning applications (e.g., load duration curves for the estimation 
of the optimal generation-type mix: Green and Vasilakos 2010; Bloomfield 
et al. 2016).

2. See, e.g., Staffell and Green (2016) for an introduction to ‘merit order’ 
concepts.

3. The residual demand is presented here as total demand minus wind power 
generation for simplicity. In practice, Lynch (2016) made several additional 
calculations, removing inflexible generators (such as nuclear) and other 
varying contributions (such as embedded solar and interconnectors) from 
the total demand.

4. See, e.g., Wood et  al. (2014) and Staffell and Green (2016) for an 
introduction.

5. That is, a function of the form E(t = 4) = f ({m(t = 4)}).
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CHAPTER 12

Probabilistic Forecasts for Energy:  
Weeks to a Century or More

John A. Dutton, Richard P. James, and Jeremy D. Ross

Abstract Quality of service and fiscal success in the energy industry 
often depend on how well meteorological information and forecasts are 
used to manage risk and opportunity. On the subseasonal to seasonal 
(S2S) timescales, a disciplined strategy allows decision makers to coun-
teract predicted adverse climate variations in the coming weeks or months 
with action or financial hedges. Calibrated S2S probabilistic forecasts 
from some providers have sufficient skill that they engender confidence 
in the statistical consequences of acting. On the scale of several or more 
decades ahead, probabilistic outlooks can guide strategic planning and 
capital expenditures in directions that will ensure long-term resilience to 
climate change. In both cases, the probabilities are generated by statisti-
cal analysis of ensembles of supercomputer forecasts or climate change 
scenarios.

Keywords Probabilistic forecasts • Subseasonal and seasonal climate 
 prediction • Climate change • Resilience • Energy industry
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IntroductIon

The energy industry has a voracious appetite for meteorological informa-
tion on many time and space scales, and both the quality of service and 
fiscal performance depend on how well the information is used to manage 
risk and take advantage of opportunity. Today the various components of 
the industry can combine probabilistic information with sophisticated 
decision methods to produce predictable and desirable statistical results 
(Dutton et al. 2013, 2014).

On the subseasonal to seasonal (S2S) timescale, a disciplined strategy 
allows decision makers to counteract likely adverse events in the coming 
weeks or seasons with action or financial hedges. On the scale of several or 
more decades ahead, probabilistic outlooks can guide strategic planning 
and capital expenditure in directions that will ensure long-term resilience 
to climate change.

The most useful S2S forecasts and climate change outlooks are proba-
bility distributions created from evolving ensembles of forecasts generated 
by supercomputers calculating tens of forecasts simultaneously by per-
turbing initial conditions, model characteristics, or boundary conditions. 
The predicted probability distributions allow decision makers to distin-
guish between likely and unlikely conditions or events and to respond 
appropriately.

Indeed, the predicted probability distributions are analogues of the fre-
quency distributions that are used to describe the climatological averages 
and volatility of energy-critical variables such as temperature. As illustrated 
by Fig. 12.1, the predicted distributions can show that significant depar-
ture from climatological conditions is expected and that action may be 
warranted.

SubSeaSonal and SeaSonal clImate PredIctIon

S2S forecasts1 covering weeks to three or six months do not themselves 
produce benefits in the energy industry or in other activities. Making them 
useful requires a process to convert forecasts into actionable information 
and to estimate the consequences of acting on the forecasts. A National 
Research Council report (NRC 2016) offers a research agenda to improve 
S2S forecasts.

The energy industry seeks forecasts of future events on S2S timescales 
in order to minimize adverse results or take advantage of opportunity. For 
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example, electric utilities usually consider warm winter temperatures and 
cool summer temperatures as adverse because income may not meet 
expectations and thus they may attempt to ensure financial stability with 
hedges. The possible future states considered in S2S temperature and 
other forecasts are often divided into three categories: below normal, 
nearly normal, and above normal, each of frequency one-third in the his-
torical record for each location and time period. S2S forecasts usually pro-
vide a predicted probability for each of the three terciles.

The key question users often ask is: At what predicted probability should 
I act? The better question is: What consequences can I expect if I act at a 
predicted probability equal to p? The critical resource for bridging the gap 
between forecasts and decisions to act is a reliable description of the per-
formance of the forecast system. Then it becomes possible to link statisti-
cal summaries of the consequences to various values of predicted 
probabilities and to answer the question about consequences of action. 
Figure 12.2 provides a description of such a forecast system.

0

0.1

0.2

0.3

0.4

–3 –2 –1 0 1 2 3 4

Pr
ob

ab
ili

ty
 D

en
si

ty

Standarized Temperature

Predicted and Climatological Probabilities

Climate
Predicted

Climate

Predicted

Fig. 12.1 Comparison of predicted and climatological standardized tempera-
tures for a S2S forecast. The area between the climate and predicted densities 
represents the probability of temperatures warmer than those expected from cli-
mate, which would be adverse for winter for an electric utility
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Separating the range of predicted variables into two classes—adverse 
and favourable—simplifies and illuminates the interaction of forecast per-
formance and business decisions. Let us consider returns Rf for favourable 
conditions and Ra for adverse with a loss L being the difference. We con-
sider a hedge for predicted adverse conditions that pays H if they prevail 
and costs C(H) to establish. Then the contingency table that describes the 
four possibilities is shown in Table 12.1.

Now we turn to the forecast performance statistics to compute the 
probabilities of occurrence of each possibility when the adverse case is 
predicted with probability equal to or greater than p.

We divide the range [0, 1] of predicted probabilities into 10 bins with 
centres at 0.05, 0.15, … 0.95 and from the history of forecasts and verifi-
cation we count for each bin the numbers V(p)and X(p) of correct and 
incorrect adverse forecasts with a forecast for adverse considered correct if 
the subsequent observed verification value is in the adverse range. The 
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Fig. 12.2 A S2S forecast system that uses the forecast history and verification 
data to optimize new forecasts in a calibration and combination process. The same 
data leads to forecast performance statistics that inform the business decisions
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_ _

Table 12.1 The business model for computing the consequences of forecasts 
and hedges
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total number of forecasts S(p) = V(p) + X(p) in each bin is known as the 
sharpness of the forecasts. We divide these three quantities by the total 
number N of forecasts and then have the corresponding ratios v(p), x(p), 
and s(p). The reliability is defined to be r(p) = v(p)/s(p) and thus is a ratio 
of the number of correct forecasts to the total number of forecasts and is 
an important indicator of forecast performance.2 Figure 12.3 shows a reli-
ability diagram for a set of World Climate Service (WCS) forecasts.3

To describe expected outcomes for action at all predicted probabilities 
pp ≥ p, we sum over this range and so the fraction fa(p) of adverse forecasts 
and the fraction Fa(p) of correct forecasts are:

 

f p s y F p v y f pa
y p

a
y p

( ) = ( ) ( ) = ( )








 ( )

≥ ≥
∑ ∑, /

 

(12.1)

Fig. 12.3 A reliability diagram for WCS forecasts of temperature, precipitation, 
and wind speed for the North American winter, illustrating the improvement in 
reliability achieved by calibration. The data for above and below normal have been 
combined to create a single curve for each variable and thereby simplify the 
diagram
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and we use these two quantities along with the climatological frequency na 
of adverse events to complete the contingency Table 12.2, which contains 
the probabilities associated with the events in Table 12.1.

The fraction of adverse forecasts at predicted probabilities pp ≥ p is f(p) 
and thus appears as the Sum of the Adverse row. The fraction of correct 
adverse forecasts is the product f(p)F(p) and appears in the Adverse × 
Adverse matrix element. The climatological fraction of adverse events na 
appears as the Sum of Adverse events and since we have divided by the 
total number of forecasts the Sum × Sum matrix element is 1. With these 
four values in place, the rest of the table is completed by simple algebra.

Now we can describe the business results expected by acting on a fore-
cast of adverse conditions. Define the 2 × 2 matrix in Table 12.1 shaded 
yellow as the business model M and its companion in Table 12.2 as the 
probability matrix P. Then with the definition of term-by-term summa-
tion as

 

A B A B
i j

i j i j =
= =
∑∑

1

2

1

2

, ,

 
(12.2)

we can compute the expected revenue R(p) and its variance V(p) 
obtained when acting on pp ≥ p as

 R P M V P M R= = − , 2 2

 (12.3)

in which the elements of M2 are the squared elements of M. Here R and 
V are functions of the variables in Table 12.1 and of the predicted proba-
bility p via the functions in Table 12.2.

To obtain quantitative estimates, we must have suitable representations 
of the forecast performance functions fa(p) and Fa(p), as illustrated in 
Fig. 12.4 for WCS forecasts of temperature, precipitation, and wind for 
the North American winter. The computations of expected return and 
variance are simplified by modelling the summands in (12.1) with beta 
functions, converting the sums in (12.1) to integrals and performing the 
integration, and thereby obtaining analytical expressions for fa(p) and 
Fa(p).

To complete the analysis, we need estimates of the cost of various 
hedges. For hedges that pay when the observed verification value falls 
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anywhere in the adverse tercile, some sellers use C H H H( ) = +ησ  with 
H n Ha=  and σH a a an H H n n H2 2 2 21= − = −( )  and often select η = 1/4.

For example, the WCS maintains and displays detailed information 
about the skill and reliability of its S2S forecasts relative to the terciles 
(Dutton et al. 2013; James et al. 2014). Now the WCS is combining fore-
cast performance records with a model of the hedging process to create a 
hedge advisor, shown in Fig.  12.5, that provides expected returns and 
volatilities for hedges put in place at various predicted probabilities of 
adverse conditions (Dutton et al. 2015). The return R(H, p,…) and the 
volatility V H p, ,…( )  (standard deviation) are plotted parametrically as 
functions of H for various values of predicted probability p for warm 
North American winters with Rf = 100 (units arbitrary) and L = 33.

These plots thus take explicit account of the historical skill of the fore-
casts, and thus both buyers and sellers of hedges can act with some confi-
dence about results expected over a number of cases.
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Fig. 12.4 Forecast performance functions for WCS forecasts for temperature, 
precipitation, and wind for the North American winter
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As another example, Vitart (2014) provides a summary of the skill of 
the S2S forecasts of the European Centre for Medium-Range Weather 
Forecasts (ECMWF). The WCS combines and calibrates these ECMWF 
forecasts with the S2S forecasts of the US National Weather Service (NWS) 
to form the multi-model forecasts and performance statistics discussed 
above. The calibration compares some three decades of retrospective fore-
casts for previous years with the corresponding verification to develop sta-
tistical methods for improving the current forecasts.

clImate change ProbabIlItIeS

Simulations of twenty-first century climate change on the scale of decades 
or more in the future provide users with an entirely different challenge 
related to long-term business strategy and capital investment. On this 

Fig. 12.5 The WCS hedge advisor compares volatility and return for several 
predicted probabilities of adverse events to those expected from the climatological 
frequency of the same event. The dots indicate hedges at increments of one- 
quarter of the loss in adverse conditions. The minimum volatility occurs for hedges 
close to that loss. In this illustration, the skill of the forecasts puts the seller of 
hedges using η= 1/4 at a financial disadvantage for predicted probabilities of 1/3 
or greater
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scale, uncertainty prevails in all aspects of the energy industry, including 
environmental variables involved in creating demand and generating 
power, in technological advance, in prices of fuel or equipment, in the 
changing numbers and needs of the customers, and in evolving regulation 
in response to awareness of climate change.

A comprehensive strategy for addressing this challenge is illustrated in 
Fig. 12.6 which shows how data about observed and future climate can be 
combined with a quantitative business model to generate simulations of 
future performance.4 The strategy has three components: a source of 
information about past and future climates, a quantitative business model, 
and a set of business simulations.

For future climate information, we presently use the climate simula-
tions of 16 national and international modelling centres prepared for the 
Climate Model Intercomparison Project 5 (CMIP5) (Taylor et al. 2012) 
for the fifth report of the Intergovernmental Panel on Climate Change 
(IPCC 2013). Using these simulations, we can create probability distribu-
tions for environmental variables that depict climate evolution and varia-
tion as forced by greenhouse gas emission scenarios designed to cover a 
wide range of possibilities.

Pathways to Resilience

Climate Model 
Access and 

Analysis

Business
Quantitative 

Model

Trends
Economic
Societal

Business
Simulations

Rehearsing 
in the Future

World
Climate 

Data

IPCC 
CMIP5

Simulations

Fig. 12.6 A climate change information system designed to assist business to 
explore alternative futures, including a system to assemble past and future climate 
information, a quantitative model of the business, and a system for computing 
business simulations
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With such climate change simulations, there are no forecast verifica-
tions and only performance statistics for versions run for the twentieth 
century with quite different forcing. Nevertheless, the producers and 
 consumers of energy can use probabilistic information from the climate 
change scenarios to examine the relevance and resilience of their business 
models and strategies. They can prepare now for change that, however 
unclear, is certain to come.

A mathematical and numerical model of a hypothetical utility, the 
Virtual Electric Power Company (VEPCO),5 illustrates how the strategy 
of Fig. 12.6 might be implemented. An influence diagram in Fig. 12.7, 
constructed following Brown (2015), describes a business model that is 
combined with the evolving probability distributions of temperature, 
insolation, and precipitation for moderately severe climate change obtained 
from CMIP5 climate simulations to estimate demand and the availability 
of solar and hydro power. VEPCO plans an increased reliance on solar and 
hydro power because of decreasing costs expected for these renewables, 

LOCATION 

CLIMATE  CHANGE 
SIMULATION 

Insola-
tion 

Precipi-
tation          

Temper-
ature 

Load(T) Popula-
tion 

STRATEGIC  
PLAN 

Solar 
Power 

Hydro 
power 

REQUIRED 
GENERATION 

FOSSIL FUEL 
GENERATION 

Market Cost 
Solar 

Cost 
Hydro 

Cost 
Fossil 

COST OF 
GENERATION 

Technology 

Developing Climate Change Strategies for the Virtual Electric Power Company (VEPCO)  

Fig. 12.7 The business model, constructed as an influence diagram, used to 
generate climate change scenarios for the hypothetical utility VEPCO
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while the cost of fossil power increases. In the simulations, fossil power 
meets demand remaining after the contribution of hydro and solar power.

As an example of the environmental variables, the evolving probability 
distributions of insolation obtained from ClimBiz are shown in Fig. 12.8. 
Suitable probability distributions must be developed for the other vari-
ables in Fig.  12.7, including costs of generation, population, and 
advances in technology. Simulations of VEPCO response to 15 combina-
tions of solar and hydro power for each of the 20-year double decades 
are shown in Fig. 12.9. And thus VEPCO can choose between minimal 
expense or minimal volatility or select some combination it expects to be 
optimum.

The complexity of ensuring resilience is illustrated by this example. 
Rather than looking at simple statistics, the VEPCO planners can combine 
the probability distributions that describe several scenarios of climate 
change from mild-to-severe with distributions describing the potential 
range of customer needs, technology, policy imperatives, and market 

Fig. 12.8 Evolving probability of summer insolation for VEPCO, from one of 
the IPCC climate simulations for moderately severe climate change (6 watts/m2 
additional greenhouse heating). The blues are the small-value side of the distribu-
tion, the reds the large-value side with the median at the intersection of the two 
colours
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forces as the twenty-first century evolves. Thus, they must combine a com-
prehensive model of the business and probabilistic models of a variety of 
forces that may drive change in the business. Sampling from all of these 
probability distributions will produce an immense amount of data. But all 
the individual scenarios will combine into smooth probability distribu-
tions that depict both likely events in the centre of the distribution and the 
likelihood in the tails of both adverse and favourable events for which 
VEPCO must be alert and be prepared to act if necessary.

Being ready for whatever comes is the key benefit of resilience and of 
examining possible future events through the window of probabilities that 
describe both their likelihood and uncertainty. As summarized by Hamel 
and Välikangas (2003): “In a truly resilient organization, there is plenty of 
excitement … but no trauma.”
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Fig. 12.9 Expense versus volatility relative to present conditions for 15 selec-
tions of solar and hydro fractions of generation for five double decades in the 
twenty-first century, giving VEPCO a range of possibilities for minimizing expense 
or minimizing volatility. The relative volatility on the x-axis is the standard devia-
tion of the relative expense on the y-axis
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Hypothetical probabilities for two different strategies for VEPCO are 
illustrated in Fig.  12.10, one resilient and one fragile and undesirable. 
With a business simulation driven by scenarios of climate change and the 
evolution of economic forces, VEPCO can create probabilistic portraits of 
its operating variables for the decades to come and identify decisions and 
action that will ensure resilience. It will be “rehearsing the future”, as 
advocated by Schwartz (1996).

And rehearsing successfully to ensure resilience in the decades ahead 
will confer the ultimate competitive advantage in the energy and other 
industries.
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Fig. 12.10 Probability densities associated with VEPCO strategies that would 
imply favourable or unfavourable prospects for the end of the century. The perfor-
mance is measured by a ratio of 2080–2100 income to present-day income, both 
in present-day values. Fragile is used in the sense of vulnerability to volatility (Taleb 
2012), resilience for anti-fragile. The resilient density is relatively thin and favours 
positive income and therefore is robust
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concluSIon

This examination of probability forecasts for energy on timescales ranging 
from weeks to a century or more has demonstrated that decisions must be 
two-dimensional and consider both a measure of return or cost and a mea-
sure of risk or volatility related to the variance of return or cost, thus 
 echoing the Nobel Prize-winning conclusions of Markowitz (1952) about 
investment selection.

Hedging adverse forecasts on the S2S scale leads to a range of choices, 
with maximum return accompanied by maximum volatility compared to 
minimum volatility with reduced return. Assessment of climate change 
strategies focused on generation cost produced a similar set of choices for 
a range of configurations and capital investment commitments for a virtual 
utility. Finding the pathways to resilience across a variety of potential cli-
mate change trajectories thus requires examining a collection of scenarios 
and then comparing overall return or cost to overall volatility across the 
full range of potential variation.

Achieving resilience on any timescale has three critical components: 
forecasts or scenarios for a future period, a model of the business that will 
yield results as a function of possible hedges or other decisions and 
actions, and a history or other means of assessing the quality of the fore-
casts. For S2S forecasts, we created a generic business model and showed 
how forecast skill functions then produced analytical and numerical com-
parisons of return and volatility for various predicted probabilities and 
hedges. For climate variability, the assessment of the expected accuracy 
and relative value of various climate simulations remains a signal chal-
lenge for the climate research community. Until that challenge is met, it 
seems that the best statistical strategy is to use as many simulations as 
possible and scale them to a common climatological base over a decade 
or two. This may produce overly broad probability distributions, but that 
is preferable to having them too narrow and producing overconfident 
estimates.

In summary, energy firms can control their statistical future for S2S 
timescales if sufficiently skilful forecasts are available; for climate change, 
they can explore a range of statistical futures in search of the pathways to 
resilience.
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noteS

1. S2S forecasts are currently available from the US National Weather 
Service (NWS), Environment Canada, the European Centre for Medium-
Range Weather Forecasts  (ECMWF) and the commercial World Climate 
Service which combines the NWS and ECMWF forecasts into a multi-model 
ensemble. The European Copernicus project is offering S2S forecasts from 
a number of national forecast centres and the NWS is coordinating develop-
ment of an experimental subseasonal component of the North American 
Multi-Model Ensemble (NMME). There may be others of which the 
authors are unaware.

2. We would consider a forecast for rain reliable if it rains on one-third of the 
days for which we predicted a probability of one-third for rain.

3. A collaborative effort of Prescient Weather in the US and MeteoGroup, a 
global weather information firm with headquarters in London.

4. This is part of the development by Prescient Weather of a Climate Change 
Information System for Business and Industry (ClimBiz) sponsored by the 
US Department of Energy.

5. The virtual VEPCO shares its acronym with the real but unrelated Virginia 
Electric and Power Company.
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Abstract Work at the nexus between energy and meteorology aims at 
integrating meteorological information into operational risk management 
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long- term climate change and climate variability to shorter term local 
weather. Weather and climate risk management can be a powerful instru-
ment for development—not only for building energy system resilience and 
thus mitigating the effects of adverse events but also for ensuring that 
opportunities for enhanced system efficiency are exploited. The collabora-
tion between energy and meteorology has a long history but has recently 
been strengthening, particularly in response to the new challenges posed 
by climate change and the necessary development of low-carbon energy 
systems. An efficient integration of high-quality weather and climate infor-
mation into energy sector policy formulation, strategic planning, risk 
management and operational activities now, more than ever, requires 
improved understanding and communication between energy and meteo-
rology specialists and decision makers.

Keywords Climate change • Energy systems • Meteorology • Risk man-
agement • Strategic planning • Resilience • Weather and climate 
services

Lessons Learned in energy and MeteoroLogy

Examples and lessons learned have been presented in the preceding chap-
ters. Here we attempt to summarize them, highlighting the key messages 
in the interaction between the energy sector and the meteorology com-
munity. The objective is to strengthen this relationship so as to achieve 
improved resilience and efficiency of energy systems, informed by weather, 
water and climate services, based on a strong scientific foundation.

Improving the Communication Between Providers and Users

As advocated by the UN’s Global Framework for Climate Services1 
(GFCS) (WMO 2011, 2017), evaluating the benefits of a new meteoro-
logical product for the energy industry requires good understanding 
between all the actors along the energy systems value chain. But, even 
more importantly, a fluid communication is extremely important at the 
early stage of the process, to understand the needs, propose the relevant 
solutions and work in a co-design approach. This is a field that has been 
further explored in depth only in the last several years, through a range of 
initiatives and projects, in particular but not only via the development of 
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climate services. The EUPORIAS project,2 for example, developed semi- 
operational climate services underpinned by a co-design approach. The 
co-design of climate services, understood as the process through which 
the service is defined and developed together with the end users (and 
other relevant actors), is perceived as an essential step for delivering suc-
cessful services that adequately respond to users’ needs and requirements 
with regard to climate data and information (Mauser et al. 2013; Troccoli 
et  al. 2010; WMO 2011, 2017). One essential component of the co- 
design approach is an effective engagement and communication between 
the providers and the users (Brooks 2013) alongside other critical aspects 
such as fully understanding the scope of the climate service, the involve-
ment of all relevant actors, a degree of flexibility and iteration in the devel-
opmental process and the continuous evaluation of the service being 
developed (Buontempo et al. 2014).

In the last decade or so, the links between energy and meteorology 
have also been developed in several international conferences, with the 
organization of specific energy meteorology symposia. These are now 
established at events such as the American Meteorological Society annual 
meeting3 and the European Meteorological Society conference,4 where 
the energy meteorology session has been more and more popular in the 
last few years. But academics still represent the largest portion of attendees 
at these meetings, with fewer people from the energy industry. Some more 
specific conferences are successful in bringing together academic and 
industry people (Wind Europe5 is one of them), whereas targeted working 
groups (e.g. the Utility Variable Integration Group, UVIG6) are very suc-
cessful in getting scientists, private sector service providers and energy 
practitioners focused on specific problems.

To our knowledge, the International Conference on Energy & 
Meteorology7 (ICEM) is at present the only sustained process within the 
last ten years aiming at bringing meteorology and energy experts together, 
with the goal to cover both weather, water and climate sciences and 
 services, and all the fields of activity in the energy value chain, even if, due 
to the initial structure of the network, the wind and solar aspects of the 
power sector were dominant at the beginning. Since its first edition in 
2011, a growing network of specialists working at the nexus between 
energy and meteorology (weather, water, climate sciences and services) 
such as energy regulators, economists, planning officers, water experts, 
financial and insurance brokers, utility engineers, transmission and distri-
bution operators, meteorologists, climatologists, service providers, policy 
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makers as well as energy industry executives, have been gathering every 
two years. Building on its successes, ICEM’s sustained process is now pro-
viding a premium international platform with excellent networking oppor-
tunities amongst the ca. 200 participants at each conference as well as a 
source of the state-of-the-art in the science, policy, planning and opera-
tions in energy and meteorology. Based on the discussions during ICEMs, 
and parallel activities in between, an international, non-profit organization 
was established in 2015 to go one step further: the World Energy and 
Meteorology Council8 (WEMC) is devoted to promoting and enhancing 
the interaction between the energy industry and the weather, water, cli-
mate and broader environmental sciences community as the stakeholders 
of a resilient energy services value chain under an ever changing climate. 
Both ICEM and WEMC were presented in Chap. 5 of this book.

Improving Decision-Making Processes

Improving decision-making processes is crucial and relates to the effective 
integration of improved data/forecasts/products developed operationally 
by the meteorology community. When the target is to improve the qual-
ity and accuracy of an existing product purely from a meteorological per-
spective, the improvement tends to be easier to achieve. This is the case, 
for instance, if an improved version of a weather model reduces the fore-
cast error for air temperature. However, with the additional step of using 
the meteorological variable in a specific context (e.g. the use of air tem-
perature to compute energy demand) or in a more complex manner (e.g. 
using a probabilistic forecast instead of a deterministic one), the improve-
ment is more difficult to assess. Not only is the decision process changed, 
because different or additional information becomes available, but also 
decision-making tools may need to be adapted, or even fully redefined to 
be able to use the new information. Decision-making tools and processes 
then become more complex and in most cases the underlying meteoro-
logical product development or improvement represents only a portion of 
the final decision or outcome.

The first implication of the interplay between the meteorological input 
and the final decision is that more time is required to develop the meteo-
rological product as it must fit the decision process in the best possible 
way, even if both sides—the meteorological product development and the 
energy decision—can be addressed in parallel, at least partially.
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The second implication is that, prior to the adoption of the new prod-
uct, its added value must be demonstrated, and hence the methodology to 
enable this demonstration needs to be defined at an early stage. This 
requires definition of the goal to be pursued and the objective criteria that 
will allow the assessment of the solution.

And then the third implication is that specific people and skills are 
required in the process. These experts must, collectively, be able to under-
stand every component of the energy services value chain and must be able 
to interact with each other in a dynamic way covering the spectrum from 
the meteorological side to the final energy services at the user level. Most 
of all, there is a need for experts with skills to implement an objective 
method to evaluate the benefits of the new product. Evaluating a decision- 
making process, and if/how/why it should or should not be changed, is a 
specialist field in itself. In some companies, these skills do not exist and 
external experts are therefore required.

In particular, it must be shown objectively that the new decision- 
making process, and not only the new meteorological product, adds some 
value to the final decision. It requires a proof that the new approach is 
more beneficial than the existing one. This means that the evaluation pro-
cess must be completed from the application point of view and not only 
from the meteorological perspective. A common mistake has been for 
meteorologists alone to evaluate a meteorological product from the mete-
orological point of view and to decide on its usefulness based solely on the 
meteorological performance assessment, as mentioned above. This can be 
misleading. Indeed, even small improvements in meteorological forecasts 
can result in significant added value from the end user point of view, as the 
transformation from meteorology to energy can be nonlinear. In addition, 
there is generally an asymmetry in weather-dependant processes: for 
instance, energy demand is very sensitive to cold temperature in France in 
winter, but not so much to mild temperatures (Dubus 2014). A slight 
improvement in cold temperature event forecasts can therefore be very 
valuable, while a larger improvement on mild temperature events might be 
irrelevant in this context.

Aside from asymmetries, and more generally nonlinearities, in the 
meteorology-energy transfer functions, an important consideration when 
focusing efforts in meteorological model improvements, is that the most 
benefit is not always where one would commonly expect it, such as in the 
performance of simulating extreme events. A case in point, in the context 
of construction and operations and maintenance of offshore wind farms, is 
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that enhancements to the performance of wave models should be focused 
most usefully upon the narrow wave height range which determines 
whether work can or cannot be safely conducted, rather than on very large 
or very small waves (Dorling and Bacon 2017). As a generic principle, the 
evaluation should then always be made all along the chain, from the mete-
orological input to the final decision, and compared to the user’s current 
practice. The final added value will be a mix of the meteorological value 
and how it enhances the user decisions. This approach has also recently 
been implemented more frequently in government sponsored projects 
(Haupt et al. 2017).

It becomes even more complex when the new meteorological solution 
changes in nature. Many times we have heard dialogues in which meteo-
rologists, to answer a temperature forecast quality issue for two weeks 
ahead, emphasized that the user should move from deterministic forecasts 
to probabilistic forecasts because, due to uncertainties in the initial condi-
tions and to nonlinear effects in the equations, and many other excellent 
scientific arguments, it does not make sense to use deterministic forecasts 
beyond three to four days’ lead time. End of discussion. But moving from 
a deterministic temperature forecast to an ensemble prediction is not a 
mouse-click story when one considers the whole decision process. First 
there are computational issues, in particular in large companies, where 
there are often many dependencies between different models, decision 
tools and processes and reporting tools. But the most significant barrier 
often comes from the users’ reluctance to adopt new kinds of information, 
especially if it is probabilistic rather than deterministic. Efficient and 
informed use of probabilistic weather and climate forecasts has signifi-
cantly advanced in the energy sector, but there is still a natural mistrust, 
which is quite surprising as energy people are used to dealing with uncer-
tainty for other variables, especially in finance and market operations. 
Therefore, training and education about probabilistic weather and climate 
forecasts must remain a key component for the effective integration of 
better weather and climate information in energy system decision-making 
processes.

Looking ahead in energy and MeteoroLogy

As exposed above, energy and meteorology is an interdisciplinary area 
which offers exciting but complex challenges. Experts have been working 
and providing solutions for many years now (e.g. the ANEMOS’ wind 
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power forecasting system developed in the early 2000s by a European 
partnership). However, it is also clear that much more needs to be done. 
It is also becoming more evident that solutions, such as development of 
tools, require enhanced co-design and co-development between meteo-
rologists and energy experts. In the context of climate services, the EU 
Copernicus Climate Change Service (C3S)9 Programme is pioneering 
such an approach. Amongst the C3S projects, the European Climatic 
Energy Mixes10 (ECEM) service is producing, in close collaboration with 
prospective users, a proof-of-concept climate service—or demonstrator. 
This C3S ECEM climate service demonstrator, comprising a set of tools, 
including an online web interface, for improved assessment of energy mix 
options over Europe, has been co-developed from scratch with extensive 
input from prospective users engaged through expert elicitation work-
shops and direct contacts. The main purpose of the C3S ECEM 
Demonstrator11 is to enable the energy industry and policy makers to 
assess how well energy supply will meet demand in Europe over different 
time horizons, focusing on the role climate has on energy supply and 
demand. These are the types of activities that greatly enhance collabora-
tion between energy and meteorology and at the same time produce valu-
able tools for decision making in the energy sector.

Other activities which foster collaboration, encourage critical thinking 
and promote innovative solutions are working groups within an organized 
environment. For instance, WEMC has recently launched its member-
ship12 which, as one of its core objectives, encourages meteorology and 
energy experts to engage in Special Interest Groups (SIGs).13 The SIGs 
are vehicles leading to the production of reports, analyses and syntheses 
on key topics in energy and meteorology, which will ultimately assist the 
energy industry in addressing resilience, efficiency, mitigation and adapta-
tion challenges.

Major Challenges to Be Addressed in a Co-design Approach

The Paris Agreement at COP21 has established a framework. Its impact 
depends on how the goals will be translated into real government policy 
actions. Nonetheless, the energy sector faces a critical need to transition 
from a carbon-based energy model to a decarbonized energy world. Low- 
carbon energy generation and energy efficiency are already key in this new 
paradigm. Hence, addressing the Energy Trilemma will require improved 
weather and climate information. A strong growth in renewables has 
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already begun in electricity production and must continue; their contribu-
tion now needs to develop significantly in heat and transport (IEA 2016). 
As electricity is the easiest energy generation source to decarbonize, its 
share in the global energy production is expected to double in the next 
50 years or so. The growth in solar and wind energy will continue. This 
will create new opportunities, for instance:

• The need for innovative solutions from start-ups and SMEs, in stor-
age solutions and in smart management of energy systems at local to 
global scale;

• Job creation: the renewables sector is estimated to currently employ 
8.1 million people (not including large-scale hydropower), plus an 
extra 1.3  million in large-scale hydropower (REN21 2016), and 
thousands of new jobs will be created by new projects;

• The development of distributed renewable energy will increase 
energy access, especially in the Asia-Pacific region and sub-Saharan 
Africa, where most of the 1.2 billion people who do not currently 
have access to electricity live.

But there will also be new or increased risks:

• The increasing share of wind, solar and hydropower is and will be 
reinforcing the dependence of energy systems on knowledge of cli-
mate variability and climate change. «Classical» energy systems need 
to become more flexible and to account for renewable variable gen-
eration (Cochrane et al. 2014). Hence, observational and forecast-
ing capacities of the relevant variables need to be improved, on the 
necessary time and space scales. This includes local and high fre-
quency wind and solar radiation forecasts, which are becoming more 
and more critical as the underlying variability poses problems to grid 
management, to ensure the real-time balance between consumption 
and production. Among the more specific challenges, one can (non- 
exhaustively) list:

 – Improved and more accurate characterization of past climate, 
especially in order to adequately assess wind, solar and hydro-
power resources. In addition to field campaigns during the due 
diligence stage of proposed projects, it is more than ever necessary 
to have multidecadal reanalysis at high spatial resolution, and at 
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least hourly time step, to correctly assess the future performance 
of wind and solar farms. This allows better shaping of plant char-
acteristics, and assessment of project bankability, ensuring a good 
return on investment, which is essential to make the sector profit-
able, and finally to improve its competitiveness with respect to 
other production means.

 – Very short-term wind and solar radiation variations, on timescales 
of a few minutes to two to three hours. Ramp events, in particular, 
can destabilize power systems as they require a significant increase 
or decrease in production over short periods, to compensate 
renewables variability.

• Improved demand and generation forecasts on a few days to a few 
weeks, for optimized unit commitment planning and energy market 
operations. One key issue at the moment lies in the frequent jumpi-
ness in successive weather forecasts, that is to say when consecutive 
forecasts give a different trend over the coming days. Reacting to 
these changes in real time often requires the buying/selling of energy 
in a sub-optimal way, leading to unnecessary expenditure.

• On longer timescales, from a few weeks to several months, improved 
sub-seasonal to seasonal forecasts would allow better planning of 
generation unit maintenance, and management of energy stocks, in 
particular hydropower capacity in large reservoirs.

• Of course, on longer timescales, energy companies and policy makers 
need improved information on the possible impacts of climate change 
on energy assets, and how future operations and systems manage-
ment need to be adapted. This includes information on future means 
and extremes of different climate variables, together with the expected 
changes on the variability itself, as for instance a change in seasonality 
in precipitation will impact the yearly management of large reser-
voirs. Downscaling is of course a key issue because information is 
needed at a scale as close as possible to individual plants.

One could list many other examples of benefits arising from improving 
weather, water and climate information for the energy sector, and some of 
the other chapters of this book do so, building upon Troccoli et al. (2014). 
But, as mentioned in the previous section, improving weather and climate 
forecasts is not the only key to enabling more secure, more affordable and 
sustainable energy systems and services. Each component of the system 
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needs to be taken into consideration in a global and integrated approach. 
For instance, the technical and economic analysis of the European electric-
ity system with 60% Renewable Energy Sources study (Silva and Burtin 
2015) shows the complexity of such an analysis, which requires many 
sources of information and different model components, with many inter-
connections between them. Improving the decision-making processes and 
the communication channels between energy and meteorology specialists 
is thus very important to ensure a coherent approach all along the chain. 
Therefore, a more effective integration of weather and climate informa-
tion in energy systems requires:

• Improved communication between communities, at different levels 
(technical, managerial and decision/policy making). This should 
reduce the language gaps and enable a more rapid design of fit for 
purpose solutions.

• Common training programmes to inform energy people on weather 
and climate on the one side, but also, on the other side, for meteo-
rologists to better understand how energy systems work, and how 
their inputs can be tailored to enhance operational models and deci-
sion chains.

• Closer and more responsive relationships between energy and mete-
orology people.

Among several other organizations, the World Business Council for 
Sustainable Development (WBCSD) emphasizes that pooling learning, 
exchanging best practice, sharing resources and encouraging mutual aid can 
benefit electric utilities and their stakeholders, as well as public authorities 
and consumers (WBCSD 2014). Increased sectoral and cross-sectoral col-
laboration is essential in moving forward and tackling the energy trilemma. 
Energy is now at the core of major programmes like the GFCS14 and the 
C3S. Organizations with a strong interest in energy and in the role weather 
and climate have on it, such as WBCSD, the World Bank’s Energy Sector 
Management Assistance Program (ESMAP), the International Renewable 
Energy Agency (IRENA) and WEMC, will play an important role in the 
future: to help develop science-based and user-driven solutions, for an 
effective integration of high-quality weather, climate and other environ-
mental information into energy sector policy formulation, planning, risk 
management and operational activities; to better manage power systems on 
all timescales and strengthen climate change mitigation and adaptation.
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notes

1. http://www.wmo.int/gfcs/.
2. http://www.euporias.eu/.
3. https://www.ametsoc.org/ams/.
4. http://www.emetsoc.org/.
5. https://windeurope.org/.
6. http://uvig.org/newsroom/.
7. http://www.wemcouncil.org/wp/conferences/.
8. http://www.wemcouncil.org/.
9. http://climate.copernicus.eu/.

10. http://ecem.climate.copernicus.eu/.
11. http://ecem.climate.copernicus.eu/demonstrator/.
12. http://www.wemcouncil.org/wp/about/membership/.
13. Typical SIGs could focus on (1) Weather/Climate Forecast/Projections 

for Energy Operation and Planning; (2) Grid Integration; (3) Data 
Exchange, Access and Standards; (4) Energy & Meteorology Education.

14. http://www.wmo.int/gfcs/.
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